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Abstract

Frazil ice particles and flocs can adhere to underwater structures causing blockage to

water intakes and large accumulation of frazil ice in the channel may cause flooding

and property damage. After frazil floc rises to the water surface the resulting surface ice

profoundly impacts river hydraulics and bank stability. Significant progress has been

made in investigating the properties and evolution of frazil ice particles. However, the

physical process in which frazil particles flocculate into flocs and rise to the surface

forming ice pans remains largely unknown due to limited data available on the prop-

erties of frazil floc and surface ice. The motivation of this study was to determine the

properties of frazil floc and surface ice as well as their evolution under changing envi-

ronmental conditions to better model and predict their physical behavior throughout

the river freeze-up.

The use of oblique images of river surfaces captured at long focus distances for long-

term monitoring of surface ice conditions and ice pan properties was explored. Image

data from a public camera mounted on a building rooftop captured during five freeze-

up seasons was used. A deep learning based hybrid image processing algorithm was

developed and evaluated to compute surface ice concentrations as well as ice pan sizes

and shapes. The ice pans detected were generally elliptical shaped and their diameters

ranged from 0.55 to 15.03 m. A lognormal distribution was a good fit for the ice pan

size distributions for all years. Time series analysis showed that the appearance of ice

pans coincided with supercooling and daily mean ice pan diameter varied from 1 to 3 m.

These results demonstrate the viability of this method, which may open opportunities

to identify and use public camera images for surface ice quantification.
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Properties of frazil flocs were measured for the first time in field by deploying a

submersible camera system a total of eleven times during supercooling in the North

Saskatchewan, Peace, and Kananaskis Rivers. A lognormal distribution was found to

be a good fit for the floc size distribution. The mean floc size ranged from 1.19 to 5.64

mm and decreased linearly as the local Reynolds number increased. The average floc

number concentration ranged from 1.80 × 10-4 to 1.15 × 10-1 cm-3. The average floc

volumetric concentration ranged from 2.05 × 10-7 to 4.56 × 10-3 and was found to

correlate strongly with the fractional height above the bed through a power law rela-

tionship. No significant correlations were found between the air-water heat flux and

floc properties. Floc number concentration and mean size increased significantly just

before peak supercooling and reached a maximum near the end of principal supercool-

ing.

To explore how the supercooling curve and frazil ice particle and floc properties

vary under different air-water heat flux scenarios, a series of laboratory experiments

were conducted in which frazil particles and flocs were generated and imaged when

the cold room air temperature was increased or decreased threefold at different times

during supercooling events. It was found that increasing the heat flux raised the mean

particle number concentration by 25 - 33 % but did not significantly affect the mean floc

number concentration. Decreasing the heat flux only produced significant effects when

the change occurred before peak supercooling, reducing mean particle and floc number

concentration by 10 and 22 %, respectively. Time series analysis showed that varying

heat flux during different supercooling phases led to significantly different responses in

the supercooling curve and particle and floc evolution.

Additional laboratory frazil tank experiments were performed to investigate the cor-

relation between the time series of frazil particle and floc properties under different air

temperatures and turbulent dissipation rates. A strong linear relationship between par-

ticle and floc number concentrations was found with the floc-to-particle number con-

centration ratio ranging from 0.29 - 0.35. The ratio was reduced by 12 - 17 % when the
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turbulent dissipation rate was lower. A moderate to strong nonlinear correlation was

found between mean particle and floc sizes described by an exponential relationship

when particle mean sizes increased or decreased significantly. When particle mean size

reaches an approximate equilibrium, a weak to moderate linear correlation was found

between mean particle and floc size and the negative slope suggests they are inversely

correlated.
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Chapter 1

Introduction

1.1 Background

Freeze-up in northern rivers typically begins when the turbulent water becomes super-

cooled below its freezing point due to heat loss to the atmosphere and suspended frazil

ice particles (Figure 1.1a) form in the water column. These individual frazil ice particles

are predominantly disk-shaped (Andres 1982; McFarlane et al. 2015). They are inher-

ently adhesive in the supercooled water and may collide with each other and freeze

together into clusters as they are transported by the turbulent flow. The clusters are

commonly referred to as frazil flocs as shown in Figure 1.1a and the process creating

the flocs is called flocculation (Clark and Doering 2009). Frazil flocs gain mass either by

the thermal growth of the crystals and/or by further aggregation of individual frazil ice

particles or flocs. Once frazil flocs become buoyant enough to overcome the turbulence

of the flow, they rise to the surface of the river and continue to combine together into

larger slush balls and if the exposed portion freezes they form frazil ice pans (Hicks

