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Abstract

As one type of principal-agent problem, the insurance contract models

are closely related to the extent of information disclosure. We construct two

new insurance contract models with full information and adverse selection

respectively. The full information model is a continuous-time model in which

an insurer proposes an insurance contract to a potential insured. Motivated by

climate change and catastrophic events, we assume that the number of claims

process is a shot-noise Cox process. The insurer selects the premium to be paid

by the potential insured and the amount to be paid for each claim. In addition,

the insurer can request some actions from the potential insured to reduce the

number of claims. The insurer wants to maximize his expected total utility,

while the potential insured signs the contract if his expected total utility for

signing the contract is greater than or equal to his expected total utility when

he does not sign the contract. We obtain an analytical solution for the optimal

premium, the optimal amount to be paid for each claim, and the optimal

actions of the insured. This leads to interesting managerial insights. The

adverse selection model deals with multi-period insurance contracts between

an insurer and the insureds of two risk types. The insurer offers a menu

of contracts from which the insured can choose one that fits his type. We

allow more than two outcome states. The loss amount is a positive random

variable that can take two or more values. Accordingly, the traditional self-

selection principal-agent model with pure adverse selection is not appropriate.

To the traditional model, we add a new constraint that puts a boundary on
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the premium and the compensation. We obtain the optimal contracts that

maximize the insurer’s utility and distinguish the types of insureds. We also

explain why the traditional model is inappropriate and why the constraint of

boundaries is necessary.
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Chapter 1

Introduction

Insurance mathematics studies different risks and ways to manage these risks.

The definition of a risk is the possibility of the occurrence of a hazard. For

individuals, the risk can be illness, disability, and death. For properties, the

risk can be the properties are stolen or damaged by catastrophes. For busi-

nesses, the risk can be the loss from lawsuits. This dissertation uses stochastic

processes to simulate and understand risks. Insurance mathematics applies

mathematical model and solve problems in insurance. This dissertation aims

to find the optimal insurance contracts applying stochastic control methods.

Insurance is a policy in which the insurer provides the insured financial pro-

tection against losses in exchange for a fee. The fee is called premium and

the financial protection is called compensation. The insurance contract details

the conditions and circumstances under which the insurer will compensate

the insured, the amount of premium, and the amount of compensation. For

example, the model in Chapter 2 of this thesis deals with an insurance contract

that contains the premium, the compensation, and the insured’s action. The

insured’s action is the condition under which the insurer will compensate the

insured. The insurer requires the insured to do some actions to reduce the

probability of accidents. If the insured does not meet this condition, the insurer

will not make the compensation.

Due to the amount of information revealed between two parties to the con-

tract, a contract model is categorized into one of the three following categories:
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full information, moral hazard, and adverse selection. In this thesis, we create

a new insurance contract model with full information in Chapter 2 and a new

insurance contract model with adverse selection in Chapter 3.

1.1 The Full Information Model

In a finite time horizon, we consider continuous-time model in which an insurer

proposes an insurance contract to a potential insured. The insurance contracts

are supposed to be effective in a finite time period, so we only consider the risk,

premium, compensation, and other related elements within this time horizon.

The setting of full information means that all the information is observable to

both the insurer and the insured.

It has been standard in the actuarial sciences literature to assume that the

total claim amount process is a compound Poisson process with deterministic

intensity, or equivalently that the number of claims process is a Poisson process

with deterministic intensity. The intensity is a deterministic process, thus the

evolvement of the intensity is revealed at the beginning of the period. See,

for example, Bühlmann [1970], Medhi [1982], Lindskog and McNeil [2003],

and Moore and Young [2006]. However, there are many important cases in

which a Poisson process with deterministic intensity does not represent well

the total number of claims. For instance, Beard et al. [1984] shows that the

standard Poisson process is not an appropriate model for the number of claims

in catastrophe, fire, and some other types of insurance. Instead, Beard et al.

[1984] suggests considering stochastic intensity. This means the intensity is a

stochastic process, thus the intensity will be a random variable at every moment.

The Cox process, also called the doubly stochastic Poisson process, is a

generalized Poisson process with stochastic intensity. We consider a Cox process

where the intensity is a shot noise process. The shot noise process can be used

to model the stochastic nature of catastrophic events. Due to climate change,

natural disasters occur more frequently. The losses caused by catastrophes

are usually enormous, so it is important to insure against losses caused by
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this type of events. Dassios and Jang [2003] explains that claims arising from

catastrophic events depend on the intensity of natural disasters, and that

one of the processes that can be used to measure the impact of catastrophic

events is the shot noise process. Further, Dassios and Jang [2003] and Schmidt

[2014] explain in detail the application of shot-noise Cox process in catastrophe

insurance, although they do not study optimal insurance contracts. Following

Dassios and Jang [2003] and Schmidt [2014], we adopt a shot-noise Cox process

to count the number of claims. Besides catastrophe insurance, our model is

also appropriate for other types of insurance. For example, Dassios et al. [2015]

points out that the shot-noise Cox process models very well the number of

traffic accidents if the rate of the event arrival is large.

We consider two cases: the insured does not intervene through his actions

to reduce the number of claims, and the insured intervenes through his ac-

tions to reduce the number of claims. In the first case, we assume that the

number of claims process is a shot-noise Cox process. In the second case, we

assume that the number of claims process is a Cox process but the actions of

the insured can affect the shot noise intensity. Equation (2.1.2) shows how

the insured’s actions a = {at; t ∈ [0, T ]} affect the intensity. The first case

is the special case of the second case in which the actions of the insured are null.

We allow the actions of the insured to be persistent. That is, the actions of

the insured at any point in time are effective until maturity. For instance, in

flood insurance, the insurer may require the insured to bring the property up

to some standards. See the national flood insurance program of the Federal

Emergency Management Agency (2022). This action of the property owner

will reduce the probability of having a loss caused by floods, and its protection

against flood will last from the time of action. However, along with aging and

wear, the flood-resistance equipment becomes less protective over time. Thus,

we further assume that the action is discounted by time. We will discuss further

details of persistent actions in Section 2.1. Hoffmann et al. [2021], Hopenhayn

and Jarque [2010], Jarque [2010], and Mukoyama and Şahin [2005] have also

considered persistent actions. We present a model in which persistent actions
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affect a Cox process.

The insurer selects the premium to be paid by the potential insured, the

amount to be paid for each claim, and also requests some actions from the

potential insured. The potential insured has a cost associated with his actions.

Section 2.2 presents details on the utility and cost functions of the insurer

and the potential insured. The insurer wants to maximize his expected total

utility, while the potential insured signs the contract if his expected total utility

for signing the contract is greater than or equal to his expected total utility

when he does not sign the contract. Thus, the problem studied in our thesis

is different from other papers (such as Zou and Cadenillas [2014], and Zou

and Cadenillas [2017]) in which an insurer has already designed an insurance

contract (which might not be the optimal insurance contract) and decides its

optimal liability. To the best of our knowledge, we obtain, for the first time

in the literature, an analytical solution for the optimal premium, the optimal

amount to be paid for each claim, and the optimal actions of the insured when

the number of claims process is a Cox process. The analytical solution leads

to interesting managerial insights. For instance, we show that the optimal

expected action decreases over time. Furthermore, the insured will perform

less expected action over time to reach the reservation utility when he does

not enter the insurance market. Jarque [2010] presents the same trend of the

optimal action only through a numerical example while we prove it with an

analytical solution in a general setting. Our result challenges the assumption

of Mukoyama and Şahin [2005] that the principal prefers the agent to insert

the highest action all the time. The decreasing trend of the optimal actions

results from action persistence, where the earlier action reduces the loss further

because it is effective for a relatively long period. We also present an example.

1.2 The Adverse Selection Model

Adverse selection is a situation in which buyers or sellers have more or better

information than the other party in a transaction. Typically, only incomplete

information is presented in the insurance market. The insurer cannot have full
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access to the risk level of the insured while the insured has a better understand-

ing of the risk level. The insurance contracts implemented based on incomplete

information usually cannot provide full insurance. Collecting information is

important for the insurer to offer a contract that provides better insurance.

Naturally, multi-period models are proposed (Cooper and Hayes [1987], Dionne

[1983], Dionne and Lasserre [1985], Dionne and Lasserre [1987]). Compared to

one-period models (Stiglitz [1977], Chade and Schlee [2012]), the multi-period

models allow us to collect information from previous periods and to design

contracts for later periods according to the information collected. Adverse selec-

tion is an allocation problem that exists in many markets, including insurance

markets. For example, automobile insurance and home insurance contracts

consider deductibles. The existence of adverse selection is also confirmed by

many empirical tests (Shi et al. [2012], Browne [1992]). Cohen and Siegelman

[2010] reviewed the empirical tests on adverse selection in insurance markets.

Discussions on adverse selection have been done not only in insurance

markets but also in general principal-agent problems. In the literature dealing

with adverse selection, different mechanisms are presented to sort out the types,

even though the basic essence of all the mechanisms is experience rating. Self-

selection, one of the mechanisms, is widely practiced (Stiglitz [1977], Cooper and

Hayes [1987], Cvitanić and Zhang [2007], Halac et al. [2016], Chade and Schlee

[2012]). With self-selection, the insurer reveals the unobserved information

through the insured’s selection from a menu of contracts. The second mecha-

nism is discussed in Dionne [1983] and Dionne and Lasserre [1985]. The risk

revelation results from a Stackelberg game (Dionne et al. [2000]). The insured

reports his risk level in the first period and receives punishment if his outcome

does not reflects his reported type. Another mechanism is shown in Hoffmann

et al. [2022]. It reveals the information by extending the time of observation.

We will consider an experience rating model with multi-period and self-selection.

Among the models with pure adverse selection and self-selection, this is

the first time that considers more than two outcome states. The outcome

in each period is an accident or no accident in Stiglitz [1977], Cooper and
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Hayes [1987], Chade and Schlee [2012] and the loss amount from an accident is

fixed. These models possess objective, participation constraints, and incentive

compatibility constraints. Differently, the outcome in a period in our model is

a nonnegative random variable representing the loss amount. The loss amount

can be a discrete or continuous random variable. However, the solutions will

be infeasible if the traditional self-selection model is applied when there are

more than two states of loss. So, to adjust to the new situation, we modify the

traditional model and add a new constraint that provides boundaries on the

premium and compensation.

Suppose there are two types of potential insureds in the insurance market:

low risk and high risk. Each insured’s type is private information not observable

to the insurer. The insurer can observe the insured’s loss at each period which

provides a clue of the insured’s type. More periods can reveal more information

about the type. Other tools the insurer can use to sort the types are the

premium and compensation. How to formulate the premium and compensation

for an insured of low risk? Here is a straightforward idea. The insurer could

charge a high premium at every period, to pay a high compensation when the

loss is low, and to punish when the loss is high. This contract is acceptable to

the low-risk insured because the possibility for the low-risk insured to have a

high loss is low. However, the high-risk insured will not choose this contract

because it is highly likely for him to get punished while paying an expensive

premium.

The proportion of each type is observable to both the insured and the

insurer. We suppose the contract is effective in a finite number of periods. At

the beginning of each period, the insured pays the premium. At the end of

each period, the insurer compensates the insured according to the loss amount

and the information obtained from the previous periods. We will set up a pure

adverse selection model and solve for the optimal insurance contracts. The

objective is to maximize the insurer’s expected utility. We find the optimal

premium and compensation for each type in each period and sort the types.

The optimal contracts also reflect the idea discussed in the last paragraph. We
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obtain for the first time in the literature, solutions to a pure adverse selection

problem with self-selection. Chade and Schlee [2012] obtain a solution only

for a specific utility function. We also explain why the traditional model is

inappropriate and why the constraints are necessary.

Other literature discusses principal-agent problems with adverse selection

from different aspects. In Ramsay et al. [2013], the insured possesses two

possible outcome states but the utility functions depend on states. Ma et al.

[2020] discusses a two-period model. The tools of low compensation and the

increase and decrease in the bonus are introduced to distinguish the risk types.

Hellwig [2010] develops a technique for incentive problems with any type

distribution. Jeleva and Villeneuve [2004] introduces the imprecise probabilities

to adverse selection and agents differ in the perception of risks. Without

purchasing the contracts, the insured’s utility is a common value despite the

types in Baron and Myerson [1982] and Maskin and Riley [1984]. Jullien [2000]

allows type-dependent reservation utility and challenges the property obtained

in Baron and Myerson [1982] and Maskin and Riley [1984].
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Chapter 2

Full Information and Persistent

Effort

This chapter consists of five sections. Section 2.1 presents the total claim

amount model and Section 2.2 presents the problem that we study in this

chapter. The solution is presented in Section 2.3. Section 2.4 discusses the

value of the reservation utility. An example is presented in Section 2.5.

2.1 The Total Claim Amount Process

We consider a finite time horizon [0, T ]. There are two possibilities: the insured

does not affect the risky external environment and the insured affects the risky

external environment.

If the insured does not affect the risky external environment, then the total

claim amount process Ψ = {Ψ(t); t ∈ [0, T ]} is given by

Ψ(t) =

N (t)∑
i=1

li = l1 + l2 + · · ·+ lN (t),

where N (t) is the number of claims up to time t ∈ [0, T ] and {l1, l2, · · · , lN (t)}
are the amounts claimed until time t. We make the following assumptions.

a) The random variables {l1, l2, l3, · · · } are independent and identically dis-

tributed. Furthermore, their range is Rl and infRl > 0.

8



b) The sequence of random variables {l1, l2, l3, · · · } are independent of the

stochastic process N = {N (t); t ∈ [0, T ]}.
c) The stochastic process N = {N (t); t ∈ [0, T ]} is a shot-noise Cox process

with stochastic intensity rate I = {I(t); t ∈ [0, T ]} given by

I(t) = θ

M(t)∑
i=0

Yie
δ(τi−t) = θ

M(t)∑
i=0

Yie
−δ(t−τi). (2.1.1)

In the above equation, θ represents the risk level of the insured, M(t) counts

the number of risky events exposed to the insured from time 0 to time t, Yi

is the jump size caused by the i-th random risky event, τi is the time when

the i-th risky event occurs, and δ is the rate of decay. The effect of a risk

event happening at time τ lasts in the time period [τ, T ] but is discounted by

δ at time t ∈ [τ, T ]. We make the following assumptions about the stochastic

process I:

c1) θ is a positive constant.

c2) M = {M(t); t ∈ [0, T ]} is a Poisson process with a deterministic intensity

process ρ(t) ≥ 0, t ∈ [0, T ]. If the frequency of exposures is high, then ρ(·) is
large.

c3) {Yi}i=1,2,3,··· is a sequence of i.i.d. random variables and independent of

M. We suppose they are the images of a random variable Y that is positive

and finite almost surely. Y0 > 0 is a constant known at time 0. We denote

μ = E[Y ].

c4) {τi}i=1,2,3,··· is a sequence of non-decreasing stopping times. In the above

equation, τ0 = 0, and for every i ∈ {1, 2, · · · ,M(t)}: τi ≤ t.

c5) δ is a positive constant.

Applications of Cox processes with shot noise intensity to insurance can be

found in Albrecher and Asmussen [2006], Macci and Torrisi [2011], Schmidt

[2014], and Zhu [2013]. The number of claims from catastrophic events depends

on the stochastic intensity of natural disasters. The above intensity process

I measures the frequency of external risky events (by M), their magnitude

(by Yi), and their time (by τi) to determine the effect of catastrophic events.

As time passes, the magnitude decreases (by δ). We consider a probability
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space (Ω,F1,P) together with a filtration F1 := {F1,t, t ∈ [0, T ]} that is the

P-augmentation of the natural filtration

σ (N (u),M(u), u ∈ [0, t]; li, i ∈ {0, 1, · · · ,N (t)};Yj, τj, j ∈ {0, 1, · · · ,M(t)}) .

If the insured affects the risky external environment, the total claim amount

process Ψ = {Ψ(t); t ∈ [0, T ]} is given by

Ψ(t) =

Na(t)∑
i=1

li = l1 + l2 + · · ·+ lNa(t),

where the number of claims process N a = {N a(t); t ∈ [0, T ]} is a Cox process

with stochastic intensity rate π = {π(t); t ∈ [0, T ]} given by

π(t) := θ

⎛⎝M(t)∑
i=0

Yie
δ(τi−t)

⎞⎠(
1− e−t(ā+

∫ t

0

aurue
udu)

)
. (2.1.2)

Here, the process a = {at; t ∈ [0, T ]} represents the actions to reduce the

magnitude of external risk events and ā is a constant that represents the

measures to reduce the magnitude of risk events taken before the contract

is implemented. We assume that a is adapted to the filtration F1. We also

assume that 0 ≤ at ≤ K for t ∈ [0, T ] and ā ∈ [0, K], where K ∈ [0, 1] is a

constant that represents the proportion of the intensity that can be cleared

through actions. The remaining 1 − K proportion of the intensity is not

avoidable through actions. ru is the effectiveness of action au. The process

r = {rt; t ∈ [0, T ]} is called the productivity of action in the principal-agent

problem (Williams [2009]). Demarzo and Sannikov [2017] and Cvitanić and

Zhang [2013] also introduce the coefficient ru to adjust for the action au. For

example, the precaution against flood is more effective in the rainy season than

in the dry season. Correspondingly, in flood insurance, ru is generally larger in

rainy seasons. We assume that ru ∈ [0, 1] for every u ∈ [0, T ]. If the action and

the effective rate take their highest values K and 1 respectively at every time in
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[0, T ], then (2.1.2) becomes θ

⎛⎝M(t)∑
i=0

Yie
δ(τi−t)

⎞⎠ (1−K). Under the conditions

that 0 ≤ ā ≤ 1, 0 ≤ au ≤ 1, and 0 ≤ ru ≤ 1 for u ∈ [0, T ], we have that π(t) is

nonnegative for t ∈ [0, T ]. In other words, the intensity of the random variable

N a(t) is nonnegative for t ∈ [0, T ]. In the special case where ā = 0 and au = 0

for every u ∈ [0, T ], we have for every t ∈ [0, T ]: I(t) = π(t). Hence, the case

in which the insured affects the external risk environment is more general than

the case in which the insured does not affect the external risk environment.

Therefore, we assume that the insured can affect the external risk environ-

ment. In other words, we assume that the number of claims is represented by

the stochastic process N a = {N a(t); t ∈ [0, T ]}, which is a Cox process with

the stochastic intensity rate π = {π(t); t ∈ [0, T ]} defined in (2.1.2).

We can understand the actions a = {at; t ∈ [0, T ]} in the intensity process

from the following four aspects. First, the more actions inserted, the smaller

the intensity is. Second, au has an effect on π(t) for every t ∈ [u, T ]. Thus, an

earlier action can play a role for a long time while a late action plays a role only

for a short time. Particularly, aT is effective for almost zero duration. Third,

the ratio between the weights of au′ and au in (2.1.2) is e(u
′−u) if 0 < u′, u ≤ t.

If it is closer to time t when an action is implemented, the action is more

effective at time t. Fourth, the action au is made at time u. As time passes by,

the contribution of au shrinks by eu−t at time t ∈ (u, T ].

In the case of flood insurance, the insured is a property owner and the risk

event is a flood. We denote by Yi the magnitude of the i-th flood. The risk

events can affect the frequency of claims, so we represent them in the intensity

rate process π = {π(t); t ∈ [0, T ]}. The effect of each risk event lasts for some

time, but it is discounted (by δ) as time passes. For instance, the destructive

power of a flood lasts from the time of flood rising to the time of cleaning

up. However, the effect of the flood is weaker as time goes by. The process

a represents actions, like using flood-resistance materials, that the property

owner is required to take to reduce the frequency of claims.
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2.2 The Insurance Problem

We assume symmetric information, in the sense that all the information is

transparent and accessible to both insurer and insured. The information

structure is denoted by F1 = {F1,t, t ∈ [0, T ]} and the model is constructed

on the probability space (Ω,F1,P). Following the principal-agent literature

that considers a representative principal and a representative agent (see, for

instance, Section 4.1 of Bolton and Dewatripont [2005], Cadenillas et al. [2007]

and Sannikov [2008]), we consider a representative insurer and a representative

insured.

The insurer selects the premium rate and the compensation. During the

contract period, the client will pay the premium continuously. The company

commits to compensate the insured immediately after he faces a loss. The

compensation can cover partially or completely the loss. The insurer observes

all the information, in particular, the insured’s actions. The insurer requires

the amount of action in the contract, and that must be followed by the insured.

That is consistent with many papers on optimal contract theory. Under the full

information case, Cvitanić and Zhang [2013] points out that the principal offers

the contract and dictates the agent’s actions. In the full information section,

Williams [2015] also said the principal decides the actions. The first-best models

in Chapter 4 of Bolton and Dewatripont [2005] expressed the same ideas. In

practice, to reduce losses, the insurance company may write down provisions

that require the insured to take designated actions in catastrophe and other

insurance contracts. For example, the catastrophe insurance policy may require

the insured to do necessary maintenance on the property. Otherwise, the insurer

is entitled to deny compensation for the loss directly or indirectly caused by

the lack of maintenance. See, for instance, Flex Insurance Company (2022).

Thus, we suppose the actions are taken to maximize the insurer’s utility. On

the other hand, the insured will sign the contract if his participation constraint

is satisfied. We denote by

(a, d,D) = {(at, dt, Di); t ∈ [0, T ] and i = 1, 2, · · · }

12



the contract offered by the insurer. After signing the contract, the insured pays

continuously the premium rate dt and takes action at at time t. When the i-th

loss happens, the insurer compensates the insured with the amount Di. We do

not assume that Di is equal to li.

We assume that the insured and the insurer have Von Neumann-Morgenstern

utility functions U1 : R �→ R and U2 : R �→ R, respectively. U2 is concave and

U1 is strictly concave. These utility functions are also supposed to be strictly

increasing, twice differentiable, and

U ′
2(−∞) = lim

y→−∞
U ′
2(y) = +∞, U ′

2(+∞) = lim
y→+∞

U ′
2(y) = 0,

U ′
1(−∞) = lim

y→−∞
U ′
1(y) = +∞, U ′

1(+∞) = lim
y→+∞

U ′
1(y) = 0.

(2.2.3)

Only in this chapter, there is an extra assumption on the utility functions.

That is,

U1(0), U2(0) ≤ 0.

The insurer’s expected total utility for a policy (a, d,D) is

J (d,D, a) := E

⎡⎣∫ T

0

U2(dt)dt+

Na(T )∑
i=1

U2(−Di)

⎤⎦ . (2.2.4)

The cost function of action is denoted by V1, and is assumed to be positive,

increasing, differentiable, strictly convex and satisfying V1(0) = V ′
1(0) = 0.

Next, we present the participation constraint. We denote the reservation utility

by R ∈ R. R is the expected total utility that the insured can obtain from

outside options. The insurer wants to offer a contract that gives an expected

total utility greater than or equal to R to the insured. Otherwise, the insured

will prefer outside options, and will not accept the contract offer.

The income rate of the insured is represented by {wt, t ≥ 0}. We assume

that wt > 0 is deterministic for every t ≥ 0. We denote by A1 the class of

13



admissible controls. These are the controls (a, d,D) that are adapted to the

filtration F1.

Problem 1. The insurer wants to select the policy (â, d̂, D̂) ∈ A1 that solves

the problem

max
(d,D,a)∈A1

J (d,D, a)

s.t. E

⎡⎣∫ T

0

U1(wt − dt)dt+

Na(T )∑
i=1

U1(Di − li)−
∫ T

0

V1(at)dt

⎤⎦ ≥ R,

(2.2.5)

0 ≤ at ≤ K, for all t ∈ [0, T ]. (2.2.6)

In this chapter, we assume the utility functions are negative when the vari-

ables are negative. The insurer loses some amount of utility if a compensation

is made and the insured loses some amount of utility if he encounters the loss

from an accident. From the terms

Na(T )∑
i=1

U2(−Di) in (2.2.4) and

Na(T )∑
i=1

U1(Di− li)

in (2.2.5), we observe that the total loss of utility due to the claims can be

reduced by taking actions.

2.3 The Optimal Insurance Contract

An extended generator on Markov processes consisting of random jumps is

explicitly calculated in Theorem 5.5 in Davis [1984]. Following this theorem,

we will present a generator of the process {(I(t), t), t ≥ 0}. The generator helps
with our calculation of the expectation of N a(T ). We denote the cumulative

distribution function of the jump Y by FY . We assume that FY and the

intensity ρ defined in Section 2.1 are Riemann integrable.

