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A bstract

Cryptosporidium parvum is a waterborne pathogen that has caused a significant 

number of outbreaks worldwide. A risk assessment of Cryptosporidium parvum 

exposure through drinking water requires consideration of oocyst concentrations 

at source waters, the effectiveness of drinking water treatment, tap water 

consumption, and the dose response relationship. In this thesis neural network 

models were developed to model tap water consumption and the disinfection of 

Cryptosporidium parvum using chlorine dioxide and ozone. These models were 

used for exposure assessment to determine daily doses of oocysts from tap 

water consumption. A dose response neural network model was developed for 

several strains of Cryptosporidium parvum. A risk characterization that 

considered a variety of exposure scenarios was completed using the tap water 

consumption, disinfection and dose response neural network models. The risk 

characterization produced point estimates for the daily probability of infection 

assuming exposure to Cryptosporidium parvum.
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1.0 IN TR O D U C TIO N

1.1 Problem Statement and Thesis Objectives

Waterborne Cryptosporidium parvum (C. parvum) is a microbial pathogen that 

affects the majority of the world’s population through consumption of 

contaminated drinking water. Very compelling evidence that Cryptosporidium 

exposure via drinking water is occurring and causing infection is the number of 

documented waterborne Cryptosporidium outbreaks. Consider the 1993 outbreak in 

Milwaukee, Wisconsin that infected 403 000 people and killed over 50 (Rose et ai, 

2002). Also, C. parvum has been shown to: have a low median infectious dose 

for humans, be resistant to various treatment processes and have the ability to 

survive under very harsh conditions for extended periods. These factors make 

Cryptosporidium parvum a considerable health risk.

The risk of infection to a person from C. parvum can be determined given point 

estimates of drinking water consumption, oocyst concentration, and dose 

response parameters. Determining the risk of infection requires the analysis and 

integration of many complex systems and application of many assumptions and 

models. Water consumption in risk assessments of waterborne pathogens is 

often assumed to be the same for all regions, ages, and genders even though it 

can vary considerably. The concentration of oocysts in treated drinking water is 

a function of land-based activities in a given watershed, climate and drinking
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Introduction

water treatment processes. Individual drinking water treatment processes, such 

as disinfection, are very complex non-linear processes that are typically modeled 

using mathematical models that require deep process knowledge in order to 

develop. Also, mathematical models do not allow easy incorporation of 

additional input variables as new process knowledge becomes available.

There are developed quantitative risk assessment models for waterborne C. 

parvum that predict the probability of infection given a specific exposure to the 

pathogen through consumption. However, these models rely on conventional 

modeling techniques such as statistical and mathematical models that are not 

able to perform the best generalization of the dose response and exposure 

assessment relationships for a given dataset. For example, current dose 

response models for C. parvum are statistical and require the correct selection of 

a statistical distribution. The first major objective of the research described in this 

thesis was to overcome the limitations of current dose response models through 

the development of an intelligent dose response model for C. parvum based on 

neural networks. The intelligent dose response model produces a better 

generalization of the dose response relationship automatically, incorporates 

multiple strains of the C. parvum pathogen into the same model as input 

parameters and allows for quantitative risk assessments of immuno-deficient 

populations, and populations with previous C. parvum infection and the resulting

RISK ASSESSMENT OF CRYPTOSPORIDIUM PARVUM USING NEURAL NETWORKS 2
JANES 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

immunity. The intelligent dose response model is compared against several 

exponential dose response models.

The second objective of the research is to use neural network modeling 

techniques for the exposure assessment of waterborne C. parvum while 

considering several disinfection water treatment processes. Three separate 

factors are considered in the exposure assessment:

1. The presence of the C. parvum oocysts in raw water sources through 
various contamination sources and factors;

2. The effect of drinking water treatment disinfection processes on C. parvum 
oocysts, and;

3. Consumption rates of drinking tap water.

The third objective of the research is to perform a quantitative risk 

characterization of waterborne C. parvum using the developed neural network 

dose response and exposure assessment models to determine point estimates 

for the daily probability of infection from C. parvum. The risk characterization 

considers the following simulation conditions: various oocyst concentrations, 

varying disinfection process effectiveness, several drinking water consumption 

rates, and several different C. parvum strains.
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1.2 Cryptosporidium

Cryptosporidium is a protozoan pathogen that develops into an oocyst (multiple 

parasites contained in a double walled outer shell) before it is excreted in the 

feces of the infected host (Fayer et al., 2000). This oocyst stage is very 

important for the distribution, endurance, and transmission of the 

Cryptosporidium parasite. Cryptosporidium oocysts are able to remain active for 

extended periods of time (several months), even under harsh conditions ranging 

from -20 °C to +20 °C (Fayer et al., 2000). However, very extreme cold (-70 °C) 

and extreme heat (+70 °C) applied to an oocyst for a short period, approximately 

10 seconds, has been shown to kill oocysts. Cryptosporidium has been 

recognized as causing human disease since 1976 and has been generally 

recognized as a waterborne pathogen since 1984 (Hrudey and Hrudey, 2004).

The transmission pathway for Cryptosporidium starts when oocysts are ingested 

and possibly infecting the host. Subsequently, the infected host produces and 

excretes many oocysts to the environment and another host might ingest those 

oocysts. This is known as fecal-oral transmission. There are 10 different 

species of Cryptosporidium that have been identified, but Cryptosporidium 

parvum is the species considered to be the cause for cryptosporidiosis in 

humans (Fayer etal., 2000; Rose etal., 2002). C. parvum has been known to 

infect cattle, goats, swine, and mice in addition to humans (Martins and Guerrant,

RISK ASSESSMENT OF CRYPTOSPORIDIUM PARVUM USING NEURAL NETWORKS 4
JANES 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

1995). Once C. parvum has been ingested, the pathogen’s life cycle is completed 

within the gastrointestinal tract of the host where it multiplies and many of the 

symptoms of cryptosporidiosis may appear. The symptoms include diarrhea, 

cramps, nausea and abdominal pains (Messner etal., 2001). There is currently 

no cure or vaccination for cryptosporidiosis, there are only re-hydration 

treatments available for people that lose large amounts of body fluids while ill 

with cryptosporidiosis. In severe cases, the rapid loss of significant body fluids 

from diarrhea due to cryptosporidiosis can result in death. Death from 

cryptosporidiosis is more likely to occur in sensitive populations such as the 

elderly, the immuno-compromised, and the malnourished (Teunis etal., 2002). 

For those with HIV, new developments in drug therapies have helped lower the 

risk of developing chronic cryptosporidiosis by protecting the immune system 

(Hrudey and Hrudey, 2004). A person who is exposed to C. parvum oocysts will 

not always develop an infection, however if an infection does occur they will 

produce and excrete oocysts (Joseph et al., 2005).

There are a variety of methods for transmitting Cryptosporidium oocysts such as 

person-to-person, animal to person, foodborne transmission, and waterborne 

transmission. Waterborne transmission (fecal contaminated water) is considered to 

be the primary source of transmission for Cryptosporidium (Donnelly and Stentiford, 

1997). The contaminated fecal matter of humans and animals has many
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opportunities to enter the water system. Generally, groundwater aquifers are not 

easily contaminated with Cryptosporidium, but surface water sources like rivers, 

streams and lakes are easily contaminated. Human wastewater does receive 

treatment such as screening, settling and disinfection in many developed nations. 

However, the oocysts are resistant to many of these processes, specifically chlorine 

disinfection, and most developing nations have minimal processing of human 

wastewater. In developed nations, with the advent of factory farming and modern 

agricultural practices, the untreated fecal waste of many types of livestock is 

concentrated, liquefied and spread on to farming lands as fertilizer and the excess 

runs off into surrounding surface waters. Finally, wildlife does produce fecal matter 

that contributes to the water contamination problem, but wildlife contribution is low 

relative to other sources. Every human must drink water, it is essential to life; thus, it 

is not surprising that waterborne transmission is the major transmission pathway for 

Cryptosporidium in humans. Waterborne pathogens like Cryptosporidium use many 

transmission pathways in combination, which increases their posed threat to the 

human population (Joseph etal., 2005).
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1.3 Prevalence in the Environment and Exposure

In order to evaluate the risk associated with waterborne Cryptosporidium, it is 

necessary to consider the infectivity of the pathogen, potential adverse health 

effects, transmission pathways, and also the potential exposure of the public to 

the parasite. There are a variety of factors that influence potential 

Cryptosporidium contaminated drinking water exposures, including:

• The concentration of oocysts in drinking water sources;

• Prevailing weather conditions;

• The virulence and robustness of the oocysts;

• Oocyst removal or deactivation by water treatment processes, and;

• The amount of cold water consumed on a daily basis.

There are two types of drinking water sources, surface water and groundwater. It 

is known that surface water sources are more vulnerable to fecal contamination 

than groundwater, but groundwater sources have also been contaminated with 

C. parvum oocysts at relatively low concentrations in the past (Rose et al., 2002).

The excretion rate of oocysts from infected animals and people surrounding a 

water source is very important in determining the loading for the water source. 

The land use for areas surrounding the water source is an essential factor 

contributing to the concentration of oocysts in water sources. It has been shown 

that source waters with extensive agriculture surrounding the water body or a
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wastewater treatment outlet nearby are likely to have 10 to 100 times the 

concentration of oocysts than water sources that do not (Rose et al., 2002). This 

is of particular concern to areas with a combination of high population densities, 

extensive agriculture and heavy reliance on surface sources for drinking water, 

such as New Zealand and the Netherlands (Duncanson etal., 2000; Teunis et 

al., 1997). This results in extraordinarily heavy loading of the water source due 

to livestock fecal and fertilizer runoff, and wastewater discharge. It is reported by 

a variety of nations, including Canada, USA, UK, Spain, and New Zealand, that 

the ranges of average concentration of C. parvum oocysts in wastewater is 3000 

to 4000 oocysts per litre of water, surface water is 12 to 250 C. parvum oocysts 

per litre of water, and drinking water is 0.5 to 6 oocysts per litre of water (Makri et 

al., 2004; Rose et al., 2002; Teunis et al., 1997). This illustrates that large 

numbers of oocysts are being released via wastewater discharge and that 

surface waters have relatively high concentrations of oocysts. Also, treated 

drinking water may contain roughly enough oocysts per litre to infect a person 

depending on the strain of C. parvum, the person’s individual susceptibility, and 

the amount of water ingested per day. The reported amount of drinking water 

ingested per day in North America ranges from 1 to 3 litres of water depending 

on age, lifestyle and other factors (Makri etal., 2004; Teunis etal., 1997). Teunis 

et al. (1997) calculate that the median individual probability of infection for the C.
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parvum Iowa strain per annum is approximately 1 in a population of 10 000 for 

healthy individuals who drink 2 litres of water daily from a surface water source.

Regarding C. parvum outbreaks, Canada had four documented waterborne 

Cryptosporidium outbreaks between 1993 and 1996 that affected almost 32 000 

people. The alleged source of contamination in most cases was wastewater 

discharge and liquid manure fertilizer runoff (Rose et al., 2002). The average 

hospitalization rate from Cryptosporidium in North America and the United Kingdom 

is reported to be approximately 13% among those who become infected (Rose et 

al., 2002). That would mean over 4000 hospitalizations in Canada for documented 

C. parvum outbreaks between 1993 and 1996. The United States had 10 

documented waterborne Cryptosporidium outbreaks between 1984 and 1996, while 

the United Kingdom had 13 documented outbreaks between 1986 and 1996 (Rose 

etal., 2002).

