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A bstract

Multiple wavetable interpolation is a form of music analysis/ synthesis that 

involves three basic steps: 1) The recorded sound is reduced to a set of break­

points by piecewise linear approximation of the spectral envelopes of its har­

monics; 2) the spectrum at each breakpoint is matched by determining weight­

ings for a small number of wavetables; and 3) the sound is resynthesized using 

multiple wavetable additive synthesis by interpolating between the weightings 

for each wavetable at consecutive breakpoints.

This thesis presents a new analysis/ synthesis method, optimized multi­

ple wavetable interpolation, that generalizes and optimizes multiple wavetable 

interpolation. The method uses a clustering algorithm to select a bank of 

wavetables such that the wavetables will be useful in matching the breakpoint 

spectra of a wide variety of harmonic tones played by various instruments. 

The breakpoint-matching algorithm selects subsets of the wavetables in the 

wavetable bank that best match each breakpoint spectrum, subject to the con­

straint that a wavetable that ceases to be used at a given breakpoint must be 

faded out by the next breakpoint and one that comes into use must be faded 

in. This algorithm introduces the use of the single-source acyclic weighted 

shortest path algorithm to choose breakpoint matches in a globally optimal 

way. The output of the algorithm is a sequence of n-tuples of pairs of wave­

table indices and weights which can serve as a control stream for a hardware 

or software synthesizer.

A secondary contribution of this research is a new breakpoint-selection al­

gorithm which operates by segment merging; the algorithm has characteristics 

th a t make it well suited to use on instrumental tones, especially those with 

vibrato or other pronounced amplitude changes.
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Chapter 1 

Introduction

“Computer music” appears to be an oxymoron, a juxtaposition of opposites. 
The computer represents, to most contemporary minds, the unfeeling ma­
chine, the hardware of mindless logic, the cross-product of mathematics and 
engineering. Music, on the other hand, is the most abstract and ineffable of 
the arts: its medium is not the charcoal of drawing, the stone of sculpting, the 
glass, steel, and wood of architecture, nor even the shapes and movements of 
human bodies that give dance its corporeality, but only waves—compressions 
and rarefactions—in the air; its canvas is not paper, nor cloth, nor a stage, 
but time alone; its frame, silence.

Yet, from the earliest days of the computer, musicians have been attracted 
to the possibilities offered by this programmable machine. In fact, long before 
the first electronic computer was constructed, composers were seeking the 
generality which sound synthesis by computer would eventually offer:

I dream of instruments obedient to my thought and which, with 
their contribution to a whole new world of unsuspected sounds, 
will lend themselves to the exigencies of my inner rhythm.

Edgard Varese (1917) [69, page 141]

While acknowledging that computer music required musicians “to gain 
competence in areas which are seemingly foreign to music,” John Chowning 
suggests that “it is not surprising that composers were the first artists to make 
substantive use of computers” since “programming involves mental processes 
and rigorous attention to detail not unlike those involved in composition” [15, 
page ix],

Hubert Howe, another early user of the computer for music composition, 
sees the attraction of the computer as its ability to support creativity by 
allowing new ideas to be tested. In the area of sound generation, Howe points 
out that the limitless possibilities of computer synthesis— uany describable 
sound can be produced”—are in fact limited by human factors— “the limitation 
is not in the capability of the computer but rather in the ability of composers 
to provide adequate descriptions of what they want”—and that this limitation

1
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leads to creativity: “composers are encouraged to be creative with the qualities 
of the sounds they produce, by the very procedure by which they must work” 
[46, p. 166].

F. Richard Moore resolves the apparent contradictions in the term “com­
puter music” by viewing this new field of study as strongly interdisciplinary, 
placing computer music at the center of a disciplinary context including music 
(theory, composition, and performance), computer science (programming), en­
gineering (digital signal processing), physics (acoustics), and psychology (cog­
nition and psychoacoustics) [65, page 24].

Two of the earliest uses of the computer in musical contexts were for the 
analysis [76,77] and synthesis [80, p. 87] of musical tones, and they remain 
important applications in computer music [80, pp. 495-496]. Used in combi­
nation, analysis and synthesis allow the generation of musical tones (and, more 
generally, other sounds, including speech) from analysis data which has typi­
cally been data-reduced and may have been modified (as discussed in Chap­
ter 2). Analysis/ synthesis algorithms have been used in a variety of forms 
and contexts, from incorporation in the hardware of consumer-oriented syn­
thesizers ( “keyboards”) [80, pp. 159-160] to use in multimedia software, from 
experiments with data reduction [7,13,33, 54, 59, 76,83, 90] to experiments on 
the perception of musical tones [3,30,39,40,51, 55], from producing sound ef­
fects for games to enabling creative artistic expression in musical compositions 
[80, pp. 146-148].

This thesis presents a new analysis/synthesis method, called optimized mul­
tiple wavetable interpolation, which is based on multiple wavetable interpola­
tion, an efficient form of additive synthesis. These terms and concepts will be 
more fully defined in Chapter 2, but a brief overview and an analogy may help 
to provide a context for and orientation to the subject matter. Readers who 
are familiar with the principles of music analysis and synthesis may wish to 
omit §1.1 and proceed to the description of the proposed new method in §1.2.

1.1 Fundamentals of Music Analysis and 
Synthesis

Analysis/ synthesis is a general process in which a recorded sound is analyzed in 
such a way that a musician or sound technician can modify the analysis data 
and synthesize an altered sound from the modified data; alternatively, the 
goal of the analysis may be to find a data-reduced representation from which 
the original tone may be resynthesized economically but with high fidelity, 
typically by a commercial synthesizer (“keyboard”).1

The focus of the present research was on music analysis/synthesis, in partic-

1 Analysis/synthesis may be used toward other goals as well, such as to gain insight 
regarding the perceptual features of the sound [78,96], but the two goals listed here are the 
primary goals toward which this research is directed.

2
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Figure 1.1: The first 100 ms of a French horn waveform.

ular, on the analysis and synthesis of isolated monophonic instrumental tones 
(i.e., single notes played by individual instruments). It may be useful for mu­
sicians and non-musicians alike to review some of the terms and concepts of 
signal processing in a musical context.

1.1.1 D efinitions
A note is the notation for a single sound event; when a singer sings that note or 
an instrumentalist plays it, the audible result is a tone. If a tone is considered 
from a physical point of view, it may be referred to as a signal. If we wish 
to emphasize the “shape” of a signal as it might appear on an oscilloscope 
or a graph, we might refer to it as a waveform; Figure 1.1 shows the first 
100 ms of a French horn waveform. The oscilloscope display might be driven 
by an analog (continuous) input signal; the graph of a waveform would more 
likely have been generated by sampling an analog signal to produce its digital 
approximation. Audio signals are sampled at a rate of 44100 samples per 
second for compact disk (CD) recordings and at 48000 samples per second for 
digital audio tape (DAT). Each sample is represented by a dot in Figure 1.1.

The term waveform is also used with reference to a single cycle of a signal; 
Figure 1.2 shows a single cycle from the middle of the same horn tone, a 
duration of about 5 ms. The relative position of each point in the cycle is 
referred to as its phase; the phase axis of the figure is labelled in radians

3
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Figure 1.2: A single cycle from a French horn waveform.

(0 . . .  27r). The duration of a single cycle of an oscillation is its period. A signal 
which consists primarily of repetitions of the same single-cycle waveform is said 
to be periodic; most musical tones are quasi-periodic, since the shape of the 
waveform tends to remain the same or change slowly as the tone is sustained. 
A signal which is random or quasi-random is categorized as noise.

A  tone has several characteristics, which may also be described from a 
physical or a perceptual point of view:

A m plitude/ Loudness The amplitude of the audio signal—the degree to 
which the air is compressed and rarefied by the sound generator—is 
perceived (non-linearly) as loudness, the quality which is controlled by 
the “volume” control on an amplifier.

The amplitude of a signal typically changes over time: the rising and 
falling shape of a signal’s amplitude over time is called its amplitude 
envelope. Because the tones of many musical instruments begin with an 
attack—a sudden increase in amplitude—then quickly fall (due to the 
decay of some initial transients) to a sustained level for the main body of 
the tone (also called the “steady state” ) until the final release, authors 
in the field of computer and electronic music often refer to a prototypical 
ADSR envelope, as illustrated in part (a) of Figure 1.3.2 The amplitude

2 The ADSR envelope is a generalized simplification which was used on analog synthesizers

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



envelope of a trum pet tone illustrated in part (b) of Figure 1.3 conforms 
fairly well to the model ADSR envelope; the envelopes of other tones, 
especially those with vibrato—a slow fluctuation in frequency for the 
purpose of giving warmth or richness to the tone—such as the violin 
tone of Figure 1.4, part (a),3 and those of percussive instruments which 
cannot sustain tones, such as the piano tone shown in part (b) of the 
same figure, accord less well with the simple linear model.

F requency/P itch  The frequency of a signal—the rate of the oscillation of the 
sound generator, typically measured in cycles per second —is perceived 
(in general) as the pitch of the tone, the relative location of the tone on 
a scale of “high” to “low” . A shorter, thinner, and/or tighter string will 
vibrate more quickly—and thus produce a higher pitch—than a longer, 
thicker, looser string.

This definition is an oversimplification, because almost no natural os­
cillator (as opposed to a mechanical, electrical, or electronic oscillator, 
such as a sine wave generator) vibrates at a single frequency. For exam­
ple, a violin string vibrates simultaneously across its entire length, in two 
halves, in three thirds, and so on, and may also vibrate in irregular ways, 
especially when it is just starting to vibrate due to being struck, pulled, 
or bowed. For such a tone, it is more precise to refer to its fundamental 
frequency, the frequency of the lowest or most basic mode of vibration 
of the oscillator;4 the perceived pitch of a tone is primarily determined 
by its fundamental frequency.

Spectrum /T im bre If an oscillator is vibrating simultaneously in several 
modes (e.g., in full, in halves, in thirds, etc.), its waveform can be re­
solved into its constituent components, each of which is a sine wave at 
a single frequency; this analysis is typically performed by some form 
of Fourier analysis, as discussed in §2.2. These components are collec­
tively referred to as the spectrum of a periodic signal; individually, each 
component is called a partial. Just as the waveform shows the various 
energy levels of a signal over time, the spectrum represents its energy

to define amplitude envelopes [80, p. 97]. Several authors use a simpler three-segment 
“attack-sustain-release” or “attack-sustain-decay” envelope as a prototype instead of or in 
addition to the ADSR model [20,66]; Jensen recently proposed an ASR envelope with an 
inflection point in each of the attack and release segments as the basis of his timbre model 
[51].

3 The fluctuations seen in Figure 1.4(a) would more properly be called tremolo, since 
they are fluctuations in amplitude, not in frequency; however, this is an example of vibrato- 
induced tremolo [31], since it is a side effect of the back-and-forth movement of the violinist’s 
finger on the string, which causes both amplitude and frequency fluctuation, the latter being 
more perceptible than the former [75]. The trumpet tone exhibits shimmer [51]—small, 
rapid amplitude fluctuations.

4The concept of a fundamental frequency does not apply to all instruments; for example, 
a chime is characterized by a “strike tone” and a “hum tone” [6,79].
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(b) The ADSR-like amplitude envelope of a trumpet tone. 

Figure 1.3: The ADSR amplitude envelope.
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Figure 1.4: Amplitude envelopes which do not accord well with the prototyp­
ical ADSR envelope.
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Figure 1.5: The spectral envelope of a trumpet tone.

distribution in the frequency domain. Since each partial can vary in am­
plitude over time independently of the other partials in a quasi-periodic 
tone, we can speak of the spectral envelope of a complex signal, which 
is the surface formed by the changes in spectral shape over time;5 Fig­
ure 1.5 shows the spectral envelope of the same trumpet tone for which 
the amplitude envelope was shown in part (b) of Figure 1.3.

Harmonics are sinusoidal components (partials) with frequencies that 
are integral multiples of the fundamental. To return to the example of 
a string vibrating simultaneously in multiple segments, the two halves 
of the string vibrate at a frequency twice that of the whole string, the 
three thirds, at three times the fundamental frequency, and so on. Par­
tials above the fundamental are commonly called overtones. If all the 
overtones are harmonics (or nearly so), the waveform is called harmonic; 
otherwise, it is inharmonic or aperiodic. The word “tone” is usually used 
with reference to a harmonic sound or at least a quasi-harmonic sound 
with a perceptible pitch, such as the gong of a bell, which includes some 
inharmonic partials.

Timbre is the perceptual counterpart of the spectrum of a tone; along

5Risset and Wessel refer to the profile of spectral evolution rather poetically as a “spec- 
tromorphological gait” [79].
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with other perceptual cues6 such as the nature of the attack,7 timbre
allows us to identify the sounds produced by different instruments, to 
recognize a loved one’s voice, and to distinguish between a gunshot and 
a car backfiring (usually).

Fourier analysis of a signal yields an amplitude and a phase (from which 
the instantaneous frequency can be calculated) for each sinusoidal component. 
The amplitude of the whole signal (i.e., of all the partials of the spectrum) is 
often expressed in terms of a root-mean-square (RMS) amplitude: the square 
root of the mean of the squares of the amplitudes of each partial.

The signal amplitudes shown in Figures 1.3 and 1.4 were calculated as RMS 
amplitudes.

1.1.2 M usical P itch  Nam es
Although many musical instruments can produce a tone at any desired fre­
quency in their respective ranges, others (such as the piano) can produce 
tones at only selected frequencies, and conventional Western music restricts 
itself to only those pitches for the most part, even when played on instruments 
with continuous ranges.

The distance between any two pitches is called an interval. The interval 
between a fundamental and its first overtone, with a frequency ratio of 1:2, 
is the most basic or salient interval, at least in a perceptual and structural 
sense: a pitch and its frequency doubling are heard as being closely related, 
and will fuse into a single sonority if played together. This interval is the 
octavef it is divided into twelve equal9 intervals called semitones, the smallest

6 Psychoacousticians distinguish between timbre—the perceptual manifestation of the 
combined partials of a complex tone at a given instant—and sonance— the transient at­
tributes of a tone: attack and decay characteristics of partial tones, fusion, phase differences, 
and other aperiodic attributes of the sound [95, p. 29] [82, citing [85]]; most authors in the 
field of computer music, however, use the term “timbre” in a broader sense.

7It is well known that transients carry important information for the identification of 
traditional instruments, particularly as they characterize the attack portion of a musical 
sound [8,82].

8 The octave is so named because the earliest Western music used only seven different 
pitches within that most fundamental interval, so the pitch at the upper end of the interval, 
completing the scale, was the eighth one. Medievals would have seen significance in the fact 
that there were also seven days in the week: the Sunday after Easter Sunday was called the 
Octave of Easter.

9 The octave is divided into equal intervals only in the tuning system called Equal Tem­
perament, in which the frequency ratio of a twelfth of an octave is 'ffi. Historically and in 
practice today, many other tuning systems have been used, in which the smallest intervals

RMS 
Amplitude ^ (i . i )

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



available intervals on a standard piano keyboard. Pitches within each oc­
tave are named using seven different letters—A to G—and a few modifying 
symbols—primarily ’jf (sharp) and V (flat);10 all the pitches which are at the 
same position in each octave (for example, all the Eb’s) are called a pitch class.

There are various extant systems for naming the octaves of the standard 
musical gamut; for historical reasons, they typically (and illogically) begin each 
new octave at the pitch class C, not A. The system used here is a simple one: 
each octave is numbered, beginning with octave 0, which contains pitches at 
frequencies at or below the lower limit of human hearing;11 this octave starts 
at CO, the pitch of the largest pipe of a “32-foot” stop (group of pipes) on a 
pipe organ, and includes the lowest pitch on the piano, AO. The pitch of the 
lowest note of a double bass with a C-extension, C l, starts the next octave, 
which also contains the lowest bassoon, bass saxophone, contrabass clarinet, 
and tuba tones. Octave 4 starts at “middle C” , which is about in the middle 
of the piano keyboard, and includes A4, the international pitch standard, at 
440 Hz; the standard frequency of all other pitches (as shown in Table 1.1) 
can be calculated from this value using the formula

frequency^ =  440 • 2"/12 (1.2)

where frequencyP is the standard frequency of pitch p and n  is the number 
of semitones from A4 to p (positive if p is higher than A4, negative if lower). 
Octave 8 includes the highest pitches produced by standard orchestral instru­
ments, including C8, the pitch of the top key on the piano, the top bar on 
both the xylophone and the glockenspiel, and the highest piccolo tone.12 This 
naming scheme is illustrated in Figure 1.6.

1-1.3 B asic Synthesis Techniques 
A dditive Synthesis

Fourier’s theorem posits that any periodic signal that meets the Dirichlet 
conditions13 can be expressed as the sum of a (possibly infinite) number of
are almost but not exactly equal. Most of these systems resulted from the attempt to tune 
perfectly both octaves and the second-most-important interval—that between the first and 
second overtones, with a ratio of 2:3—even though the ratios 2:1 and 3:2 are incommensu­
rable: there are no integers m  and n such that 2m =  (3/2)” .

10 Some combinations of letters and symbols form pitch names which are synonyms for 
other pitch names; such names are called enharmonic equivalents. For example, AjJ and Bt> 
are alternative names for the same pitch (at least on a piano keyboard—some string players 
inflect them slightly differently). Which name is the correct one to use depends on the 
notational context; since pitch names are used in a context-independent way in this thesis, 
the choice of one name over its enharmonic equivalents is arbitrary.

11 The range of human hearing is about 16 Hz to 20,000 Hz; the range tends to contract 
from both extremes with age [85].

12To save space, the table does not include the frequency of C8, which is 4186.01.
13 The signal must correspond to a piecewise regular function which has a finite number 

of finite discontinuities and a finite number of extrema; any signal generated by natural
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P itch Octave
Class 0 1 2 3 4 5 6 7

C 16.35 32.70 65.41 130.81 261.63 523.25 1046.5 2093.0
Cfl/Db 17.32 34.65 69.30 138.59 277.18 554.37 1108.7 2217.5

D 18.35 36.71 73.42 146.83 293.66 587.33 1174.7 2349.3
Dft/Eb 19.45 38.89 77.78 155.56 311.13 622.25 1244.5 2489.0

E 20.60 41.20 82.41 164.81 .329.63 659.26 1318.5 2637.0
F 21.83 43.65 87.31 174.61 349.23 698.46 1396.9 2793.8

Ftf/Gb 23.12 46.25 92.50 185.00 369.99 739.99 1480.0 2960.0
G 24.50 49.00 98.00 196.00 392.00 783.99 1568.0 3136.0

GB/Ab 25.96 51.91 103.83 207.65 415.30 830.61 1661.2 3322.4
A 27.50 55.00 110.00 220.00 440.00 880.00 1760.0 3520.0

Atf/Bb 29.14 58.27 116.54 233.08 466.16 932.33 1864.7 3729.3
B 30.87 61.74 123.47 246.94 493.88 987.77 1975.5 3951.1

Table 1.1: The standard frequencies of equal-tempered musical pitches.

f t ) --------------- •
t r — ---------

C l-B l C2-B2 C3-B3
■m-
C4-B4 C5-B5 C6-B6

---------------
z £ = -------— ------------m— — * ------------

Figure 1.6: The octave naming scheme.

harmonically related sinusoids, each with a particular amplitude and phase. 
Thus, a complex waveform can be synthesized by adding together a number 
of sinusoids with independently varying amplitude, frequency, and phase.

The sinusoids can be generated by a bank of oscillators, but a more eco­
nomical method is to store a single cycle of a discrete (sampled) sinusoidal 
waveform in a lookup table, called a wavetable. The phase of the desired si­
nusoid can then be used to determine the starting index in the table, and the 
desired frequency determines the step size to use in accessing the next sample 
to be looked up in the table, as illustrated in Figure 1.7. The increment by 
which the scanning (or resampling) process steps through the wavetable may

physical means, such as by a musical instrument, will satisfy these conditions [63].
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26 1883
27 1209 Current table pointer
28 579 Table increment
29 -6
30 -548 Next table pointer
31 -1039

254 -61
255 -4

Figure 1.7: Table scanning for table-lookup synthesis.

be calculated as

increment = output

sampling
(1.3)

where N  is the table size, Foutpilt is the desired output frequency, and Fsampiing 
is the sampling frequency of the output file or device; for example, for CD- 
quality output (Fsampi;ng =  44100 Hz) with a table size of 1024, an output signal 
at middle C (Foutput =  261.63 Hz) would require an increment of 6.075. Since 
the index value computed from the previous index and the increment must be 
an integer, either the result must be truncated or rounded, or an interpolated 
value must be calculated from the two table values at [indexJ and [index]; 
interpolation reduces the table-lookup noise [17,64], but the additional cost 
can be avoided by using larger table sizes (such as 8192). The wavetable is 
treated as a circular array: if the current index plus the increment would access 
a point beyond the end of the wavetable, the index value wraps around to the 
start of the wavetable.

A digital oscillator generates a sound by repeatedly scanning a wavetable 
and sending the samples through a digital-to-analog converter (DAC); this 
process is called table-lookup synthesis [11] [80, p. 90-96]. The outputs of sev­
eral digital oscillators may be summed to form a composite sound waveform 
with a spectrum of arbitrary complexity.

If the frequency and amplitude of each sinusoid is held constant for the 
duration of the tone being synthesized, the desired timbre will have been 
generated, but this will approximate only the steady-state portion of an in­
strumental or naturally occurring sound. Most sounds vary in timbre from 
millisecond to millisecond, and in very complex fashion. In fact, each partial 
typically has its own unique amplitude and frequency profile (envelope) over 
time.

12
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A complete additive synthesis instrument thus requires that the digital 
oscillators be controlled by separate amplitude and frequency envelope gener­
ators or driving functions. This control data could be specified by a composer, 
either manually or through the use of a composition program or an interactive 
performance system, or it could be determined by analyzing a natural sound 
and using the (possibly modified) amplitude and frequency parameters to syn­
thesize a new tone [80, pages 143-144]. The latter method is referred to as 
analysis/synthesis.

The advantage of sinusoidal additive synthesis is that any desired wave­
form can be synthesized and the parameters of the algorithm are relatively 
intuitive: musicians are used to thinking of a complex tone as a fundamental 
tone with harmonically related overtones of various amplitudes. Theoretically, 
if a short-time Fourier transform is used for analysis and additive synthesis is 
used for resynthesis, as in the phase vocoder (see Section 2.4.1), the system 
has the identity property: it determines additive synthesis parameters from 
the samples of a waveform, and can exactly reproduce the waveform using 
those parameters [73].

The disadvantages are the large amount of control information that is 
needed to accurately resynthesize a desired tone and the large amount of com­
putation required: it is often necessary to add thirty or more partials (sinusoids 
with frequencies which may or may not be integer multiples of a fundamental 
frequency) in order to achieve a desired degree of accuracy.

W avetable Synthesis

The computational cost of additive synthesis can be greatly reduced by the 
simple observation that the waveform which is placed in a digital oscillator’s 
lookup table need not be a pure sinusoid: it could be a single cycle of any 
periodic waveform. This variant of additive synthesis is called wavetable syn­
thesis.14 If, for example, the waveform of Figure 1.2 were loaded into the 
lookup table, the oscillator would generate the steady-state spectrum of a 
particular French horn tone; this would be accomplished using a single dig­
ital oscillator, as opposed to the 112 oscillators which would be required to 
accurately reproduce the same spectrum at CD quality using sinusoids.

Just as additive synthesis requires additional control data to synthesize a 
sound which changes over time, wavetable synthesis requires a higher-level con­
trol structure to model or create interesting or realistic tones. Of course, the 
frequency and/or amplitude of the tone could be modified by driving functions 
to control the oscillator; such modifications may suffice to model the sustain 
portion of a horn tone, but they cannot accurately recreate the spectral en-

14 Wavetable synthesis should be distinguished from sampling, in which a large lookup 
table is loaded with a digital recording of an arbitrary sound of up to several seconds 
duration, possibly including all of the attack, sustain, and release portions of the sound, 
and the table is scanned only a single time (i.e., not in circular fashion) to play back the 
sound, shifted to any desired frequency by resampling.
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velopes of the attack or release segments.
A simplistic solution would be to load different waveforms into the lookup 

table as the synthesis proceeds, but this method requires many changes of 
waveforms with only slight differences between successive spectra in order to 
avoid audible clicks due to perceptible discontinuities [86]. One of the earliest 
implementations of a digital synthesizer for microcomputers simply switched 
from one wavetable to another during the course of synthesis, but audible 
background noise was reported [11].

Several different methods have been proposed to allow the generation of 
changing spectra by wavetable synthesis, all of which use multiple wavetables:

W avetable crossfading The synthesis proceeds by crossfading from one 
wavetable to another, fading one table out (i.e., gradually reducing its 
amplitude to zero) while another table is faded in. This approach has 
been implemented in many commercial synthesizers [80, pp. 159-160], 
but the user must generate the desired sounds by trial-and-error using 
physical controls or a “patch editor” .

W avetable interpolation As discussed more fully in §2.4.5, Serra, Rubine, 
and Dannenberg’s spectral interpolation synthesis [86] proposes an anal­
ysis method which selects a number of breakpoints throughout the du­
ration of the tone such that the original tone can be approximated by 
interpolating between the spectra at successive pairs of breakpoints: the 
spectrum at one breakpoint is loaded into one wavetable, the spectrum 
from the next breakpoint is loaded into a second wavetable, then the 
portion of the output signal corresponding to the segment between the 
two breakpoints is synthesized by adding the weighted outputs of the two 
digital oscillators together, where the weight of the first oscillator fades 
out from one to zero while the weight of the second fades in from zero to 
one. When the weight of the first oscillator reaches zero, the waveform 
in its table is changed to the spectrum of the breakpoint after next, and 
synthesis of the next segment proceeds with the fade in of the waveform 
in the first oscillator’s wavetable and the fade out of the second.

M ultip le w avetab le  synthesis Serra et al. also proposed a form of wave­
table interpolation which used nonlinear weighting functions, an idea 
which was generalized by Horner [41,44] as multiple wavetable synthesis, 
the weighted additive combination of several wavetables. The waveform 
stored in each oscillator’s wavetable remains the same throughout the 
synthesis of a given tone; in order to approximate varying spectra over 
time, different weightings are used for each wavetable at each time unit 
of the synthesis. Horner’s contribution, reviewed in §2.4.7, was to pro­
pose methods for the selection of the waveforms to be loaded into the 
wavetables and for determining the set of wavetable weightings at each 
point in time which will best approximate the spectrum of the original 
tone at that point.
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M ultiple w avetable interpolation Horner subsequently proposed [42] a 
generalization of wavetable interpolation which uses the concept of in­
terpolating between the spectra of successive breakpoints, but allows 
the use of multiple weighted wavetables to match the spectrum at each 
breakpoint. In order to limit the number of oscillators used for synthesis, 
the proposed method, presented more fully in §2.4.9, uses only a sub­
set of the selected waveforms (or basis spectra) to match the spectrum 
at each breakpoint, leaving one oscillator to fade out one of the wave­
tables from one breakpoint to the next, at which point a new waveform 
is loaded into the oscillator’s wavetable to be faded in by the following 
breakpoint.

1.2 Optimized M ultiple W avetable Interpola­
tion

Optimized multiple wavetable interpolation is a new analysis/synthesis method 
which seeks to extend and generalize multiple wavetable interpolation by al­
lowing waveforms to be reused not only during the course of synthesizing a 
particular tone but in synthesizing a wide variety of different tones. Where 
Horner’s multiple wavetable interpolation method selects “spectral snapshots” 
from various points within a given tone to be used in weighted subsets to match 
the breakpoint spectra of the same tone, optimized multiple wavetable interpo­
lation selects a larger set of waveforms from tones played at selected pitches by 
many different instruments. These waveforms are then (conceptually) loaded 
into a bank of wavetables and used to synthesize multiple tones with a few 
oscillators. Instead of each oscillator having access to only its own dedicated 
wavetable into which different waveforms may be loaded at different times, a 
given oscillator accesses different wavetables from the bank during the course 
of synthesizing a tone, referring to each wavetable by its index in the wavetable 
bank.

1.2.1 Purpose
The motivation for this research was the observation that, while spectra from 
the steady-state portion of a given instrumental tone are likely to be similar 
to spectra from other tones played by the same instrument, it is also quite 
likely that a spectrum from one point of a tone played by one instrument is 
very similar to a spectrum from a different point of some tone played by a 
different instrument; furthermore, a given spectrum might be more similar to 
many other spectra from various points in multiple tones played by several 
different instruments than to other spectra from its own tone of origin. For 
example, a spectrum from the 15 ms mark of the attack portion of a particular 
bassoon tone might be more like a pair of spectra from the release of a bass 
clarinet tone, a waveform from a trombone attack, various points in different
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piano tones, and a series of ’cello spectra than it is to any other spectrum in 
the same bassoon tone.15

The implications of this possibility are clear: By spending some additional 
time when designing a new synthesizer

•  to select a moderately large set of waveforms which will be representative 
(if not individually, then in weighted pairs or triples) of all the different 
spectra in many tones played at different pitches by different instruments, 
and

•  to analyze each tone so that it can be well approximated by multiple 
wavetable interpolation using dynamically changing subsets of this set 
of basis spectra,

the synthesizer, whether implemented in hardware or in software, would have 
some advantageous characteristics:

•  The synthesizer could generate spectra of almost arbitrary complexity 
without the computational expense of sinusoidal additive synthesis.

•  By storing the basis spectra in a bank of wavetables, either in ROM for 
a hardware implementation or by loading them into memory during the 
initialization of a software synthesizer, and using digital oscillators which 
can access multiple wavetables by index [11], the possible delays due to 
loading wavetables during real-time synthesis are avoided.

• By selecting basis spectra which are generally useful rather than a smaller 
but more specific set for each tone at various pitches for each instrument, 
the total amount of memory used to store waveforms would be reduced.

This research focused on finding a way to make such a synthesizer pos­
sible. While design decisions were generally predicated on the assumption 
th a t the selection of basis spectra and the analysis of tones would be one-time 
processes, so the fidelity of the results would be more important than compu­
tational efficiency, it was also recognized that electronic composers might be 
experimenting with different sets of tones at different times, so the trade-offs 
between computation time and accuracy were also explored.

Two goals remained constant: synthesis using the new method should be 
fast and the control data stream should be sparse. While it was never the goal 
of this research to find a new audio compression algorithm—such a project 
would have far more general assumptions about the nature of the audio inputs 
and would be far more focused on analysis for the purpose of compression— 
the possibility was considered that a commercial synthesizer might be designed 
which could load its wavetable bank from an external source (by download or

15In fact, this was exactly the case for the set of tones which are represented by the 
spectrum from the release of a saxophone tone which is stored at index 3 of the wavetable 
bank for the tones of group 1. (See §4.3.2, §4.3.3, and §5.4).
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from a data card) and that users might exchange “patches” (control streams 
for the synthesis of particular tones) relative to particular wavetable banks; 
a highly data-reduced control stream would allow real-time streaming of syn­
thesis data over a network, for example.

Risset and Wessel envision an electronic music instrument which would 
apply an analysis/ synthesis method to user-provided sounds. Aware of the 
computational demands of the analysis stage, they point out that

analysis can be performed in advance for a corpus of sounds: then 
one can work live to perform intimate transformations on those 
sounds. . . .  W ith just a little more engineering innovation, analysis- 
synthesis technology should accomplish for virtually all sounds the 
acoustic accuracy of recording playback as used in samplers. Thus 
research in analysis-synthesis is perhaps now more important than 
ever. [79, pp. 144, 146]

1.2.2 Indexed Color: An Analogy
Multiple wavetable interpolation operates in a manner analogous to indexed 
color on a video display [12, p. 160fF]. Many applications do not require full 
access to the millions of colors afforded by the 24-bit color depth of direct 
color, which allocates 8 bits of resolution to each of the red, green, and blue 
(RGB) values, and would be better served by a method which used less memory 
(perhaps due to the limited video RAM available on the display card), less disk 
space to store image files, or less network bandwidth for transmission (as in a 
Web page graphic). On the other hand, the 256 colors of 8-bit color might not 
suffice, since the standard set of colors are spread evenly over the spectrum 
and are unlikely to accord with the colors needed to render the desired image, 
even if it uses only 256 or fewer different colors. Using indexed color, the 8-bit 
value associated with each pixel is used as an index into a palette (or color 
lookup table) containing the 24-bit RGB values for the set of colors actually 
used in the image.

Indexed color is the digital equivalent of a paint-by-numbers kit, in which 
each area on the canvas to be painted is labelled with a small number, indi­
cating which of the small pots of paint in the kit is to be used to paint that 
area; each kit includes only those paints needed to color the particular picture 
featured in that kit.16

Although the palette needs to be stored along with the actual image data 
(unless a standard system palette is used), the datum for each pixel is only 
one-third the size of that for direct color, so there is typically a net saving 
of space. If a palette is shared among several images (as it must be in some 
contexts, such as multiple images on the same Web page), the overall space 
savings will be greater.

16 This analogy is due to Chapman and Chapman [12], which source also served as the 
basis of the rest of this discussion of indexed color.
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Rendering an image involves a level of indirection: once the palette has 
been loaded into the color lookup table, the video hardware must perform a 
lookup operation which effectively maps the logical colors of the image data 
to the physical colors which are driven by the three 8-bit RGB values stored 
in the color lookup table. It is clear that a logical color value does not identify 
a color absolutely, but only relative to a given palette.

When converting an image to the indexed color format, if the image in­
cludes a color which is not in the palette, it can be approximated in one of 
two ways:

•  The color value may be replaced by the index of the nearest color which 
is in the color lookup table (where “nearest” may be determined as a 
simple Euclidean distance or may take into account the non-linearities 
of our perception of color).

•  An unavailable color may be approximated by dithering: a group of 
pixels of the desired color are replaced by a pattern of dots of several dif­
ferent colors which, as a result of optical mixing in the eye of the viewer, 
are collectively perceived as the desired color (or a close approximation 
of it).

1.2.3 The N ew  A nalysis/ Synthesis M ethod:
The Analogy Applied

Optimized multiple wavetable interpolation will be explained in detail in Chap­
ter 3, but can be understood in a preliminary way by comparison with indexed 
color. Discussion of the analogy is facilitated by the fact that the term “tone 
color” has long been used as a synonym for “timbre,” so “color” may be un­
derstood as representing “spectrum” or “waveform” in the following; similarly, 
“palette” might stand for a wavetable bank and “rendering an image” is anal­
ogous to synthesizing a tone. In this context, the following similarities might 
be highlighted:

• The method selects colors for the palette from the set of those actually 
used in the images/tones to be rendered. In this regard, the proposed 
method compares more directly to the selection of a palette to be used in 
rendering multiple different images, such as the set of images on a Web 
page, than to the storage of a customized palette in a GIF file, since 
the focus of this research is on demonstrating that the waveforms of a 
well-selected wavetable bank can be used to synthesize a wide variety of 
instrumental tones.

•  In the data-reduced representation, colors are referred to indirectly by 
index; the full specification of each color is stored only once per color, in 
the table of colors, and a logical color is mapped to its physical counter­
part by indexing.
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• The rendering of data is relative to a particular palette, but the same 
palette can be used to render multiple images/tones.

•  Colors which are not in the palette must be approximated. In select­
ing waveforms to be included in a wavetable bank, the proposed anal­
ysis/synthesis method uses clustering to group spectra into classes and 
selects one spectrum from each class to represent all the spectra of that 
class; this is analogous to choosing the closest color in the palette to ap­
proximate a desired color. The method also uses weighted combinations 
of multiple wavetables from the wavetable bank to approximate spectra, 
a process which is similar to dithering in the visual media.

1.2.4 Contribution
The primary contribution of this research is a new analysis/ synthesis method, 
optimized multiple wavetable interpolation, which extends the previous work 
on multiple wavetable interpolation to facilitate the synthesis of tones from a 
wide variety of different instruments from the same set of wavetables.

The proposed method differs from existing methods primarily due to its 
goal of resynthesizing a large number of tones from a fixed number of wave­
tables. Some existing methods (see §2.4.7 and §2.4.3 below) have been tested 
with ten to fourteen instrument tones, and have resynthesized them with four 
or five wavetables; Horner [42] used up to ten wavetables in the course of 
synthesizing single tones by multiple wavetable interpolation, but selected the 
wavetables from each tone individually. No previous methods have been de­
signed to utilize the similarities between different portions of a large number 
of different input tones in order to reduce the overall memory requirements for 
resynthesizing them.

Several components of the new method may be identified as contributions 
independently of the method as a whole:

•  The method of constructing a wavetable bank (§3), including the use of 
a clustering algorithm (§4.3.1) and the selection of the spectrum near­
est the centroid of each class as a class representative (§4.3.3), is a new 
contribution. Principal components analysis and a genetic algorithm 
have been used for wavetable selection [41,44], but no previous study 
has shown that clustering of spectra according to their normalized har­
monic amplitudes could be used effectively for that purpose. Stapleton 
and Bass [89] (see §2.4.3) grouped tones into classes according to the 
instruments which produced the tones, but did not cluster spectra indi­
vidually.

•  The grouping of sample tones by pitch (§4.3.2) and using a different 
wavetable bank for each group, with different numbers of harmonics in 
the spectra of each bank, so that the highest expected partial frequency 
will be less than the Nyquist frequency is a new method. Neither of the
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other studies which used the same basis spectra to synthesize different 
tones from the same instrument [41] or tones from different instruments 
[89] grouped the tones by pitch; the latter study did observe, however, 
that their “basis functions must be band-limited to prevent aliasing, 
resulting in loss of information at higher frequencies for any tone” [89, 
p. 318].

•  The breakpoint matching algorithm (§4 and §3.2), including the use of a 
multi-level search (§3.2.2 and §4.4.1), the overlapping of wavetable sets 
(§3.2.3), the method of constructing a directed acyclic graph to represent 
all possible combinations of wavetable-to-oscillator assignments (§4.4.4), 
and the use of the single-source acyclic weighted shortest path algorithm 
for oscillator assignment optimization (§3.2.4), is a significant contribu­
tion, in that it yields a globally optimal set of oscillator assignments.

A secondary contribution of this research is a new breakpoint-selection al­
gorithm (§4.2.1) which operates by segment merging; the algorithm has char­
acteristics which make it well suited to use on instrumental tones, especially 
those with vibrato or other pronounced amplitude changes.

After an overview of Fourier analysis and methods of data reduction and a 
review of several analysis/ synthesis methods in Chapter 2, the proposed new 
analysis/ synthesis method will be presented in detail in Chapter 3, followed 
by a discussion of significant implementation details in Chapter 4. The re­
sults of testing the algorithm on a set of 198 tones produced by 16 different 
instruments, divided into five groups spanning five octaves, will be presented 
in Chapter 5. Conclusions and suggestions for further research are offered in 
Chapter 6.
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Chapter 2

M usic A nalysis/Synthesis:
An Overview

2.1 Definition of Analysis/ Synthesis
Analysis/synthesis [10] (or analysis/resynthesis [80]) is a concept or general 
framework encompassing a variety of techniques which share a common three- 
step process:

1. An input waveform is analyzed.

2. The analysis data is modified.

3. An output waveform is synthesized from the modified data.

Analysis/ synthesis can be used for several purposes [78,96]:

• To reproduce the perceptual features of the input sound from a repre­
sentation based on a sound model.

•  To achieve data reduction, as through linear predictive coding or piece- 
wise linear approximation.

•  To produce musically interesting variants of a sound, either to change 
features such as pitch, duration, articulation, or loudness while preserv­
ing its timbral identity or to expand timbral resources.

•  To gain insight into the perception or multidimensionality of timbre.

The analysis data may be modified in a variety of ways to create musically 
interesting effects [22,65,72,78,80]:

T im e scaling Stretch or compress a sound in time without changing its pitch. 

P itch  shifting Change the pitch of a tone without time scaling.
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Tim bral interpolation Interpolate over time between two different spectral 
envelopes.

Spectrum  scaling or shifting Multiply the frequency of all partials by a 
factor or add a constant to all partials, possibly excepting the funda­
mental.

C ross-synthesis Use the amplitude envelopes of the partials of one sound to 
scale or replace those of another sound.

R egister extrapolation  Extrapolate an instrumental timbre beyond the 
playable register of the instrument.

Transform percussive sounds into fluid textures Delay the onset time 
of each partial and smooth partial envelopes to sustain a percussive sound 
while preserving its frequency content.

Variations of recorded sounds Change selected frequency or amplitude 
envelopes by editing or multiplications by arbitrary functions.

H ybrid tim bres Replace some envelopes from one sound with selected en­
velopes from another sound.

2.2 Fourier Analysis
The definition of the Fourier transform is

/OO
x(t)e~2*iftdt (2.1)

•OO

where x ( t) is a function (assumed to be periodic and infinite) of time t, X( f )  
is a function of frequency / ,  e is the natural base of logarithms, and i is the 
imaginary unit (V—"l)- X( f )  may be interpreted as the spectrum of x(t). That 
is, the Fourier transform may be seen as converting a signal in the time domain 
into a frequency domain representation, effectively breaking the signal into a 
set of sinusoids of specified amplitudes and phases which, when “added up,” 
would give the original signal.