Suppose a function f(·, ·) belongs to the domain of the generator denoted
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by A. Then A acting on f(I, t) is defined by

Af(I, t) :=
∂f

∂t
− δI

∂f

∂I
+ ρ(t)

∫ ∞

0

f(I + θy, t)dFY (y)− ρ(t)f(I, t). (2.3.7)

Theorem 5.5 of Davis [1984] describes the domain of the generator, and Dassios

and Jang [2003] give sufficient conditions under which f is in the domain

of A. In our case, f : [0,∞) × [0, T ] �→ R belongs to the domain of A if

f ∈ C1([0,∞)× [0, T ];R) and∣∣∣ ∫ ∞

0

f(I + θy, t)dFY (y)− f(I, t)
∣∣∣ < ∞.

As stated by Proposition 1 in Dassios and Embrechts [1989], {f(It, t), t ≥ 0}
is a martingale if Af(I, t) = 0. See also Davis [1984]. Therefore, we have the

following result.

Lemma 1. The stochastic process

M(t)∑
i=0

Yie
δτi − μ

∫ t

0

eδuρ(s)ds

is a martingale.

Proof. We denote

f(I, t) :=
1

θ
Ieδt − μ

∫ t

0

eδuρ(u)du.

It is obvious that f(I, t) is differentiable with respect to each I and t.∣∣∣ ∫ ∞

0

f(I + θy, t)dFY (y)− f(I, t)
∣∣∣

=
∣∣∣ ∫ ∞

0

(
1

θ
(I + θy)eδt − μ

∫ t

0

eδuρ(u)du

)
dFY (y)−

(
1

θ
Ieδt − μ

∫ t

0

eδuρ(u)du

) ∣∣∣
=
∣∣∣eδtμ∣∣∣ < ∞
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Applying (2.3.7), we obtain

Af(I, t) =
1

θ
Iδeδt − μeδtρ(t)− 1

θ
Iδeδt + ρ(t)

∫ ∞

0

(
1

θ
(I + θy)eδt − μ

∫ t

0

eδuρ(u)du

)
dFY (y)

−ρ(t)

(
1

θ
Ieδt − μ

∫ t

0

eδuρ(u)du

)
= −μeδtρ(t) + ρ(t)

1

θ
Ieδt + ρ(t)μeδt − ρ(t)μ

∫ t

0

eδuρ(u)du

−ρ(t)
1

θ
Ieδt + ρ(t)μ

∫ t

0

eδuρ(u)du

= 0.

According to Proposition 1 in Dassios and Embrechts [1989], we obtain that

the stochastic process defined by

f(I(t), t) =
1

θ
I(t)eδt − μ

∫ t

0

eδuρ(u)du

is a martingale. From (2.1.1), we can get the required statement.

Now we can obtain the expected number of claims.

Proposition 1. The expected number of claims corresponding to actions a =

{au, u ∈ [0, T ]} is

E[N a(T )] =θ

∫ T

0

(1− e−tā)e−δt

(
Y0 + μ

∫ t

0

ρ(s)eδsds

)
dt

− θ

∫ T

0

e−(1+δ)tE

⎡⎣∫ t

0

aurue
u

⎛⎝μ

∫ t

u

ρ(s)eδsds+

M(u)∑
i=0

Yie
δτi

⎞⎠ du

⎤⎦ dt.

(2.3.8)

Proof. N a = {N a(t); t ≥ 0} is a Cox process with intensity process π(·). From
Lemma 3a of Grandell [1976] or Theorem 2.7 of Dassios and Jang [2003], we

have

E[N a(T )] =

∫ T

0

E[π(t)]dt. (2.3.9)
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According to the equation (2.1.2),

E[π(t)]

= θ

(
(1− e−tā)E

[M(t)∑
i=0

Yie
δ(τi−t)

]
− e−(1+δ)tE

[(M(t)∑
i=0

Yie
δτi
)∫ t

0

aurue
udu

])
.

According to Lemma 1,

E
[M(t)∑

i=0

Yie
δ(τi−t)

]
= e−δtE

[M(t)∑
i=0

Yie
δτi
]
= e−δt

(
Y0 + μ

∫ t

0

ρ(u)eδudu

)

and

E
[(M(t)∑

i=0

Yie
δτi
)∫ t

0

aurue
udu

]

=

∫ t

0

E

⎡⎣aurueu(M(t)∑
i=0

Yie
δτi
)⎤⎦ du

= E

⎡⎣∫ t

0

aurue
uE

[M(t)∑
i=0

Yie
δτi |F1,u

]
du

⎤⎦
= E

⎡⎣∫ t

0

aurue
u

⎛⎝μ

∫ t

u

ρ(u)eδudu+

M(u)∑
i=0

Yie
δτi

⎞⎠ du

⎤⎦ .

Therefore,

E[π(t)] =θ(1− e−tā)e−δt

(
Y0 + μ

∫ t

0

ρ(u)eδudu

)

− θe−(1+δ)tE

⎡⎣∫ t

0

aurue
u

⎛⎝μ

∫ t

u

ρ(u)eδudu+

M(u)∑
i=0

Yie
δτi

⎞⎠ du

⎤⎦ .

(2.3.10)

We replace E[π(t)] in (2.3.9) by (2.3.10) to obtain (2.3.8).
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Changing the order of integration, we can obtain another way to express (2.3.8).

E[N a(T )] =θ

∫ T

0

(1− e−tā)e−δt

(
Y0 + μ

∫ t

0

ρ(s)eδsds

)
dt

− θE

⎡⎣∫ T

0

aurue
u

∫ T

u

e−(1+δ)t

⎛⎝μ

∫ t

u

ρ(s)eδsds+

M(u)∑
i=0

Yie
δτi

⎞⎠ dtdu

⎤⎦ .

The role actions a = {au, u ∈ [0, T ]} play can also be observed through the

expression above. The integration following au is from time u to T . It indicates

that the effect of au lasts in the time period [u, T ]. The action exerted at

different moments makes different contributions in the remaining period.

We denote

B̄ :=

∫ T

0

(1− e−tā)e−δt

(
Y0 + μ

∫ t

0

ρ(s)eδsds

)
dt,

Bt := rte
t

∫ T

t

e−(1+δ)u

⎛⎝μ

∫ u

t

ρ(s)eδsds+

M(t)∑
i=0

Yie
δτi

⎞⎠ du.

Now, we can write E[N a(T )] as

E[N a(T )] = θB̄ − θE

[∫ T

0

atBtdt

]
. (2.3.11)

Since rt ≥ 0, ρ(t) ≥ 0 for t ∈ [0, T ], and Yi > 0 for i = 0, 1, 2, · · · , it imme-

diately follows that Bt ≥ 0 for each ω ∈ Ω and t ∈ [0, T ]. Recalling that

π(t) is nonnegative for t ∈ [0, T ], we derive that E[N a(T )] ≥ 0. Let au = 1

almost surely for u ∈ [0, T ], we can see E[N a(T )] = θ

(
B̄ − E

[∫ T

0

Btdt

])
from (2.3.11). Further, let ā = 1 and rt = 1 almost surely for t ∈ [0, T ], then

π(t) = 0 almost surely for t ∈ [0, T ] and it results in E[N a(T )] = 0. It follows

that B̄ = E

[∫ T

0

Btdt

]
. Otherwise, B̄ > E

[∫ T

0

atBtdt

]
. B̄ can be understood

as the expected number of claims if actions are not involved. Bt is the intensity

rate of accidents that can be removed by one unit of action at time t.
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To find the solution of the model, we use the Lagrangian method and define

the functional L1 by

L1(d,D, a; Λ1,Λ2) :=E

⎡⎣∫ T

0

U2(dt)dt+

Na(T )∑
i=1

U2(−Di)

⎤⎦
+ Λ1E

⎡⎣∫ T

0

U1(wt − dt)dt+

Na(T )∑
i=1

U1(Di − li)−
∫ T

0

V1(at)dt

⎤⎦
+ E

[∫ T

0

Λt
2atdt

]
,

(2.3.12)

where Λ1 and Λt
2, adapted to F1, t ∈ [0, T ] are Lagrangian multipliers. The

first order conditions for d and D are

U ′
2(−Di)− Λ1U

′
1(Di − li) = 0 and U ′

2(dt)− Λ1U
′
1(wt − dt) = 0. (2.3.13)

Since Λ1 is constant, the solution of Di from the equations above is dependent

of li only. Hence, the sequences {U2(Di)}i=1,2,··· and {U1(Di − li)}i=1,2,··· are

i.i.d. and independent of the process N a. Thus, the Lagrangian (2.3.12) can

be rewritten as

L1(d,D, a; Λ1,Λ2) =E

[∫ T

0

U2(dt)dt

]
+ E[N a(T )]E[U2(−D) + Λ1U1(D − l)]

+ Λ1E

[∫ T

0

U1(wt − dt)dt

]
− Λ1E

[∫ T

0

V1(at)dt

]
+ E

[∫ T

0

Λt
2atdt

]
.

(2.3.14)

Derive the first order condition from (2.3.14) for at to obtain

Λ1V
′
1(at)− Λt

2 = −θE[U2(−D) + Λ1U1(D − l)]Bt (2.3.15)

for each t ∈ [0, T ] and ω ∈ Ω. The values of the Lagrangian multipliers can

show important information of the solutions. Consider Λ1 first. To ensure the
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first order condition (2.3.13) valid, Λ1 must be positive. If Λ1 = 0, we can get

Di = −∞ and dt = ∞ from (2.3.13). However, this causes a contradiction

to constraint (2.2.5). From (2.2.3), we have lim
Di→−∞

U1(Di − li) = −∞ for

i = 1, 2, · · · and lim
dt→∞

U1(wt−dt) = −∞ for t ∈ [0, T ]. Then, the left-hand-side

of (2.2.5) is going to −∞. Since R is finite, (2.2.5) cannot be satisfied. Hence,

Λ1 > 0. Consider Λt
2 now. If Λt

2 = 0 for some t ∈ [0, T ] and some ω ∈ Ω, it

means the constraint (2.2.6) is not binding. The action we obtain from (2.3.15),

at = V ′−1
1

(
− θ

Λ1

E[U2(−D) + Λ1U1(D − l)]Bt

)
,

satisfies (2.2.6). If Λt
2 < 0 for some t ∈ [0, T ] and some ω ∈ Ω, it means the

right-hand-side of (2.3.15) is big enough such that

Λ1V
′
1(K) < −θE[U2(−D) + Λ1U1(D − l)]Bt,

which shows the marginal cost of action is always smaller than the marginal

benefit. Inserting actions more than K will bring the company more utility,

but this preference is prevented by the upper bound of at. The constraint

at ≤ K binds and the optimal action is just K. If Λt
2 > 0 for some t ∈ [0, T ]

and some ω ∈ Ω, it means the right-hand-side of (2.3.15) is negative such that

Λ1V
′
1(0) > −θE[U2(−D) + Λ1U1(D − l)]Bt,

which shows the marginal cost of action is always bigger than the marginal

benefit. Less action is required but the constraint 0 ≤ at binds. The optimal

action is just 0.

We define the function g : R2 → R by

g(y1, y2) :=
U ′
2(y1)

U ′
1(w − y1 − y2)

.

Recalling that the utility functions are strictly increasing, we have U ′
2(y1) > 0

and U ′
1(w − y1 − y2) > 0. Hence, g is a positive function. Recalling that U2 is
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concave and U1 is strictly concave, we get that U ′
2(y1) is a decreasing function

of y1 and U ′
1(w− y1− y2) is a strictly increasing function of y1. Hence, g(y1, y2)

is a strictly decreasing function of y1. Thus, g(·, y2) is invertible. The inverse

function is denoted by g−1(·, y2) and it is also a strictly decreasing function.

Similarly, we obtain that g(y1, y2) is a strictly decreasing function of y2.

Consider the function U1 defined by

U1(Λ1) :=

∫ T

0

U1(wt − dΛ1
t )dt+ E

[
U1(D

Λ1 − l)
]
θ

(
B̄ − E[

∫ T

0

aΛ1
t Btdt]

)
− E

[∫ T

0

V1(a
Λ1
t )dt

]
, (2.3.16)

where

DΛ1 = g−1(Λ1, l),

dΛ1
t = −g−1(Λ1,−wt),

aΛ1
t = V ′−1

1

(
− θE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)

]
Bt

)

if 0 ≤ −θE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)

]
Bt ≤ V ′

1(K),

aΛ1
t = K if V ′

1(K) < −θE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)

]
Bt,

aΛ1
t = 0 if − θE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)

]
Bt < 0.

(2.3.17)

The controls in (2.3.17) are the solution of equations (2.3.13) and (2.3.15).

U1(Λ1) is the customer’s expected total utility corresponding to the controls

(dΛ1 , DΛ1 , aΛ1). We know that g(y1, y2) is an increasing function of y1, so the

inverse function is also an increasing function. Thus, DΛ1
i increases and dΛ1

t

decreases when Λ1 increases. That is, the customer can get more compensation

and pay less premium at the same time. The customer’s utility from the

contract may also increase. It inspires us to think that U1(Λ1) may be an

increasing function of Λ1. The obstacle is we are not sure how aΛ1
t moves
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according to Λ1. From (2.3.17), we can see aΛ1
t is closely related to

U(Λ1) := − 1

Λ1

U2(−g−1(Λ1, l))− U1(g
−1(Λ1, l)− l). (2.3.18)

Here, θE[U(Λ1)]Bt can be recognized as the marginal benefit of the action.

V ′
1(at) can be recognized as the marginal cost of the action. When Λt

2 = 0

for some t, (2.3.15) becomes V ′
1(at) = −θE[U(Λ1)]Bt. It illustrates that the

optimal action is reached when its marginal benefit equals its marginal cost.

To explore more connections between aΛ1
t and Λ1, we consider the derivative

U ′(Λ1) =
1

Λ2
1

U2(−g−1(Λ1, l)) +
1

Λ1

U ′
2(−g−1(Λ1, l))g

−1′(Λ1, l)

− U ′
1(g

−1(Λ1, l)− l)g−1′(Λ1, l). (2.3.19)

From (2.3.13), we have
U ′
2(−Di)

Λ1

= U ′
1(Di − li). Here, D

Λ1
i = g−1(Λ1, li), so we

obtain
1

Λ1

U ′
2(−g−1(Λ1, l)) = U ′

1(g
−1(Λ1, l)− l). Now, we rewrite (2.3.19) to get

U ′(Λ1) =
1

Λ2
1

U2(−g−1(Λ1, l)). (2.3.20)

Theorem 1. U1(Λ1) is an increasing function of Λ1 for Λ1 ∈ (0,∞).

Proof. We split B̄ as B̄ = E

[∫ T

0

KBtdt

]
+ B̄ − E

[∫ T

0

KBtdt

]
. Then, we

rewrite (2.3.16) to obtain

U1(Λ1) =

∫ T

0

U1(wt − dΛ1
t )dt (2.3.21)

+ E
[
U1(D

Λ1 − l)
]
θ

(
B̄ − E

[∫ T

0

KBtdt

])
(2.3.22)

+ E
[
U1(D

Λ1 − l)
]
θ

(
E

[∫ T

0

KBtdt

]
− E

[∫ T

0

aΛ1
t Btdt

])
− E

[∫ T

0

V1(a
Λ1
t )dt

]
(2.3.23)

From (2.3.17), dΛ1
t is a decreasing function of Λ1 for every t ∈ [0, T ]. Thus,

the term (2.3.21) is an increasing function of Λ1. Recalling from (2.3.11) that
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B̄ − E

[∫ T

0

atBtdt

]
≥ 0, we obtain B̄ − E

[∫ T

0

KBtdt

]
≥ 0. Also recalling

that DΛ1 is an increasing function of Λ1 for every l ∈ Rl, we see that the term

(2.3.22) is an increasing function of Λ1. Next, we will analyze the remaining

terms in (2.3.23). For each ω ∈ Ω and each t ∈ [0, T ], consider

ϕ1(Λ1) := θE
[
U1(D

Λ1 − l)
] (

K − aΛ1
t

)
Bt − V1(a

Λ1
t ).

We will show ϕ1(Λ1) is an increasing function of Λ1. a
Λ1
t takes different values

for different Λ1, so we will discuss the following three cases.

(i) If Λ1 is such that aΛ1
t = 0, then we have

ϕ1(Λ1) = θE
[
U1(D

Λ1 − l)
]
KBt − V1(0) = E

[
U1(D

Λ1 − l)
]
KBt. (2.3.24)

Recalling K ≥ 0, Bt ≥ 0, and DΛ1 is an increasing function of Λ1 for every

l ∈ Rl, we get (2.3.24) is an increasing function of Λ1.

(ii) If Λ1 is such that aΛ1
t = K, then we have

ϕ1(Λ1) = θE
[
U1(D

Λ1 − l)
]
(K −K)Bt − V1(K) = −V1(K). (2.3.25)

(2.3.25) is constant.

(iii) If Λ1 is such that

aΛ1
t = V ′−1

1

(
− θE[

1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)]Bt

)
,

then we have

ϕ′
1(Λ1) = θE

[
U ′
1(D

Λ1 − l)
∂DΛ1

∂Λ1

]
(K − aΛ1

t )Bt

+ θE
[
U1(D

Λ1 − l)
]
Bt(−∂aΛ1

t

∂Λ1

)− V ′
1(a

Λ1
t )

∂aΛ1
t

∂Λ1

.

Here, DΛ1 = g−1(Λ1, l) and

V ′
1(a

Λ1
t ) = −θE[

1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)]Bt.
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Now we have

ϕ′
1(Λ1) = θE

[
U ′
1

(
g−1(Λ1, l)− l

) ∂g−1(Λ1, l)

∂Λ1

]
(K − aΛ1

t )Bt

+θE
[
U1

(
g−1(Λ1, l)− l

)]
Bt(−∂aΛ1

t

∂Λ1

)

+θE[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)]Bt

∂aΛ1
t

∂Λ1

= θE

[
U ′
1

(
g−1(Λ1, l)− l

) ∂g−1(Λ1, l)

∂Λ1

]
(K − aΛ1

t )Bt

+θE[
1

Λ1

U2(−g−1(Λ1, l))]Bt
∂aΛ1

t

∂Λ1

. (2.3.26)

Recalling the definition of U(Λ1) in (2.3.18), we can see aΛ1
t = V ′−1

1 (θE[U(Λ1)]Bt).

From (2.3.20), we obtain

∂aΛ1
t

∂Λ1

= V
′−1′
1 (θE[U(Λ1)]Bt) θBtE[U ′(Λ1)]

= V
′−1′
1 (θE[U(Λ1)]Bt) θBtE[

1

Λ2
1

U2(−g−1(Λ1, l))].

We rewrite (2.3.26) to get

ϕ′
1(Λ1) = θE

[
U ′
1

(
g−1(Λ1, l)− l

) ∂g−1(Λ1, l)

∂Λ1

]
(K − aΛ1

t )Bt (2.3.27)

+θ2
1

Λ3
1

(
E[U2(−g−1(Λ1, l))]

)2
B2

t V
′−1′
1 (θE[U(Λ1)]Bt) .(2.3.28)

U1 is an increasing function and g−1(Λ1, l) is an increasing function of Λ1,

meaning

U ′
1

(
g−1(Λ1, l)− l

) ∂g−1(Λ1, l)

∂Λ1

> 0.

We also know thatK−aΛ1
t > 0 and Bt ≥ 0 for every t ∈ [0, T ] and ω ∈ Ω. There-

fore, (2.3.27) is non-negative. V ′
1 is an increasing function, so its inverse V

′−1
1

must also be an increasing function. We can state that V
′−1′
1 (θE[U(Λ1)]Bt) ≥ 0

and therefore (2.3.28) is non-negative.
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To summarize, we have shown that ϕ1(Λ1) is an increasing function of Λ1

in each case. It is obvious that ϕ1(Λ1) is continuous, so we state that ϕ1(Λ1) is

an increasing function of Λ1 in the interval Λ1 ∈ (0,∞).

Taking the integration of ϕ1(Λ1) from 0 to T and then taking the expectation

on the integration, we obtain (2.3.23). So (2.3.23) increases when Λ1 increases.

Recalling that (2.3.21) and (2.3.22) also increase when Λ1 increases, we conclude

that U1(Λ1) is an increasing function of Λ1 ∈ (0,∞).

We define Λ̂1 by the following equation,

U1(Λ̂1) = R. (2.3.29)

Then we have

Theorem 2. If there exists Λ̂1 > 0 such that (2.3.29) holds, then the optimal

insurance contract (d̂, D̂, â) = (dΛ̂1 , DΛ̂1 , aΛ̂1) is given by

d̂t = −g−1(Λ̂1,−wt), (2.3.30)

D̂i = g−1(Λ̂1, li), (2.3.31)

ât =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if −θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt < 0,

V ′−1
1

(
− θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt

)
if 0 ≤ −θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt ≤ V ′

1(K),

K if V ′
1(K) < −θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt.

(2.3.32)

Proof. First, we want to verify that the process a defined by (2.3.32) satisfies

the constraint (2.2.6).

We consider three possibilities for

−θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt.
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If

−θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt < 0,

then ât = 0 and the constraint (2.2.6) is trivially satisfied. If

−θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt > V ′

1(K),

then ât = K and the constraint (2.2.6) is trivially satisfied. If

0 ≤ −θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt ≤ V ′

1(K),

then the strict convexity of V1 and the condition V ′
1(0) = 0 imply that

0 ≤ V ′−1
1

(
−θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt

)
≤ K,

which is equivalent to 0 ≤ ât ≤ K. Hence, ât ∈ [0, K] for each t ∈ [0, T ] and

(2.3.32) satisfies the condition (2.2.6).

Let a be a fixed admissible action process that satisfies (2.2.6). Then we

find the first order conditions similar to (2.3.13) for Di and dt,

U ′
2(−Di)− ΛaU ′

1(Di − li) = 0, U ′
2(dt)− ΛaU ′

1(wt − dt) = 0, (2.3.33)

where Λa is the Lagrangian multiplier. Since U1 and U2 are increasing functions,

Λa must be positive to make the equations above meaningful. The solution of

the first order conditions is

Da
i = g−1(Λa, li), dat = −g−1(Λa,−wt).
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We define

Ua(Λ
a) :=E

[∫ T

0

U1(wt + g−1(Λa,−wt))dt

+

Na(T )∑
i=1

U1(g
−1(Λa, li)− li)−

∫ T

0

V1(at)dt

]
.

We denote the root of Ua(Λ
a) = R by Λ̂a and correspondingly we define

D̂a
i := g−1(Λ̂a, li) and d̂at := −g−1(Λ̂a,−wt). Next, we discuss the existence of

Λ̂a for a fixed process a. We will show that Λ̂a exists if for the fixed process a,

there are compensation and premium processes such that (2.2.5) holds. For

the fixed process a, let D = {Di; i = 1, 2, · · · } and d = {dt; t ∈ [0, T ]} be

any adapted compensation sequence and premium process that satisfy (2.2.5).

When Λa → ∞,

g−1(Λa, li) → ∞, g−1(Λa,−wt) → ∞,

which yields g−1(Λa, li) ≥ Di for i = 1, 2, · · · and g−1(Λa,−wt) ≥ −dt for

t ∈ [0, T ]. Recalling that U1 is an increasing function, we have

lim
Λa→∞

Ua(Λ
a) ≥ E

⎡⎣∫ T

0

U1(wt − dt)dt+

Na(T )∑
i=1

U1(Di − li)−
∫ T

0

V1(at)dt

⎤⎦ ≥ R

from (2.2.5). When Λa → 0+,

g−1(Λa, li) → −∞, g−1(Λa,−wt) → −∞,

resulting in Ua(Λ
a) → −∞ and consequently Ua(Λ

a) < R. Due to the conti-

nuity of Ua(Λ
a), we see that there exists Λ̂a ∈ (0,∞) such that Ua(Λ̂

a) = R

holds.

We will prove Theorem 2 in two steps. First, we will show J (d̂a, D̂a, a) ≥
J (d,D, a) for any fixed action process a that satisfies (2.2.6). Afterwards, we

will show J (d̂, D̂, â) ≥ J (d̂a, D̂a, a). We need some preparation before starting
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the steps.

Lemma 2.

θE

[
1

Λ̂1

U2(−D̂) + U1(D̂ − l)

]
Bt(at − ât) ≥ V1(ât)− V1(at).

Proof. According to (2.3.30) and (2.3.31), it is sufficient to prove that

θE

[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)

]
Bt(at − ât) ≥ V1(ât)− V1(at).