1.4 Risk Assessment

Risk analysis encompasses risk assessment, risk management and risk 

communication. Risk assessment can be defined as:

“A systematic process for qualitative or quantitative characterization of 

adverse effects (risks) associated with hazardous substances, processes, 

actions, and/or events” (Gibson etal., 1998).
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Risk management is the process of developing a risk treatment strategy that 

mitigates the risk identified during the risk assessment and takes into 

consideration financial, political, and other constraints. Risk communication is the 

communication of identified risks and the risk treatment strategy, if applicable, to 

stakeholders. Quantifiable risk assessment has traditionally focused on human 

exposure to chemicals, in particular carcinogenic substances. In the last 25 

years quantitative microbial risk assessment (QMRA) for waterborne and 

foodborne pathogens has emerged (Gibson etal., 1998).

Quantitative microbial risk assessment is considered an important tool for 

understanding and managing the risk from waterborne pathogens, such as C. 

parvum (WHO, 2004). Quantitative microbial risk assessment for waterborne 

pathogens involves four major steps: hazard identification, exposure 

assessment, dose response assessment, and risk characterization. The risk 

assessment process is presented in Figure 1.1. Hazard identification involves 

discovering all possible drinking-water hazards that may expose human 

consumers to waterborne pathogens (WHO, 2004).
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Hazard Identification

I
Exposure Assessment

I
Dose Response Assessment

I
Risk Characterization

Figure 1.1: Risk assessment process 

Using tap water as an example, exposure assessment for waterborne pathogens 

is the assessment of how many pathogenic organisms the exposed individual will 

have come in contact with through ingestion of contaminated tap water. Dose 

response assessment characterizes the incidence of an adverse health effect in 

the population given a certain level of exposure to a pathogen. Risk 

characterization involves integrating the information generated by the exposure 

and dose response assessments to arrive at an estimation and description of the 

risk (Thomas and Hrudey, 1997).

1.4.1 Hazard Identification

For waterborne pathogens, hazard identification involves identifying a particular 

pathogen’s potential to cause significant adverse health effects within a 

population. Information collected during the hazard identification step includes 

information about the pathogen, such as survival and growth conditions and 

potential transmission pathways for example. Epidemiological studies, outbreak
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data, and surveillance data provide excellent information sources for hazard 

identification. Epidemiological studies are either observational or experimental 

and involve human subjects. Observational studies involve investigators 

measuring the natural evolution of a disease without intervention, while 

experimental studies involve direct intervention by the investigators through the 

exposure of a pathogen to a subject or the progression of the disease caused by 

a pathogen (Beaglehole etal., 1993). Surveillance data is derived from the 

continuous monitoring of disease occurrence within the population. In general 

hazard identification is not considered a major component of QMRA, while 

exposure assessment, dose response assessment, and risk characterization are 

significant steps.

A critical component of hazard identification involves deciding what primary 

consequence will be measured by the risk assessment: infection, illness, or 

death. Generally infection within the population has been regarded as the 

primary consequence that should be protected against (WHO, 2001). For this 

thesis, infection was the only consequence considered for the risk assessment. 

Hazard identification for C. parvum was previously discussed in sections 1.2 and 

1.3.
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1.4.2 Exposure Assessment

Exposure assessment for this research describes a particular transmission 

pathway through which a waterborne pathogen goes from a raw water source to 

a drinking water consumer. The purpose of exposure assessment is to 

determine the particular mechanism for exposure and to estimate the level of 

exposure. The mechanism of exposure considered in this thesis for C. parvum is 

limited to drinking water consumption. When estimating the level of exposure to 

C. parvum through drinking water it is necessary to estimate the consumption of 

drinking water per day and the oocyst concentration at the point of consumption. 

When estimating the oocyst concentration one must consider the introduction 

and distribution of the pathogen in a raw water source, water treatment, and 

finally the distribution of drinking water to a consumer. Since C. parvum oocysts 

are only able to reproduce within a host, it is assumed for this thesis that the 

drinking water discharged from a drinking water treatment plant is reasonable for 

estimating the oocyst concentrations in the drinking water consumed. A study by 

Haas and Rose (1996) demonstrated that Cryptosporidium oocysts are uniformly 

distributed within in water sample. It is assumed for this thesis that 

Cryptosporidium oocysts are uniformly distributed within a water supply.
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1.4.3 Dose Response Assessment

Dose response assessment uses the exposure information produced by the 

exposure assessment to estimate the risk of infection and possibly illness for the 

exposed population. Dose response assessment is dependent on the availability 

of data to produce a dose response relationship that translates a specific level of 

exposure into a health response within the affected population. Data from 

human dose response studies are generally the basis for dose response 

relationships, but data from animal studies may be used in the absence of 

available human information. The use of animal dose response data must be 

used with caution due to differing metabolisms and the resulting need to 

extrapolate results from the test species to humans.

1.4.4 Risk Characterization

In QMRA, risk characterization integrates the information generated from the 

exposure and dose response assessments to calculate an overall estimation of 

the risk. A point estimate of risk can be determined through a combination of 

point estimates for exposure (the number of pathogens consumed in cold 

drinking water) and dose response relationship parameters (WHO, 2001).

Another approach is probabilistic risk assessment that considers the entire 

distribution of the exposure and dose response relationships instead of single 

point estimates, and then estimates the uncertainty and variability within the
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relationships and resulting risk estimate. The point estimate approach was used 

in the research described in this thesis.

1.5 Thesis Organization

The second chapter of this thesis provides a detailed description of the types of 

neural networks used for modeling and the methods used to evaluate and 

analyze the developed models. Chapter three reviews the concentration of C. 

parvum oocysts in source waters and outlines the concentration assumptions 

made in this thesis for the risk characterization. The fourth chapter of the thesis 

details the design and benchmarking of two neural network disinfection models 

(ozone and chlorine dioxide) against the temperature corrected Chick-Watson 

model. The fifth chapter presents two tap water consumption neural network 

models that are based on Canadian tap water consumption. Chapters three, 

four, and five represent the components needed for exposure assessment. A C. 

parvum dose response neural network model for three different strains is 

presented in chapter six and compared against the traditional exponential dose 

response model. Chapter seven contains the assumptions and results of a risk 

characterization for C. parvum using the developed neural network models 

explained in previous chapters. The eighth chapter outlines some of the 

limitations of the completed risk assessment, including parameter uncertainty, 

model uncertainty, variability and the correctness of assumptions and design

RISK ASSESSMENT OF CRYPTOSPORIDIUM PARVUM USING NEURAL NETWORKS 15
JANES 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction_____________________________________________________________

decisions. Finally, the ninth chapter provides general conclusions and 

extensions for further work.
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2 .0  M ETHODS BACKGROUND

2.1 Neural Networks

The neural network is a computing paradigm that is modeled after the structures 

of the brain, where a number of interconnected processing units (neurons) 

collaborate to generate an output. Neural networks can be used to simulate and 

analyze complex systems that cannot be easily modeled by statistical or 

mathematical models. There are many learning algorithms available for training 

a neural network but the objective of all learning algorithms is to optimize the 

connection weights that interconnect the neurons. The method of optimization 

varies with each learning algorithm. The learning algorithms used in this 

research include backpropagation and structural learning with forgetting.

2.1.1 Overfitting and Underfitting1

The modeling capacity of a neural network is dependent on its ability to capture 

the most important features from data during training. The ability of the neural 

network to generalize the underlying relationship is crucial and can be affected 

by the overfitting and underfitting problems. Underfitting occurs when a neural 

network does not have a sufficient number of hidden units and is unable to detect 

the correct relationship from the dataset. Conversely overfitting occurs when the

1 A version of this section has been accepted for publication.
Janes, K.R., and Musilek, P. In Press. Neural network models of Cryptosporidium parvum 
inactivation by chlorine dioxide and ozone. Journal of Environmental Engineering and Science.
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network has many more hidden units than what is needed to detect the 

relationship in the dataset and simply memorizes the training set and its 

associated noise. The overfitting problem is particularly relevant for small 

datasets, such as those used in this research. There are a number of different 

methods available for avoiding both underfitting and overfitting. Three popular 

methods are early stopping, jittering, and weight decay. Early stopping requires 

splitting the dataset into three sets, a training set, test set and validation set. After 

an iteration of the training set, the neural network is assessed with the validation 

set. The network with the best results is used for testing with the test set. Jitter 

is simply training with noise added to the inputs on purpose. Finally, weight 

decay is a regularization method that avoids overfitting through the addition of a 

penalty term to the error function in a learning algorithm (Rognvaldsson, 1998). 

The objective of all these methods is similar, to improve the generalization 

achieved by the neural network. To avoid the overfitting and underfitting 

problems in the disinfection and water consumption neural network models, 

weight decay was employed through the selection of the “structural learning with 

forgetting" learning algorithm. Due to the small dataset available for developing 

the neural network dose response model it was necessary to qualitatively review 

the plotted dose reponse relationship for smoothness to avoid the overfitting 

problem. In a qualitative review, if the relation is not smooth then overfitting has 

occurred. Yang (2003) successfully used this technique in the development of a
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unified neural network dose response model for multiple foodborne pathogens. If 

overfitting occurred in this study it would mean that the developed neural network 

models might produce inaccurate predictions that were influenced by the noise in 

the training set detected by the overly complex neural network during training.

2.1.2 Backpropagation Learning2

The classic three-layer multilayer perceptron neural network with gradient 

descent based backpropagation training was used to develop the dose response 

neural network models presented in this thesis. The initial connection weights 

between layers of processing units and biases were randomized in the interval 

[-1,1]. The activation function for the hidden layer had to be nonlinear; thus the 

unipolar sigmoidal function was used:

1

The activation function for the output layer can be linear or nonlinear; a linear 

activation function was chosen for the output layer:

>> = x

The inputs and outputs for training and inputs for testing the neural networks 

were normalized to the interval [0, 1]. The largest target output value in a dataset 

2 A version of this section has been published.
Janes, K.R., and Musilek, P. 2007. Modeling the disinfection of waterborne bacteria using neural 
networks. Environmental Engineering Science, 24(4): 448-459.
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was used as the linear scalar function for a model’s output. The neural network 

output y is given by:

n

>’* = Z vv/A
j = 0

where n is the number of hidden units, and wjk is the connection weight between 

the y-th hidden unit and Ar-th output unit. The output of they'-th hidden unit, hj, is 

given by:

(  m \ ~

1 + exp - I > i / * /
. V i'=0 y*

where m is the number of input units, w j is the connection between the /-th input 

unit and the y'-th hidden unit and x,- is the /-th input.

A gradient descent based algorithm was used for training by minimizing the 

following error function;

a q=i

where E is the sum of squared errors, s is the number of data patterns, and dq 

and y q are the desired value and model output for the g-th data pattern. The 

connection weights are updated by the following equations:
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dE

y

w j k = w j k - n
dE

dwj*

where 77 is the learning rate. These backpropagation connection weight update 

rules are based on the gradient descent method, which makes use of the 

derivative to step in the direction that will yield the maximum decrease of the 

network error.

2.1.3 Structural Learning with Forgetting3

Neural networks have proven to be very successful for modeling many 

engineering, financial, and biological systems. Neural networks are capable of 

automatically determining the input-output relationships for these complex 

nonlinear systems. Despite many benefits, neural network based models do 

have disadvantages. First, neural networks require the selection of a network 

structure, which greatly influences the success or failure of the model. If a 

network has too many hidden neurons it will likely have poor generalization and 

an insufficient number of neurons will cause underfitting. Second, the inclusion 

of irrelevant variables in neural networks is frequent because no previous

3 A version of this section has been accepted for publication.
Janes, K.R., and Musilek, P. In Press. Neural network models of Cryptosporidium parvum 
inactivation by chlorine dioxide and ozone. Journal of Environmental Engineering and Science.
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knowledge is required for the neural network to determine input-output mappings 

for a system. The inclusion of irrelevant variables can greatly decrease model 

performance. Structural learning with forgetting (SLF) is a destructive learning 

method that addresses these issues by starting with a large fully connected 

network and then driving insignificant connection weights towards zero. The 

resulting lean structure indicates which hidden neurons can be eliminated and 

potentially which input and output neurons.