If, instead of a continuous function x(t), we have a digital signal x(n)  
consisting of N  samples (indexed by sample index n) of a continuous waveform, 
the discrete Fourier transform (DFT) is defined as

N - l

X(k)  =  x (n )e -2nikn/N (2.2)
n= 0

where k is a frequency index [47].
There are two problems with using the Fourier transform to analyze audio 

signals of the sort that arise in music and speech applications:
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• It assumes the input is a periodic signal; that is, it treats the input as 
one period of an infinitely periodic waveform. If the input signal is non­
periodic (like most music and speech audio input, which changes rapidly 
in time) or if N  is not a multiple of the period length, then the DFT 
coefficients X  (k) cannot be interpreted as the amplitude and phase of 
the waveform harmonics. In the latter case, the spectrum will include 
broadband noise called crosstalk or spectral splatter [48].

•  The result is given in terms of equally spaced frequency bins. If given N  
samples of a digital waveform, the Fourier transform will give the results 
in terms of the integer multiples of a fundamental frequency of analysis 
which is the frequency associated with the duration of N  samples. For 
example, given 1000 samples of a waveform sampled at 10,000 Hz, the 
discrete Fourier transform will show how to construct th a t waveform out 
of the available harmonics of 10,000/1000 =  10 Hz [65]. However, the 
human ear processes audio input in approximately one-third-octave bins 
[99], where each octave represents a doubling in frequency.

Taken together, these characteristics imply that the frequency resolution 
of the Fourier transform can be increased by analyzing a greater number of 
samples, but this will decrease the temporal resolution of the analysis.

The broadband noise which results if the sample length is not a multiple 
of the period length can be reduced by linear scaling—scaling the sample 
sequence by a linear function so that the beginning and ending values are 
the same—or by windowing—scaling the sample sequence by an ^-sequence 
window which typically begins and ends at or near zero and rises gradually to 
a peak between these points.

While windowing reduces crosstalk by smoothing out the discontinuity 
caused by viewing the input as a periodic sequence of length N , it spreads 
the energy in a frequency bin into neighbouring bins. This spectrum leakage 
is due to sidelobes in the spectrum of the window.

The discrete Fourier transform is usually implemented using a divide-and- 
conquer algorithm—the Fast Fourier Transform (FFT)—which runs in time 
0 ( N  log N )  rather than the 0 ( N 2) time which would result from a direct 
implementation of the defining formula in equation (2.2).

2.2.1 The Short-Time Fourier Transform (STFT)
While music signals are typically non-periodic over a broad time scale (say, 
250 to 500 ms), the properties of the waveform are relatively invariant over 
intervals of 10-30 ms in duration [84, for speech signals]. Furthermore, based 
on evidence that the human ear can only register distinct sensations which 
are separated in time by 10-20 ms, Gabor [34] theorized that a granular or 
quantum representation could describe any sound. According to this theory, 
a music signal will be more amenable to Fourier analysis on a segment-by- 
segment basis.
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The short-time Fourier transform analyzes a signal over a time-invariant 
interval delineated by a window function w(n) of length N w (i.e., assumed to 
be zero everywhere except over the interval 0 . . .  Nw — 1). The time-dependent 
DFT, which computes the average spectrum content over the Nw samples in 
the window, is defined as [21]

OO

X (n , k) =  J 2  x(m)w{n -  m )e -2vikm/N (2.3)
m = —oo

The window is then moved along the signal by a skip factor S  (which is 1 if 
non-overlapping windows are desired or less than 1 for overlapping windows), 
and the DFT is applied again.

This procedure reveals how the spectrum of x(n) changes over time. Pre­
vious studies have shown that the different partials of a tone have different 
envelopes: they increase in amplitude at different rates (attack or rise time), 
are relatively constant in amplitude for varying durations (sustain time), and 
then decrease in amplitude at different rates (release or decay time) [38,77].

2.3 D ata Reduction
There is an important trade-off in computer music synthesis between the 
amount of control information required by the technique and the amount of 
control of the process which the method provides. For example, phase vocoder- 
based additive synthesis uses far more control data than the number of samples 
being analyzed and resynthesized; however, the control data is in the form of 
frequency and amplitude parameters for each sinusoidal partial, and thus may 
be manipulated for performing spectrum modifications such as pitch shifting 
and time scaling.

2.3.1 Goals of D ata Reduction
Research in data reduction techniques may have a variety of goals, including:

• speeding up data reduction processing

• converting control data into editable form

• facilitating real-time synthesis from reduced data (computational com­
plexity)

• reducing the memory requirements of a synthesis technique

• reducing the communication bandwidth required to transm it control 
data to a synthesizer

• improving the fidelity of synthesis using reduced data
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• determining the relevant features of hearing (especially the invariable 
elements of sound perception [13]).

2.3.2 Effects of D ata Reduction
Different data reduction techniques may have different types and degrees of 
effect on the resulting sound. We may categorize the degree of difference 
between an original sound and its resynthesis after data reduction according 
to the subjective judgment of a human listener. Moore [65, page 215] suggests 
the scale shown in Table 2.1.

Category Difference Criterion Example
0 Physically indistinguishable Identical waveforms
1 Perceptually indistinguishable Identical percepts
2 Musically indistinguishable Musically interchangeable
3 Musically acceptable Musically substitutable
4 Musically different Musically distinct identities
5 Musically independent Completely unrelated sounds

Table 2.1: Categories of musical sound differentiability.

For example, Moore suggests that we might classify as musically indis­
tinguishable two musical sound events which are as alike as two such events 
performed on the same instrument by the same performer who is trying to 
make them as alike as possible. A data reduction technique might be regarded 
as musically acceptable if the result were clearly audible but no more objec­
tionable than the difference between one performer playing an instrument in a 
French style and another performer playing the same instrument in a German 
style. A musically different result would sound like a different instrument than 
the original sound.

Two general approaches to data reduction which might result in perceptu­
ally or musically indistinguishable results (categories 1 or 2) are:

R eceiver coding Basing the properties of the synthesized sound on the prop­
erties of the listener’s hearing mechanism.

Source coding Reproducing the acoustic properties of the signal to a degree 
of approximation that preserves objective properties of the sound source 
such as its time-varying power spectrum [65, page 216].

R eceiver Coding

The restricted bandwidth used for telephony is an example of data reduction 
based on the knowledge that much of the information required for speech 
intelligibility is typically below 3 kHz [84]. Receiver coding has also been 
proposed as a method of achieving the reduced bit rate required for digital 
audio broadcasting [101].
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Receiver coding may also be useful for data reduction in music analysis 
and synthesis. Psychophysical studies [70,75,99] indicate that two frequency 
components which lie within a critical band (about 20% of frequency for fre­
quencies greater than 500 Hz.) of one another mask each other (i.e., their 
amplitudes are not additive). Similarly, low frequency tones tend to mask 
high frequency ones. There has been some experimentation with the use of 
critical-band models for categorizing sounds [24] and for analysis/synthesis 
[98],

Using additive synthesis techniques, one may choose to omit any compo­
nent with an amplitude smaller than some threshold on the assumption that 
such components would be masked by other components. McAulay-Quatieri 
(MQ) analysis (see §2.4.2 below) uses a threshold to approximate psychoa­
coustic masking [28].

Receiver coding is a complex and relatively unexplored area, and is not 
used in this research; however, a critical-band-based error measure could be 
used instead of the Euclidean measures discussed in §4 and §4.2.2.

Source Coding

In his doctoral research on timbre perception [38], John Grey experimented 
with replacing the time-varying amplitudes of the various components of har­
monic tones produced by 16 different instruments with their piecewise linear 
approximations. Grey asked listeners trained in music to compare the results of 
resynthesizing the instrument tones using all the data produced by the analysis 
technique with those resynthesized using line-segment approximations to the 
amplitude curves and found that the two cases were difficult for the listeners 
to distinguish. “This finding suggests that the highly complex microstructure 
in the time-variant amplitude and frequency functions given by the analysis is 
not absolutely essential to the timbral quality of the tone, and such a drastic 
data reduction as was performed in this case will do little harm” [38, p. 40]. 
Grey also found that eliminating the frequency variations which occurred in 
various components over the duration of the sound could not be eliminated 
without seriously affecting the discriminability of the tones [40]. J.-C. Risset 
had previously used the same technique successfully with trum pet tones [77].

John Strawn [90] proposed the use of a syntactic parser to identify break­
points for line-segment approximation which correspond to features which are 
defined to be of interest by specifying a grammar for the parser.

Gerard Charbonneau [13] tested three types of more drastic data reduction: 
using a single amplitude mean curve for all partials, using a single frequency 
reference curve, and approximating the starting and ending times of each par­
tial with a polynomial. The timing simplification gave the best results, while 
the amplitude simplification was the most audible.

James Beauchamp [3] found one-to-one relationships between the instan­
taneous amplitudes of the partials of cornet tones which, given the ampli­
tude envelope of the first harmonic, can be used to represent (in data-reduced
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form) and resynthesize realistic-sounding tones. These nonlinear interhar­
monic relationships were well approximated by a third-degree polynomial. 
Beauchamp [4] also found a relationship between brightness—the spectral 
center of gravity—and RMS amplitude for the comet and saxophone which 
provides data reduction and low-error resynthesis with a nonlinear synthesis 
method.

McAdams et al. [59] tested listeners’ ability to discriminate between refer­
ence intrumental tones and tones synthesized from simplified analysis data; six 
basic simplifications were tested, both singly and in combination. Most simpli­
fications were discriminable, and different simplifications were indiscriminable 
on different instruments. In general, the smoothing of amplitude envelopes 
after the attack portion, the smoothing of frequency envelopes, and the co­
herence of frequency envelopes (i.e., using a single frequency envelope for all 
harmonics) were found to be the least discriminable (in that order).

This research uses source coding of two forms, both of which are due to the 
use of common breakpoints (i.e., breakpoints which are selected to occur for 
all harmonics simultaneously) to simplify harmonic amplitude and frequency 
envelopes:

• Spectral interpolation between breakpoints results in a piecewise linear 
approximation of harmonic amplitudes. (See §2.4.5 below.) This is es­
sentially the same form of data reduction used by Grey, Risset, and 
Strawn, except for the requirement of common breakpoints across all 
harmonics; the increased inaccuracy of the approximation which might 
have resulted from the use of common breakpoints is avoided by the use 
of more breakpoints per tone, as discussed in §4.2.3.

•  In addition to determining the amplitude of each sinusoidal component 
of a signal, Fourier analysis yields phase information from which the in­
stantaneous frequency of each partial can be calculated. The difference 
between the calculated frequency of a partial and its theoretical har­
monic frequency (which would be an integer multiple of the fundamen­
tal frequency) is called the frequency differential of that partial. Since 
wavetable synthesis precludes the possibility of partials varying in fre­
quency independently, only a single frequency differential can be used to 
control the frequency of the synthesized signal at a given point in time. 
Typically, an average of the differential frequencies of all the harmonics 
is used, weighted according to the amplitude of each harmonic.

The use of a single weighted-average frequency differential at each break­
point (see §2) is similar to Strawn’s frequency simplification and essen­
tially equivalent to the use of coherent frequency envelopes as tested 
by McAdams et al. This simplification eliminates the possibility of in- 
harmonicity between partials, which is a salient perceptual feature for 
some instrumental tones, especially for piano tones [9,51,86], but not 
for others [31].
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2.4 M ethods of Analysis/ Synthesis
A variety of analysis/ synthesis systems have been proposed, the most signifi­
cant of which are reviewed here.1

2.4.1 Phase Vocoder A nalysis/Synthesis
If the output of a short-time Fourier transform (STFT) analysis is converted 
from rectangular to polar coordinates—the magnitude (radial position) and 
phase (angular position) of each X( k ) —the time-varying amplitude and fre­
quency parameters needed to drive an oscillator for resynthesis of the original 
signal may be calculated [65]. Thus, STFT analysis may be viewed as model­
ing the input signal in terms of multiple parallel channels, each analyzed by a 
bandpass filter [21,37].

Since the origin of this method was for reducing the bandwidth required 
for telephony, the technique was called a noice encoder [23]. The phase vocoder 
[21,29, 37,61, 73] is a form of voice encoder which preserves phase information, 
thus allowing the perfect resynthesis of the original signal (provided that the 
window function is zero at integer multiples of N).

The amplitude and frequency parameters may also be modified prior to 
using them as control signals for a bank of oscillators in resynthesis. For 
example, the pitch of an input signal may be modified without changing its 
duration (pitch shifting), and vice versa (time scaling) [21].

The intermediate data may also be encoded (e.g., by piecewise linear ap­
proximation) to reduce the storage needed for a parameterized representation 
of a musical sound [65].

It is also possible to resynthesize the input signal to a phase vocoder with­
out converting the STFT output to amplitude and frequency envelopes by 
overlap-add resynthesis. This method uses the inverse Fourier transform to 
reconstruct each frame of the windowed signal, then overlapping and adding 
these resynthesized windows. This method is computationally less expensive 
than oscillator-bank resynthesis, but modifications to the output of the anal­
ysis phase typically create audible side-effects on resynthesis.

The heterodyne filter and channel vocoder are earlier techniques related to 
the phase vocoder.

2.4.2 Peak-Tracking Phase Vocoder
McAulay and Quatieri [60] developed an analysis method (referred to as “MQ 
analysis” or sinusoidal modeling) based on the STFT which addresses the 
problem of spectral splatter due to the sidelobes of the window function. In

1See also the review by Risset and Wessel [79, §XIV] of the use of analysis and synthesis 
in perceptual studies of timbre and the report [96] on the initial phase of a comparison of 
six analysis/synthesis systems using common input sounds and a common output format. 
Jaffe proposed a set of criteria for evaluating synthesis techniques [49].
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MQ analysis, the peaks in the output from STFT analysis are located and 
tracked from frame to frame by a matching procedure. Amplitude, frequency, 
and phase envelopes are calculated by interpolation for these tracks, and can 
be used to drive sinusoidal oscillators for resynthesis. Spectral components 
other than the peaks in the spectrum are discarded, since they are assumed 
to be noise.

Since this method explicitly tracks the changes in frequency of the most 
prominent peaks in the spectrum over time, analysis/synthesis systems using 
this algorithm are called tracking phase vocoders. The analysis of those si­
nusoidal components which are tracked is more accurate than phase vocoder 
analysis [80], and is well suited to the representation of inharmonic and quasi­
harmonic partials (as are found in piano tones [9]) and pitch fluctuations (such 
as vibrato) [35,57].

However, the MQ analysis technique is not as robust as phase vocoder 
analysis, not only when applied to harmonic tones with little vibrato [5], but 
also for percussive sounds [6]. The primary problems are (a) deciding which 
amplitude peaks represent sinusoids and which are noise, especially in low- 
amplitude portions of tones, and (b) peak tracking, especially when one track 
appears to die, only to be reborn at about the same frequency a few frames 
later. As implemented by Maher and Beauchamp in the program mqan of 
the SNDAN  sound analysis/ synthesis suite [5,56], peak-picking uses a relative 
threshold defined in terms of the magnitude of the largest peak in the frame; 
Fitz, Walker and Haken [28] improved on this scheme in their implementa­
tion of Lemur by applying a different relative magnitude threshold in each of 
a number of logarithmically sized bins. Serra and Smith’s PARSHL system 
[88], which uses a method very like MQ analysis, allows tracks to lie dormant 
for several frames before dying out, but synthesizes the dormant segments at 
zero amplitude; Lemur reduces the audible effects of frequent track deaths 
and rebirths by using two different thresholds, a higher one for track births 
and a lower one for track deaths [28]. The program hmm from the Institut 
de Recherche et Coordination Acoustique/Musique (IRCAM) takes a statisti­
cal approach to peak tracking, using hidden Markov models to find globally 
optimal tracks [18].

2.4.3 Karhunen-Loeve Synthesis
Stapleton and Bass [89] proposed a synthesis technique which uses a type 
of principal components analysis, the Karhunen-Loeve transform, to find a 
small set of basis functions from which a set of harmonic input tones may be 
resynthesized by multiple wavetable synthesis. This analysis method operates 
in the time domain, not in the frequency domain as do Fourier-based methods. 
It requires that segments of each input tone be normalized to have the same 
fundamental period, be band-limited by low-pass filtering, and phase aligned.

This method was applied to a set of fourteen representative instrumental 
tones. It was found that the synthesis was improved by grouping the tones
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into three classes with a correlation algorithm prior to determining the basis 
functions. The classes were:

1. flute, guitar, marimba, violin, plucked violin, diapason (organ pipe);

2. trumpet, French horn, trombone; and

3. clarinet, oboe, bassoon, tenor saxophone, alto saxophone.

Each instrument required two to four basis functions for high-quality syn­
thesis. It was found that basis functions which work well for a given tone will 
not necessarily work well for audibly similar tones.

The signal matching required by this method is computationally expensive. 
Furthermore, modifying the amplitude envelopes during resynthesis can result 
in nonlinear changes in harmonic amplitudes due to phase cancellation [41].

2.4.4 Spectral M odeling Synthesis
Spectral modeling synthesis (SMS) models time-varying spectra as a collection 
of sinusoids (the deterministic component) and a time-varying filtered noise 
component (the stochastic part) [87]. Since noise consists, in principle, of 
sinusoids at every frequency, simulating the noise component of a sound by 
additive synthesis is very expensive. SMS tracks the peaks in a short-time 
Fourier transform analysis, removes them by spectral subtraction, then models 
the residual (the “noise floor”) as white noise passed through a time-varying 
filter.

SMS captures the perceptual characteristics of a wide variety of sounds, 
and the analysis method yields intuitive parameters. However, it represents 
a sound by two different components which, if subjected to different transfor­
mations, may not fuse into a single entity on resynthesis.

An extension of SMS has recently been proposed which would add a third 
component to the sound model: transient modeling synthesis (TMS) [92]. 
TMS models transients—short-lived signals—using sinusoidal modeling in the 
discrete cosine transform (DCT) domain, since impulses in the time domain 
correspond to slowly varying sinusoids in the DCT domain.

2.4.5 Spectral Interpolation Synthesis
Serra, Rubine and Dannenberg [86] proposed a method of generating time- 
varying sounds by interpolating between analyzed spectra. They begin by 
analyzing a signal using a pitch-synchronous short-time Fourier transform with 
a low time sampling rate (one Fourier analysis per period of the fundamental 
frequency). This gives a harmonic spectrum—a vector of amplitudes, one 
amplitude per harmonic—for each period of the tone; the list of spectra with 
their time indices is called the spectral envelope of the tone.
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Figure 2.1: Three spectral ramps. (Based on a figure in [86].)

The spectral envelope is then data-reduced using line-segment approxi­
mation. However, the breakpoints that define the piecewise linear function 
for each harmonic are simultaneous, creating spectral ramps as illustrated in 
Figure 2.1. Breakpoints are selected using an error threshold: if the sum of 
the errors on the individual spectra within a spectral ramp is less than the 
tolerated threshold, the spectral ramp is extended to the next period.

The waveform is then resynthesized using a waveform interpolation oscilla­
tor consisting of two wavetables L  and R, each with an amplitude scale factor 
(c and d respectively), and with a common index function. To begin, the left 
wavetable L  is loaded with a waveform corresponding to the first spectrum 
of the analyzed signal (created by additive synthesis, but ignoring the initial 
phase differences between different harmonics and the phase shifts of each 
given harmonic in time), and its amplitude scale factor c is set to one. The 
right wavetable R  is loaded with the waveform of the spectrum at the first 
breakpoint, and its amplitude scale factor d is set to zero. Output samples are 
then generated by extracting samples from the two wavetables, scaling each 
sample by its associated amplitude scale factor, and adding them together. As 
the output sample index progresses from zero to the index of the first break­
point, the amplitude scale factors are linearly interpolated such that c will 
reach zero and d will reach one by the first breakpoint. At the breakpoint, the 
waveform in table L is replaced by the waveform of the spectrum at breakpoint 
two, and the adjustment of the amplitude scale factors reverses direction so 
that c returns to one and d returns to zero by the second breakpoint. Thus, 
spectra between the breakpoints are linear interpolations of the spectra at the 
previous and next breakpoints.

Serra et al. also experimented with data reduction using nonlinear spectral 
interpolation, in which the amplitude scaling functions c(n) and d(n) are ar­
bitrary functions of time, rather than being constrained to be opposite linear 
ramps summing to unity. In this case, breakpoints are separated by arbitrarily 
large time intervals and the square error within the spectral path is minimized 
by choosing the best coefficients c(n) and d{n). If the error is larger than 
a specified threshold, a smaller interpolation duration is tried. Special tech­
niques must be used to avoid generating clicks when switching waveforms in 
the oscillator wavetables.
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Horner, Cheung, and Beauchamp [45] used both a greedy algorithm and a 
genetic algorithm (GA) to select the N  best interior breakpoints common to 
all harmonics of a sound such that line segments between these breakpoints 
would give the best piecewise linear approximation (PLA) to the amplitude 
envelopes of all harmonics. By using common breakpoints instead of finding 
the best PLA for each harmonic individually, the tone can be resynthesized 
using spectral interpolation synthesis instead of additive synthesis. The genetic 
algorithm gave the best results when fewer than ten breakpoints were specified; 
the greedy algorithm performed as well as the GA for ten or more breakpoints, 
with less computation.

2.4.6 Analysis-by-Synthesis /  Overlap-Add
George and Smith [35] proposed an analysis/ synthesis method which allows 
the use of overlap-add resynthesis without the audible artifacts that usually 
result from the modification of the analysis data. Their system—analysis-by- 
synthesis/ overlap-add (ABS/OLA)—uses an iterative algorithm which finds 
the best least-squares approximation of a single sinusoid to the input signal, 
subtracts the resynthesized sinusoid from the original signal, then finds the 
best fit of another sinusoid to the residual, repeating this process until the 
desired accuracy is attained.

Because analysis-by-synthesis removes the crosstalk associated with each 
component as it is estimated, the ABS/OLA system provides an accurate rep­
resentation of inharmonic and quasi-harmonic tones and tones which vary in 
pitch. It allows time- and frequency-scale modifications without the reverber­
ant artifacts associated with modified phase vocoder resynthesis. Synthesis is 
relatively efficient, since it uses the inverse FFT, but the analysis procedure is 
relatively inefficient.

2.4.7 M ultiple W avetable Synthesis
Multiple wavetable synthesis is an additive synthesis technique based on the 
sum of fixed waveforms or periodic basis functions with time-varying weights. 
Unlike classical additive synthesis in which the waveforms to be added are 
simple sinusoids, multiple wavetable synthesis loads each wavetable with one 
cycle of a waveform of arbitrary complexity. Typically, the waveforms to be 
added are themselves the fixed weighted sum of several harmonic sine waves; 
the spectrum produced by a particular set of harmonic weights is referred to 
as a basis spectrum. If the sets of harmonics for the various waveforms are 
disjoint, the method is termed group additive synthesis [52],

The principal advantage of multiple wavetable synthesis is its efficiency, 
since the number of wavetables used is typically much smaller than the number 
of sine waves that would be used in classical additive synthesis. The principal 
difficulty is that, for an arbitrary small set of wavetables, most time-varying 
spectra cannot be approximated very closely by a linear combination of these
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wavetables, even if their weights are time-varying. Thus the basis spectra 
must be chosen carefully and their weights appropriately manipulated when 
synthesizing dynamic spectra.

Andrew Horner [41,44] compared two methods of efficiently determining 
the basis spectra and their time-varying amplitude scale factors to best match 
the original time-variant spectrum of a signal:

G enetic-algorithm -based selection A genetic algorithm (GA) was used 
to select basis spectra from the set of discrete-time spectra found by 
short-time Fourier analysis of the original sound (which Horner calls 
“spectral snapshots”). The GA attempts to find a set of basis spectra 
which work well over the the whole duration of the tone, according to 
a fitness function (a relative error measure, to be discussed in §4.2.2) 
which measures the quality of the match between a candidate synthetic 
signal and the original signal.2

Principal-com ponents-based m atching Basis spectra were determined by 
a statistical factor analysis procedure, principal components analysis 
(PCA), which derives basis spectra which are optimal in the sense that 
they capture the maximum variance of the analyzed tone. The basis 
spectra found are also guaranteed to be orthogonal to one another. These 
spectra may have a rather artificial relation to the original tone, since 
generally no basis spectrum will resemble any of the actual analysis spec­
tra; in fact, basis spectra typically include negative amplitudes for some 
sinusoidal components.

To minimize the cost of repeatedly evaluating the fitness function in the 
GA-based method, the match between the weighted basis spectra and the 
spectra of the original tone was not evaluated at every analysis frame, but at 
twenty selected match points: ten equally spaced in the attack portion and 
ten equally spaced across the rest of the tone.

Both approaches resulted in perceptually similar matches when four or 
more basis spectra were used. It was found that four or five basis spectra 
were adequate for achieving excellent simulation. When using fewer basis 
spectra, the GA-based approach gave better results. Although PGA minimizes 
the time-averaged mean-square error between the original and the matched 
spectra, since low-amplitude spectra in the attack and decay portions of a 
tone are perceptually more important than their higher amplitude steady- 
state counterparts, PGA tends to result in relatively large errors during these 
critical portions of the tone.

Horner also experimented with extending these spectral matching tech­
niques to multiple non-simultaneous tones from the same instrument. He

2 The relative error measure actually used calculates the error at only a limited number 
of representative spectra from the sound being matched, rather than using all of the analysis 
frames, in order to reduce the cost of computing the measure.
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found that five basis spectra were sufficient to provide a good match to ten 
English horn tones spaced a minor third apart over more than a two-octave 
range; six spectra sufficed for twelve similarly spaced trombone tones. For the 
violin, it was better to subdivide the range of fourteen tones into two sets of 
seven tones; five-table matches then sufficed for each subrange.

2.4.8 Bandwidth-Enhanced A dditive M odeling
Fitz and Haken [25,26] extended the MQ analysis used in Lemur (previously 
discussed in §2.4.2) to allow the modeling of noise (non-sinusoidal components) 
in a unified model (in contrast to the two-part model of SMS [§2.4.4]) by asso­
ciating a bandwidth with each track. After sinusoidal components have been 
extracted by the peak-tracking of MQ analysis, the bandwidth-association al­
gorithm distributes the remaining spectral energy in a frequency region among 
the sinusoids as bandwidth. A bandwidth-enhanced sinusoidal oscillator per­
forms spectral line widening [78] on resynthesis by stochastic modulation [26].

More recently, Fitz et al. [27] introduced the reassigned bandwidth-enhanced 
additive model in a publicly available3 C + +  class library called Loris. This 
model uses the time-frequency reassignment method of Kodera et al. [53] to 
improve the time resolution of transient events. Partial tracks are also broken 
at the time of a transient in order to preserve phase accuracy without using 
cubic interpolation, as is done in MQ analysis; this use of synchronized break­
point envelopes allows the preservation of transients under transformation.

Although it provides a homogeneous sound model which “can represent a 
great variety of sounds at high fidelity without sacrificing the intuitive sense 
of the sinusoidal model” [26, p. 385], bandwidth-enhanced sinusoidal synthesis 
suffers from the same problem as other sinusoidal additive synthesis techniques: 
it is “computationally very expensive” [25, p. 154].

2.4.9 M ultiple Wavetable Interpolation
Multiple wavetable interpolation is a form of analysis/synthesis in which the 
recorded sound is reduced to a set of breakpoints by piecewise linear approxi­
mation of the spectral envelopes of its harmonics, the spectrum at each break­
point is matched by determining weightings for a small number of wavetables, 
and the sound is resynthesized using multiple wavetable additive synthesis by 
interpolating between the weightings for each wavetable at consecutive break­
points.

In contrast to multiple wavetable synthesis (§2.4.7), which uses all of the 
selected basis spectra in each match, multiple wavetable interpolation uses 
only a subset of the basis spectra at each match point (breakpoint). As will 
be discussed more fully in item 4 of §3.1, if the subset of the wavetables used 
at one breakpoint differs from the subset used at the next breakpoint, two or

3Available online at http://w w w .cerlsoundgroup.org/L oris (2002-10-01).
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more oscillators must be used to crossfade the changing wavetables between 
match points in order to avoid audible clicks and spectral discontinuities.

Horner [42] tested multiple wavetable interpolation on three different mid­
range instrumental tones: a trum pet F4, a piano C4, and a muted trombone 
Bb3. Basis spectra were selected using the genetic-algorithm-based method 
discussed in §2.4.7; only the first 20 harmonics of each spectrum were used to 
evaluate the quality of the matches to the spectra at selected match points (10 
equally spaced in time in the attack portion and 10 similarly spaced through 
the rest of the tone).

Horner dealt with the need to crossfade between changing wavetables by 
imposing two simple restrictions: if synthesis is to be performed with N  os­
cillators, only N  — 1 wavetables may be used at each match point, and only 
one wavetable may be changed from one match point to another. His method 
starts by selecting by enumeration the best combination of iV — 1 wavetables to 
use at the breakpoint with the peak RMS amplitude, then works backward and 
forward to neighboring match points, changing at most one of the wavetables, 
using enumeration to decide what change to make, if any.

Horner tested this method using various combinations of between two and 
seven oscillators4 and two to ten wavetables. In comparison to simple (two- 
oscillator) wavetable interpolation, the use of three or four oscillators provided 
significantly reduced error; using more than six tables with four oscillators pro­
vided only modest error reductions. Compared to multiple wavetable synthesis 
(or “wavetable matching”), multiple wavetable interpolation provides a way to 
reduce the computational cost of synthesis by using extra storage space: the 
use of an additional wavetable with one fewer oscillators gave about the same 
degree of accuracy. In listening tests, a four-oscillator, five-table match to the 
trum pet tone was found to be indistinguishable from the original tone, where 
a match was deemed to be indistinguishable if the average listener confused 
the synthesized tone with the original tone at least half the time; all three- or 
four-oscillator matches of the muted trombone tone were found to be indis­
tinguishable, but all synthetic piano tones were correctly identified in at least 
70% of trials.

H ybrid Sam pling/W avetable Synthesis

Yuen and Horner [97] propose a hybrid synthesis model which uses sampling 
(see §1.1.3, note 14) for the attack segment and multiple wavetable interpo­
lation for the sustain and release segments, crossfading between the samples 
and the wavetables in a short transition section. The problem with splicing a 
sampled attack on a synthesized sustain is that, due to slight frequency fluc­
tuations in the attack segment, each partial may have a different phase and 
frequency at the splice point; a method is proposed to find the phase values 
which will cause the least phase cancellation in the transition segment.

4The two-oscillator case is similar to spectral interpolation synthesis (see §2.4.5) except 
that basis spectra are selected differently and may be reused at subsequent match points.
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Chapter 3

O ptim ized M ultiple W avetable 
Interpolation

The goal of optimized multiple wavetable interpolation analysis/synthesis is to 
select a number of basis spectra and to analyze a number of instrumental (or 
other quasi-harmonic) tones relative to the basis spectra such that the tones 
can be resynthesized by interpolating between consecutive pairs of a sequence 
of spectra, each spectrum of which is the weighted additive combination of 
multiple (typically, two to five) wavetables from the wavetable bank.

3.1 Overview of the Process
Optimized multiple wavetable interpolation analysis/synthesis is a multi-stage 
process, as illustrated in Figure 3.1 and described below.

1. Analysis: Each tone (waveform) is analyzed using a short-time Fourier 
transform (typically either a period-synchronous phase vocoder or ex­
tended MQ analysis). This analysis groups the samples of the waveform 
into overlapping frames, the size of which is determined by the expected 
fundamental frequency of the tone, and produces an amplitude and a 
differential frequency for each harmonic in each frame. The number of 
harmonics for which data are produced is determined by the Nyquist fre­
quency (half the sampling rate). Figures 3.2 and 3.3 show time-varying 
spectrum plots of the first 20 harmonics of period-synchronous phase 
vocoder analyses of a French horn and a saxophone, respectively, play­
ing the pitch G3.

2. Breakpoint selection: The volume of data is reduced by selecting 
certain frames as the breakpoints of a piecewise linear approximation 
(PLA) of the harmonic amplitude envelopes. Wavetable interpolation 
requires the use of shared breakpoints—each breakpoint is common to 
all harmonics—which also gives greater data reduction than using inde­
pendent breakpoints for each harmonic, since only one set of breakpoint
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Figure 3.1: The stages of optimized multiple wavetable interpolation analy­
sis/synthesis. New methods are proposed for the stages which are highlighted.
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times must be stored [43]. Serra, Rubine, and Dannenberg [86] refer to 
the segments of a PLA with simultaneous breakpoints as spectral ramps.

For this research, a new breakpoint-selection algorithm was developed 
which is very efficient computationally and which selects shared break­
points such that the extremes—the peaks and valleys—of harmonic am­
plitude envelopes are well-modeled by the PLA’s generated. The char­
acteristics and implementation of this algorithm, which operates by seg­
ment merging, are discussed in §4.2.

Figures 3.4 and 3.5 show spectrum plots of the first 20 harmonics of 24- 
breakpoint piecewise linear approximations of the time-varying spectra 
of the French horn and saxophone tones shown in Figures 3.2 and 3.3.

A single weighted-average frequency differential is also computed and 
stored for each breakpoint, since wavetable interpolation requires that 
the corresponding harmonics of the wavetables involved in the interpo­
lation be in phase [86].

Unless otherwise specified, references to breakpoints and to numbers of 
breakpoints are to internal breakpoints. The first and last segments of 
the PLA begin and end, respectively, at implicit external breakpoints at 
time 0 and at a final time index corresponding to the duration of the 
tone. The number of segments in a PLA is thus one greater than the 
number of (internal) breakpoints.

3. W avetable b an k  selection: A number of spectra are selected to com­
prise a set of basis spectra which will be used in weighted additive com­
binations to approximate the actual spectra at each breakpoint of each 
tone to be synthesized. Typically, these basis spectra are selected from 
the breakpoint spectra chosen by PLA in step 2, but they could be se­
lected by other means, including spectral principal components analysis 
(PCA) [83], a genetic algorithm [41,44], or by hand-selection [86, §2.2]. 
For this research, the basis spectra were selected by using a clustering 
algorithm on the breakpoint spectra and choosing a representative spec­
trum  from each cluster. The set of basis spectra was then augmented 
with some hand-picked spectra which were selected in order to reduce 
the approximation error for certain waveforms.

The basis spectra are here collectively referred to as a wavetable bank, 
although for the purposes of breakpoint matching (step 4) they are ini­
tially represented in the frequency domain as vectors of harmonic ampli­
tudes. At synthesis time (step 6), each vector is converted to an actual 
wavetable—a table of the time-domain amplitude values of one cycle 
of the waveform—for use by a table-lookup oscillator (as discussed in 
§1.1.3).

If the tones to be synthesized have fundamental frequencies which span 
a broad range of frequencies, it will be necessary to partition the tones
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into groups which span a smaller range of fundamental frequencies and 
to select a different bank of wavetables for each group, due to the restric­
tions imposed by the sampling theorem. If a spectrum were selected from 
a low-pitched tone for inclusion in the wavetable bank, complete with 
all its harmonics, and was then used in synthesizing a tone a t a higher 
pitch (i.e., with a higher fundamental frequency), the upper partials 
would wrap around the Nyquist frequency, creating synthesis artefacts. 
If all the spectra in the wavetable bank were band-limited to the fre­
quency range between the highest expected fundamental frequency and 
the Nyquist frequency, then all the energy in the upper harmonics of the 
lower-frequency tones would be lost on resynthesis, resulting in audibly 
degraded tone quality. For this research, the sample tones, spanning five 
octaves, were partitioned into five groups so that more partials could be 
retained in the wavetable banks for the lower-pitched tones than for the 
higher-pitched ones.

4. Breakpoint matching: Given a particular wavetable bank, a set of 
breakpoint data representing a particular tone, and the number of oscil­
lators (N ) to be used in resynthesis, the breakpoint-matching algorithm 
selects, by index, at most N  wavetables from the bank which, in weighted 
combination, best match the spectrum at each breakpoint according to 
some error measure. Ideally, the error measure used to select break­
points and to evaluate matches to breakpoint spectra would be based 
on a psychophysical model which takes into account masking, loudness, 
and critical bands [100]. Lacking a verified model, a Euclidean measure 
is used for both, as discussed in §4.2.2. This is consistent with Plomp’s 
finding that Euclidean spectral differences are strongly correlated with 
a Euclidean timbre space derived by multidimensional scaling from a 
timbre dissimilarity listening test using complex musical tones [71].

A different set of wavetables can be selected for use at each breakpoint, 
subject to the restriction that one cannot suddenly switch from using 
one wavetable at one breakpoint to a different wavetable at the the next 
breakpoint, since audible clicks and spectral discontinuities would result 
[42]. Instead, if a wavetable is used with a non-zero weight a t one break­
point and not used at the next, it must be faded out to zero by the next 
breakpoint; similarly, if a new wavetable is selected for use at a particu­
lar breakpoint, it must be faded in, beginning with a zero weight at the 
previous breakpoint. It is for this reason that it was specified that the 
matching algorithm selects at most N  wavetables for use at each break­
point, given N  oscillators: if the set of wavetables to be used at one 
breakpoint differs from the set to be used at the subsequent breakpoint, 
then fewer than N  wavetables must be selected for either or both of the 
breakpoints.

® If N  wavetables are selected for breakpoint B i} then the same set
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of N  wavetables or any subset of those wavetables (and no others) 
must be selected for breakpoint B i+X, since all N  oscillators are in 
use at Bi and, to avoid perceptible discontinuities, each must con­
tinue to be used either to interpolate between two weightings of the 
same wavetable or to fade its assigned wavetable to a weighting of 
zero, as illustrated in Figure 3.6, parts (a) and (b). (The dotted 
line from a closed circle to an open circle, with a downward-pointing 
arrow from the closed circle, in part (b) of the figure is intended 
to suggest the fade-out of a wavetable to zero amplitude.) Con­
versely, if M  wavetables, M  < N , are selected for breakpoint B { 
and N  wavetables are selected for breakpoint B i+X, then the set of 
wavetables at B i+X must be a superset of those at Bi, since N  — M  
oscillators must be used to fade in the new wavetables selected for 
B i+i, as illustrated in Figure 3.6(c). (The arrows in this diagram are 
intended to suggest the fade-in of wavetables by oscillators which 
were at zero amplitude at the previous breakpoint.)

•  If N  — 1 wavetables are selected for breakpoint Bi and N  — 1 wave­
tables are selected for breakpoint such that TV — 2 of the wave­
tables are the same at both breakpoints, then all N  oscillators will 
be in use for the segment between Bi and B i+i, since N  — 2 oscilla­
tors will be used for the wavetables in common, one will be used to 
fade out the wavetable which is not in the set of wavetables selected 
for breakpoint Bi+1, and the last oscillator will be used to fade in 
the new wavetable selected for Bi+i, as illustrated in Figure 3.6(d).

•  If N  — 1 wavetables are selected for use at breakpoint Bi and N  — 2 
wavetables are selected for breakpoint B i+1 such that only N  — 3 of 
the wavetables are used at both Bi and B i+X, then two oscillators 
must be used to fade out the expiring wavetables and one must fade 
in the new wavetable (or vice versa), as illustrated in Figure 3.6(e).

•  If N  is even, then it is possible that N /2  wavetables may be selected 
for breakpoint Bi and a completely different set of N /2  wavetables 
selected for breakpoint Bi+1, in which case all N  oscillators will be 
used to crossfade from the first set of wavetables to the second, as 
illustrated in Figure 3.6(f).

As discussed in §2.4.9, Horner [42] proposed a method for deciding which 
subset of the basis spectra to use at each breakpoint (or “match point” ) 
in the tone, but his method is locally optimal at only one breakpoint (the 
point of the peak RMS amplitude) and is restricted to selecting N  — 1 
wavetables at each breakpoint such that N  — 2 of them are the same at 
neighboring breakpoints.

The new method proposed in this thesis is not subject to the restriction 
of selecting N  — 1 wavetables at each breakpoint and finds a globally 
optimal set of matches across all breakpoints, given a particular error

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bi Bi Bi+ 1 Bi - ^ 2 + 1

Figure 3.6: Possible oscillator assignments with four oscillators.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



measure and a specified method of choosing an initial best match of a 
specified size at each breakpoint. This method will be presented in more 
detail in §3.2 below.

The output from this stage of the algorithm is a sequence of records, 
one per breakpoint, where each record consists of the time index of the 
breakpoint which it represents, the weighted average frequency differ­
ential at this breakpoint, and a set of tuples, one per oscillator, each 
consisting of a wavetable number and the weighting (amplitude factor) 
for tha t wavetable. The start of a fade-in is represented by the number 
of the wavetable to be faded in and a weighting of zero. Wavetables 
are numbered from one to the size of the wavetable bank; a wavetable 
number of zero indicates the end of a fade-out which is not immediately 
followed by the fade-in of another wavetable.

5. M odification of analysis data (optional): If optimized multiple wave­
table interpolation is being used as a technique in a computer music com­
poser’s toolkit, it is at this point that the analysis data would be modified 
to create a new sound by synthesis. One can imagine a graphical tool 
which would read a wavetable bank file and a file of analysis data (which 
we might call a wavetable envelope file, since the weightings specify an 
amplitude envelope for each wavetable used in breakpoint matching) and 
display the tone which is specified by the combination of the two in a 
time-varying spectrum plot such as the one shown in Figures 3.2 and 
3.3; the composer might then be able to select different wavetables from 
the wavetable bank to be used at one or more breakpoints or change the 
weightings of some tables and see the result by a dynamic update of the 
spectrum plot.