2016) as shown in Figure 1.1b. Frazil pans tend to collide with each other creating

upturned white edges as they move with the flow. The collisions may also cause frazil

pans to freeze together to form large multi-pan rafts.

During freeze-up, anchor ice may form on the river bed by the deposition of sus-

pended frazil ice particles and/or flocs or by in-situ nucleation of ice crystals (Tsang

1982). An example image of anchor ice is shown in Figure 1.1c. Anchor ice accumula-
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Figure 1.1: Example images of river ice: (a) Frazil ice particle and floc imaged in a labo-
ratory tank using two cross polarization filters, (b) surface ice pans passing downtown
Edmonton from left to right with border ice formation visible on both banks, North
Saskatchewan River, (c) anchor ice formation on the Fortress field site, Kananaskis
River, (d) skim ice formation on the left bank of the Quesnell Bridge field site, North
Saskatchewan River, and (e) ice cover on the near field and open leads on far field near
Dawson Park in Edmonton, North Saskatchewan River.

tions grow in size either by the deposition of frazil ice particles/flocs or by in-situ growth

of ice crystals on the bed material (Kempema and Ettema 2011; Ghobrial and Loewen

2021). Anchor ice can release from the bed due to either mechanical or thermal forc-

ing and rise to the surface (Kempema et al. 2001). The resulting anchor ice pans often

appear darker than frazil ice pans due to embedded sediments and this “rafting” pro-

cess can contribute significantly to sediment transport in rivers (Kempema and Ettema

2011).

During freeze-up border ice (Figure 1.1b) and skim ice (Figure 1.1d) can form on

the water along river banks where the water is shallow and moves slowly (Hicks 2016).

As freeze-up progresses it may grow out from the banks narrowing river widths. As

border ice grows and more and more surface ice pans form, congestion of incoming
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ice pans often occurs and pans can bridge at certain locations such as constrictions or

sharp bends and become immobile (Beltaos 2013). From there, a solid ice cover will

form and propagate upstream. The formation of a continuous solid ice cover typically

insulates the flowing water from further heat loss to the atmosphere, thus preventing the

occurrence of supercooling and the production of frazil ice until the ice cover thaws or

breaks up (Beltaos 2013). However, in some river reaches, open water areas called open

leads (Figure 1.1e) can be found when parts of the ice cover are melted locally by high

water temperatures or washed away by increased flow velocities (Vuyovich et al. 2009).

Without an ice cover to insulate the water, supercooling events and frazil generation

may occur throughout the winter in these river reaches when the air temperature is

sufficiently cold.

The flocculation of frazil ice particles plays a key role in river freeze-up processes as

frazil flocs are important to surface and anchor ice production. The generation of frazil

ice pans and the subsequent ice cover formation during river freeze-up have profound

impacts on river hydraulics (Ashton 1978), river morphology (Ettema and Zabilansky

2004), bank stability (Chassiot et al. 2020), and sediment transport (Kempema and

Ettema 2011). In addition to rising to the water surface, frazil particles and flocs can

attach to underwater structures causing full or partial blockage of water intakes for

both water supply and hydroelectric facilities (Ettema and Zabilansky 2004; Barrette

2021). Conditions like significant anchor ice formation on the river bed or hanging

dam formation by frazil accumulation underneath the ice cover may cause flooding and

damage property and infrastructure (Beltaos 2013). Therefore, it is of great importance

to obtain a better understanding of the frazil floc and surface ice properties as well as

their evolution under the changing environmental conditions in order to model and

predict their physical behavior throughout the freeze-up processes.
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1.2 Literature Review

