
Things should be made as simple as possible, bu t not any simpler.

A lbert E instein

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U niversity o f A lberta

S p atio tem p oral M odelling  o f V iral Infection  
D ynam ics

by

C a th e r in e  B ea u ch em in

A thesis su b m itted  to  th e  F acu lty  of G ra d u a te  S tudies an d  R esearch in  p a rtia l 
fulfillm ent of th e  requirem ents for th e  degree of D octo r of Philosophy

D epartm ent o f  Physics

E dm onton , A lb e rta  
Spring 2006

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-494-13936-6 
Our file Notre reference 
ISBN: 0-494-13936-6

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



To 

M y  m o m ,  K ipp ,  Jack, Alan, and others.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



A bstract

Viral kinetics have been studied extensively in the past through the use of ordinary 

differential equations describing the time evolution of the diseased state  in a spatially 

well-mixed medium. However, emerging spatial structures such as localized populations 

of dead cells might affect the spread of infection, similar to  the m anner in which a 

counter-fire can stop a forest fire from spreading.

In the first phase of the project, a simple two-dimensional cellular autom aton model 

of viral infections was developed. It was validated against clinical immunological data 

for uncom plicated influenza A infections and shown to be accurate enough to adequately 

model them.

In the second phase of the project, the simple two-dimensional cellular autom aton 

model was used to investigate the effects of relaxing the well-mixed assum ption on viral 

infection dynamics. It was shown th a t grouping the initially infected cells into patches 

rather than  distributing them  uniformly on the grid reduced the infection ra te as only 

cells on the perim eter of the patch have healthy neighbours to infect. Use of a local 

epithelial cell regeneration rule where dead cells are replaced by healthy cells when 

an immediate neighbour divides was found to  result in more extensive damage of the 

epithelium and yielded a better fit to experim ental influenza A infection data  than a 

global regeneration rule based on division ra te  of healthy cell. Finally, the addition of 

immune cell a t the site of infection was found to  be a b e tte r strategy at low infection 

levels, while addition at random  locations on the grid was the b etter strategy at high 

infection level.

In the last project, the movement of T cells within lym ph nodes in the absence of 

antigen, was investigated. Based on individual T  cell track d a ta  captured by two-photon 

microscopy experiments in vivo, a simple model was proposed for the motion of T  cells. 

This is the first step towards the implementation of a more realistic spatiotcm poral model
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of HIV th an  those proposed thus far [76, 90].
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1

C hapter 1 

Introduction

“Self-organization” is a process in which the entropy of a (normally open) system de­
creases autom atically w ithout being guided or managed by an outside source. Often 
the most interesting behaviours exhibited by such systems are neither exhibited by in­
dividual agents nor the result of a centralized information structure. Instead, these 
“emergent” properties arises from the multiple interactions between the simple agents. 
A good example of such systems is droplets accumulating slowly w ith simple rules giving 
rise to the intricate patterns observed in snowflakes. The immune system is also a per­
fect example of such systems. It is made of many types of agents, for instance B cells, 
T  cells, etc., which interact directly, e.g. a B cell binding w ith an antigen, or through 
their environment, e.g. an activated T cell releasing cytokines th a t trigger the division 
of neighbouring B and T  cells. From the interactions of those agents, a global complex 
system emerges which is capable of learning (e.g. adapt to  new pathogens) and memory 
(e.g. retain  affinity for previously encountered pathogens).

In the past two decades, many approaches have been chosen to model different aspects 
of the immune system. Differential equation models are perhaps the most common 
and are typically used to  simulate the immunological and epidemiological dynamics of 
particular diseases to  try  and identify the critical param eters involved [11, 63]. Genetic 
algorithms have been applied to  the modelling of the evolution of diversity and pattern  
recognition capability in the immune system [25, 36, 37]. On the theoretical front, some 
ingenious work [23, 62, 72, 74] has been done to  understand aspects of the immune 
system from the perspective of optimization problems. Efforts to  build an immune 
system tailored for com puter networks [24, 73] have raised our understanding of the 
crucial nature of certain immune system mechanisms. Cellular autom aton (CA) models 
have been developed to simulate the immune dynamics of particular diseases [76, 90], 
to model shape space interactions [89] based on the network theory introduced by Jernc 
[39], and have been chosen as the tool of choice to implement highly complex general 
immune system simulators [7, 14, 43, 71] th a t are to be used to  run  immune system 
experiments in silico. More recently, a promising stage-structured modelling approach 
was used to study cytotoxic T  lymphocyte response to antigen [16].

Differential equation modelling is the most popular approach to  understanding and
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CHAPTER 1. INTRODUCTION 2

characterizing the dynamics of viral infections. The basic viral infection model, which 
was introduced by Perelson [63, 65], describes the tem poral evolution of the population 
of susceptible or target cells, T , which become infected, I,  as a result of their interactions 
with virus particles, V,  namely

X - d T - k T V , (1.1)

k T V  — 51 , (1.2)

p I - c V  , (1.3)

where A represents the production rate of target cells, d and S are the death rate of 
target and infected cells respectively, c and p are, respectively, the clearance rate and 
production ra te  of virions by infected cells, and k is the rate of infection of target cells 
by virions. This model is widely used with minor or m ajor modifications to study the 
dynamics of various viral infections. Typically, these m athem atical modelling efforts 
seek to determ ine crucial param eters of the dynamics of a specific viral infection which 
would be im practical or arduous to extract experimentally.

B ut those simple ODE models make the very im portant assum ption th a t the various 
populations of cells and virus particles are uniformly distributed  over the space where 
the infection takes place for all times; an assumption th a t is rarely realistic, and which 
may or may not affect in a significant way the resulting dynamics. For this reason, there 
is growing interest in probing the effect of spatial distribution on systems in ecology 
[21, 22, 88], epidemiology [34, 47] and immunology [29, 48, 76]. In the case of viral 
infections, for example, spatial structures emerging over the course of an infection, such 
as localized populations of dead cells, might affect the spread of infection, similar to the 
manner in which a counter-fire can stop a forest fire from spreading. The investigation 
of the effects of these emerging spatial structures on viral infection dynamics is the 
main motivation behind the research presented herein, which covers various aspects of 
spatiotem poral modelling of viral infections.

In my research, CA modelling was preferred over differential equation modelling. 
One of the advantages of using differential equations is th a t a lot is known about their 
behaviour. Given a set of differential equations, one can often tell, for instance, for which 
range of the param eters the system is in a stable or an oscillatory state and for which 
value of the param eters the system will bifurcate from one sta te  to the other (see [77] 
for a good introduction to the theory of dynamical systems and differential equations). 
However, modelling self-organizing systems using differential equations is not always 
advantageous. The set of differential equations necessary to  represent such systems can 
be too complex for an analytical solution to be obtained, perhaps because the set of 
equations is too large or because of nonlinearities or delays.

For cases where the differential equations can no longer be solved analytically, CA 
can be a useful modelling alternative. The penalty for using the latter m ethod is th a t CA 
modelling is a fairly new m ethod and although CA provide a natu ra l way to model self­

dT 
df 
dI 
d t 

d F  
df
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CHAPTER 1. INTRODUCTION 3

organizing systems, they give little information on the landscape of the global dynamics 
in the param eter space. This information has to be extracted through averaging many 
simulations over the whole param eter space. On the other hand, CA can be simpler 
to implement, and adding nonlinearities, delays or additional com partm ents does not 
introduce any new difficulties in solving the model. Further, the description of the 
components and rules th a t make up the CA is often done in the same language as is 
used to describe the real system, such th a t the approximations m ade to simplify the 
simulations are usually more physical in character th an  m athem atical. Finally, a CA, by 
its very definition, emphasizes the local dynamics of a system ra ther th an  representing 
averages of its dynamics, as is the case with the mean-held approach of differential 
equations. A CA model allows one to  witness the subtle rules at play in the model 
and it is a good starting  point to understanding the im pact of local interactions on the 
resulting global dynamics of a complex system. This is why I chose CA to implement 
spatiotem poral models of viral infections.

In order to facilitate the implementation and visualization of CA models for the 
research project, I implemented MASyV, a M ulti-Agent System Visualization platform. 
Its implementation and usage are described in Appendix A. In short, MASyV facilitates 
the visualization of the CA models and autom ates certain tasks such as batch runs, data  
logging to  hie, recording of the visual simulations to  compressed movie formats, etc.

As was mentioned earlier, the present document covers various aspects of spatiotem ­
poral modelling of viral infection for the purpose of investigating how emerging spatial 
structures affect the dynamics of viral infections. The h rst p a rt of th is document offers 
a survey of the literature of relevance to the research projects presented herein. More 
specifically, C hapter 2 introduces the main components of the immune system and offers 
a brief overview of the mechanisms of immune responses, with special attention to viral 
infections, particularly to  influenza A. Then, C hapter 3 covers the basics of CA theory, 
including early work on elementary one-dimensional CA and the statistical properties 
and applications of CA. Finally, C hapter 4 reviews the literature on spatiotem poral m od­
els of immune processes, from the complex bit-string models to  simpler CA toy models 
and models specihc to  a particular viral infection.

Then, as a first step towards investigating the effects of the spatial distribution of 
agents on localized viral infection, a simple two-dimensional CA model was developed. 
It was validated against clinical immunological d a ta  for uncom plicated influenza A in­
fections and shown to be accurate enough to adequately model this disease. This model 
is the subject of C hapter 5.

In Chapter 6, the simple two-dimensional CA model is used to investigate the effects 
of relaxing the well-mixed assumption on viral infection dynamics. Particularly, the 
effects of the initial distribution of infected cells, the regeneration rule for dead epithelial 
cells, and the proliferation rule for immune cells are explored and shown to have an 
im portant im pact on the development and outcome of the viral infection in the model.

Finally, in C hapter 7, the movement of T  cells w ithin lym ph nodes in the absence of 
antigen is investigated. Based on individual T  cell track da ta  captured by two-photon 
microscopy experiments in vivo, a simple model is proposed for the motion of T  cells. 
This is the first step towards the im plementation of a more realistic spatiotem poral model
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CHAPTER 1. INTRODUCTION

of HIV than  those proposed thus far [76, 90].
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C hapter 2

Im m unology and V irology

In order to be able to model any self-organizing system adequately, one has to learn what 
constitutes the system of interest and w hat rules govern the movements and actions of 
these constituents. Here, a brief overview of the crucial components of the immune 
system will be introduced. This is a good chance for the uninitiated reader to  collect 
some of the immunological knowledge necessary to understand the models th a t will be 
introduced later in this document. For a great overview of the immune system from the 
point of view of a physicist, see [66] and for an in-depth coverage of the subject, see [30].

2.1 T h e  S p ecific  and  N o n -sp ec ific  Im m u n e S y stem s

Antigens are molecules present on cells (both  foreign and self) w ith which the immune 
system ’s cells and molecules can interact. “Foreign” antigens, components of the invading 
organisms, alert the immune system of invaders and initiate immune responses which can 
destroy the invading cells. To fight any antigen efficiently, the vast army of cells and 
structures th a t constitute the immune system is divided in two classes: the nonspecific 
(or innate) system and the specific (or acquired, adaptive) system.

The nonspecific system consists of anatomical barriers (skin, eyebrows, etc.), secre­
tions (saliva, tears, etc.) and phagocytic cells such as macrophages, neutrophils and 
natural killer (NK) cells. As its name suggests, the defence mechanisms it carries are 
not specific to a particular antigen. In general, most of the microorganisms encoun­
tered by a healthy individual are readily cleared within a few days by the nonspecific 
defence mechanisms of the nonspecific system even before the specific immune system 
gets activated. It provides the first line of defence against any exposure to an antigen 
and will often serve as a backup force while the specific immune system  builds up its 
specificity during a prim ary invasion, i.e. a first encounter of the system  with a given 
pathogen. However, when an invading microorganism eludes the nonspecific system or 
is not cleared by it, the specific immune response of the specific system  is triggered.

The specific immune system is composed mainly of lym phocytes (such as B and T 
cells), antibody molecules and other molecules produced by the lymphocytes. As its 
name suggests, this system has to  be tailored to the specific in truder in order to be able
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CHAPTER 2. IMMUNOLOGY AND VIROLOGY 6

to fight it efficiently. The specific immune system ’s responses can be divided into two 
branches: the hum oral and the cell-mediated response. Figure 2.1 illustrates bo th  the 
humoral (left side) and cell-mediated (right side) response. The hum oral response’s main 
effectors are the antibodies. A hum oral response entails the interaction of B cells with 
antigens and helper T  cells, and the B cell’s subsequent proliferation and differentiation 
into plasm a and memory B cells, w ith the former producing great am ounts of antibodies 
capable of binding an antigen to tag it for removal. The cell-mediated response’s main 
effectors are T  cells, bo th  helper and cytotoxic T  cells. Helper T  cells arc responsible 
for secreting cytokines enabling various phagocytic cells to phagocytose microorganisms 
more effectively, while cytotoxic T  cells are responsible for killing altered (e.g. virus- 
infected) host cells (referred to  as target cells).

The specificity of the specific immune system comes from the pa tte rn  recognition 
capabilities of the system. Both B and T  cells possess receptor molecules on their 
surfaces th a t can recognize antigen or more specifically the  antigen’s recognizable part 
called the epitope. The T  cell receptor is simply called a T  cell receptor (TCR), while 
the B cell receptor is referred to as a surface or anchored B cell receptor when it is 
anchored in the surface of the B cell, and is referred to as an antibody (immunoglobin) 
when it is free (soluble) after having been secreted by an effector plasm a B cell. Figure
2.1 presents a schematic view of the B and T cells’ receptor.

Recognition of an epitope by a receptor occurs at a molecular level and is based on 
the length of the complementary regions between the strings typically made of amino 
acid1 tha t constitute the receptor and the epitope. The particular amino acid string tha t 
composes a receptor determines the receptor’s idiotype. Immunologists sometimes refer 
to the idiotype of a receptor as the “shape” of the receptor. I t is im portant to point out 
tha t all the receptors on the surface of a given lymphocyte are m ade of the same amino 
acid chain and hence are said to all be of the same idiotype.

Receptors are constructed by a complex genetic process th a t insures th a t the re­
ceptors expressed on different lymphocytes have a different random ly chosen idiotype, 
hence maximizing the chance th a t any random  antigen presented to  the system can be 
recognized given th a t the repertoire of receptors is complete. For a clever calculation and 
discussion on the completeness of the immune repertoire, see [66]. The B cell receptor 
interacts w ith epitopes present on intact antigen molecules th a t may be soluble or bound 
to a surface. But since the function of a T cell is to kill or stim ulate other cells, it needs 
to be able to recognize th a t it is interacting with a cell ra ther th an  a soluble molecule. 
To accomplish this, T  cell receptors are designed to only recognize antigen when they 
are bound to a cell surface molecule called a m ajor histocom patibility complex (MHC).

MHC molecules come in two classes. Class I molecules specialize in presenting pro­
teins synthesized within the cells and are found on every cell (see right-hand side of 
Figure 2.1). Class II molecules specialize in presenting fragm ents of molecules picked 
up from the environment and are found only on professional antigen-presenting cells

XB cell receptors are mostly made of amino acids. However carbohydrates, lipids and even nucleic 
acids can serve as B cell epitopes. T  cell epitopes are almost always made of peptides (i.e. a  string of 
amino acids). For the purpose of our discussion, we will assume th a t the building blocks of all receptors 
and epitopes are amino acids.
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Figure 2.1: Representation of the specific immune response. The boxes show a schematic 
representation of the B and T cells’ receptor. The left-hand side of the figure illustrates 
the humoral response while the right-hand side illustrates the cell-mediated response of 
the specific immune system. Figure adapted from [30].
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CHAPTER 2. IMMUNOLOGY AND VIROLOGY 8

(APCs) like B cells, macrophages and dendritic cells (see top-left corner of Figure 2.1). 
Both classes of MHC molecules bind peptides and present them  to T  cells. MHC class I 
typically presents peptides to cytotoxic T cells (Tc, CD8+ T  cell, or CTL for cytotoxic T 
lymphocyte) which then destroy the cell if it can bind the class I M HC-peptidc complex. 
Class II MHC typically presents peptides to  T  helper cells (T h or CD4+ T  cell) which 
in tu rn  secrete cytokines. Cytokines are proteins produced by various cells and serve 
to regulate the intensity and duration of the immune response by exerting a variety of 
effects on lymphocytes and other immune cells.

Once a B cell has successfully recognized an antigen and has been successfully bound 
by a helper T  cell, co-stimulation will occur along with the release of cytokines which will 
initiate the division and differentiation of both  the B cell and helper T cell into effector 
and memory cells. In the case of B cells, the effector cells are called plasm a B cells and 
secrete large am ounts of antibody of their idiotype. The antibodies’ role is to tag  cells 
and molecules as foreign. An antibody-antigen complex or a foreign cell w ith antibodies 
attached to its surface are quickly eaten by large phagocytic cells such as macrophages.

2.2 T h e  C h a llen ges F aced  by th e  Im m u n e S y stem

The immune system  constitutes only a few percent of the to ta l cells in the body. During 
an immune response, the lymph nodes may swell to allow some increase in lymphocyte 
populations bu t th a t percentage cannot increase very much before affecting other bodily 
functions. Because of this size constraint on the immune system, specific strategies had to 
be adopted. Those include clonal selection, learning and memory, as well as self-nonsclf 
discrimination.

In the specific immune system, diversity of the receptors is necessary in order to 
maximize the chance of the immune system being able to recognize any random  antigen 
presented to it. Affinity, i.e. the strength of the binding between two interacting agents of 
the specific immune system — a function of the compatibility between the cells’ epitope 
and receptor — is also an im portant asset since the higher the affinity, the stronger 
the response. Diversity versus affinity is then  the complex balance th a t the specific 
immune system has to always carefully maintain. One way the system accomplishes 
this is through clonal selection, the process by which only those cells th a t recognize the 
antigen are allowed to differentiate thus being selected against those which do not.

Clonal selection operates on both B and T  cells, resulting in affinity m aturation, i.e. 
the increase in average antibody affinity. Lymphocytes fight among themselves to bind 
an antigen resulting in the natural selection of clones (lymphocytes of a given idiotype) 
with a higher affinity for the antigen. For example, if two T  cells can bind an antigen 
presented by an antigen presenting cell (APC), the one th a t can bind it better will 
generate a stronger response resulting in a larger clonal population carrying its idiotype. 
Note that when activated lymphocytes differentiate, point m utations (a mistake in the 
amino acid string) may be introduced in the receptor type of its clones such th a t their 
idiotype is slightly changed. Point m utation can result in th e  creation of higher affinity 
clones and can be seen as the perturbation m ethod used by the immune system to explore
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CHAPTER 2. IMMUNOLOGY AND VIROLOGY 9

the affinity landscape to find higher affinity clones.
T he specific immune system has also developed a capacity for learning and memory. 

Learning occurs through the process of clonal selection during which the lymphocytes 
th a t have proven themselves to be valuable by having recognized antigens see their 
population size increase. This introduces a bias of the repertoire from random  towards 
a repertoire th a t more clearly reflects the actual antigenic environment. Upon prim ary 
invasion, often referred to as the original antigenic sin, the specific immune response 
may take days to build up. At th a t time, the immune response will be driven by the 
nonspecific system and by low affinity cells of the specific system. But upon secondary 
invasion, the immune system ’s response to the antigen has a larger am plitude and is 
faster th an  th a t of the prim ary invasion, suggesting th a t the system maintains some 
form of memory of the antigens it encounters.

Memory, like many other topics in immunology, is still not fully understood bu t it 
is likely the result of a combination of factors. I t can be due to the fact th a t upon 
secondary infection with the same antigen, the repertoire th a t has been biased through 
affinity m aturation during the first invasion now contains larger populations of high 
affinity clones. This would help avoid the delays seen in the prim ary invasion due to 
the fact th a t the cell population w ith high affinity for the pathogen had to  be enlarged 
before substantial amounts of antibody could be secreted. Here, as in a typical predator- 
prey situation, the size of the lymphocyte subpopulation with high affinity for a specific 
antigen relative to the size of the antigen population is crucial in determ ining the outcome 
of infection. Memory can also be a ttribu ted  to  differences between naive cells and cells 
th a t have already encountered the antigen. For instance, memory cells may be easier 
to trigger th an  naive cells. Cells th a t have never been triggered are small and contain 
little cytoplasm. W hen triggered they make at least 50 new proteins. One would expect 
many of these molecules to remain in the cell, thus making subsequent triggering events 
easier and faster [66].

While being able to recognize any random antigen th a t is presented to the immune 
system is a highly desirable feature, it does not come w ithout a price. Self-nonself 
discrimination is perhaps the most formidable challenge the immune system has to face. 
It has to be able to  recognize as many antigen as possible while constantly working to 
avoid autoimmunity, i.e. an immune response against self. For this, the immune system 
has developed a “training period” for im m ature lymphocytes. New lymphocytes arc 
created in the bone marrow 2. B cells are immediately pu t in circulation while the T 
cells migrate to the thymus — hence the name, T  cells — to begin w hat is referred to 
as their “thymic education” . There, they will encounter self as well as nonself antigens 
and will be selected negatively for their ability to  recognize self peptides presented by 
self MHC and positively for their ability to recognize nonself peptides presented by self 
MHC. It is also in the thymus th a t the T cells will evolve to  typically become either 
helper T cells (Th) or cytotoxic T  cells (Tc) by respectively expressing CD4+ or CD8+ 
membrane molecules on their surface. There is some level of deletion of self-reactive B

2Lymphocytes are also created during an immune response when cytokines in itiate cell division and 
differentiation. However, since those are created from successful lym phocytes clones, they are very 
unlikely to recognize self.
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cell clones taking place in the bone marrow, where B cells are produced — hence the 
name, B cells. But because B cells are required to  bind with helper T  cells in order 
to initiate differentiation into antibody producing plasm a cells and memory cells, their 
selection is also made through helper T  cell selection. Unsuccessful B cells, i.e. B cells 
th a t are not bound by any helper T cells, will eventually die w ithout ever being activated. 
B ut nothing is perfect and the th reat of an autoimmune disease is never fully eliminated.

2 .3  V ira l In fec tio n s

The modelling efforts presented in this document concentrate on the dynamics of viral 
infections. More specifically, experimental data  of the dynamics of influenza A infections 
was used to calibrate the proposed viral infection model. For this reason, this section 
concentrates on the specific host-pathogen mechanisms involved in a viral infection, and 
more specifically, in an influenza A infection.

A viral infection is an infection caused by virus particles, referred to as virions. A 
virion does not have the ability to reproduce itself as it does not contain the necessary 
machinery. To proliferate, a virion needs to “borrow” the machinery of a host cell, also 
referred to as a target cell, and make use of the cell’s mechanisms and building materials 
to create copies of itself. If the reproduction of the virions solicits too much of the host 
cell’s resources, it can result in the death  of the host cell.

A viral infection is initiated when virus particles, which have successfully escaped 
non-specific immune detection, enter a host cell. The adhesion and absorption process 
of the virions by the host cell is a complicated mechanism and varies across host cells and 
virus types. Once the virions are inside the host cell, they begin reproducing. The viral 
infection spreads as the newly produced virions are released from the host cell and move 
on to  infect neighbouring cells. Release can occur as a sudden burst, as a continuous 
flow, or both. If the cell undergoes apoptosis (cell suicide) as a result of viral toxicity 
or immune attacks, virions will be released suddenly as a burst. B ut if the virions have 
the ability to extravasate out of the cell, they can be released in a continuous manner, 
as long as the host cell keeps producing new virions.

A viral infection is typically fought on two fronts by the two branches of the im­
mune response: the humoral and the cell-mediated responses. T he humoral response 
is responsible for the clearance of virions in order to  prevent further infection. This 
is done through the action of the antibodies secreted by the plasm a B cells. The cell- 
mediated response is responsible for the destruction of infected cells in order to  eliminate 
the sources of virions. This is carried out by the cytotoxic T  cells and the macrophages 
which respectively kill and phagocytose the infected cells.

2 .3 .1  In flu e n z a  A  V ira l I n fe c t io n s  

In fection  C h aracteristics

Influenza, in humans, is caused by a virus th a t attacks mainly the  upper respiratory 
tract, the nose, th roa t and bronchi and rarely also the lungs. According to the World
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Health Organization (WHO), the annual influenza epidemics affect from 5% to 15% of 
the population and are thought to result in between three and five million cases of severe 
illness and between 250,000 and 500,000 deaths every year around the world. Most 
deaths currently associated with influenza in industrialized countries occur among the 
elderly over 65 years of age [87].

Influenza viruses are divided into three groups: A, B, and C. Additionally, influenza 
viruses are defined by two different antigens present on their surface. They are proteins 
with spike-like features called haemagglutinin (H) and neuram inidase (N). Influenza A 
has two subtypes which are im portant for humans: A(H3N2) and A(H1N1), of which 
the former is currently associated with most deaths. Antibodies to  H are strain-specific 
and neutralize the infectivity of the influenza A virus, while antibodies to  N have a less 
protective effect. Thus, it is suggested in [11] th a t the antigenic properties of influenza 
A virus be associated w ith the H determ inant.

It is the high m utation capability of the influenza virus th a t makes it a great public 
health concern. The genetic makeup of influenza viruses allows for frequent minor ge­
netic m utations to take place. This makes it necessary to constantly m onitor the global 
influenza situation in order to  adjust the influenza vaccines’ virus composition annually 
to include the most recent circulating influenza A(H3N2), A(H1N1) and influenza B 
viruses. Additionally, influenza A viruses, including subtypes from different species, can 
swap, reassort, and merge genetic m aterial resulting in novel subtypes. Three times in 
the last century, influenza A viruses have undergone m ajor genetic changes mainly in 
their H-component, resulting in global pandemics and large tolls in term s of bo th  disease 
and deaths [86].

In fection  M ilieu

Influenza A is a viral infection in which virions infect the epithelial cells of the upper res­
piratory trac t and m ajor central airways. It is characterized by desquam ation (shedding 
or peeling) of the epithelium of the nasal mucosa, the larynx, and the tracheobronchial 
tree. The airway epithelium consists of a single layer of cells (everywhere except in the 
trachea) [68] which is made up of at least four m ajor cell types, including basal cells 
(progenitor cells), ciliated cells, goblet cells and Clara cells [61].

