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Abstract

The exceptional mechanical and electronic properties of carbon nanotubes
(CNTs) make them a leading candidate material for nanotechnology. Since most
potential applications of CNTs heavily depend on their mechanical properties, the
mechanics of CNTS has become the focus of considerable research in the last decade.
Among various methods, a multiple-shell model has been developed for axially
compressed buckling of multiwall carbon nanotubes (MWNTs). Based on this
multiple-shell model the current thesis gives a systematic study on elastic bﬁckling
and free vibration of MWNTs.

For the elastic bﬁckling of MWNTs, the critical buckling loads and associated
modes are predicted for thin, thick and (almost) solid MWNTs (the inner
radius-to-thickness ratio > 4, ~1 and < %, respectively) under radial pressuré, axial
stress or combined load. By analyzing the numerical results, the effect of (i) the
internal pressure, (ii) the possible pressure-induced interlayer locking and (iit) the
interaction between axial stress and external pressure has been examined for the
buckling of MWNTS. Particularly, the multiple-shell model is found to be m good
agreement with available experiment in calculating the critical buckling pressure for a
specific group of 20-wall CNTs.

Subsequently, the multiple-shell model is extended to free vibration of MWNTs.
To demonstrate its effectiveness, the shell mode is first used for the radial bréathing
modes (RBMs) of CNTs, with excellent agreement with known atomistic simulations

and experiments. Especially, for the very first time the pressure-dependence of RBMs
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is obtained for MWNTs. Furthermore, the general vibrational behavior of MWNTs
has been studied with an emphasis on the effect of the interlayer vdW interaction on
free vibration of MWNTSs. More recently, some special vibrational modes of MWNTs,
i.e., the axisymmetric modes, beam-like modes and the lowest frequency modes have
been further discussed in detail.

Moreover, to simplify analysis of MWNTs, a single-shell model s proposed for
thin MWNTS to replace the multiple-shell model and the accuracy and applicability of
the simplified single Donnell equation and a simplified Flugge eqﬁation have been

examined for CNTs in various buckling and vibration problems.
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Chapter 1

Introduction

1.1 Carbon Nanotubes (CNTs)

Carbon-based materials, such as diamond and graphite (Fig.1.1 (a) and (b)), have
been studied and widely used for centuries. For a long time, the carbon science was
thought to be a mature field until a completely new form of carbon material, ie.,

fullerene (Fig. 1.1(c)), was discovered in 1985 [1]. The fullerenes or “buckyball” carbon

molecules, e.g., Cq,, C,, and Cy,, are closed cages or carbon hollow spheres of 60, 70,

and 80 carbon atoms arranged symmetrically in hexagons and pentagons (Fig.1(c)). The
euphoria in the study on fullerenes started with the discovery of "high temperature
superconductivity" of this new carbon material in 1991.

Right at this time, in TEM (transmission electron microscopy) study on fullerenes

C,» Japanese scientist Sumio lijima [2] of the NEC fundamental research laboratory

accidentally discovered unusual tubular, instead of sphere, carbon molecules (Fig. 1.2 (a)
and (b)) in a sample of carbon soot. The observed giant fullerenes or carbon tubes, which

might be C, .00 Or beyond, are multilayer carbon cylinders consisting of several

concentric tubes (Fig. 1.2 (a) and (b)). A year later, while trying to make modified C,

with boron, Thomas Ebbesen and Pulickel Ajayan, also working for NEC, found, quite
by chance, a highly efficient way of making large quantities of the multilwall carbon
nanotubes (MWNTs) [3]. Subsequently, in 1993, carbon tubes with singlelayer structure
(Fig. 1.3) were also synthesized by lijima’s group at NEC [4] and Donald Bethune’s
group at IBM’s Almaden Research Center [5], independently. The early experimental
observation showed that these carbon tubes are only a few to tens nanometers in diameter
but several microns in length [2, 4-7]. Especially, carbon nanotubes (CNTs) appeared to
be perfectly graphitized (i.e., the carbon atoms are in perfect hexagonal arrangement)
without any defects. More important, further experimental and theoretical studies

revealed that this novel carbon material exhibits exceptional rigidity, super-strong
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INTRODUCTION 2

strength, low density and remarkable resilience, and could be either metallic (with high
conductivity) or semiconducting, depending on the structure of CNTs [6, 8]. Due to these
superior mechanical and electronic properties, CNTs are highly expected to be a leading
material for nanocomposites, nanodevices and nanoelectronics [9-12]. Therefore, since
the discovery of CNTs, explosive research related to these tubular fullerenes has been
increasingly stimulated in the fields of chemistry, physics, material science and

engineering, and electrical and electronic engineering.

1.1.1 Molecular Structure of CNTs

CNTs are cylindrical molecules with aspect ratio up to 1000 or even larger [2, 4-7].
Thus, from material point of view, they can be considered as ultimate carbon fibers that
are about 10,000 times thinner than human hair. Typically, there are two different
categories of CNTs, i.e., singlewall carbon nanotubes (SWNTs) (Fig.1.3) and MWNTs
(Fig. 1.2 (a) and (b)).

1.1.1.1 Singlewall Carbon Nanotubes (SWNT5s)

As shown in Fig.1.3, SWNTs can be simply described as circular cylinders with
radius usually of the order of lnm [4-5]. In many cases, the two ends of a SWNT are
closed by hemispherical caps.

In the cylindrical plane of a SWNT, each carbon atom is connected with three
adjacent atoms via three in-plane o —bonds separated from each other by 120°. As a
result, the carbon atoms of a SWNT are bonded together in hexagonal lattice (Fig. 1.3),
like those of a graphite sheet (see Fig.1.1 (b) and 1.4). However, different from graphite,
the atomic hexagons of a SWNT are arranged in a certain degree of helicity, i.e., the
screw orientation with respect to the axis of a SWNT (Figs. 1.3). In view of this atomic
structure, a SWNT can be visualized as a result of rolling up a graphite sheet along the

screw orientation of its carbon hexagons. This process can be characterized by the rollup

vector E,: =04 inF ig. 1.4. In other words, the geometric size and helicity of a SWNT is

uniquely determined by the vector E’,: .
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In Fig. 1.4, the rollup vector C—h is expressed as a linear combination of base

vectors a, and a,, ie., C, =04 =n,-a,+m,-a,, which defines a SWNT (n,,m,),

where index 7, and m, are integers. Note that the length ! of in-plane o —bond is

=+/3-1 (see Fig. 1.4), the

0.142nm and the length of the two unit base vectors |c7; 1 = a_z.

perimeter S (= @) and diameter d of a SWNT (n,,m,) can be calculated based on

simple geometry as [13-14]

§= 0.246-\/11,3 +n,m, +m; nm

and d =§:0.0783~w/nf +n,m, +m; nm 1.1)
7

On the other hand, the helicity of SWNT (#,,m, ) is specified in terms of the chiral

angle @, defined as the angle between base vector ;; and rollup vector E; (Fig. 1.4). It

is easy to understand that due to the hexagonal symmetry of carbon atoms, the chiral

angle @ associated with different helicities of SWMTs is in the range of 0° <8 < 30°
and determined uniquely by [13]

6= sin-‘[ f3m, } (1.2)

iZ(n;z +n,m, + m,f)

Especially, according to different helicities or chiral angles, SWNTs are classified

into the following three categories (see Figs. 1.3 and 1.4):

(1) “zig-zag” SWNTs with §=0° and m, =0
(2) “chiral” SWNTs with 0° <8<30° and n, >m,

(3) “arm-chair” SWNTs with 8 =30° and n, =m,
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1.1.1.2 Multiwall Carbon Nanotubes (MWNTs)

TEM study [2] revealed that MWNTs were comprised of two to dozens of
concentric SWNTs with usually different helicities. It is seen in Fig.1.2 that these
concentric SWNTs are nested one upon another leading to a Russian-doll-like structure.

The interaction between two adjacent tubes of a MWNT is predominated by the
normal van der Waals (vdW) interaction arising from the out-of-plane 7 —bond between
atom-pair on neighboring tubes [13]. Since this out-of-plane 7z —bond is very weak as
compared to strong in-plane o —bond, the friction between two adjacent layers in
tangential direction is very small [15-18]. For example, in the experiment of “shell-
sliding”[15], the interlayer shear strength measured between the outermost two layers of
two individual MWNTSs was only 0.08MPa and 0.3MPa, respectively, suggesting that
the adjacent tubes of a MWNT can almost slide and twist towards each other freely.

On the other hand, using Lennard-Jones (L-J) potential model [19-21] for two
atoms, the interlayer normal vdW interaction in MWNTSs can be expressed in terms of the
interlayer spacing. The repulsive or attractive interaction is present when the interlayer
spacing is smaller or larger than the equilibrium value associated with zero vdW
interaction. Both TEM observation [22-23] and atomistic simulation [16, 24] indicate that
the equilibrium interlayer spacing of MWNTs is around 0.34am , close to the interlayer
spacing of graphite 0.335am. When tube diameter decreases from the large-radius
outermost few layers to the small-radius innermost few layers of MWNTs the equilibrium
interlayer spacing increases monotonically from 0.342 to 0.39 nm [23] or from 0.337 to
0.375nm [24]. The increase in interlayer spacing with decreasing nanotube diameter can
be explained by the fact that the repulsive force increases with decreasing diameter due to

strong curvature effect [23-24].

1.1.2 Mechanical and Electronic Properties of CNTs

The tiny CNTs of extremely large aspect ratio and various helicities are usually
defect-free [2,7] with carbon atoms bonded together by strong in-plane o —bond in
hexagonal lattice. As a result, CNTs exhibit remarkable mechanical and electrical

properties.
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1.1.2.1 Mechanical Properties of CNTs

Exceptional in-plane Rigidity: Many experimental and theoretical studies have been
carried out to estimate Young’s modulus and shear modulus of CNTs, which, in fact,
belong to the framework of continuum elasticity. By fitting the results, for example the
force-deformation relation [25-30], strain energy [31-38] or vibrational deformation [39-
42] obtained by experiments or atomistic simulations, to the estimate of elastic models,
the effective values of these elastic constants have been calculated for CNTs. Although
the scatterings of the measured results are found in different literatures, the typical values
of the order of 1TPa [25-42] for Young’s modulus and 0.57Pa (30, 33] for shear
modulus are finally achieved for CNTs associated with the effective thickness of SWNTs
0.34nm . Accordingly, the in-plane stiffness of SWNTs defined by the product of
Young’s modulus and thickness is equal to 56-59¢¥ (or around 360.J /nm”) [32-34, 36-
38]. It is noted that these exceptional values are close to the in-plane elastic constants of a
graphite sheet and diamond, but much higher than those of any other existing engineering

material.

Super Strong Strength and Low density: Due to the extremely high Young’s
modulus, CNTs are expected to have much stronger strength than conventional materials.
Indeed, existing experiments show that, with the effective thickness of SWNTs 0.34 nm ,
the average tensile strength of CNTs is in the range of 1.3 to 63 GPa [25, 27-29, 39]. On
the other hand, using elastic modules of graphite Ruoff and Lorents [40] have predicted
tensile strength 20GPa for SWNTs of diameter 1nm . Moreover, based on molecular
dynamic (MD) simulation, the tensile strength of SWNTs obtained by Yakobson et al.
[43] and Belytschko et al. [44] is 150GPa, and 3.5 to 112GPa, respectively. These
“experimental measurements and theoretic predictions are generally consistent with each
other, showing that CNTs about six times lighter than steel [45-46] are approximately one
to two orders of magnitude stronger than the strongest steel. Obviously, this super strong
strength and the low density of CNTs offer a very useful combination in engineering

applications.
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Remarkable Resilience: In addition to the high in-plane elastic modulus and the
resulting strong axial strength, another unique feature of CNTs is their remarkable
flexibility under axial compression or bending. The basic phenomenon observed in
experiments [47-52] and MD simulation [32, 47] is that both SWNTs and MWNTs can
be bent to a large angle in excess of 90° or even 110 ° (Fig. 1.5 (a)). Once the bending
angle reaches a critical value, kinks or buckling pattern emerges on the inner (concave)
* side of bent CNTs due to high compression (see Fig. 1.5 (b)). Amazingly, it is found that,
on the removing of external load, the kinks (buckling) caused by the compression are
fully reversible without any damage of CNTs. In particular, Falvo et al. [48] reported up
to 16% recoverable strain for MWNTs. Bower et al. [S1] observed 5% buckling strain
and up to 18% fracture strain of CNTs. Here, it is worth mentioning that, since the high
in-plane rigidity and strong strength as well as low density of CNTs are, in fact, inherited
from in-plane properties of graphite, it is this extraordinary resilience and resistance to
fracture that distinguish CNTs from their predecessor (graphite) as an engineering

material.

Significant Effect of The vdW Interaction: CNTs with high rigidity and remarkable
resilience are usually straight carbon fibers with perfect cylindrical symmetry. However,
since their diameters are only of a few nanometers, the surface area-to-volume ratio of
CNTs is extremely large. As a result, the vdW interaction between adjacent CNTs or a
CNT and substrate surface is significant and could result in deformation of CNTs in both
axial and radial directions. The experimental evidence was first given in Rouff et al’s
TEM study [53], in which, the vdW interaction-induced radial deformation or flattening
of cross-sections was observed for two adjacent (aligned) MWNTs. In particular,
consistent with Gao et al’s MD simulation [35] it was shown that the effect of the vdW
interaction is strong for CNTs of outer diameter larger than 2.5nm but could almost be
neglected for CNTs of outer diameter less than 1nm . Hertel et al. [54] and Avouris et al.
[55] further studied the effect of the vdW interaction between two crossing SWNTs
(Fig.1.6 (a)) or a CNT and substrate (Fig. 1.6(b)). Both axial and radial deformations of

CNTs were clearly observed due to the vdW interaction. These results indicate that the
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role of the vdW interaction could be significant in determining the geometry and thus,

mechanical properties of CNTs.

1.1.2.2 Electronic Properties of CNTs
In addition to exceptional mechanical properties, CNTs also possess unique
electronic properties. As reviewed in Refs. 56 and 57, the electronic conductivity of a
SWNT (n,, m,) depend sensitively on its diameter and helicity, which can be uniquely
determined by index n, and m, in Eqs. (1.1) and (1.2). To be more specific, a SWNT
~(m,, m,) is a metallic conductor with high electrical conductivity when the following

expression is satisfied [57]

2n, +m, =3q 1.3)
h Ty

where ¢ is an integer. On the other hand, if condition (1.3) cannot be met SWNT

(n,, m,) is predicted to be semiconductors with relatively low electrical conductivity.
For example, all the arm-chair SWNTs with chiral angle =30° and n, =m, are
metallic SWNTs (or conductors), while zig-zag (6=0° and m, =0) and chiral

(0°<6<30° and n, >m,) SWNTs can be either metallic tubes or semi-conductive

- tubes. For metallic SWNTs, the electrical conductivity could be even higher than that of
copper. In particular, due to the nearly one-dimensional electronic structure of CNTs, the
electronic transport in SWNT's occurs without scattering, which enables metallic SWNTSs
to carry high currents with very low heat [58]. On the other hand, the unique feature
observed for semi-conductive SWNTS is that the increasing diameter of a SWNT results
in decrease of its band gap, the energy needed for an electron to move from the valence
band, where it is bound to an atom, into a conduction band [56]. This feature enables us
to make devices that turn on and off at different voltages, which can be tailored for
different applications, a versatility impossible for device made of conventional

semiconductors with fixed band gap. For MWNTs, the results for the electrical
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conductivity are generally analogous to those of SWNTs because of the weak coupling
between individual tubes of MWNTs.

Superconductivity is another intriguing electronic property of CNTs. In 2001, this
phenomenon was first reported by French and Russian researchers [59] for small bundles
of SWNTs at a low temperature 0.05K. Later, in Hong Kong, Shen et al. [60] also

~ observed superconductivity for SWNTs of exceptionally small diameter 0.4nm at
relatively high temperature 15K . The later result is consistent with previous theoretical
prediction that the great curvature of SWNTs is an essential property for
superconductivity of CNTs.

1.1.3 Applications of CNTs

The excitement of the discovery of CNTs is greatly amplified because of the
exceptional mechanical and electrical properties of CNTs. Accordingly, the expectation is
running very high for practical applications of CNTs in nanotechnology. The important

applications that CNTs have the most potential are briefly summarized as follows.

1.1.3.1 Super-strong Materials

The first realized application of CNTs is the nanotube-reinforced composite
material. Embedding CNTs with enormous resilience and tensile strength into matrix
could yield super-strong composite material with extremely high toughness. Experiments
[61] showed that by adding only 1% CNTs (1% by weight) into polystyrene matrices
leads to a 36-42% increase in the elastic stiffness and a 25% increase in the tensile
strength. This kind super-strong and resilient material, for example, can be used to make
cars that bounce in a wreck, instead of crack or buildings that sway rather than crack in
an earthquake.

In addition, due to the extremely large strength-to-density ratio of CNTs, armies of
these molecules could line up to form a light but strong wire that could be an unbeatable
material for making light weight vehicles for space, air and ground. Particularly, it has
been estimated by Harris [62] that since CNTs possess strong strength, high toughness
and light density, they could be designed as the longest cable in the world, which

connects space station and earth without suffering a high gravitational force.
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1.1.3.2 Nano-mechanical Devices

There is no doubt that CNTs hold substantial promise as building blocks for nano-
scale devices. For example, Kim and Lieber [63] have attached two thin and rigid CNTs
to electrodes on a glass rod to form nano-sized tweezers, which can be opened and closed
by changing voltage applied on the two tubes. Such tweezers have been used to pick up
and move objects that are only 350-500 nanometers in size, which are too small for any
other larger tweezers. These fine tweezers offer a useful tool to manipulate tiny objects in
experiments and later can be applied to assemble nano-scale devices routinely.

In 1996, Smalley and his colleagues [64] first mounted a CNT on the tip of an
atomic force microscope. They showed that the exceptional strength and dramatic
flexibility of CNTs increase the probe life of the tip and minimize sample damage during
repeated hard crashes into substrate. In particular, small diameter of CNTs greatly boosts
the resolution of microscope by more than an order of magnitude, allowing clear views of
proteins and other large molecules.

In addition to above simple nano-scale equipment, the plans to produce more
complex nano-scale machines [65-67], such as molecular motors, mechanical and
biological engines, or even nano-scale vehicles have also been proposed. In fact, nano-
scale gears and wear-free bearings made up of CNTs, which are essential for nano-scale
machines, have already been studied for years in labs. To give an example of potential
applications of the molecular machines: nano-vehicles [67], which are propelled by
chemical reaction, can be used as nano-medical delivery vans. This part biological and
part mechanical natural machines can park there, mix the drug and deliver it right into the

growth without doing any harm on the neighboring tissues.

1.1.3.3 Nano-electronic Devices

It is believed that “in the long term, the most valuable applications of CNTs will
take further advantage of their unique electronic properties” [56]. As a typical example
[67], to pack transistor on computer chip more densely, the already microscopic wires
need to be even smaller and thinner. However, existing material on which the computer
revolution has been built will begin to hit fundamental physical limits. Once further
reduced, they could blow up while you are trying to send the electrical signals through
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them. Thus, nano-scale carbon tubes with high electrical conductivity and low heat could
be a perfect solution to this problem. It is expected that application of carbon nanotubes
could make electronic circuits shrink by orders of magnitude to free up more space in
microchip for more devices and at the same time, solve heat and stability problems. More
important, CNTs provide orders of magnitude increase in computational power as
compared to silicon. Thus this novel computer chip is an excellent successor to
conventional silicon chips, and can work at a molecular scale where silicon or other

semiconductors ceases to work.

1.1.3.4 Nano-electrochemical devices

The high electronically accessible surface area of porous nanotube arrays, combined
with their high electronic conductivity and useful mechanical properties makes CNTs
attractive electrodes for devices that use electrochemical double-layer charge injection
[11]. To name a few, (1) Supercapacitors with CNT electrodes, which can offer higher
power capabilities than batteries and much higher storage capacities than ordinary
capacitors. (2) CNT electromechanical actuators, which can be used at just a few volts,
compared with around 100V wused for piezoelectric stacks and >1000V for
electrostrictive actuators. Especially, because of the thermal stability of SWNTs these
CNT actuators can be operated at temperature up to 350 C° or even over 1000C°, and it
has been predicted [11] that if the inherent mechanical properties of CNTs can be

efficiently used, the CNT actuator could be order-of-magnitude advantages over existing

commercial actuators.

1.2 Recent Studies on Mechanics of CNT's

As shown in Section 1.1.3, CNTs have been identified as one of the most promising
building blocks for future development of functional nano-structures. Thus, the
characterization of nano-mechanics of CNTs is highly desirable for the potential

applications of this novel engineering material.
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1.2.1 Experimental Research

Various experimental techniques have been used to characterize the mechanical
behaviors of CNTs. In particular, transmission electronic microscopy (TEM), atomic
force microscopy (AFM), scanning electronic microscopy (SEM) and Raman
spectroscopy as well as high external pressure are among the dominant experimental
methods. The most important experiments based on these techniques are summarized as

follows.

1.2.1.1 TEM, AFM and SEM Studies

Measurement of Young’s modulus and strength: In 1996, Treacy et al. [39]
started the first experimental investigation on Young’s modulus of individual MWNTs.
With the help of TEM, these authors were able to measure the intrinsic thermal
vibrational amplitude of cantilevered MWNTs. By comparing the amplitudes obtained
experimentally to those given by elastic beam model, the average value 1.87Pa was
achieved for 11 examples of MWNTs. Different from TEM, the tip of AFM can be
directly used to apply external forces to CNTs. Using this nano-manipulator (AFM),
Wong et al. [25] performed the first direct measurement of Young’s modulus and axial
strength of MWNTSs. The relationship between the force applied at the free end of a
cantilever MWNT and resulting transverse deflection was obtained, which gave a value
of 1.27TPa for Young’s modulus and about 15GPa for bending strength. On the other
hand, Yu et al. attached the ends of SWNT ropes [28] or an individual MWNT [29] to
opposite two tips of AFM, which allowed them to apply axial tensile force to CNTs
(Fig.1.7). Assuming that the axial load on SWNT rope was taken by SWNTs on its
circumference, the tensile strength calculated for SWNTs ranged from 13 to 52 GPa and
Young’s modulus ranged from 320 to 1470GPa{28]. The interesting phenomenon
observed for MWNTSs under tension [29] is that the outermost tube of a MWNT was
fractured initially and followed by pull-out of inner tubes of the MNWT, demonstrating a
“sword and sheath” fracture mechanism of MWNTs. Based on this understanding, the
tensile strength obtained for the outermost tube of the MWNTS tested in [29] varied form
11 to 63 GPa and Young’s modulus varied from 270 to 950 GPa .
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Observation of buckling of CNTs: In Iijima et al’s TEM study [47], kinks or local
buckling was first observed on the inner side of a bent CNT due to high compression.
Similarly, using TEM Luroie et al. [50] and Bower et al. [S1] were able to investigate
buckling behaviors of MWNTs embedded within a polymer matrix. The bending [50-51]
or axially compressive forces [51] acting on the MWNTSs were caused by shrinkage of the
polymer matrix when the composite was cooled down [50-51] or the thermal effects
associated with the electron beam in the TEM cell [51]. Consistent with Iijima et al’s
study [47], these authors observed similar buckling patterns on the concave side of bent
MWNTs. Particularly, it was noted [50-51] that buckled MWNTSs could restore to their
original straight and cylindrical shape when the applied force is removed by heating the
polymer matrix. Another TEM study on buckling of electrically bent cantilever MWNT's
was carried out by Poncharal et al. (Fig. 1.5 (b)) [52]. In this study, the elastic bending
modulus of CNTS was found to decrease sharply (from about 1 7Pa to 0.1 7Pa ) when the
oﬁtmost diémetef ihcreaséé fr;);n 8 to 40nm , which indiéatés a crbssovér from a uniform
elastic vibrational mode to an elastic vibrational mode that involves wavelike distortions
(buckling) in the nanotube. Additionally, the reversible bending of MWNTSs was also
reported by Walter et al. [49] who bent MWNTSs by changing the current density of the
electron beam in a TEM.

On the other hand, by means of tip of AFM, Falvo et al. [48] directly applied
bending force to a MWNT and repeatedly bent it through large angles in various
configurations. The SEM images showed that buckling of MWNTs always occurred in
the region of large curvature and was not limited to any specific location, which suggests
that “the buckling is reversible, intrinsic to the nanotubes and not mediated by defects”
[48]. Using similar experimental technique, the buckling under bending was also
observed in Wong et al’s [25] AFM study for MWNTs.

More recently, using SEM, Waters et al. [68] studied axially compressed buckling
for short MWNTSs of the aspect ratio only 2 or 4. The shell-like buckling mode of
MWNTs, as predicted by Yakobson et al. [32] was first observed experimentally.
Furthermore, under the same loading condition, the transformation between beam-like

buckling for small-diameter MWNTs and local kinking for larger-diameter MWNT's was
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reported in Thostenson and Chou’s TEM study [69] for MWNTs as reinforcement in a

nanocomposite.

1.2.1.2 Raman Spectroscopy for Vibration of CNTs

Free vibration of CNTs (see Fig.1.8) was clearly observed in TEM studies [39, 42,
52]. However, it is Raman spectroscopy that has been widely used to characterize
vibrational behaviors of CNTs [14]. The typical Raman spectra for SWNT's with diameter

less than 2nm , are shown in Fig.1.9. The two most intense features are observed in the

1

low frequency region between 120cm 'and 250cm™, and the high frequency region

between 1550cm™ and 1600cm™ (Fig.1.9). With the help of theoretic modeling, Rao et
al. [70] showed that the low-frequency feature observed in Raman spectra of SWNTs is
associated with radial breathing (vibrational) modes (RBMs), where carbon atoms of a
SWNT vibrate in radial direction as if the whole tube was breathing, while the high-
frequency feature corresponds to tangential (7) stretch modes with adjacent carbon
atoms stretching or squeezing towards each other inside the cylindrical plane of SWNTs.
In particular, comparison of Raman spectra between CNTs and graphite indicates that the
high-frequency feature, which is related to hexagonal structure of carbon atoms is shared
by both graphite and SWNTs, while the low-frequency feature, resulting from the
cylindrical symmetry is unique for SWNTs.

On the other hand, synthesized MWNTs usually had large innermost radius
(23nm) [71]. As a result, for a long time the Raman spectra obtained for MWNTs
closely resemble those of graphite without low-frequency features. In 1998, Jantoljak et
al. [72] spotted a few peaks in low frequency region (around 205cm™) for MWNTs.
However, the authors could not exclude the possibility that the low energy modes came
from SWNTs included in the samples. Three yea‘rs later, by transforming a C, sphere
inside SWNTs into a tubular structure, Bandow et al. [73] obtained small-radius DWNTs
of the inner diameter less than 1nm and observed the low-frequency Raman-active RBMs
for these thin DWNTs. Up until 2002 when large amount of small-radius MWNTs were
synthesized, for the very first time, the low-frequency Raman-active modes are
unambiguously identified by Zhao et al. [71] and Benoit et al. [74], independently, for
MWNTs of many layers. In particular, these Raman studies {71, 74] revealed that, similar
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to the case of SWNTs, the low-frequency feature of MWNTSs also represents RBMs of
small-radius MWNTs and originate mainly from the innermost few tubes of diameter less

than 2nm .

1.2.1.3 High Pressure Experiment on CNTs

By means of x-ray diffraction, Tang et al. [75-76] observed the pressure-induced
structural change of CNTs, such as reduction of interlayer spacing, distortion of cross-
section and even breakage of intra-tube c-c¢ bond. These experimental observations
suggest that high pressure can be used as a sensitive technique to study the relationship

between structure and mechanical properties of CNTs.

Pressure Dependence of Raman-active modes: For SWMT ropes and MWNTs,
pressure-induced reduction of inter-tube spacing can enhance the inter-tube vdW
interaction [19-21] and thus, increase their vibrational frequency. Similarly, the increase
of intra-tube force constants due to the pressure-induced reduction of c-c¢ bond length is
also expected to affect the frequency of CNTs. Promoted by these ideas, efforts have been
devoted to study the pressure effect on Raman-active modes of CNTs. By applying
external pressure up to 10GPa, the pressure dependence of Raman frequency is
measured for RBM of SWNT ropes [77-79] and T —modes of all the CNT systems [77-
78, 80-82]. As expected, these experiments unanimously showed that the frequencies of
Raman active modes up shifted almost linearly with increasing external pressure. The

obtained pressure derivative df /dp ranged from 5 to 11.9 ¢cm™ /GPa for RBMs of

SWNT ropes and T —-modes of all CNT systems. Especially, for Raman-active
T —modes, the pressure derivative of MWNTs was generally smaller than that of SWNT
ropes [82].

Pressure-induced structural instability: Another issue in high-pressure experiments
is structural instability of CNTs. For SWNT ropes, Venkateswaran et al. [78] observed an
abrupt drop of RBM intensity at pressure around 2GPa. It is argued by the authors that
the sudden decrease of Raman intensity might be a result of phase transition or structure
instability of SWNT ropes. In fact, this transition model was first developed by Peters et
al. [83] to explain the similar observation where RBM of SWNT ropes disappears at
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_ pressure around 1.7GPa. In view of this transition model [83], the distortion of cross-
section of SWNTs occurs when external pressure reaches the critical value. Consequently,
the axisymmetric RBM is expected to disappear because it is not an eigenmodes of
distorted (non-circular) tube. This pressure-induced flattening of cross-section also served
as an explanation for the sudden changes in other physical properties, such as the
pressure derivative [82], electrical resistivity [84] or bragg peak position [85] for
externally compressed SWNT ropes.

Sandler et al. [82] studied the pressure dependence of Raman-active T —mode for
both MWNTs and SWNT ropes. The results display two distinct pressure regions

characterized by different pressure derivatives df /dp. The transition pressure between

the two regions is around 1.4GPa for MWNTs and around 2.3GPa for SWNT ropes.
Moreover, Tang et al. [75] reported an abrupt change in electronic properties for MWNTSs
under pressure around 1.5GPa. As in the case of SWNT ropes, the sudden changes
occurring for MWNTs were also explained in terms of pressure-induced flattening (or
polygonization) [75, 82] of the cross-sections of MWNTs. Particularly, Sandler et al. [82]
showed that the cross-section flattening of CNTs are fully reversible with the transition
between the flattening and restoring always occurring at the same pressure for both
loading and unloading cycle. This result is consistent with the observation for buckling of

CNTs under axial compression and bending [47-52], showing the remarkable resilience
of CNTs.

1.2.2 Atomistic Simulations

In addition to experiments, atomistic modeling, such as classic MD simulation, ab
initio model, general tight-binding model, force-constant model, lattice-dynamic model
and molecular-structural-mechanics model, has been widely used to interpret

experimental data and predict mechanical behaviors of CNTs.

1.2.2.1 Estimate of Young’s modulus of CNTs
Fitting the bending stiffness D = 0.85¢V and in-plane stiffness C =59V obtained

based on Roberson et al’s first principle calculation [31] to standard formula of

continuum shell model, Yakobson et al. [32] obtained Young’s modulus 5.57Pa for
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SWNTs associated with effective thickness 0.066nm . Lu [33], on the other hand, adopted
an empirical force-constant model and carried out a relatively comprehensive study on
elastic properties of both SWNTs and MWNTSs. It is shown that the predicted Young’s
modulus (about 17Pa) and shear modulus (about 0.57Pa) associated with the assumed
thickness of SWNTs 0.34nm are comparable with those of graphite [86] and almost
independent of radius, helicity and number of layers. In particular, since elastic constants
of CNTs scale with the inverse of thickness, the Young’s modulus predicted by Lu is in
good agreement with Yakobson et al’s earlier estimate [32].

Subsequent to the above two attempts, classic MD simulations (Gao et al, 1998 and
Yao et al, 1998) [35, 42], tight-binding method (Hernandez et al, 1998) [34], lattice-
dynamical model (Popov et al, 2000) [37], Ab initio calculation (Sanchez-Portal et al,
1998, and Kudin et al, 2002) [36, 38] and molecular structure-mechanics model (Li and
Chou, 2003) [30] were also used to estimate the elastic properties of CNTs. Assuming
that the thickness of SWNTSs is 0.34nm , most of these studies obtained almost helicity-
independent value around 17Pa for Young’s modulus [30, 36-38] and around 0.57Pa [30,
38] for shear modulus of CNTs. These results agree well with Lu’s results [33] except
that noticeable radius-dependence of the Young’s modulus was reported for small-radius
SWNTs (radius less than 1nm ) in Refs. 30, 36-38 and 42. In particular, Refs 30 and 36-38
predicted Young modulus of CNTs as an increase function of radius, while the opposite
trend was demonstrated in Ref. 42. On the other hand, Gao et al. [35] reported relatively
low Young’s modulus between 0.643 and 0.6737TPa in their MD simulation for closest-
packed SWNTs. Here, it is noted that most of these atomistic simulations are in favor of
Ruoff and Lorent’s suggestion [40] that elastic modules of graphite can be used for CNTs
by neglecting the change in the atomic structure when a piece of graphite is rolled into a
SWNT.