1.2.1 Supercooling Process

Frazil ice production in rivers requires supercooling of the water column. The water

supercooling temperature is predominantly a function of the air-water heat flux and

the latent heat released by growing ice crystals in the water (Daly 2008). Laboratory

studies often perform supercooling experiments by exposing the turbulent water body

to a constant sub-zero air temperature or constant upward heat flux, creating a “classic”

supercooling curve. Figure 1.2 shows an example of a classic supercooling curve with

illustrations of the principal and residual supercooling phases. The principal super-

cooling phase denotes the period when the water temperature varies transiently and

the residual supercooling phase is the period when an approximately constant water

temperature (residual supercooling temperature) is reached (Michel 1972). Various

characteristics of the classic supercooling curve have been defined and investigated in

laboratory experiments (Carstens 1966; Ye et al. 2004; Clark and Doering 2006). The

cooling rate is defined as the slope of the water temperature time series prior to when

frazil ice crystals start to form. The cooling period is defined as the time period from

the start of supercooling to when the peak supercooling temperature is achieved. The

peak supercooling temperature is the lowest supercooling temperature. Laboratory ex-

periments have shown that higher cooling rates resulted in greater peak supercooling

temperature magnitudes (Carstens 1966) and shorter cooling periods (Ye et al. 2004).

In addition, it has been observed that the water depth affects supercooling with deeper

flows resulting in longer principal supercooling phase duration, smaller cooling rates

and larger peak supercooling magnitudes (Ye et al. 2004). The only study that per-

formed laboratory supercooling experiments when the heat flux was varied was re-

ported in Carstens (1966). He explored the effect of increasing the upward heat flux

after a residual temperature had been reached to the supercooling curve. He observed

that the water temperature dropped off again and reached smaller second peak super-

cooling and residual supercooling temperature magnitudes than the first.
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Figure 1.2: Schematics of a typical classic supercooling curve showing the cooling rate,
cooling period, and peak and residual supercooling temperatures. Shaded blue and
yellow areas denote principal and residual supercooling phases, respectively.

Several previous field studies have reported supercooling measurements in rivers.

Richard and Morse (2008) measured peak supercooling temperature in the St. Lawrence

River ranging from -0.01 °C to -0.06 °C. Nafziger et al. (2013) investigated supercooling

on small streams in New Brunswick and Newfoundland, Canada and found the mea-

sured peak supercooling degree to be 0.07 °C and supercooling events can last for up to

42.7 hours. Boyd et al. (2022) studied the characteristics of the supercooling events in

three Alberta rivers and reported that a typical supercooling event lasting less than 24

hours with a peak supercooling between -0.01 °C and -0.02 °C. Pei et al. (2021) com-

pared supercooling events measured in deep and shallow water and it was found that

supercooling events that occurred in deep water were significantly longer in duration

and had larger peak supercooling magnitudes. McFarlane and Clark (2021) analyzed

the energy budget throughout six supercooling events and found that the most signif-

icant heat source and heat loss were net shortwave radiation and net longwave radia-

tion, respectively. Kalke et al. (2019) classified 93 supercooling events observed in the

North Saskatchewan River into three types and concluded that about one-third of the

observed events followed the classic supercooling curve shape which may be produced
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due to approximately constant upward air-water heat flux (Figure 1.3a). The rest were

classified as either erratic (Figure 1.3b) or parabolic (Figure 1.3c) in shape and which

were probably produced due to varying air-water heat flux.

Figure 1.3: Field measurements of water temperatures showing (a) classic supercooling
curve; (b) erratic supercooling curve; and (c) parabolic supercooling curve. (Kalke et
al. 2019)

1.2.2 Frazil Ice Particles and Flocs

The properties of individual frazil ice particles have been investigated both in labora-

tory studies and field. Their size ranged from 0.022 to 6 mm (McFarlane et al. 2017)

and the size distribution can be described by a lognormal distribution (Clark and Doer-

ing 2006; Daly and Colbeck 1986; McFarlane et al. 2015; Ye et al. 2004). Laboratory

studies showed that during the principal supercooling phase, the mean particle diame-

ter first increased before reaching an approximately constant value (Clark and Doering