For the purposes of the present research, a simpler expedient was chosen: 
a utility reads a wavetable bank file and a wavetable envelope file and 
writes a Csound1 unified file (which combines both the score file and the 
orchestra file of earlier versions of the Csound digital sound synthesis 
program). This text file can then easily be edited to experiment with 
different types of modifications.

6. Synthesis: The data-reduced and possibly modified analysis data can 
then be used as a control stream for a custom synthesizer, implemented 
either in hardware or in software, or, as was done in this research, be 
converted by the utility mentioned above to a Csound unified file and 
synthesized using Csound. The synthesis model is illustrated in Fig­
ure 3.7. The figure shows a three-oscillator synthesizer; the model may 
be reduced to two oscillators or extended with additional oscillators in

1 Csound is a sound synthesis language developed by Barry L. Vercoe at the Experimental 
Music Studio of the MIT Media Laboratory, and is freely available for educational and 
research purposes from ftp://ftp .m u siq u e.um ontreal.ca /pu b /m irrors/d ream .
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the obvious way. The segment generators indicated in the figure gener­
ate line-segment envelopes by linearly interpolating between the values of 
their respective first parameter streams with breakpoints at times spec­
ified by the second parameter stream; breakpoint times are the same for 
all four segment generators. The phase generator at the top left corner 
of the figure generates the step values for the table-lookup oscillator, as 
discussed in §1.1.3; all wave tables in the bank are scanned with the 
same phase values, since a single weighted average frequency differential 
is calculated for each breakpoint.

3.2 The Breakpoint M atching Algorithm
The breakpoint matching algorithm which was the primary focus of this re­
search was designed to find a globally optimal set of weighted wavetable 
matches across all breakpoints, taking into account the requirement that wave­
tables must be faded in and out at the beginning and end of each span of use, 
respectively.

The result is a three-stage process, as illustrated in Figure 3.8. Each of 
these stages will be discussed in detail after an initial section which explains 
how the quality of a match is assessed and how the wavetable weightings are 
determined.

3.2.1 M atch Evaluation
As Horner, Beauchamp, and Haken have shown in [44], the problem of de­
termining the weightings (amplitude factors) of a set of basis spectra which 
provide the best match to a particular spectrum in a least-squares sense is a 
linear problem, and can be solved using matrix arithmetic. More particularly, 
it is an instance of the general linear least squares problem [74, §15.4], and can 
be solved by use of the normal equations [16,74].

In the case of multiple wavetable matching, if it were possible to find a 
set of weightings (coefficients) of M  basis spectra (wavetables) such th a t the 
weighted sum exactly matched the spectrum at a given breakpoint, this model 
could be represented as the matrix equation

A • c =  b (3.1)

where A  is an N  x M  matrix, each column of which represents one of the 
M  basis spectra as a column vector of its N  harmonic amplitudes; c is a 
column vector of the M  coefficients which will be used as weightings of the M  
wavetables; and b is a column vector consisting of the N  harmonic amplitudes 
of the breakpoint spectrum to be matched. The equation above can thus be
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where cqj is the amplitude of the ith  harmonic of the j th  wavetable (basis 
sprectrum), c, is the coefficient (weight) to be applied to the zth wavetable, 
and bi is the amplitude of the «th harmonic of the breakpoint spectrum to be 
matched. The problem can be stated equivalently as a linearly weighted sum:

M

^   ̂ai,jcj — bi- 
J=1

(3.3)

However, because it is desirable to use as few basis spectra as possible, 
N  > M , so the system is overdetermined and generally does not have an exact 
solution. Instead, we seek to find the least squares solution of the system, that 
is, to minimize the squared error

N  /  M

X — I ~  ^  J  •
i=i \ j= i

(3.4)

The minimum of (3.4) occurs where the derivative of x 2 with respect to all 
M  coefficients ck is 0:

N  /  M

^  f  X /  ~  bi J  (ii,k =  0 .

*=1 \ j =1
(3.5)

The M  equations (3.5) for k = 1 ,2, . . .  , M  are called the normal equations
of the least squares problem [74, p. 673]. They can be written in matrix form
as

(A • c -  b)T • A =  0 (3.6)

or, equivalently [16, p. 770],

(At • A) • c =  A r • b. (3.7)

This system can be solved by finding an LUP decomposition of (AT-A). Since

this is equivalent to

L U =  P  A T A,

L U c =  P  A r b
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which is easily solved by solving the two triangular linear systems

L • x =  P • A r  • b  (3.10)

and

U • c =  x  (3.11)

by forward and back substitution, respectively [16, pp. 751-753].
Once the LUP decomposition of AT-A has been found, it can be used along 

with the permutation vector P and A T with any number of different vectors 
b on the right-hand side of (3.9). As applied in this research, this means 
that the LUP decomposition of the transpose-product A T ■ A where A  is a 
particular set of wavetables (basis spectra) selected from the wavetable bank 
is calculated only once per selection and used multiple times to evaluate how
well that set of wavetables can approximate the spectrum at each breakpoint
or at some subset of the breakpoints.

3.2.2 The Initial M atch
In the first stage of the breakpoint matching algorithm, an initial match of a 
user-specified size is found for each breakpoint. The size of the match (that is, 
the number of different wavetables used in the match) can maximally be the 
same as the number of oscillators to be used in the synthesis stage, but may also 
reasonably be less than the number of oscillators, since the set of wavetables 
to be considered for final use at a given breakpoint may be augmented with 
additional tables in later stages of the matching algorithm.

Two different methods were evaluated for use at this stage: a multi-level 
pruned search and a genetic algorithm.

M ulti-level search

The best possible match at each breakpoint would be found by an exhaustive 
search of all ( )  combinations of wavetables selected Nosc at a time, where

MVo s c ‘
N osc is the number of oscillators, from a wavetable bank of size Nwt. However, 
the cost of such a search becomes prohibitive for more than 3 or 4 oscillators 
(depending on the size of the wavetable bank). Furthermore, finding the best 
possible match of size N osc for each breakpoint spectrum at this stage of the 
algorithm does not necessarily produce the best final result, as will be shown 
in Chapter 5, since, as discussed in §3.1 above, it is necessary to fade out a 
wavetable which ceases to be used from one breakpoint to the next or to fade 
in one which comes into use; as a result of this requirement, a set of matches to 
breakpoint spectra which has greater consistency—that is, which uses many of 
the same wavetables over a number of consecutive breakpoints—may lead to 
a better overall result than a set of matches with high specificity but greater 
variety of wavetable usage.
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One way to reduce the cost of a search is to focus the search by pruning the 
search tree. This can be done in the present case by performing an exhaustive 
search for the best matches of some size less than Nosc and then extending 
the first-level search by a second level which seeks to augment only those 
sets of wavetables which provided a best match to at least one breakpoint 
spectrum in the first-level search. For example, if an eventual 4-oscillator 
match is desired, the search performed at this stage could search for the best 
3-wavetable matches in the first level and augment those sets with a fourth 
wavetable in the second-level search (a “3+1” search). Alternatively, the first- 
level search could seek only 2-wavetable matches which would be augmented 
with two additional wavetables (a “2+2” search) or even a single additional 
wavetable (a “2+1” search) in the second-level search.

Figure 3.9 illustrates how a “2+1” search might prune a search tree. For 
simplicity, the tree diagram assumes that there are only six wavetables in the 
wavetable bank, and that the first-level, depth-2 search finds that only four 
different wavetable sets are used as best matches to the breakpoint spectra of 
the tone to be matched: {1, 3}, {2, 3}, {2, 6}, and {4, 5}. The second-level, 
depth-1 augmenting search explores the third level of the search tree only for 
these four subtrees.

The reference to a multi-level search (as opposed to bi-level) at this stage is 
based on the fact that, should the matches found at this stage be less than N osc 
in size, even after the augmenting due to overlapping which will be discussed in 
reference to the next stage of the breakpoint matching algorithm, an additional 
level (or, in some cases, multiple levels) of search will be conducted to ensure 
that all breakpoint matches are of size Nosc prior to the final stage of the 
algorithm. It is for this reason that a “2+1” search might reasonably be 
specified at this stage even if a 4-oscillator match is ultimately desired.

As will be demonstrated in Chapter 5, a “3+1” search executes about an 
order of magnitude faster than a “4+0” search, yet yields about the same or 
better error rates, on average, after optimization. A “2+1” search is another 
order of magnitude faster than a “3+1” search, at the cost of an increased 
average error of about 50%; however, after optimization, the difference in 
average matching error is reduced to between 2% and 5%.

There are many examples to demonstrate that the set of wavetables selected 
by a first-level search of size n to match a particular breakpoint spectrum 
is often not a superset of the wavetables selected by a size n — 1 search. 
For example, while adding one wavetable to a match of size 2 almost always 
improves the quality of the match (unless a perfect match has already been 
found, such as when the breakpoint spectrum being matched is one of the basis 
spectra in the wavetable bank), a significantly better match may be found by 
an exhaustive search of all matches of size 3, and the latter match may have 
few or no wavetables in common with the former matches.
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Figure 3.9: Search tree pruning by a “2+1” multi-level search, assuming that there are only six wavetables in the wavetable 
bank and that only the wavetable sets {1, 3}, {2, 3}, {2, 6}, and {4, 5} were found to be the best 2-table match to some 
breakpoint spectrum.



G enetic algorithm

The observations above regarding the unpredictable nature of various types of 
multi-level searches suggested that a genetic algorithm might perform well on 
this task, perhaps yielding matches about as good as a pruned search in less 
time.

A genetic algorithm (GA) is a form of probabilistic search which is guided 
by a strategy based on genetic inheritance. The implementor of the GA de­
cides on a representation of a solution to the problem at hand (e.g., as a bit 
string or an array of floating point values) and provides an objective function 
which the GA can call to evaluate the fitness (quality) of a potential solution.2 
The GA begins by randomly generating and evaluating a number of potential 
solutions to the problem (each called an individual and collectively called a 
population). It then repeatedly generates a new generation of the population 
from the existing population by probabilistically “breeding” new individuals 
from pairs of existing individuals (the parents of the new child); individuals 
are typically selected from the population for reproduction in proportion to 
their fitness so that the quality of the population is likely to increase (evolve) 
over the generations. A new individual is creating by copying some portion 
of its genome (its digital representation) from one parent and the remainder 
from the other parent by a process called crossover; offspring are typically 
created in pairs and, in the simplest type of GA, replace their parents in the 
next generation. One or more of the best (most “fit”) individuals from the 
current generation may be retained in the next generation by an option called 
elitism. Occasionally, an individual is changed slightly (e.g., by flipping one 
bit in its binary representation) by mutation. The genetic algorithm is typi­
cally terminated after a specified number of generations or when some level of 
convergence of the population or the fitness scores of the best individuals has 
been reached.

A genetic algorithm was implemented as an alternative to the first level of 
the multi-level search discussed above; that is, if an initial search of size N osc 
was specified, the genetic algorithm was used instead of exhaustive search, but 
if an initial search of size less than N osc was specified, a second-level pruned 
search could be used to augment the matches found by the genetic algorithm.

Testing of this approach confirmed that, when used as a first-level search 
in combination with an exhaustive second-level search, the genetic algorithm 
could find matches about as good as those found by exhaustive or pruned 
search, but savings in time were only realized relative to the larger exhaustive 
searches, and then only if the objective function cached the results of calls to 
the LUP decomposition and least squares evaluation functions (as discussed 
in §4.4.2, page 79).

2 The GA may not use the value returned by the objective function directly: fitness scores 
are typically derived by some form of scaling of objective scores.
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u: 5 8 13
v: 5 8 13
w: 5 8 21
x: 5 8 13
V- 5 8 13

(a) The initial match.

u: 5 8 13
v: 5 8 —
w: 5 8 21
x: 5 8 —

y- 5 8 13

(b) One possible oscilla­
tor assignment.

u: 5 8 13
v : 5 8 13
w : 5 8 —
x : 5 8 13
y- 5 8 13

(c) Another possible os­
cillator assignment.

Figure 3.10: A possible sequence of wavetable matches and two possible opti­
mized oscillator assignments. The letters u .. .y  are used as breakpoint iden­
tifiers instead of actual breakpoint numbers because this is a hypothetical 
example. The dashes indicate points at which wavetables are faded out and 
in.

3.2.3 Overlapping of W avetable Sets
The second stage of the breakpoint matching algorithm is intended to provide 
more flexibility in the subsequent optimization stage which, as part of its task 
of assigning wavetables to oscillators, must decide when to fade a wavetable 
in or out of use. For example, the initial matches for some consecutive set 
of breakpoint spectra might include a wavetable which passes out of use and 
then back into use, as illustrated in Figure 3.10.

In this case, the optimizer is likely to pick one of the two assignments 
of wavetables to oscillators shown in Figure 3.10, parts (b) and (c), where 
the dash indicates the point at which the wavetable assigned to the relevant 
oscillator at the previous breakpoint has been faded out to zero amplitude and 
a new wavetable—the one assigned to this oscillator at the next breakpoint— 
begins a fade-in from zero amplitude. If the use of wavetable 21 at breakpoint 
w results in a lower overall error level than the use of wavetable 13 at both 
breakpoints v and x, then the first option will be used; otherwise, the latter 
option will be preferred. (It is assumed here that wavetables 5 and 8 are very 
important in achieving a good match at all five breakpoints, since they appear 
in all five matches.)

However, it is possible—indeed, highly likely—that an even lower overall 
error level would be achieved by allowing the optimizer to use wavetable 13 
instead of 21 at breakpoint w: the higher error resulting from substituting 
wavetable 13 for 21 at breakpoint w in Figure 3.10(b) will likely be offset by 
the lower error levels achieved by using three-wavetable matches instead of 
two-wavetable matches at both breakpoints v and x, and a three-wavetable 
match will surely be better than a two-wavetable match at breakpoint w in 
option (c).

The optimizer could be tuned to look for special cases like this through a 
look-ahead or look-behind routine, but a more general solution to the problem
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u: 5 8 13 u: 5 8 — u: 5 8 —
v: 5 8 — v : 5 8 21 v : 5 8 21
w: 5 8 21 w: 5 8 21 w : 5 8 21
x : 5 8 21 x : 5 8 — x: 5 8 21
y- 5 8 — y- 5 8 13 y: 5 8 —

(a) (b) (c)

Figure 3.11: Other possible optimized oscillator assignments with one-
breakpoint overlapping.

of selecting the best points for fade-in and fade-out of wavetables can be ex­
pected to yield even better results. For example, it could be the case that the 
use of wavetable 21 at breakpoint w is crucial to achieving a low error measure 
at th a t breakpoint but that a two-wavetable match would be more tolerable 
at breakpoint y than at breakpoint x. If the optimizer were allowed to use 
any wavetable one or more breakpoints earlier or later than suggested by the 
initial sequence of matches, then any of the scenarios depicted in Figure 3.11 
would also be possible and may provide a lower overall error than either of the 
options in Figure 3.10.

The general solution adopted for this breakpoint-matching algorithm is to 
include a stage in which wavetable sets are overlapped with the wavetable sets 
at preceding and following breakpoints before the optimizer makes oscillator- 
assignment decisions in the following stage. A minimum overlap of one break­
point is mandated, but overlapping at any distance may be specified; the 
default overlap distance is two breakpoints on either side of the breakpoint 
which is the focus of the overlapping algorithm. The greater the overlap dis­
tance, the more possibilities which must be evaluated by the optimizer, so it 
is best to limit the amount of overlap to distances from one to three.

A specific example will illustrate both the general idea of overlapping and 
some of its implications. Figure 3.12(a) shows the first 30 harmonics of the 
phase vocoder analysis of a French horn tone at pitch E2, and part (b) shows 
the corresponding 24-breakpoint piecewise linear approximation found by the 
breakpoint selection algorithm. Figure 3.13(a) shows the best three-wavetable 
matches to the breakpoint spectra as found by a first-level search of depth 
two augmented by an second-level search of depth one (a “2+1” search). Note 
th a t breakpoints 7 to 14 were best matched by the same set of wavetables. As 
a result, as shown in Figure 3.13(b), the wavetable sets at breakpoints 9 to 12 
which would have been passed to the optimizer after overlapping at distance 
two were of size three, one less than the number of oscillators to be used for 
resynthesis. A better result would undoubtedly be achieved by re-augmenting 
the wavetable sets at breakpoints 9 to 12 to size four, since even if one oscillator 
is used between breakpoints 8 and 9 to fade out wavetable 6 and again between
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breakpoints 12 and 13 to fade in either wavetable 4 or 23, the oscillator would 
be available to use a fourth weighted wavetable at breakpoints 10 and 11.

Figure 3.13(c) shows the best matches that were found by re-augmenta- 
tion of the wavetable set {10,15, 37}. Although the re-augmentation phase—a 
third-level exhaustive search—was triggered by the existence at breakpoints 9 
to 12 of a wavetable set smaller in size than the number of oscillators to be 
used, the search tries matching every possible combination of wavetables 10, 
15, 37, and one other wavetable at every breakpoint. If the new combination is 
a better match at any breakpoint, overlapping is repeated for tha t breakpoint 
using the new set of wavetables. In the example shown, it is to be expected 
tha t a four-wavetable match including wavetables 10, 15, and 37 will improve 
the matches at breakpoints 7 to 14 and 16, since they already have the set {10, 
15, 37} as the best three-table match; note that at some of the breakpoints, 
the match was improved by the addition of wavetable 6, at others, with 27, 
and at breakpoint 16, with 41. In addition, improved matches were found for 
breakpoints 5, 6, 15, 17-19, 21 and 22, and overlapping was performed with 
the new four-wavetable sets for these breakpoints as well, resulting in the final 
sets of potentially usable wavetables shown in Figure 3.13(d). Note that the 
overlapping which was performed during the first pass centered on the latter 
breakpoints is not undone during the second pass; this leaves the optimizer 
with more options for accommodating fade-in and fade-out, since it may be, 
for example, that using the three-table match {6, 9, 15} at breakpoint 3 will 
give a better overall result than using the new four-table match.

3.2.4 Optim ization of Oscillator Assignm ents
The task of the final phase of the breakpoint-matching algorithm is to assign a 
weighted wavetable to each available oscillator at each breakpoint such that the 
overall error is minimized, taking into account the need to fade a wavetable in 
or out when it begins or ceases to be used. A synthesizer that subsequently uses 
this oscillator-assignment data to synthesize a tone, any processing algorithms 
th a t convert this data to another form for synthesis (such as to a Csound file), 
or a composer who wishes to modify the control data to create a modified 
tone must recognize that a wavetable with a weight of zero represents not only 
the start of the fade-in of a new wavetable, but that the previous wavetable 
assigned to the same oscillator at the previous breakpoint should be faded 
out between the previous breakpoint and the current one. If wavetable zero is 
specified (i.e., zero appears in place of a valid wavetable index) for an oscillator, 
then that oscillator is unassigned (unused) between the current breakpoint and 
the next. (Due to optimization, this occurs almost exclusively at the final, 
external breakpoint only.)

The optimization of oscillator assignments is achieved by modeling the 
problem as a vertex-weighted directed acyclic graph (DAG) and using the 
single-source acyclic weighted shortest path algorithm [16, §25.4] [93, §14.5].

A DAG is constructed such that each vertex represents a particular wave-
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1 10 26 29 1 { 6 9 10 15 26 29 }
2 6 9 15 2 { 4 6 9 10 15 21 26 29 }
3 6 9 15 3 { 4 6 9 10 15 21 26 29 47 }
4 4 15 21 4 { 4 6 9 15 21 37 47 }
5 4 15 47 5 { 4 6 9 10 15 21 37 47 }
6 6 15 37 6 { 4 6 10 15 21 37 47 }
7 10 15 37 7 { 4 6 10 15 37 47 }
8 10 15 37 8 { 6 10 15 37 }
9 10 15 37 9 { 10 15 37 }

10 10 15 37 10 { 10 15 37 }
11 10 15 37 11 { 10 15 37 }
12 10 15 37 12 { 10 15 37 }
13 10 15 37 13 { 4 10 15 23 37 }
14 10 15 37 14 { 4 10 15 23 37 }
15 4 15 23 15 { 4 6 10 15 23 37 }
16 10 15 37 16 { 4 6 10 15 23 37 }
17 6 15 37 17 { 4 6 10 15 23 37 }
18 4 15 23 18 { 4 6 10 15 23 27 37 }
19 4 15 23 19 { 4 6 10 15 23 27 37 }
20 4 15 27 20 { 4 10 15 23 27 37 }
21 4 10 15 21 { 4 9 10 15 23 27 30 37 }
22 4 15 37 22 { 4 9 10 15 16 27 30 37 45 46
23 9 10 30 23 { 4 9 10 15 16 30 37 45 46 }
24 16 45 46 24 { 4 9 10 15 16 30 37 45 46 }

(a) Initial “2+1” matches. (b) Wavetable sets with overlap of 2.

3 4 10 15 37
5 4 10 15 37
6 6 10 15 37
7 6 10 15 37
8 10 15 27 37
9 6 10 15 37

10 6 10 15 37
11 10 15 27 37
12 10 15 27 37
13 10 15 37 41
14 6 10 15 37
15 10 15 37 41
16 10 15 37 41
17 10 15 37 41
18 10 15 37 41
19 10 15 37 41
21 4 10 15 37
22 4 10 15 37

(c) Re-augmented matches.

6 9 10 15 26 29 37 }
6 9 10 15 21 26 29 37 }
6 9 10 15 21 26 29 37 47 } 
6 9 10 15 21 37 47 }
6 9 10 15 21 37 47 }
6 10 15 21 27 37 47 }
6 10 15 27 37 47 }
10 15 27  37 }
10 15 27 37 }
10 15 27  37 41 }
6 10 15 23 27  37 41 }
6 10 15 23 37 41 }
6 10 15 23 27 37 41 }
10 15 23 27 37 41 }
9 10 15 23 27 30 37 41  }
9 10 15 16 27 30 37 45 46 } 
9 10 15 16 30 37 45 46 }

(d) Wavetable sets after overlap of re-augmented 
matches (with changes highlighted).

1 { 4
2 ( 4
3 { 4
4 ( 4
5 { 4
6 { 4
7 { 4
8 ( 6

9-10 { 6
11-12 { 6
13-14 ( 4
15-17 ( 4
18-19 ( 4

20 { 4
21 { 4
22 { 4

23-24 { 4

Figure 3.13: Two-breakpoint overlapping with re-augmentation for a four- 
oscillator match of a French horn playing pitch E2.
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table set at a particular breakpoint and each edge represents a legal transition 
to some wavetable set at the next breakpoint, taking into consideration the 
need to fade out a wavetable which ceases to be used between the current 
breakpoint and the next and to fade in a wavetable which starts to be used at 
the next breakpoint. The weight (cost) of each vertex is the least-squares error 
of the fit of the weighted wavetables to the breakpoint spectrum. The shortest 
path algorithm is invoked with the representation of the external breakpoint at 
the start of the tone as the source vertex. The path to the vertex representing 
the external breakpoint at the end of the tone is then traced; the sequence of 
vertices on the shortest path from the start vertex to the end vertex repre­
sents the globally optimal sequence of sets of wavetables, one set per internal 
breakpoint.

The wavetables of each set are then assigned to oscillators so as to ensure 
continuity of wavetable assignments from one breakpoint to the next. Fig­
ure 3.14 shows the result of match optimization and wavetable-to-oscillator 
assignment for the same French horn tone used as an example in Figures 3.12 
and 3.13.

The running time of the single-source acyclic weighted shortest path al­
gorithm is 0 (H  +  E) if the graph is implemented with an adjacency list rep­
resentation. However, the size of the graph is not simply determined by the 
size of the initial best match to each breakpoint spectrum nor by the num­
ber of oscillators to be used in synthesis. Because the number of vertices is 
determined by the number of combinations of wavetables drawn from the set 
of eligible wavetables at each breakpoint, the size of the graph is related to 
the complexity of the tone being analyzed. As can be seen in Figures 3.12 
and 3.13, the wavetable sets from which optimal matches will be selected are 
larger in the attack and release phases of the tone and smaller in the sustain 
portion; the more consistent the spectral envelope is over a sequence of break­
points, the smaller the wavetable sets for those breakpoints will be. The graph 
used to optimize the breakpoint matches for the horn E2 tone which was the 
subject of those figures had 3,590 vertices and 101,366 edges, or 4,373.2 ver­
tices and edges per breakpoint. This is about half the average size of graphs 
used in finding four-oscillator matches with an initial “2+1” search and less 
than one-fifth the size of the largest graphs resulting from the same type of 
search with the same wavetable bank; on a per-breakpoint basis, this graph 
was about two-thirds the size of the average graph size and one-fifth the size 
of the largest graphs.

There is a general relationship, however, between the average number of 
vertices and edges per breakpoint and the specificity of the initial search for 
best matches. The graph resulting from an initial “3+1” search is three to 
four times as large, per breakpoint, as the graph constructed from the results 
of an initial “2+1” search and any re-augmentation which may have been 
triggered in generating four-oscillator matches; a graph derived from an initial 
“4+0” search is, on average, about one-quarter larger per breakpoint than one 
resulting from a “3+1” search.
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Break- Oscillator 
point 1 2  3 4

1: 4 10 15 37
2: 4 10 15 37
3: 4 10 15 37
4: 4 10 15 37
5: 4 10 15 37
6: 4 10 15 37
7: 4 10 15 37
8: — 10 15 37
9: 6 10 15 37
10 6 10 15 37
11 — 10 15 37
12 41 10 15 37
13 41 10 15 37
14 41 10 15 37
15 41 10 15 37
16 41 10 15 37
17 41 10 15 37
18 41 10 15 37
19 41 10 15 37
20 41 10 15 —
21 — 10 15 4
22 37 — 15 4
23 37 16 15 4
24 37 16 15 4

Figure 3.14: Oscillator assignment for a four-oscillator match of a French horn 
playing pitch E2.
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The relationship between specificity and graph size may be understood by 
considering the locality of spectra in musical tones: a spectrum at a particular 
point in time of the tone’s duration is most likely to be similar to neighboring 
spectra.3 In the case of a tone played with vibrato, the tone is likely to 
alternate between two spectral localities; a spectrum near the peak of a vibrato 
is not only similar to the spectra near it, but is also likely to be similar to 
spectra near the preceding and following vibrato peaks. An initial exhaustive 
search for the best two-wavetable matches to breakpoint spectra is likely to find 
the same matches being used at adjacent or nearby breakpoints; however, the 
best four-wavetable matches might use a wide variety of wavetables because, 
as the matches to each spectrum get more exact, the particularities of the 
spectra become more significant than their similarities.

The use of the single-source acyclic weighted shortest path algorithm to 
find a globally optimal set of wavetable matches to breakpoint spectra is pred­
icated on the use of some kind of initial search to find a good match for 
each breakpoint spectrum—for identifying localities—and on the overlapping 
of these matches to form sets of wavetables eligible for use at each breakpoint 
to allow smooth transitions from locality to locality.

The sequence of matches found by the shortest path algorithm is globally 
optimal in a mathematical sense, but may not provide the best sequence of 
matches from a perceptual point of view. For example, several studies [8, 
38,40,82] have found that the attack portion of a tone has high perceptual 
relevance, so smaller errors in matching spectra in the attack portion may 
be more perceptually significant than larger errors in the sustain or release 
portions. However, as previously stipulated, the algorithm is globally optimal 
with respect to a given error measure; an error measure could include a higher 
weighting for errors in the attack portion of a tone.

The construction of the DAG through which the shortest path is to be 
found is based on an algorithm which adds an edge to the graph representing 
each possible transition from one possible match at one breakpoint to another 
possible match at the next breakpoint, ensuring that the requirements for 
fade-in and fade-out of wavetables is taken into account. This algorithm is 
discussed in §4.4.4.

As is the case with almost any algorithm, there are trade-offs to be made 
between the time expended in seeking a result and the quality of the result 
found, and the breakpoint-matching algorithm presented here is no different. 
Chapter 5 will present the results of applying this algorithm with various 
options and will make recommendations concerning which trade-offs might be 
appropriate in different situations.

3Sandell and Martens [83] found high correlation between neighboring spectra and that 
the correlation between spectra was greater than the correlation between the temporal 
envelopes of harmonics.
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Chapter 4 

Im plem entation Issues

4.1 Waveform Analysis
Instrumental tones were analyzed using the pvan (phase vocoder analysis) 
utility of the SNDAN  sound analysis suite by James Beauchamp and his 
students at the University of Illinois at Urbana-Champaign [5]. Details of 
the operation of pvan are given elsewhere [5,59], but, in summary, pvan is 
a period-synchronous phase vocoder which, given an estimated or calculated 
(average) frequency of analysis, uses band-limited interpolation of the input 
signal to produce a power-of-two number of samples per period, a Hamming 
window with a length equal to two periods, overlapping of analysis frames at 
a distance of one-half a period, and STFT analysis to produce an analysis file 
containing amplitude and frequency-deviation data for each harmonic, where 
the number of harmonics is limited by the Nyquist frequency.

While extensions of the McAulay-Quatieri (MQ) analysis technique [60] 
have been preferred by several researchers [28,44,57] for its ability to track 
large frequency deviations, the MQ method proved to be less useful than the 
phase vocoder in this research, just as it has in some other contexts [6]. First, 
it is less robust than the phase vocoder, in the sense that it requires the adjust­
ment of several parameters to avoid analysis artefacts; in some cases using the 
mqan utility also available in the SNDAN  suite, analysis artefacts resulted no 
m atter which parameters were used, especially in the lower-amplitude attack 
and decay sections. Second, multiple wavetable synthesis requires that all par­
tials be harmonic partials, since a single period of a waveform is stored in each 
wavetable, so the multiple tracks identified by MQ analysis must be reduced to 
harmonics (for which the SNDAN  utility harmf ormat is provided); the result 
is cleaner than that of pvan, since small amplitude fluctuations (shimmer) are 
suppressed, but inharmonic partials cause crosstalk between harmonics. The 
problems of crosstalk due to inharmonic partials and decay artefacts and the 
fact that the vibrato of all the tones being used in testing was within the 
±2% range over which the phase vocoder performs well made phase-vocoder 
analysis the preferred option.
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4.2 Breakpoint Selection
Many piecewise-linear-approximation (PLA) algorithms have been proposed 
and reviewed for use in selecting breakpoints in musical tones, from the hand- 
selected line-segment approximations of Risset and Mathews [77] and Grey 
[38], and Beauchamp’s LINS EG [2], through Strawn’s testing [90] of Pavlidis’s 
split-and-merge [68] and ADJUST  [67] algorithms, to the genetic algorithm 
used by Horner and Beauchamp [43].

Breakpoint selection algorithms can in general be categorized according to 
whether they seek a PLA which conforms to specified error bounds or one 
which finds a specified number of breakpoints. Serra, Rubine and Dannen- 
berg’s spectral ramp interpolation [86] is an example of the first type of algo­
rithm, and operates in a similar fashion to LINSEG: starting at the beginning 
of the tone, they extend a spectral ramp to subsequent periods until the error 
exceeds a given threshold, at which point the previous period is stored as a 
breakpoint and the process is repeated to find the next ramp. Horner and 
Beauchamp’s genetic algorithm for PLA [43] is an example of the second type: 
the genetic algorithm uses a bitstring or array of integers of a fixed size as 
its genome. Jensen’s split-point time estimation method [50] is a recent and 
extreme example: it seeks only four breakpoints ( “split-points”), assuming 
tha t the envelope of each partial of every tone corresponds to a variation of a 
prototypical attack-sustain-release (ASR) envelope.

Breakpoint-selection algorithms can also be classified according to whether 
they find a PLA for each partial or harmonic independently or whether they 
find shared (simultaneous, common) breakpoints. Both Serra’s and Horner’s 
algorithms seek shared breakpoints, such as are required for methods based 
on interpolation.

4.2.1 A Segment-M erging Algorithm
For this research, a new breakpoint selection algorithm was developed and 
used. The segment-merging algorithm can be used either to construct a PLA 
within a specified global error bound or with a specified number of breakpoints 
(or to halt on either condition). It is used here to find shared breakpoints, 
but could be modified for use on a single harmonic at a time. The algorithm 
proceeds in the opposite direction of Pavlidis’s SPLIT  algorithm: it begins 
with every analysis frame as a breakpoint (so the overall approximation error 
is zero) and, on every iteration, merges the two adjacent segments, the merging 
of which will increase the overall error the least. The algorithm halts when the 
number of breakpoints has been reduced to the user-specified target or when 
the error has increased beyond the user-specified threshold.

The segment-merging algorithm offers several advantages over the genetic 
algorithm which was found to be best in Horner and Beauchamp’s comparison 
of PLA methods [43] and which was also tested:

• The segment-merging algorithm retains the extremes—the highest peaks
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and the lowest valleys—as breakpoints. While this might result in higher 
overall error levels than methods which seek global optima rather than 
local ones, the more angular PLA’s which result from segment merging 
are well suited to capturing both the sudden peaks of a strong attack and 
the regular oscillations of vibrato, and the tendency of the algorithm to 
exaggerate the profile of a tone with sudden changes in amplitude is com­
pensated for by using more than the minimum number of breakpoints 
which have been found to be necessary through listening tests [43]. Fig­
ure 4.1 illustrates the advantages of segment-merging for approximating 
the envelope of a tone with vibrato; note that the PLA found by the 
GA (part b) shows the sixth major peak from the end of the original 
tone (part a) as lower in amplitude than its neighbors and misses the fi­
nal peak entirely, while the segment-merging algorithm (part c) captures 
almost all the jaggedness of the original violin A4 tone.

• The segment-merging algorithm is predictable: the set of breakpoints 
found by a search for n breakpoints is a subset of those found by a 
search for m  breakpoints, m  > n. If visual inspection shows that an 
n-breakpoint PLA has missed one of the peaks of a vibrato, for example, 
one can try n +  1, n +  2, and so on until the peak is suitably modeled. 
Figure 4.2 shows that the breakpoints of the 55-breakpoint PLA found 
by segment merging (part c) are a subset of those of the 68-breakpoint 
PLA (part b) of the violin A4 tone (part a). It requires 55 breakpoints 
to capture the lower-amplitude vibrato peak near the middle of the tone 
and 68 breakpoints to capture the valley immediately after it.1

• The segment-merging algorithm is significantly faster than the genetic 
algorithm on this task, and finds better (i.e., lower-error) solutions. For 
example, on the violin A4 test case illustrated in Figures 4.1 and 4.2, the 
segment-merging algorithm took about 1 second for each of the 55- and 
68-breakpoint PLA’s, achieving mean error rates (as explained below) 
of about 150 and 125, respectively, while the GA took 691 seconds and 
970 seconds, respectively, for the same task, achieving mean error levels 
of about 161 and 140.

As implemented (in C ++) for this research, the segment-merging algorithm 
uses a locator-based priority queue to keep track of the segments of the current 
state of the PLA and, when the minimum element in the priority queue is 
retrieved and dequeued, to return the node corresponding to the segment 
which, when merged with the following segment, will increase the overall error 
the least. A locator is a design pattern introduced by Goodrich and Tamassia 
[36, §6.4] which keeps track of the current position of an element in a positional 
container. In a locator-based priority queue, the priority of an element may be

1This may suggest that the importance of modeling these features is more important to 
the human visual system than it might be to the human aural system; formal listening tests 
might be able to determine the salience of various details of harmonic amplitude envelopes.
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Figure 4.1: Fifty-five breakpoint PLA’s of a violin tone at pitch A4 found by 
a genetic algorithm and by segment merging.
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(a) Phase vocoder analysis of the original tone.
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(b) Sixty-eight-breakpoint PLA.
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(c) Fifty-five-breakpoint PLA.

Figure 4.2: Comparison of PLA’s of different resolution of a violin tone at 
pitch A4 found by segment merging.
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changed by accessing it through its locator; the locator then triggers an update 
of the priority queue, which not only changes the position of the element in the 
queue but updates the locator with the new position so that the association 
between the element and its position in the queue is maintained. A locator is 
needed in the implementation of the segment-merging algorithm because when 
a segment is dequeued from the priority queue and merged with the subsequent 
segment, the node in the queue representing the subsequent segment must be 
updated to represent the new merged segment; this will also cause the node 
to be moved to a new position in the priority queue because its priority— 
the amount by which merging this segment with the following segment will 
increase the overall error—will also have changed. Similarly, the segment 
preceding the dequeued segment will have to be updated, since its priority 
will also be changed by the merge.

4.2.2 Error Measures
The implementation uses an external error-measure object to evaluate the 
current state of the PLA. Two types of error measure were implemented and 
tested, with two variations of each type being available.

First, the user may select between evaluating the error as the Euclidean 
distance (root sum of squares error or L2 norm) or the M anhattan (city-block) 
distance (sum of absolute magnitudes error or L\ norm) between each actual 
spectrum and the corresponding spectrum of the linear approximation. These 
error measures are defined as

Mean | f̂rames
Euclidean =  —------ /  a

A  frames \error n- 1 \

-̂ har
Y ^ ( ak(n) -  alk(n))'2 (4.1)
k=l

Mean 
Manhattan =  

error frames

■^fram es

E
^ha

M n) (” )l (4.2)
fc=i

where Aframes is the number of analysis frames, -Ahar is the number of harmonics 
to be used by the error measure, ak(n) is the amplitude of the kth  harmonic 
a t the nth frame, and a'k(n) is the corresponding amplitude from the linear 
approximation.

The implementation also allows the user to specify how many of the analy­
sis harmonics are to be used to calculate the error. The error figures reported 
in Chapter 5 represent mean Euclidean error, calculated over all analysis har­
monics.
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Second, the user may specify the use of a relative error measure, a biased 
(or weighted) error measure, or both in combination. A relative error measure 
in effect divides the error of each frame by the RMS amplitude of the frame:

This is the error measure preferred by Horner [41,42, 44], presumably on the 
assumption that small amplitude differences will be more perceptible in low- 
amplitude portions of a tone than in high-amplitude portions, that is, that 
human hearing is relative rather than absolute.2

Relative error measures were tested but not used in the research reported 
here because it was found that they caused breakpoints to be selected which 
captured all the valleys in a tone with vibrato, but which missed some of the 
peaks. For example, Figure 4.3 shows a two-dimensional plot of the first 20 
harmonics of a violin tone at pitch A4 and two 42-breakpoint PLA’s, both 
found by the new segment-merging algorithm, the first using absolute Eu­
clidean error, the second, relative Euclidean error. Note tha t the relative error 
measure misses a prominent peak about one-third of the way through the tone, 
but captures the small valley near the end of the tone; both the error measures 
miss a minor peak near the middle of the tone.

Another example of the problems with using a relative error measure is 
seen in Figure 4.4, which shows that the PLA constructed using a relative 
error measure devotes 17 of its 24 breakpoints to the tail of the decay portion 
of the tone (which may be room echo and is not audible in the original tone).

It is important that all major peaks and valleys of a tone with vibrato be 
captured in the PLA since the peaks and valleys of the frequency envelope 
correspond to the peaks and valleys of the amplitude envelope—in fact, the 
amplitude modulation is vibrato-induced—and the ear is very sensitive to the 
pitch fluctuations of vibrato [57]. Frequency modulation could be explicitly 
modeled by the breakpoint selection algorithm—the error measure could be 
modified to include the weighted average frequency differential or the frequency 
envelope could be modeled by a separate PLA—but the assumption that both 
amplitude and frequency envelopes will be well approximated by the same set 
of common breakpoints was found to be true in general.

A biased or weighted error measure gives more weight to errors in the 
perceptually significant attack segment of a tone. There are two ways in 
which the bias could be specified and applied, which might be called segment- 
weighted, and frame-weighted. In the former option, a weight w\ might be

2Horner et al. explain [44, p. 340], “we would expect that the lower the value of this error 
measure, the better the perceptual match. Our experience so far is that this is generally 
but not always true. However, lacking a formula which is a good predictor of subjective 
preference, this is what we are using for the time being.”

Mean
relative

error

Frames

frames
(4,3)
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(a) Phase vocoder analysis of the original tone.
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(b) PLA using absolute Euclidean error.
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(c) PLA using relative Euclidean error.

Figure 4.3: Relative vs. absolute error in PLA’s of a violin tone at pitch A4.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



450*

(a) Phase vocoder analysis of the original tone.

(b) PLA using absolute Euclidean error

5 . 2E1 MT s e c0 . 0

(c) PLA using relative Euclidean error.

Figure 4.4: Relative vs. absolute error in 24-breakpoint PLA’s of a bassoon 
tone at pitch C#2.
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specified for the attack segment as a whole; the weight applied to the error of 
the rest of the tone would then be =  1 — W\. Horner and Beauchamp [43] 
used this approach, specifying an average weighted relative error measure as

M l  / E f i r M n )  -  g ' M f

W - 1  V  E & o t W 2

JVfram,, Fpelk + 1 V Efe" “it")2

where -Fpeak is the frame number in which the peak RMS amplitude within the 
first 100 ms occurs; they used W\ — w^ — 0.5.

In the second option, a weight w may be specified which is to be applied to 
the error of each frame in the attack segment; all frames in the rest of the tone 
are assumed to have a weight of 1. Thus, total frame-weighted (non-relative) 
Euclidean error is specified as

■^attack

J 2  w *
n~  1

■ ^ h a r  ^ f r a m e s

a £(<**(«) -  a'k{n))2 + \
1 k—1 '

■̂har
]T (a*(n) -  a'k{ n ) f  (4.5)
k= 1

where iVattack is the number of frames in the attack portion of the tone, which 
is calculated from a user-specified attack duration.