1.2.2.2 Buckling Behavior of CNTs

In 1996, MD simulation was first performed by Iijima et al. [47] to simulate
buckling behaviors of SWNTs and double-wall CNTs (DWNTs) under bending.
Consistent with their own experimental observation [47], the simulation showed that

buckling or kinks occurred on the concave side of a bent CNT and the number of kinks
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increased with the increasing bending load. Using similar method, Yakobson et al. [32]
studied buckling of SWNTs under various loading conditions, i.e., axial compression,
bending and torsional loadings. The authors found that SWNTs under large deformation
switch reversibly into different buckling patterns. Each shape change corresponds to an
abrupt release of energy and a singularity in the stress-strain curve. In 2002, the classic
MD simulation was again used by Ni et al. [87] for axially compressed buckling of

SWNTs filled with C,,, CH, or Ne. This work predicted that the critical buckling force

of filled SWNTs could increase by up to 50%, compared to that of empty SWNTs,
depending on the density of the filling material. Besides this, the critical axial buckling
stress 50GPa was reported in this MD simulation [87] for empty SWNT (10,10), while,
using the quantum generalized tight-binding MD simulation (GTBMD), Srivastava et al.
[88] obtained the critical axial buckling stress 150GPa for empty SWNT (8, 0). In
addition to SWNTs, Li and Chou [89] studied elastic buckling for both SWNTs and
DWNTs under axial compression or bending. The molecular-structural-mechanics
approach [30, 89] has been employed to calculate the critical buckling force of CNTs as a
function of the aspect ratio, diameter and helicity. Very recently, based on Brenner’s
“second generation” empirical potential, Liew et al’s MD simulation [90] examined the
effect of radius and number of layers on the critical buckling strain for axially
compressed CNTs with up to four layers. The results show an optimum diameter for a

SWNT, which corresponds to the maximum critical bucking strain.

1.2.2.3 Radial Breathing Modes (RBMs) of CNTs

Raman spectroscopy has been a dominant technique for characterization of CNTs.
To interpret Raman spectra of CNTs various atomistic models have been used. In
particular, the Raman-active RBMs are of major interest because it is this low frequency

feature that distinguishes cylindrical CNTs from flat-plane graphite in Raman spectra.
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Individual SWNTSs: In 1997, Rao et al. [70] used lattice-dynamic model to simulate the
Raman spectra for armchair SWNTs. Fitting the simulated results to experimental
vibrational spectra they confirmed that the Raman signal in low-frequency
(120 -250cm™) region (see Fig.1.9) originated from RBM, which was unique to SWNTs
of cylindrical symmetry. Especially, their results suggested that the frequency of RBM
scaled with the inverse of the radius of the tested arm-chair SWNTSs [70]. Later on, using
a force-constant model Satio et al. [91] further calculated the vibrational spectra for
SWNTs of various helicities. The obtained RBM frequencies are found to be sensitive to
the diameter of SWNTs, but almost independent of their helicities. In particular, it was

shown that, for an isolated SWNT of radius r, the RBM frequency f can be calculated
by [91]

- 1.001740.007
(10,10)
f = f(lo,m) (_r—) (1~4)

where [, 2and 7, are RBM frequency and radius of SWNTs (10, 10). This
 relationship for RBM of SWNTs is consistent with Rao et al’s earlier results [70] and
later, confirmed by many other atomistic models, such as Bandow et al’s force constant

model [92], Kurti et al’s first-principle calculation [93] and Sanchez-Portal et al’s ab
initio calculation [36]. Particularly, Bandow et al. [92] obtained

f=2245/r (1.5)

for RBM of SWMTs with radius , showing that, the Raman peaks originating from low
frequency RBM is a fingerprint-like signal for individual SWNTs, and thus can be

effectively used in determination of radii of SWNTs.

SWNT ropes (bundles): Using GTBMD simulation, Venkateswaran et al. [77] first
examined the effect of the inter-tube vdW interaction on RBM of SWNT ropes. The

authors noticed that, due to the interaction between one tube and six neighboring tubes,
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RBM frequency of (9, 9) SWNT ropes was about 14cm™ (about 8%) higher than that of
an isolated SWNT (9,9). Kahn and Liu [94] performed similar GTBMD calculation for
(10, 10) SWNT ropes, showing 6cm™ up-shift in RBM frequency. Moreover, a slight
chiral dependence of the RBM frequency of SWNT ropes has been reported in Henrard et
al’s GTBMD simulation [95], which showed 10% average up-shift of the RBM
frequency relative to those of isolated SWNTs. Furthermore, Popov et al. [96] and
Henrard et al. [97] studied both homogeneous (made of tubes with identical radius) and
inhomogeneous (made of tube with non-uniform radius) SWNT rope based on a lattice-
dynamic model and a continuum model. They found that, for homogeneous ropes, the up-
shift of RBM frequency increased with increasing number of SWNTs present in ropes
and approached 15¢cm™ for an infinite (10, 10) SWNT rope, while Raman spectra of
inhomogeneous SWNT ropes cannot be considered as a superposition of signature of the
constituent SWNTs. Recently, Ldfrant and his co-workers [98-99] studied the effect of
the vdW interaction on RBMs of different CNT systems. The increment of RBM
frequency calculated for SWNT ropes ranges from 11 to 16cm™ [98] or 10 to

20cm™'[99], in good agreement with their experimental results [98-99].

MWNTSs: In 2002, Popov and Henrard [24] conducted a comprehensive theoretical
study on RBMs of MWNTs. Their MD simulation revealed that the RBMs of small-
radius MWNTs (the innermost radius 0.34nm) are radial vibrations of mainly one layer
with the associated frequency slightly higher than that of the isolated tube, while for
large-radius MWNTSs (the innermost radius 1.36nm), the RBMs represent collective
radial motions of many layers of mixed of in-phase and counter-phase type.

Benoit et al. [74] studied the RBMs of MWNTs experimentally and theoretically.
Different from Popov et al. [24], they mainly focused on small-radius MWNTs of the
innermost radius less than 1nm. Comparing experimental Raman spectra to an atomistic
simulation, the authors found that the low frequency Raman peaks observed for MWNTs
originated from the RBMs of the innermost few tubes with radius less than 1nm. The
associated frequency depended sensitively on the radius of the individual tube but cannot
be significantly affected by the number of layers. In particular, due to the interlayer vdW

interaction, the frequency of the RBM from the innermost tube(s) of the small-radius
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MWNTs was found to be 5% to 10% higher than that of an isolated SWNT [74]. Similar
results were also obtained in Zhao et al’s experiment [71] and Popov et al’s MD
simulation [24]. Therefore, introducing the 5 to 10% up-shift into Eq. (1.5) for isolated
SWNTs, one can easily obtain the RBM frequency-diameter relationship for small-radius
MWNTs, showing that the Raman-active RBM can be as useful in the characterization of

MWNTs as it is for SWNTs.

1.2.3 Elastic Models

As reviewed in Section 1.2.2, atomistic simulations are sophisticated theoretical
techniques, which can be used “to guide experiment, point out the most promising
avenues to explore and assist with interpretation” [26]. However, the computational
resource and time needed in simulations explode exponentially for large atom systems
like CNTs of thousands of carbon atoms. Thus atomistic modeling remains
computationally expensive and formidable, and usually is limited to SWNTs or MWNTs
of not more than four layers. Consequently, the relatively simple and cost-effective
continuum models, such as beam and shell models have been widely used for
nanomechanics of CNTs. It has been demonstrated that “the laws of continuum
mechanics are amazingly robust and allow one to treat even intrinsically discrete object
only a few atoms in diameter” [43].

This section gives an overview of elastic models for CNTs, i.e., elastic beam
models and elastic shell models. To demonstrate their effectiveness and accuracy, the
comparison between elastic models and available experiments or atomistic simulations is
emphasized. Especially, our major attention is mainly focused on buckling and vibration

of CNTs, which are closely related to the current research.

1.2.3.1 The Single-beam Model

It is known that CNTs usually have large aspect ratio up to 1000 or even larger.
When this is the case the elastic beam model is adequate for overall mechanical behaviors
of CNTs. The governing equation for an elastic beam under axial force F' and transverse

distributed pressure p(x) (per unit lateral length) is governed by [100, 101]
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*w o*'w o*w
)+ F =FEI
PO+ Fo =B or

(1.6)

where x is the axial coordinate, ¢ is time, w(x,t) is the deflection of the beam, I and A4
are the moment of inertial and the area of the cross-section of the beam, and E and pare

Young’s modulus and the mass density of unit volume. Thus, for a CNT modeled as an
elastic beam, the mechanical behaviors, such as static equilibrium, instability and
vibration can be completely described by (1.6) with three parameters, i.e., the bending

stiffness ( £l ), mass density per unit lateral length ( p4), and the axial stiffness ( E4 ).

Here, it is emphasized that for SWNTs, these three parameters are primarily independent
of different definitions of representative thickness (e.g., 0.34 nm [33], 0.066 nm [4, 32] or
0.0894 nm [34)).

Static Deflection: Based on Eq.(1.6), the transverse deflection y can be calculated by

2
y= g Z‘I (B3x—a) (a<x<L) for a cantilevered SWNT of length L, subject to a

concentrated force p at point x = a measured form fixed end. The 1/a’ dependence of

p/ y(x) .., predicted by this formula has been found to be consistent with the results of

Wong et al’s AFM experiment [25]. Further, based on above beam model, Salvetat et al.
[102] derived a formula for the maximum deflection of a CNT under concentrated force

p acting at its midway. This formula has been used to estimate Young’s modulus of

CNTs. The obtained value (0.817Pa) is in reasonably good agreement with those given
by other methods. Here, it is emphasized that in these studies the thickness of SWNTSs is

taken as 0.34nm .

Column Buckling: The critical buckling force of a simply supported elastic beam under
axial force is given by p_, :-7[5—1 [103]. This formula has been used to calculate the

maximum axial force for MWNTs. With E =17Pa, Dai et al. [64] obtained the Euler
force around 5uN for a MWNT of length 250 am and diameter 5 nm . On the other hand,

fitting the Euler force predicted by the above formula to MD simulation results, Garg et
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al. [104] reported the estimated value of Young’s modulus around 17Pa, which is in
good agreement with the value obtained by other studies. In addition, Euler force of
clamped SWNTs was also calculated by Yakobson et al. [6] based on above formula
multiplied by four to its right hand side, indicating the sensitivity of the Euler force of
CNTs to the end condition.

Vibrational Frequency: Based on beam model, the n - order circular frequency of a
B> |EI . .
CNT of length L can be computed by o, = R YE where S, is a function of the
o

number # and boundary conditions on the two ends [39, 100, 101]. Indeed, Poncharal et
al. [52] showed that the value 5.68 of ratio @, /@, obtained in experiment for a MWNT
is close to the theoretical value 6.2 given by the above formula. Moreover, the second-
order vibrational mode observed in the experiment [52] gave the value of a characteristic

length 0.76 L, in good agreement with the value 0.8 L predicted by the beam model.

1.2.3.2 The Multiple-beam Model

As mentioned in Section 1.1.1.2, different from classic beam, MWNTs exhibit
multiplayer structure with significant normal interlayer vdW interaction and negligible
interlayer friction. However, in previous work such as those mentioned before, a MWNT
was modeled as a single hollow beam, which, in fact, assumed that the repulsive and
attractive intertube vdW force is always strong enough to resist the change in interlayer
spacing and all the tubes of MWNTs always remain coaxial during deformation. In
reality, these assumptions may not be true because an individual tube of a MWNT could
deform with non-zero interlayer radial deflection while their deformations are generally

coupled with each other through the interlayer vdW interaction.

Column Buckling of MWNTSs: To address the issue regarding the effect of interlayer
radial displacement on mechanical behaviors of MWNTs, Ru [105] has developed a
multiple-beam model to study the column buckling of MWNTs embedded in an elastic
medium. In contrast to existing single-beam model, the multiple-beam model assumes

that each of the nested and originally concentric tubes of a MWNT is an individual elastic
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beam and the radial deflections of adjacent tubes are coupled via the normal vdW
interaction. The intertube interaction between two adjacent tubes can be estimated by the
known vdW interaction between a carbon atom and a flat graphite sheet [19]. In
particular, for infinitesimal buckling, the vdW interaction is proportional to the change in
intertube spacing or radial deflection jump between two neighboring tubes. On the basis
of this model, Ru [105] indicated that the nonconincidence of the deflected axes of
adjacent tubes couldn’t be neglected when the half wave number of buckling modes is
comparable to the outermost radius of a MWNT. Thus, under this condition, the single-
beam model becomes invalid for axially compressed buckling of MWNTSs and has to be

replaced by the multiple-beam model.

Nonconaxial Vibration of MWNTs: The multiple-beam model has also been
applied to study the free vibration of MWNTs of relatively small radius (less thanlnm)
[106]. It is found that the higher order frequencies of MWNTs are associated with the
unusual vibrational modes, in which some or all adjacent tubes vibrate or deform in
opposite directions leading to substantial change in intertube spacing and non-coaxial
geometry of MWNTSs. These newly obtained modes of MWNTs are of practical interest
because the non-coaxial geometry of MWNTs could significantly affect certain physical
properties, e.g., electronic properties [107-110] and optical properties [111-112] of
originally coaxial MWNTs. In particular, as in the case of buckling, it is concluded that
for high-order modes of MWNTs whose characteristic wavelengths are only a few times
that of the outermost tube, the intertube radial displacement would come to play a
significant role. In this case, only multiple-beam model can be used to characterize the
vibrational behaviors of MWNTSs. Recently, this non-coaxial mode predicted by the
multiple-beam model [106] for MWNTs has been confirmed based on an atomistic

model, i.e., the molecular-structure-mechanics model [113], for DWNTs.

1.2.3.3 The Single-shell Model

Shorter CNTs of smaller aspect ratio have been used in many applications [63, 68,
114-115]. Especially, the local deformation of CNTs were observed and studied in

experiments [47-52] and atomistic simulations [4, 47]. In these cases, elastic shell model
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can be employed for nano-mechanics of CNTs. In particular, since the elastic properties
of a two-dimensional hexagonal structure of SWNTs are almost isotropic {32], a CNT
can be approximated by an isotropic shell. For instance, in the absence of tangential
force, the elastic buckling or vibration of a SWNT, modeled as an isotropic cylindrical

shell of radius ~ can be described by the Donnell equation [116-117]

2 2 F 2
Dvsw=v4p(x,9)+an—fv4w+2Fw- 9 v4w+—§—a—zv4w
Oox r oxo0 r- 06
End'w &
-— - ph—V*w
r* ox* P or?

(1.7)

where x and 6 are axial coordinate and circumferential angular coordinate, respectively,
t is time, w is the (inward positive) radial deflection due to buckling or vibration,

p(x,0) is the net normal (inward positive) pressure resulting from buckling or vibration.
F_and F, are the known uniform axial and circumferential membrane forces, D and &

are effective bending stiffness and thickness of the SWNT, and £ and p are Young’s
modulus and mass density per unit volume. It is seen from Eq.(1.7) that similar to the
case of elastic beam, in order to use isotropic shell model, it is adequate to know three
parameters, i.e., bending stiffness D, in-plane stiffness C (= Eh) and mass density per

~unit surface area ph .

Axially Compressed Buckling of SWNT's: Shell model was used by Yakobson et al.
[32] to study elastic buckling of a SWNT under axial compression. Based on the data
given by [31], they obtained the value D =0.85¢V and C =360J/m* for a SWNT as a
micro-shell. Comparison showed that the elastic shell model was in accordance with the
MD simulation in predicting critical buckling strain and buckling modes- for SWNTs. In

particular, fitting the obtained value of D and C into the formula of classic shell theory
[116-118]
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ER’

D=—="— and C=Eh (1.8)
12(1-v?)

the authors gave E =5.5TPa associated with representative thickness & =0.066nm.
However, as Ru [119] pointed out, the adoption of this representative thickness “ causes
not only an inconsistence with the common concept of representative thickness (0.34nm )
established for graphite sheet, but also some inconvenience in application of the elastic
shell model to carbon nanotube”

On the other hand, by using the usually accepted representative thickness
0.34nm [33], which is equal to the interlayer spacing of MWNTs, the classic formulae
(1.8) leads to bending stiffness D much larger than the obtained value 0.85¢V. Ru [119-
120] realized that this discrepancy is a result of the single atom-layer structure of
SWNTs, which distinguishes them from continuum shells. It is argued in [120] that the
classic formula for bending stiffness in (1.8) is derived on the basis of the assumption that
an elastic shell can be divided infinitesimally into thinner layers without interlayer slip,
and flexural stresses and strains are linearly distributed over the thickness. However, the
single atom-layer of a SWNT cannot be divided any further and therefore, the flexural
stress and strain are, in fact, concentrate on a narrow region around the central line of the
atom layer. In light of this discrete feature of SWNTs, Ru suggested [120] that the first
formula in (1.8) could be abandoned for SWNTSs and the effective bending stiffness of
SWNTs can be regarded as a material parameter, not necessarily proportional to cubic of
the representative thickness. Following this suggestion, the accepted representative
thickness 0.34nm can be retained and almost all equations of elastic shell theory remain
valid with small or without any modification.

Based on this modified shell model, Ru [120] derived a simple formula to calculate
critical buckling strain and wave number for axially compressed SWNTs of moderate
aspect ratio (not less than 4). For SWNTs of diameter 1am, 22am and 3.3am,
respectively, the critical strain predicted by this formula is 0.075, 0.034 and 0.023 [120]
in good agreement with MD simulation results 0.05 [32] (or 0.08 [88]), 0.037 and 0.025
[121]. Additionally, assuming that CNTs buckle in nonaxisymmetric modes with equal

axial and circumferential wave length [121-122], the wavelength about 1.2nm given by
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the shell model for a SWNT of radius 0.67nm was found to be very close to value
1.3nm predicted by MD simulation [122]. These examples convincingly show the
efficiency of the shell model for axially compressed buckling of SWNTs.

Pressure-induced Buckling of SWNT ropes: Synthesized SWNTs are usually
produced in ropes consisting of aligned individual SWNTs with narrow distribution of
diameter. As reviewed in Section 1.2.1.3, the abrupt changes in physical properties of
externally compressed SWNT ropes have been observed in Refs. 77, 83 and 84. To
explain these interesting phenomenons, Ru [123] modified the conventional honeycomb
model and applied it to study the buckling of SWNT ropes under high pressure. A simple
formula is given in [123] for critical pressure beyond which the instability or cross-
section flattening of SWNT ropes occurs. The critical value 1.8GPa obtained for SWNT
ropes of diameter 1.3am is in excellent agreement with available experimental data

ranging form 1.5 to 1.9GPa [77, 83-84].

Free Vibration of SWNTs: The free vibration of SWNTs with long-wavelength has
also been studied based on three Donnell dynamic shell equations [124-126}, instead of
the single Donnell equation for radial deflection (see Eq.1.7). Here, the phonon-
dispersion relations (i.e., vibrational spectra) were calculated for SWNTs of infinite
length [124] or clamped SWNTs of finite length [124-126]. In particular, the
axisymmetric and long-wavelength longitudinal vibration of SWNT [126] predicted by
classical shell model has been directly observed in the experiment by means of inelastic
light scattering measurement. Moreover, comparing the frequency of SWNTs calculated
by elastic shell model to the experimental measurements leads to Young’s modulus of the
order of 1TPa for SWNTs with the assumed thickness of SWNTs of the order of

0.1nm [126], in accordance with other reported values.

1.2.3.4 The Multiple-shell Model

MWNTs are comprised of concentric SWNTs coupled with each other via the
normal interlayer vdW interaction. Since the interlayer friction is negligible, the adjacent

tubes of a MWNT can almost slide and rotate towards each other freely [15-18]. In spite
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of this fact, almost all previous shell models for MWNTSs ignored the interlayer slips and
considered a MWNT as a single-layer elastic shell whose thickness is equal to the
difference between the outermost and innermost radii. Particularly, it has been tacitly
assumed that the bending stiffness of a MWNT is proportional to the cubic of such a
thickness. Obviously, this oversimplified model could result in significant errors in
characterizing mechanical behavior of MWNTs. In order to examine this issue, Ru [127-
129] has developed a multiple-shell model to study the effect of interlayer slips on axially
compressed buckling of MWNTSs. This multiple-shell model [127-129] treats each of the
concentric SWNTs of MWNTs as an individual elastic shell whose radial deflections are

coupled through the interlayer vdW interaction without any interlayer friction.

Axially Compressed Buckling of MWNTSs: Based on the multiple-shell model, Ru
[127] considered a simply supported DWNT and derived an explicit formula for the axial
buckling strain of the DWNT. This formula shows that for axially compressed buckling,
the critical axial strain of a DWNT is the same as that of a SWNT of the same radius, in
sharp contrast to the single-shell model which predicts that the critical axial strain of a
- DWNT should be two times that of a SWNT of the same radius. Subsequently, a DWNT
embedded in an elastic medium was also studied based on the multiple-shell model [128].
The results indicated that a DWNT or a MWNT would be even more susceptible to
infinitesimal axially compressed buckling than an embedded SWNT. Furthermore, Ru
[129] demonstrated that for an N —wall CNT under axial compression, the critical
~ buckling strain given by the multiple-shell model is around SN times smaller than that
obtained by the single-shell mode. In particular, a thin N — wall CNT (radius-to-thickness
ratio larger than four) can be treated approximately as an elastic shell whose bending
stiffness and effective thickness are N times those of a SWNT of the average radius. All
these studies clearly reveal that the interlayer slips, which are ignored by the single-shell
model, have a crucial effect on buckling behavior of MWNTs. Additionally, assuming
that the interlayer vdW interaction is * infinitely strong” a simple formula [129] has been
derived for the upper bound of critical buckling force of MWNTs under axial
compression. Recently, this formula was used by Waters et al. [68] to estimate the upper

limit of critical axial buckling force for specific 36-wall CNTs with the innermost radius
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13 nm . The obtained value 3.37 1N is close to the critical axial buckling forces 2.26 uN
and 2.54 uN measured experimentally for the 36-wall CNTs of the length 100#m and
50 nm , respectively [68].

1.3 Contributions of the Present Work [130-136]

As reviewed above, the mechanical properties of SWNTs have been studied
extensively in last decade. In addition, some special issues, e.g., axially compressed
buckling, RBM vibration, or beam-like vibration of MWNTSs have also been discussed in
detail. However, comprehensive study on mechanical behavior of MWNTs has not been
reported in the literature. This is because there exist major challenges in nano-scale
experiments of MWNTs whose mechanical behavior is complicated and cannot be
readily observed and analyzed without a theoretical guidance. Moreover, as mentioned
before, computational efforts needed for atomistic modeling of MWNTSs is formidable
and therefore, limit the size of MWNTs that can be studied by using these discrete
approaches. Additionally, due to the multiplayer structure of MWNTSs and the interlayer
vdW interaction, the existing (continuum) solid mechanics models, for example classic
single-shell model, in general, cannot be directly employed to characterize mechanical
behavior of MWNTSs.

On the other hand, the cost-effective multiple-shell model [127-129], which
accounts for the interlayer vdW interaction and interlayer slips of MWNTs, has been
developed for the axially compressed buckling of DWNTs [127-128] or MWNTs in
extreme cases [129]. Taking advantage of the multiple-shell model, the present work
based on [130-136] is devoted to a systematic study on the elastic buckling and free
vibration of MWNTs. The objective of this research is to catch the unique features of
mechanical behavior of MWNTs and examine the role of the interlayer vdW interaction
of MWNTs in nano-mechanics. Particularly, the present multiple-shell model has been
compared to the available experiments and atomistic simulations to demonstrate its
effectiveness and identify the accurate values of parameters used in the multiple-shell

model or the multiple-beam model for CNTs [130-136].
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In what follows, the detailed theoretical derivation and numerical calculation are
given for buckling and vibrational analyses of MWNTs. Chapter 2 outlines the general
formulations for buckling of MWNTs under axial and radial load [130-132, 133]. The
single Donnell equation (1.7) [116-118] is chosen to simplify buckling analysis of
MWNTs, in which radial deflection is predominant. By using the multiple-shell model
and Eq. (1.7), the N coupled equations are derived for buckling of an N —wall CNT.
The mathematical method of buckling analysis is demonstrated, in detail, for simply
supported MWNTs under radial pressure, axial stress or radial-axial combined load.

Chapter 3 gives detailed analysis for elastic buckling of individual MWNTs under
radial pressure [130, 133]. According to their radius-to-thickness ratios, the MWNTs
discussed here are classified into three types: thin, thick, and (almost) solid. The critical
buckling pressure and associated buckling modes are calculated for MWNTSs under
external pressure. Subsequently, the effect of an internal pressure and the possible
pressure-induced interlayer locking on critical external pressure is examined for MWNTs
of all the three types. In particular, the critical pressure predicted by the multiple-shell for
specific group of 20-wall CNTs is in good agreement with known experimental results
[75].

Chapter 4 discusses axially compressed buckling of individual MWNTSs subjected
to an internal or external radial pressure [131]. The emphasis is placed on new physical
phenomena due to combined axial stress and radial pressure. The critical axial stress and
the buckling mode of thin, thick and (almost) solid MWNTs (defined in chapter 3) are
calculated for various radial pressures-to-axial stress ratios, with detailed comparison to
the classic results of singlelayer elastic shells under combined loadings. It is shown that
the buckling mode associated with the minimum axial stress is determined uniquely for
MWNTs under combined axial stress and radial pressure, while it is not unique under
pure axial stress. Especially, the present results show that the predicted increase of the
critical axial stress due to an internal radial pressure appears to be in qualitative
agreement with some known results for filled SWNTSs obtained by MD simulations [87].

In Chapter 5, the general formulation for free vibration of MWNTs [134-136] is
outlined based on the multiple-shell model [127-129]. In order to identify all the

vibrational frequencies and associated modes the three exact Flugge equations [137-138]
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are employed to describe the free vibration of individual tubes of MWNTs. Applying the
exact Flugge equations to each individual tube of an N —wall CNT leads to 3 N dynamic
equations governing free vibration of the MWNT. The mathematical method of
vibrational analysis is demonstrated, in detail, for MWNTs with two ends simply
supported. It is shown that for an N —wall CNT, there exist 3N vibrational frequencies
associated with 3N vibrational modes.

In order to show the relevance of the above dynamic shell model for MWNTSs
Chapter 6 studies the RBMs of MWNTSs with or without external pressure [132, 134]. In
the absence of external pressure, the RBM frequencies and vibrational modes predicted
by the present shell model are found to be in good agreement with the available
experimental and MD simulation results. In the presence of an external pressure, the
results show that high external pressure considerably raises the vdW interaction
coefficients (defined by the second derivative of potential energy between adjacent tubes
with respect to the interlayer spacing), especially between the outermost few layers of
MWNTs. As a result, some of the RBM frequencies of MWNTSs increase significantly
with increasing external pressure. The most significant pressure effect occurs for the
highest-frequency mode of large-diameter MWNTs (with the innermost diameter > 2 nm )
or an intermediate-frequency mode of small-diameter MWNTs (with the innermost
diameter < 2nm), and is always associated with those RBMs in which adjacent
outermost layers vibrate in opposite directions with significant change in interlayer
spacing.

In Chapter 7, the general features of free vibration of MWNTs have been
investigated with an emphasis on the effect of interlayer vdW interaction on free
vibrations of MWNTSs [135]. The results show that the vdW interaction has a crucial
effect on R—modes of large-radius MWNTs (e.g., of the innermost radius 5 nm), but is
less pronounced for R—modes of small-radius MWNTSs (e.g., of the innermost radius
0.65nm), and usually negligible for 7— and L-modes of MWNTs. This is attributed to the
fact that the interlayer vdW interaction, characterized by a radius-independent vdW
interaction coefficient, depends on radial deflections only, and is dominant only for large-
radius MWNTSs of lower radial rigidity but less pronounced for small-radius MWNTs of
much higher radial rigidity. As a result, the R—modes of large-radius MWNTSs are
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typically collective motions of almost all nested tubes, while the R—modes of small-
radius MWNTs, as well as the 7— and L-modes of MWNTs, are basically vibrations of
individual tubes.

Chapter 8 is focused on some special issues of free vibration of MWNTSs [136].
First, an updated bending stiffness (D =2eV) of SWNTs is suggested based on recent
data in the literature, which is in much better agreement with atomistic model for phonon
dispersion relations of SWNTs than the previously adopted value (D =0.85¢V) [32].
Using the multiple-shell model with D = 2eV/, this chapter gives a comprehensive study
on axisymmetric modes (n=0) of MWNTs. The major attention is focused on the
unique features of axisymmetric modes of MWNT's and the effect of the Poisson-ratio of
SWNTs on coupling between R~ and L —modes of MWNTSs. Furthermore, the present
shell model is employed to study beam-like vibrational modes (n =1) of MWNTs and
examine the accuracy and applicability of the multiple-beam model [106]. In addition, the
lowest frequency and associated modes of MWNTs are also studied in detail.

Finally, Chapter 9 suggests some simplifications on the multiple-shell model
[130-131, 132]. For buckling or the lowest-frequency vibration, a thin N—wall CNT
(defined by the radius-to-thickness ratio around or larger than 4) is found to be
approximately equivalent to a singlelayer elastic shell whose effective bending stiffness
and thickness are N times those of SWNTs [130-131, 135]. Based on this single-shell
model for a thin MWNT, an approximate method is suggested for the buckling problem
of a thick or almost solid MWNT of many layers [130-131]. The accuracy of these
approximate methods has been examined with specific examples. On the other hand, the
applicability and limitations of Donnell equation [116-118] and a simplified Flugge
equation [139] has been investigated systematically for SWNTs in various problems of
static buckling and free vibration [132]. It is shown that the simplified Flugge model,
which retains the mathematical simplicity of the Donnell model, enjoys improved
accuracy and enlarged range of applicability as compared to the Donnell model, and thus
is recommended for static and dynamic problems of CNTs [132]. Subsequently, the
simplified Flugge equation has been further used for the radial vibration frequencies of

MWNTs in good agreement with the three exact Flugge equations [135].
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(a) Diamond (b) Graphite

(c) Fullerenes

Fig.1.1 Molecular structures of (a) diamond, (b) graphite and (c) fullerenes (e.g., Cy,,
C,, and Cy)).
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(b)
Fig. 1.2 (a) Simulation model of a MWNT and (b) High-resolution electron micrographs
of MWNTs [2] (from left to right: 5-, 2- and 7-wall CNTs).

@ (b) (c)
Fig. 1.3 (a) Arm-chair, (b) Zig-zag and (c) Chiral SWNTs [11].
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0’ <8< 30°
(n,>m,. chiral)

> 8=30°
(n,=nm,, arm-chair)

Fig.1.4 Schematic diagram showing how a hexagonal sheet of graphite is “rolled” to form

SWNTs of different helicities shown in Fig.1.3.
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(b)
Fig 1.5 (2) A MWNT is bent into a large angle with removable kinks occurring on

concave side due to high compression [50]. (b) Enlarged images of local

buckling patterns on concave side of bent MWNTs [52].

a) (n,n)-tubes

b) (40,40)-tubes

(b)
Fig. 1.6 The surface vdW interaction-induced (a) axial deformation and (b) radial

deformation of SWNTs and MWNTs [54].
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Fig. 1.7 SEM Image of a CNT with two ends 1.8 Free vibration of MWNTs [52]
attached to two AFM tips before tensile loading [29].
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Fig. 1.9 Experimental Raman spectrum for ropes of SWNT (10, 10) [14].
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Chapter 2

Basic Formulations for Buckling of MWNT's

2.1 Introduction

Elastic buckling of CNTs has received considerable attention in recent research [47-
52]. It has been shown that the buckling of CNTs could significantly affect their
performance as reinforcing fibers in super-strong nano-composite material [S0-51}, which
is the most potential application of CNTs. Especially, the buckling-induced structure-
instability of CNTs could lead to substantial changes in other mechanical or physical
properties of CNTs, e.g., vibrational modes [78, 82-83], electrical resistance/capacitance
[75] and optical properties [145]. Thus, thorough understanding of buckling behavior is
crucial for the potential applications of CNTs in nanotechnology

Among various theoretical methods, the elastic shell models have been effectively
used in buckling analysis of SWNTs under axial force [32, 120], radial pressure [123] or
bending [48]. The critical buckling load and associated modes predicted by the shell
model agree very well with known MD simulation [32, 120] and experimental data [123].
However, for MWNTs some previous shell models have tacitly assumed that no sliding
occurs between any two adjacent tubes in a MWNT and thus a MWNT can be described
as a single-layer elastic shell whose thickness is equal to the difference between the
innermost and the outermost radii. Such a simplified model has ignored the fact that the
interlayer friction between adjacent tubes is usually so low that free-sliding could take
place between adjacent tubes. Based on this idea, a multiple-elastic shell model [127-129]
has been developed, in which each of the concentric tubes of MWNTs is modeled as an
individual elastic shell coupled with adjacent tubes through the interlayer vdW
interaction, and the interlayer friction is ignored. This multiple-shell model [127-129] has
been effectively used for axially compressed buckling of DWNTs or MWNTSs in extreme
cases.

To conduct a systematical study on buckling of MWNTSs in more general cases, this

chapter further utilizes the multiple-shell model [127-129] to derive the general

37
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formulations for elastic buckling of MWNTSs under both axial stress and radial pressure.
For simplification, the single Donnell shell equation (2.1) for radial deflection is used in
the multiple-shell model to describe elastic buckling of each individual tube of MWNTs.
Therefore, the buckling of an N-wall CNT is governed by N equations coupled with each
other through the vdW interaction terms. Subsequently, the mathematical methods for
both pre-buckling and buckling analyses are demonstrated, in detail, for MWNTs with
two ends simply supported.

2.2 The Multiple-shell Model for Elastic Buckling

The elastic-shell models have been effectively applied to CNTs [32, 48, 120, 123,
127-129]. In particular, for MWNTs, a multiple-elastic shell model [127-129] has been
developed for axially compressed buckling of MWNTSs in extreme cases. In the present
work, we shall further extend the multiple-shell model to general buckling behavior of

MWNTs subjected to axial stress combined with radial pressures.