If 0 < ât < K,

V ′
1(ât)(ât − at) = θE[

1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)]Bt(at − ât).

If ât = K, then

ât − at = K − at ≥ 0

and

V ′
1(ât) = V ′

1(K) < −θE[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)]Bt,

which yields

V ′
1(ât)(ât − at) ≤ θE[

1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)]Bt(at − ât).

If ât = 0, then

ât − at = 0− at ≤ 0

and

V ′
1(ât) = V ′

1(0) = 0 > −θE[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)]Bt,
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which yields

V ′
1(ât)(ât − at) ≤ θE[

1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)]Bt(at − ât).

Due to the convexity of V1, we have V ′
1(ât)(ât − at) ≥ V1(ât) − V1(at). The

required statement follows.

Step 1. Since U1 and U2 are both concave functions, we obtain the

inequality

∫ T

0

U1(wt − dt)dt+

Na(T )∑
i=1

U1(Di − li)−
⎛⎝∫ T

0

U1(wt − d̂at )dt+

Na(T )∑
i=1

U1(D̂
a
i − li)

⎞⎠
≤
∫ T

0

U ′
1(wt − d̂at )(d̂

a
t − dt)dt+

Na(T )∑
i=1

(
U ′
1(D̂

a
i − li)(Di − D̂a

i )
)
. (2.3.34)

Furthermore, (2.2.4) implies

J (d̂a, D̂a, a)− J (d,D, a)

= E

⎡⎣∫ T

0

(
U2(d̂

a
t )− U2(dt)

)
dt+

Na(T )∑
i=1

(
U2(−D̂a

i )− U2(−Di)
)⎤⎦ ,

which yields

J (d̂a, D̂a, a)− J (d,D, a)

≥ E

⎡⎣∫ T

0

U ′
2(d̂

a
t )(d̂

a
t − dt)dt+

Na(T )∑
i=1

(
U ′
2(−D̂a

i )(Di − D̂a
i )
)⎤⎦ .

(2.3.35)

According to (2.3.33), we can replace U ′
2(d̂

a
t ) by Λ̂aU ′

1(wt − d̂at ) and replace

U ′
2(−D̂a

i ) by Λ̂aU ′
1(D̂

a
i − li) in (2.3.35). Comparing (2.3.34) and (2.3.35), we
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obtain

J (d̂a, D̂a, a)− J (d,D, a)

≥ E

⎡⎣∫ T

0

Λ̂aU ′
1(wt − d̂at )(d̂

a
t − dt)dt+ Λ̂a

Na(T )∑
i=1

(
U ′
1(D̂

a
i − li)(Di − D̂a

i )
)⎤⎦

≥ Λ̂aE

⎡⎣∫ T

0

U1(wt − dt)dt+

Na(T )∑
i=1

U1(Di − li)

−
⎛⎝∫ T

0

U1(wt − d̂at )dt+

Na(T )∑
i=1

U1(D̂
a
i − li)

⎞⎠⎤⎦ .

According to (2.2.5), we obtain

J (d̂a, D̂a, a)− J (d,D, a)

≥ Λ̂a

(
(R + E

[∫ T

0

V1(at)dt

]
)− (R + E

[∫ T

0

V1(at)dt

]
)

)
= 0.

Therefore, d̂a and D̂a are the optimal controls when a is the fixed action process.

Step 2. As a Lagrangian multiplier, Λ̂a is a constant. The randomness of

D̂a
i depends on li only, so D̂a

i is independent of N a(t) for i = 1, 2, · · · , and we

get the following equations for any a satisfying (2.2.5) and (2.2.6).

E

⎡⎣Na(T )∑
i=1

U1(D̂
a
i − li)

⎤⎦ = E[N a(T )]E
[
U1(D̂

a − l)
]
,

E

⎡⎣Na(T )∑
i=1

U2(−D̂a
i )

⎤⎦ = E[N a(T )]E
[
U2(−D̂a)

]
,

(2.3.36)
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where E[N a(T )] = θE

[
B̄ −

∫ T

0

atBtdt

]
from (2.3.11). Similarly, we obtain

E

⎡⎣N â(T )∑
i=1

U1(D̂i − li)

⎤⎦ = E[N â(T )]E
[
U1(D̂ − l)

]
,

E

⎡⎣N â(T )∑
i=1

U2(−D̂i)

⎤⎦ = E[N â(T )]E
[
U2(−D̂)

]
,

(2.3.37)

where E[N â(T )] = θE

[
B̄ −

∫ T

0

âtBtdt

]
. Hence, the difference between

J (d̂, D̂, â) and J (d̂a, D̂a, a) is

J (d̂, D̂, â)− J (d̂a, D̂a, a)

=

∫ T

0

(
U2(d̂t)− U2(d̂

a
t )
)
dt+ E

⎡⎣N â(T )∑
i=1

U2(−D̂i)−
Na(T )∑
i=1

U2(−D̂a
i )

⎤⎦
=

∫ T

0

(
U2(d̂t)− U2(d̂

a
t )
)
dt

+θE

[
B̄ −

∫ T

0

âtBtdt

]
E
[
U2(−D̂)

]
− θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
U2(−D̂a)

]
=

∫ T

0

(
U2(d̂t)− U2(d̂

a
t )
)
dt+ θE

[∫ T

0

(at − ât)Btdt

]
E
[
U2(−D̂)

]
+θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
U2(−D̂)− U2(−D̂a)

]
.

Recalling E
[
B̄ − ∫ T

0
atBtdt

]
≥ 0 and the concavity of the utility function U2,

we obtain

J (d̂, D̂, â)− J (d̂a, D̂a, a)

≥
∫ T

0

U ′
2(d̂t)(d̂t − d̂at )dt+ θE

[∫ T

0

(at − ât)Btdt

]
E
[
U2(−D̂)

]
+ θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
U ′
2(−D̂)(D̂a − D̂)

]
.
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According to (2.3.13), this inequality can be rewritten as

J (d̂, D̂, â)− J (d̂a, D̂a, a)

≥
∫ T

0

Λ̂1U
′
1(wt − d̂t)(d̂t − d̂at )dt+ θE

[∫ T

0

(at − ât)Btdt

]
E
[
U2(−D̂)

]
+ θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
Λ̂1U

′
1(D̂ − l)(D̂a − D̂)

]
.

Due to the concavity of the utility function U1, we have

J (d̂, D̂, â)− J (d̂a, D̂a, a)

≥ Λ̂1

∫ T

0

(
U1(wt − d̂at )− U1(wt − d̂t)

)
dt

+Λ̂1θE

[∫ T

0

(at − ât)Btdt

]
E

[
1

Λ̂1

U2(−D̂) + U1(D̂ − l)− U1(D̂ − l)

]
+Λ̂1θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
U1(D̂

a − l)− U1(D̂ − l)
]
.

Applying Lemma 2, we obtain

1

Λ̂1

(
J (d̂, D̂, â)− J (d̂a, D̂a, a)

)
≥

∫ T

0

(
U1(wt − d̂at )− U1(wt − d̂t)

)
dt+ E

[∫ T

0

(
V1(ât)− V1(at)

)
dt

]
+θE

[∫ T

0

(ât − at)Btdt

]
E
[
U1(D̂ − l)

]
+θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
U1(D̂

a − l)− U1(D̂ − l)
]

=

∫ T

0

(
U1(wt − d̂at )− U1(wt − d̂t)

)
dt+ E

[∫ T

0

(
V1(ât)− V1(at)

)
dt

]
+θE

[
B̄ −

∫ T

0

atBtdt

]
E
[
U1(D̂

a − l)
]

−θE

[
B̄ −

∫ T

0

âtBtdt

]
E
[
U1(D̂ − l)

]
.
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Applying (2.3.36) and (2.3.37)to the expression above, we obtain

1

Λ̂1

(
J (d̂, D̂, â)− J (d̂a, D̂a, a)

)
≥ E

⎡⎣∫ T

0

U1(wt − d̂at )dt+

Na(T )∑
i=1

U1(D̂
a
i − li)−

∫ T

0

V1(at)dt

⎤⎦
− E

⎡⎣∫ T

0

U1(wt − d̂t)dt+

N â(T )∑
i=1

U1(D̂i − li)−
∫ T

0

V1(ât)dt

⎤⎦
= R−R = 0.

Therefore, J (d̂, D̂, â) ≥ J (d,D, a) for every admissible control (d,D, a) that

satisfies the constraints of Problem 1. If Λ̂1 > 0 satisfies (2.3.29), we conclude

that (d̂, D̂, â) is the optimal solution.

Remark 1. There is Λ1 such that U1(Λ1) < R whatever R is 1. It must be

smaller than Λ̂1 according to Theorem 1 if Λ̂1 exists. However, the existence of

Λ̂1 depends on the value of R. In Theorem 4 of the next section, we will show

the existence and uniqueness of Λ̂1 with an appropriate value of R.

Remark 2. The optimal action ât is an increasing function of Bt. We can

explain it in three ways. First, if rt is high, actions at this moment are more

effective. The insured wants to take this opportunity to insert more actions.

Second, the insured prefers to insert more actions earlier if we neglect the

uncertainty elements rt, Yi, and τi. For example, if rt = r0 for every t ∈ [0, T ]

and Y = 0 almost surely, then

Bt = r0e
t

∫ T

t

e−(1+δ)u
(
Y0e

δτ0
)
du =

r0Y0

1 + δ
(e−δt − et−(1+δ)T ),

which is a decreasing function of t. Thus, ât is also a decreasing function of t.

Especially, Bt = 0 when t = T , resulting in aT = 0. The action taken at an

earlier time is effective for a longer period. It can reduce the intensity of the

accidents throughout the whole period. The insured is motivated to act as much

1We showed lim
Λ1→0+

U1(Λ1) = −∞ when we discussed Lagrangian multipliers in (2.3.15).
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as possible at the beginning. The action taken at maturity is only effective at

the moment T . It makes almost no contribution to lowering the intensity. The

insured does not want to waste his action, thus takes zero action at time T .

Third, the bigger
M(t)∑
i=0

Yie
δτi is, the bigger Bt is. Thus more actions should be

inserted when the accumulated external exposure is more. Note that the same

amount of action deducts the same proportion of the intensity of claims. When

the exposure is high, the same amount of action can remove more intensity.

The actions are therefore more valuable and the insured will choose to execute

more actions at these moments.

2.4 The Reservation Utility

In this section, we calculate the reservation utility R of (2.2.5), which is the

utility of the potential insured if he does not purchase insurance. The partici-

pation constraint (2.2.5) means that the expected total utility from purchasing

insurance is greater than or equal to the expected total utility from not pur-

chasing insurance. In this section, we will (i) calculate the reservation utility

R when the potential insured does not purchase insurance, (ii) compare the

actions taken when the potential insured does and does not enter the insurance

market, and (iii) show that Λ̂1 of Theorem 2 exists uniquely.

If the potential insured does not enter the insurance market, then he will

not pay a premium and, as a consequence, will not receive any compensation.

However, he will select the action to maximize his expected total utility.

We denote by AR the class of stochastic processes a : [0, T ]× Ω �→ R that

are adapted to the filtration F1.

Problem 2. If the potential insured does not purchase insurance, he wants to
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obtain the control a∗ ∈ AR that solves the problem

max
a∈AR

E

⎡⎣∫ T

0

U1(wt)dt+

Na(T )∑
i=1

U1(−li)−
∫ T

0

V1(at)dt

⎤⎦
s.t. 0 ≤ at ≤ K, for all t ∈ [0, T ].

According to (2.3.11), E

⎡⎣Na(T )∑
i=1

U1(−li)

⎤⎦ can be rewritten as

E

⎡⎣Na(T )∑
i=1

U1(−li)

⎤⎦ = E[U1(−l)]

(
θB̄ − θE

[∫ T

0

atBtdt

])
. (2.4.38)

We define the Lagrangian function

L2(a; Λ3) :=

∫ T

0

U1(wt)dt+ E[U1(−l)]

(
θB̄ − θE

[∫ T

0

atBtdt

])
− E

[∫ T

0

V1(at)dt

]
+ E

[∫ T

0

Λt
3atdt

]
,

where Λt
3, t ∈ [0, T ], adapted to F1, are Lagrangian multipliers. We take the

differentiation of the Lagrangian function with respect to at and obtain the

first order conditions

V ′
1(at)− Λt

3 = −θBtE[U1(−l)] (2.4.39)

for t ∈ [0, T ] and ω ∈ Ω. U1(−l) < 0 for l ∈ Rl, then −θBtE[U1(−l)] ≥ 0 for

each t ∈ [0, T ] and ω ∈ Ω. If 0 ≤ −θBtE[U1(−l)] ≤ V ′
1(K) for some t ∈ [0, T ]

and ω ∈ Ω, Λt
3(ω) = 0. The solution of (2.4.39) for at satisfies the constraint,

so the constraint does not bind. If −θBtE[U1(−l)] ≥ V ′
1(K) for some t ∈ [0, T ]

and ω ∈ Ω, Λt
3(ω) < 0. In this case, the marginal benefit of the action is always

bigger than its marginal cost. However, the constraint at ≤ K binds, so the

optimal action is just K.
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Proposition 2. The optimal control of Problem 2 is given by

a∗t =

{
V ′−1
1 (−θBtE[U1(−l)]) if V ′

1(K) ≥ −θBtE[U1(−l)]

K if V ′
1(K) < −θBtE[U1(−l)].

(2.4.40)

Proof. Let {at}t∈[0,T ] be any action process that satisfies the constraints of

Problem 2. We will compare the utilities from implementing the two action

processes a∗ and a. We denote by D(a∗, a) the difference of the expected total

utilities associated with a∗ and a. That is,

D(a∗, a) : = E

⎡⎣∫ T

0

U1(wt)dt+

Na∗ (T )∑
i=1

U1(−li)−
∫ T

0

V1(a
∗
t )dt

⎤⎦
−E

⎡⎣∫ T

0

U1(wt)dt+

Na(T )∑
i=1

U1(−li)−
∫ T

0

V1(at)dt

⎤⎦ .

According to (2.4.38), we have

D(a∗, a)

= E [U1(−l)]

(
θB̄ − θE

[∫ T

0

a∗tBtdt

])
− E [U1(−l)]

(
θB̄ − θE

[∫ T

0

atBtdt

])
+ E

[∫ T

0

(V1(at)− V1(a
∗
t )) dt

]
= θE[U1(−l)]

(
E

[∫ T

0

(at − a∗t )Btdt

])
+ E

[∫ T

0

(V1(at)− V1(a
∗
t )) dt

]
.

The convexity of V1 implies

D(a∗, a)

≥ θE[U1(−l)]

(
E

[∫ T

0

(at − a∗t )Btdt

])
+ E

[∫ T

0

V ′
1(a

∗
t )(at − a∗t )dt

]
= E

[∫ T

0

(V ′
1(a

∗
t ) + θE[U1(−l)]Bt) (at − a∗t )dt

]
.

Next, we consider the two cases described in equation (2.4.40). If a∗t = K, from
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(2.4.40), we have

at − a∗t = at −K ≤ 0 and V ′
1(a

∗
t ) = V ′

1(K) ≤ −θE[U1(−l)]Bt

which yields

(V ′
1(a

∗
t ) + θE[U1(−l)]Bt) (at − a∗t ) ≥ 0.

Otherwise, if a∗t = V ′−1
1 (−θBtE[U1(−l)]), we have V ′

1(a
∗
t ) = −θE[U1(−l)]Bt,

which yields

(V ′
1(a

∗
t ) + θE[U1(−l)]Bt) (at − a∗t ) = 0.

Now we can obtain D(a∗, a) ≥ 0 and conclude that the action process a∗ is the

optimal control of Problem 2.

We recall aΛ1 defined in (2.3.17). Comparing the two action processes aΛ1

and a∗, we have the following relation.

Theorem 3. For every t ∈ [0, T ]:

V ′
1(a

Λ1
t ) ≤ V ′

1(a
∗
t )−

1

Λ1

U2(0)Btθ.

Proof. Since U2(0) ≤ 0 and Λ1 > 0, we have − 1

Λ1

U2(0)θBt ≥ 0. We will

consider three cases for aΛ1
t .

(i) Consider aΛ1
t = 0. Then, V ′

1(a
Λ1
t ) = V ′

1(0) = 0. Noting a∗t > 0, we know

V ′
1(a

∗
t ) > 0. It follows that

V ′
1(a

Λ1
t ) ≤ V ′

1(a
∗
t ) ≤ V ′

1(a
∗
t )−

1

Λ1

U2(0)θBt.

(ii) Consider aΛ1
t = K. From (2.3.17), we have

V ′
1(a

Λ1
t ) = V ′

1(K) < −θE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)

]
Bt.
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If a∗t = V ′−1
1 (−θBtE[U1(−l)]), we have

V ′
1(a

∗
t ) = −θBtE[U1(−l)].

It follows that

V ′
1(a

Λ1
t )− V ′

1(a
∗
t )

≤ −θBtE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)− U1(−l)

]
.

The concavity of the utility functions implies

U1(g
−1(Λ1, l)− l)− U1(−l) ≥ g−1(Λ1, l)U

′
1(g

−1(Λ1, l)− l)

and

U2(0)− U2(−g−1(Λ1, l)) ≤ g−1(Λ1, l)U
′
2(−g−1(Λ1, l))

for every l ∈ Rl, so we have

V ′
1(a

Λ1
t )− V ′

1(a
∗
t )

≤ −θBtE

[
1

Λ1

U2(−g−1(Λ1, l)) + g−1(Λ1, l)U
′
1(g

−1(Λ1, l)− l)

]
= −θBtE

[
1

Λ1

U2(−g−1(Λ1, l)) + g−1(Λ1, l)
1

Λ1

U ′
2(−g−1(Λ1, l))

]
≤ − 1

Λ1

θU2(0)Bt. (2.4.41)

If a∗t = K, then

V ′
1(a

Λ1
t )− V ′

1(a
∗
t ) = V ′

1(K)− V ′
1(K) = 0 ≤ − 1

Λ1

θU2(0)Bt.

(iii) Consider aΛ1
t = V ′−1

1

(
−θE[

1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)]Bt

)
.
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If a∗t = V ′−1
1 (−θBtE[U1(−l)]), we have

V ′
1(a

Λ1
t )− V ′

1(a
∗
t )

= −θBtE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)− U1(−l)

]
.

Now we can repeat (2.4.41) to get V ′
1(a

Λ1
t )− V ′

1(a
∗
t ) ≤ − 1

Λ1

θU2(0)Bt.

If a∗t = K, it is obvious that

V ′
1(a

Λ1
t )− V ′

1(a
∗
t ) = V ′

1(a
Λ1
t )− V ′

1(K) < 0 ≤ − 1

Λ1

θU2(0)Bt.

As a summary of all the cases discussed above, the required statement is

proved.

We observe that if U2(0) = 0, then V ′
1(a

Λ1
t ) ≤ V ′

1(a
∗
t ) as a consequence of

Theorem 3. Since V ′
1(·) is an increasing function, we have the following relation

between the two action processes.

Corollary 1. If U2(0) = 0, then for every t ∈ [0, T ]:

aΛ1
t ≤ a∗t .

Theorem 3 shows that aΛ1 is constrained by a∗. This constraint is more

evident when U2(0) = 0.

Taking a∗ into the objective function of Problem 2, we obtain the reservation

utility

R =

∫ T

0

U1(wt)dt+ θE[U1(−l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
− E

[∫ T

0

V1(a
∗
t )dt

]
.

(2.4.42)
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We define Λ1 by the equation

E[U1(g
−1(Λ1, l)− l)] = E[U1(−l)]. (2.4.43)

Lemma 3. Λ1 exists uniquely. Furthermore, U1(Λ1) < R, where R is the

reservation utility defined by (2.4.42).

Proof. We consider ϕ2(λ) := E[U1(g
−1(λ, l) − l)] as a function of λ ∈ (0,∞).

From the definition of the function g, we have g(0, l) =
U ′
2(0)

U ′
1(0− l)

. It follows

that g−1

(
U ′
2(0)

U ′
1(−l)

, l

)
= 0. When λ =

U ′
2(0)

U ′
1(− infRl)

, λ ≥ U ′
2(0)

U ′
1(−l)

for every

l ∈ Rl due to the concavity of U1. Since g−1(·, y2) is an increasing function,

g−1(λ, l) ≥ 0 for every l ∈ Rl. It results in ϕ2(λ) ≥ E [U1(−l)]. When

λ =
U ′
2(0)

U ′
1(− supRl)

, λ ≤ U ′
2(0)

U ′
1(−l)

for every l ∈ Rl. Then we have g−1(λ, l) ≤ 0

for every l ∈ Rl and ϕ2(λ) ≤ E [U1(−l)]. ϕ2(λ) is continuous and monotone be-

cause g−1 and U1 are continuous and monotone functions. Using the Mean Value

Theorem, we can conclude there is a unique Λ1 such that ϕ2(Λ1) = E [U1(−l)]

and Λ1 ∈
[

U ′
2(0)

U ′
1(− supRl)

,
U ′
2(0)

U ′
1(− infRl)

]
.

Noting DΛ1 = g−1(Λ1, l), we have E[U1(D
Λ1 − l)] = E[U1(−l)] according

to (2.4.43). From (2.3.16),

U1(Λ1) =

∫ T

0

U1(wt − d
Λ1

t )dt+ E [U1(−l)] θ

(
B̄ − E[

∫ T

0

a
Λ1

t Btdt]

)
− E

[∫ T

0

V1(a
Λ1

t )dt

]
.

Comparing (2.4.42) and the expression above, we obtain

R− U1(Λ1) =

∫ T

0

(
U1(wt)− U1(wt − d

Λ1

t )
)
dt

+θE[U1(−l)]E

[∫ T

0

(a
Λ1

t − a∗t )Btdt

]
+E

[∫ T

0

(
V1(a

Λ1

t )− V1(a
∗
t )
)
dt

]
.
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The range of Λ1 indicates that Λ1 <
U ′
2(0)

U ′
1(0)

<
U ′
2(0)

U ′
1(wt)

. It yields d
Λ1

t > 0 and

U1(wt)− U1(wt − d
Λ1

t ) > 0 for t ∈ [0, T ]. Thus, the equation above implies

R− U1(Λ1)

> θE[U1(−l)]E

[∫ T

0

(a
Λ1

t − a∗t )Btdt

]
+ E

[∫ T

0

(
V1(a

Λ1

t )− V1(a
∗
t )
)
dt

]
.

Since V1(·) is a convex function, V1(a
Λ1

t )− V1(a
∗
t ) ≥ V ′

1(a
∗
t )
(
a
Λ1

t − a∗t
)
. Hence,

R− U1(Λ1) > E

[∫ T

0

(
θE[U1(−l)]Bt + V ′

1(a
∗
t )
)
(a

Λ1

t − a∗t )dt
]
. (2.4.44)

Next, we consider the two cases described in (2.4.40). If a∗t = K, then from

(2.4.40),

V ′
1(a

∗
t ) < −θE[U1(−l)]Bt and a

Λ1

t ≤ a∗t ,

which yield
(
θE[U1(−l)]Bt + V ′

1(a
∗
t )
)
(a

Λ1

t − a∗t ) ≥ 0. If

a∗t = V ′−1
1 (−θE[U1(−l)]Bt), then

V ′
1(a

∗
t ) = −θE[U1(−l)]Bt,

which yields
(
θE[U1(−l)]Bt + V ′

1(a
∗
t )
)
(a

Λ1

t − a∗t ) = 0. Then, from (2.4.44), we

obtain R− U1(Λ1) > 0.

Theorem 4. There exists a unique Λ̂1 such that (2.3.29) holds and Λ̂1 ∈
(Λ1,∞).

Proof. Our first objective is to show that U1(Λ1) ≥ R when Λ1 → ∞. Here

R is presented in (2.4.42). Since lim
Λ1→∞

1

Λ1

U2(0)θBt = 0 almost surely for each

t ∈ [0, T ], we have lim
Λ1→∞

aΛ1
t ≤ a∗t almost surely for t ∈ [0, T ] according to

Theorem 3. From the definition of DΛ1 and dΛ1
t in (2.3.17), we have

U ′
2(−DΛ1)

U ′
1(D

Λ1 − l)
= Λ1 and

U ′
2(d

Λ1
t )

U ′
1(wt − dΛ1

t )
= Λ1.
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When Λ1 → ∞, we obtain DΛ1 → ∞ and dΛ1
t → −∞, which means DΛ1 > 0

for every l ∈ Rl and dΛ1
t < 0 for every t ∈ [0, T ]. To simplify the notation, we

rewrite B̄ as B̄ =

∫ T

0

btdt, where

bt := (1− e−tā)e−δt

(
Y0 + μ

∫ t

0

ρ(u)eδudu

)
.

