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Abstract

This work is concerned with the theoretical description of thermal fluctua-
tions in classical plasmas that are homogeneous or have background temperature
gradients. Attention is focussed on the particularly important mode, the ion acous-
tic wave. Experimentalists utilize Thomson scattering from ion acoustic fluctuations
to extract information such as drift velocities and temperatures. Collisionless theo-
ries are reasonably successful in describing Thomson scattering experiments and are
usually adopted for simplicity. Including the effects of collisions into the theory will

extend the usefulness of Thomson scattering as a diagnostic tool.

Our understanding of collisional effects (e-e), (e-i) and (i-i) on ion acoustic
waves has been advanced by an analytical treatment of the electron kinetic equation.
The results of this theory have led to a complete description of ion acoustic dispersion
and damping over the full range of particle collisionality. The non local electron heat
conductivity associated with these waves has also been investigated and the possibility
of observing such non local transport effects from Thomson scattering measurements

has been examined.
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Chapter 1

INTRODUCTION AND OVERVIEW

1.1 Introduction

The transport coefficients for weakly coupled plasmas may be successfully computed
from the underlying microscopic kinetic theory [1]. The evaluation of transport coeffi-
cients from the microscopic dynamics puts on a firm foundation the phenomenological
observations of the laws of Fourier, for heat conduction, Fick for diffusion and Ohm
for electrical current. A complete description of the plasma is then afforded by the
equations of hydrodynamics, together with the transport coefficients that relate the
thermodynamic fluxes to the corresponding thermodynamic forces [1]. For example
Fourier’s law expresses the flow of heat (the flux) in response to temperature gradients

(the corresponding force).

Due in part to the international efforts aimed at Inertial Confinement Fusion
(ICF), plasma physics has, and continues to receive much theoretical and experi-
mental attention [2]. ICF plasmas involving laser interaction processes are generally
very complicated to model, and usually one would like to keep the hydrodynamic
description over the more detailed kinetic theory wherever it is possible, due to to
the relative simplicity of the hydrodynamics. The classical hydrodynamic theory re-
quires the mean free path iv Le short compared with any spatial variation in the
hydrodynamic quantities, and the collision frequency must be the highest frequency.
The frequent collisions then keep the plasma close to thermodynamic equilibrium.
Unfortunately, even when thermal electrons have mean free paths smaller than the



gradient scale, fast electrons responsible for the heat flux may not have, and the need
for transport inhibition can arise [3]. The classical transport coefficients predict too
large a heat flow, because long mean free path electrons cease to “see” the gradients.
This outstanding problem has received much attention, varying from simple clamps
on the heat flux, to nonlocal models that introduce frequency and wavenumber de-
pendent transport coefficients either based on numerical solutions to kinetic equations
or analytical models. Closure relations that are wavenumber dependent imply that
the response of the flux to its corresponding force is delocalized in space.

We propose the use of Thomson scattering (a tool that is presently used in laser
plasmas as a temperature diagnostic) for quantitative studies of nonlocal transport
processes. Thomson scattering has been used by Zhang et al. to investigate classical
transport coefficients in CO, scattering experiments from strongly collisional Argon
plasmas [4, 5]. To date there has been no attempt to quantify the non locality of the
transport coefficients by such an experiment. The Thomson scattering cross section
is determined by the dynamical form factor for electron density fluctuations, S (E,w).
The evaluation of the dynamical form factor requires the solution of the equations
of motion for the density fluctuations in the plasma. Linearized hydrodynamics cor-
rectly describes the evolution of long wavelength hydrodynamic fluctuations, and
hence S(E, w) is then dependent upon the transport coefficients. This was the ap-
proach taken by Zhang et al. in their investigations [4, 5]. However, an exact result
from fluctuation theory is that the phase space fluctuation (the quantity from which
all other macroscopic fluctuating quantities can be derived) obeys the exact lineariza-
tion of the equations for the single particle distribution function [6]. This observation
has lead us to formulate a nonlocal hydrodynamic theory for S(l?, w), that is based
on the solution to the linearized kinetic equation for the fluctuating quantities that
is not restricted by the usual validity conditions for hydrodynamics, namely small

wavenumber and frequency. The resulting expression for S(l?, w) is dependent on



the frequency and wavenumber dependent ion viscosity and electron transport coef-
ficients. We outline regimes of parameters that will enable measurements of electron
thermal transport from the Thomson scattering spectrum in the weakly collisional
regime of importance to ICF experiments. The same work has lead to the investiga-
tion of different background states, in particular fluctuations around a state with a
background heat flux.

1.2 Overview of the dissertation

1.2.1 Chapter 2

Chapter 2 starts with a brief examination of scattering processes from neutral fluids,
both from liquids and gases, and some of the associated theoretical techniques that
have a relevance to our work. The Thomson scattering cross section from plasmas is
introduced in Section 2.2, and the important collisionless Vlasov theory for S(k,w) in
Section 2.2. The predictions of this collisionless theory are the basis of several plasma

diagnostics that are examined.

1.2.2 Chapter 3

Chapter 3 outlines the theory of fluctuations in classical plasmas that is obtained
from the Bogoliubov-Born-Kirkwood-Green-Yvon (BBGKY) hierarchy by low order
expansions in the plasma parameter. The original work due to Rostoker [7] is de-
scribed, together with more recent simplifications [6]. Of these simplifications it is
the conclusion that the phase space correlation function (that is the basic quantity for
the calculation of all correlations) obeys the exact linearization of the kinetic equation
for the one particle distribution function that opens the way for the application of



the techniques of kinetic theory to the theory of fluctuations. This is the motivation
for our approach to calculating the dynamic form factor in Chapter 5.

1.2.3 Chapter 4

Chapter 4 demonstrates the reduction of the kinetic equation for the one particle
distribution function to hydrodynamics that is the basis of classical transport the-
ory. The Hilbert and Chapman-Enskog methods that achieve this are described for
a neutral gas, together with the necessary validity conditions in Section 4.1. The
application of the Chapman-Enskog method to plasmas is presented in some detail
in Section 4.2 together with the values for the classical transport coefficients in Sec-

tion 4.2.1.

The classical transport coefficients are often inadequate in describing heat
flow in many ICF relevant plasmas. Some nonlocal transport models that have been
proposed are discussed in Section 4.3. We describe the nonlocal electron transport
model due to Bychenkov et al. [8] in Section 4.4 and a model for ion transport based

on a frequency dependent closure in Section 4.5.

1.2.4 Chapter 5

Chapter 5 contains the derivation of the dynamical form factor S (F,w) from the non-
local transport models described in Sections 4.4 and 4.5 of Chapter 4. The application
of the nonlocal theory in the limit of collisional ions is given in Section 5.3.1 and in
the limit of collisionless electrons in Section 5.3.2.



1.2.5 Chapter 6

Chapter 6 is an extension of the theory for the dynamical form factor developed in
Chapter 5 from the nonlocal transport models of Sections 4.4 and 4.5, in order to
include plasmas that carry a heat flux. A derivation of the heat carrying background
state that satisfies the electron kinetic equation is given in Section 6.2, and an analysis

of the results for S(k,w) is given in Section 6.4.



Chapter 2

SCATTERING EXPERIMENTS

Several different scattering processes from plasmas and neutral fluids are dependent
on a rather simple property of the medium: the space and time Fourier transform of
the time-dependent density correlation function, known as the dynamic form factor.
The different time and length scales of the density fluctuations in neutral liquids
and gases probed by neutron and laser light scattering are examined together with
some of the relevant theoretical work that has been developed from both statistical
mechanics and thermodynamics. With the appropriate theory, scattering experiments
from neutral fluids are seen to be a very useful probe of the properties of the medium.

Thomson scattering of an electromagnetic wave from plasmas has been a very
important tool since the advent of plasma physics research. Plasmas are in many ways
quite different from neutral fluids, and much of the work concerned with collisionless
plasmas bears little resemblence to the fluid theories. However, one is still concerned
with the evaluation of the same theoretical quantity, and for collisional plasmas we
see that some of the ideas from neutral fluids have parallels, and that ideas may be
transferred from one field to the other.



2.1 Scattering from neutral fluids

2.1.1 Slow neutron scattering

In 1954 Van Hove demonstrated that the measurement of coherent inelastic scattering
of neutrons from a liquid can be used to probe the dynamics of fluctuations in the
fluid, namely the dynamic form factor, S (k,w) [9]. The probability P for a neutron
to transfer the momentum Ak, and energy Aiw to the fluid is given by

P(E,w) = N| V(k) [*S(E,w), (2.1)
where N is the number of nucleons in the scattering volume, and V(k) is the potential

of interaction between the nucleus and the probe neutron. The dynamic form factor
is the time and space Fourier transform of the Van Hove function G(7,¢),

S(F,w) = / dZdt expi(k - £ — wt)G(Z, ). (2.2)
The Van Hove function G is the time-dependent generalization of the pair distribution
function
G(2,1) = 7=(n(0, On(Z, 1), (23)
(n)
where n(Z,t) is the microscopic particle density
N
n(F,t) = ) o[F — Z:(t)), (2.4)

i=1

and 7;(t) is the trajectory of the ith particle. The average in (2.3) can be regarded as
an ensemble average in the usual sense [10]. Cold neutrons from a reactor probe liquids
with characteristic momentum transfers and energies that corresponds to wavevectors
and frequencies in liquids that are much higher than those for which hydrodynamics
is valid, k ~ 10'2 cm™! and w ~ 10'3 sec™!, compared to collision frequencies in
liquids that are of the order of 10° to 10" sec™!. These wavenumbers and frequencies
are associated with the kinetic regime. Neutron scattering is one of many dynamic

processes that can be discussed in terms of S (k,w).

7



2.1.2 Rayleigh scattering

Komarov and Fisher have adapted Van Hove’s neutron scattering results to light
scattering [11]. For Rayleigh scattering of light from density fluctuations in a liquid
the scattered intensity is given by

BPkAN

S 17 sin ¢ S(E,w), (2.5)

IRw) =1y

where I is the intensity of observed light at the position R, having been scattered
from the origin. The shift in frequency of the scattered light is given by w and k is
the change in the wavenumber of the scattered light k,, from that of the incident light
in the medium I-c‘o, so that £ = E, - I?o I is the incident intensity of the probe beam
that is monochromatic and plane polarized with the angle ¢ between the position
vector R and the electric vector of the incident wave. N is the number of particles in
the scattering volume of polarizability 3. The dynamic form factor S(k,w) is given
in terms of the Van Hove function by Egs. (2.2, 2.3) The wavenumber k of the
fluctuations probed depends of the scattering angle § according to the simple formula

k = 2ko sin (g) . (2.6)

Rayleigh scattering from liquids

Taking a He—Ne laser as a probe, having a wavelength of 0.6328 ym and considering
a scattering angle 6 = 60°, the probed wavenumber k calculated with Eq. (2.6) is
of the order k ~ 105 cm™!. In a liquid this length scale is much larger than a mean
free path and the sound frequencies are small compared to collision frequencies of
10°-1010 sec~!. These orderings correspond to the hydrodynamic regime, in which
the liquid may be adequately described by a set of partial differential equations for

the conserved macroscopic variables: number density n(Z,t), hydrodynamic velocity



#(Z,t), and temperature T(Z,t). For a neutral fluid these are the Navier-Stokes

equations.

A method of describing fluctuations by macroscopic equations, solved as an
initial value problem with initial correlations appropriate to thermal equilibrium,
has been demonstrated by Onsager for systems in thermal equilibrium [12]. For a
fluid, fluctuations of the macroscopic variables én, 5 and 6T that are spontaneously
excited at some initial time, will decay according to the same equations as do ordinary
induced disturbances, i.e. in a neutral fluid these are the Navier-Stokes equations.
This “Onsager regression” was originally derived by thermodynamic arguments [12].
The application to fluids was suggested by Landau and Placzek [13}, and they were the
first to predict the widths of the lines in the scattered spectrum are determined by the
lifetimes of the density fluctuations én obtained from linearized hydrodynamics [13].

Mountain has applied this theory [14] and summarized some of the results,
that we repeat here using Mountain’s notation. The Onsager method results in the
solution for the dynamic form factor S (k,w) in terms of the static structure factor

S(k), which takes the form [14],
S(k,w) = S(k)o(k,w), (2.7)

where

L 20k
a(k,w) = (1 =7 l') (4\’32/[300/132“:‘“2

- k2 k2
7 1[<F’=2)2+(w+cok)2 * (rk2)2+(w_c.,k)2]‘ (28)

In the above, I is the acoustic wave attenuation

r=1 [____'78 +4/3ns 1 (i - .'.‘.)] , (2.9)
2 Po P\ G

which is dependent upon the bulk and shear viscosities g and 7s, and the thermal
conductivity A. Also, py is the density, v is the ratio of specific heats, v = ¢p/c, and
Cy is the sound speed.




The structure of the spectrum of scattered light predicted by (2.7, 2.8) consists
of three peaks. A central diffusive Rayleigh peak at w = 0, and a pair of peaks known
as the Mandelshtam-Brillouin doublet at w = £Cpk. The Rayleigh peak corresponds
to a diffusive mode that is non-propagating and is therefore unaffected by viscous
effects, ng and ns. The Mandelshtam-Brillouin doublet is the scattering of light
from thermal sound waves, as first predicted by Brillouin in 1922 [15], with the two
peaks corresponding to waves propagating in opposite directions. An analysis of the
scattered spectrum allows thermodynamic properties of the fluid to be determined,
as the ratio of the light scattered in the central peak, I; to the Brillouin lines, I is

equal to

I
4 =g-1, (2.10)

21,
as can be verified by integrating the expression for S(k,w) over all w. A measure-
ment of the separation of the Brillouin doublet also gives the speed of the thermal
sound wave, Cy = /7(3p/3p)r- The widths of the Mandelshtam-Brillouin lines are
a measure of the ion acoustic attenuation I’ (2.9), which yields information on the
transport properties of the liquid, i.e. the thermal conduction, A and the bulk and
shear viscosities, g and 7s. A measurement of the width of the Rayleigh peak will

also give the thermal conduction.

The result that transport properties may be inferred from the dynamic form
factor S (I?, w) is not surprising, as there is a well known connection between fluctu-
ations in equilibrium and the dissipative properties of the medium in terms of the
“Auctuation-dissipation theorem” [16]. The result is however very useful for measure-
ments of transport properties that are difficult by more conventional means, such as

measurements of thermal diffusivity around the critical point of CO, [14].
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Rayleigh scattering from gases

If one now considers Rayleigh scattering from neutral gases rather than liquids, then
the probed wavenumbers and frequencies become comparable to the mean free path
and collision time. The hydrodynamic description would then be expected to fail.
In this case the time dependence of the Van Hove correlation function cannot be
determined from hydrodynamics, and must be determined from the kinetic theory.
Using complicated diagrammatic methods Van Leeuwen and Yip were able to show
that for classical gases Van Hove's correlation function (2.3) may be calculated via
the linearized Boltzmann equation [17].

G(&,t) = [ dsdd T'(Fo,0,10:7,5:1), (2.11)
where I'(£, Do, to; £, 7, t) satisfies the linearized Boltzmann equation in the Z, ¥, ¢
variables,

at z
and the linear Boltzmann collision operator has been denoted by —K. The initial

(—"’-+a-i.+x)r=o, (2.12)

condition is given by,
o s = e m \3/2 mv? . o
F(:Bo, vg, to; T, ‘U,to) = (éﬁ) exp (?T_) J(f— 50)5(‘0 - Uo). (2.13)

This effectively becomes a kinetic version of Onsager regression, as explained in some
detail by Hinton [18]. Hinton, as well as giving a clearer derivation of Van Leeuwen’s
results [17] from a BBGKY (N. N. Bogoliubov, M. Born, G. Kirkwood, H.S. Green
and J. Yvon) approach, was also able to reduce this description in terms of the func-
tion T to the linearized Navier-Stokes equations for the fluctuating hydrodynamic
variables n, i, and T, by a modification of the Chapman-Enskog method [18). Hin-
ton’s results have put on a firm theoretical foundation the work of Mountain [14] and
have also extended the validity of the Onsager method from that of absolute thermal
equilibrium to small deviations from a local equilibrium state.
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Using the theoretical justification of Van Leeuwen, Ranganathan and Yip
solved the linearized Boltzmann equation (2.12) as an initial value problem [19]. They
have obtained an exact analytic solution for S(K,w) by assuming Maxwell molecules,
the form of which permit an exact evaluation of the spectrum of the linear Boltzmann
collision operator [10]. Using these solutions Nelkin and Yip have considered Rayleigh
scattering from fluctuations in an Argon gas as a test of the linearized Boltzmann
equation. They compared the solutions for S(K,w) from Ref. [19] with S(¥,w) cal-
culated from the linearized Navier-Stokes equations of hydrodynamics {14}, and gave
an estimate of the expected results. Such an experiment was actually performed by
Greytak and Benedek [20], who were able to modify the wavenumber of the probed
fluctuations from the hydrodynamic regime into the kinetic regime by changing the
scattering angle from the forwards 10° to the near backwards direction 170°. Un-
fortunately their success was only limited due to the insufficient resolution of their

apparatus.

2.2 Thomson scattering from plasmas

If a neutral gas is heated sufficiently to cause it to ionize, forming a plasma, another
scattering process is possible. An incident electromagnetic wave on a plasma will
cause the electrons to accelerate in the electric field. The accelerating charges will
then emit radiation in all directions except in that of the incident wave. If the photon
energy of the incident electromagnetic wave fiw is much less than the rest energy of

the electron mc?, then the process is known as Thomson scattering.

The time-averaged Thomson scattered power P, per unit solid angle 2 per

unit frequency w/2~ is given by [21],

dP, _ Pr} ag 2y .
dtdQdw/2r ~ A (1 sin“fcos” | ¢ ¢oI)NeS(k,w), (2.14)
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Figure 2.2.1: Schematic of a Thomson scattering experiment

where ry = e€2/mc® is the classical electron radius, F; is the incident power, Ais
the cross sectional area of the incident beam, N, is the number of electrons in the
scattering volume, V, E= Eo — k'’ and & = wp — w are the momentum and energy
transfer, i.e. the difference in the wavevector and frequency between the probe (Eo, wo)
and scattered (E ! /) electromagnetic waves. @ is the scattering angle, and ¢ — ¢p is
the angle between the incident electric field vector, and E’ in a plane perpendicular
to ko, see Fig. 2.2.1. The dynamic form factor (2.2, 2.3) averaged over time T and

the scattering volume

1_(ne(F,w)n:(E,w))

S(k,w) = V_’clgg_m T ) , (2.15)
is for fluctuations in electron density
- - N.
ne(F,w) = / dZdt expi(k - £ —wt) ¥ 8[Z — £i(t)], (2.16)

i=1
as the contribution to the scattering from the ions is negligible due to their larger mass

and hence smaller acceleration in the laser field. If the incident light is unpolarized,
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the replacement cos?(¢ — ¢p) — 1/2 can be made in (2.15). A derivation of the
Thomson scattering cross section is provided in Appendix A.

It was the work on the scattering of radio waves from the ionosphere that
stimulated the development of Thomson scattering as a more general diagnostic for
plasmas. In particular, it was Gordon who first suggested that ionospheric electron
plasma density and temperature could be measured by “incoherent” radar backscatter
[22]. Incoherent in this context refers to the parameter @ =1 [kAp < 1, which means
the scattering electrons display single particle behaviour [21]. When the plasma is
probed on a scale larger than a Debye length a > 1, the plasma can show collective
behaviour. The dynamic form factor for independent electrons, relevant to incoherent

scattering is

S(R,w) =2 [ AT f(D)6(w — k- D), (2.17)
where f.(%) is the electron distribution function normalized to unity. It is apparent
from (2.17) that a Thomson scattering measurement from a Maxwellian plasma would
therefore reflect the electron thermal spread, and hence allow a determination of

electron temperature.

With the motivation of explaining ionospheric experiments the general form
of the scattered spectrum of a plasma was determined independently in 1960 by
Fejer [23], Renau [24], Dougherty and Farley [25], and Salpeter [26]. In these theo-
ries, the fluctuations caused by particle discreteness are described by the linearized
Vlasov equation. The Vlasov equation adequately describes the collective effects of
the plasma, but ignores particle collisions that are responsible for the approach to
equilibrium. This is then the completely opposite extreme to the hydrodynamic ex-
pression (2.7, 2.8) for neutral fluids, where collisions are dominant. In this respect
plasmas are fundamentally different from neutral fluids in that they can support

collective behaviour even in the absence of particle collisions.
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Dynamic form factor for a collisionless plasma

The collisionless expression for the dynamic form factor S (E, w) in an electron-ion

j A (w 2"2 fi (w) (2.18)

where f(w/k) are the one-dimensional distribution functions in the direction of k
evaluated at the phase velocity v, = w/k, and normalized to unity. Z is the joniza-
tion, €(k,w) = 1+ X+ X; is the dielectric function and x. and x; are the electron and
ion partial susceptibilities that are defined and evaluated for a Maxwellian plasma in

plasma is
Xe

S(E,w) = —|1-—

Appendix B.1. The expression for S(l?, w) is evaluated for a Maxwellian plasma in
Appendix B.2, in which the electrons and ions are allowed to have separate tempera-
tures and mean velocities. Equation (2.18) for S (K, w) consists of two terms. The first
term in Eq. (2.18) describes the scattering from both free electrons (the incoherent
part) and from electrons that are in the screening cloud of other electrons (electrons
behaving coherently). The second term describes the scattering from electrons that
are in the screening cloud of the ions. For an equal temperature plasma, where the
jon acoustic mode is heavily Landau damped, the ion feature shows the ion thermal
spread, even though it is the electrons that do the scattering, see Fig. 2.2.2. This is
consistent with the results of the the experiment of Bowles which gave the first direct

confirmation of collective behaviour in a plasma [27].

Peaks appear in the spectrum S (k,w) (2.18) whenever Re € = 0, corresponding
to the natural modes of the plasma. For a non-magnetized plasma these correspond
to ion acoustic and Langmuir waves. In addition to the low frequency spectrum
that we have briefly discussed, scattering from fluctuations of much higher frequency

reveals the Langmuir resonance, see Figure 2.2.3. Measurement of the electron plasma

frequency,
2= 47mn e

2= (2.19)
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Figure 2.2.2: The dependence of the normalized power spectrum S(k,w) as a function of
z;, where z; = vps/vri.The curves 1,2,3, and 4 correspond to the temperature ratios of
2T./T;: = 10,6,2,0.5 respectively. Notice the development of the ion acoustic resonance
and its dependence on ZT./T;. For ion acoustic waves c, = (ZT. [T ?vrp;.

also allows for the determination of the electron density. The first measurement of
the electron density profile in the ionosphere was achieved by Perkins (28] using this

method at the Arecibo radar facility.