Structural learning with forgetting is a learning method based on the standard 

backpropagation learning algorithm that has been extended to include weight 

decay. Structural learning with forgetting consists of learning with forgetting, 

hidden units clarification and learning with selective forgetting. Learning with 

hidden units clarification attempts to promote localized representations within 

hidden units by forcing the units to be completely active, producing an output of 

one, or inactive, producing an output of zero. Hidden units clarification requires 

binary outputs, and was not included in any of the neural network models 

developed.

Learning with forgetting involves constant decay of connection weights through a 

penalty criterion, which eventually produces a skeletal structure. Ishikawa (1996) 

defines the criterion function in learning with forgetting to be:
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+£T h li j

where Jf  is the total criterion for learning with forgetting, Jbp is the mean square 

error in back propagation learning, wy is a connection weight and the last term is 

the penalty criterion where £'is its relative weight.

A disadvantage of learning with forgetting is that it produces larger mean squared 

errors than standard back propagation learning. This is addressed by selective 

learning with forgetting by only including weak connection weights below a 

specified threshold, J3, in the total criterion (Ishikawa, 1996):

I h|
K \ < P

where Js is the total criterion for selective learning with forgetting.

The SLF algorithm modifies the connection weights, between layers of neurons 

according to (Ishikawa, 1996):

Aw‘J = ~ £ sgn(H )

where t| is the learning rate, £is a decay rate, Awy is the weight change, and sgn 

is a sign function. The first term represents the normal weight change when only 

using back propagation learning, and the second term is the penalty for SLF.
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In this study all neural network models developed with SLF:

• Used a nonlinear activation function for the hidden layer, and a linear 
activation function for the output layer;

• Used data for training and testing the neural networks that were 
normalized to the interval [0 1], and;

• Had the largest expected output value used as a linear scaling function for 
the model output.

2.2 Saliency Analysis4

Neural networks use a distributed representation of knowledge, where each 

connection weight and processing unit within the structure represents only a 

fraction of knowledge in the network (Dawson, 2004). Thus the network will 

produce acceptable outputs even when confronting incomplete or noisy input 

data due to this built-in fault tolerance. The intentional omission of input data to a 

trained network is known as saliency analysis, and provides a method for 

investigating the internal relationships between variables within the network. 

Saliency analysis establishes the relative significance of each input variable to 

the model by observing the effect that each omitted variable has on an error 

function (Abrahart et a/., 2001). By omitting the necessary number of inputs, 

single and multiple input saliency analysis can be performed. In this study only

4 A version of this section has been published.
Janes, K.R., and Musilek, P. 2007. Modeling the disinfection of waterborne bacteria using neural 
networks. Environmental Engineering Science, 24(4): 448-459.
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individual inputs were omitted. Abrahart etal. (2001) suggest three methods for 

omitting inputs: setting appropriate weights to zero, setting the output values of 

the appropriate processing unit to zero, or zeroing the data inputs to an input 

unit. In very simple neural networks it is possible to perform a direct examination 

of connection weights within the network to discover the relative importance of 

each variable within the network. However, this method is extremely difficult to 

apply when the neural network becomes complex and, consequently, saliency 

analysis provides an alternative analysis method. In this study the omission of 

input variables was achieved by zeroing the data inputs for a particular input unit, 

and the mean absolute error was used as the error function. The effect on the 

coefficient of determination was also examined in this study; however, the effect 

on the mean absolute error was considered the primary indicator for the saliency 

analysis.

2.3 Evaluation Methods

The developed neural network models were evaluated based on analysis of 

prediction results generated from test sets. The data in the test sets were never 

used for training at any point in neural network model development. Baxter et al. 

(2002) recommend using absolute measures of error to allow easy comparison of 

errors to actual targets in model development. The performance for all the neural
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network models developed in this research has been evaluated using mean 

absolute error (MAE) and the coefficient of determination (R2). The objective of 

each model is to minimize the mean absolute error and maximize the coefficient 

of determination. The MAE measures the mean of the absolute difference 

between predicted and observed values (Zhang et a i, 2002). The coefficient of 

determination was used to ascertain the correlation between observed values in 

the test set and model predictions. The coefficient of determination represents 

the percent of variation between model predictions and actual observations 

accounted for by the model. The coefficient of determination ranges from zero to 

one, where a value of zero indicates the model has no predictive capability and 

one means the model has perfect predictive capability.
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3.0  C R YPTO SPO R ID IU M  PA RVUM  CO N CENTRATIO NS

The concentration of oocysts in raw drinking water sources has a direct impact 

on the concentration of oocysts in the final drinking water. C. parvum oocysts 

can be found in most surface water sources, and in some ground water sources 

in very low concentrations (Rose et al., 2002). There are many variables that 

contribute to the concentration of C. parvum oocysts in the environment, 

including watershed management, wastewater treatment and climatic conditions 

such as rainfall.

Management of watershed land use plays a significant factor in the concentration 

of oocysts. Heavy agricultural land use or wastewater discharge along a surface 

water body is known to increase the concentration of oocysts (Rose et al., 2002). 

Many significant C. parvum outbreaks have been associated with increased 

levels of rainfall (Rose et al., 2002). A study of several Washington state rivers 

demonstrated that oocyst concentrations were higher during periods with high 

rainfall runoff than dry periods (Atherholt e ta i, 1998).

The prediction of oocyst concentrations at the intake of drinking water treatment 

plants would provide treatment plant operators with early warning of poor raw 

water conditions. Most studies have sought to find statistically significant 

associations between oocyst concentrations with climate and water quality
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parameters. However, the correlation of water quality parameters and the 

concentration of a pathogen can vary from site to site due to different 

environmental conditions (Atherholt et al., 1998), thus making it difficult to 

develop a universal method for providing early warning to operators.

Brion et al. (2001) used neural networks to investigate the relationship between 

several water quality and quantity variables at the intake of a drinking water 

treatment plant in order to predict the peak concentration of C. parvum oocysts 

entering the treatment plant. Brion et al. (2001) found that turbidity was the least 

significant parameter for predicting concentrations, while the concentration of 

Clostridium perfringens was determined to be the most significant for the 

selected model input parameters. This study found that neural network models 

were able to predict peak concentrations of oocysts at the intake, but the 

development and application of the neural network models must be on a site- 

specific basis for predicting the concentration of oocysts in the environment. It 

was noted that to determine the appropriate combination of model inputs to 

permit application of a neural network model on multiple sites would require 

significantly more raw data from many sites with differing climatic conditions.
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3.1 Concentration Assumptions

The raw data required to develop a neural network model capable of predicting 

oocysts concentrations on many sites was not available. For the simulation of a 

water treatment process in this study, a range of oocyst concentrations in surface 

water sources identified in the literature were used. Rose et al. (2002) 

summarized the findings of several water monitoring studies for C. parvum and 

found that the concentration of oocysts in surface water ranged from 12 to 250 

oocysts per liter. Concentrations within this range were monitored in Australia, 

Germany, Israel, Malaysia, Netherlands, Spain, United Kingdom and the United 

States of America. Three concentrations of oocysts were assumed and used for 

simulations in this thesis: 12, 119, and 250 C. parvum oocysts per liter of water. 

This is intended to represent a low, medium and high loading of oocysts within 

raw surface water sources.
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4 .0  NEURAL NETW ORK D IS IN FE C TIO N  MODEL

4.1 Background5

Waterborne disease caused by C. parvum is a significant problem for the 

populations of developed and developing nations. C. parvum oocysts are 

extremely difficult to inactivate due to the robust outer shell protecting the 

pathogens while in transit from host to host. There are a number of competing 

disinfectants that can be used with varying results to inactivate C. parvum 

oocysts. Two effective disinfectants for C. parvum are chlorine dioxide and 

ozone. The Chick-Watson (CW) model, a combination of theories from Chick 

(1908) and Watson (1908), is a popular disinfection model that has been used to 

characterize the inactivation relationships for both of these disinfectants (Li et al. 

2001a; Li et al. 2001b; Li et al. 2001c). This mathematical model has achieved 

good prediction capabilities; however there are alternative computational 

modeling techniques such as artificial neural networks that can decrease 

prediction errors with available experimental data. Other unit processes in 

drinking water treatment such as coagulation have already been successfully 

modeled using neural networks (Baxter et al. 2002). The inactivation of a 

protozoan pathogen, Giardia lamblia, by chlorine has been modelled using neural 

networks by Haas (2004). Heck et al. (2001) used artificial neural networks to

5 A version of this chapter has been accepted for publication.
Janes, K.R., and Musiiek, P. In Press. Neural network models of Cryptosporidium parvum 
inactivation by chlorine dioxide and ozone. Journal of Environmental Engineering and Science.
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model the inactivation of a parvovirus using ozone. Heck etal. (2001) used six 

input conditions in the developed model: alkalinity, initial virus concentration, 

sonication, organic carbon concentration, time, and ozone residual.

Janes and Musilek (2007) performed a detailed comparison of multi layer 

perceptron disinfection models for Escherichia coli and Eberthella typhosa 

trained using backpropagation (local optimization) and simulated annealing 

(global optimization). Both sets of models produced similar performance results 

and were found to be functionally equivalent. However, the models trained using 

simulated annealing required significantly more development time than the 

backpropagation trained models. Janes and Musilek (2007) concluded that 

deterministic derivative-based learning for disinfection models would likely 

perform well against other stochastic derivative-free learning methods such as 

genetic algorithms and require less development time. For the neural network 

disinfection models of C. parvum developed in this research, deterministic 

derivative-based learning algorithms were used.

The development of an appropriate network structure is very difficult due to the 

overfitting and underfitting problems, and identification of relevant model inputs. 

These issues can be addressed by structural learning with forgetting, a 

destructive learning method that starts with a large fully connected network and 

then drives insignificant connection weights towards zero. The resulting sparse
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structure indicates which hidden neurons can be eliminated and potentially which 

input and output neurons. The neural network disinfection models presented 

here have been trained using SLF.

Haas (2004) pondered how neural networks could consider the decay of the 

disinfectant residual. This is not a large consideration for a disinfectant like 

chlorine that has a relatively stable residual, whereas it is highly relevant for 

ozone, which is very reactive and dissipates quickly. A simple solution is to 

include both the initial residual and final residual concentrations for the 

disinfectant as input parameters to the neural network model. This approach has 

been taken in this study for both chlorine dioxide and ozone. The objectives of 

the work in this section are: to establish the performance of neural network 

models for disinfection of waterborne Cryptosporidium relative to existing Chick- 

Watson models; demonstrate that the inclusion of the final residual concentration 

is an effective approach for considering residual decay; and rank the input 

parameters. A thorough literature review found that the inactivation relationships 

of waterborne C. parvum using chlorine dioxide and ozone have never been 

modeled using neural networks.
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4.2 Materials and Methods

4.2.1 Datasets

It is very expensive and effort intensive to perform disinfection experiments, as a 

result both of the datasets used in this study are relatively small for training a 

neural network. Using small datasets means that the selection of the test set is 

much more influential to model outputs and consequently model performance 

evaluation. This issue can be mitigated by randomly selecting the data for each 

set while balancing the representation of data on the training set and test set to 

the best degree possible through statistical analysis of each dataset. This 

approach was taken in this study by randomly selecting and assigning data 

patterns to the training and testing sets until the arithmetic mean of the input and 

output variables were within 50% of each other for the two subsets. Another 

disadvantage of using a small dataset is that the neural network is more 

susceptible to overfitting, where the network simply memorizes the training set 

and its underlying noise (Silvert and Baptist, 2000). The risk of overfitting has 

been mitigated in this study through the selected learning algorithm SLF, which 

has been discussed in section 2.1.3.

It was not possible to test for the experimental error in the underlying datasets, 

as there were no deliberate experimental replicates available in the literature to
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test this. It is assumed that the experimental error is constant and consistent for 

the datasets used. The same research group at the University of Alberta 

produced both datasets. Both datasets used for model development were 

analyzed for missing data and outliers. Any data patterns within a dataset that 

were missing data were excluded from the dataset. However, this did not occur 

for either dataset. For outlier detection all data patterns that had input or output 

values of ±3 standard deviations from the mean of a model would have been 

removed, but this was not necessary for either dataset.