2006; McFarlane et al. 2015). The number concentration of frazil particles first in-
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creased slowly and then rapidly at a fairly constant rate, peaking just after the peak

supercooling had been reached (Clark and Doering 2006; McFarlane et al. 2015). The

rapid multiplication of frazil ice particles was most commonly considered a result of

secondary nucleation, which refers to the nucleation of new crystals due to the pres-

ence of a stable parent crystal (Evans et al. 1974). The rate of secondary nucleation was

assumed to be governed by collisions of crystals and fluid shear which break crystals up

to create new crystals (Clark and Doering 2009; Daly 1984). After peaking the particle

number concentration decreased as particles were removed via flocculation. Some re-

cent field measurements reported in-situ measurements of frazil particle size evolution

using underwater photography (McFarlane et al. 2017; McFarlane et al. 2019b). It was

found that in most cases the mean frazil particle size remained approximately constant

during the residual supercooling phase while in some cases changing environmental

conditions caused changes in the mean particle size. However, no definitive conclu-

sions were reached with regard to the evolution of the frazil ice characteristics during

the principal supercooling phase due to limited data.

A small number of laboratory studies have investigated frazil floc properties and the

flocculation process (Clark and Doering 2009; Kempema et al. 1993; Park and Gerard

1984; Schneck et al. 2019; Reimnitz et al. 1993) and no field measurements have been

reported to the best of the author’s knowledge. The most comprehensive laboratory

measurements of frazil flocs were made by Schneck et al. (2019) using a frazil ice tank.

Schneck et al. (2019) reported that the mean floc size was 2.57 mm in freshwater and

1.47 mm in saline water and a lognormal distribution was found to fit the floc size

distribution closely. The floc porosity was estimated to vary between 0.75 and 0.86 un-

der different salinities by equating the estimated volume concentration of floc and the

theoretical volume concentration computed from well-mixed heat balance equations.

Reimnitz et al. (1993) investigated the rise velocity of frazil in seawater using a vertical

tank and found that floc rise velocities were functions of their size and ranged from 1 to

5 cm/s. Clark and Doering (2009) investigated frazil flocculation in a counter-rotating
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flume and measured the vertical number variations of frazil flocs under different turbu-

lence intensities considering a frazil floc to be any particle with an equivalent diameter

greater than 17 mm. Results showed that the number of observed flocs near the wa-

ter surface exceeds the number of flocs near the bed, and the number of flocs overall

decreases with increasing turbulence intensity. A few studies have considered frazil

flocculation processes when modelling frazil ice dynamics (Rees Jones and Wells 2018;

Svensson and Omstedt 1998). However, due to the poor understanding of the un-

derlying physical mechanisms and limited data available for verification, a universally

accepted formulation for frazil flocculation remains elusive.

1.2.3 Surface Ice Characteristics

The temporal and spatial variations of surface ice properties (i.e. ice concentration,

ice pan size and shape) are of great interest for ice-related hazard monitoring (Ettema

and Zabilansky 2004). Time series estimation of surface ice concentration can provide

calibration and validation data, as well as boundary conditions for comprehensive river

ice models used to predict freeze-up processes (Blackburn and She 2019; Shen 2005).

Measurements of ice pan size and shapes can be used to improve river ice models based

on the discrete element method (Zhai et al. 2022). A number of previous studies have

investigated methods to monitor surface ice concentration (Emond et al. 2011; Ghobrial

et al. 2013; Kalke and Loewen 2018; Singh et al. 2020), ice cover extent (Ansari et

al. 2017), and border ice growth (Simoes and Clark 2020). Ghobrial et al. (2013)

investigated ice pan and raft lengths on the NSR computed from sonar data during

one freeze-up season and found they varied from less than 1 m to 20 m. Jasek (2016)

estimated ice pan lengths on the Peace River using one week of sonar measurements

and found the 5th and 95th percentile lengths were 2.3 and 41 m, respectively. There

are currently rather limited data on multi-year surface ice characteristics especially ice

pan properties which is in part due to the challenges of making measurements during

the harsh winter environments.
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Current methods of monitoring surface ice conditions can be categorised into sonar-

based methods and camera-based methods. Upward looking sonars record reflected

acoustic signals as ice passes over the location of the vertical acoustic beam which can

then be translated into measurements of ice concentration, ice pan drafts and lengths