2.2.1 Thomson scattering and laser plasmas

With the advances in laser technology, Thomson scattering has become a standard
diagnostic for electron temperature and density in many laboratory devices, especially
in magnetic confinement experiments, after modifications to include the ambient mag-
netic field. In laser plasmas, Thomson scattering has become a standard technique
for studying enhanced fluctuations (cf. e.g. Refs. [29, 30]), and thermal fluctuations
[31, 32, 33, 34, 35, 36]. The applications to laser plasmas, for example in the re-
search of x-ray lasers or ICF are made difficult due to the small scattering volume,
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Figure 2.2.3: Looking at S(k,w) for larger values of z; we find one more resonance. Making
use of the relations z. = (ZT./T:)~Y/%(Zm./Amp) /%z; and T, = 1/kApe 8t w = wWpe We
identify this mode to be that of electron plasma waves. The temperature ratio 27T, /Ti in
this plot is 2 and kAp. = 1/5.

low intensity of the scattered light and fast time evolution of the plasma, often on
the picosecond time scale. In spite of the complexity of laser plasma interactions,
the simple collisionless theory (2.18) has been used as the theoretical input for the
characterization of near equilibrium x-ray laser and ICF type plasmas. The studies
[33, 34, 35, 36] have centered around the low frequency part of the scattered spectrum

shown in Fig. 2.2.2.

The peaks that develop in the low frequency scattered spectrum for increasing
ZT./T; correspond to the scattering of the light from the thermal ion acoustic fluctu-
ations. These ion acoustic fluctuations are heavily Landau damped unless ZT./T; is
appreciable, as the phase velocity of the wave falls in the bulk of the ion distribution,
where Landau damping is large. A measurement of the peak separation, which is

equal to twice the ion acoustic frequency w, can be used to infer electron temperature
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Figure 2.2.4: Here we see three cases of increasing electron drift @, corresponding to
u. =(0.2,0.8,1.2) c,. The height of the peaks is asymmetric due to the unequal electron
Landau damping of the two waves traveling in opposite directions to the drift . The wave
traveling in the direction of the drift becomes unstable for drifts of the order of the sound

speed, c,.
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if the ionization Z is known,

ws = kv,, where v, = ‘/—z’g’i (1 +3

for a collisionless plasma. For moderate values of ZT, /T, the width of the ion acoustic

T;' 1/2
7 ) (2.20)

peaks are predominantly determined by ion Landau damping

% ma( ZT;L).mexp— (77;—)2 (221)

where ; is the ion Landau damping rate. Given that the jon acoustic frequency w,
is already known, this measurement can be used to obtain an estimate for T; [36].
Ton hydrodynamic flow velocity @; in the direction of the probed E vector can be
measured from the Doppler shift in the whole spectrum. The electron drift velocity
i, relative to the ion flow can also be measured as the peaks become asymmetric in
height due to the unequal electron Landau damping of the counter propagating ion

acoustic fluctuations, see Fig. 2.2.4.

2.2.2 Collisional plasmas

The collisionless assumption of the Vlasov theory can break down for some ICF and
x-ray laser plasmas. High ionization Z, and density n, act to increase the frequency
of collisions, making it necessary to include collisional damping of the fluctuations
for a detailed agreement of Thomson scattering line shapes [37]. From a theoretical
point of view, the introduction of collisions into the theory of fluctuations can allow
for a hydrodynamic description for sufficiently long wavelengths, of the kind we have
described for neutral fluids in Section 2.1.2. Although the hydrodynamic limit is
not relevant to the experiments of Refs. [31, 32, 33, 34, 35, 36], Zhang et al. have
conducted experiments on more strongly collisional plasmas [4, 5]. Zhang et al. have
found the Thomson scattered spectrum of a CO, laser from a strongly collisional

Argon arc plasma (n, = 1017 cm™3, T. ~ 2 V) can be well described by the dynamic
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form factor, calculated from the linearized fluid equations of Braginskii [1]. Asa
result, they have been able to deduce the values of the transport coefficients in the
same way as we have described in Section 2.1.2 for the Landau-Placzek formula (2.7,
2.8). This work was also the first to observe the entropy peak, that is the counterpart
of the Rayleigh peak in neutral fluids and does not exist in a collisionless plasma

described by Eq. (2.18).

2.2.3 Extension of the theory to include collisions

Rostoker has laid out a systematic BBGKY approach for calculating fluctuations in
plasmas as a perturbation in the plasma parameter [7). To the lowest order this
theory leads to the collisionless expression (2.18), as demonstrated by Rosenbluth
and Rostoker [38]. In order to describe the effects of collisions it is necessary to
go to the next order in the expansion. In the next chapter we will see how more
recent developments have simplified this theory, and lead to a linear kinetic for the
fluctuation of the phase space density, in the same way as Van Leeuwen [17] and

Hinton [18] have found in neutral gases.
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Chapter 3

FLUCTUATIONS IN CLASSICAL PLASMAS

3.1 Formalism of two-time correlations

We introduce the 6N dimensional I-space given by {X;} = (X;, Xa, ..., Xn), where
X; = (&,%), (i = 1,...,N) so that the whole N-bedy classical system is a single
point in this space called a system point [10]. The point then wanders through this
space with time as determined by the dynamical equations. In order to calculate
the macroscopic expectations of microscopic functions of the phase space, such as the
number density (n(Z,t)) or density correlation functions (n(Z, t)n(z',t')) for example,
we need to assign a weight that the system is in the volume d{X;} = dX;...dXx
centered around a particular microstate {X;} in the I'-space at a given time . This
is achieved in the usual way through the construction of an ensemble of N replicas
of the system (which can be taken to infinity). The symbol N is also used to denote
the total number of particles in the sysetm, although it should be obvious from the
context which is intended. The density of system points of the ensemble in the I'-space

dN

-dTX-T}' (3.1)

Dl({Xi}a t) =

times the small volume element d{X;}: D:1({X:},t)d{X;}, can be identified with the
probability that the system is in the volume d{X;} about the phase point {X;} at

the time t, after a suitable normalization

[atx Du{x3.0 =1. (32)
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For calculating two-time expectations we will follow Rostoker [7] and introduce the
two-time generalization of Dy, D2({Xe:}, to; {X:}, t)d{Xo:} d{X:} which is the prob-
ability that the system is in the volume d{Xo;} about the phase point {X¢:} at the
time £o and then also in the volume d{X;} about the phase point {X;} at the later
time t. With D, ({X;},t) we are able to calculate the expectation of one-time phase

functions A(X; {X:}),
(A1) = [ HXID{XH DA (X)), (33)
and two-time phase functions with Do({X;},¢; {X{},t),

(A(X, ) B(X',¥)) =
[ A{XIAXDDA (X}, & (XEOAK (XDBOCH XD, (39)

In this way we are able to calculate expectations and correlations for Macroscopic

observables, provided that some means exists for calculating the joint probabilities
Dy and D, for the system.

3.1.1 Liouville equation for the Joint Probability Density

The evolution of a trajectory of a system point in -space is unique for a given initial
condition {X;} = {Xio} at t = 0, and hence the trajectories in the ['-space cannot
cross. Considering a volume element of phase space d{X;}, we come to the conclusion
that system points interior to this volume must remain interior for all times. Taken
together with the fact that time evolution is a canonical transformation, and hence

the volume occupied by these points is also unchanged in time

t = t
dN — dN',
d{X;} ~ d{Xi}.
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we conclude that the points flow like an incompressible fluid in the phase space. On
a system trajectory the density of points in the phase space is constant

dD
- =0 (3.5)

The above is a statement of Liouville’s theorem [10]. Therefore, by (3.5) D, and D,
satisfy a grand continuity equation, the “Liouville equation”,
i}
( +f_: %5z +F" (X:, 1) 5

i=1

e g 0 a) { Dy({X:}.1) }= o @6

m; ;7 OZ; |""- - -‘t,l Kz Dy({X:}, t: {X':}, 1)

where F.. is the external force acting on the system, and the interactions between
the particles are given by Coulomb’s law. The initial condition for D, is given by

Do({X:},t; {X!},8) = Di({X:}, 0)6({X:} — {X7))- (3.7

Knowledge of the most general solution to this equation is equivalent to a knowledge
of all the orbits of the system, which is clearly an impossible task. The Liouville
equation (3.6) is however our starting place for deriving approximate solutions for

the joint probability densities Dy and D, and hence a theory of fluctuations.

3.1.2 Kinetic theory of fluctuations

Much of the information contained in D; and D, is redundant. We shall see that for
the calculation of most practical observables (3.3, 3.4) we only need to evaluate certain
moments of D; and D,. For two-time fluctuations the basic theoretical quantity is
(5f*(X,t)6f (X',t')), where §f* is the deviation of the Klimontovich microdensity

from its ensemble average [39]

No
5fe = (f*)— f* where fo(X;{X:})= ;la-za[x “X().  (38)

23



The subscript (or superscript) a is a species label that we will assume to be either
electrons or ions @ = e,i. The ensemble average in (3.8) is over the Liouvilliain

distribution, D;
(FoX0) = [ X} DXL DX (XD, (3.9)

where D, satisfies the Liouville equation (3.6) in the X; variables. Making use of the
definitions (3.4, 3.8) the correlation of the phase space density f*(X;{X:}) (3.8) is
given by

(F™(Xo,to) f*(X, 1)) =
/ d{X:}{XID2({X:}, £ {Xi}, o) £*(X, t { X F (Xo, to; { X))
= Yl\;’ / d{X:}{ X!} Da({X:}, t; { X[}, 0)d[Xo — X (to))6[X — X1 (2)]

+V2 [ d(X:a{XD DX}, (X} 20)31Xo — Xi()}OX = Xa(0), (3.10)

where there are two terms in (3.10) corresponding to pairings of the same, and dif-
ferent particles in the double sum (3.8), i.e particle 2 is different from particle 1. We

will write these two terms as
(% (X0, t0) F*(X, 1)) = 8a0a2°* (X0, to; X, t) + F1°*(Xo, to; X, ). (3.11)

The correlation of the phase space fluctuation 6 (3.8) can be written in terms of

the above equation (3.11)
@f5f%y=(ff~) - f2 17 (3.12)

since we have by definition (6f®) = 0, and we have introduced f{' = (f¢) as the
ensemble average (3.3) of f= (3.8). We give (3.12) the name ¢~ which is the com-
bination of the moments of D; and D,.
I (X, 6 X', t) = a2 (X, t; X', ¥) + FP¥ (X, t; X', ¥)
—fEX D fF (X E) (3.13)
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The moments Q¢ and F®' implied in (3.10) were first introduced by Rostoker and
will be referred to as the Rostoker functions [7]. The Rostoker functions are given by

Q= (Xy, 8 X', Y) =
v? , ,
— [ Dy({X:}, & {X!},¥),dXp -+ dXndXy - dXN (3.14)
@
Fflaa (Xl, t; X’21 t,) =
v? [ Da({X:), £ (X!}, ¥)d Xz - - - dXndX,'dX' - - XN’ (3.15)

From Eq. (3.14) we can see that Q; has the interpretation of a test particle function.
Q. (X1,t Xy', ) gives the probability of a given particle 1 being at (, ) at time ¢
and then that same particle being at (£’,7”) at the later time t'. Fi(X,t; X'y, t') has
the interpretation of a field particle function. This gives the probability of a given
particle 1 being found at (Z,#) at time t and then a different particle 2 at (z',9")
at the later time ¢’. The uncorrelated part of F; has also been subtracted in the

combination of Eq. (3.13).

Using the function ['¢®’ (3.13) we may calculate the statistical expectation
for the time-dependent correlation of fluctuating microscopic quantities, in much the
same way as the one particle distribution function allows us to calculate the statisti-
cal expectation of local microscopic quantities. Consider the microscopic dynamical
function b®(Y'; £) defined on the 6 dimensional phase space Y = (#, ), where we have
allowed for the parametric dependence of b* on the physical space Z. Statistical av-
eraging over the Liouvillian distribution D; of this quantity, leads to the macroscopic
function B*(Z,t) = (b*) according to

B(Z,t) = na / dY b2(Y; D) fE(Y;1). (3.16)

All the microscopic functions that we will deal with are local, in the sense that they

are all of the form
b*(Y; &) = B*(D)6(¥ — ©). (3.17)
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An example is the local number density

n*(Y;£) = §(§ - ) (3.18)
and another is the total average kinetic energy density

g = %mw’&({i— 2) (3.19)
Substituting (3.17) into (3.16) gives

B*(Z,1) = nq [ dY g (D)6 - DFF @ 5,0)
=, [ 47 (@) f°(%,5,1) (3.20)

where the only non-trivial part of the averaging concerns the velocity space. In

the same way, the correlations of the fluctuation of the microscopic quantity 8 =
— (%)
(66%(Z, )00 (£',¢)) =
nan [ dYdY 8@ (367 - HIG' = 2T (V.6 Y",),
= / dids’ B2 (9)8% (7)o (%, 7, t; 2", 5", 7). (3.21)

A particularly important example is the expectation for the correlation of the fluctu-

ation in the microscopic density 8¢ =1
(6n%(Z,£)6n (Z',¥)) = Nanw / d5di’ T2 (X, t; X', ) (3.22)

due to its role in the scattering of laser light (a = o’ =e).

3.1.3 Expansion in the plasma parameter

Rostoker was the first to develop an approximate procedure for calculating the mo-
ments of Da (3.14, 3.15) from the Liouville equation (3.6) as a power series in the
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Discreteness Parameters Fluid-like Parameters

{€ay May 1/Na, Ta} = 0 {nata, Manta, n.T,}— const.

Table 3.1.1: In the limit the discreteness parameters go to zero, the plasma becomes a
continuous fluid

plasma discreteness parameters, e, the charge per particle, m, the mass per particle,
1/n, the average volume per particle and T, the average kinetic energy per particle.
These quantities are taken to be infinitesimal, and all of the same order.

One is to imagine taking a finite volume of plasma V', and chopping up each
particle into finer and finer pieces in such a way as the discreteness parameters €q, Ma,
1/nq, and T, go to zero, but leave the continuous fluid-like properties of charge den-
sity npeq, mass density nom,, and average kinetic energy density n,T, unchanged,
see Table 3.1.1. This procedure retains all the collective medium-like properties of
the plasma, since the Debye length, Ap, = ‘/m, ion acoustic phase speed
Cs = ﬁiTrn_. and plasma frequency wp, are unaffected by the transformation. Dis-
crete particle properties such as the collision frequency, vanish, v ~ net//mT3/2.
It is convenient to work with dimensionless parameters, and only one such fam-
ily of parameters of the same order can be formed from the set €a, Ma, 1/nq, To.
The dimensionless parameter &, is such a parameter, and is referred to as either the
“plasma parameter” or “the discreteness parameter”. It can be identified with the
inverse number of particles in a Debye sphere

1 4mn\"t _
Ep=FD'= ‘—3") Apas (3:23)

ADa = ‘/41re§na/Ta. Rostoker’s procedure is relevant to plasmas that are weakly
coupled. A plasma is said to be weakly coupled if the average Coulomb interaction
energy per particle e2/ry, ro = (4wn/3)""/3 is smaller than the average kinetic energy
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per particle, T

e
= :o? <1, (3.24)

where we have introduced the Coulomb coupling parameter I [39]. The condition of
weak coupling is sufficient to guarantee the smallness of the plasma parameter and
hence the validity of Rostoker’s method, because of the relation

gp = ()2 (3.25)
Using this method Rostoker has carried out a comprehensive treatment for plasmas
in thermal equilibrium to the lowest non-trivial order.

3.1.4 Systematic BBGKY approach

Rostoker has defined a hierarchy of functions, of which Q; and F) are the first mem-

bers.
Qe (X, ¢ X! .- X, ¥) =
V’+1 (4 ' (4
- [ dX,---dXn dX',, - - dXy Da({X:}, £; (X}, 1), (3.26)
al
and

Foies=ens (X, 6; X} -+ Xiy,¥) =
Vet [dXy - dXn dX(dX}y - dXi Da({Xih 6 (Xi1E).  (3:2)

We have also introduced the s-particle distribution function
f( Xy Xat) =V [ Dy(X,8)dXsp1 - - - dXN- (3.28)

The Equations satisfied by the {2, may be obtained from the Liouville equation (3.6)
for D,. Firstly, all the unprimed variables are integrated out with the exception of
the “test particle” X;. One is free to do this as the Liouville equation only acts on
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the primed particles. Next one integrates out all but s of the primed particles. This
procedure is exactly the same as for the single particle distribution function f,. It is
therefore no surprise that the 2, satisfy

0 d 9
(at+2v. 3% — + Fop(Xiyt) - 5%

i=l
%= €ai€a; 9 1 a S v _
jzaﬁ Ma; oz; |-'L'g - z,| 817. @ (Xo, to; X1 X, t) =
Ca; 3 -
+§ —_ Zﬂr'er' /dX’a_. Iz' fl Q.ivl"l n"(xo, to; X1 e Xo, X', t).

(3.29)

From (3.29) we see that the test particle distribution changes due to interaction with
the field particles. The equations for the field particle functions may be obtained
from Eq. (3. 29), by writing (3.29) for s + 1 and then integrating out particle X.

(& S0 s+ FalXa) - 35
+Q Vi 3mx 2 + it) ==
s+l 1

_ Z €a; eal

i Mo o%; Iz,—a:,l

s+1

€a; 1 9 ay;ay—~a
Na, €a, g /dx 31:. |:t, _ zll Qn«}»l 1T (XO: tO; Xl - ’Xa+lat)

; ) Fvioreen (Xo,t X -+ Xuy1,) =

s+l €a. 1 a —a
+E""e"2 e / Xla‘. |2 — a-;im 17 (Xo, to; Xz - - - Xag1, X', ).

l-’2 fl
(3.30)

Equation (3.30) says that the field particle distribution F, is changed by interaction
of field particles with both test particles and other field particles. The disturbance in
the field particle distribution function §F,, defined by

SForior-ast (Xl, t; Xé ot a+11 t’)
Fover-aet (X 6 X) -« Xy, ¥) = SR (X0, ) F7 7 (X - - X, ) (3:31)

will satisfy the same equation as the F’s, as can easily be verified by substituting
(3.31) into (3.30). The functions ['2%:21"% (X, to; X) - - - X, t) are defined in terms of
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2 and F in the following way

Lo e (Xo, to; X1 - - - Xo, t)
= [6F2 1% (X0, t0; X1 - +* X,) + Sagen U™ ™ (X, t0; X1 - - Xas £)
+ Bagay AT 2221 (X, to; X2, X1, X3+ - - X, t)+---
+ Saga, Q2T MOT 12 (X, to: X,, X, X3+ - Xom1 X1, B)] 5 (3.32)

which amounts to the identification of I, as the probability of having a particle of
species ag at the phase point Xj at the time #o and then at the later times the particles
at the phase points Xj, - - - X,, without regard for which particles were test particles
or field particles. Because the identity of the test particles are lost the combination
of Eq. (3.32) the I, satisfy the BBGKY hierarchy

a d P
(at+§v' %, — + Fo(X:, ) - 3%
ea,ec, 0 a 1 aﬁ N _
jz:;e.- m,, O%;|%: — T 3v. )ra (Xo,to; X1 -+ - X, t) =
(4
+'_21 E"r'er'/dX A i’l
.aa_. ralyal ‘an (X01t0;xl'°'X,,X"t). (3.33)

This is the important result emphasized in the review by Oberman and Williams
[6]. Although there is nothing essentially new in comparison with the earlier work of
Rostoker [7] and also Hinton [18], the identification that the particular combination
(3.32) obeys the BBGKY hierarchy means that standard existing techniques can be
used to obtain a closed equation for I';. Finding the approximate solutions for the Q2
and F functions and then combining these solutions into the combination I, is more

complicated, although this was the method originally used by Rostoker [7].

The type of structure (3.33) is well known from plasma kinetic theory [10]
where one attempts to obtain a closed equation from the BBGKY hierarchy for the
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single particle distribution function f;.

3 _ € 9 -
(at’“z”' a7, + F=(Xat)- 6v zaz.w —%,| 09 )f"'

= m"' J#i
ng* 1 8fi1
.2-; m / OF; |T; — Ton| O dXop1. (3.34)

In Eq. (3.34) the s particle distribution function f, does not satisfy the Liouville
equation (3.6) because of the interaction with the (s + 1) distribution function, f,+1.
In the plasma regime &, < 1, the BBGKY hierarchy is truncated by a correlation

expansion.

3.1.5 Correlation expansion

To the lowest order in &, we neglect term a in Eq. (3.33) as it is of higher order in the
plasma parameter (c.f. Table 3.1.1), take ff**(X,,--- X,) = i ( Xy, t) -+ i (Xss 1),

and a linearized version for the I'’s,

r:o;a;»-a. (XOv to; Xl vt Xay t) =
r?o;ol (X01 tﬂ; Xla t)fl‘.n (X21 t) e f]t,'. (Xn t)
+ 7 (X1, )T T (Xo, to; X2, ) f1° (X3, 8) - - - 7 (X 1) +- -
+ O (X0, t) -+ 17 (Xee1, )T (X, to; X, B)- (3.35)
This solves (3.33) as long as the single particle distribution function [ satisfies the
Vlasov equation,
—a-f"(X t)+7- -a—f"(X t) - —E —-f"(X t)= (3.36)
ot ’ oz ’
V-E=4rYes / d7 f4(%,7, t), (3.37)
]

and I'; satisfies the linearized Vlasov equation, as can be verified by direct substitution
of (3.35) into (3.33). It is this observation that motivates the correlation expansion.
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For our purposes we will need to introduce a few of the lower order irreducible
functions in the cumulant expansion! for the s-particle distribution function, f,, and
the linearized version for the T',’s. Cumulant functions will be denoted with a bar.

ALY = A(X,t) (3.38)
(X, X2t) = & f(X1,Xa,t) + fi(X1, ) i(Xa,t) (3-39)
and for the I'’s
I'1(Xo, to; X1,t) = &p T1(Xo, to; X1, 1) (3.40)
['2(Xo, to; X1, Xa,t) = 2 L2(Xo, to; X1, X2, ) + & L'1(Xo, to; X1, t) f(X2,t)
+ &5 f1 (X1, t)T1(Xo, to; X2, 1) (3.41)

T'3(Xo, to; X1, X2, X3, t) = €3 T'3(Xo, to; X1, X2, X3,t) + &2 T'a(Xo, to; X1, X2, ) f1(X3,t)
+ €2 T'9(Xo, to; Xz, X3, t)e2 f1(X1, ) + &5 Ta(Xo, to; Xa, X1, t) f1(X2,1)
+ &2 fo(X1, X2, )T1 (Xo, to; Xa, ) + &, fo(X2, X, t)T'1(Xo, to; X1, 1)
+ €2 fo( X3, X1, 8)T'1(Xo, to; X2, t) + & T1(Xo, to; X1, t) fi( X2, t) fi(Xs, 1)
+ &, f( X1, )T1(Xo, to; Xa, t) fi (X3, t)
+ & F1(X1, ) fo (X2, )T1 (Xo, to; X3, t) (3.42)
The lower order irreducible correlation functions are usually given names. We will

name them according to

AiXy,t) = f(X,1) (3.43)
R(X1, Xa,t) = 9(X1,Xa1) (3.44)

and for the two-time quantities
[1(Xo,t0; X1,t) = T1(Xo,to; X1,2) (3.45)
Ta(Xo,t0; X1, X2,8) = A(Xo, to; X1, X2,1) (3.46)
T'3(Xo, to; X1, X2, X3,t) = T (Xo, to; X1, X2, X3, t). (3.47)

1The cumulant expansion is also known as a Mayer cluster expansion [40).
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It is now a matter of substituting the definitions (3.38-3.47) into the BBGKY hierar-
chy for T, (3.33), in order to derive the equations satisfied by the cumulant functions

to a given order in the plasma parameter, &p.