2.2.1 Basic Equations

The multiple-shell model [127-129] assumes that each of the concentric tubes of
MWNTs can be described as an individual elastic shell. The adjacent two tubes are
coupled with each other via the interlayer normal vdW interaction and the interlayer
friction is negligible. In the absence of any tangential external force, elastic buckling of a

cylindrical shell (of radius r) under axial stress and radial pressures is governed by [116-
119, 127-129].

Fy, & u  ER3'w

62
DV*w=V'p(x,0)+F —V'w+-<2—V*yw
P(.9) T ox? Tl rr oot

@.1)

In fact, the buckling equation (2.1) can be obtained directly from general equation (1.7)

2
with £, =0 and phst—2V4w = 0. In particular, for a SWNT the effective bending
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stiffness D can be treated as a material constant independent of the thickness /4, and thus
not necessarily proportional to °.

The present work studies elastic buckling of individual MWNTs under combined
axial stress and radial pressures, as shown in Fig. 2.1. Applying Eq. (2.1) to each of the
concentric tubes of a MWNT, elastic buckling of a MWNT is governed by the N

coupled equations

o? FY &? Eh 8*w
DV w =Vip, +FOZ_Viy 4 = vy 12 71
WY1 W 1 P2 PR )+ rxz 20> ' rlz P
02 F® 9 Eh, 0*w
DV w, =V p, ~lip |+ F® Lyt ;To O g4, LW
2V W, 2liP23 . D PR w, "zz 207 2 r22 P
52 FY 52 Eh, 8*w
8 _ 4 ) 4 4
DV, w, =- ;VN‘ Vi P T VN N+—}3 o —Viwy - er ax“N'

2.2

Where w, (k=12,--N) is the (inward) deflection of the k -th tube, D, and A, are the

bending stiffness and thickness of the k-th tube, the subscripts 1, 2,--- N denote the
quantities of the innermost tube, its adjacent tube, ... and the outermost tube, respectively,

r, is the radius of the & -th tube, F¥ and F/® (k=1,2,--N) are the uniform axial and

circumferential membrane forces of the & -th tube prior to buckling, and

o* 1 o

V2:_+___.
£ oo’ r,c2 06*

S(k=12,--N) (2.3)

In addition, p,,, is the (inward) pressure on tube k due to tube k+1, p,,, is the

(inward) pressure on tube (k£ +1) due to tube k. Since the action and reaction are equal

but opposite, they are related by
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Ve Priesty = Ve Plesyi s (k=12,--N) (2.4)

Here, the pressure p,,,,, in Eqs.(2.2) is the (inward) pressure exerted on the tube k by
the tube (k +1) due to buckling, thus p, =0 and py,;, = 0. In addition, it should be

mentioned that the net (inward) pressure for each layer is obtained simply as the sum of
the outer (inward) pressure and the inner (inward) pressure. This will not cause any
significant error when the radius of each layer is much bigger than its thickness.

Since all nested tubes are originally concentric and the initial interlayer spacing is
equal or very close to the equilibrium spacing, the initial vdW interaction pressure
between any two adjacent tubes of undeformed MWNTSs is negligible. When the axial
stress and radial pressure are applied, the interlayer spacing changes, and the vdW
interaction pressure (per unit area) at any point between any two adjacent tubes depends

linearly on the difference of the radial deflections at that point. Thus, the pressure p, .,

due to buckling (see Eqgs. (2.2)) is related to the deflections of tube & and tube (k +1)
due to buckling by

Py =cw, =wi], pyy =clws —w, ... Py = cwy —wy ), (2.5)

Here, the vdW interaction coefficient ¢ can be estimated as the second derivative of the
energy—interlayer spacing relation of MWNTSs using recent data given by Saito et al.

[146]

_ 320xerg/cm’

01647 =99.18GPa/nm (d =1.42x107%cm) (2.6)

This value, which is slightly bigger than those suggested in [129], is used in [130-136].
Here, because the present analysis is limited to infinitesimal buckling, the coefficient ¢ is

calculated at the initial interlayer spacing (about 0.34nm). The curvature-dependency of
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the coefficient c is neglected here because it is small for relatively larger innermost radii
as compared to 0.6 nm [86, 147].

Substitution of (2.5) into (2.2) leads to N coupled linear equations for N
deflections w, (k=12,--N). The condition for existence of a non-zero solution will

determine the critical values for elastic buckling of MWNTSs under combined axial stress

and radial pressure. To this end, one has to first determine all membrane forces F* and

X

F® (k=1,2,--N) prior to buckling for given external load.

2.2.2 Pre-buckling Analysis

Constraints for the ends of cylindrical shell are usually ignored in pre-buckling

analysis [148-149]. As a result, under uniform axial stress and radial external or internal

pressure, the axial and circumferential membrane forces F® and F® (k=12,--N)
prior to buckling are some constants. The equilibrium conditions prior to buckling give

(&)

k) 0
e S P TSP @7)
hk hk hk

where o and ¢ are the pre-buckling axial and circumferential membrane stresses in

the k-th tube, p, is the pre-buckling net (inward) pressure to the k -th tube, and o,
is the axial stress applied to the MWNT. Note that (Hook’s relation)
An

£ :é(o_ék) —vo®), (k=12,--N) 2.8)

"

where Ar, is the radial (inward) deflection of the k-th tube prior to buckling, or the
difference between the initial radius r, and the deformed radius of the & -th tube prior to

buckling, and v is Poisson’s ratio. Thus, prior to buckling, we have
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ﬂ__i(ir_

VO, (k=12,--N) 2.9)
n E

k

For pre-buckling analysis

P:) = p?z +p:)o =c(Ar,—Ar)-E,

r r,
Pg = pg3+p§1 =pgs _r_l'pfz =c-[(An _A’"z)_r_l(Arz —An)]
2

2

Fy _
P?v = pg{(NH) +p?V(N—1) = P1(3/(N+1) _%p(oN—l)N =F, - v —=(Ary = Ary ) (2.10)

N rN

where p,?(,m) represents pre-buckling outer pressure on tube k& due to tube k£-+1 and
Pi-1y denotes the pre-buckling inner pressure on tube & due to tube & -1. In particular,
P,.(=—-py) is the applied internal pressure, and P, (= pyy.p) is the applied external

pressure. Substituting (2.10) to (2.9) gives N conditions, which allow us to determine
Ar, (k=1,2,...,N)

1 P
(__2+L)Arl _L.Arz — _ int +L O-axia[
- Eh Eh Eh Er,
c K 1 K, ¢ c v
————— Ar +[—+(1+—2)-—]-Ar, ——-Ar, = e
Eh r, [r22 ( rz) Eh] ' En Er2 atal
C Fyg Ina P v
——-—-ArN1+( + == -—) Ary = + O 4 .11
Eh 1, re ry Eh Eh  Er,

Once the constants Ar, (k=12,--,N) are known, the net pressure ( p;) and outer

pressure ( p,?( ++1)) distribution can be determined by Eqs. (2.10). Substituting obtained )
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into Eq. (2.7), one can calculate the circumferential membrane force F*. In addition,

the axial membrane force F* in Eqgs. (2.7) can be calculated directly as o,

ial

h, .

2.2.3 Buckling Analysis

With the known net pressure distribution or pre-buckling membrane forces, it is
now possible to study elastic buckling of MWNTSs under combined axial stress and radial
pressures. Here, the simply supported boundary condition will be considered for the two

ends of all the constituent tubes of MWNTSs. which is given by w, =0,v, =0, F, =0

and M, =0 (k=1,2, ..., N) at two ends of each constituent tube. Here, Fx and My

represent membrane force and bending moment (defined per unit length of
circumference) in axial direction. Thus, the buckling mode that satisfies the above-

mentioned boundary condition is as follows
w, =W, sin%xcosn&, (m=1) 2.12)

where W, (k=1,2,---- , V') are some real coefficients; L is the length of the MWNT; m

is the axial half wave number, and # is the circumferential wave number. Introducing
(2.12), together with the known net pressure distribution (see Section 2.2.2), into Egs.
(2.2) gives
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......

(2.13)

where P represents radial external pressure (or internal pressure when external pressure is

zero). y, (k=12,--,N) denotes net pressure p, normalized by the external (or internal

pressure). As will be shown in Chapters 3 and 4, for a specific MWNT, v,

(k=12,---,N) are some constants determined in pre-buckling analysis. In particular, for

MWNTs under pure axial stress, P = 0 and y,= 0 (k=12,--,N). Egs. (2.13) can be

written into

M(m’ n’P’ O-axial)NxN o

W,

2

WN

0

(2.14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BASIC FORMULATIONS FOR BUCKLING OF MWNTS 45

Thus, the existence condition of a nonzero solution of W, (k =1,2,....N) is:

det M =0 (2.15)

This condition determines a relationship between the applied external load and associated

buckling mode (m, n). Thus, with each pair (m, n), one can identify the corresponding (i)

external pressure P for a MWNT under radial pressure, (ii) axial stress o for a

axial
MWNT under pure axial stress, or (iii) axial stress o, and corresponding external (or
internal) pressure P when combined axial stress and external (or internal) pressure are
applied with given external (or internal) pressure-to-axial stress ratio. In particular, the

critical buckling pressure of a MWNT under pure radial pressure is defined by the lowest

external pressure P with n>2 [148-149].

Throughout the buckling analysis of MWNTs (see Chapters 3 and 4), we shall
assume that L =12r, (the outermost radius of an N-wall CNT), and for each constituent
SWNT Poisson-ratio v =0.3[48], bending stiffness D =0.85¢V and in-plane stiffness
Eh =360J /m* [32]. In addition, according to the radius-to-thickness ratios of MWNTs,
all examples of MWNTs will be classified into the following three typical cases:

a) thin MWNTs (the innermost radius-to-thickness ratio is around or larger than
four);
b) thick MWNTs (the innermost radius-to-thickness ratio is around unity);

c) (almost) solid MWNTs (the innermost radius-to-thickness ratio is around or

smaller than 1/4).
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Fig.2.1 Elastic buckling of a MWNT under axial stress and radial pressures.
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Chapter 3

Elastic Buckling of MWNTSs under Radial Pressure

3.1 Introduction

SWNTs under external high pressure have been the subject of numerous
researches [77-85, 123, 150-152]. An interesting phenomenon is pressure-dependent
abnormalities observed for vibration modes and electric resistivity of SWNT ropes when
the applied external pressure reaches a critical value ranging from 1.5 to 1.9 GPa [77, 83-
84]. To explain these phenomena in terms of pressure-induced elastic buckling of SWNT
ropes, an elastic honeycomb model has been developed by Ru [123] which leads to a
simple critical pressure formula in good agreement with known experimental data for
SWNTs of diameters around 1.4 nm. Remarkably, this model can also explain pressure-
induced abnormalities of optical properties of SWNT ropes observed for very small
diametérs around 0.8 nm [145]. These results make us believe that elastic shell models
can be used to predict the main features of mechanical behavior of CNTs under high
pressure.

More recently, MWNTs under high pressure have been studied [75-76, 78, 80-
82]. In addition, considerable effort has been devoted to MWNTSs embedded in a polymer
or metal matrix [50-51, 153-154], where hydrostatic compressive stress due to thermal
mismatch and specimen cooling is identified as a major factor affecting physical
properties of embedded MWNTs. Therefore, buckling behavior of MWNTSs under
external radial pressure are of practical interest. To study MWNTs with elastic shell
models, it is crucial to notice that MWNTs are distinguished from conventional
singlelayer elastic shells due to their multilayer structure and the interlayer vdW forces.
On one hand, interlayer friction of undeformed MWNTs is usually so low that adjacent
layers can slide to each other almost freely [15-18]. On the other hand, some studies have
revealed that interlayer friction in MWNTs largely depends on interlayer

commensurability and could lead to significant interlayer locking for commensurate

47
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adjacent layers [15, 155-158]. In addition, pressure-induced interlayer friction and
interlocking have been suggested [105] to explain the observed wavelength of bending
buckling of relatively thin MWNTs [48]. Furthermore, we believe that pressure-induced
partial interlayer locking (only for the outermost few layers) could be responsible for
unexplained wavelengths of thick MWNTSs [51]. Hence, it is of greater interest to study
the possibility of interlayer locking for MWNTSs under high pressure.

Using the governing equations (2.1) this chapter gives a theoretical analysis of
elastic buckling of individual MWNTs under high pressure. The critical buckling
pressure and associated buckling modes have been first calculated for thin, thick and
(almost) solid MWNTSs under pure external pressure. Then the effect of internal pressure
on the critical external pressure for MWNTSs subject to both internal and external pressure
has been examined. In particular, the critical pressure predicted by the present shell
model is found to be in good agreement with known experimental result [75], which to
our best knowledge is probably the only experimental result available in the literature for
critical pressure of MWNTs. In addition, the present model shows that critical pressure
will increase drastically if an interlayer locking occurs even only in few layers.
Therefore, the agreement between theoretical predictions (without any interlayer locking)
and experimental data suggests that elastic buckling will take place prior to any

significant interlayer locking in MWNTSs under increasing external pressure.

3.2 Elastic Buckling of MWNTs under an External

Pressure

Now, let us first examine elastic buckling of MWNTSs under an external pressure, as
shown in Fig. 3.1(a). To this end, seven examples shown in Table 3.1 will be considered.
Obviously, examples 1, 2 and 3 are thin MWNTs, examples 4, S and 6 are thick MWNTs,
and example 7 is a(n) (almost) solid MWNT.
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3.2.1 Pre-buckling Pressure Distribution

By using Egs. (2.10) and (2.11) with zero o, and P, the pre-buckling outer

pressure p,‘c’( e (k=12,-- N) and the net pressure Py (normalized by external pressure

P,_,= P) for five examples (examples 1, 2, 4, 5, and 7) are calculated and shown in Figs.

3.2 and 3.3, respectively. Here, the external pressure P is the only applied pressure, and

all pressures are normalized by the applied external pressure P. It is seen that both the

net pressure p, and the outer pressure Py decrease monotonically from the outermost

tube to the innermost tube, and are very low for the innermost few tubes of a thick or
solid MWNT. In particular, for thin MWNTs (examples 1 and 2), the outer pressure is
almost linearly distributed, and the net pressure is nearly constant. This means that all
concentric tubes of a thin MWNT almost equally share the applied external pressure. In
this case, as will be shown below, the critical pressure for a thin N —wall CNT is
approximately N times the critical pressure of a SWNT of the average radius of the

MWNT.

3.2.2 Critical Buckling Pressure

With known net pressure distribution, we are now able to study elastic buckling

for simply supported MWNTs under external pressure alone. By following the approach
0
demonstrated in Section 2.2.3 with o, =0 and v, = p?" (k=12,--,N)in (2.13) the

critical buckling pressure and associated buckling modes are calculated for examples 1-7.
Since the results for examples 1 and 4 are found to be very similar to those for examples
2 and 5, we shall only focus on five examples (examples 2, 3, 5, 6 and 7). The
dependency on the pair (m,n ) of the external pressure P is plotted in Figs. 3.4 to 3.8 for
the five examples, respectively. In addition, it is easy to understand that the results for
free ends are equivalent to the results for simply supported end with m =0 and the

corresponding solution takes the form w, = 4, cosn8 (k =1,2,:---- ,N).

It is seen from Figs.3.4 to 3.7 that the pressure P is an increasing function of n for

thin or thick MWNTs with free end (m = 0), thus the critical pressure is determined by
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n =2 . However, for solid MWNT (example 7) shown in Fig. 3.8, P is found to be a
non-monotonic function of # for m =0 and has an intérnal minimum at around n= 5 or
6. On the other hand, P is an increasing function of m for simply supported end
(m=1), thus the critical pressure is determined by m =1. The circumferential wave
number s corresponding to the lowest pressure varies between 2 and 4 for these
examples. The critical pressure for the five 8-wall CNTs (see Table. 3.1) are summarized
in Table 3.2, and are compared to the critical pressure of a SWNT whose radius is equal
to the average radius, the innermost radius, or the outermost radius of the MWNTs. In
particular, for thin MWNTSs (examples 2 and 3), it is seen from Table 3.2 that the critical
pressure of a thin N —wall CNT is approximately N times that of a SWNT of the
average radius of the N —wall CNT.

A similar conclusion has been drawn for axially compressed buckling of thin
MWNTs [129]. Based on these results, it is expected that a thin N —wall MWNT can be
approximately treated as a singlelayer elastic shell with the equivalent bending stiffness

ND and the thickness Nh . This issue will be further examined in detail in Chapter 9.

3.3 Elastic Buckling of MWNTs under Internal and

External Pressures

In this Section, we shall further consider elastic buckling of MWNTSs under both
internal and external pressures, as shown in Fig.3.1(b). The emphasis will be placed on
the effect of an internal pressure on critical external pressure and associated buckling
modes of MWNTs. Here, two MWNTs in Table 3.1 are used as representative examples,
i.e., a thick 8-wall CNT (example 5) and a(n) (almost) solid 8-wall CNT (example 7).
This is because the effect of internal pressure is very similar for both thin and thick
MWNTs with the innermost radius-to-thickness ratio larger than unity but significantly
different for (almost) solid MWNT's with the innermost radius-to-thickness smaller than
Ya.
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3.3.1 Pre-buckling Pressure Distribution

Based on Eqgs. (2.10) and (2.11) with zero o the pre-buckling pressure

axial »
distributions for p; and pf(“,) (normalized by external pressure P ) are calculated for

examples 5 and 7 in Figs. 3.9 and 3.10, respectively, with various internal-to-external

pressure ratios a (=B, /P, ). Here, to cover different cases of physical interest, we

assume that the internal pressure may be different from the external pressure. Of course,
a =1 when the internal pressure is kept exactly the same as the external pressure.

As seen in Figs. 3.9 and 3.10, with increasing internal pressure, the (inward) outer
pressure on each tube of MWNTs increases while the (inward) net pressure, which is
crucial for the critical external pressure of MWNTs, decreases. These results indicate that
an internal pressure leads to stronger interlayer vdW interaction between adjacent tubes,
while it reduces the (inward) net pressure or the external pressure-induced compression
on each concentric tube of MWNTs. In particular, a high internal pressure can even cause
an outward (negative) net pressure and an increase in the radius of almost all tubes of a
thick MWNT (Fig.3.9) and of the innermost few tubes of a solid MWNT (Fig.3.10).
Moreover, it is seen that for a thick MWNT (Fig.3.9), the effect of an internal pressure on
pressure distribution is significant from the innermost tube to the outermost few tubes,
while for a(n) (almost) solid MWNT (Fig.3.10), the internal pressure only affects

pressure distribution on the innermost few tubes.

3.3.2 The Internal Pressure Effect on Critical External Pressure

Next, let us examine the effect of an internal pressure on buckling behaviors of
MWNTs. Here, we first consider MWNTs of free ends (m = 0) as an illustration. Solving
(2.15) with known pre-buckling net pressure distribution and m =0, external pressure P
and the associated circumferential wave number » are obtained in Fig. 3.11 and 3.12 for

examples 5 and 7, respectively, with o (=P,

>« B, ) increasing from 0 to 2 for example 5
and from 0 to 5 for example 7.

An interesting phenomenon observed in Figs.3.11 and 3.12 is that when « is
relatively small, an increasing internal pressure leads to an increase in the critical external

pressure while the buckling mode remains unchanged with the circumferential wave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ELASTIC BUCKLING OF MWNTS UNDER RADIAL PRESSURE 52

number n =2. However, when the pressure ratio a reaches a certain critical value, for
instance, & =1.3 in Fig.3.11 for the thick 8-wall CNT, example 5, and & =0.2 in Fig.3.12
for a solid 8-wall CNT, example 7, an abrupt change of buckling mode occurs, where the
circumferential wave number n jumps from 2 to 9 and 6 for example 5 and 7,
respectively. Furthermore, it is noticed in Fig.3.11 that when « increases from 0 to 2, the
critical external pressure of the thick MWNT increases by more than an order of
magnitude. In contrast, for the (almost) solid MWNT (see Fig.3.12), when a increases
from 0 to 0.2 the critical external pressure increases slightly. Beyond a= 0.2, no
significant increase in the critical external pressure can be achieved by raising the internal
pressure with @ up to 5 or even larger. For thin MWNTs, our results indicate that the
effect of an internal pressure on buckling behaviors is very similar to that for thick
MWNTs. The different effect of an internal pressure on the critical external pressure of
thick (or thin) and (almost) solid MWNTs can be explained by the fact that an internal
pressure can effectively reduce the (inward) net pressure on each concentric tube of a
thick (or thin) MWNT with the innermost radius-to-thickness ratio larger than unity,
while its effect on a(n) (almost) solid MWNT with the innermost radius-to-thickness
much less than unity, is limited only to the innermost few tubes. Analogous effect of an
internal pressure on buckling behavior can also be obtained for simply supported

MWNTs.

3.4 Comparison with an Experiment

The above buckling analyses of MWNTSs are based on the multiple-elastic shell
model [127-129]. Thus, it is of great interest to compare the present shell model to
available experiments or atomistic simulations. In Table 3.1, the data for example 8 are
taken from {75], which to our best knowledge, is probably the only experiment reported
in the literature for the critical radial pressure of MWNTSs. We have been informed that
helium was used in [75] as a medium to apply an external pressure on MWNTs, and there
were some helium molecules in the interior of MWNTs tested in [75]. Thus, as suggested

by Thomsen & Reich [81], it is assumed that an internal pressure, not higher than the
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external pressure, exists in the interior of the MWNTs tested in [75]. Hence, To make a
comparison between the present model and the experiment [75], we study the elastic
buckling for example 8, a(n) (almost) solid 20-wall CNT under both internal and external

pressures.

The net pressure p, and the outer pressure p,?(k+l) (normalized by external

pressure P) for example 8 are shown in Fig.3.13 with the internal pressure-to-external
pressure ratio & =0, 0.6 and 1, respectively. Then, an approximate method (see details in
Section 9.1.2) is employed to simplify the calculation in the buckling analysis of the 20-
wall CNT. With this approximate method, example 8, consisting of twenty concentric
SWNTs, can be effectively reduced to a nine-layer shell coupled with each other through
the vdW interaction, the data for each layer of which are shown in Table 3.3. It is seen
from Table 3.3 that the radius-to-thickness ratios for all new layers are larger than 4.5. As
will be shown in Section 9.1.2, each of these new layers can be modeled as a single-layer
thin shell whose radius, effective bending stiffness and thickness as well as pre-buckling
net pressure can be determined based on the approximate method (see Section 9.1.2). In
particular, MWNTs used in high-pressure experiments usually have free ends and are
characterized by a very large aspect ratio. Thus, in this section we only consider example
8 with free ends or infinite axial wavelength, which corresponds to m = 0. Applying the
buckling shell equation (2.1) to each of the new nine layers with possibly different
effective bending stiffness and thickness, one can obtain nine coupled equations for nine
deflections of these new layers. Following a similar procedure demonstrated in Section
2.2.3, the relation between the external pressure P and n can be obtained with the
internal pressure-to-external pressure ratio « as a parameter. The dependency of P on
circumferential wave number # is presented in Fig.3.14, for example 8 with m =0 and
a=0,0.3,0.4,0.6 and 1, respectively.

As seen from Figs.3.13 and 3.14, pre-buckling (Fig. 3.13) and buckling behaviors
(Fig.3.14) of example 8 are qualitatively similar to those of the (almost) solid 8-wall
CNT, example 7, shown in Figs. 3.10 and 3.12. When pressure ratio & changes from 0 to
0.3, the lowest pressure P with n > 2 is obtained with » =2 . Thus the critical pressure

is determined by n=2. On the other hand, when « is greater than 0.4, the lowest pressure
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P with n>2 corresponds to n=11. Thus, the critical pressure is determined by n=11.
The critical pressures of example 8 for various pressure ratios « are given in Table 3.4.

From Table 3.4, it is seen that when internal pressure P, increases from 0 to

int
0.3 P, (external pressure), the critical external pressure of example 8 increases from
0.567 GPa to 0.860 GPa with n=2. Further, when pressure ratio varies from 0.3 to 0.4,
the critical external pressure changes slightly from 0.860 GPa to 0.944 GPa while the
circumferential wave number n jumps form 2 to 11. If we further raise the internal

pressure from 04 P, to P,

¢ » the critical external pressure remains about 0.944 GPa with
n=11. Therefore for example 8, the critical pressure of 0.944GPa is obtained in the
wide range of pressure ratio @ (0.4<a <1). As explained before, because there were
some helium molecules inside the MWNTs tested in [75], it seems reasonable [81] to
assume that an internal pressure has existed within the interior of the MWNTSs used in
[75]. Hence, the critical pressure predicted by the present model for example 8 should be
close to 1 GPa, which is in reasonable agreement with the critical pressure about 1.48
GPa , observed for the first structural change of the MWNT [75].

It is noticed that there is about 30% difference between the theoretical prediction
and the experimental value. This discrepancy was first explained by the increase of the
vdW interaction coefficient ¢ due to pressure-induced reduction of interlayer spacing of
a MWNT, which has not been considered in the above analysis. In Fig.3.15, it is shown

that if all ¢’s from the innermost few tubes to the outermost few tubes of a MWNT are
equally affected by radial internal and external pressure and increases to 2 to 3¢, (¢, is
given by (2.6)), the critical buckling pressure of 1.36-1.64 GPa can be obtained based on
the present shell model. However, our results [134] (also see Chapter 6) for pressure
dependence of ¢ indicates that, for external pressure up to 1.5GPa, onlyc’s between
outermost few layers (or the innermost few layers if an internal pressure is introduced)
reach the maximum value around 1.5¢,, while others ¢’s are smaller or much smaller

than 1.5¢,. It is seen from Fig.3.15 that, when ¢ <1.5¢, the critical pressure of example

8 is only about 1 GPa . Thus it is believed that the pressure-induced increase of ¢ cannot

significantly increase the critical buckling pressure of MWNTs.
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On the other hand, based on recent data in the literatures [36, 38, 147], an updated
bending stiffness D=2eV has been suggested for SWNTs in our latest work [136],
offering a much better agreement between the multiple-shell model and an atomistic
model in vibrational analysis of SWNTs than the value 0.85¢} used in the present
buckling analysis (also see Chapter 8). With this updated value of bending stiffness [136]
combined with the pressure effect on the vdW interaction coefficient ¢ [134], the critical
buckling pressure predicted for example 8 under both internal and external pressure is
1.32GPa [159] very close to the experimental value 1.48 GPa [75]. This result offers
convincing evidence of the relevance of multiple-shell model for buckling analysis of
MWNTs.

3.5 The Effect of Interlayer Locking on Elastic Buckling
of MWNTs

In the present multiple-shell model [127-129], the interlayer friction of MWNTSs is
ignored because of the reported low friction between two adjacent layers [15-18]. On the
other hand, there is a possibility that under high external pressure the interlayer friction
could substantially increase and the adjacent two layers of MWNTSs could be partially or
even completely interlocked [15, 155-158]. It is known that the interlocked layers behave
like a singlelayer shell, and the overall bending stiffness of interlocked layers could
increase by a few orders of magnitude [105]. As a result, it is expected that even partial
interlayer locking could have a significant effect on critical pressure of MWNTSs. In fact,
this pressure-induced interlayer locking has already been used [105] to explain observed
wavelengths for bending buckling of relatively thin MWNTs [48]. Furthermore, pressure-
induced partial interlayer locking (only for the outermost few layers) could probably offer
an plausible explanation for the experimental results of Bower et al. [51] about the
wavelengths of thick MWNTs embedded within a polymer matrix.

Here, let us briefly examine the possibility of the interlayer locking and its effect on
critical pressure of MWNTSs under high external pressure. It is seen from Fig.3.12 that,

for MWNTs under external pressure, the maximum interlayer vdW interaction pressure
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occurs in the outermost few tubes. Hence, it is reasonable to assume that, if interlayer
locking occurs, it will most likely occur in the outermost few layers. Here, we calculate
the critical pressure for examples 1, 2, 4, 5 and 7, under the assumption that the outermost
few layers are interlocked as a singlelayer shell. The predicted critical pressure are shown
in Figs.3.16 and 3.17, as a function of the number of interlocked layers, for free end and
simply supported end, respectively (where Q is the ratio of critical pressure with
interlayer locking to critical pressure without interlayer locking). It is seen that the critical
pressure will increases drastically when even only the outermost few layers are
intercloked. Since theoretical predictions without any interlayer locking are in good
agreement with experimental results [75], it is believed that no significant interlayer

locking occurs prior to the onset of elastic buckling.
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Fig.3.1 Elastic buckling of a MWNT under (a) external pressure and

(b) both external pressure and internal pressure.
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The outer pressure on the k-th tube / P

3 1 5 6 7 8
k (The number of each tube)

Fig. 3.2. The pre-buckling outer pressure distribution for examples 1, 2, 4, 5 and 7

(in Table 3.1) under an external pressure P.
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Fig.3.3. The pre-buckling net pressure distribution for examplesl, 2,4, 5 and 7

(in Table 3.1) under an external pressure P .
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Ln{P/c.1nm}

Fig.3.4. The dependency of the external pressure P on (m,n) for example 2

(in Table 3.1) under an external pressure.

Ln{P/c.inm)

—
[
Py

Fig.3.5. The dependency of the external pressure P on (m,n) for example 3

(in Table 3.1) under an external pressure.
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Ln(P/ c.1nm)

Fig.3.6. The dependency of the external pressure P on (m,n) for example S

(in Table 3.1) under an external pressure.

Ln{P/ c.1nm)

n

Fig.3.7. The dependency of the external pressure P on (m,n) for example 6

(in Table 3.1) under an external pressure.
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Fig.3.8. The dependency of the external pressure P on (m,n) for example 7

(in Table 3.1) under an external pressure.

Circle: Outer Pressure

The pressure on the k-th tube /P

Point: Net Pressure

1 1 1 1 1

1 2 3 4 5 & 7 8
The number of each layer k

Fig.3.9 Pre-buckling pressure distribution for example 5 (in Table 3.1) under both
internal and external pressure. Here, « is the internal pressure-to-external

pressure ratio.
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The pressure on the k-th tube /P
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Fig.3.10 Pre-buckling pressure distribution for example 7 (in Table 3.1) under both

internal and external pressure. Here, « is the internal pressure-to-external

pressure ratio.
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Fig.3.11 The dependency of external pressure P on the internal pressure-to-

external pressure ratio ¢ and n for example 5 (in Table 3.1).
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Fig.3.12 The dependency of external pressure P on the internal pressure-to-

external pressure ratio & and n for example 7 (in Table 3.1).
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Fig.3.13 Pre-buckling pressure distribution for example 8 (in Table 3.1)

under both internal and external pressure. Here, « is the internal

pressure-to-external pressure ratio.
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External pressure P (GPa)

Fig.3.14 The dependency of external pressure P on the internal pressure-to-

external pressure ratio @ and » for example 8 in Table 3.1.
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Fig.3.15 The dependency of P, on a and c/c, for example 8 in Table 3.1.
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Example 1
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Fig.3.16. The effect on critical pressure of interlayer locking (free end).

P 3
The number of interlocked layers

Fig. 3.17. The effect of interlayer locking on critical pressure (simply supported

end).
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Table 3.1.The geometrical data for eight examples of MWNTs. Here, N is the

number of tubes of a MWNT and # is the effective thickness of a SWMT.

Example Thin MWNTs Thick MWNTs Solid MWNT's
Number 1 2 3 4 5 6 7 8
r, (nm) 18 26 2.8 2.3 30 | 0.68 0.65 L5

r, / Nh 6.62 [ 956 { 4.12 {085 | 1.10 | 1.00 | 0.24 0.22
N 8 8 2 8 8 2 8 20

Table 3.2. Comparison of the critical pressures between MWNTs and SWNTs. Here P, is

critical pfessure of a MWNT, P; is the critical pressure of a SWNT of the outermost radius,

P! is the critical pressure of a SWNT of the innermost radius, and P? is the critical pressure

of a SWNT of the average radius. The unit of P, is GPa .

Thin MWNTs Thick MWNTs Solid MWNT
MWNT
Boundary
condition Example 1 | Example 2 | Example 4 | Example 5| Example 7
=0 | P | 585x10%| 208x10™ | 121x10" | 632x102 | 195
=1 F, 2.05x107 | 9.38x107* | 1.41x107" | 8.17x107 1.98
PP B - 238 18.1 100
m=0| P,/P. - . 2.7 3.1 0.98
P,/P: 76 77 - - -
P,/P; - - 12.2 11.2 529
m=1| PP - - 23 3.0 0.93
PP 74 7.5 - - -
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“Table 3.3. Substitution of a nine-layer elastic shell for a MWNT of twenty layers (example

8 in Table 3.1). Here X is the number of concentric tubes in each new layer, and r,,, and H

are the outermost radius and the thickness of each new layer.

Number of |y I m | 1v \% vi | v | vinm | Ix
new layer
v 1.5 1.84 | 218 | 252 ] 32 | 388 | 490 | 626 | 7.96
K 1 1 1 1 2 2 3 4 5
H 034 | 034 | 034 | 034 | 068 | 068 | 102 | 136 | 1.70
Fou! H 471 | 572 | 48 | 460 | 4.68
Table 3.4 The critical buckling pressure for example 8 with m = 0.
a 0 0.2 0.3 0.4 0.6 0.8 1
n 2 2 2 11 11 11 11
P.(GPa) | 0568 | 0.738 | 0.860 | 0.944 | 0.944 | 0.944 | 0.944
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Chapter 4

Elastic Buckling of MWNTSs under Axial Stress

and Radial Pressure

4.1 Introduction

Axially compressed elastic buckling of CNTs has been one of recent topics of
considerable interest [25, 32, 39, 48, 52, 120, 127-129]. Especially, detailed
comparison has shown [32, 120] that the critical stress and buckling wavelength
predicted by isotropic elastic shell model are in good agreement with the results of

 axially compressed SWNTs obtained by MD simulations. It is believed that isotropic
elastic shell model can be used to catch main features of buckling of SWNTs under
axial compression. On the other hand, axially compressed buckling of MWNTs of
larger radius-to-thickness ratio has been studied based on a multiple-elastic shell
model [127-129], although a comparison is still not available due to the lack of
relevant experimental results or molecular MD simulations for MWNTs.