This approach has the advantage of applying a consistent weighting to 
approximations in the attack portion, regardless of the length of the tone. 
For example, all frames in the attack portion might be given a weight two or 
three times that of the frames in the remainder of the tone. By comparison, 
the weighting applied to each frame of the attack segment by Horner and 
Beauchamp’s segment-weighted error measure is dependent on the relative 
length of the attack portion. In the segment-weighted scheme, assuming that 
wi =  (1 — u)2) and that frames in the sustain and release portions of the tone 
are unweighted (or weighted at 1), each frame in the attack portion is weighted 
by

U>i • (iVframes -^ a tta ck ) 

-^ a t ta c k  ‘ ( I  ^ l )

If toi =  w2 = 0.5, this reduces to

-^fram es — -^attack  

^attack

(4.6)

(4.7)

so the weight of attack frames is inversely proportional to the length of the 
attack portion relative to the length of the rest of the tone. For example, if 
the attack portion is 10% of the length of the whole tone (e.g., 100 ms of a 
1-second tone) and Wi = 0.5, each frame of the attack is weighted at 9, but
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if the attack is 2% of the tone length (e.g., 100 ms of a 5-second tone), each 
attack frame is weighted by 49.

Based on informal visual inspection of the amplitude-segment approxima­
tions produced by the segment-merging algorithm, it was judged that an attack 
bias was needed only to capture the chiff3 at the start of several flute tones. 
Attack frame weightings of 4 to 12 were applied over attack durations of from 
50 ms to 165 ms of tones varying in length from 3.4 to 4.4 seconds. Figure 4.5 
shows the first 100 ms of a flute A #4 tone, illustrating in part (a) the first 20 
harmonics of the phase vocoder analysis of the chiff which precedes the tone 
proper; in (b), the PLA of the first 100 ms as produced by the segment-merging 
algorithm without attack bias; and in (c), a PLA of the chiff, achieved with a 
12-times weighting of frames in the first 50 ms of the tone.

4.2.3 Num ber of Breakpoints
Informal visual inspection was also used to determine how many breakpoints 
or what approximation error level to use as the target for the breakpoint selec­
tion algorithm. The default was to use 24 breakpoints, which is about twice 
the number that were found necessary in formal listening tests for the average 
subject to misidentify synthetic tones as real about 50% of the time [43]. How­
ever, the number of breakpoints used varied with the nature and complexity 
of the tone being modeled. Double the default number were used for the En­
glish horn and oboe tones and as the minimum number of breakpoints (along 
with an upper bound on error) for the flute and string tones; the increased 
number of breakpoints were required due to the low-amplitude vibrato in the 
double-reed instruments, as illustrated in Figure 4.6 and the high-amplitude 
vibrato in the flute and strings, as seen in Figure 4.2 above.

4.3 W avetable Bank Selection

4.3.1 U se of a Clustering Algorithm
The decision to use a clustering algorithm as the basis of the method for 
selecting basis spectra for the wavetable bank for this research was based on 
the special characteristics of the problem chosen for study, which requires that 
the basis spectra be generally useful over a broad range of instrumental timbres 
and pitches.

Horner’s research on the use of principal components analysis (PCA) and 
a genetic algorithm (GA) for wavetable selection [41,44] revealed that the 
GA was the preferred method, especially for matches using fewer than four 
wavetables. However, the fitness function of the GA must evaluate (or at

3 Chiff is the sound of an initial burst of air prior to the start of phonation due to the 
vibration of a column of air, commonly heard at the start of flute, pan pipe, and pipe organ 
tones.
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(c) PLA with attack weighting.

Figure 4.5: Piecewise linear approximation of the first 100 ms of a flute playing 
pitch A #4, showing the initial chiff and the start of phonation.
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(b) A 48-breakpoint PLA of the tone.

Figure 4.6: Low-amplitude vibrato in an English horn tone at pitch G3.
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least estimate) how well the wavetables selected in the current generation will 
serve as basis spectra in the matching phase. Since the problem on which 
this research is focused requires the selection of the best subset of the basis 
spectra and evaluation of each selected subset as a weighted match at each 
breakpoint of each instrumental tone at each pitch in the current group, the 
computational cost of the fitness function would be prohibitive.

Sandell and Martens [83] addressed the problem that if PCA is simply ap­
plied to the spectra of a tone, it emphasizes the louder spectra of the sustain 
portion of the tone at the expense of the quieter spectra of the attack and 
release portions; their method maps the analysis frames of a tone of any dura­
tion onto a common-resolution (200-partition) non-linear time domain which 
dedicates about 40% of the partitions to the attack portion of the tone. It is 
possible that this method could be extended for use across many tones from 
many instruments—Sandell and Martens reported testing tones at one pitch 
on several different horns—but the statistical nature of PCA suggests that 
more basis spectra would be needed to match a particular tone if the basis 
spectra were more general in nature.

The use of a clustering algorithm on the breakpoint spectra selected in the 
previous step was expected to find the similarities between spectra from dif­
ferent sources and different portions of their originating tones, yet to preserve 
the diversity of the various clusters of spectra. As will be shown in §5.4, these 
expectations were fulfilled: while many clusters consisted primarily or exclu­
sively of adjacent spectra from the sustain portion of a single tone or from 
nearby tones from the same instrument, other clusters grouped spectra from 
the attack portions of a variety of tones and instruments, some captured simi­
larities between attack spectra and release spectra, and some gathered similar 
spectra from different portions of different instrumental tones. The spectra of 
a given tone were typically distributed between four to seven different clus­
ters, with most of the spectra in one or two clusters and the remaining spectra 
scattered across two to six others.

4.3.2 Grouping of Sample Tones by P itch
Breakpoint spectra were normalized prior to clustering, such that the sum of 
the harmonic amplitudes was equal to one for each spectrum. The spectra were 
divided into groups, prior to clustering, according to the pitch of the tone from 
which they originated, and the number of harmonics to be used as attributes 
by the clustering algorithm (and which would be retained in the wavetable 
bank for matching and subsequent synthesis) was limited by the relationship 
of the Nyquist frequency of the sample rate to be used for synthesis and the 
highest anticipated fundamental frequency to be generated by pitch-shifting 
synthesis.

For example, for testing purposes, 198 sample tones played by sixteen dif-
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Figure 4.7: Pitch classes selected for testing (shown as open notes) and the 
pitches they could be shifted to synthesize (shown as solid notes).

ferent instruments4 were selected from the McGill University Master Samples 
collection to span the range from A1 to B6, a range which includes the playable 
ranges of most orchestral instruments.5 Tones were selected a minor third 
(three semitones) apart—all tones of pitch classes Aj) (Bb), C# (Db), E and G 
in the specified range—so that all other tones in the range could be synthesized 
by pitch-shifting the control data a single semitone upward or downward; for 
example, the control data for G4 could also be used to synthesize Fj)4 and Gj}4, 
th a t for AjJ4 could also synthesize A4 and B4, and so on, covering all twelve 
semitones of the octave, as illustrated in Figure 4.7. Since all the breakpoint 
spectra of the selected tones at these four pitches—G4, Ajj4, Cjj5, and E5— 
were grouped together (in what will be referred to as Group 3 in Chapter 5), 
they will all be resynthesized using wavetables from the wavetable bank for 
Group 3; furthermore, any other tones in the range from Fjj4 (the first solid 
note in Figure 4.7) to F5 (the last solid note in the figure) will be synthesized 
by pitch-shifting using wavetables from the same wavetable bank. The nomi­
nal fundamental frequency of the highest note in this range (F5) is about 698 
Hz (assuming the use of the international standard tuning of A440); if the 
tone to be synthesized at F5 is to include a vibrato of up to 2% variation in 
frequency, a maximum fundamental frequency of 712 Hz might be reached. If 
the synthesis is to be performed at CD quality—a sampling rate of 44100 Hz— 
then the Nyquist frequency of 22050 Hz will require that the wavetables in the 
wavetable bank for this group be restricted to no more than 22050/712 ~  31 
harmonics. Similarly, since the highest pitch that would be synthesized from 
Bank 2 would be F4, with a nominal fundamental frequency of about 349 Hz 
and a highest expected fundamental frequency due to vibrato of about 356 Hz, 
wavetables in Bank 2 should be restricted to 61 or 62 partials for CD-quality 
synthesis.

4 Because the McGill University Master Samples collection does not include tones span­
ning the full range of each member of the saxophone family (bass, baritone, tenor, alto, and 
soprano) but uses about an octave from each instrument such that the recorded tones span 
the full range of the family, the saxophones were regarded as a single instrument for the 
purposes of this study.

5 This range excludes the lowest and highest octaves of the piano (the range of which 
extends downward to A0 and upward to C8), the lowest string of the double bass (which, 
with an extension, can descend as low as C l), the bottom octave playable by a contrabassoon, 
the upper octave of the glockenspiel and xylophone, and the top fifth of the piccolo’s range.
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4.3.3 Selection of Class Representatives
The publicly available6 unsupervised Bayesian classification7 program Auto- 
C lass C [14] was used to perform clustering of all the breakpoint spectra 
from each selected instrumental tone in each group. Given a database of 
attribute vectors and a class model, Auto Cl ass  finds the set of clusters that 
is maximally probable with respect to the data and model. The number of 
clusters is determined automatically. The “single normal CN” model was used 
for each attribute; this models each real-valued attribute (normalized harmonic 
amplitude) with a conditionally independent Gaussian normal distribution, 
assuming that there are no missing values and that the measurement error is 
both constant and small relative to the model variance.

The breakpoint spectrum which was nearest (in a Euclidean sense) to the 
centroid of the spectra which were clustered together was then selected as the 
representative of that cluster (class) and, as such, was provisionally selected 
as one of the wavetables in the wavetable bank for that group.

Wavetable matching was then performed using this provisional wavetable 
bank for all the tones in the current group, and two types of statistics were 
gathered: the matching error and the usage of the wavetables in the bank. On 
the basis of this information, the selection of spectra in the wavetable bank 
was then hand-tuned in one or both of two ways:

• If one or more tones in the group had a particularly high matching error, 
the breakpoints of the tone(s) which had higher-than-average match­
ing error were examined to see if the addition of one of the high-error 
breakpoint spectra to the wavetable bank would be likely to reduce the 
matching error at a number of breakpoints.

• If one of the wavetables in the bank was used significantly fewer times in 
wavetable matches than the other wavetables in the bank, th a t wavetable 
was removed from the bank, since a secondary objective of the wavetable 
bank selection process was to find as small a set of wavetables as possible 
which would still support low-error matches to the breakpoints of the 
group.

After the wavetable banks were improved by such modifications, if ap­
plicable, the breakpoint matching procedure was repeated to verify that the 
modifications had been effective.

6 Available online at h ttp : // ic .a r c .n a s a .g o v /ic /p r o je c ts /b a y e s -g r o u p /a u to -  
c la ss /a u to c la ss-c -p ro g ra m . html (2002-10-01).

7Although the authors of AutoClass refer to it as a classification program, it would more 
typically be called a clustering program, since it groups data points without reference to a 
priori category labels. According to common usage, a classifier assigns labels to new data 
points given a set of labelled data points as a training set. In the following, the process 
of grouping spectra based on their similarity will be referred to as clustering, but the set 
of spectra which have been grouped together as a result of clustering will be referred to 
interchangeably as a cluster or a class, since each spectrum could be labelled subsequent to 
clustering and new spectra could be classified relative to the existing groups.
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4.4 Breakpoint M atching

4.4.1 Im plem entation of M ulti-Level Search
As was explained in §3.2.2, if the size of the initial match to each breakpoint 
spectrum were less than the number of oscillators to be used on resynthesis, 
a second-level search could be used to augment the initial matches. This 
second-level search is in effect a pruned search, since it seeks to augment only 
those sets of wavetables which were actually used as initial matches by the 
first-level search (whether it was an exhaustive search or a GA). However, it 
is a significant implementation detail that the second-level search tests the 
augmented wavetable sets not only for improved matches at those breakpoints 
which used the original (unaugmented) wavetable set as a best match in the 
first-level search, but at all breakpoints; quite often, an augmented wavetable 
set was found to be the best match at breakpoints which, after the first-level 
search, were previously best matched by entirely different wavetable sets.

For example, Figure 4.8 compares the two-wavetable matches to the break­
points of a French horn E2 tone found by a first-level exhaustive search with 
the three-wavetable augmented matches found by a second-level search. (Part 
(b) of this figure is the same as part (a) of Figure 3.13.) The three-wavetable 
sets at breakpoints 2, 9, 10, 15, and 18 are highlighted in part (b) of the fig­
ure to indicate that these sets are not supersets of the two-wavetable matches 
found by the first-level search at these breakpoints. Although every possible 
superset of the set {15, 38} would have been tried at breakpoint 2 by the 
second-level search, it turned out that a superset of the set {6, 15} which 
was initially used only at breakpoint 3 also happened to be the best three- 
wavetable match to breakpoint 2. It also happened that various supersets of 
the set {4, 15} which was initially used at breakpoints 4 and 19-22 proved to 
be the best matches to breakpoints 4, 5, 15, and 18-22; at breakpoints 15 and 
18, the set {4, 15, 23} was found to be a better match than any supersets of 
the two-wavetable matches previously found to be best at those breakpoints. 
Of particular interest is the replacement of the set {19, 30} by {10, 15, 37} 
at breakpoints 9 and 10 because this results in an eight-breakpoint run of the 
latter set from breakpoint 7 to 14; as shown in Figure 3.14, this wavetable set 
and four-table supersets of it were finally selected for use by the oscillator- 
assignment optimizer at all the breakpoints of this tone from 1 to 19.

To avoid redundant second-level searches, all the sets of wavetables found 
to be best matches at one or more breakpoints by the first-level search were 
inserted in a set of wavetable sets prior to performing the second-level search 
per se. This also ensured that a second-level search was conducted for every 
set which was found to be a best match by the first-level search. For example, 
all supersets of {19, 30} would have been tested at all the breakpoints of the 
horn E2 tone of Figure 4.8, even though that set would have been replaced 
by the match {10, 15, 37} at breakpoints 9 and 10 prior to the initiation of 
the search to augment {19, 30}; it may well have been (but was not in this
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1 10 29 1 10 26 29
2 15 38 2 6 9 15
3 6 15 3 6 9 15
4 4 15 4 4 15 21
5 15 47 5 4 15 47
6 15 37 6 6 15 37
7 15 37 7 10 15 37
8 15 37 8 10 15 37
9 19 30 9 10 15 37

10 19 30 10 10 15 37
11 15 37 11 10 15 37
12 15 37 12 10 15 37
13 15 37 13 10 15 37
14 15 37 14 10 15 37
15 15 37 15 4 15 23
16 15 37 16 10 15 37
17 15 37 17 6 15 37
18 15 46 18 4 15 23
19 4 15 19 4 15 23
20 4 15 20 4 15 27
21 4 15 21 4 10 15
22 4 15 22 4 15 37
23 10 30 23 9 10 30
24 16 46 24 16 45 46

(a) Initial 2-wavetable matches. (b) Augmented “2+ 1” matches.

Figure 4.8: Initial and augmented matches to the breakpoints of a French horn 
playing pitch E2.
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case) that some superset of {19, 30} would have been still better as a match 
at some breakpoint than (10, 15, 37}.

In order to further prune the second-level search, the use of an error thresh­
old above which augmenting should be performed was tested; if the match 
found by the first-level search for a particular breakpoint had an error less 
than the specified threshold, the second-level augmenting search would be 
skipped for that wavetable set. However, it was found that this attem pt to 
reduce search time resulted in poorer matches on average, since it was quite 
often the case that a wavetable set which was a good match to some break­
point spectrum proved to be a good match at other breakpoints as well when 
augmented.

4.4.2 Im plem entation of the G enetic A lgorithm
The genetic algorithm which was used as an alternative method of finding 
initial matches to breakpoint spectra was implemented using Matthew Wall’s 
GAlib: A C++ Genetic Algorithm Library.8 The n-table match at each break­
point of a tone was represented as a two-dimensional array of integers using 
a customization of GAlib's GA2DArrayAlleleGenome template type; the al­
lele set (the set of values that a gene may assume) was the integers in the 
range 1 . . .  IVtables, where IVtables is the number of wavetables in the bank for 
the relevant group of tones. The GA was run with a population size of 100, 
a crossover probability of 0.9, a mutation probability of 0.1 (overall, not per 
gene), linear scaling, stochastic remainder sampling selection, and termina­
tion upon convergence of 99% over 50 generations (i.e., when the best score 
of the population 50 generations ago divided by the best score of the current 
population is at least 0.99).

As mentioned in §3.2.2 (page 52), the GA was not competitive with exhaus­
tive search either in terms of time or in terms of matching error unless caching 
of intermediate results was used. When the objective function was invoked by 
the GA on an individual of the current generation, the genes of that individual 
were deemed to be an ordered list of wavetable sets, each to be used as an 
initial match at its respective breakpoint, and were inserted into a multimap 
which mapped each wavetable set to the breakpoint(s) at which it was used. 
The multimap was then traversed with an iterator so that the basis spectra 
corresponding to each different wavetable set used in the current individual 
were referenced as a matrix and analyzed by LUP decomposition as discussed 
in §3.2.1; the LUP decomposition was then used as in equation 3.9 to fit that 
wavetable set in a least-squares sense to the spectrum at each breakpoint spec­
ified by the genes of the current individual, again using the multimap iterator. 
W ithout caching, this implied that LUP decompositions were being repeatedly 
performed on the same sets of wavetable spectra, since it was highly likely that

8Available online at f tp : // la n c e t .m it .e d u /p u b /g a /, with documentation available at 
h t tp :/ / la n c e t .m i t . edu/ga/ (2002-10-01).
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the same wavetable sets would be used by multiple individuals in the current 
generation and repeatedly from generation to generation; similarly, the same 
wavetable sets would likely be used as matches to the same breakpoint spectra 
in various individuals and across generations. For example, a three-table GA 
match to a 24-breakpoint PLA of a bassoon A#1 tone using the wavetable bank 
for group 1 (which has 48 wavetables, each consisting of 146 harmonic ampli­
tudes), a population size of 50, and a number of generations to convergence of 
25 converged after 247 generations, during which it performed 269,632 LUP 
decompositions and 269,688 least-squares solutions and error calculations in 
about 146 seconds on the test platform; augmenting the matches with a fourth 
wavetable and optimizing the final oscillator allocation took an additional 35 
and 34 seconds, respectively, for a total time of 215 seconds. By compari­
son, an exhaustive search of depth 3 performed (438) — =  17,296 LUP
decompositions and 24 times that many (415,104) least-squares and error eval­
uations in just over 110 seconds; augmentation required only 6.5 seconds and 
optimization, 22 seconds, for a total of about 139 seconds.

Caching was implemented by introducing two mappings as static data 
members of the objective function so that the contents of the mappings would 
be preserved across the evaluations of all individuals in all generations. The 
first maps from sets of wavetables to the results of LUP decompositions, the 
second, from breakpoint number and wavetable set to the corresponding least- 
squares solution. When iterating across the multimap, the first map is checked 
for each wavetable set in the current individual, and LUP decompositions are 
performed only for those wavetable sets not already in the map; similarly, when 
iterating across the breakpoints at which a given wavetable set is used in the 
current individual, the second map is searched for a pre-existing least-squares 
solution and error level. As a result of this form of caching, a GA search for 
a three-table match to the same bassoon tone discussed above now performs 
only 7,331 LUP decompositions and 9,248 least-squares and error evaluations 
in just over 16 seconds, for a total time of 85 seconds. While this particular 
invocation of the GA9 tried only about 42% of the possible three-wavetable 
combinations, each at an average of 1.26 breakpoints, the final result (after 
augmentation and optimization) had an average error rate only two-thirds of 
a percent worse than that found by a “3+1” exhaustive search.

However, the primary and secondary contributors to the low error rate of 
this matching were the second-level exhaustive search to augment the initial 
three-table matches and the subsequent overlapping of wavetable sets and op­
timization of oscillator assignments using the shortest path algorithm. The 
average squared error across the 24 breakpoints of the PLA to the bassoon 
A #1 tone of the three-wavetable matches found by the GA was 24 times the 
average squared error of the best matches found by a first-level exhaustive 
search; surprisingly (and atypically), the average squared error of the four-

9 Since the GA is probabilistic, invocations with other random seeds would find different 
results.
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table matches found by augmenting the initial matches found by the GA was 
two percent lower than the error after augmenting the matches found by ex­
haustive search. This result is understandable when one considers th a t the 
augmenting search tries augmenting each wavetable set found by the initial 
search with every other wavetable in the bank and tests each possible augmen­
tation at every breakpoint; since the GA match had more diversity in its initial 
matches, the augmenting search had over five times as many possibilities to 
try than with the initial matches found by exhaustive search, and it happened 
to find one or more fortuitous combinations of wavetables. This greater initial 
diversity also resulted in larger average sizes of the wavetable sets constructed 
by overlapping—11.1 compared to 10.2—but did not continue to contribute to 
a favourable final outcome: the error of the globally optimized result found by 
the shortest path algorithm was slightly higher10 for the method which began 
with a GA search; nonetheless, this result is remarkable considering that the 
method using the GA took only 61% of the time of the method beginning with 
exhaustive search.

If the goal of applying this method of analysis is not to find the best overall 
matches at any cost, but rather to find good matches fairly quickly, then the 
method using a GA with a moderate population size (about 50) and early 
termination (about 25 generations to convergence) is recommended. For this 
research, it was decided to use the more conservative GA parameters—a pop­
ulation size of 100 with 50 generations to convergence—since testing showed 
that a “3+1” search using a GA with these parameters to find the initial three- 
table matches yielded a better final result on average than a GA with the less 
conservative parameters;11 however, these parameters make the GA method 
about 10% slower than the method using exhaustive search for “3+1” searches, 
while the GA with less conservative parameters runs in about half the time 
of a “3+1” exhaustive search. Furthermore, it is not recommended that a 
GA be used alone to construct the initial matches which, after overlapping, 
will be used as input to the shortest path algorithm: a “4+0” search using a 
GA with conservative parameters resulted in final matches with an error level 
9% higher than those found by a “3+1” two-level exhaustive search, and took 
1.8 times as long; a “4+0” search using a GA with a smaller population and 
early termination took about the same time as a “3+1” exhaustive search, but 
yielded error levels over 30% higher.

4.4.3 Im plem entation of Overlapping
As discussed in §3.2.3, a third-level exhaustive search is performed to re­
augment any wavetable sets which, after overlapping has been performed, are

10About two-thirds of a percent higher.
11 Specifically, the GA with conservative parameters yielded matches with error levels 

within 1.7% of both the “4+0” and “3+1” matches found for tones in Group 1 with an 
initial exhaustive search, compared with an increased error of 4.0% on average by using the 
less conservative GA parameters.
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still smaller in size than the number of oscillators to be used on resynthesis. 
As with second-level augmentation (see §4.4.1), the set of all sets of wave­
tables which need re-augmentation is identified before any third-level search 
is performed.

The size of the graph which will be searched in the optimization phase 
is determined, in part, by the sizes of the wavetable sets constructed for each 
breakpoint by overlapping. In order to reduce the amount of work done in con­
structing the graph and running the shortest path algorithm, some experimen­
tation was done on allowing the imposition of a limit on size of the wavetable 
sets resulting from overlapping. Overlapping at distance one—the construction 
of an initial wavetable set at a given breakpoint as the union of the matches at 
th a t breakpoint and the immediately adjacent breakpoint(s)—is always per­
formed, but overlapping at greater distances are performed in order—first at 
distance two, then at distance three, and so on—and will be terminated for 
a given breakpoint if the size of the wavetable set that would have been con­
structed by the next level of overlapping would have exceeded the specified 
limit. Both this option and the option of limiting overlapping to a distance 
of one proved to be useful for five-oscillator optimizations, which otherwise 
would have required significantly greater computation time and memory.

4.4.4 Im plem entation of the Optimizer
The construction of the DAG on which the single-source acyclic weighted short­
est path algorithm will be invoked must take into account the requirement to 
fade in a wavetable which will begin to be used at some internal breakpoint 
and to fade out one which ceases to be used. The construction of sets of 
wavetables eligible for use at each breakpoint through overlapping allows the 
optimizer to schedule a wavetable for use at breakpoints preceding and/or 
following the breakpoint or sequence of breakpoints at which it is a member 
of the best match. The algorithm which adds vertices to the DAG must also 
generate vertices which do not include all the wavetables of the best match 
at a given breakpoint so that one or more oscillators can be used to fade out 
a wavetable from the previous breakpoint to the current one and to fade in 
another wavetable from the current breakpoint to the next.

This implies, in general, that if the number of available oscillators is Nosc 
and the number of wavetables in the wavetable set for the current breakpoint 
is N wt, there will be at most

vertices associated with each breakpoint. For example, if =  3 and the 
current wavetable set is {2, 3, 5, 8}, vertices could be added to the graph to 
represent the following wavetable selections at the current breakpoint:

{2, 3, 5}, {2, 3, 8}, {2, 5, 8}, {3, 5, 8}
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{2, 3}, {2, 5}, {2, 8}, {3, 5}, {3, 8}, ( 5, 8}

{2}, {3}, {5}, {8}

This number may be reduced by two constraints:

• Because a one-wavetable match to a breakpoint spectrum is not likely 
to be very accurate (except at those breakpoints for which the spectrum 
was selected for inclusion in the wavetable bank), provision was made 
for specifying a minimum number of wavetables to be used in the final 
matches. By default, if Nosc is 3, 4, or 5, the minimum number of 
wavetables which may be used at each breakpoint is N ^ —2; for Nosc > 6, 
the default minimum is iV0SC — 3. An absolute minimum of one wavetable 
is assumed.

• A vertex should not be added to the graph at the current breakpoint 
if there can be no outgoing edges from it to any vertex associated with 
the next breakpoint. To continue the example above, if the wavetable 
set for the next breakpoint were {2, 4, 5, 6, 8, 9}, then the algorithm 
should avoid generating a vertex at the next breakpoint for the wavetable 
selection {4, 6, 9}, since all three wavetables would have to be faded in 
simultaneously.

In combination, these two constraints can significantly reduce the size of 
the oscillator assignment graph and the amount of work done to generate it. 
For example, if the minimum number of wavetables allowed in a match is two, 
then vertices representing the matches {4, 6}, {4, 9}, {6, 9}, {2, 4, 6}, {2, 4, 
9}, {2, 6, 9}, {4, 5, 6}, {4, 5, 9}, {5, 6, 9} would also be unreachable at the next 
breakpoint, since they would require two oscillators to have been unassigned 
at the previous breakpoint in order to fade in the two new wavetables.

The algorithm for generating the vertices and edges of the graph repre­
senting all possible oscillator assignments takes into account the preceding 
constraints and the following possibilities:

•  If the set of wavetables at the current vertex of the graph is Scurreat 
and the set of wavetables eligible for use at the next breakpoint is Snext1 
then vertices should be generated at the next breakpoint to represent 
the wavetable set Scummt H SneKi and all the subsets of that set which are 
of at least the specified minimum match size.

•  If |^current | < Nosc (i.e., if the match represented by the current vertex in­
cludes one or more unallocated oscillators or wavetables which have just 
been faded out to zero amplitude), then any of these “zero wavetables” 
can be replaced by any member of the set Saexi at the next breakpoint.

These two possibilities can be used in combination as well: any or all 
members of the current set can become zeros at the same time as any zeros in 
the current set become members of the next set. (Of course, the generation of
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duplicate wavetable sets at the next breakpoint is to be avoided: a zero in the 
current set cannot be replaced by a member of Snext which is already in the 
wavetable set of an adjacent vertex as a result of the first possibility above.)

These principles lead to the recursive algorithm presented in pseudocode 
in Figures 4.9-4.12. For simplicity of presentation, not all of the procedure 
parameters have been shown in the pseudocode; it should be assumed that the 
following values are available within each function:

num O scillators: the number of oscillators available

minWavetables: the minimum number of wavetables to be used in a match

numBreakpoints: the total number of internal breakpoints

bestSets: a vector, indexed by breakpoint number, of the sets of wavetables 
eligible for use at each breakpoint

sink: the final vertex of the DAG12

g: the graph to which vertices and edges are added by the algorithm

The pseudocode is Pascal-like,13 but with the addition of object-oriented con­
structs such as g.addEdge, which should be presumed to invoke the method 
addEdge on the object g. The class W avetableSelection encapsulates a 
breakpoint number and a set of wavetables; for simplicity, these are accessed 
as the object attributes14 source.breakpoint and source .ta b le s , the latter 
corresponding to Current in the discussion above. Similarly, Snext corresponds 
to b estS ets [ source .breakpoint + 1 ]. The code also assumes the exis­
tence of a Set type15 which not only supports the standard set operators such 
as intersection (n) and set difference (—) but also overloads the operator ’ 
to indicate exclusion of an individual element from a set and supports oper­
ator '+ ’ to include an element in a set. The pseudocode uses the construct 
for . . .  in to iterate across the elements of a set, with the presumption that a 
copy of the set is used to perform the iteration, allowing the set to be modified 
in the body of the loop without disrupting the iteration.16

This set of interrelated procedures is invoked by the main program, which 
initializes the graph by adding vertices representing the two external break­
points (at breakpoints 0 and numBreakpoints +  1, both with null wavetable

12In the actual implementation, the sink vertex is not actually passed as a parameter, but 
is easily constructed as W avetableSelection( numBreakpoints + 1), the unique vertex 
with the breakpoint number of the final external breakpoint and a null set of wavetables.

13The pseudocode differs from Pascal in identifying the range of a for loop or the th en  or 
e lse  clauses of an if  by indentation rather than by begin-end  pairs, and by using semicolons 
as statement delimiters rather than separators.

14They are actually implemented in C ++  as accessor functions.
15The set type is implemented as a C + +  templated type.
16 This is actually implemented in C ++ using an operator that retrieves an element of the 

set and iteratively removes each retrieved element from the set until the set is empty.
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procedure GenerateEdges ( source : WavetableSelection ) 
var

currentSet, nextSet, commonSet : Set of WavetableType; 
numZeros : integer; 

b eg in
Base case for recursion 
if  source.breakpoint =  numBreakpoints then  

g.addEdge( source, sink ); 
else

currentSet 4- source.tables;
nextSet -f- bestSets[ source.breakpoint +  1 ];
commonSet <— currentSet fl nextSet;

Add vertices to the graph for the set of wavetables common to the set 
at the current vertex and the set of eligible wavetables for the next 
breakpoint and for all subsets of that set which are at least as large as 
the minimum match size, and add edges from the current vertex to each 
of the new ones.
if | commonSet | >  minWavetables then  

AddVertexAndEdge( source, commonSet );
AddSubsets( source, commonSet, commonSet );

Add wavetables from the next set of eligible wavetables to replace zeros 
(unallocated oscillators) in the current set of wavetables. 
numZeros <— numOscillators - |currentSet|; 
if numZeros > 0 then

ReplaceZeros( numZeros, source, commonSet, commonSet, 
nextSet - commonSet );

end GenerateEdges

Figure 4.9: Procedure GenerateEdges.
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procedure AddSubsets ( source : WavetableSelection;
wavetableSet : Set of WavetableType;
removableSet : Set of WavetableType )

var
element : WavetableType; 
subset : Set of WavetableType; 

begin
For each wavetable in the current set, add a vertex for the next breakpoint
that substitutes a zero for that wavetable. I f  the current set has had wave­
tables added to replace zeros, remove only those elements which were in 
the original current set (the ‘removableSet’). 
for element in removableSet do 

subset •(— wavetableSet — element; 
if | subSet | >  minWavetables then  

AddVertexAndEdge( source, subset );

Recur if  more than one wavetable can be faded out at once. 
if | subSet | > minWavetables then

removableSet 4— removableSet — element;
AddSubsets( source, subset, removableSet ); 

end AddSubsets

Figure 4.10: Procedure AddSubsets.
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procedure ReplaceZeros ( numZeros : integer;
source : WavetableSelection; 
currentSet, superset, nextSet :

Set of WavetableType )
var

element : WavetableType; 
augmentedSet : Set of WavetableType; 

beg in
Add an edge from the current wavetable set to the same set with one or 
more zeros replaced by wavetables from the next set of eligible wavetables. 
Here, ‘nextSet’ contains only those elements not in ‘currentSet’. 
for element in nextSet do

augmentedSet superset +  element; 
if | augmentedSet | > minWavetables th e n  

Add Vertex AndEdge ( source, augmentedSet );

One or more of the wavetables in the current set could be faded out 
while the new wavetables are fading in. 
if |augmentedSet| > minWavetables then

AddSubsets( source, augmentedSet, currentSet );

Recur to handle current sets with multiple zeros. 
if numZeros > 1 then

nextSet <— nextSet — element;
ReplaceZeros( numZeros — 1, source, currentSet, 

augmentedSet, nextSet );
end ReplaceZeros

Figure 4.11: Procedure ReplaceZeros.
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procedure AddVertexAndEdge ( source : WavetableSelection;
nextSet : Set of WavetableType )

var
destBrkpt, numZeros : integer; 
continuingSet : Set of WavetableType; 
dest : WavetableSelection; 
vertexAdded : Boolean; 

begin
Don’t generate a vertex at this breakpoint i f  there can be no outgoing edges 
from it to any vertex at the next breakpoint. 
destBrkpt t— source.breakpoint +  1; 
if  destBrkpt <  numBreakpoints then  

numZeros <— numOscillators - | nextSet |; 
continuingSet -f- nextSet ft bestSetsf destBrkpt +  1 ]; 
if |continuingSet| +  numZeros < minWavetables then  

return;

Create a new wavetable selection and see if it is already in the graph. I f  
so, just add the edge from source to destination; if not, add the edge and 
then recur to generate outgoing edges from the new vertex. 
dest <r- WavetableSelection( destBrkpt, nextSet ); 
vertexAdded «— g.addVertex( dest ); 
g.addEdge( source, dest ); 
if  vertexAdded then  

GenerateEdges( dest ); 
end AddVertexAndEdge

Figure 4.12: Procedure AddVertexAndEdge.
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addEdge
Graph

addVertex
addEdge

AddSubsets ReplaceZeros

GenerateEdges

AddVertexAndEdge

Figure 4.13: Call diagram for GenerateEdges and related procedures.

sets) and then calls GenerateEdges (Figure 4.9) with the start vertex as 
a parameter. The procedures are mutually recursive, since the procedure 
AddVertexAndEdge (Figure 4.12) calls GenerateEdges if it has added a new 
vertex to the graph. Figure 4.13 is a call diagram illustrating the interrela­
tionships between GenerateEdges and its related procedures.

Procedure AddSubsets (Figure 4.10) recursively generates the subsets of 
Scummt H Snext which are at least of the minimum specified match size and calls 
AddVertexAndEdge to add vertices representing these subsets to the graph, 
along with edges from ^current to the new vertices. Each edge from 5current to 
a proper subset of Scumnt represents the fade-out of one or more wavetables 
from one breakpoint to the next.

Procedure ReplaceZeros (Figure 4.11) recursively generates supersets of 
^current if it is smaller in size than Nosc, iteratively replacing the “zero” wave­
tables in £ c Urrent with each of the elements in Snext — 5 CUrrent in turn. This 
procedure also implements the possibility that one or more wavetables may 
be faded in at the same time as one or more other wavetables are faded out 
by calling AddSubsets with each superset that it generates; however, it uses 
the removableSet parameter of AddSubsets to specify that subsets may be 
generated only by removing wavetables that were in the current wavetable set 
originally, not by removing those that were just added to replace “zeros.”

Procedure AddVertexAndEdge (Figure 4.12) is called by each of the previ­
ous three procedures to add new vertices and edges to the graph. The graph is 
implemented as a vector of vertices, where each vertex contains an adjacency 
list of edges; this structure is supplemented by a mapping from vertex names 
(labels) to the indices of the respective vertices in the vector.17 The graph 
addVertex method first tries to add a vertex label (a W avetableSelection  
consisting of the next breakpoint number and the set of wavetables nex tS et)

17This graph implementation is a variation on the data structure presented by Mark Allen 
Weiss [94].
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to the mapping, receiving in return a value indicating whether this key was new 
or was found in the mapping;18 if the key was new, it then creates a new vertex 
and labels it with the specified name. The addEdge method is then called to 
add an edge to the graph from the source parameter of AddVertexAndEdge to 
the destination vertex (whether new or pre-existing). If the vertex was newly 
added to the graph, AddVertexAndEdge calls GenerateEdges to generate by 
mutual recursion any outgoing edges from the new vertex to vertices at the 
subsequent breakpoint.

Before adding a new edge to a potentially new vertex in the graph, the pro­
cedure checks whether the second constraint listed above applies: it suppresses 
the addition of the vertex at the destination breakpoint if it can be determined 
tha t there can be no outgoing edges from that vertex to any vertex at the sub­
sequent breakpoint. For example, if num O scillators is 3, minWavetables is 
2, the degree of overlapping is 1, and the best matches at breakpoints u, v, and 
w as found by a “2+ 0” search (for the sake of the simplicity of the example) 
are {1, 2}, {3, 4}, and {5, 6}, respectively, then there will be no outgoing edges 
from any vertex at breakpoint v of the form {1, 2} or {1, 2, n}, where n  is any 
wavetable index in the range 3 . . .  6; this is so because wavetables 1 and 2 are 
eligible for use (by virtue of overlapping at a distance of 1) at breakpoints u 
and v, but not at breakpoint w, and it is not possible to fade out both wave­
tables 1 and 2 between breakpoints v and w if at least two wavetables must 
be in use (with non-zero weightings) at each breakpoint. More generally, such 
vertices (wavetable sets) may be detected as those for which the sum of the 
cardinality of the intersection between the original set and the eligible set for 
the breakpoint after next and the number of zeros (unallocated oscillators) in 
the original set is less than the minimum number of wavetables to be used at 
each breakpoint (except at the last internal breakpoint, since all wavetables 
at that breakpoint will be faded out by the final, external breakpoint).

There is another class of vertices that should be suppressed because they 
end up having no outgoing edges to the following breakpoint because the only 
wavetable set to which they lead is suppressed at the breakpoint after that. 
To continue the example above, and further presuming th a t wavetables 3 and 
4 are not in the best match at the breakpoint following w, then there will be 
four edges from vertices at breakpoint u to each of the vertices (1, 3, 4} and 
{2, 3, 4} at breakpoint v , but there will be no outgoing edges from either of 
these vertices, since neither wavetable 1 nor 2 belongs to the set of eligible 
wavetables for breakpoint w and the generation of vertex {3, 4} was therefore 
suppressed at breakpoint w because both wavetables 3 and 4 must be faded 
out from w to the following breakpoint. However, such vertices are few in 
number and it would be more expensive to eliminate them than to leave them 
in the graph and let the shortest path algorithm discover their uselessness.

18The map associative container of the C ++  Standard Template Library (STL) offers an 
in s e r t  method which returns a pair, the second element of which is a bool which is true  
if the operation actually inserted a new value in the mapping or f a l s e  if the key value was 
found in the existing mapping.
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The pseudocode for AddVertexAndEdge does not indicate how the weight 
(cost) of each vertex is set to be the least-squares error of the match that it 
represents to  the spectrum at its respective breakpoint. In the actual imple­
mentation, a multimap is used to keep track of the breakpoint/wavetable-set 
combinations at the vertices of the DAG so that an LUP decomposition is 
done only once for each different wavetable set and the least-squares fit and 
error calculation is then done for each use of the set at various breakpoints.

The matching error at breakpoint i, e*, is calculated as

■̂har
= (°*(^) “  ak(U))2 (4-9)

k=1

where AW is the number of harmonics retained in the spectra of the relevant 
wavetable bank, fj is the time index of breakpoint i, ak(t) is the amplitude of 
the kih  harmonic of the spectrum of the original signal at time U (breakpoint 
spectrum i), and a'k(t) is the corresponding amplitude of the spectrum calcu­
lated as the weighted combination of the wavetable bank spectra referenced 
by the match being evaluated.

The error of the oscillator assignment found by the shortest path algorithm 
can be reported in a number of ways: total squared error, mean squared error, 
root sum-of-squares error (the Euclidean norm or 2-norm, if the breakpoint 
matching errors are regarded as a vector), or root mean squared (RMS) error.

Total NbkPt 
squared =  ^ 2  £i 

error
(4.10)

Mean  ̂ iVbkpt 
squared =  -77—  /  G

*̂bkpterror y *=1
(4.11)

Root 
sum-of-squares =  

error \
-̂ bkpt

£ <
i=1

(4.12)

RMS = 
error ^

1
N}

b̂kpt

E ‘blcpt .=1
(4.13)
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RMS error is used as the measure of overall matching error for the results 
reported in §5.5, primarily because it provides a compact representation of 
error. RMS error is also comparable across tones with varying numbers of 
breakpoints, since it is the square-root of the mean squared error.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 

Experim ental R esults

5.1 Tones Selected for Testing
As previously discussed in §4.3.2 (p. 74), a set of tones played by sixteen dif­
ferent instruments, spanning the range from A1 to B6 by minor thirds (as 
illustrated in Figure 4.7), were selected from the McGill University Master 
Samples collection for the purpose of testing the proposed analysis/ synthesis 
method. As indicated in Table 5.1, all tones of pitch classes1 Aft, Cft, E and G 
in the chosen range as played by the bassoon (abbreviated as bsn in the table), 
Bt> clarinet (c la), bass clarinet (clb), English horn (eng), flute ( f i t ) ,  glock­
enspiel (orchestral bells, glk), French horn (hrn), oboe (obo), piano (pno), 
the saxophone family2 (sax), C trumpet ( tp t) , trombone (trb ), viola (via), 
string bass (bass viol or simply “bass”, vlb), violoncello (or ’cello, v ie), and 
violin (vln) were selected, a total of 198 tones. For the stringed instruments, 
the fingered versions of the tones were preferred to the open variants.