From below (basal side), the cells are attached to the basem ent mem brane which is 
not affected by influenza infections [68]. From above (apical side), the cells are bathed 
in 2 distinct layers of fluid: a 7-10 pm periciliary fluid layer, topped by a < 2 pm layer 
of mucus1. The periciliary fluid (sol phase) must be w atery enough to allow cilia to 
move freely and the mucus (gel phase) must be thick and elastic enough to  get the 
cilia to engage the mucus gel layer pushing it out of the lungs. Through the action of 
the beating cilia, the mucus gel layer is swept from the airways towards the trachea at 
surface velocities of 1 -  10 m m /m in [61]. The exact viscosity of the periciliary fluid is 
unknown, bu t it is assumed to  be similar to  th a t of serum or plasma, a dilute m ixture of 
salts and proteins2, and is typically about 1.43 cP [50]. The viscosity of mucus is orders 
of m agnitudes greater th an  th a t of water and can easily reach 1-100 P 1. The infection

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 2. IMMUNOLOGY AND VIROLOGY 12

milieu is illustrated in Figure 2.2.

In fection  D yn am ics

An influenza A infection is typically caused by inhalation of respiratory droplets from 
infected persons. These droplets which contain influenza virions (virus particles) then 
land on the mucus blanket lining the respiratory trac t [68]. Many virions are destroyed 
by non-specific clearance such as mucus binding. The remaining virions escape the mu­
cus and attach  to  receptors on the surface of target epithelial cells. Infection is initiated 
by adsorption of the virions to the cell surface, which results in receptor-m ediated endo- 
cytosis of the virus particles approximately 20 min after infection [68]. Once inside the 
cell, the virions begin replicating, using the machinery and building m aterials th a t would 
normally be used by the host cell to m aintain its functions. Virus budding, which takes 
place only at the apical surface membrane of infected cells [58], can be detected 5-6 h 
after infection, and is maximal 7-8 h after infection [68]. Virions are released at a rate of 
approximately 102-104 d _1 [11] and move on to infect neighbouring cells, repeating the 
infection process. Virus titer (virion concentration) peaks w ithin 2-3 d and is cleared 
within 6-8 d post-infection [1], Infected cells are destroyed as a  result of the cytopathic 
effect of the virions and as a result of the immune response, w ith  a lifespan of ~  24 h. 
At the peak of the disease, about 30%-50% of the epithelium of the upper airways is 
destroyed [11]. Cellular regeneration of the epithelium begins 5-7 d after infection but 
complete resolution can take up to one m onth [1].

Im m une R esp o n se

The immune response to influenza virus infection involves bo th  the humoral and cellular 
branch of the immune system. The humoral b ranch’s m ajor contribution is through the 
production of antibodies which clear free virions. Those antibodies are most often spe­
cific to the HA (haemagglutinin) and NA (neuraminidase) surface proteins of influenza 
virions. Unfortunately, these surface proteins vary widely between different virus strain, 
and thus, antibodies confer limited long term  immunity or cross-reactivity to other sub- 
types of influenza A virus [56]. This is why influenza A vaccines have to be updated 
every year.

The cellular branch’s contribution is dom inated mainly by the action of cytotoxic 
T  lymphocytes (CTL) which recognize and destroy infected cells. The CTL response 
offers hope for long term  immunity because CTLs recognize the  conserved epitopes of 
internal proteins of influenza virions, such as nucleoprotein (NP) and m atrix protein (M) 
which are shared by influenza A subtypes [60]. I t has been shown th a t CTL can limit 
influenza A virus replication and protect against lethal influenza A challenge in murine 
(mice) models [38]. However, CTLs also have the potential to  cause immunopathology 
(immune system attacking the host) [15] and thus their response has to  be carefully 
dosed. There is growing interest in the development of vaccine th a t would not only

1Michelle Dawson, Personal communication by email, 28 October 2004.
2Malcolm King, Personal communication by email, 28 October 2004.
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elicit a strain-dependent neutralizing antibody response bu t would also efficiently prime 
strain-independent virus-specific memory cytotoxic T lymphocytes [31, 59].

CTLs expansion and contraction has been the subject of many studies [41, 78, 2, 49]. 
I t is now believed th a t once activated, CTLs undergo a period of massive clonal expan­
sion followed by a contraction phase in which 90% -  95% of activated CTLs die while 
the remainder differentiate into memory cytotoxic T  cells [49]. This differentiation pro­
gramme, often referred to  as T  cell programming, appears to  depend on the condition of 
initial priming of the naive T  cell bu t otherwise be independent of antigenic concentra­
tion. Once activated, the T  cell will undergo intense proliferation even when the antigen 
is removed from the system [41, 78], and similarly, T  cell contraction takes place whether 
the antigen has been cleared or still remains in the system [2]. After initial activation of 
a naive cytotoxic T  cell, it is believed th a t it takes approxim ately 24 h before the first 
division occurs, and subsequent divisions are believed to  occur every 5-6 h [78]. After 
a certain number of divisions, an activated cell will have acquired effector function and 
after approximately 15 divisions [9], it will either die or differentiate into a memory cell.
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C hapter 3

Cellular A utom ata

Cellular autom aton (CA) models are very powerful tools commonly used in statistical 
mechanics (e.g. the Ising spin model [46]). While statistical mechanics is good at de­
scribing systems where the number of agents, N,  is very large (such th a t it is possible 
to take the continuum approximation), it gives much poorer results when N  is not large 
enough to  take the continuum approximation. Furtherm ore, statistical mechanics is very 
appropriate for defining a system at its equilibrium state bu t soon becomes too complex 
when the system is out of equilibrium. Finally, statistical mechanics is very limited at 
describing systems of strongly interacting agents. W hen interactions are not weak and 
therefore cannot be neglected, it might still be possible to explain a system in terms of 
statistical mechanics, bu t the formalism will be very particular and extremely limited in 
its applications. It goes w ithout saying th a t this would involve numerous approximations 
which might lead to unsatisfying results. CA have proven extremely useful in modelling 
those kinds of systems and usually give very acceptable results. W hat makes the beauty 
of CA is th a t through the im plementation of simple local rules, one can reproduce the 
behaviour exhibited by the highly complex system modelled. The level of interactions 
involved in self-organizing systems is usually quite well described by CA.

Cellular autom ata were originally introduced by John von Neum ann and Stanislaw 
Ulam under the name of “cellular spaces” as possible idealization of biological systems. 
They sought to show th a t biological processes such as the reproduction and evolution 
of organized forms could be modelled by simple cells following local rules for changing 
a cell param eter with time [35]. Traditional CA usually consist of a regular uniform N-  
dimensional grid th a t can either be finite or infinite (periodic boundaries) in extent. The 
grid contains a discrete variable (or cell) at each site th a t can assume m  possible discrete 
values. The state  of a CA is completely specified by the values of all variables at each site. 
The CA evolves in discrete space with discrete time steps w ith the value of a variable 
at a given site being affected by the values of variables at sites in its neighbourhood at 
the previous time step. The neighbourhood of a site can be defined in numerous ways 
and can be as extended as one wishes. At a new time step, the variables at all sites 
are updated based on their own value and th a t of their defined neighbourhood at the 
preceding tim e step according to a definite set of local rules.
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3.1 E lem en ta ry  O n e-d im en sion a l C ellu lar A u to m a ta

Stephen Wolfram has done most of the early work on CA. In the ’80s, he published an 
extensive series of articles on CA [83, 84, 85]. He concentrated most of his work on 
elementary CA, nam ely one-dimensional CA w ith only two possible values at each site: 
0 or 1. Typically, the neighbourhood he chose was defined to be the cell itself plus its two 
immediate neighbours: the cells to its left and right. This type of CA as been thoroughly 
studied by Wolfram and will be the main subject of this section.

From the definition of the neighbourhood, it follows th a t the  local rules for the 
evolution of the CA will have to  be defined for each com bination of states of the 3 
sites involved in defining the subsequent state of a single site. For the sake of clarity, 
let us label Ic, cc and rc — for left, centre, and right cell, respectively — the 3 cells 
involved in the determ ination of the state of cc in the next tim e step. The set of possible 
configurations of Ic, cc, rc  is then defined as, for example,

Ic, cc, rc  111 110 101 100 O il 010 001 000 , ,
cc 0  1 0  1 1 0  1 0 ’  ̂ ’

where the bottom  line indicates the state of cc at the next time step given the top line’s 
Ic, cc, rc configuration at the previous step. This means th a t any rule can be defined by 
an eight digit binary number where each digit would represent the next state of the cc 
given its current state  and th a t of its immediate neighbours. T he rule detailed on the 
second line of (3.1) is called “Rule 90” , from the binary num ber 01011010 defining it. 
Recall th a t a binary number is read in the following manner:

01011010 =  0 • 27 +  1 ■ 26 +  0 • 25 +  1 • 24 +  1 ■ 23 +  0 • 22 +  1 • 21 +  0 • 2° =  90 . (3.2)

For a binary CA based on a 3-cell local rule, there arc 23 =  8  possible configurations 
for which a result m ust be specified which makes for a to tal of 28 =  256 possible rules. 
However, those rules are usually reduced to a to tal num ber of 32 “legal” rules. The 
legal rules come from the fact th a t the CA were initially used for modelling biological 
processes such as the reproduction of organized forms. This m eant, for example, th a t a 
starting configuration of all-zero sites, corresponding to  the absence of any cells, should 
remain an all-zero configuration as it evolves in tim e — the trip let 0 0 0  should always 
give 0. Secondly, the rules should be symmetric so th a t the left and right cells arc inter­
changeable. This forces the rules for configurations 100 and 001 and for configurations 
110 and 011 to  be equal [84]. Thus, the legal rules can be w ritten  as

<x\a20i‘j,a^0L20L^ctH3 , (3-3)

where each cm can be 0 or 1, hence the 25 =  32 legal rules.
If one decides to s ta rt the one-dimensional elementary CA w ith  a single non-zero 

seed at its centre, interesting patterns develop. Based on these patterns, the 32 legal 
rules can be divided into 4 types as described in Table 3.1. Exam ple patterns formed 
by rules from each of the 4 types are presented in Figure 3.1. Note th a t each of the 4
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patterns rules
Type 1 disappear w ith time 0, 32, 72, 104, 128, 160, 200, 232
Type 2 single non-zero seed forever 4, 36, 76, 108, 132, 164, 204, 236
Type 3 uniform type of rows 50, 122, 178, 222, 250, 254

uniform pairs of rows 54, 94
Type 4 nontrivial patterns 18, 2 2 , 90, 126, 146, 150, 182, 218

Table 3.1: Classification of the 32 legal rules according to  the type of patterns they 
developed when the one-dimensional CA is initialized w ith a single non-zero seed.

Figure 3.1: Evolution of a one-dimensional CA initialized with a single seed and subm it­
ted to  Type 1 Rule 232 (top left), Type 2 Rule 36 (top right), Type 3 Rule 178 (bottom  
left), and Type 4 Rule 90 (bottom  right). Each row represents the sta te  of the 150-sites 
periodic CA at a given time step w ith black representing Is and white representing Os. 
The top row of each panel constitutes the initial single-seed configuration and subsequent 
rows represent successive time steps.
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types contains 8  rules. This is no coincidence. W hat determines the “personality” of 
the outcome of a certain rule is the combination of its local rules. A closer look at the 
underlying local rules th a t are common to the rules of a same type reveals how the local 
rules affect the resulting structures.

T y p e  1: ( 0 4  =  0 and 0 5  =  0) —> all single-seed states (100, 010, 001) m ap to  0, leading 
to a perm anent all-zero state.

T y p e  2: (0:4 =  0 and a$ = 1) —̂ the single-seed states 100 and 001 m ap to 0 while 010 
maps to 1 , leading to  the perm anent single-seed state.

T y p e  3 & 4: (0:4 — 1) —> both  100 and 001 map to 1 allowing the initial single-seed to 
disperse to both  neighbour sites, leading to complex patterns.

where the cVs are as in (3.3).
The three first types are said to be “simple” CA. The last type however, contains 

more elaborate CA th a t develop nontrivial patterns. At infinite time, those nontrivial 
patterns become self-similar fractals.

3.2 S ta tis t ic a l P ro p er tie s  o f O n e-d im en sion a l C ellu lar A u ­
to m a ta

Let us imagine a single row of N  lattice points, where each lattice point represents a 
particle. Let us say th a t the values they can take is 0 or 1 indicating, for example, the 
spin orientation. A m icrostate of this system is a row of N  particles w ith a given sequence 
of spins represented by the values 0 and 1. In to ta l there are 2N possible microstates all 
with an equal probability of occurring, provided th a t 0 s and Is have an  equal probability 
of occurring. Prom this definition, it is possible to define a m acrostate as the set of all 
IV-site m icrostates containing x  cells of value 1. If one of the m icrostates is subm itted 
to a specific rule, for example Rule 90 as in (3.1), a new m icrostate will result. The 
resulting microstate (2nd line) when Rule 90 is applied to  an original m icrostate (1st 
line) is

O riginal: (0) 0 1 1 0 1 0 0 0 (0)
Resulting after Rule 90: 1 1 1 0 0 1 0 0  '

Note th a t periodic boundary conditions are used and denoted by adding in parenthesis 
the left-most state to  the right of the right-most sta te  and the right-m ost state to the 
left of the left-most state.

3 .2 .1  I r r e v e r s ib il ity

Given a starting  m icrostate, time evolution will result in a trajectory  through subsequent 
microstates. The trajectory  is dictated by the rule and may or may not lead back to the 
starting microstate. Assuming each m icrostate exists in a starting  ensemble of configu­
rations with equal probability of occurrence — again, provided th a t 0 s and Is have an 
equal probability of occurring — time evolution will likely merge m any configurations
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into a few and soon trajectories starting from almost all initial configurations are con­
centrated onto short cycles, called attractors, containing only a few configurations [35]. 
The trajectories traced out by the time evolution of several m icrostates may coalesce, 
but may never split. For instance, the extremely trivial Rule 0 will tu rn  any starting 
m icrostate into the null m icrostate (all lattice points are 0 ), so th a t in one time step, all 
configurations reduce to  ju st one: this is called a stable fixed point.

Almost all of the rules seen in Section 3.1 are irreversible, which means tha t although 
it is possible to identify a unique resulting microstate for each original m icrostate, it is 
not possible to  identify a unique original m icrostate for each resulting microstate. In 
other words, a particular microstate has unique descendants, b u t does not necessarily 
have unique ancestors. Rule 204 is the lone exception since it is the identity rule: each 
m icrostate is m apped only to itself. For a reversible system, trajectories representing 
time evolution of different states never intersect or meet. Thus, for reversible systems, 
the total number of possible configurations will remain constant w ith time. In the case 
of an irreversible rule, the to tal number of possible m icrostates will be reduced as time 
evolves. For some systems, all trajectories might reduce to  a fixed point solution (a 
single m icrostate like in the case of Rule 0), while in other cases, it might reduce to one 
or a few short cycles or attractors. Figure 3.2 presents all 24 =  16 possible microstatcs 
of a 4-site elementary CA arranged around the attractors and fixed points th a t result 
from the successive application of a rule. It may be worth noting the work of Voorhees 
and Beauchemin in [79] where the impact of point m utations (single b it toggling) on the 
stability of these fixed points and attractors is explored.

3 .2 .2  E n tr o p y

Irreversible behaviour in CA may be analyzed by considering the evolution of the system ’s 
entropy. Entropy is defined, as usual, as the logarithm (in this case base two) of the 
average num ber of possible states of a system, th a t is

s (T) = & i ( T) loS2 ( ^ : y )  > (3-5)

where Pi(r) is the probability of obtaining m icrostate i after r  tim e steps, r  =  0 cor­
responds to the starting  equiprobable ensemble with all p.;(0) =  1/2N . To understand 
what this entropy effectively means for an N-cell elementary CA, let us look at an ex­
ample. Consider a 2-cell elementary CA. The starting equiprobable ensemble will then 
be composed of

M icrostate 1 at tim e 0 
M icrostate 2 at time 0 
M icrostate 3 at time 0 
M icrostate 4 at time 0

0 0 with p i(0) =  1/4 
0  1 with p 2 (0 ) =  1/4 

with P3 (0) =  1/41 0 (3.6)

1 1 with P4 (0 ) =  1/4

The entropy of this system at time zero, S(Q) = 4 • (1/4) log2 (4) =  2, corresponds to  the 
number of cells necessary to  represent the 4 possible microstates.
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Figure 3.2: The 24 =  16 possible microstates of a 4-site elem entary CA arranged around 
the attractors and fixed points th a t result from the successive application of (a) Type 1 
Rule 72, (b) Type 2 Rule 76, (c) Type 3 Rule 254, and (d) T ype 4 Rule 182. Each node 
represents a m icrostate (e.g. 14 =  1110) and the arrows represent the application of the 
rule to a microstate. In (a), for example, application of Rule 72 to  m icrostate 14 (1110) 
yields microstate 5 (0101).
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If the CA is left to  evolve for one tim e step, i.e. r  =  1, according to  Rule 22 (00010110) 
for example, the m icrostate ensemble would reduce to

(0) 0 0 (0) (1) 0 1 (0) (0) 1 0 (1) ( 1) 1 1 (1)
4 4  4  a- (3.7)

0 0 0 1 1 0 0 0

where the values in parenthesis are as in (3.4). Already, at time step t = 1 the system
can no longer be found in configuration 11 and only three of the original four microstates
remain. The distribution of m icrostates at r  =  1 is

M icrostate 1 at time 1 
M icrostate 2 at time 1 
M icrostate 3 at time 1 
M icrostate 4 a t time 1

0 0 with pi ( l )  — 2/4
0 1 w ith p2(l)  =  1/4
1 0 with ^ 3 (1 ) =  1/4
1 1 with ^ 4 (1 ) =  0/4

The entropy of the system at time r  =  1 is given by 5(1) =  (2/4) log2(4 /2 )+2  • (1/4) log2(4 /l)  
1.5. This means th a t the system would effectively only need 1.5 cells to  be fully described 
instead of the log2(3) «  1.58 cells th a t one would expect to need to represent a system 
w ith 3 microstates. The smaller entropy is due to  the m icrostates not being equally 
probable — an expression of the system ’s tendency towards organization.

From this example, it is quite clear th a t elementary CA are capable of self-organization, 
tending to reduce in complexity as they evolve. Entropy is typically maximized when 
a system is completely disorganized, i.e. when all the m icrostates act independently. 
Thus, the entropy of an N-site CA takes on its maximal value of N (or log2(2JV)) for an 
equiprobable ensemble. For an irreversible system, one can expect the entropy of the 
system to go down and eventually stabilize to a given value as r  increases, i.e. once all 
m icrostates have reduced to a few attractors or fixed points. Figure 3.3 presents a graph 
of the entropy per site, S ( t ) / N  as r  increases, for the rules presented in Figure 3.2. It 
is interesting to compare the attractor/fixed  point structures of the rules in Figure 3.2 
to the evolution of their entropy in time. Type 2 Rule 76, for example, has many at­
tractors. This allows it to stably m aintain 11 of its 24 =  16 original microstates yielding 
a high stable entropy. On the other hand, Type 3 Rule 254 condenses the 16 original 
microstates into only 2 stable fixed points in only 2 time steps, yielding a low stable 
entropy.

The second law of therm odynamics tells us th a t isolated microscopically reversible 
physical systems tend with time to states of maximal entropy and maximal disorder. 
However, dissipative systems involving microscopic irreversibility, or those open to  in­
teractions with their environment, may evolve from disordered to  more ordered states.
It is the CA’s ability to capture the self-organizing nature of irreversible and open sys­
tems which makes them  such a powerful tool to study such systems. The outlines of 
snowflakes, the patterns of flow in turbulent fluids, and many biological systems are but 
a few examples of systems which are well modelled by CA.
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Figure 3.3: Entropy per site S ( r ) / N  as r  increases for a 4-site ( N  =  4) elementary 
one-dimensional CA evolving according to  Type 1 Rule 72 (circles), Type 2 Rule 76 
(squares), Type 3 Rule 254 (triangles), and Type 4 Rule 182 (stars).

3.3 B ey o n d  O n e-d im en sion a l C ellu lar A u to m a ta

Since Wolfram’s elementary one-dimensional CA, CA models have come a long way. 
Lattice gas simulations, for example, were proposed as an extension of CA. They arc so 
named because of their original use in modelling fluids as particles which are restricted 
to moving between discrete positions in the CA lattice. In a lattice gas simulation, 
the sites are only the discretized space in which the variables are allowed to move and 
evolve, ra ther than  representing particular states of the system. Among the lattice gas 
autom aton are the famous H PP and FH P models which are discussed briefly below.

3 .3 .1  T h e  H P P  L a tt ic e  G a s M o d e l

Although the H PP lattice gas model was developed in the 1970’s, it was only in the 
1980’s th a t it was finally recognized as a cellular autom aton [17]. The H PP model — 
named after its authors Jean Hardy, Yves Pomeau, and Olivier de Pazzis — consists of 
particles moving around on a two-dimensional square grid. It defines collision rules for 
particles and insures conservation of m om entum  and particle number. Since the H PP 
model only allows one particle to  enter a lattice site w ith a given direction at any one 
time, four bits of information at each site are sufficient to  define the  system. Each bit 
indicates an incoming particle headed in one of the four possible directions, namely east, 
north, west, and south. For example, state  1101 at a site would mean th a t three particles 
are coming into th a t site heading in direction 1 (east), 2 (north), and 4 (south).

Each time step is composed of a collision phase and a diffusion phase. The collision 
phase consists of changing only the states involving the head-on collision of two particles,
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namely
(0101) -► (1010) and (1010) -» (0101) . (3.9)

This means th a t a head-on collision between two particles results in the particles being 
deflected on the axis perpendicular to  the collision. All other collisions, including those 
involving the collision of three particles (0 1 1 1 , 1 1 0 1 , and 1 1 1 0 ), rem ain unchanged in 
the collision phase. The diffusion phase involves exporting each bit to  the appropriate 
neighbour, namely the first bit to  the east neighbour, the second to  the north  neighbour, 
etc.

As a result of its exclusion principle, the H PP model is invariant under time reversal. 
This means th a t if one reverses the direction of motion of the particles, one can recover 
the initial conditions exactly, provided th a t no error was introduced (e.g. external ad­
dition of particles). The H PP model can be extended to  model the escape of particles 
contained in an area through a small aperture. The wall of the container can be modelled 
by adding an ex tra  bit to each site to m ark the presence of the wall and a collision with 
the wall would result in the particle bouncing back to where it came from [17].

Although the H PP model yields very interesting dynamics, it has an im portant flaw. 
Its underlying square grid leads to anisotropy in particle m otion which prevents the 
H PP model from yielding realistic results for the true dispersion of gas particles. The 
anisotropy of the H PP model was corrected by its descendant, the FH P lattice gas model.

3 .3 .2  T h e  F H P  L a tt ic e  G a s M o d e l

The FHP model — also named after its authors Uriel Frish, Brosl Hasslacher, and Yves 
Pomeau — was introduced in 1986. Its main departure from the H PP model is its 
implementation on a two-dimensional hexagonal grid ra ther th an  a square grid. This 
corrects the anisotropy flaw of the H PP model (see [17] for the  calculation). Of course, 
the rules also had to be adapted to fit the geometry of the  new grid. In its simplest 
implementation [17], the FH P model is very similar to the H PP model. Each particle 
moves by one lattice site per time step, and only one particle is allowed to enter a site 
with a given direction at any one time step. Thus, six bits are sufficient to  describe the 
system at each site, w ith each bit corresponding to a particle entering th a t site with a 
given direction.

As with the H PP model, a time step in the FH P model consists of a collision phase and 
a diffusion phase. The FH P m odel’s collision rules affect the collision of three particles 
colliding at 120° angles, and the head-on collision of two particles. The three-particle 
collision rule is such th a t

(010101) -> (101010) and (101010) -► (010101) . (3.10)

This means th a t the collision of three particles at 120° angles results in all three particles
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bouncing back to where they came from. The two-particle head-on collisions,

(0 1 0 0 1 0 ) (0 0 1 0 0 1 ) (0 0 1 0 0 1 ) 
(0 0 1 0 0 1 ) ^  , (0 1 0 0 1 0 ) '  , and ( 1 0 0 1 0 0 ) '

^  (100100) ^  (100100) X  (010010)
(3.11)

are such th a t the particles will bo th  be deflected by 60°, either clockwise or counter­
clockwise, w ith equal probability. The direction of the deflection can be selected ran­
domly or the rules can be kept deterministic by choosing, for example, to deflect all 
particles in one direction for even time steps, and in the other for odd time steps [17]. 
Note th a t only a determ inistic rule, like the one proposed by the latter method, will 
insure the m odel’s invariance under time reversal.

The FHP model was shown by its authors to  follow the behaviour described by the 
Navier-Stokes equation of hydrodynamics, within some limits [17]. However, the high 
viscosity of the model which is a consequence of the rules, and its discrete nature, which 
could only be remedied by going to  very large scales, made the FH P model impractical 
to model hydrodynamics. Much work has been p u t into improving the FHP model and 
addressing some of its weaknesses (see [17] for a good overview).

Eventually, the lattice Boltzmann m ethod was introduced, which relaxes the require­
ments for each site of the CA to be represented by bits, and instead proposes to have real 
numbers represent the probability for a cell to be in a given state. T he lattice Boltzmann 
m ethod has been widely applied to  hydrodynamics, pa tte rn  formation, and other such 
problems.

3 .3 .3  A p p ly in g  C e llu la r  A u to m a ta  t o  th e  Im m u n e  S y s te m

Cellular autom ata are good candidates for studying self-organizing systems as they them ­
selves are self-organizing systems and hence constitute a natu ra l way to represent such 
systems. A well known feature of CA com putations is their ability to  produce surpris­
ingly complex behaviour from very simple rules. A CA can produce a range of periodic, 
chaotic and generally very complex behaviours w ith intricate spatial and tem poral pat­
terns [84]. Nonlinearities or time-delays are not intrinsically difficult to  trea t since they 
are either a consequence of the dynamics ra ther th an  a cause or are otherwise trivial to 
include in the context of the CA local rules. Another great advantage of CA is th a t their 
com putational structure is inherently parallel and they can therefore be run on parallel 
computers very efficiently.