Li et al. (2001a) studied chlorine dioxide inactivation of C. parvum oocysts at pH 

levels of 6, 8, and 11 and a temperature range from 1°C to 37°C. The study by Li 

etal. (2001a) produced 61 data points, each containing the initial residual and 

final residual (concentration at the end of the contact time) in milligrams per liter, 

water temperature in degrees Celsius, contact time in minutes, the pH, and the 

observed inactivation ratio in log units. The initial residual ranged from 0.39 mg/L 

to 6.05 mg/L and the contact time ranged from 15 minutes to 240 minutes. For 

model development 48 data points were randomly selected for training and 13 for 

testing.

The dataset for ozone inactivation of C. parvum was compiled from two separate 

studies, Gyurek etal. (1999) and Li etal. (2001c). The data from both studies
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were generated under similar experimental conditions by the same research 

team in Alberta, Canada. A total of 62 data points were available for model 

development and testing, 13 were randomly reserved for testing and 49 for 

network training. Each data point contains the initial and final residuals, 

temperature, contact time, pH and inactivation ratio. These inactivation studies 

used a temperature range of 1°C to 37°C and pH levels of 6, 7, and 8. The 

contact time varied from 2 to 30 minutes, and the initial residual ranged from 0.3 

mg/L to 2.7 mg/L.

The complete datasets used in this study are available in the following papers: Li 

et al. (2001a) for chlorine disinfection, and Li et al. (2001c) and Gyurek etal. 

(1999) for ozone disinfection.

4.2.2 Chick Watson Models

Assuming a constant disinfectant residual the classic Chick-Watson model is (Li 

et al. 2001b):

Nlog—  =  - k C ” t
N „
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Where t is the contact time in minutes, C  is the constant residual, k  and n are 

empirical constants found through experiment, N 0 is the initial microorganism 

concentration, and N  is the concentration of microorganisms at time t. However, 

this simple model requires a separate set of empirical constants for each pH and 

temperature combination and does not consider residual decay. A temperature 

corrected Chick-Watson model, which assumes n is one, has been used for 

comparison with the developed neural network models:

log—  = -A:^^r-22
r c 0- c f ^

v 2 ,

where C„is the initial disinfectant residual, Q is the final disinfectant residual, k22 

is the inactivation rate constant at 22°C, T is the temperature in °C and 0is the 

temperature coefficient. Li etal. (2001b) used this modified Chick-Watson 

equation to model the inactivation of C. parvum using ozone and chlorine. The 

empirical constants used in this study for the chlorine dioxide inactivation of C. 

parvum are k22 = 0.018 and 6=1.085. Li et al. (2001a) developed these constants 

based on the 61 data points used for training the neural network models in this 

study and as a result the applicable temperature range is from 1°C to 37°C and 

the pH range is 6 to 11 even though pH is not explicitly considered as a model 

input. The empirical constants used in this study for the ozone disinfection of C. 

parvum are k22 = 0.39and 0=1.104, and were developed by Li etal. (2001c) 

based on the 62 data points used for model training and testing. The ozone
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model is considered valid for temperatures of 1 to 37°C and pH 6 to 8. In both 

studies by Li etal. (2001a; 2001c) all of the available data was used to develop 

the temperature corrected Chick-Watson models, none of the data was reserved 

for model testing. In this study a portion of the datasets were reserved for model 

testing purposes. The temperature corrected Chick-Watson model for 

inactivation of C. parvum using chlorine dioxide will be referred to as CW1 and 

the ozone disinfection model will be referred to as CW2.

4.2.3 Neural Network Models
I

The ability of the neural network to generalize the underlying relationship is 

crucial and can be affected by the overfitting and underfitting problem. The 

approach taken in the development of the disinfection models to avoid the 

overfitting and underfitting problems was weight decay through the selection of 

SLF as the learning algorithm.

All neural network disinfection models in this study consist of an input layer, 

hidden layer, and output layer, where there are five input units and one output 

unit (Figure 4.1). The input units are initial residual, final residual, contact time, 

pH and water temperature; the output unit is the inactivation rate in log units.

The chlorine dioxide and ozone disinfection neural network models are referred 

to as CDNN and ONN respectively. Both CDNN and ONN commenced training
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with 10 hidden units and the SLF algorithm found the optimal number of hidden 

units to be four and three respectively. None of the input parameters became 

redundant during training, each maintaining several significant connection 

weights after training.

Threshold 1

Threshold 2
Initial Residual

Final Residual

Inactivation Ratio
Contact Time

pH

Water Temperature

OUTPUT 
LAYER 

(1 neuron)

INPUT 
LAYER 

(6 neurons)

HIDDEN
LAYER

Figure 4.1: General neural network disinfection model architecture
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4.3 Results and Discussion

4.3.1 Performance

The disinfection neural network models were trained with approximately 80% of 

available data and validated with the other 20%. The final trained network 

models, CDNN and ONN, and the Chick-Watson models, CW1 and CW2, were 

evaluated with the test sets for comparison. The performance results for all four 

models are available in Table 4.1. Only the test sets were used to evaluate the 

predictive capability of the neural network models. The training sets were not 

used for evaluating predictive capability since it is anticipated that the neural 

network models will have lower errors for the training data than the Chick-Watson 

models because the neural network models have several more elements that can 

be adjusted during model development. For the test sets the neural network and 

Chick-Watson models had marginally different R2 values. However, for the test 

sets in terms of MAE the neural network models performed better than the 

competing Chick-Watson models. The MAE for CW1 was 10% more than the 

MAE achieved by CDNN, and the MAE for CW2 was over 25% higher than the 

error for ONN. The neural network models have performed well relative to the 

widely accepted Chick-Watson mathematical model, near-equivalent prediction 

capability has been observed. In order to definitively state that the neural 

network models have performed better than the Chick-Watson models it would
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be necessary to evaluate the predictive capability of the models using more test 

sets. There is currently no other data available for further evaluation and 

comparison.

Test Set
Model MAE R*
CDNN (chlorine dioxide) 0.30 0.83
CW1 0.33 0.82
ONN (ozone) 0.31 0.87
CW2 0.39 0.88

Table 4.1: Disinfection model performance results

4.3.2 Single Input Saliency Analysis

The mean absolute errors were approximately double or greater for every 

omitted variable of both neural network models, indicating that all the input 

parameters are relevant to modeling these disinfection processes (Table 4.2).

The input parameters for both models were ranked using MAE as the primary 

indicator and R2 as a secondary measure.

Li et al. (2001a) found that the pH, for the 6 to 11 range, does not have a 

significant effect on chlorine dioxide inactivation, while temperature was vital for 

the inactivation of C. parvum. The omission of pH resulted in double the MAE, 

but was the second lowest increase and the coefficient of determination 

decreased marginally from 0.83 to 0.82, confirming that the CDNN model learned 

this trend. The mean absolute error almost tripled with the removal of
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temperature and the coefficient of determination decreased significantly to 0.25, 

demonstrating that CDNN considers temperature to be a significant factor for 

chlorine dioxide inactivation. Chlorine dioxide has a relatively stable residual, 

especially at low temperatures, thus the omission of the final residual was 

expected to generate the smallest increase in MAE and it did at 0.56. The most 

important input parameter for CDNN is the contact time because it produced an 

over threefold increase in MAE and the R2 dropped to 0.11 when it was omitted. 

The input variables in terms of most too least relevant for CDNN are as follows: 

contact time, temperature, initial residual, pH, and final residual. Temperature 

was ranked to be important for the model than initial residual due to its 

dramatically lower coefficient of determination.

Li et al. (2001c) determined that at low temperatures the effectiveness of ozone 

to inactivate C. parvum decreases greatly, in other words, temperature is very 

important for ozone disinfection. For the ONN model, the removal of temperature 

yielded a R2 of zero and approximately a fourfold increase in error, confirming the 

observation of Li et al. (2001c). Li et al. (2001c) found that pH from 6 to 8 is not 

a major influence on ozone inactivation of C. parvum. The ONN model also 

found pH to be less influential than other process variables but not completely 

irrelevant (Table 4.2). Interestingly, the least influential variables were found to 

be the initial and final residuals, while contact time was very significant. The
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disinfectant residual and contact time are generally considered to be equally 

essential for the inactivation of C. parvum (Li et al. 2001c). This suggests that 

the neural network models are selecting contact time as a feature to exploit in 

modeling the inactivation relationship, but could have equally selected the 

disinfectant residual as a more significant process variable. However, the 

omission of the final residual substantially increased the mean absolute error and 

decreased the coefficient of determination relative to the removal of the initial 

residual (Table 4.2), demonstrating the importance of including the final residual 

in the ozone disinfection model in order to account for the quick residual decay of 

ozone. The most influential parameters for ONN by far were temperature and 

contact time, followed by pH, final residual and initial residual.

Model Omitted Variable MAE R2 Rank

CDNN None 0.30 0.83
(chlorine dioxide) Initial residual 0.86 0.71 3

Final residual 0.56 0.72 5
pH 0.66 0.82 4
Temperature 0.84 0.25 2
Contact time 1.03 0.11 1

ONN None 0.31 0.87
(ozone) Initial residual 0.59 0.84 5

Final residual 0.69 0.75 4
pH 0.84 0.47 3
Temperature 1.39 0.00 1
Contact time 1.52 0.33 2

Table 4.2: Single input saliency analysis results using test sets
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The back propagation based SLF algorithm found optimal network structures for 

the chlorine dioxide and ozone disinfection models: four and three hidden units 

respectively. The neural network models performed well relative to the 

temperature corrected Chick-Watson models through slightly lower errors 

produced and similar correlations between observed and predicted values for the 

test sets. Further model testing with new test sets is needed to determine 

whether or not the additional complexity of the neural network models over the 

temperature corrected Chick-Watson models are justified through better 

performance. For both neural network models the water temperature was an 

influential factor, while pH (for the ranges tested) was not as significant, which 

conforms to earlier studies (Li et al. 2001a; Li et al. 2001c). The inclusion of the 

final residual as an input parameter was very important for ozone, but not as 

critical for chlorine dioxide. It seems the less stable a disinfectant residual is, the 

more important the final residual is to a neural network disinfection model’s 

prediction performance. The incorporation of the final residual into a neural 

network disinfection model is an effective first step in addressing the concern 

identified by Haas (2004) of how to consider the disinfectant residual decay 

within a neural network model.
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The World Health Organization has identified the most prevalent health risk for 

drinking water to be the infectious diseases caused by waterborne pathogens, 

such as Cryptosporidium parvum (WHO, 2004). In Canada, tap water accounts 

for a large portion of daily fluid intake and is a main concern for transmission of 

waterborne pathogens (CEHD, 2001; WHO, 2004). The neural network 

consumption models developed in this study address the consumption of tap 

water as the exposure route for a waterborne pathogen. The data used to 

develop the neural network consumption models are from a 1970’s Canadian 

nationwide survey.

Many exposure assessment studies for waterborne pathogens only consider the 

total water consumed, and do not differentiate between the amounts of hot and 

cold water consumed (Ershow and Cantor, 1989). While total tap water 

consumption might be appropriate for chemical risk assessments, this approach 

is often not suitable for microbial risk assessment. When considering source 

data for the consumption models in this research, it was necessary to consider 

the amount of hot tap water consumption, since heating water deactivates many 

pathogens, including C. parvum. Jenkins et al. (1997) report complete loss of 

infectivity for C. parvum oocysts that are exposed to temperatures of 60°C or 

greater for 5 minutes. This is a very significant consideration because the

RISK ASSESSMENT OF CRYPTOSPORIDIUM PARVUM USING NEURAL NETWORKS 44
JANES 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Water Consumption Model

Canada Safety Council (2005) reports that most Canadian homes set their hot 

water heaters at 60°C or higher. Generally, the amount of cold tap water a 

person consumes during a specific time period is used to determine their 

exposure to a pathogen, given the concentration of the pathogen in the tap 

water. It is very important that risk assessors have accurate cold tap water 

consumption rates in order to provide realistic risk estimates for infection and 

illness when exposure to contaminated water occurs. In microbial risk 

assessment total tap water consumption should be considered if the risk 

assessor would like to be conservative, or if it is believed the water may not have 

been heated sufficiently.