The tones were extracted at CD quality (a sampling rate of 44100 Hz) to 
WAV files3 using Heiko Eissfeldt’s cdda2wav4 and edited to remove leading 
and trailing silence (or low-level noise) using Thomas Eschenbacher’s kwave 
audio file editor.5

Figure 4.7 also indicates the grouping of the instrument tones according to 
pitch ranges in order to allow the use of more harmonics in the synthesis of 
lower-pitched tones than for higher tones, as discussed in §4.3.2 The number

1 All references to pitches specify sounding pitch, not written pitch.
2As previously mentioned in note 4 on page 75, the selected sax tones were produced by 

different members of the saxophone family. Aftl and C$2 were played by the bass saxophone, 
E2 to Ajj2 by the baritone, C|3 to A$3 by the tenor, C$4 to CJJ5 by the alto, and E5 to C$6 
by the soprano sax.

3WAV (or WAVE) is a digital audio file format, defined by Microsoft as part of its Re­
source Interchange File Format (RIFF) framework for the Windows™ environment; samples 
are typically stored as signed 16-bit integers in little-endian byte order.

4Publicly available as part of the cd rto o ls  package at h t tp : / /www. e sca p e . d e /u s e r s /-  
colossus/cdda2w av.html (2002-10-01).

5Publicly available for the K Desktop Environment at h ttp ://k w a v e .so u rce fo rg e .n e t  
(2002- 10-01).
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Pitch
Instrum ent

Countbsn cla clb eng fit glk hrn obo pno sax tp t trb via vlb vie vln

Aftl
C#2
E2
G2
A#2
c p

4.84
5.23
5.84 
6.12
4.23 
4.30

4.29
3.74
3.12
2.57
3.01

1.97
2.47
2.35
2.00

3.17
3.26
3.47
3.51
3.37
3.22

3.09
2.38
3.64
3.29
4.96
2.99

1.71
2.07
1.97
1.64 2.46

2.70
2.71 
2.75 
2.92
2.71 
2.39

4.51
2.84
5.69
4.63
4.43

43

E3
G3
A;3
CH4
E4

5.19
4.76
4.32
4.48
4.65

3.86
3.39
3.48
3.79
3.75

2.89
3.23
3.52
3.38

2.87
2.87 
2.59 
2.72 
2.90

3.38
3.44

2.25
1.94
2.06
2.05
1.77

2.89
2.02
2.73

3.33
3.32
2.80
2.09
3.39

2.77
2.54
2.69
2.33
2.78

5.29
6.32
8.21
7.41

2.03
2.22
2.82
2.15
3.87

2.63
3.64
2.65 
3.03 
2.78

3.16
2.76
2.90
3.28
3.18

3.96
4.03
3.37
3.44
3.57

4.08
3.52
3.78
3.74

67

G4
AU4
CJj5
E5

3.46
3.62
3.67
4.04

2.73
2.79
2.91
3.14

3.23
3.35
4.43
3.74

1.48
1.94
2.25

2.54
2.91
2.32
2.26

3.39
3.59
3.31
2.27

3.09
2.96
2.60
3.03

6.51
6.37
6.53
5.92

3.03
2.02
2.14

3.58
4.32
4.28
3.88

3.56
3.10
2.39
1.93

3.80
3.22
3.28
3.30

46

G5
A«5
Ctt6
E6

3.55
3.66
3.66

3.16 3.60
3.85
3.74
3.56

1.00
1.59
1.54
1.32

2.94
2.74
2.57
2.31

3.48
3.79
3.88
3.38

3.11
3.34
3.95

5.73
5.41
1.85

3.25
3.49
4.40

2.00 3.83
3.20
3.82
3.24

34

G6
A«6

3.77
3.35

1.55
1.73

4.26
5.65

2.88
3.01 8

C oun t 11 12 9 10 12 6 12 11 21 18 11 12 13 11 15 14 198

Table 5.1: Durations (in seconds) of the instrument tones selected for testing. The grouping of tones is indicated, with the 
count of the number of tones in each group.



Group Harm onics
1
2
3
4
5

146
61
31
15
11

Table 5.2: Number of harmonics retained in the basis spectra for each group 
of tones.

of harmonics retained in the basis spectra for each group are indicated in

The groupings were decided somewhat arbitrarily, but subject to a few 
basic principles:

•  The pitch ranges spanned by the lower groups should be larger than those 
of the upper groups, since the relationship between pitch and frequency 
is logarithmic, not linear.

•  The dividing points between groups should correspond as far as possible 
with the extremes of the ranges of the selected instruments. For example, 
the lowest clarinet and English horn tones determine the lower bound of 
Group 2, and the highest bassoon and string bass tones correspond with 
the upper bound of the same group.

•  A group should include at least two or three tones from a given instru­
ment so that there is a strong likelihood that each of the basis spectra 
for that group will be used in matching two or more tones. If a group 
includes a single tone by a given instrument, then the group should at 
least contain tones of another instrument of the same family. For ex­
ample, it is acceptable to include the highest English horn pitch, G5, in 
Group 4 because that tone is likely to be very similar to one or more 
of the oboe tones included in the same group; similarly, the lone ’cello 
tone in Group 4 will likely be matched by some of the same basis spectra 
used to match the viola tones included in the same group. However, it 
was important that Group 4 begin at G5 rather than Aj}5 so th a t the 
lower glockenspiel tones were grouped together, since the glockenspiel is 
distinctly different in timbre from the other selected instruments. Simi­
larly, it was decided to begin Group 5 at G6 rather than at E6 since that 
group would otherwise have included a solitary oboe tone.

The scheme of selecting tones a minor third apart was used by Horner in 
his testing of multiple tone matching [41], Horner tested his multiple wave­
table synthesis method (see §2.4.7) on ten English horn tones, twelve trombone 
tones, fourteen violin tones, and an unspecified number of clarinet, saxophone, 
viola, and glockenspiel tones; results are given for only the first three instru­
ments. However, Horner does not discuss the problem of avoiding audible arte-

Table 5.2.
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facts due to wrapping around the Nyquist frequency when using harmonic-rich 
basis spectra selected from lower tones in the synthesis of higher tones; the 
fourteen violin tones were divided into two sets of seven tones each, but this 
was done because “matching this extensive space of tones with just six basis 
spectra did not work” [41, p. 119].

5.2 R esults of Waveform Analysis
Most of the tones selected for testing are harmonic tones: their partial fre­
quencies are integer multiples of the fundamental frequency. For example, 
analysis of the trum pet tone at pitch G5 reveals a clear harmonic structure, 
as indicated by the even spacing of the dark horizontal frequency lines in the 
sonogram shown in part (b) of Figure 5.1. A sonogram plots frequency as 
a function of time, with the amplitude of each frequency component repre­
sented by the darkness of the line corresponding to that component. The 
phase vocoder analysis of the same tone, shown in part (a) of the figure, more 
accurately indicates the amplitude of each partial, but provides a less accurate 
representation of the frequency of each partial than the sonogram, since the 
pitch differential calculated by the phase vocoder is ignored in rendering the 
amplitude x harmonic x time graph.

Figure 5.2(a) shows the phase vocoder analysis of a glockenspiel tone at G5, 
and part (b) shows the sonogram of the first half of the tone. The sonogram 
clearly indicates that the glockenspiel is an inharmonic tone: the lowest dark 
line corresponds to the frequency which a listener would identify as the pitch 
of the tone, 784 Hz; the next higher dark line is at 2419 Hz; the third distinct 
dark line represents a partial at 4452 Hz; and the fourth dark line, which 
starts to fade at about 200 ms, is centered at 7626 Hz. Below the fourth line, 
a lighter line appears to emerge from a broad dark band after about 200 ms, 
centering at about 6970 Hz. The upper frequencies are 3.1, 5.7, 8.9, and 9.7 
times the lowest partial frequency.

The imprecision of the amplitude x harmonic x time representation with 
respect to frequency is clearly seen by comparing parts (a) and (b) of Fig­
ure 5.2. When the frequency differentials of “harmonics” 5 and 6 are taken 
into account, they actually represent the single partial at 4452 Hz. Because the 
actual frequency of the partial fell between bins 5 and 6 of the FFT analysis, 
the amplitude of the partial was divided into two pseudo-harmonics. Simi­
larly, the broad jitter of “harmonic” 9 is an analysis artefact resulting from 
crosstalk between FFT bins 8, 9, and 10: the energy of the 6970 Hz partial is 
split between bins 8 and 9 (with most in bin 9), and the energy of the 7626 
Hz partial is divided between bins 9 and 10 (mostly in 10).

A clearer analysis results from a technique suggested by Beauchamp [6] 
for the analysis of percussion sounds: specify a lower frequency of analysis 
for the phase vocoder than the putative fundamental frequency so that only 
one modal frequency is aligned with each FFT bin. Figure 5.3 was derived
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(a) Phase vocoder analysis.
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(b) Sonogram.

Figure 5.1: Analysis of a trumpet G5 tone.
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(a) Phase vocoder analysis.
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(b) Sonogram of first 500 ms.

Figure 5.2: Analysis of a glockenspiel G5 tone.
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(a) Phase vocoder analysis at 41 Hz.
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(b) Sonogram of first 500 ms.

Figure 5.3: Analysis of a glockenspiel G5 tone using an analysis frequency of 
41 Hz.
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by analyzing the glockenspiel G5 tone at 41 Hz, which aligns the 2419 Hz, 
6970 Hz, and 7626 Hz partials with FFT bins 59, 170, and 186, respectively, 
and splits the energy of the partial at 4452 Hz about evenly between bins 
108 and 109; the fundamental frequency falls close to bin 19. The associated 
sonogram also more cleanly (but faintly) delineates the modes of vibration of 
the glockenspiel’s metal bar.

A lesser degree of inharmonicity may be seen in the upper partials of a piano 
tone, caused by the stiffness of the piano strings [9]. Figure 5.4 compares the 
sonogram of a French horn G3 tone, which has purely harmonic partials, with 
th a t of a piano tone at the same pitch. The inharmonicity may be seen by 
comparing the positions of the energy lines near 2000, 2400, and 2800 Hz in the 
horn sonogram with the corresponding lines in the piano sonogram. Although 
the fundamental frequency of both tones is 196 Hz, the upper partials of the 
piano tone appear to stretch toward multiples of 200 Hz and then, by the 3200 
Hz mark and even more clearly by the 3600 Hz mark, to sharpen even further.

Since synthesis methods based on multiple wavetable additive synthesis 
are inherently harmonic, allowing only a single frequency differential per spec­
trum , it is to be expected that optimized multiple wavetable interpolation 
will produce more realistic approximations of harmonic tones than of inhar­
monic ones such as those of the glockenspiel and piano. Blackham [9] found 
that, in listening tests with both musicians and nonmusicians, the jury was 
able to distinguish between real piano tones and synthetic tones consisting 
of harmonic partials 86% to 90% of the time; however, both musicians and 
nonmusicians found real piano tones to be indistinguishable (i.e., misidentified 
50% of the time) from synthetic tones using inharmonic partials. As previ­
ously discussed in §2.4.9, Horner [42] found that piano tones synthesized by 
multiple wavetable interpolation were correctly identified in at least 70% of 
trials of a formal listening test.

5.3 Breakpoint Selection Results
The phase vocoder analysis of each selected instrumental tone was data- 
reduced by piecewise-linear approximation using the segment-merging break­
point selection algorithm. Tones without vibrato (bassoon, clarinet, bass clar­
inet, glockenspiel, French horn, piano, saxophone, trumpet, and trombone) 
were approximated with 24 internal breakpoints; the mean Euclidean error 
(see equation 4.1, p. 66) of each of these approximations is indicated in Ta­
ble 5.3.

Selecting breakpoints for the tones with vibrato—the English horn, flute, 
oboe, and strings—was more complicated, and was customized for some tones. 
A minimum of 48 internal breakpoints was specified for all tones by these in­
struments, as was a maximum error bound. The segment-merging breakpoint 
algorithm terminated upon reaching the specified number of breakpoints or 
upon passing the error bound, whichever occurred first. In general, a lower
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(a) Sonogram of a horn G3 tone (first 1.5 sec. after the attack).
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(b) Sonogram of a piano G3 tone (first 1.5 sec.).

Figure 5.4: Inharmonicity of the upper partials of a piano tone relative to the 
harmonicity of a horn tone.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P itc h
In s tru m e n t

bsn cla clb glk h rn pno sax tp t t r b
Ajtl
C#2
E2
G2
Aj}2
Q 3

47.0
55.6
58.7 
45.3 
42.5
48.8

24.9
32.3 
33.1
29.4 
30.8

25.0
23.0
15.8
24.8

15.4
15.1
13.6
8.6 
8.6 
7.7

24.4 
28.0
29.5
31.5
20.5 
34.1

38.2
28.0
23.4
20.5

E3
G3
A«3
C#4
E4

61.8
52.7 
79.1 
37.0
44.7

22.1
21.5
27.1
29.2 
21.4

27.6
28.5
34.6
28.7

35.6
39.5
23.9
28.3
15.2

7.5
6.6 
6.2 
5.9 
4.2

21.0
46.8
28.5
27.3
46.2

24.8
20.5 
25.0
31.6

27.8
39.6
40.9 
24.0
19.6

G4
m
C$5
E5

22.8
22.0
28.5
38.5

17.6
22.1
29.1

5.7
3.9
4.9
5.9

23.1
28.2 
31.5 
28.8

20.7 
22.0 
32.2
33.7

22.0
32.9
43.3

G5
A(J5
C$6
E6

35.9
31.5
27.4

15.7
3.0 
4.9
9.1

2.8
2.9 
4.3
3.9

30.7 
41.1
28.8

40.0
37.7
38.7

G6
Afj6

13.0
8.8

3.4
2.2

Table 5.3: Mean Euclidean error of piecewise-linear approximations of non­
vibrato tones. All tones listed were approximated with 24 internal breakpoints.
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error bound was specified for the lower-pitched instruments and a higher error 
bound for the higher-pitched instruments and tones: 40 for the string bass; 
50 for the lower ’cello tones; 60 for most of the upper ’cello tones; 80 for the 
top ’cello tone, most of the viola tones, and the lower violin tones; and 100 
for the flute and most upper violin tones. The exceptions were made for the 
two highest viola tones, for which an error bound of 50 seemed to suffice, and 
for two of the upper violin tones, with a bound of 80. An error bound proved 
to be unnecessary for the English horn and oboe, the tones of both of which 
are characterized by low-amplitude vibrato; the error level dropped below 40 
for all these tones by the time the 48-breakpoint cutoff was reached. The 
results of the application of the breakpoint-finding algorithms on these tones 
are presented in Table 5.4, which includes columns indicating the number of 
internal breakpoints selected and the approximation error for each instrument 
tone with vibrato.

As discussed in §4.2.2, an error measure including an attack bias was used 
for some flute tones in order that the PLA would model the initial chiff of the 
tones. Table 5.5 lists the pitches of the flute tones for which an attack bias 
was used, the duration over which a frame-weighted bias was applied, and the 
weight of the bias. The error levels reported for these tones in Table 5.4 were 
calculated according to equation 4.5 and are thus not directly comparable with 
error levels calculated without an attack bias.

Some experimentation was done on the use of an attack bias when se­
lecting breakpoints in tones with a rapid and strongly peaked attack. For 
example, Figure 5.5(a) shows a phase vocoder analysis of a clarinet Ajj4 tone, 
which illustrates both a short rise time and the relative weakness of the sec­
ond harmonic which characterizes the clarinet’s low register [1,32]. Part (b) 
of the same figure shows that a 20-breakpoint PLA of the clarinet tone does 
not capture the initial peak of the third harmonic, which occurs slightly later 
than the initial peaks of the first, second, fourth, fifth, and eighth harmonics. 
Figure 5.6 illustrates two approaches to solving this problem: part (a) shows 
a 20-breakpoint PLA using an attack bias of weight 2 for frames in the initial 
140 ms of the tone; part (b) shows a 24-breakpoint PLA without an attack 
bias. On the basis of this experimentation, it was decided tha t the use of 
additional breakpoints was preferable to the use of an attack bias to model 
high-amplitude features of the attack segment, due to the sensitivity of the 
latter method to the parameters of the bias (weight and duration). It was also 
concluded that 24 is a reasonable minimum number of internal breakpoints to 
use for piecewise-linear approximation of non-vibrato tones.

Some of the results of the segment-merging breakpoint selection algorithm 
were shown previously in Figures 3.4, 3.5, 3.12, and 4.1-4.6, which illustrate 
the piecewise-linear approximation of tones with a sustain section and tones 
with vibrato. Figure 5.7 illustrates the approximation of an amplitude enve­
lope with a short attack section and a long decay, exemplified by the same 
piano tone for which a sonogram was given in Figure 5.4; Figure 5.8 shows the 
same analyses in two-dimensional views.
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Bkpts Error Bkpts Error Bkpts Error Bkpts Error Bkpts Error Bkpts Error Bkpts Error

A$1 48 33.0
C$2 55 40.7 51 50.8
E2 48 28.3 48 37.0
G2 48 32.5 48 35.0
A$2 52 40.8 48 46.1
C$3 55 80.1 48 32.5 54 50.8
E3 48 13.0 108 80.5 48 40.1 68 50.1
G3 48 22.7 140 80.1 53 40.1 48 33.7 48 57.0
A$3 48 22.7 48 24.3 113 80.1 48 29.8 48 39.2 99 80.1
C$4 48 17.5 48 76.2 48 13.0 97 80.2 57 40.3 57 50.3 123 80.1
E4 48 21.2 64 100.4 48 29.2 130 80.5 69 40.4 65 50.0 68 80.0
G4 48 34.5 63 100.6 48 27.7 98 80.5 81 61.0 88 80.2
Ajj4 48 18.6 92 101.2 48 36.5 117 80.3 78 60.5 66 80.6
C$5 48 9.8 85 100.0 48 31.7 98 80.4 91 60.4 122 80.8
E5 48 24.2 65 100.0 48 38.7 174 80.2 113 60.0 112 80.8
G5 48 29.5 71 101.0 48 31.8 173 80.0 121 80.5 104 100.7
A$5 73 101.6 48 39.0 105 50.1 122 100.1
C$6 62 101.5 48 35.1 87 50.3 179 100.1
E6 68 100.0 48 35.6 108 80.2
G6
A$6

53
85

100.9
101.2

87
95

80.4
100.7

Table 5.4: Mean Euclidean error of piecewise-linear approximations of tones with vibrato. The number of internal breakpoints 
selected and the approximation error are indicated for each tone.
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(a) Phase vocoder analysis.
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(b) Piecewise-linear approximation with 20 breakpoints.

Figure 5.5: Analysis and 20-breakpoint PLA of a clarinet AJJ4 tone.
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(a) Twenty-breakpoint PLA with attack bias.
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(b) Twenty-four-breakpoint PLA without attack bias.

Figure 5.6: Comparison of two methods to model the initial peak of a clarinet 
Aj}4 tone.
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(a) Phase vocoder analysis (first 20 harmonics).
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(b) Piecewise-linear approximation with 24 internal breakpoints.

Figure 5.7: Phase vocoder analysis and 24-breakpoint PLA of a piano G3 tone.
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(a) Phase vocoder analysis (first 20 harmonics).
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(b) Piecewise-linear approximation with 24 internal breakpoints.

Figure 5.8: Phase vocoder analysis and 24-breakpoint PLA of a piano G3 tone 
(two-dimensional view).
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P itc h D u ra tio n W eigh t
CU4 85 ms 4
E4 165 ms 4
Aj)4 50 ms 12
C#5 50 ms 8
E5 65 ms 8

Table 5.5: Duration and weight of a frame-weighted attack bias applied to 
selected flute tones.

From the total of 602,957 analysis frames for which the phase vocoder 
extracted a harmonic spectrum, 9034 (or 1.5%) were selected as breakpoints, 
an average of 45.6 breakpoints per tone.

5.4 W avetable Bank Selection R esu lts

5.4.1 Clustering Results
The clustering program AutoClass C was run on each group of normalized 
breakpoints using the single-normal covariant normal model. All the harmon­
ics which were retained in the spectra of each group (as indicated in Table 5.2) 
were used as attributes.6 The best two clusterings found in 250 tries were 
recorded for each group. The results of the clustering of the breakpoint spec­
tra 7 from each group of tones are summarized in Table 5.6. Overall, considering 
both of the best two clusterings for each group, the clusterer identified an av­
erage of 1.3 classes per instrumental tone, with an average of 35.9 breakpoints 
per class.

To illustrate the results of clustering with respect to the spectral envelopes 
of individual tones, Table 5.7 shows, for four example tones, to which class 
each breakpoint spectrum was assigned in the best clustering of the breakpoint 
spectra in Group 2. Each breakpoint is identified by its time index in seconds 
relative to the start of the tone at time 0.

The horn and sax tones, which were previously seen in Figures 3.2-3.5, 
illustrate a commonly occurring pattern in which all or most of the spectra 
from the sustain portion of a tone are clustered together, while spectra from 
the attack and release segments are assigned to various other clusters. The

6AutoClass C was revised to handle more than its default maximum of 20 attributes.
7 At an earlier stage of breakpoint selection than that reported in §5.3, the segment- 

merging algorithm was applied to the trumpet tones with a minimum of 48 breakpoints and 
an error bound of 20 as parameters, resulting in the selection of an average of 73.5 break­
points per trumpet tone. AutoClass C was run on groups of breakpoint spectra including 
this larger proportion of trumpet spectra. Subsequent testing revealed that it was not nec­
essary to model the shimmer of the trumpet tone to this level of detail, and the trumpet 
tones were re-approximated with only 24 breakpoints per tone to be consistent with the 
other tones without vibrato. The breakpoint matching algorithm was applied to the smaller 
trumpet PLA’s.
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Break­ Breakpoints
Group Tones points Classes per Class

1 43 1347 44 30.6
46 29.3

2 67 3059 74 41.3
85 36.0

3 46 2632 65 40.5
66 39.9

4 34 2125 82 25.9
48 44.3

5 8 416 12 34.7
11 37.8

Table 5.6: Number of classes of normalized breakpoint spectra and average 
number of breakpoints per class in each group of tones as identified by clus­
tering. Results are shown for each of the best two clusterings found.

piano tone, also featured in Figures 5.4(b) and 5.7-5.8, shows spectra passing 
through a sequence of classes as the tone decays from an extremely quick 
attack.

The viola tone was approximated with 140 breakpoints, as illustrated in 
Figure 5.9. The sustain portion of the tone (which includes vibrato) begins 
with about a half-second section of spectra assigned to class 10, followed by 
more than a second of mixed class 10 and class 12 spectra, concluding with 
about a second of class 12 spectra. Of particular interest from the point of view 
of the premises of optimized multiple wavetable interpolation are the spectra 
of the attack and release segments: the attack segment includes two spectra 
which were clustered along with two spectra from the release of the saxophone 
tone in class 27, and the release segment includes spectra from classes 1, 5, 15, 
and 18, which also include spectra from the decay of the piano tone, the start 
of the saxophone attack, the release of the horn tone, and the final breakpoint 
of the sax tone, respectively.

Table 5.8 presents the clustering of the breakpoint spectra in Group 1 from 
the opposite perspective, showing the distribution of spectra from different 
classes across various instruments and tones. For each tone in Group 1, the 
classes to which spectra from that tone were assigned are listed.

Close study of the clustering results shows that the algorithm has identified 
various types of classes of spectra:

•  Some classes include spectra from many different instruments. For ex­
ample, classes 2, 4, 6, and 18 each contain spectra from all nine instru­
ments in Group 1; class 21 contains spectra from the attack portions of 
six instruments; and classes 10, 11, 13, and 25 appear in five different 
instrument lists.

•  Some classes are restricted to spectra from a single instrument (or almost
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Hrn G3 Pno G3 Sax G3 V ia  G3
T im e Class Tim e Class T im e Class Tim e Class
0.015 0 0.003 72 0.020 5 0.021 7
0.028 9 0.013 72 0.041 57 0.039 27
0.043 0 0.018 72 0.054 57 0.073 10
0.059 20 0.033 17 0.120 57
0.151 20 0.049 17 0.261 57 0.330 8
0.200 63 0.056 17 0.562 57 0.364 27
0.276 63 0.074 17 0.680 57 0.390 10
0.384 20 0.079 17 0.828 57
0.588 20 0.095 17 0.907 57 0.853 10 & 12
0.634 20 0.102 17 1.025 57
0.783 20 0.130 17 1.130 57 2.100 12
0.813 20 0.143 17 1.176 57 i
0.952 20 0.161 17 1.331 57 3.020 12
1.003 20 0.245 17 1.380 57 3.046 58
1.125 20 0.427 4 1.526 57 3.070 8
1.212 20 0.527 4 1.738 57 3.093 8
1.264 20 0.685 4 1.771 57 3.114 8
1.315 20 0.959 4 1.945 57 3.137 1
1.376 20 1.237 4 1.975 57 3.171 1
1.489 20 1.618 1 2.006 57 3.197 1
1.591 9 2.109 1 2.037 27 3.247 15
1.701 9 2.521 26 2.060 4 3.275 5
1.791 15 2.838 26 2.078 27 3.405 5
1.824 15 3.259 26 2.190 18 3.488 18

Table 5.7: The classes to which the breakpoint spectra of four example tones 
are assigned by clustering. Each spectrum is identified by its time index in 
seconds.
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(a) Phase vocoder analysis.
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(b) PLA using 140 breakpoints.

Figure 5.9: Analysis and piecewise-linear approximation of a viola G3 tone.
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P itch
Instrum ent

bsn clb hrn pno sax trb via vlb vie

Ajjl
2, 13, 18, 

21, 26
30, 42 2, 10, 34, 

42

2, 4, 6, 11, 
13, 16, 18, 

21

C«2 4, 18, 25, 
40

6, 10, 13, 
18, 19, 43

2, 10, 24, 
42

2, 4, 6, 21, 
25, 29

2, 3, 4, 6, 
7, 8, 11, 
13, 18

4, 6, 13, 
18, 20, 21, 

33

E2 2, 3, 4, 18, 
39

2, 6, 8, 13, 
19, 43

2, 3, 4, 5, 
6, 10, 11, 
14, 22, 25

2, 6, 10, 
12, 21, 24, 

42

2, 6, 13, 
25, 28

2, 6, 10, 
22, 36

2, 6, 8, 13, 
18

2, 4, 6, 11, 
13, 15, 18

G2 2, 4, 11, 
18, 27

2, 4, 6, 10, 
13, 21, 41

4, 6, 9, 11, 
14

2, 6, 12, 
21, 42

2, 3, 13, 
25, 32, 40

2, 3, 4, 10, 
11, 22

2, 6, 11, 
13, 18, 23, 

38, 43

2, 4, 6, 11, 
17, 18

Aj}2 3, 4, 6, 18 2, 6, 8, 10, 
13, 18, 40

2, 4, 6, 9, 
11, 18

2, 4, 6, 10, 
12, 21, 43

0, 2, 6, 10, 
31

2, 4, 5, 6, 
9, 11, 14, 

25

I, 3, 4, 6,
I I , 18, 21

0, 2, 4, 11, 
18

C93 3, 4, 6, 18 2, 6, 10, 
18, 35

6, 9, 11, 
18

2, 4, 6, 12, 
18, 21

2, 4, 8, 10, 
13, 18, 37

3, 4, 9, 11, 
14, 18

2, 3, 4, 5, 
6, 18, 21, 

25, 39

I, 2, 4, 6,
I I , 13,18

0, 4, 6, 11, 
18

Table 5.8: The classes to which spectra from each tone in Group 1 were assigned by clustering.



to a single instrument) but from multiple tones of tha t instrument. For 
example, class 0 consists of 81 spectra from two ’cello tones plus a single 
saxophone spectrum; classes 1, 7, and 8 are restricted to spectra from 
one or two bass tones except for a few bass clarinet and sax spectra in 
class 8; classes 19 and 24 consist of spectra from only two bass clarinet 
and piano tones, respectively; class 3 consists mostly of bassoon spectra; 
and classes 9 and 12 are confined to horn and piano spectra, respectively, 
except for two trombone spectra in class 9.

• Some classes are specifically focused, but are not restricted to a single 
instrument. For example, class 5 is a collection of spectra from the horn 
E2, the trombone A$2, and the viola C$3; classes 14 and 22 each consist of 
horn and trombone spectra; the spectra in class 39 are from the bassoon 
E2 tone and the viola C$3 tone; and class 40 consists of spectra from the 
bassoon C$2 plus two other spectra.

•  Some classes consist entirely of spectra from a single instrument at a 
single pitch. For example, class 15 contains only spectra from the ’cello 
E2 tone; class 16 consists of string bass spectra from the A$1 tone; class 
17 is restricted to ’cello G2 spectra; and classes 20, 23, 26-38, and 41 
are similarly focused.

These results confirm that, as speculated in §1.2.1, some spectra of a given 
instrumental tone are more similar to spectra from other tones of different 
instruments than they are to other spectra from the same instrument and 
tone.

5.4.2 Hand-Tuning of W avetable Banks
As discussed in §4.3.3, the class representatives for the classes in each group 
were used as a wavetable bank for an initial test of breakpoint matching to 
determine if the wavetable bank could be improved by adding spectra to reduce 
any unusually high matching errors or if it could be reduced in size by removing 
little-used basis spectra.

When the detailed (breakpoint-by-breakpoint) matching results were stud­
ied for those tones which had unusually high overall error levels, it was found 
that the breakpoints with high matching error were typically consecutive and 
their spectra belonged to the same class. In these cases, one of the high-error 
breakpoint spectra (typically, the spectrum nearest to the centroid of the high- 
error spectra) was selected from each problem tone and added to the wavetable 
bank.

For example, after an initial 4-oscillator “3+1” matching of the tones in 
Group 1 using the 44 class representatives from the best clustering as a wave­
table bank, the six highest-error matchings were the bassoon E2 tone, with a 
root-mean-square matching error of 779.8; the bassoon A$2, 463.7; the bass 
clarinet A$2, 293.3; the bassoon C$3, 289.0; the viola C$3, 240.8; and the
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trombone Aj}2, 207.2. The average error for all tones in Group 1 using this 
wavetable bank was 134.8, with a standard deviation of 126.3.

When an additional basis spectrum was added to the wavetable bank for 
Group 1 from each of these tones except the viola, the error levels dropped 
to 101.4, 76.2, 119.6, 47.3, and 51.9, respectively; these improvements, along 
with minor changes (both upward and downward) in the error levels of other 
tones, reduced the average RMS error to 94.6, with a standard deviation of 
37.7. No additional spectrum was added from the viola C$3 because it was not 
obvious which spectrum should be added to the wavetable bank to reduce the 
tone’s matching error: no spectrum appeared to be far distant (in a Euclidean 
sense) from the class representatives of the relevant classes.

Statistics were also gathered on the number of times each basis spectrum in 
the wavetable bank was used in matching the breakpoint spectra of the tones in 
each group. For example, each wavetable of the bank for Group 1 consisting of 
the 44 class representatives was used an average of 109.0 times in a 4-oscillator 
“3+1” breakpoint matching; usage of individual basis spectra ranged from a 
low of 6 to a high of 430 uses. Basis spectra usage in a 4-oscillator “2+1” 
search yielded similar results, with the same least-used wavetable being used 
only 4 times. The second-least-used wavetable was used 21 times in the “3+1” 
search and 16 times in the “2+1” search.

On the basis of these usage statistics, it was decided to remove the least- 
used wavetable from the wavetable bank, resulting in a final wavetable bank 
for Group 1 of 48 wavetables.

Usage statistics were also used to verify that the added basis spectra were 
well chosen. It was found that the five added wavetables were used an average 
of 118.8 times each in a 4-oscillator “3+1” matching, ranging from a minimum 
of 39 to a maximum of 246 uses; this compares with an overall average usage of
98.3 per wavetable. A 4-oscillator “2+1” matching showed even greater usage 
of the added wavetables: an average of 124.4 uses, compared to an overall 
average of 97.6.

Different methods of hand-tuning of wavetable banks appeared to work 
best for the different groups. For Group 2, a single hand-picked wavetable was 
added and the single least-used wavetable was removed from the bank of class 
representatives, leaving the bank at 74 wavetables. This change yielded a 48% 
improvement in the RMS matching error of the bass clarinet Ajj3 tone, from
300.3 to 155.1. As in Group 1, the viola tones remained problematic, with 
error levels ranging from 182.4 to 317.1, compaxed to an average matching 
error for Group 2 of 87.7. Testing of a wavetable bank with an additional 
viola spectrum showed almost no improvement in matching error levels for 
viola tones.

The wavetable bank for Group 3 consisting only of the class representatives 
gave good results, although the viola tones again had higher matching errors 
than the other tones of the group. However, one wavetable was used only five 
times in a 4-oscillator “3+1” search and 22 times in a “2+1” search, and was 
removed from the wavetable bank, leaving a bank of size 64.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W avetables W avetables Bank Size
Group Tones in Bank per Tone (bytes)

1 43 48 1.1 28032
2 67 74 1.1 18056
3 46 64 1.4 7936
4 34 48 1.4 2880
5 8 12 1.5 528

Total 198 246 1.2 57432

Table 5.9: Number of basis spectra in each wavetable bank and average number 
of wavetables per tone for each group.

The ratio of the number of clusters in the best clustering found by Auto- 
C lass C to the number of tones in the group was significantly higher for 
Group 4 than for Groups 1 to 3: 2.4, compared to 1.0, 1.1, and 1.4, respec­
tively. Usage statistics for a 4-oscillator “3+1” matching showed an average 
usage of only 69.2 per wavetable, and five of the wavetables were used only 14 
to 17 times each. For these reasons, it was decided to use the class represen­
tatives of the second-best clustering as the wavetable bank for Group 4, the 
48 wavetables of this alternative bank representing a more reasonable ratio 
of wavetables to tones of 1.4. As a result, the average error of a 4-oscillator 
“3+1” matching increased 37% from 35.8 to 49.2. Much of this increase was 
due to large increases (2.5 and 2.6 times) in the already large error of two 
glockenspiel tones. When these two tones are excluded from the average error 
calculation, the increase is a more modest 12%. The difference in the tones 
resynthesized using the two wavetable banks was not audible, perhaps due to 
the obviously artificial quality of both synthesized tones.

The class representatives of the best clustering of the tones in Group 5 
were used without additions or deletions, since the 1.5 ratio of wavetables to 
tones seemed reasonable for such a small group of tones and no wavetables 
were significantly under-utilized.

A summary of the final size of each wavetable bank and the ratio of the 
size of each bank to the number of tones in its corresponding group is provided 
in Table 5.9. The size of each bank in bytes is also indicated, assuming that 
harmonic amplitudes are represented as 4-byte floating-point values.

The overall ratio of wavetables to tones of 1.2 is approximately twice that 
of Horner’s experiment [41] with multiple-tone matching of 10 English horn, 
12 trombone, and 14 violin tones with five, six, and two sets of five wavetables, 
respectively (see §2.4.7). However, Horner’s multiple wavetable matching re­
quires the use of all five or six wavetables simultaneously (i.e., five or six 
oscillators), while the method proposed here allows the use of as few as two 
oscillators and typically three or four oscillators, each with flexible access to 
a larger wavetable bank. As mentioned in §5.1, Horner does not address the 
necessity of reducing the number of harmonics in the wavetables used for syn­
thesis in order to avoid artefacts due to upper harmonics wrapping around the
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Nyquist frequency. If the English horn and trombone tones had been divided 
into at least two groups each and the violin tones into at least three groups 
(compared to the four used in this research), then the ratio of wavetables to 
tones would have been approximately equal to the ratio reported here.

5.5 Breakpoint M atching R esu lts
The proposed breakpoint matching method begins with a search for an n-table 
match to the spectrum at each breakpoint, n < iV0SC, where Nosc is the number 
of available oscillators. Two search strategies were tested: exhaustive search 
and a genetic algorithm. In the general case, the search is a multi-level search 
consisting of an initial exhaustive or GA search followed by a second-level 
exhaustive search to augment the size of the initial match. The results (time 
and matching error) for single- and multi-level exhaustive search are presented 
in §5.5.1; those for searches using a GA are presented in §5.5.2.

The multi-level search for a match to each breakpoint spectrum is followed 
by an oscillator assignment optimization stage which uses a shortest-path algo­
rithm on a vertex-weighted directed acyclic graph. The results of optimization 
of matches found by multi-level exhaustive search are presented in §5.5.3 and of 
those found with an initial GA search in §5.5.4. The results of the optimization 
stage are presented separately from the results for the search stage because a 
search for an initial match need only be conducted once; the match found by 
a given search (such as a “3+1” exhaustive search or a “2+1” GA search) can 
be used in multiple optimizations for different numbers of oscillators.

In §5.5.5, the results of using Horner’s multiple wavetable interpolation 
matching method are presented for comparison with those of the proposed 
new method.

All timing information was derived by executing C++ programs on a 500 
MHz Intel Pentium II Celeron-based system with 256 MB of memory and 
750 MB of swap space, running the Linux operating system, kernel version 
2.4.5. Programs were compiled with the GNU g++ compiler, version 2.95.3, 
against the Glibc C library, version 2.2.5 (Linux l ib c  6), and the lib s td c+ + -3  
Standard C + +  library, version 2-2-2.10.0.

5.5.1 M ulti-Level Exhaustive Search Results 
First-Level Exhaustive Search

The time required to perform an exhaustive search of depth m  (i.e., a search 
for the best possible m-wavetable match for a given breakpoint spectrum) is 
predominantly due to the time required to perform an LUP decomposition of 
each matrix of basis spectra harmonic amplitudes and to find a least-squares 
solution of the system shown in equation 3.2 for each breakpoint spectrum. 
The number of LUP decompositions performed in the course of an exhaustive
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search for an m-table match where the tables are drawn from a wavetable bank 
of size iVWT is

m!(iVwT — m)\ 

and the number of least-squares solutions to be found is

iVwT \  iVWT!
(5.1)

(5.2)

where jVbkpt is the number of breakpoints in the current tone. A single LUP 
decomposition takes about the same amount of time as a single least-squares 
solution, and both are dependent on the number of harmonics in the basis 
spectra of the wavetable bank.

Table A .l on page 153 in Appendix A indicates the amount of time (in sec­
onds) required to perform a single-level exhaustive search of depths 1 through 
4 for matches drawn from the wavetable banks for Group 1 and the RMS 
matching error of each best match relative to the breakpoint spectrum being 
matched. The search times and matching errors for Groups 2-5 are available 
in the accompanying technical report [62].

A ugm ented Search

The time required for a second-level exhaustive search of a given depth is 
greater than that for a first-level exhaustive search of the same depth be­
cause the augmenting search performs an LUP decomposition and iVbkpt least- 
squares solutions for each unique set of wavetables which have been found to 
form best matches to the breakpoint spectra of the current tone by the initial 
search. If the number of unique sets of matching wavetables is Aun;q, then the 
number of LUP decompositions performed at this stage of the search is

where, as above, m  is the depth of the initial search, n is the desired size of the 
match after augmentation, A w t is the number of wavetables in the relevant 
wavetable bank, and N\,kpt is the number of breakpoints in the current tone.

Typically, a search to augment a larger first-level match will take longer 
than one to augment a smaller initial match, since a larger match is more 
specific; for example, the same pair of wavetables may be the best match to 
all the breakpoints in the sustain portion of some tone, but a given 3-table set 
might only match a few different breakpoint spectra.

(5.3)

and the number of least-squares solutions at this stage is

(5.4)
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Tables A.2 to A.3 (pp. 154-155) indicate the time (in seconds) to perform 
a two-level search for each tone and the RMS matching error of the resulting 
matches to the breakpoint spectra of each tone in Group 1. The first table 
presents the results for searches which augment an initial search with a sin­
gle additional wavetable, and the second, the results of augmenting with two 
additional wavetables. The augmented search results for the other groups are 
available in the technical report [62],

The first column of data for each category of augmented search, headed 
“Taug,” indicates the time required to augment an existing match found by a 
first-level exhaustive search, the results of which can be cached and reused for 
subsequent augmenting searches. Figures in the second column of each group, 
UTSrch” (search time), include both the time required by the initial exhaustive 
search and that for the augmenting search. These aggregate times are shown 
to facilitate comparison with the times and error levels of Table A.I. For 
example, it may be seen that the time required for a “2+1” augmented search 
will typically be less than that for a single depth-3 search, but may result 
in matches of size 3 which have almost the same matching error as those 
found by exhaustive search. Furthermore, the optimizer may be able to find 
a lower-error solution when beginning with the matches found by a “2+1” 
search than with the better matches found by exhaustive search, due to use of 
fewer different wavetables in the “2+1” matches (which reduces the need for 
fade-ins and fade-outs and maximizes oscillator use).

Results are not shown for “1+1” searches, but they predictable: search 
times are negligible, and matching errors are about 30% to 80% greater than 
those for “2+1” matches.

It is also possible to conduct an augmenting search in stages, which further 
reduces the required search time by pruning the search tree. For example, a 
“2+3” search for 5-wavetable matches would likely require an unreasonable 
amount of computation, since an exhaustive search of depth 3 would have 
to be conducted for each of the 2-wavetable sets found by the initial search; 
however, a “2+2+1” search requires only about 10% more time than a “2+2” 
augmented search but produces matches which are about 20% better.