The earliest CA of the immune system neglected the microscopic details of the im­
mune system ’s behaviour. Typically, a set of characteristic states like “in rest” or “in­
fected” would be represented by a one-dimensional CA. The evolution of this system 
would be based on simplistic rules, such as those seen above for the  one-dimensional 
Wolfram CA, which defined how the CA switches from one of those states to another 
(see [6 6 ], Section V for a brief overview of the most prevalent models of this type).

The first models to employ lattice Boltzmann-type CA to model the various compo­
nents of the immune system were born in the early 90’s. Among these arc the bit-string
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models which are covered in the next chapter.
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C hapter 4

M athem atical M odels in 
Im m unology and V irology

C om putational modelling is of growing interest in a number of fields. The growing a ttrac­
tion to such modelling techniques is clear: computers are getting evermore efficient and 
fast while the systems we are dealing w ith are getting evermore complex and diversified. 
Although com putational biology has lately mainly concentrated on data-m ining, notably 
in the context of genomic research, biological simulations have always been around and 
have recently been gaining momentum. Here, a few of the efforts made to model the 
immune system using cellular au tom ata will be explored. In particular, the very com­
plete bit-string models will be discussed. Then, we will tu rn  our attention to simpler 
spatial cellular autom aton models of viral infections which is the subject of the research 
presented herein.

4.1 B it-s tr in g  M od els

As discussed above, in a real immune system, binding between, for example, a B cell 
receptor and an antigen’s epitope will take place through the matching of the amino acid 
strings composing bo th  the receptor and the epitope, and binding will occur only if a 
sufficient m atch between both  amino acid strings is met. It is possible to represent the 
amino acid string using an alphabet of to characters where each character corresponds to 
a given amino acid. Then, any of a number of string-m atching algorithms can be used to 
determine the degree of complementarity. For a string of length N , the repertoire size is 
given by m N such th a t the greater m  is, the larger the repertoire size will be. This clever 
idea for representing a receptor’s or epitope’s idiotype was first introduced by Farmer 
et al. [23] as a way to  perform calculations for determ ining molecular complementarity 
and predicting the optim al size of an epitope — see [6 6 ] for a short overview of this 
calculation. But the greatest im pact of the string representation introduced by Farmer 
et al. was its application to lattice gas simulations of the immune system.

Models combining lattice gas simulation with the string representation of the immune 
system ’s diversity offer great analogies with the real system. They are developed with
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the goal to create a general immune simulator which could be used to  run experiments in 
silico. The lattice gas simulation, which describes the movement of individual immune 
cells in space, takes into consideration the localized nature of events such as encounters, 
recognition events, and proliferation. The string representation perm its a simple imple­
m entation of the diversity of the immune system and, within the framework of localized 
interactions, offers the opportunity  to investigate processes such as the spatial spread of 
m utating viral strains, and local clonal selection.

For simplicity, typical lattice gas simulations making use of the string representation 
choose to  build the epitope and receptor strings using an alphabet containing only two 
characters, namely 0 and 1. Consequently, those models are referred to as “bit-string” 
models. Since the receptors and epitopes of bit-string models are represented by strings 
of bits, these models have a repertoire size of 2N, where N  is the length of the bit string.

The first b it-string model of the immune system was introduced in 1992 by Seiden and 
Celada [13, 71]. They called their model IMMSIM. More accurately, IMMSIM23 is the 
original version of IMMSIM. It was written in the APL2 language by Philip E. Seiden and 
requires the IBM APL2 runtim e environment. In its original version, IMMSIM contains 
T  cells, B cells, and antigen presenting cells (APC) other than  B cells, as well as antigen 
(Ag) and antibody (Ab) molecules and is concerned with the humoral response only [71]. 
The later version of the model, IMMSIM3, was made to  include cytotoxic and helper 
T  cells as well as epithelial cells in order to add the cellular response to  complement 
the already existing humoral response [10, 12]. Then, Bernaschi and Castiglione [7] 
proposed a parallel version of IMMSIM coded in C which they named Parlm m , and 
later CIMMSIM. Finally, a C + +  tu torial version of IMMSIM based on CIMMSIM was 
developed by Steven Kleinstein.

4 .1 .1  R e p r e s e n t in g  R e c e p to r -s p e c if ic  I n te r a c t io n s

In bit-string models, much like in the real immune system, the immune components are 
characterized by their receptors. Here, B cells are composed of a B cell receptor and a 
class II MHC (m ajor histocom patibility complex) molecule. T  cells only have a T  cell 
receptor, and antigen presenting cells (APCs) other than  B cells only have a class II MHC 
molecule. A ntibody molecules are typically made up of a single B cell receptor. Finally, 
antigen molecules are made up of segments of two different types: B cell epitopes and 
presentable peptide strings. In most applications of bit-string models so far, the antigen 
has been limited to one B cell epitope and one presentable peptide string. Figure 4.1 
presents the schematics of those cells and molecules for 8 -bit strings.

In a real immune system, B cell and T  cell receptors are physiologically different. But 
because all receptors are implemented the same way in b it-string models, the distinction 
between various types of receptors is made by restricting w hat can bind w ith what 
through simple binding rules. The various binding rules have been designed as follows. 
In bit-string models, an antigen has two types of bit-string segments: an epitope which 
it presents to  antibodies and to B cells’ surface receptors; and a peptide string which 
the A PC’s class II MHC receptor will present to the T  cell receptor. W hen an antigen’s 
epitope is bound by an antibody, an antibody-antigen complex is formed and bo th  entities
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Figure 4.1: Examples of the bit-string models’ schematic representation of B cells, T 
cells, antigen presenting cells (APCs) other th an  B cells, as well as antibodies and antigen 
molecules. On antigens, the epitopes are shown exposed while the  presentable peptides 
are boxed. T he receptors, MHCs, epitopes and peptides are num bered according to the 
decimal value of their 8 -bit string. For example, the B cell’s Receptor 57 is represented 
as (00111001), with Os and Is depicted as short and long blocks respectively. Figure 
adapted from [71].

are removed from the simulation. W hen an antigen’s epitope is bound by a B cell’s surface 
receptor, the antigen’s peptide string is broken in two and whichever half matches the 
right half of the B cell’s class II MHC molecule best will bind it. The other half of the 
antigen’s peptide will be presented to  encountered T  cells along w ith the left half of the 
B cells’ bare class II MHC molecule. Figure 4.2 illustrates this binding procedure. APCs 
other than  B cells will bind any antigen with a fixed probability (e.g. 0.002 in [10]) and 
will present the antigen’s peptide on their class II MHC molecule to encountered T cells 
in the same fashion B cells do. Finally, when a T  cell encounters a class II MHC-peptide 
complex presented by an APC, depending on the probability of interaction, the T cell 
will bind w ith the presenting APC and will be activated. If the APC is a B cell, the B 
cell will also be activated. Activation results in differentiation at a constant ra te over 
a fixed num ber of time steps. In the real immune system, an individual will have less 
th a t 10 different clones of class II MHC molecules. In  the Seiden-Celada model, the 
simulations usually consider only 1 or 2  [1 0 ].

For simplicity, in most bit-string models, notably in the Celada-Seidcn model [71], 
the function used to define a “m atch” between a pair of bits is simply an exclusive OR 

function (X0R), where 0 matches 1 and 1 matches 0. The X0R function is presented in 
Figure 4.3. From the number of b it mismatches for a given pair of strings, the probability 
of interaction is typically calculated as follows, although it does change from model to 
model depending on the question addressed and the au tho r’s preferences.

Interaction probability is characterized by 3 param eters, nam ely the minimum match,
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Figure 4.2: Schematic representation of the b it-string models’ algorithm  for the binding 
of an antigen to  an antigen presenting cell (APC) and its presentation to a helper T cell. 
An antigen’s epitope is bound by a B cell’s surface receptor (left). The APC (in this case 
the B cell) endocytoses the antigen (Ag) peptide and breaks it into two halves (centre). 
The right half of the cell’s class II MHC binds the pep tide’s half it is most compatible 
with (top right). The left half of the cell’s class II MHC along w ith the remaining half 
of the peptide are presented to encountered T cells (bottom  right). Figure adapted from 
[71].

0 XOR 0 =  0
0 XOR 1 =  1
1 XOR 0 =  1

1 XOR 1 =  0

XOR
0 0 1 0 1 0 0 0 1 0 0 1 0  
1 0 0 1 0 1 0 1 0 0 1 0 1
1 0 1 1 1 1 0 1 1 0 1 1 1

Figure 4.3: (Left) the definition of the XOR rule. (Right) the XOR rule applied to  a pair of 
10-bit strings resulting in a 3-bit m ismatch (3 null characters) between the two strings.
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the minimum affinity and the affinity increase. The minimum m atch is the threshold of 
matching bits below which the interaction will not take place. The minimum affinity is 
the probability of interaction when the number of matching bits is exactly the minimum 
m atch, P(m inim um  m atch). Finally, the affinity increase determines the magnitude of 
the increase in affinity from an n-bit m atch to an n + 1-bit match, and can be defined 
in a num ber of ways. In [43], for example, the affinity increase is such th a t

P(n)  x (  N  
\ n

P ( n  +  1) =  affinity increase x — -— —— -—  , (4.1)

n +  1

where N  is the length of the bit-strings, n  is the number of matching bits, P(n)  is the 
probability of interaction for n  matching bits, and

N  ^  N ■ (4.2)
n J n \ ( N  — n)\

4 .1 .2  T h e  R u le s  o f  th e  B it - s t r in g  M o d e ls

To give an idea of the com putational scale of the simulation, it is interesting to mention 
tha t most simulations were run on relatively small grids, typically a 15x15 hexagonal 
grid1 and the size of the bit-string, N,  is typically chosen to be 8  yielding a clonal 
diversity of 28 =  256. The time scale of a simulation is not always specified, b u t in [43, 
page 74] it is suggested th a t the relationship between a tim e step of the model and real 
time is such th a t one time step in the model corresponds to one B cell division. It is 
however not clear whether this is the standard  way in which bit-string models define the 
time scale of the simulations, or if other authors have chosen different conventions. At 
this point, it is useful to  describe what a time step consists of. This is slightly difficult 
because it may vary across the various b it-string model publications and it is not always 
specified by the authors. Thus, let us give an example by describing a time step as 
defined in [1 0 ].

Interactions only occur between entities th a t are allowed to interact and are located 
in the same grid site. Since at any given step, there will likely be more th an  one possible 
interaction for a given entity in a given grid site, all possible interactions arc considered. 
Each interaction’s probability is calculated and compared with a random  number to 
determine whether the interaction is successful. An entity can have at most one successful 
interaction at any one time step such th a t only one of the successful interactions can take 
place. One can choose the interaction th a t had the highest probability or choose one of 
the successful interactions randomly. Once all interactions have been determined, they 
arc allowed to take place. Then, entities are allowed to die, stim ulated cells divide, new 
cells are born, and antibodies are generated. Finally, the entities diffuse to a randomly

1Note th a t in most articles, the authors mistakenly claim they were using a triangular grid, namely
in [14, 43, 71]
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chosen neighbouring grid site and tha t concludes one time step. From w hat the various 
publications seem to suggest, cells do not die after a given number of time steps, but 
rather die w ith a probability defined by their half life, as is the case in differential equation 
models.

Cell division will occur in B cells and T  cells th a t have been activated. B cells can 
divide into memory cells w ith a longer half life and plasm a cells th a t have a shorter 
half life bu t will generate great amounts of antibodies of the same idiotype as the B cell 
they originated from. W hen new B and T  cells are “born” they are added at random 
locations on the grid and newly born T cells will have to  undergo thym us selection. 
Thymus selection in the simulations is done through the positive and negative selection 
of T cells. A T  cell whose receptor’s left half recognizes a class II MHC molecule’s 
left half with at most one mismatch, and whose receptor’s right half recognizes antigen 
peptides, are positively selected. A T  cell whose receptor’s left half does not recognize 
the left half of the bare class II MHC molecules is negatively selected. This results in the 
B cell repertoire being complete, i.e. 2N, while the T  cell repertoire s ta rts  off complete 
bu t is then tailored through the thymus selection process.

The removal of antigen can be the result of various scenarios. W hen an antigen- 
antibody complex forms, bo th  entities are removed from the  simulation. Also, when an 
antigen has been recognized by a B cell and successfully presented to a T  cell, resulting 
in the activation of bo th  the B and T  cells, the antigen is removed and the B and T 
cells are made to  divide. The ratio of plasm a B cells to memory B cells resulting from 
a division is a param eter of the simulation, typically set to  0.5. B cells require the help 
of T helper cells to activate. Finally, when an APC — other th an  a B cell — presenting 
an antigen peptide on its class II MHC molecule is bound by a T  cell, only the T  cell 
divides and the antigen is removed.

The immune system simulations described above consider only the hum oral branch 
of the immune system (T cell is to be understood as T  helper cell) and the antigen 
is not considered infective. Infectivity had to  be included in order to  represent the 
cell-mediated branch since this branch’s m ajor contribution is through the actions of 
cytotoxic T cells destroying infected cells. In [10], infectivity was included by allowing 
antigens to infect APCs such th a t no target cells had to be added. Infection is described 
by three param eters: the probability of infection when an antigen encounters an APC, the 
rate of replication of the antigen inside the infected a cell, and the maximum number of 
antigens th a t an infected cell can contain before exploding and releasing all the antigens it 
contains into the simulation as a viral burst. In this early im plem entation [10], cytotoxic 
T cells are non-specific cells, i.e. they have no receptor. Instead, they interact with 
any infected cell with a fixed probability and destroy the cell. In  a later paper [12], 
Celada and Seiden describe a more complex implementation of the cellular and humoral 
branch which adds epithelial target cells to  the simulations, as well as danger signals and 
cytokines. The simulation also included T  cell m aturity  stages, class I MHC molecules 
and specific cytotoxic T cells. However, their description of the structures and functions 
of the new entities is extremely brief a t best and one would need access to  their computer 
code to understand how these new “features” have been implemented.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 4. MODELS IN IMMUNOLOGY AND VIROLOGY 32

4 .1 .3  U s a g e  o f  th e  B it - s tr in g  M o d e ls

The bit-string models have been used to  investigate various immunological questions 
among which the process leading to affinity m aturation and hyperm utation in the hu­
moral branch of the  specific immune system [14], the rheum atoid factor paradox [75], 
the transition process between immune and disease states and the contribution from the 
humoral only, cellular only, and humoral and cellular branches of the immune system 
[1 0 , 1 2 ], the im pact of vaccine efficiency on the humoral branch, the cellular branch and 
both  branches [44], and the dynamics of HIV infection with respect to the selection of 
escape m utants from immune recognition [8 ].

Models are typically built for two reasons. They are prim arily built as simplifica­
tions of the real system. This is done so th a t the im portant mechanisms of the more 
complicated system  can be revealed and better understood through the m anipulation of 
the simpler model. Models are also built as complete and detailed representations of the 
real system. This is done so th a t hypothesis can be tested on the model rather than  on
the real system. This is usually desirable when testing an hypothesis on the real system
would be too costly, unethical, or otherwise impractical.

The bit-string models, are clearly destined to be of the la tter type. The great level of 
details with which they implement the various aspects of the immune system is impressive 
and unique. But th is author believes their development and use is a little prem ature. 
Bit-string models, such as CIMMSIM, contain thousands of param eters. Most of these 
param eters’ value is either not known, or known with very little precision. This makes 
the complicated bit-string models too unreliable to  be used to  test scientific hypotheses.

At the moment, there is a need for simpler models of the immune system which perm it 
the investigation of more particular aspects of immune mechanisms. Such models help 
to further our understanding of particular immunological question, and are particularly 
useful in extracting the param eter values needed to perfect more complicated models 
such as CIMMSIM. The next section offers an overview of such models.

4.2 S p a tio tem p o ra l M o d els  o f  V ira l In fec tio n s

Here, a brief overview of spatiotem poral models is presented. These models were created 
to investigate the effects of the spatial distribution of cells on the dynamics and evolution 
of a host-pathogen system, which is the main topic of the research presented herein.

4 .2 .1  G e n e r ic  S p a t io te m p o r a l M o d e ls  

T he L ouzoun e t al. M od el [48]

In [48], Louzoun et al. set out to determine w hat type of modelling is most appropri­
ate to explain the emergence of immune complexity out of chemical simplicity. Their 
investigation consist of identifying how the dynamics of a simple lymphocyte-antigen 
system varies depending on the type of model chosen to represent the system. To ac­
complish this, Louzoun et al. introduce a simple ODE system describing the interaction
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of a population of lymphocytes, L,  and antigens, A,  on a discretized grid as

=  t AiLi — d^L i +  fiLV 2Li  , (4-3)

=  A — dj^Ai +  h a V 2A{ , (4-4)

dLi
d t 

d Aj 
dt

where the i subscript designates the lattice site. A is the production rate of antigen, 
t is the division ra te  of lymphocytes upon encountering the antigen, d i  and dA arc 
the death  rates of lymphocytes and antigens, respectively, and the last term  of each 
equation represents the diffusion of antigens and lymphocytes to  neighbouring lattice 
sites. Spatially averaging (4.3)-(4.4) yields

dL 
dt 
dA  
dt

=  r ( A L ) - d LL ,  (4.5)

=  A -  dAA  , (4.6)

where L  and A  are the average over all lattice sites of Li  and Ai  respectively, (AL)  is 
the average of A{ ■ Li  over all lattice sites, and the diffusion term s’ averages are 0. If L  
and A  are independent variables, i.e. if the concentration of lymphocytes at one point is 
independent of the number of antigen at th a t point ((AL) — A  ■ L),  (4.5)-(4.6) simplifies 
to a spatially-independent ODE with solution

L  = 1(0) , (4.7)

A  =  A/ d A . (4.8)

This results in exponential growth of the lymphocyte population if > d^  or exponen­
tial decay if < d^.

Using a cellular autom aton model of the system  described by (4.3)-(4.4), Louzoun 
et al. find th a t because each point in their spatial grid contains a different concentration 
of antigens, the lymphocyte population will undergo exponential growth at sites where 
Ai r  > and exponential decay where AiT < d^.  Over time, the contributions from sites 
with decaying lymphocyte population will become negligible and only the points w ith the 
highest growth ra te will dominate the system average. Thus, the average concentration 
of cells will grow exponentially, bu t the growth ra te  will be proportional to the peaks of 
the local concentration of antigen, and not to the average concentration throughout the 
system [48].

W ith this, Louzoun et al. have shown th a t if in fact the concentration of antigen and 
lymphocyte is not independent, the ODE modelling approach is flawed as it will lead to 
misleading prediction of the amount of antigen in the system or the growth ra te of the 
lymphocyte population [48]. Louzoun et al. explain th a t L  and A  are not independent in 
the real immune system because the lymphocyte concentration is high precisely at the 
sites where the antigen concentration is high. Thus, models of the antigen-lymphocyte 
system should take the spatial distribution of these agents into account.
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T he Funk et al. M o d el [29]

In [29], Funk et al. investigate the implications on viral infection dynamics of the well- 
mixed and homogeneous assumptions made by the basic ODE model (1.1)—(1.3). This 
is done similarly to w hat is done in [48], i.e. by constructing a spatially extended version 
of the basic viral infection model, namely

b -  dTid -  e T ijV ij , (4.9)

eT ijV ij -  u Y ij , (4.10)

i+ 1 j + 1

p Y i j - c V i j - ^  E E [ V i j - V i 0j0] .  (4.11)
io=i-l jo =  7 -1

Ti j ,  Yi j ,  and Vij  represent the abundance at site ( i , j )  of target cell, infected cell, and 
virions, respectively. Additionally, b is the production ra te  of target cell, d and u  are 
the death ra te of target and infected cells, respectively, e is the infection rate of target 
cells by virions, and p  and c are the production and clearance ra te of virions. Note tha t 
in this model, the target cells are fixed and only the virions are allowed to  diffuse. The 
term  m y  is the diffusion rate of free virions to the 8 adjacent sites. Infection is started 
by inoculating 10 viral units a t the centre of their 21x21 square grid. Funk et al. found 
th a t the population equilibrium is the same for bo th  the basic ODE model and its spatial 
extension. However, they rem ark tha t

“... in line with experimental results, the spatial model indicates a biphasic 
up-slope of the virus load curve while the non-spatial model lacks to repro­
duce this. The subdued viral growth ra te is due to the fact th a t the infection 
settles to its equilibrium earlier at those sites where it started  th an  in the 
periphery. Averaging out over all sites eventually results in a biphasic up- 
slope.” [29]

Funk et al. conclude th a t a spatially averaged simulation at the whole-body level serves 
as a good approximation close to equilibrium, bu t underestim ates the true  local infection 
dynamics in vivo.

Funk et al. go further than  in [48] by investigating the  effects of heterogeneity of the 
rules. This is done by allowing each param eter to vary randomly across the grid sites 
within a certain range from a uniform distribution. This causes the emergence of infection 
sources and sinks, i.e. sites where the basic reproduction ratio, Rq, is greater or less than  
1, respectively. Note th a t in the context of a viral infection, the basic reproduction 
ratio, Rq , is defined as the number of secondary infections produced by a single infected 
cells during its entire period of infectiousness when placed in a population composed 
entirely of susceptible cells [1, 19]. As a result of the sources and sinks landscape, the 
viral equilibrium state is very sensitive to the diffusion ra te of virions, i.e. param eter 
m y  in (4.9)-(4.11). This is because in a system of sources and sinks, when sources arc 
outnumbered by sinks, a high diffusion ra te will cause the virus to  predom inantly leave

d-Tjj 
d t 

dYj j  
d t

dV ij
d t
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source sites for sink sites.
Funk et al. also introduce a spatially extended virus-immune system, which adds an 

immune response in the form of a diffusing immune cell population, X i j ,  to  (4.9)-(4.11), 
namely

b dT. j  • < i . (4.12)

eTidV ij -  uYid -  k X i j Y j  , (4.13)

i+ 1 J + 1

p Y i j - c V i j - ^ -  E , (4.14)
i o = i - l  i o = j - l

i +1 J+ l

a X i j Y i j  -  q X id “  ^  E E ~  X ^ o l  ■ (4-15)
io = i - l  j o = j - l

The virus-immune system has an additional equilibrium where the pathogen can persist, 
kept under check by a persisting immune response. In this spatially extended virus- 
immune system model, under homogeneous rules, the diffusion of virions and immune 
cells enhances population stability. Equilibrium population size is a ttained faster in the 
spatially extended model with fewer oscillations (one initial oscillation instead of >  2 0 ) 
than  in the equivalent non-spatial model. Oscillations during the establishm ent of an 
infection carry the risk th a t the pathogen will go extinct. The spatially extended model 
thus increases the chance th a t the infection will persist as it reduces the num ber and 
amplitude of the viral population oscillations.

The results presented by Funk et al. are interesting because their viral infection and 
virus-immune models are realistic. Their investigation consisted of explicitly adding a 
spatial component to the widely used and accepted viral infection models. For this 
reason, their conclusions are of great relevance to  the ongoing modelling efforts of vi­
ral infections. Application of their proposed spatial model to specific viral infections 
would be crucial to  validating the way in which space and spatial heterogeneity has been 
included in these models.

4 .2 .2  T w o -d im e n s io n a l C e llu la r  A u to m a to n  M o d e ls  o f  H I V  

T he Z orzenon dos S antos and  C ou tin h o  M o d el [90]

In [90], Zorzenon dos Santos and Coutinho introduce a simple CA to model the dynam ­
ics of HIV. Their m otivation is to reproduce the two time scales of an HIV infection: 
the short tim e scale (few weeks) associated w ith the prim ary response and the long 
one (few years) associated w ith the clinical latency period and the onset of AIDS [90]. 
They suggest th a t the mean-held ODE models have failed to  reproduce the two-scale 
dynamics of HIV because they do not take into account the local interactions caused by 
the localization of the initial immune response in the lymphoid organs. The highlight 
of their spatiotem poral CA model is its ability to  reproduce this two-scale dynamics.

d Tid 
dt

dt

d V ,
dt

d
dt
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•  •  Viremia

Clinical Latency
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Figure 4.4: Experim ental HIV data  (left panel) and simulation results from the Zorzenon 
dos Santos and Coutinho HIV CA model (right panel). In the left panel, the density 
of CD4+ T  cells (open squares) and virus concentration (full circles) are shown. In the 
right panel, the density of healthy (open squares) and infected (full circles) target cells 
are shown. Figures reproduced from [90].

Experim ental results illustrating the two-scale dynamics of HIV along with results from 
their CA simulations are presented in Figure 4.4.

In their model, every site in the two-dimensional CA square grid represents a target 
cell for the HIV, namely a CD4+ T  cell or a monocyte. Each target cell can be in 
any of four states, namely healthy, infected-Al, infected-A2  or dead. A cell infccted-Al 
corresponds to  an infected cell th a t is free to spread the infection. A cell infected-A2 
corresponds to  an infected cell in its final stage before apoptosis and can only infect a 
healthy cell when other infected-A2 cells are present in sufficient concentrations. The 
rules for the evolution of the CA are the following:

• A healthy cell becomes infected-Al in the next time step if any of its 8  neighbours 
are infccted-Al or if a t least 2 < R  <  8  of its neighbours are infected-A2 . 2

• An infected-Al cell becomes infected-A2 after r  time steps.

• An infected-A2 cell becomes a dead cell in the next time step.

• A dead cell is replaced by a healthy cell w ith probability p repi or otherwise remains 
dead in the next time step.

• Finally, any new healthy cell can instead be created as an infected-Al cell with 
probability PinfeCj such th a t the rate at which dead cells are replaced by infected-Al
Cells is p newinfec =  Jtepi Pinfec-

This last rule is supposed to simulate the introduction of new infected cells in the system, 
either coming from other com partm ents of the immune system  or resulting from the 
activation of the latent infected cells.