It is often the practice in risk assessment to use a single point estimate for the 

consumption of water to represent daily exposure for large segments of the 

population (WHO, 2004). The World Health Organization assumed a per capita 

daily consumption of 1 litre of cold water to develop its guidelines for microbial 

hazards (WHO, 2004). This assumed daily consumption is very high for children, 

and very low for older adults, which may overestimate and underestimate the risk 

for these groups through quantitative risk assessment. The United States 

Environmental Protection Agency (EPA) uses an average consumption rate of 

1.41 litres of total tap water per day for adults, and makes no adjustment for hot 

tap water (OEHHA, 2000). The neural network consumption models developed 

in this research provide average daily consumption rates for total tap water and
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cold tap water. There are many factors that the point estimate from the WHO 

does not consider, such as age and gender. Various studies have shown 

significant variations in tap water consumption by age group, gender, season, 

and geographic location (CEHD, 1981; Ershowand Cantor, 1989; DWI, 1996; 

Roseberry and Burmaster, 1992). These parameters have been included in the 

neural network tap water consumption models developed in this research.

5.1 Datasets

The tap water consumption models developed for this research are targeted at 

Canadians and are based on data from a Canadian Ministry of National Health 

and Welfare study on tap water consumption conducted in the summer of 1977 

and winter of 1978. This government study involved 970 people from 295 

households representing people from across five regions of Canada (British 

Columbia, the Prairie Provinces, Ontario, Quebec and the Maritimes) (CEHD, 

1981). The study only considered tap water consumption; however consumption 

was broken down into cold and hot beverages. This is very important for the 

consumption of many waterborne pathogens because many pathogens are not 

able to survive even short periods of extreme heating. The raw information for 

the study was collected using questionnaires and interviews. The results of the 

survey were analyzed in terms of age, gender, season, and geographical 

location. Similar studies performed around the same period in Holland, the 

United Kingdom, and the United States produced similar intake patterns
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(OEHHA, 2000; CEHD, 1981). Despite the age of this study, the data is still 

considered to be representative of the tap water consumption for Canada and 

has recently been used by the American Environmental Protection Agency (EPA) 

to estimate American tap water consumption (OEHHA, 2000).

The Drinking Water Inspectorate (DWI) of the United Kingdom compared a more 

recent 1995 tap water consumption study in England and Wales with a 1978 

national survey in the UK performed by the Water Research Center and made 

several relevant conclusions. First, the total liquid consumption did not change 

significantly from 1978 to 1995; and second, the consumption of bottled water 

has increased significantly, while the consumption of tap water was not affected 

by this increase (DWI, 1996). Other beverages such as soft drinks have 

experienced declines in consumption rates. Canada and the UK have 

experienced similar consumption patterns in the past and it is assumed that this 

trend has continued. It is assumed that the tap water consumption patterns 

observed in 1977 and 1978 during the Canadian survey are representative of the 

intake patterns for Canadians in 2007.

Two separate and distinct datasets available from the Canadian survey were 

used to develop and test two neural network consumption models that produced 

point estimates for water consumption. The first dataset had information on the
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season (winter versus summer), as well as the age and gender of the consumer. 

This dataset was used to develop a model that was termed the Seasonal Neural 

Network (SNN). The second dataset contained information on five geographic 

regions across Canada (British Columbia, the Prairie Provinces, Ontario, Quebec 

and the Maritimes), and the age and gender of the consumer. This dataset was 

used to develop the Regional Neural Network (RNN) consumption model. Both 

datasets included the total tap water consumption and cold tap water 

consumption. Both datasets were analyzed for outliers and missing data. All 

inputs and outputs for data patterns were found to be within ±3 standard 

deviations and there was no missing data.

The allocation of data between training sets and testing sets was approximately 

75% and 25% respectively for the developed models. The test points were 

randomly selected from the complete datasets. The arithmetic mean of the input 

and output variables for the training and testing sets had to be within 50% of 

each other. This was done to ensure that the data in the training and test sets 

were reasonably representative of each other and still randomly selected. A total 

of 54 data points were available for developing and testing the SNN model and 

108 points for the RNN. For each age group the SNN dataset contains a 

discrete point for each of the following combinations:

• Male/summer, female/summer, and male/female/summer;
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• Male/winter, female/winter, and male/female/winter, and;

• Male/both seasons, female/both seasons, and male/female/both 
seasons.

For each age group the RNN dataset contains a discrete point for similar 

combinations of male, female, combined genders, individual regions, and the 

entire country. However, the RNN dataset does not provide discrete points for 

combinations of age groups or regions (beyond the entire country). Thus the 

RNN is expected to generalize the water consumption relationship so that a point 

estimate for adult males (over the age of 19) in Quebec and Ontario could be 

produced for example.

5.2 Neural Network Consumption Models

The neural network consumption models have been trained using SLF, tested 

using segregated test sets and examined using saliency analysis. The first 

developed neural network, SNN, includes the season, summer or winter, as an 

input. The second model, RNN, uses regions within Canada as an input instead 

of seasonal information. Both neural networks have age and gender as input 

variables, and total tap water consumption and cold tap water consumption in 

litres per day as output neurons.

The consumption of tap water is often assumed to be equivalent for 

immunocompetent and immunodeficient populations (Pouillot et al., 2004).
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However, the immunodeficient population is often more susceptible to 

waterborne illness than the immunocompetent population, and decreases their 

tap water intake opting for bottled water instead (Aragon et al. 2003). Assuming 

that the tap water intake rates are similar will likely overestimate the risk to the 

immunodeficient populations, which provides a precautionary element. This 

study assumes that the consumption of tap water is equivalent for 

immunocompetent and immunodeficient populations.

5.2.1 Seasonal neural network consumption model

The seasonal neural network model, SNN, included gender, age and season as 

input variables. These variables were selected because previous studies 

indicated that these factors are important contributors to consumption rates, with 

age being the most significant (DWI, 1996; OEHHA, 2000; Ershow and Cantor, 

1989). There are a total of 10 binary inputs to the network, where one indicates 

the input is active and zero indicates inactive. Gender is represented as two 

binary inputs for male and female; when both the male and female inputs are 

active this indicates a combination of both sexes. Age is represented by six 

binary inputs for six different age categories in terms of years old: less than 3, 3 

to 5, 6 to 17, 18 to 34, 35 to 54, and 55 and over. Activating different age inputs 

at the same time will produce point estimate consumption rates for different 

combinations of age groups. The season is represented by two binary inputs for 

summer and winter; activating both inputs represents combined seasons or the
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entire year. It is assumed that the summer season is representative of the 

summer and spring, while the winter is representative of fall and winter.

The network has been trained with data representing the daily consumption rates 

for males, females, and combined genders in every age category for the 

summer, winter, and combined seasons. The network model has not been 

trained with data representing combinations of age groups, such as 3 to 5 and 6 

to 17 simultaneously. However, the SNN is theoretically capable of providing 

average consumption rate estimates for combinations of age groups due to the 

generalization capability of neural networks.

The SNN model started from a large fully connected structure with 10 binary 

inputs, 7 hidden neurons, and 2 output neurons and was trained using back 

propagation based SLF. In response to the test set, the trained SNN model 

achieved a MAE of 0.0345 and R2 of 0.986 for total tap water consumption, and a 

MAE of 0.0355 and R2 of 0.940 for cold tap water consumption.

The connection weights of the SNN structure were examined and weights less 

than 1x1 O'4 were considered redundant. If all the weights connected to a 

particular neuron (input, hidden, or output) were less than 1x1 O'4, the neuron was 

also considered redundant. This policy resulted in four hidden neurons and the 

two seasonal inputs, summer and winter, being considered redundant, and
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indicated that for Canadian tap water consumers the season is irrelevant. 

Saliency analysis was performed to determine the relative importance of each 

input variable and if the seasonal input actually hindered the model’s 

performance.

The saliency analysis was performed using the same 14 data point test set; the 

particular input variable being tested was omitted by zeroing all the related input 

neurons. For example, when age was tested all six input neurons representing 

the six age categories were zeroed in the test set. The results of the saliency 

analysis for SNN are presented in Table 5.1. The MAE for both total and cold tap 

water consumption increased significantly with the omission of age, doubled with 

the removal gender, and decreased slightly with the omission of the seasonal 

inputs. These results indicate that age is the dominant factor as expected in 

determining tap water consumption, while gender is a relatively minor factor. The 

inclusion of seasonal inputs slightly degraded the model’s performance, and 

should be excluded from the model. It is generally thought that seasonal 

temperature differences would affect tap water consumption. However, it is 

possible that the season affects total fluid consumption instead of tap water 

consumption, which only represents a fraction of overall fluid intake.
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Variable
Omitted

MAE Total 
Tap Water

R2 Total 
Tap Water

MAE Cold 
Tap Water

R2 Cold 
Tap Water Rank

None 0.0345 0.986 0.0355 0.940
Age 0.273 0.247 0.141 0.129 1
Gender 0.0602 0.978 0.0674 0.800 2
Season 0.0321 0.987 0.0354 0.945 3

Table 5.1: Seasonal neural network model (SNN) results and saliency analysis
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5.2.2 Regional neural network consumption model

The second developed neural network, the regional neural network (RNN) model, 

has three input variables: gender, age, and regions within Canada. There are a 

total of 13 binary inputs and 2 outputs for the model. The gender and age inputs 

are similar to the SNN model. For the regions, there are five binary inputs 

representing the Maritimes, Quebec, Ontario, the Prairies, and British Columbia. 

When all five regions are active, this is representative of the entire country. The 

architecture for the RNN is presented in Figure 5.1.
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Figure 5.1: Regional neural network (RNN) consumption model
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The network has been trained with data representing the daily consumption rates 

for males, females, and combined genders in every age category for each region 

and the entire country. The network has not been trained with data for 

combinations of regions other than the overall country, but is hypothetically 

capable of generating such estimates due to the architecture design and 

generalization capability of neural networks. Also, similar to the SNN, the RNN 

model is theoretically capable of providing estimates for different age group and 

gender combinations.

The RNN model was trained using SLF with an initial structure of 10 hidden 

neurons, which was reduced to 3 hidden neurons after training and application of 

the policy that connection weights less than 1x1 O'4 are eliminated. None of the 

input neurons were eliminated through training. In order to verify that 3 hidden 

neurons was the optimal structure in terms of MAE and R2, the number of hidden 

neurons was varied from 2 to 6 through a trial and error approach. The penalty 

term for SLF was set to zero during this trial and error validation, reducing the 

learning algorithm to regular back propagation learning. It was confirmed that 

three hidden neurons was the optimal structure. The final RNN model was 

trained with SLF, with a three hidden neuron structure and produced the smallest 

MAE of 0.0184 and 0.0173 for total and cold tap water consumption respectively. 

The RNN model greatly outperformed the SNN model in terms of MAE and
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showed slight improvements in R2 values. The results of the RNN model are 

presented in Table 2.2. The WHO recommends using 2 litres of total water per 

day and 1 litre of cold water per day as point estimates for consumption rates of 

tap water (WHO, 2004). These WHO point estimates produced an MAE of 0.787 

and 0.313 for total and cold tap water consumption rates respectively against the 

27-point test set used for testing the RNN. The MAE values for the WHO point 

estimates are approximately 42 and 18 times higher than the MAE values of the 

RNN model for total and cold tap water consumption respectively. This result 

demonstrates the need for including factors such as age in consumption rate 

estimates, instead of using a single point estimate to represent the entire 

population.