(Ghobrial et al. 2013; Jasek 2016; Morse et al. 2003). Camera-based methods utilize

images/videos of river surface ice conditions to monitor surface ice conditions and use

image processing methods to obtain quantitative measurements of surface ice charac-

teristics (Ansari et al. 2017; Kalke and Loewen 2018; Vuyovich et al. 2009). Standard

image processing techniques like thresholding, contour-based edge detection and geo-

rectification have been applied alone or in combination to extract river ice conditions

(Ansari et al. 2017). Recent studies that applied machine learning and deep learning

methods found them to be more robust than traditional methods and perform well in

accurately segmenting surface ice (Ansari et al. 2021; Kalke and Loewen 2018; Singh

et al. 2020; Zhang et al. 2021). Singh et al. (2020) compared four state-of-the-art deep

learning models (UNet, SegNet, DeepLab and DenseNet) to Support Vector Machine

(SVM) and found that the deep learning models were significantly more accurate than

SVM.

1.3 Knowledge Gaps

The above literature review shows that despite significant progress being made on the

formation and evolution of individual frazil ice particles, our understanding of the phys-

ical process in which individual frazil ice particles combine into flocs and rise to the sur-

face forming ice pans remains limited, which is largely due to a scarcity of data available

in the literature. First, measurements of frazil floc properties are very rare which has

limited our understanding of the flocculation process. Secondly, the evolution of both

frazil ice particles and flocs under varying heat flux when the supercooling curve may

not follow a classic shape is largely unknown. Such knowledge is crucial to enhancing

our understanding of how heat flux variations during supercooling affect frazil ice and
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floc production in field conditions where the heat flux is rarely constant. Lastly, long-

term monitoring data of surface ice properties reported in the literature is very limited,

especially ice pan sizes and shapes. Surface ice pans are the direct product of suspended

frazil ice production, and a robust monitoring method for the surface ice characteristics

can provide the necessary data as a foundation to establish connections between frazil

production and surface ice evolution. Therefore, collecting and analyzing data on frazil

floc and surface ice properties are crucial for improving our understanding of the river

freeze-up process.

1.4 Research Objectives

This study aims to advance our understanding of the properties of frazil floc and surface

ice as well as their evolution under changing environmental conditions to better model

and predict their physical behavior throughout the river freeze-up. The study included

a series of field measurements of time-series of frazil floc and surface ice properties and

concentrations. It also included laboratory experiments to determine how different

heat flux scenarios affect the production and evolution of frazil ice particle and floc

properties in a controlled setting, as well as how frazil ice particle and floc sizes and

concentrations correlate with each other. The study addressed four objectives, each

described below along with a brief summary of the corresponding chapters.

Objective 1 was to investigate freeze-up surface ice concentrations and ice pan prop-

erties using multi-year public camera images and a deep learning approach. Chapter 2

describes the development, validation, and application of a deep learning based hybrid

image processing algorithm in order to quantify surface ice concentration and ice pan

properties on the North Saskatchewan River from oblique and distant public camera

images. Images captured during five freeze-up seasons were processed and the results

were analyzed to demonstrate that the method provides valuable information on both

the long- and short-term temporal variations on river ice conditions as well as on the

statistical properties of ice pans.
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Objective 2 was to investigate the key factors that govern the properties and evolu-

tion of frazil flocs in rivers. In Chapter 3 field measurements of frazil ice flocs using a

submersible high-resolution camera system to capture time-series images of frazil flocs

for 2021-2023 freeze-up seasons in three Alberta rivers are presented. Images were

analyzed to accurately determine floc sizes and concentrations. Key hydraulic and me-

teorological measurements were collected and air-water heat fluxes were estimated to

investigate their influence on floc properties. Time series of floc size, number concen-

tration and volumetric concentrations as well as size distributions measured in rivers

during the principal and residual supercooling phase are presented for the first time.