2Unfortunately, the authors give no justification as to why a cell having i t  =  8 A2 infected neighbours 
would not become infected A l. This is most likely a mistake and should probably have read 2 < i t  < 8.
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In this model, the permanence of the infection is insured by the fact th a t infected 
cells are continuously being added at a ra te p newinfec P e r  dead cell per tim e step. These 
infection seeds lead to the formation of predictable square waves of infection, as seen 
in Figures 4.5(b,c). In turn , the percolation of these square waves w ith each other will 
ultim ately results in the formation of a more complex square wave pattern , illustrated 
in Figure 4.5(d).

This model is the first spatiotem poral model of HIV. Unfortunately, the model does 
not take into consideration the motility of the target cells. In effect, although the density 
of cells within lym ph nodes is extremely high, this does not prevent the high motility 
of T  cells (see C hapter 7). This is especially true given the fact th a t the model is used 
to simulate HIV dynamics on the scale of several weeks, even years. Allowing the cells 
in this model to move would prevent the formation of the perfect square waves and the 
emergence of more complicated square pattern. In such conditions, it is unlikely th a t 
the model would still be capable of exhibiting the two time scales of the HIV dynamics.

T h e S tra in  e t  al. M o d el [76]

In [76], Strain et al. propose a more complete spatiotem poral model of HIV which includes 
the known biophysical properties of HIV. Their m otivation is to  elucidate whether and 
how spatial correlations contribute to viral propagation, given th a t viral propagation is 
a fundamentally local process.

Strain et al. did a careful calculation of the spatial spread of virus released as a single 
burst from an infectious cell. From this, they com puted the diffusion coefficient for HIV 
virions, and calculated the probability Pb{i) th a t a cell i sites away from an infectious 
cell releasing a burst of b virions will become infected. From this, they com puted a basic 
reproduction ratio  ( R q) for HIV which takes into consideration the  localized spatial na­
ture of viral bursts. This expression of R q predicts th a t viral propagation will be limited 
by viral stability at low target cell density, and by geometry (target cell’s radius) at high 
cell density. Additionally, the authors propose a three-dim ensional cellular autom aton 
model for HIV viral infections. Their cellular autom aton model makes use of the calcu­
lations mentioned above for the probability Pb(i) th a t a cell i sites away from the viral 
burst of size b released by a dying infected cell will become infected.

Each site of their three-dimensional cubic lattice can be in any of three states, em pty 
(E), infected (I), or target (T) and is updated  w ith the following rules:

• A target cell a t site i will become infected w ith a probability Pb(i ~  .))•

• A site containing an infected cell will become em pty in the next tim e step.

• An em pty site will contain a target cell in the next tim e step with probability 
aT +  where nn  indicates nearest-neighbour lattice sites, and n  is the 
total number of nearest neighbours (6  for the simple cubic lattice used in [76]). 
The term s 5t  and a?  are the ra te of repopulation of em pty lattice site due to the 
division of immediate neighbours, and influx of cells from peripheral blood or from 
the thymus, respectively.
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Figure 4.5: Screenshots from the Zorzenon dos Santos and Coutinho CA simulation of 
HIV infection at (a) 5, (b) 18, (c) 25, and (d) 200 weeks. Colours m ark healthy (blue), 
infected A l (yellow) infected A2 (green), and dead (red) CD4+ T  cells or monocytes, 
the targets of HIV. Figure reproduced from [90].
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Strain et al. found th a t the spatiotem poral dynamics of their CA model is determined 
by the  propagation efficiency and the recovery rate. If the propagation efficiency is such 
th a t the basic reproduction ratio  is less th an  of order 1 , the infection does not propagate 
[76]. The long-term dynamics of their model is determined by the ra te of recovery of 
target cells. Infection, in their model, propagates out as radial wave fronts, leaving a 
wake of em pty cells. If cells recover quickly, virus can diffuse from producer cells in the 
wave front back across this wake (see the left panels of Figure 4.6). Once the initial 
pulse has propagated to the edge of their grid, the dynamics of the system settles into 
a stationary  chaotic state in which infected, target, and em pty sites coexist [76]. If 
recovery is slow, the infection propagates transiently as a unidirectional wave (sec the 
right panels of Figure 4.6). In this case, infection can only be sustained if the influx of 
target cells to random  em pty sites of the grid is non-zero (ctt 7̂  0 ).

Strain et al.’s model is very interesting as it addresses bo th  the contribution of spatial 
correlations on viral propagation and how this contribution can distort the conclusions 
arrived at using mean-held approaches. In particular, their finding th a t the standard 
ODE model (as proposed by Perelson et al. in [64]) compared to  the lattice model 
overestimates viral infectiousness by more th an  an order of m agnitude, is of particular 
interest to modellers and experimentalists alike. Unfortunately, they have also assumed 
the target cells of HIV to be immobile, which is incorrect as will be seen in C hapter 7. It 
would be interesting to  see whether their findings remain valid if one includes the motion 
of target cells. They also make the additional assumption th a t virions are released as a 
single burst upon infected cells’ death. It would be interesting to see how a continuous 
release would affect their result.
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Figure 4.6: Screenshots from the CA simulation of the HIV infection model of Strain et 
al., for quick (left panels) and slow (right panels) recovery. Healthy cells arc denoted by 
white circles, infected cells by black circles, and white areas denote em pty sites. Figures 
reproduced from [76].
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C hapter 5

A Sim ple Cellular A utom aton  
M odel for Influenza A V iral 
Infections

Here, a cellular autom aton model is introduced th a t will be used later to study the 
influence of spatial heterogeneities on the dynamical evolution of a viral infection. In this 
chapter, the CA model is calibrated to a particular viral infection. This is done in order 
to  verify th a t the model is complex enough to reproduce the general shape of a response 
to an uncomplicated viral infection, and to  see if it gives quantitatively reasonable results 
when param etrized for a particular viral infection. We chose to  calibrate the model to 
influenza A because we felt th a t it would be easier to  find d a ta  for this viral infection. The 
calibration to influenza A in particular is not crucial as we could have chosen any other 
uncomplicated viral infection for which d ata  is available. However, the calibration to a 
particular uncom plicated viral infection, whichever one is chosen, is crucial for assessing 
whether or not the model is realistic enough to be used as a platform  for experimentation 
with various aspects of the immune system. We have found th a t it is.

In Section 5.1, we describe the structure and evolution rules of the CA model. In 
Section 5.2, we present results from the CA simulations and compare them  against data  
from the literature. In Section 5.3, we expand on the biological m eaning of the model’s 
param eters, how we have arrived at the values we chose for the model, and examine 
the m odel’s sensitivity to  their values. Finally, in Section 5.4, we take a look at the 
param eter space around the default param eter values for the param eters to which the 
model is sensitive.

5.1 T h e  C ellu lar A u to m a to n  M o d e l

Our CA model considers two species: epithelial cells, which are the target of the viral 
infection, and immune cells, which fight the infection. The virus particles themselves

*A version of th is chapter has been published in [4].
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are not explicitly considered, ra ther the infection is modelled as spreading directly from 
one epithelial cell to another. The CA is run on a two-dimensional square lattice where 
each site represents one epithelial cell. Immune cells are mobile, moving from one lattice 
site to  another, and their population size is not constant. The CA lattice is therefore 
like a tissue of immobile cells which is patrolled by the mobile immune cells. The CA is 
updated synchronously (i.e. all cells are tim e-stepped at once ra ther than  one cell at a 
time). The boundary conditions for bo th  the epithelial and immune cells are toroidal,
i.e. an immune cell moving off one edge of the grid are reintroduced at the opposite edge 
and an infectious epithelial cell at one edge of the grid can infect healthy cells located at 
the opposite edge. Finally, the neighbourhood of a lattice site is defined as consisting of 
the 8 closest sites. Infected epithelial cells can only infect their 8 surrounding neighbours 
and immune cells can move at a speed of 1 site per time step to  any of the 8 neighbour 
sites or rem ain in place.

An epithelial cell can be in any of five states: healthy, containing, expressing, infec­
tious, or dead. Transitions between epithelial cell states occur as described in Figure 5.1. 
A simulation is initialized w ith each epithelial cell being assigned a random  age between 
0 and &h  inclusively. All epithelial cells s ta rt in the healthy state  with the exception of 
a fraction pc  of the to ta l number of epithelial cells which, chosen at random, are set to 
the containing state.

An immune cell can be in any of two states: unactivated or activated. An unactivated 
cell is an immune cell th a t has not yet been activated by an encounter w ith an expressing 
or infectious cell. An activated cell is an immune cell th a t has either already encountered 
an expressing or infectious cell or has been recruited by another activated immune cell. 
Transition between the two immune cell states occurs as described in Figure 5.2. A sim­
ulation is initialized w ith a density of p m  unactivated immune cells at random  locations 
on the CA lattice, each with a random age between 0 and 6m  inclusively. Additionally, 
immune cells move randomly on the CA lattice at a speed of one lattice site per time 
step, and there are v — 6 time steps/h . B and T  cells range from 6 pm in diameter for 
naive cells who have not yet encountered an antigen, to  15 pm in diam eter for effector 
cells [30], while a lung epithelial cell (lattice site) is typically about 20 pm in diameter 
[18]. Because B and T  lymphocytes are smaller than  lung epithelial cells, the CA model 
does not restrict the number of immune cells which can occupy a given lattice site at 
any one tim e step and neglects collisions. All immune cells occupying a given site are 
allowed to interact w ith the epithelial cell of th a t site.

Implicit in this model are the following physiological assumptions:

• Only healthy epithelial cells are able to divide.

• Immune cells cannot be infected and so only ever die of old age.

• No memory immune cells are considered. Memory could be added by setting an 
extended lifespan to  a given fraction of immune cells created during a viral invasion.

• We consider a single viral strain with no m utation. This implies the existence of a
single, unique, epitope identifying the infection.
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Healthy Infectious

1. Healthy epithelial cells get infected at ra te  (3/8 — 0.25 h _1 per infectious Moore 
neighbour (8 nearest neighbours), where f3 — 2 h " 1 is the ra te of infection of 
neighbours by infectious cells.

2. A virion-containing cell tha t has been infected for te  — 4 h begins expressing 
the viral peptide on its epitopes.

3. An expressing cell th a t has been infected for t/  =  6 h becomes infectious.

4. A dead cell is replaced by a healthy cell at rate 6_1 x #  h e a lth y /#  dead, where 
b =  12 h is the division time of an epithelial cell.

5. All cells will die of old age after living for exactly 5h  =  380 h, unless they die 
earlier because of viral toxicity or immune recognition (see below).

6. Because of viral toxicity, infected cells (i.e. containing +  expressing +  infec­
tious) will die after having been infected for <5/ =  24 h, unless they die earlier 
from recognition (see below) or from old age (see above).

7. Finally, expressing and infectious cells die when “recognized” by an activated 
immune cell.

Figure 5.1: Evolution rules for the epithelial cells in the cellular autom aton model.
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Add Unactivated

Remove

Activated

1. U nactivated immune cells are added at random lattice sites as needed to main­
tain a minimum density of p m  — 1-5 x 10~4 unactivated immune cells per 
epithelial cell.

2. All immune cells die of old age after living for exactly Sm  = 168 h.

3. An unactivated immune cell becomes activated when it first occupies an ex­
pressing or infectious lattice site.

4. If an activated cell is occupying an expressing or infectious lattice site, it kills 
the epithelial cell and t m  = 0.25 new activated immune cells are added at 
random  locations on the grid. The integer part of (if t m  >  1) is used to 
determine the number of immune cells th a t will be added and the fractional 
part is taken to  be the probability of adding an additional immune cell.

Figure 5.2: Evolution rules for the immune cells in the cellular autom aton model.
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•  Only immune cells with an affinity which exactly matches th a t of the single viral 
strain  are considered. This implies th a t the model does not take into consideration 
cross-reactivity from immune cells capable of responding to  the infection with a 
strength dependant on their affinity to the strain.

5.2 R e su lts

A great deal is known about the influenza virus including viral s tructu re and composition, 
the replication process, and even some dynamical da ta  regarding the viral and antibody 
tite r over the course of the infection [42, 28, 5]. However, key dynam ical information such 
as the flow ra te of immune cells within an infected tertiary  lymphoid organ, the clearance 
ra te of viral particles, the lifespan of an infected epithelial cell, is either uncorroborated, 
unknown, or known with poor precision. In the model presented here, all but two 
param eters have been taken directly or adapted from [11], They are presented in Table
5.1 along w ith their value and description.

Due to the lim ited dynamical information available for influenza A, there are only a 
few quantitative characteristics against which the model can be compared. They are:

1. The infection should peak on day 2 [11, 28].

2. Over the course of the infection, the fraction of epithelial cells th a t are dead should 
be as follows [11]:

(a) 10% on day 1;

(b) 40% on day 2;

(c) 10% on day 5.

3. From [11], virus concentration should decline to  inoculation level on day 6. From 
[28], experim ental data  recovered from 8 volunteers indicated th a t virus shedding 
persisted for 5 ±  2 d.

4. The number of immune cells should peak anywhere between day 2 (macrophages’ 
peak) and day 7 (cytotoxic T  cells’ and B cells’ peak) [11].

5. At their peak, the number of B cells, helper T  cells, and cytotoxic T  cells should be 
100-fold greater th an  their normal concentration, while th a t of plasm a cells should 
be 104-fold greater [11].

The simulation results for the default param eters presented in Table 5.1 are shown 
in Figure 5.3. T he infection peaks on day 2, and although there are fewer than  10% of 
the cells dead on days 1 and 5, there is 40% of the cells dead on day 2. Recovery from 
the infection is faster than  experimental data suggests, b u t this is probably mainly due 
to the fact th a t the immune cells in this model are generic. D uring a true influenza A 
infection, the first p a rt of the immune response is dom inated by macrophages and T cells 
while the later p a rt is dom inated by the action of antibodies, a subtlety  tha t is missed
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Param eter Value Description Biol. Range Reference
9w 440 W idth of the grid (number of epithelial cells) N /A N /A
9h 280 Height of the grid (number of epithelial cells) N /A N /A
V 6 ts /h Speed of immune cells (time steps/hour) 2-20 ts /h [11]

5 m 168 h Lifespan of an immune cell 48-480 h [11]
5h 380 h Lifespan of a healthy epithelial cell 160-600 h [67]
Si 24 h Lifespan of an infected epithelial cell ? [11]
PC 0.01 Fraction of initially infected cells 0.001-0.1 [11]
(3 2 h " 1 Rate of infection of neighbours N /A N /A

te 4 h Delay from containing to  expressing viral pep­
tide

? [11]

TI 6 h Delay from containing to  infectious ? [11]
b 12 h D uration of an epithelial cell division 7-24 h [11]

Pm 1.5 x K T 4 Base density of unactivated immune cells per ep­
ithelial cell

? [11, 66, 82]

t m 0.25 Number of immune cells recruited upon positive 
recognition

N /A N /A

Table 5.1: The model’s default param eters along w ith their biological range and reference.
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Figure 5.3: Simulation results averaged over 50 simulation runs using the param eter 
set presented in Table 5.1. The paired lines m ark one standard  deviation and rep­
resent the fraction of epithelial cells th a t are healthy (dotted line), infected (contain- 
ing+expressing+infectious) (dashed line), dead (full line w ith circles), as well as the 
proportion of immune cells per epithelial cell (full line).
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by the model presented here. The number of immune cell does peak between day 2 and 
7, with an approxim ate 1,000-fold increase from the normal concentration set by p m -

The comparison w ith the experimental data  available for influenza A reveals tha t 
the proposed model does in fact have the proper dynamical response when calibrated 
w ith biological values from the literature. As mentioned earlier, most of the model’s 
param eter values were taken from [11], where an ODE model for influenza A is pre­
sented. The Bocharov et al. model is more complex than  the CA model proposed here 
as it considers a much wider variety of immune cells such as stim ulated macrophages, 
two types of activated T  helper cells, activated CTL cells, B cells, plasm a cells, and an­
tibodies. However, the Bocharov et al. model, unlike this CA model, does not explicitly 
have containing, expressing and infectious cells. The immune cell curves of Bocharov ct 
al., like those of this model, agree relatively well w ith the expected 100-fold increase in 
the cell population. Bocharov et al.’s dead cell curve is in be tte r agreement th an  this 
m odel’s on the first day (10% of cells are dead), bu t it is a b it low (30%) on day 2 and 
too high (28%) on day 5. Perhaps one of the biggest difference between the two models 
is in the shape of the containing+cxpressing+infectious cells curve (referred to as the 
infected cells, C y, in [11]). W hile at the peak of the infection the model presented here 
shows approximately 50% of containing+expressing+infectious cells, the Bocharov et al. 
model has about 70% of infected cells (Cy). Additionally, in the Bocharov et al. model, 
the fraction of infected cells remains at 70% until day 5 before declining rapidly such 
th a t it has dropped to about 10% on day 6.

Overall, the shape of dynamical response given by the Bocharov ct al. model does 
seem to be more accurate than  th a t of the model proposed here, b u t this is most likely 
due to  the fact th a t their model considers a wider variety of immune cells. It should be 
noted tha t the authors of [11] have also done a fit of their param eters to get a better 
agreement w ith experimental data. However, this fit resulted in some of their fitted 
param eter values lying outside their biological range. For example, the duration of a 
single division of an epithelial cell during the recovery phase of the disease is about 
0.3 d ~  1 d, yielding a regeneration rate of the epithelium of about 1 d -1 ~  3 d ^ 1. As a 
result of the fit, th is param eter was assigned a value of 4 d -1 . O ther param eters, such as 
the rate constant of epithelial cells’ infection by virions, have been assigned values a few 
orders of m agnitude outside their biological range as a result of the  fit. This discredits 
the quality of agreement of the Bocharov et al. model with experim ental data.

5.3 D iscu ss io n  o f  th e  P aram eters o f  th e  M o d e l

Some of the m odel’s param eters have quite a large uncertainty. In  some cases this is 
a  reflection of the difficulty of measuring the param eter while in other cases it is a 
reflection of the variation between individuals. The model also has two free param eters, 
the recruitm ent ra te of immune cells, tm , and the rate of infection of neighbours by 
infectious epithelial cells, f3, whose values are not known from physiological data. Here, 
we will discuss each param eter in detail and investigate the sensitivity of the model to 
their variation.
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Figure 5.4: Effects of the  lattice size on the dynamics of the  infection. The greyed areas 
represent one standard  deviation after 10 runs while increasing darkness represents in­
creasing grid sizes of 7,700 cells, 30,800 cells, 123,200 cells, 1,971,200 cells, and 9,432,500 
cells. For clarity, the inset shows a detail of the healthy cell curves alone. Increasing the 
grid size is seen to  not affect the average behaviour bu t decreases the standard  deviation.

5 .3 .1  T h e  G r id ’s W id th  an d  H e ig h t , gw a n d  g^

Since each lattice site represents an epithelial cell and the w idth and height (gw and 
gh) of the grid are given in numbers of epithelial cells, it is possible to calculate the 
physical size of the simulation. The model’s default lattice has gw x gh — 123,200 cell 
sites. In uninflamed tissue, there are about 2,200 ciliated cells per square millimetre of 
epithelial area [11]. Taking ciliated cells — which account for 60% ~  80% of internal 
bronchial surfaces — to correspond to each lattice site of the CA model, the rcal-lifc 
size of the default lattice is about 123, 200 ce lls/2 ,200 cells ■ m m -2 =  56 mm2. W hen 
inflamed, there are about 700 cells per square millimetre of epithelial tissue area, giving 
the simulation a real-life area of 176 mm2.

To test the sensitivity of the model’s algorithm to changes in lattice size, i.e. to 
determine if the finite nature of the simulation influences the results, simulations have 
been run with lattices ranging from 7,700 cells to 9,432, 500 cells (the most that could be 
simulated with the 512 MiB of RAM available in the sim ulation machine). The results 
obtained for several lattice sizes in this range are presented in Figure 5.4. W hat one sees
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from this plot is th a t the average behaviour of the model is unchanged by modifications 
to the size of the simulation area, bu t th a t the standard  deviation of the behaviour 
about the m ean decreases as the simulation area is increased. This is consistent with 
the in terpretation of the results from a single simulation run on a large grid as being 
equivalent to averaged results from several simulations run  on smaller grids. This would 
be the case — tha t a large simulation is equivalent to an average over several smaller 
simulations — anytime the simulation size itself does not play a role in the dynamics, and 
so observing this behaviour strongly suggests th a t the default lattice size is sufficiently 
large for its finite nature to be unim portant.

5 .3 .2  S p e e d  o f  Im m u n e  C e lls , u

Due to the discrete nature of a cellular autom aton, immune cells move by increments 
of one lattice site per tim e step. Because each lattice site represents one epithelial cell, 
each tim e step has to represent the true time required for an immune cell to  go from 
one epithelial cell to the next. Very little is known about the speed at which immune 
cells patrol tertiary  lymphoid organs or by how much the  flow will vary depending on 
whether the area is healthy or infected. This has made the m odel’s tim e scale difficult 
to establish.

All tim e dependent param eters in the model are scaled by the param eter v  which is 
defined as the number of CA time steps corresponding to  1 h  in real time. The duration 
of the CTL lethal hit process, i.e. the tim e it takes for a cytotoxic T  lymphocyte to kill an 
infected cell, is about f attack =  20 min ~  30 min [11]. One can suppose th a t an immune 
cell tha t is not involved with, or in the process of destroying, an infected cell will move 
from one epithelial cell to the next in less time, say tfree. Since on average about 15% of 
cells are infected over the course of the infection for the default set of param eters chosen 
for the model (see Figure 5.3), one can compute the average tim e it takes for an immune 
cell to go from one epithelial cell to the next as t avg =  0.15 x f attack + 0.85 x tfree. Assuming 
th a t tfree can be anywhere between negligible, ss 0 min, to  at most 30 min, then t avg can 
range from 3 min to  30 min, which corresponds to a range of 2 to 20 tim e steps per hour 
for v. We have chosen to  set v  to 6 time steps/h , which means th a t immune cells move 
at a speed of one epithelial cell per 10 min. Note th a t this corresponds to  a tfree of about 
6 min ~  8 min, bu t we have found no experimental value in the literature to compare 
this to.

Figure 5.5 shows the effect of varying v  throughout this range. The faster the immune 
cells move (the larger v  is), the bigger the advantage they will have over the growth of the 
infection and thus the less pronounced the infection. This is clearly illustrated in Figure 
5.5 where the smallest value of v  results in a lethal infection while the largest value results 
in a minor infection. The CA model is extremely sensitive to this particular param eter 
and therefore it would be im portant for future work to determ ine this param eter with 
greater precision.
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Figure 5.5: The effect of varying the speed of immune cells, u, on the viral infection’s 
dynamics. From top to  bottom , the graphs show the behaviour obtained using v values of 
2, 6, and 20 time steps/h  respectively (the physiologically plausible range). The central 
graph is the same as Figure 5.3. These show th a t the simulation is sensitive to the 
param eter u.
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5.3.3 Lifespan o f Im m une Cells, 6 m

The problem in defining this particular param eter with much precision comes from the 
fact th a t the immune cells in the CA model presented here are generic, i.e. they do 
not represent a particular species of immune cell such as cytotoxic T  cells or plasma 
B cells, ra ther they represent the combined action of all involved species of immune 
cells. In [11], the ra te  constants of natural death for immune cells range from 0.05 d _1 
for B cells to 0.5 d -1 for cytotoxic T  cells and plasm a B cells. This corresponds to  an 
immune lifespan range of 48 h ~  480 h. An immune cell lifespan of 168 h was chosen 
as the default value. In Figure 5.6, the dynamics resulting from the use of a 48 h and 
480 h immune cell lifespan is shown. In broadest terms there are two outcomes and 
which one is observed depends on whether the immune cell lifespan is greater than  or 
less than  the tim e required for the immune cells to completely elim inate the infection. 
W hen the immune cell lifespan is less than  the tim e required to clear the infection, all 
cell populations oscillate, much in the manner of a predator-prey system  — a situation 
which may be referred to as a chronic infection. W hen the immune cell lifespan is greater 
than  the time required to clear the infection, it does just that.

From Figure 5.6, it can be seen th a t only at the very bottom  end of the physiologi­
cally plausible range for the param eter 6m  does its value begin to  influence the m odel’s 
dynamics. Over most of this param eter’s range, the infection is killed too early for the 
immune cell lifespan to  be im portant. Since experimental da ta  indicates th a t the virion 
concentration should have declined to inoculation level no later th an  144 h (6 d) into 
the infection, we chose a value for the immune lifespan th a t is slightly larger than  this, 
namely 168 h (7 d).

5.3.4 D ivision  T im e o f E pithelia l C ells, b

The duration of a single division of an epithelial cell is about 0.3 d ~  1 d [11]. We chose 
a value of 12 h (0.5 d) for the model param eter b. Assuming th a t only healthy cells can 
undergo successful division, the probability per unit time th a t any dead cell is revived is 
given by

, 1 #  healthy cells
-  ahve) =  -  x *#  dm / cells ■ (5.D

Figure 5.7 shows the effect of varying the division time of epithelial cells, 5, over its 
physiologically allowed range of 7 h to 24 h. One sees th a t this param eter can have a 
significant effect on the dynamics and even on the outcome of the infection, b represents 
the capacity of the system to regenerate itself: the greater the regenerative power of the 
system — the smaller b — the be tte r its chances of recuperating after a severe infection. 
In this model, a t the high end of b's range there is a tendency for the  influenza A infection 
to kill the host, while a t the low end of its range the epithelial cell regeneration ra te is 
too high to reproduce the level of damage observed experimentally. A default value of 
12 h was chosen for the model. W ith this value, 40% of the epithelial cells are dead at 
the peak of the infection which is in agreement w ith the experim ental data.
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Figure 5.6: The effect of varying the lifespan of immune cells, 5m , on the viral infection’s 
dynamics. From top to bottom , the graphs show the behaviour obtained using 6m  values 
of 48 h, 168 h, and 480 h respectively. The central graph is the same as Figure 5.3. These 
show th a t the simulation is only sensitive to the param eter 5m  when its value is smaller 
than  the time required for the immune cells to clear the infection.
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Figure 5.7: The effect of varying the division tim e of epithelial cells, b, on the viral 
infection’s dynamics. From top to bottom , the graphs show the behaviour obtained 
using b values of 7 h, 12 h, and 24 h respectively. The central graph is the same as 
Figure 5.3. These show th a t the simulation is sensitive to  the param eter b.
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5.3.5 Lifespan o f E pithelial Cells,

An epithelial cell, in vitro, can go through 20 to 25 population doublings in its lifespan 
[67]. Each population doubling lasts for b, so the lifespan of an epithelial cell should 
be about 160 h ~  600 h. The mid-range value of 380 h was chosen as the default. One 
im pediment to  finding more precise information about epithelial cell lifespans is th a t most 
in vitro research is done using cell lines th a t have been made immortal. Additionally, 
there is much variability in cell lifespan across cell types. In any case, even the lower 
bound of 160 h is longer than  the duration of an uncomplicated influenza A infection and 
thus the value of 8fj, within the physiologically plausible range, should have little effect 
on the results. Figure 5.8 shows the dynamics of the viral infection for cell lifespans, 
5h , a t the physiologically allowed extrem a of 160 h and 600 h  as well as at the default 
mid-range value of 380 h. In the model, one consequence of the en masse killing of 
epithelial cells by the viral infection is the synchronization of the ages of newly-grown 
epithelial cells. This is seen as a cell-death “echo” approximately 5h  after the peak of 
the infection. The only visible difference between simulations run  w ith different values 
of 5h  is a change in the time at which the cell-death echo occurs.