Saliency analysis of the RNN model was carried out using the same test set used 

to validate the model after training. The saliency analysis results are presented 

in Table 5.2. As expected, the MAE values increased significantly and R2 values 

decreased when age was omitted. The omission of gender from the model 

approximately tripled the MAE values and slightly decreased R2 values; the 

omission of regions produced similar results. Age is the dominant factor in 

determining tap water consumption rates, while gender and regions are 

approximately equal in importance for the RNN model.

RISK ASSESSMENT OF CRYPTOSPORIDIUM PARVUM USING NEURAL NETWORKS 56
JANES 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Water Consumption Model

Variable
Omitted

MAE Total 
Tap Water

R* Total 
Tap Water

MAE Cold 
Tap Water

R1 Cold 
Tap Water Rank

None 0.0184 0.997 0.0173 0.987
Age 0.360 0.127 0.1267 0.255 1

Gender 0.0503 0.972 0.0663 0.855 2
Region 0.0645 0.957 0.0595 0.861 2

Table 5.2: Regional neural network model (RNN) results and saliency analysis

In order to analyze the internal organization of the neural network, the training set 

and test set for the RNN model were combined, for a total of 108 data points. 

Cluster analysis of the hidden unit responses to each input pattern was 

performed. An interesting regularity was discovered by the neural network 

model and used to structure the knowledge it acquired.

Hidden neuron one detected the composition of total tap water consumption 

between cold and hot tap water. In the first three age groups (less than 3, 3 to 5, 

and 6 to 17 years of age) for both genders the amount of cold tap water 

represents a large portion, between 70% and 90%, of total tap water 

consumption. In comparison, for the three older age groups (18 to 34, 35 to 54, 

and 55 and over) cold tap water accounts for only 30% to 60% of total tap water 

consumption. This difference can be accounted for through higher rates of 

coffee and tea drinking among adults (18 and over) relative to children, and 

higher rates of frozen concentrate juice consumption among children and 

adolescents. Hidden neuron one would produce an intermediate activation

RISK ASSESSMENT OF CRYPTOSPORIDIUM PARVUM USING NEURAL NETWORKS 57
JANES 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Water Consumption Model

(approximately 0.5) for adults (18 and over) and deactivate for children and 

adolescents.

5.3 Discussion

It was determined that age, region and gender are relevant variables in the 

determination of water consumption for Canadians and that seasonal differences 

are marginal. Thus, the RNN consumption model will be used to determine the 

cold tap water consumption of Canadians for the exposure assessment of 

waterborne C. parvum in this thesis.

There are other factors that can affect tap water consumption rates, such as 

physical activity level and community size. As individuals perform more 

strenuous tasks their water consumption rate will generally increase to account 

for fluid losses to perspiration. The difference in total daily tap water consumption 

rates between rural areas and communities over 500,000 people is considered 

appreciable (CEHD, 1981). However, there was insufficient data available to 

include these variables in the developed neural network consumption models. 

Inclusion of these variables in future consumption models would provide even 

greater segmentation of the population for generating very specific point 

estimates of water consumption.
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6.0  DOSE RESPONSE MODEL

6.1 Literature Review

Quantitative microbial risk assessment offers modeling methods that combine 

exposure assessments and dose response relationships to produce estimates of 

population health effects for a given microbial pathogen (WHO, 2004). A dose 

response model is central to the performance of a QMRA and provides the 

probability of infection after exposure to one or more pathogens. The median 

infectious dose represents the dose at which 50% of the population will become 

infected (Thomas and Hrudey, 1997).

It can be very difficult to generate an accurate dose response relationship due to 

a lack of data at the low, intermediate and high dose levels, and due to the high 

variability of host susceptibility across the population (Beaglehole etal., 1993).

In order to overcome these problems, DuPont et al. (1995) performed 

Cryptosporidium challenge studies of healthy adult human volunteers using a 

wide range of doses in order to develop a median infective dose and dose 

response relationship for the C. parvum pathogen in its Iowa isolate. The results 

of the study show that dosages of 300 oocysts or more produced an 88% 

infection rate, and the median infective dose was found to be 132 oocysts for the 

Iowa strain (DuPont etal., 1995). Therefore, in healthy adult humans a relatively 

low dose of C. parvum oocysts is enough to produce infection. Since this study
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was performed using human subjects instead of animals, this evidence is 

considered to be very strong for representing the infectious response of healthy 

adults with no immunity for the Iowa isolate of C. parvum.

Similar Cryptosporidium challenge studies on healthy adult volunteers were 

performed for the TAMU and UCP strains of C. parvum. The median infectious 

doses for the TAMU and UCP strains were found to be 12 and 2066 oocysts 

respectively (Messner et al., 2001). The TAMU and UCP studies were 

performed with smaller groups of 14 and 17 people respectively with doses 

ranging from 10 to 500 oocysts for the TAMU strain and 500 to 10 000 for the 

UCP strain (Messner et al., 2001). Since these three Cryptosporidium 

challenge studies were performed using healthy adult volunteers it is very likely 

that the median infectious dose is lower for high risk groups such as Acquired 

Immune Deficiency Syndrome (AIDS) patients.

The three studies for the Iowa, UCP and TAMU strains were analyzed by 

Messner et al. (2001) with the assumption of an exponential dose response 

relationship. The exponential model is a single parameter model that does not 

have a minimum infectious dose. It has been shown that a single oocyst can 

cause infection (Messner et al., 2002).
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The susceptibility of a host becoming infected and ill from C. parvum is directly 

related to the amount of exposure to the pathogen. It is also dependent on a 

number of other variables including the immune competence of the host, the 

strain of C. parvum exposed to, and recent C. parvum infections within the last 

year. These factors were not considered by the exponential dose response 

models developed by Messner etal. (2001) for the Iowa, UCP, and TAMU 

strains.

When a healthy immunocompetent adult becomes infected with C. parvum and 

becomes symptomatic, their symptoms are typically present for less than four 

weeks, however the excretion of oocysts can persist up to eight weeks (Martins 

and Guerrant, 1995). A symptomatic infection for an immunodeficient person 

(characterized by a low T-cells count) can have far more devastating effects 

(Hrudey and Hrudey, 2004). AIDS patients and others who are immunodeficient, 

such as chemotherapy patients, can develop persistent diarrhea that can result in 

death.

The three C. parvum challenge studies reflect the varying infectivity of C. parvum 

strains. The TAMU strain is 12 times more infective than the IOWA strain and 

172 times more infective than the UCP strain given the median infective doses. 

This large variation of infectiveness between the strains introduces a lot of 

uncertainty for risk assessment should assessors assume that all oocysts in an
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outbreak are of a particular strain or a combination of the strains. The single 

parameter exponential models developed by Messner et al. (2001) do not provide 

the ability to consider combinations of strains.

Hosts infected by C. parvum develop Cryptosporidium antibodies and gain a 

degree of protection against being re-infected. An analysis study by Teunis et 

al. (2002) of data from the DuPont et al. (1995) C. parvum study shows that this 

immunity is short-lived, lasting less than 12 months. This suggests that as an 

outbreak progresses the number of people who develop this short-term 

protection will increase and the outbreak will eventually peak as the number of 

susceptible hosts decreases.

It is difficult to incorporate these variables as inputs to a conventional statistical 

model. However it is comparatively straightforward for a neural network model. 

The neural network dose response model developed for this study considers the 

AIDS status, multiple strains of C. parvum, and immunity for the IOWA strain as 

input variables.

In the 1993 Milwaukee C. parvum outbreak, which affected approximately 

400,000 people, it was found that the attack rates were lower in the younger age 

groups (MacKenzie et al., 1994), which is counter intuitive since it is usually 

assumed that young children will be more susceptible to infection than healthy
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adults. Perz et al. (1998) developed a model that assumed that the infectivity 

was the same for children and adults. This research followed the precautionary 

principal and assumed that the infectivity of C. parvum is the same for all age 

groups.

6.2 Dose Response Datasets

The datasets used to develop the neural network dose response model are from 

the available literature on several separate C. parvum challenge studies using 

healthy adult volunteers. A study by DuPont et al. (1995) used the Iowa isolate 

and involved 29 adult volunteers between 25 and 35 years of age who were 

given single doses of oocysts at eight different dosing levels ranging from thirty to 

one million C. parvum oocysts. These volunteers were tested for the lack of 

Cryptosporidium antibodies to ensure that protective immunity would not be an 

issue. A separate study by Chappell et al. (1999) selected 17 healthy adult 

volunteers based on the presence of Cryptosporidium antibodies, which indicates 

a recent C. parvum infection within the last year, which builds some immunity to 

the pathogen during subsequent exposures. Four different dosing regiments 

were used in that study: 500, 5000, 10 000, and 50 000 Iowa strain oocysts. Dr. 

Harley Moon of the University of Iowa collected the original isolate used in these 

studies from a calf.
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The other C. parvum challenge studies performed by Chappell et al. (1999) only 

used healthy adult volunteers who had not been exposed to C. parvum within the 

last year and showed no immunity. The UCP isolate, also originally derived from 

a calf, was given to 17 different subjects in doses of 500,1000, 5000 and 10 000 

oocysts. The TAMU isolate, originally derived from an infected veterinarian 

student, was given in doses of 10, 30,100 and 500 oocysts to 14 volunteers.

The increased sensitivity of the AIDS population to infection was considered in 

the developed C. parvum dose response neural network model. There is 

currently no experimental data available on the infectivity of C. parvum among 

the AIDS population, such an experiment would be highly unethical, thus 

available outbreak data must be replied upon. Perz etal. (1998) estimated that 

the infectivity for C. parvum for the AIDS population was three times higher than 

the non-AIDS population based on available C. parvum outbreak data. Makri et 

al. (2004) applied a factor of three to represent the increased infectivity among 

the AIDS population for their risk assessment model based on New York City 

data. To account for AIDS status in the neural network dose response model, a 

factor of three was applied to the Iowa, UCP and TAMU dose response 

relationships produced by the neural network model after training with the 

available experimental data for the three strains. The dose response relationship 

for the Iowa strain with built up immunity among subjects was not considered for
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the AIDS population since once infected, AIDS patients are assumed to develop 

illness and never recover. Pouillot et al. (2004) also assumed certain illness 

among infected AIDS patients in their risk assessment of C. parvum in the 

French population.

The dataset used for training the neural network model is presented in Table 6.1. 

This table does not include the data used for those populations with AIDS; this is 

simply the data for the three isolates whose receptors have no previous 

immunity, multiplied by a factor of three to be protective of sensitive populations 

with AIDS.

Strain of C. Dose Number of Number of
parvum (Oocysts) Exposed Infected

Iowa 30 5 2
100 8 4
300 3 2
500 6 5
1 000 2 2
10 000 3 3
100 000 1 1
1 000 000 1 1

TAMU 10 3 2
30 3 2
100 3 3
500 5 5

UCP 500 5 3
1 000 3 2
10 000 4 4

Table 6.1: C. parvum dose response dataset for model development
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For the UCP strain there was a fourth data point at a dosing level of 5000 

oocysts that was considered extraneous and eliminated because it did not follow 

the trend of the other data patterns for the UCP. No data patterns were removed 

for the other strains.

Another C. parvum challenge study was performed by Okhuysen et al. (2002) 

using a fourth isolate, Moredun. In Okhuysen etal.'s (2002) study, 16 adult 

volunteers received a dosing regiment ranging from 100 to 3000 oocysts. This 

dataset was not used to develop the neural network dose response model 

because the results of the study failed to demonstrate a significant relationship 

between the ingested dose and the onset of infection for the applied dose range.

6.3 Exponential Dose Response Models

The exponential dose response model is a very simple one-parameter model that 

assumes there is no minimum infectious dose. It has been demonstrated 

through animal and tissue models that even a single oocyst can cause infection 

(Messner et al., 2001). There have been no human studies conducted to date 

that can demonstrate a single oocyst causing infection in a human subject. 