Sum m ary

A summary of the results of multi-level exhaustive search is presented in Ta­
ble 5.10, which lists the mean execution time (in seconds) and the mean RMS 
error for each type of search and each group of tones, in increasing order by 
time. The table confirms that, in general, a search which takes more time (i.e., 
traverses more of the search tree) produces better results, but there are some 
cases which do not conform to this general model. For example, for a 5-table 
match, a “3+2” search is to be preferred to a “4+1” search, since it produces 
approximately the same or better results in significantly less time.

The same information is illustrated in graph form in Figure 5.10, which 
makes clear the stepped nature of the results: after the lone data point for a
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T y p e G roup
o f 1 2 3 4 5

Search Time Error Time Error Time Error Time Error Time Error
1 + 0 0.15 196.4 0.14 251.7 0.08 191.8 0.04 184.5 0.01 206.0
1 + 1 1.32 134.4 1.73 142.0 1.54 84.0 0.62 80.8 0.07 128.2
2 + 0 6.41 132.9 9.17 138.4 4.51 82.2 1.42 79.0 0.06 127.7
1 + 2 7.20 101.6 10.8 94.4 9.34 46.4 4.11 51.0 0.35 84.3
2 + 1 12.3 100.9 18.4 92.4 12.3 45.8 5.08 50.4 0.34 84.1
3 + 0 145 98.6 317 86.0 134 41.8 32.2 45.2 0.29 83.9
3 + 1 157 82.1 339 62.8 151 28.6 40.9 33.4 0.91 55.1
2 + 2 181 81.4 441 60.7 328 25.9 111 29.3 1.74 53.0

2 + 2 + 1 199 70.5 472 47.3 352 20.0 123 23.5 2.81 30.3
3 + 2 477 68.6 1264 44.4 783 18.5 269 21.5 3.55 30.2
4 + 0 2114 79.4 7450 56.9 2706 24.2 470 27.3 0.87 48.6
4 + 1 2132 69.2 7482 45.1 2730 19.1 482 21.2 1.81 30.3

Table 5.10: Summary of multi-level exhaustive search results.

1-table match, the curve for each group steps down to an almost horizontal 
plateau representing the 2-table matches, followed by another for the 3-table 
matches. Two more horizontal plateaus can be seen if the penultimate data 
point (the result of the “4+0” search) is viewed as connected to the other
4-table matches ( “3+1” and “2+2”) instead of being linked vertically to the 
final point, which can be seen as the rightward extension of the step begun by 
the data  points for “2+2+1” and “3+2.” The graph also makes it clear that 
the single-level exhaustive searches (“2+0,” “3+0,” and “4+0” ) give very little 
improvement over the two-level (augmented) searches of the same size but cost 
significantly more. (Note that the time axis is logarithmic in the figure.)

It should be noted that lower matching errors at this stage do not neces­
sarily yield lower matching errors after oscillator assignment optimization. In 
some cases, the initial matches are further augmented after the overlapping 
stage. However, the primary reason that there is no direct relationship be­
tween the quality of initial matches and the quality of oscillator assignments is 
th a t matches which are highly specific to their respective breakpoint spectra 
are less likely to be used in a final set of matches than more general ones, 
due to the need to fade in and out any wavetables which change from one 
breakpoint to the next. The matching results presented in this section should 
be compared with the optimization results presented below in §5.5.3.

5.5.2 G enetic Algorithm Search Results
The use of a genetic algorithm instead of an initial exhaustive search was 
tested only on Group 1, the results of which are shown in Tables A.4-A.7 
(pp. 156-159). The first two tables summarize the results of a thorough ge­
netic algorithm search, with a population size of 100 and termination on con­
vergence after 50 generations; the latter two tables are for a quick version of 
the GA search, with population size 50 and 25 generations to convergence.
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Figure 5.10: Graph of multi-level exhaustive search results.

The table subheadings Tqa, Taug, and Tsrch represent the time (in seconds) 
required for the genetic algorithm search, the time to augment a GA search, 
and the total search time of an augmented GA search (an initial GA followed 
by an exhaustive augmenting search), respectively; “Gen” indicates the num­
ber of generations for which the GA executed, and “Error” signifies the RMS 
matching error after the search.

The execution times indicated are for a version of the GA which features 
caching of LUP decompositions and least-squares solutions. W ithout caching, 
a “quick” GA search of depth 3 on the first tone of Group 1 (a bassoon Ajjl) 
took 145 seconds, compared to just over 16 seconds with caching.

The GA search results are summarized in Figure 5.11, which compares 
the mean search times and RMS error levels from Tables A.4-A.7 with the 
multi-level exhaustive search results for Group 1. Each table of GA results is 
indicated by a separate line in the graph, since it is clear that a GA search by 
itself results in significantly higher error levels than a GA search augmented 
by a second-level exhaustive search.

The lone point to the right of the lower line labelled “Thorough GA” 
represents the results of a “2+2” augmented GA search, which is not included 
in the tables in Appendix A. The average RMS matching error of this search on 
Group 1 was 80.7 (SD 35.5); the average augmentation time was 299.7 seconds 
(SD 231.5), for a total average search time of 376.6 second (SD 288.6). These 
results are better than those of a “3+1” GA search (which yielded an average
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Figure 5.11: Graph of GA search results compared with multi-level exhaustive 
search for Group 1. Most GA data points are labelled, as are two significant 
points of multi-level exhaustive search results.

RMS error 86.1), but the search took more than twice the time; similarly, 
the GA “2+2” error level is slightly better than that of the match found 
by exhaustive “2+2” search (81.4), but again at over twice the cost. If five 
oscillators are to be used, the GA “4+1” search would be preferred, since it 
was both faster and better (RMS error of 76.1 in 271 seconds) than the GA 
“2+2” search, but the exhaustive “2+2+1” search was better still (70.5 error 
in 199 seconds).

In summary, a genetic algorithm may be useful as the initial stage of a 
multi-level search strategy, but only if caching of intermediate results is imple­
mented; even then, some form of multi-level exhaustive search will likely yield 
better matches in less time than an augmented GA search of the same total 
depth.

5.5.3 Oscillator Assignment Optim ization
The results of oscillator assignment optimization for Group 1 are presented 
in detail in Appendix B, and for the other groups, in the technical report 
[62]. Tables B.1-B.2 (pp. 161-162) show the results of 3-oscillator assignment 
optimization, Tables B.3-B.4 (pp. 163-164) present the 4-oscillator case, and 
Tables B.5-B.6 (pp. 165-166), 5-oscillator optimization. Each table presents
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the results of optimizing the matches found by three different searches, in­
dicating the optimization time (in seconds), the total time (search time plus 
optimization time, in seconds), and the RMS error for each tone in the relevant 
group for each type of initial search.

To prevent unreasonably large optimization graphs, a limit8 of 15 was spec­
ified for the size of wavetable sets produced by overlapping in the 5-oscillator 
case, and the results in Tables B.5-B.6 reflect this choice. The implications 
of selecting this and other similar options are explored in Table 5.11 and in 
Tables B.7 and B.8 on pages 167 and 168 in Appendix B.

Each table compares the results of the default configuration—overlapping 
at a distance of two, with no limit on wavetable set sizes—with those of three 
restrictions on the construction of wavetable sets: size limits of 15 and 12, 
and restricting overlapping to a distance of one. Table 5.11 shows statistics 
on the direct action of these restrictions, listing the mean wavetable set size 
after overlapping of initial “4+0” matches of all tones in each group, the 
maximum and minimum mean set size for individual tones in each group, and 
the maximum wavetable set size constructed for any breakpoint of any tone in 
each group. Table B.7 compares the optimization time and RMS error after a
5-oscillator optimization of the “4+0” matches for each tone in Group 1 under 
the four configurations, and Table B.8 compares the numbers of vertices and 
edges in the optimization graph for each option.

It will be seen from the data in these tables that limiting wavetable set 
sizes to 15 is a modest restriction:

• Mean wavetable set sizes are reduced by less than 10% overall—a reduc­
tion of only about one wavetable in each set—and by no more than 15% 
for any individual tone.

•  The size of the optimization graph, and thus optimization time, are 
reduced in the average case by about 15%, but no restriction is imposed 
on graph size in over half of the individual cases, and the largest graphs 
are reduced in size by over one-third.

•  The mean RMS error of the final matches is increased by only about 
one-tenth of a percent.

A wavetable size limit of 12 and restricting overlapping to a distance of 
one increase the mean error by about 2% and 3%, respectively, but reduce 
optimization time to about one-quarter and one-eighth of unrestricted over­
lapping at distance 2. These options should be considered for use if speed is 
more important than the quality of final matches.

Some preliminary observations may be made based on the data in Ta­
bles B.1-B.6. For convenience, the examples offered in support of these obser­
vations will be derived from the first two tables in Appendix B (the 3-oscillator

8If a re-augmentation phase is triggered after the first phase of overlapping, the sizes of 
some of the final wavetable sets might exceed this limit.
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W avetable Overlap D istance or W T  Set Size Lim it
Set Size O verlap=2 L im it= 15 L im it= 1 2 O v erla p = l

Group 1
Group M ean 11.7 11.5 9.9 8.8

M ax. M ean 13.7 13.3 11.5 10.4
M in. M ean 9.1 9.1 8.6 7.3

M axim um 18 17 14 17
Group 2

Group M ean 13.3 12.1 10.0 9.33
M ax. M ean 15.7 13.4 10.9 10.6
M in. M ean 9.0 9.0 8.5 7.1

M axim um 23 16 16 16
Group 3

Group M ean 14.4 12.5 10.2 9.8
M ax. M ean 16.1 13.7 11.4 10.7
M in. M ean 9.5 9.5 8.8 8.1

M axim um 20 15 14 13
Group 4

Group M ean 14.2 12.7 10.3 9.8
M ax . M ean 15.8 13.3 10.7 10.5
M in. M ean 11.3 11.1 9.5 8.2

M ax im u m 19 16 16 14
Group 5

Group M ean 9.2 9.2 9.2 7.6
M ax. M ean 9.8 9.8 9.8 8.0
M in. M ean 7.5 7.5 7.5 6.8

M axim um 12 12 12 11
Overall

Group M ean 13.3 12.1 10.1 9.4
M ax. M ean 16.1 13.7 11.5 10.7
M in. M ean 7.5 7.5 7.5 6.8

M axim um 23 17 16 17

Table 5.11: Mean and maximum sizes of wavetable sets created by overlapping 
of “4+0” matches with limits on overlapping distance or wavetable set size.
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matches for Group 1, pp. 161-162), but similar instances can be seen in the 
other result data as well.

•  The best final matches do not necessarily result from optimizing the 
best initial matches. For example, the best final 3-oscillator match to 
the bass clarinet (“clb” ) G2 tone resulted from optimizing the initial 
“1+2” match, even though the “3+0” and “2+1” initial matches were 
better (see Tables A .l, A.2, and A.3).

•  The best final matches for different tones may result from optimizing 
initial matches found by different types of searches. For example, opti­
mization of the “3+0” match gave the best result for the piano G2 tone, 
the “2+1” match led to the best final match to the ’cello ( “vie” ) A$2 
tone, and the initial “1+2” match to the piano E2 yielded a significantly 
better final match than initial matches found by any other type of search.

• Initial matches of higher dimension tend to produce better final matches 
than lower-dimension initial matches, but do not always do so. For 
example, most of the 3-table optimized matches of Table B .l are better 
than those of Table B.2, which were derived from initial 1- and 2-table 
matches. However, the optimized “2+0” and “1+1” matches to the horn 
A$2 are better than those found beginning with 3-table initial matches, 
and all three of the lower-dimension matches (not only the “2+0” and 
“1+1,” but also the “1+0” match) to the trombone C$3 and both the 
bass ( “vlb”) A$2 and C$3 are better than those derived from any of the 
initial 3-table matches.

•  In some cases, final matches of the same quality are found by optimizing 
any of the initial matches of a given size. For example, all three optimized 
matches in Table B.l have the same RMS error (to one decimal place of 
accuracy) for each of the horn C$3, the sax E2 and G2, the trombone 
E2, G2, and A$2, and the bass G2. Furthermore, in some cases, such as 
the bass clarinet A$2 and the ’cello E2, all six of the tested optimizations 
resulted in the same error level.

• Optimizations which take more time (due to constructing and traversing 
a larger graph) do not necessarily produce better final matches. For 
example, the best 3-oscillator matches to both the bass clarinet G2 and 
the horn E2 were found by the shortest of the six optimization phases 
for each tone. The best final matches to the piano A$2 were found by 
both the shortest ( “2+1”) and the longest ( “1+2”) optimizations of the 
six tests of 3-oscillator matches.

The mean optimization time, total time, and RMS error of each search 
type for each group and number of oscillators are summarized for ease of 
comparison in Table 5.12. The lowest mean RMS error value is highlighted
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for each group within each section of the table; if more than one search type 
yielded the same minimum error within a category, the value corresponding 
to the smallest optimization and search times is highlighted.

Figures 5.12-5.14 show the mean RMS error of each group as functions 
of mean optimization time and mean total time for 3-, 4-, and 5-oscillator 
matches, respectively; as in the graphs of search results, the time axis uses a 
logarithmic scale.

In most of the graphs, lines connect the data points, one line per group, 
such that each line traverses the points in the same order as they appear in 
the summary table, which lists the various search types within each section 
in the same order as in Table 5.10 (i.e., in increasing order of search time). 
Since, in general, optimization time is positively related to search time, the 
lines on these graphs proceed from left to right, for the most part. The first 
line segment in Figure 5.12, representing 3-oscillator optimization of matches 
found by an initial “1+0” search, is an exception; in this case, optimization 
time dominates search time, and a re-augmentation phase is triggered for every 
tone but one.

Mean optimization times of the 5-oscillator case are illustrated with points 
only in the upper graph of Figure 5.14 because the relationship between search 
time and optimization time does not hold in this case. In fact, there is no 
ordering of search types which would present the data points of each of the 
groups of this data set in increasing order, either by optimization time or by 
total time. The points of lowest error in each group are labelled for reference 
purposes.

Some general observations and recommendations follow from the data rep­
resented in the graphs of Figures 5.12-5.14 and listed in Table 5.12:

® Single-level exhaustive searches (especially “4+0” searches) tend not to 
be worth the computation time they require. Although the best 4- 
oscillator result for Group 5 was achieved by optimizing an initial depth-4 
exhaustive search, the same process gave poorer results for Groups 2, 
3, and 4, and in Group 1, a faster process—optimization of “3+1” 
matches—gave the same (best) result as the “4+0” optimization.
This conclusion might also apply to the “3+0” search relative to 3- 
oscillator solutions, since the plot lines for Groups 2, 3, and 4 in Fig­
ure 5.12 show the same upward inflection at the right end as those for the 
same groups of the 4-oscillator case in Figure 5.13. If only 3-oscillator 
solutions are desired, depth-3 exhaustive searches should be eschewed in 
favor of “1+2” and “2+1” which lead to better or, in the case of Group 1, 
almost-as-good final matches in an order of magnitude less time. On the 
other hand, if 4- and 5-oscillator matches will also be tested, “3+0” 
searches will be well worth performing, since the results can be re-used 
in subsequent “3+1” and “3+2” searches and optimizations.
The same logic does not necessarily extend to “4+0’ searches. Although 
the results of such a search could be re-used for a “4+1” search preceding
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Search Group 1 Group 2 Group 3 Group 4 Group 5
T ype T opt T to ta l Error T opt T to ta l Error T opt T to ta l Error T opt ^ to ta l Error T opt T to ta l Error

3 O scillators
1 + 0 1.52 1.67 121.9 2.00 2.13 126.6 2.02 2.10 82.3 2.06 2.10 76.8 1.15 1.16 102.1
1+ 1 0.94 2.25 119.9 1.25 2.98 126.0 1.58 3.13 81.3 1.70 2.32 76.2 0.83 0.90 99.6
2 + 0 1.00 7.41 118.9 1.34 10.5 124.0 1.66 6.12 81.1 1.85 3.26 76.5 0.95 1.01 99.5
1+ 2 2.39 9.58 113.7 4.13 14.9 120.0 6.86 16.2 79.0 6.88 11.0 75.7 2.44 2.79 97.1
2+ 1 2.48 14.8 114.0 4.37 22.8 121.6 6.98 19.3 78.4 7.31 12.4 76.1 2.55 2.90 97.0
3 + 0 2.87 148 113.5 5.31 323 124.7 8.29 142 81.2 8.64 40.9 78.5 2.70 2.99 97.1

4 O scillators
1+ 2 13.3 20.5 97.8 24.3 35.1 93.3 42.8 52.2 53.2 42.2 46.3 54.7 10.2 10.6 72.0
2+ 1 13.2 25.5 97.6 26.2 44.6 92.5 44.3 56.6 53.0 46.9 52.0 54.3 11.1 11.4 71.9
3 + 0 15.6 160 96.9 32.7 350 91.1 54.6 189 53.3 59.3 91.6 51.3 12.5 12.8 65.9
3+ 1 46.5 203 94.5 119 458 87.7 187 338 52.1 186 227 49.2 23.9 24.8 65.8
2+ 2 54.4 236 95.1 122 563 91.0 197 524 53.0 195 306 48.1 25.4 27.2 67.5
4 + 0 66.8 2181 94.5 146 7595 91.8 234 2941 54.8 225 695 49.8 25.6 26.5 65.1

5 O scillators
3+ 1 220 377 83.5 399 738 69.9 563 715 36.9 628 669 36.3 78.4 79.3 47.5
2+ 2 253 434 83.2 453 894 70.0 617 945 37.3 659 770 34.3 87.2 88.9 46.3

2 + 2 + 1 340 540 81.9 394 866 69.7 487 839 39.0 537 660 35.6 161 163 42.3
3 + 2 358 835 81.8 386 1651 70.2 463 1246 40.4 549 818 36.8 176 180 42.3
4 + 0 284 2398 82.5 433 7883 70.3 577 3283 38.6 652 1123 34.8 87.6 88.5 47.0
4+ 1 351 2483 81.5 399 7881 70.5 471 3202 40.2 503 985 35.6 167 169 42.3

Table 5.12: Summary of 3-, 4-, and 5-oscillator optimization results for various initial search types.
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a 5-oscillator optimization, the depth-4 exhaustive search is at least an 
order of magnitude more expensive than a depth-3 search. Furthermore, 
a “4+1” search is probably not worth executing, since results of equal 
or almost equal quality were achieved by optimizing initial “2+2+1” or 
“3+2” matches.

• In general, the best n-oscillator final matches are achieved by optimizing 
n-table initial matches. For example, none of the lowest mean RMS error 
levels are achieved in the 3-oscillator case by optimizing initial “1+0,” 
“1+1,” or “2+0” matches; similarly, initial “1+2,” “2+1,” and “3+0” 
searches lead to poorer 4-oscillator final matches than initial searches of 
depth 4.

However, this observation does not apply to 5-oscillator matches: the 
best result for Group 3 is derived from an initial “3+1” search, and the 
best of Group 4 from a “2+2” search.

• No single search and optimization method gave the best results in all 
cases. A good strategy would be to optimize the matches found by 
two different medium-cost searches and use the better of the final two 
matches for each instrumental tone. Table 5.13 shows the mean and 
standard deviation RMS error achieved for each group by selecting the 
better final match of the 3-oscillator optimizations of initial “1+2” and 
“2+1” searches and of the 4-oscillator matches from initial “2+2” and 
“3+1” matches. In all 3- and 4-oscillator cases, the results due to this 
strategy are better, on average,9 than the best result found by any indi­
vidual search and optimization.

For 5-oscillator matches, selecting the better of the final matches found 
by optimizing “2+2+1” and “3+2” matches resulted in a lower mean 
error level than the optimized “4+1” matches for Group 1, but did 
not equal the low mean error levels achieved by the “3+1” and “2+2” 
cases for Groups 3 and 4, respectively. However, selecting the best of 
three matches found by optimizing “3+1,” “2+2,” and “2+2+1” ini­
tial matches equalled or bettered all individual results in all groups. 
If “3+1” and “2+2” searches have already been executed as part of a
4-oscillator solution, this is a low-cost method of achieving excellent 5- 
oscillator matches, since the only additional exhaustive search which is 
required is the third-level search of depth 1 to augment the “2+2” initial 
matches, creating “2+2+1” initial matches.

9Better results can be achieved for individual tones by optimizing other initial searches, 
but the suggested strategy produces lower mean RMS error levels than the optimization of 
any single multi-level exhaustive search.
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Error Group 1 Group 2 Group 3 Group 4 Group 5
B est o f 1 + 2  and 2 + 1  M atches for 3 O scillators

M ean  
Std. D ev.

113.4 119.0 78.0 75.4 97.0 
43.2 76.0 58.9 88.5 134.6

B est o f 2 + 2  and 3 + 1  M atches for 4 O scillators
M ean  

Std. D ev.
93.9 86.7 51.6 46.0 63.5 
38.1 60.7 44.0 60.8 85.9

B est o f 2 + 2 + 1  and 3 + 2  M atches for 5 O scillators
M ean  

Std. D ev.
80.9 68.4 38.5 35.0 42.2 
35.4 52.1 35.6 51.5 55.7

B est o f 2 + 2 , 3 + 1 , and 2 + 2 + 1  M atches for 5 O scillators
M ean  

Std. D ev.
81.3 67.4 36.3 33.2 42.3 
35.7 50.8 33.5 50.6 55.7

Table 5.13: Mean matching error levels achieved by selecting the best match 
to each tone from among the optimizations of multiple different initial search 
strategies.

5.5.4 Optim ization of M atches Found w ith a GA Search
Tables B.9 and B.10 (pp. 169 and 170 in Appendix B) present the results of 
optimizing the initial “2+1,” “3+1,” and “4+1” matches found by a first-level 
genetic algorithm search augmented with a depth-1 exhaustive search for 3-,
4-, and 5-oscillator assignments, respectively. As with the 5-oscillator final 
matches in the previous section, wavetable set sizes were limited to 15 for the
5-oscillator “4+1” match.

The graphs in Figure 5.15 gather the curves depicting the 3-, 4-, and 5- 
oscillator optimizations of multi-level exhaustive searches for Group 1 from 
Figures 5.12, 5.13, and 5.14 and plot the data points for the mean results 
(optimization time and total time versus error) of the optimized “2+1,” “3+1,” 
and “4+1” GA matches, both the thorough and quick versions, from Tables B.9 
and B.10.

The results reported in the table and illustrated in the graphs were the 
best of the optimizations of initial matches found by a genetic algorithm. 
One other tested optimization of a GA match was of interest: the 4-oscillator 
optimization of a “2+2” GA match yielded a mean RMS error of 94.9 (SD 
38.8), which is lower than the “3+1” GA match (96.0) and slightly better that 
of the optimization for 4 oscillators of the exhaustive “2+2” search (95.1), but 
not as good as the exhaustive “3+1” 4-oscillator optimization (94.5). With 
a mean optimization time of 57.6 seconds (SD 38.6) and a mean total time 
of 434 seconds (SD 320), the “2+2” GA match is not time-competitive with 
either the “2+2” or “3+1” exhaustive search optimizations.

It is clear that there are 4- and 5-oscillator exhaustive search optimiza­
tions which give significantly better results than the optimizations of both 
“quick” and “thorough” GA matches in less time. In the case of 3-oscillator
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Figure 5.15: Graph of GA optimization results compared with 3-, 4-, and
5-oscillator optimizations of multi-level exhaustive searches for Group 1.
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optimizations, the GA matches were more competitive, but given the rela­
tively low computational demands of 3-oscillator optimizations, the strategy 
recommended in the previous section would be preferred.

5.5.5 Comparison w ith Horner’s M ethod
As discussed in §2.4.9, Horner [42] used a simple form of oscillator assignment 
for his experimentation with multiple wavetable interpolation: a match of size 
NOSc — 1 was found by exhaustive search for the breakpoint spectrum with the 
largest RMS amplitude, and the other breakpoint spectra were matched by 
working forward and backward from the peak breakpoint, changing at most 
one wavetable from one breakpoint to the next by exhaustive search. This 
method might be called constrained matching, since all matches are constrained 
to consist of Nosc — 1 wavetables.

Table B .ll  in Appendix B presents the results of implementing and testing 
Horner’s constrained matching on the instrumental tones of Group 1, using 
the same wavetable bank for this group of tones as was selected for testing the 
method of optimized multiple wavetable interpolation proposed here. Results 
for the other groups are given in the technical report [62],

It should be clearly noted that this comparison with Horner’s method is 
restricted to the breakpoint spectrum matching and oscillator assignment com­
ponents only. Horner did not use large, general-purpose wavetable banks, but 
used a genetic algorithm to select small sets of basis spectra (two to ten wave­
tables in size) which were particular to each instrument being matched.

Figure 5.16 compares the results of Horner’s constrained matching method 
with those of optimized matching using 3, 4, and 5 oscillators for the tones of 
Group 1.

While Horner’s constrained matching method is faster than any of the types 
of multi-level exhaustive search optimization for a given number of oscillators, 
the error levels produced by Horner’s method are significantly higher than 
those of the optimized matches, and are closer to those achieved by optimiza­
tion with one fewer oscillators.

Figure 5.17 shows the oscillator assignments derived using Horner’s con­
strained matching method with four oscillators on a French horn E2 tone. 
When compared with Figure 3.14 (p. 59), which shows the oscillator assign­
ments found by optimization of matches to the same horn tone, the figure 
illustrates why the results of Horner’s method approach those of optimized 
matching with one fewer oscillators. The dashes in the four main columns of 
the figure indicate the points at which an oscillator is required for the fade-out 
of one wavetable and the fade-in of another; occurrences of wavetable index 
zero indicate breakpoints at which an oscillator is idle between that break­
point and the next. The peak amplitude occurs at breakpoint 6, so the set 
of wavetables used at that point constitute the best match to th a t spectrum 
th a t could be found by an exhaustive search of depth 3. Replacing any single 
wavetable of that set by another wavetable failed to produce a better match at
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Figure 5.16: Comparison of Horner’s constrained matching with optimized 
multi-level exhaustive search results for Group 1.

breakpoint 5, so the same set of wavetables was used there, leaving the second 
oscillator unassigned. Similarly, the set {10, 15, 37} was the best match that 
could be found for the spectra at breakpoints 7 to 14, subject to the condition 
that only one wavetable could be changed at a time; this left the first oscillator 
unused until breakpoint 14, at which point it started fading in wavetable 6, 
which it had previously faded out between breakpoints 6 and 7. Additional 
examples of fading out a particular wavetable, only to fade it back in, may be 
seen at breakpoints 15, 16, and 20. If it is assumed that wavetable 6 could 
have contributed to the quality of the matches at breakpoints 7-14 and 16, and 
that wavetables 4, 10 and 37 might have been similarly useful at breakpoints 
2, 5, 15, 17-18, and 20, then there are at least 15 points—five-eighths of the 
breakpoints—at which an unused oscillator could have been gainfully assigned 
to achieve higher quality matches.

If oscillators are a cheaper and more plentiful resource than computation 
time, or if the speed with which results are achieved is more important than the 
quality of the results, then Horner’s method is to be recommended. However, 
since the spectral matching procedure need be performed only once for each 
tone, a higher quality result using fewer oscillators would typically be desired, 
and the time required to achieve that goal would be of secondary importance. 
It is for this reason that the proposal of a method for selecting optimal matches 
which fully utilize the available oscillators is a significant contribution.
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B reak- O scilla to r
p o in t 1 2 3 4

1: 6 10 15 —
2: 6 0 15 9
3: 6 — 15 9
4: 6 4 15 —
5: 6 0 15 37
6: 6 — 15 37
7: 0 10 15 37
8: 0 10 15 37
9: 0 10 15 37
10 0 10 15 37
11 0 10 15 37
12 0 10 15 37
13 0 10 15 37
14 — 10 15 37
15 6 — 15 37
16 — 10 15 37
17 6 0 15 37
18 6 0 15 37
19 6 — 15 37
20 6 29 15 —
21 6 — 15 37
22 — 4 15 37
23 40 — 15 37
24 0 8 15 37

Figure 5.17: Oscillator assignment resulting from Horner’s method for a four- 
oscillator match of a French horn E2.
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N um ber of  
Breakpoints

Size
3 Osc. 4 Osc. 5 Osc.

24 848 1056 1264
48 1616 2016 2416
85 2800 3496 4192
122 3984 4976 5968
179 5808 7256 8704

Total 304928 380368 455808

Table 5.14: Sizes (in bytes) of wavetable envelope files (stored control streams) 
for tones with various numbers of breakpoints using 3, 4, or 5 oscillators.

5.5.6 D ata Reduction
The data reduction achieved through multiple wavetable interpolation analysis 
is significant: a reduction of two orders of magnitude.

The stored size of an original digital waveform is determined by its du­
ration, the sampling rate, and the data representation of the samples. A 
CD-quality waveform stored in a typical WAV file format (16-bit signed in­
teger samples) requires 44100 x 2 bytes per second of sound, plus a 44-byte 
header. The WAV files of the tones selected for this study (see Table 5.1, 
p. 94) range in size from 88168 bytes (the glockenspiel G5) to 724450 bytes 
(the trum pet Cjj4), with an average size of 294 kilobytes, and occupy a total 
of 58.2 megabytes.

As shown in Table 5.9 (p. 116), all five wavetable banks occupy only 57.4 
kilobytes.

The oscillator assignment control stream for each analyzed and matched 
tone consists of a single-precision floating-point value (4 bytes) for the time 
index of each breakpoint, another for the pitch differential at that breakpoint, 
and, for each oscillator, an unsigned integer (4 bytes) for the index of a wave­
table in the bank and a floating-point weighting (amplitude coefficient) for 
th a t wavetable. For a 4-oscillator control stream, this totals only 40 bytes 
per breakpoint. For convenience, a control stream record is also stored for 
the external breakpoints, and the control stream for each tone is stored in a 
file with a 16-byte identifying header. Table 5.14 indicates the sizes of these 
wavetable envelope files for the typical cases (24 and 48 internal breakpoints) 
and for some of the other cases, in which various numbers of breakpoints were 
used. The total size of the 198 wavetable envelope files for each of the 3-, 4-, 
and 5-oscillator cases is also indicated.

The total space occupied by the 198 5-oscillator wavetable envelope files 
plus the space required for the five wavetable banks is 513 kilobytes, which is 
only 0.88% of the space used by the 198 original CD-quality WAV files.
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5.6 Synthesis Results
Three-, four-, and five-oscillator optimized matches were selected for each test 
tone according to the method recommended at the end of §5.5.3 and the tones 
were resynthesized using Csound. An informal listening test was conducted 
by the author to compare each of the synthesized tones with its respective 
original instrumental tone, evaluating the fidelity of each according to the 
scale previously shown in Table 2.1 (p. 25).

Many of the synthesized tones were deemed to be perceptually indistin­
guishable from their original correspondents, especially the lower bassoon 
tones; the mid- to upper-range clarinet tones; the bass clarinet tones from 
Group 2; most of the English horn, French horn, and oboe examples; almost 
all of the saxophone tones in Groups 2, 3, and 4; most of the upper trum ­
pet notes; and almost all of the trombone selections. In most cases, all three 
variants—the 3-, 4-, and 5-oscillator syntheses—were deemed to be of equal 
quality, but in some cases, only the higher-order forms were perceptually indis­
tinguishable from their sources. In these latter cases, the audible differences 
in the 3-oscillator resyntheses were typically due to rapid timbre changes in 
the attack or release portions which the 3-oscillator solution either failed to 
fully capture or exaggerated so that the changes were more audible in the 
reconstruction than in the original.

Most of the bass clarinet, English and French horn, oboe, sax, trum pet, and 
trombone tones that were not deemed to be perceptually indistinguishable were 
thought to be musically indistinguishable from their originals (category 2 on 
Moore’s scale). About two-fifths of the string tones were similarly categorized, 
especially the middle to upper viola tones, the lower bass tones, and the mid- 
to upper-range violin tones. The perceived differences were primarily due to 
one of two causes: noise or transients in the attack portion (and occasionally 
in the release) of the original tones, and exaggeration of frequency changes or 
timbral brightening in the release. For example, the trum pet G3 features a 
rapid timbre change in the attack which is quite clearly the result of the onset of 
vibration of the player’s lips in the mouthpiece, and an aggressive pulling and 
releasing of the string by the bow gives the ’cello Cjj2 an exciting start; neither 
of these features is well captured in the resyntheses, since multiple wavetable 
synthesis is not amenable to the reconstruction of noise. The frequency of the 
’cello E2 tone is heard to rise as the ’cellist lifts the bow from the string with 
extra energy at the end of the tone, and this frequency change is exaggerated in 
the resynthesis, no doubt due to the simplicity of the formula used to calculate 
a single weighted average frequency differential for all partials. The timbre 
brightens a t the end of the string bass CjJ2 due to a similar use of the bow, 
and this change is also exaggerated by the matching, probably due to the 
allocation of too few breakpoints to the lower-amplitude release section of the 
tone.

Some tones were heard as musically acceptable: they were audibly differ­
ent from the originals, but could acceptably be substituted for the originals
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in a musical context. In this category were the upper bassoon tones; the 
lower clarinet, saxophone, and bass clarinet pitches; most of the flute tones; 
a few horn, piano, trumpet, and violin pitches; and most of the viola, bass, 
and ’cello tones. In general, the synthesized tones sounded cleaner than their 
natural counterparts, which contained significant noise components. For the 
wind-generated tones, the noise was often due to the flow of air: in the bas­
soon C$4, the sound is that of excess air escaping the instrument, and in the 
flute tones, the stream of air being blown across the embouchure10 hole is es­
pecially audible. For the strings, the noise is that of the rosined11 hairs of 
the bow scraping on the string. Both types of noise are given prominence in 
the source tones by the close placement of the microphone during recording; 
the synthesized variants sound more like their instrumental sources heard at a 
greater distance. A lip buzz is clearly audible in the original trum pet A$3 tone 
which is not reproduced in its synthesized counterpart. In several of the piano 
tones (especially C$5 and G5), the mechanical noises of the action hitting the 
hammer and lifting of the damper are clearly heard in the recordings; these 
noises are not reproduced on resynthesis.

As expected (see §5.2), the signals synthesized from matches to the glock­
enspiel and piano tones were musically different from their sources, as were a 
few other tones, including several flute and ’cello tones and one violin tone. 
The recorded piano tones are characterized by a directness in the attack, in 
which the stiffness of the strings can clearly be heard, which the resyntheses do 
not capture; especially in the lower synthesized piano tones, a buzz gives the 
attack portion an artificial character. In most of the glockenspiel tones, some 
of the upper piano tones, and the ’cello C$3, the difference is due to pronounced 
or exaggerated frequency changes, again no doubt due to the calculation of 
a weighted average frequency differential. In the case of the glockenspiel and 
the piano, it is clear that the frequency centroid at the onset of the tone is 
strongly influenced by percussive attack transients, then shifts downward as 
the transients decay and the quieter sustained partials predominate in the cal­
culation of the weighted average. When the frequency differential ramps were 
replaced by constant zeros and the tones were resynthesized, the results were 
musically acceptable, although the synthesized glockenspiel was somewhat less 
ringing than the original, and the thumping sound of the piano action was not 
reproduced.

10 Mouthpiece.
11 Rosin, a substance derived from pine resin, is rubbed on the hair of the bows of stringed 

instruments, as on the shoes of ballet dancers and the hands of gymnasts, to keep them 
from slipping.
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Chapter 6

Conclusions and Suggestions for 
Further Research

The goals of this research effort were, in essence, the same as those of many 
research projects: generality and optimality. Two questions were central to 
the research: “Is it possible to generalize the techniques of multiple wave- 
table analysis/ synthesis so that tones of many different instruments may be 
analyzed, matched, and resynthesized with reference to a common set of ba­
sis spectra?” and “Is it possible to perform spectral matching and oscillator 
assignment in a globally optimal way, rather than with ad hoc techniques?” 
Both these questions have been answered in the affirmative.

The generalization of multiple wavetable matching can be thought of as 
the use of a horizontal rather than a vertical grouping of tones. In previous 
studies which used a common set of basis spectra to match multiple tones, the 
tones were those of different pitches being played by the same instrument [41] 
or by instruments which had been determined to have similar timbres [89]. 
This might be characterized as a vertical grouping of tones, since the tones 
ranged from low to high in pitch, but did not range across different instruments 
or groups of instruments. These studies avoided the issue tha t basis spectra 
cannot be arbitrarily shifted in frequency (due to the limit imposed by the 
Nyquist frequency) by using band-limited spectra (i.e., by retaining only a 
limited number of harmonics in the basis spectra); this approach would seem 
to obviate the need for multiple wavetable synthesis since, if one is willing 
to forego the rich spectra created by many partials, one might as well use 
sinusoidal additive synthesis for the few harmonics that remain. In the current 
study, a horizontal grouping of tones was used instead—grouping together all 
the tones within a narrow pitch range from across all the instruments being 
considered—in order to address directly the Nyquist limit while generalizing 
the multiple wavetable technique across many different instruments.

The three-stage optimization method proposed in this thesis—selecting an 
initial match to each breakpoint spectrum, overlapping the matches of adjacent 
breakpoints to form wavetable sets, then optimizing oscillator assignments by 
constructing a vertex-weighted directed acyclic graph and executing the single-

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



source acyclic weighted shortest path algorithm on it—avoids the two ad hoc 
restrictions of Horner’s method: that the match to each breakpoint spectrum 
be constrained to a size one less than the number of oscillators to be used 
in synthesis, and that the matching process begin with the peak-amplitude 
breakpoint and work outward. It has been demonstrated that the optimiza­
tion method yields significantly improved matches compared to Horner’s con­
strained matching method.

Three other techniques were proposed and tested in this research:

• A new breakpoint selection algorithm based on segment merging was 
successfully used to construct piecewise linear approximations of spec­
tral envelopes, and was found to be advantageous due to its speed of ex­
ecution, its selection of timbral extrema, and its predictability as a stack 
algorithm: the set of breakpoints selected for an n-breakpoint PLA is a 
subset of those in a PLA having n +  1 breakpoints.

•  A new method of selecting basis spectra was successfully used to con­
struct the wavetable banks, which are central to optimized multiple 
wavetable interpolation: the breakpoint spectra from all of the tones 
produced by the various different instruments which are within the pitch 
range of a particular horizontal group are submitted to a clustering al­
gorithm, and the centroids of the clusters are used as the basis of the 
wavetable bank for that group. It was found, as anticipated, that spec­
tra  from different segments of different instrumental tones are frequently 
clustered together and that wavetable bank spectra which originated in 
the tones of one instrument are re-used in the synthesis of tones of other 
instruments. As a result of this generalized re-use of basis spectra, the 
wavetable banks consisted, on average, of only 1.2 wavetables per tone.

• A proposed multi-level search strategy proved to be very successful for 
finding initial matches to breakpoint spectra for the first stage of the 
optimization algorithm. In effect, this strategy prunes the search tree 
by restricting its search at level n  to subtrees of those nodes which were 
found to be the best ra-table matches to breakpoint spectra at level 
n — 1 of the search, where m  is, in the general case, less than the number 
of wavetables desired in matches to be submitted to the next stage of 
the optimizer. Two different search algorithms—exhaustive search and 
a genetic algorithm search—were tested for use at the first level of the 
multi-level search; exhaustive searches of the depths used in this research 
(typically 2 or 3, and not more than 4) were found to produce matches 
of equal or better quality than those generated by the genetic algorithm 
in approximately the same time. Exhaustive search of limited depth was 
always used at levels above 1.

The success of these techniques and the wavetable matching optimization 
algorithm was confirmed by an informal listening test.
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The results of this research suggest several opportunities for further re­
search:

• There is a need for further experimentation with parameters to the break­
point algorithm, including the testing of alternative error measures, to 
improve the capture of salient details of the attack and release segments 
of tones. Attack weighting was used to improve the modeling of certain 
flute tones, but listening tests indicated that attack weighting may have 
improved the accuracy of the modeling of other tones as well. The selec­
tion of the appropriate weight to use and the duration over which it is 
applied is currently accomplished by experimentation and hand tuning, 
which is a time-consuming and ad hoc process. A better solution might 
be to use an adaptive error measure which, like Horner’s relative error 
measure (see Equation 4.3), gives greater weight to the lower-amplitude 
parts of the tone but, unlike the relative error measure, does not over­
emphasize the portions with near-zero amplitude.

• A more sophisticated method of calculating a common frequency dif­
ferential for all harmonics is clearly necessary, since the use of a simple 
weighted average does not distinguish between the contribution of strong 
early transients and that of sustained or more slowly decaying partials. 
Alternatively, a smoothing function might suffice to avoid the exagger­
ated frequency changes which were heard in several resynthesized tones, 
especially if the function applied greater smoothing to the frequency 
envelope in the lower-amplitude portions of the tone.

• Experimentation is required to determine if calculating a separate PLA 
for frequency differentials would allow the use of fewer breakpoints to 
model the spectral envelopes of tones with vibrato. Alternatively, the 
frequency differential at each frame could be included as one of the values 
used by the breakpoint selection error measure; it could be weighted more 
heavily than the partial amplitudes to ensure that the frequency maxima 
and minima of a vibrato are appropriately captured by the PLA.