5.3.6 D uration  o f the Various Infection  Stages (te , d ) ,  and Lifespan of 
Infected  E pithelial Cells ( )

Once an epithelial cell has absorbed influenza A virions (e.g. enters the containing state), 
te  = 4 h elapse before it can s ta rt expressing viral antigen and thus be recognized by 
an immune cell [11]. It will take the infected cell an additional 2 h ( t j  — 6 h) to begin 
releasing virus particles and thus become infectious [11], Ultimately, influenza A virus 
being highly cytopathic, the lifespan of an infected epithelial cell is shortened to at most 
1 day (<5/ =  24 h) [11].

5.3.7 P roportion  o f In itia lly  Infected C ells, pc

This param eter represents the m agnitude of the initial dose of influenza A virus delivered 
to test volunteers in viral replication experiments. In particular, in this model, it is the 
fraction of epithelial cells initially set in the containing state. This param eter’s value is 
not bounded physiologically, ra ther it is an arb itrary  initial condition. In studies of the 
influenza A virus reported in [11], the typical initial concentration of aerosol-delivered 
virions is about 108 virions/mL. Since the average concentration of epithelial cells in 
the area typically affected by influenza varies from 109 cells/mL to 1010 cells/mL, and a 
single epithelial cell can absorb from 1 to 10 influenza virions, then  the typical fraction 
of cells initially infected is com puted to be

PC
108 virions/m L

(5.2)

(5.3)
(109 ~  1010) cells/mL x (1 ~  10) virions/cell 
0.001  ~  0 .1 .
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Figure 5.8: The effect of varying the lifespan of epithelial cells, 5h , on the viral infection’s 
dynamics. From top to bottom , the graphs show the behaviour obtained using 5h  values 
of 160 h, 380 h, and 600 h respectively. The central graph is the same as Figure 5.3. 
These show th a t the simulation is not sensitive to the param eter 5h -
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We have chosen a default value of 0.01 — the logarithmic middle of the range. Figure 5.9 
presents the effect on the m odel’s dynamics of varying pc  over this range. One secs tha t 
the evolution and the outcome of the infection is dependent upon the  initial infective 
dose received. This reflects the competitive nature of the disease and immune system 
interaction: if one sta rts  with too large a numerical advantage over the other, the latter 
is bound to loose.

5 .3 .8  R a te  o f  I n fe c t io n  o f  E p ith e lia l  C e lls , (3

The growth ra te of the infection in the model is determ ined by the param eter (3, which 
is defined as the num ber of its neighbours th a t an infectious cell will infect per hour. 
This param eter was not found in the literature as it does not correspond directly to 
the true biological process of infection. In fact, 6 h after a cell has been infected by 
the influenza A virus, it begins to  release influenza A virions (virus particles) into its 
surrounding and it is those virions th a t move on to infect neighbouring cells. Instead, 
the model proposed here does not consider virions at all and ra ther models the infection 
process by the direct infection of healthy neighbouring cells by infectious cells. This is 
com putationally simpler and more efficient. Throughout influenza A literature, however, 
the infection growth is described in term s of the viral tite r over the course of the infection 
rather than  as a growth rate. This makes it difficult to establish the param eter 0  from 
experimental data.

In [76], Strain et al. suggest a physiologically realistic way of including the virions 
in a implicit m anner for the case of HIV. Although their results may be useful for 
certain diseases, several factors prevent us from using them  in the case of influenza 
A. We could probably follow a m ethod similar to  theirs to  find a result th a t would 
be suited to  the current system. However, since the goal of the research is not to 
develop an accurate model of influenza A, this is not a crucial issue. Thus, the rate of 
infection, 0, was left as a free param eter and was found to yield best results when set 
to 2.0 h -1 . This means th a t an infectious cell will, on average, infect 2 of its 8 nearest 
neighbours per hour. One expects th a t a smaller value of this param eter will yield a less 
pronounced infection while larger values will increase the am plitude of the infection and 
potentially result in the death of the host. This is illustrated in Figure 5.10 where we 
have explored the effect of using a value 1/2 x (1 infected neighbour • h -1 ) and a value 
2x (4 infected neighbours • h -1 ) the default.

5 .3 .9  B a s e  D e n s i ty  o f  Im m u n e  C e lls , p m

The viral infection model only concerns itself with immune cells th a t have a role to 
play in the viral infection, i.e. those immune cells with a receptor capable of recognizing 
an epitope of the viral strain  present in the simulation. There m ust always remain a 
minimum density of cells capable of recognizing and responding to  a new outbreak, and 
this density is set by the param eter p m - The value for p u  was calculated based on 
the following information. I t has been determined [82] th a t intraepithelial lymphocytes 
have a frequency of about 15 per 100 epithelial cells. Further, the probability th a t an
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Figure 5.9: The effect of varying the fraction of initially infected epithelial cells, pc,  
on the viral infection’s dynamics. From top to bottom , the graphs show the behaviour 
obtained using pc  values of 0.001, 0.01, and 0.1 respectively. The central graph is the 
same as Figure 5.3. These show th a t the simulation is sensitive to  the param eter pc-
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Figure 5.10: The effect of varying the rate of infection of neighbours by infectious epithe­
lial cells, (3, on the viral infection’s dynamics. From top to bottom , the graphs show the 
behaviour obtained using j3 values of 1, 2, and 4 infected neighbour(s) ■ h -1 respectively. 
The central graph is the same as Figure 5.3. These show th a t the simulation is sensitive 
to the param eter (3.
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immune cell chosen at random  will recognize an epitope chosen at random  is typically 
10~5 [66]. This would give a value of (15/100) x 10” 5 =  1.5 x 10-6 . However, in the case 
of influenza A, which is commonly contracted, one has to take into account the effect of 
cross-reactivity and prior immune memory. T hat is, since an individual is likely to have 
already been exposed to a strain of influenza A, he or she will have more immune cells 
ready to respond to the infection than  one expects for a less common infection like polio. 
It is suggested in [11] th a t the fraction of B or T  cells capable of responding to a viral 
infection with influenza A be increased by 100-fold to  account for prior cross-reactivity. 
Thus, p m  is taken to be 1.5 x 10-6 x 100 =  1.5 x 10-4 unactivated immune cells per 
epithelial cell. Note, however, th a t this 100-fold increase in the concentration of cells 
capable of recognizing the antigen accounts for the effect of prior im munity in a purely 
static manner. At this point, the model does not take into account the  dynamical effect 
of cross-reactivity from immune cells of previous infections who have a small enough 
antigenic distance from the current strain  to  take part in the current immune response.

5 .3 .1 0  R e c r u itm e n t  R a te  o f  Im m u n e  C e lls , r «

W hen an activated immune cell encounters an infected epithelial cell presenting a viral 
peptide (expressing or infectious), the activated immune cell will “recruit” a number 
of new activated immune cells. The number of newly created activated immune cells 
is set through the param eter r « -  This param eter is one of the two free param eters of 
the model, and it has no direct biological basis because the immune cells in the model 
are generic. This param eter represents the efficiency w ith which the immune system 
responds to the viral infection. We explored a range of values for rjw, and found th a t a 
value of 0.25 recruited immune cells per recognition event, i.e. a 25% chance of recruiting 
an activated immune cell upon each successful recognition, gives satisfying results.

The typical immune cell division time is about 12 h ~  24 h [11], which corresponds 
to a recruitm ent ranging from 0.08 to 0.16 immune cells per hour. Considering tha t an 
immune cell encounters 6 epithelial cells per hour (v = 6 time steps per hour) and th a t 
on average about 15% of those cells are infected, then the m odel’s effective recruitm ent 
rate is about 0.25 X 0.15 x 6 encounter =  0 23 im m u n e  ce lls  r e c r u i te d

per hour, which is higher than  the biological range described above. However, tha t 
recruitm ent range is based solely on the cellular divisions of activated B and T  cells and 
does not take into consideration the high production of antibodies by plasm a B cells 
which contributes to reducing the infection, a factor th a t can account for the higher 
recruitment rate value required by the model. Simulation runs using an immune cell 
recruitment rate, r ^ ,  of 0.05 and 1.25 recruited immune cells per recognition event are 
presented in Figure 5.11. One can see th a t the param eter t m  has an im portan t effect on 
the development and the outcome of the infection: too small a value makes the infection 
fatal, while larger values decrease the am plitude and duration of the infection. It is thus 
a key param eter and much effort should be invested in finding a way to  draw a parallel 
between it and true biological param eters.
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Figure 5.11: The effect of varying the recruitm ent rate of immune cells, r>/, on the viral 
infection’s dynamics. From top to  bottom , the graphs show the behaviour obtained using 
tm  values of 0.05, 0.25, and 1.25 immune cells per recognition event, respectively. The 
central graph is the same as Figure 5.3. These show th a t the sim ulation is sensitive to 
the param eter t m -
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5 .4  E x p lo r in g  th e  P aram eter  Sp ace

Let us now bette r characterize the sensitivity of the model to the param eters. This 
is done for the param eters to which the model was found to  be sensitive, namely the 
speed (v) and recruitm ent rate (t m ) of the immune cells, the fraction of initially infected 
epithelial cells (p c ), the infection rate of healthy epithelial cells by infectious ones (/3), 
and the division time of epithelial cells (b).

W ithin the param eter space considered here, the model always yields one of three 
outcomes. These outcomes will be referred to  as death, chronic infection and remission. 
The first, death, corresponds to the case where all cells on the grid have died either as a 
result of the infection or because the damage inflicted on the  system  by the infection was 
too great to  allow for regeneration. The second, chronic infection, corresponds to  the case 
where infected cells remain at 120 days post infection. The th ird  outcome, remission, 
corresponds to  the case where the infection was successfully cleared and healthy cells 
repopulated the grid. For a given set of param eter values, not all simulations necessarily 
result in the same outcome. For simplicity, the param eter space is characterized in terms 
of the fraction of simulations ending in remission.

Firstly, each param eter to which the model was found to  be sensitive was varied 
over its biological range, keeping all others fixed. Doing so, only 2 of the possible 
outcomes were observed, namely death and remission. For each set of param eter values, 
50 simulations were run to determine the fraction of simulations ending in remission. 
The results are presented in Figure 5.12 for each of the 5 param eters. Firstly, for the 
division tim e of epithelial cells, 6, the default param eter value is 12 h, and at 16 h (a 33% 
increase) we begin to  see some simulations ending in death. For the speed of immune 
cells, v =  6 ts /h , we begin to see some simulations ending in death  at v  =  5 ts /h  (a 
16% reduction). For the infection ra te of immediate neighbours, (3 = 2 h -1 , we begin 
to sec some simulations ending in death at (3 = 3.3 h -1 (a 65% increase). For the 
fraction of initially infected cells, pc  =  0.01, we begin to see some simulations ending 
in death at pc  =  0.015 (a 50% increase). Finally, for the recruitm ent rate of immune 
cells, tm  = 0.25, we begin to see some simulations ending in death  at =  0.2 (a 20% 
reduction). Thus the model is more sensitive to changes in the speed (v) and recruitm ent 
rate (t m ) of immune cells as well as the division time of epithelial cells (b) th an  it is to 
changes in the fraction of initially infected cells (pc) and the infection rate of healthy 
epithelial cells by infectious neighbours ((3). It would be interesting to find out whether 
variations of these magnitudes can occur among healthy individuals, as this could reveal 
whether or not the model is too sensitive to these param eters given th a t we would not 
expect healthy individuals to die from an uncomplicated infection w ith a known strain 
of influenza A.

Next, we explored two-dimensional slices through the param eter space by varying 
two param eters simultaneously while keeping the others fixed, for each possible pair of 
the 5 param eters to which the model was found to be sensitive. Figures 5.13 and 5.14 
illustrate the fraction of simulation resulting in remission when varying two param eters 
simultaneously for the 10 possible combinations of the 5 param eters. It is interesting to 
see just how close the default param eters sometimes are to outcomes other than  remission

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 5. A  SIMPLE CA MODEL OF INFLUENZA A 63

0.7

0.60.6

0.4a  0.4

i o . 3  

§ 0.2 0.2

4 6
speed of immune cells, v (time steps/h)

10 12 14 16 8 2014 16 18 20
division time of epithelial cells, b (h)

12 22 24 2 88 10
division (time

o

S<u
c 0.70.7

0.6 0.6

o
c
5

•g 0.3 

i  0.2

0.3o
o 0.2
o

0.001 0.01
fraction of initially infected cells, p(

0.11 2 3 4 5 6 7
rate o f infection of epithelial cells, P (cells/h)

0 8

0.7

0.6

•3 0-3 
g 0.2

_ _ J ___________  I  I .............................
0.0625 0.125 0.25 0.5 1

rate of recruitment of immune cells, r.,’ M

Figure 5.12: The fraction of simulations which end in remission when varying each of 
the param eters to which the model was found to be sensitive around its default value, 
marked by the vertical dashed line.
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Figure 5.13: Two-dimensional slices through the param eter space for the simultaneous 
variation of pairs of param eters to which the model was found to be sensitive around their 
default value. The shading indicates the fraction of simulation resulting in remission, 
where white indicates th a t all 50 simulations resulted in remission and black indicates 
none. The coordinates corresponding to  the pair of default values was m arked by a cross 
in each graph.
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Figure 5.14: Two-dimensional slices through the param eter space for the simultaneous 
variation of pairs of param eters to which the model was found to  be sensitive around their 
default value. T he shading indicates the fraction of sim ulation resulting in remission, 
where white indicates th a t all 50 simulations resulted in remission and black indicates 
none. The coordinates corresponding to the pair of default values was marked by a cross 
in each graph.
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in Figures 5.13 and 5.14. How close to  the default param eters appear to  be from non­
remission outcomes is of course a consequence of the scale of the graphs. If the ranges 
explored were smaller, e.g. 8-16 h rather than  8-24 h for the division time of epithelial 
cells (b), the distance would appear much greater. The choice of the ranges was based on 
experimental d a ta  found in the literature, which are not always strict. Another possible 
explanation for the closeness of the default param eters to outcomes o ther than  remission 
is th a t the immune system ’s response to pathogens tends towards the optimal solution 
for responses to all common pathogens rather th an  the optim al solution for a particular 
pathogen. In other words, the im mune’s response to influenza A is not optimal, bu t may 
be the optim al or near optimal compromise solution for responding to  various common 
pathogens most effectively.

5.5 C on clu sion

Here, we have introduced a CA model for an uncomplicated viral infection. We have 
shown th a t once calibrated for the particular case of influenza A, the CA model — 
which is described by 7 state variables and 11 param eters — is sophisticated enough to 
reproduce the basic dynamical features of the infection. One expects a 11 param eter 
model to be able to m atch 7 dynamical features, however all b u t 5 param eters of this 
model are sufhciently-well bound by physiological da ta  th a t they  cannot be used to 
tune its behaviour. Remarkably, the 7 variable and 11 param eter m odel’s agreement 
with the experim ental dynamical characteristics compares well to  th a t of the 13 variable 
and 60 param eter model presented in [11]. At the time of publication of [4], the CA 
model presented here along w ith the ODE model presented in [11] were the only two 
existing immunological models for influenza A viral infections in humans. This is quite 
surprising considering influenza’s significance to hum an health  worldwide, particularly 
its high potential for causing devastating epidemics [87].

The results obtained w ith the model described herein have surpassed expectations. 
The goal of this project was to  develop a model th a t would be good enough to  be used 
as a test bench to investigate various theoretical aspects of viral infections. In fact, the 
influenza A model obtained after calibration behaved impressively well when compared 
against available experim ental data. Most likely, w ith the inclusion of additional details 
in the model, such as specific immune cell types, the CA model could be a very promising 
model of influenza A.

A wide range of behaviours were observed as the m odel’s param eters were varied over 
their biologically allowed range. It would be valuable to test w hether these predicted 
behaviours can actually be observed in vivo, since if they are not seen then th a t would 
falsify the model.

In the next chapter, we will make use of the CA model introduced here to investi­
gate the effects of the well-mixed assumption made by ODE models on viral infection 
dynamics. Additionally, in future work, we would hope to make use of the CA model 
presented here to investigate various other theoretical aspects of viral infection dynam ­
ics, for example, spatial strain  competition and spatial restriction of viral spread by
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C hapter 6

Probing the Effects of the  
W ell-m ixed A ssum ption  on Viral 
Infection D ynam ics

6.1 In tro d u ctio n

Here, I explore the effects of spatial structures on the dynamics of a viral infection, whose 
target cells are fixed in space, using the two-dimensional cellular autom aton introduced 
in C hapter 5. I will explore which kind of effects spatial structures can have on the 
evolution and outcome of a spatially localized viral infection. I will also show how these 
spatial structures emerge and by which process they affect the dynamics of the infection.

In Section 6.2, the effect of the distribution of initially infected cells on the progres­
sion of the infection is investigated. Section 6.3 compares a local regeneration rule for 
epithelial cells to a global rule, i.e. the rule for the replacement of dead epithelial cells 
with healthy cells. In Section 6.4, the effects of the addition of immune cells at random 
locations versus addition at the site of recruitm ent are explored. Finally, in Section 6.5, 
the significance of the spatial effects in the particular case of an uncom plicated influenza 
A viral infection is discussed.

6.2 D istr ib u tio n  o f  In itia lly  In fec ted  C ells

In the CA model proposed in C hapter 5, the param eter p c  is the fraction of epithelial 
cells initially set in the infected state, and its default value is 1%. The cells to be initially 
set to the infected state were picked at random  and this resulted in single infected cells 
as well as groupings or patches of neighbouring infected cells of various sizes. One way 
to investigate the effect of spatial heterogeneities on the dynamics of the infection is to 
change the spatial configuration of the epithelial cells th a t are initially set in the infected

XA version of this chapter has been subm itted for publication to  the Journal of Theoretical Biology 
on 23 May 2005.
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state. To do this, the model was modified to d istribute the initially infected cells into 
groups or patches of fixed size so th a t the effect of the size of the patches of infected cells 
on the dynamics of the infection can be investigated.

A new param eter, s, is added to the CA model, being the num ber of cells th a t make 
up a patch of initially infected cells. Since the number of epithelial cells to be initially 
infected is not necessarily divisible by s, the quotient of th a t division gives the number of 
patches to be added to the simulation grid at s ta rt up, and the rem ainder of the division 
is used to set the probability th a t an ex tra patch of size s be added. This means th a t a 
fixed initial patch size is enforced at the expense of a fixed fraction of initially infected 
cells. Each patch of infected cells is individually constructed and is added at a random 
location on the grid, insuring th a t no two patches are in contact w ith each other. The 
CA model defines the neighbourhood of a site as consisting of the  site itself and its eight 
closest sites (Moore neighbourhood). A patch of s infected cells is constructed by starting 
with a seed site and growing it by sequentially picking one site at random  from the set of 
sites tha t neighbour previously-selected sites. Note th a t this m ethod of forming patches 
results in patches with densities th a t decrease w ith increasing distance from the centre. 
This characteristic is consistent with a splatter or spray of virions and thus this method 
was preferred over other patch growing m ethods such as diffusion-limited aggregation, 
and random walk additions around a seed.

The results for patches ranging in size from 1 to 1232 infected cells are presented in 
Figure 6.1. One can see th a t increasing initial patch sizes result in fewer infected cells 
and less epithelial damage. This is not surprising since only the cells th a t make up the 
perimeter of the patch, i.e. those th a t have healthy neighbours, can infect other cells. As 
patches grow, their perim eter to area ratio, namely the fraction of infectious cells th a t 
have healthy neighbours, will decrease and so will the effective infection rate.

Let us illustrate this by an example. Consider a system where infected cells infect all 
of their uninfected Moore neighbours ( 8  nearest neighbours) in each time step (an infec­
tion rate of 100%). The evolution of the system from an initial single seed is illustrated 
in Figure 6.2. From the relation derived in the table of Figure 6.2, one can compute the 
effective infection rate, i.e. the  number of newly infected cells per infected cell at time 
step n, to be 8 (n +  l ) / (2 n  +  l ) 2 =  4 / \ f l  +  4/1,  where I  = (2n  + l ) 2 is the number of 
infected cells in a square patch at time step n. A graph of the effective infection rate as 
a function of the num ber of infected cells in a square patch is presented in Figure 6.3. 
For this toy model, the effective infection ra te is proportional to  l / \ f l  for I  1.

Another interesting feature th a t can be seen in Figure 6.1 is the increasing standard 
deviation for increasing initial patch sizes. This is easily explained w ith the fact th a t 
the larger the param eter s, the fewer the sites of infection. In o ther words, as the initial 
patch size increases, the 50 simulations are averaging over fewer infection sites. Figure 
6.4 presents two example simulations to  illustrate the differences th a t can arise between 
simulations produced using the same param eter values, when the initial patch size is 
large. In the case of the example simulations presented in Figure 6.4, early detection 
made the difference between a small and short infection, and a longer infection resulting 
in a greater num ber of infected and dead cells. The larger the initial patch size, the 
fewer the num ber of infected patches and thus, the more pronounced this effect will be.
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time (days) time (days)

Figure 6.1: The effect of varying the initial patch size, s, on the viral infection’s dynamics. 
The graphs show the time evolution of the populations of healthy (top left), dead (top 
right), infected (bottom  left), and immune cells (bottom  right) for s values of 1 , 2 , 
4, 8 , 16, 35, 77, 154, 308, 616, and 1232 cells. The greyed areas m ark one standard 
deviation after 50 runs for each initial patch size, w ith periodically decreasing darkness 
corresponding to increasing initial patch sizes. In all cases, the black band th a t peaks 
first is s = 1. The graphs show th a t the dynamics of the viral infection is sensitive to 
the spatial organization of the initially infected epithelial cells.
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0 1 8
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2 25 24
3 49 32
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n = 2
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Figure 6.2: Evolution of a simplified system where each infected cell infects all of its 
uninfected neighbours at each time step, starting  from a single infected cell. The table 
shows the num ber of infected cells and the number of cells th a t will become infected in 
the next tim e step. The figure illustrates the evolution of the  system over the first 4 time 
steps with infected cells represented in dark grey and the cells which will be infected in 
the next tim e step represented in light grey.
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Figure 6.3: The effective ra te of infection (newly infected cells per infected cell) as a 
function of number of infected cells in a square patch for the simplified system presented 
in Figure 6 .2 . The effective infection ra te is given by 4 /V 7  + 4 /1  where I  is the number 
of infected cells th a t make up the square patch.
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Figure 6.4: P roportion of healthy cells (dotted), infected cells (dashed), and immune 
cells per epithelial cell (full) for two simulations using an initial patch size of s = 77. 
The simulations, whose only difference is the seed for the random  number generator, 
illustrate the differences th a t can arise for large values of the initial patch size. In this 
case, early immune detection (lines with circles) of the infection has allowed minimal 
damage and early recovery, while late detection (lines w ithout symbols) has resulted in 
a longer infection w ith a  larger number of infected and dead cells.

This variability for larger values of s can be reduced by averaging simulations with the 
same number of infection sites (same number of patches) ra ther th an  the same absolute 
number of infected cells (same area).

Finally, it can be seen th a t there is a decrease in peak immune cell concentration 
for initial patch sizes below s =  2. It is clear th a t there are two processes at work: one 
which dominates at small initial patch sizes and one which dom inates at large initial patch 
sizes. As seen in the bottom  left of Figure 6.1, the peak num ber of infected cells decreases 
monotonically as the initial patch size is increased. The peak concentration of immune 
cells is, mostly, determ ined by the peak number of infected cells, and this explains the 
decrease in the peak concentration of immune cells as the patch  size increases. However, 
I have yet to determ ine the process responsible for the decrease in peak immune cell 
concentration at small initial patch sizes.

6 .2 .1  N o t  J u s t  a  R e sc a lin g  P r o b le m

It may be tem pting to  interpret the effect of the initial patch  size on the development 
and outcome of the infection as a rescaling of the system. In effect, one could imagine 
that each lump of infected cells represents a single infected cell such th a t the surface 
area of one epithelial cell corresponds to s sites of the sim ulation grid. A grid of area A  
with an initial patch  size of s would be equivalent to  a grid of area A / s  w ith an initial 
patch size of 1. This tu rns out to  be an incorrect interpretation, as seen in Figure 6.5. 
This figure illustrates th a t one consequence of increasing the num ber of simulation sites 
per epithelial cell is an increase in the number of configurations the simulation can be
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Figure 6.5: The comparison of the infection growth p a tte rn  for a sim ulation where each 
epithelial cell is represented by: (top) a single grid site; or (bottom ) 4 grid sites (s =  4). 
For the infection growth rate to  be comparable for the 2 simulations, the fraction of the 
grid which gets infected needs to  be kept constant such th a t  an infection rate (3 for an 
initial patch size of 1 becomes (3 ■ s for an initial patch size of s. Despite this correction, 
the infection growth pa tte rn  is not equivalent because, for example, the radius of the 
infection increases faster in the former.

in. For example, this causes the radius of infection sites to  grow more slowly, even when 
the cell-to-cell infection ra te is increased so th a t the ra te  of increase of infected tissue 
area is kept constant.