Recently, SWNTs [77-79, 83-84] and MWNTs [76-82] under external radial
pressure have been the subject of numerous researches. A remarkable phenomenon is
the pressure-induced abrupt change of physical properties of SWNTs and MWNTs
when the applied pressure reaches a critical value. In an effort to explain these
phenomena in terms of pressure-induced elastic buckling, an elastic honeycomb
model for SWNT ropes has been developed by Ru [123], which leads to a simple
critical pressure formula in excellent agreement with known experimental data [77,
82, 83]. Furthermore, Wang et al [130] have recently studied elastic buckling of
individual MWNTs under external radial pressure based on the multiple-elastic shell
model [127-129]. Wang et al’s results showed that the predicted critical pressure,
about 1 GPa, is in reasonably good agreement with the experimental results (about
1.48 GPa, which, to the present author’s best knowledge, is probably the only

available experimental data for critical radial pressure of MWNTSs) of [75] for a

68
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specific group of MWNTs of about twenty layers. This agreement offers an evidence
for the relevance of the multiple-elastic shell model [127-129] to MWNTs, which
suggests that the multiple-elastic shell model can be used to study buckling behavior
of MWNTs. Here, it should be mentioned that MWNTSs under radial internal pressure
has been suggested by Thomsen & Reich [81] as a simplified model for MWNTs
filled with some other molecules.

To our knowledge, elastic buckling of CNTs under combined axial and radial
loadings remains an open topic in the literature. Recently, axially compressed
buckling of SWNTs filled with other molecules has been studied by Ni et al. [87].
These authors found that the critical axial strain increases by 10-20% for different
filling molecules at low density, and up to 45% for filling molecules at high density.
As shown in chapter 3, following Thomsen & Reich [81] the role of filling molecules
can be modeled approximately as an internal pressure. Although the value of this
equivalent internal pressure depends on the filling molecules and the density, and thus
cannot be determined exactly, its magnitude can be assumed to be the order of
magnitude of the critical radial external pressure [81] (the latter is about 5% of the
critical axial stress for SWNTs [120]). Therefore, filled SWNTs can be approximately
modeled as SWNTs subjected to an internal radial pressure not much higher than 5%
of the critical axial stress. Motivated by all of the above ideas, this chapter is devoted
to a systematic study on axially compressed buckling of MWNTSs subjected to an
internal or external radial pressure, with an emphasis on new physical phenomena due
to combined radial pressure and axial stress. The analysis is based on the multiple-
elastic shell model [127-129]. The representative MWNTSs considered in Chapter 4
are listed in Table 4.1, where examples 1 and 2 are thin MWNTs, examples 4 and 5
are thick MWNTs, while example 6 is a(n) (almost) solid MWNT. In particular,
example 3 for SWNTs is included here, as a special case N =1, for a comparison with
[87] which, to our knowledge, is probably the only available result regarding the
effect of filling molecules on the critical axial stress of CNTs. Among other results,
the present analysis shows that the predicted increase of critical axial stress due to an
internal radial pressure is in qualitative agreement with the results for filled CNTs

obtained by MD simulations [87].
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4.2 Elastic Buckling of MWNTs under Pure Axial Stress

First, let us examine elastic buckling of MWNTs under pure axial stress, as
shown in Fig. 4.1(a). Prior related works have been essentially limited to SWNTs [32,
120] and thin MWNTs of larger radius-to-thickness ratio [127-129]. Here, instead, we
shall consider all three types of MWNTs, including thick and solid MWNTSs as shown
in Table 4.1. Under pure axial stress, the pre-buckling radial deformation of
individual tubes of MWNTs is negligibly small and thus the pre-buckling radial
pressure on individual tubes can be ignored. Applying Eqgs. (2.13) to (2.15) with
pp =0 and y, =0 (k=12,--,N), the dependency of axial buckling stress on the
wave numbers (m,n) is shown in Figs. 4.2 to 4.6 for thin (examples | and 2 in Table
4.1), thick (examples 4 and 5 in Table 4.1) and a(n) (almost) solid MWNT (example 6
in Table 4.1), respectively. An interesting general result is that, similar to classic
results of axially compressed buckling of elastic thin shells [118, 148], the wave-
numbers corresponding to the minimum axial stress are not unique for all three types

of MWNTs. More precisely, there always is more than one combination of (m,n)

which corresponds to the same minimum (critical) axial stress. As a result, the wave-
numbers of the buckling mode of MWNTs under pure axial stress cannot be
determined uniquely. .

It was mentioned in Chapter 3 that a thin N —wall CNT under external pressure
can be approximated by an equivalent singlelayer shell whose effective bending
stiffness and thickness are N times the effective bending stiffness and thickness of
SWNTs. Indeed, as will be shown in Section 9.1.2, this conclusion still holds true for
thin MWNTs (e.g., examples 1 and 2 in Table 4.1) under pure axial load. As a result,
the critical axial stress of a thin MWNT under pure axial stress is approximately equal
to the critical axial stress of a SWNT of the average radius of the MWNT, as stated in
[129].

On the other hand, the critical axial stresses for three thick or solid MWNTSs
(examples 4, 5, and 6 in Table 4.1) are summarized in Table 4.2, with a comparison
to the critical axial stress of a SWNT whose radius is equal to the innermost or the

outermost radius of the MWNT. For these examples, the critical axial stress for
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MWNT is bounded, from above and from below, respectively, by the critical axial
stress of a SWNT of the innermost radius of the MWNT, and the critical axial stress
of a SWNT of the outermost radius of the MWNT. Here, the results for example 5 of
sixteen layers are obtained with an approximate method (See details in Section 9.1.3),
which has been used in Section 3.4 for buckling of a 20-wall CNT (example 8 in
Table 3.1) under radial pressure. Based on this approximate method the original 16-
wall CNT can be reduced to a multiplayer shell of only five thin layers, whose data

are shown in Table 4.3.

4.3 Elastic Buckling of MWNTs under Combined

Axial Stress and Radial Pressure

Next, let us further consider elastic buckling of MWNTSs subjected to both axial
stress and internal or external pressure, as illustrated in Fig.4.1(b) and (c),
respectively. Here, our attention is focused on the interaction between radial pressure

and axial stress in elastic buckling of MWNTs.

4.3.1 Pre-buckling Radial Pressure Distribution

As shown in Section 2.2.2, before the buckling analysis, the radial pressure
distribution must be determined for MWNTs under both axial stress and radial

pressure. Using (2.10) and (2.11) with known external (or internal) pressure-to-axial
stress ratio f# (or y), the distributions of pre-buckling outer pressure p,f(,m) and net
pressure p; (k=12,--N) normalized by the axial stress o, for three

representative examples (examples 1, 4 and 6 in Table 4.1) are shown in Figs. 4.7 to
4.12 for combined axial stress and external or internal pressure, respectively. In
Figs.4.7 to 4.9, the pressure distribution under combined axial stress and external

pressure is given for various external pressure-to-axial stress ratios f. Similar to the
case of MWNTs under radial pressure alone, both the net pressure p; and the outer

pressure p,(:(kﬂ) (k=12--- N) decrease monotonically from the outermost tube to the
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innermost tube, and are very low for the innermost few tubes of a thick (example 4 in
Table 4.1) or solid (example 6 in Table 4.1) MWNT. For thin MWNTs (example 1 in
Table 4.1), the outer pressure is almost linearly distributed, and the net pressure is
almost constant, showing that the applied external pressure are almost equally shared

by all concentric tubes of a thin MWNT.

In addition, the pre-buckling net pressure p; and outer pressure p,?(hl)

(k=12...N) for combined axial stress and internal pressure are shown in Figs. 4.10
to 4.12 for various internal pressure-to-axial stress ratios . In contrast to the case of
MWNTs under external pressure, as seen from Figs. 4.10 to 4.12, both the net

pressure p. and the outer pressure p,?(k“) decrease ‘monotonically from the

innermost tube to the outermost tube, and are very low for the outermost few tubes of
a thick (example 4 in Table 4.1) or solid (example 6 in Table 4.1) MWNT. Therefore,
the applied internal pressure only significantly affects the innermost few tubes, and
has little influence on the pressure distributions of the outermost tubes of thick or
solid MWNTs. On the other hand, for thin MWNTs (example 1 in Table 4.1), it is
seen from Fig. 4.10 that the outer pressure can be considered to be nearly linearly

distributed and the net pressure be nearly constant.

4.3.2 The Effect of an Internal Pressure on Critical Axial

Stress

Now, let us consider buckling of the combined axial stress and internal pressure.
The main objective is to examine the effect of internal pressure on the critical axial
stress of thin, thick and (almost) solid MWNTs. In particular, for sake of a
comparison with [87] regarding the effect of filling molecules on the critical axial
stress of CNTs, we start with the SWNT, example 3 in Table 4.1, which was also
considered in Ni et al’s MD simulation [87].

One of main results for elastic singlelayer shells under combined axial stress
and internal pressure [118, 148] is that the internal pressure has no effect on
axisymmetric buckling mode, but has a significant effect on non-axisymmetric

buckling modes. First, for SWNTs, it has been argued [120] that, due to some
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unidentified reasons (such as non-axisymmetric atomic structure of SWNT), the
actual buckling mode of SWNTSs under pure axial stress is non-axisymmetric, and can
be approximately determined by the condition that the circumferential wave-length is
equal to the axial wave-length. Based on this assumption, the relative change of the
critical axial stress for example 3 (a SWNT of diameter 1.3 nm) due to an internal
pressure is shown in Fig.4.13, as a function of the internal pressure-to-axial stress

ratio 7. It is seen from Fig.4.13 that the critical axial stress increases 10%, 20%, and

45% when the internal pressure-to-axial stress ratio is around 0.04, 0.07 and 0.14,
respectively. Therefore, the relative increase of the critical axial stress due to filling
molecules observed by Ni et al. [87], which is about 10-20% at low density or 45% at
high density, could be explained by an equivalent internal pressure about 5% or 14%
of the critical axial stress (or equivalently, by an equivalent internal pressure which is
about the critical external pressure or 2-3 times the critical external pressure). Since
the internal pressure due to filling molecules can be reasonably assumed to be of the
order of magnitude of the critical external pressure [81, 130], the present theoretical
results appear to be in qualitative agreement with Ni et al.’s results [87] obtained by
MD simulations.

For MWNTs, we consider three representative examples 1, 4 and 6 (in Table
4.1). Here, the minimum axial stresses of MWNTs are calculated as functions of the

circumferential wave-number n, for various internal pressure-to-axial stress ratios 7.

The results are shown in Figs. 4.14 to 4.16 for examples 1, 4 and 6, respectively. It is
seen from these figures that the internal pressure has no effect on the axisymmetric
buckling mode (n= 0), but significantly promotes the critical axial stress for non-
axisymmetric modes. In particular, for non-axisymmetric modes, the effect of internal
pressure on the critical axial stress is strong for thin MWNTs (Fig. 4.14), moderate
for thick MWNTs (Fig.4.15), and negligible for solid MWNTs (Fig.4.16). We noticed
that the last conclusion is different from the results in Chapter 3 combined internal
and external pressures (without axial stress) where the internal pressure has a
moderate effect on the critical external pressure even for solid MWNTSs. This can be
explained by the fact that under axial stress the individual tubes of MWNTSs become

much stiffer in radial direction than they are when the axial stress is absent.
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4.3.3 The Interaction between Axial Stress and External

Pressure

Next, let us examine elastic buckling of MWNTs under combined axial stress
and external pressure to investigate the interaction between critical axial stress and
external pressure. Here, we consider all examples 1 to 6 of MWNTs in Table 4.1, as
well as an additional thin SWNT of radius 5.3 nm . The critical axial stress (under
pure axial stress) for these seven examples is 4.481 GPa, 2.172 GPa, 63.962 GPa,
9911GPa, 4.460GPa, 16300GPa and 8.153GPa, and the critical external
pressure (under pure external pressure) is 0.0083 GPa, 0.0021 GPa, 2.098 GPa,
0.102GPa, 0.0297 GPa, 1.8805GPa and 0.0093 GPa, respectively. These critical
axial stresses (for pure axial stress) and critical external pressures (for pure external
pressure) are obtained by following the procedures demonstrated in Chapter 2. Two
main results for elastic thin shells under combined axial stress and external pressure
[118, 148] are that 1) the buckling mode can be determined uniquely and is
characterized by m =1; 2) the critical condition expressed by a relation between the
axial stress and the external pressure is nearly linear. For all examples discussed here,
the conclusion that the buckling mode can be determined uniquely remains true,
although the buckling mode is not always characterized by m =1. To further examine
the interaction between the axial stress and external pressure, the critical values of the
axial stress and corresponding external pressure are calculated with various external
pressure-to-axial stress ratios £, and the critical condition given in terms of the
above two critical values, together with the corresponding wave-numbers (m,n), is
shown in Fig.4.17 and Fig. 4.18 for a SWNT (example 3 in Table 4.1) and MWNTs
(all other examples in Table 4.1), respectively.

It is seen from Figs. 4.17 and 4.18 that, the critical condition as a relation
between the axial stress and the external pressure is apparently nonlinear for all six
examples given in Table 4.1. This discrepancy with the classic results of elastic thin
shells is due to the fact that the radius-to-thickness ratio for these examples is too
small compared to that of conventional elastic thin shells {118, 148]. In other words,

the critical condition is expected to be nearly linear when the radius-to-thickness ratio
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of CNTs is sufficiently large. In Fig.4.17, this is demonstrated by the critical
condition for a thin SWNT of radius 5.3 nm , in which the critical condition is indeed

nearly linear, because of the sufficient large ratio-to-thickness ratio.
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Fig. 4.1 Buckling of a MWNT under (a) axial stress (b) axial stress and internal pressure and

(c) axial stress and external pressure.
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Fig.4.2 The dependency of axial stress on the wave-numbers (m,n ) for example 1

(in Table 4.1) under pure axial stress.
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Fig.4.3 The dependency of axial stress on the wave-numbers (m,n) for example 2

(in Table 4.1) under pure axial stress.
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Fig.4.4 The dependency of axial stress on the wave-numbers (m,n) for example 4

(in Table 4.1) under pure axial stress.
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Fig.4.5 The dependency of axial stress on the wave-numbers (m,n) for example 5

(in Table 4.1) under pure axial stress.
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Fig.4.6 The dependency of axial stress on the wave-numbers (m,n ) for example 6

(in Table 4.1) under pure axial stress.
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Fig. 4.7 Pre-buckling pressure distribution for example 1 (in Table 4.1)

under combined axial stress and external pressure.
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Fig. 4.8 Pre-buckling pressure distribution for example 4 (in Table 4.1)

under combined axial stress and external pressure.
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Fig.4.9 Pre-buckling pressure distribution for example 6 (in Table 4.1)
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Fig. 4.10 Pre-buckling pressure distribution for example 1 (in Table 4.1)

under combined axial stress and internal pressure.
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Fig.4.11 Pre-buckling pressure distribution for example 4 (in Table 4.1)

under combined axial stress and internal pressure.
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Fig.4.12 Pre-buckling pressure distribution for example 6 (in Table 4.1)

under combined axial stress and internal pressure.
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Fig.4.13 The effect of an internal pressure on the critical axial stress of

a SWNT (example 3 in Table 4.1).
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Fig.4.14 The effect of an internal pressure on the critical axial stress for various

circumferential wave-number (example 1 in Table 4.1)
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Fig.4.15 The effect of an internal pressure on the critical axial stress for various

circumferential wave-number (example 4 in Table 4.1)
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Fig.4.16 The effect of an internal pressure on the critical axial stress for various

circumferential wave-number (example 6 in Table 4.1)
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Fig.4.17 The critical condition under combined axial stress and external

pressure for a thin SWNT of radius 5.3nm and example 3 in Table 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ELASTIC BUCKLING OF MWNTS UNDER AXIAL STRESS AND RADIAL PRESSURE 85

example 2
(m; n):(%‘ 3}

T aial { the chitical & wial

¢3fF
02

6ir

{ 1 i i 1. 1 i i i .
g 01 (42 63 04 495 08 07 08 0% 1
The external pressure / the critical external pressure
Fig. 4.18 The critical condition under combined axial stress and

external pressure for examples 1, 2, 4, 5 and 6 in Table 4.1.
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Table 4.1. The geometrical data for examples of MWNTSs considered in Chapter 4.
Here # is the innermost radius of a MWNT, N is the number of layers of the

MWNT, and % (= 0.34nm ) is the effective thickness of a SWNT.

. Thick .
Example Thin MWNTs MWNTs Solid MWNTs
The example 1 ” 3 4 5 6
number
r, (nm) 8.5 18 0.65 2.7 6.5 0.65
r,/ Nh 5.00 6.62 1.9 099 | 1.20 0.24
N 5 8 1 8 16 8

Table 4.2. Critical axial stress for thick or solid MWNTs (examples 4-6 in Table

4.1) with comparison to the critical axial stress of a related SWNT. Here o, 1s

and o

outer

the critical axial stress for a MWNT under axial stress, and o,

inner

are

critical axial stresses for related SWNTs with the innermost radius or outermost

radius of the MWNT.
Example Thick MWNTs Solid MWNTs
Example number 4 5 6
O vy (GPa) 9.91 4.46 16.30
O e (GPa) 15.40 6.40 64.00
G e (GPa) 8.18 3.58 13.72
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Table 4.3. Substitution of a five-layer elastic shell for a MWNT of sixteen layers

(example 5 in Table 4.1). Here K is the number of concentric tubes in each new layer,

and r,,,, and H are the inner radius and thickness and of each new layer.
The new layer I 1 It v VI
number
K 1 3 3 4 5
H(nm) 0.34 1.02 1.02 1.36 1.70
Vinner (1112) 6.5 6.84 7.86 8.88 10.24
ier | H 6.71 7.71 6.53 6.02
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Chapter 5

Basic Formulations for Free Vibration of MWNTs

5.1 Introduction

Free vibration of CNTs is a current topic of great interest [14, 70-74, 91-99]. In
particular, Raman spectroscopy is the dominant experimental technique for
characterization of vibrational behavior of CNTs [14]. The obtained results showed that
due to extremely small size and distinctive molecular structure, CNTs, especially
MWNTs exhibit complex vibrational behaviors, which are difficult to be observed and
analyzed directly in experiments. For example, the data obtained by Raman scattering can
only be understood on the basis of theoretical predictions [14, 70-71, 74]. Hence
sophisticated theoretical models are particularly important in predicting vibrational
properties of CNTs, and in guiding and interpreting experiments.

Atomistic approaches are standard way to study objects, like CNTs. Thus, atomistic
simulations, for instance first principles [36, 93], force-constant [91], tight binding [160]
and zone folding [161] models, are first employed to predict vibrational properties of
CNTs. However, in many cases, these discrete approaches remain computationally
prohibitive for large-scale atom systém like CNTs, in particular, MWNTs of many layers.
Thus continuum models, such as elastic beam models [106, 162-164], elastic shell
models [124-126] and other continuum models [165-170] have been widely used to catch
the main features of free vibration of CNTs. As an evidence of the effectiveness of the
contimuum models for CNTs, for example, non-coaxial vibration modes of MWNTs were
first predicted based on a multiple-beam model [106] and later, confirmed by recent
atomistic simulation [113]. On the other hand, it is noted that most of previous studies are
mainly focused on vibration of SWNTs [124-126, 165-170] or beam-like vibration of
MWNTs [106, 163-164].The systematic theoretical study on general vibrational behavior
of MWNTs has not been addressed in the literature primarily due to the lack of reliable
and efficient theoretical dynamic models for MWNTSs.

88
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Recently, to study mechanical behaviors of MWNTSs, a multiple-elastic shell model
has been developed by Ru [127-129] and effectively used to study elastic buckling of
CNTs under axial compression [127-129], radial pressure {123, 130], or combined
loadings [131], with good agreement to available experiments and atomistic simulations
of SWNTs [123] and MWNTs of as many as twenty layers [130]. Thus it is expected that
the multiple-shell model can be further employed to study the vibrational behavior of
MWNTs.

Based on the multiple-shell model [127-129], this chapter derives the general
dynamic equations and formulations for the free vibration of MWNTSs. To obtain more
accurate results and retain all the possible vibrational frequencies and associated
vibrational modes of MWNTs, three Flugge dynamic shell equations [137-138], instead
of simplified single Donnell shell equation [116], are used for the free vibration of each
individual tube of MWNTs. Using the multiple-shell model based on Flugge dynamic
equations, the analytical method for free vibration of MWNTSs is demonstrated, in detail,

for MWNTSs with simply supported ends.

5.2 The Multiple-Shell Model for Free Vibration of
MWNTs

In view of the multiple-elastic shell model [127-129], each of the nested tubes of a
MWNT is an individual elastic shell, and the adjacent tubes are coupled with each other
through the normal vdW interaction without the interlayer friction. It is known that free
vibration of a cylindrical thin shell can be described by three Flugge dynamic equations,
which are derived from the basic assumptions of linear elastic thin shell without other
further simplifications [137-138]. Applying the three dynamic equations to each nested
tube of an N -wall CNT, in the absence of tangential force, yields the following 3N
equations governing the free vibration of the N -wall CNT (k =1,2,-,N ).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BASIC FORMULATIONS FOR FREE VIBRATION OF MWNTS 90

2 2
¥ 82u v 62v ow D 3;k (1_‘,)66‘)2'(
*Aav)—E+ (1— ) x kg (1-vh)— x
2 ox00 6() 00 Ehr; kz( ) 0w,
- v
2 ox*00
ph o°v
:E—h(l—vz)r,f Y
“(-v
( )602
ou, 1 o’u, r, o*v ow D o’w
Pt (v —L+ A (1+v)—E v, L+ 1V R it
e UG Ty U TV o T ) E| T
v, *w,
+=(1-v
i 2( )axaez_
E}i(l— 2 kzal:k,
Eh 0
o’u, u, |
.3 1 k
¢ 6x3 ( V) o067
6“/( avk 2 D 2 4 2 D
v, —+—+w, +(1—v)—r - V'w, +(1-v - +
o T a0 e ( )Ehk e+ ( )Ehrkz ( ) 269 Wy,
2
+2a M:"
1 o o| L, OW,
=——(l-v = 0y
Eh( e [Ph o P
5.1

where ¢ is time; #,, v, and w;, are longitudinal, circumferential and (inward positive)
radial vibration displacements of tube k; r, is the radius of tube & ; the subscribe 1, 2,

..., N denotes the quantities of the innermost tube, its adjacent tube,..., and the
outermost tube; In particular, for a SWNT, the effective bending stiffness D, in-plane

stiffness £k and mass density per unit lateral area on the surface of each tube ph are

treated as three material constants, independent of the specific definition of thickness 7.
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In other words, for different definitions of thickness 4, Eh and ph are defined in such
way that the products of £k and ph keep the same for different definitions of 4. The
effective values of D and Eh are given in Chapter 2 (page 45) and
ph=(227g/cm*)x0.34nm [126, 132,134-136). In addition, as in the case of buckling
analysis (see Section 2.2.1) the net radial pressure p, (k=123,--,N) on tube k due to
vibration are obtained as the sum of the (inward positive) outer pressure p, ., and the
(inward positive) inner pressure p,, ,, exerted on tube k by tube k+1 and tube k-1,
respectively. According to above definitions, p,, =0 and p, ., =0. Moreover,
keeping in mind that all pressures and radial deflections result from vibration, instead of
buckling, one can directly use Egs. (2.4) and (2.5) to calculate Py a0d Py
(k=123,-,N) for free vibration of MWNTs. Accordingly, the net pressure p,
(k=123,--,N) in Egs.(5.1) can be expressed as follows [127-129, 130-136]:

Dy =P+ Py = (w, —w))

r
Dy =Py +Py=Cp (W —wy)—¢ :l‘(wz -w)
2

Fy_
Py =Pywwey T Py = _CN—I'—;y-l(WN —Wy) (5.2)

N
where c, (k=12,-,N—1) represents the vdW interaction coefficient between tube & and
tube k+1. In the presence of a high external pressure, ¢, (k=1,2--,N-1) could

significantly increase due to pressure-induced reduction of the interlayer spacing (see
Sectioﬁ 6.4.1). On the other hand, in the absence of an external pressure, which is the
case that will be discussed in Chapters 7 and 8, or when the pressure effect on the vdW
interaction coefficients is neglected, which is the case in Chapters 2 to 4, the vdW

interaction coefficient ¢, (k =1,2,---,N —1) associated with equilibrium interlayer spacing

(0.34nm ) is a constant given by Eq. (2.6). In addition, it is noted in Eqs.(5.1) that the N
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dynamic equations in radial direction are coupled with each other through the vdW

interaction terms p, (k=1L.2,--,N).

5.3 Analysis Method for Free Vibration of MWNTs

To catch main features of free vibration of MWNTSs, let us consider individual

MWNTs with simply supported ends. To satisfy the specific boundary condition, the
solution to Egs. (5.1) are given by (k =1,2,---,N)

U, (x,0,0)=U, cos—’f}x-cosnﬁ-ei“
v (x,0,0) =V, sin-'-”i’f-x~sinn.9-e"“"
w, (x,0,0) =W, sin%@x-cos ng-e (5.3)

where real numbers U, , ¥, and W, denote the longitudinal, circumferential and radial
displacement amplitudes of tube k, L is the length of an N —wall CNT, @ (@ =27,
f is frequency) represents the angular frequency, m is the axial half wave number and

n is the circumferential wave number. Substituting Egs. (5.2) and (5.3) into (5.1) leads to
the following 3N equations (k =12,--,N).

AT Sl B R N RN - P RN A T gy, (P
{rk(L) 5 (lv)n+Eh(lv)w}Uk+{2 (1 v)(L)}Vk+

{v-rknJ-[—r; -(inz’f)-”+%.(1~v)-(%f)-n2]}-wk =0
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7 2 D 1 o “ .

where k=(1-v )-Eh—-—z—, ty=ryy =0 and W, =W,,, =0. In addition, in the third
i

equation of (5.4), A=1 for k= 1,2,---,N -1, while A=0 for k=N.Itis easy to see

that (5.4) can be written in the following form

N K

M{(n’m)’a)}3Nx3N e =0

z§ = zq

7w (5.5)
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where M,y i1s a 3N x3N matrix, whose elements are functions of (m,n) and w.

The condition for existence of non-zero solutions U, , ¥, and W, (k=1,2,--,N)is

detM =0 (5.6)

Since the key parameters of free vibration modes are the normalized axial wavelength

L/(rym) (normalized by the outermost diameter 2r,) and the circumferential wave
number 7, our results for MWNTs will be given in terms of (L /(rym), n). With given

L{(rym) and n, condition (5.6) determines 3N frequencies for an N —wall CNT.

Substitution of a frequency into (5.5) yields amplitude ratios 2"—, Ve and L
w, W, Wy

(k=12,--,N), defining the associated mode of the N —wall CNT. Therefore, for each
combination of ( L/(rym),n), the multiple-shell model gives 3N vibration frequencies

associated with 3N vibration modes for an N —wall CNT.
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Chapter 6

Radial Breathing Vibration of MWNTSs

6.1 Introduction

Raman-active radial breathing modes (RBMs) of CNTs have been studied
extensively in last decade [24, 36, 70-74, 91-99]. It has been shown that for an isolated
SWNT, RBM frequency is inversely proportional to its diameter [36, 70, 91-93]. A
similar conclusion has also been drawn for the RBMs of SWNT ropes [77, 94-99, 170]
and MWNTs of very small innermost diameter (< 2nm) [24, 71, 73-74], with RBM
frequencies up-shifted around 5% to 10% (compared to isolated SWNTs) due to the
intertube vdW interaction. This simple diameter dependence of RBM frequency and its
sensitivity to the intertube vdW interaction make RBM a valuable probe for the structure
and properﬁes of CNTs. ‘

Recently, the pressure effect on Raman-active modes of CNTs [77-83] is of great
interest, especially for SWNT ropes and MWNTSs. This is because an externally applied
pressure can effectively enhance the intertube vdW interaction and the intra-tube carbon-

carbon (¢ —c¢) interaction and thus provides a useful method to study both the intertube

and intra-tube interactions occurring in SWNT ropes and MWNTs. Previous studies are
mainly focused on RBMs of SWNT ropes [77-79, 82-83] and T —modes of both SWNTs
ropes and MWNTs [77-78, 80-82], showing that the vibrational frequencies increase
monotonically with the external pressure. The pressure effects on 7 —modes or RBM of
an isolated SWNT are shown as a result of the pressure-induced in-plane compressive
strains [80-82], which cause a reduction of the intra-tube c¢—c distance and a small
change in the intra-tube force constants [171], elastic constants, mass density and
diameter [79]. On the other hand, for RBMs of SWNT ropes the most significant pressure
effect is attributed to the increased intertube vdW interaction due to external pressure [77,
79], while the small changes in the material constants and the diameter of individual
SWNTs play only a relatively minor role. So far, to our the present author’s knowledge,

the pressure effect on RBMs of MWNTs is almost absent from the literature. This is

95
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partly due to the fact that RBMs of MWNTs exhibit complex frequency spectrum and
cannot be easily observed and analyzed without a theoretical guidance. In addition, onlty
the RBMs associated with very thin innermost tube of MWNTs (with the innermost
diameter < 2 nm ) have high enough frequencies and could be observed in Raman spectra
[71-74]. Unfortunately, as shown in the present work, the significant pressure effect
occurs only for those RBMs in which the outermost few layers are substantially involved
and adjacent outermost layers vibrate in opposite directions (counter-phase) with
significant change in interlayer spacing. This can explain why the pressure effect on
RBMs of MWNTs in Raman spectra remains almost absent in the literature.

In this chapter, the dynamic Eqgs. (5.1) are used first to explain the main features of
RBMs of CNTs observed in experiments and atomistic simulations. This offers a good
opportunity to examine the effectiveness of the present shell model in studying free
vibrational of CNTs. Then, we shall further investigate the pressure effect on RBMs of
MWNTs for which detailed experimental data or MD simulations are not yet available in
the literature. Here, the pressure dependence of RBMs of MWNTs is mainly attributed to
an increase of the interlayer vdW interaction coefficients due to pressure-induced
reduction of the interlayer spacing. The results show that in the absence of external
pressure, the present shell model is in excellent agreement with experiments and
atomistic modeling in calculating the RBM frequencies of CNTs. In particular, all the
main features of RBMs of MWNTs obtained by experiments and atomistic simulations
can be clearly explained by the present shell model. In the presence of an external
pressure, RBM frequencies of MWNTs generally increase with increasing external
pressure, and the most significant pressure effect is associated with the highest-frequency
RBM for large-diameter MWNTs (the innermost diameter > 2nm), or an intermediate

frequency RBM for small-diameter MWNTs (the innermost diameter < 2 nm ).

6.2 Basic Equations for Radial Breathing Vibration

Based on the present elastic shell model [127-129], let us first derive the governing
equations for RBMs of MWNTs. To this end, we start with SWNTSs, whose vibrational
behaviors are governed by Eqgs. (5.1) with £ =1.
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6.2.1 Basic Equation for SWNTs

It is known that RBM of SWNTs is characterized by the only nonzero radial
displacement, which is spatially uniform and thus independent of x and &. In this special
case, dynamic Eqgs. (5.1) with & =1 reduce to the following one equation for the (inward

positive) radial deflection w(#) of an individual SWNT.

o*w(t) _
or?

Wt)+-§%(l—v2)

2
¥

—ﬁa—vz).p 6.1)

Here, p represents a net (inward positive) radial pressure exerted on the SWNT. It

should be pointed out that a small term k= 1-v?) Eﬂh . ——12~ in Egs. (5.1) with £ =1 has
¥

been neglected as compared to unity. Thus, for RBMs of CNTs, only two material
constants are needed, i.e., in-plane stiffness £2 and mass density per unit lateral surface

ph. Bending stiffness D of SWNTs does not appear because RBM does not involve

bending deformation. In addition, as will be explained later, the pressure dependence of

the two material constants (Eh,ph) is negligibly small compared to the pressure

dependence of the interlayer vdW interaction of MWNTs and thus is ignored in the
present work. For RBM of SWNTs in the absence of net radial pressure p, Eq.(6.1)

gives the RBM frequency
f =230cm™ (nm/2r) 6.2)

which is in good agreement with experimental result f =224cm™'(nm/2r)[92], or

Mahan’s 3D elasticity result f =227cm™" (nm/2r) [165].