3.1.6 Results to lowest order in ¢,

From Sec. 3.1.5 we have seen I'; obeys the linearized Vlasov equation to lowest order

in the plasma parameter

a N a €Ca = ;- a ao:a .
(Et- +v- % + m—an(-’B, t) . 317) | (Xo,to,x, t)
_fim 1 paoia’ .y 9 1 _

The initial condition is,
1 . a
— ' %(Xo, to; X, to) = Oag,a0(Xo — X) f*°(Xo,ta) + 9% (X0, X, to). (3.49)
ao

Where g(X', X, t) is the irreducible part of the two-body correlation function (3.43),
and we have allowed for the presence of a background electric field Ep. At time t
the plasma is caught in the correlated state given by Eq. (3.49) which introduces
the discreteness. A Vlasov fluctuation then propagates to the time ¢t when the second
measurement of the plasma is made. Hence, to this order in &, the fluctuations are not
collisionally damped. From Eqns. (3.48-3.49) all of Rostoker’s results (7] including
S(K,w) (2.18) that we have seen in Section 2.2, can be reproduced [6].

3.1.7 Results to order &2

To the next order O(e2) Eq. (3.48) is modified by the addition of a “collision term”
on the right hand side,

’ d 1 a . aa’
;—ane..c/dx' %——.ﬁ . ‘a—ﬁ.Am” (Xo,to; X, X', t). (3.50)
a’e

|£~%
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In order to evaluate this collision integral, it is necessary to solve the equation for
A(Xo, to; X, X', t). This equation is found to be [6]

ad 8 ad .., a €a’ =% 2 ag;aa’ . d .
(at +7- a- an av +v - 9z’ +m°’E0' aa,) A (Xo,t(hxvx 1t) =
A [ %(Xo, t0; X, t) (X', t) + TP (Xo, t0; X', ) (X, 1)

1
(4
{Zm""e""/dx ma, 0% | £ —
b

F(X, t) A% = (Xo, to; X', X", £) + T" (Xo, to; X", )g(X, X', t)
b

| o7 ‘[

+ T X, to: X, 0)9( X, X", 1) | + (X & X') } (3.51)
where
- 9 1 19 1 8
A= et 5az-7 ] (mﬁ' ;:5-) - (3.52)

This equation is the exact linearization of the equation for the two body correlation
function g(X, X',t) that one is usually concerned witk in plasma kinetic theory [41).

i.e. if the replacement

g — g+4
f — f+T

is made in the equation for g(X,X’,t) and linearized treating ' and A as small
quantities, then the result is (3.51). We can then appeal to the same method as used
in the one-time case for the solution of g[f] in terms of the one-particle distribution
function. There are some subtleties involved in this solution, but these are well treated

in many text books, cf. e.g. [41].

In the one-time case for f; the equivalent expression to (3.50) leads to the
Balescu-Guernsey-Lenard (BGL) collision term [41]. It seems plausible that the term
(3.50) will therefore be the linearized BGL collision term, and this has in fact been
proved by Krommes [83].
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As a formal procedure for calculating I'; we will write the linearized BGL
equation for 6 f*(X,t) (3.8)

(§+9-5)or - =202 Soss = S clr(+ OV @59)

where
sfo(&', ', t)

FE (3.54)

§6(Z,7,t) = Eep / dz'di’

with the initial condition 6 f=(k, #,t = 0). The Fourier-Laplace transform of the func-

tion T is obtained by multiplying the solution 8f°(K, 7, p) by 6f%*(k,#’,t = 0) and

ensemble averaging in order to obtain '*3(E, 7, ', p) = (6f*(K, 7,p)5 fA(k,7',0)) in
~s o

terms of the initial correlations. [*A(E, 7, 7', p) is the Laplace transform of ['*? (k, 7,7,
= (5f=(k,7,t)5f%(k,7',0)),

[*(F,5,5',p) = [ dtexp (ipt)[(F,5,",1). (3.55)

Due to the time reversal symmetry of I'*#(k, 7, 7', t) and the fact it is a real quantity,
its Fourier transform can be written in terms of its Laplace transform (3.55) according
to

(K, 7,7, w) = / * dtexp (iwt) [P (E, 7, 7', t) +

-

[ dtexp (ut)T(E,,7",1)
=k, 3,7,p) + [[**(£.5,7".p)]
= 2Rel*A(k, 7,7, p). (3.56)

re8(k,¥,7’,w) (3.56) may be used in order to obtain spectral functions of macroscopic
quantities (3.21). Of particular importance is the dynamical form factor S(k,w)
(3-22),

(n(F,w)dnZ (K, 0))

Re

(3.57)

S(k,w) = n, / 4 d5'Te(k,7,7",w) = 2Re
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Hydrodynamic fluctuations

The BGL theory (3.53) includes collisional damping of the fluctuations, in addition
to the Landau damping of the Vlasov theory (3.48). Eq. (3.53) is appropriate for a
discussion of fluctuations on both kinetic and hydrodynamic scales. In fact, the BGL
collision operator, which in turn can be approximated by the Landau collision term
(by neglecting the screening terms a, and b in Eq. (3.51)) allows for the existence of
hydrodynamic modes [83].

In the hydrodynamic regime Eq. (3.53) can be solved by a modification of the
usual Chapman-Enskog [1] method, resulting in a system of linear fluid equations for
the fluctuating hydrodynamic quantities, {6na, 0@ia, 8T, }. These may be obtained by
linearizing the usual Braginskii fluid equations

Ona D, . _
'y + -ag(naua) =0, (3.58)
8 _ a). 1 @
(Et- + ¥ -a—:i:') Yo = T ona 6"(naT°)
-1 2, L_&., (3.59)

Mang 02 = Ta 3" mana

(20 2) ot

at az 3 97
2 9 . 2 . au.,
~ 35 G — 3n°,a az I Q.., (3.60)

with ns = ng + 0ng, and so on [6]. The linearization of equations (3.58)-(3.60) to-
gether with the linearized closure relations that relate the fluctuating fluxes {8Ga,00q,
6R,5Q} to the forces {—V4T,, 6W , éii} as a result of the Chapman-Enskog procedure
[1] will form a complete set of equations from which one can calculate the thermal
correlations of any of the hydrodynamic variables, for example (§n.dn3)/n. in terms
of the initial correlations. The initial correlations for a weakly coupled equilibrium
plasma can be obtained by taking the appropriate velocity moments of the initial
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condition on I'*? (3.49), given by
(61%(,5,0)5fP(Z",7",0)) = 8ap8(7 — 7)5(Z — Z)f3 (v) /may  (3.61)
where f&(v) is a Maxwellian distribution function,
fir(v) = 1/(V2rvra)® exp (—v*/207,), (362)

and vre = /Ta/m, is the thermal velocity of particles of species a.

We see that this is the Onsager method described in Chapter 2 in the context
of neutral fluids, although here it has been shown to be the consequence of the kinetic
equation (3.53) for the phase space fluctuation §f. Furthermore, the validity of the
description in terms of the hydrodynamic variables is given by the validity conditions
of the Chapman-Enskog method, which is something that we will now explore.
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Chapter 4

FLUID DESCRIPTION OF PLASMAS

4.1 Hydrodynamic reduction

In a hydrodynamic description the interest is turned away from the evolution of the
one particle distribution function f*(Z,,t) towards its first five velocity moments,

n(zt) = [dofe(s3,9), (4.1)
n(Z 0@ 51 = [d5afE,, (4.2)
n®(Z,)T*(F,t) = %’- 47 | 7 —@(,8) P f2(Z, 5, 2). (4.3)

In spite of this loss of information, the hydrodynamic equations provide an excellent
description of plasma dynamics over a wide range of parameters. Therefore solutions
of the kinetic theory should be reducible to a fluid description in the cases where such
a fluid theory is expected to be valid. Investigations into the reduction of the kinetic
description in terms of hydrodynamic equations has led to many advances in the field
of nonequilibrium statistical mechanics, some of which we will now examine. Many
of these early investigations centered around the Boltzmann equation [61}, which is
a nonlinear, integro-differential equation describing the evolution of the distribution
function for a low density gas of classical particles, whose collisions may be considered

as separate binary events,
a T fa o
P+ TV = I f0),
)

1518 = [@) @) - @) s dbdedi.  (44)

38



Here g =| % — ¥ | is the relative speed between the two colliding particles, b is
the impact parameter, and ¢ is the angle between the orbital plane and the plane
containing the velocities of the two particles [47]. The f'* and f' are the values of
fo and f# for velocities (7', ') such that a particle of type a will be left after the
collision with a velocity in the phase element, d& about the point #. The other product
fof? in the collision term (4.4) represents a loss of particles of type a from the same
phase element. Many fundamental properties have been proven for the Boltzmann
equation including the irreversibility of the approach of the one particle distribution
function towards equilibrium expressed by the H-theorem,

3/2 o e 2
@50 0@ (gomay) oo (PGZEGL).  w)

For small deviations from the local equilibrium Maxwellian distribution function (4.5)
one can prove existence and uniqueness theorems for the linearized collision operator.
Properties of the general collision operator include the existence of the collisional

invariants
/ &5 J(f, ) =0, / 455 J(f,f) =0, and / dzv? J(f, f) =0, (4.6)

that are consequences of the conservation of number density, momentum and energy.
Taking the moments implied by (4.6) of the kinetic equation (4.4) generates the

equations of continuity, momentum transfer and temperature,

%n +V-(nd) =0 (4.7)
m—a—(m'i) +V-(P+mnid) =0 (4.8)
gt- (§T+?u)+v {q+n(-T+—u)"+f"11}=0. (4.9)

Because of the conditions (4.6), collisions do not directly effect the moments (4.1-
4.3), and hence we will sometimes refer to them as the conserved moments. The

conserved moments are only effected by collisions through the higher order moments,
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the pressure tensor P, and heat flux § that appear due to the term ¥ -3f/07 in the
kinetic equation. These equations (4.7-4.9) are not closed as the pressure tensor

P=m / 7 (7 - @)(7 - D) f(Z, 5, 1) (4.10)

and heat flux
7=7 [d7|7-2 P (T-DIETY) (4.11)

are unknown moments of the solution to the kinetic equation. By including equations
for these moments (4.10) and (4.11) one does not resolve the closure problem as
each new equation will always be coupled to a higher order moment. A solution to
the closure problem involves expressing the higher order moments (4.10) and (4.11)
in terms of the conserved moments (4.1-4.3) and their gradients, in a similar way
as for example the phenomenological Fourier law relates heat flux to gradients in

temperature [41].

Before discussing methods of solution to the Boltzmann equation and the
closure problem it is necessary to examine the remaining terms in (4.4). The different
terms in the Boltzmann equation (4.4) introduce the characteristic scales 7, and
Ly that come from the free flow terms on the lhs of (4.4) and are the temporal and
spatial scales over which the macroscopic quantities (4.1-4.3) vary. The collision term
introduces the collision time 7., that in the absence of any spatial gradients is the
time over which the distribution function relaxes to the equilibrium Maxwellian (4.5).
One expects hydrodynamics to be valid when the kinetic equation is dominated by
the collision term and the conserved moments (4.1-4.3) are essentially constant over
the scale on which collisions occur. This will be the case when the following ordering
is satisfied

ma.x{l,p} < Ly, (4.12)

e € TH, (4.13)
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where l,g is the collsional mean free path for species a colliding with species B. The

parameter
6= ma‘x{laﬂ/ Ly, 7o/ } (4-14)

is a measure of importance of the collision term and is small in the regime given by
(4.12, 4.13), § < 1. Hilbert has proved a theorem with regards to the Boltzmann
equation that says, if the equation is dominated by collisions i.e. the collision term
is weighted by 1/8, and the distribution function can be expanded in a power series
in 6 about & = 0, then we can extract a macroscopic description in terms of density,

velocity and temperature [62, 63], resolving the closure problem.

Hilbert’s theorem 4.1 If the kinetic equation can be written

f
and if
f=Yy 8@ (4.16)
n=0

then the solution for f is unique and determined by its five moments at the time t = 0.

n(%,0), #(Z,0), and T(Z,0). (4.17)

A proof of this theorem may be found in the references [61] and [45]. In the class of
solutions to Boltzmann’s equation that can be represented as a power series in 6 (4.16)
there is a one-one correspondence between the solutions f(Z, #,t) and the value of the
conserved moments (4.1-4.3) at any “initial time”. This class of solutions is referred
to as either the “Hilbert Class” or the class of “normal solutions”. Furthermore, this
is true for any time and hence the Boltzmann equation is a one-one mapping of the
Hilbert class into itself. Hilbert has proved that the density, hydrodynamic velocity,
and temperature can be determined directly from their values at the initial time.
Also, since the one-one correspondence between the distribution function f and its
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conserved moments is preserved in time, the pressure (4.10) and heat flux (4.11) may
be determined at any time directly in terms of n, ¥ and T. Substituting these into
the closure relations (4.10) and (4.11) will thus solve the closure problem.

We briefly review the Hilbert method (cf. e.g. [61]) On substituting the
expansion for the distribution function (4.16) into the kinetic equation (4.15) one
obtains a set of equations for each order in 4. To the lowest order the equation to be

solved is simply

J(fO, @) =0. (4.18)
This has the local Maxwellian distribution function (4.5) as a solution, with the
five free parameters that are the conserved moments, n(®, 7@, T©. The next order

approximation is the important one, and illustrates the essential steps that are carried

out for each higher order in turn,
I(fO, fO) + J(fO, §©) = DFO (4.19)
and generally

J( f(o), f(r)) + J( f(f), f(0)) =
DD — J(fO, fV) — L = J(FEH, fD), (4.20)

where the operator D represents the free flow term on the lhs of the Boltzmann
equation (4.4). Hilbert has shown that (4.20) is an equation for f0)/f© of a par-
ticular type, a linear, inhomogeneous, Fredholm integral equation of the second
kind [63]. The solution to such an equation consists of a particular solution, plus
any linear combination of the independent solutions to the homogeneous equation,
fO/f@ = {1,7,v?}, i.e. the summational invariants of the collision operator. For
this class of equations, a solubility condition exists requiring the inhomogeneous term

on the rhs of (4.20) to be orthogonal to all the solutions to the homogeneous equation
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[63]. These solubility conditions take the form
/ dFDf =0, [ 55D =0, / 47 PDfC = 0. (4.21)

because the collision terms vanish by virtue of (4.6). These conditions (4.21) force the
previously unspecified parameters in f("! from the previous order to obey the ideal
fluid (Euler) equations. To reiterate, the solubility condition for the r = 1 equation is
such to fix the parameters n(®, 7@ and 7 in the r = 0 solution, by requiring them
to satisfy the Euler equations. Furthermore, the zeroth order solution is known for all
times if the initial values of n(®, @@ and T©® are known, since the Euler equations
are of first order in time. This procedure can be carried out to any order, and the
unknown parameters at the r*? level are fixed at the r + 1 level and each is uniquely
determined on specification of the initial conditions, n), @) and T, which are
defined according to
n® = [ 4 O, ag® = / d55f¥), and n®TO = % / AT RO, (4.22)
In this way it can be seen that a specification of the full hydrodynamic moments
n= i n nd= f: nM@M  and, nT = f: M (4.23)
r=0 r=0 r=0
at the initial time will determine uniquely the full solution f = £2, f(*) at any later
time, assuming of course that the series for f converges. Such solutions are said to
be members of the Hilbert class, or the class of normal solutions. The most serious
problem with the Hilbert expansion is the inability of the method to generate the
Navier Stokes equations of real fluid dynamics. The value of Hilbert’s method is the

introduction of normal solutions that are central to the Chapman-Enskog method,

[48].

In the Chapman-Enskog method it is the special treatment of the time deriva-

tive that allows the method to generate the real fluid equations, and hence become
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a practical procedure for the evaluation of transport coefficients. In order to achieve
this closure it is postulated that time does not enter explicitly among the arguments of
f and instead only comes through the implicit dependence of the conserved moments,

FE 7,8 = f(£7|8,VB...), (4.24)
2BE0 =M@ A,VE...) (4.25)

where ﬁ is defined as a vector whose components are the conserved moments, i.e. we
have g = {n(Z,t),#(Z,t), T(Z,t)}. Equation (4.25) implies the closed fluid description
where the conserved moments only depend upon themselves and their gradients. Asin
the Hilbert method, the distribution function is expanded in 8, which implies through
(4.25) that M itself is also expanded,

F=FO +6f® +82f@ ... (4.26)

and
M=M® £ MV + M + ... (4.27)
Upon application of the chain rule and (4.25), the derivative of f reads

O M-Vpf + (VaM): (Foga)f + ... (428)

On substituting the expansions (4.26) and (4.27) into the above (4.28) gives

of _ %SO WfO® | BfV
% - ot +4é F + 9t +..., (4.29)
where the operator 3;/dt is defined,
g% =M. Vsf + (VsM(i)) (Vo) f+-.. (4.30)

The procedure now follows the Hilbert method, until the question of the solubility
conditions are reached. Because of the manner in which the time derivative has been

split up, the solubility conditions can now be achieved by requiring that £ alone
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satisfies the ideal fluid equations (obtained from (4.7-4.9) on neglecting the traceless
part of P and the heat flux §') and determines completely the full conserved moments,

n= / 45 fO, ni= [ 45 7f®, and nT=% [ i PO, (4.31)

The higher order corrections f, r > 0 make no contribution to the conserved
moments at all, but the f() are however determined in terms of the full », 7, and T.
The rt* order corrections to the pressure tensor (4.10) and heat flow (4.11) evaluated
from f® will also be in terms of n, # and T and their spatial gradients. In this
way a sequence of successively higher order fluid dynamic equations for n, ¥ and Tis

obtained.

The distinction between the Hilbert and Chapman-Enskog methods is that in
the Hilbert method the distribution function is expanded in a power series, whilst
in the Chapman-Enskog method both the function and the equations are expanded.
In this way it is possible to obtain the real fluid equations (Navier-Stokes) from the
Chapman- Enskog method, but not from the Hilbert method (Which only generates
the ideal fluid or Euler equations). In the Chapman-Enskog method, the transport
coefficients of a gas may be obtained to any degree of accuracy by solving sets of
linear algebraic equations, that result from the linear integral equation on expansion
of the distribution function in a complete set of orthogonal polynomials.

So far the discussion has been focussed on the Boltzmann equation and neu-
tral gases. Plasmas are quite distinct from neutral gases due to the long range of
the Coulomb potential ~ 1/r. In fact, if one naively tries to treat a plasma as a
gas mixture, but with the Coulomb inter-particle potential, then the integrals of the
collision operator diverge [61]. One of the defining characteristics of plasmas is their
ability to support collective effects. The classic example is Debye screening, in which
every particle in a plasma carries with it a cloud of opposite charge that effectively

reduces the range of the charge’s potential to the Debye length, Ap. Interactions
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between particles over distances larger than the Debye length are mediated by the
electric and magnetic fields, whilst only collisions at distances shorter than the Debye
length are considered to be true collisions. Furthermore, the effect of small angle col-
lisions vastly outweighs the effect of the occasional large angle deflection in Coulomb
systems [10]. The kinetic equation obtained by cutting of the range off the potential
at the Debye length and expanding the Boltzmann equation around grazing collisions

is the Landau equation [55],
(’gt‘"” aa-'*‘F -) f(Z9.1) =Zp:0ap(f°,f"), (4.32)
where
aﬁ(fa fﬂ) =
e’e2 InA
BN L Jar (- (g - moar) FOP@). 63)

Here F is the external force that act on the plasma, plus the self-consistent fields
that are governed by the Maxwell equations. As we have seen, a more satisfactory
derivation of the Landau equation may be obtained from the BBGKY hierarchy by

an expansion in the plasma parameter.

The properties we have discussed here carry over to the Landau equation, and
the Chapman-Enskog method applied with only minor modifications.

4.2 Chapman-Enskog method applied to a plasma

The application of the Chapman-Enskog method to a two component (electron-ion)
plasma described by the Landau equation (4.32) and the careful calculation of all the
transport coefficients was first accomplished by Braginskii. His monograph has since
become a standard reference [1]. One of the characteristics of the plasma case is the

disparity of mass between the electron and jon components. This large mass difference
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(~ 1 : 1836 for a hydrogen plasma) impairs the exchange of energy between the two
species and as a consequence, the approach of the two species to a thermodynamic
equilibrium with one common temperature (4.5) guaranteed by the H-Theorem is
slow. Much faster is the equilibration of the particles of the same species amongst
themselves to a common temperature T, as their collisions are much more efficient
at exchanging energy. In the plasma, the electron component is the first to reach
equilibrium in a time of the order of the electron collision time

_ 3 /m. T3
T = TVInZeAnA.’ (4.34)

followed by the ion component in a time

_ _3/mT}?
— m, (4-35)

that is longer by the square root of the mass ratio {/m;/m, for a plasma with ion

Ti

charge Z = 1, and equal temperatures, T; = T.. Only on a time scale a further
‘/m longer than this is an absolute thermal equilibrium with one single tempera-
ture achieved (4.5). In Braginskii’s method the square root of the mass ratio m—m_.
is treated as being of the same order as the Chapman-Enskog expansion parameter
5, that is the ratio of the collision time to the hydrodynamic time (4.14). The colli-
sion operators can be expanded in the mass ratio y/m./m; with the result that the
solution to the ion and electron kinetic equations can proceed almost independently.
Braginskii’s treatment also allows for the presence of an external magnetic field, but
this is ignored for the sake of clarity in the sketch presented below.