6 .2 .2  O c c u r r e n c e  o f  C h ro n ic  In fe c t io n

It is not clear from Figure 6.1, but for initial patch sizes larger th an  35, a number of 
simulations result in chronic infection with the fraction of infected cells stabilizing at 
2% in all such cases. The occurrence of chronic infection increases for increasing initial 
patch sizes. This is illustrated in the top left panel of Figure 6 .6 . W hat causes chronic 
infections in the case of larger initial patch sizes is the lower effective infection rate, 
which slows the infection dynamics. If the infection growth is slowed down, the infection 
takes place over a longer period of time and the immune cells s ta rt dying off before 
the infection is fully cleared. Thus, in the CA model, chronic infection arises when the 
immune cells’ lifespan is shorter th an  the time scale of the infection. Chronic infections 
can be prevented by choosing a larger value for 5m , the lifespan of immune cells, for 
larger values of s, the initial patch size. For s =  1232, there are still occurrences of 
chronic infection w ith 5m  = 300 h, bu t the infections are always cleared for 5m  — 400 h 
(not shown).
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Figure 6 .6 : Fraction of simulations ending in chronic infection as a function of the initial 
patch size, using the global (top row) or local (bottom  row) epithelial cell regeneration 
rule, with the addition of immune cells at random  locations (left column) or at the site of 
recruitm ent (right column). The results were obtained by averaging over 50 simulation 
runs.
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6 .3  G lob a l v s L ocal E p ith e lia l R eg en era tio n

In the model presented in C hapter 5, the regeneration of dead epithelial cells was imple­
m ented as a global process ra ther than  a local process, namely, a dead cell is replaced 
by a healthy cell w ith probability 6 _1  x #  h e a lth y /#  dead. See rule 4 of Figure 5.1. 
This epithelial cell regeneration rule was originally chosen to  mimic the replacement of 
dead cells by basal cells or by cells from inferior layers in the context of an influenza A 
infection. If one, instead, considers an infection taking place in a tissue composed of a 
monolayer of cells, a local regeneration rule based on the division of immediate neigh­
bours is more appropriate. In this section, the im pact of using the local epithelial cell 
regeneration rule on the dynamics of the infection is investigated. Local regeneration 
of epithelial cells is modelled by altering rule 4 of Figure 5.1 so th a t a dead epithelial 
cell is replaced by a healthy one only if one of its healthy neighbours divides. Note th a t 
for bo th  epithelial cell regeneration rules, division or regeneration is simply the process 
by which a dead cell is replaced by a healthy cell. If there are no dead cells, nothing 
happens, no regeneration rule is invoked.

The original global regeneration rule is equivalent to assuming th a t dead and healthy 
epithelial cells are homogeneously d istributed throughout the simulation grid, which is 
the way in which epithelial regeneration is implemented in simple ODE models. Com­
paring the two regeneration rules allows us more insight into the effect of the spatial 
distribution of cells on localized infection dynamics. The results of simulations compar­
ing the global to the local epithelial cell regeneration rules are shown in the left column 
of Figure 6.7. The top left panel shows the original model w ith the global epithelial cell 
regeneration rule, as presented in C hapter 5, and the bottom  left panel shows the same 
model using the local epithelial cell regeneration rule. A typical spatial distribution of 
cells at day 4 post-infection for bo th  rules is illustrated in the left column of Figure 6 . 8  

as screenshots of the simulation grid, w ith the panels in the same order as in Figure 6.7. 
Additionally, the numbers of infected and dead cells at their respective peaks relative to 
their values in the original CA model introduced in C hapter 5 arc presented in Table 6.1 
in the two rows labelled “newly recruited immune cells placed at random  locations;” the 
other rows will be discussed in the next section.

One can see th a t the local epithelial cell regeneration rule results in fewer infected 
cells and, consequently, in the recruitm ent of fewer immune cells bu t in more extensive 
and longer lasting damage to the epithelium compared to the global regeneration rule.

In the CA model, the infection of epithelial cells spreads locally as infected cells 
infect their healthy neighbours forming growing patches of infected cells. As the infection 
progresses, infected cells at the core of these patches die as a result of virus toxicity or 
immune attacks, and leave behind patches of dead cells surrounded by a perim eter of 
infected cells. Patches of dead cells can no longer harbour infection and thus serve to 
limit the growth of the infection. W ith the global epithelial cell regeneration rule, new 
healthy cells are allowed to emerge in the middle of the pools of dead cells. This allows 
the infection to rapidly repopulate the patches of dead cells, thus sustaining a high level 
of infection with minimal epithelial damage.

W ith the local epithelial cell regeneration rule, the patches of dead epithelial cells
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Figure 6.7: The effect of a global (top row) or local (bottom  row) epithelial cell regen­
eration rule w ith the addition of immune cells at random  sites (left column) or at the 
site of recruitm ent (right column) on the behaviour of the CA model. Simulation results 
averaged over 50 simulation runs for an initial patch size of 1. T he paired lines m ark one 
standard deviation and represent the fraction of epithelial cells th a t  are healthy (dotted), 
infected (dashed), dead (full w ith circles), as well as the proportion of immune cells per 
epithelial cells (full). The top left panel corresponds to the original model presented in 
Chapter 5.
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Figure 6 .8 : P artia l screenshots of 4 simulations obtained using the same param eter 
values and initial cell distribution at day 4 post-infection using the global (top row) or 
local (bottom  row) epithelial cell regeneration rule, w ith the addition of immune cells 
at random  locations (left column) or at the site of recruitm ent (right column). Healthy 
epithelial cells are white, infected (containing+expressing+infectious) epithelial cells are 
grey, dead epithelial cells are black, and immune cells are represented as dark circles 
with a light grey centre. The top left panel corresponds to the original model presented 
in Chapter 5.

epithelial cell re­
generation occurs

newly recruited 
immune cells 
placed at

maximum 
infected cells 
(relative)

m axim um  dead 
cells (relative)

globally random  locations 1 .0 1 .0

recruitm ent site 1 .1 0.46

locally random  locations 0.80 2 .1

recruitm ent site 0.85 2.3

Table 6.1: The effects of the epithelial cell regeneration rules and the immune cell re­
cruitment rules on the number of infected and dead cells a t their respective peak. The 
numbers are relative to  their values for the rules of the original model introduced in 
Chapter 5, namely global epithelial cell regeneration w ith the addition of immune cells 
at random locations.
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can only be repopulated by healthy cells once the immune cells have begun destroying 
the rings of infected cells th a t encircle each patch of dead cells, which otherwise act 
as a barrier isolating healthy cells from the areas th a t require regeneration. Thus, the 
greater accum ulation of damage tha t results from the use of the local regeneration rule 
is a consequence of the spatial constraints imposed on the regeneration process. This 
finding is in agreement w ith th a t of [76], who reported th a t  for their spatial model of 
HIV, the infection could only be sustained as a propagating wave when the local rate 
of cell death  was greater than  the local regeneration rate, as is the case with the model 
used here when using the local regeneration rule for epithelial cells.

6.3.1 O ccurrence o f Chronic Infection

Exam ination of the results of the local epithelial cell regeneration rules for various initial 
patch sizes reveals the persistence of infected cells, namely a chronic infection stabilizing 
at approxim ately 1% of cells infected, for all bu t an initial patch size of 1. This is 
illustrated in Figure 6 .6 , where the fraction of simulations ending in chronic infection as 
a function of the initial patch size for the local epithelial cell regeneration rule is presented 
in the bottom  left panel. The smaller number of infected epithelial cells resulting from 
the use of the local regeneration rule results in the recruitm ent of fewer immune cells 
making it harder to fight the viral infection. Additionally, the organization of the infected 
cells into circular waves makes it harder for the immune cells to target the infected cells’ 
structures. W hen infected cells are arranged into patches, an immune cell performing 
a random  walk has better chances of landing on multiple infected sites. W hen infected 
epithelial cells organize into rings, as is the case w ith the local regeneration rule, immune 
cells performing a random  walk will often move off the ring structu re and “lose sight” of 
the infection. Consequently, the smaller number of infected cells and their organization 
into circular waves, facilitates the escape of the infection from immune attacks resulting 
in a higher incidence of chronic infections th an  for a global epithelial cell regeneration 
rule.

6.4  Im m u n e C e lls’ P ro lifera tion  R u le

The proliferation of immune cells in the model presented in C hapter 5 was such th a t 
when an activated immune cell moved onto an expressing or infectious cell, new activated 
immune cells are added at a ra te of rM =  0.25 at a random  location on the grid. 
The addition of immune cells at random locations can be justified biologically by the 
scenario of immune cells being activated and proliferating in the lymph nodes, travelling 
to the site of infection, and surfacing at random  locations throughout the infected tissue. 
But immune expansion could instead be modelled by adding new activated immune 
cells on the site where the recruiting activated immune cell is located, hence mimicking 
immune cell (T cell, macrophages, etc.) division at the infection site. This scenario could 
correspond to immune cells being activated in the lym ph nodes, bu t travelling to the site 
of infection while still undergoing their program m ed cycles of divisions. In Figure 6.7, 
the infection dynamics for the addition of immune cells a t random  locations and at the
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site of recruitm ent are compared for the two choices of epithelial cell regeneration rule. 
A typical spatial distribution of cells at day 4 post-infection under the two immune cell 
proliferation rules for bo th  epithelial cell regeneration rules are illustrated in Figure 6 . 8  

as screenshots of the simulation grid. Additionally, the num bers of infected and dead 
epithelial cells a t their respective peaks for all rules relative to  their values in the original 
model presented in Chapter 5 are presented in Table 6.1.

Regardless of the epithelial cell regeneration rule, the addition of immune cells at 
the site of recruitm ent results in more infected cells a t the peak of the infection than  
addition at random  locations. The addition of immune cells a t random  locations allows 
recruited immune cells to surface randomly onto a previously unexplored site and effi­
ciently discover new patches of infection. W ith  the addition of immune cells a t the site 
of recruitm ent, it takes longer for immune cells to  discover new sites of infection as they 
can only find them  by diffusion. Thus, although the discovered infection sites are cleared 
faster and more efficiently with the addition of immune cells a t the site of recruitm ent, 
the undiscovered infection sites are allowed to  grow for longer, resulting in more infected 
cells overall.

In contrast, the addition of immune cells at the site of recruitm ent rather than  at 
random  locations has a different im pact on the number of dead cells at the peak for 
the two epithelial cell regeneration rules. The addition of immune cells at the site of 
recruitm ent results in fewer dead cells when combined w ith the global epithelial cell 
regeneration rule, bu t more dead cells when combined w ith the local regeneration rule. 
This discrepancy in the effects of the choice of immune cell addition rule for the two 
epithelial cell regeneration rules can be explained as follows. For the global epithelial cell 
regeneration rule, the addition of immune cells a t random  locations allows the infection 
to  grow almost undisturbed while the immune cells slowly populate the grid randomly 
through recruitm ent, mainly landing on healthy sites. But when a sufficient number of 
immune cells have been added, such th a t new immune cells tend  to  be placed on infected 
sites, the destruction of infected cells by immune cells begins and happens very abruptly. 
It is this abrupt destruction of infected cells by immune cells th a t results in the greater 
number of dead cells seen with the addition of immune cells a t random  locations rather 
than  at the site of recognition w ith the global epithelial cell regeneration rule. This also 
happens when using the local epithelial cell regeneration rule, bu t in this case the effect 
is masked by the large increase in cell destruction at undiscovered infection sites. In fact, 
with the addition of immune cells at the site of recruitm ent and the local epithelial cell 
regeneration rule, the undiscovered site are sometimes allowed to  grow to such extent 
th a t the infection gets cleared by target-cell lim itation in those areas.

It might seem at first th a t the greater number of infected cells resulting from a non- 
cytopathic pathogen (as cells are no longer dying from the cytopathic. effects of the  virus) 
would result in a very extensive amount of damage at the onset of the abrupt destruction 
of infected cells. However, with this CA model, this does not happen. The results of 
setting the infected lifespan to Si = 4 x 106 h, which is much longer th an  the duration of 
the simulation, were compared with those obtained using the original model presented 
in Chapter 5 in which <5/ =  24 h. The comparison revealed th a t lengthening the lifespan 
of infected epithelial cells does not have a significant effect on the resulting dynamics
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and does not result in extensive epithelial damage. This is because older infectious cells, 
regardless of their lifespan, find themselves at the centre of infected patches, and so 
do not contribute to  the infection spread since they do not have healthy neighbours 
to infect. In the case of short lived infected cells (cytopathic pathogen), for example 
w ith Si = 24 h, dead infectious cells are replaced with healthy cells which are then re­
infected and the configuration of the simulation is essentially unchanged from the case 
of long lived infectious cells. The only difference is that, in the case of long lived infected 
cells (non-cytopathic pathogen), the uninterrupted presence of the infectious cells causes 
slightly more immune cells to get recruited.

6 .4 .1  O c c u r r e n c e  o f  C h ro n ic  In fe c t io n

Exam ination of the runs in which immune cells arc added at the site of recruitm ent rather 
than  at random  locations reveals a dram atic decrease in the fraction of simulations 
ending in chronic infection. The addition of immune cells at the site of recruitm ent 
using the global epithelial cell regeneration rule produced no chronic infection in any of 
the 50 simulations performed for each initial patch size. Using the local epithelial cell 
regeneration rule, the addition of immune cells at the site of recruitm ent produced only 
a handful of simulations resulting in chronic infection, with the fraction of infected cells 
stabilizing at approximately 0.1% in all cases. This is illustrated in Figure 6 .6 .

The reduction in the fraction of simulations resulting in chronic infection when adding 
immune cells a t the site of recruitm ent ra ther than  at random  locations is easily ex­
plained. At high infection levels, the addition of immune cells at the site of recruitm ent 
increases the efficacy of the response at the site of recruitm ent bu t makes it harder for 
immune cells to find other sites of infection. This results in a greater num ber of infected 
cells. But at low infection levels, immune cells added at random  locations will rarely 
be added at an infection site and are likely to die of old age before they  can diffuse to 
an escaped infection foyer. Thus, the addition of immune cells at random  locations is 
the better strategy for high levels of infection allowing rapid detection of the various 
infection sites, while addition at the recruitm ent site is the better strategy for low levels 
of infection allowing efficient prevention of escape.

6.5 In th e  C o n tex t o f In flu en za  A

Influenza is a good example of a spatially localized viral infection. The infection typically 
takes place in the upper sixteen generations of the lungs, and the targe t cells of the 
infection, the ciliated epithelial cells which cover the respiratory trac t, are fixed in place. 
In Chapter 5, the CA model used here was introduced and successfully calibrated to 
mimic a viral infection with influenza A. Here, I revisit the CA model to explore how 
the local epithelial cell regeneration rule and the immune cell addition rule affect the 
agreement between the CA model and the experimental d a ta  cited in C hapter 5 for an 
uncomplicated influenza A viral infection.

Because the target cells of influenza A are fixed, i.e. do not move around in space, it is 
ultim ately the speed of diffusion of the virions over the epithelial layer which determines
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whether the population of infected cells grows locally around a productively infected cell, 
or in a more homogeneous manner as the virions quickly spread out over the target area. 
But since the lifespan of a productively infected cell, the num ber of virions it produces, 
their clearance rate, and their diffusion pattern  in the cilia-beaten mucus are not well 
known in the case of influenza A, it is difficult to estim ate how far and how quickly the 
infection spreads. Consequently, it is hard to assess the extent to which the infection 
process, as implemented in the model, applies to the particular case of influenza A. For 
example, in Section 6.2, it was shown th a t larger patches of infection lead to  a decreased 
effective infection rate. B ut if occasional jum ps in viral spread to  previously uninfected 
areas were to  occur in vivo, they could keep the effective infection ra te  high, by giving 
the infection access to  areas where target cells are still plentiful. Nevertheless, there are 
still some conclusions to be drawn from the results presented above.

Originally, in C hapter 5, the use of a global epithelial cell regeneration rule seemed 
appropriate to mimic the replacement of dead cells by basal cells or by cells from inferior 
epithelial layers. B ut in the particular case of influenza A, the infection targets the 
airway epithelium which consists of a single layer of cells everywhere except in the trachea 
[6 8 ]. Thus, it would seem th a t a local regeneration rule by which a dead epithelial cell is 
replaced by a healthy cell only if one of its healthy neighbours divides is more appropriate 
to model cellular regeneration following a viral infection in the lungs. As it turns out, 
the use of the local epithelial cell regeneration rule does in fact improve the fit of the CA 
model to available experim ental data. Over the course of an influenza infection, there 
should be about 10% of cells dead on day 1, 40% on day 2 and 10% on day 5 [11]. The 
global rule results in too fast a regeneration, bu t the local rule improves the agreement 
of the number of dead epithelial cells during regeneration.

The local epithelial cell regeneration rule also results in a num ber of infected cells at 
the peak of the infection (~  40% of the total) which is smaller th an  th a t obtained with the 
global regeneration rule (~  50% of the total). Unfortunately, there is no da ta  available to 
assess whether the reduction in the number of infected cells a t the peak of the infection 
constitutes an improvement of the model or not. The other two existing mathem atical 
models of influenza A, which are ODE models, have arrived at num bers of infected cells at 
infection peak of 40%-78% [1], and 60%-80% [11] of the total. Experim ental d ata  about 
the fraction of cells infected at the peak of the infection would therefore be invaluable in 
discriminating between the different models for influenza A and help determ ine whether 
spatial heterogeneity plays a role in the development and outcome of the infection.

Finally, it has been suggested in [1] th a t influenza resolution could be target-cell 
limited. This means th a t the infection would die from the lack of new cells to infect, 
rather than  as a result of immune attacks. W ith the model in its current state, target-cell 
limitation can occur locally, as seen using the local epithelial cell regeneration rule with 
the addition of immune cells at the site of recruitm ent (see Section 6.4).

In the absence of immune cells, target-cell lim itation is such th a t sites of infection 
grow undisturbed and as the circular waves of infection m eet and annihilate, they leave 
behind nothing b u t dead cells. Target-cell limited complete resolution of the infection, 
without the death of all cells, does not occur in the model because as long as the infection 
wave encircles the dead epithelial cells, segregating them  from healthy cells, regeneration
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cannot be initiated. It is only once immune cells have s tarted  attacking the propagating 
infection wave, creating breaks where dead cells can be in contact w ith healthy cells, 
tha t epithelial cell regeneration can take place.

Target-cell limited resolution could be explored in the absence of immune cells, for 
example, if the action of cytokines were included in the model. T he various cytokines 
which get produced during an influenza infection are known to  hinder viral replication 
within infected cells, and confer a certain level of protection from infection in surrounding 
cells [11, 1]. In the CA model, the cytokine response could be modelled by introducing, 
for example, an inhomogeneous infection rate or an infection ra te  th a t would depend on 
the number of infectious neighbours. This could be the subject of future research.

6.6 C o n clu sio n

Here, the CA model introduced in Chapter 5 was used to  investigate the effects of the 
well-mixed assum ption on the dynamics of a localized viral infection. It was shown 
th a t the distribution of initially infected cells has a great im pact on the dynamics of 
infection. This is because, in the CA model, infectious cells can only infect their im­
mediate neighbours, and when organized in patches, fewer infectious cells have healthy 
neighbours.

It was also dem onstrated th a t the regeneration rule chosen for the replacement of 
dead epithelial cells by healthy ones can have an im portant im pact on infection dynamics. 
A global epithelial cell regeneration rule, equivalent to simple ODE models, allows areas 
of dead cells to  be replenished by healthy cells even in the local absence of healthy cells. 
This repopulation, in turn , allows the infection to  move back into the newly replenished 
area it had previously infected, resulting in a greater num ber of infected cells. On the 
other hand, the  slower local regeneration rule, which requires the local presence of healthy 
epithelial cells, limits the growth of the infection by starving it of target cells and forces 
the infection to  propagate as a thin circular wave. [76] introduce a spatiotem poral model 
for the dynamics of HIV in the spleen. Strain et al. point out th a t the main differences 
between their spatial model and a mean field approach such as the basic viral infection 
ODE model [63, 65], arise from the fact th a t a viral burst only spreads to nearby cells. 
They also conclude th a t in a spatial model, infection sustainability  is affected by the 
recovery ra te  of destroyed target cells, as local cell destruction limits the spread of the 
infection which can then only be sustained as a propagating wave. Those findings are in 
agreement w ith those presented here.

Then, the choices of whether to add immune cells a t random  locations on the sim­
ulation grid, as is equivalent to simple ODE models, or a t the site of recruitm ent were 
compared to explore how they affect the dynamics of the  infection. It was shown th a t 
while addition at random  sites permits rapid detection of new infection sites, it makes 
it harder to avoid infection escape from the immune response. Consequently, random 
addition of immune cells was found to be a be tte r strategy at high infection levels, while 
addition at the  site of recruitm ent was the be tte r strategy at low infection levels.

The sim ulation has also been observed to yield chronic infections for certain rules and
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patch sizes. It is im portant to specify th a t the term  “chronic infection” is used here to 
designate a very small fraction (at most 2 %) of infected cells persisting beyond at least 
60 days post-infection. At this low level of infection, it is unlikely th a t patients would be 
sym ptomatic. Since the patien t’s nasal cavities in the absence of sym ptoms (e.g. runny 
nose) are dryer, it would be difficult to detect any virus shedding from nasal wash. For 
this reason, I do not beleive th a t current experim ental d a ta  for influenza can rule out 
the possibility of a low-level persistent infection. Of course, if it were in fact the case 
th a t a low-level of infection can persist, this could have very interesting consequences 
for memory maintenance, and could possibly provide a reservoir for epidemic spread and 
strain  m aturation. Much more sensitive tests th an  those currently in use would need to 
be perform ed to  rule out or confirm this possibility.

Two spatial models [90, 76] have been suggested for the dynamics of HIV infections. 
Both models make the assumption th a t T cells, the target cells of HIV virus, are fixed 
in space, an assum ption tha t is not realistic given the known patte rns of movement of T 
cells within lymph nodes [55, 54, 53, 52, 51], and may adversely affect the  results. Other 
investigations [29, 48] have chosen to remain more general in their exploration of the 
effects of the spatial distribution of agents on the evolution and outcome of infections by 
not considering a particular viral infection. Since the models in [29, 48] have not been 
calibrated to fit experimental data, it is not known whether they can realistically model 
any particular infection. In C hapter 5, the model used here was calibrated for influenza 
A, and was shown to be accurate enough to  quantitatively reproduce the response to  an 
uncomplicated infection with this virus. The applicability of the findings presented here 
follow from th a t model.

In  the present work, the effect of the spatial distribution of infected cells on the 
dynamics of the infection arises from the fact th a t the infection can only spread from 
one infectious cell to its neighbours. The applicability of the findings presented here 
largely depends on the accuracy of this assum ption, namely whether the infection tends 
to quickly spread over the tissue or grow locally around infected sites. Nonetheless, I 
have shown in this chapter th a t a local epithelial cell regeneration rule, where a dead 
cell is replaced by a healthy cell when one of its immediate healthy neighbour divides, 
improves the fit of the CA model to experimental da ta  in the case of an uncomplicated 
viral infection w ith influenza A.

W hether or not there exist in vivo virus-host systems where the infection grows 
locally from neighbour to neighbour, such systems do exist in vitro  and are used to 
address questions such as how viral spread is inhibited by cellular antiviral activities 
[20, 45]. The team  of Dr. John Yin, at the University of Wisconsin-Madison, have 
introduced a new assay method which consists of a monolayer cell culture covered in an 
agar solution, which prevents the diffusion of virions at the surface of the cell monolayer 
such tha t the infection can only spread to immediate neighbours [20, 45], as is the case 
in the CA model used here. By complementing these assay experim ents with simulations 
from the CA model used here, significant questions could be addressed. For example, by 
testing various hypotheses about the production and spread of interferon, and comparing 
the results of the CA model to th a t of the experim ental assays, it may be possible 
to  discriminate among various potential mechanisms and extract param eters for those
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mechanisms, such as ra te of production/clearance of interferon. The combination of 
results obtained through such experim ental techniques with the  flexibility and simplicity 
offered by spatial in silico modelling could lead to  great advances in our understanding 
of host-pathogen interactions.
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C h a p te r  7

A Sim ple M odel for T Cell 
M ovem ent w ithin  Lym ph N odes  
in the A bsence of A ntigen

7.1 In tro d u c tio n

Movement of T  cells w ithin lymph nodes facilitates the interactions of T  cells with other 
components of the immune system and enables transmission of inform ation for immune 
surveillance and response. Often, as in the case of HIV, immune cell interactions also 
allow the spread of infection within an individual.

Two-photon microscopy has allowed the direct visualization of the  movement of T 
cells within lymph nodes, giving new insights into immune interactions. Recent papers 
have presented observations of T  cell movement tha t can be used to extract the scheme 
of movement of T  cells w ithin lymph nodes [51, 53, 54, 55]. Remarkably, trajectories 
of individual T  cells obtained from these studies suggest th a t T  cells m otion is random 
and not directed by chemokine gradients over large distances. Im m une recognition of 
antigen within lymph nodes thus appears to  occur through the random  encounters of T 
cells with antigen presenting cells.

This chapter assembles and analyzes the available d ata  and proposes a simple model 
for T cell movement. The m odel’s simulations capture observed T  cell trajectories quan­
titatively and yield estim ates of underlying param eters which characterize T cell motion 
in vivo. The resulting insights will be particularly useful given the growing interest in the 
development of spatial m athem atical models for viral infections [3, 4, 10, 21, 29, 76, 90]. 
In Section 7.2, a sum m ary of the literature is given. Then, in Section 7.3, the experimen­
tal data is analyzed w ith the aim of identifying a simple description of T  cell movement. 
Finally, in Section 7.4, we propose a model for the movement of T  cells within lymph 
nodes in the absence of antigen.
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Figure 7.1: M ean displacement as a function of the square root of tim e in one dimension 
in x  (filled triangles), y (empty circles), z  (no symbol), in two dimensions in the xj/-plane 
(empty squares), and in three dimensions (filled circles) for up to  146 CD8 + T  cells in 
mice popliteal lym ph nodes in the absence of antigen-loaded activated dendritic cells. 
D ata from [51].