If lim
Λ1→∞

aΛ1
t = K, then a∗t = K and

θE
[
U1(D

Λ1 − l)
] (

bt − aΛ1
t Bt

)− V1(a
Λ1
t )− θE[U1(−l)] (bt − a∗tBt) + V1(a

∗
t )

=
(
θE

[
U1(D

Λ1 − l)
]
(bt −KBt)− V1(K)

)
−
(
θE[U1(−l)] (bt −KBt)− V1(K)

)
= θE

[
U1(D

Λ1 − l)− U1(−l)
]
(bt − a∗tBt) (2.4.45)

almost surely when Λ1 → ∞. If lim
Λ1→∞

aΛ1
t < K, then from (2.3.17), we have

lim
Λ1→∞

V ′
1(a

Λ1
t ) ≥ lim

Λ1→∞
−θE

[
1

Λ1

U2(−g−1(Λ1, l)) + U1(g
−1(Λ1, l)− l)

]
Bt

= lim
Λ1→∞

−θE

[
1

Λ1

U2(−DΛ1) + U1(D
Λ1 − l)

]
Bt.

Noting lim
Λ1→∞

DΛ1 > 0 and noting U2 is negative with negative variables, we get

lim
Λ1→∞

V ′
1(a

Λ1
t ) ≥ lim

Λ1→∞
−θE

[
U1(D

Λ1 − l)
]
Bt.

Hence,

V1(a
∗
t )− lim

Λ1→∞
V1(a

Λ1
t ) ≥ lim

Λ1→∞
V ′
1(a

Λ1
t )(a∗t − aΛ1

t )

≥ lim
Λ1→∞

−θE
[
U1(D

Λ1 − l)
]
Bt(a

∗
t − aΛ1

t )
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almost surely, and consequently(
θE

[
U1(D

Λ1 − l)
] (

bt − aΛ1
t Bt

)− V1(a
Λ1
t )

)
−
(
θE[U1(−l)] (bt − a∗tBt)− V1(a

∗
t )
)

≥ θE
[
U1(D

Λ1 − l)
] (

bt − aΛ1
t Bt

)− θE[U1(−l)] (bt − a∗tBt)

− θE
[
U1(D

Λ1 − l)
]
Bt(a

∗
t − aΛ1

t )

= θE
[
U1(D

Λ1 − l)− U1(−l)
]
(bt − a∗tBt) (2.4.46)

almost surely when Λ1 → ∞. From (2.4.45) and (2.4.46), we see that it is

almost surely that(
θE

[
U1(D

Λ1 − l)
] (

bt − aΛ1
t Bt

)− V1(a
Λ1
t )

)
−
(
θE[U1(−l)] (bt − a∗tBt)− V1(a

∗
t )
)

≥ θE
[
U1(D

Λ1 − l)− U1(−l)
]
(bt − a∗tBt)

for each case when Λ1 → ∞. Integrating and taking expectation on both sides

of the above inequality, we obtain(
θE

[
U1(D

Λ1 − l)
]
E

[∫ T

0

btdt−
∫ T

0

aΛ1
t Btdt

]
− E

[∫ T

0

V1(a
Λ1
t )dt

])

−
(
θE [U1(−l)]E

[∫ T

0

btdt−
∫ T

0

a∗tBtdt

]
− E

[∫ T

0

V1(a
∗
t )dt

])

≥ θE
[
U1(D

Λ1 − l)− U1(−l)
]
E

[∫ T

0

btdt−
∫ T

0

a∗tBtdt

]
,

which is equivalent to(
θE

[
U1(D

Λ1 − l)
]
E

[
B̄ −

∫ T

0

aΛ1
t Btdt

]
− E

[∫ T

0

V1(a
Λ1
t )dt

])

−
(
θE [U1(−l)]E

[
B̄ −

∫ T

0

a∗tBtdt

]
− E

[∫ T

0

V1(a
∗
t )dt

])

≥ θE
[
U1(D

Λ1 − l)− U1(−l)
]
E

[
B̄ −

∫ T

0

a∗tBtdt

]
. (2.4.47)

Recalling B̄ − E

[∫ T

0

a∗tBtdt

]
≥ 0 and lim

Λ1→∞
DΛ1 > 0 for every l ∈ Rl, we
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obtain that the right-hand-side of (2.4.47) is non-negative. Thus,

θE
[
U1(D

Λ1 − l)
]
E

[
B̄ −

∫ T

0

aΛ1
t Btdt

]
− E

[∫ T

0

V1(a
Λ1
t )dt

]
≥ θE [U1(−l)]E

[
B̄ −

∫ T

0

a∗tBtdt

]
− E

[∫ T

0

V1(a
∗
t )dt

]
(2.4.48)

when Λ1 → ∞. Recalling that lim
Λ1→∞

dΛ1
t < 0 for t ∈ [0, T ], we have

lim
Λ1→∞

U1(wt − dΛ1
t ) > U1(wt) (2.4.49)

for t ∈ [0, T ]. Combining (2.4.48) and (2.4.49), we obtain∫ T

0

U1(wt − dΛ1
t )dt+ θE

[
U1(D

Λ1 − l)
](

B̄ − E

[∫ T

0

aΛ1
t Btdt

])
−E

[∫ T

0

V1(a
Λ1
t )dt

]
>

∫ T

0

U1(wt)dt+ θE[U1(−l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
− E

[∫ T

0

V1(a
∗
t )dt

]
when Λ1 → ∞. This is equivalent to lim

Λ1→∞
U1(Λ1) > R. Lemma 3 states that

U1(Λ1) < R. U1(Λ1) is a continuous function of Λ1. From Theorem 1, we also

know that U1(Λ1) is an increasing function of Λ1. Therefore, there is a unique

Λ̂1 such that (2.3.29) holds and Λ̂1 ∈ (Λ1,∞).

Thus, Theorem 4 completes the solution of Problem 1.

We define the highest income rate by wsup := sup{wt : t ∈ [0, T ]}. We also

define Λ̄1 :=
U ′
2(0)

U ′
1(wsup)

. Then we have the following constraint for Λ̂1.

Corollary 2. If U2(0) = 0, then there exists a unique Λ̂1 such that (2.3.29)

holds and Λ̂1 ∈ (Λ1, Λ̄1).

Proof. From (2.3.17), we see that dΛ1
t = −g−1(Λ1,−wt) = 0 when Λ1 =

g(0,−wt) =
U ′
2(0)

U ′
1(wt)

for each t ∈ [0, T ]. Noting that Λ̄1 =
U ′
2(0)

U ′
1(wsup)

≥
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U ′
2(0)

U ′
1(wt)

and that dΛ1
t is a decreasing function of Λ1 for t ∈ [0, T ], we have

dΛ̄1
t ≤ 0 for t ∈ [0, T ].

From (2.3.17), we see thatDΛ1 = g−1(Λ1, l) = 0 when Λ1 = g(0, l) =
U ′
2(0)

U ′
1(−l)

for each l ∈ Rl. Noting that Λ̄1 =
U ′
2(0)

U ′
1(wsup)

>
U ′
2(0)

U ′
1(−l)

and that DΛ1 is an

increasing function of Λ1 for l ∈ Rl, we have DΛ̄1 > 0 for l ∈ Rl.

From (2.3.16) and (2.4.42), we obtain

U1(Λ̄1)−R =

∫ T

0

(
U1(wt − dΛ̄1

t )− U1(wt)
)
dt

+ θE
[
U1(D

Λ̄1 − l)
](

B̄ − E

[∫ T

0

aΛ̄1
t Btdt

])
− θE[U1(−l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
+ E

[∫ T

0

(
V1(a

∗
t )− V1(a

Λ̄1
t )

)
dt

]
.

In the above equation, we have U1(wt−dΛ̄1
t )−U1(wt) ≥ 0 for t ∈ [0, T ] because

dΛ̄1
t ≤ 0 for t ∈ [0, T ]. Since DΛ̄1 > 0 for l ∈ Rl, we have

− θE[U1(−l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
≥ −θE[U1(D

Λ̄1 − l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
.

From (2.3.17), we also have

V1(a
∗
t )− V1(a

Λ̄1
t ) ≥V ′

1(a
Λ̄1
t )(a∗t − aΛ̄1

t )

=− θE

[
1

Λ̄1

U2(−DΛ̄1) + U1(D
Λ̄1 − l)

]
Bt(a

∗
t − aΛ̄1

t ).
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Hence, we obtain

U1(Λ̄1)−R ≥ θE
[
U1(D

Λ̄1 − l)
](

B̄ − E

[∫ T

0

aΛ̄1
t Btdt

])
−θE[U1(D

Λ̄1 − l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
−θE

[
1

Λ̄1

U2(−DΛ̄1) + U1(D
Λ̄1 − l)

]
E

[∫ T

0

Bt(a
∗
t − aΛ̄1

t )dt

]
= −θE

[
1

Λ̄1

U2(−DΛ̄1)

]
E

[∫ T

0

Bt(a
∗
t − aΛ̄1

t )dt

]
. (2.4.50)

Here, E
[
U2(−DΛ̄1)

] ≤ 0 because DΛ̄1 ≥ 0 for each l ∈ Rl. Corollary 1 shows

that a∗t − aΛ̄1
t ≥ 0 for every t ∈ [0, T ] when U2(0) = 0. Now we can get

U1(Λ̄1)−R ≥ 0 from (2.4.50). Because U1(Λ1) is an increasing function of Λ1,

Λ̂1 < Λ̄1. Theorem 4 shows that Λ̂1 > Λ1, so we can conclude the unique Λ̂1 is

located in the interval (Λ1, Λ̄1).

2.5 The Exponential Utility and the Quadratic

Cost

In this section, we apply the theory developed in Sections 2.3 and 2.4 to the

case

U1(y) = −e−γ1y, U2(y) = −e−γ2y, V1(y) = my2, K = 1, wt = 0,

where γ1 > γ2 > 0 and m > 0 are constant parameters. Then, g is given by

g(y1, y2) =
U ′
2(−y1)

U ′
1(y1 − y2)

=
γ2e

γ2y1

γ1e−γ1(y1−y2)
.

For a fixed y2, the inverse function g−1(·, y2) is given by

g−1(y, y2) =
ln(y) + ln(γ1

γ2
) + γ1y2

γ1 + γ2
.
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From (2.3.30) and (2.3.31), we obtain

d̂t = −g−1(Λ̂1,−wt) = −g−1(Λ̂1, 0) = − ln( Λ̂1γ1
γ2

)

γ1 + γ2
for t ∈ [0, T ]; (2.5.51)

D̂i = g−1(Λ̂1, li) =
γ1li + ln( Λ̂1γ1

γ2
)

γ1 + γ2
for i = 1, 2, 3, · · · . (2.5.52)

We have

−θE[
1

Λ̂1

U2(−g−1(Λ̂1, l)) + U1(g
−1(Λ̂1, l)− l)]Bt

= θE

[
1

Λ̂1

e
γ2

γ1+γ2
(γ1l+ln(

Λ̂1γ1
γ2

))
+ e

− γ1
γ1+γ2

(ln(
Λ̂1γ1
γ2

)−γ2l)

]
Bt

= θBt(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2E[e
γ1γ2l
γ1+γ2 ](1 +

γ1
γ2

),

which is positive for every t ∈ [0, T ]. In this example, V ′
1(y) = 2my, so

V ′
1(K) = V ′

1(1) = 2m and V ′−1
1 (y) = y

2m
. Hence,

ât =

⎧⎪⎪⎨⎪⎪⎩
θ
2m

Bt(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2E[e
γ1γ2l
γ1+γ2 ](1 + γ1

γ2
) if θBt(

Λ̂1γ1
γ2

)
− γ1

γ1+γ2E[e
γ1γ2l
γ1+γ2 ](1 + γ1

γ2
) ≤ 2m

1 if θBt(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2E[e
γ1γ2l
γ1+γ2 ](1 + γ1

γ2
) > 2m.

(2.5.53)

Since −θBtE[U1(−l)] = θBtE
[
eγ1l

]
, applying (2.4.40), we obtain

a∗t =

{
θ
2m

BtE
[
eγ1l

]
if θBtE

[
eγ1l

] ≤ 2m

1 if θBtE
[
eγ1l

]
> 2m.
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Λ̂1 in (2.5.51)-(2.5.53) is the solution of U1(Λ̂1) = R. We denote Ct :=

θBt(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2E[e
γ1γ2l
γ1+γ2 ](1 + γ1

γ2
). Recalling (2.3.16), we have

U1(Λ̂1) =

∫ T

0

U1

⎛⎝0 +
ln( Λ̂1γ1

γ2
)

γ1 + γ2

⎞⎠ dt

+ E

⎡⎣U1

⎛⎝γ1li + ln( Λ̂1γ1
γ2

)

γ1 + γ2
− l

⎞⎠⎤⎦ θ

(
B̄ − E[

∫ T

0

âtBtdt]

)
− E

[∫ T

0

mâ2tdt

]

=− (
Λ̂1γ1
γ2

)
− γ1

γ1+γ2 T − E
[
e

γ1γ2l
γ1+γ2

]
(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2 θ(
B̄ − E

[∫ T

0

(
θ

2m
B2

t (
Λ̂1γ1
γ2

)
− γ1

γ1+γ2E[e
γ1γ2l
γ1+γ2 ](1 +

γ1
γ2

)I{Ct≤2m} +BtI{Ct>2m}

)
dt

])

− E

[∫ T

0

m

(
θ2

4m2
B2

t (
Λ̂1γ1
γ2

)
− 2γ1

γ1+γ2

(
E[e

γ1γ2l
γ1+γ2 ]

)2

(1 +
γ1
γ2

)2I{Ct≤2m} + I{Ct>2m}

)
dt

]

=− (
Λ̂1γ1
γ2

)
− γ1

γ1+γ2 T − E
[
e

γ1γ2l
γ1+γ2

]
(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2 θ

(
B̄ − E

[∫ T

0

BtI{Ct>2m}dt
])

+
θ2

2m

(
E[e

γ1γ2l
γ1+γ2 ]

)2
(
1 +

γ1
γ2

− 1

2
(1 +

γ1
γ2

)2
)
E

[∫ T

0

B2
t I{Ct≤2m}dt

]
(
Λ̂1γ1
γ2

)
− 2γ1

γ1+γ2

−mE

[∫ T

0

I{Ct>2m}dt
]

=
θ2

4m

(
E[e

γ1γ2l
γ1+γ2 ]

)2

(1− γ2
1

γ2
2

)E

[∫ T

0

B2
t I{Ct≤2m}dt

]
(
Λ̂1γ1
γ2

)
− 2γ1

γ1+γ2

−
(
T + θE[e

γ1γ2l
γ1+γ2 ]

(
B̄ − E

[∫ T

0

BtI{Ct>2m}dt
]))

(
Λ̂1γ1
γ2

)
− γ1

γ1+γ2

−mE

[∫ T

0

I{Ct>2m}dt
]
.
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According to (2.4.42), we have

R =

∫ T

0

U1(0)dt+ θE[U1(−l)]

(
B̄ − E

[∫ T

0

a∗tBtdt

])
− E

[∫ T

0

m(a∗t )
2dt

]
=− (T + θB̄E[eγ1l])

+ θE[eγ1l]E

[∫ T

0

(
θ

2m
BtE[eγ1l]I{θBtE[eγ1l]≤2m} + I{θBtE[eγ1l]>2m}

)
Btdt

]
−mE

[∫ T

0

(
θ2

4m2
(E[eγ1l])2B2

t I{θBtE[eγ1l]≤2m} + I{θBtE[eγ1l]>2m}

)
dt

]
=

θ2

4m
(E[eγ1l])2E

[∫ T

0

B2
t I{θBtE[eγ1l]≤2m}dt

]
+ E

[∫ T

0

(θBtE[eγ1l]−m)I{θBtE[eγ1l]>2m}dt
]
− (T + θB̄E[eγ1l]).

Even though the equation U1(Λ̂1) = R looks complicated, the monotonicity of

U1(Λ1) and the uniqueness of Λ̂1 allow us to use the bisection method to find

Λ̂1 in the following numerical analysis.

Equation (2.5.52) shows that D̂i �= li, so full compensation is not optimal.

Example 1. To consider a numerical example, assume that the magnitude Y

of the external risky events has exponential distribution, and the intensity ρ is

constant: ρ(t) ≡ ρ ∈ [0,∞).

We will investigate how the solution depends on the parameters θ, ρ, E[l],

μ, γ1, γ2, and the variance of I(t) for t ∈ [0, T ]. We fix the other parameters

as T = 1, Y0 = 1, m = 5, δ = 1, rt = 1, and ā = 0.

The benchmark parameter values are θ = 1, ρ = 1, μ = 1, γ1 = 2,

γ2 = 1, and l has probability distribution P{l = 2} = 0.5, P{l = 2.2} = 0.3,

P{l = 2.4} = 0.2. Then, Λ̂1 = 0.0108 and the optimal insurance contract (for
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these parameter values) is given by

d̂t = 1.2794;

D̂i =

⎧⎪⎨⎪⎩
0.0539 if li = 2.0

0.1873 if li = 2.2

0.3206 if li = 2.4;

ât = min{16.2321Bt, 1}.

Since â is a stochastic process, we will consider E[ât]. Figures 2.1 to 2.4

show that d̂t, D̂i, and E[ât] increase when the parameters μ, θ, ρ, and E[l]

increase. These four parameters reflect the risk in different aspects. Thus, when

the risk increases, the insurer requires a higher premium, pays less compensa-

tion, and requires the insured to increase his expected action.

Figures 2.1 to 2.4 also show that the expected insured’s action decreases

when time passes, and that the insured is required to take no action when

maturity approaches. This is consistent with Remark 2 of Theorem 2.

Figure 2.5 shows that when the insured’s risk aversion γ1 increases, the pre-

mium increases, the compensation decreases, and the expected action increases.

Figure 2.6 shows how the solution depends on the insurer’s risk aversion γ2.

We recall that the insured’s reservation utility presented in Section 2.4 is not

affected by the insurer’s risk aversion γ2. Figure 2.6 shows that the premium

and the compensation decrease when the insurer’s risk aversion increases. This

makes sense because, as the risk aversion increases, the insurer avoids risk by

paying less compensation in exchange for receiving less premium.

We have also studied the situation in which the mean remains the same but

the variance changes. Figure 2.7 shows that the variance does not affect much

the optimal premium d or compensation D when the mean is fixed. However,

the optimal expected action E[â] decreases when the variance of I(t) increases.

Since it is impossible to list the variances of I(t) for all t ∈ [0, T ] in the figure,
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we use the variance of I(T ) as a representation.

Figure 2.1: The other parameters are θ = 1, ρ = 1, γ1 = 2, and γ2 = 1. Furthermore,
P{l = 2.0} = 0.5, P{l = 2.2} = 0.3, P{l = 2.4} = 0.2.
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Figure 2.2: The other parameters are ρ = 1, μ = 1, γ1 = 2, and γ2 = 1.
Furthermore, P{l = 2.0} = 0.5, P{l = 2.2} = 0.3, P{l = 2.4} = 0.2.
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Figure 2.3: The other parameters are θ = 1, μ = 1, γ1 = 2, and γ2 = 1. Furthermore,
P{l = 2.0} = 0.5, P{l = 2.2} = 0.3, P{l = 2.4} = 0.2.
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Figure 2.4: The other parameters are θ = 1, ρ = 1, μ = 1, γ1 = 2, and γ2 = 1.
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Figure 2.5: The other parameters are θ = 1, μ = 1, ρ = 1, and γ2 = 1. Furthermore,
P{l = 2.0} = 0.5, P{l = 2.2} = 0.3, P{l = 2.4} = 0.2.
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Figure 2.6: The other parameters are θ = 1, μ = 1, ρ = 1, and γ1 = 2. Furthermore,
P{l = 2.0} = 0.5, P{l = 2.2} = 0.3, P{l = 2.4} = 0.2.
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Figure 2.7: The other parameters are θ = 1, γ1 = 2, and γ2 = 1. Furthermore,
P{l = 2.0} = 0.5, P{l = 2.2} = 0.3, P{l = 2.4} = 0.2.
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Chapter 3

Adverse Selection and Multiple

Claim States

This chapter consists of three sections. The problem is constructed in Section

3.1 and the solutions to the problem are presented in Section 3.2. We explain

why the boundaries on the premium and compensation are necessary.

3.1 The Model

Let S ⊂ [0,∞) be the loss set. For every s ∈ S, s is a possible loss amount at

one period. Suppose there are two types of insureds in the insurance market.

The low-risk type possesses a high probability of encountering a small or zero

loss and a low probability of encountering a big loss in each period. The

high-risk type possesses a low probability of encountering a small or zero loss

and a high probability of encountering a big loss in each period. Let L and H

denote the risk levels for the low-risk and high-risk insured respectively. At the

n-th period, the loss amount is a random variable Xn. So, for each ω belonging

to the sample space Ω, Xn(ω) ∈ S. Since the type is innate and will not change

over time, we suppose the probability of each type having some amount of loss

at each period is fixed. That is, we suppose X1, X2, X3, · · · , XN are identically

and independently distributed for either type, where N is the total number of

periods. The information revealed up to the n-th period from the loss is the
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filtration F2 := {F2,n, n = 1, 2, · · · , N}, where

F2,n := σ(X1, X2, · · · , Xn)

is a σ-field generated by random variables. On the space (Ω,F), we denote

P := probability measure of the low-risk insured

Q := probability measure of the high-risk insured

and we suppose P and Q are equivalent. Let X be a random variable that has

the same probability distribution as X1, X2, · · · , XN . We denote

FP := distribution function of X under P

FQ := distribution function of X under Q.

We define for every s ∈ S,

M(s) :=
dFQ(s)

dFP (s)
. (3.1.1)

In the special case in which X is a discrete random variable under P and under

Q, we can write

M(s) :=
dFQ(s)

dFP (s)
=

p̃Q(s)

p̃P (s)
,

where p̃Q is the probability mass function ofX under Q and p̃P is the probability

mass function of X under P . In the special case in which X is a continuous

random variable under P and under Q, we can write

M(s) :=
dFQ(s)

dFP (s)
=

fQ(s)

fP (s)
,

where fQ is the probability density function of X under Q and fP is the

probability density function of X under P . To show how the two types behave

differently, we suppose M(s) is a strictly increasing function of s. It means

that the high-risk insured is more likely to encounter a big loss while is less
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likely to encounter a small loss compared to the low-risk insured. We denote

Mn := M(Xn) for n = 1, 2, · · · , N . It is obvious that

EP [Mn] = 1 for n = 1, 2, · · · , N (3.1.2)

where EP means the expectation under the measure P . Let EQ denote the

expectation under the measure Q. The performance of the insured in previous

periods is crucial for the insurer to tell the type and determine the contract in

the following periods, so we need to record the path of loss. We define

Sn := {(x1, x2, · · · , xn) : x1, x2, · · · , xn ∈ S}.

Every x ∈ Sn is n-dimensional. xi is the loss amount at the i-th period for

i = 1, 2, · · · , n. The probability of walking path x = (x1, x2, · · · , xn) is

dF
(n)
P (x) = dFP (x1)dFP (x2) · · · dFP (xn) for the low-risk insured and

dF
(n)
Q (x) = dFQ(x1)dFQ(x2) · · · dFQ(xn) for the high-risk insured.

If X is a discrete random variable under P and under Q, the probability of

walking path x = (x1, x2, · · · , xn) is

dF
(n)
P (x) = p̃P (x1)p̃P (x2) · · · p̃P (xn) for the low-risk insured and

dF
(n)
Q (x) = p̃Q(x1)p̃Q(x2) · · · p̃Q(xn) for the high-risk insured.

If X is a continuous random variable under P and under Q, the probability of

walking path x = (x1, x2, · · · , xn) is

dF
(n)
P (x) = fP (x1)fP (x2) · · · fP (xn)(dx) for the low-risk insured and

dF
(n)
Q (x) = fQ(x1)fQ(x2) · · · fQ(xn)(dx) for the high-risk insured.

Lemma 4. Let f : S → R and h : S → R be two functions. Suppose there

exists s′ ∈ S such that f(s) ≥ h(s) when s < s′ and f(s) ≤ h(s) when s > s′.