In common with the Hilbert expansion, the distribution function for each

component, a = e, is expanded
foE 8t = i_.;&"f"", (4.36)
and the kinetic equation is written in the for:n (4.15),
Ceel %, ) + Clf* ) =
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dfe Bf‘ (e = dﬂ,) af. 6u, .,af‘

iz \mB+ta ) o5 oz o5

_C:i(fm fi—fi) = Calfe: fi)- (4.37)
but Braginskii takes into account just the first term in the smallness parameter 4
fa= A1+ ). (4.38)

This form is substituted into the kinetic equation and the zeroth order equations are
obtained by setting the collision terms, which have been simplified to lowest order in

the mass ratio, equal to zero

Cee(f2, £2) + Ci(f)) =0, (4.39)
Ca(f, fH) =o0. (4.40)

These have separate local Maxwellians as solutions

m. 3/2
20 =) (grpes) - @-TaEOF (44D

in accordance with our discussions. Recall that unlike the Hilbert expansion [63], f2
determines the full hydrodynamic moments in the Chapman-Enskog method. The
density n®, velocity # and temperature T are determined by the equations (4.1-4.3)

on the replacement of f* with f2. This places conditions on the correction term,

/ 47 f°% =0, / 4% =0, / i v %% = 0. (4.42)

To the first order in the Chapman-Enskog parameter, in electron equation
(4.37), the collision term is linearized in ® and f2 only is substituted into the small
terms on the right hand side. Most important, is the treatment of the time derivative
of f° which is expressed by the conserved moments, i.e. it has a normal form (4.24).
As we have already discussed, the result of this approximation is an inhomogeneous
integral equation for the correction @. The solubility conditions of the inhomogeneous
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integral equation are such that the right hand side of (4.37) must be orthogonal to
the solutions of the homogeneous equation, = {1,,v?}. This condition forces
the conserved moments (4.1-4.3) to satisfy the Euler equations, which are the fluid
moment equations neglecting dissipation. These in turn can be used to eliminate
the time derivatives of the conserved moments that arise from the normal form of
f° (4.29). The result is the following linear, inhomogeneous integral equation for the

correction term,

B Cee(ff,ff‘l’)+Cee(§‘5,f3)+0¢.-(ff‘1’) =
ff[(i@“g) ~.v1n1’,+(3‘/§-v%‘-1) T;’%eﬁ-ﬁ + ':—Teﬁl-if

1 v?
+ﬁ (v.-vj - ?J;j) qu] . (4'43)

Notice that the inhomogeneous term on the right hand side of (4.43) is proportional to
the effects that disturb the equilibrium, i.e. gradients in the temperature VT, strains
W;;, flow velocity U, and the friction R. Because the equation (4.43) is linear, the
solution will also be proportional to these terms. Evaluating the nonhydrodynamical
moments corresponding to heat flux ., the traceless part of the pressure tensor o;j,
etc. that are determined by the correction & will give the heat flux due to each
perturbing factor on the right hand side of (4.43) and so on. In this way closure to
the moment equations is achieved and the transport coefficients defined. There are
some extra details that have been omitted in the derivation of (4.43) that result from
the exploitation of the smallness of the mass ratio. The electron ion collision term
to lowest order in the mass ratio is independent of the ion distribution function, and
it is this form that appears on the right hand side, C.;(f2®). The correction terms,
from the full e-i collision term are grouped with the small terms on the right hand
side and are responsible for the terms proportional to U and the correction to the

friction term R!.

49



The ion kinetic equation is linearized in a similar way, but as the ion distri-
bution function is only weakly effected by collisions with electrons, the whole of the
cross collision term C;, is grouped with the small terms on the left hand side. Due to
this, the ion equation has the same form as for a single component gas, and the ion

distribution function is determined entirely by ion-ion collisions.

Cil(f?, f2®) + Cu(f)®, f)) =

2 5\ 1 v?
#l(-3) - vmme g (o) w] . e

The technical problem now centers around the solution to the integral equations
(4.43) and (4.44). As in the original Chapman-Enskog method, Braginskii employed
an expansion in Sonine-Laguerre polynomials, that reduces the integral equation into
a system of algebraic equations.

4.2.1 Solution to the first order equations

To complete the solution, tensor invariance of (4.43) and (4.44) leads to the following

form of the correction

®(?) = <I'.-(v2 Yu; + Q.’j(v2) (v.-v,— - %6"") . (4.45)

The vector term ®; corresponds to the vector perturbations of temperature gradients
VT and flow macroscopic flow velocity i , whilst the tensor term ®;; corresponds to
the rate of strain W;;. The heat flux § and momentum transfer due to collisions R!
will be determined by the vector part only, and the stress tensor o;; is determined by
the tensor part, ®;;.

In order to give a concrete example, consider the source terms that are pro-
portional to VT,. By inspection the solution for the vector part ®; must be of the

following form

®;(v?) = A(¥¥)VInT,, (4.46)
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where A is a scalar function. On adopting this form (4.46) for ®;, it is found that the
function A must satisfy the single integral equation,

Coclf0, £249) + Coalf2A7, 0) + Cul £245) = 2 (2:’,; - -2-) 5 (44

The quantity A(v?) is then expanded in Sonine-Laguerre Polynomials,

2

TR (4.48)

AP) =1 al®d(z), z=
k=1
which replaces the integral equation by the infinite set of algebraic equations
0
Y Auai=du, k=1,2,... (4.49)

=1

and where A is a dimensionless matrix

_ e 1 T @, G/ [\,
Ay = 15n, 2vr, [/dek (x)vtcce(fgr fng (z)v,)

+ [ LD @) Ceal 2L (Yo, £2)
+ [ a7 L (@Yol ffL}””(z)v.-)] , (4.50)

containing matrix elements of both the electron-electron and electron-ion collision
operators. A solution may be obtained by truncating the infinite set of equations
(4.49) at some level. From this solution the terms in the heat flux and friction arising

from temperature gradients can now be written in terms of the expansion coefficients

ai,
g = —2nel, o, (4.51)
ﬁr = —énQZAo,,a;,VT,. (4.52)
2 k=1

The contributions due to the relative velocity U are found in a similar manner. With
the explicit definition of the transport coefficients, we have reduced the kinetic equa-
tion to real plasma hydrodynamics. The validity conditions for the procedure are
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again the smallness of the Chapman-Enskog parameter, which is ensured by separa-
tion of collisional and hydrodynamic scales (4.12) and (4.13).

The Sonine-Laguerre polynomial expansion (4.48) converges rapidly, and work-
ing with the two polynomial approximation Braginskii has obtained the following

results for the closure relations. The heat fluxes are found to be

§ = §u+qr =0.71n.T.i -k VT, (4.53)
§ = —KVT; (4.54)

where
ke =316 %% and k=39 HEE (4.55)

All the electron coefficients contain contributions from both electron-electron and
electron-ion collisions (4.50). The relative importance of these two effects is depen-
dent upon the ionization Z, with the electron-ion collisions occuring Z times more
frequently. Because of this the electron transport coefficients are Z dependent, and
have been tabulated by Braginskii for Z = 1,2,3,4,00. The electron thermal con-
ductivity coefficient (4.55) 3.16 = ((1) can be given for arbitrary charge {(Z) by the

simple formula

((2)=44253 +Z2:; ;Z-Z(:.s Z% (4.56)
The pressure tensor for each species is determined by
oij =-—nW; (4.57)
where the elect.ton and ion viscosities are determined to be
7. =0.73 n.T,7., and 1 = 0.96 n;T;7;. (4.58)
The friction and heat generation are
B =Tl 0513—0.71 0. VT, (4.59)

Te
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and the heat generation in the ion component

Q== 21, - ), (4.60)
and in the electron component
- . 3m. n.
Q.=—-R-@+ ey (T: - To)- (4.61)

One of the key assumptions of the Chapman-Enskog method was the separation of
scales between collisions and the hydrodynamic variables. We will now examine the
limits of validity of (4.12) and (4.13).

4.3 Nonlocal transport

The conditions of applicability of the Chapman-Enskog method (4.12, 4.13) are easy
to realize in a neutral gas, but because of the wide range of characteristic scales

exhibited by plasmas, it is not hard to find conditions where the opposite is true

Lo < low, (4.62)
H € Ta (4.63)

In the neutral gas case, this limit is very uninteresting and merely describes the free
streaming of the gas particles. In the plasma case conditions (4.62, 4.63) correspond
to the complicated interactions via the self-consistent fields that are described by
the Vlasov equation (3.36). Vlasov theory is usually more complicated than hydro-
dynamics because of the need to describe the full dependence in velocity space of
the one particle distribution function f*(%,7,t). In contrast the fluid theory is only
concerned with the evolution of the hydrodynamic variables no(Z,t), #,(Z,t), and
Ta(Z,t). Because of this, velocity space effects such as Landau damping are usually

deemed inaccessible by fluid theories.
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Fluid theory and Vlasov theory are two limiting cases of the general descrip-
tion in terms of the Landau equation (4.32). In the first case, the collision term is
dominant, and in the other it is negligible. Numerical solutions of the Fokker-Planck
equation have shown the inequality (4.12) for the applicability of Chapman-Enskog
theory in describing thermal transport takes the form

Ly <0011, (4.64)

Deviation from classical heat flow is found to occur when the gradient scale length is
still on the order of a hundred mean free paths [3]. This somewhat surprising resuit
is understandable, because in the case of (4.64) the heat flux is carried by the fast
electrons in the tail of the distribution function which have mean free paths much
longer than the thermal average [52]. Condition (4.64) is of practical relevance to
the modeling of Inertial Confinement Fusion (ICF) plasmas and has lead to various
proposals for modifications to the classical heat flow formula (4.53, 4.55) (u; = 0),

G (2,t) = —kPr9VTL(Z,t). (4.65)

Note that classical transport (4.65) is local in both space and time, but any theory
of plasma transport not restricted by the conditions (4.12, 4.13) will necessarily be
nonlocal due to the mixing of hydrodynamic and collisional scales. Luciani et al. [50]
have proposed delocalizing the expression (4.65), by convolving it with some kernel
w(z,z’)

2(z) = [ a7 E(@)u(z,7). (4.66)
The form of the kernel was phenomenological, but has been given analytic justifica-
tion [56]. Albritton et al. [51] have proposed a similar expression to (4.66) by solving
a simplified version of the original Fokker-Planck equation describing the fast unther-
malized electrons responsible for the heat flow. In Ref. [52] Epperlein and Short have
compared the nonlocal expressions [56, 51], by numerically calculating the decay rate
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of a thermal fluctuation in one dimension

T.(z,t = 0) = To + 6T.(0) exp (ikz) (4.67)
described by
I A
Enc-ét- +V-g=0. (4.68)

with the heat flux given by the nonlocal expressions (4.66), from Refs. [50, 51]
and that of the Fokker-Planck simulation. Neither of the models [50, 51] agreed
particularly well with the Fokker-Planck results. Because of this Epperlein and Short
have proposed their own nonlocal formula which reproduces the correct wavenumber
dependent decay rate for the fluctuation (4.67) in comparison with their Fokker-
Planck simulations [52]. They also raise the issue that the correct form of the nonlocal
expression may be dependent upon the type of perturbation considered. For example,
the relaxation of temperature in a thermal wave (4.67) could differ from that in an ion
acoustic wave, and also be affected by the presence of a laser pump, which modifies
the form of the distribution function due to inverse bremsstrahlung heating.

The nonlocal formulas [50, 51, 52] are intended to describe transport in the
weakly collisional regime roughly defined by the inequality [54]

0<kly < % (4.69)

In the context of magnetic fusion research Hammett and Perkins (58] have shown how
plasma response in the collisionless regime (4.62), may also be reproduced in fluid
moment equations, by the appropriate choice of closure. This work was motivated by
the relative simplicity of the fluid models over Vlasov models, being both easier to
solve and more transparent to physical insight. The fluid moment equations lead to
rational polynomial expressions for the electron and ion susceptibilities. The trans-
port coefficients are then chosen so as to reproduce the correct collisionless forms for

the susceptibilities.
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A combination of the ideas of delocalizing thermal transport, and the inclusion
of collisionless response into fluid moment equations [58] has led Berger et al. to
include a novel closure into the fluid equations in their 3D fluid code, for the purpose
of investigating the filamentation of laser light in ICF plasmas [65]. The importance
of the proper treatment of nonlocal effects for the understanding of filamentation has
also been discussed by Epperlein et al. [53] in connection with the experiments of
Young [66]. This nonlocal closure used in the investigations of Ref. [65] is explained
by Kaiser et al. [67] and is an attempt to provide a closure valid for arbitrary ratio of
perturbation wavenumber k to electron-ion and ion-ion mean free paths, kl.; and kl;.
The method is similar to Hammett- Perkins, but the transport coefficients are allowed
to possess arbitrary wavenumber dependence, determined by requiring the plasma
response to agree with that from a kinetic Fokker-Planck analysis. The ion transport
coefficients are chosen in such a way as to reproduce the correct ion damping compared
to the Fokker-Planck results of [71, 72] and the electron thermal conductivity is taken
to be a smooth interpolation between the nonlocal models of [51] and the Hammett-
Perkins value [58], which produces the correct collisionless value for electron Landau

damping for kl.; > 1.

We will now describe a theory for closure to the hydrodynamic moment equa-
tions, also capable of describing transport occurring with an arbitrary ratio of scales,
including the collisionless Vlasov regime (4.62, 4.63). In contrast to the method of
Kaiser et al. [67] this is not achieved by a fitting procedure, but rather from the solu-
tion to the kinetic equation (4.32) for electrons and ions on the assumption that the
plasma is close to equilibrium, highly ionized Z >> 1, the temperature ratio ZT./T;
large and the plasma motions quasineutral. Nonlocal electron transport is described
in section 4.4, and has some similarities with the Chapman-Enskog method. The re-
sult is a full set of nonlocal (w and k dependent) transport coefficients. Ion transport
is approached via a different method (Grad 21M) and is described in Section 4.5.
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The ion closure is in terms of temporally nonlocal viscosity and thermal conduction.
The resulting closures reproduce the correct dispersion and damping of ion acoustic
waves over the whole range of electron and ion particle collisionality when compared
to Fokker-Planck simulations [75, 71, 72, 73).

4.4 Nonlocal electron transport

4.4.1 Legendre decomposition of the kinetic equation

The electron kinetic equation is linearized with respect to a small perturbation, which
may be interpreted as either the correction to the single particle distribution function,
or with the results of the last chapter the phase space fluctuation,

fo(Z,3,t) = F§ + 6/(Z,7,t). (4.70)

We restrict ourselves to the isotropic case and expand this phase space fluctuation in
Legendre polynomials,
o0
5f(v,1) = 3 PUWSA(v), (4.71)
1=0
where p = k- #/kv. From the electron kinetic equation we obtain an infinite set of
equations for the angular harmonics,

défo 0F,

e -k 6fi — km"-ﬁv_ =Cel[6fo], (1=0), (4.72)
tkvé fo + zzkvéfz + z——k&qﬁ% = ~Vi0f1, =1, (4.73)
gzkvés fi + :-;-zkvé fa— gzkvu, aaFo = =3v.bf2, (l=2), (4.74)

. l+1
tkvd fi—y + N +3

1
T—1 tkvé fi = —51 (I + 1)veid f, (1>2). (4.75)

It is necessary to examine the different terms in this set of equations and justify

the approximations that have been made. The terms arising from the time derivative
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in the kinetic equation are small as we are interested in low frequency phenomena
w ~ kcy € kvr. where ¢, = Wm_. Because of this, the time derivative has been
kept only to the lowest order in the equation for the symmetric part of the distribution
function (4.72). Formally the stationary approximation for angular harmonics with
[ > 1 assumes that w < v,; but in fact it is also valid in the opposite limit as far as the
wave phase velocity is small, w/k < vr.. The collision operators are defined in the
jon reference frame, and therefore the ion velocity shows up in the I = 0 (4.72) and
[ = 2 (4.74) equations. These correspond to compression and viscosity respectively.
In the ! = 1 equation (4.73) the term proportional to d¢ is the acceleration in the
perturbed potential. The advection term in the kinetic equation 7 - 8f/87 couples
the [ equation to the I + 1 and | — 1 equations as a result of the identity for Legendre
polynomials
[+1

l
pFPi(p) = 2l_+1.P'+l(”) + mﬂ-l(#)- (4.76)

In fact this advection term is solely responsible for the coupling of the equations for
the harmonics with ! > 2 (4.75). In the equations for all harmonics with [ > 0, the
term on the right hand side is the angular scattering of electrons due to collision with
jons. The term is especially simple as Legendre polynomials are eigenfunctions of the

electron-ion collision operator in the Lorentz approximation,
CulPSA()] = =540 + Dy o). (77
In the symmetric, [ = 0 equation
C.c[6fo] = C.e[Fo,0fo] + Ceeld fo, Fol (4.78)

is the linearized isotropic part of the electron-electron collisional operator. The ex-
pression for the electron-electron collision term C.. is more complicated because it
is nonlinear with respect to f. and contains integral terms [60]. In highly ionized
plasmas, Z > 1, the collision term C., is Z times smaller than the electron-ion col-

lision term but is still important because it is responsible for energy redistribution
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between the electrons. Epperlein has shown this in his numerical investigation of the
ion acoustic damping rate [75]. For this reason we only account for electron-electron
collisions in the equation for the symmetric part of the electron distribution function
(4.72) because here the electron-ion collision term does not contribute.

Landau damping and a renormalized collision frequency

The usual strategy for solving this infinite hierarchy of coupled equations rests on
the assumption that the higher harmonics are small. In the collisional region a good
approximation may be achieved by truncating the series at some ! = Iy, and setting
5fi =0, for | > lnae (usually lnar ~ 2) [49, 59]. The approximation is very good for
the strongly collisional region and can be expanded into the more weakly collisional
region (by the inclusion of more polynomials), but such a scheme can never capture
collisionless Landau damping. To see why this is so, let us briefly consider the source
of Landau damping, or as it is sometimes called “phase mixing”. Landau damping
results from the advective term in the kinetic equation, as can be appreciated from the
following example, due to Hammett and Perkins, [58]. Let the distribution function

evolve from an initial perturbation in density
8f.(z,v,t = 0) = dn(0) exp(ikz) Fo(v) (4.79)

according to the equation

0 i/
(5 + va—z) 8fe(z,v,t) =0, (4.80)
i.e. simple advection in 1D. At time ¢ the perturbation in the distribution function

will be given by
8fe(z,v,t) = 5n(0) exp ik(z — vt) Fo(v), (4.81)

and the initial perturbation in the density will be damped away due to phase mixing,

sn(t) = 6n(0) ezp(ikz) /_ : dv exp(—ikvt)Fy(v) (4.82)
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(4.83)

Alternatively, Landau damping may also be viewed as a resonance effect. For example,

on Laplace transforming (4.80) in time with the initial condition (4.79)

on(z,p) = i6n(0) exp(ikz) / dv kv (4.84)

and since the electron thermal velocity greatly exceeds the plasma velocity vr. >» w/k,
the resonance, and hence damping comes from the electrons that propagate almost
across the wavevector. These electrons are described by high ! harmonics.

A summation procedure that avoids truncation and includes all the angular
harmonics has been described by [56, 57). The idea consists of the solving of Eq.
(4.75). Putting the second term on the left hand side of this equation into its right
hand side and introduce the modified collision frequency
l+18fiqr

(l + 1)vei +14 kv2l T3 65, (4.85)
then the formal solution of Eq. (4.75) reads
l
ofi = —z——& fi-1- (4.86)

If we substitute this solution (4.86) back into (4.85), then a recurrent formula for

appears

Pk
42-1 i
which completes the formal solution of Eq. (4.75). In fact, it is enough to calculate

Py = %z (e (4.87)

in = viHy(kv/ve.:), because all necessary functions can be expressed through it ex-
plicitly. The function H, can be written as a continued fraction, but in Ref. [57] the
simple approximation was proposed Hy(z) = [1 + (rz/6)?]'/? which has the proper
asymptotics and deviates from exact solution by less than 10% when z ~ 1. The set
of equations for the angular harmonics (4.72-4.74) is now closed, and can be written
for & fy by back substitution.
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4.4.2 Nonlocal hydrodynamic closure

So far we have performed a Legendre decomposition of the kinetic equation and made
approximations that have left us with the much simplified equation for the symmetric

part,
i) ] 1 IF
oo _ Lkusfy + shubusd = Culbfel, (48)
1kvé fo + 1—k6¢aF° —(n - u,,)Ju,aaI:; = —~in6fy. (4.89)

The important points are: The effects of all higher order harmonics and hence Landau
damping are contained within the renormalized collision frequency, i, and electron-
electron collisions are only accounted for in the equation for the symmetric part,
which is consistent with the assumption of large Z. The next step is the reduction
of this kinetic equation into a closed set of fluid equations. This begins by solving
(4.88) and (4.89) for 6fo and taking the Laplace transform in time, which introduces

the initial condition,

(kzvz )(m_eaqs )-culéfo]=

3n
edd v v,
~p— T, Fy — tku; 32, v

Central to the Chapman-Enskog method was the assumption of the normal form of

t =0). (4.90)

the distribution function (4.24). Such a form is not assumed here ezcept at the initial
moment in time. We can consider that the system was prepared in such a way as the

only fluctuations correspond to those of temperature and density (8],

s1a(0,0) = [ 228 4 20 (o -3)| A (491)

T,
With this choice of initial condition and due to the linear form of the equation (4.90)
for 5f, the solution can be expressed as the linear combination of the three basis

functions ¥4 (A = N, R,T),
0fo = -e;,gFo + E PA¢AF0 (4.92)
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We have made the definitions, Py = én.(0)/n. — pedp/T., Pr = 36T.(0)/2T,, and
Pg = —ikéu;. The ¢4 in (4.92) must then satisfy the equations

k%2
(—571- +p) ¥* = F5'Ceel Fot*] + Sa, (4.93)

with the three different source terms Sy = 1, Sp = v2/3v2,—1, and Sg = v?v,;/3v% 11.
This is analogous to the integral equation (4.43) in the Chapman-Enskog method,
where the right hand side of the equation for the correction to the distribution func-
tion is given by factors that disturb the equilibrium, i.e. gradients in temperature etc.
Here the source terms correspond to the disturbance in electric potential, ion velocity
and the initial perturbations in density and temperature. If one now calculates the
present density én.(t) and temperature 6T.(t) from the solution for 4 fo (4.92),

fn = 4r /0" dv 25 f, (4.94)
5T = 4;';’:‘ /o * dv (s — 312,)6 fo, (4.95)

then the initial conditions Py and Pr may be eliminated. Putting this solution into

the equation for df; (4.89) gives,
By JEy — Y

_ kv ST N + TR = (FF + I

Sh=—75 = DNT Fo—i % DYZ Fo-
véu; DIR DYR
2 ~ v+ k2 R ZNT N __ ZNT .
Vlv%e vVl —Vei + v%‘e ("p + D%'p” Dﬁgﬂ)] Fo,(4 96)
where the following Sp moments of the 14 have been introduced,
JA= ?— [ PdvsrFuSs, and DB =USIR-JRIG.  (a97)
Oe

With éf; given by (4.96) closure has been achieved. The reason why this expression
achieves the closure is because 4 f; is responsible for transport, i.e. current, heat flux
and friction. Furthermore, § f; is now dependent only upon the conserved moments

and as a result, so are the fluxes. The current is given by,

5j = —e / 4578 f., (4.98)
= -%5 Pdvsf,, (4.99)
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the heat flux by

1
6 = 5 [diams® —ST)of.,

2
= -3—/02d‘v (m¢02 —5n)6f1,
and the friction by

0R;,, = m, / dWVnJ.f e,
4mm,

= = / v2dvvadfi,

which will then define the transport coefficients through

8] = o8E* + aiksT, + Bjen b,
6§ = —aT.8E" — xikéT, — B Tg5%;,
Jﬁie = ‘(1 - ﬂj)nce‘sﬁ‘ + ﬁqneiEJTe - ﬂrmeneaﬂivl'e/ lei-

The results are,

en. [ J¥ en. (J¥ +JT DEL,
7= PL. (Dﬁ%"”)’ "“kzn( DY} “’)’ fi=1-Drg
ﬂ_Dﬁ’T+Dﬁ¥ _ne (2IF+JIN+IT 5
q = Dﬁ%‘ ? X—kz Dﬁ% 2p ,

B = 1+Furds (JB- (1 -8 +JR) +B.JR)
_ 3 /2‘01-c dvvFo
S il A Y P

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)
(4.105)
(4.106)

(4.107)

(4.108)

(4.109)

These algebraic expressions involve the Laplace time variable p. However, in the

application of these formulas in describing slow phenomena (on the order of the ion

acoustic time-scale) this p dependence is small and can be ignored p — 0. Bychenkov

et al. [8] have analyzed these expressions, and shown that they possess the correct

limit for small wavenumbers, i.e they reduce to the same expressions as Braginskii. For

larger wavenumbers, this closure has been shown to produce the correct dispersion

and damping of ion acoustic waves over a wide range of wavenumbers, including

Landau damping [8].
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4.4.3 Laguerre expansion

The three functions ¥4 that solve the integral equation (4.93) and are required for
the calculation of the transport coefficients (4.107-4.109) may be obtained via an
expansion in terms of generalized Laguerre polynomials L{/?(z),

W) = (ZZ )Zc“L“/’)(vz/mv’) (4.110)

The idea is the same as in the Chapman-Enskog method described in section 4.2.1.
The procedure is to expand ¥4 in generalized Laguerre polynomials (4.110), where
z = v?/2v2,. Next, on multiplying (4.93) by the polynomial LG/?(z) and weight
function z'/2 exp (—z) and integrating over x we convert (4.93) into a linear system
of equations for the expansion coefficients, c2.