• A promising avenue of research would be the addition of a stochastic 
component like that used in Spectral Modeling Synthesis (see §2.4.4) to 
the optimized multiple wavetable interpolation model in order to model 
the noise which is so clearly present in many instrumental tones. The 
inherently harmonic nature of multiple wavetable synthesis limits its abil­
ity to lend realism to the resynthesis of tones which include the scrapes, 
thumps, chiffs, and air flow noises of actual instruments but which are 
otherwise harmonic in structure.

Optimized multiple wavetable interpolation analysis/synthesis has been 
shown to be a useful model for the compact representation and rapid syn­
thesis of a wide variety of instrumental tones. Using only a small collection
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of data—the wavetable banks—and a sparse control stream—for each break­
point, a time index, a frequency differential, and a wavetable index and weight 
for each oscillator—the method enables the synthesis of dynamically changing 
harmonic spectra with only a few oscillators. The technique of grouping tones 
by pitch range allows the use of different numbers of partials for tones of dif­
ferent pitch without creating synthesis artefacts due to exceeding the Nyquist 
frequency.

The method would be very suitable for incorporation in a hardware syn­
thesizer, where it would offer both high fidelity and low cost. The model is 
also useful to electronic music composers in a software synthesis context, since 
its control stream is quite intuitive due to the use of common breakpoints and 
spectral ramps. The introduction of an oscillator assignment optimizer pro­
vides assurance to hardware designers and composers alike that the resources 
available, whether hardware oscillators or computational cycles, are used as 
fully as possible during synthesis.
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G R O U P 1 O ne-level E xhaustive Search
D ep th  1 D ep th  2 D ep th  3 D ep th  4

Instr P itch Time Error Time Error Time Error Time Error
A$1 0.11 136.0 4.96 125.0 112 106.4 1646 85.7
C$2 0.12 244.8 5.03 190.6 112 152.8 1650 129.1

bsn
E2 0.15 177.3 4.94 140.9 112 112.1 1647 87.7
G2 0.13 252.6 5.00 121.6 112 88.8 1643 73.9
A|2 0.11 143.6 4.93 113.4 112 74.3 1643 55.4
C$3 0.11 182.4 5.09 101.1 112 56.2 1643 37.5
C$2 0.12 257.3 4.93 231.8 112 198.4 1644 170.4
E2 0.12 159.8 4.92 141.9 112 129.4 1653 121.6

clb G2 0.12 228.6 4.92 175.0 112 147.1 1643 129.4
A$2 0.12 214.8 4.95 152.6 112 120.2 1643 106.4
C$3 0.12 168.0 4.93 138.8 112 104.9 1643 90.4
E2 0.12 312.6 4.96 187.0 112 108.6 1643 87.1

hr 11
G2 0.12 112.0 4.92 81.5 112 56.1 1642 40.3
A$2 0.11 255.6 4.93 107.8 112 73.7 1642 53.4
C$3 0.11 94.1 4.93 47.2 112 30.0 1643 21.6
A$1 0.11 133.6 4.92 91.7 112 65.1 1643 51.5
C$2 0.11 152.1 4.92 110.5 112 98.5 1643 90.0

pno E2 0.11 291.0 4.93 204.4 112 155.7 1642 112.9
G2 0.12 273.7 4.94 166.2 112 95.4 1644 75.4
A$2 0.12 229.7 4.96 162.2 112 134.1 1643 105.8
C$3 0.12 126.7 4.93 60.1 112 35.7 1644 27.5
A$1 0.11 107.5 4.93 85.5 112 71.6 1639 58.4
C$2 0.12 135.9 4.92 119.6 112 97.2 1634 78.4

sax E2 0.12 157.3 4.97 138.8 112 122.2 1636 108.0
G2 0.12 138.1 4.96 109.9 112 82.7 1636 65.7
A$2 0.11 113.3 4.97 89.7 112 72.0 1635 58.5
C$3 0.11 178.6 4.95 131.4 112 104.1 1658 84.0
E2 0.12 147.4 4.93 96.1 112 71.6 1671 58.4

trb
G2 0.11 150.5 4.94 104.5 112 72.5 1633 55.7
A$2 0.11 126.6 4.93 80.0 112 54.6 1633 40.3
C$3 0.11 296.4 4.93 164.8 112 124.5 1640 79.5

via C$3 0.27 366.1 11.11 297.5 251 239.6 3642 200.9
A$1 0.23 181.8 9.71 124.0 220 86.2 3184 63.7
C$2 0.28 186.8 11.11 119.2 252 85.6 3634 72.4

v lb
E2 0.23 169.6 9.73 128.9 220 106.9 3183 90.2
G2 0.23 100.6 9.74 70.6 221 54.7 3184 46.0
A$2 0.25 325.6 10.52 165.0 240 113.9 3443 85.6
C$3 0.23 365.8 9.80 252.0 219 131.5 3183 97.7
C$2 0.24 171.8 10.42 118.3 231 87.4 3376 71.2
E2 0.23 110.5 9.73 74.7 217 60.7 3182 52.6

vie G2 0.23 204.4 9.74 103.2 217 74.8 3181 55.3
A$2 0.23 362.3 9.73 174.0 217 104.2 3182 74.3
C$3 0.25 200.9 10.98 116.3 244 78.2 3584 62.7

M ean 0.15 196.4 6.41 132.9 145 98.6 2114 79.4
Std. D ev. 0.06 76.3 2.40 50.9 54 40.4 772 35.2

Table A.l: Group 1, one-level exhaustive search.
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G R O U P  1 A u gm en ted  Search
D ep th  +  1 2 + 1 3 + 1 4 + 1

Instr P itch T a u g T grch Error TJ  a u g T s r c h Error T a u g A r c h Error
A p 4.10 9.1 108.4 6.6 119 89.0 8.6 1655 75.1
C p 2.86 7.9 153.5 6.9 119 132.6 9.4 1659 110.3

bsn
E2 2.34 7.3 117.7 5.0 117 91.2 8.4 1655 77.8
G2 4.38 9.3 92.0 8.1 121 75.6 10.8 1654 64.5
A p 3.51 8.5 75.9 7.7 120 59.4 10.3 1653 46.7
C p 2.93 7.9 56.8 7.3 119 38.6 11.3 1654 31.2
C p 2.05 7.0 207.4 3.9 116 171.2 4.7 1649 160.0
E2 4.09 9.0 133.1 7.3 120 123.9 9.9 1663 117.3

clb G2 3.21 8.2 148.1 5.4 118 134.0 8.5 1651 121.5
A p 3.51 8.5 120.6 5.8 118 109.9 9.9 1653 98.5
C p 2.64 7.6 107.7 6.5 119 93.4 8.9 1652 82.3
E2 2.93 7.9 109.2 4.6 117 92.3 8.0 1651 72.5

hrn
G2 2.67 7.6 60.4 6.6 119 43.2 10.3 1652 32.7
A p 2.63 7.6 74.0 5.0 117 55.4 7.5 1650 40.9
C p 3.80 8.8 30.1 7.0 119 22.8 10.3 1653 16.7
AJJ1 2.93 7.9 67.6 6.2 118 53.5 9.4 1652 46.5
C p 4.09 9.0 99.5 8.9 121 92.0 10.8 1654 82.8

pno E2 3.51 8.5 159.6 5.8 118 124.2 7.5 1650 91.3
G2 3.55 8.5 108.6 6.2 118 77.1 8.9 1653 64.9
A p 3.52 8.5 139.2 6.6 119 108.9 9.9 1653 82.7
C p 4.39 9.3 38.8 8.5 121 27.7 9.4 1653 23.1
A p 4.39 9.3 72.7 7.0 119 59.5 10.3 1649 52.6
c p 4.10 9.1 101.5 6.6 119 83.1 10.3 1644 65.7

sax E2 3.51 8.6 122.6 5.4 118 111.4 6.6 1643 99.7
G2 3.81 8.8 83.7 7.0 119 70.8 9.4 1645 57.2
A p 4.44 9.5 75.0 7.3 119 63.2 11.3 1646 50.6
c p 4.79 9.8 105.4 6.6 119 86.0 10.8 1669 72.3
E2 2.64 7.6 71.6 5.8 118 58.8 8.9 1680 49.1

trb
G2 3.54 8.5 72.5 6.6 119 56.0 8.4 1641 45.7
A p 4.38 9.3 54.7 7.3 120 42.2 10.8 1644 30.4
c p 2.34 7.3 125.8 5.8 118 79.8 5.6 1646 65.1

v ia c p 14.37 25.5 252.6 31.7 283 207.9 52.8 3695 180.6
A p 13.14 22.9 87.5 29.2 249 66.0 40.9 3225 54.5
c p 15.16 26.3 86.1 42.0 294 73.7 53.9 3688 65.8

v lb
E2 14.93 24.8 107.8 32.3 252 93.7 36.3 3219 82.0
G2 17.93 27.8 54.9 32.4 254 47.3 41.8 3226 41.6
A p 11.08 21.7 114.1 23.6 263 87.4 35.3 3478 68.1
c p 5.18 15.1 131.5 14.0 233 100.7 24.7 3208 80.8
c p 9.21 19.8 88.4 21.9 253 73.4 39.1 3415 63.0
E2 11.53 21.4 60.8 31.0 248 53.6 41.4 3223 49.2

vie G2 14.52 24.4 75.0 28.8 246 56.9 42.0 3223 46.3
A p 5.18 15.0 107.0 8.1 225 78.6 26.4 3208 62.9
c p 10.33 21.4 79.1 27.4 272 63.2 49.2 3633 53.0

M ean 5.82 12.3 100.9 12.2 157 82.1 17.9 2132 69.2
Std . D ev . 4.36 6.6 42.1 10.4 63 36.2 14.9 786 33.0

Table A.2: Group 1, two-level exhaustive search with 1-table augmentation.
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G R O U P  1 A u gm en ted  Search
D ep th  +  2 1 + 2 2 + 2 3 + 2

In str P itch + a u g A r c h Error Tb.uk + s r c h Error + a u g + s r c h Error
A#1 4 . 8 0 4 . 9 2 1 0 8 . 4 1 2 5 1 3 0 8 9 . 2 1 8 0 2 9 2 7 0 . 3

c p 3 . 6 1 3 . 7 3 1 5 3 . 5 9 0 9 5 1 3 1 . 2 1 9 1 3 0 3 1 1 2 . 0

b sn
E 2 2 . 8 1 2 . 9 2 1 1 7 . 7 7 2 7 7 8 8 . 0 1 3 7 2 4 9 7 5 . 2

G 2 4 . 8 9 5 . 0 0 9 2 . 0 1 3 4 1 3 9 7 3 . 9 2 2 2 3 3 5 6 3 . 2

A p 4 . 4 1 4 . 5 3 7 5 . 9 1 0 8 1 1 2 5 5 . 6 2 1 1 3 2 3 4 5 . 9

c p 3 . 6 0 3 . 7 2 5 6 . 8 8 9 9 4 3 7 . 6 2 0 1 3 1 3 2 9 . 1

c p 2 . 2 0 2 . 3 2 2 0 8 . 8 6 2 6 7 1 8 8 . 0 1 0 7 2 1 9 1 6 0 . 3

E2 4 . 2 9 4 . 4 0 1 3 2 . 5 1 2 4 1 2 9 1 2 2 . 2 2 0 1 3 1 3 1 1 5 . 9

clb G2 3 . 5 3 3 . 6 4 1 5 2 . 0 9 9 1 0 4 1 3 1 . 0 1 4 8 2 6 0 1 2 0 . 5

A p 4 . 1 2 4 . 2 4 1 2 0 . 6 1 0 7 1 1 2 1 0 9 . 4 1 5 8 2 7 0 9 7 . 4

c p 2 . 8 0 2 . 9 2 1 1 0 . 6 8 2 8 7 9 3 . 3 1 7 9 2 9 1 8 2 . 2

E2 4 . 0 2 4 . 1 3 1 0 9 . 2 8 9 9 4 8 9 . 2 1 2 6 2 3 8 7 3 . 0

hrn
G 2 3 . 3 2 3 . 4 3 6 0 . 4 8 0 8 5 4 1 . 8 1 7 9 2 9 1 3 2 . 5

A p 3 . 9 3 4 . 0 5 7 3 . 9 8 0 8 5 5 3 . 8 1 3 7 2 4 9 3 9 . 5

c p 4 . 7 1 4 . 8 3 3 0 . 1 1 1 5 1 2 0 2 1 . 6 1 9 1 3 0 3 1 7 . 4

A«1 3 . 6 0 3 . 7 2 6 7 . 6 8 9 9 4 5 2 . 3 1 7 0 2 8 2 4 6 . 1

c p 4 . 7 1 4 . 8 3 9 9 . 8 1 2 4 1 2 9 9 1 . 2 2 4 4 3 5 6 8 4 . 0

pno E2 5 . 3 6 5 . 4 8 1 6 3 . 4 1 0 6 1 1 1 1 2 2 . 7 1 5 9 2 7 1 1 0 1 . 4

G 2 4 . 5 3 4 . 6 5 1 1 1 . 6 1 0 7 1 1 2 8 1 . 3 1 6 9 2 8 1 6 4 . 0

A p 5 . 3 4 5 . 4 6 1 4 3 . 0 1 0 8 1 1 3 1 1 3 . 1 1 8 0 2 9 2 8 3 . 6

c p 5 . 3 0 5 . 4 2 3 8 . 8 1 3 6 1 4 1 2 7 . 5 2 3 5 3 4 7 2 2 . 7

A«1 5 . 3 1 5 . 4 2 7 3 . 0 1 3 2 1 3 7 5 9 . 7 1 9 1 3 0 3 5 2 . 5

c p 4 . 7 9 4 . 9 1 1 0 1 . 5 1 2 4 1 2 9 8 2 . 2 1 8 0 2 9 2 6 8 . 0

sax E2 4 . 2 9 4 . 4 0 1 2 2 . 5 1 0 6 1 1 1 1 0 8 . 7 1 4 8 2 6 0 9 5 . 0

G 2 4 . 2 9 4 . 4 0 8 3 . 9 1 1 5 1 2 0 6 8 . 4 1 9 0 3 0 2 5 8 . 9

A p 5 . 5 1 5 . 6 2 7 5 . 0 1 3 3 1 3 8 6 2 . 2 2 0 0 3 1 2 4 9 . 2

c p 6 . 0 1 6 . 1 3 1 0 5 . 2 1 4 1 1 4 6 8 4 . 1 1 7 9 2 9 1 7 0 . 9

E2 3 . 3 1 3 . 4 3 7 1 . 6 8 0 8 4 5 8 . 4 1 5 8 2 7 0 4 9 . 3

trb
G 2 4 . 6 1 4 . 7 3 7 2 . 5 1 0 6 1 1 1 5 5 . 8 1 8 0 2 9 2 4 3 . 5

A p 5 . 7 2 5 . 8 4 5 4 . 7 1 3 3 1 3 8 4 0 . 4 2 0 2 3 1 4 3 0 . 9

c p 3 . 1 3 3 . 2 5 1 2 5 . 8 7 1 7 6 8 0 . 2 1 5 8 2 7 0 6 1 . 7

v ia c p 1 7 . 0 4 1 7 . 3 1 2 5 2 . 2 4 3 2 4 4 3 2 0 4 . 5 8 6 5 1 1 1 6 1 7 9 . 3

A il 1 5 . 8 8 1 6 . 1 1 8 7 . 5 3 9 5 4 0 5 6 4 . 2 7 9 3 1 0 1 3 5 2 . 9

c p 1 7 . 4 9 1 7 . 7 5 8 9 . 0 4 5 2 4 6 3 7 2 . 7 1 1 3 7 1 3 8 9 6 3 . 8

vlb
E2 1 8 . 8 8 1 9 . 1 0 1 0 7 . 8 4 4 7 4 5 6 9 0 . 6 8 7 8 1 0 9 8 8 2 . 7

G 2 2 0 . 5 3 2 0 . 7 6 5 4 . 9 5 3 3 5 4 3 4 6 . 2 8 5 9 1 0 8 0 4 0 . 6

A p 1 2 . 9 6 1 3 . 2 1 1 1 4 . 1 3 3 5 3 4 6 8 5 . 7 6 3 7 8 7 7 6 7 . 6

c p 6 . 2 4 6 . 5 2 1 3 1 . 5 1 5 5 1 6 5 9 7 . 8 3 8 8 6 0 7 8 1 . 7

C p 1 0 . 5 1 1 0 . 7 5 8 8 . 4 2 7 5 2 8 5 7 2 . 8 6 0 3 8 3 4 6 2 . 6

E2 1 3 . 0 8 1 3 . 3 1 6 0 . 8 3 4 4 3 5 3 5 2 . 6 8 5 6 1 0 7 3 4 8 . 2

v ie G 2 1 6 . 3 3 1 6 . 5 6 7 5 . 0 4 3 0 4 3 9 5 5 . 7 7 9 2 1 0 0 9 4 5 . 1

Aft2 7 . 8 8 8 . 1 1 1 1 5 . 6 1 5 6 1 6 5 7 8 . 1 2 2 3 4 4 0 5 9 . 7

C p 1 3 . 1 9 1 3 . 4 5 8 0 . 5 3 0 9 3 2 0 6 3 . 2 7 5 2 9 9 6 5 0 . 7

M ean 7 . 0 4 7 . 2 0 1 0 1 . 6 1 7 5 1 8 1 8 1 . 4 3 3 2 4 7 7 6 8 . 6

Std . D ev. 5 . 0 7 5 . 1 2 4 2 . 5 1 3 0 1 3 2 3 7 . 1 2 8 2 3 3 1 3 3 . 2

Table A.3: Group 1, two-level exhaustive search with 2-table augmentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G R O U P  1 G en etic  A lgorith m  Search (T horough)
2 + 0 3 + 0 4 + 0

Instr P itch Tga Gen Error Tga Gen Error Tga Gen Error
Ajjl 39.3 576 267.7 76.8 648 156.2 149.1 806 106.0
Cf2 51.9 757 239.9 110.8 965 171.1 163.5 967 158.2

bsn
E2 29.7 395 480.6 78.0 653 133.6 168.6 981 112.3
G2 31.0 425 269.8 84.2 725 120.1 137.7 741 209.4
A p 52.2 772 120.0 109.4 973 95.4 185.5 1058 81.9
C|3 35.9 525 387.7 87.9 747 134.2 191.9 1141 61.8
C p 35.0 476 258.3 94.9 815 228.9 119.5 631 217.9
E2 32.4 443 168.3 72.7 603 162.5 94.4 434 163.6

clb G2 50.0 736 192.9 97.9 855 171.2 145.6 805 160.1
A p 51.0 738 169.4 81.9 690 152.4 132.4 718 125.1
C p 42.3 609 158.3 107.6 931 126.2 113.4 554 138.0
E2 44.0 620 233.7 122.6 1112 150.0 163.0 947 122.4

hrn
G2 63.8 931 86.5 92.7 809 76.2 199.1 1139 53.6
A p 53.0 833 133.4 107.8 984 102.4 155.5 915 79.0
C p 49.1 685 83.5 77.4 646 83.9 179.9 1065 30.4
Aai 60.1 876 102.7 92.0 800 91.5 136.7 736 71.8
c p 28.2 365 175.2 80.4 675 107.3 102.5 527 103.9

pno E2 33.7 452 238.8 62.9 496 201.3 114.8 549 170.1
G2 16.6 197 216.9 73.1 612 120.5 151.2 820 99.7
Atf2 42.5 599 196.1 86.3 733 158.6 119.2 599 134.7
c p 62.3 857 72.8 60.8 468 60.9 206.0 1231 33.4
A il 42.1 570 155.9 104.0 899 81.7 116.3 584 96.6
C|2 48.2 703 130.7 66.3 536 145.1 143.6 776 106.0

sax E2 32.5 471 195.9 69.3 557 141.9 111.3 546 129.7
G2 44.0 641 122.0 93.6 800 98.6 143.5 777 91.4
A p 9.2 102 475.2 93.9 793 108.1 178.8 1023 68.5
c p 46.4 648 157.3 56.4 430 213.7 134.6 722 117.2
E2 48.4 710 109.9 109.4 970 89.2 161.3 907 86.1

trb
G2 47.7 711 164.8 122.3 1117 89.4 212.2 1291 78.5
A p 40.3 586 165.2 69.4 565 112.6 174.6 972 60.4
c p 32.8 487 203.3 99.0 879 148.2 128.6 711 128.1

v ia c p 234.6 1347 349.1 288.3 978 373.0 339.4 782 328.3
A il 180.6 1247 179.8 310.6 1268 157.1 380.6 1058 161.5
c p 195.6 1113 269.7 412.3 1444 183.5 768.9 1969 103.9

vlb
E2 87.8 595 171.3 195.8 764 145.5 360.9 988 125.7
G2 197.1 1389 90.5 325.6 1320 76.9 395.9 1112 68.7
A p 275.1 1877 239.5 361.9 1320 221.7 632.1 1707 159.5
c p 178.2 1265 310.7 334.2 1375 251.5 575.6 1675 156.8
c p 176.1 1091 154.2 333.2 1268 123.0 400.1 1029 121.4
E2 129.7 871 379.2 356.5 1487 78.7 388.1 1077 146.6

vie G2 171.2 1178 154.6 341.5 1411 108.1 499.3 1421 93.4
A p 137.5 980 238.7 209.1 827 193.8 461.0 1301 132.9
c p 165.1 964 178.8 408.4 1477 126.7 650.2 1655 99.2

M ean 79.6 754 205.8 153.9 894 141.2 243.9 964 118.5
Std . D ev. 67.1 342 96.4 112.9 299 58.0 171.1 346 53.2

Table A.4: Genetic algorithm search on Group 1, with population size of 100 
and termination on convergence after 50 generations (thorough version).
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G R O U P  1 A ugm ented  G enetic A lgorith m  Search (T horough)
2 + 1 3 + 1 4 + 1

Instr P itch T̂a u g T srch Error T-‘ a u g T grch Error 7 'a u g T Srch Error
A p 6.0 45.3 107.5 17.4 94.2 89.5 21.3 170.4 79.8
C p 3.9 55.8 153.7 9.3 120.1 133.6 11.3 174.8 117.3

b sn
E2 12.8 42.4 112.1 17.4 95.5 99.4 10.8 179.4 84.3
G2 5.3 36.3 93.8 34.4 118.5 76.4 31.4 169.1 72.1
A§2 5.1 57.3 75.1 8.9 118.2 63.8 11.3 196.8 54.0
C p 5.4 41.3 57.1 9.5 97.4 43.7 11.3 203.2 34.5
C p 6.3 41.2 200.1 8.9 103.8 189.0 11.3 130.8 183.9
E2 6.3 38.7 132.3 9.3 81.9 124.7 11.4 105.8 120.4

clb G2 12.4 62.4 148.5 8.5 106.4 136.2 21.5 167.1 126.3
A p 5.1 56.1 120.5 9.3 91.2 112.3 21.6 154.0 102.5
c p 12.7 55.0 108.2 9.3 116.9 93.7 11.4 124.8 90.5
E2 5.1 49.1 109.7 7.7 130.4 90.8 11.3 174.3 80.0

hrn
G2 4.2 68.0 60.4 8.9 101.6 48.0 11.2 210.3 38.1
A p 4.2 57.2 73.7 8.5 116.3 54.8 11.4 166.9 42.6
c p 6.3 55.3 30.1 9.3 86.7 24.3 11.2 191.1 18.5
A p 6.1 66.2 67.8 9.3 101.3 55.6 11.3 148.0 49.7
c p 7.2 35.5 102.3 9.3 89.7 94.1 11.4 113.9 89.1

pno E2 6.2 39.9 167.8 9.3 72.2 145.8 11.2 126.0 116.4
G2 7.1 23.7 104.1 8.9 82.0 79.3 21.5 172.7 66.3
A p 6.0 48.5 134.8 9.3 95.5 115.7 11.4 130.6 94.8
c p 6.4 68.6 36.2 9.3 70.1 31.5 21.4 227.4 25.4
A p 8.0 50.1 73.9 9.3 113.3 63.5 22.1 138.4 58.5
c p 6.0 54.2 100.1 9.3 75.6 85.2 21.4 165.0 80.4

sax E2 5.4 37.8 123.0 9.3 78.6 115.8 21.9 133.2 110.5
G2 5.4 49.4 84.7 8.9 102.5 73.2 11.6 155.1 64.8
A p 6.9 16.1 76.4 9.3 103.2 67.2 11.3 190.1 54.0
c p 5.4 51.8 108.2 9.3 65.7 98.8 31.5 166.1 84.1
E2 4.8 53.2 72.3 17.4 126.8 59.9 21.2 182.5 52.6

trb
G2 6.0 53.8 73.6 8.1 130.4 58.7 11.2 223.4 51.9
A p 5.4 45.7 61.5 9.3 78.7 48.6 11.3 185.9 36.4
c p 4.8 37.6 126.0 8.5 107.5 88.5 21.4 150.0 67.1

v ia c p 23.1 257.7 243.7 64.5 352.8 215.9 57.1 396.5 201.2
A p 19.9 200.5 88.5 36.1 346.7 70.7 43.5 424.1 60.5
c p 29.1 224.7 86.1 47.2 459.6 75.5 79.2 848.1 70.2

v lb
E2 23.9 111.7 109.9 36.1 231.9 97.6 43.2 404.1 89.9
G2 18.6 215.8 56.7 36.3 361.9 49.6 62.6 458.5 45.1
A p 17.8 292.9 114.6 42.3 404.2 90.4 94.0 726.1 73.8
c p 17.3 195.5 131.5 33.9 368.1 106.6 43.5 619.1 88.1
c p 27.1 203.1 88.6 40.0 373.2 74.7 49.0 449.1 68.2
E2 34.1 163.8 60.7 33.9 390.4 54.9 61.7 449.8 52.1

vie G2 22.2 193.4 77.7 34.6 376.1 60.5 43.2 542.5 54.7
A p 31.2 168.7 111.6 49.7 258.8 79.3 43.5 504.5 64.6
c p 32.1 197.2 80.2 81.9 490.3 64.6 54.9 705.1 58.3

M ean 11.5 91.1 101.1 20.2 174.1 86.1 27.2 271.0 76.1
Std . D ev . 9.0 74.3 40.9 17.7 128.3 38.2 20.8 189.5 36.6

Table A.5: Augmented genetic algorithm search on Group 1, thorough version.
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G R O U P  1 G en etic  A lgorith m  Search Quick)
2 + 0 3 + 0 4 + 0

Instr P itch Tqa Gen Error Tc;a Gen Error Tqa Gen Error
A p 5.8 147 598.1 16.1 247 522.4 26.8 256 393.1
C p 14.2 403 331.5 23.2 383 389.8 18.7 153 523.0

bsn
E2 6.0 147 997.4 15.5 230 735.9 24.4 204 763.1
G2 5.2 125 1246.0 23.2 341 536.9 33.1 332 577.5
A p 3.1 63 1402.3 26.9 462 605.2 29.4 319 555.3
c p 2.9 58 1241.2 15.2 219 495.9 33.7 388 248.5
C«2 13.5 370 326.7 22.3 345 270.9 26.3 255 262.4
E2 6.8 177 394.9 25.5 420 236.0 32.8 320 207.3

clb G2 7.9 209 450.8 20.8 335 229.1 36.2 395 197.2
A p 9.0 230 446.8 15.7 231 270.6 37.0 390 208.2
c p 8.7 235 380.7 18.4 289 287.3 32.1 342 173.2
E2 13.5 382 321.3 28.0 493 212.6 25.7 225 262.1

hrn
G2 12.6 361 217.7 26.9 487 173.2 32.0 320 168.6
A p 14.3 412 191.5 25.5 433 136.8 34.5 359 139.9
c p 17.2 498 133.2 22.6 371 196.6 27.4 244 182.0
A p 7.3 181 229.9 7.4 63 226.7 14.5 72 179.6
c p 9.9 257 175.8 23.1 376 142.1 32.0 314 118.0

pno E2 3.3 70 319.2 6.1 33 309.2 25.8 247 193.3
G2 4.8 98 249.4 6.2 41 238.9 25.5 217 147.2
A p 2.8 51 385.7 14.1 202 202.5 29.0 272 166.0
c p 12.3 334 129.1 21.2 342 98.2 28.6 272 75.3
A p 7.3 189 357.6 19.6 317 174.8 28.2 249 242.0
c p 10.3 288 319.7 32.7 588 170.8 18.1 103 297.1

sax E2 5.6 137 587.6 16.3 233 349.6 26.9 250 268.6
G2 12.7 340 307.2 14.5 201 310.2 36.7 420 182.3
A p 8.0 207 396.3 24.1 402 264.9 34.9 370 161.5
c p 14.1 389 280.5 5.7 24 675.4 16.0 79 393.4
E2 9.8 275 358.8 17.9 263 326.0 43.9 521 202.5

trb
G2 14.3 380 257.8 12.1 138 442.6 27.0 261 282.3
A p 8.4 219 340.2 28.4 479 185.7 22.1 178 319.5
c p 6.7 164 399.0 26.1 434 199.6 27.1 264 213.3

v ia c p 33.1 364 787.3 52.3 335 728.1 116.1 561 484.9
A P 24.4 318 720.5 42.2 314 564.1 35.8 137 582.1
c p 48.6 565 829.4 68.2 463 578.6 99.7 452 504.9

vlb
E2 17.6 217 237.6 35.1 247 195.5 36.9 110 197.8
G2 45.9 625 140.5 65.1 541 139.8 66.7 337 115.2
A p 37.0 454 1033.1 70.1 523 674.1 103.4 519 527.4
c p 21.7 280 800.2 48.0 394 511.9 86.4 461 415.3
c p 24.4 299 590.6 75.4 582 309.6 34.0 69 501.4
E2 26.8 331 866.0 52.0 419 573.6 67.1 345 429.7

vie G2 26.2 323 292.2 53.3 429 207.2 65.1 316 172.0
A p 28.6 357 322.7 68.2 545 244.9 74.8 387 187.4
c p 22.0 227 326.3 102.0 720 166.6 31.5 56 335.4

M ean 14.8 273 481.9 31.0 347 337.5 39.6 287 296.7
Std . D ev . 11.2 134 58.0 21.8 157 183.2 24.0 126 161.0

Table A.6: Genetic algorithm search on Group 1, with population size of 50 
and termination on convergence after 25 generations (quick version).
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G R O U P  1 A u gm en ted  G en etic  A lgorith m  Search (Q uick)
2 + 1 3 + 1 4 + 1

Instr P itch A u g A r c h Error A iu g A r c h Error T̂ aug A rc h Error
Aid 13.4 19.2 106.4 34.6 50.7 88.0 11.3 38.1 84.9
C p 5.3 19.5 154.0 9.4 32.6 140.7 172.7 191.4 122.8

bsn
E2 13.7 19.8 112.1 18.0 33.5 100.2 21.3 45,7 88.4
G2 13.8 19.0 94.7 17.9 41.0 81.9 21.4 54.5 72.7
A p 6.8 10.0 88.7 9.2 36.0 72.5 11.3 40.7 57.2
cp 6.5 9.4 72.9 9.0 24.2 42.2 11.2 44.9 37.3
cp 6.5 20.0 209.1 17.4 39.6 194.1 31.8 58.1 169.5
E2 6.8 13.6 132.8 9.6 35.1 126.1 41.4 74.2 119.0

clb G2 6.5 14.4 155.1 9.7 30.5 140.4 11.2 47.4 133.3
A p 6.8 15.8 127.0 9.2 24.9 118.5 11.2 48.2 105.3
cp 6.8 15.4 108.9 18.1 36.6 102.8 183.9 216.0 87.4
E2 6.2 19.7 109.5 8.8 36.8 95.8 21.2 46.9 94.6

hrn
G2 6.5 19.1 61.0 9.2 36.2 48.0 11.2 43.2 41.3
A p 6.2 20.5 77.6 9.6 35.0 58.2 41.5 76.0 52.5
cp 6.1 23.3 30.1 9.2 31.7 25.5 11.2 38.6 23.5
A«1 6.8 14.1 69.1 17.8 25.3 58.3 21.6 36.1 58.1
cp 6.9 16.8 100.3 9.4 32.5 95.0 31.5 63.5 88.6

pno E2 14.3 17.6 173.0 35.2 41.3 150.5 11.2 37.0 120.8
G2 7.3 12.0 105.8 9.6 15.8 95.8 11.2 36.7 80.2
A p 13.7 16.5 137.2 9.2 23.3 124.2 11.2 40.2 110.5
cp 6.8 19.1 39.8 9.1 30.4 33.4 21.2 49.8 28.1
A P 7.1 14.3 74.8 18.0 37.6 64.2 11.2 39.4 62.7
cp 6.2 16.5 101.5 9.4 42.1 90.7 41.3 59.4 84.1

sax E2 7.0 12.6 125.5 9.2 25.5 120.4 30.8 57.7 107.5
G2 6.5 19.2 86.4 9.7 24.2 78.3 11.2 47.9 68.1
A p 7.6 15.6 77.4 9.1 33.1 70.8 11.2 46.1 58.2
cp 6.8 20.8 110.1 17.8 23.5 107.0 181.9 197.9 89.6
E2 6.0 15.9 78.1 9.2 27.1 72.4 30.8 74.7 56.0

trb
G2 6.5 20.9 75.2 9.4 21.4 70.6 11.2 38.2 61.7
A p 13.2 21.6 55.0 17.6 46.0 49.2 31.3 53.4 45.8
cp 7.2 14.0 132.0 9.2 35.2 86.1 11.2 38.3 72.9

v ia cp 34.3 67.5 250.6 65.1 117.4 219.3 122.9 239.0 198.5
A p 25.9 50.4 91.3 52.1 94.3 75.3 101.4 137.2 68.3
cp 30.3 78.9 88.1 46.6 114.9 78.5 100.7 200.4 74.6

vlb
E2 27.3 45.0 112.8 52.4 87.5 100.2 120.7 157.6 91.0
G2 24.1 70.1 55.8 52.4 117.6 51.5 62.6 129.3 45.5
A p 28.7 65.7 115.5 40.9 111.0 105.1 134.3 237.7 90.9
cp 26.0 47.7 138.2 50.6 98.6 119.8 62.6 149.0 96.7
C p 27.7 52.2 92.2 57.5 132.8 77.0 110.5 144.5 73.3
E2 25.7 52.5 62.9 36.2 88.2 57.0 392.3 459.4 50.3

vie G2 26.1 52.3 80.6 56.3 109.6 68.9 62.6 127.7 55.4
A p 23.8 52.3 108.0 53.4 121.6 89.8 101.4 176.2 66.2
cp 46.6 68.6 87.8 45.0 147.0 69.3 163.0 194.5 62.9

M ean 13.8 28.6 103.8 23.6 54.6 91.0 61.1 100.8 80.4
Std . D ev. 10.3 19.9 41.8 18.4 37.6 38.9 74.5 86.0 34.8

Table A.7: Augmented genetic algorithm search on Group 1, quick version.
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A ppendix B 

O ptim ization R esults in D etail
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G R O U P  1 T hree-T able M atch  O ptim ization
3 O scillators 3 + 0 2 + 1 1 + 2
Instr P itch T p t T o t,a ! Error T >  p t T o t a l Error T p t T o t a l Error

a i i 2.90 115 114.5 2.61 11.7 116.6 2.49 7.39 116.8
Ci2 1.74 114 171.7 1.80 9.7 171.7 1.79 5.49 171.7

bsn
E2 1.31 113 118.3 1.50 8.8 123.1 1.37 4.27 123.1
G2 2.25 115 103.6 2.32 11.6 106.8 2.32 7.32 106.8
m 2.50 114 90.1 2.60 11.1 90.4 2.59 7.09 90.4
Ci3 1.96 114 69.7 1.69 9.6 69.7 1 .6 8 5.38 69.7
Ci2 1.31 113 206.9 0.49 7.5 214.2 0.50 2.80 214.2
E2 3.25 115 136.6 2.31 11.3 136.2 1 .6 8 6.08 134.9

clb G2 1.95 114 161.3 1.57 9.8 160.2 0.57 4.17 158.1
m 1.52 114 135.3 1.23 9.7 135.3 0.95 5.15 135.3
C«3 1.77 114 121.9 1.29 8.9 118.4 1.44 4.34 119.7
E2 1.19 113 121.4 1.08 9.0 121.3 1.05 5.15 121.2

hrn
G2 2.02 114 65.7 1.55 9.2 65.6 1.61 5.01 65.6
A«2 0.89 113 8 6 .6 0.89 8.5 87.8 0.96 4.96 8 6 .6
C«3 2.52 115 39.1 2.17 11.0 39.1 2.29 7.09 39.1
A«1 1.49 113 74.2 1.20 9.1 75.0 1.18 4.88 75.0
C«2 4.03 116 109.0 2.81 1 1 .8 107.8 2.20 7.00 107.9

pno E2 1.99 114 188.3 1.06 9.6 188.3 1.29 6.79 181.3
G2 2.75 115 115.6 1.81 10.3 137.5 1.26 5.96 128.1
Ai2 1 .6 8 114 155.8 1.39 9.9 152.5 1 .8 8 7.38 152.5
C«3 2.22 114 49.3 2.01 11.3 51.2 2.02 7.42 51.2
A il 2.32 114 82.4 1.76 11.1 83.2 1.76 7.16 83.2
Ci2 2.39 114 108.1 1.54 10.6 107.5 1.41 6.31 107.5

sax E2 1.91 114 129.0 1.39 10.0 129.0 1.28 5.68 129.0
G2 2.30 114 95.4 2.16 11.0 95.4 1.72 6.12 95.4
Ai2 1.77 114 84.2 1.53 11.0 82.3 1.54 7.14 82.3
Q 3 2.06 114 120.7 2.11 11.9 118.4 2.06 8.16 118.2
E2 1.04 113 79.2 0.96 8 .6 79.2 0.91 4.31 79.2

trb
G2 1.96 114 83.7 1.60 10.1 83.7 1.60 6.30 83.7
Ai2 1.64 114 65.0 1.59 10.9 65.0 1.58 7.38 65.0
Ci3 2.21 114 141.7 1.33 8 .6 141.4 1.40 4.60 138.0

v ia Ci3 4.84 256 270.6 4.75 30.2 269.8 4.94 22.24 268.8
A il 4.85 225 107.7 4.36 27.3 108.7 4.35 20.45 108.7
Ci2 7.49 259 103.1 6.72 33.0 103.0 6.87 24.67 103.1

vlb
E2 6 .6 8 227 123.5 4.24 29.0 121.7 4.26 23.36 121.7
G2 6.58 228 69.5 6.44 34.2 69.5 6.07 26.87 69.5
A»2 2.83 243 127.2 2.78 24.5 127.2 2.85 16.05 127.2
C«3 2.29 221 162.6 1 .8 6 17.0 162.6 1 .8 8 8.38 162.6
Ci2 4.70 236 105.0 4.66 24.5 105.7 4.11 14.91 105.7
E2 7.01 224 71.2 6.87 28.3 71.2 6.93 20.23 71.2

v ie G2 5.14 222 96.4 5.33 29.7 96.2 5.11 21.71 96.2
A«2 2.06 219 122.6 1.68 16.7 117.3 2.07 10.17 126.5
Ci3 5.93 250 95.9 5.64 27.0 95.9 5.08 18.48 96.4

M ean 2.87 148 113.5 2.48 14.8 114.0 2.39 9.58 113.7
Std . D ev . 1.75 55 43.5 1.68 8.1 43.7 1.66 6.67 43.2