(i) If EP [f(X)] = EP [h(X)], then EQ[f(X)] ≤ EQ[h(X)].
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(ii) If EQ[f(X)] = EQ[h(X)], then EP [f(X)] ≥ EP [h(X)].

Proof. When X < s′, M(X) < M(s′) because M(s) is strictly increasing in s.

Meanwhile, f(X)− h(X) ≥ 0. Thus,

M(X) (f(X)− h(X)) ≤ M(s′) (f(X)− h(X)) .

When X > s′, M(X) > M(s′). Meanwhile, f(X)− h(X) ≤ 0. Thus,

M(X) (f(X)− h(X)) ≤ M(s′) (f(X)− h(X)) .

When X = s′,

M(X) (f(X)− h(X)) = M(s′) (f(X)− h(X)) .

(i) Therefore,

EQ[f(X)]− EQ[h(X)] = EP [M(X)(f(X)− h(X))]

≤ M(s′)EP [f(X)− h(X)] = 0.

The required statement follows immediately.

(ii) Therefore,

0 = EQ[f(X)]− EQ[h(X)]

= EP [M(X)(f(X)− h(X))] ≤ M(s′)EP [f(X)− h(X)].

The required statement follows.

Consider a decreasing function f : S → R and a constant function h : S → R

that satisfy the condition EP [f(X)] = h(X). Then, the s′ described in the

lemma must exist. The relation EQ[f(X)] ≤ h(X) can be obtained through

the lemma. It follows that

Corollary 3. If f : S → R is a decreasing function, then EP [f(X)] ≥
EQ[f(X)].
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It is natural to derive the next corollary.

Corollary 4. If f : S → R is a strictly decreasing function, then EP [f(X)] >

EQ[f(X)].

Lemma 5. If f : R → R is a decreasing function, then

∫
x∈Sn

f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)
dF

(n)
P (x) >

∫
x∈Sn

f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)
dF

(n)
Q (x)

for n = 1, 2, · · · , N .

Proof. dF
(n)
Q (x) > dF

(n)
P (x) implies

dF
(n)
Q (x)

dF
(n)
P (x)

> 1. Since f is a decreasing

function, we have f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)
< f(1). Thus,

(dF
(n)
Q (x)− dF

(n)
P (x))f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)
< (dF

(n)
Q (x)− dF

(n)
P (x))f (1) . (3.1.3)

dF
(n)
Q (x) ≤ dF

(n)
P (x) implies

dF
(n)
Q (x)

dF
(n)
P (x)

≤ 1. Since f is a decreasing function,

we have f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)
≥ f(1). Thus,

(dF
(n)
Q (x)− dF

(n)
P (x))f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)
≤ (dF

(n)
Q (x)− dF

(n)
P (x))f (1) . (3.1.4)

From (3.1.3) and (3.1.4), we obtain

∫
x∈Sn

f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)(
dF

(n)
Q (x)− dF

(n)
P (x)

)
<

∫
x∈Sn

f(1)
(
dF

(n)
Q (x)− dF

(n)
P (x)

)

for n = 1, 2, · · · , N. Noting that

∫
x∈Sn

dF
(n)
Q (x) =

∫
x∈Sn

dF
(n)
P (x) = 1, we continue
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the inequality above to obtain

∫
x∈Sn

f

(
dF

(n)
Q (x)

dF
(n)
P (x)

)(
dF

(n)
Q (x)− dF

(n)
P (x)

)
< f(1)

∫
x∈Sn

(
dF

(n)
Q (x)− dF

(n)
P (x)

)
= 0.

The required statement follows immediately.

After observing the loss path x ∈ Sn, the insurer provides the contracts

in the next period with premium denoted by dxL,n+1 for the low-risk insured,

premium denoted by dxH,n+1 for the high-risk insured, compensation denoted

by Dx
L,n+1 for the low-risk insured, and compensation denoted by Dx

H,n+1 for

the high-risk insured. The amount of compensation will be determined also

according to the loss amount at the (n+1)-th period. Now we have the contract

for type L

CL = {(dL,n, DL,n);n = 1, 2, · · · , N}

and the contract for type H

CH = {(dH,n, DH,n);n = 1, 2, · · · , N}.

The external income of the insured at each period is assumed to be constant

and denoted by w. The proportions of type L and H among the insured are

denoted by pL and pH respectively and pL + pH = 1.

Given x ∈ Sn, at the (n+1)-th period, the insurer’s utility is thus U2(d
x
L,n+1−

Dx
L,n+1) from type L and U2(d

x
H,n+1 − Dx

H,n+1) from type H. We denote

J1(dL, DL, dH , DH) as the expected total utility of the insurer during all the
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periods. Then we have

J1(dL, DL, dH , DH) : = pLE
P

{
N∑

n=1

∫
Sn−1

U2(d
x
L,n −Dx

L,n)dF
(n−1)
P (x)

}

+ pHE
Q

{
N∑

n=1

∫
Sn−1

U2(d
x
H,n −Dx

H,n)dF
(n−1)
Q (x)

}
.

If the low-risk insured chooses Ci, i = L,H, his expected total utility is

V(L, i) := EP

{
N∑

n=1

∫
Sn−1

U1(w − dxi,n +Dx
i,n −Xn)dF

(n−1)
P (x)

}

during the contracting periods. If the high-risk insured chooses Ci, i = L,H,

his expected total utility is

V(H, i) := EQ

{
N∑

n=1

∫
Sn−1

U1(w − dxi,n +Dx
i,n −Xn)dF

(n−1)
Q (x)

}

during the contracting periods. From the relation of measures presented in

(3.1.1), we show the last expectation under measure P .

V(H, i) =

{
N∑

n=1

∫
Sn−1

EQU1(w − dxi,n +Dx
i,n −Xn)dF

(n−1)
Q (x)

}

=

{
N∑

n=1

∫
Sn−1

EPMnU1(w − dxi,n +Dx
i,n −Xn)dF

(n−1)
Q (x)

}

= EP

{
N∑

n=1

∫
Sn−1

MnU1(w − dxi,n +Dx
i,n −Xn)dF

(n−1)
Q (x)

}
. (3.1.5)

We denote by A2 the class of admissible controls. These are the controls

(dL, DL, dH , DH) that are adapted to the filtration F2 := {F2,1,F2,2, · · · ,F2,N}.
Under some conditions, the insurer aims to maximize her utility by controlling

the premiums and compensations. We construct the following problem.
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Problem 3.

max
(dL,DL,dH ,DH)∈A2

J1(dL, DL, dH , DH)

s.t. V(L,L) ≥ RL, (3.1.6)

V(H,H) ≥ RH , (3.1.7)

V(L,L) ≥ V(L,H), (3.1.8)

V(H,H) ≥ V(H,L), (3.1.9)

dL,n ≤ d̄, DL,n ≥ D for n = 1, 2, · · · , N. (3.1.10)

RL and RH are reservation utilities of type L and type H respectively. We

define them as utilities the insureds obtain when the insureds do not enter the

insurance market.

RL := EP

{
N∑

n=1

U1(w −Xn)

}
, RH := EQ

{
N∑

n=1

U1(w −Xn)

}
,

and we assume EP

{
N∑

n=1

U1(w −Xn)

}
, EQ

{
N∑

n=1

U1(w −Xn)

}
> −∞. Con-

straints (3.1.6), (3.1.7) show that the insured gets more utility from the insur-

ance contract than that from not entering the insurance market. Therefore,

the insured will enter the insurance market and take the contract offer. We

call (3.1.6)and (3.1.7) reservation constraints. Since the insureds’ types are

not observable to the insurer, the low-risk insured may choose CH if he could

get more utility from it. Constraint (3.1.8) ensures that type L will choose

CL because it brings him more utility than CH . Constraint (3.1.9) illustrates
the same idea for type H. We call (3.1.8) and (3.1.9) incentive compatibility

constraints. Constraint (3.1.10) is the main difference we have from models

of the literature in the same area. In this constraint, d̄ and D are constant

boundaries for the premium and compensation of type L. Since d̄ is the highest

premium that the insured will pay and D is the lowest compensation that

the insured will receive, we suppose that d̄ > D. With more than two states,

there could be M(s) → ∞ when s increases. Under this circumstance, we will

65



demonstrate that the traditional model is inappropriate and it is crucial to

introduce the boundaries for dL,n and DL,n. If M(s) is bounded, we will show

the conditions under which the traditional model is inappropriate and (3.1.10)

is necessary and the conditions under which the traditional model is still valid

and (3.1.10) is not necessary.

3.2 The Solutions

To solve for the optimal controls, we will, first, temporarily ignore constraints

(3.1.7) and (3.1.8) in the problem. With the remaining constraints, we will then

apply the Lagrangian method to the problem and derive the candidate solutions.

The candidate solutions will be proved to be optimal to the problem without

(3.1.7) and (3.1.8). Next, it will be shown that these candidate solutions satisfy

the ignored constraint (3.1.8). If the constraint (3.1.7) is also satisfied by the

candidate solutions, then the candidate solutions are optimal to the original

problem. At last, if (3.1.7) is not satisfied, we will show other solutions to the

original problem.

Let λR
1 and λI

1 be the Lagrangian multipliers for the reservation constraint

(3.1.6) and the incentive compatibility constraint (3.1.9) respectively. The first

order conditions of the problem are

pLU
′
2(d

x
L,n −Dx

L,n)− λR
1 U

′
1(w − dxL,n +Dx

L,n −Xn)

+ λI
1Mn

dF
(n−1)
Q (x)

dF
(n−1)
P (x)

U ′
1(w − dxL,n +Dx

L,n −Xn) = 0,

pHU
′
2(d

x
H,n −Dx

H,n)− λI
1U

′
1(w − dxH,n +Dx

H,n −Xn) = 0.

We rewrite the first order conditions and obtain

g(dxL,n −Dx
L,n, Xn) =

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

,

g(dxH,n −Dx
H,n, Xn) =

λI
1

pH
.

(3.2.11)
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From the equations above, we see that λI
1 has to be positive because g is a

positive function. We also need
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

> 0 for the

same reason. However, if M(·) is unbounded, then there is always ω ∈ Ω such

that

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ 0 (3.2.12)

for every x ∈ Sn−1 and n = 1, 2, · · · , N . In this case, the first order conditions

are invalid and the solutions cannot be derived from the first order conditions.

That is the reason we need to take the boundaries d̄ and D into consideration. In

this case, d̄ will be the optimal premium and D will be the optimal compensation

for type L. We will show more about the presence of d̄ and D in the solutions

later. For x ∈ Sn−1 where n = 1, 2, · · · , N , we define

Ax
1 :=

{
s ∈ S; g(d̄−D, s) ≤ λR

1 dF
(n−1)
P (x)− λI

1M(s)dF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

}
.

If Xn ∈ Ax
1 for some ω ∈ Ω, then

g(d̄−D, Xn) ≤
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

.

For Xn ∈ Ax
1 , we see that

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

> 0 because g

is a positive function. That means the first order condition for type L in

(3.2.11) is valid. (3.2.11) also shows that g(d̄ − D, Xn) ≤ g(dxL,n −Dx
L,n, Xn).

Because g(y1, y2) is a decreasing function of y1, we obtain d̄−D ≥ dxL,n −Dx
L,n

for Xn ∈ Ax
1 . Constraint (3.1.10) requires dxL,n − Dx

L,n ≤ d̄ − D for each

n = 1, 2, · · · , N and each x ∈ Sn−1. So, for Xn ∈ Ax
1 , the value of dxL,n −Dx

L,n

derived from (3.2.11) locates inside the boundaries. Then, we will use the

dxL,n − Dx
L,n derived from (3.2.11) as the solution for type L. Otherwise, if

Xn /∈ Ax
1 , the result dxL,n − Dx

L,n from (3.2.11) may exceed d̄ − D or (3.2.11)
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may not be valid. Then, for Xn ∈ S − Ax
1 , we just let

dxL,n −Dx
L,n = d̄−D. (3.2.13)

The solution (3.2.13) can be reached only if the premium equals d̄ and the

compensation equals D. The premium dxL,n is determined and paid at the

beginning of period n, so dxL,n = d̄ not only when (3.2.13) occurs but for every

Xn ∈ S. Correspondingly, the value of Dx
L,n is obtained in different cases

through (3.2.11) and (3.2.13). We will derive the solution for type H through

the first order condition. We now present the solutions.

dxL,n = d̄, (3.2.14)

Dx
L,n =

⎧⎪⎪⎨⎪⎪⎩
d̄− g−1

(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
, if Xn ∈ Ax

1

D, if Xn ∈ S − Ax
1

(3.2.15)

dxH,n −Dx
H,n = g−1

(
λI
1

pH
, Xn

)
. (3.2.16)
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Here, with I denoting the indicator function, λR
1 and λI

1 are such that

EP

{
N∑

n=1

∫
Sn−1

[
U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

]
dF

(n−1)
P (x)

}
= RL,

(3.2.17)

EQ

{
N∑

n=1

∫
Sn−1

U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

}

= EQ

{
N∑

n=1

∫
Sn−1

[
U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
n−1
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

]
dF

(n−1)
Q (x)

}
.

(3.2.18)

In (3.2.14)–(3.2.15), when Xn ∈ Ax
1 , as discussed above, the solution dxL,n −

Dx
L,n ≤ d̄−D. Noting that dxL,n = d̄, we get Dx

L,n ≥ D for Xn ∈ Ax
1 . If for some

ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N , we have
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

>

0, then

g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
(3.2.19)

is well defined on S − Ax
1 . Then,

g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
≥ dxL,n −Dx

L,n = d̄−D (3.2.20)

when Xn ∈ S − Ax
1 .

Supposing y, z ∈ R
+, we define the notation S1. S1 ⊆ S and for every

s ∈ S1, g
−1

(
ydF

(n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, s

)
exists.
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Lemma 6. Let x ∈ Sn−1 and n = 1, 2, · · · , N . Then,

−g−1

(
ydF

(n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, s

)
− s

is a decreasing function of s ∈ S1.

Proof. We denote

Γ(x, y, z, s) := g−1

(
ydF

(n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, s

)
. (3.2.21)

It is sufficient to illustrate −Γ(x, y, z, s)− s decreases as s increases. From the

definition of g, (3.2.21) is equivalent to the equation

U ′
2(Γ)

U ′
1(w − Γ− s)

=
ydF

(n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

. (3.2.22)

We will prove by contradiction. Suppose −Γ(x, y, z, s)− s does not decrease

when some s ∈ S1 increases, then we have Γ decreases for some s ∈ S1.

U ′
2(Γ) will not decrease because U2 is a concave function. Meanwhile, we have

U ′
1(w−Γ−s) does not increase because U1 is a concave function too. Recall that

U ′
2(Γ) and U ′

1(w − Γ− s) are both positive. So, we obtain the left-hand-side of

(3.2.22) does not decrease as s increases. However, M(s) is a strictly increasing

function of s and z > 0, so we have the right-hand-side of (3.2.22) decreases as

s increases. That is a contradiction. Thus, the required statement follows.

Proposition 3. There exist λR
1 > 0 and λI

1 > 0 such that (3.2.17) and (3.2.18)

hold.

Proof. Step 1. We will show that for any fixed λI
1 ∈ (0,∞), we have λR

1 > 0

such that (3.2.17) holds. Let y ∈ R
+. Similar to Ax

1 , we define the set

Bx
1 (y) :=

{
s; g(d̄ − D, s) ≤ ydF

(n−1)
P (x)− λI

1M(s)dF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

}
. We denote

φ1(y) := g−1
(ydF (n−1)

P (x)− λI
1MndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
.
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When y → 0,
ydF

(n−1)
P (x)− λI

1M(s)dF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ 0 for each s ∈ S, x ∈
Sn−1 and n = 1, 2, · · · , N . Noticing g is a function that takes only positive

values, we have Bx
1 (y) = ∅ for every x ∈ Sn−1 and n = 1, 2, · · · , N . Therefore,

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ1(y)−Xn

)
IXn∈Bx

1 (y)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

1 (y)

]
dF

(n−1)
P (x)

}

= EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − d̄+D−Xn

)
dF

(n−1)
P (x)

⎤⎦ .

Recalling that d̄ > D, we obtain that

U1

(
w − d̄+D−Xn

)
< U1 (w −Xn) ,

which yields

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − d̄+D−Xn

)
dF

(n−1)
P (x)

⎤⎦
< EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w −Xn)dF
(n−1)
P (x)

⎤⎦ = RL. (3.2.23)

When y → ∞,
ydF

(n−1)
P (x)− λI

1M(s)dF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

→ ∞ for every s ∈ S,

x ∈ Sn−1 and n = 1, 2, · · · , N . Noting g(d̄− D, s) is finite for each s ∈ S, we
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obtain Bx
1 (y) = S for every x ∈ Sn−1 and n = 1, 2, · · · , N . Therefore,

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ1(y)−Xn

)
IXn∈Bx

1 (y)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

1 (y)

]
dF

(n−1)
P (x)

}

= EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − φ1(y)−Xn

)
dF

(n−1)
P (x)

⎤⎦ .

According to the definition of g, we have φ1(y) → −∞ for each Xn ∈ S and

x ∈ Sn−1 when y → ∞. So,

U1 (w − φ1(y)−Xn) > U1(w −Xn)

and it yields

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1 (w − φ1(y)−Xn) dF
(n−1)
P (x)

⎤⎦
> EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w −Xn)dF
(n−1)
P (x)

⎤⎦ = RL. (3.2.24)

The expression

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ1(y)−Xn

)
IXn∈Bx

1 (y)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

1 (y)

]
dF

(n−1)
P (x)

}

is continuous of y. Due to the Mean Value Theorem, as a result of (3.2.23) and
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(3.2.24), we can always find y ∈ (0,∞) for a fixed λI
1 such that

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ1(y)−Xn

)
IXn∈Bx

1 (y)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

1 (y)

]
dF

(n−1)
P (x)

}
= RL.

Equivalently speaking, we have a λR
1 ∈ (0,∞) for any fixed λI

1 ∈ (0,∞) such

that (3.2.17) holds.

Step 2. We will show that among the pairs (λR
1 , λ

I
1) that satisfy (3.2.17),

we can always find a pair that satisfies (3.2.18). Let z ∈ R
+. We start with

the pair of variables (y, z) satisfying

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
P (x)

}
= RL,

(3.2.25)

where

φ2(y, z) := g−1
(ydF (n−1)

P (x)− zMndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
, (3.2.26)

Bx
2 (y, z) :=

{
s; g(d̄−D, s) ≤ ydF

(n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

}
. (3.2.27)

Equation (3.2.25) is the same as (3.2.17) except that (λR
1 , λ

I
1) in (3.2.17) is

replaced by (y, z) in (3.2.25). From Lemma 6, we derive that

−g−1
(ydF (n−1)

P (x)− zM(s)dF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, s
)
− s

is a decreasing function of s ∈ S for every x ∈ Sn−1 and n = 1, 2, · · · , N . It is
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obvious that both

U1

(
w − g−1

(ydF (n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, s
)
− s

)
and U1(w − d̄+D− s)

are decreasing functions of s. According to Corollary 3, we obtain that

EQ

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)
+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
(3.2.28)

≤ EP

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
(3.2.29)

for every x ∈ Sn−1 and n = 1, 2, · · · , N . Recalling g−1(·, y2) is a decreasing

function, we get the term (3.2.28) is a decreasing function of
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

.

According to Lemma 5, we have∫
x∈Sn−1

EQ

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
Q (x)

<

∫
x∈Sn−1

EQ

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
P (x).

Noticing the relation between (3.2.28) and (3.2.29), from the inequality above,

74



we obtain∫
x∈Sn−1

EQ

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
Q (x)

<

∫
x∈Sn−1

EP

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
P (x).

Thus,

EQ

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
Q (x)

}

< EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
P (x)

}
= RL. (3.2.30)

When z → 0, to keep (3.2.25) holding, y must not approach 0. We will show

that by contradiction. Suppose y, z → 0, then Bx
2 (y, z) = ∅ for each x ∈ Sn−1

and n = 1, 2, · · · , N . The left-hand-side of (3.2.25) becomes

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − d̄+D−Xn

)
dF

(n−1)
P (x)

⎤⎦ .

From (3.2.23), we see the expression above is smaller than RL, which means
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(3.2.25) does not hold. Therefore, when z → 0, there exists y∗ ∈ R
+ such that

y > y∗ > 0 and consequently,

ydF
(n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

=
y

pL
>

z

pH

for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N . Then, φ2(y, z) < g−1

(
z

pH
, Xn

)
for every Xn ∈ Bx

2 (y, z) and x ∈ Sn−1 because g−1(·, y2) is a decreasing func-

tion. We get g−1(
z

pH
, Xn) → ∞ from the definition of g when z → 0, so

d̄−D < g−1(
z

pH
, Xn) for every Xn ∈ S − Bx

2 (y, z). That gives us

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
< U1

(
w − φ2(y, z)−Xn

)
IXn∈Bx

2 (y,z)
+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)
,

which yields

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
< EQ

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
Q (x)

}
.

(3.2.31)

When z → ∞, g−1

(
z

pH
, Xn

)
→ −∞ from the definition of g for every

Xn ∈ S. Then,

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
> U1(w)
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for each Xn ∈ S and x ∈ Sn−1. So,

EQ

[
U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)]
> U1(w) > EP [U1(w −Xn)] .

Continue the inequality above to obtain

EQ

⎡⎣ ∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
> EP

⎡⎣ ∫
x∈Sn−1

U1(w −Xn)dF
(n−1)
Q (x)

⎤⎦ = EP [U1(w −Xn)] ,

which yields

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
> EP

[
N∑

n=1

U1(w −Xn)

]
= RL. (3.2.32)

Combining (3.2.30) and (3.2.32), we obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
> EQ

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Bx

2 (y,z)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
Q (x)

}
(3.2.33)

when z → ∞.

From (3.2.31) and (3.2.33), due to Mean Value Theorem, we state that
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among the pairs (λR
1 , λ

I
1) satisfying (3.2.17), there is a pair that satisfies (3.2.18).

In summary, there exist λR
1 > 0 and λI

1 > 0 such that (3.2.17) and (3.2.18)

hold.

Now we can show the optimality of the candidate solutions.

Proposition 4. Without the constraints (3.1.7) and (3.1.8), the optimal

solutions are given by (3.2.14)–(3.2.16).

Proof. Let cL, CL, cH , and CH be the premium process for type L, compensation

process for type L, premium process for type H, and compensation process

for type H respectively. Suppose (cL, CL, cH , CH) ∈ A2 and the constraints

(3.1.6) and (3.1.9) are satisfied. We will compare the insurer’s utilities from

(3.2.14)–(3.2.16) and from (cL, CL, cH , CH).

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

= pLE
P

⎡⎣ N∑
n=1

∫
x∈Sn−1

(
U2(d

x
L,n −Dx

L,n)− U2(c
x
L,n − Cx

L,n)
)
dF

(n−1)
P (x)

⎤⎦
+ pHE

Q

⎡⎣ N∑
n=1

∫
x∈Sn−1

(
U2(d

x
H,n −Dx

H,n)− U2(c
x
H,n − Cx

H,n)
)
dF

(n−1)
Q (x)

⎤⎦ .

Since U2 is a concave function, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ pLE
P

⎡⎣ N∑
n=1

∫
x∈Sn−1

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
dF

(n−1)
P (x)

⎤⎦
+ pHE

Q

⎡⎣ N∑
n=1

∫
x∈Sn−1

U ′
2(d

x
H,n −Dx

H,n)
(
dxH,n −Dx

H,n − cxH,n + Cx
H,n

)
dF

(n−1)
Q (x)

⎤⎦ .

(3.2.34)

(3.2.15) shows two cases of the solution for type L. When Xn ∈ Ax
1 , from
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(3.2.11),

U ′
2(d

x
L,n −Dx

L,n)

U ′
1(w − dxL,n +Dx

L,n −Xn)
=

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

. (3.2.35)

When Xn ∈ S − Ax
1 ,

U ′
2(d

x
L,n −Dx

L,n)

U ′
1(w − dxL,n +Dx

L,n −Xn)
=

U ′
2(d̄−D)

U ′
1(w − d̄+D−Xn)

.

From the definition of Ax
1 , when Xn ∈ S − Ax

1 ,

g(d̄−D, Xn) =
U ′
2(d̄−D)

U ′
1(w − d̄+D−Xn)

>
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

.