Amacl =4 (4.111)

Here, b2 comes from integrating over the source term S4, and Ap,p is the sum of two

contributions, Ama = Dpmn + Cma that come from the advective and collision term

C.. in (4.93) respectively. The explicit forms are,

bA = /0“' dzz"/?e* LD (z)S, (4.112)
and

8 3 _,
Amn = 57220 [[” do e 18P @)L (@)

+ 3 /o" dze=7(3/2,z) L () LYY (z)

- 2 [n i 1 /ow dzz52e-2 LSV (z) L83 (z) + (m & n)] . (4113)

To see how this arises, note that from [74] the collision term Fy'C..[Foy*] may be

written as
Fi'CulFod'] = Fy' fuu(v)v (Fo(v)G), (4.114)
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where G is given by
G = e d'/’A & (3/2,*/203,) - i-[ dww? —wiFo(w)
+o [Cal @] @)

A change of variables to z = v?/2vZ, bring this to the form

-1 k”T e ~-1/2 =z d -z
Fy'Coe[Fov?*] = i e n (e=G), (4.116)
where
dy 328" _y a2 [T & __,
G= 3—7(3/2 z)— [’o dyy v eV+z _L dy dye . (4-117)

On multiplying this through by z'/2exp (—z)L{/?(z) and integrating over z, we
obtain after one integration by parts,

dLg _, (. dL3
Cnn = /0“’ dr =2 { 1 (3/2,2)

dL/2) dL(1/2)
- 3/222n__ o-v 4 8/2 —n__~v
2[/:dyy dy eV+z /z dy dy e ]} (4.118)

Now making use of the relations

(1/2)
a6 _ 1) (4.119)
and
z _ 1 -
/0 LS e? = —— LY (@) e (4.120)

and a change in the order of integration in the third term in (4.118), the electron
collision part of the result (4.113) follows. A Fortran code has been written by the
author that calculates the matrix elements (4.113), solves the matrix (4.111) for the
expansion coefficients ¢ and then determines the transport coefficients (4.107-4.109)
for any wavenumber. Details of the workings of this code can be found in Appendix
C.1.
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4.5 Nonlocal ion transport: Hermitian moment

method

Moment methods are an alternative way of solving the kinetic equation. The most
famous of these is the Grad 13M method [68]. The distinction between the moment
method and the Chapman-Enskog method can be understood as follows. In a mo-
ment method the distribution function is expanded in a complete set of orthogonal
polynomials. The irreducible tensorial Hermite Polynomials, H{®),, (¢) are a good
choice because of their orthogonality properties with the Maxwellian weight function
[41]. The use of irreducible polynomials further clarifies the structure, for example
certain moments can be identified with physical quantities. The full (infinite) set of
moment equations can be considered, not as a fluid model, but rather as a bona fide
representation of the kinetic equation. Practically, one must truncate the hierarchy
of moment equations at some level, which is where physical approximations must be
made. The assumption of the normal form of the distribution function employed in
the Chapman-Enskog method is not assumed, and therefore it is sometimes possible
to extend the description into the weakly collisional region. We will show that this is
indeed the case for high frequency ion transport w 3> {v;, kvr;} as associated with
ion acoustic waves in plasmaé with large ZT,/T;. This has previously been described
in Ref. [64]. Because the usefulness of the (somewhat generalized) Grad 21M method
in describing high frequency response is applicable only to the ion component, our
discussion will omit the electron part. For a good description of classical transport
and the Grad moment method one can refer to the book by Balescu [41].

Following the version of the Grad 21M method described by Balescu, the

distribution function is written as

o3, %,t) = f°°7, %, t)[1 + x*(7, £,1)] (4.121)
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where fo0 is a local Maxwellian distribution function (4.5), which determines the
hydrodynamic variables ng, i, and T,. In the collision dominated regime, the distri-
bution function is close a local Maxwellian, and hence the function x may be expanded
in the Chapman-Enskog smallness parameter 4,

x=0xW +x? +... (4.122)

which has the same form as both the Hilbert, and Chapman-Enskog methods. All the
information concerning the deviation from this local equilibrium state is contained

within the function x*(¥, Z,t). This function is approximated as
Xo(E51) = e.B2E 1) + (cres = 5%0) CREE) ++- (4.123)

where ¢ = \/ ma/Ta(¥ — U), and the higher order anisotropies have been ignored.
Comparing (4.123) with (4.45) of the Chapman-Enskog method, the vector part B? is
responsible for heat flux, and is expanded in vector Hermite polynomials, He@n+)(g),
The tensor part C2 gives the pressure tensor, and is expanded in second order irre-
ducible tensor Hermite polynomials, H{¢2"(¢). The 21M approximation consists of
taking
.B2(,6t) = heO(@EZ, ) HO (D + O E, ) HP (@) + ... (4.124)
(c,c. - -;;cza,,) Ca(Z,&t) = he?(Z,)HD (@ + heP (@, )HD @ + ..., (4.125)

and ignoring vector polynomials of degree higher than 5, and the second order tensor
polynomials of degree higher than 4. The vector Hermite polynomials needed in this

approximation are

1
H® @) = \/—T-b-c,(cz -35), (4.126)
HO@ = 2\}.76c,.(c‘—14¢:2+35), (4.127)

and the traceless tensors of the second rank are

HO@ = %(c,c. - 36, (4.128)
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2V7

Once determined, the unknown space and time dependent coefficients of the expan-

HY® = ——(cce— %c’&,.)(c’ ~7). (4.129)

sion (4.124, 4.125) h‘,?l(,',",,).' known as the “hermitian moments”, will completely define
the distribution function (4.121). The h2(") (Z,t) are the averages of the Hermite
polynomials H3(™) (&) over the deviation of the distribution function x*(¢, Z, t) with
respect to the Maxwellian weight function,

hm, @0 = [de e (<) HR @XGEY. (4130

The first few are identically zero and have not been written in the expansion (4.124,

4.125),
ha(O) =0, hﬂ(z) =0, and h:(l) =0. (4.131)

This is due to the conditions imposed upon x* by the requirement that the Maxwellian

part completely determines the conserved moments no, T and %,
[aagoxm=0, [antroe =0, [dmfoxs=0.  (@4132)

Some of these moments are related to quantities of physical importance. Namely,

he® in (4.124) is related to the heat flux ¢2, and hZ{® in (4.125) the stress tensor

Uf,,
3/2
@ = ‘/gm., (%"-) nahe® (4.133)
0% = V2 T,h2®. (4.134)

The moments h2®® and h2#) have no such physical interpretation, however. On
numerating the moments, we see there are 5 for n,, 42, Ta, 3 components of the
heat flux h2®, 5 independent components of the pressure tensor he® which amounts
to a total of 13 moments. The other 8 come from the nonphysical moments h*® (3
moments) and h%? (5 moments), to a total of 21.
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The derivation of the moment equations from the Landau kinetic equation
(4.32) is explained in some detail in the book by Balescu [41]. We are not interested
in the details of the derivation, and hence we will quote only the important points,
and also ignore the magnetic field. The nonlinear equations of evolution of the vector

moments are

d mN\Y2 7 e
—p) = [ & —_—
8th' (Te ) (m,E' +

which is not a true hermitian moment of x, since this vanishes by (4.132). Rather it
is related to the electric current j, = en.y/T./m.h{!.

9 5/T 1/2 1

—he®) = (= —

ot h,. ‘/;( ma) Ta V'Ta

+Q°® 4+ Ue® 4 pe® 4 C2® 4 Ne@®, (4.136)
Q® 4+ Uo® 4 p2® 4 C*® + N2®, (4.137)

v,(neT,)) +QW + UM 4+ CM + NI, (4.135)

_6_ R

atf

The second rank tensor moments evolve according to

a 1

Zh?D = W
at rs ﬁ ¥
+Q°® + U@ 4 D@ 4 C2D + N3P, (4.138)
0
51::,(4) = QW 4+ U™ 4 D2W 4+ C2W + N79. (4.139)

The right hand sides of (4.135, 4.136, 4.138) have a common structure. In the equa-
tions for hY) (4.135), h2® (4.136) and hZ? (4.138), there are terms involving the
hydrodynamic variables, the modified electric field E + V(n.T.)/en., gradients in
temperature VT, and the rate of strains W;;. These may be identified with the
“thermodynamic forces” that perturb the equilibrium state. There are the collision
terms Q°™, which arise as the nonhydrodynamical moments are averages of dy-
namical variables that are not collisional invariants (4.6). These are the generalized

Q™ = n! / d7HT™) (‘/_: (- ﬁ"’)) Cao- (4.140)
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In the linear theory, i.e. neglecting all terms of higher than first order in § (4.122)
the only important terms are the source terms E +V(n.T.)/en., VT, and W§ and
the linear parts of the collision terms (4.140). The remaining terms in (4.135-4.139),
the “up-term”, U2™, the “down-term”, D2(™), the “convective terms”, C2™ and the
“non-linear” terms N2 turn out to be negligible and may be discarded [41].

The generalized frictions (4.140) involve matrix elements of the Landau col-
lision operator Chor (4.33). These may be written in terms of Gaussian integrals
and can be evaluated analytically [41]. Our interest is in the ion kinetic equation,
and hence we only consider those coming from the linear part of the ion-ion collision
operator,

Cal£2, F1%) + Cal £, 1) (4.141)
The ion-electron collisions have a much smaller effect (by the mass ratio m./m;) as
has already been mentioned in the discussion of the Chapman-Enskog method (4.2).
The collision terms (4.141) only couple the ion moment equations of the same tensorial

nature amongst themselves,

RQI® = —dhi® — &), (4.142)
RQ® = —cihi® — Eh®, (4.143)
nQ® = —chohi® — ch hY, (4.144)
LQW = _cHhi®D — &AW, (4.145)

The coupling coefficients are symmetric under interchange of the indices, due to the
symmetry of the collision operator, c;; = cj; evident in (4.33). The vector coupling
coefficients are evaluated to be,

2v2 3v1d 9v2
33 = 5= €85 =053 =~y 05 = (4.146)
and the tensor coupling coefficients are
3v2 9v7 41v2
C2=—p— Tl = g5, (4= g (4.147)
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We have dropped the i superscript, as the electron coefficients will not be mentioned.

With the expressions (4.142)-(4.145) for the generalized frictions and the ex-
plicit values for the coupling coefficients (4.146), (4.147) the the linear theory for the
ion vector moments (4.136, 4.137) becomes

gt-h:"@) = _%@,hgs) +c35hi®) — J—.g: (.:‘l) 1ﬂil,;v,:r.- (4.148)
g-thi(") = —%(c';ahi@) + cighi®), (4.149)
and the ion tensor moments (4.138), (4.139),
D pe = L@ + hi) - 2wy, (4.150)
ot T v2 Y
DHO = (gl + ). (4151)

Equations (4.148-4.151) with the coupling constants (4.146) and (4.147) comprise the
description of ion dynamics in the Grad 21M approximation. A solution of these

equations will define the heat flux and stress tensor, closing the conservation equa-

tions.

4.6 Solution to the Ion moment equations

4.6.1 Classical transport regime

The equations governing the ion dynamics in the 21M approximation (4.148-4.151)
are inhomogeneous, first order differential equations. Because of this, we may write
their solutions in terms of the Green functions
GPI(t) = —15Y EmG™(), (4.152)
m
GP(0) = b (4.153)
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The dot implies a time derivative. The solutions for the moments are formally written

as
K@) = Y GOI(5)h(0)
=35
o [t e [3n(E) " Lvne-n, s
for the ion heat flux, and
K@) = 3 GP (AP (0) — v / dt G ()= \/-W.,(t -t), (4.155)

q=24
for the ion stress tensor moments. Substituting these expressions (4.154-4.155) into

the hydrodynamical equations using the definitions (4.133) and (4.134), will achieve
closure as the heat flux and pressure tensor are functionals of the conserved moments,
n, @, and T,. The present form of (4.154) and (4.155) would give rise to integro-
differential equations for the evolution of the temperature and velocity, in which the
rate of change of the temperature would depend on its previous history, as well as the
initial conditions for the heat flux §;(0) and stress 5;(0). These are features not present
in classical hydrodynamics. Based on the assumption that the hydrodynamic scales
are much longer than the scale upon which collisions occur (4.12, 4.13) i.e. § € 1, one
should look for the asymptotic solution to (4.154) and (4.155) for times ¢ much longer
than the jon collision time, 7;. For § < 1 the propagator G®(t) can be shown to
decay exponentially within a few collision times ¢ ~ 77;. The initial values for the heat
flux and stress in (4.154) and (4.155) then disappear, the upper limits of the integrals
in (4.154) and (4.155) can be replaced by infinity (adding essentially zero), and the
sources VTt —t'), W;;(t — t') expanded as a Taylor series about time ¢. Ignoring
all but the first term in the Taylor series VTi(t — ¢') ~ VT(t), W;;(t —t') ~ Wi;(t)
gives familiar classical expressions that are local in both space and time. In the
21M approximation, these agree very well with those obtained by Braginskii. In fact
the 21M method is equivalent to the Chapman-Enskog method with two Laguerre-
Sonine polynomials [41]. The 13M approximation (which is obtained from the 21M
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approximation by neglecting the moments h{® and hi") is somewhat poorer, with
deviations of up to two times from the Chapman-Enskog values, especially for the jon
thermal conductivity and for large Z [41].

4.6.2 Nonlocal ion transport

It has been shown by Bychenkov et al. that retaining the temporal nonlocality inher-
ent in (4.154, 4.155) allows for a valid description of ion transport in plasmas with
large ZT./T: [64]. This can be attributed to the fact that temporal nonlocality is
more important than spatial nonlocality, as in ion acoustic waves, the phase velocity
Cs ~ \/ET,_/T: exceeds the ion thermal velocity vr; = ‘/-7717:_. by ‘/—ZT—,/?. and the
frequency w exceeds the ion-ion collision frequency v;, w > {kvr:, vi, Veim./m;}. In
the nonlocal theory we assume that the transients arising from the initial preparation

of the system have disappeared leaving the temporally nonlocal expressions for the

heat flux
g(Z,t) = __\_/_25_111,1'1; [ f dt t’)] (4.156)
and stress tensor
7, (&,8) = —niir [ [ d GEIEWo(t = )], (4.157)

It is convenient to work in Fourier space, as the closure relations are then simple

algebraic expressions rather than convolutions,

Ze .-

—twod; = ~ ik — — (Jn,T +0Tin;) + ——1 ik - 86;, (4.158)
m; m;n; min;
—iwbT, = -;Tf iR 6 — —2-53= 5. (4.159)

The friction terms in (4.158, 4.159) have been ignored, since for the low frequencies,
the plasma motion is quasineutral én. ~ on; and current free 5}' ~ 0. Also, in the ion

temperature equation (4.159) the heat generation term is also ignored as this is a very
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slow process, negligible on the time scales of interest w 3> v.;m. /m;. The frequency
dependent closure for the ion stress tensor do; = (k - 85; - k)/k? reads

§o; = ‘-;-in.-(w) g i, (4.160)

where the ion viscosity is given by the simple expression,

ivi(w + 1.46 ;)

w=nlnfh %= T 20w (@ + L46iw) + 0.2317 (4.161)

The numerical coefficients in the last expression (4.161) come from the from the
matrix elements of the ion-ion collision operator (4.147). In the static limit w — 0
#; = 0.96, which agrees with Braginskii’s result [1] for the ion viscosity. The closure

for the ion heat flux may be written
6G; = —ik K;(w)oT: (4.162)

in terms of the frequency dependent ion thermal conductivity

oo 2L o o _ ivi(w + 1.29i17)
Eam M= 0+ 080i,) (w + 1.2945) +0.21 07

(4.163)

Again the numerical coefficients come from the matrix elements (4.146). The static
limit for the thermal conductivity w — 0, & = 1.56 is also in agreement with Bragin-
skii’s result [1].

The set of equations (4.158, 4.159) together with the closure relations (4.160-
4.163) constitute a valid description of ion dynamics where ZT./T; > 1, in which

case Landau damping is an unimportant mechanism [64}.
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Chapter 5

ION ACOUSTIC FLUCTUATIONS IN LASER
PLASMAS

5.1 Introduction

The creation of hot dense plasmas with lasers is an essential feature of X-ray lasing
schemes as well as inertial fusion experiments. In such plasmas Thomson scattering
is useful for both characterization, which is necessary in order to calibrate and verify
computer simulations, and also in the investigation of basic plasma physics. It has
recently become possible for Thomson scattering to measure ion acoustic wave fea-
tures such as damping and phase velocity in laser plasmas which allows ionization
and temperature to be time resolved {35, 36]. Advances in the understanding of scat-
tering instabilities have been made possible by Thomson scattering from enhanced
levels of plasma fluctuations (cf. e.g. [29, 30]). Furthermore, Thomson scattering has
been used as a tool for understanding basic plasma physics close to thermodynamic
equilibrium. For example, both branches of the ion acoustic dispersion relation have
been directly observed in a plasma with two ion species [31], and the ion plasma wave
dispersion relation has been verified for the first time [32]. The utility of Thomson
scattering, of which the above are examples, can be further enhanced when used in

conjunction with better theoretical models.

The cross section for the Thomson scattering of laser light from plasmas is

determined by S(k,w), the Fourier transform of the electron density autocorrelation
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function. This is well known in both the strongly collisional and collisionless limits,
whilst the wide intermediate (weakly collisional) region of importance to laser plasmas
has not yet been addressed. In Chapter 3 we have demonstrated that the two point
correlation function of the phase space fluctuation (5f*(%, ¥, t)d f? (£, To, to)) obeys
a linearized version of the kinetic equation for the one particle distribution function
f(Z,7,t) in the %, ¥, t variables. This is a kinetic version of Onsager’s “regression
of fluctuations” [46] whereby fluctuations evolve from their initial values according to
the equations of linearized hydrodynamics. Indeed it can be shown that this kinetic
description reduces to Onsager’s prescription in the hydrodynamic regime (I, /Lg €
1,v,mg > 1) by a modification of the Chapman-Enskog method (cf. e.g. [18]).
Here [, and v, are the collisional mean free path and collision frequency of species
a respectively, and Ly, 7y are the length and times scales for the evolution of the
fluctuating hydrodynamic variables. The derivation of Onsager’s method from kinetic
theory can be used to justify the validity of the method not only for thermodynamic
equilibrium, but also for fluctuations about some nonequilibrium background state,
that may for example support a heat flux. This will be made the subject of Chapter

6.

We will further extend the method’s validity outside of the usual hydrodynamic
regime by making use of hydrodynamic-like models that capture kinetic effects.

We will analyze in detail two cases of our general expression for the dynamic
form factor, S(k,w): the ion weakly collisional case where ion viscosity (modified by
finite frequency) is important together with collisionless electron Landau damping,
and the weakly collisional electron case in which the ions are collisional and the elec-
tron transport nonlocal. In the ion weakly collisional case we present an analytic
expression for S(k,w) that describes the effect ion-ion collisions have on the posi-
tion and width of the ion acoustic peaks in the scattered spectrum. We discuss the
relevence of these findings to some experiments reported in the literature [35, 36]. We
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will also outline the range of parameters in which ion collisional effects are important
and the usual collisionless theory of S(k,w) is inadequate [21]. Our theory of S(k,w)
also predicts the correct line shape for plasmas with weakly collisional electrons that
are commonly encountered in laser plasma interaction experiments. The height of
the ion acoustic peaks is determined by the damping of ion acoustic waves. Since
this damping depends on plasma transport properties, in particular electron thermal
conductivity, we propose that the nonlocality of heat transport may be inferred from
the scattered spectra. We assert that these descriptions are not only correct for hy-
drodynamic fluctuations, but also for fluctuations whose ratio of wavelength to mean
free path is arbitrary. Comparison of our results with the standard collisionless cases
will also be used in order to justify our method.

5.2 Theory of low frequency fluctuations

5.2.1 The closure problem

Laser plasmas are quite often non-isothermal as a result of inverse bremsstrahlung
heating that preferentially heats the electrons, T. 2 Ti. The ionization can also be
large especially for heavy elements such as gold, Z > 1. Therefore in many experi-
ments there exists a separation in scale between the electron and ion collisionalities
expressed by the relation l.; = (Z2T./T;)*l:/ V2, where l.; and [; are the electron-ion
and ion-ion collisional mean free paths, l.; = vr, /ve and l; = vpi/v;. Here we have

adopted the usual definition of collision frequencies,

4 440 A,
Vi = 4v2nZe n;;\,’ and v = 42 n/.zA,’ (5.1)
3 Mede 3 mil,;

where A,, are the Coulomb logarithms. Considering an ion acoustic fluctuation in the

plasma with a wave vector k, and the separation l.; 3> l; we consider the following
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possibilities:

kl;, kl.; €« 1 strongly collisional case (Braginskii) (5.2)
kl; 1, kl.;~ 1  weakly collisional electrons (5.3)
kl; ~1, kl;3> 1  weakly collisional ions (54)
kl;, kl,; > 1 collisionless case (Vlasov) (5.5)

In the first case (5.2), the linearized fluid equations of Braginskii [1] correctly
describe the evolution of the fluctuations and ion acoustic damping is determined
in terms of the classical transport coefficients of thermal conduction and viscosity.
In the last case (5.5), the collisionless, linearized Vlasov descriptions of fluctuations
is appropriate (3.48) and damping is then due to wave-particle resonance (Landau
damping) which depends on the form of the distribution function in velocity space
at the phase velocity of the wave. These two cases are well known, but as yet the
two intermediate cases are not, and have no self-consistent description. They are
however very important because with typical k vectors and conditions in laser plasma
experiments one invariably finds oneself in either of the two intermediate cases. See,
for example the experiments of La Fontaine et al. [35, 36], and Tracy et al. [34].