7.2 S u m m ariz in g  th e  L iterature

The experim ental da ta  considered to construct our T  cell movement model was taken 
from 4 papers, nam ely [51, 53, 54, 55]. These papers were chosen because they presented 
the mean displacement of T  cells as a function of the square root of time, which we used 
to construct our T  cell movement model. The experim ental context and the types of 
cells considered are summarized in Table 7.1 for each publication.

As can be seen from Table 7.1, Miller et al. have projected their mean displacement 
versus v^time to  two dimensions (2d), while Mempel et al. did not. Dr. Mempel was kind 
enough to provide us w ith da ta  containing the individual CD 8 + T  cell tracks (t , x , y , z) 
th a t were used to  produce the graph of the 3d mean displacement versus i/tim e presented 
in Figure 2 of [51]. Figure 7.1 presents the mean displacement of T  cells versus i/tim e 
in Id, 2d, and 3d, th a t we computed from these cell tracks. Closer examination of the 
Id mean displacements reveals th a t it is not consistent across the x, y, and z  directions. 
The Id  mean displacement versus v tim e in the z  direction is so much smaller than  tha t
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reference cell type projected to 2 d experim ental conditions
Miller et al. 2002 [55] CD3+ (CD4+ or CD8 +) yes inguinal and cervical lymph nodes 

harvested from mice
Miller et al. 2003 [54] CD4+ yes inguinal lymph nodes of anaes­

thetized mice
Miller et al. 2004 [53] CD4+ yes cervical or inguinal lymph nodes of 

mice killed by asphyxiation
Mempel et al. 2004 [51] CD8 + no popliteal lymph nodes of anaes­

thetized mice

Table 7.1: Summ ary of the literature where two-photon microscopy was used to  track T  cell movement and a graph of the 
mean displacement as a function of the square root of time was presented. The first column gives the reference, the second 
column indicates the type of T  cells considered, the th ird  column indicates whether the plot of the mean displacement as a 
function of the square root of tim e was projected to two dimensions (2 d) or not, and the last column describes the experimental 
conditions under which the movement of T  cells was recorded.
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in the x  and y  directions tha t the curve of the 3d mean displacement as a function of
V tim e is indistinguishable within the standard  error of the mean from th a t of the 2 d
mean displacement in the xy -plane (Figure 7.1).

T he smaller mean displacement as a function of V tim e in the z direction could be 
the result of the poorer resolution in the z direction: 6  pm in the z direction compared 
to ~  700 nm in the x  and y  directions [51]. Dr. Mempel has told us th a t the discrepancy 
for the  m ean displacements in the z  direction compared to  th a t in the x  and y  directions 
was reduced when the resolution in z  was increased to 2 pm . 1 B ut more investigation 
would be necessary to determine whether the poor resolution in z can fully account for 
the small mean displacement in the z direction or whether this is the result of CD8 + T 
cells predom inantly moving in the xy-plane.

We have not been able to obtain individual T  cell tracks from the Miller et al. group. 
Probably in order to  eliminate a similar discrepancy between the mean displacement in 
the z direction and th a t in the x  and y directions, Miller et al. give the mean displacement 
for 2d ra ther than  3d in their publications [53, 54, 55]. In order to  obtain the da ta  points 
from the 2d mean displacement versus Vtim e graphs of the Miller et al. publications 
[53, 54, 55], we digitized the graphs and extracted the d a ta  points using the software 
Engauge Digitizer [57]. Their d a ta  can now be compared to the 2d mean displacement 
we com puted from the Mempel et al. data. The 2d mean displacements as a function of 
Vtime for all 4 publications are presented in Figure 7.2. One can see th a t the 2d mean 
displacement versus Vtime for all 4 publications consistently follows a straight line for 
times larger than  ~  3 min. As we will see in the next section, this is consistent with T 
cells performing a random  walk.

In addition, the speed of T  cells in the absence of antigen was consistent across the 4 
publications. Miller et al. found a 2d mean instantaneous velocity of 10.8 ± 0 .1  pm /m in 
for CD3+ T  cells in [55], 10.9 pm /m in for CD4+ T  cells in [54], and 9.6 pm /m in  for CD4+ 
T cells in [53], while we computed a 2d mean instantaneous velocity of 10.5 ±  0.2 pm /m in  
for CD8 + T cells from the Mempel et al. tracks used in [51].

7.3 A n a ly z in g  th e  M o tio n  o f  T  C ells

Experim ental da ta  of the mean T  cell displacement versus V tim e displays two distinct 
regimes. At small times, the displacement appears to have a quadratic dependence on 
Vtime (a linear dependence on time), which resembles w hat one would expect for a 
particle moving in a straight line at a fixed speed. On the other hand, for larger times, 
the displacement appears to depend linearly on the square root of time, suggesting 
th a t the cells are diffusing. For times smaller than  the tim e scale of a single step of a 
random walk, a particle performing th a t random  walk will move in a straight line as 
it takes th a t step, yielding a quadratic shape at small times. B ut for larger times, the 
consecutive steps taken by the particle in random directions yield a linear shape. This is 
illustrated in Figure 7.3, and can be seen in Figure 7.2 where we present d a ta  obtained 
from [51, 53, 54, 55].

M horsten Mempel, Personal communication by email, 19 March 2005.
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Figure 7.2: Two-dimensional mean displacement of T  cells as a function of the square 
root of time from Miller et al. 2002 [55] (empty circles), Miller et al. 2003 [54] (filled 
squares), Miller et al. 2004 [53] (grey triangles), and from calculations based on individual 
T  cell tracks used in Mempel et al. 2004 [51] (grey diamonds). D ata  for [53, 54, 55] was 
obtained by digitizing the graphs and extracting d ata  points using the software Engauge 
Digitizer [57]. S tandard  deviations were only reported in [54, 55].
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Figure 7.3: (Left) T he graph of the mean displacement, (|r-|), as a function of the square 
root of time (\ / t)  yields a quadratic shape for motion on a straight line at fixed velocity, 
v, and a linear shape for a random  walk or diffusion in d dimensions. (Right) The results 
from T cell movement experiments are quadratic for small tim es and linear for larger 
times.

The two regimes are clearly identified in all da ta  sets except [55], where the short 
time data differs from the other data  sets. This may be because CD3+ T  cells were 
used in [55], while the  other publications considered the movement of CD4+ [53, 54] and 
CD8 + [51] T  cells. The transition between the quadratic and the linear regime occurs 
around 3 min ( \ / t  — 1.8 Vmin) at a mean displacement of 30 pm. This suggests th a t T 
cells perform a random  walk w ith a mean free time of about 3 m in during which T cells 
move at a 2 d speed of about 1 0  pm /m in  in a straight line, yielding a 2 d mean free path  
of 30 pm.

As illustrated in Figure 7.3, the slope in the linear regime of the  m ean displacement, 
( |r |) , versus v tim e  curve provides an estimate of the diffusion coefficient characterizing 
the random walk of the T  cells. Let r  be the displacement of a particle at time t  given 
tha t it started  at the origin at time 0. If the particle is undergoing a random  walk in d 
dimensions w ith diffusion coefficient D , then its mean squared displacement as a function 
of time is given by

( r 2) =  2dDt  , (7.1)

for t much larger th an  the time scale of a single time step [6 ]. This equation is also 
valid for particles moving in d dimensions who’s motion has been projected to S < d 
dimensions. In such a case, the mean squared displacement in 6 dimensions is ( |r |)  =  
V25Dt,  provided th a t motion in the x, y , and 2  directions are statistically  independent. 
This is because ( r 2) =  (a:2 + y 2 + z 2) =  (a:2) +  (y2) +  ( z 2), where x , y, and z are 
displacements in the individual dimensions, and each term  on the  right hand side equals 
2Dt  as diffusion in any direction is independent of the others. Thus, we have

( r 2) 2d =  ( x2 ) +  ( y 2) =  (7 -2 )

The authors of [51, 53, 54, 55] chose to present the mean displacement, ( |r |) , rather
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than  the root mean squared displacement, \J (r2) , as a function of Vtime. Prom the slope 
of their graph, the authors compute what they call a “m otility coefficient” , M ,  which is 
com puted in a m anner analogous to th a t of the diffusion coefficient for particles moving 
in 2d, namely M  = m 2 / 4, where m  is the slope of the linear portion of the 2d mean 
displacement versus v tim e  curve. Let us see how the m otility coefficient, M , relates to 
the diffusion coefficient, D.

At time t, the displacement in d dimensions of a particle th a t started  at the origin 
at tim e 0  is given by

d

£ ~ 2
2 = 1

(7.3)

Let us define

such th a t Xi — \ f 2 D t a i , and
( x i )  = 2Dt ( a f )  . (7.5)

Since Xi is a Gaussian random variable of mean (xi) = 0 and variance (a:?) =  2Dt,  it 
follows th a t cti is a Gaussian random  variable of m ean 0 and variance 1. The mean 
displacement in d dimensions at time t would then be given by

(|r |) = A

A

E *?>
i = 1 /

^ 2 D t a }
i= 1

V 2 D t AE '
i = 1

(|r |) =  ,

(7.6)

(7.7)

(7.8)

(7.9)

where (3 = JT = i a i -  The sum of the squares of d Gaussian random  variables of mean 0 
and variance 1 is a ^ -d is tr ib u te d  random  variable w ith  d degrees of freedom [81]. The 
i th moment of a y 2-distributed random variable (3 w ith d degrees of freedom is given by 
[81]

W  r ( g )  '

Substituting this back into (7.9), we obtain

(M ) =  .

(7.10)

(7.11)
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From this, we can work out the mean displacement in one, two, and three dimensions, 
namely

<M) d=1 -  - (7-12)

<M>d=2  (7.13)

(lr l)ti= 3 =  y / ^ V i  . (7.14)

Hence, the motility coefficient, M  = m? /4 , com puted from the slope, m,  of 2d mean 
displacement versus Vtim e graphs is such th a t D — A M / tt.

From the combined da ta  sets, we com puted a motility coefficient of 77 ±  5 pm 2/m in 
from the slope of the 2 d mean displacement versus Vtim e graph, for times greater than  
4 min (linear portion of the graph). This yields a diffusion coefficient of 98 ±  6  pm 2 /m in. 
It is interesting to compare this value w ith the diffusion coefficient for a sphere of radius 
R  diffusing as a result of therm al energy through a milieu of viscosity rj a t absolute 
tem perature T.  The latter diffusion coefficient is given by the Stokes-Einstcin relation,

d  = ^ T r ' (7' 15)bTTT]R

where I b  is the Boltzmann constant [6 ]. For a cell diffusing in vivo, T  =  310 K is the 
body tem perature, and i] = 6.92 x 10- 4  kg ■ s - 1  • m _1  is the viscosity of water at body 
tem perature. Given th a t the radius of a T  cell is approxim ately R  — 8  pm [76], we get 
a Stokes-Einstein diffusion coefficient for T  cells in vivo of 2.5 pm 2 /m in. The diffusion 
coefficient obtained from the mean displacement versus V tim e plot is more than  an order 
of m agnitude larger th an  the Stokes-Einstein diffusion coefficient for passive therm al 
diffusion. This is because T cell motion is the  result of active crawling on the part of T 
cells rather th an  passive motion resulting from therm al energy.

T cells are known to be capable of active motion through crawling. Although the 
manner in which T  cells crawl is not fully understood, many characteristics are thought 
to be similar to  the crawling of amoeba of the lower eukaryote Dictyostelium discoideum 
[26], Migration is initiated when the T  cell adopts a polarized (elongated) shape. This 
is followed by the formation of a lamellipodium at the leading edge and a uropod at the 
trailing edge [70] (see Figure 1 in [27]). This shape is referred to  as a hand m irror shape 
or amoeboid movement configuration [69]. To move, the T  cell anchors its uropod to the 
crawling surface, shifts all of its cytoplasm to the front, re tracts the uropod, and starts 
another contraction-retraction cycle (see Figure 1 in [69]).

The mixed quadratic/linear nature of the graphs of the mean displacement of T  cells 
with respect to the square root of time suggest a simple scenario for T  cell movement 
in the absence of antigen. As mentioned above, rapid exam ination of the T cell mean
displacement versus Vtime reveals th a t T  cells appear to  perform  a random  walk with
a mean free time of ~  3 min, during which they move w ith a constant 2d velocity of 
~  10 pm /m in. In the next section, we will refine this description by simulating T  cell 
trajectories and comparing the results against experim ental data.
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7 .4  S im u la tin g  T  C ell M o tio n

We let a T  cell perform a random  walk (diffuse) with a mean free time tfree, during which 
it crawls in a straight line at a fixed speed of V f i e e . At the end of each free run, we allow 
for a pause time, tpause, during which the T cell is immobile as it reorganizes the cellular 
machinery allowing it to turn. The cell then picks a new random  direction, undergoes 
another free run, and so on. This scheme of movement is somewhat similar to  the “run 
and tum ble” motion of certain bacteria such as E. coli [6 ], except th a t T  cells reorient 
their lamellipodium, ra ther th an  tumble, between each free run.

For each value of the param eter triplet ( f p ause, thee, ^ free) we simulated the  individ­
ual trajectories of 106 T cells and averaged their 2d displacement every second. The 
simulations were implemented in C. The run  for each individual T  cell is com puted such 
th a t

Xt+At = xt + A t  ■ v ■ sin#- cos<p (7-16)
Vt+At = yt + A t -  v-  sin#- s i n0 ,  (7.17)

where <p £ [0, 27t] is an evenly distributed random  variable, 9 £ [0,7r] is a random  variable 
distributed according to the probability density function P{8) — ^s in#,  A t  is the step 
size which we set to  1 s, and v  is set to Ufree for a length of time tfree and set to  zero for 
a length of time tpause successively. Note th a t the z  component is om itted because we 
are only interested in the mean displacement in 2d of the 3d random  walk because we 
want to compare our results w ith those of Figure 7.2.

At the beginning of each free run, i.e. when v is switched from zero to Ufree, new
values for # and <j> are picked at random. For each T  cell run, the tim e for the first pause
is chosen at random  in the range [—f p a use +  T  ifree] to  prevent artifacts which would result 
from the synchronization of pause times across T  cell runs. Each T  cell run lasts 20 min, 
and the T  cell’s squared 2d displacement from the origin at time 0 to  its position at time 
t is computed using

n  = \ J x i  + y t ,  (7.18)

for t from 0 to 20 min. Again, although our algorithm simulates cells moving in 3d, we 
are interested in their mean displacement in 2 d in order to compare our results with 
those presented in Figure 7.2. We repeat all of the above for each of the 106 T  cells wc 
wish to simulate. Finally, in order to obtain the average mean displacement, we sum 
the total displacement after tim e t for each T  cell and divide it by the num ber of T  cells 
simulated, namely,

c e l l# l  , c e ll# 2  , ce ll#N

« >  = - i -----—‘ "jy ~   ' (7-19)
where N  is the number of T cell runs simulated.

The param eter values were varied over the ranges fpaUse =  [0,3.5] min, t free =  
[0.5,20] min, and Ufree =  [5, 50] pm /m in. For each triplet value, we com puted the sum of 
the squared residuals (SSR) between the experimental da ta  and the sim ulation results. 
This was done for each of the experim ental d ata  sets of [51, 53, 54, 55] individually
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and for a set comprised of all the experimental data. Table 7.2 presents the best triplet 
values, sorted by increasing SSR, with respect to  each experim ental set as well as to the 
set of the combined data.

From Table 7.2, we see tha t the triplet value of (tpauSe =  0.5 min, ffree =  2.0 min, 
wfree =  18.8 pm /m in) minimizes the SSR to the d a ta  of the combined sets. If, for 
simplicity, one only considers fits for which there is no pause tim e between free runs 
(tpause =  0  s), the  doublet value of (tfree =  2 . 0  min, ffree =  16.6 pm /m in), the 6 th best 
triplet, minimizes the SSR between the simulation results and the d a ta  of the combined 
sets.

In order to compare the T cell velocities, ffree, of the best trip lets to  those measured 
during the experim ents presented in [51, 53, 54, 55], ffree needs to  be converted using

^  Rree l n
^2d,instantaneous — Uiee X — X -  —— . ( I . Zv )

tfree tp a u se

3d^2d v̂
t r c e ^  ‘• 'in s ta n ta n e o u s

The term  7t /4  is necessary to convert the 3d velocity of our sim ulation to  its 2d equivalent 
for comparison w ith the velocities mentioned above for [51, 53, 54, 55]. It comes from 
the fact tha t i>2d =  r>3d ■ sin#,  where 9 is the angle from the  positive z  axis. On average,

N  M  s i n 2 9 7r
(sin 9 ) =  P ( # ) s i n # d # =  /  — — - d6 =  -  . (7.21)

Jo J o  2 4

Additionally, the experim ental instantaneous velocity is com puted from the distance 
travelled by a T  cell over a short time interval (~  10 s) [51, 53, 54, 55]. Over this time 
interval, some T  cells are paused, some T  cells are moving, and some are in transition 
between the two states. As a result, the computed instantaneous velocity will not be 
the true velocity of the T  cells b u t rather a combination of their tru e  velocity and the 
amount of time they spend moving freely and pausing. The term  tfree/(ffree +  fpause) 
accounts for th is fact and converts the velocity from our sim ulation to the T cell’s 
instantaneous velocity th a t would be measured experimentally. Using this conversion, 
we obtain W2d,instantaneous — 1 2  pm /m in  for our best trip let value (fpauSe =  0.5 min, 
tfree =  2 . 0  min, t>free =  18.8 pm /m in), and f 2d,instantaneous =  13 pm /m in  for our best 
doublet value (tfree — 2.0 min, ffree =  16.6 pm /m in). These velocities are in reasonable 
agreement with the experim ental value of approximately 10 p m /m in  [51, 53, 54, 55].

The diffusion coefficients for the 6  best triplets for the combined d a ta  set vary between 
92 pm 2/m in and 95 pm 2 /m in. These diffusion coefficients are all in agreement with 
the diffusion coefficient computed from the slope of the combined d a ta  set, namely 
98 ±  6  pm 2 /m in.

The discrepancies between the various best triplets for each d a ta  set and the set of 
the combined d ata  are likely the result of the different types of T  cells and experimental 
procedures being followed in each experiment. Miller et al. 2002 studied CD3+ T  cells 
in explanted inguinal and cervical lymph nodes of mice [55], Miller et al. 2003 studied 
CD4+ T cells in mice inguinal lymph nodes [54], Miller et al. 2004 studied CD4+ T  cells
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rank fpause
(min)

ffree
(min)

^free
(pm /m in)

D
(pm 2 /m in )

SSR
(pm 2)

Miller et al. 2002 [55]
l St 0.50 0.5 42.2 74 337.625
2 nd 0.25 0.5 36.6 74 341.566
3rd 0.25 1 .0 23.8 75 449.314
4 th 0.50 1 .0 26.1 75 452.536
5th 0 . 0 0 1 .0 21.9 80 463.928

Miller et al. 2003 [54]
-ĵ st 2.50 1.5 32.2 97 805.03

2 nd 1.75 2.5 2 0 . 2 1 0 0 830.775
3rd 1.25 2.5 18.8 99 844.728
4 th 1.25 2 .0 21.9 98 856.171
5th 1.75 2 .0 23.8 1 0 1 861.45

Miller et al. 2004 [53]
ĵ St 0.75 14.5 13.3 407 1.13177

2 nd 0.75 14.0 13.3 393 1.1513
3rd 0 . 0 0 18.5 12.7 497 1.21151
4 th 1 . 0 0 15.5 13.3 430 1.22341
5th 0.50 13.0 13.3 370 1.23408

Mempel et al. 2004 [51]
ĵ St 0.50 3.0 14.0 84 1.77569
2 nd 1.50 2.5 17.6 81 3.19944
3rd 0.25 3.5 12.7 8 8 3.26771
4 th 1 . 0 0 2.5 16.6 82 5.31873
5th 1 . 0 0 3.0 14.8 82 5.37939

Set of combined da ta  [51, 53, 54, 55]
•ĵ st 0.50 2 .0 18.8 95 3387.32
2 nd 0.50 2.5 16.6 95 3421.78
3rd 0.25 2 .0 17.6 92 3455.46
4th 1.25 1.5 26.1 93 3488.32
5th 0.75 1.5 23.8 94 3493.76

Table 7.2: The best triplets for each of the experim ental d a ta  sets from [51, 53, 54, 55] 
individually and for a set composed of the combined data . The param eters tpaUse was 
varied from 0-3.5 min, ffree from 0.5-20 min, and Ufree from 5-50 pm /m in. The triplets 
(fpausei tfree; ^free) have been sorted in order of increasing sum  of squared residuals, SSR, 
between the d a ta  and the simulation results. The sim ulation results were produced by 
averaging the individual displacement of 106 T  cells for each param eter triplet.
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Figure 7.4: The combined experimental d a ta  from [51, 53, 54, 55] (full circles) along 
with the best triplet (fpause =  0.5 min, tfree =  2 min, Wfree =  18.8 pm /m in) (full line), 
and the best doublet or 6 th best triplet (ffree =  2 . 0  min, Ufree =  16.6 pm /m in) (dashed 
line). The simulation results were produced by averaging the individual displacement of 
10 T  Cells for each triplet ( t p a u s e ;  t f r e e ;  ^ f r e e ) ■

in inguinal and cervical lymph nodes of asphyxiated mice [53], and Mempel et al. 2004 
studied CD8 + T  cells in popliteal lymph nodes of mice [51]. The d ata  of [51, 53] have 
the smallest SSR, while th a t of [54, 55] give worse SSR by two orders of magnitude. This 
is due to the fact tha t the experimental d a ta  from [51, 53] is quite sm ooth while th a t of 
[54, 55] is noisier, and thus harder to fit.

But in the end, there really isn’t much difference between the set of combined exper­
imental d ata  and the simulations obtained w ith the best doublet or triplet. Figure 7.4 
shows the 2 d mean displacement versus vuim e for the best trip let and the best doublet 
against the combined experimental data. T he differences between the best triplet and 
the best doublet (6 th best triplet) for the set of combined d a ta  is not significant given the 
spread of experimental data. Thus, given the limited am ount of available experimental 
data, it is not possible to narrow the range of acceptable values any further nor to  infirm 
or confirm the length or even the existence of a pause time between successive free runs.
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The best triplet and doublet found here should not be regarded as the only solution, 
i.e. the  param eter values th a t best characterize the motion of T  cells in vivo in the absence 
of antigen. The sixth best triplet ( £ p a u S e  =  0 min, tfree =  2.0 min, i!free =  16.6 pm /m in), 
for example, has different param eter values from th a t of the best trip let, but does not 
have a significantly worse SSR (3502 pm 2 versus 3387 pm 2, a 3% difference). To help 
in understanding where the best triplets are located w ith respect to  one another in the 
param eter space of the model, Figure 7.5 presents contour plots of the SSR across the 
param eter space of the triplets for the combined d a ta  set.

From Figure 7.5, one can see th a t the best triplets appear to  occupy a small volume 
in the param eter space, represented by the white areas on the graphs. Larger quantities 
of more precise experimental d a ta  would be necessary to reduce these areas and constrain 
the uncertainty on the param eters of the model.

7.5  C on clu sion

From the d a ta  obtained by two-photon microscopy, the m otion of T  cells appears to  be 
consistent w ith the cells performing a random  walk for displacements over long times and 
following straight trajectories over short periods of times. Consequently, we proposed 
a simple model for the motion of T  cells in lym ph nodes in the absence of antigen in 
which T cells move in a straight line at fixed velocity Vfree for a tim e tfree, pause for 
a time £ p a u S e  to  reposition their lamellipods and uropod as they random ly pick a new 
direction to move in, and so on. We have found th a t this simple model appears to give 
results which agree best with experim ental results for tpause =  0.5 min, £free =  2 min and 
Dfree =  18-8 pm /m in.

If, for simplicity, one only considers fits for which there is no pause tim e between free 
runs ( £ p a u s e  — 0 s), picking tfree =  2.0 min, and Vfree =  16.6 pm /m in  yields best agree­
ment between the simulation results and the experimental data. Overall, the addition 
of a pause tim e to the model does not significantly improve the agreement between the 
experimental d a ta  and the simulation results and as such is not absolutely necessary.

It is im portant to note th a t the pause time, which we have added to  account for the 
physiological tim e necessary for a T  cell to tu rn , should not alternatively be interpreted 
as the time for contact between a T  cell and a dendritic cell. The pause time for our best 
fit was tpause =  30 s, while dendritic cell-T cell contacts, in the absence of antigen, are 
consistently reported to last approxim ately 3 min [51, 52, 53]. Additionally, the mean 
free path for the best fit, t free x Vfree =  38 pm, is not related to the mean time before a 
T  cell collides w ith another cell in the lymph nodes because the mean distance between 
T cells in lymph nodes is less th an  5 pm — taking the diam eter of a T  cell to  be 8  pm 
and the density of T  cells w ithin lymph nodes to  be 4 x 108 cells/m L [76]. Thus, we 
have been unable to link the values of the param eters tpause, tfree and Ufree to known time 
scales of biological processes.

Overall, the experim ental d a ta  [51, 53, 54, 55] have shown th a t, a t least in lymph 
nodes, T cell movement appears to  be random. This is a good news for spatial m athem at­
ical modellers as this makes modelling T  cell movement simple. But the experimental
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Figure 7.5: Contour plots presenting the natural logarithm of the sum  of squared resid­
uals, In (SSR), between the combined experimental da ta  from [51, 53, 54, 55] and the 
simulation results as a function of l / v f ree and tfree for various values of t pause- Lighter 
shades of grey represent smaller SSR.
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data in [51, 53, 54, 55] does not fully exclude the possibility th a t chemokine attrac- 
tan ts may direct, over short ranges, the motion of T  cells. In [40], the possibility of a 
chemokine gradient guiding the movement of T  cells over short ranges is considered and 
the authors explore how this could be identified through consideration not only of the 
mean displacement but also higher moments. However, even w ith higher moments, it is 
not possible to  distinguish between cell pausing due to  an encounter w ith an obstacle and 
T cell trapping due to  chemokine gradients [40]. Hence, it appears as though modelling 
T cell movement as suggested here is sufficient for incorporating the gross movement of 
T cells in most spatial models.