In this case, dxL,n −Dx
L,n = d̄−D ≥ cxL,n − Cx

L,n. So,

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
U ′
1(w − dxL,n +Dx

L,n −Xn)

≥ λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
. (3.2.36)

The inequality (3.2.36) is true not only for Xn ∈ S − Ax
1 but also true for

Xn ∈ Ax
1 as a result of (3.2.35). For type H, it follows (3.2.16) that

U ′
2(d

x
H,n −Dx

H,n)

U ′
1(w − dxH,n +Dx

H,n −Xn)
=

λI
1

pH
. (3.2.37)
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Applying (3.2.36) and (3.2.37) to (3.2.34), we have

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ EP

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxL,n +Dx

L,n −Xn)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

)]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxH,n +Dx

H,n −Xn)

λI
1

(
dxH,n −Dx

H,n − cxH,n + Cx
H,n

)
dF

(n−1)
Q (x)

]
.

Since U1 is a concave function, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ EP

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxL,n + Cx

L,n −Xn)− U1(w − dxL,n +Dx
L,n −Xn)

)
(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

)]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

λI
1

(
U1(w − cxH,n + Cx

H,n −Xn)

− U1(w − dxH,n +Dx
H,n −Xn)

)
dF

(n−1)
Q (x)

]
.
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Applying (3.1.5) to the inequality above, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ λR
1 E

P

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxL,n + Cx

L,n −Xn)

− U1(w − dxL,n +Dx
L,n −Xn)

)
dF

(n−1)
P (x)

]

− λI
1E

Q

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxL,n + Cx

L,n −Xn)

− U1(w − dxL,n +Dx
L,n −Xn)

)
dF

(n−1)
Q (x)

]

+ λI
1E

Q

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxH,n + Cx

H,n −Xn)

− U1(w − dxH,n +Dx
H,n −Xn)

)
dF

(n−1)
Q (x)

]
.

Recall that λR
1 , λ

I
1 > 0. Constraint (3.1.6) implies

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − cxL,n + Cx
L,n −Xn)dF

(n−1)
P (x)

⎤⎦
≥ RL = EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxL,n +Dx
L,n −Xn)dF

(n−1)
P (x)

⎤⎦ .

81



Constraint (3.1.9) implies

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − cxH,n + Cx
H,n −Xn)dF

(n−1)
Q (x)

⎤⎦
≥ EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − cxL,n + Cx
L,n −Xn)dF

(n−1)
Q (x)

⎤⎦ ,

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxH,n +Dx
H,n −Xn)dF

(n−1)
Q (x)

⎤⎦
= EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxL,n +Dx
L,n −Xn)dF

(n−1)
Q (x)

⎤⎦ .

Then, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH) ≥ 0.

The required statement follows.

Searching for the solutions, we have been ignoring the reservation constraint

(3.1.7) and the incentive compatibility constraint (3.1.8). The candidate solu-

tions (3.2.14)–(3.2.16) are obtained without these constraints. However, the

proposition below shows that the candidate solutions also satisfy (3.1.8). We

prepare for the proposition with the definition of G∗. G∗ ∈ R is defined by

EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G∗

pL
, X

)
−X

)
IX∈AG∗

+ U1

(
w − d̄+D−X

)
IX∈S−AG∗

]

= EQ

[
U1

(
w − g−1

( λI
1

pH
, X

)
−X

)]
. (3.2.38)

Here, AG∗ :=
{
s ∈ S; g(d̄−D, s) ≤ λR

1 − λI
1M(s)G∗

pL

}
.
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Lemma 7. There exists a unique G∗ ∈ R such that (3.2.38) holds.

Proof. Consider the following expression as a function of G ∈ R,

EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G

pL
, X

)
−X

)
IX∈AG

+ U1

(
w − d̄+D−X

)
IX∈S−AG

]
.

(3.2.39)

Here, AG :=
{
s; g(d̄−D, s) ≤ λR

1 − λI
1M(s)G

pL

}
.

When G → −∞, then
λR
1 − λI

1M(X)G

pL
→ ∞ for every ω ∈ Ω. According

to the definition of g, we obtain that −g−1
(λR

1 − λI
1M(X)G

pL
, X

)
→ ∞ for

each ω ∈ Ω. At the same time, g(d̄−D, s) ≤ λR
1 − λI

1M(s)G

pL
for every s ∈ S,

so AG = S when G → −∞. Therefore,

EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G

pL
, X

)
−X

)
IX∈AG

+ U1

(
w − d̄+D−X

)
IX∈S−AG

]

= EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G

pL
, X

)
−X

)]
.

Because −g−1
( λI

1

pH
, X

)
< −g−1

(λR
1 − λI

1M(X)G

pL
, X

)
for each ω ∈ Ω when
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G → −∞, we obtain

EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G

pL
, X

)
−X

)
IX∈AG

+ U1

(
w − d̄+D−X

)
IX∈S−AG

]

> EQ

[
U1

(
w − g−1

( λI
1

pH
, X

)
−X

)]
when G → −∞.

For Xn ∈ Ax
1 , the solution dxL,n −Dx

L,n ≤ d̄−D, so

g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
n−1
P (x)

, Xn

)
≤ d̄−D.

Next we will show for some x ∈ Sn−1 and n = 1, 2, · · · , N , the P probability

of Xn such that

g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
n−1
P (x)

, Xn

)
< d̄−D (3.2.40)

is bigger than 0. We will show it by contradiction. Suppose for every x ∈ Sn−1

and n = 1, 2, · · · , N , the P probability of Xn such that (3.2.40) holds is 0.

Then the left-hand-side of (3.2.17) becomes EP

[
N∑

n=1

U1

(
w − d̄+D−Xn

)]
.

However, since d̄−D > 0, it follows that

EP

[
N∑

n=1

U1

(
w − d̄+D−Xn

)]
< EP

[
N∑

n=1

U1 (w −Xn)

]
= R.

Now (3.2.17) is not satisfied and the contradiction appears. Since P  Q, we

obtain that for some x ∈ Sn−1 and n = 1, 2, · · · , N , the Q probability of Xn
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such that (3.2.40) holds is bigger than 0. That shows

EQ

{
N∑

n=1

∫
Sn−1

[
U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
n−1
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

]
dF

(n−1)
Q (x)

}

> EQ

[ N∑
n=1

∫
Sn−1

U1

(
w − d̄+D−Xn

)
dF

(n−1)
Q (x)

]
.

Then, from (3.2.18), we obtain

EQ

{
N∑

n=1

∫
Sn−1

U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

}

> EQ

[ N∑
n=1

∫
Sn−1

U1

(
w − d̄+D−Xn

)
dF

(n−1)
Q (x)

]

which is equivalent to

EQ

[
U1

(
w − g−1

( λI
1

pH
, X

)
−X

)]
> EQ

[
U1

(
w − d̄+D−X

) ]
. (3.2.41)

When G → ∞, then
λR
1 − λI

1M(X)G

pL
→ −∞ for every ω ∈ Ω. According to

the definition of AG, we see that AG = ∅. Therefore,

EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G

pL
, X

)
−X

)
IX∈AG

+ U1

(
w − d̄+D−Xn

)
IX∈S−AG

]
= EQ

[
U1

(
w − d̄+D−X

)]
.
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From (3.2.41), we obtain

EQ

[
U1

(
w − g−1

(λR
1 − λI

1M(X)G

pL
, X

)
−X

)
IX∈AG

+ U1

(
w − d̄+D−X

)
IX∈S−AG

]

< EQ

[
U1

(
w − g−1

( λI
1

pH
, X

)
−X

)]
when G → ∞.

Recalling −g−1(·, y2) and U1 are increasing functions, we see that (3.2.39) is

a decreasing function of G. It is obvious that (3.2.39) is a continuous function

of G. Due to the Mean Value Theorem, the required statement follows.

Proposition 5. The controls (3.2.14)–(3.2.16) satisfy the constraint (3.1.8).

Proof. We denote s := inf S. We also define X∗ ∈ S such that g(d̄−D, X∗) is

closest to
λI
1

pH
.

X∗ := argmin
s∈S

∣∣∣∣g(d̄−D, s)− λI
1

pH

∣∣∣∣ .
g(y1, y2) is a decreasing function of y2, so X∗ is unique. Plug (3.2.14)–(3.2.16)

into (3.1.8) and obtain

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

]
dF

(n−1)
P (x)

}

≥ EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
dF

(n−1)
P (x)

⎤⎦ . (3.2.42)
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For the simplification of the notaiton, we denote

Δ :=U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1
− U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
.

(3.2.42) is thus rewritten as EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

ΔdF
(n−1)
P (x)

⎤⎦ ≥ 0. From (3.1.1),

the inequality is equivalent to

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦ ≥ 0. (3.2.43)

It is sufficient to prove (3.2.43) is true. According to the relation between λR
1

and λI
1, we separate the analysis into two cases.

Case 1:
λR
1

pL
≤ λI

1

pH
.

It is obvious that
λR
1

pL
− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λR
1

pL
for every ω ∈ Ω, x ∈ Sn−1, and

n = 1, 2, · · · , N . Recalling that g−1(·, y2) is a decreasing function, we have

−g−1

(
λR
1

pL
− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
≤ −g−1

(
λR
1

pL
, Xn

)
≤ −g−1

(
λI
1

pH
, Xn

)
(3.2.44)

for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N .

1.1

For any n = 1, 2, · · · , N , if Xn < X∗, then g(d̄−D, Xn) > g(d̄−D, X∗) because

g(y1, y2) is a decreasing function of y2. Thus, g(d̄−D, Xn) >
λI
1

pH
. Since g(y1, y2)

is a decreasing function of y1, we have g−1

(
λI
1

pH
, Xn

)
> d̄−D. From (3.2.44),
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we obtain for Xn < X∗,

−g−1

(
λR
1

pL
− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
≤ −g−1

(
λI
1

pH
, Xn

)
< −d̄+D. (3.2.45)

It means that

g(d̄−D, Xn) >
λR
1

pL
− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

.

Recalling the definition of Ax
1 , we see if Xn < X∗, then Xn ∈ S − Ax

1 for every

x ∈ Sn−1. Thus, as a result of (3.2.45),

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

= U1

(
w − d̄+D−Xn

)
> U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
.

It means Δ > 0. At the same time, because M(s) is a strictly increasing func-

tion,
1

Mn

>
1

M(X∗)
for Xn ≤ X∗. So, for any n = 1, 2, · · · , N , if Xn < X∗,

then
1

Mn

Δ >
1

M(X∗)
Δ.

1.2

For any n = 1, 2, · · · , N , if Xn > X∗, g(d̄ − D, Xn) < g(d̄ − D, X∗) because

g(y1, y2) is a decreasing function of y2. Thus, g(d̄−D, Xn) <
λI
1

pH
. Since g(y1, y2)

is a decreasing function of y1, we have g−1

(
λI
1

pH
, Xn

)
< d̄ − D. Considering
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g−1

(
λI
1

pH
, Xn

)
< d̄−D and (3.2.44) together, we obtain for Xn > X∗,

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

< U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
,

which means Δ < 0. At the same time,
1

Mn

<
1

M(X∗)
for Xn > X∗. So, for

any n = 1, 2, · · · , N , if Xn > X∗, then
1

Mn

Δ >
1

M(X∗)
Δ.

Consider

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
= EQ

[
N∑

n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

(
ΔI{Xn<X∗} +ΔI{Xn>X∗} +ΔI{Xn=X∗}

)
dF

(n−1)
Q (x)

]
.

Recalling that
1

Mn

Δ >
1

M(X∗)
Δ when Xn < X∗ and Xn > X∗, and

1

Mn

Δ =
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1

M(X∗)
Δ when Xn = X∗, we obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥ EQ

[
N∑

n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

(
ΔI{Xn<X∗} +ΔI{Xn>X∗} +ΔI{Xn=X∗}

)
dF

(n−1)
Q (x)

]

=
N∑

n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ[Δ]dF
(n−1)
Q (x). (3.2.46)

From the discussion in Lemma 7, we know that (3.2.39) is a decreasing function

of G. So, when
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

≥ G∗, we obtain EQ[Δ] ≤ 0 and
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

≤ 1

G∗ .

That yields
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ[Δ] ≥ 1

G∗E
Q[Δ]. When

dF
(n−1)
Q (x)

dF
(n−1)
P (x)

< G∗, we obtain

EQ[Δ] > 0 and
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

>
1

G∗ . That yields
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ[Δ] ≥ 1

G∗E
Q[Δ]

too. We continue (3.2.46) to obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥

N∑
n=1

∫
x∈Sn−1

1

M(X∗)
1

G∗E
Q[Δ]dF

(n−1)
Q (x)

=
1

M(X∗)
1

G∗E
Q

⎡⎣ N∑
n=1

∫
x∈Sn−1

ΔdF
(n−1)
Q (x)

⎤⎦ , (3.2.47)

which is 0 according to (3.2.18). Now (3.2.43) is reached.
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Case 2:
λR
1

pL
>

λI
1

pH
.

We will discuss this case under the following possible conditions.

2.1

g
(
d̄−D, s

)
<

λI
1

pH
.

Observing Xn ≥ s, we have g
(
d̄−D, Xn

)
<

λI
1

pH
for every ω ∈ Ω and n =

1, 2, · · · , N. g(y1, y2) is a decreasing function of y1, so−g−1

(
λI
1

pH
, Xn

)
> −d̄+D

for every ω ∈ Ω and n = 1, 2, · · · , N.

2.1.1

For any n = 1, 2, · · · , N and any x ∈ Sn−1, if
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

< (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

then there will be

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

>
λI
1

pH
> g

(
d̄−D, Xn

)
(3.2.48)

for every ω ∈ Ω and n = 1, 2, · · · , N . So, from the definition of Ax
1 , we see that

Xn ∈ Ax
1 for every ω ∈ Ω and n = 1, 2 · · · , N . Noting g−1(·, y2) is a decreasing

function, we obtain from (3.2.48),

−g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
> −g−1

( λI
1

pH
, Xn

)
.

Thus, we derive that

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

= U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
> U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
.
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This is equivalent to Δ > 0. Since
1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

>
1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

, we obtain

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

Δ >
1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

Δ. (3.2.49)

2.1.2

For any n = 1, 2, · · · , N and any x ∈ Sn−1, if
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

≥ (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

then there will be

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1

pH
,

which yields

−g−1
( λI

1

pH
, Xn

)
≥ −g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)

for every ω ∈ Ω and n = 1, 2, · · · , N . Because −g−1
( λI

1

pH
, Xn

)
> −d̄+D too,

we state that

− g−1
( λI

1

pH
, Xn

)
≥ −g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1
,

which yields

U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
≥ U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1
.
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This is equivalent to Δ ≤ 0. Since
1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

≤ 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

, we obtain

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

Δ ≥ 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

Δ. (3.2.50)

From (3.2.49) and (3.2.50), we obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥ 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

ΔdF
(n−1)
Q (x)

⎤⎦ ,

which is 0 according to (3.2.18). Now (3.2.43) is reached.

2.2

g
(
d̄−D, s1

) ≥ λI
1

pH
.

In (3.2.14)–(3.2.15), dxL,n −Dx
L,n ≤ d̄−D when Xn ∈ Ax

1 , thus

− g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1

≥ −d̄+D (3.2.51)

for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N . From (3.2.20), we obtain if

(3.2.19) exists for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N , then

− g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1

≥ −g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
(3.2.52)

for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N . We will consider the following
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situations.

2.2.1

Consider x ∈ Sn−1 and n = 1, 2, · · · , N such that

λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1

pH
. (3.2.53)

2.2.1.1

For Xn < X∗, g(d̄ − D, Xn) > g(d̄ − D, X∗) because g(y1, y2) is a decreasing

function of y2. From the definition of X∗, we obtain that g(d̄−D, Xn) >
λI
1

pH

and then −d̄+ D > −g−1
( λI

1

pH
, Xn

)
for Xn < X∗. That yields, as a result of

(3.2.51),

− g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1

> −g−1
( λI

1

pH
, Xn

)
for Xn < X∗. Therefore,

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

> U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)

for Xn < X∗. This is equivalent to Δ > 0. At the same time,
1

Mn

>
1

M(X∗)
since M(s) is a strictly increasing function of s. So, for Xn < X∗, we have
1

Mn

Δ >
1

M(X∗)
Δ.

2.2.1.2
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For Xn > X∗, we have from (3.2.53),

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

<
λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1

pH
.

Because −g−1(·, y2) is an increasing function, we have

−g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
< −g−1

( λI
1

pH
, Xn

)
(3.2.54)

for Xn > X∗. g
(
d̄−D, Xn

)
< g

(
d̄−D, X∗) if Xn > X∗, so we obtain

g
(
d̄−D, Xn

)
<

λI
1

pH
for Xn > X∗ according to the definition of X∗. Then, for

Xn > X∗,

−g−1
( λI

1

pH
, Xn

)
> −d̄+D. (3.2.55)

As a summary of (3.2.54) and (3.2.55),

− g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1

< −g−1
( λI

1

pH
, Xn

)
.

for Xn > X∗. Therefore,

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

< U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)

for Xn > X∗. This is equivalent to Δ < 0. At the same time,
1

Mn

<
1

M(X∗)
.

So, for Xn > X∗, we have
1

Mn

Δ >
1

M(X∗)
Δ.
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Similar to (3.2.46), we obtain, under the condition (3.2.53),

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥ EQ

[
N∑

n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

(
ΔI{Xn<X∗} +ΔI{Xn>X∗} +ΔI{Xn=X∗}

)
dF

(n−1)
Q (x)

]

=
N∑

n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ[Δ]dF
(n−1)
Q (x). (3.2.56)

2.2.2

Consider x ∈ Sn−1 and n = 1, 2, · · · , N such that

λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

>
λI
1

pH
. (3.2.57)

Now (3.2.19) always exists because
λI
1

pH
> 0.

2.2.2.1

If
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

≤ (
λR
1

pL
− λI

1

pH
)
pL
λI
1

, then

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

≥ λI
1

pH
. So, if

MndF
(n−1)
Q (x)

dF
(n−1)
P (x)

≤ (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

−g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
≥ −g−1

( λI
1

pH
, Xn

)
.
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It follows that, as a result of (3.2.52), if
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

≤ (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

− g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1

≥ −g−1
( λI

1

pH
, Xn

)
.

Therefore, if
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

≤ (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MdF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

≥ U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
.

This is equivalent to Δ ≥ 0. At the same time, since
dF

(n−1)
P (x)

MndF
(n−1)
Q (x)

≥

1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

, we have
dF

(n−1)
P (x)

MndF
(n−1)
Q (x)

Δ ≥ 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

Δ.

2.2.2.2

If
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

> (
λR
1

pL
− λI

1

pH
)
pL
λI
1

, then
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

<

λI
1

pH
. So, if

MndF
(n−1)
Q (x)

dF
(n−1)
P (x)

> (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

−g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
< −g−1

( λI
1

pH
, Xn

)
. (3.2.58)
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Recalling (3.2.57), we also have, if
MndF

(n−1)
Q (x)

dF
(n−1)
P (x)

> (
λR
1

pL
− λI

1

pH
)
pL
λI
1

,

λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

>
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

.

The inequality above shows that Mn > M(X∗) and thus Xn > X∗. From the

definition of X∗, we see when Xn > X∗, g(d̄ − D, Xn) <
λI
1

pH
. Considering

g(d̄−D, Xn) <
λI
1

pH
and (3.2.58) together, we obtain that

− g−1
(λR

1 dF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
IXn∈Ax

1
+ (−d̄+D)IXn∈S−Ax

1

< −g−1
( λI

1

pH
, Xn

)

which will yield Δ < 0. At the same time, since
dF

(n−1)
P (x)

MndF
(n−1)
Q (x)

<
1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

,

we have
dF

(n−1)
P (x)

MndF
(n−1)
Q (x)

Δ >
1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

Δ.

Therefore, under the condition (3.2.57), we have

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥ 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

ΔdF
(n−1)
Q (x)

⎤⎦ . (3.2.59)

Combining the result (3.2.56) under the condition (3.2.53)and the result
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(3.2.59) under the condition (3.2.57), we obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥

N∑
n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ [Δ] I
{λR1 dF

(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
≤ λI1

pH
}
dF

(n−1)
Q (x)

+
1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

N∑
n=1

∫
x∈Sn−1

EQ [Δ] I
{λR1 dF

(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
>

λI1
pH

}
dF

(n−1)
Q (x).

(3.2.60)

Note that (3.2.53) is equivalent to

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

− 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

≤ 0. (3.2.61)

Also note that Δ decreases when
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

increases, so does EQ[Δ].

If EQ[Δ] ≤ 0 when
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

= (
λR
1

pL
− λI

1

pH
)

pL
λI
1M(X∗)

, then EQ[Δ] ≤

0 when
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

≥ (
λR
1

pL
− λI

1

pH
)

pL
λI
1M(X∗)

which is a transformation of

λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1

pH
. That says, when (3.2.53) hap-
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pens, EQ[Δ] ≤ 0 and (3.2.61) is true. We continue (3.2.60) to obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥ 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

ΔdF
(n−1)
Q (x)

⎤⎦
+

N∑
n=1

∫
x∈Sn−1

⎛⎝ 1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

− 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

⎞⎠
EQ [Δ] I

{λR1 dF
(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
≤ λI1

pH
}
dF

(n−1)
Q (x).

Because EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

ΔdF
(n−1)
Q (x)

⎤⎦ = 0 according to (3.2.18), we have

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥

N∑
n=1

∫
x∈Sn−1

⎛⎝ 1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

− 1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

⎞⎠
EQ [Δ] I

{λR1 dF
(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
≤ λI1

pH
}
dF

(n−1)
Q (x)

≥ 0.

Now (3.2.43) is reached.

If EQ[Δ] > 0 when
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

= (
λR
1

pL
− λI

1

pH
)

pL
λI
1M(X∗)

, then G∗ > (
λR
1

pL
−

λI
1

pH
)

pL
λI
1M(X∗)

. It also means EQ[Δ] > 0 when
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

< (
λR
1

pL
− λI

1

pH
)

pL
λI
1M(X∗)

which is a transformation of
λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

>
λI
1

pH
. That
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says, when (3.2.57) happens, EQ[Δ] > 0 and
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

< G∗. When (3.2.53)

happens, split it into two situations: one is
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

< G∗ and it follows that

EQ[Δ] > 0; the other one is
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

≥ G∗ and it follows that EQ[Δ] ≤ 0.

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥

N∑
n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ [Δ] I
{λR1 dF

(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
≤ λI1

pH
and

dF
(n−1)
Q

(x)

dF
(n−1)
P

(x)
≥G∗}

dF
(n−1)
Q (x)

+
N∑

n=1

∫
x∈Sn−1

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ [Δ] I
{λR1 dF

(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
≤ λI1

pH
and

dF
(n−1)
Q

(x)

dF
(n−1)
P

(x)
<G∗}

dF
(n−1)
Q (x)

+
N∑

n=1

∫
x∈Sn−1

1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

EQ [Δ] I
{λR1 dF

(n−1)
P

(x)−λI1M(X∗)dF (n−1)
Q

(x)

pLdF
(n−1)
P

(x)
>

λI1
pH

}
dF

(n−1)
Q (x).

(3.2.62)

When
λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1

pH
and

dF
(n−1)
Q (x)

dF
(n−1)
P (x)

≥ G∗,

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ[Δ] ≥ 1

M(X∗)
1

G∗E
Q[Δ].
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When
λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1

pH
and

dF
(n−1)
Q (x)

dF
(n−1)
P (x)

< G∗,

1

M(X∗)
dF

(n−1)
P (x)

dF
(n−1)
Q (x)

EQ[Δ] >
1

M(X∗)
1

G∗E
Q[Δ].

When
λR
1 dF

(n−1)
P (x)− λI

1M(X∗)dF (n−1)
Q (x)

pLdF
(n−1)
P (x)

>
λI
1

pH
,

1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

>
1

M(X∗)
1

G∗

because G∗ > (
λR
1

pL
− λI

1

pH
)

pL
λI
1M(X∗)

. It results that
1

(
λR
1

pL
− λI

1

pH
)pL
λI
1

EQ[Δ] >

1

M(X∗)
1

G∗E
Q[Δ]. Therefore, from (3.2.62),

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

1

Mn

dF
(n−1)
P (x)

dF
(n−1)
Q (x)

ΔdF
(n−1)
Q (x)

⎤⎦
≥ 1

M(X∗)
1

G∗

N∑
n=1

∫
x∈Sn−1

EQ[Δ]dF
(n−1)
Q (x) = 0.