In order to describe the electron weakly collisional regime kl; ~ 1 (5.3) we
will make use of the nonlocal theory of electron transport that has been described
in Section 4.4 of Chapter 4. This theory is based upon the solution to the lin-
earized electron Fokker-Planck (Landau) equation by a Legendre polynomial expan-
sion, 8f¢(k,7,w) = ¥, 6f1(v)Pi(cosf). In this work Bychenkov et al. have been able
to express the first Legendre coefficient df; in terms of the hydrodynamic variables
E“, the effective electric field, T., the electron temperature, and #;, the ion velocity in

a way reminiscent of the Chapman—Enskog development, but without the restrictions
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of strong collisions. Since the phase space fluctuation 6 f* (3.8) obeys the same equa-
tions as the perturbation of the distribution function in the work of Bychenkov et al.
[8] we may here interpret the 5f* to be the phase space fluctuation. We emphasize
that this theory has a domain of validity beyond that of classical transport theory.

In describing the ion weakly collisional case (5.4) the usual classical transport
for ions is not sufficient. To address this problem the analytic method of expansion
of the ion kinetic equation in tensor Hermite polynomials described in Section 4.5 of
Chapter 4 is used. This method has been shown in Ref. [64] to correctly describe
jon acoustic wave properties in the limit w > kvy;. The damping of ion waves is
in agreement with Braginskii in the collisional limit, w < ¥;, and also agrees with
Fokker-Planck solutions in the intermediate regime of collisionality, w R v;, for large
ZT./T: [64].

We will use the above closures together with the linearization of (3.58)-(3.60)
in order to cover both cases (5.3) and (5.4) of weakly collisional plasmas that are

often encountered experimentally [35, 36, 31, 32].

5.2.2 Nonlocal closure

We start by writing the system of linearized moment equations for the fluctuating
hydrodynamical quantities dng, 0%, 0T,, obtained from the kinetic equation for
the phase space particle density fluctuation §f*(Z, 7, t), (a = e,i) as prescribed by
(3.58)-(3.60). Since ions are predominantly responsible for momentum transport, we
write the jon momentum equation with the viscous term but neglect the ion thermal
transport effect and the electron-ion energy exchange 6Q — 0 in (3.60) as these
terms are small in comparison to momentum transport described by the viscosity
tensor 66°, particularly for plasmas with ZT./T; > 1. Whilst it is the ions that
carry the momentum, it is the electrons that are responsible for the heat transport.
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We also make approximations pertinent to low frequency fluctuations. We assume
the quasineutral limit, én. = Zén;, so that we restrict ourselves to long wavelength
perturbations, kAp. <« 1 where Ap, is the electron Debye length.

aon, 0 .. _

) + ﬂaF -0ty = 0, (5.6)
96 _ Ze.n
—a—t- = -m 1k5¢ — K’ (JR'T <+ JTﬂ;) + "'_n-' k 66: + —'—'JRici (5 7)
%Ti + gT—zk-Ju;:O (5.8)
a6T., 2 9 . 2.9 .. _

at + a_, 6 + T'ea"a -01 (5’9)

where 8ii, = 8i; — 0j /en,. The phase space fluctuation df¢ is solved for in terms
of the hydrodynamic moments 4%;, én,., 6T, and the potential d¢ as described in 4,

where we found the closure relations,

8] = obE" + aiksT. + fjen.dii;, (5.10)
6§, = —aT.0E* — xikéT. — fyn.T.5i;, (5.11)
§Rie = —(L— Bj)neeSE" + PqncikoT, — frmencvedi, (5.12)

where 8E* = —iké¢ + ik/en.(6n.T. + n.0T.) is the effective electric field usually
introduced in classical transport theory [41]. These closure relations are written in
Fourier space as the transport coefficients are all k and w dependent. In real space
the closure relations will become convolution operators. Since we are concerned with
quasineutral fluctuations the relation 87 = 0 (5.10) gives the following expression for
the heat flux (5.11) on eliminating the electric field E~,

8§, = —kikéT, — Bn T.0%;, (5.13)

where K = x—a?T. /o, and 8 = B, —eaf;/o. The transport coefficients in this theory
are a, the thermocurrent coefficient, x, the thermal conductivity, o, the electrical
conductivity and the new transport coefficients 3,, 3; and 3, that are related to the

ion flow. All the coefficients are dependent on the ionization, Z, k, and w. Rather than
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tabulate numerical values for the coefficients, JM has made available upon request a
Fortran code that calculates all the necessary transport coefficients and is detailed in
Appendix C.1.

In order to close the set (5.6)-(5.9) all that remains is the closure for the ion
stress tensor, 40;, that is valid for case (5.4). From Section 4.5 the Grad 21M closure
for the longitudinal part of the viscosity tensor,

E°56’."E 41!.'1'.’- g -
éo; = 2 =3 i (w) ik - 8;, (5.14)

results in a frequency dependent ion viscosity that has both a real and imaginary

part,
= _ iv;(w + 1.46iv;)
T= &+ 1.20iv) (w + 1-46iw;) + 02307 (5.15)

In previous work [64] that was concerned with ion acoustic damping it has been

demonstrated that the real part of (5.15) produces the correct damping of ion acoustic
waves with a smooth transition from the strongly collisional Braginskii limit v; =
0.64k%v2,[v; to the saturated Rukhadze limit [70] where v; ~ 0.84.T;/ZT.. It also
compares well to the Fokker-Planck simulations of {71, 73] in the intermediate region
of collisionality. The imaginary part affects the transition from the adiabatic to
the isothermal phase speed as w exceeds the ion-ion collision frequency v;. We now
set out our generalized version of Onsager’s “regression of fluctuations” that was
outlined in Chapter 4 using the closures 55 = 0, (5.10), (5.12) and (5.13) to the linear
hydrodynamic moment equations (5.6)-(5.9).

5.2.3 Correlations of the fluctuating hydrodynamic variables

In order to be able to calculate hydrodynamic correlations we take the Laplace trans-
form in time of the set (5.6)-(5.9) and the Fourier transform in space,

~iwbn, + n.ik - 6@ = 6n.(0), (5.16)
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Ze .

—twéid = -—"Tzk&ﬁ - F (n:0T; + Tiom;)
+;-'_n—.tk -06; + —:—:JR.g + 4i(0), (5.17)
—iwbT, + 3i.k -84 + g ik - 5 = 6T.(0), (5.18)
—iwbT; + -§T.-zk . §if = 8T;(0). (5.19)

Here 6u is the hydrodynamic velocity perturbation which is the same for ions and elec-
trons since we consider quasineutral perturbations, 55 = 0. Equations (5.16)-(5.19)
describe the evolution of the fluctuating hydrodynamic variables from their initial
values at time ¢ = 0. This is sufficient for the calculation of the correlations of any of
the hydrodynamic variables by following the prescription outlined in Chapter 4. For
example, (§T.5T(0)) may be formed by solving the set (5.16)-(5.19) (with the appro-
priate closure) for the transformed 6T, in terms of the initial fluctuations, multiplying
by 6T(0) and then ensemble averaging. The solution is then given in terms of the
initial correlations which are known (3.61). The initial correlations are simplified as
the different hydrodynamic variables are independent of each other by virtue of the
initial condition (3.61). The Fourier transform of the correlation function, (8T.6T7) is
then related to the Laplace transform by (6T.6T;)= 2Re(6T.6T;(0)), as explained in
Chapter 4 (3.56). We now specialize this to the calculation of S(k,w) = (on.6nz)/n.

because of its usefulness in determining the cross section for Thomson scattering.

5.2.4 Calculation of the dynamic form factor

In solving (5.16)-(5.19), we will ignore the time derivative in the electron heat equation
(5.18) as it is consistent with our desire to describe isothermal jon acoustic fluctuations
(w ~ ke, and kl.; > c,/vr.), where ¢, is the cold ion sound speed ¢, = ‘/—Z?,/-r_n:
Also, in calculating S(k,w) we can neglect all initial conditions except on.(0), since
all others are uncorrelated with the choice of initial conditions (3.61). The condition
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of zero current, 87 = 0 (5.10) gives an expression for the fluctuating potential
iF50 = —(an,T +6T.n,) + ZiFST. + -ﬁ—’-en, (5.20)

This can be used to eliminate the potential term in the ion momentum equation (5.17)
and also in the expression for the friction OR;. (5.12),

§R.. = n. (ﬂ + ‘; ) kST, + (1 - ﬁ,)p,f"—au = By Menovedi. (5.21)

With the closure (5.13) for the electron heat flux, the electron temperature equation
(5.18) can be solved for 4T,

nCT'G .7° -
T, = —W(I — B)ik - éii. (5.22)

On substituting (5.20), (5.21) and (5.22) together with the expression (5.15) for the
jon viscosity and ion temperature into the ion momentum equation (5.17) and after
using the continuity equation (5.17) in order to express the velocity in terms of density,
the density perturbation is expressed in terms of the initial perturbation,

2
D(k,w)én.(k,w) = én.(0), where D = —iw+1i i_(—“;{—z{'l (5.23)

Here D is the dispersion equation for ion acoustic waves,

— n.c2(1-f)? | n.e’q
T =" o ' 3T

e
2
ﬂ +ﬂ"u¢t2v% + Y (5'24)

is the damping rate with the ion viscous contribution,

2k, v;(1.49 12 + 0.80?)

. — ! p——1v 2 3
=370 Refj= k "%'aﬂ +4.052u? +2.33 (5:25)
and
2 k22, 4 k%R, .
A= -3- " + 3 ” Im# (5.26)

accounts for jon contribution to the ion acoustic wave dispersion due to ion viscosity

and heating. Using (5.23) we can express (n.6nZ(0))/n. in terms of the initial
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correlations as given by (3.61) (én.(0)dn:(0))/n. = 1. From the relation S(k,w) =
2Re(én.6n2(0))/n. the dynamic form factor is determined:

4k2 (Cf + "’%’u’)'fa

(& — o) 4 4wyl (5.27)

S(k,w) =

where we have introduced the definitions,

5 4w, .  9u*+29.70hF +11.74¢
v=y\¢+Twh, ad Li=3+3-Imi= g e o 0%

for the ion acoustic group velocity and ion specific heat ratio.

5.3 Applications

5.3.1 Application of the nonlocal theory in the limit of colli-

sional ions

There are two main issues that can be addressed concerning the application of our
theory for the ion acoustic feature in the Thomson scattered spectrum in this regime
(5.4). The first is ion acoustic damping, which determines the height of the ion
acoustic peaks. In the intermediate regime of collisionality kl; ~ 1 the electron
contribution to ion acoustic damping has been investigated both theoretically [74]
and numerically [75], as it is important for stimulated scattering processes. The
damping may be calculated from the theory comprising (5.6)-(5.8) and (5.10)~(5.13)
for the wavelengths kl.; > ¢,/vr., kl: € 1,

a2 [(1=PB)2 &6 B kv,
Y= [ ol b | 06, (5.29)

Vi
and this compares well with the numerical solution to the Fokker-Planck kinetic

equation [75] and the analytic theory [74]. It has the proper hydrodynamic form in
the long wavelength limit kl.; < 1 and takes the form of collisionless electron Landau
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Figure 5.3.1: Electron part of ion acoustic damping, 7/kc, as a function of electron col-
lisionality kl.;. The grey curve shows the prediction of fluid theory with classical thermal
conductivity. The solid lines show the damping from the analytic theory of [12] for Z = 64
(top) and Z = 8 (bottom).
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damping in the short wavelength region kl.; > 1. Figure (5.3.1) shows the damping as
a function of electron collisionality kl.; as predicted by (5.29). It is interesting to note
that the deviation from classical Braginskii theory occurs early, whilst the wavelength
is still hundreds of times larger than a mean free path. This will be reflected in S(k,w)
(5.27), whose form may be interpreted with the aid of Fig. (5.3.1).

The other issue is concerned with transport. The parameters of many laser
plasma experiments fall in the regime of nonlocal transport as is demonstrated in
Fig. (5.3.2) for the case of a high Z plasma. Since the line shape, or height of the
ion acoustic peaks described by (5.27) is expressed in terms of transport coefficients,
Thomson scattering may be used as a probe for this nonlocality. The probed k vector
in the plasma is determined by k = 2kosin(#/2) where ko is the wave vector of the
incident probe beam and § is the scattering angle chosen by the experimentalist. We
propose a comparison between the spectrum for two (or more) different scattering
angles. In this way the k dependence of the transport coefficients may be inferred. In
choosing experimental parameters, Z should be sizeable for the validity of the nonlocal
transport theory [8]. In Fig. (5.3.2) there are three lines that identify a = 1/kApe
and the contours show electron-ion collisionality. Figures (5.3.3) and (5.3.4) show
a comparison between the spectrum predicted by equation (5.27) and collisionless
theory (2.18) for different scattering angles. In particular Fig. (5.3.4) shows how the
effect of collisions alters the k dependence of the peak height from that expected from
collisionless theory where fluctuations are only Landau damped. These parameters
have been chosen to be close to those encountered experimentally, for example a gold
plasma with the conditions n, = 0.5 x 10 cm™3, T, = 1 keV, T; = 500 eV and
Z =50 and a 0.35 um probe. Figure (5.3.5) shows a more collisional regime due to
the use of a longer wavelength probe, which is compared to Braginskii theory. In this
case the effect of changing the angle from 10° to 180° changes the collisionality of the
probed ion acoustic fluctuation from kl.; ~ 0.01 (where classical transport just starts
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Figure 5.3.2: Parameter regime for gold plasma. The contour plot shows electron-ion
collisionality kl.; for scattering angles of 90° and 10°. The first number in the parenthe-
ses corresponds to 90° and the second to 10° for a 0.35 um probe beam. Also shown is
a = 1/kAp. again for 90° and 10° scattering. The box shows the plasma parameters of
Figs. 5.3.3 and 5.3.4.
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Figure 5.3.3: The dynamic form factor S(k,w) for a weakly collisional gold plasma,
ne = 0.5 x 102! cm™3, T, = 1 keV, T; = 0.5 keV and Z = 55 for a 0.35 pm probe and
different scattering angles. Grey is collisionless theory, solid is nonlocal theory.
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Figure 5.3.4: The dynamic factor w,S(k,«) normalized by the ion acoustic frequency w,
for a gold plasma, n, = 0.5 x 102! cm~3, T, = 1 keV, T; = 0.5 keV and Z = 55 for a
0.35 um probe. This figure illustrates the difference between the Vlasov theory and the
nonlocal theory for the scattering angles of 10° and 180°. Grey is collisionless theory, solid
is nonlocal theory.
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Figure 5.3.5: The dynamic form factor S(k,w) for a more collisional gold plasma,
ne = 2x 102 em™3, T. = 1 keV, T; = 0.5 keV and Z = 55 for a 10.6pm probe. The
figure shows S(k,w) at the angles of 10° (left) and 180° (right) and demonstrates the de-
parture from classical hydrodynamics. Grey is Braginskii fluid equations with classical heat
conductivity, solid is nonlocal theory.

to break down) to kl,; ~ 0.1 (classical transport inadequate). This is an interesting
regime as the main contribution in (5.27) to the scattering then comes from x, the
electron thermal conductivity. Investigation of the spectra in this regime could be

used to test models of nonlocal thermal conductivity.



5.3.2 Application of the theory in the limit of collisionless

electrons

In this regime of collisionless electrons kl.; 3> 1, and semi-collisional ions, kl; ~ 1,
the damping v, (5.24) takes the form

f kv, +- ”%' (5.30)

which will be appropriate for discussing the expenments [35, 36]. The fluctuation
spectrum (5.27) does not account for the entropy mode since we have neglected the

ion thermal conductivity (w 3 kvr;). To assess this formula (5.27) we will compare
the predictions to those of the collisionless theory for plasma parameters similar to
those of the experiment due to La Fontaine et al. [36]. We define the range of plasma
parameters for which ion-ion collisions can be important in determining the fluctua-
tion spectra. Figure (5.3.6) shows the ion damping of ion acoustic waves as a function
of ion-ion collisionality from Ref. [64]. Note that the effect of ion Landau damping,
which is missing in (5.25) and (5.30), has been added phenomenologically in Fig.
(5.3.6) according to [64]. For plasmas with ZT./T; > 40 we have the situation where
although the ion damping differs from the collisionless limit, the ion contribution is
much less than that due to the electrons (electron Landau damping). We therefore
identify the interesting range of parameters to be given by 8 < ZT./T; < 40. As
an example, for ZT,/T: = 16 the ion damping is a few times smaller than the elec-
tron contribution in the collisionless limit, but with the addition of ion-ion collisions
it becomes (for kl; ~ 0.2) a few times larger than the electron (Landau damping)
contribution, see Fig. (5.3.6). Ion acoustic waves will be more strongly damped in
this regime than the collisionless theory would predict. This range of parameters has
relevance to several recent experiments [35, 36, 34, 32].

In the experiments of La Fontaine et al [35, 36}, a difficulty is expressed in
fitting the width of the observed spectra to the collisionless theory (2.18) (c.f. also
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Figure 5.3.6: The dependence of 7;/kvri, the normalized ion part of ion acoustic damping,
on ion collisionality kl;. This damping includes an ion Landau damping contribution in
addition to collisions. There are six curves plotted for the temperature ratios ZT./T; of 4,
8, 16, 48, 64 and 80 (top to bottom). The dashed curve shows the electron Landau damping
contribution for the case ZT,./T: = 16 and shows how the relative importance of the ions
depends strongly on the ion collisionality.
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Figure 5.3.7: The ion acoustic peaks as predicted from Eq. (5.27) (solid lines) and from
collisionless theory (light lines) for a carbon plasma, ZT./T; = 12.

[37]). They note that this is possibly due to the effects of ion-ion collisions, and
point out the need for further investigation. We address this situation for the plasma
conditions of their experiment, see Table 5.3.1. Two cases considered are for carbon
plasmas, in the first ZT,/T; is ~ 12 and in the latter ~ 8.6. The authors obtain T;
from the width of the peaks, as in the collisionless limit this is due to ion Landau
damping. However, in this experiment the ions are not collisionless, kl; ~ 1 and
our ion acoustic peaks are twice as broad for the same T;. A comparison of our
spectra and the collisionless spectra appears in Figs. (5.3.7) and (5.3.8). The authors

correctly point out that ion collisions can broaden the ion acoustic peaks. In addition,
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Figure 5.3.8: A close up of the ion acoustic peaks for the parameters of Fig. (5.3.7). The
light line corresponds to the prediction of collisionless theory and solid line Eq. (5.27).

however, ion collisions modify the specific heat ratio and alter the phase speed of the
ion acoustic mode. The phase speed, v, = c,m in the collisionless limit,
where the coefficient 3 corresponds to the isothermal specific heat ratio for ions. The
effect of collisions is to reduce this coefficient towards 5/3 [73]. This effect is not large
(a few percent) but it adds more error to the inferred electron temperatures (cf. Fig.

(5.3.8)).
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Tons n | Z |TojeV | TijeV | 2T.JT: | K | Kl | %ifker: | ve/kvr:
Catbon | 12 | 6 | 400 | 200 | 12 | 022 [ 22| 01 | 0.04
Carbon | 12 | 6| 500 | 350 | 86 | 0.65] 34 | 018 | 0.03
Germanium | 73 | 24| 1300 | 500 | 62 | 0.02 | 49 | 0.02 | 0.07
Tantalum | 181 | 45| 1100 | 500 | 99 ]0.002| 19 | ~103 | 0.07

Table 5.3.1: Parameters deduced from the experiments of [36]. Interferometry estimates n.
to be ~ 5 x 102%m~1. The scattering angle § = 90° and the laser wavelength, A = 355 nm.
The probed k vector in the plasma is k =~ 0.25 x 105cm™! and k/kp ~ 0.2. The ion
temperatures for germanium and tantalum are not given in [36] and have been assigned by

us.

95



Chapter 6

PLASMA WITH BACKGROUND GRADIENTS

6.1 Motivation

Experimental Thomson scattering spectra often show a peak height asymmetry in
the ion feature corresponding to ion acoustic waves propagating in opposite directions
[33, 34, 35, 36]. One possible source of this asymmetry in a relative drift between
the electron and ion components [38]. Another, and the one considered here is the
presence of a heat flux. A current free plasma carrying a heat flux will have a skewed
“return current” distribution function in velocity space [74]. In the collisionless regime
the sound wave propagating in the direction of the temperature gradient (and opposite
to the direction of the heat flux) will have a reduced Landau damping rate, and can
even become unstable for large enough heat fluxes ¢ ~ n.T.c,. The instability is
well known in the collisionless regime [77], but recently it has been identified in the
weakly collisional regime kl,; ~ 1 also, where it has been attributed to the density
dependence of the heat flux [64].

Here we present a generalization of the theory of the dynamic form factor from
Chapter 5 to include plasma states that carry a background heat flux. It is considered
worthwhile to obtain a theory describing such background states, due to the possibility
of observing the enhanced fluctuations near the onset of the instability by a Thomson
scattering measurement, which are often performed in the weakly collisional regime
kl.; ~ 1. Furthermore, it is anticipated that the difference in fluctuation spectra
as predicted by the nonlocal model and collisionless Vlasov theory (2.18) will be
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observable.

The calculation also demonstrates how the nonlocal formulation of electron
transport described in Chapter 4 can be modified to include the effects of different
background states and/or sources. For example, the effect of inverse bremsstrahlung
and the ponderomotive force has been discussed in Ref. [80]. This goes at least some
way towards resolving the problem dependence issue raised by Epperlein [52] and
discussed in Section 4.3.

6.2 Background state of the plasma

We consider as a reference state a plasma with a temperature gradient supported by
some unspecified external source which is stationary, and without hydrodynamical
motion #, = 0, (a = e,i). The spatial scale of the temperature inhomogeneity
along the z-axis, Lt = 1/(dInT./dz), is assumed to be sufficiently large L+ > 1001.;
(4.64) so that the classical collisional transport theory can be applied to describe
this reference state. The ions will be treated as a cold fluid in the background state,
although the ion contribution to the dynamical form factor S (E,w) will be accounted

for in the Grad 21-moment approximation as previously derived in Section 4.5.
The electron distribution function f,.(%,z,t) must satisfy the kinetic equation

-aatie. + Uz% + ;e;g%% = Ceilfe] + Ceelfe: fel, (6.1)

where —e and m, are the electron charge and mass and ¢(z, t) is the electric potential.