Messner et al. (2001) used the exponential dose response model for their models 

of the Iowa, TAMU and UCP strains:

P ( D , k ) = l - e ~ D/k
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where the probability of infection, P, is a function of the dose, D, in terms of the 

number of oocysts, and a constant dose response parameter, k. Messner et al. 

(2001) used the maximum likelihood parameter estimate to determine that the 

value of k was 17.5 for the TAMU isolate, 190 for the Iowa isolate, and 2980 for 

the UCP isolate. In order to compare the exponential models against the 

developed neural network dose response model it was necessary to determine a 

new value for the parameter k for the UCP strain because the data available for 

the 5000 oocyst dose level was determined to be extraneous. Using the same 

method as Messner et al. (2001), a new maximum likelihood estimate was 

calculated for the UCP strain with dose response information at 500, 1000, and 

10 000 oocysts, and the new constant dose response parameter k was 546.

6.4 Neural Network Dose Response Model

A three-layer MLP neural network with gradient-descent based backpropagation 

training was used to develop one neural network dose response model for C. 

parvum. The input layer of the model considered five inputs: the log doses for 

the Iowa, UCP, and TAMU strains of C. parvum, AIDS status, and previous 

infection from the Iowa strain within the last year. The output layer of the model 

has one output unit representing the probability of infection assuming exposure. 

The occurrence of diarrhea and other complications after infection were not 

considered in the model due to lack of available information for model 

development. The optimal number of hidden neurons for the final neural
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network dose response model was determined to be two. The architecture for 

the neural network dose response model has been presented in Figure 6.1. The 

neural network disinfection model was developed in C++ and trained on an IBM 

compatible computer with a 2.93GHz Intel Celeron processor and 1GB of 

memory.

Threshold 2Threshold 1

Iow a Strain

Log
doses

UCP Strain

Probability o f infection
TAMU Strain

Previous Infection
(last 12 months)

AIDS Status

INPUT
LAYER

OUTPUT
LAYER

HIDDEN
LAYER

Figure 6.1: Dose response neural network model architecture

There was no low dose data (1 oocyst) available for training the neural network, 

the same problem encountered by statistical models. The exponential model 

assumes that there is no minimum infectious dose. For the neural network 

model, it was assumed that a single oocyst is capable of causing infection within 

a human subject, and thus the probability of infection for log dose of zero (one
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oocyst) must be greater than one for the dose response model. It was assumed 

that the probability of infection was zero when the log dose was equal to -7. This 

assumption was included in the training set for the neural network for each of the 

three strains of C. parvum considered. Ce Yu (2004) made a similar assumption 

for a knowledge-based neural network dose response model of E. coli 0157:H7.

If a risk assessor wants to be more or less cautious they should adjust 

accordingly the selection of what the log dose equals for the probability of 

infection to be zero. The incorporation of human knowledge at the low dose was 

necessary to train the neural network model in the absence of low dose response 

data, however when low dose data becomes available it should be incorporated 

into the neural network dose response model.

6.5 Results and Discussion

The neural network dose response model was capable of fitting all the data 

available for the three strains of C. parvum. For each strain of C. parvum the 

neural network dose response model achieved higher correlations and lower 

errors than the corresponding exponential models, the results are presented in 

Table 6.2. However, performance gains were not significant in many cases, 

which lead to the argument that the complexity of the neural network model 

should be abandoned for the simplicity of the exponential model. In principal, the 

developed neural network model has the capability of predicting the frequency of
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infection for a water sample containing each of the three strains of C. parvum 

under study.

Model Strain of C. parvum R2 MAE
Exponential Iowa 0.955 0.0634

TAMU 0.806 0.0970
UCP 0.700 0.102

Neural Network Iowa 0.974 0.0401
TAMU 0.866 0.0627
UCP 0.879 0.0784

Iowa (previous exposure) 0.874 0.115

Table 6.2: Dose response model results

The dose response relationships for each of the three strains are presented in 

Figures 6.2 to 6.4. Each graph presents the exponential and neural network 

dose response relationships along with the observed responses used for training. 

The Iowa graph, Figure 6.2, also depicts the dose response relationship for 

individuals that were previously infected by the strain within the last year. The 

previous infection clearly provides some level of immunity since the frequency of 

infection dropped significantly at each dose level. The TAMU graph, Figure 6.4, 

also depicts the dose response relationship for the AIDS population. The low 

dose data point based on available knowledge has not been included in any of 

the graphs. As expected each of the neural networks’ dose response 

relationships are higher than the corresponding exponential model in the low
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dose range. This higher response provides better protection for human health in 

the absence of real human response data in the low dose range.

0.6 -
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Log Dose

 Exponential
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- - Neural Network
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Figure 6.2: Iowa strain dose response relationship
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Figure 6.3: UCP strain dose response relationship
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Figure 6.4: TAMU strain dose response relationship

This neural network dose response model provides risk assessors with an 

excellent tool in the quantitative microbial risk assessment of C. parvum in 

drinking water. The ability to simulate different combinations of strains that have 

different levels of infectivity could be useful when the exact strain of C. parvum 

exposure is unknown.
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Risk characterization integrates the outputs of the dose response and exposure 

assessments into a quantitative risk estimate (Haas etal., 1999). It is also 

necessary in the risk characterization to decide which output measure will be 

produced by the risk assessment, such as the expected number of illnesses for a 

population, or the probability of infection. The final step of this risk assessment 

process is to combine the water consumption per day, oocyst concentration in 

the drinking water and the dose response relationship to determine the 

probability of infection from C. parvum.

There is a significant decision made at the outset of a risk assessment that 

greatly affects the output of the risk characterization; the decision to use point 

estimates of risk or interval estimates. The expected number of illnesses for 

example is a point estimate of risk since it is a single numerical value 

representing risk. An interval estimate of risk is given as a probability distribution 

or confidence region, and thus considers the uncertainty and variability of the 

inputs and assumptions (Haas et al., 1999). A point estimate of risk for exposure 

to C. parvum via drinking water is calculated by determining a point estimate of 

the oocysts consumed through cold drinking water from a single exposure (one 

day) and inputting that point estimate of exposure into the dose response model.
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Point estimates of risk are straightforward to compute and easy to understand 

relative to interval estimates of risk. However, the simplicity of point estimates of 

risk sacrifice the ability to analyze uncertainty and variability within the developed 

models. In this thesis point estimates of risk were produced from the risk 

assessment process and interval estimates of risk were not considered.

7.1 Risk Characterization Assumptions

There are endless possible combinations of parameters to consider with the 

exposure and dose response assessments for the risk characterization. The 

purpose of the risk characterization in this application is to demonstrate the use 

of the developed neural network models together. The simulations performed 

consider variations in the oocyst concentration, disinfection process, drinking 

water consumption, and dose response parameters including strain, previous 

exposure, and AIDS status. A total of 108 different simulations were conducted 

to determine point estimates of daily probabilities for infection.

7.1.1 Oocyst Concentra tions

Oocyst concentrations of 12,119 and 250 oocysts per liter were assumed for the 

source waters before treatment. This provides a range of raw water source 

qualities for the simulations, from good to terrible, which can be expected 

depending on the land uses for the surrounding watershed.
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7.1.2 Disinfection Process

For the disinfection process relatively low, medium and high inactivation rates 

were desired for the risk characterization in order to simulate a failure of the 

disinfection process and when the process is operating properly. The ozone 

disinfection neural network model was selected for this purpose, as only one 

disinfection process was required for simulation purposes. It was necessary to 

use three test points used to evaluate the ozone disinfection model for the risk 

characterization simulations because the model requires the final residual as an 

input and it was not possible to generate additional data points (in an operational 

plant the final residual could easily be measured). The model inputs and the 

neural network inactivation rate outputs for the three test data points used for risk 

characterization simulation are presented in Table 7.1.

Initial
Residual
(mg/L)

Final
Residual
(mg/L)

Contact
Time

(minutes)
pH Temperature

(°C)

Neural Network 
Inactivation 

Rate 
(log units)

1 0.7 15 8 1 0.27
1.8 1.5 15 6 1 1.45
0.5 0.3 20 6 22 3.44

Table 7.1: Water consumption model inputs and inactivation rates 

7.1.3 Drinking Water Consumption

Drinking water consumption was considered for two different groups, Canadian 

adults (18 and over) and children (under 18). Although the developed neural
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network water consumption model is capable of considering different genders, 

regions within Canada, and a variety of age groups; age was determined through 

saliency analysis to be the most important variable considered by the model.

Thus it was decided that age would be the driving consideration for the 

consumption of water for the simulations performed. The two age groups were 

selected based on an observation from the consumption model that adults drink 

considerably less cold tap water as a portion of their total tap water consumption 

than children (under 18).

It is assumed for this study that all Canadians keep their hot water heaters at 

60°C or above, and that the water will be heated in the tank for at least 5 

minutes. Otherwise it is assumed that Canadians will sufficiently heat their hot 

water drinks to kill all present oocysts. Thus hot tap water consumption does not 

need to be considered for this exposure assessment and only cold tap water 

consumption needs to be considered. The cold tap water consumption for 

Canadian adults and children was determined by the regional tap water 

consumption neural network model to be 0.97 and 0.64 liters per day 

respectively.

7.1.4 Dose Response Parameters

The following separate C. parvum dose response relationships from the dose 

response neural network model were considered during the simulations: UCP
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and TAMU strains assuming independent exposures, Iowa strain assuming no 

previous exposure, Iowa strain assuming a previous exposure within the last 12 

months, and the Iowa strain for an AIDS positive person assuming independent 

exposures. While the dose response neural network has been trained with the 

consideration of AIDS status for the TAMU and UCP strains, it was deemed that 

demonstration of this condition for one strain was sufficient.

7.1.5 Exposure Independence

A population can be exposed to a pathogen multiple times or continuously. For 

most pathogens there is no experimental data surrounding multiple or continuous 

exposures, and it is assumed that the risk of each exposure is statistically 

independent of the risk from other exposures. However, in the case of the Iowa 

strain for C. parvum there is multiple exposure data available, which was 

included in the developed dose response neural network model. For this risk 

characterization it is assumed for UCP and TAMU strains of C. parvum that each 

exposure is statistically independent. Temporary or permanent immunity 

reduces the independence of a series of exposures, but the assumption of 

independence of exposure is considered to be reasonable (Haas etal., 1993). 

For the Iowa strain it is assumed that in the case of multiple exposures, the dose 

response relationship for the Iowa strain given previous infection within 12 

months will be applied.
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7.2 Simulation Results

The simulation results for source water oocyst concentrations of 12, 119 and 250 

oocysts per litre are presented in Tables A.1 -  A.3 of Appendix A. First consider 

the best-case scenario with the highest rate of inactivation (99.96%), lower cold 

tap water consumption (Canadian children at 0.64 L per day), and the lowest 

considered oocyst concentration at the water source (12 oocysts per L). This 

scenario produced a daily probability of infection ranging from 0.016 to 0.034 for 

the Iowa, UCP, and TAMU strains with no previous infection. It is necessary to 

remember that the developed neural network dose response model is very 

conservative in the low dose range (1 oocyst or less). Now consider the worst 

case: low rate of inactivation (46.29%), adult cold tap water consumption (0.97L 

per day), and the highest oocyst concentration for source water considered (250 

oocysts per L). This situation generated a daily probability of infection ranging 

from 0.343 to 0.989 for the Iowa, UCP and TAMU strains with no previous 

exposure. Clearly, the difference in the probability of infection is substantial 

between the two scenarios. The lowest rate of inactivation (46.29%) used in the 

simulations was meant to represent a poorly operated or failing ozone 

disinfection process. The ramifications of a failing disinfection process are quite 

evident from the relatively high probabilities of infection for all scenarios involving 

a low rate of inactivation.
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Previous infection to the Iowa strain of C. parvum in the last 12 months provides 

substantial protection to an individual if they become infected with the Iowa strain 

again. For simulation results not in the low dose range (more than 1 oocyst), the 

probability of infection for the Iowa strain is approximately 50% to 70% less for 

those with previous infection in the last 12 months. This could be a substantial 

planning consideration for a community that has faced significant exposure to C. 

parvum in the last year, bearing in mind that this only considers the Iowa strain.