Now, (3.2.43) is reached. We have traversed all the possible circumstances and

proved in each circumstance, (3.1.8) is satisfied by (3.2.14)–(3.2.16).

The reservation constraint (3.1.7) is the only constraint we have not consid-

ered. If the candidate solutions satisfy (3.1.7) too, they are automatically the

optimal solutions to the original problem. This statement is expressed by the

following theorem.

Theorem 5. If (3.2.14)–(3.2.16) satisfy the constraint (3.1.7), then (3.2.14)–

(3.2.16) are optimal solutions to the problem.

However, we cannot guarantee the reservation constraint for type H is al-

ways satisfied by the candidate solutions. In the remaining part of this section,
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we will discuss the optimal solutions if (3.1.7) is not satisfied by (3.2.14)–(3.2.16).

For x ∈ Sn−1 and n = 1, 2, · · · , N , we define

Ax
2 :=

{
s ∈ S; g(d̄−D, s) ≤ λR

2 dF
(n−1)
P (x)− λI

2M(s)dF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

}
.

The candidate solutions are

dxL,n = d̄, (3.2.63)

Dx
L,n =

⎧⎪⎪⎨⎪⎪⎩
d̄− g−1

(
λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
, if Xn ∈ Ax

2

D, if Xn ∈ S − Ax
2

(3.2.64)

dxH,n −Dx
H,n = g−1

(
λ3

pH
, Xn

)
. (3.2.65)

Here, λR
2 and λI

2 are such that

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

2

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

2

]
dF

(n−1)
P (x)

}
= RL,

(3.2.66)

EQ

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

2

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

2

]
dF

(n−1)
Q (x)

}
= RH ,

(3.2.67)
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and λ3 is such that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( λ3

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦ = RH . (3.2.68)

As one of the equations to define λR
2 and λI

2, (3.2.66) is not different from

(3.2.17) which is an equation to define λR
1 and λI

1. This similarity will help us

simplify the proof of the following proposition.

Proposition 6. Suppose that (3.2.14)–(3.2.16) do not satisfy (3.1.7). Then,

there exist λR
2 ∈ (0, λR

1 ) and λI
2 ∈ (0, λI

1) such that (3.2.66) and (3.2.67) hold.

Also, there exists λ3 ∈ (λI
1,∞) such that (3.2.68) holds.

Proof. From the discussion in Step 1 of the proof of Proposition 3, we know

that for any fixed λI
2 ∈ (0,∞), there exists λR

2 > 0 such that (3.2.66) holds.

Next we will show that among the pairs (λR
2 , λ

I
2) that satisfy (3.2.66), there

exists a pair that satisfy (3.2.67). Similar to Step 2 in the proof of Proposition

3, we again start with the pair of variables (y, z) satisfying (3.2.25).

When z = λI
1, we have y = λR

1 to keep (3.2.25) holding. Because (3.2.14)–

(3.2.16) do not satisfy (3.1.7), there is

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦ < RH .

Noticing (3.2.18), we have when z = λI
1,

EQ

⎧⎨⎩
N∑

n=1

∫
x∈Sn−1

[
U1 (w − φ2(y, z)−Xn) IXn∈Bx

2 (y,z)

+U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,z)

]
dF

(n−1)
Q (x)

}
< RH .

(3.2.69)

Here, φ2(y, z) and Bx
2 (y, z) are defined by (3.2.26) and (3.2.27). When z → 0,
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φ2(y, z) = g−1
( y

pL
, Xn

)
almost surely under the probability measure P . So,

(3.2.25) becomes

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

( y

pL
, Xn

)
−Xn

)
IXn∈Bx

2 (y,0)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,0)

]
dF

(n−1)
P (x)

}
= RL.

(3.2.70)

Realizing that

EP

[
U1

(
w − g−1

( y

pL
, Xn

)
−Xn

)
IXn∈Bx

2 (y,0)
+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y,0)

]
is the same for each n = 1, 2, · · · , N and x ∈ Sn−1, we rewrite (3.2.70) as

NEP

[
U1

(
w − g−1

( y

pL
, X

)
−X

)
IX∈Bx

2 (y,0)
+ U1

(
w − d̄+D−X

)
IX∈S−Bx

2 (y,0)

]
= NEP [U1(w −X)]. (3.2.71)

Here, we derived the right-hand-side of the equation based on the definition of

RL. We define X ′ ∈ R by

X ′ := argmin
s∈S

∣∣∣∣g(0, s)− y

pL

∣∣∣∣ .
For X < X ′, g(0, X) >

y

pL
and it yields −g−1(

y

pL
, X) < 0. On the other

hand, for X > X ′, g(0, X) <
y

pL
and it yields −g−1(

y

pL
, X) > 0. Because

g(d̄−D, X) < g(0, X) <
y

pL
, from the definition ofBx

2 (y, z), we sayX ∈ Bx
2 (y, 0)

when X > X ′. From the discussion above, we obtain the summary that

U1

(
w − g−1

( y

pL
, X

)
−X

)
IX∈Bx

2 (y,0)
+ U1

(
w − d̄+D−Xn

)
IX∈S−Bx

2 (y,0)

≤ U1(w −X)

105



when X < X ′ and

U1

(
w − g−1

( y

pL
, X

)
−X

)
IX∈Bx

2 (y,0)
+ U1

(
w − d̄+D−Xn

)
IX∈S−Bx

2 (y,0)

≥ U1(w −X)

when X > X ′. With (3.2.71), according to Lemma 4, we obtain

NEQ

[
U1

(
w − g−1

( y

pL
, X

)
−X

)
IX∈Bx

2 (y,0)
+ U1

(
w − d̄+D−Xn

)
IX∈S−Bx

2 (y,0)

]
≥ NEQ[U1(w −X)],

It is equivalent to

EQ

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

( y

pL
, Xn

)
−Xn

)
IXn∈Bx

2 (y(0),0)

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Bx

2 (y(0),0)

]
dF

(n−1)
Q (x)

}
≥ RH .

(3.2.72)

Now we obtain (3.2.72)when z → 0. Combining (3.2.69) and (3.2.72), we can

state that there exist λI
2 ∈ (0, λI

1) and the corresponding λR
2 such that (3.2.67)

holds. Therefore, there is a pair of (λR
2 , λ

I
2) such that (3.2.66) and (3.2.67)

hold.

From the discussion above, it is clear that 0 < λI
2 < λI

1 and 0 < λR
2 . Next

we will illustrate that λR
2 < λR

1 . We know that when y = λR
1 and z = λI

1,

(3.2.25) holds and (3.2.25) is not different from (3.2.17). If z decreases and

becomes less than λI
1 but y stays the same as λR

1 , the left-hand-side of (3.2.25)

becomes larger because −g−1(·, y2) and U1 are increasing functions. Therefore,

to keep (3.2.25) holding when z < λI
1, there must be y < λR

1 too.
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Next we will prove the statement about λ3. Consider the function of z,

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦ .

When z = λI
1, then

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦ < RH

because (3.2.16) does not satisfy (3.1.7). When z → ∞, then −g−1
( z

pH
, Xn

)
→

∞ according to the definition of g. So,

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
> EQ

[
N∑

n=1

U1

(
w −Xn

)]
= RH

when z → ∞. Therefore, there exists λ3 ∈ (λI
1,∞) such that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( λ3

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦ = RH .

Now, we will show that the candidate solutions, (3.2.63)–(3.2.65), satisfy

all the constraints. (3.2.66) shows the contract (3.2.63)–(3.2.64) for type L is

such that

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxL,n +Dx
L,n −Xn)dF

(n−1)
P (x)

⎤⎦ = RL.

Therefore, the reservation constraint (3.1.6) for type L is satisfied. (3.2.68)
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shows the contract for type H from (3.2.65) is such that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxH,n +Dx
H,n −Xn)dF

(n−1)
Q (x)

⎤⎦ = RH . (3.2.73)

Therefore, the reservation constraint (3.1.7) for type H is satisfied. (3.2.67)

and (3.2.68) together show the solutions from (3.2.63)–(3.2.65) are such that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxH,n +Dx
H,n −Xn)dF

(n−1)
Q (x)

⎤⎦
= EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxL,n +Dx
L,n −Xn)dF

(n−1)
Q (x)

⎤⎦ . (3.2.74)

Therefore, the incentive compatibility constraint (3.1.9) for type H is satisfied.

The proposition below will show that the incentive compatibility constraint for

type L is also satisfied by the candidate solutions.

Proposition 7. The controls (3.2.63)–(3.2.65) satisfy (3.1.8).

Proof. Plugging (3.2.63)–(3.2.65) into (3.1.8), we need to prove

EP

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

2

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

2

]
dF

(n−1)
P (x)

}

≥ EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

(λ3

pL
, Xn

)
−Xn

)
dF

(n−1)
P (x)

⎤⎦ .

According to the relation presented by (3.2.66), we see it is sufficient to show

RL ≥ EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

(λ3

pL
, Xn

)
−Xn

)
dF

(n−1)
P (x)

⎤⎦ .
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Note U1

(
w − g−1

(λ3

pL
, Xn

)
− Xn

)
is the same for every x ∈ Sn−1 and n =

1, 2, · · · , N . Also recalling the definition of RL, we can rewrite the inequality

above as

NEP [U1(w −X)] ≥ NEP

[
U1

(
w − g−1

(λ3

pL
, X

)
−X

)]
.

Define

X ′′ := argmin
s∈S

∣∣∣∣g(0, s)− λ3

pH

∣∣∣∣ .
Since g(y1, y2) is a decreasing function of y2, g(0, X) >

λ3

pH
when X < X ′′.

Since −g−1(·, y2) is an increasing function, −g−1(
λ3

pH
, X) < 0 when X < X ′′.

So,

U1(w −X) > U1

(
w − g−1

(λ3

pL
, X

)
−X

)
when X < X ′′. Similarly, we have

U1(w −X) < U1

(
w − g−1

(λ3

pL
, X

)
−X

)
when X < X ′′. (3.2.68) is equivalent to

NEQ[U1(w −X)] = NEQ

[
U1

(
w − g−1

(λ3

pL
, X

)
−X

)]
.

Therefore, according to Lemma 4, we conclude that

NEP [U1(w −X)] ≥ NEP

[
U1

(
w − g−1

(λ3

pL
, X

)
−X

)]
and (3.1.8) is satisfied.

The optimality of the candidate solutions is proved by the following theorem.

Theorem 6. Suppose that (3.2.14)–(3.2.16) do not satisfy (3.1.7). Then,
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(3.2.63)–(3.2.65) are the optimal solutions to the problem.

Proof. The beginning of the proof is not much different from that of Propo-

sition 4, so we will skip some details here. Let cL, CL, cH , and CH be the

premium process for type L, compensation process for type L, premium pro-

cess for type H, and compensation process for type H respectively. Suppose

(cL, CL, cH , CH) ∈ A2 and satisfy all the constraints in the problem. We will

compare the insurer’s utilities from (3.2.63)–(3.2.65) and from (cL, CL, cH , CH).

Since U2 is a concave function, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ pLE
P

⎡⎣ N∑
n=1

∫
x∈Sn−1

dF
(n−1)
P (x)U ′

2(d
x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)⎤⎦
+ pHE

Q

⎡⎣ N∑
n=1

∫
x∈Sn−1

dF
(n−1)
Q (x)U ′

2(d
x
H,n −Dx

H,n)
(
dxH,n −Dx

H,n − cxH,n + Cx
H,n

)⎤⎦ .

From (3.2.63)–(3.2.64), we derive that when Xn ∈ Ax
2 ,

U ′
2(d

x
L,n −Dx

L,n)

U ′
1(w − dxL,n +Dx

L,n −Xn)
=

λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

and when Xn ∈ S − Ax
2 ,

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
U ′
1(w − dxL,n +Dx

L,n −Xn)

≥ λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
.

From (3.2.65), we derive that

U ′
2(d

x
H,n −Dx

H,n)

U ′
1(w − dxH,n +Dx

H,n −Xn)
=

λ3

pH
. (3.2.75)
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Then we obtian

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ EP

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxL,n +Dx

L,n −Xn)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
(
λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

)]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxH,n +Dx

H,n −Xn)λ3

(
dxH,n −Dx

H,n − cxH,n + Cx
H,n

)
dF

(n−1)
Q (x)

]
.

Since U1 is a concave function, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ EP

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxL,n + Cx

L,n −Xn)− U1(w − dxL,n +Dx
L,n −Xn)

)
λR
2 dF

(n−1)
P (x)

]

− EP

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxL,n + Cx

L,n −Xn)− U1(w − dxL,n +Dx
L,n −Xn)

)
λI
2MndF

(n−1)
Q (x)

]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxH,n + Cx

H,n −Xn)− U1(w − dxH,n +Dx
H,n −Xn)

)
λ3dF

(n−1)
Q (x)

]
.
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Applying (3.1.5) to the inequality above, we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ λR
2 E

P

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxL,n + Cx

L,n −Xn)− U1(w − dxL,n +Dx
L,n −Xn)

)
dF

(n−1)
P (x)

]

− EQ

[
N∑

n=1

∫
x∈Sn−1

λI
2

(
U1(w − cxL,n + Cx

L,n −Xn)− U1(w − dxL,n +Dx
L,n −Xn)

)
dF

(n−1)
Q (x)

]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

λ3

(
U1(w − cxH,n + Cx

H,n −Xn)− U1(w − dxH,n +Dx
H,n −Xn)

)
dF

(n−1)
Q (x)

]
.

Recalling that λR
2 > 0 and

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − cxL,n + Cx
L,n −Xn)dF

(n−1)
P (x)

⎤⎦ ≥ RL,

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − dxL,n +Dx
L,n −Xn)dF

(n−1)
P (x)

⎤⎦ = RL,
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we have

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ −EQ

[
N∑

n=1

∫
x∈Sn−1

λI
2

(
U1(w − cxL,n + Cx

L,n −Xn)− U1(w − dxL,n +Dx
L,n −Xn)

)
dF

(n−1)
Q (x)

]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

λ3

(
U1(w − cxH,n + Cx

H,n −Xn)− U1(w − dxH,n +Dx
H,n −Xn)

)
dF

(n−1)
Q (x)

]
.

Rearrange the terms to obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ λI
2E

Q

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxH,n + Cx

H,n −Xn)− U1(w − cxL,n + Cx
L,n −Xn)

)
dF

(n−1)
Q (x)

]
(3.2.76)

+ λI
2E

Q

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − dxL,n +Dx

L,n −Xn)− U1(w − dxH,n +Dx
H,n −Xn)

)
dF

(n−1)
Q (x)

]
(3.2.77)

+ EQ

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxH,n + Cx

H,n −Xn)− U1(w − dxH,n +Dx
H,n −Xn)

)
(λ3 − λI

2)dF
(n−1)
Q (x)

]
.
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Noting Constraint (3.1.9) and λI
2 > 0, we obtain the term (3.2.76) is nonnegative.

Also noting the equation (3.2.74), we obtain the term (3.2.77) is 0. So,

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

≥ (λ3 − λI
2)E

Q

[
N∑

n=1

∫
x∈Sn−1

(
U1(w − cxH,n + Cx

H,n −Xn)

− U1(w − dxH,n +Dx
H,n −Xn)

)
dF

(n−1)
Q (x)

]
.

Because λ3 > λI
1 but λ

I
2 < λI

1, then λ3−λI
2 > 0. Constraint (3.1.7) tells us that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1(w − cxH,n + Cx
H,n −Xn)dF

(n−1)
Q (x)

⎤⎦ ≥ RH .

Comparing the expression above and (3.2.73), we obtain

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH) ≥ 0.

The proof is finished.

3.3 The Boundaries of Premium and Compen-

sation

Different from the traditional model, we introduce the boundary d̄ for premium

and the boundary D for compensation. In this section, we will see how d̄ and

D affect the insurer’s utility. From there, we will explain why these boundaries

are necessary for our model. To achieve our goal, we will first demonstrate the

conditions under which d̄ and D are involved in the the insurer’s utility. Then

we discuss the changes it will cause on the insurer’s utility when d̄ and D change.

From the solutions presented in the previous section, we see that the solu-

tions involve d̄ and D. But in the problem, the premium and compensation
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always appear together in the form of dxL,n −Dx
L,n. If we plug the solutions into

the objective of the problem, the insurer’s utility involves d̄ and D only when

S − Ax
1 and S − Ax

2 are not empty for some x ∈ Sn−1 and n = 1, 2, · · · , N . If

S − Ax
1 and S − Ax

2 are empty sets for every x ∈ Sn−1 and n = 1, 2, · · · , N ,

then the boundaries will not appear in the objective, not even affect it. If

the boundaries do appear in the objective, they are also in the form of d̄−D.

Thus, our analysis will focus on how d̄−D affects the insurer’s utility. Note the

definitions of sets Ax
1 and Ax

2 and note that g(y1, y2) is a decreasing function of

y1. In intuition, S − Ax
1 and S − Ax

2 will be empty sets if d̄−D is big enough.

We will discuss the conditions under which S − Ax
1 and S − Ax

2 can be empty

sets for every x ∈ Sn−1 and n = 1, 2, · · · , N .

3.3.1 The set S − Ax
1

In the previous section, we showed two circumstances under which we obtain

different solutions to the problem. We start with the first circumstance where

(3.2.14)–(3.2.16) present the solutions. The solutions involve S−Ax
1 and we will

discuss when we can have S − Ax
1 = ∅ for every x ∈ Sn−1 and n = 1, 2, · · · , N .

Consider (3.2.17)–(3.2.18) with S − Ax
1 = ∅ for every x ∈ Sn−1 and n =
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1, 2, · · · , N .

EP

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)

−Xn

)
dF

(n−1)
P (x)

]
= RL,

(3.3.78)

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
= EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)

−Xn

)
dF

(n−1)
Q (x)

]
.

(3.3.79)

Unlike (3.2.17)–(3.2.18), there is not a general statement that there always

exist λR
1 > 0 and λI

1 > 0 such that (3.3.78)–(3.3.79) hold. We define M̄ :=

lim
s→supS

M(s). Because M(s) strictly increases as s increases, we know M̄ ≥
M(X) for every ω ∈ Ω. We categorize M̄ to the following cases and analyze if

there are λR
1 > 0 and λI

1 > 0 such that (3.3.78)–(3.3.79) hold.

• M̄ is finite but P{M(X) = M̄} �= 0 and Q{M(X) = M̄} �= 0.

In this case, there always exist λR
1 > 0 and λI

1 > 0 such that (3.3.78)–(3.3.79)

hold. The complete illustration of this property is shown below.

Property 1. If M̄ is finite but P{M(X) = M̄} �= 0 and Q{M(X) = M̄} �= 0,

then there exist λR
1 > 0 and λI

1 > 0 such that (3.3.78)–(3.3.79) hold.

Proof. Step 1. We will show that for any fixed λI
1 ∈ (0,∞), we have

λR
1 ∈ (λI

1(M̄)N ,∞) such that (3.3.78) holds.
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When y = λI
1(M̄)N for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N ,

ydF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

=
λI
1(M̄)N

pL
− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

=
λI
1(M̄)N

pL
− λI

1MNdFQ(x1)dFQ(x2) · · · dFQ(xN−1)

pLdFP (x1)dFP (x2) · · · dFP (xN−1)

=
λI
1(M̄)N

pL
− λI

1MNM(x1)M(x2) · · ·M(xN−1)

pL

≥ 0.

So, the expression g−1
(ydF (n−1)

P (x)− λI
1MndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
always exists. When

y = λI
1(M̄)N for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N ,

ydF
(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

=
λI
1(M̄)N

pL
− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

≤ λI
1(M̄)N

pL
.

So, noting −g−1(·, y2) is an increasing function and noting Lemma 6, we have

for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N ,

U1

(
w − g−1

(ydF (n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

≤ U1

(
w − g−1

(λI
1(M̄)N

pL
, Xn

)
−Xn

)
≤ U1

(
w − g−1

(λI
1(M̄)N

pL
, 0
))

< ∞. (3.3.80)

However, with the specific path x1, x2, · · · , xN−1 = supS, and the specific value
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of random variable XN = supS, we have

ydF
(N−1)
P (x)− λI

1MNdF
(N−1)
Q (x)

pLdF
(N−1)
P (x)

=
λI
1(M̄)N

pL
− λI

1MNM(x1)M(x2) · · ·M(xN−1)

pL

=
λI
1(M̄)N

pL
− λI

1(M̄)N

pL

= 0,

and it yields

g−1
(ydF (N−1)

P (x)− λI
1MNdF

(N−1)
Q (x)

pLdF
(N−1)
P (x)

, XN

)
→ ∞

if x1, x2, · · · , xN−1 = supS, and XN = supS. Consequently,

U1

(
w − g−1

(λR
1 dF

(N−1)
P (x)− λI

1MNdF
(N−1)
Q (x)

pLdF
(N−1)
P (x)

, XN

)
−XN

)
→ −∞.

Noting P (M = M̄) �= 0, we have P (X = supS) �= 0. Further, we have

dF
(N−1)
P (x) = P (X1 = supS)P (X2 = supS) · · ·P (XN−1 = supS) > 0 and

P (XN = supS) > 0. So, with (3.3.80), we obtain

EP

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
P (x)

]
→ −∞

and consequently,

EP

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
P (x)

]
< RL

(3.3.81)
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when y = λI
1(M̄)N .

When y → ∞, then
ydF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

→ ∞ and

g−1
(ydF (n−1)

P (x)− λI
1MndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
→ −∞ for every x ∈ Sn−1, ω ∈ Ω,

and n = 1, 2, · · · , N . Then,

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
> U1(w −Xn)

for every ω ∈ Ω, x ∈ Sn−1, and n = 1, 2, · · · , N . So,

EP

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
P (x)

]

> EP

[
N∑

n=1

U1(w −Xn)

]
= RL. (3.3.82)

From (3.3.81) and (3.3.82), we get for any λI
1 ∈ (0,∞), there exists λR

1 ∈
(λI

1(M̄)N ,∞) such that (3.3.78) holds.

Step 2. We will show that among the pairs (λR
1 , λ

I
1) that satisfy (3.3.78),

we can always find one pair that satisfies (3.3.79). Let z ∈ (0,∞) and y ∈
(z(M̄)N ,∞) be the pairs that satisfy

EP

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
P (x)

]
= RL.

(3.3.83)

119



When z = 0, it is obvious that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦ → −∞. (3.3.84)

Since z = 0, then (3.3.83) becomes

EP

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( y

pL
, Xn

)
−Xn

)
dF

(n−1)
P (x)

⎤⎦ = RL,

which is equivalent to

NEP

[
U1

(
w − g−1

( y

pL
, X

)
−X

)]
= NEP

[
U1

(
w −X

)]
. (3.3.85)

Reminding that g(y1, y2) is a strictly decreasing function of y1 and y2, we get

g−1
( y

pL
, X

)
decreases strictly when X increases. That means

U1

(
w −X

)
− U1

(
w − g−1

( y

pL
, X

)
−X

)
decreases strictly when X increases. According to Corollary 4, we obtain

EP

[
U1

(
w −X

)
− U1

(
w − g−1

( y

pL
, X

)
−X

)]
> EQ

[
U1

(
w −X

)
− U1

(
w − g−1

( y

pL
, X

)
−X

)]
.

Comparing (3.3.85) and the inequality above, we have

EQ

[
U1

(
w − g−1

( y

pL
, X

)
−X

)]
> EQ

[
U1

(
w −X

)]
,
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which yields

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( y

pL
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
> EQ

[
N∑

n=1

U1

(
w −X

)]
.

Thus, when z = 0, we obtain

EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]
> RH .

(3.3.86)

Recalling (3.3.84), we obtain

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
< EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]
(3.3.87)

when z = 0.

When z → ∞, it is obvious that g−1
( z

pH
, Xn

)
→ −∞ for every ω ∈ Ω and

n = 1, 2, · · · , N . From Lemma 6, we get that

−g−1

(
ydF

(n−1)
P (x)− zM(s)dF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, s

)
− s
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is a decreasing function of s for s ∈ S. So, according to Corollary 3, we obtain

EP

[
U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)]

≥ EQ

[
U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)]

for x ∈ Sn−1 and n = 1, 2, · · · , N . It yields

EP

⎡⎣ ∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
≥ EQ

[ ∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]
.

(3.3.88)

EP

[
U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)]
is a decreasing

function of
dF

(n−1)
Q (x)

dF
(n−1)
P (x)

, so according to Lemma 5, we have

EP

⎡⎣ ∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
dF

(n−1)
P (x)

⎤⎦
> EP

[ ∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]
.