The electron-ion collision term

Calfe@)] = Juilo) o1~ 1) ©62)

is written neglecting electron-ion energy exchange, where u = v./v is the cosine of

the angle between the electron velocity and z-axis, v,i(v) = 4wZngeA./mZv® is the
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velocity dependent collision rate, and A, is the Coulomb logarithm. The ion density
n; and velocity #; are described by the Euler equations,

on; @ Ous __Zedp 1

ot t ;M) =0, o  m;oz mp— (6.3)

where the direction of the gradient is in the z-direction and the friction force R;. =
m, [ d% vvei(v) f.(¥). We are interested in temperature inhomogeneity scales much
larger than a Debye length Lt > Ap., hence we can approximate Poisson’s equation

by the quasineutrality condition n, = Zn;.

The electron distribution function is close to a local Maxwellian in the ion

reference system,

o) = g = (75) 4
with a spatially inhomogeneous density n.(r) and temperature Te(r) = m.v%,. The
distribution function will consist of a Maxwellian part Fo plus a small anisotropic
correction Fy which is proportional to /Lt [49]

fe(?) = Fo + pFy. (6.5)

Substituting (6.5) into (6.1) gives an expression for the correction

v edp d
Fg(v) = (o) (T,da: - ElnFo) Fy, (6.6)

which comes from the electron-ion collision term. The contribution to the isotropic
part of distribution function from the electron-electron collision term can be neglected

as it is second order in the expansion parameter l.;/Lr. The ion Euler equations (6.3)

and condition of zero current j = [ dv v3Fy = 0 provides the following relations,

dg _ 34T,
dr ~ 2dz’

n.(z)Te(z) = const, e (6.7)

The first of them shows the state is characterized by constant pressure and the second
that the electric field —3¢/dz is balanced by the friction force coming from the

98



electron temperature gradient (4.59). Equations (6.6, 6.7) give an expression for the
anisotropic part of the electron distribution function

1 /2 le" 04 ‘U2
Fv(v) = -3- ;.L_T.‘IZ; (4 - ‘202:) Fo, (6.8)

that is a solution to the electron kinetic equation (6.1) and the ion Euler equations
(6.3). Figure 6.2.1 shows the perturbation (6.8) and the distribution function f. (6.5)
VT, — fo

T Ly
G QQ SzldFv

3o a2 7 4 VJV.I,.

20
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Figure 6.2.1: Plot of the electron distribution function for the background state f., and
the anisotropic correction 3\/172 Lt/l.; Fy as a function of vz /vre.

for the background state. In this figure the temperature gradient is to the right, and
the heat flux to the left. The fast heat carrying electrons can clearly be seen in the tail
of the distribution function f, for velocities v, ~ —3.5 vr.. To retain neutrality of the
plasma, slower electrons must flow in the opposite direction. This return current is
responsible for skewing the distribution function at small velocitiesv ~ ¢, [vre ~ 1072
In the collisionless regime this effect is responsible for the reduction of the ion acoustic

damping rate for waves propagating in the direction of the temperature gradient.

As a check one may calculate the heat flux §, from the background state (6.8).
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The result is

i o (e
ge = 3 ed eVTe Ir ’

128, 4T
= Y eUTelei dz’

which corresponds exactly to the Braginskii result for Z 3 1 (4.55). Equations (6.7)
and (6.8) provide the full definition of the background state about which we will
calculate the dynamic form factor S(k,w).

(6.9)

6.3 Nonlocal closure

We use the method of Bychenkov et al. [8] described in Chapter 4 to reduce the
kinetic equation (4.32), now linearized around the background state (6.5, 6.8) from
Section 6.2, into a set of hydrodynamical equations with nonlocal closure relations
that will not be restricted by the conditions of strong collisions. The general method
remains exactly the same as in Section 4.4. We assume slow plasma motions, large
ionization Z, and account for electron-electron collisions only in the symmetric part
of the distribution function. In addition l.;/Lr, coming from the background state is
assumed to be a small parameter, for the validity of the analysis in Section 6.2.

Expanding the phase space fluctuation in Legendre polynomials éf.(v, ) =
20 Pi(p)d fi(v), where p = k- ¥/kv, the infinite set of equations for the angular

harmonics becomes

06 fo t 1 dF,
e + §kv& f— §k06u. ¥ 3
t e dFy Fy _
+ 3mek6¢( Ty o ) = Culléfal, (6.10)
. . oF,
ikvé fo + zi:k&qb%?o-

. ~ . .6“,' aFo . € 5¢ aFv Fv _ =~
-zkv(u1 —V,.) [—1 kv Ov +1mc kv2 ( 3o - T)] = -—Uléfl. (6.11)
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The renormalized collision frequency & (4.87) has been used to include the effects of
all the higher angular harmonics, necessary for the description of Landau damping.

The solution to the linear equation for § f obtained by eliminating § f; between
the equations (6.10, 6.11) can be expressed as a linear combination of four basis
functions ¥4 (4 = N, R,T, V), after a Laplace transform in time (Laplace variable
p), and using the initial conditions (4.91),

edd

5fo=— T FO+ZPA¢‘F0 (6.12)

The definitions of Py = dn.(0)/noe — pedd/Toe, Pr = 36T.(0)/2To., and Pp = —ikdu;
are the same as in Section 4.4.2 of Chapter 4, but in addition the presence of the
background heat flux introduces the new term Py = —ikvre(le:/ L7)(edd/T.) corre-
sponding to the extra basis function ¢V. The ¢4 in (6.12) must satisfy the equations
(lczv2
35
with three different source terms Sy = 1, Sy = v?/3v3, — 1, Sgp = V*Vui[3v},in

present in the original theory [8], and a new source term in the extra equation for

vY,

) ¢A FEIC“[FMﬁA] + SAa (6'13)

Sv

”’*[FH ? 2 (Fr) ‘_L_T_
Fy 3H, 1 £

- 57.7?[ 224 — z) — fﬁ 32 (6- Btz )] (6.14)
where we have introduced the dimensionless energy variable z = v?/2v},. After
calculating the moments dn.(t) and 67T.(t) from (6.12), and eliminating the initial
conditions Py and Py the result for §f; is

edE*v J%lp" —_._Iftﬁr kv&T(Jﬁ+J§)¢T —(JT-l'JN)'ﬁN

6f1 =~ Tofl'l DN T Fo V1 To D
LU P R DNT N _ T
vy i — Vei + kP03, ('/’ ¢' DNT'I’
le,’ kzv v Dx%: N ‘DNT T 171 —Vei 2 a Fv 66¢
e ('li —-D—N'f'l’ ¢’ 5 Tegy —v_) T, -(6.15)
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The J4 and D$B moments (4.97) have been extended to include the moments of YY,
(A =V) also,
4t [
== [o Rdvy” FySg. (6.16)
The solution for §f; (6.15) is used to construct the closure relations by calculating
the current 57 (4.99), heat flux 67 (4.101) and friction 6R;, (4.103)

6] = o 6E* + aikéT, + pjen. éii; — pv ﬂ,—v en.c, (e;:ﬁ) , (6.17)
55, = —aT.8E" — xikoT, — Bn.T.5i; — pv By n.T.c, (eT¢) ., (6.18)
8B, = —(1-Bj)n.eSE* + Byn. ikéT,

—B.mn.vr. [l 0G; + pv B¥m.n.2[l.; e3¢ . (6.19)
T.

The definition py = vrelei/csLt has been made that is a measure of the heat flux in
the background state. In addition to the transport coefficients o, a, X, Bj, Bq, and
B, from Ref. [8] there are the new coefficients

vT VN
By = (gﬁ?) ; By = (2—34'-2—) : (6.20)
7 = = [Worde (13 - ,’;”T 7y - 287)
\/- exp (—z) 13 2
/ 65 +s )] , (6.21)

that are a result of the heat carrying background state. The electron temperature
moment of (6.10), the ion equations (5.6-5.8) and the closure relations (6.17-6.19),
(6.20, 6.21) provide a closed set of equations suitable for describing the evolution
of the hydrodynamic fluctuations n,, #,, and T, for arbitrary ratio of fluctuation

wavenumber to electron-ion and ion-ion mean free path around the background state

(6.5, 6.8).
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6.3.1 Current free form of the transport equations

For slow motions, the plasma is quasineutral én, ~ Zén;, and current free §j = 0.
Setting the current equal to zero 85 = 0 in (6.17) allows us to solve for the potential
8¢, which to first order in the expansion parameter l.;/Lt gives

b _ on (l ea) oT. ﬂ, e’nes

T =)= -1

e

) ezn,c, v 6T, e’ne
+ipy 23 [ (1+7) T i ntu ] (6.22)

This expression for the potential (6.22) can now be used in order to eliminate é¢
from the expressions for heat flux (6.18) and friction (6.19) and obtain the current

free forms

6§, = —xik 6T, — pn.T. bu;

—pv ﬁvn,T,c,Jn n.T.c, (1 + _cg) 61? v BVn.T.c,0; —~ ST ene Ju., (6.23)
" 2
i =n. (p+2 ) RO, + (1 — B5)8; 07 — . 205,
\av € vMenovre  \ [on. ea\ 6T, e’ne
~po (1 - )87 700 - BT ) [+ (14 %2) 52~ ia, e o2

The first two terms of (6.23) are the same as in Ref. (8], but there are in addition
new terms proportional to py that come from the heat flux in the background state.
One of the effects of these new terms is to couple the fluctuations in the heat flux dq.
to the fluctuations in density dn. (6.23). In previous work [64] such a coupling has
been considered due to the density dependence of the electron thermal conductivity

0¢. = —K. tkéT, — Jn,g::c VT, - 6T, g;‘

Classical thermal conductivity (4.55) is not density dependent dx./dn. = 0, but in the
weakly collisional regime defined by kl.; & 0.01, the nonlocal expressions [50, 51, 52]

contain a density dependence through the electron-ion mean free path kl.;. Such a

VT.. (6.25)

coupling has been shown to destabilize ion acoustic waves by changing the sign of the
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heat flux, causing more heat to flow into hotter regions [64]. Such a mechanism can

come into play in our equations (6.23).

6.3.2 Hydrodynamic moment equations

The expression for the potential ¢ (6.22), the heat flux ¢, (6.23), and friction 6R;.
(6.24) may be used to close the hydrodynamic moment equations for the fluctuating
quantities. The equation for electron density dn, is obtained from (6.10) by taking the
velocity moment 4 f5° dv v2, and the electron temperature fluctuation the moment
4rm.[3n. f3° dv v*(v> — 3v3,). The density moment gives the electron continuity

equation
P-Jn, +n.ik- 68 =0, (6.26)
at
and the temperature moment gives
9 5T, + 2iF - 65, + 2Tk - 62 =0 (6.27)
at e 3ne Qe 3 e = Y .

which is the same as in Chapter 5. There is no heating term in (6.27) 2/3n. 6E -7
due to the lack of current flow in the background state, 7 = 0. These moment (6.26,
6.27) equations are supplemented with the ion equations from Section 4.6.2

9.,  Ze ik
507 = —Ezk&b — (n:6T; + Tion,)
+—L i 55, + ——6R, (6.28)
i m;n;
S5t + 2rik-sa=0 (6.29)
at [ 3 t - Y .

which will allow the calculation of the correlations of any of the hydrodynamic vari-
ables by the method of Chapter 5.
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6.3.3 Calculation of the dynamic form factor

The calculation of the dynamic form factor S(k,w) parallels exactly that of Section
5.2.4, but now using the modified closure relations for the potential, heat flux and
friction to the set of moment equations (6.26-6.29). After taking a time Laplace
transform, the density fluctuation én.(k,w) is solved for in terms of its initial value

D(k,w)én.(k,w) = on.(0), (6.30)

where the dispersion relation D(k,w) becomes

., kSl +pvia) + kg,
Dk,w) = —tw +1 Py e T .

In (6.31) the v, (5.24), A (5.26), and v, (5.28) have already been defined, the effects
of the background state on the dispersion are ignored, and a is given by

(6.31)

. len, 1 BY
a = ke, [(1 - g)gvkiz; + B;8Y = Z';, +13 vr,l,;] . (6.32)
Multiplying (6.30) by dn;(0) and averaging gives ,
n(k) |?
(6ne(k, w)bn.(—k,0)) = lé‘é:a)))—'l. (6.33)

Using the relation S(k,w) = 2Re(dn.(k,w)én.(—k,0))/n. and assuming the plasma
is weakly coupled (| on.(k) 1) = n, gives,

S(k,w) =2Re (3(%5) , (6.34)
with the result,

2k3(2 + v3;)%a — pywiwa
@ PR + @ora — pr ol

S(k,w) =2 (6.35)

6.4 Analysis of the results

The expression for the dynamic form factor (6.35) takes into account the effect of a
heat flux on the electron density fluctuation spectrum. The heat flux ¢. is param-

eterized through pv, by q. = 128/37n.T.c,pv. For zero heat flux (pv = 0), the
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expression (6.35) reduces to that found in Chapter 4 (5.27). As expected the peak
heights are asymmetric. This can clearly be seen in Figure 6.4.1 where a comparison
is made between the expression (6.35), both with and without a heat flux. The ion
acoustic fluctuations in the direction of the temperature gradient are enhanced com-
pared to ion acoustic fluctuations traveling in the opposite direction. Figure 6.4.2
shows a comparison between the predictions of our nonlocal formulation (6.35) and
collisionless Vlasov theory (2.18), in the weakly collisional regime kl.; ~ 1. The peak
height asymmetry is much reduced from that of the collisionless predictions. This can
be understood, because for kl.; ~ 1 ion acoustic damping <, is larger than Landau
damping would predict cf. eg. Fig. 5.3.1. Figure 6.4.3 shows the spectrum for a
collisionless plasma. The nonlocal expression (6.35) and collisionless theory (2.18)
are in close agreement. In fact, for kl,; 3> 1, the threshold for instability

_ 2%

pv = < (6.36)
agrees with the collisionless result py — 2/3. The collisionless result can be obtained
on substitution of the distribution function (6.5, 6.8) into the collisionless expression

for S(k,w) (2.18).

The peak height asymmetry is significantly different for nearly collisionless
electrons kl,; and weakly collisional electrons kl,; ~ 1 in comparison with Vlasov
theory. This suggests the effect may be measurable in an experiment, since peak
height asymmetry is easier to measure than line widths. One could consider an
experiment where the scattering angle is changed from nearly forwards, say 10°,
to the backwards direction 180°. In this way the collisionality of the fluctuations
probed could be chosen to vary from the weakly collisional to the collisionless, and
the asymmetries compared with both theories.
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Figure 6.4.1: Nonlocal model without gradient (black lines) compared to the case with
gradient
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Figure 6.4.2: Comparison of the nonlocal model with collisionless theory in the weakly
collisional regime.
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S(k,w)
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Figure 6.4.3: This is the comparison of the nonlocal model (black lines) with the collision-
less theory (solid lines).
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Chapter 7

CONCLUSION

The importance and range of applicability of Thomson scattering as a plasma diag-
nostic technique depends on the accuracy of the theoretical model of fluctuations and
scattering cross-section. We have described a theory for the dynamical form factor
S(k,w), which is valid for arbitrary particle collisionality in plasmas with large Z and
ZT./T:. Our theory properly describes the ion acoustic resonance in the entire region
of parameters between collision dominated hydrodynamics and the collisionless for-
mulation based on the Vlasov description. This has been achieved using generalized
nonlocal hydrodynamics [64, 8, 74] for the fluctuating variables.

The starting point has been an exact result of fluctuation theory [6] which
demonstrates that the two point correlation function of the phase space fluctuation
satisfies the usual linearized kinetic equation with the Landau collision operator.
We have solved this equation and reduced the problem of finding fluctuations of
the phase space densities to the solution of the linear generalized hydrodynamical
equations for the fluctuating hydrodynamical variables. The closure leading to the
hydrodynamical model has been achieved with the help of frequency dependent ion
transport coefficients [64] and the full set of nonlocal electron transport coefficients [8].
This derivation involves the frequency dependent Grad 21-moment approximation for
the ion fluctuations and a generalized Laguerre expansion of the electron fluctuation
density. Calculations of the dynamical form factor, S(k,w), are completed assuming

an equilibrium electron density correlation function at the initial moment in time.

Starting from our general theory of the dynamic form factor, we have analyzed
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in detail two different regimes of ion acoustic fluctuations with weakly collisional elec-
trons and cold ions, kl; < 1, kl.; ~ 1, and with weakly collisional ions and collisionless
electrons, kl; ~ 1, kl.; 3> 1. Equation (5.27) provides an expression for the dynamical
form factor in the first limit, of weakly collisional electrons. The k-dependent trans-
port coeficients are calculated by a Fortran code nonlocal.f that is described in
Appendix C.1. The ion acoustic resonance line shape calculated from (5.27) has been
used to demonstrate the effect of nonlocal inhibited electron thermal transport. The
possibility of directly inferring electron thermal transport properties from Thomson
scattering measurements is proposed for realistic experimental parameters. Equations
(5.27) and (5.30) give an expression for S(k,w) in the regime of weak ion collisionality
and for collisionless electrons. This is the regime of parameters often encountered in
X-ray lasers plasmas [35, 36], where our theory predicts variations of the Thomson

scattering cross-section which are consistent with experimental observations.

The derivation of the dynamic form factor described above has been repeated
for a plasma carrying a heat flux supported by an external source. The two point
correlation function of the phase space fluctuation then satisfies the Landau kinetic
equation linearized around a heat carrying background state. The background state is
characterized by a temperature gradient that is sufficiently long, so that the classical
collisional description can be used to describe it. The closure of the kinetic equation
leading to the nonlocal hydrodynamical equations proceeds as before, but three new
k-dependent coefficients are introduced as a result of the background heat flux. These
new coefficients may be calculated by the Fortran code gradient.f which is listed in
Appendix C.1.

The dynamic form factor can be calculated from the resulting nonlocal hy-
drodynamic equations and leads to the expression (6.35). This expression reduces to
our previous expression (5.27) for zero heat flux, but develops an asymmetry in the
ion acoustic peaks when a heat flux is present. This asymmetry is in agreement with
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collisionless Vlasov theory in the collisionless limit, but shows drastic differences in
the weakly collisional regime. Such a difference should be observable in a Thomson

scattering experiment.
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Appendix A

A.1 Derivation of the Thomson scattering cross

section
It is particularly useful when considering radiation from moving charges to employ

the Liénard-Wiechert potentials, as described in chapter 14 of the book by Jackson
[76]. In terms of these

s p = a=f | L eax{a-Bxf}
Bt = emg—gam, e a-a bR |, 0
BFEt) = #xEF )|, (A.2)

where R is the displacement between the observer at the position 7 and the radiating
particle of charge e at the position p, R = #— p. The unit vector in the direction
of R is denoted by . G is the velocity of the charge # divided by the speed of light
¢, § = #/c and a dot denotes a time derivative. v = VI + 2. The subscript “ret”
implies that all quantities are to be evaluated at the retarded time, t' =¢— (R()/c).

At a point 7 in the wave zone far away from the charge R > 1, the first

electrostatic term will be negligible, leaving

Bt ~S X {("f@ x B} (A.3)
c (1-a-APR |,
This simplifies if the charge is nonrelativistic § < 1,
= e f x(fi xa)
E(fit) ® - ——=— (A.4)
2 R ret
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where @ is the acceleration of the charge. Corresponding to the Thomson scattering
probe we consider a plane monochromatic electromagnetic wave is incident upon the
plasma,

E(#,t) = Re{Ey expii(ko - £~ wot)}, (A.5)
with the wavenumber ko and frequency wy. All the charges in the plasma will oscillate
in this field with the acceleration of particles given by the real part of

a(5,t) = — Eqexpilky - = wnt). (A.6)

The electrons will undergo the largest accelerations due to the smallness of their mass,
m,. < m;. Hence, to a very good approximation only the electrons will contribute to
the scattered light. Further simplifications will be that the scattered signal is weak
and most of the light is transmitted. Under this approximation each particle will see
the same field (Born approximation). The acceleration experienced by an electron
in the E field can then be easily solved for (assuming v < ¢). The Electric field
emitted by each electron is obtained by substituting expression (A.6) into (A.4). The
scattered field E, at the observation point 7 will be the vector sum of the fields from

all the different electrons,
B(7t) = f—&fdt’/dﬁZJ[p‘- B4 x (7 x By)
7
expi(k - (') — wot') . -
=] Lo —t+ | T ) | /0)- (A7)

Since we are in the wave zone, we may approximate R(t) by R(t') = R — i - g(t'),

and we also make use of the vector identity 7 x (it x Ep) = #(i - Eq) — Eo. On taking
the representation of the delta function

5 —t+ |7 a¢) | /o) = [ %expiw @ —t+|F=AL)| [, (A8

this results in an expression for the electric field E,(7,t) at the point 7 at the time t,

dw

21: exp —iw,(t — R/c)

E,(7,t) = — D(Bo — - Bo)[Re [
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[ 45 [ &t exp—i(wn — w)t explitho — <24) - 5} 65~ As(t))-  (A9)

We actually need to evaluate the average power of scattered light in the solid angle
dQ centered around

2
P,()dQ = -fr—dﬂ lim % Jagm. (A.10)

Using
| Eo — (2 - Eo) |*=
| Eo > —(f - Eo)?
=| Fo| (1 —sin®0cos? | o — 8 |), (A.11)
where 8 is the angle between Eo, the wavevector of the incident light, and 7, and the

azimuthal angles ¢o and ¢ locate the position of the electric field vector Egand 7in
the plane perpendicular to ko, the result is

P,(F,w,)dQdw, = %dﬂdw,a — sin? 0 cos? | ¢ — ¢ [)N.S(F,w) (A.12)
where .
g — . 1 / 'ne(k9 wlz
S(k’w) -T—bel.},r‘l}—moTV\ N, )’ (A°13)

and P is the incident power, P; = (cE3/8%)A, for a beam of cross-sectional area A.
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Appendix B

B.1 Plasma dispersion function

The plasma dispersion function is defined by,

e(Frw) =143 et / PRI ULy (B.1)
W
Where we will write
ek, w) =1+ Xa- (B.2)

Here the xa are the susceptibilities of particles of the species a. Now we would like

to evaluate this for the case of a Maxwellian plasma,

ful)= mexp (-2::02)- (B.3)
The result for an electron-ion plasma is
Xe = a® [Rw(z.) + ilw(z,)] and x;i= az-Z-T% [Rw(z;) + ilw(z;)]. (B.4)
Where
- 7o ‘/-‘“‘d “= B (B3)

Ruw(z) and Jw(z) are the real and imaginary parts of the plasma dispersion function
tabulated by Fried and Conte [82). With these definitions the modulus squared of
the plasma dielectric function is given by

lef?= [1 +a (Rw(z,) + = 21, Rw(:::,))]2
+[a -)]2 (B.6)
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For real z we have

Ru(z) = 1-2zezp(—2%) [ dp exp (), (B.7)
Iv(z) = 7z exp(~2?). (B.8)
The error function is defined by
erf(z) = 7?-,? [ dy exp (=42 (B9)
We can write the integral in Eq. (B.7) in terms of this
[y exp (6?) = ~erf(in). (B.10)

This allows us to use Mathematica’s intrinsic function Erfi(z), [78]

Erfi (z) = —ierf (i2). (B.11)

B.2 Dynamic form factor in collisionless plasma

We now have all that is required for S(k,w). In terms of the plasma response func-

tions, it looks like

_2_1_r| 1+ x;i |*feo(w/F) +ZI Xe |’ falw/k) (B.12)
| € (k,w) | .