In conclusion, we have proposed a simple description of T  cell movement th a t matches 
experimental da ta  and th a t can be implemented in a simple and com putationally efficient 
manner. W hat is now needed is more experimental data  on the movement of T cells in 
the presence of antigen-loaded dendritic cells in order to perm it the formulation of a 
more complete model of T  cell movement within lymph nodes, in health  and disease.
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C h a p te r  8

C onclusion

8.1 S u m m ary

The main m otivation behind the research presented here was the investigation of the 
effects of spatial structures on the dynamics of viral infections. Throughout this research, 
various aspects of spatiotem poral modelling of viral infections were covered.

Firstly, a simple two-dimensional cellular autom aton was proposed for use in con­
ducting this investigation. The model was shown to give results which compare well 
w ith experim ental da ta  when calibrated w ith sensible param eter values for an influenza 
A infection. In  fact, the model proposed here performed be tte r and w ith param eter val­
ues tha t are more biologically realistic th an  the model proposed in [11], At the time of 
publication of this model in [4], the CA model presented here along with the ODE model 
presented in [11] were the only two existing m athem atical models for influenza A viral 
infections in humans. The goal of this project was to develop a model th a t could be used 
as a test bench to  investigate various theoretical aspects of the spatiotem poral spread 
of viral infections. In fact, the influenza A model obtained after calibration behaved 
impressively well when compared against available experim ental data. Most likely, with 
the inclusion of additional details in the model, such as explicit consideration of viral 
particles and the addition of interferon, the CA model could be a very promising model 
of influenza A.

Using this CA model, I then proceeded to  dem onstrate specifically how the spatial 
distribution of agents can affect the dynamics of a viral infection. More specifically, I 
have looked at how the choice of the initial distribution of infected cells, the regeneration 
rule for epithelial cells, and the proliferation rule for immune cells, can affect the viral 
infection dynamics. The spatial distribution of initially infected cells was shown to have 
an im portant im pact on the dynamics of the infection. This is because, in the CA 
model, infectious cells can only infect their immediate neighbours, and when organized 
in patches, fewer infectious cells have healthy neighbours. Additionally, it was found 
th a t a global epithelial cell regeneration rule, as is used in simple ODE models, allows 
areas of dead epithelial cells to be replenished by healthy cells even in the local absence of 
healthy cell. This repopulation, in turn , allows the infection to  move back into the newly
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replenished areas it had previously infected, resulting in a greater number of infected 
epithelial cells. On the other hand, a local epithelial cell regeneration rule, which requires 
the local presence of healthy epithelial cells, limits the growth of the infection by starving 
it of target cells and forces the infection to propagate as a th in  circular wave. I have 
also shown how the choice of whether to  add immune cells a t random  locations on the 
sim ulation grid, as is equivalent to  simple ODE models, or at the site of recruitm ent can 
affect the dynamics of the infection. I  found th a t while addition a t random  sites perm its 
rapid detection of new infection sites, it makes it harder to avoid infection escape from 
the immune response. Consequently, random  addition of immune cells was found to be 
a be tte r strategy at high infection levels, while addition at the site of recruitm ent was 
the be tte r strategy at low infection levels.

Finally, a model for T  cell movement within lym ph nodes was proposed. So far, 
spatially-dependent HIV models [76, 90] have chosen to  model T  cells, the target cells 
of HIV, as immobile agents, as discussed in C hapter 4 Section 4.2.2. B ut recent experi­
ments tracking the individual movement of T  cells within lymph nodes using two-photon 
microscopy [51, 52, 54, 55] have provided the necessary d a ta  to  be tte r characterize T  cell 
movement. The T  cell movement model which was proposed here constitutes prelim inary 
work towards the im plementation of a more realistic spatial model for HIV infections.

8.2  F u tu re  o u tlo o k

In 1996, Perelson et al. proposed for the first time the  basic ODE model for viral infections 
(see (1.1)—(1.3)) in its most simple expression [65]. They used it along w ith experim ental 
HIV-1 patients’ viral titers to extract previously unknown or not well-defined dynamical 
param eters for HIV-1. Most notably, they obtained a viral production rate th a t was 
substantially greater th an  previous minimum estimates, suggesting th a t HIV dynamics 
proceeded on a much faster time scale th a t had been thought. For this reason, this 
paper got a great deal of press and sparked the interest of immunologists and virologists 
in m athem atical models; an interest which has been growing ever since. For this rea­
son, there is increasing pressure on m athem atical modellers w ithin the biophysics and 
biom athem atics communities to produce more realistic models which can make reliable 
and useful predictions. It is now crucial th a t new models being developed be as faithful 
as possible to the true dynamics of the system.

The research presented here has dem onstrated how the spatial distribution of agents 
involved in a viral infection can affect the dynamics of th a t infection. It was found 
th a t use of a spatiotem poral model compared to a well-mixed ODE model can lead to 
different predictions of the viral dynamics. For example, our spatiotem poral model for 
influenza A predicts a smaller proportion of infected cells at the peak th an  the simpler 
ODE models proposed in [1, 11]. Hopefully, the results presented here will encourage 
viral infection modellers to first investigate the possible effect of space on the particular 
viral infection they are studying before approxim ating its dynamics to th a t of a well- 
mixed system. The CA model proposed here could prove very useful for such a task. Its 
simplicity and useful param eters make it easy to calibrate it for a different viral infection.
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Additionally, its m odular im plementation gives it great flexibility and makes it simple 
to add additional features. At the moment, I am working on an extension of the simple 
CA model for influenza A which would explicitly consider virus particles and interferon, 
and models their diffusion, release, and clearance. This yet more realistic and detailed 
model of influenza A could lead to new insights into the spatial spread and growth of 
the infection, and could offer new treatm ent perspective which would take into account 
the spatial diversity of the infection.

O ther future directions include the im plementation of a more realistic spatiotem po­
ral model for HIV dynamics. HIV is particularly interesting from the perspective of 
spatiotem poral modelling as the vast m ajority of HIV infection occurs in densely packed 
lymphoid tissues and correlations between spatial location and viral strain  have been 
observed [76]. Strain et al. have shown th a t at high cell density, viral propagation is 
limited by viral stability in the basic well-mixed model while it is lim ited by geometry in 
their spatiotem poral model. However, the Strain et al. model assumes th a t T  cells, the 
target cells of HIV, are fixed in space. In collaboration with Dr. Alan S. Perelson and Dr. 
Stephanie Forrest, I have begun the development of an HIV CA model which would take 
into consideration the movement of T  cells using the T cell movement model proposed 
above. This model will certainly provide new insights into the spatial spread and growth 
of HIV, and will benefit greatly from Dr. Perelson’s vast experience at modelling HIV 
infections.

Ultimately, even though immunology has developed itself faster th an  most sciences, 
mainly due to the fact th a t it is a recent science and as such has benefited from more 
m odern techniques since its foundation, it is still in its infancy. A lot is known about 
the immune system and viral dynamics, b u t even more remains to  be understood. Given 
the nature of the pathogen-imm une system dynamics, it is certain th a t  modelling efforts 
will be of great help in shaping the face of modern immunology.
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A ppend ix  A

M ASyV: A M ulti-agent System  
V isualization  Program

A .l  In tro d u ctio n

The goal of this project was to implement a platform  th a t would allow one to study, 
through visualization, a wide array of cellular autom aton models of multi-agent self­
organizing systems. To this end, I developed a package called MASyV which consists 
of a graphical user interface (GUI) accompanied by a message passing library. This 
framework allows the user to  write a simple cellular autom aton client program in C, 
create the desired accompanying images for the agents with a paint program  of h is/her 
choice (e.g. GIM P), and get their simulation (client) to talk  to the GUI (server) through 
a Unix socket easily by using the message passing library. The flexible GUI of MASyV is 
not only capable of da ta  logging and visualization, bu t also offers the  user the possibility 
to record the simulations to  a wide range of compressed video formats, through the use 
of tran sc o d e , for maximum portability  in the sharing of results.

Here, I will describe in details the im plementation of MASyV. Firstly, in Section A .2, 
I will present the structure of the GUI and describe its usage. Then, in Section A .3, 
I will illustrate how to use the server programs, masyv and logm asyv to run a client. 
Finally, in Section A.4, I will present the architecture of the message passing library and 
illustrate its usage with a simple “Hello World” client example.

A .2 M A S y V ’s G rap h ica l U ser  In terface

The GUI of MASyV is built using G T K + widgets and functions. For be tte r graphics 
performance, the display screen widget, which displays the client simulation, makes use 
of G tkG LExt’s OpenGL extension which provides an additional application program ­
ming interface (API) enabling G T K +  widgets to  render three-dim ensional scenes using 
OpenGL. For more inform ation about G T K +, its libraries and its widgets, please consult 
[33, 32] below. Here, the discussion will be limited to  describing the overall capabilities 
of MASyV’s GUI ra ther th an  the G T K +  structures from which it was built. Figure A .l
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shows a series of screenshots of MASyV’s GUI.
MASyV’s GUI is mainly composed of a notebook widget containing three tabs. The 

first tab, “Simulation” , displays the visual representation of the client simulation. The 
buttons, “Pause” , “Advance” , and “Play” , can respectively be used to  pause, advance by 
one time step, or by several sequential time steps, the client simulation. T he “Screenshot” 
bu tton  captures the display screen to a PNG file and brings up a file selection dialog 
which allows the user to  chose the name and location of the file to  be saved. The “Save 
anim ation” check box is only enabled when all the correct inform ation has been entered 
in the capture tab. Checking the enabled check box will initiate a call to  t r a n s c o d e ,  
which will begin encoding the simulation to  a compressed movie file using the codec 
specified by the user in the “C apture” tab. Finally, a “Step label indicates the 
current time step of the client simulation being displayed on the display screen.

In the second tab, “S tatistics” , MASyV posts the statistics sent by the client simu­
lation. The “Log to  file” check button, the text entry box and the “Browse...” bu tton 
enables the user to save the statistics from the simulation to a file of h is/her choice. 
When the check b u tto n  is enabled and checked, the file whose nam e has been entered 
in the text entry box is opened and the statistics s ta rt being w ritten  to  the file. W hen 
the check b u tton  is unchecked, the statistics stop being w ritten  and the  file is closed. 
Clicking again on the check button  will re-open the file and append the new statistics as 
they arrive.

Finally, the th ird  tab , “C apture” , offers the user the possibility to  control many 
aspects of the capture of the simulation to a compressed movie file. At the moment, 
MASyV only supports “raw” capture and capture using the  “xvid” codec. Capturing 
the content of the display screen to a compressed movie file is m ade through a call 
to t r a n s c o d e ,  which provides a list of utilities to transcode various video, audio, and 
container formats.

A .3 R u n n in g  M A S y V

Both server programs, masyv and logmasyv, can be called from the  command-line. The 
command-line options available for masyv are as follows.

MASyV v 0 .7  -  A M u l t i -A g e n t  System  V i s u a l i z a t i o n  P ro g ram .
C o p y r ig h t  (C) 2002 C a t h e r in e  Beauchemin

The a c c e p te d  command l i n e  o p t i o n s  f o r  MASyV a r e :
- s  : s i m u l a t i o n  t o  be ru n
- f  : o u tp u t  f i l e  f o r  t h e  s t a t i s t i c s
- i  : t im e  in c r e m e n ts
- t  : t o t a l  t im e  ( - 1  i s  i n f i n i t y )
- r  : r e s c a l i n g  f a c t o r  f o r  s i m u l a t i o n  a r e a
-x  : c l i p p i n g  f a c t o r  f o r  s i m u l a t i o n  a r e a
- c  : c l i e n t  p a r a m e t e r s  (when s u p p o r t e d  by c l i e n t )
- h  : d i s p l a y s  o p t i o n s  and e x i t s
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Figure A .l: MASyY’s GUI with its Simulation tab  (top), S tatistics tab  (middle), and 
Capture tab  (bottom ). The Simulation tab  presents M ASyV’s GUI running the client 
module ma_sqr_ant which models ant depositing and following pheromone trails.
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T he options are self-explanatory except perhaps for the -c  option which will be discussed 
in the  next section. The command-line options for logm asyv are the same but exclude 
the - f , - r ,  and -x  options. The - f  option is not needed by logm asyv since the program ’s 
only ou tput, the statistics from the client, is sent to  the standard  ou tpu t stream, s td o u t, 
which can be redirected to any file. L et’s illustrate masyv’s command-line usage by an 
example.

prompt> masyv - s  m a_ c lien t - f  s t a t s . d a t  - t  2 0 0

This command would start up masyv, run the client m a_ clien t for 200 steps and log the 
statistics to  the file s t a t s . d a t. Note th a t masyv will not log the statistics to s t a t s  . d a t 
until the “Log to file” check box on the “Statistics” tab  has been checked. The command 
to  ru n  logmasyv w ith the same options is

prompt> logm asyv - s  m a_ c lien t - t  2 0 0  > s t a t s . d a t

A .4 U sa g e  o f  th e  M essage  P a ssin g  L ibrary

Since the goal of this project was to develop a platform  capable of representing any 
two-dimensional cellular automaton, special thought had to be p u t into designing the 
GUI so th a t it remains generic. The message passing library was implemented to enforce 
standards in the way the client simulations should communicate w ith the GUI server, 
bu t also to  save one the trouble of having to  duplicate and m aintain the code to speak 
w ith the GUI (server) in each client simulation.

The software employs a client-server model w ith the server providing I/O  and supervi­
sory services to the client simulation. This means th a t all the components of the MASyV 
package are separate stand-alone programs or modules. At the moment, those modules 
consist of the GUI server, masyv, an additional server program , logmasyv, which allows 
the user to run the client without a GUI interface, and several optional cellular autom aton 
clients which I developed over time for my research. To standardize the communication 
between client and server, a library for message passing was developed which consists of 
majmessage . c, the actual message passing functions, and ma_message .h, which contains 
the prototypes of the message passing functions and defines a few macros for use by the 
clients. The client communicates w ith the GUI through a Unix dom ain socket stream  
using the message types provided by the message passing library.

The message passing library defines the following message types to be used by the 
client:

• c r e a te _ c l ie n t_ s o c k e t j f i le ( c h a r  *program_name, ch a r * ad d ress  ) ;

• m a_send_pixtablespec ( i n t  s o c k e tJ d ,  f l o a t  g r id _ u n i t_ c e l l  [2 ] [2 ] , 
i n t  num _layers, i n t  *num_images);

• m a_send_arena_size(in t so ck e t_ fd , i n t  w id th , i n t  h e ig h t ) ;

• m a_ sen d _ tex e ls(in t so ck e t_ fd , i n t  layer_num , i n t  image_num, i n t  w id th , 
in t  h e ig h t ,  co n s t u n sig n ed  ch a r * p ix e ls )  ;
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•  m a _ s e n d _ s t a r t_ s t e p ( in t  s o c k e t_ f d ,  i n t  t o t a l _ t i m e ,  i n t  c l e a r ) ;

•  m a_send_stop_sequence ( i n t  s o c k e t  j f d )  ;

•  m a_ se n d _ a g e n t( in t  s o c k e t J d ,  i n t  x ,  i n t  y ,  i n t  l a y e r ,  i n t  im age, 
i n t  o p a c i t y ) ;

•  m a _ s e n d _ s t a t s ( in t  s o c k e t J d ,  c h a r  * s t a t s ) ;

•  m a _ s e n d _ te r m in a te _ s ig n a l ( in t  s o c k e t _ f d ) ;

•  m a_ rece iv e_ m sg ( in t  c l i e n t _ s o c k e t _ f d ,  s t r u c t  m a jre c e iv e_ o p s_ t  * o p s ,  v o id  
* d a ta )  ;

All b u t c r e a t e _ c l i e n t _ s o c k e t _ f  i l e  and majreceive_m sg are messages th a t are typi­
cally sent by the client to  the GUI server. Messages m a _ se n d _ p ix ta b le sp e c ,  m a_send_arena_size, 
and m a_send_ texe ls  arc used by the client at initialization tim e to prepare the GUI, while 
m a _ se n d _ s ta r t_ s te p ,  m a_send_stop_sequence, ma_send_agent, and m a _ sen d _ s ta ts  arc 
messages sent by the client during the simulation to tell the GUI how to update the simu­
lation grid and the statistics produced by the client. Finally, the message m a_ se n d _ te rm in a te _ s ig n a l  
can optionally be used by the client to  signal to  the server th a t the simulation has ter­
minated.

To dem onstrate usage of the message passing library by the client, let us look at the 
“Hello World” example of a client simulation, m a J ie l lo ,  which consists of a single grey 
square moving around randomly on a square grid.

# in c lu d e  < u n i s td .h >
# in c lu d e  < s td io .h >
# in c lu d e  "m a_m essage.h"
# in c lu d e  " p a r t i c l e . c "  / *  The image of t h e  s q u a re  * /

#def  in e  PROGRAM_NAME "m a_he llo"
#def  in e  GRID_SPACING 4
# d e f in e  NUM_LAYERS 1 / *  Number of  l a y e r s  * /
# d e f in e  LAYER 0 / *  The name of t h e  o n ly  l a y e r  * /
# d e f in e  NUM_IMAGES 1 /*  Number of  im ages i n  LAYER * /

c h a r  * u i _ s o c k e t_ a d d r e s s  = NULL; 
s t r u c t  m a _ re c e iv e _ o p s _ t  m sg_ops; 
i n t  c l i e n t _ s o c k e t _ f d ;  
i n t  g r id _ w id th  = 10; 
i n t  g r i d _ h e i g h t  = 10; 
i n t  t o t a l _ t i m e  = 0;

v o id  d o _ t im e _ a d v a n c e ( i n t  s t e p s ,  v o id  * d a t a  )
{
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i n t  p o s ;

m a _ s e n d _ s t a r t _ s t e p (  c l i e n t _ s o c k e t _ f d ,  t o t a l _ t i m e ,  CLEAR_GRID ) ;
w h i l e ( s t e p s — ) {

pos = random _a_b( 0 , g r i d _ w i d t h * g r i d _ h e i g h t - l ) ;
m a_send_agen t ( c l i e n t _ s o c k e t _ f  d ,  pos°/0g r i d _ w i d t h ,  p o s / g r i d _ w i d t h ,  

LAYER, 1, OPAQUE ) ;  
t o t a l _ t i m e + + ;

>
m a _ s e n d _ s to p _ s e q u e n c e ( c l i e n t _ s o c k e t _ f d  ) ;

>

v o id  c o n f i g u r e ( v o i d  * d a t a  )
{

i n t  num_images [] = { NUM_IMAGES+1 ]-;
f l o a t  g r i d _ u n i t _ c e l l  [2] [2] = SQUARE_UNIT_CELL( GRID_SPACING ) ;

m a _ s e n d _ p ix t a b l e s p e c (  c l i e n t _ s o c k e t _ f d ,  g r i d _ u n i t _ c e l l , NUM_LAYERS, 
num_images ) ;

m a _ s e n d _ a r e n a _ s iz e ( c l i e n t _ s o c k e t _ f d ,  g r i d _ w i d t h ,  g r i d _ h e i g h t  ) ;
m a _ s e n d _ te x e l s (  c l i e n t _ s o c k e t _ f d ,  LAYER, 1, p a r t i c l e . w i d t h ,  

p a r t i c l e . h e i g h t , p a r t i c l e . p i x e l _ d a t a  ) ;
m a _ s e n d _ s to p _ s e q u e n c e ( c l i e n t _ s o c k e t _ f d  ) ;

}

v o id  r e c e i v e _ t e r m i n a t e _ s i g n a l (  v o id  * d a t a  ) -[ e x i t (  0 ) ;  }

i n t  m ain( i n t  a r g c ,  c h a r  * a rg v [ ]  ) {
msg_ops = ( s t r u c t  m a _ re c e iv e _ o p s _ t )  { 

m a _ r e c e i v e _ r e q _ c o n f i g : c o n f i g u r e , 
m a _ r e c e iv e _ r e q _ t im e _ a d v a n c e : d o _ t im e _ a d v a n c e , 
m a _ r e c e i v e _ t e r m i n a t e _ s i g n a l : r e c e i v e _ t e r m i n a t e _ s i g n a l

> ;

i n t  key ;
ch a r  tm p_m sg[2 0 0 ] ;

w h i le (  (key  = g e t o p t ( a r g c ,  a r g v ,  " s : " ) )  != EOF ) 
s w i tc h ( k e y )  I 

c a s e  ’ s ’ :
u i _ s o c k e t _ a d d r e s s  = o p t a r g ;  

b r e a k ;  
d e f a u l t : 

e x i t ( 0 ) ;  
b r e a k ;
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>

i f ( u i _ s o c k e t _ a d d r e s s  == NULL ) {
s p r i n t f (  tmp_msg, "°/0s :  P rob lem s r e c e i v i n g  s o c k e t  a d d r e s s  " \

" from  s e r v e r . \ n " , PROGRAM_NAME ) ;  
p e r r o r (  tmp_msg ) ;  
e x i t ( 1 ) ;

>

c l i e n t _ s o c k e t _ f d  = c r e a t e _ c l i e n t _ s o c k e t _ f i l e ( PROGRAM_NAME, 
u i _ s o c k e t _ a d d r e s s  ) ;

while(l)
m a_ rece iv e_ m sg (  c l i e n t _ s o c k e t _ f d ,  &msg_ops, NULL ) ;  

e x i t (0) ;
}

First, let us look at the m ain function. Because it is the server, cither masyv or 
logmasyv, which runs the client, client options have to be given to  the server who passes 
them  on to the client. Two options are typically passed to  the  client by the server: 
one is optional, the other is not. The latter, the - s  option, is used by the server to 
pass its socket address, u i_ so c k e t_ a d d re s s ,  as an argument to the client so tha t the 
client may connect to it by creating a socket using the ma_message library function 
c r e a t e _ c l i e n t _ s o c k e t _ f  i l e .  This - s  option should not be confused with the server’s 
- s  option which is used to pass the name of the client sim ulation to  be run. The other 
option tha t is typically passed to the client by the server is the optional ‘- c ’ option. It 
takes a single argum ent and can be used to set param eter values for the client. The single 
argument can be provided in any form since it is up to  the client to  parse it to extract 
the param eter values. Let us illustrate usage of the ‘- c  option w ith a simple example 
where the ‘- c ’ option is used to set the client m a . c l i e n t  grid’s w idth and height. The 
command would look like

prompt> masyv - s  m a _ c l i e n t  - c  110:70

and to parse the argument, the following code could be added to the client’s sw itch  
statem ent.

s w i t c h ( k e y )  { 

c a s e  ’ c ’ :
s s c a n f ( o p t a r g ,  "°/0d:°/Bn " ,  & g r id _ w id th ,  & c o u n t ) ; 
s s c a n f  ( o p t a r g  += c o u n t ,  "°/0d " , & g r i d _ h e i g h t ) ; 

b r e a k ;

}
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After initialization, the client puts itself in a perpetual receiving mode w ith the command 
ma_receive_msg. The msg.ops structure defines which client function will handle each 
of the  server’s request messages. The m a_receive_req_conf ig  message is sent once 
by the  server, as the first message, to  requests the configuration information from the 
client. The configuration messages sent by the client as a response to  the server’s request 
consist in transm itting: the specification of the structure to  store the client’s images 
(m a_p ix tab lespec), the dimensions of the grid (m a_send_arena_size), and each image 
to  be used by the client (with repeated calls to m a_send_texels). Then, the client will 
send a ma_send_stop_sequence message to the server to signal th a t all the configuration 
d a ta  has been sent.

Then, the server will begin requesting steps. T he client will send the current time 
step and tell the server whether to clear the grid from the previous step or not using 
ma_send_st a r t  _step , it will send each agent by specifying which image to  use and where 
on the  grid it should appear using ma_send_agent, will send the  statistics for th a t time 
step using m a_send_stats, and will indicate to the server th a t all the d a ta  for this step 
has been sent w ith a call to ma_send_stop_sequence.

Finally, the server can term inate the client when it itself receives a term inate signal 
from the user, for example, by sending a term inate signal to the client. T he client should 
know how to handle such a signal. In the above example, the m a J ie llo  client’s function 
re c e iv e _ te rm in a te _ s ig n a l handled the term inate signal by a simple call to e x it(O ) .

A .5 C on clu sion

On April 21, 2003, MASyV was registered on SourceForge, a popular open-source soft­
ware repository, where it is still hosted. I continue to m aintain MASyV and release 
new versions approximately every year. At the time of writing, MASyV had 95 down­
loads worldwide. It always generates a great deal of interest at conferences where it is 
presented.

Currently, the MASyV package comes with several client simulations which I have 
developed as part of the research I did during my PhD. T he available clients are:

ma_sqr_ants An ant simulation based on an article by W atm ough and Edelstein-Kcshet 
[80]. It illustrates the early formation of tra il networks by a colony of phcromone 
laying ants;

ma_hex_ants Implem entation on an hexagonal grid of ma_sqr_ants;

ma_ca A simple one-dimensional cellular autom aton as studied extensively by Wolfram. 
A great example of a simple simulation from which to  learn how to use the message 
passing library to talk to the GUI;

m a_gas-diff A lattice gas simulation of gas diffusion. Literally: little grey squares 
moving randomly on a grid with absorbing boundary conditions. Also a great 
example of a simple simulation from which to  learn how to use the message passing 
library to talk  to the GUI;
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m a_grid_hiv An im plementation of a spatiotem poral HIV model by M aria Zorzenon dos 
Santos presented in [90];

m a_ising T he one-dimensional Ising spin model;

m a_tubule A simulation of the organization of electrons within the /3-tubulin th a t make 
up a m icrotubule. This module will be used to assess whether quantum  effects can 
cause the electrons to self-organize; and

ma_immune A simulation of a viral infection taking place in an organ where the target cells 
are tightly packed and do not move such th a t each sit of the CA grid represents an 
organ cell. Immune cells then move randomly on the grid, patrolling the tissue, and 
take action when they encounter an expressing or infectious cell. This particular 
model was used in [4] to model a viral infection w ith influenza A. As such, the 
model as it is has been calibrated for the specific case of influenza A and as such 
each site of the grid represents a lung epithelial cell.

This last client module, ma.immune, is discussed in great length in C hapter 5.
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