(3.3.89)
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Considering (3.3.88) and (3.3.89) together, we obtain

EP

⎡⎣ ∫
x∈Sn−1

dF
(n−1)
P (x)U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)⎤⎦
> EQ

[ ∫
x∈Sn−1

dF
(n−1)
Q (x)U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)

−Xn

)]

for n = 1, 2, · · · , N . It follows that

EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]

< EP

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
P (x)

]
= RL.

It is evident that

RL < EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

dF
(n−1)
Q (x)U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)⎤⎦
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when z → ∞. So,

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( z

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
> EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(ydF (n−1)
P (x)− zMndF

(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]
(3.3.90)

when z → ∞. (3.3.87) and (3.3.90) together show that there exist λI
1 ∈ (0,∞)

and the corresponding λR
1 such that

EQ

⎡⎣ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

( λI
1

pH
, Xn

)
−Xn

)
dF

(n−1)
Q (x)

⎤⎦
= EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)

dF
(n−1)
Q (x)

]
.

We state now there exist λR
1 > 0 and λI

1 > 0 such that (3.3.78) and (3.3.79)

hold.

• M̄ is infinite.

g is a function that takes only positive values, so
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

has to be positive to make the term g−1

(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
exist. However, in this case, there is always some ω ∈ Ω such that

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

< 0
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for each x ∈ Sn−1 and n = 1, 2, · · · , N despite the values of λR
1 and λI

1. Auto-

matically, (3.3.78)–(3.3.79) do not hold.

• M̄ is finite but P{M(X) = M̄} = 0 and Q{M(X) = M̄} = 0.

Depending on the values of parameters and utility functions, there may not

may not λR
1 > 0 and λI

1 > 0 such that (3.3.78)–(3.3.79) hold.

We will show that if there exist λR
1 > 0 and λI

1 > 0 such that (3.3.78)–

(3.3.79) hold, then the traditional adverse selection model with self selection

can still sort out the types effectively. In (3.2.15), when Xn ∈ Ax
1 , the optimal

premium is part of the optimal compensation. It does not matter what the

premium and compensation are individually on Ax
1 but their difference matters.

If λR
1 and λI

1 are such that (3.3.78)–(3.3.79) hold, then S − Ax
1 = ∅ for every

s ∈ S, every x ∈ Sn−1, and n = 1, 2, · · · , N . We consider a special case of

(3.2.14)–(3.2.15) where S − Ax
1 = ∅. We take

dxL,n −Dx
L,n = g−1

(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
(3.3.91)

as the solution for type L and keep (3.2.16) as the solution for type H. (3.3.78)–

(3.3.79) can also be considered as a special case of (3.2.17)–(3.2.18) where

S − Ax
1 = ∅ for every s ∈ S, every x ∈ Sn−1, and n = 1, 2, · · · , N . Thus,

(3.3.91) and (3.2.16) are the optimal solutions for the traditional model. The

insureds are distinguished through their selection of contracts. As a result, the

boundaries are not needed.

If there are not λR
1 and λI

1 such that (3.3.78)–(3.3.79) hold, there will not

be S −Ax
1 = ∅ for every s ∈ S, every x ∈ Sn−1, and n = 1, 2, · · · , N . Then the

boundaries will appear in the insurer’s utility and the value of d̄− D affects

the insurer’s utility.
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3.3.2 The set S − Ax
2

Next, we consider the second circumstance where the solutions are presented

by (3.2.63)–(3.2.65). The solutions involve the set S − Ax
2 and we will discuss

when we can have S − Ax
2 = ∅ for every x ∈ Sn−1 and n = 1, 2, · · · , N . With

S − Ax
2 = ∅ for every x ∈ Sn−1 and n = 1, 2, · · · , N , (3.2.66)–(3.2.67) become

EP

[ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

(λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
dF

(n−1)
P (x)

]
= RL,

(3.3.92)

EQ

[ N∑
n=1

∫
x∈Sn−1

U1

(
w − g−1

(λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
dF

(n−1)
Q (x)

]
= RH .

(3.3.93)

It is important to remind that the solutions (3.2.63)–(3.2.65) are taken because

the solutions (3.2.14)–(3.2.16) do not match (3.1.7). This is the condition when

we consider the solutions (3.2.63)–(3.2.65) and the set S − Ax
2 in them. This

condition means (3.2.69) is true. We rewrite (3.2.69) as

EQ

{
N∑

n=1

∫
x∈Sn−1

[
U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
−Xn

)
IXn∈Ax

1

+ U1

(
w − d̄+D−Xn

)
IXn∈S−Ax

1

]
dF

(n−1)
Q (x)

}
< RH .
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If (3.3.78)–(3.3.79) hold, then S − Ax
1 = ∅. The expression above becomes

EQ

[
N∑

n=1

∫
x∈Sn−1

U1

(
w − g−1

(λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)

−Xn

)
dF

(n−1)
Q (x)

]
< RH .

(3.3.94)

Keeping the inequality (3.3.94) in mind, we can show

Lemma 8. If there exist λR
1 > 0 and λI

1 > 0 such that (3.3.78)–(3.3.79) hold

and if (3.3.94) is true, then there are λR
2 ∈ (0, λR

1 ) and λI
2 ∈ (0, λI

1) such that

(3.3.92)–(3.3.93) hold.

Proof. Some of the proof is similar to that of Property 1, so we will skip some

details. We will show that there exist λR
2 and λR

2 such that (3.3.92) and (3.3.93)

are true. Since D1 �= ∅, there exist λR
1 and λI

1 such that (3.3.78) and (3.3.79)

hold.

Like Step 1 in the proof of Property 1, we know that for any fixed λI
2 ∈ (0, λI

1),

there exists λR
2 > 0 such that (3.3.92) holds. Next we will show that among the

pairs (λR
2 , λ

I
2) that satisfy (3.3.92), there is a pair that satisfies (3.3.93). Similar

to Step 2 in the proof of Property 1, we let z ∈ (0,∞) and y ∈ (z(M̄)N ,∞) be

the pairs that satisfy (3.3.83).

When z = 0, then we obtain (3.3.86) like in the proof of Property 1. When

z = λI
1, then y = λR

1 to keep (3.3.83) holding. Then we have (3.3.94). Consid-

ering (3.3.86) and (3.3.94) together, we state that there exist λI
2 ∈ (0, λI

1) and

the corresponding λR
2 such that (3.3.93) holds. Therefore, there is a pair of

(λR
2 , λ

I
2) such that (3.3.92) and (3.3.93) hold.

From the discussion above, it is clear that 0 < λI
2 < λI

1 and 0 < λR
2 . Next

we will illustrate that λR
2 < λR

1 . We know when y = λR
1 and z = λI

1, (3.3.83)

holds. If z decreases and becomes less than λI
1 but y stays the same as λR

1 , the
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left-hand-side of (3.3.83) becomes larger because −g−1(·, y2) and U1 are both

increasing functions. Thus, to keep (3.3.83) holding when z decreases below

λI
1, there must be y < λR

1 .

• M̄ is finite but P{M(X) = M̄} �= 0 and Q{M(X) = M̄} �= 0.

In this case, as the result of Lemma 8, there are λR
2 ∈ (0, λR

1 ) and λI
2 ∈ (0, λI

1)

such that (3.3.92)–(3.3.93) hold.

• M̄ is infinite.

In this case, there are not λR
2 ∈ (0, λR

1 ) and λI
2 ∈ (0, λI

1) such that (3.3.92)–

(3.3.93) hold. The reason is the same as that when we discuss S − Ax
1 in the

case of infinite M̄ .

• M̄ is finite but P{M(X) = M̄} = 0 and Q{M(X) = M̄} = 0.

Depending on the values of parameters and utility functions, there may or may

not λR
2 ∈ (0, λR

1 ) and λI
2 ∈ (0, λI

1) such that (3.3.92)–(3.3.93) hold.

Similar to the discussion in Subsection 4.1, if there exist λR
2 and λI

2 such

that (3.3.78)–(3.3.79) hold, then we will show the traditional adverse selection

model with self selection can still sort out the types effectively. Suppose λR
2 and

λI
2 satisfy (3.3.78)–(3.3.79), then S − Ax

2 = ∅ for every s ∈ S, every x ∈ Sn−1,

and n = 1, 2, · · · , N . We take

dxL,n −Dx
L,n = g−1

(
λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
(3.3.95)

as the solution for type L. The solution for type H is still (3.2.65). Then,

(3.3.95) and (3.2.65) are the optimal solutions to the traditional model. The

insureds’ types are distinguished. As a result, the boundaries are not needed.

If there are not λR
2 and λI

2 such that (3.3.78)–(3.3.79) hold, there will not

be S −Ax
2 = ∅ for every s ∈ S, every x ∈ Sn−1, and n = 1, 2, · · · , N . Then the

boundaries will appear in the insurer’s utility and the value of d̄− D affects

the insurer’s utility.
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Theorem 7. (i) If S−Ax
1 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N , then the

insurer’s optimal utility from (3.2.14)–(3.2.16) increases when d̄−D increases.

(ii) If S − Ax
2 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N , then the insurer’s

optimal utility from (3.2.63)–(3.2.65) increases when d̄− D increases.

Proof. (i) The proof has considerable similarities with that of Proposition 4, so

we will skip some details. Let d̄′ be an upper bound of the premium and let D′

be a lower bound of the compensation. Suppose that d̄ − D > d̄′ − D′. The

solutions are (3.2.14)–(3.2.16) when the boundaries are d̄ and D. We suppose

S − Ax
1 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N . When the boundaries are

d̄′ and D′, like (3.2.14)–(3.2.16), we denote the solutions by

d′xL,n = d̄′,

D′x
L,n =

⎧⎪⎪⎨⎪⎪⎩
d̄′ − g−1

(
λ′R
1 dF

(n−1)
P (x)− λ′I

1 MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
, if Xn ∈ A′x

1

D′, if Xn ∈ S − A′x
1

d′xH,n −D′x
H,n = g−1

(
λ′I
1

pH
, Xn

)
.

The definition of λ′R
1 , λ′I

1 , and A′x
1 are in the same logic as that of λR

1 , λ
I
1,

and Ax
1 respectively. For simplification, we do not write down the definitions

of them. We suppose S − A′x
1 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N .

Comparing the insurer’s utilities from the solutions above and the solutions

(3.2.14)–(3.2.16), we obtain

J1(dL, DL, dH , DH)− J1(d
′
L, D

′
L, d

′
H , D

′
H)

= pLE
P

⎡⎣ N∑
n=1

∫
x∈Sn−1

(
U2(d

x
L,n −Dx

L,n)− U2(d
′x
L,n −D′x

L,n)
)
dF

(n−1)
P (x)

⎤⎦
+ pHE

Q

⎡⎣ N∑
n=1

∫
x∈Sn−1

(
U2(d

x
H,n −Dx

H,n)− U2(d
′x
H,n −D′x

H,n)
)
dF

(n−1)
Q (x)

⎤⎦ .
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Since U2 is a concave function, we have

J1(dL, DL, dH , DH)− J1(d
′
L, D

′
L, d

′
H , D

′
H)

≥ pLE
P

⎡⎣ N∑
n=1

∫
x∈Sn−1

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
dF

(n−1)
P (x)

⎤⎦
+ pHE

Q

[
N∑

n=1

∫
x∈Sn−1

U ′
2(d

x
H,n −Dx

H,n)
(
dxH,n −Dx

H,n − d′xH,n +D′x
H,n

)
dF

(n−1)
Q (x)

]
.

When Xn ∈ Ax
1 , from (3.2.14)–(3.2.15),

U ′
2(d

x
L,n −Dx

L,n)

U ′
1(w − dxL,n +Dx

L,n −Xn)
=

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

.

When Xn ∈ S − Ax
1 , from the definition of Ax

1 , we know

U ′
2(d

x
L,n −Dx

L,n)

U ′
1(w − dxL,n +Dx

L,n −Xn)
= g(d̄−D, Xn) >

λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

.

In this case, dxL,n −Dx
L,n = d̄−D > d̄′ −D′ ≥ d′xL,n −D′x

L,n. So,

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
U ′
1(w − dxL,n +Dx

L,n −Xn)

>
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
.

For type H, it follows (3.2.16) that

U ′
2(d

x
H,n −Dx

H,n)

U ′
1(w − dxH,n +Dx

H,n −Xn)
=

λI
1

pH
.

130



Then,

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH)

> EP

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxL,n +Dx

L,n −Xn)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

)]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxH,n +Dx

H,n −Xn)

λI
1

(
dxH,n −Dx

H,n − cxH,n + Cx
H,n

)
dF

(n−1)
Q (x)

]
.

The demonstration from here share the procedures with the demonstration

following (3.2.37) in the proof of Proposition 4. Analogously, we obtain

J1(dL, DL, dH , DH)− J1(d
′
L, D

′
L, d

′
H , D

′
H) > 0.

(ii) The proof has considerable similarities with that of Theorem 6, so we will

skip some details. Let d̄′ be an upper bound of the premium and let D′ be a

lower bound of the compensation. Suppose that d̄−D > d̄′−D′. The solutions

are (3.2.63)–(3.2.65) when the boundaries are d̄ and D. We suppose S−Ax
2 �= ∅

for some x ∈ Sn−1 and n = 1, 2, · · · , N . When the boundaries are d̄′ and D′,

like (3.2.63)–(3.2.65), we denote the solutions by

d′xL,n = d̄′,

D′x
L,n =

⎧⎪⎪⎨⎪⎪⎩
d̄′ − g−1

(
λ′R
2 dF

(n−1)
P (x)− λ′I

2 MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

, Xn

)
, if Xn ∈ A′x

2

D′, if Xn ∈ S − A′x
2

d′xH,n −D′x
H,n = g−1

(
λ′
3

pH
, Xn

)
.

The definition of λ′R
2 , λ′I

2 , λ
′
3, and A′x

3 are in the same logic as that of λR
2 , λ

I
2, λ3,
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and Ax
3 respectively. For simplification, we do not write down the definitions

of them. We suppose S − A′x
2 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N .

Compare the utilities from the solutions to obtain

J1(dL, DL, dH , DH)− J1(d
′
L, D

′
L, d

′
H , D

′
H)

≥ pLE
P

⎡⎣ N∑
n=1

∫
x∈Sn−1

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
dF

(n−1)
P (x)

⎤⎦
+ pHE

Q

⎡⎣ N∑
n=1

∫
x∈Sn−1

U ′
2(d

x
H,n −Dx

H,n)
(
dxH,n −Dx

H,n − d′xH,n +D′x
H,n

)
dF

(n−1)
Q (x)

⎤⎦ .

For the same reason illustrated in (i), we have

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
U ′
1(w − dxL,n +Dx

L,n −Xn)

≥ λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
for Xn ∈ A′x

2 ,

U ′
2(d

x
L,n −Dx

L,n)
(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
U ′
1(w − dxL,n +Dx

L,n −Xn)

>
λR
2 dF

(n−1)
P (x)− λI

2MndF
(n−1)
Q (x)

pLdF
(n−1)
P (x)

(
dxL,n −Dx

L,n − d′xL,n +D′x
L,n

)
for Xn ∈ S − A′x

2 , and

U ′
2(d

x
H,n −Dx

H,n)

U ′
1(w − dxH,n +Dx

H,n −Xn)
=

λ3

pH
.
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Thus,

J1(dL, DL, dH , DH)− J1(cL, CL, cH , CH) >

EP

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxL,n +Dx

L,n −Xn)
(
dxL,n −Dx

L,n − cxL,n + Cx
L,n

)
(
λR
1 dF

(n−1)
P (x)− λI

1MndF
(n−1)
Q (x)

)]

+ EQ

[
N∑

n=1

∫
x∈Sn−1

U ′
1(w − dxH,n +Dx

H,n −Xn)

λI
1

(
dxH,n −Dx

H,n − cxH,n + Cx
H,n

)
dF

(n−1)
Q (x)

]
.

The demonstration from here share the procedures with the demonstration

following (3.2.75) in the proof of Theorem 6. Analogously, we obtain

J1(dL, DL, dH , DH)− J1(d
′
L, D

′
L, d

′
H , D

′
H) > 0.

3.3.3 Necessity of the boundaries

Consider a case where there are not λR
1 and λI

1 such that (3.3.78)-(3.3.79) hold

in the first circumstance, for example, a case where M̄ is infinity. If there are

no boundaries on the premium and compensation, or equivalently d̄−D = ∞,

we will demonstrate there are not feasible optimal contracts.

In the first circumstance where (3.2.14)–(3.2.16) present the solutions, we

start from a finite d̄−D. According to (3.2.14)–(3.2.15), the optimal premium

is d̄ and the optimal compensation is D for Xn ∈ S − Ax
1 and n = 1, 2, · · · , N .

We emphasize that S − Ax
1 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N . When

d̄−D increases, the optimal premium and compensation change accordingly.

S − Ax
1 �= ∅ and on S − Ax

1 , the difference between the optimal premium and

the optimal compensation is bigger. With the bigger d̄ − D, according to
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Theorem 7, the objective of the problem increases. The insurer prefers a bigger

gap between premium and compensation on S − Ax
1 . Imagine d̄ − D keeps

increasing to infinity. Still, S −Ax
1 �= ∅ for some x ∈ Sn−1 and n = 1, 2, · · · , N .

To get the most utility, the insurer will let the difference between premium

and compensation be infinity on S − Ax
1 . When there are no boundaries, the

insurer will charge an infinite premium, pay a negatively infinite compensation,

or both, on a nonempty set S − Ax
1 .

Consider a case where there are not λR
2 and λI

2 such that (3.3.92)-(3.3.93)

hold in the second circumstance, for example, a case where M̄ is infinity. We

will also show that there are not feasible optimal contracts if there are no

boundaries on the premium and compensation.

In the second circumstance where (3.2.63)–(3.2.65) present the solutions,

according to (3.2.63)–(3.2.64), the optimal premium is d̄ and the optimal com-

pensation is D for Xn ∈ S − Ax
2 and n = 1, 2, · · · , N . Again, S − Ax

2 �= ∅ for

some x ∈ Sn−1 and n = 1, 2, · · · , N . When d̄−D increases, the gap between

premium and compensation on S−Ax
2 increases. From Theorem 7, we know the

objective of the problem increases. The insurer will choose a larger d̄−D to ob-

tain more utility. When d̄−D increases to infinity, still S−Ax
2 is not empty. The

insurer will let the difference between premium and compensation be infinite on

S−Ax
2 . That is an infinite premium, a negatively infinite compensation, or both.

For summarizing, there is not a feasible optimal premium and a feasible

optimal compensation if there is not an upper bound for the premium or a lower

bound for the compensation. Therefore, the constraint (3.1.10) is necessary for

the model with more than two outcome states.
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Chapter 4

Conclusion and Future Work

We have studied two models of optimal insurance contracts that an insurer

should propose to a potential insured.

Motivated by climate change and catastrophic events, we have created a

new full information model with persistent efforts. The number of claims is

assumed to be a shot-noise Cox process. However, this model for the number

of claims can be applied to many other risk management problems. To the

best of our knowledge, we have obtained the first analytical solution for the

optimal premium, the optimal compensation, and the optimal actions of the

insured when the number of the claims process is a Cox process. The solution

shows that the optimal expected action decreases over time. It also shows that

the amount of action decided by the insurer is restricted by the amount of

action the potential insured selects when he is not in the insurance market. An

example with exponential utilities allows us to see how the solution depends

on the parameters of the model.

With two risk types of potential insureds, we construct a new model with

adverse selection. Different from the traditional self-selection model with ad-

verse selection, our model adds an upper boundary for the premium and a lower

boundary for the compensation. The main results we obtained are the optimal

premium and compensation shown by Theorem 5 and Theorem 6. Under two

circumstances, the solutions are in different forms. To verify the circumstance
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and then select the suitable form, we cannot bypass the first form shown by

(3.2.14)-(3.2.16). If the controls (3.2.14)-(3.2.16) satisfy (3.1.7), then they are

the optimal solutions. Otherwise, (3.2.63)-(3.2.65) show the right form of the

optimal controls. The traditional adverse selection model with self-selection

has only two outcomes: accident and no accident. However, our model allows

general outcome states. With the general outcome states, we will obtain infinite

premiums or compensations as the optimal solutions for some states from the

traditional model. The boundaries we add make us avoid infeasible solutions.

In the previous literature focusing on principle-agent problems, the re-

searchers invent different models to deal with adverse selection and distinguish

the types of agents to the contract. Some advocate the contracts are offered

to all the agents, like the second model in this thesis. But some literature

advocates that contracts are offered only to the “best” type, for instance, the

low-risk type in an insurance market and the high-productivity type in an

employment market. I would like to compare these different ideas and try to

find out which is more effective.
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J. Cvitanić and J. Zhang. Contract Theory in Continuous-Time Model. Springer,

2013.

A. Dassios and P. Embrechts. Martingales and Insurance Risk. Communications

in Statistics. Stochastic Models, 5:181–217, 1989.

A. Dassios and J. Jang. Pricing of Catastrophe Reinsurance and Derivatives

Using the Cox Process with Shot Noise Intensity. Finance and Stochastics,

7:73–95, 2003.

A. Dassios, J. Jang, and H. Zhao. A Risk Model with Renewal Shot-Noise Cox

Process. Insurance: Mathematics and Economics, 65:55–65, 2015.

M. H. A. Davis. Piecewise-Deterministic Markov Processes: A General Class

of Non-Diffusion Stochastic Models. Journal of the Royal Statistical Society.

Series B (Methodological), 46:353–388, 1984.

P. M. Demarzo and Y. Sannikov. Learning, Termination, and Payout Policy in

Dynamic Incentive Contracts. The Review of Economic Studies, 84:182–236,

2017.

G. Dionne. Adverse selection and repeated insurance contracts. Geneva Papers

on Risk and Insurance, 8:316–333, 1983.

138



G. Dionne and P. Lasserre. Adverse selection, repeated insurance contracts

and announcement strategy. The Review of Economic Studies, 52:719–723,

1985.

G. Dionne and P. Lasserre. Adverse selection and finite-horizon insurance

contracts. European Economic Review, 31:843–861, 1987.

G. Dionne, N. Doherty, and N. Fombaron. Adverse Selection in Insurance

Markets, volume 22, chapter 7. Spinger, Dordrecht, 2000.

J. Grandell. Doubly Stochastic Poisson Processes. Springer-Verlag Berlin

Heidelberg, 1976.

M. Halac, N. Kartik, and Q. Liu. Optimal contracts for experimentation.

Review of Economic Studies, 83:1040–1091, 2016.

M. F. Hellwig. Incentive problems with unidimensional hidden characteristics:

A unified approach. Econometrica, 78:1201–1237, 2010.

F. Hoffmann, R. Inderst, and M. Opp. Only Time Will Tell: A Theory of

Deferred Compensation. The Review of Economic Studies, 88:1253–1278,

2021.

F. Hoffmann, R. Inderst, and M. Opp. The Economics of Deferral and Clawback

Requirements. The Journal of Finance, 77:2423–2470, 2022.

H. Hopenhayn and A. Jarque. Unobservable Persistent Productivity and Long

Term Contracts. Review of Economic Dynamics, 13:333–349, 2010.

A. Jarque. Repeated Moral Hazard with Effort Persistence. Journal of Economic

Theory, 145:2412–2423, 2010.

M. Jeleva and B. Villeneuve. Insurance contracts with imprecise probabilities

and adverse selection. Economic theory, 23:777–794, 2004.

B. Jullien. Participation constraints in adverse selection models. Journal of

Economic Theory, 93:1–47, 2000.

139



F. Lindskog and A. J. McNeil. Common Poisson Shock Models: Applications

to Insurance and Credit Risk Modelling. ASTIN Bulletin, 33:209–238, 2003.

B. Ma, J. Ye, Y. Huang, and M. F. Bashir. Research of two-period insurance

contract model with a low compensation period under adverse selection.

Managerial and Decision Economics, 41:293–307, 2020.

C. Macci and G. L. Torrisi. Risk Processes with Shot Noise Cox Claim Number

Process and Reserve Dependent Premium Rate. Insurance: Mathematics

and Economics, 48:134–145, 2011.

E. Maskin and J. Riley. Monopoly with Incomplete Information. The RAND

Journal of Economics, 15:171–196, 1984.

J. Medhi. Stochastic Processes. New Age International(P) Limited, Publishers,

1982.

K. S. Moore and V. R. Young. Optimal Insurance in a Continuous-Time Model.

Insurance: Mathematics and Economics, 39:47–68, 2006.
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