6.2.2 Basic Equations for MWNTs

In the present work, we study the RBMs of an N -wall CNT subjected to an
external pressure P, as shown in Fig.6.1. Applying Eq (6.1) to each of the N tubes of an
N —wall CNT leads to N coupled dynamic equations, and the total radial deflection of
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tube k (k=12,--,N) is equal to wy+w,(t), where w; is the initial equilibrium
deflection due to the external pressure P prior to vibration and w,(#) is the time-

dependent deflection due to RB vibration. Accordingly, the total net pressure

p, (k=12,--,N) acting on tube & has two components: one is the initial net pressure

Py due to external pressure P without vibration, which is a constant independent of time

1. The other is the additional net pressure due to RB vibration, which can be calculated by
using Eqs.(5.2). Thus, the total net pressures acting on tube 1, tube 2, ..., and tube N are

given as follows:

P =¢(w, _Wx)"'plo’

’
b, :(cz(“@ -w,)—¢ 'r_l(wz “Wl)}“*'l’g

2

.
Py = (_ Cy- "%L(WN — Wy )J + p?v (6.3)

N

To determine the initial equilibrium deflections w!(k =1,2,--,N), the equilibrium
equations for N concentric tubes of an N -wall CNT prior to vibration give:
0 0 0
Wi 1 2y 0 W 1 2y .0 wy _ 1 2y 0
—=—0-v")-p,, —=—A-v*)-p,, ..., —=—(A-v7)- 6.4
7‘12 Eh( ) pl r22 Eh( ) pZ r]s Eh( ) pN ( )
Recall that the total radial deflection of tube & (k=1,2,--,N) in Eq.(6.1) is equal to

we+w, (), the following N dynamic equations for RBMs of an N-wall CNT can be
obtained from Eqs.(6.1), (6.3) and (6.4) as follows.

1 _CI(P) -w+ph 62WI+CI(P) W =
rP(1-v?)  Eh ‘
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2
CI(P)'r_l.wl_*_ . 1 . 6P o) -W2+ph 6W2+C2(P) W =
r,(1-v®) Eh En r,

P 2
CNE}(lP)‘"rkL‘WN_I‘F . 1 _ _CN—I( ).rN_l .WN+p_h.6u;N:
Ty ry(1-v°) Eh 1y Eh Ot

(6.5)

As mentioned before, the interlayer vdW interaction coefficient ¢, (P) (k =12,--,N—1)

between tube k and tube k+1 is generally a function of externally applied radial pressure
P. In particular, when P =0, ¢,(0)=c, given by (2.6). In Chapter 6, we shall classify
MWNTs into two types, i.e., large-diameter MWNTs defined by the innermost diameter
larger than 2 nm , and small-diameter MWNTs defined by the innermost diameter smaller

than 2 nm .

6.3 Radial Breathing Vibration without External Pressure

In order to identify the main features of RBMs of MWNTs and to demonstrate the
accuracy and effectiveness of the multiple-shell model, let us first study RBMs of
MWNTs in the absence of external pressure, and compare our results to available

experimental data and atomistic simulations. In the absence of external pressure,
w, =0 (k=12,-,N) and ¢, =c,=---=c,_, =c,, where ¢, is given by Eq.(2.6), and
RBMs of an N —wall CNT governed by (6.5) are of the form (k =1,2,...,N)

w ()=W, -e* (6.6)
where real number W, (k=1.2,...,N) represents the radial displacement amplitude of

tube £ and @ denotes the angular frequency of the RBMs. Introducing (6.6), together

with ¢, =¢, =---=c¢,_; =¢, into Egs. (6.5) gives N equations:
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M(®) y.y - *1=0 6.7

where M(w) is an NxN coefficient matrix. The existence condition of a non-zero

solution of W, (k=12,..,N) is

detM =0 (6.8)

This condition determines the N RBM frequencies of an N -wall CNT. Substituting
each of the N frequencies into Egs. (6.5), one can determine the associated amplitude

ratios 4,/ Ay, A4,/ Ay, -, 4y 4y for each frequency. Thus, for an N -wall CNT, there

are a total of N RBM frequencies, corresponding to N different RB vibrational patterns.
Following other authors [74], the highest-frequency RBM is referred to as mode 1, the
second highest-frequency RBM as mode 2, ..., and the lowest-frequency RBM as mode
N.

6.3.1 Radial Breathing Frequencies

Let us first compare RBM frequencies of MWNTs given by the present multiple-
shell model with atomistic models and experiments. Following the procedure shown
above, RBM frequencies of DWNTs and three-wall CNTs with the innermost radius
ranging from 0.34nm to 1.36nm are calculated and shown graphically in Figs. 6.2 and
6.3, with comparison to Popov et al.’s MD simulation results [24]. It is seen that the
present shell model is in excellent agreement with the MD simulations of RMBs for

DWNTs and three-wall CNTs, with relative errors less than 5%.

Furthermore, to examine the ¢, value of the vdW interaction coefficient given by
Eq.(2.6), we study the sensitiveness of frequencies on the vdW coefficient c. Since the
interlayer interaction has little influence on the RBM frequencies of small-radius DWNTs
or 3-wall CNTs (such as the innermost radius equal to 0.34nm ), the RBM frequencies are

insensitive to the coefficient ¢ for small-radius DWNTs or 3-wall CNTs. Thus, to
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identify the best value of the coefficient ¢, we consider a DWMT and a three-wall CNT
of relatively large innermost radius 1.36 nm and 1.02 nm , respectively. Moreover, because -
the lowest RBM frequency of large-radius MWNTSs (the innermost radius larger than
1nm) is associated with an in-phase mode, which does not sensitively depend on the vdW
interaction, the dependency on the vdW interaction coefficient ¢ is shown in Fig. 6.4
only for the higher RBM frequencies of the large-radius DWNT and 3-wall CNT. It is

seen from Fig.6.4 that a relative change of 20% occurs when the coefficient ¢, increases
4 4 0

or decreases by a factor of two. Therefore, the excellent agreement given in Figs.6.2 and

6.3 between the multiple-shell model based on the coefficient ¢, (2.6) and the MD
simulations [24] suggests that the coefficient ¢, given by Eq. (2.6) can be regarded as a

good value at least for CNTs of larger radii (the innermost radius is not smaller than 1
nm). This offers an evidence for the accuracy of the coefficient (2.6), which was
suggested in Section 2.2 and applied to buckling analysis of MWNTs in Chapters 2 to 4.

Moreover, existing studies [71, 73-74] show that only mode 1 (with the highest
frequency) of small-radius MWNTSs has a considerable Raman intensity and can be easily
observed in Raman spectra. Thus, to further compare the present shell model with
available experiments and atomistic simulation we shall focus on RB mode 1 of MWNTs
of small innermost diameter varying from 0.41nm to 1.7am and the number of layers
ranging from 5 to 50. The théined results for the mode 1 (or 2 and 3) of all these small-
radius MWNTs are shown in Table 6.1, in comparison with the experimental data [71]
and the atomistic simulation [74].

As seen in Table 6.1, the freQuency of mode 1 given by the present shell model
decreases monotonically with increasing innermost diameter of MWNTs. This frequency-
diameter relation is consistent with the results obtained by the experimental data [71] and
the atomistic model [74] for the same examples as shown in Table 6.1. On the other hand,
the highest frequency (mode 1) given by the present shell model remains almost constant
when the number of layers increases from 5 to 50. In particular, for the MWNT of
innermost diameter 1.2 nm , both the present shell model and the atomistic model {74]
show that all three highest frequencies associated with modes 1, 2 and 3 are affected only
slightly by the number of layers varying from 5 to 50. In fact, as will be explained later,

for small-radius MWNTSs of many layers, mode 1 (or even mode 2 and mode 3) is
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basically associated with the RBM of the individual innermost tube (or the second and
third innermost tube), and its frequency is primarily determined by the innermost
diameter and almost independent of the number of layers of MWNTSs. This result
‘explains why Raman study on RBMs of small-diameter MWNTs can be used to
determine the innermost diameter of MWNTSs [71, 74] regardless of the number of layers.
Furthermore, it is seen in Table 6.1 that the highest RBM frequency for mode 1 (or the
highest three frequencies for mode 1 to mode 3) predicted by the present shell model for
| MWNTs of the innermost diameter ranging from 0.41 nm to 1.7am are consistently in
excellent agreement with those obtained by experiment [71] and atomistic model [74]

with relative errors less than 5%.

6.3.2 Radial Breathing Modes

Next, let us further discuss N RBMs of an N -wall CNT for four illustrative
examples, i.e.,, DWNTs (5,5)@(10, 10) and (20,20)@(25, 25), and 3-wall CNTs
(5,5@(10, 10)@(15,15) and (15,15)@(20,20)@(25,25). Here, (20,20)@(25, 25) and
(15,15)@(20,20)@(25,25) are MWNTs of large innermost diameter 2.72anm and
2.04 nm , respectively, while (5,5)@(10, 10) and (5,5)@(10, 10)@(15,15) are MWNTs of
small innermost diameter 0.68am . By following the procedure described above, the
vibrational amplitude ratios of individual tubes are calculated in Table 6.2 for the four
examples, and the associated RBMs are illustrated in Figs. 6.5 and 6.6, for the DWNTs
and 3-wall CNTs, respectively.

It is noted in Figs. 6.5 and 6.6 that, for DWNT (20, 20)@(25, 25) and 3-wall CNT
(15,15)@(20,20)@(25, 25) of larger innermost diameter 2.72nm and 2.04 nm , all of the
constituent tubes are substantially involved in the RB vibration. In particular, the counter-
phase mode, characterized by opposite vibration directions of adjacent tubes, has the
highest frequency, the in-phase mode in which all tubes vibrate in the same direction has
the lowest frequency, and the mixed-phase mode for the 3-wall CNT has an intermediate
frequency. Based on the present shell model, this conclusion is generally true even for
large-diameter MWNT's of many layers.

On the other hand, it is also seen in Figs. 6.5 and 6.6 that for DWNT (5,5)@(10, 10)
and 3-wall CNT (5,5)@(10, 10)@(15,15) of very small innermost diameter 0.68 nm , the

RBMs are characterized almost by the RBMs of individual tubes. For example, mode 1 is
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basically the RBM of tube 1; mode 2 is from tube 2, and mode 3 is from tube 3.
Similarly, for small-diameter MWNT's of many layers, the present shell model shows that
mode 1 is always essentially the RBM of the innermost tube 1. When the innermost tube
1 is very thin (for example, with diameter < 1.2nm ), mode 2 and mode 3 are also
essentially the RBMs of the second and third innermost tube, respectively. However,
other modes (with mode number larger than 3) with lower frequencies are usually more
or less associated with collective RB vibration of many tubes. In particular, similar to
large-diameter MWNTs, the in-phase RBM of small-diameter MWNTSs in which all tubes
vibrate in the same direction is always associated with the lowest frequency.

In summary, all distinctive features of RBMs of MWNTSs obtained by the present
shell model agree well with the results of MD simulation [24] and atomistic model [74],
and are consistent with the experiment [71]. Therefore the multiple-elastic shell model
does offer a simple and effective method for RBMs of MWNT's and can be used to study
more complex vibrational behavior of MWNTs for which detailed experiments or MD

simulations are not yet available in the literature.

6.4 Radial Breathing Vibration under External Pressure

In this section, the pressure effect on RBMs of MWNTs will be further studied. For
atomic systems like SWNT ropes and MWNTSs, high external pressure results in a
reduction of intertube spacing [75-76] and a compression of intratube ¢—c distance of
individual SWNTs [169]. The reduction of intertube spacing could cause significant
increase in the intertube force constant or the vdW interaction coefficient ¢, while the
compression of intratube ¢ —c¢ distance usually leads to only slight decrease in diameter
and small increase in the mass density and the in-plane elastic constants [79]. Previous
studies [77-82] showed that T —mode frequency of all CNT systems and the RBM
frequency of SWNT ropes increase monotonically with increasing external pressure. In
particular, for the RBM of SWNT ropes of diameter not smaller than 1.3 nm , the pressure
effect on the up-shift of RBM frequency due to increase of the intertube force constant is
found to be about an order of magnitude larger than the pressure effects due to the

compression of individual SWNTs [79]. Therefore it is expected that for MWNTSs
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(usually, of innermost diameter 1.3 nm or larger), the pressure effect due to the pressure-
induced increase in the vdW interaction coefficients is dominant over other pressure
effects due to the pressure-induced small changes in material constants ( E2 and ph) and
the radius. Based on this understanding, this section focuses on the pressure effect due to
the increased vdW interaction coefficients, while the in-plane stiffness £/ and the mass
density ph for individual tubes are treated as constants, independent of the external
pressure. In what follows, we shall consider 8 examples, as shown in Table 6.3, namely
DWNT, 5-wall, 10-wall and 20-wall CNTs of innermost diameter 1.3nm and 3.0nm,

respectively.

6.4.1 The Pressure effect on the vdW interaction coefficient

It is seen from Eqgs. (6.5) that, to calculated the pressure dependence of RBM

frequencies for MWNTSs, we have to determine the vdW interaction coefficients ¢,, c,

---c,_, as functions of external pressure P.

6.4.1.1 Analysis Method

By using the continuum Lennard-Jone (L-J) model [20], the potential energies of
interaction between two adjacent tubes of a MWNT can be expressed approximately in

terms of the interlayer spacing s as [20]

0.34

s

0.34
U(s)=A4-[()* —0-4-(T)l°] (6.9)
where U(s) denotes the potential energies of interaction per carbon atom (the average
area of a carbon atom on the surface of SWNTs is (0.142nm)*) between two concentric

SWNTs; 0.34 is the value of equilibrium interlayer spacing in nanometer and 4 is a
constant. Substitution of the data obtained in [146] for two concentric SWNTs into Eq.
(6.9) yields

A=-61.665mev/atom (6.10)
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Based on Eqgs. (6.9) and (6.10), the potential energy U(s) is calculated and plotted

in Fig.6.7 vs. the interlayer spacing s. Furthermore, the second derivative of (6.9) gives

the vdW interaction coefficient ¢ as a function of the interlayer spacing s

c(8)=~a- s+ p-52 GPalnm (6.11)

where a =0.131GPa-nm’ and B = 4.445x10™*GPa-nm" . The relation between ¢ and

s given by Eq. (6.11) is displayed in Fig.6.8. In particular, it is noted that the value of

vdW interaction coefficient associated with s, = 0.34nm is ¢, =101.59GPa/nm , in good
agreement with the value ¢, = 99.18GPa/nm (see Eq. 2.6) used in our previous work.
Consistent with the result obtained in Section 6.3.1 for the accuracy of the value ¢, (2.6),
this calculation offers a further confirmation that ¢, given by Eq.(2.6) is accurate for

characterization of the interlayer vdW interaction in MWNTs

Next let us use Eq.(6.11) to determine the vdW coefficient ¢, (k=1,2,..., N —1) of
an N -wall CNT under an external pressure P. For tube k (k=12,...,N), the pre-
vibration uniform circumferential membrane force F, is related to the pre-vibration net
(inward) pressure p, by F, =—p;-r,. This relation combined with the radial

equilibrium condition of a thin cylindrical shell [141] gives

Eh Ar,
;= c— 6.12
pk 1__‘/2 rkz ( )

where Ar, (= wy) is the pressure-induced uniform radial displacement or reduction of 7,

prior to vibration. On the other hand, the multiple-elastic shell model [127-129] gives

o o r - o
P = Praesyy — %' Py (6.13)

k
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where pj ., represents the pressure acting on tube k due to tube k+1 prior to
vibration. In particular, p, is the applied internal pressure, which is zero in the present

analysis, and p?,,( sy 1S the applied external pressure P. Based on Eq. (6.9)

dU(s
Pregesty = —ldi ) (6.14)

where s, (k=12,..,N —1) denotes the initial or pre-vibration interlayer spacing between

tube k and tube £ +1. In the presence of an external pressure, we have

s, =0.34nm — (Ar,,~Ar,) (6.15)

Using Egs. (6.9), (6.12), (6.14) and (6.15) to eliminate all p;, p;,, and s, in Eq.
(6.13) gives N equations to determine the N unknowns Ar,Ar,,..,and Ar,,.
Substituting Az,,Ar,,...,and Ar, into Eq. (6.15) and then (6.11), one can calculate (N -1)

vdW interaction coefficients, c,,c,,..., and c,_, for any given external pressure P. In

. . . .. . . .. Ac
this section, the pressure-induced relative increase of vdW interaction coefficient —%
c
0

. . A

(Ac, =c, —¢c,, k=12,..,N—1) and the relative reduction of radius —* (k=12,.,N)
T

“are calculated for the eight examples in Table 6.3, for an external pressure increasing

from 1 GPa to 5GPa.

6.4.1.2 Results and Discussion

The relative increases of the vdW interaction coefficients are shown in Figs.6.9 and
6.10 for the large-diameter MWNTs, examples 1-4 and the small-diameter MWNTs,
examples 5-8 (in Table 6.3), respectively. It is evident in these two figures that the
relative increase of the vdW coefficient decreases from the outermost tube to the
innermost tube and is most significant only for the outermost few tubes. For 20-wall

CNTs, examples 4 and 8, when the applied pressure increases from 1 GPa to 5GPa, ¢,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RADIAL BREATHING VIBRATION OF MWNTS 107

the vdW interaction coefficient between the tube 19 and the outermost tube 20, is

increased by a factor of 1.4 to 3, while ¢, ¢,, ¢; and ¢, remain almost unchanged.

Analogous results are also obtained for 5-wall CNTs, examples 2 and 6, and 10-wall
CNTs, examples 3 and 7. Therefore, it is concluded that the high external pressure can
considerably increase the vdW interaction coefficients between the outermost few tubes
but has little effect on those between the innermost few tubes. On the other hand, when
the number of layers decreases, the vdW interaction coefficients between the outermost
few tubes become less sensitive to the external pressure. For example, in Figs.6.9 and
6.10, it is seen that, regardless of the innermost diameter and the applied external
pressure, the relative increase of the vdW interaction coefficient between the outermost
- two tubes decreases from about 40% ~ 200% to 20% ~ 160% when the number of layefs
drops from 20, to 10 and to 5. In addition, comparison between Figs.6.9 and 6.10 shows
that the pressure effects on the vdW interaction coefficients for the large-diameter
MWNTs, examples 1-4 (see Fig.6.9), are more significant than those for the small-
diameter MWNTs, example 5-8 (see.Fig.6.10). The qualitatively similar results can be
obtained for the relative reduction of the radii of the large-diameter MWNTs, examples
1-4 and the small-diameter MWNTs, examples 5-8, as shown in Figs.6.11 and 6.12,
respectively. Because the vdW interaction coefficient is very sensitive to even a small
change in the interlayer spacing, the relative changes in the vdW coefficients are usually

about 2 orders of magnitudes larger than the relative changes in the radii.

6.4.2 The Pressure Effect on Radial Breathing Modes

In Section 6.4.1, the distribution of the vdW interaction coefficients of a MWNT is
determined as a function of an external pressure. Then, in a similar way as shown in
Section 6.3, we are able to calculate RBM frequencies of a MWNT under the external
pressure. Here we shall consider 6 examples in Table 6.3: the large-diameter MWNTs,
examples 1-3 and the small-diameter MWNTSs, examples 5-7. The pressure dependences
of RBM frequencies obtained for all these examples are plotted in Figs. 6.13 to 6.17,
respectively. As expected, all these figures show that RBM frequencies of a MWNT

increase almost linearly with increasing external pressure up to S GPa . Thus, the pressure

derivative df.,,/dP can be approximately calculated over the pressure range. This
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offers a simple method to evaluate the pressure effect on RBMs. Here, it is noted that for
a MWNT, the pressure dependence of RBM frequency varies for different RBMs, and
also changes with the innermost diameter of the MWNT. The pressure derivatives for all

RBMs of the above six examples are shown in Fig. 6.18.

6.4.2.1 Large-diameter MWNT's

Here, let us first examine the pressure effect on RBMs of the large-diameter
MWNTs, examples 1-3 (in Table 6.3). For example, in example 1 in which mode 1 is
counter-phase and mode 2 is in-phase, as seen in Fig. 6.18 (a), the pressure derivative for
mode 1 (5.77cm™ /GPa) is more than an order of magnitude larger than the pressure
derivative for mode 2 (0.11cm™ / GPa), although both modes are associated with the
same vdW interaction coefficient. This provides clear evidence that the external pressure-
induced increase in the vdW interaction coefficient has a pronounced effect only on
counter-phase modes, but not on in-phase modes. Further, it is seen in Figs. 6.18 (b) and
(c) that for examples 2 and 3, the largest pressure derivatives, 7.66cm™ /GPa and
9.76cm™ / GPa respectively, are obtained for mode 1 of highest frequency. Then the
pressure derivative decreases almost monotonically with the mode number and reaches

the minimum for the mode of lowest frequency, i.e., 0.34cm™ /GPa for mode 5 of

example 2 and 0.24cm™ /GPa for mode 10 of example 3, respectively. As mentioned
before, for a large-diameter N —wall CNT, the RBMs are essentially collective
vibrations of all concentric tubes, among which mode 1 is always a completely counter-
phase RB vibration (that is, any two adjacent tubes vibrate in opposite direction). From
mode 2 to mode N —1, the RB vibration is mixed—phase in the sense that some adjacent
tubes vibrate counter-phase and other adjacent tubes vibrate in-phase. A completely in-
phase RB vibration (that is, all tubes vibrate in the same direction) is achieved for
mode N of the lowest frequency. Indeed, the pressure effect on RBMs of large-diameter
MWNTs increases monotonically from lower-frequency to higher-frequency modes, and
the maximum pressure derivative is always associated with the completely counter-phase

mode 1 of highest frequency.
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6.4.2.2 Small-diameter MWNTs

Next let us study the pressure effect on RBMs of the small-diameter MWNTSs,
examples 5-7 (in Table 6.3). First, it is shown in Fig.6.18 (a) that the pressure effect on
mode 1 of example 5 is very small as compared to that for mode 1 of example 1 (large-
diameter). The small pressure effect for mode 1 of example S can be explained by the fact
that mode 1 of the small-diameter DWNT is basically the RBM of the individual tube 1
(see Fig.6-5), which is not significantly affected by an external pressure. In this case, the
vdW interaction between adjacent tubes has much less effect on RBM frequency than it
does in large-diameter DWNTs. Thus intensifying the vdW interaction by applying an
external pressure cannot considerably affect mode 1 of a small-diameter DWNT as
efficiently as it does for mode 1 of a large-diameter DWNT. Moreover, it is seen in
Figs.6.18 (b) and (c) that for examples 6 and 7, very small pressure effect is obtained nbt
only for mode 1 but also for the lowest-frequency mode (mode 5 and mode 10,
respectively), with the pressure derivatives between 0.01 cm™ / GPa and 0.51cm™ / GPa.
On the other hand, the pressure derivatives of some intermediate-frequency modes can be
a few times or more than an order of magnitude larger. For example, the maximum
pressure derivative 4.13cm™ / GPa or 8.25cm™ / GPa is attained for mode 3 of example
6 or 7, respectively. In fact, as pointed out before, for a small-diameter MWNT, mode 1
1s almost the RBM of the individual innermost tube 1. Therefore, mode 1 of the

individual innermost tube 1 is affected only by the vdW interaction coefficient ¢, which,

as shown before, is not significantly affected by the external pressure. In addition, as
shown for example 5, this RBM of the individual innermost tube of a small-diameter

MWNT is not sensitive to even significant change in the vdW interaction coefficient ¢, .

This explains why very small pressure effect occurs for mode 1 of examples 6 and 7. On
the other hand, because the lowest-frequency mode, such as mode 5 of example 6 (5-
wall) or mode 10 of example 7 (10-wall), is completely in-phase RBM without
signiﬁcant change in the interlayer spacing, it will not be significantly affected by the
pressure-induced increase in the vdW interaction coefficients. Therefore, for small-
diameter MWNTs, the most significant pressure effect occurs only for a few
intermediate-frequency modes in which many outermost tubes are involved substantially

and vibrate in opposite directions (counter-phase).
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Finally, it is seen in Fig.6.18 that when the number of layers increases from 2 to 5
or to 10, the maximum pressure derivative for a MWNT of innermost diameter 1.3 nm
increases from 1.46cm™/GPa to 4.13 cm™ /GPa or to 825cm™ /GPa, while the
maximum pressure derivative predicted for a 3 nm - innermost diameter MWNT of the
same number of layers is 5.77c¢cm™' /GPa, 7.66cm™/GPa and 9.76cm™ /GPa,
respectively. This indicates that the pressure effect is usually more significant for the
RBMs of large-diameter MWNTs than for small-diameter MWNTSs. In addition, for
MWNTs of the same innermost diameter, the pressure effect increases with the

increasing number of layers for both large-diameter and small-diameter MWNTs.
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Fig.6.1 RBM vibration of an N -wall CNT subjected to an external pressure P.
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Fig.6.2 RBM frequencies predicted by the multiple-shell model and MD

simulation [24] for DWNTs of various outer radii.
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Fig.6.3 RBM frequencies predicted by the multiple-shell model and MD

simulation [24] for three-wall CNTs of various outermost radii.
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1. Highest frequency of the 3-wall CNT
2: Second frequency of the 3-wall CNT

_3: Higher frequency of the DWNT
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Fig. 6.4 Dependence of the RBM frequencies of a DWNT of inner radius
1.36nm and a three-wall CNT of the innermost radius 1.02nm on
the vdW interaction coefficient.
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Fig.6.5 The RBMs of DWNTs (5,5@(10, 10) and (20,20)@(25, 25) with
amplitude ratios shown in Table 6.2.
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Fig.6.6 The RBMs of three-wall CNTs (5,5@(10, 10)@(15,15) and
(15,15)@(20,20)@(25,25) with amplitude ratios shown in Table 6.2.
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Fig.6.7 Potential energy of the vdW interaction between two concentric

SWNTs as a function of interlayer spacing.

20

200

150

100

50

vdW interction coeffcient ¢ (GPa/mm)

[] 1 1 1 i 1 ]
032 0325 033 033 034 0345 03 035 03
Interlayer spacing s {nmy)
Fig. 6.8 The vdW interaction coefficient between two concentric SWNTs
as a function of interlayer spacing.
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Fig.6.9 The relative increase of the vdW coefficient as a function of external

pressure for large-diameter MWNTSs (examples 1-4 in Table 6.3).
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Fig.6.10 The relative increase of the vdW coefficient as a function of external
pressure for small-diameter MWNTs (examples 5-8 in Table 6.3).
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Fig.6.11The relative reduction of radius as a function of external pressure
for large-diameter MWNTs (examples 1-4 in Table 6.3).
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Fig.6.12 The relative reduction of radius as a function of external pressure
for small-diameter MWNTSs (examples 5-8 in Table 6.3)..
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Fig.6.13 Pressure dependence of RBM frequencies for example 1(asterisk, large-

diameter) and example 5 (circle, small-diameter) in Table 6.3.
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Fig. 6.14 Pressure dependence of RBM frequencies for example 2 (large-
diameter) in Table 6.3.
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Fig.6.16 Pressure dependence of RBM frequencies for example 6 (small-
diameter) in Table 6.3.
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Fig.6.17 Pressure dependence of RBM frequencies for example 7 (small-

diameter) in Table 6.3.
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Fig.6.18 Pressure derivatives df,,, /dP of RBM frequencies for (a) DWNTs, examples 1

and 5, (b) five-wall CNTs, examples 2 and 6 and (c) ten-wall CNTs, examples 3 and
7 in Table 6.3.
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Table 6.1 The RBM frequencies fg,, (= ®/22v, v is the speed of light) predicted by the
multiple-shell model for N -wall CNTs of small innermost diameter d, in comparison with
the results of experiment [71] and atomistic model [74].

Experiment {71] or
Atomistic model [74] The multiple- elastic shell model
d, Mode
N fRBM(cm‘l) N fRBM(cm—l)

0.41 1 ~15 570 [71] 5-50 576
0.60 1 ~15 392 [71] 5-50 395
0.84 1 ~15 279 [71] 5-50 286
1.08 1 ~15 217 [71] 5-50 226

1 ~199 [74] 205
1.20 2 5-50 ~146 [74] 5-50 150

3 ~125 [74] 126-129
1.36 1 20 180 [74] 5-50 184
1.54 1 20 162 [74] 5-50 166
1.70 1 20 149 [74] 5-50 154

Table 6.2 Amplitude ratios predicted by the multiple-shell model for the RBMs of four
examples. Here 4, (k =12,--,N) is the amplitude of tube £ of MWNTs.

. Intermediate
MWNTs _ Highest frequency frequency Lowest frequency

(5,5@(10, 10) A4,/ 4, =-51 A,/ A =25

(20,20)@(25, 25) A,/4,=-19 4,14, =14

A /4, =-44 A,/ 4, =21 A, 74, =138

(5,5@(10, 10)@(15,15) 3

4,14, =1.8x10 A, /4, =-7.6 A,/4, =51

(15,15)@(20, 20)@(25.25) A, /4,=-1.6 A,/4, =10 A, /4,=55
A /4,=63 A, /4, =-19 A,/4,=19

Table 6.3 Geometric data for eight examples of MWNTs used in Section 6.4.

Example 1 2 3 4 5 6 7 8

Number of layers 2 5 10 20 2 5 10 20

The innermost
diameter (nm) 3.0 L3
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Chapter 7

General Features of Free Vibration of MWNTSs

7.1 Introduction

Free vibration of CNTs, as cantilever beams, has been clearly observed in TEM
studies [39, 42, 52]. In particular, due to the high stiffness and strength, low density, and
large aspect ratio, cantilevered or bridged CNTs [172-173] are expected to be a good
candidate for nanomechanical resonators, a key component in signal processing systems
[174]. On the other hand, as reviewed in Chapter 1, CNTs also exhibit strong potential to
be structure elements, e.g., micro-shells and beams in nanomechanical and nanoelectronic
devices, whose performance could be significantly affected by dynamic behaviors of
CNTs. For example, the vibration of CNTs as building blocks in nanostructure could
threaten structural integrity, impair performance and introduce positional uncertainty.
Thus successful nano-scale engineering will depend crucially on the ability to reliably
predict vibrational properties of CNTs. All these ideas provide the impetus for
investigation on general vibrational behavior of individual CNTs, as nano-scale shells
[124-126] or beams [106, 162].

Previously, free vibration of SWNTs, modeled as beams [162] or cylindrical shells
[124-126, 165-166] has been studied extensively. The general vibrational spectra are
calculated and associated vibrational modes, i.e., L (longitudinal) modes, T (tosional)
modes and R (radial) modes as well as beam-like bending (B) modes are identified for
SWNTs. Furthermore, the multiple-beam model [106] and multiple-shell model [127-
129] developed for MWNTSs have also been effectively used for the unique non-coaxial
B-modes [106] or RBMs [132, 134] of MWNTs in good agreement with atomistic
simulations and experiment. These results demonstrate that the continuum models,
especially the multiple-shell model offer a reliable and cost-effective method for

vibrational analysis of CNTs.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GENERAL FEATURES OF FREE VIBRATION OF MWNTS 123

In Chapter 7, the multiple-shell model [127-129] will be further applied for general
vibrational behavior of MWNTs, which still remains challenging for nano-scale
experiments and atomistic simulations. The primary goal of the present work is to
identify the unique features of MWNTs arising from the multilayer-structure with an
emphasis on the role of the interlayer vdW interaction in free vibration of MWNTs. It is
found that torsional and longitudinal modes of MWNTs are essentially motions of
individual tubes, while the radial modes of MWNTs of large innermost radius (e.g.,
5nm) involve all the nested tubes. In other words, the interlayer vdW interaction exerts
the most significant effect on radial vibration of large-radius MWNTs (eg. of the
innermost radius 5#nm ) but has little influence on torsional and longitudinal modes. For
radial modes of small-radius MWNTs (e.g., of the innermost radius 0.65 nm ) the effect of
the vdW interaction is noticeable only when the circumferential wave number » is

“nonzero but relatively small (e.g., 2<n<7).

7.2 Free Vibration Frequency and Associated Modes

In this secﬁonz our goal 1s to id_entif& the distiﬁct vibrational behaviors of
individual MWNTs. To this end,r four exaﬁples of MWNTs given in Table 7.1 are
considered, among which examples 1 and 2 are large-radius MWNTs of the innermost
radius 5nm and examples 3 and 4 are small-radius MWNTs of the innermost radius

0.65 nm . To be specific, we consider the cases when L/(r, - m) = 10, 5 or 1, respectively.

7.2.1 Large-radius MWNTs (the innermost radius 5:m )

First let us consider large-radius MWNTs of the innermost radius Snm . For
illustration, we start with the DWNT, example 1 (see Table 7.1). The frequencies are
calculated in Fig.7.1(a) for the DWNT with n=0 to 20 and L/(r,-m)=10. As seen
from Fig.7.1(a), there exist three groups of curves, suchas 7, &7,, L, & L,,and R,&R,,
indicating six frequencies of the DWNT for each combination of n and L/(r,-m). To
identify the vibration modes of example 1, the amplitude ratios associated with each

frequency are calculated in Figs: 7.2, 7.3 and 7.4, respectively.
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It is noted in Fig.7.2(a) that when n>5, the circumferential amplitude ¥, of the

inner tube 1 is 10 to 1000 times larger than any other amplitude of the two nested tubes.