Where here the f.g(w/k) are the one dimensional distribution functions evaluated at

Sk, w) =

the phase velocity. On substitution of our explicit forms for the partial susceptibilities

and the dielectric function, this becomes

S(k,w) = ‘ﬁ; [I_el" ﬁ’ (B.13)
where
A =et [ -))2 + (az%Iw(x.-))ﬂ , (B.14)
and
A= z[(-ZTi) (Zi"m—)] - [(asz(z,))z + (azlw(ze))2: : (B.15)
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Appendix C

C.1 Numerical evaluation of transport coefficients

A Fortran 77 code “nonlocal.f” has been written, that efficiently calculates the ion-
ization Z, and collisionality kl.; dependent transport coefficients o(Z, kle:), x(Z, kl.),
a(Z,kl), Bi(Z, kle:), By(Z, Kle:), and B.(Z, kl.;) that enter in the nonlocal theory of
electron transport due to [8] described in Chapter 4. In the original paper [8] no
tables of coefficients were provided. The workings of the code are explained in some
detail in this Appendix, The code will be useful for anyone wishing to make use of
our expressions for the dynamic form factor (5.27) described in Chapter 5. The basic
model can be extended, in that it is relatively easy to include extra source terms
into the equations (4.93), coming from non-Maxwellian background states or external

sources.

In Section C.2 the code “gradient.f” is described which is an extension of
nonlocal.f to calculate the new transport coefficients ﬂjv (Z,kle), ﬂqv (Z,kl.), and
BY(Z,kl.:), that enter in the theory of Chapter 6 due to the presence of a heat carrying
background state. Other examples that have been discussed include the effect of
inverse bremsstrahlung heating and the ponderomotive force [80]. For reference, a
listing of the code gradient.f is given in Section C.3. The subroutines gaulag,
gami3h, choldc, and cholsl are to be taken from Numerical Recipes [79)].
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C.1.1 Operation of the code nonlocal.f

The code requires as input, the values for the variables, npoly, kle and Z. These
are the number of polynomials to use in the truncation of the expansion (4.110) for

the functions ¥4

W= T T L), (1)

the particle collisionality, and the ionization respectively. The maximum size for
npoly is set by the variable nphys, which is the physical dimension of the arrays
defined in the program. The first step is to evaluate the matrix elements of A (4.113)

8 3
A = =2 (M) f e e LR @)L @)

+ 3 [ dze~(3/2, ) L8R LD (@)
— 2 [n_l_l /:’ dzz32e~22LO/2 () LB (z) + (m & n)], (C.2)

and the source term b2 (4.112)
00
bA = /o dzz/?e~* LD (z)S,, (C.3)

Next the linear system

Amact =51 (C.4)
is solved for the unknown expansion coefficients c2 (C.1), for each of the three different
sources, A = N, T, R (4.93). Finally, the moments Jg (4.97) necessary for evaluation
of the transport coefficients (4.107, 4.109) are evaluated from the c2, and the values
of the transport coefficients normalized to their classical values (where they exist) are
output in the order o/0y, a/aq, X/X0, Bj, By, and Be. We now examine how these

steps are performed numerically.
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C.1.2 Evaluation of the matrix elements

The diagonal and upper triangle of matrix A (C.2) are stored in the array A(i,j)
i < j, since from (C.2) it is clearly symmetric. In order to evaluate these ma-
trix elements, three functions assolag1(x,m), assolag3(x,m) and assolag5(x,m)

are defined that return the value of the associated Laguerre polynomials Lf,{/}l) (),

J ASK) (z), and Lf,fl_zl) (z), for argument z and the order m — 1. These functions use the

m—1

arrays coeffl, coeff3, and coeff5 that contain the necessary coefficients and are
initially read in by the main program from the external files c1, c3, and c5. The gen-
eralized incomplete gamma function v(3/2, z) in (C.2) is evaluated by the subroutine

gami3h(x) (79].
The integrations required in (C.2) are performed by Gaussian integration
/0 dz z%e~*f(z) = Z w; f(x:). (C.5)

to take advantage of the special form of the integrands (C.5). The abscissa z; and
weights w; for the n-point integration are calculated in the code by the subroutine
gaulag(x,w,n,a) [79). The source terms b}, in (C.3, 4.112) are stored in the arrays
SN(m+1), ST(m+1), and SR(m+1). The first two may be evaluated analytically,

SN(m) = ‘/71? ml, SI(m) = —4 m2, (C.6)

but SR(i) requires integrations to be performed

2 (o, 132"

C.1.3 Solution to the linear systems

The matrix Ama (C.2) must be inverted in order to obtain the expansion coefficients 2

corresponding to the three different source terms, b2 (C.3). Cholesky decomposition

126



factorizes a symmetric positive definite matrix into
A=LLT, (C.8)

where L is a lower triangular matrix [79]. The Cholesky decomposition is performed
by choldc(A,npoly,nphys,p) [79]. The matrix L is returned in the unused lower
triangle of A(i, j), and the diagonal in the vector p(i). This needs only to be done
once and can be used to solve the three equations with the different sources SN,
ST, and SR with no new calculations. The three equations (C.4) are solved by back

substitution

Lyr =07, LTcA =y, (C.9)
using three calls to the subroutine cholsl(A,npoly,nphys,p,SA,psid) [79], for
A=N, R, and T. The expansion coefficients ¢ are returned in the arrays psiN(m+1),
psiT(m+1), and psiR(m+1).

C.1.4 Transport coefficients

Once the expansion coefficients (C.1) are known, the moments Jg (4.97), may be
determined. The transport coefficients are constructed from the J3 moments accord-
ing to (4.107-4.109), which is simplified as the moments JB are symmetric under

interchange of the indices (8],
2
A_ 1B _— 1/2,-2
Jg=J, 7= /o dz z'/%e~=SgyA. (C.10)
Writing the sources S, necessary for (C.10) as

Sw=IL{?, Sp= —§L9/” (C.11)

using the expansion of the distribution function (4.110, C.1) and the orthogonality
properties of the associated Laguerre polynomials [81]

[ do 2213 () LY ) = &:'3—/22 S, (C.12)
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gives the simple expressions for the moments (C.10) in terms of the expansion coef-

ficients
jNN =psiN(1), jNT = —psiN(1), jNR = psiR(l), (C.13)
JTH = jNT, JTT = —psiT(2), jTR = —psikR(2), (C.14)
npoly
RN = jNR, JRT = jTR, jRR=—— Y peiR(i)sR(i). (C.15)
\/1? i=1
The above jAB moments are related to the Jg (C.10) by
Zkl,;
A _ ei .

‘IB = vae JAB (C.16)

because of the form taken for the expansion (C.1). The transport coefficients can
then be evaluated by using the definitions (4.107, 4.109). The results are shown in
Figure 3.1.1 and are consistent with those in the paper of Bychenkov et al. 8]-

C.2 Background heat flux

The code gradient.f is also able to evaluate the new coeflicients related to the
heat carrying background state described in Chapter 6. The input is the same for
nonlocal.f and the output from the program lists the new coefficients in the order
BY(Z,kles), BY (2, k), and B (Z, kle:) after the nonlocal transport coefficients of
Section C.1.1.

The matrix A (C.2) remains the same, so there is no new matrix to invert.
The only changes in the program are the introduction of one more equation in (C.4)
for ¢V (6.13) (so that A=N, T, R, V). The extra source in (C.3) given by

4 [z __7-’_3/2( _13 2)]
Sv—3ﬁa: (4-1z) 3le 2a:+z . (C.17)

The vector bY. is stored in the array snabla(m+1)

snabla(m) = /o * dz v/ 2e~2 Sy LU/ (z). (C.18)
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Figure 3.1.1: Plot of the transport coefficients o, X, a, Bj, By, and B calculated by the
code nonlocal.f for ionization Z = 8 (grey lines) and Z = 64 (black lines).
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On solving the extra equation (one call to cholsl) The expansion coefficients for I

are stored in the array psinabla(am), and the new J§ moments

jNnabla = psinabla(1), jTnabla = —psinabla(2), (C.19)

and
npoly

jRnabla = \/_ Z psinabla(i)SR(i) (C.20)

are sufficient to calculate the new coefficients 87, Y, and 37, using the definitions
(6.20, 6.21) from Chapter 6.

130



C.3 Listing of gradient.f

C*#***#***t##t*#*##t*#*t**t*t#*t*##***##**#***t#*tt**t#*t##t*#*t*#

c* ®
c* This program "gradient.f" solves for the transport *
c* coefficients from "Nomlocal Electron Tramsport in *
c*x a plasma", PRL 75 4405 (1995) in addition to the *
c* new coefficients arising from the presence of *
c* background gradients *
cx *
c* External files required are: *
c* *
c* €l ==~-mem—-- > coefficients of L_m~(1/2) *
c* €3 =~mm-m--- > coefficients of L_m~(3/2) *
c* €5 —=~=-==m-- > coefficients of L_m~(5/2) *
c* *
c* Jason Myatt 26/5/97 *
c* %
c* email: myatt@phys.ualberta.ca *
c* *
c******t****##t**#####***t*#***#*t#*t##t###*#**#tt#t###tt**ttt#*#t
c

INTEGER i, j,k,1,n,nmax,nphys

REAL sqrpi,useful,IR,Inabla

PARAMETER (sqrpi=1.772453851)
c
¢ nmax - Maximum number of Gaussian integration points
c n - the number of Gaussian integration points
¢ nphys - The physical size of the matrices and vectors
c (determines the maximum number of polynomials)
c npoly - The actual size of the matrices and vectors
c

PARAMETER (nmax=100,nphys=60)
c
¢ Weights, abscissa and alf for Gaussian integration
¢ \int_0~\infty{x~alp exp(-x)}=\sum_{i=1}"n{w(j)£[x(j)1}
c

REAL w(nmax),x(nmax),alf
c
¢ Make space for matrix elements
c

REAL D(nphys,nphys),C1(nphys,nphys),C2(nphys,nphys)

REAL C3(nphys,nphys),A(nphys,nphys)

REAL SN(nphys),ST(nphys),SR(nphys),Snabla(nphys)
c
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OO0 0060

()

a0

p is the diagonal of the Cholesky decomposition of A,
psi(A=N,R,T,nabla) are the sols to the linear system A.psiA=SA,
jABs and dABCDs are moments of psiAs occuring in transport
coefficients

REAL p(nphys),psiN(nphys),psiT(nphys),psiR(nphys)
REAL psinabla(nphys)

REAL jNN,jNT,jWR,jTN,jTT,jTR, jRN,jRT,jRR

REAL jNnabla, jTnabla, jRnabla

REAL dNTNT,dRTNT,dNRNT,dNTRT,dNTNR

REAL dNTnablaT,dNTnablaN

Transport coefficients

REAL sigma,alpha,chi,betal,betaQ,betaR
REAL betaJnabla,betaQnabla,betaRnabla

functions and subroutines to be supplied

REAL assolagl,assolag3,assolagd
REAL SRintegrand,Snablaint,convective,gami3h

Declare Laguerre "look up" coefficients to be common

REAL coeffs1(36,36),coeffs3(36,36)
REAL coeffs5(36,36)

COMMON /first/ coeffsl
COMMON /second/ coeffs3
COMMON /third/ coeffsS

The physical parameters needed as input

REAL klei
INTEGER Z,npoly

Read in the Laguerre coefficients from external files ci, c3, ¢5

OPEN(unit=10,file="/Users/myatt/input/c1", status="old")
READ(10,*) coeffsi
OPEN(unit=11,file="/Users/myatt/input/c3", status="old")
READ(11,*) coeffs3
OPEN(unit=12,file="/Users/myatt/input/c5", status="o0ld")
READ(12,*) coeffs5
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Read in collisionality parameter klei, ionization Z

c
c and the number of polynomials npoly.
c

reads,npoly,klei,Z
c
c
c Calculate the matrix, A
c QQQQQQQQQQQ X T X X X X XX
c
¢ Obtain the abcissa and weights for n-point integration
c

alf=0.5

n=25
c

CALL gaulag(x,w,n,alf)
c
c
c Calculation of the Landau damping part of the matrix
©  Ammamemamasccssssscsssasss;esiealafeasssssccsasnnnas
c
c Note that since D(i,j) is symmetric only the upper triangle and
¢ the diagonal will be defined here
c
c Initialize D(i,j) to zero everywhere
c

do 45 i=1,nphys

do 40 j=1,nphys
D(i,j)=0.0

40 continue
45 continue
c
c Now evaluate the upper triangle of D(i,j)
c

do 110 k=1,npoly
do 105 1=1,k
c carry out the integration
do 100 j=1i,n
D(k,1)=D(k,1)+w(j)*assolagl(x(j),k)*

* assolagl(x(j),1)*convective(x(j), klei,2)
100 continue
c
105 continue
110 continue
c
c
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Calculation of collision integral part of the matrix

PPN P B L Y ekade et Dol ot ol ol d e e dad el ad

Here we calculate the collision integral part of the matrix.
This is done in three parts.

We will recalculate the Gaussian integration abcissa and weights

0O00 00000000

alf=0.0
CALL gaulag(x,w,n,alf)
c
c
c Initialize C*(i,j)’'s to zero everywhere
c
do 345 i=1,nphys
do 340 j=1,nphys
C1(i,j)=0.0
c2(i,j)=0.0
€3(i,j)=0.0
340 continue
345 continue
c
c Now evaluate the upper triangle of C1(i,j)
c PGt
do 410 k=3,npoly
do 405 1=3.k
c carry out the integration
do 400 j=1i.,n
€1(k,1)=C1(k,1)+u(j)*assolag3(x(j),k-1)*
* assolag3(x(j).1-1)*gami3h(x(j))
400 continue
c
405 continue
410 continue
c
c
c Recalculate the Gaussian integration abcissa and weights
c
alf=2.5
=20
CALL gaulag(x,w,n,alf)
c
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Now evaluate the upper triangle of C2(i,j)

Ananaann

0O00O0

do 510 k=3,npoly
do 505 1=3.,k

c carry out the integration
do 500 j=1,n
C2(k,1)=C2(k,1)+w(j)*assolag3d(x(j),1-1)*
* assolag5(x(j) ,k-2)*exp(-x(j))

500 continue

c2(k,1)=C2(k,1)/(float(k)~2.0)
c
505 continue
510 continue
c
c Now evaluate the upper triangle of C3(i,j)
c ammmana
c

do 560 k=3,npoly

do 555 1=3.,k

c carry out the integration
do 550 j=1,n
C3(k,1)=C3(k,1)+w(j)*assolag3(x(j) ,k-1)*
* assolag5(x(j),1-2)*exp(-x(j))

550 continue

C3(k,1)=C3(k,1)/(float(1)~2.0)
C
555 continue
560 continue
c
C
c Now put the whole matrix together:
¢ esestesccascccccsaascaa- aamasanan
c
¢ (N.B. the matrix solver requires A to be upper triangular)
c

do 680 i=1,npoly
do 690 j=1,i
A(j,i)=D(i,j)+3.0%C1(i, j)~-2.0%(C2(i, j)+C3(i,j))
690 continue
680 continue
c

c
c Calculation of vector sources SA(k)
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OO0

10
20

25

BSOS B L B B B G B B B B B B B B B B B By B B B B S

Initialize SA(k)
do 5 k=1,nphys
SN(k)=0.0
ST(k)=0.0
SR(k)=0.0
Snabla(k)=0.0
continue

SN(1)=8qrpi/2.0
ST(2)=-8qrpi/2.0

Carry out the integration for SR

alf=0.5
n=25

CALL gaulag(x,w,n,alf)

do 20 k=1,npoly
do 10 j=1,n
SR(k)=SR(k)+w(j)*SRintegrand(klei,x(j))=*
assolagl (x(j),k)
continue
continue

Carry out the integration for Snabla

do 30 k=1,npoly
do 25 j=1,n
Snabla(k)=Snabla(k)+w(j)*Snablaint(klei,x(j))=*
assolagl (x(j),k)
continue
continue

OO0 0000

o0

Solve the linear systems A.psiA=SA

Ittt dndsinddndndsndmtnsddosdsnsddasndsnonn

First step is to obtain the Cholesky decompostion of A

CALL choldc(A,npoly,nphys,p)

Now solve A.x=SA by back substitution
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CALL cholsl(A,npoly,nphys,p,SN,psil)
CALL cholsl(A,npoly,nphys,p,ST,psiT)
CALL cholsl(A,npoly,nphys,p,SR,psiR)
CALL cholsl(A,npoly,nphys,p,Snabla,psinabla)

jAB moments are easily obtained from the solution vectors

(2}

jEN=psiN(1)
jNT=-ps8iN(2)
jHR=psiR(1)

jTN=jNT
jTT=-p8iT(2)
jTR=-psiR(2)

JRN=jNR
jRT=jTR
jRR=0.0
do 901 i=1,npoly
jRR=jRR+psiR(i)*SR(i)
901 continue
jRR=(2.0/8qrpi)*jRR
c
¢ gradient moments
c
jNnabla=psinabla(1)
jTnabla=-psinabla(2)
jRnabla=0.0
do 902 i=1,npoly
jRnabla=jRnabla+psinabla(i)*SR(i)
902 continue
jRnabla=(2.0/sqrpi)*jRnabla

c

c dABCD moments are combinations of the jABs

c
ANTNT=jNN*jTT-jTN*jNT
dRTNT=jRN*jTT-jTN*jRT
dANRNT=jNN#*jRT-jRN*jNT
dANTRT=jNR*jTT-jTR*jNT
dNTNR=jNN*jTR-jTN*jNR

c

¢ gradient moments

c

dNTnablaT=jNnabla*jTT-jNT*jTnabla
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dNTnablaN=jNnabla*jTN-jNN*jTnabla

¢ Evaluate the nonlocal transport coefficients, normalized to
¢ classical values whenever they exist.

c
useful=3.141592654/(Z*(klei**2))
c
sigma=(3.0/32.0)*useful*(jTT/dNTNT)
alpha=-(1.0/16.0)*useful*(jNT+jTT) /dNTNT
chi=(3.0/200.0)*useful*(2.0*jNT+jTT+jNN) /dNTNT
c
betal=1.0-dRTNT/dNTNT
betaQ=(dRTNT-dNRNT) /dNTNT
c
¢ An integration is necessary for betaR
c
alf=0.0
n=25
call gaulag(x,w,n,alf)
c

IR=0.0
do 909 i=1,n
IR=IR+w(i)*(1.0/hone(klei,x(i)))
909 continue

c

betaR=1.0+float(Z)*(klei**2.0)*(jRR-jRN*(1.0-betal)
* -jRT*(1.0-betaJ-betaQ))-IR

c

¢ Gradient dependent transport coefficients

c
betalnabla=dNTnablaT/dNTNT
betaQnabla=(dNTnablaT+dNTnablaN)/dNTNT

c

¢ An integration is neccessary for betaRnabla

c
alf=0.5
n=25
call gaulag(x,w,n,alf)

c

Inabla=0.0
do 910 i=i,n
Inabla=Inabla+w(i)*(6.0-6.5#*x(i)+x(i)**2.0)/hone(klei,x(i))

910 continue
Inabla=Inabla*4.0/3.0/8qrpi
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betaRnabla=Inabla-float (Z)*(klei**2.0)*(jRnabla-
*+  jRN+*dNTnablaT/dNTNT+jRT+dNTnablaN/dNTNT)

c

prints,sigma,alpha,chi,betal,betaQ,betaR,

* betaJnabla,betaQnabla,betaRnabla

c

END
c
c*#*#**tt*##t*#ttttt#tt#*t**t#*#t*t##t###t*#t**##t##*t*ttt*##*#tt#
c FUNCTIONS and SUBROUTINES

c**#*#tt##***tttt#**t*##*#******####*#*#t#*###*#*#t*#*#*##**#*###*

c
These FUNCTIONs will generate the Associated Laguerre Polynomials
L_m"n(x), where n is as follows:

c
c
c assolagl(x)-~-===~=-= > n=1/2
c assolag3(x)--=-====-= > n=3/2
c assolag5(x)-~======-- > n=5/2
c
¢ Give the degree of the polynomial the subroutine will return
c the value for a given x in assolag{1,3,5}. The arrays of
¢ coefficients are COMMON and must be defined in the driver
¢ program gradient.f
c
c Maximum size of arrays determined by external files ci, ¢3, c§
c
c
REAL FUNCTION assolagi(x,order)
c
c
REAL coeffs1(36,36),x
INTEGER order
COMMON /first/ coeffsi
c
c
assolagi=coeffsi(order,order)
c

do 10 j=order-1,1,-1
assolagi=assolaglsx+coeffsi(j,order)
10 continue

c
c
return
END
c
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c
REAL FUNCTION assolag3(x,order)
c
c
REAL coeffs3(36,36),x
INTEGER order
COMMON /second/ coeffs3
c
c
assolag3=coeffs3(order,order)
c

do 10 j=order-1,1,-1
assolag3=assolag3*x+coeffs3(j,order)
10 continue

c
c
return
END
c
c
c
REAL FUNCTION assolag5(x,order)
c
c
REAL coeffs5(36,36),x
INTEGER order
COMMON /third/ coeffsb
c
c
assolag5=coeffsS5(order,order)
c

do 10 j=order-i,1,-1
assolag5=assolag5*x+coeffs5(j,order)
10 continue

c
c

return

END
c
c
c

REAL FUNCTION hone(klei,x)
c

REAL klei,x,pi
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PARAMETER (pi=3.141592654)
hone=Sqrt(1.0+8.0+pi/81.0%(kleiss2)*(x**4))

return
END

REAL FUNCTION SRintegrand(klei,x)

REAL klei,x,pi,use,hone

PARAMETER (pi=3.141592654,use=0.501502)
hone=Sqrt(1.0+8.0+pi/81.0%(kleis*2)*(x**4))
SRintegrand=(2.0*x)/(3.0%hone)

return
END

REAL FUNCTION Snablaint(klei,x)

REAL klei,x,pi,u,hone
PARAMETER (pi=3.141592654,u=0.752252778)

hone=Sqrt(1.0+8.0%pi/81.0%(kleis**2)*(x**4))

Snablaint=u*(4.0-x+2.0%(x**2-6.5*x+6.0)/(3.0*hone) ) *(x**1.5)

return
END
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