Table B.l: Group 1, 3-oscillator, 3-table match optimization.
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G R O U P 1 One- and Tw o-T able M atch  O p tim iza tion
3 O scillators 2 + 0 1 + 1 1 + 0
Instr P itch T0 Pt T to ta l Error T 0 p t T to ta l Error T op t 7  to t  a! Error

m 0.49 5.45 124.0 0.49 1.23 124.2 0.70 0.81 124.1
cp 0.34 5.37 180.2 0.34 1.08 180.2 0.77 0.89 180.2

bsn
E2 0.24 5.18 137.6 0.21 0.74 137.6 0.77 0.92 137.6
G2 0.44 5.44 117.5 0.39 0.92 117.5 0.79 0.92 117.5
A p 1.55 6.48 94.9 1.55 2.50 94.9 2.30 2.41 94.9
C p 1.46 6.55 72.1 1.45 2.19 72.1 1.77 1.88 72.1
C p 0.74 5.67 215.0 0.56 1.09 214.2 0.98 1.10 214.2
E2 1.18 6.10 137.3 1.04 1.58 137.2 1.45 1.57 137.2

clb G2 0.96 5.88 160.9 0.64 1.59 161.0 1.46 1.58 161.0
A p 0.89 5.84 135.3 1.26 2.21 135.3 1.75 1.87 135.3
CJJ3 1.00 5.93 133.4 0.90 1.43 133.4 1.35 1.47 133.4
E2 1.15 6.11 121.6 1.13 2.28 121.5 1.23 1.35 162.3

hrn
G2 0.90 5.82 70.4 0.90 1.63 70.4 1.01 1.13 70.4
A p 1.38 6.31 82.9 1.23 2.59 82.9 0.85 0.96 88.1
C p 2.45 7.38 39.3 1.91 2.86 39.3 2.37 2.48 39.3
A#1 0.25 5.17 81.0 0.21 0.95 81.0 0.69 0.80 81.0
C p 0.55 5.47 108.2 0.41 1.36 108.3 0.88 0.99 108.3

pno E2 1.68 6.61 191.0 1.17 3.37 189.7 1.80 1.91 200.2
G2 0.28 5.22 148.8 0.22 1.58 150.3 1.08 1.20 152.6
AJJ2 1.45 6.41 156.7 1.48 3.05 172.5 1.70 1.82 172.8
C p 0.48 5.41 53.5 0.49 1.43 53.5 1.34 1.46 53.5
A|}1 0.46 5.39 83.2 0.45 1.40 85.7 0.59 0.70 86.3
C p 0.32 5.24 115.5 0.33 1.07 115.5 0.50 0.62 115.5
E2 0.22 5.19 136.5 0.22 0.76 136.6 0.64 0.76 136.6
G2 1.24 6.20 97.9 1.18 1.72 97.9 1.63 1.75 97.8
A p 2.19 7.16 84.3 2.38 3.53 84.3 2.21 2.32 84.4
C p 0.65 5.60 124.9 0.31 1.75 126.9 0.90 1.01 126.9
E2 0.21 5.14 89.1 0.25 1.16 84.9 0.69 0.81 84.9

trb
G2 0.26 5.20 90.8 0.26 1.42 90.8 0.70 0.81 96.9
A p 0.38 5.31 73.3 0.39 1.85 73.3 0.60 0.71 82.4
cp 0.87 5.80 137.6 0.84 2.00 137.6 1.63 1.74 137.6

via cp 0.87 11.98 286.8 0.77 3.40 286.7 2.16 2.43 287.0
A p 0.73 10.44 117.4 0.74 3.44 117.4 1.22 1.45 118.5
cp 1.02 12.13 106.5 1.10 4.19 116.5 2.35 2.63 116.4

vlb
E2 1.05 10.78 125.8 1.01 4.91 125.8 3.28 3.51 127.2
G2 1.19 10.93 69.7 1.21 3.49 69.7 2.36 2.59 69.7
A p 2.57 13.09 125.6 2.46 4.04 125.6 3.87 4.12 125.6
cp 2.13 11.93 159.1 2.15 3.20 159.1 2.85 3.08 159.1
cp 0.83 11.25 107.9 0.70 2.68 107.9 1.96 2.20 107.9
E2 0.80 10.53 71.2 0.75 2.12 71.2 1.22 1.45 71.2

vie G2 2.79 12.53 96.8 2.83 4.85 96.8 2.37 2.60 98.9
A p 0.82 10.55 144.5 0.72 3.01 155.7 2.07 2.30 162.5
cp 1.34 12.32 106.0 1.20 3.17 110.9 2.51 2.76 110.9

M ean 1.00 7.41 118.9 0.94 2.25 119.9 1.52 1.67 121.9
Std. D ev . 0.66 2.69 45.2 0.65 1.11 45.6 0.80 0.84 46.2

Table B.2: Group 1, 3-oscillator, 2- and 1-table match optimization.
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G R O U P  1 Four-Table M atch  O ptim ization
4 O sci la tors 4 + 0 2 + 2 3 + 1
Instr P itch T p t T  ota! Error T o p t T o ta l Error T 0 p t T o ta l Error

A p 35.8 1682 99.7 31.6 162 101.9 26.3 145 99.2
C$2 40.7 1691 147.8 40.7 136 147.6 26.3 145 149.1

bsn
E2 34.4 1681 98.1 21.8 99 98.1 23.7 141 101.2
G2 54.3 1697 92.7 47.9 187 92.7 36.8 158 91.2

m 52.7 1696 74.1 47.3 159 74.2 47.6 168 76.1
C p 44.5 1687 47.4 36.7 131 47.4 23.3 142 47.3
C p 16.2 1660 178.5 16.9 84 191.1 19.3 135 179.2
E2 83.6 1737 127.9 75.7 205 127.8 58.9 179 128.3

clb G2 28.1 1671 145.8 31.3 135 142.9 17.1 135 143.1
A p 51.9 1695 121.4 32.9 145 119.9 15.3 133 119.6
C p 36.7 1680 101.6 28.5 116 101.9 21.1 140 101.8
E2 32.0 1675 102.7 22.5 117 102.1 18.8 136 101.3

hrn
G2 61.1 1703 50.3 39.8 125 50.2 30.9 150 53.2

m 27.4 1669 67.5 17.7 103 67.5 19.6 137 67.9
C p 79.2 1722 28.7 62.2 182 28.6 46.6 166 29.0
A p 42.5 1686 60.6 35.9 130 60.2 22.0 140 61.2
cp 77.1 1720 103.6 60.6 190 99.3 60.9 182 99.5

pno E2 37.3 1679 140.4 28.1 139 147.1 15.2 133 143.7
G2 41.2 1685 95.2 41.1 153 100.2 39.8 158 95.0
A p 58.5 1701 119.5 23.5 136 129.2 19.7 139 118.3
cp 37.7 1682 37.6 28.6 170 37.6 37.0 158 37.4
A p 53.8 1693 73.1 36.0 173 73.5 39.8 159 74.0
cp 50.9 1685 95.9 29.5 159 94.3 29.1 148 95.6

sax E2 27.2 1663 114.7 27.7 139 114.6 22.1 140 118.8
G2 54.2 1690 78.6 34.6 155 78.4 33.0 152 78.8
A p 85.2 1720 72.9 70.7 209 72.5 48.7 168 73.2
cp 42.3 1700 99.9 32.1 178 99.9 30.0 149 100.0
E2 24.3 1695 67.2 17.5 102 67.2 20.1 138 67.2

trb
G2 27.1 1660 64.8 29.2 140 64.8 30.1 149 64.3
A p 63.0 1696 50.9 60.6 199 50.9 33.0 153 51.9
cp 40.5 1681 104.0 30.3 106 101.3 36.1 154 100.4

v ia cp 201.5 3844 242.9 126.3 569 243.1 151.1 434 238.4
Atfl 134.8 3319 84.7 100.6 506 84.7 81.4 330 85.5
cp 147.9 3782 88.1 130.8 594 88.2 92.5 386 87.6

v lb
E2 96.3 3279 107.3 75.6 532 107.4 109.3 361 107.3
G2 191.8 3376 59.1 170.4 713 59.3 129.7 384 59.0
A p 68.8 3512 97.6 59.8 406 97.6 40.5 304 97.3
cp 45.6 3229 117.9 37.1 202 117.9 33.5 266 119.8
cp 102.6 3479 88.9 105.6 391 87.1 72.4 325 87.1
E2 115.6 3298 62.7 111.3 464 62.7 108.8 357 63.4

vie G2 117.3 3298 76.3 104.7 544 76.6 71.9 318 76.4
A p 75.5 3258 90.5 65.2 230 97.3 48.4 273 94.2
cp 135.2 3719 84.4 113.5 433 81.2 110.3 382 80.3

M ean 66.8 2181 94.5 54.4 236 95.1 46.5 203 94.5
Std . D ev . 43.5 807 38.5 36.5 165 39.5 33.5 92 38.1

Table B.3: Group 1, 4-oscillator, 4-table match optimization.
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G R O U P  1 T hree-T able M atch  O ptim ization
4 O scillators 3 + 0 2 + 1 1 + 2
Instr P itch T p t Total Error T p t Total Error T p t Total Error

A p 13.3 125 100.5 11.1 20.1 103.3 l l . i 16.0 103.3
C p 6.9 119 152.7 7.3 15.3 153.6 7.6 11.3 152.7

bsn
E2 13.5 126 103.8 5.5 12.5 112.5 4.7 7.6 113.7
G2 9.3 122 91.2 10.3 19.3 93.2 9.7 14.7 93.2
A«2 10.2 122 78.3 11.6 19.6 78.3 11.4 15.9 78.3
C p 7.3 119 55.5 6.2 14.2 55.9 6.3 10.0 55.9
c p 10.2 122 179.0 7.9 14.9 193.1 7.4 9.7 193.1
E2 14.2 126 128.1 9.8 18.8 131.6 6.3 10.7 131.2

clb G2 19.2 131 146.4 8.7 16.7 147.8 4.0 7.6 146.8
A p 5.7 118 120.0 4.3 12.3 120.0 2.8 7.0 120.0
c p 7.0 119 103.8 4.6 12.6 105.0 4.8 7.7 106.6
E2 6.5 119 103.3 6.2 14.2 103.3 6.2 10.3 103.3

hrn
G2 8.7 121 56.4 6.1 14.1 54.5 6.2 9.6 54.5
A p 2.6 115 69.5 2.6 10.6 69.9 2.8 6.8 69.4
c p 42.1 154 28.5 38.6 47.6 28.5 41.9 46.7 28.5
A p 14.4 126 61.6 8.2 16.2 63.4 8.2 11.9 63.4
c p 22.6 135 99.8 13.3 22.3 100.2 8.7 13.5 100.3

pno E2 18.6 131 148.0 16.9 24.9 148.0 18.8 24.3 148.2
G2 14.2 126 97.8 7.4 16.4 108.8 4.0 8.7 110.5
A p 6.1 118 132.8 4.8 13.8 132.0 7.8 13.3 132.4
c p 9.2 121 38.4 7.9 16.9 38.4 8.0 13.4 38.4
A p 9.4 121 74.6 6.2 15.2 75.2 6.3 11.7 75.2
c p 10.9 123 97.6 5.7 14.7 100.1 4.8 9.7 100.1

sax E2 7.4 119 119.8 4.6 13.6 120.7 4.2 8.6 120.7
G2 10.0 122 81.1 9.2 18.2 81.1 6.3 10.7 80.9
A p 6.8 119 75.0 5.3 14.3 74.4 5.5 11.1 74.4
c p 8.1 120 102.7 8.7 18.7 101.4 8.5 14.6 103.2
E2 10.9 123 66.9 9.3 17.3 66.9 8.8 12.2 66.9

trb
G2 8.4 120 66.5 6.2 15.2 67.2 6.2 10.9 67.2
A p 5.8 118 53.4 5.7 14.7 53.1 5.7 11.5 53.1
c p 9.8 122 118.5 22.4 29.4 96.4 20.1 23.3 95.6

v ia c p 21.3 272 243.5 20.9 46.9 245.7 22.4 39.7 244.7
A p 21.1 241 90.3 17.8 40.8 90.6 18.0 34.1 90.6
c p 35.8 288 88.2 30.6 56.6 88.0 32.0 49.8 88.1

vlb
E2 34.3 254 108.1 16.8 41.8 108.4 17.4 36.5 108.4
G2 31.7 253 59.0 30.5 58.5 59.2 28.4 49.2 59.2
A p 34.1 274 97.9 34.9 56.9 97.8 35.8 49.0 97.8
c p 8.5 228 124.9 5.7 20.7 124.9 5.9 12.4 124.9
c p 21.4 252 87.1 19.4 39.4 88.9 17.2 28.0 88.9
E2 34.7 252 62.9 34.2 55.2 62.9 34.3 47.6 62.9

vie G2 23.4 240 75.2 23.0 47.0 75.4 23.4 40.0 75.4
A p 29.6 247 94.1 28.0 43.0 94.6 50.3 58.4 101.0
c p 27.5 271 81.9 25.2 46.2 81.5 21.3 34.7 81.5

M ean 15.6 160 96.9 13.2 25.5 97.6 13.3 20.5 97.8
Std . D ev. 10.2 61 38.9 9.8 15.1 39.9 11.5 15.1 39.8

Table B.4: Group 1, 4-oscillator, 3-table match optimization.
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G R O U P  1 F ive-T able M atch  O ptim ization
5 O scillators 4 + 1 3 + 2 2 + 2 + 1
Instr P itch G p t f'Voi r, 1 Error T0 pt 7 1 n ta l Error T ip i , Total Error

A p 2 4 0 1 8 9 5 8 9 . 2 2 5 5 5 4 7 7 9 . 9 2 5 8 3 9 8 8 3 . 3

C p 2 2 1 1 8 8 0 1 2 4 . 2 2 3 9 5 4 2 1 2 5 . 5 1 8 4 2 8 9 1 2 4 . 1

b sn
E2 3 4 7 2 0 0 2 8 9 . 5 2 9 2 5 4 1 8 7 . 3 2 3 7 3 2 1 8 8 . 7

G2 2 2 4 1 8 7 8 7 9 . 9 2 8 9 6 2 4 7 8 . 7 2 1 3 3 6 3 7 9 . 9

A p 2 5 7 1 9 1 0 6 3 . 3 2 1 4 5 3 7 6 3 . 8 2 9 0 4 1 2 6 3 . 0

C p 3 3 6 1 9 9 0 4 0 . 1 3 1 8 6 3 1 4 0 . 2 3 7 7 4 8 2 3 9 . 7

C p 1 1 0 1 7 5 9 1 6 6 . 4 1 0 1 3 2 0 1 6 7 . 4 8 8 1 6 1 1 6 8 . 5

E 2 2 1 0 1 8 7 3 1 2 3 . 6 1 9 8 5 1 1 1 2 2 . 3 2 1 2 3 5 1 1 2 2 . 7

clb G2 2 5 8 1 9 0 9 1 2 9 . 5 3 0 6 5 6 6 1 3 0 . 5 2 9 2 4 0 4 1 3 0 . 8

A p 2 2 2 1 8 7 5 1 1 0 . 9 2 8 1 5 5 1 1 0 9 . 0 2 2 5 3 4 7 1 0 9 . 3

C p 3 2 2 1 9 7 4 9 3 . 2 3 7 3 6 6 4 9 2 . 2 3 7 0 4 6 6 9 3 . 1

E2 2 2 3 1 8 7 4 8 2 . 0 1 0 7 3 4 5 8 1 . 5 2 1 5 3 1 7 8 1 . 3

hrn
G2 1 7 3 1 8 2 5 4 4 . 5 2 7 6 5 6 7 4 5 . 3 2 6 1 3 5 6 4 3 . 7

A p 2 2 7 1 8 7 7 5 4 . 4 1 4 0 3 8 9 5 3 . 2 1 8 7 2 7 9 5 4 . 1

c p 1 6 2 1 8 1 5 1 9 . 0 2 8 2 5 8 5 2 0 . 3 2 0 7 3 3 7 1 9 . 0

A p 2 0 6 1 8 5 8 5 2 . 1 2 8 7 5 6 9 5 0 . 1 2 1 3 3 1 7 5 1 . 4

c p 3 6 5 2 0 1 9 9 1 . 3 3 0 5 6 6 1 9 2 . 3 1 9 6 3 3 6 9 1 . 8

pno E2 1 7 9 1 8 2 9 1 0 5 . 6 2 1 6 4 8 7 1 1 8 . 2 2 6 6 3 8 5 1 1 9 . 0

G2 3 0 2 1 9 5 5 7 7 . 0 2 8 7 5 6 8 7 7 . 2 1 1 7 2 3 8 7 1 . 7

A p 2 2 6 1 8 7 9 1 0 0 . 8 2 7 4 5 6 6 9 4 . 0 3 2 7 4 4 8 1 0 9 . 7

c p 2 8 1 1 9 3 4 2 8 . 5 3 2 6 6 7 3 2 8 . 4 2 2 3 3 7 3 2 8 . 5

A p 2 6 9 1 9 1 8 6 3 . 3 2 6 3 5 6 6 6 4 . 6 3 6 5 5 1 2 6 5 . 9

c p 3 4 4 1 9 8 8 8 0 . 0 2 5 3 5 4 5 7 8 . 7 2 7 2 4 1 0 7 9 . 7

sax E2 2 3 5 1 8 7 8 1 0 6 . 6 2 3 6 4 9 6 1 0 1 . 8 2 1 8 3 3 6 1 0 6 . 4

G2 3 2 0 1 9 6 5 7 3 . 0 3 0 5 6 0 7 7 2 . 0 3 0 7 4 3 7 7 1 . 1

A p 3 9 0 2 0 3 6 6 3 . 1 2 1 4 5 2 6 6 3 . 3 3 6 3 5 1 2 6 4 . 4

c p 3 1 2 1 9 8 1 8 8 . 3 3 1 8 6 0 9 8 8 . 1 2 9 2 4 4 8 8 8 . 0

E2 2 9 5 1 9 7 5 6 0 . 0 3 1 4 5 8 4 6 0 . 5 2 9 6 3 8 9 6 0 . 0

trb
G2 2 0 3 1 8 4 4 5 3 . 6 2 4 4 5 3 6 5 4 . 2 2 3 5 3 5 4 5 3 . 6

A p 2 4 8 1 8 9 2 4 1 . 8 2 5 0 5 6 4 4 4 . 0 2 6 6 4 1 5 4 1 . 8

c p 2 0 8 1 8 5 4 7 2 . 6 1 8 7 4 5 7 7 8 . 4 1 6 9 2 5 0 7 7 . 8

via c p 6 3 8 4 3 3 3 2 1 7 . 2 6 4 3 1 7 5 9 2 1 7 . 6 6 2 4 1 1 1 9 2 1 6 . 3

A p 6 0 1 3 8 2 6 7 1 . 7 6 4 9 1 6 6 2 7 0 . 9 7 0 8 1 1 5 4 7 1 . 7

c p 5 9 2 4 2 8 0 8 0 . 0 6 3 1 2 0 2 0 7 9 . 7 5 7 7 1 0 9 4 8 0 . 3

vlb
E2 5 6 9 3 7 8 8 9 4 . 4 5 2 6 1 6 2 4 9 5 . 4 6 2 8 1 1 2 1 9 4 . 4

G2 4 1 8 3 6 4 4 5 3 . 3 5 0 5 1 5 8 5 5 3 . 1 4 7 0 1 0 5 5 5 2 . 7

A p 4 4 6 3 9 2 4 8 2 . 8 6 5 4 1 5 3 1 8 0 . 4 4 7 6 8 5 6 8 2 . 7

c p 4 5 5 3 6 6 3 9 5 . 4 7 3 8 1 3 4 5 1 0 3 . 3 3 9 2 5 8 1 9 5 . 5

c p 8 1 0 4 2 2 5 7 6 . 0 7 3 9 1 5 7 3 7 6 . 8 7 2 7 1 0 5 1 7 6 . 4

E2 4 8 7 3 7 1 0 5 8 . 4 3 6 0 1 4 3 3 5 8 . 5 4 5 8 8 6 7 5 8 . 4

vie G2 6 4 5 3 8 6 8 6 0 . 8 5 8 9 1 5 9 8 6 0 . 9 6 5 7 1 1 3 6 6 0 . 4

A p 7 3 1 3 9 3 9 7 8 . 7 5 9 3 1 0 3 3 8 5 . 7 4 6 0 6 4 8 7 9 . 3

c p 7 7 7 4 4 1 0 7 0 . 1 8 0 7 1 8 0 3 7 1 . 1 7 2 2 1 0 8 9 7 0 . 0

M ean 3 5 1 2 4 8 3 8 1 . 5 3 5 8 8 3 5 8 1 . 8 3 4 0 5 4 0 8 1 . 9

Std. D ev . 1 7 8 9 4 7 3 5 . 2 1 8 4 4 9 1 3 5 . 4 1 7 0 3 0 3 3 5 . 7

Table B.5: Group 1, 5-oscillator, 5-table match optimization.
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G R O U P  1 Four-Table M atch  O p tim ization
5 O scillators 4 + 0 2 + 2 3 + 1
Instr P itch T opt T o t a l Error T o p t T to ta l Error T o p t T to ta l Error

A p 154 1800 90.1 134 264 90.4 111 230 92.6
C p 185 1835 129.2 184 279 134.1 103 222 134.8

bsn
E2 133 1780 90.5 83 160 90.5 92 209 94.4
G2 246 1889 79.8 221 360 79.8 156 277 79.1
A p 241 1884 62.6 230 342 62.5 232 352 63.0
c p 192 1835 39.3 160 254 39.3 95 214 39.2
c p 141 1785 166.0 108 175 171.2 183 299 166.9
E2 192 1845 123.3 309 438 123.3 179 299 124.4

clb G2 1 1 2 1755 129.6 104 208 131.4 59 177 134.1
A p 153 1796 111.5 149 261 109.6 63 180 109.6
c p 153 1796 94.2 118 205 95.0 82 201 93.9
E2 131 1774 86.1 87 181 85.8 42 159 89.2

hrn
G2 246 1888 45.9 177 262 45.4 131 250 45.4
A p 107 1749 54.6 64 149 55.1 340 457 54.3
c p 252 1895 22.5 281 401 22.3 198 317 22.4
Aftl 190 1833 52.0 159 253 52.0 87 205 51.9
c p 298 1941 93.2 256 385 91.7 269 390 94.3

pno E2 130 1772 117.2 135 246 124.9 185 303 119.8
G2 178 1822 78.0 136 248 80.6 102 220 75.6
A p 241 1884 104.3 90 203 112.4 83 202 105.8
c p 159 1803 29.0 120 261 29.0 165 286 29.1
A p 248 1887 62.4 152 289 65.8 177 296 62.8
c p 191 1825 81.1 1 2 1 250 83.4 124 243 86.3

sax E2 1 1 1 1747 108.9 124 235 109.3 88 206 1 1 0 .1
G2 171 1807 71.0 152 272 70.6 139 258 72.2
A p 321 1956 63.7 210 348 62.7 233 352 63.1
c p 172 1830 89.9 130 276 89.3 119 238 90.0
E2 80 1751 58.5 61 145 58.5 78 196 58.5

trb
G2 n o 1743 55.6 125 236 55.5 136 255 54.8
A p 298 1931 42.1 302 440 41.8 142 262 44.9
c p 229 1869 81.8 347 423 75.3 222 340 81.6

v ia c p 667 4309 218.0 622 1065 217.5 747 1030 219.9
A«1 600 3784 73.0 478 883 72.5 372 621 72.0
c p 690 4324 78.0 635 1098 78.1 414 708 77.9

vlb
E2 354 3537 96.4 350 806 96.3 423 675 96.9
G2 818 4002 52.3 787 1330 52.3 610 864 52.1
A p 660 4103 80.0 614 960 80.0 438 701 79.8
c p 149 3332 96.5 151 316 96.5 132 365 100.4
c p 402 3778 76.4 408 693 77.3 315 568 77.5
E2 564 3746 57.5 530 883 57.6 520 768 58.7

vie G2 510 3691 60.4 447 886 60.7 323 569 61.1
A p 354 3536 74.9 283 448 80.7 190 415 78.9
c p 686 4270 70.7 540 860 70.9 541 813 70.6

M ean 284 2398 82.5 253 434 83.2 220 377 83.5
Std . D ev . 194 942 35.7 183 306 36.4 164 218 36.3

Table B.6: Group 1, 5-oscillator, 4-table match optimization.
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G R O U P  1 L im iting O ptim ization  P rob lem  Size
5 Osc, 4 W T O verlap =2 L im it= 1 5 Lim it = 1 2 O v e r la p = l
Instr P itch T0pt Error Topt Error Topt Error Topt Error

AJJ1 154 90.1 154 90.1 58.5 90.6 62.2 91.7
C#2 185 129.2 185 129.2 50.4 130.6 15.9 131.9

bsn
E2 133 90.5 133 90.5 71.5 90.7 17.3 91.5
G2 247 79,8 246 79.8 71.7 81.2 20.5 84.2
A p 240 62.6 241 62.6 53.3 63.4 19.0 65.0
C p 191 39.3 192 39.3 95.2 43.2 18.0 43.5
c p 140 166.0 141 166.0 61.7 166.0 20.1 166.0
E2 447 123.1 192 123.3 64.8 123.5 27.7 124.9

clb G2 111 129.6 112 129.6 48.3 130.5 27.4 130.8
A p 248 110.5 153 111.5 53.7 111.8 20.1 113.3
c p 152 94.2 153 94.2 62.6 94.8 87.9 94.5
E2 131 86.1 131 86.1 64.0 86.2 46.5 84.3

hrn
G2 291 45.9 246 45.9 49.3 46.7 21.3 46.7
A p 106 54.6 107 54.6 55.7 55.5 153.4 54.9
c p 421 22.4 252 22.5 49.8 23.8 27.3 24.7
Aftl 191 52.0 190 52.0 68.8 53.1 74.1 53.0
c p 391 93.2 298 93.2 50.3 93.5 32.2 93.7

pno E2 177 117.1 130 117.2 45.8 117.2 86.8 119.6
G2 176 78.0 178 78.0 63.2 79.4 18.9 80.7
A p 280 102.8 241 104.3 73.2 121.5 26.5 122.6
c p 158 29.0 159 29.0 61.3 29.0 20.3 29.3
A p 246 62.4 248 62.4 67.9 64.0 18.4 65.8
c p 233 81.1 191 81.1 99.9 83.7 24.6 85.3

sax E2 110 108.9 111 108.9 44.4 108.9 53.4 107.0
G2 252 71.0 171 71.0 72.7 73.1 21.0 74.3
A p 431 62.3 321 63.7 41.4 64.3 30.5 64.4
c p 170 89.9 172 89.9 81.0 90.4 18.6 92.0
E2 78 58.5 80 58.5 49.5 58.6 9.7 58.9

trb
G2 108 55.6 n o 55.6 45.6 56.1 12.3 57.7
A p 293 42.1 298 42.1 50.9 46.2 20.1 46.4
c p 334 81.6 229 81.8 84.0 84.7 34.4 86.9

via c p 1050 217.4 667 218.0 129.7 222.6 65.2 223.6
Aftl 650 72.7 600 73.0 129.7 74.1 55.1 74.5
c p 684 78.0 690 78.0 137.0 79.0 57.1 79.0

vlb
E2 440 96.4 354 96.4 119.2 96.6 37.1 97.4
G2 1024 52.1 818 52.3 105.1 53.0 84.3 53.1
A p 735 80.0 660 80.0 410.3 80.1 136.3 81.3
c p 207 96.5 149 96.5 65.0 96.6 25.3 99.3
c p 487 75.7 402 76.4 200.6 76.5 62.3 76.8
E2 563 57.5 564 57.5 103.7 58.3 46.2 58.6

vie G2 597 60.4 510 60.4 116.4 61.0 65.6 62.3
A p 359 74.9 354 74.9 139.1 77.6 59.3 80.7
c p 682 70.7 686 70.7 159.6 71.3 69.3 72.2

M ean 333 82.4 284 82.5 86.6 83.9 43.0 84.8
Std. D ev. 238 35.6 194 35.7 61.9 36.1 31.9 36.2

Table B.7: Optimization time and RMS error of Group 1, 5-oscillator, 4-table 
matches with limits on overlapping and wavetable set size.
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G R O U P  1 O ptim ization  G raph Size (in  th ou san d s)
5 Osc, 4 W T O verlap = 2 Lim it = 1 5 Lim it = 1 2 O v e r la p = l
Instr P itch V E V E V E V E

Ajjl 29.1 1815 29.1 1815 14.7 744 16.0 769
C p 34.6 2112 34.6 2112 13.3 636 5.9 196

bsn
E2 28.5 1577 28.5 1577 17.5 883 6.1 221
G2 44.8 2855 44.8 2855 17.4 878 7.4 252
m 45.1 2757 45.1 2757 14.9 651 6.8 227
c p 37.4 2248 37.4 2248 21.8 1175 6.8 220
C$2 24.8 1613 24.8 1613 13.7 747 6.2 235
E2 75.2 4879 40.1 2191 17.3 795 9.6 326

clb G2 22.9 1338 22.9 1338 12.9 610 8.3 328
A p 46.5 2801 32.4 1790 15.2 664 7.1 240
c p 31.1 1803 31.1 1803 16.5 769 19.3 993
E2 26.7 1551 26.7 1551 15.4 800 12.6 560

hrn
G2 53.4 3277 47.0 2771 13.8 615 7.6 261
A{j2 22.6 1294 22.6 1294 14.4 710 30.1 1742
c p 69.8 4627 49.7 2808 14.5 613 9.3 327
Ajjl 34.9 2237 34.9 2237 17.5 858 17.6 869
c p 67.3 4384 54.9 3389 14.4 619 10.3 387

pno E2 32.2 1994 26.3 1477 12.2 578 19.5 986
G2 33.4 2092 33.4 2092 16.1 789 6.7 232
A p 50.0 3222 43.9 2778 18.3 910 9.0 320
c p 31.6 1865 31.6 1865 15.6 760 6.7 251
Ajjl 45.5 2823 45.5 2823 17.5 833 6.8 220
c p 42.8 2703 36.9 2223 22.9 1225 8.2 302

sax E2 22.4 1304 22.4 1304 11.7 570 13.9 615
G2 47.8 2882 36.0 1989 18.4 904 7.6 254
A p 75.8 4789 60.3 3600 12.4 513 10.1 370
c p 34.0 2040 34.0 2040 19.6 1005 6.6 234
E2 17.7 979 17.7 979 13.5 631 3.9 122

trb
G2 22.2 1300 22.2 1300 12.1 576 4.8 153
A p 53.8 3308 53.8 3308 14.3 621 7.3 240
c p 54.7 3692 41.2 2609 19.5 1043 10.3 422

via C p 174.2 11649 121.9 7471 35.8 1584 22.1 782
Ajjl 114.3 7360 106.9 6760 34.1 1572 18.0 673
c p 124.5 7812 124.5 7812 36.7 1670 19.3 697

vlb
E2 82.0 4976 70.3 4056 31.3 1460 13.1 447
G2 165.6 11334 139.9 9115 30.5 1277 25.3 1028
A p 120.9 8346 111.1 7520 76.9 4895 33.1 1640
c p 41.1 2399 32.7 1783 17.8 853 9.1 323
c p 89.4 5685 77.0 4753 44.7 2485 19.1 800
E2 102.2 6431 102.2 6431 28.5 1262 15.7 571

vie G2 104.6 6817 92.4 5878 30.8 1451 19.6 817
A p 63.9 4197 63.9 4197 32.2 1778 17.4 779
c p 117.0 7783 117.0 7783 39.7 1941 21.4 856

M ean 59.5 3790 52.8 3258 21.6 1069 12.6 518
Std . D ev. 38.8 2641 33.0 2175 12.2 740 7.1 373

Table B.8: Numbers (in thousands) of vertices and edges in the optimization 
graphs for Group 1, 5-oscillator, 4-table matches with limits on overlapping 
and wavetable set size.
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G R O U P  1 A ugm ented  G A  (T horough) M atch  O p tim ization
A+ sc  — iVwT 2 + 1 3 + 1 4 + 1

Instr P itch T opt T to ta l Error T o p t T to ta l Error T opt T to ta l Error
Aj}l 2.69 48.0 114.7 24.2 118 99.2 215 385 91.4
C p 1.54 57.3 171.7 42.2 162 146.0 161 336 126.5

b sn
E2 1.30 43.7 118.3 17.6 113 104.1 196 375 91.7
G2 1.67 38.0 104.7 39.6 158 93.6 384 553 81.5
A«2 2.46 59.8 90.1 39.0 157 74.9 270 467 66.5
c p 1.67 43.0 70.2 26.8 124 49.4 411 614 41.3
c p 0.50 41.7 206.8 16.7 120 193.2 205 336 182.8
E2 2.59 41.3 134.9 37.3 119 127.5 211 317 122.8

clb G2 1.84 64.2 160.2 19.7 126 142.9 216 383 131.6
A p 0.87 57.0 135.3 19.1 n o 120.0 274 428 109.4
c p 1.45 56.5 118.1 24.6 142 102.2 177 302 93.8
E2 0.79 49.9 121.8 6.3 137 102.0 209 383 91.7

hrn
G2 1.17 69.2 65.6 31.6 133 53.1 287 497 43.3
A p 0.85 58.1 86.6 11.4 128 67.8 143 310 55.7
c p 2.19 57.5 39.1 33.6 120 30.1 359 550 24.8
A p 1.29 67.5 75.9 12.4 114 62.8 220 368 53.7
c p 2.00 37.5 107.8 52.5 142 100.2 277 391 94.2

pno E2 3.09 43.0 185.7 57.6 130 146.6 148 274 127.7
G2 2.32 26.0 117.1 18.4 100 94.8 124 297 75.3
A p 1.46 50.0 155.8 20.6 116 131.0 288 419 102.1
c p 1.50 70.1 49.3 50.2 120 39.8 289 516 29.6
A p 2.04 52.1 81.3 48.1 161 74.0 232 370 63.3
c p 1.54 55.7 108.8 26.4 102 96.3 284 449 86.1

sax E2 1.57 39.4 129.2 23.9 102 118.9 235 368 113.7
G2 1.51 50.9 96.6 37.9 140 81.1 367 522 71.2
A p 1.46 17.6 85.5 46.5 150 73.2 294 484 63.3
c p 1.92 53.7 120.6 49.2 115 100.2 270 436 90.8
E2 0.91 54.1 79.2 12.8 140 67.3 191 374 61.0

trb
G2 1.74 55.5 82.7 11.5 142 65.4 233 456 56.5
A p 2.11 47.8 74.0 30.4 109 52.7 309 495 43.6
c p 1.58 39.2 141.5 34.4 142 108.4 226 376 78.7

v ia c p 4.59 262.3 267.8 110.5 463 243.5 526 922 225.7
A p 4.56 205.1 107.7 82.2 429 86.5 462 886 72.3
c p 7.47 232.2 103.0 102.5 562 88.4 570 1418 81.0

vlb
E2 5.09 116.8 121.8 109.5 341 108.6 481 885 99.5
G2 6.27 222.1 69.4 131.1 493 59.1 570 1028 53.4
A p 2.50 295.4 126.9 59.9 464 102.6 510 1236 82.4
c p 1.88 197.4 162.6 35.4 404 123.5 544 1163 100.9
c p 4.17 207.3 106.9 64.5 438 86.8 461 910 76.5
E2 6.94 170.7 71.2 121.8 512 63.0 624 1074 58.7

vie G2 4.70 198.1 96.7 73.5 450 73.9 816 1358 60.3
A p 3.10 171.8 126.5 26.7 286 95.1 699 1204 80.4
c p 5.62 202.8 94.5 74.8 565 79.3 579 1284 70.9

M ean 2.52 93.7 113.6 44.5 219 96.0 338 609 84.4
Std . D ev . 1.72 75.6 42.8 31.7 153 39.4 166 340 37.4

Table B.9: Optimization of matches found by augmented thorough G A search. 
The “2 + 1 ,” “3 + 1 ,” and “4 + 1 ” matches are optimized for 3, 4, and 5 oscillators, 
respectively.
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G R O U P  1 A u gm en ted  G A  (Q uick) M atch  O p tim ization
Aqsc —iVwT 2 + 1 3 + 1 4 + 1

Instr P itch Topt Ttotal Error Topt Ttotal Error Topt Ttotal Error
A fl 2.90 22.1 114.5 39.6 90.3 99.9 219 257 91.8
C p 1.48 21.0 171.2 25.5 58.1 150.9 202 393 126.8

bsn
E2 1.36 21.2 118.3 16.5 50.0 105.9 292 338 94.2
G2 2.11 21.1 105.1 29.5 70.5 91.8 315 370 79.3
m 2.51 12.5 97.8 59.0 95.0 79.8 200 241 66.2
c p 1.65 11.1 79.2 26.4 50.6 49.3 320 365 40.0
c p 0.74 20.7 214.2 19.2 58.8 196.9 120 178 171.4
E2 2.25 15.8 138.3 44.1 79.2 129.2 252 326 122.6

clb G2 2.08 16.5 162.0 31.9 62.4 148.5 256 303 136.6
A p 1.14 16.9 144.4 29.1 54.0 124.0 235 283 108.8
c p 1.52 16.9 118.5 22.3 58.9 105.0 203 419 93.7
E2 1.04 20.7 122.1 13.7 50.5 103.2 171 218 98.3

hrn
G2 1.25 20.4 65.6 17.4 53.6 49.8 359 402 44.6
A p 1.01 21.5 88.8 6.7 41.7 64.5 161 237 58.9
c p 2.10 25.4 38.9 41.7 73.4 29.4 261 300 24.7
Ajjl 1.46 15.6 75.7 25.7 51.0 65.0 203 239 55.4
c p 2.35 19.2 106.7 60.8 93.3 99.8 240 304 94.8

pno E2 1.49 19.1 199.4 21.4 62.7 161.0 138 175 125.5
G2 1.83 13.8 118.3 20.0 35.8 109.0 123 160 85.2
A p 1.28 17.8 156.3 10.8 34.1 131.4 300 340 112.4
c p 1.69 20.8 49.6 52.6 83.0 40.0 335 385 31.7
A p 1.72 16.0 84.5 45.1 82.7 73.9 256 295 68.0
c p 1.47 18.0 109.3 28.0 70.1 101.2 283 342 85.0
E2 1.66 14.3 131.2 32.5 58.0 124.0 158 216 110.8
G2 1.59 20.8 95.4 29.7 53.9 83.9 287 335 71.5
A p 1.61 17.2 83.6 37.8 70.9 74.3 261 307 62.5
c p 2.51 23.3 118.2 34.3 57.8 103.9 273 471 92.7
E2 1.27 17.2 86.1 20.8 47.9 69.9 191 266 60.5

trb
G2 1.48 22.4 83.4 29.8 51.2 70.7 231 269 60.3
A p 1.69 23.3 65.0 27.4 73.4 52.6 238 291 46.9
c p 1.30 15.3 142.5 9.8 45.0 97.1 104 142 82.4

via cp 5.74 73.2 269.1 92.1 209.5 242.1 806 1045 221.3
A p 4.56 55.0 107.4 82.0 176.3 88.5 559 696 77.5
c p 6.50 85.4 103.4 130.3 245.2 88.4 761 961 80.4

vlb E2 5.29 50.3 124.5 102.6 190.1 108.4 539 697 101.0
G2 7.13 77.2 69.2 169.4 287.0 59.4 595 724 54.3
A p 2.14 67.8 125.8 71.5 182.5 108.0 497 735 90.7
c p 2.30 50.0 171.4 53.1 151.7 127.9 168 317 99.8
c p 5.12 57.3 105.3 72.9 205.7 86.9 771 916 80.3
E2 5.62 58.1 73.1 123.0 211.2 64.0 523 982 59.1

vie G2 4.52 56.8 97.5 117.2 226.8 76.8 611 739 62.6
A p 1.08 53.4 119.3 69.7 191.3 109.3 585 761 83.7
c p 6.03 74.6 98.6 91.0 238.0 82.1 510 704 73.2

M ean 2.50 31.1 115.1 48.5 103.1 98.3 328 429 85.8
Std . D ev . 1.72 21.3 44.1 37.1 70.9 40.5 187 247 36.1

Table B.1Q : Optimization of matches found by augmented quick GA search. 
The “2+1,” “3+1,” and “4+1” matches are optimized for 3, 4, and 5 oscillators, 
respectively.
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G R O U P  1 H orner’s C onstrained  M atch ing
3 O scillators 4 O scillators 5 O scillators

Instr P itch Time Error Time Error Time Error
A#1 1.06 125.0 10.8 113.3 158 94.2
C p 1.06 191.3 10.7 161.2 155 137.8

bsn
E2 1.06 140.9 10.7 126.4 155 111.2
G2 1.06 122.2 10.7 98.0 157 91.5
A p 1.06 113.5 10.7 82.8 156 70.7
C p 1.06 101.2 10.7 64.4 154 52.5
C p 1.06 232.5 10.7 202.1 154 174.6
E2 1.07 144.1 10.7 132.7 154 125.8

clb G2 1.01 182.4 10.7 158.8 154 142.5
A p 1.17 152.7 10.7 127.6 154 119.1
c p 1.09 146.9 10.7 125.6 154 113.3
E2 1.08 187.8 10.7 112.2 154 96.2

hrn
G2 1.13 81.6 10.7 60.5 154 48.0
A|2 1.14 109.8 10.7 76.5 154 62.1
c p 1.06 48.6 10.7 31.8 154 25.3
Ajjl 1.05 92.0 10.7 71.0 154 59.1
c p 1.06 110.9 10.7 102.0 154 97.2

pno E2 1.06 217.3 10.7 170.2 154 121.4
G2 1.06 169.1 10.7 99.9 154 87.7
A p 1.15 176.8 10.7 145.5 154 109.9
c p 1.03 62.8 10.7 42.7 154 33.6
Ajjl 1.09 86.6 10.7 77.1 154 66.7
c p 1.05 119.9 10.7 106.4 154 93.3

sax E2 1.06 138.9 10.7 128.8 154 121.9
G2 1.07 110.5 10.7 89.5 154 81.1
A p 1.06 90.0 10.7 78.5 154 69.5
c p 1.06 135.6 10.7 112.4 154 100.1
E2 1.06 96.1 10.7 73.8 154 60.8

trb
G2 1.06 106.7 10.7 80.3 154 64.9
A p 1.06 90.2 10.7 66.1 154 51.6
c p 1.07 164.9 10.7 135.2 154 96.1

via c p 2.02 299.8 13.1 254.9 159 230.9
Ajjl 1.78 126.5 12.5 96.1 159 76.9
c p 2.03 127.5 13.1 101.4 161 81.7

v lb
E2 1.80 131.1 12.5 113.7 160 105.4
G2 1.80 72.3 12.5 61.5 160 54.9
A p 1.87 166.0 12.8 117.5 158 92.7
c p 1.78 252.0 12.5 136.5 159 111.3
c p 1.84 119.0 12.7 94.8 159 82.1
E2 1.79 74.7 12.5 67.2 159 61.0

vie G2 1.78 104.3 12.5 84.8 159 65.2
A p 1.77 184.5 12.5 110.6 158 87.8
c p 1.97 147.7 13.0 94.2 163 80.4

M ean 1.29 136.1 11.3 106.7 156 90.9
Std . D ev . 0.36 51.7 0.9 41.7 3 37.2

Table B .ll: Group 1, Horner’s constrained matching results.
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