Thus, for n>5 frequency 7, is associated with the torsional (7') vibration primarily of
the inner tube 1. Correspondingly, Fig.7.2(b) indicates that when n>5 frequency T,

results in the T —vibration primarily of the outer tube 2. Furthermore, it is seen from

Fig.7.3 that when » > 1 the longitudinal amplitude U, of the inner tube 1 (see Fig.7.3(a))
or U, of the outer tube 2 (see Fig.7.3(b)) is predominant, which implies that frequency
L, and L, basically correspond to the longitudinal (L) vibrations of tube 1 and 2,
respectively. On the other hand, as seen from the inset in Fig.7.2(a) for frequency R, at
n <3 and the inset in Fig.7.4(a) for frequency R, at n>5, the radial amplitude ratio
W, /W, is almost equal to minus one while other amplitude ratios (U,,V,,U, and V,)/W,
are close to zero. These results show that frequency R, leads to a counter-phase radial
(R-) mode in which the two tubes of the DWNT vibrate in opposite directions (see
Fig.7.5(a)). At the same time, based on the results in Fig.7.4(b) frequency R, are

essentially associated with an in-phase R —mode with the two individual tubes moving in
the same direction (see Fig.7.5(b)). In addition to the modes that are predominant in one
direction, the DWNT exhibits more complicated modes with comparable displacements

in different directions. Particularly, when n=1 Fig.7.4(b) gives W, =V, =W, =V,,

leading to a B— mode with only a rigid body motion of the cross-section (see
Fig.7.5(c)).
Next, let us further consider the 5-wall CNT, example 2 (see Table 7.1). Here, to

examine the role of L /(r; - m) the frequencies and the associated modes of example 2 are
calculated as functions of n for L/(r,-m)=10, 5 and 1, respectively. Wheﬁ
L /(r; - m) =10 Fig. 7.6(a) shows that frequencies T; to 7, at n>5 and L; to L, at n>1
essentially correspond to 7' — and L — vibration of individual tubes, while frequencies R;
to R, result in five R — vibrations involving all the five individual tubes, among which an
in-phase mode is associated with the lowest frequency R,; a counter-phase mode is

associated with the highest frequency R, , and the modes with intermediate frequencies
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R, to R, are of mixed phases. For L/(r,-m)= 5 and 1 the results are presented in
Fig.7.7(a) and (b), respectively and it turns out that the features of T—, L— and
R —modes of the 5-wall CNT remain essentially unchanged when L/(r; -m) drops from
10to S5and to 1.

It follows from the above results that for the large-radius MWNTs of the innermost
radius S5am ; T — and L —modes are characterized by vibration of individual tubes. The
associated frequencies of 77— and L —modes, shown in Figs.7.1(a), 7.6(a) and 7.7
increase considerably with increasing n, and decrease gradually from the innermost to
the outermost tube with increasing radius. On the contrary, R -modes are essentially
collective vibrations of all the nested tubes. Thus, the R-mode frequencies depend
mainly on the corresponding R — vibration patterns, but, as shown in Figs. 7.1(a), 7.6(a)
and 7.7, are insensitive to n and L/(r, -m) (N =2 or 5). Additionally, it is also noticed
in Figs. 7.1(a), 7.6(a) and 7.7 that when n is small (say n<3) the highest few

frequencies correspond to R —mode vibrations. However, for sufficiently large n (say
n>5), R-modes show the lowest frequencies, T —modes exhibit the highest

frequencies, while L —modes are associated with intermediate ones.

7.2.2 Small-radius MWNTs (the innermost radius 0.65.m)

Next, let us deal with small-radius MWNTSs of the innermost radius 0.65nm , i.e.,
example 3 (DWNT) and example 4 (5-wall CNT) in Table 7.1. The frequencies and the

associated amplitude ratios are calculated for the two examples with n= 0 to 20 and
L/ry-m)=10o0r 5 or 1 (N =2 or 5). For example 3 with L/(r,-m)=10, the frequencies
_are shown in Fig.7.8(a) and the amplitude ratios associated with frequencies T, &7},
L,&L, and R,& R, in Fig. 7.8(a) are displayed in Figs. 7.9, 7.10 and 7.11, respectively.
Similar to the large-radius MWNTs, the predominant amplitude ratio V,/W, in
Fig.7.9(a), V,/W, i Fig.7.9(b), U,/W, in Fig.7.10(a) and U,/W, in Fig.7.10(b)
indicate that the corresponding frequencies 7,& 7, and L, & L, in Fig.7.8(a) are basically

associated with T'— and L — vibrations of tube 1 or tube 2. On the other hand, Fig.7.11

shows that frequencies R, and R, in Fig.7.8(a) are primarily associated with R —modes
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of the DWNT. For 3 <n <7 the two R —vibrations are generally collective motions of
both tubes, which are similar to the modes shown in Figs.7.5(a) and 7.5(b) for example 1,
while for n>7 the R-—vibration of tube 1 or tube 2 is predominant. Additionally,
Fig.7.11 indicates that when n=1, W, =V, = -W, = -V, (see the inset in Fig.7.11(a)) or
W, =V, =W, =V, (see Fig.7.11(b)), showing noncoaxial and coaxial (bending) B -
modes for the small-radius DWNT. To demonstrate the vibrating cross-sections of
MWNTs the R —modes characterized by motion of inner tube or outer tube, and the
noncoaxial and coaxial B —modes are illustrated in Figs.7.12 (a) to (d), respectively.

For the 5-wall CNT, example 4, analogous results are shown in Fig.7.13(a) with
L/(ry-m)= 10, Fig.7.14(a) with L/(r;-m)= 5 and Fig.7.14(b) with L/(r; -m)= 1. It is
found that just like the large-radius MWNTs the small-radius MWNTs also exhibit T —
and L —vibrations primarily of individual tubes. For small but nonzero n (say 3<#n <7)
the R —modes of the small-radius MWNTs are essentially collective motions of all the
nested tubes. However, when n =0 or sufficiently large (say # > 7 or 8) R —motions of
individual tubes dominate. Thus, as shown in Figs.7.8 (a), 7.13(a) and 7.14 for the small-
radius MWNTs, the frequencies associated with all three modes generally increase with
increasing n but decrease with increasing radius of the individual tube. When n is
relatively small (say 2<n<14 for example 3 or 2 <n<8 for example 4), all the
R —modes are associated with the lowest few frequencies. However, when n becomes
large (say n>14 for example 3 or n>8 for example 4) the highest R -mode frequency

could be even higher than L — or T —frequencies.

7.3 The Effect of the Interlayer vdW Interaction

To understand the unique vibrational behavior of MWNTs, let us further examine
the role of the interlayer vdW interaction in free vibrations of MWNTs. In doing this, the
vibrational behaviors of MWNTs will be compared to those of individual nested tubes.
Assuming that ¢ =0 in Eqgs.(5.1) and following the procedure shown in Chapter 5, one
can calculate vibration frequencies for all individual nested tubes of a MWNT without

the interlayer vdW interaction. For an isolated tube as an elastic shell there exist three
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frequencies associated essentially with 7 -mode, L-—mode and R-mode. In the
absence of the vdW interaction (¢ =0), the three vibration frequencies are obtained for

individual tubes of examples 1 to 4 with L/(r,-m)=10, 5 and 1 (N=2 or 5),
respectively. In particular, when L/(ry,-m)=10 the results for example 1 to 4 are

displayed in Figs. 7.1(b), 7.6(b), 7.8(b) and 7.13(b), respeptively with comparison to the
corresponding frequencies in Figs. 7.1(a), 7.6 (a), 7.8(a) and 7.13(a) with ¢ =¢,.

7.3.1 Torsional and Longitudinal Modes

To study the effect of the interlayer vdW interaction on 7 — and L —modes of
MWNTs, we again start with the large-radius DWNT, example 1. It is noted in Fig.7.1
that when n>5 frequencies 7, and 7, in Fig.7.1(a3, associated with 7 —motion
primarily of tube 2 or tube 1 are nearly equal to 7, and 7, in Fig.7.1(b), representing the
T —mode frequencies of the isolated inner tube 1 and outer tube 2, respectively. At the
same time, L —mode frequencies L, and L, in Fig. 7.1 (a), associated with L —modes
basically of the two individual tubes almost coincide with L, and L, in Fig. 7.1(b),

denoting the L —mode frequencies of isolated tube 1 and 2, respectively. From these
results, it is seen that when T — or L —modes are considered the two nested tubes of the
DWNT vibrate almost independently as if they were two isolated SWNTSs. In other _
words, the normal interlayer vdW interaction does not exert significant influence on 7' —
and L —modes of the DWNT. Correspondingly, the comparison between Figs.7.6(a) and
7.6 (b), 7.8(a) and 7.8(b), and 7.13(a) and 7.13(b) leads to similar results for T — and
L —modes of large-radius example 2, and small-radius examples 3 and 4 with

Li(ry -m)= 10. In addition, for all the examples considered here the comparison results
associated with L/(ry-m)= 5 or 1 (N =2 or 5) are found very similar to the above
results corresponding to L/(r, - m) = 10. Therefore, it is concluded that regardless of the

innermost radius of MWNTs, the effect of the normal interlayer vdW interaction is
generally negligible for T — and L —modes of MWNTs. As a result, 7 — and L —modes
of a MWNT are usually the collection of 7 — and L —motions of individual nested tubes
of the MWNT. "
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7.3.2 Radial Modes

Large-radius MWNTs (examples 1 and 2): It has already been shown in Section
7.2.1 that for large-radius MWNTs, e.g., examples 1 (DWNT) and 2 (5-wall CNT) in
Table 7.1, R —modes are collective motions of all the nested tubes of the smallest radius
5nm, showing that the R —motions of the large-radius individual tubes are strongly

coupled through the interlayer vdW interaction. The frequency R, in Fig.7.1(a) for the
counter-phase R —mode of example 1 and frequencies R,, R,, R, and R, in Fig.7.6 (a)

for three mixed and one counter-phase R—modes of example 2 are up-shifted
considerably compared to the R-—mode frequencies in Figs.7.1(b) and 7.6(b) for the
individual tubes of the two MWNTs. In particular, as mentioned in Section 7.2.1, the
frequencies of example 2 increase significantly from R, to R, (see Fig.7.6(a)) with
increasing number of adjacent tubes vibrating counter phase. All these results indicate
that the interlayer vdW interaction considerably raises frequencies of R —modes of large-
radius MWNTs associated with counter-phase vibrational modes.

On the other hand, for example 1, a thin DWNT (with inner radius-to-thickness

ratio larger than four), the lowest frequency R, in Fig.7.1£a) is close to the average of R,
and R, in Fig.7.1(b) for the isolated outer tube 2 and inner tube 1. As shown in
Fig.7.4(b), this frequency is primarily associated with the in-phase R —mode of the
DWNT in which the two nested tubes vibrate with almost identical radial deflections
(W, =W,). These results indicate that for the lowest frequency mode of example 1, the
thin DWNT is approximately equivalent to a single layei" shell of the average radius of
the DWNT. In fact, as will be shown later in Chapter 9, this phenomenon is also observed

for thin MWNTs of many layers.

Small-radius MWNTSs (example 3 and 4): As shown in Section 7.2.2, for small-
radius MWNTs, i.e., examples 3 (DWNT) and 4 (5-wall CNT) in Table 7.1, when
3<n<7, frequencies R, and R, of example 3 (see Fig.7.8(a)), and R, to R, of example

4 (see Fig.7.13(a)) are basically associated with collective R — vibrations of all the nested

tubes, while when n =0 or n> 7 or 8, the associated modes are primarily R — vibrations -
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of individual tubes. Correspondingly, R —mode frequencies shown in Figs.7.8(a) and

7.13(a) for c= ¢, and 3 <n <7 are only slightly higher than R —mode frequencies of
individual tubes displayed in Figs.7.8(b) and 7.13(b) with ¢ =0, while both are almost -

the same for n=0 or n>7 or 8. Based on these results, it is concluded that the
interlayer vdW interaction plays a less significant role in R —modes for small-radius
MWNTs than for large-radius MWNTs. Indeed, the effect of the vdW interaction on
R —modes of small-radius MWNTs is moderate only when 3< n <7 and can almost be
ignored when n=0 or n>7 or 8.

The different effect of the interlayer vdW interaction on R —modes of the large-
and small-radius MWNTs can be explained by the facts that the interlayer vdW
interaction, characterized by a radius-independent constant ¢, is dominant compared to
the low radial rigidity of the large-radius individual tubes, but negligible compared to the
much higherl radial rigidity of the small-radius individual tubes. In fact, it is seen from
Figs.7.1, 7.6 and 7.7 and Figs.7.8, 7.13 and 7.14 that the R — frequencies of small-radius
MWNTs are one order of magnitude higher than the R - frequencies of large-radius
MWNTs, indicating that the radial rigidity of small-radius MWNTs is much higher than
that of large-radius MWNTs.
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Fig.7.1 The dependence of frequency on circumferential wave number » for

example 1 (in Table 7.1) with L/(r,m) =10, and (a) ¢ =c, and (b)
c=0.
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Fig.7.2 The amplitude ratios associated with frequency (a) 7, (the inset for R, at

n<3) and (b) 7, shown in Fig.7.1(a) for example 1 in Table 7.1.
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Fig.7.3 The amplitude ratios associated with frequency (a) L, and (b) L, shown

in Fig.7.1(a) for example 1 in Table 7.1.
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Fig.7.4 The amplitude ratios associated with frequency (a) R, and (b) R, shown

in Fig.7.1(a) for example 1 in Table 7.1.

(a) Counter-phase R-mode (b) In-phase R-mode {c) Coaxial B-mode (n=1)

Fig.7.5 Top view of R— and B —modes of exa;nple 1 in Table 7.1.
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Fig.7.6 The dependence of frequency on circumferential wave number n for example

2 (in Table 7.1) with L/(r;m) =10, and (a) ¢ =c, and (b) ¢ =0.
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Fig.7.7 The dependence of frequency on circumferential wave number # for example 2

(in Table 7.1) with ¢ =¢,, and (a) L/(rym) =5 and (b) L/(r;m)=1.
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- Fig.7.8 The dependence of frequency on circumferential wave number n for example

3 (inTable 7.1) with L/(r,m)=10,and (a) c=¢, and (b) ¢=0.
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Fig.7.9 The amplitude ratios associated with frequency (a) T, and (b) T

shown in Fig.7.8(a) for example 3 in Table 7.1.
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Fig.7.10 The amplitude ratios associated with frequency (a) L, and (b) L,
shown in Fig. 7.8(a) for example 3 in Table 7.1.
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Fig.7.11 The amplitude ratios associated with frequency (a) R, and (b) R, shown
~ in Fig.7.8(a) for example 3 in Table 7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GENERAL FEATURES OF FREE VIBRATION OF MWNTS 137

(2) R-mode (mainly of inner tube) (b} R-mode (mainly of outer tube)

(¢) Non-coaxial B-mode (h=1) (d) Coaxial B-mode (n=1)

Fig.7.12 Top view of R— and B —modes of example 3 in Table 7.1.
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Fig.7.13 The dependence of frequency on circumferential wave number #

for example 4 (in Table 7.1) with L/(r;m)=10, and (a) c=¢,

and
(b)c=0.
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Table 7.1 The data of geometry of four MWNTs considered in Chapter 7.

Example 2 3 4
ri(nm) 5 0.65 0.65
Number of layers N 5 2 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8

Special Issues of Free Vibration of MWNTs

8.1 Introduction

Raman-active radial breathing modes (RBMs) of both SWNTs [36, 70, 91-93]
and MWNTs [24, 71-74] are of major interest in previous studies. These axially
uniform axisymmetric modes (with axial half wave number m =0 and circumferential
wave number 7 =0) provide a useful tool to investigate structure-vibrational property
relation for CNTs. More recently, other axisymmetric radial (R —), Longitudinal (L —)
and torsional (7' —) modes, which are not necessarily uniform in axial direction, have
also been examined for SWNTs [167], where strong R—L coupling is observed as a
unique feature for SWNTs of cylindrical symmetry. Howeﬁer, axisymmetric vibrations
of MWNTs have not been studied in the literature. On the other hand, beam-like
vibrations of MWNTs have been the topic of numerous recent researches. For example,
based on a multiple-beam model [106], beam-like vibrations of MWNTSs have been
examined for MWNTs of small innermost diameter. It is predicted that the interlayer
vdW interaction results in non-coaxial intertube vibration of MWNTs. This unique
phenomenon has later been confirmed for DWNTs by a more accurate molecular-
structure-mechanics model [113], although the accuracy and limitations of the multiple-
beam model remain unexplored in the literature.

In this Chapter, first, an updated bending stiffness (D =2eV) of SWNTs is
suggested based on recent data in the literature, which is in much better agreement with
atomistic model for phonon dispersion relations of SWNTs‘ than the previously adopted
value (D =0.85eV) estimated by Yakobson et al [32] based on earlier data of
Roberson et al [31]. Using the multiple-shell model with D = 2eV, this Chapter gives a
comprehensive study on axisymmetric modes (# =0) of MWNTSs, with an emphasis on
the unique features of axisymmetric modes for MWNTs and the effect of the Poisson-
ratio of SWNT's on coupling between R — and L — modes of MWNTs. Furthermore,

“the present shell model is employed to study beam-like vibrational modes (n=1) of

141
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MWNTs and examine the accuracy and applicability of the multiple-beam model [106].
Finally, the lowest frequency and associated modes of MWNTs are also studied in

detail.

8.2 Comparison between Shell Model and an Atomistic
Model

To further demonstrate the relevance of the elastic shell model for free vibration
of CNTs, phonon-dispersion relations are calculated in Figs.8.1 and 8.2 based on Eqgs.
(5.1) and (5.3) for SWNT (10, 10). It is known that the bending stiffness D of SWNTs

is related to the elastic strain energy per unit area g by the relationship g = D/2r*

where r is the radius of SWNTs. The value D =0.85eV", used in our previous work
[130-135] and Chapters 2 to 7, was suggested by Yakobson et al [32] based on
Robertson et al.’s data [31] published in 1992. However, recent data obtained by ab

[
“initio calculations yield 2g-r2= 4 — 432 eV (AYatom) in Ref36 (1999),

3.9—4.32eV(,312/amm) in Ref. 38 (2001) and 4.28eV(f:1 ?/ atom) in Ref.147 (2002),
which suggest an effective value D =1.95-2.16 eV . Itis seen from Fig.8.1 and 8.2(a)
that, overall, the present shell model with D =2el is in good agreement with a
continuum elastic model [166] and a force-constant model [91] with maximum relative
errors usually less than 10%. Particularly, for n» =1-3 and smaller normalized wave

vector Kr or KT /7 (K = _131275 is wave vector, r is the radius of SWNT (10, 10), T is

the vector representing the shortest repeat distance between two unit atomic cells along
the axis of SWNTs, the magnitude of which is 0.246nm for SWNT (10, 10)), the
present shell model with D = 2el almost coincides with the continuum model [166]
while the two continuum models are a little different from the force constant model
[91]. As mentioned in [166], this discrepancy is probably due to “an inapprbpriate
choice of force-constant value” in [91]. In fact, the phonon dispersion relations of
SWNT (10, 10) are also obtained by initio ab calculation and a lattice-dynamic model
in [36] and [37], respectively. Different from [91] which gives an almost linear
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frequency- K (wave vector) relation for long-wavelength bending modes (n =1), the

results of [36] and [37] show an approximate K’ dispersion for the long-wavelength
bending mode, which is in favor of our results shown in Figs.8.1 and 8.2(a). Since the
figures shown in [36] and [37] are too small for detailed comparison, the present shell
model has been compared to the atomistic model used in [91] only. On the other hand,
it is seen in Fig.8.2(b) that the shell model with D =0.85¢V leads to much larger
relative errors as compared to the force-constant model, especially for larger » and the
normalized wave vector KT /7. Here, it should be stated that the continuum model
[166] and the force-constant model [91] are limited to SWNTs. Indeed, because no
detailed experimental or atomistic simulation results are available for phonon-
dispersion relation of MWNTs, similar comparison for the present multiple-shell model
cannot be made for MWNTs.

In this Chapter, we shall apply the multiple-shell model with D =2eV to study
axisymmetric and beam-like vibrations of MWNTs. Here, we still focus on the four
examples of MWNTs in Table 7.1, i.e., large-radius MWNTs, examples 1 and 2 with the
innermost radius Snm , and small-radius MWNTSs, examples 3 and 4 with the innermost

radius 0.65nm.

8.3 Axisymmetric Vibration

In axisymmetric vibration (n = 0), solution (5.3) takes the form (k =1,2,.-,N)

M o

u,(x,0,t)=U, cos
v (x,8,6)=0
w,(x,0,0)=W, sin%-e"“”

8.1)

With this solution the N circumferential dynamic equations in Egs.(5.1) are satisfied
automatically. As a result, the 3N equations in (5.1) reduce to 2N equations for an
N-wallCNT (k=12,--,N)
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(8.2)

When the axial wavelehgth—to-diameter ratio L/(r,m) is much larger than one, the

bending stiffness D —related coupled terms in (8.2) are negligible. In this case, the
axial displacement and radial displacement are coupled through the Poisson-ratio
v # 0. Hence, the Poisson-ratio plays a crucial role in R—L coﬁpling. On the other
hand, if an @ —independent circumferential vibration is considered? one should consider

the solution given by [138]

u,(x,0,t)=0
v (x,0,0) =V, sin—mLﬂ- e

w (x,0,t)=0 (83)

It is readily verified that the following N uncoupled equations can be derived from

(5.1), for N uncoupled torsional (7)) modes (k =1,2,--,N)

2 2
rk_6vk

T 3D O _ph
2 ox?

2Eh x* Eh

v
1+v)-r2 - —*
( ) k atz

+ (1-v?) 8.4)
Here, it should be stated that such decoupled equaﬁons are not available for
@ —dependent circumferential vibration. Obviously, for 6 —independent pure
T —modes of a MWNT, each constituent tube behaves exactly like an isolated SWNT
without coupling with adjacent tubes. In particular, the second term is much smaller
than the first term on LHS of (8.4), indicating that T —mode frequencies will be radius-
insensitive. Thus, 7 —modes of MWNTSs will not be further discussed in much detail. In
the following, we will focus on R— and L —modes of MWNTs for examplesl-4 in
Table 7.1.
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8.3.1 Axisymmetric Radial Modes

First, let us consider DWNTSs, i.e., examples 1 and 3 of inner radius Snm and
0.65nm , respectively. When n =0, frequencies R, and R, of R—modes, frequencies
L, and L, of L—modes, and frequencies T, and 7, of T —modes are displayed in
Figs.8.3(a) and (b) for examples 1 and 3, respectively. The amplitude ratios associated
with R—and L-modes of examples 1 and 3 are shown in Figs.8.4 and 8.5. In

particular, as stated before, two T —mode frequencies for the inner and outer tubes are

almost indistinguishable.

- As seen from the insets in Fig.8.4, frequencies R, and R, in Fig.8.3(a) for large-
radius DWNT of example 1, are associated with an in-phase (W,/W, =1) and a
counter-phase (W, /W, =-1) R—mode, respectively. Differently, Fig.8.5 (see the
insets) shows that frequency R, or R, in Fig.8.3(b) for small-radius DWNT of example
3, is basically associated with R —mode of individual tube 2 or 1.

It is seen in Fig.8.3 for the two DWNTs that the frequencies associated with pure
R—-modes are usually insensitive to axial wavelength, ie., L/(r,m), when
L/(r,m)>1, due to negligible effect of bending stiffness, and approach the RBM
frequencies as axial wavelength tends to infinity. They significantly decrease with
increasing axial wavelength L/(r,m) only in the range of L/(r,m) <1 due to strong
effect of bending stiffness D . On the other hand, in the transition zone between R —
and L -modes where their frequencies are very close to each other, R— and
L—modes of the DWNTs are generally coupled through Poisson-ratio effect (where
L /(r,m)>1 and the effect of bending stiffness is negligible). In Fig. 8.3(b) for small-
radius DWNT of example 3, this R— L coupling (or transition) zone is relatively wide
for both R —modes. However, in Fig.8.3(a) for the large-radius DWNT of example 1,
the R—L coupling (or transition) zone is relatively wide only for the in-phase

R —mode of lower frequency R,, and almost vanishes for the counter-phase R —mode
of higher frequency R,. In other words, in the latter casé, there is almost an abrupt

transition between the counter-phase R—mode and the L-mode, and the R—-L
coupling zone is very narrow and thus can be actually ignored. This unique feature of

large—radius DWNT can be attributed to the dominant interlayer vdW interaction
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associated with counter-phase R —modes of large-radius MWNTs. For large- and
small-radius S5-wall CNTs, examples 2 and 4, qualitatively similar results are shown in

Fig.8.6 (2) and (b), respectively.

8.3.2 Axisymmetric Longitudinal Modes

First, it is seen from Fig.8.3 for both large- and small-radius DWNTs, the two
L —mode frequencies for n =0 are almost indistinguishable, implying that L —mode
of one tube could be stimulated by L —modes of adjacent tubes through an even very
weak coupling effect. It is noted in Figs.8.4 (a) and (c) that, when the longitudinal
wavelength is not very short, say L/(r,m)>1 or 2, example 1 (DWNT) exhibits
coupled axisymmetric L — vibrations involving both tubes; among which the in-phase
one (U, ~U,, see Fig.8.4(a)) is associated with frequency L, in Fig.8.3(a), and the
counter-phase one (U, ~ -U,, see Fig.8-4(c)) is associated with frequency L, in Fig.8-
3(a). This phenomenon is in sharp contrast to the axisymmetric T —modes and non-
axisymmetric L —modes (with larger »), which are almost uncoupled vibrations of
individual tubes. ‘

In fact, it is known for eiastic shells [141] that, when n=0, longitudinal
vibration is always accompanied by a small but usually non-negligible radial vibration
due to the R — L coupling effect of Poisson-ratio. Therefore, once an individual tube of
the DWNT first vibrates in axisymmetric L —mode, the associated R - vibraﬁon
induced by Poisson-ratio effect could stimulate a small R — vibration combined with a
predominant L —vibration of adjacent tubes through the interlayer vdW interaction.
Here, almost identical L —~mode frequencies of adjacent tubes are likely responsible for
the strong coupling of axisymmetric L —modes. For the same reasons, the strong
coupling between L — vibrations of individual tubes can also be observed for the small-
radius DWNT, example 3 (see Figs. 8.5(a) and (c)), and the 5-wall CNTs, examples 2
and 4. Indeed, when Poisson-ratio v is set to zero, Egs.(8.2) break into two systems for

.pure L ~—vibrations of individual tubes and collective R — vibrations of all individual

tubes provided that the axial wavelength is not very small, say L /(r,m)>1 and thus

the effect of bending stiffness is negligible. Thus, for MWNTSs, coupling between

L —vibrations of concentric tubes is a result of the Poisson-ratio effect and the
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interlayer radial vdW interaction. This coupling effect becomes significant when n=0
due to the fact that L —mode frequencies of individual tubes are almost identical. It is
expected that similar concept can be used to explain the observed coupled resonant

axisymmetric L —modes of aligned SWNT ropes [126].

8.4 Beam-like Vibration

For MWNTs, non-coaxial vibrational modes are predicted based on a multiple-
(Euler) beam model [106], in which each nested tube of MWNTs is treated as an
individual elastic (Euler) beam coupled with adjacent tubes through the interlayer vdW
interaction. The intertube interaction per unit length along the axial direction is given
by &-r(cAw), where & represents the intertube vdW interaction effective length
between two adjacent tubes, r is the radius of inner tube, Aw is transverse deflection
jump between the two tubes, and ¢ is given by (2.6). In particular, § =2 is used in
Ref. 106. In this section, we shall compare the more accurate multiple-shell model with
_the multiple-beam model to further study the beam-like modes, especially non-coaxial

modes [106, 113] for MWNTs and identify a better value of §.

8.4.1 Large-radius MWNTs (the innermost radius 5.m)
Let us start with the large-radius DWNT, example 1.in Table 7.1. Following the

procedure demonstrated in Chapter 5, six frequencies can be obtained for the DWNT
with n=1 and 0.1< L/(r,m)<50. For a comparison to the beam model [106] which
gives two frequencies for a DWNT, the lowest frequency (corresponding to a beam-like
bending mode) and the highest frequency R (of a radial mode) are identified from six
frequencies and shown in Fig.8.7(a), with associated amplitude ratios displayed in Figs.
8.8(a) and (b), respectively. \

Beam-like bending of a shell is defined by n=1 and w=u, where w and v
represent radial and circumferential displacements of the shell, respectively. It is seen in

Fig. 8.8(a) that, when L/(r,m) <1, the lowest frequency for #n =1 corresponds to an in-
phase R-mode of the DWNT having W, ~W, and (U,, V}, U, and V,) <<W,. The

circumferential amplitudes ¥, and V, increase with increasing axial wavelength
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L/(r,m). When L/(r,m) exceeds 5, we have W, =V, =V, =W, and U, =U, << W,,
showing a coaxial bending (B —) mode characterized by a translation of the circular
cross-section. In Fig.8.7(a), this frequency (B) is compared to the coaxial mode
frequency given by the beam model. As expected, when L /(r,m) > 15, the beam model
agrees very well with the shell model with relative errors less than 5%.

On the other hand, the amplitude ratios in Fig. 8.8(b) for the frequency R indicate
W, ~-W, and (U, V|, U, and V,) << W,, which gives a non-coaxial R —mode with
non-beam-like deformation of the cross-section. In particular, this result (W, = -W,)
predicted by the present shell model is the same as that predicted by the beam model
for example 1. On the other hand, as seen from Fig. 8.7 (a), the higher non-coaxial
mode frequency obtained by the beam model with & =2 differs from frequency R
given by the present shell model by around 50%. Similar results are obtained in Fig. 8.9
(a) for coaxial B—mode of the lowest frequency and four non-coaxial R —modes of
large-radius 5-wall CNT, example 2 in Table 7.1. The relative errors of the beam model
with & =3 (which, as will be shown later, is more accurate than & = 2) range from 30
to 50% for the four non-coaxial R —modes. This discrepancy between the shell model
and the (Euler) beam model is due to non-beam-like deformation of the cross-section
caused by the interlayer vdW interaction. This non-beam-like deformation is negligible
for small-radius MWNTs, but could be significant for large;radius MWNTs due to their
low radial rigidity. Therefore, consistent with the recent results [163], the present work

also suggests that the multiple-beam model is more accurate for small-radius MWNTs

than large-radius MWNTs.

8.4.2 Small-radius MWNTs (the innermost radius 0.65:m)
Next, let us consider small-radius MWNTs, example 3 (DWNT) and 4 (5-wall
CNT) in Table 7.1. When n =1, the (lowest) two frequencies B, and B, of example 3,

both of which correspond to beam-like bending modes, are identified from six
frequencies and displayed in Fig.8.7(b). The amplitude ratios associated with

frequencies B, and B, are shown in Figs. 8.10(a) and (b), respectively.
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We see from Fig.8.10 that the lowest frequency B, when L/(r,m)>10 is
associated with the coaxial beam-like B —mode, while frequency B, corresponds to
W, =V, ~-17TW, and W, ~V,, showing a non-coaxial B—mode in which the inner
and outer tubes are bent in opposite directions with individual circular cross-sections. It
follows from Fig. 8.7(b) that, when L /(r,m) > 15, the beam model agrees well with the
shell model for both coaxial and non-coaxial B—modes with relative errors less than
20% when & = 2. Our results showed that, for the non-coaxial B —modes, the beam
model with 6 =3 is in better agreement with the shell model with relative errors less
than 10%. In particular, § =3, selected by the best comparison to the shell model, is
quite close to the value of 6 =z obtained by a simple theoretical calculation (omitted
here).

For 5-wall CNT, example 4 in Table 7.1 (of the outermost radius 2 nm ), similar

results are obtained in Fig. 8.9(b). Accordingly, when L /(r;m)>15, the beam model

with 6 =3 is adequate for both coaxial and non-coaxial B —modes of the small-radius
MWNTs (example 4 in Table 7.1) with relative errors less than 5% and for the three
higher-order non-coaxial modes with relative errors less than 20%. Moreover,
considering small-radius MWNTSs, e.g., 3, 4, and 5-wall CNTs of the outermost radius
1.45nm, 1.65nm and 1.9nm , we find that the beam model is in good agreement with
the shell model for all coaxial and non-coaxial modes with maximum relative errors
less than 10%. In these cases, due to high radial rigidity of small-radius individual
tubes, all non-coaxial modes are associated with nearly beam-like bending modes with
smaller cross-sectional deformation. Hence, the (Euler) beam model is relevant for

MWNTs of smaller outermost radius (e.g., less than 2 nm ).

8.5 The Lowest Frequency Vibration

CNTs are expected to be the potential building blocks in nano-devices. Thus the
lowest frequency and the associated modes of CNTs are of practical interest. Here,
based on the multiple-shell model, the lowest frequency and the associated modes are

calculated for MWNTs.
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First, let us consider DWNTs, example 1 and 3 in Table 7.1. The dependence of
six frequencies on axial wavelength L/(r,m) are displayed in Figs.8.11 and 8.12 for
example 1 and 3, respectively, with 0<» <10 and 0.1<L/(r,m)<50. For a given
n(n=1), the lowest frequency, the second lowest freqﬁency, ..., and the highest
frequency are presented in (a) to (f) of Figs.8.11 and 8.12 for the two DWNTs.

It is noted that, when the circumferential number » is sufficiently large, e.g.,
n>5 for large-radius example 1 and » > 2 for small-radius example 3, the two lowest
frequencies R, and R,, shown in (a) and (b) of Figs.8.11 and 8.12, are mainly
associated with R —modes, the highest two frequencies 7, and T,, shown in (e) and (f)
of Figs.8.11 and 8.12, are primarily associated with 7 —modes, while the two
intermediate frequencies L, and L, , shown in (c) and (d) of Figs.8.11 and 8.12,
correspond to L —modes of the two DWNTs. On the other hand, for given axial
wavelength L /(r,m), the lowest frequencies of the two DWNTs are represented by the
envelope curves in Figs.8.11(a) and 8.12(a), respectively. Obviously, the lowest
frequency of the two DWNTs decreases monotonically with increasing L/(r,m),
showing that, for any given ratio L/r,, the lowest frequency of the two DWNT with

simply supported ends always corresponds to the minimum axial half wave number
m=1.