The results for the highest rate of inactivation (99.96%) always produced a dose 

in the low dose range of 1 oocyst or less for all combinations of source water 

oocyst concentrations and water consumption rates. The importance of an 

effective disinfection process is very evident in the protection of water consumers 

from C. parvum oocysts. The absence of experimental data in the low dose 

range required the incorporation of human knowledge in that dose range. This 

model design characteristic has affected the results in the low dose range. 

Consider that the probability of infection is usually substantially lower for those 

with a previous Iowa strain infection in the last 12 months as compared to the 

probability of infection for the population with no previous infection. The 

probability of infection is approximately equal between the Iowa strain results 

with previous infection and no previous infection in the low dose range. For 

example, a dose of 0.03 oocysts was produced for Canadian children at an 

oocyst concentration of 119 oocysts per L for the source water and disinfection
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effectiveness of 99.96%, yielding a daily probability of infection of 0.040 for those 

with no previous infection to the Iowa strain in the last 12 months and 0.038 for 

those with a previous infection in the last 12 months. This highlights the need 

for experimental dose response research in the low dose range for C. parvum.

A variety of scenarios were considered for the risk characterization including a 

range of source water oocyst concentrations, several strains of C. parvum, 

different water consumer groups, and several rates of inactivation. In the low 

dose range the resulting probabilities of infection are higher than the comparable 

exponential dose response model, reflecting the design decision to be 

conservative in the low dose range in the absence of experimental data for C. 

parvum in the low dose range. A conservative low dose response region given 

the dearth of experimental data provides a greater level of vigilance for the health 

and wellness of a population. However, this may result in significant over 

estimates of the probability of infection for low doses of C. parvum when using 

these neural network models for risk characterization. Practitioners should 

carefully consider the assumptions of all dose response models in the low dose 

region when estimating the level of risk and determining an appropriate set of 

actions to take. Risk characterizations have been successfully performed with 

reasonable results using the developed neural network models.
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The capability of exposure assessment and dose response models to predict risk 

is limited by the uncertainty and variability of the underlying datasets used to 

develop the models and the uncertainty introduced by the design of the model 

itself.

Sources of uncertainty include parameter uncertainty (measurement errors, 

random errors and systematic bias) and model uncertainty (excluded variables 

and unconsidered scenarios). For measurement error, very precise 

measurements are hindered by physical limitations. For example existing 

methods for determining the concentration of oocysts in a water sample do not 

provide exact numbers and may not distinguish viable and inactivated oocysts. 

The use of small datasets can cause random errors that lead to parameter 

uncertainty. For this thesis a small dataset was used to develop the C. parvum 

dose response model. The high cost of performing dose response challenge 

experiments means that relatively few subjects are used during an experiment 

and a small dataset is produced. Systematic errors are reproducible 

inaccuracies that consistently bias the results in the same direction due to an 

intrinsic flaw in the experiment or data gathering process. A systematic error that 

is relevant to predicting the probability of infection for a waterborne pathogen is 

the lack of consideration for sensitive subpopulations and focusing on healthy
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adult males that are not representative of the entire population. In this thesis 

AIDS status was considered in the dose response model, and the drinking water 

consumption rates for various groups were also incorporated. However, a 

number of subpopulations were not considered in the dose response and 

exposure assessment models, such as farm workers who have greater exposure 

to animal fecal matter.

The developed neural networks used during the exposure and dose response 

assessments may introduce model uncertainty. For instance, the neural network 

models may exclude relevant variables or not consider rare sets of conditions 

that may arise. However all types of models face these problems, whether it be 

a statistical model, mathematical model or neural network. If a model does not 

consider a relevant variable or catastrophic scenario then the estimated risk 

might be grossly in error. Each model presented in this thesis has been carefully 

developed given the available data and previous studies in the literature.

However it is very likely that every possible situation has not been considered 

and potentially relevant inputs have been missed. This is the nature of modeling, 

a simplified view of a complex system, thus much detail must be left out.

For risk assessment, variability refers to the variability of input parameters to the 

dose response and exposure assessment models. For example, water 

consumption rates vary significantly between age groups and the sensitivity of
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the AIDS population to C. parvum is much greater than healthy adults. It is 

relatively difficult to include the variation in sensitivity to C. parvum across the 

population due to the ethical constraints of experimenting on sensitive 

populations and the high cost of performing the dose response challenge 

experiments. Conversely, it is much easier to determine the approximate 

differences in water consumption between different groups of consumers. A 

major limitation of the models presented in this thesis is the ability to incorporate 

a significant range of variability and granularity, due to dataset constraints. 

Consider the chlorine dioxide disinfection neural network model; its range for pH 

is 6 -  11. Now this range might represent the effective range needed for the 

model to be useful, or there might not have been data available outside of this 

range.

Finally, the performance of a risk assessment requires that a number of justified 

assumptions and model design decisions be made. The accuracy of these 

assumptions directly affects the quality of the risk predictions produced by the 

risk assessment. A number of assumptions and design decisions were made 

throughout this thesis, and it is the responsibility of those who use the results of 

this research to judge the appropriateness of these assumptions and design 

decisions.
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9 .0  EXTEN SIO NS AND CO NCLUSIO NS

In this thesis three major objectives were achieved: the development of an 

intelligent dose response model for C. parvum that considers three different 

strains, AIDS status, and previous infection; the creation of a suite of neural 

network models for performing an exposure assessment of waterborne C. 

parvum; and finally the performance of a risk characterization on waterborne C. 

parvum that considers a variety of scenarios using the developed models.

This was the first known intelligent dose response model developed for C. 

parvum. It outperformed the competing exponential dose response model, but 

not exceptionally given the added the complexity of the neural network.

However, the developed neural network dose response model does have the 

ability to predict the frequency of infection for a water sample containing 

combinations of three strains of C. parvum. This ability could be useful to risk 

assessors when the exact strain of C. parvum exposure is unknown.

Ozone and chlorine dioxide neural network disinfection models were developed 

using the SLF learning algorithm, which yielded optimal network structures of 

three hidden units for the ozone disinfectant and four hidden units for chlorine 

dioxide. The neural network disinfection models performed better than the 

temperature corrected Chick-Watson models. The initial and final disinfectant
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Extensions and Conclusions

residuals were included as inputs for the neural network disinfection models to 

simulate the decay of the disinfectant over time. The inclusion of the final 

residual was determined to not be as important for stable disinfectants, such as 

chlorine. The relative importance of the model inputs varied between the two 

disinfection models, but temperature and contact time were the most relevant for 

both which is in contrast to the classical Chick-Watson model that emphasizes 

the residual concentration and contact time.

Consumption of cold tap water was used to determine the exposure of an 

individual to waterborne C. parvum because it was assumed that hot water would 

be stored for a sufficient amount time at a prescribed temperature to inactivate 

the oocysts. For Canadian water consumption, seasonal changes were found to 

be irrelevant while age, region and gender were determined to be relatively 

important. The seasonal neural network consumption model was rejected from 

use in the risk characterization based on these findings, and the regional neural 

network consumption model was adopted for use. The regional neural network 

(RNN) consumption model considers both total tap water consumption and cold 

tap water consumption to provide flexibility to the risk assessor during an 

exposure assessment.
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Finally, a risk characterization using the various neural network models was 

performed that considered a variety of oocyst concentrations, three C. parvum 

strains, different rates of inactivation and two water consumer groups. It was 

noted that experimental studies should be performed in the low dose range to 

increase the accuracy of models in this region.

9.1 Extensions

Throughout this thesis point estimates have been used for the exposure 

assessment and the estimates of risk. These point estimates do not provide a 

span of values that represent the uncertainty and variability of the model input 

parameters. The use of interval estimates provides a probability distribution or at 

least a region of confidence, which gives a sense of the uncertainty and 

variability for the input parameters. Knowledge of input parameter uncertainty 

and variability is very useful to a risk assessor. It would be worthwhile for 

researchers to investigate the use of interval estimates for risk assessments 

using intelligent modeling techniques.

In this thesis only two disinfection processes were presented, ozone and chorine 

dioxide. A number of other disinfectants and physical removal processes were 

investigated for potential modeling, including: chlorine, ultra violet light, rapid 

gravity filtration, inline filtration, and coagulation / flocculation / sedimentation. 

However, insufficient quality data was available in the literature to develop
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Extensions and Conclusions

reasonable models. In the future as more raw data becomes available it would 

be interesting to create a suite of intelligent models for C. parvum disinfection 

and physical removal processes. This would allow the simulation of complete 

drinking water treatment processes for C. parvum using intelligent models, which 

would be useful in the design of drinking water treatment plants and the 

assessment of risk for existing treatment plants.

There are a number of intelligent modeling techniques available to researchers to 

extend the capabilities of the presented models and achieve greater 

performance. For example Lau and Musilek (2007) used immune programming 

to expand on the neural network inactivation models of Janes and Musilek (2007) 

to produce results that are more easily interpreted than the sometimes-cryptic 

connection weights of a neural network.
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46.29% 0.64 4.12 Iowa 0.117
UCP 0.111
TAMU 0.255
Iowa X 0.059
Iowa X 0.519

0.97 6.25 Iowa 0.139
UCP 0.127
TAMU 0.386
Iowa X 0.064
Iowa X 0.605

96.45% 0.64 0.27 Iowa 0.054
UCP 0.054
TAMU 0.036
Iowa X 0.043
Iowa X 0.158

0.97 0.41 Iowa 0.059
UCP 0.059
TAMU 0.043
Iowa X 0.044
Iowa X 0.187

99.96% 0.64 0.0031 Iowa 0.034
UCP 0.028
TAMU 0.016
Iowa X 0.036
Iowa X 0.054

0.97 0.0047 Iowa 0.035
UCP 0.029
TAMU 0.016
Iowa X 0.036
Iowa X 0.057

Table A.1: Simulation # 1 -1 2  oocysts/L for source waters
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46.29% 0.64 40.91 Iowa 0.338
UCP 0.257
TAMU 0.956
Iowa X 0.105
Iowa X 0.899

0.97 62.00 Iowa 0.413
UCP 0.302
TAMU 0.980
Iowa X 0.122
Iowa X 0.930

96.45% 0.64 2.70 Iowa 0.100
UCP 0.097
TAMU 0.168
Iowa X 0.055
Iowa X 0.436

0.97 4.09 Iowa 0.117
UCP 0.111
TAMU 0.253
Iowa X 0.059
Iowa X 0.518

99.96% 0.64 0.03 Iowa 0.040
UCP 0.036
TAMU 0.020
Iowa X 0.038
Iowa X 0.080

0.97 0.046 Iowa 0.042
UCP 0.039
TAMU 0.022
Iowa X 0.039
Iowa X 0.088

Table A.2: Simulation #2 -119  oocysts/L for source waters
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UCP
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0.478
0.343
0.989
0.138
0.948

0.97 130.25 Iowa
UCP
TAMU
Iowa
Iowa X

X

0.566
0.401
0.995
0.163
0.964

96.45% 0.64 5.68 Iowa
UCP
TAMU
Iowa
Iowa X

X

0.133
0.123
0.351
0.063
0.585

0.97 8.61 Iowa
UCP
TAMU
Iowa
Iowa X

X

0.159
0.142
0.514
0.068
0.670

99.96% 0.64 0.064 Iowa
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TAMU
Iowa
Iowa X

X

0.043
0.041
0.023
0.039
0.096

0.97 0.097 Iowa
UCP
TAMU
Iowa
Iowa X

X

0.046
0.044
0.026
0.040
0.109

Table A.3: Simulation #3 -  250 oocysts/L for source waters
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