Proceeding in the same way, analogous features are also obtained for large-and
small-radius 5-wall CNTs, examples 2 and 4 in Table 7.1. Especially, the lowest

frequency is also consistently associated with m =1. In view of this result, the “L/r,”
dependence of the lowest frequency is plotted in Fig. 8.13 for all the N —wall CNTs
considered here. It is clearly seen from Fig.8.13 that, when L/r, (N =2 or 5)
increases up to 50, the lowest frequencies of examples 1-4 in Table 7.1 decrease form

around 10" —10" Hz to about 10° Hz and the associated modes shift from an in-phase
R — mode with relatively larger n (n=3-6) to a combined R — and T —mode with

n=2~3, and finally, to a coaxial B —mode with n=1.
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£/ fog

Fig.8.1 The comparison between the continuum model [166]
and the multiple-shell model with D =2eV for
phonon-dispersion relations of SWNT (10, 10). Here

K (=£Lf[—) is wave vector, » is the radius of SWNT

(10, 10) and f,,, is RBM frequency of the SWNT.
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Fig.8.2. The comparison between the atomistic model [91] and the multiple-
shell model with (a) D = 2eV and (b) D =0.85¢V for phonon-dispersion

relations of SWNT (10, 10). Here K (=m77r) is wave vector and T is the
vector representing the shortest repeat distance between two atomic cells

along the axis of the SWNT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SPECIAL ISSUES OF FREE VIBRATION OF MWNTS 153

I

Freguency (Hz)

Frequency (Hz)

1011 M | . i1 a1 aaed

L/ (rzm)

(b)
Fig.8.3 Axisymmetric mode frequencies (n = 0) of (a) example 1 and (b) example 3

in Table 7.1.
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Fig.8.4 Amplitude ratios associated with frequencies (a) R, (inset)& L, , (b)

L & R, (inset), (c) R, (inset) & L, and (d) L, & R, (inset) shown

in Fig.8.3 (a) for example 1 in Table 7.1.
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Fig.8.5 Amplitude ratios associated with frequencies (a) R, (inset)& L, , (b)
L, & R, (inset), (c) R, (inset)& L, and (d) L, & R, (inset) shown
in Fig.8.3 (b) for example 3 in Table 7.1.
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Fig.8.6 Axisymmetric mode frequencies (7 = 0) of (a) example 2 and (b) example 4

in Table 7.1.
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Fig.8.7 Comparison between the multiple-shell model and the multiple-beam model
with 6=2[106] when n=1 for (a) coaxial B—mode and non-coaxial
R-mode of example 1 in Table 7.1 and (b) coaxial and non-coaxial

B —modes of example 3 in Table 7.1.
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Fig.8.8 Amplitude ratios associated with frequencies (a) B and (b) R shown in
Fig.8.7(a) for examp}e 1 ir_17 Table 7.1.
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Fig.8.9 Compariso'n between the multiple-shell model and the multiple-beam model
[106] with =3 when n=1 for (a) coaxial B-mode and non-coaxial
R —modes of exarﬂple 2 in Table 7.1 and (b) coaxial and nbn-coaxialB —modes,

and non-coaxial R—T combined modes of example 4 in Table 7.1.
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Fig.8.10 Amplitude ratios associated with frequencies (a) B, and (b) B, shown in

Fig .8.7(b) for example 3.
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Fig.8.11 Dependence of six frequencies on L/(r,m) for example 1 in Table 7.1. For a
given n (n21), the lowest frequency, the second lowest frequency, ..., and
the highest frequency are shown in (a), (b), ... and (f), respectively.

(R : radial mode, L :longitudinal mode, T :torsional mode, B : bending mode

and R —T : radial and torsional combined mode) -
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Fig.8.12 Dependence of six frequencies on Lf(rzm) for example 3 in Table 7.1. For a
given n (n 2 1), the lowest frequency, the second lowest frequency, ..., and
the highest frequency are shown in (a), (b), ... and (f), respectively.

(R : radial mode, L f.longitudinal mode, T :torsional mode, B : bending mode

and R T : radial and torsional combined mode)
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Chapter 9

Simplification of the Multiple-shell Model for CNTs

9.1 Single-shell Model for MWNT's

9.1.1 Introduction

Elastic shell models have been effectively used to study mechanical deformation of
CNTs [13, 119], especially free vibration of SWNTs [124-126, 132] and MWNTs [132,
134-136], and static buckling of CNTs under axial compression {32, 120, 127-129],
bending [48, 120], radial pressure [123, 130, 133], or combined loadings [131]. Previous

“work has shown that vibrational frequencies or critical buckling load predicted by simple
isotropic elastic shell models are generally in good agreement with available experiments
or atomistic simulations of SWNTs [120, 131, 136] and MWNTs [130, 132-134] of as
many as twenty layers [130, 159]. In particular, because elastic shell models are
relatively simple and cost-effective as compared to difficult nano-scale experiments and

formidable atomistic simulations, they have the potential to offer simple general formulas
in some important cases, identify major factors affecting mechanical behavior of CNTs,
and explain or predict new physical phenomena.

On the other hand, based on the multiple-shell model [127-129], the elastic
buckling or free vibration of an N —wall CNT is governed by N coupled buckling
equations (2.2) or 3 N dynamic equations (5.1), respectively. Obviously, the computation

-of critical buckling load and especially, vibrational frequencies is still challenging when
the number of layer N is sufficiently large. Thus, it is of practical interest to further
simplify the calculation and improve the efficiency of the shell model (if possible) in
buckling and vibrational analyses for MWNTs of many layers. Previously, the single-
layer shell model was proposed to characterize mechanical behaviors of MWNTs, which
models an N-wall CNT as a single-layer shell with thickness Nh, and the bending
stiffness proportional to (NR)® (where & is effective thickness of SWNTSs). As pointed out
by Ru [127-129], this oversimplified single-shell model substantially overestimates the

162
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critical buckling strain of MWNTs due to complete ignorance of interlayer slipping. On
the other hand, based on theoretical study, Ru [129] showed that for axially compressed
buckling, a thin N —wall CNT defined by the innermost radius-to-thickness ratio 4 > 4,
can be approximately treated as a single-layer shell with the effective bending stiffness
ND and the thickness Nk . Furthermore, some numerical results [130] (also see Chapter
3) suggest that this single-shell model is also valid for buckling of thin MWNTs under
radial pressure. Thus, as long as thin MWNTs are concemed, it is expected that the
calculations and analyses could be greatly simplified by replacing the multiple-shell
model [127-129] with the single-shell model.
This section offers a complementary work to the earlier studies on thin MWNTSs by
(i) presenting a theoretical derivation of the single-shell model for buckling of thin
MWNTs under radial pressure and (ii) demonstrating the effectiveness of the single-shell
model for axially compressed buckling of thin MWNTs with specific examples.
Subsequently, based on the single-shell model for thin MWNTSs, an approximate method
| is suggested for buckling of thick and (almost) solid MWNTs. As will be shown below,
this approximation can efficiently reduce the problem of a MWNT of many layers (which
is usually thick or solid) to a relatively simple problem for a multi-layer elastic shell of
fewer layers. Finally, the single-shell model is further extended to the lowest frequency
R-mode of thin MWNTs. The accuracy of the single-shell model is examined
systematically as compared to the multiple-shell model in calculating the lowest R-mode

frequency of thin MWNTs.

9.1.2 Elastic Buckling of Thin MWNT's

Here, let us first consider elastic buckling of thin MWNTs under external pressure.
_For buckling of an N —wall CNT under an external pressure Egs.(2.2) reduce to the

following N equations.

FY 52 Ehd*w
DViw =Vip, +-8& —Z vy, 22 71
Wy 1 P2 12 207 '™ r12 PN
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Dngz = V;Iipzs ‘;"Plz

2

8. Ty FH(N) o* _, Eh 64WN
DV 'wy = __;—VN_IVNP(N—I)N +75~?VNWN —’;EEI‘- .1

Following [129], for a thin N —wall CNT, the radial deflections w,, w,, ---,w, can be
approximately described by a single deflection function w and the radii r, r,, ---ry
can be replaced by the average radius 7,,, of the thin N —wall CNT. Moreover, it is seen

in [130] (also see Chapter 3) that an external pressure P acting on a thin N —wall CNT
is almost equally shared by the N —concentric tubes. Thus in Egs.(9.1), we have

P. . . . .
F’ ~F® zu-ng(N)z—i. Bearing all these in mind and adding the N
N

equations in (9.1), one can derive the following single equation governing the elastic

buckling of the thin N —wall CNT subjected to an external pressure P .

2 4
WD)V =2 Oy, EQR) 0w
00 Ve OX

ave ave

©9.2)

Comparison between Eq. (9.2) and Eq. (2.1) with p(x,0)=0 and F, =0 shows that
indeed, a thin N —wall CNT can be modeled approximately as a singlelayer elastic shell
with effective bending stiffness ND, effective thickness Nk and radius 7. Especially,

Eq. (9.2) is equivalent to the following equation

_P/IN & _, Ehd'w
- A42 v T2 a4
Ve 08 ¥, OX

ave

DViw

(9.3)
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indicating that the critical buckling pressure of a thin N —wall CNT is approximately N
times that of a SWNT with the average radius r_, of the thin NV —wall CNT. This

analytical result is consistent with the numerical results given in Chapter 3. Therefore, it
is believed that the above single-shell model is adequate for elastic buckling of a thin
MWNT under radial pressure. 4

As mentioned before, an analogous result is obtained analytically for axially
compressed buckling of thin MWNTs in [129]. Here we shall further compare the single-
shell model with the multiple-shell model for axially compressed buckling of thin
MWNTs. To this end, two thin MWNTs, i.e., examples 1 and 2 shown in Table 4.1 are
considered. The buckling behaviors predicted by the single-shell model are presented in
Figs.9.1 and 9.2 for the two examples, respectively. Comparison between Fig.9.1 and
Fig.4.2, and Fig.9.2 and Fig.4.3 indicates that the single-shell model is in good agreement
with the multiple-shell model for axially compressed buckling of the two thin MWNTs
considered here. In fact, both the critical axial stress and‘the associated wave-numbers
(m,n) are almost the same for the two thin MWNTSs and their equivalent singlelayer
shells. For example, the cn'tical.axial stress for example 1 in Table 4.1 given by the
single-shell model is 4.480 GPa (see Fig.9.1), which is very close to the exact value
4.481 GPa shown in Fig. 4.2. Similarly, the critical axial stress for example 2 in Table
4.1 given by the single-shell model is 2.166 GPa (see Fig. 9.2), very close to the exact
value 2.172GPa presented in Fig. 4.3. This offers a numerical confirmation of the
analytical results of [129] for axially compressed buckling of thin MWNTSs. Thus, as
stated in [129] (also see Section 4.2), the critical axial stress of a thin MWNT is
approximately equal to the critical axial stress of a SWNT of the average radius of the
MWNT.

9.1.3 Elastic Buckling of Thick (or Solid) MWNT's

In many cases, synthesized MWNTs are thick or (almost) solid (the innermost
radius-to-thickness ratio A <1) with large number of layers. The calculation for elastic
buckling of these MWNTs is usually complicated and cannot be directly simplified by
the single-shell model. Here, based on the single-shell model for thin MWNTSs, an
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approximate method is suggested to substitute a MWNT of many layers (usually thick or
almost solid MWNTSs) by a multilayer elastic shell of fewer thin layers (defined by the
radius-to-thickness ratio around or larger than 4). This simplified method could further
improve the effectiveness of the multiple-shell model [127-129] especially when the
number N of nested tubes is very large, (such as 16-wall or 20-wall CNTs).

To illustrate this approximate method and demonstrate its effectiveness and
accuracy, let us apply it to example 5 of Table 3.1 (a thick 8-wall CNT of the innermost
radius 3 nm ) under pure external pressure and example 4 of Table 4.1 (a thick 8-wall of
the innermost radius 2.7) subjected to combined axial stress and external pressure. Then,
we shall compare the results given by the approximate method with the exact data shown
in Chapter 3 and 4 for the same examples. Based on the single-layer shell model for a
thin MWNT, let us treat the outermost three layers of the first example (example 5 of
Table 3.1) as a single-layer shell with bending stiffness 3 D and thickness 34 (the layer
IV in Fig. 9.3). Obviously, the radius-to-thickness ratio of the layer IV is larger than 5
and thus meets the condition set for thin MWNTs. Next, the next two tubes are treated as
another single-layer shell with bending stiffness 2 D and thickness 24 (the layer III), with
the radius-to-thickness ratio larger than 6. Further, the next two tubes will be treated as
another single-layer shell with bending stiffness 2 D and thickness 24 (the layer II), with
the radius-to-thickness ratio larger than 5. Finally, the innermost layer is now the layer I.
Thus, the original eight-layer shell is reduced to a four-layer shell, as shown in Fig. 9.3.

Then Eq. (2.2) can now be used to each of the four new layers, with: D =D,
Dy=2D, D3=2D, D&=3D, hi=h, ho=2h, h3=2h and hs=3h, where D, and h,
(k=1, 2, 3 and 4) are effective bending stiffness and thickness of the k& -th new layer.

The radius and the deflection of each new layer should be understood as its average
radius and the deflection of its midline. In addition, the net pressure distribution stays
unchanged, and thus the net pressure for every new layer can be obtained directly from
the data shown in Fig. 3.3 for the 8-wall CNT, example 5 of Table 3.1. On the other hand,
the vdW interaction pressure on the layer III due to the layer IV is determined by the

spacing change between the layer 6 and the layer 5, and is equal to ¢ (w; — w;). Assume

that the change of interlayer spacing due to buckling is approximately uniform between
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the midline of the layer IV and the midline of the layer III, thus we have (w, —wy,) =
(ws —w, ) x (the number of the layers between the two middle lines). Thus, the vdW

pressure on the layer III due to the layer IV is ¢(w,, —wy;) / 2.5. Similar modification

should be made to the vdW interaction pressure between other new layers. Here, the
interaction pressure between any two adjacent layers within each new layer is an
“internal force” for the new layer and this is not accounted as an external pressure. In

such a way, four equations for the new four-layer shell are given by

2 F, &* Eh d*w,
8 4 4
DV 'w, =CVI[‘3'(WH _WI):I+;§—WV2 w; ":{ETI—,
8 1 v, 2 F' &? 4 EQ2h) 0w
@DV wy = CVHI:E(WHI _WII)_—?'E(WH - wy) +#6—9;V2 Wy _T 3x4H s
R ) ry 1 ' o* _ EQ2h) 8*w
@D)V y wy = cvﬂl{g(wlv _Wnl)._rLI%['E(Wm - wy) +r:?692 V, wy "“_;Ii_ 6x4m s

My

IV a2 4
(3D)Vw"ww=—cv¢{_l.§(w,v_wm>}+‘”o & oa, _EGR)wy

262 v i —
2 Apn2 T2 v 2 2
ry 06 ry Ox

(9.4)

v

where 7, (i =1, II, Il and IV ) is average radius of each new layer and w,(i =1, IL, IIl and
IV') is the deflection of the middle line of each new layer. The critical value P, /c (P, is

the critical buckling pressure) based on this approximate method for the 8-wall CNT of
the innermost radius 3 nm is 6.9858x10™* nm for free end, and 1.1x10” nm for simply
supported end, in good agreement with the exact results (6.3738x10™ nm for free end,
and 107 nm for simply supported end, as shown in Table 3.3 for example 5 of Table
3.1), with a relative error less than 10%. Similar agreement can be reached for buckling
of example 7 of Table 3.1 (an almost solid 8-wall CNT of the innermost radius 0.65 nm )
under radial pressure.

For example 4 of Table 4.1 (an almost solid 8-wall CNT of the innermost radius

2.7nm) under pure axial stress or axial stress combined with an external pressure, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SIMPLIFICATION OF THE MULTIPLE-SHELL MODEL FOR CNTS 168

similar new four-layer shell model can be obtained, as shown in Fig. 9.3, to replace the
original 8-layer shell model. Following the similar procedure demonstrated above, the
critical buckling stresses 9.99 GPa, 8.39GPa, 2.01 GPa, 1.03GPaand 0.21 GPa are
obtained for the 8-wall CNT, when the external pressure-to-axial stress ratio # =0, 0.01,
0.05, 0.1 and 0.5, respectively. These results agree well with the value 9.91GPa,
7.74GPa, 1.91 GPa, 0.99 GPa and 0.20 GPa calculated by the exact eight-layer model
with the same value of £. The relative errors of the approximate method are less than
10%. |

In view of the above comparison results, it is believed that the approximate method
suggested here can be used to reduce the number of layers of MWNTSs with acceptable
relative errors (typically less than or around 10%). This approximate method has already
been used in Chapters 3 and 4 to calculate the critical values of buckling loads for an
almost solid 20-wall CNT (example 8 of Table 3.1) under radial pressures (see Table 3.3)
and a 16-wall CNT (example 7 of Table 4.1) under pure axial stress (see Table 4.3). In
particular, based on the approximate method the critical bubkling pressure obtained for a
specific group of 20-wall CNTs (of the innermost radius 1.5 nm ) under both external and

internal pressures, is in reasonably agreement with the experiment result [130].

9.1.4 The Lowest Vibrational Frequency of Thin MWNTs

It is shown in Section 7.3.2 that, as long as the lowest frequency (in-phase R-)
mode is concerned, a thin DWNT, i.e., example 1 of Table 7.1, vibrates like a singlelayer
shell with w,=w,, u, =u, and v, =v, (see Fig. 7.4(b)) due to the strong effect of the

interlayer vdW interaction. Thus, for the lowest frequency mode, it is also expected that a
thin MWNT can be approximately treated as a singlelayer elastic shell with the average
radius of the MWNT. Based on this assumption, in Egs.(5.1) the 3N deflections u, , v,,

and w, (k=L2,-,N) for the N individual tubes can be approximately replaced by
three deflection functions u, v, and w, respectively and the radius r, (k=12,--,N) of
the N tubes can be replaced by the average radius r, . Consequently, the 3N equations

in (5.1) reduce to just three equations describing free vibration of a singlelayer shell of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SIMPLIFICATION OF THE MULTIPLE-SHELL MODEL FOR CNTS 169

radius r,,, bending stiffness D, in-plane stiffness Eh, mass density ph and Poisson’s

ratio v . It is easy to see from Flugge Equations (5.1) that this elastic shell is equivalent to

a singlelayer shell with the radius r,,

., bending stiffness ND, in-plane stiffness E - (Nh),
‘mass density p-(Nh) and Poisson’s ratio v, which is consistent with the single-layer
shell model used for buckling analysis of thin MWNTSs. The relative errors of the lowest
frequencies given by the single-layer shell model for the thin MWNTSs considered here
are shown graphically in Fig.9.4 as compared to those predicted by the multiple-shell

model with L/(ry -m) ranging from 0.1 up to 100 and » varying between 0 and 10. As

seen from Fig.9.4, for the thin 8-wall CNTs (N =8) with the innermost radius-to-

thickness ratio A =4 the relative error is lower than 20% for any given n and L/(r,m).

In particular for n>2, 4, 6, 8 and 10 the relative errors are less than 10% when
L (rym)>20, 4,2, 1 and 0.6, respectively. For the thinner 8-wall CNTs with 1 =6 the
whole group of curves is well below 15% and especially, when A reaches 8.5 the
relatively errors of the single-shell model are less than 10%. The variation of relative
errors with 4 as well as » and L /(r,m) is qualitatively similar for 5-wall CNTs (N =5)
and DWNTs (N =2), as shown in Fig.9.4. However, when number of layers N
decreases from 8§ to 5 and to 2 the relative errors associated with identical A (or those
close to each other) declines significantly. Particularly, to keep the relative errors less
than 10% the critical value of A for 8, 5 and 2-wall CNTs decreases from 8.5 to 7.6 and
to 5, respectively. These results confirm numerically that when the lowest frequency
mode is concerned a sufficiently thin N —wall CNT (e.g., DWNT with 4 >5, 5-wall
CNT with 4 >7.6 and 8-wall CNTs with 4 >8.5) behaves like a single-layer elastic shell
of its average radius, bending stiffness ND, in-plane stiffness E-(Nh), mass density
p-(Nh) and Poisson’s ratio v, and the lowest frequency can be well estimated by the

single-layer shell model.
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9.2 Simplified Shell Equations for CNTs
9.2.1 Introduction

So far, most of the existing elastic shell models for CNTs are based on the simplest
Donnell equations of cylindrical shells. It is known that Donnell equations are based on
several simplifications [116, 137-138, 141-142, 148]: 1) the contribution of two in-plane
displacements to the changes in bending curvature is negligible; 2). the contribution of
transverse shear forces to the equilibrium in the circumferential direction is negligible; 3)
the in-plane inertia is negligible; and 4) the pre-stresses (for buckling problems only) are
neglected in the two in-plane equations. The major advantage of Donnell equations over
other more accurate shell equations (such as exact Flugge equations of cylindrical shells
[137] which do not rely on any of the above four assumptions) is the remarkably simple
mathematical form of Donnell equations, especially due to an uncoupled single equation
for the radial deflection. Since the radial deflection is‘ the dominant displacement
component for many problems, such as buckling and radial vibration of elastic shells, this
advantage largely simplifies technical complexity of elastic shell analysis in many
important cases. Here, it is emphasized that this advantage of Donnell equations is even
more crucial when elastic shell models are applied to MWNTs of large number of layers
[129, 130-131]. On the other hand, although Donnell equations are prove to be an
excellent approximate model and almost indistinguishable from exact shell models in
many important cases, they indeed led to substantial errors in some cases of practical
significance [139, 140, 143, 144, 175]. Hence, in view of unusual geometrical and
material characteristics of CNTs, it is necessary to clarify the conditions under which
Donnell equations or other simplified elastic shell models are applicable for CNTs.

This section gives a systematic study of applicability and limitations of simplified
elastic shell equations for CNTs. Here, beside the Donnell model, a simplified Flugge
model is also examined, which is derived from the exact Flugge equations [139] based on
the last two assumptions of Donnell equations listed above and leads to an uncoupled
single equation for the radial deflection [116, 139-144]. Various problems of static
buckling and free vibration will be discussed with Donnell model (model I), simplified

Flugge model (model II) and exact Flugge equations (model III). As will be seen below,
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the simplified Flugge model (model II), which retains mathematical simplicity of Donnell
model (model I), enjoys improved accuracy and- enlarged range: of applicability as
compared to Donnell model, and thus is recommended for static and dynamic problems
of CNTs.

9.2.2 The Shell Equations for CNTs

Most of existing elastic shell models for CNTs are based on the simplest Donnell
equations of cylindrical shells. So, let us begin with a discussion of the assumptions of

Donnell equations.

9.2.2.1 Donnell Equation (Model I)

For almost all important problems of CNTs discussed so far in the literature,
tangential external loadings along axial or circumferential direction of CNTs are absent.
For example, for MWNTSs, because interlayer friction is usually so small that adjacent
concentric tubes can almost freely slide to each other, it is assumed [127-129, 130-136]
that the interlayer friction is negligible between any two adjacent tubes. In the absence of
any tangential external force, dynamics of the radial deflection w(x,8,7) of an elastic
cylindrical shell of radius » is uncoupled with other two in-plane disblacements, u (axial
displacement) and v (circumferential displacement), and is governed by the Donnell
equation as follows [127-129, 130-131].
£y o’ v Eh o*w o°

hS_Viw (9.5)

62
DViw=V'p(x,0)+F —V*w+—2L Vi "_
PEOFE =5 R? 00° R ot o

Here, different from Eq. (1.11), we only consider SWNTs subjected to axial and radial
compression. Thus F,, disappears in Eq.(9.5). Once the radial deflection w is
determined from (9.5), other two in-plane displacements u (axial displacement) and v
(circumferential displacement) can be determined from other two (axial and
circumferential) equations, see e.g. egs. (6.33¢c) of [116], or egs. (6.13a, 6.13b) of [141].

Eq. (9.5) and the other two equations (the latter will not be used in this section) are called
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“Donnell equations”, while the single equation (9.5) is also often called “Donnell
equation”.

The single uncoupled Donnell equation (9.5) has been widely used in many
problems of cylindrical shells, due to its mathematical simplicity compared to other more
accurate shell equations, such as exact Flugge’s coupled three equations for the
displacement components (u, v, W) (see egs.(7a-c) of [137] or egs. (11-13) of [139] for

“static case). The Donnell equations are based on four assumptions [116, 137-138, 141-
142, 148]: 1) the contribution of two in-plane displacements to the bending curvature is
negligible; 2) the contribution of transverse shear forcés to the equilibrium in the
circumferential direction is negligible; 3) the in-plane inertia is negligible; and 4) the pre-
stresses (for buckling problems only) are neglected in two in-plane equations. The last

two assumptions imply that the pre-stresses, (F,, F, and F,), and in-plane inertias

2 2
( phg—bi and phﬂ) are eliminated from two in-plane equations, and thus the two in-
o’ ot .

plane equations have the same form as their static counterparts without any pre-stresses.

In particular, this means that Donnell equation (9.5) could give satisfactory results only

2 2
when the in-plane inertia ( ph%tTu and ph%tzz) is less important than the radial inertia

2

o‘w
]
(p o

). In addition, as long as the assumption 3) is concerned, it is noticed that the

pres-stresses (F, , I, and F ;) do occur in each of all three equilibrium equations of

more accurate shell models (such as Flugge equations, see egs. (5a-5¢) of [137], or egs.
(10-13) of [148]). Hence, the assumption 3) is indeed a simplifying approximation for
buckling of elastic cylindrical shells and could lead to an error as compared to exact shell

models such as Flugge equations.

9.2.2.2 Simplified Flugge Equation (Model II)
It was shown by Kempner [139, 141, 143-144] that, in the absence of the in-plane

inertias and pre-stresses in two in-plane equations, an uncoupled single equation for the
radial deflection can be derived from exact Flugge equations of cylindrical shells by a

procedure similar to the derivation of Donnell equation. In the presence of all pre-presses
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2 2
and radial inertia, after neglecting powers of h 5 (or Q——Z—)E—lz—
12r Eh r

"material parameter independent of the thickness /) compared to unity, this single

equation can be written as (see Egs. (6.34a-c) of [141], or [139-141, 143-144]):

when D isa

_ 6 4 6
D~V“(V2+i2)2w+2D ¢ v)( ’w w0 w)
;

—F
6 ox?00* ox*06* ox*

r

d? F, &° Viw., F, _, 8*w
=V'p(x,0)+F, —Viw+2—2——(V'w+ + LV 9.6
PEOHE VWt ee Y W )TV Gt 06)
Eh 8*w o2
- — ph—V*w
r? oxt ph6t2

where the pre-stress terms are referred to Eq.(6.36) of [116].

In other words, the simplified Flugge single equation (9.6) is based on Donnell’s
assumptions 3) and 4) only (partially for the latter, because the pre-stress terms of (9.6)
are approximate in nature), but not on the assumptions 1) and 2). On the other hand, it is
seen from (9.5) and (9.6) that although the simplified Flugge equation (9.6) is slightly
more complicated than the Donnell equation (9.5), it essentially retains mathematical
simplicity of Donnell equation (9.5). Hence, it is of great interest to examine the range of
applicability of the simplified Flugge equation (9.6)' for CNTs, with a comparison to the
Donnell equation (9.5). In connection with this, it should be stated that, in spite of known
comparison between Donnell equations and exact Flugge equations [141, 143-144, 175],
no detailed comparison has been made between exact Flugge model and the simplified
Flugge model (9.6) for buckling and dynamic problems of elastic shells. Here, we would
mention that an interesting equation has been suggested by Morley [143], which is
obtained by neglecting some terms in the simpliﬁed Flugge equation (9.6) and has an
elegant form very close to Donnell equation (9.5). As commented by Donnell [116], “the
choice of coefficients in Morley’s solution merely to give the desirable results in certain
particular applications, rather than deriving them from basic principle as was done in
Flugge’s and our own (Donnell) solutions, makes their accuracy somewhat questionable
in applications to unchecked problems.” Hence, in the present work, we shall focus on
the simplified (II).
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9.2.2.3 Exact Flugge Equations (Model III)

Exact Flugge equations will be used in this section as standard elastic shell model.
For static buckling of CNTs, because the general formulas of exact Flugge equations for
various buckling problems are available in Flugge’s book [137], the exact Flugge
equations in the presence of the pre-stresses, which are somewhat lengthy, will not be
cited here (see eqs. (7a-c) of [137]). For free vibration of CNTs, on the other hand, the
exact Flugge equations of cylindrical shells are relatively simple because of the absence

of the pre-stresses, and are given by (see [138] and [139])

*w
d%u T v ow D E(l_ )592 36x3
r’— —(1+v) —vr—+(1-v)——=
Ox 2 ox00 Ox Ehr r o*w
“La-v) 22
2 Ox00
_Ph 2O
_E(l |4 )r tz 9
3r? v
-2
T 1+v) Ou +52—(1—v)9i+a—2v—aw + (1-v?) e
2 oxo8 2 ox*  06* Eh 2
_( 2 Zae
2
(1 v2)r2§t—:,
| 3?.3_
—a—u—+2—w—(l—vz)£r2-V4w+(l—v2)—Dz— 6x
ox 06 Eh Ehr ( v azw
— — — W—_
269 06*
ph o'w
= 5
9.7)
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Here, it is emphasized that, even for static problems without any pre-stresses (for which

assumptions 3) and 4) are valid), Eq.(9.6) is not exactly the same as the exact Egs. (9.7)

2 2
because some powers of h - (or (d-v)D Lz
12r Eh r

independent of the thickness #) have been neglected in Eq. (9.6) compared to unity. To

when D is a material parameter

our knowledge, no detailed comparison has been made between the simplified Flugge
equation (9.6) (model II) and the exact Flugge equations (9.7) (model III) for buckling
and dynamic problems. In particular, in view of unusual geometric and materials
characteristics of CNTs, it is relevant to compare the simplified shell models (9.5) and

(9.6) with exact Flugge equations (9.7).

9.2.3 Elastic Buckling of CNTs

First, let us examine static buckling of SWNTSs. Since agreements between Donnell
shell model (9.5) and available experiments or MD simulations have been demonstrated
previously for various static buckling problems of CNTs [32, 120, 130-131], we shall
focus on comparison between Donnell model (9.5), simplified Flugge model (9.6) and
exact Flugge model (9.7). Here, we shall still consider simply-supported boundary

conditions for cylindrical shells given by
w=0,v=0,F =0 and M =0 4 (9.8)
Thus, for all three models I, II and II1, the buckling modes are given by
u(x;0) = Ucos’—nizx-cosnﬁ

v(x,0) = Vsian”x~sinn9

w(x,0) = Wsin%x -cosné 9.9
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Substitution of (9.9) into equations (9.5), (9.6) or (9.7) leads to homogeneous equations
for the coefficient W or U, V and W. Thus, eigen-equation derived by existence
condition of non-zero solution determines the buckling strain, as function of the wave
numbers m and n. Finally, the critical strain for buckling is decided as the minimum
buckling strain. Here, strictly speaking, m must be a non-zero integer for simply
supported end conditions. However, it is easily understood that buckling of axially
uniform modes, which do not strictly meet simply-supported end conditions, can be

studied by the eigen-equation based on (9.8) by taking m=0.

9.2.3.1 Axial Compression

Let us first discuss buckling of SWNT (of typical diameter 1.3 nm) under axial
compression. It is shown [120] that the Donnell equation (9.5) (ﬁ10de1 I) gives good
estimate of the critical stress, while the numbers m and » cannot be determined uniquely
by Donnell model (I). On the other hand, the predicted axial wave-length of buckling
mode, based on an empirical assumption [120] that the axial wave-length is equal to the
circumferential wave-length, is found to be in good agreement with available MD
simulations. It is well known [116] that, because linear theories of shell buckling admit a
large number of different buckling modes which correspond to almost the same buckling
stresses, they usually cannot predict the actual buckling mode without aid of any
empirical assumption like that mentioned above. Thus, one cannot expect that simplified
or exact Flugge model could give an accurate theoretical prediction for the wave-lengths
of buckling mode of SWNTs without any empirical assumption. Therefore, our focus
here is to compare three shell models and examine whether simpliﬁed Flugge equation |
(9.6) is in better agreement with exact Flugge equations than Donnell equation (9.5).

Because two key parameters for buckling modes are the circumferential wave
number # and the dimensionless axial wave-length (normalized by the diameter 2r)
L/(rm), the dependency of the buckling strain on (L/(rm),n) is shown in Figs.9.5-9.7
for the model L, II and III, respectively. It is seen from Figs.9.5-9.7 that although all three

models give similar results for n larger than 4 or L/(rm) below unity, simplified Flugge

model (II) is in much better agreement with exact Flugge model (1II) than Donnell model
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(D) for n=1,2 or 3 and L/(r.m) larger than unity. In fact, it is found from the data shown
in Figs.9.5-9.7 that the relative errors of the simplified Flugge model (II) is about less
than 10% for » larger than 2 orL/(rm) below 2, while the relative error of Donnell
model (I) is about less than 10% only for # larger than 4 or L/(rm) below 1. The critical
strain given by the three models for several typical cases is shown in Table 9.1. In
particular, because long SWNTs of larger aspect ratio exhibit beam-like buckling (n =1),
the critical strain given by elastic beam-model (Euler formula) is also shown in Table 9.1
for larger values of L/(rm). It is seen from Table 9.1 that the simplified Flugge model

(IT) has much better accuracy than Donnell model (I) especially when n =2 or 3 which
corresponds to the minimum buckling strain in many important cases. In addition,
simplified Flugge model (II) is a better approximate model than Donnell model (I) for
very long shells for which the buckling mode corresponds to #n=1 (Beam-mode). Indeed,
in this case, Donnell equation (9.5) lead to an error in the order of magnitude, while
simplified Flugge equation (9.6) differs than exact Flugge model (III) or the beam-model
by a factor of two. This conclusion for very long SWNTs shows that simplified Flugge

model (II) is significantly better than Donnell model (I) even in extreme cases.

9.2.3.2 Radial Pressure

It has been shown [130] that the Donnell model (1) gives satisfactory estimate of the
critical pressure of CNTs. Here, our goal is to compare three shell models and examine
whether simplified Flugge equation (9.6) is in better agreement with exact Flugge
equations than Donnell equation (9.5). The dependency of buckling pressure on

(L/(rm),n) (where, by the definition of buckling under radial pressure, # is not smaller

than 2) is qualitatively similar for all three models I, II and III, and thus is shown only for
the exact Flugge model (III) in Fig.9.8. In addition, the relative errors of the model I and
Il compared to the exact model III are shown in Figs. 9.9 and 9.10, respectively.
Particularly, the critical pressure given by three models (I, II and IIT) are shown in Table
9.2 for several typical cases. It is seen from Figs.9.9 to 9.10 and Table 9.2 that simplified
Flugge model gives much smaller relative errors than Donnell model for n=2 and

L /(rm) larger than one, while relative errors of both models (I and II) are not much
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larger than 10 % for n larger than 2. On one hand, for L/(rm) smaller than one, the

minimum buckling pressure is decided by n> 2 (Fig.9.8) in which both model (I) and
model (II) are applicable with relative errors not much larger than 10%. On the other

hand, for larger L/(rm) (it is the case when SWNTs are long or moderately long), the

minimum buckling pressure is decided by n=2 and thus the simplified Flugge model
(II) is much better than Donnell Model (I). Hence, it is concluded that, in any case,
simplified Flugge model (II) is a better approximate model than Donnell model (I) for

buckling of CNTs under radial pressure.

9.2.4 Free Vibration of CNTs

Next, we shall compare simplified Flugge equation to Donell equation and exact

Flugge equations in studying free vibration of CNTs.

9.2.4.1 Free Vibration of SWNTs
Let us first clarify the range of applicability of Donnell model (I) and simplified

Flugge model (II) for free vibration of CNTs, in terms of the dimensionless axial wave-

length L/(rm) and the circumferential wave-number #. The vibration modes of a simply

supported shell (m > 0) are given by (@ is the angular frequency)

u(x,0,t) = UCOSLZJC—coan-ei“
v(x,0,f) = Vsin%sin@-e"“"

w(x,0,1) = Wsin’—niﬂz-cosne ™™ (9.10)

where m should be a non-zero integer for simply supported end conditions. Substitution
of (9.10) into equations (9.5), (9.6) or (9.7) leads to homogeneous equations, the
existence condition for whose non-zero solution determine resonant frequencies as

function of the numbers m and n.
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Here, the frequencies given by the exact model (III) are shown in Fig. 9.11 for the
SWNT of radius r =0.65nm , while the relative errors of the frequencies given by two
simplified models (I) and (II) compared to the exact model (III), are shown in Figs.9.12
and 13, respectively. Similar results for the radius r =5#nm, are given in Figs.9.14 to
9.16. It is seen from Figs. 9.11 to 9.16 that the relative errors of the simplified Flugge
model (II) are about 10% or‘ less provided that » is larger than one or L /(rm) is smaller
than two, while the relative errors of Donnell model (I) are about 10% or less provided
that » is larger than 3 or L/(¥m) is less than one. Hence, the simplified Flugge model
(II) is a much better approximate shell model than Donnell model 1. In particular, it is

seen from Figs. 9.11 and 9.14 that the critical aspect ratio (L/(2r)) at which the

vibrational mode corresponding to the minimum frequency transfers from n= 2 to n=1
(beam-mode) is about 5 for SWNT of radius 0.65nm , and is larger than 10 for SWNT of
radius S5am. In addition, for long simply supported shells, the vibrational mode
corresponding to the minimum frequency is characterized by m=1 and n=1 (beam-
model). In this case, it is seen from Figs. 9.12 to 9.13 and Figs. 9.15 to 9.16 that Donnell
model (I) leads to errors in the order of magnitude, while simplified Flugge model (II) is
comparable to exact Flugge model (III) (with relative errors 40%). These conclusions are
qualitatively consistent with those drawn for static buckling discussed in section 9.2.3. It
is emphasized that the improved accuracy of simplified Flugge model over Donnell
model is significant for CNTs because the low-frequency vibrational modes often have
circumferential wave number n=2 or 3. Therefore, these results are important for
further application of simplified shell models to CNTs, especially to MWNTs of large
number of layers.

Here, it should be stressed that one essential shortcoming of simplified shell models
(I) and (II) is that they give only lone frequency (R-mode vibration) for each
combination (m, n), while the exact shell model (III) gives three frequencies for given m
and » which represent R—, L — and T —mode vibrations, respectively. Therefore, the
simplified shell models (I) and (II) cannot be used to discuss L— and 7T —vibration
modes. In spite of this, because R — vibration is dominant in many important problems
and the corresponding frequency is usually lower than the frequencies of L— and

T —modes, the R —modes are of major concern. An example of SWNTs of radius Snm
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are given in Fig. 9.17 for three frequencies given by the exact model (III), and single
frequency given by the simplified model (I) and (II), respectively, which indicates that
the R—mode frequency is lower than other two (L — and T —mode) frequencies for
almost all given (L/(rm), n) except n=0 which means axisymmetric vibrational

modes.

9.2.4.2 Beam-like Modes of SWNTs

The above results indicate that large errors of simplified shell models (I) and (IT)

could occur when n=1 and L/(rm) is much larger than one or two. It is the case when

low-frequency vibrational modes of long SWNTs are concerned. Here, to compare the
three models in this special case, let us discuss beam-like vibration of simply-supported
SWNTs of larger aspect ratio whose lowest frequency corresponds to n=1 and m =1
{106, 163-164, 176-177]. All three shell models, together with the elastic beam-model
{106, 163], are shown in Fig.9.18 for SWNTs of radius 0.65 nm, as function of the aspect
ratio (L /(2r)). In addition, detailed comparison is shown in Table 9.3 for several relevant
cases. It is found that, for special case of beam-like vibration of CNTs, simplified Flugge
model (II), in which the effect of in-plane inertia is neglected [178-179], leads to as large
as 40-50% relative errors as compared to exact Flugge model (III), while Donnell model

(I) leads to errors in the order of magnitilde.

9.2.4.3 Axially Uniform Vibration Modes of SWNTs

The results shown above do not include the special case of axially uniform
vibrational modes with m =0, which cannot strictly meet the siinply—supported end
conditions. However, it is easily understood that axially uniform vibrational modes can
be studied by the eigen-equation based on the modes (9.9) by taking m=0. The
frequencies given by the exact model (III) and the simplified model (I) and (II), are
shown in Table 9.4 for axially uniform modes (m = 0) of SWNTs of radius r = 0.65nm
and 5nm . Since the case of (m =0,n =1) represents a pure rigid-body motion, it is not
included in Table 9.4. It is seen that the frequency for n =0 (radial breathing mode) is
higher than all other frequencies given in Table 9.4. On the other hand, for n>2, the
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frequencies shown in Table 9.4 monotonically increase with the circumferential wave-

number 7.

9.2.4.4 Radial Vibration Modes of MWNTs

The above resultvs show that the simplified Flugge equation (9.6) retains the major
mathematical simplicity of Donnell equation (9.5) and enjoy improved accuracy and
wider range of applicability as compared to Donnell equation (9.5). Here, based on the
multiple-shell model, we shall further use the simplified Flugge equation (9.6) to
calculate the frequencies of R —mode of MWNTSs, where the radial deflection is, indeed,
predominant over circumferential and longitudinal deflections. In particular, the accuracy
of this approximation will be examined, in detail, by comparing the simplified Flugge
equation (9.6) to the exact Flugge equations (9.7). Applying Eq. (9.6) to each concentric
tube of an N -wall CNT yields N dynamic equations for R —modes of the MWNT.

Proceeding in a similar way shown in Chapter 5 with w, (x,8,7) =W, sin-’zlLEcos n@-e'

(k=12--,N), one can obtain N frequencies for each pair of L/(r, -m) and n. For 5-

wall CNTs of the innermost radius Sum and 0.65nm, the results obtained by the multiple-
shell model based on simplified single equation (9.6) (dotted lines) are displayed in
Figs.9.19 and 9.20, respectively with comparison to the R —mode frequencies predicted
by the multiple-shell model based on exact Flugge equations (5.1) (solid lines). With
these results, the maximum relatifle errors of the simplified model (9.6) are calculated for
each R -mode frequency of the two examples in Tables 9.5 and 9.6, respectively with n

varying from 0 to 10.

(1) Large-radius 5-wall CNT (the innermost radius Snm)

Let us first take a look at a large-radius 5-wall CNT of the innermost radius S#nm .
In Fig.9.19 the multiple-shell model based on the exact Flugge equations shows that (i)
for n=0 or n>9 the large-radius 5-wall CNT basically exhibits five R —modes all over
the domain of L /(s - m) considered here. The associated frequencies are labeled as R, to

R, (dark solid lines), respectively. (ii) On the other hand, when n=1 to 8, among the

five possible R-modes, only two to four mainly exist over the domain of
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0.1<L/(rym) <50, e.g., the R—modes associated with frequencies R, to R, at n=1,

R,to R, at n=2, R to R, at n=4, R to R, at n=6 and R, to R, at n=8, while

others can only be obtained in the domain of small L/(r; - m) (say L/(r;m)<0.5 tol.6).
It is evident in Fig.9.19 that the simplified model (9.6) is adequate for all the

R —modes of the large-radius 5-wall CNT. The relative errors are less than 5% for the

R —modes existing over the domain of 0.1< L/(r;m) <50 and less than 10% for those
only available when L/(r;m)<0.5 tol1.6 (see Table 9.5). In particular, when #=0 or
n>9 all the five frequencies given by the simplified model (9.6) (dotted lines) are in

excellent agreement with the R -—mode frequencies predicted by the exact model

throughout the domain of 0.1< L /(r;m) <50.

(2) Small-radius 5-wall CNT (the innermost radius 0.65nm)

For a small-radius 5-wall CNT of the innermost radius 0.65nm the qualitatively
similar results can be obtained in Fig.9.20. (i) When #n =0 or n >3 the simplified Flugge
equation (9.6) offers a good approximation for all the five R —modes of the small-radius

5-wall CNT over the domain of 0.1 < L/(r,m)<50. As shown in Table 9.6, the relative
errors are not more than 8% at » =3 and less than 4% at » =0 or »> 3. (ii) In addition,
when n =1 or 2 the five R —modes of example 4 only exist when L /(r;m) is small (say
L/(r;m) < 0.9 tol.3). For these R—modes, the relative errors of the simplified model
(9.6) shown in Table 9.6, are less than 10% when L/(r;m) < 0.9 to 1.3. It follows from

the above results that the simplified single Flugge equation (9.6) agrees well with the
exact Flugge equations in calculating all the R —mode frequencies of MWNTSs with
relative errors less than 10%. In general, it enjoys wider range of applicability for small-
radius MWNTs of the innermost radius 0.65nm than for large-radius MWNTSs of the

innermost radius 5nm .
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Fig. 9.1 The dependency of axial stress on the wave-numbers (m,n)

(singlelayer shell equivalent to example 1 in Table 4.1)
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Fig. 9.2 The dependency of axial stress on the wave-numbers (m,n)

(singlelayer shell equivalent to example 2 in Table 4.1)
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Fig. 9.3 The approximate method which substitutes an 8-wall MWNT by a 4-layer

elastic shell.
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Fig.9.4 The relative errors of the lowest frequency of the in-phase R —mode obtained by
the singlelayer shell model based on exact Flugge equations for thin N -wall

CNTs with N=2,5and 8, and various 4's (1 =r/Nk and h = 0.34nm).
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Fig. 9.5 The buckling strain given by Donnell model (I) for the SWNT

of radius 0.65 nm under axial compression.
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Fig. 9.6 The buckling strain given by simplified Flugge model (II) for

the SWNT of radius 0.65 nm under axial compression.
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Buckling Strain
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Fig.9.7 The buckling strain given by exact Flugge model (III) for

the SWNT of radius 0.65 nm under axial compression.
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Fig.9.8 The buckling pressure given by exact Flugge model (III) for

the SWNT of radius 0.65 nm under radial pressure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SIMPLIFICATION OF THE MULTIPLE-SHELL MODEL FOR CNTS 188

Relative Error of Buckling Pressure
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Fig.9.9 The relative error of buckling pressure predicted by Donnell model (I)

for the SWNT of radius 0.65 nm under radial pressure.
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Fig.9.10 The relative error of buckling pressure predicted by simplified Flugge
model (IT) for the SWNT of radius 0.65 nm under radial pressure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SIMPLIFICATION OF THE MULTIPLE-SHELL MODEL FOR CNTS

189

Frequency (Hz)

L1l 1 i U N T T A I §

10 10 . 10
Lifrm)

Fig.9.11 The frequency of radial vibration given by exact Flugge
model (III) for the SWNT of radius 0.65 nm .
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Fig.9.12 The relative error of radial vibration frequency predicted
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by Donnell model (I) for the SWNT of radius 0.65 nm .
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Relative Error of Frequency

Li{rm)
Fig.9.13 The relative error of radial vibration frequency predicted by

simplified Flugge model (II) for the SWNT of radius 0.65nm .
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Fig.9.14 The frequency of radial vibration given by exact Flugge
model (III) for the SWNT of radius 5 #m .
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Relative Error of Frequency
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Fig.9.15 The relative error of radial vibration frequency predicted

by Donnell model (I) for the SWNT of radius 5 nm .
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Fig.9.16 The relative error of radial vibration frequency predicted by
simplified Flugge model (II) for the SWNT of radius 5nm .
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Fig. 9.17 The vibration frequencies given by three different shell

models for the SWNT of radius 5 nm .
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Fig.9.18 Comparison of beam-like vibrational frequencies given by

different models for the SWNT of radius 0.65 nm .
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Fig. 9.19 R -mode frequencies of a large-radius 5-wall CNT (the innermost radius 5nm)
given by the five-shell model based on simplified Flugge equation (9.6)

(dotted lines) and exact Flugge equations (9.7) (dark solid lines) with
0<n<10.
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Fig.9.20 R -mode frequencies of a small-radius 5-wall CNT (the innermost radius
0.65nm) given by the five-shell model based on simplified Flugge
equation (9.6) (dotted lines) and exact Flugge equations (9.7) (dark solid

lines) with 0<n<10.
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Table. 9.1 The comparison of minimum buckling strains, predicted by different models

for the SWNT of radius 0.65 nm under axial compression.

Model Shell Model
Beam Model

L /(rm) Model I Model I Model IIT .

0.7 n=2 | 0.0602 0.0592 0.0585

1 n=3 0.0597 | n=31{ 0.0565 | n=3 | 0.0551

2 0.0661 0.0574 0.0538

3 0.0632 0.0552 0.0478

4 0.0596 0.0470 0.0395

5 n=2 0.0639 n=? 0.0455 n=? 0.0377

6 0.0742 0.0488 0.0400

7 0.0892 0.0556 0.0453

8 0.1083 0.0652 0.0529
9 0.1060 0.0969 0.0540 0.0651
10 n=1 0.0926 n=1 0.0818 n=1 0.0447 0.0527
20 0.0613 0.0235 0.0120 0.0132
50 0.2305 0.0039 0.0020 0.0021

Table. 9.2 The comparison of critical buckling pressure, predicted by different models

for the SWNTs of radius 0.65 nm or 5 nm under radial pressure.

Radius Bl\lilcokldir;g Aspect Critical Buckling Pressure (GPa)
(nm) - " Ratio Model I Model II Model 11T
4 0.7 15.58 15.16 1528
3 1.5 6.29 5.84 5.90
1 5 2.15 1.67 1.68
0.65 2 10 2.00 113 151
20 1.97 1.48 1.48
0 2 1.97 1.48 1.48
7 0.7 0.077 0.077 0.076
5 1.5 0.035 0.033 0.034
500 1 3 5 10.90x 107 9.90x 10~ 9.90x10°
' ) 10 5.05x107 4.19x 107 420x10°
20 438x107 3.31x107 3.30x107
0 2 432x107 331x107 3.24x107
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Table. 9.3 The comparison of beam-like vibration frequencies (n =1), predicted

by different models for the SWNTs of radius 0.65nm or Snm .

. Frequency ( Hz
Radius L /(rm) i\ y (Hz) rEy—
(nm) Model I Model II Model ITI
model
0.5 821x107 | 8.18x107 | 8.16x10
1 5.09%107 | 5.08x10" | 497x10"
0.65 5 1.51x10"7 | 1.50x10" | 1.04x10" | 1.53x10"
: 10 506107 | 4.76x10"" | 329x10" | 3.82x10"
50 1.59x10" | 2.08x10™ | 1.47x10"™ | 1.53x10"
100 1.58x 10" 5.22x10° 3.68x10° | 3.82x10°
0.5 6.80x10"" | 6.80x10"" | 6.78x10"
1 6.26x10"7 | 6.25x10" | 6.11x10"
5 5 1.94x10™ | 1.94x10" | 1.30x10" | 1.93x10"
10 6.19x10"° | 6.18x10™ | 4.28x10" | 4.81x10"
50 3.80x 10’ 2.71x 10’ 1.91x10° 1.93x10°
100 2.80x 10° 6.78x10° 479%x10° | 4.81x10°

Table. 94 The comparison of vibration frequencies when m =0, predicted by

different models for the SWNTs of radius 0.65nm or 5 nm .

196

Radius Frequency ( Hz)
(nm) " Model 1 Model II Model 11
0 531x10" 5.31x10" 5.30x 10"
2 6.31x10"" 4.73x 10" 4.23% 10"
0.65 3 1.42x10" 1.26x 10" 1.20x 10"
4 2.52x10" 2.37x10" 2.29x 107
5 3.94x 10" 3.78x 10" 3.71x 107
0 6.90% 10" 6.90x 10" 6.90x 10"
2 1.07x10™ 7.99x10° 7.15x10°
5.00 3 2.40x10™ 2.13x10™° 2.02x10™
4 426%10"° 4.00x10™ 3.88x 10"
5 6.66x10° 6.39x10™ 6.27x10"
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Table 9.5 The maximum relative errors of R -mode frequencies predicted by the simplified Flugge
equation for a five-wall CNT of the innermost radius S#m when 0 <7 <10 and 0.1<7 <50 or in

specified range of 7, where 7 =L /(r;m).

" 0 1 2 4 6 g 9 10
R | 20% (S 300 | 15w | 09% | 07% | 0.6%
R, | -0.5% :io(;_/‘é j‘gof‘ 50% | L7% | 09% | 0.7% | 0.6%
R | 0% | 46% :i(:;/ . z'<10070f(-’08 30% | 12% | 08% | 0.7%
R, | 0% | 24% | 28% 7121/85 ;(11237 28% | 12% | 08%
g | 0% | 17% | -19% ;(llgi/;’p 7121/35 :iogg 20% | 1.0%

Table. 9.6 The maximum relative errors of R -mode frequencies predicted by the simplified Flugge

equation for a five-wall CNT of the innermost radius 0.65#m when 0 <7 <10 and 0.1<7 <50 orin

specified range of 7, where 7 = L /(r;m).

. 0 1 2 3 4 6 3 10
0, 0, ’
R, 18% 1% 4 <10% o0 | 34% | 15% | 09% | 0.6%
<13 7<1.3
0 0,
R, | -120 %% L <10% b o0 | 35% | 16% | 09% | 0.6%
<11 r<l1.1
0 0 '
R, | -1ov =1%% | <I0% | o0 | 36% | 16% | 09% | 0.6%
<l <l :
0, 0,
R, | -13% [—10% | <I0% | oo | 3800 | 16% | 09% | 06%
7<0.9 7<0.9
- V) <10% <10% 0 0, (1) 0 0 V
R, 18% [—re <0 0% | 36% | 16% | 09% | 06%
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Chapter 10

Conclusions and Future Plans

10.1 Conclusions

In this thesis, a multiple-shell model has been utilized to conduct comprehensive
studies on elastic buckling and free vibration of MWNTSs, most of which still remain
challenging for nano-scale experiments and atomistic simulations. Here each of the
concentric tubes of a MWNT is modeled as an individual elastic shell, coupled with
adjacent tubes via the interlayer vdW interaction without interlayer friétion [127-129].
“Thus, different from the oversimplified single-shell mode! previously used for MWNTs,
the multiple-shell model enables us to examine the effect of the interlayer vdW
interaction and the interlayer sliding on mechanical behavior of MWNTSs. In particular, it
is found that the multiple-shell model is in good agreement with available experiments
and atomistic modeling for buckling and free vibration of MWNTs [130-136]. The major

conclusions based on the multiple-shell model are summarized in the following sections.

10.1.1 Buckling Behavior of MWNTs

(1) Buckling of MWNT's under External Pressure

(i) The critical external pressure of simply supported MWNTs is always associated
with minimum half axial wave number m=1, while the corresponding
circumferential wave number 7 varies between 2 and 4 for MWNTSs studied here.

Especially, the critical pressure for a thin N-wall CNT is approximately N times that
of a SWNT of the average radius of the MWNT.

(ii) Introducing an internal pressure to externally pressured MWNTs with internal-to-
external pressure ratio reaching a critical value results in sudden change in buckling
mode of MWNTs with circumferential wave number » jumping from a small
number to a relatively large number (e.g., n increases from 2 to 9, 6 and 11 for

examples 1, 2 and 3 in Table 3.1). At the same time, an abrupt up-shift of the
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critical external pressure arises for thick or thin MWNTSs but only a small change of

the critical external pressure occurs for (almost) solid MWNTs.

(iii) In particular, the critical pressure 1.32GPa predicted by the multiple-shell model for
a 20-wall CNT under both internal and external pressures is found to be in good
agreement with known experimental result 1.48 GPa [75], showing an evidence for

the relevance of the multiple-shell model for MWNTs.

(2) Axially Compressed Buckling of Pressured MWNT's

(i) For simply supported MWNTSs under pure axial compression, there always is more
than one combination (m, n) of the half axial wave number and circumferential
wave number of the buckling mode which corresponds to the same minimum axial
stress. Especially, the critical axial stress of a thin MWNT is approkimately equal to
that of a SWNT of the éverage radius of the MWNT. -

(ii) Applying an internal pressure to axially compressed CNTs increases the critical
axial stress of non-axisymmetric buckling modes, while it has no effect on the
axisymmetirc mode (n = 0). In former case, the effect of an internal pressure is
strong for thin MWNTSs, moderate for thick MWNTSs, and negligible for (almost)
solid MWNTs. In particular, the effect of the internal pressure on critical axial
stress predicted by the present model for SWNTs of radius 1.3nm appears to be in

qualitative agreement with Ni et al.’s MD simulation results [87].

(iii) For MWNTs subject to both axial force and external pressure, the buckling mode
can be determined uniquely. The critical buckling condition, expressed as the axial
stress-external pressure relation, is strongly nonlinear due to the very small radius-
to-thickness ratio of MWNTs as compared to that of conventional thin shells which

exhibit the well-known linear critical buckling condition.

10.1.2 Vibrational Behavior of MWNTSs

(1) Radial Breathing Modes (RBMs) of MWNTs
(i) In the absence of an external pressure, the RBMs of MWNTs predicted by the
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present multiple-shell model agree very well with the results of atomistic models
[24, 74] and experiments [71], demonstrating the effectiveness of the present shell
model to free vibration of MWNTs.

(i) In the presence of an external pressure, the interlayer vdW interaction coefficients
between outmost few layers of MWNTs increase significantly due to the pressure-
induced reduction of interlayer spacing. As a result, RBM frequencies of MWNTs
almost linearly up-shift with increasing external pressure. The most significant
pressure effect occurs for the highest frequency mode of large-radius MWNTs (the
innermost radius > 1nm) or an intermediate-frequency mode of small-radius
MWNTs (the innermost radius < 1nm ), where the outermost tubes are involved
substantially and most adjacent tubes vibrate counter-phase with significant change

in the interlayer spacing.

(2) General Vibrational Properties of MWNTs

(i) During vibration, the motions of all the nested tubes of a MWNT are generally
coupled with each other via the interlayer vdW interaction. This effect of the
interlayer vdW intreracton is most significant for radial (R) modes of the large-
radius MWNTs (e.g., the innermost radius 5nm) with low stiffness of the
individual tubes, and moderate for the small-radius MWNTSs (e. g., the innermost
radius 0.657nm) with higher stiffness of the individual tubes when the
circumferential wave number » is nonzero but relatively small (e.g., 3<n<7),
while it becomes negligible for torsional (7T) and longitudinal (L) modes regardless
the radius of MWNTs.

(i) Asaresult, 7- and L— modes of MWNTs are essentially the vibrations of individual
tubes, while R—modes of the large-radius MWNTs or the small-radius MWNTs
with small nonzero n are characterized by collective radial vibrations of all the
nested tubes, where the in-phase mode is always associated with the lowest R—mode
frequency, the counter-phase mode is associated with the highest R—mode

frequency, and mixed modes have intermediate frequencies.
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(3) Special Vibrational Modes of MWNTs

(i) For axisymmetric vibration (n = 0), L— and R —modes of MWNTS are strongly
coupled with each other in the L— R transition zone due to the Poisson-ratio effect.
In particular, different from non-axisymmetric L —modes of MWNTs (with large
n), which are basically uncoupled L—vibration of individual tubes, axisymmetric
L —modes of MWNTSs are usually collective vibrations of nested tubes due to the
Poisson-ratio effect, interlayer vdW interaction and especially, the almost identical

L —mode frequency of individual tubes.

(ii) For beam-like vibration (n =1), the multiple-(Euler) beam model agrees well with
the multiple-shell model for almost coaxial B—mode of MWNTs and the non-
coaxial B-—modes of small-radius MWNTs (e.g., 2-5 wall CNTs of outermost
radius less than 2nm ), with relatively errors less than 10%. However, the relative
errors between the two models are up to 30 to 50% for high-order non-coaxial
modes of large-radius MWNTSs, due to significant non-beam-like cross-sectional
deformation caused by the interlayer vdW interaction. Therefore, the multiple-beam

model is more relevant for small-radius MWNTs than large-radius MWNTSs.

(iii) The lowest frequency of simply supported MWNTs is always associated with the
minimum axial half wave number m =1. When the length-to-outermost radius ratio
increases, the lowest frequency of MWNTs decreases monotonically and the
associated mode shifts from a R —mode with larger n (say, n=3-6),toa R-T
combined mode with smaller n (say, n=2-3), and finally, to a beam-like coaxial

B —mode with n=1.

10.1.3 Simplification of the Multiple-shell Model

(1) The Single-shell Model for Thin MWNT's

(i) For elastic buckling and the lowest frequency vibration, a thin N-wall CNT is
approximately equivalent to a singlelayer elastic shell whose effective bending
stiffness and thickness are N times the effective bending stiffness and thickness of
SWNTs and the radius is equal to the average radius of the thin N-wall CNT.
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(ii) Based on the single-shell model for thin MWNTSs, an approximate method is
suggested for buckling of thick or (almost) solid MWNTs, which can effectively
reduce the problem of MWNTs of many layers to the problem of a multilayer

elastic shell of fewer layers.

(2) The Accuracy and Applicability of Simplified Flugge Equations
For general cases of static buckling and free vibration of SWNTs, the relative errors
of the simplified Flugge model (compared to the three exact Flugge equations) are
generally less than 10% for #n larger than 1 or 2, or for L/(r.m) smaller than two,
while the relative errors of Donnell model are less than 10% only for » larger than
3 or 4, or for L/(r.m) smaller than one. This conclusion is significant because the
critical buckling mode and low-frequency vibrational modes often have
circumferential wave number n=2 or 3. Hence, simplified Flugge model has a
significantly enlarged range of applicability compared to Donnell model, and covers
almost all important cases of major concern. Here, we would emphasize that
simplified shell models, characterized by a single uncoupled equation for radial
deflection, will be particularly useful for MWNTs of large number of layers. On the
other hand, such simplified shell models are applicable only for radial deformation

of cylindrical shells with simpler end conditions (such as simply-supported ends).

All these results convincingly show that the multiple-shell model can be used to describe
overall mechanical behavior of CNTs with characteristic length much larger than thé c-c
bond length (about 0.14 nm) of CNTs. On the other hand, we would like to comment
that elastic shell model would be questionable for highly localized deformation with very
small characteristic length comparable to the c-c bond length of CNTs, such as cracks or
local buckling of very small wave-length. Thus the elastic shell modél are usually limited

to reversible elastic deformation and do not account for fracture and failure [180-181].
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10. 2 Future Plans

In the current thesis, the multiple-shell model has been used for characterization of
elastic buckling and free vibration of MWNTs. Indeed, because nano-scale experiments
are usually difficult and atomistic simulations still remain expensive and formidable for
MWNTs, the multiple-shell model [127-129] does offer an alternative method for study
of MWNTs. In particular, the comparison between the present shell model and available
experiments and atomistic simulations convincingly demonstrates the effectivenesé and
accuracy of the present shell model for CNTs [130-136]. Thus, it is anticipated that the
multiple-shell model can be further utilized for characterization of the mechanical

behavior of MWNTs. In particular, the further work could include:

(1) The Effect of Dimensional Factors on Buckling of MWNTs: It is known that
MWNTs are distinguished from SWNTSs due to multilayer structure and associated
interlayer vdW interaction. Especially, synthesized MWNTSs usually have wide
distribution of radius and the number of layers, and will be used in practical
application with different aspect ratios. Thus, the effect of these dimensional factors
on buckling properties is important for MWNTs as building blocks in nano-devices.
Very recently, the effect of geometry of CNTs has already been discussed based on
MD simulation [89-90]. However, since MD simulation is computationally
expensive, these studies [89-90] are limited to CNTs of not more than four layers.
Using the cost-effective multiple-shell model [127-129], one is able to conduct a
comprehensive study on this issue by considering MWNTs of the innermost radius
ranging from the order of 1am to the order of 10 nm, the number of layers varying

from two to several dozens and aspect ratio increasing from the order of 1 to the
order of 100.

(2) The Buckling Analysis of MWNTSs under Torsional Load: In the present
work, elastic buckling of MWNT under axial force and radial pressure has been
discussed in detail. Another loading condition, which is of practical interest, is
torsional load. Recently, following the present multiple-shell model [127-129],
torsional buckling of DWNTs embedded in an elastic medium has been investigated

analytically [182], while torsional strength of individual SWNTs and MWNTSs has
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been calculated based on an atomistic modeling [183]. However, systematical study
on torsional buckling of MWNTSs has not been reported in the literature. Based on
the multiple-shell model [127-129], numerical work can be done to further discuss
the buckling behavior of MWNTSs under torsional load and examine the effect of
geometric size of MWNTs and especially, the interlayer vdW interaction on
torsional buckling of MWNTs.

(3) The Pressure Effect on Free Vibration of MWNTSs: It has been shown [134]
that applying an external pressure to MWNTSs can effectively increase the vdW
interaction coefficient between the outmost few layers due to the pressure-induced
reduction of interlayer spacing. Thus, for RBMs of MWNTs whose circumferential
wave number # and half axial wave number m are zero, an external pressure could
significantly up-shift the frequency of RBMs of MWNTSs [134]. On the other hand,
for free vibration of MWNTs with nonzero n and m, the pressure-induced
compression of individual tubes also reduces the structural stiffness of MWNTs,
which decreases vibrational frequencies of MWNTs. Thus, the pressure dependence
of vibrational frequency of MWNTs in general cases provides a useful probe for
complete study on the structure-mechanical property relationship of MWNTs,

which is obviously a key issue for MWNTSs as an engineering material.

(4) The Effect of Boundary Conditions on Mechanical Behavior of MWNTSs:
In the present work, the simply supported boundary condition is assumed for
MWNTs in both buckling and vibrational analysis. However, for MWNTs used in
nanocomposites or nanomachines, nested tubes or two ends of one individual tube
could have different boundary conditions. For example, the outer tube of a double
wall CNT embedded in a polymer matrix can be modeled as a shell with two fixed
ends while the two ends of its inner tube may be free or simply supported. Since the
combinations of the different boundary conditions 6n the two ends of MWNTs
could significantly affect the performance of MWNTs as reinforcement of
nanocomposites or structure elements in nanodevices it is relevance to invesﬁgate
the effect of boundary condition on mechanical behavior, such as buckling and free

vibration of MWNTs
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(5) The Curvature Effect on Mechanical Behavior of MWCNTSs: There is clear
evidence that, usually, neglecting curvature effect on the interlayer vdW interaction
coefficient ¢ will not result in substantial errors. Thus the radius-independent vdW
interaction coefficient is used in the multiple-shell model. However, recent study
[184] showed that for MWNTs of very small radius, the curvature effect does play a
significant role in determining the interlayer vdW interaction coefficient ¢. Thus, it
is expected that the mechanical behavior of MWNTSs could be affected by curvature
effect-induced variation in the interlayer vdW interaction coefficient. In this future
work, effort will be devoted to a complete study of the curvature effect on buckling
and free vibration of MWNTs by using radius-dependent interlayer vdW interaction

coefficient c.

In view of above statements, the multiple-shell model can be further used to study the
mechanical behavior of MWNTs, especially those of many layers. In particular, the
results obtained base on the present model could considerably improve the understanding
on mechanics of MWNTs, which may not be easy for other techniques and serve as

guidance for further study in experiments and atomistic simulations.
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