Objective 3 was to determine how frazil ice particle/floc properties vary under dif-

ferent air-water heat flux scenarios. Chapter 4 describes a series of laboratory frazil ice

tank experiments in which the upward heat flux was increased or decreased at different

times during a supercooling event by changing the cold room temperature. Images of

frazil ice particles and flocs passing between two cross-polarizing filters were captured

using a high-resolution camera system. Precision temperature recorders were used to

monitor water and air temperatures. The sizes and concentrations of frazil particles

and flocs measured during supercooling are presented. The effect of varying the heat

flux at different times of supercooling on the supercooling curve and the properties of

frazil ice particles and floc are discussed.

Objective 4 was to explore how frazil ice particle and floc properties correlate with

each other under different cooling rates and turbulent intensities. In Chapter 5 a labora-

tory study was conducted using experimental setups similar to the ones described in the

previous paragraph to investigate the correlation between frazil ice particles and floc

number concentrations and sizes at different air temperatures and turbulent dissipa-

tion rates. The correlations between frazil ice particle and floc sizes and concentrations

during different stages of supercooling are presented. Effects of different turbulent

dissipation rates and air temperatures on the correlation between frazil ice and floc

properties are discussed.
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Chapter 2

Deep Learning Based River Surface Ice
Quantification Using a Distant and
Oblique-Viewed Public Camera

2.1 Introduction

The freeze-up processes that lead to the formation of an ice cover on rivers are com-

plex and dynamic. Freeze-up typically begins when the turbulent water becomes su-

percooled by exposure to cold air and suspended frazil ice particles form in the water

column. Adhesive frazil particles can collide with each other and sinter together into

groups, forming frazil flocs. Once frazil flocs become buoyant enough to overcome the

turbulence of the flow, they rise to the water surface and combine into larger clumps

of frazil slush. The frazil slush is initially flexible and quite transparent, but as freeze-

up progresses, the portions exposed to the atmosphere freeze producing rigid frazil ice

pans (Hicks 2016). Frazil pans tend to collide with each other creating upturned white

edges as they move with the flow. The collisions may also cause frazil pans to freeze

together to form large multi-pan rafts. During freeze-up anchor ice can also form either

by deposition of adhesive suspended frazil ice particles onto the river bed or by in-situ

nucleation of ice crystals on the bed material. Anchor ice can release from the bed due

to either mechanical or thermal forcing and rise to the surface (Kempema et al. 2001).

The resulting anchor ice pans often appear much darker than frazil ice pans due to

embedded river bed sediments and this mechanism can transport significant amounts
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of sediment downstream particularly coarser materials (Kempema and Ettema 2011;

Kalke and Loewen 2018). Once a high concentration of surface ice pans is reached,

congestion of incoming ice pans will occur and the pans will bridge at certain locations

(e.g. a constriction or sharp bend) becoming immobile and an ice cover will form and

propagate upstream (Beltaos 2013). During the ice cover period, open water areas

called open leads can form when parts of the ice cover are melted locally by high water

temperatures or washed away by increased flow velocities (Vuyovich et al. 2009).

Monitoring the characteristics of surface ice (i.e. ice concentration, ice pan size and

shape properties) and their variation both temporally and spatially is of considerable

importance to establish a better understanding of freeze-up processes. The evolution of

surface ice pans and the formation of ice covers during river freeze-up have profound

impacts on river hydraulics (Ashton 1978), river morphology (Ettema and Zabilansky

2004), bank stability (Chassiot et al. 2020; Vandermause et al. 2021), and sediment

transport (Kempema and Ettema 2011). In addition, timely data of surface ice char-

acteristics can be valuable for effective water resources management and hazard as-

sessments related to ice jam induced flooding or bank erosion (Ettema and Zabilan-

sky 2004). Accurate estimation of surface ice concentrations can provide calibration

and validation data, as well as boundary conditions for river ice process models such

as CRISSP1D/2D (Shen 2005) and River1D (Blackburn and She 2019). Detailed mea-

surements of ice pan properties may aid in the discrete element modelling of surface ice

processes (Zhai et al. 2022). A number of previous studies have investigated methods

to quantify surface ice concentration (Emond et al. 2011; Ghobrial et al. 2013; Kalke

and Loewen 2018; Singh et al. 2020; Sola and Scott 2022), ice cover extent (Ansari

et al. 2017), and border ice growth (Simoes and Clark 2020). Some studies reported

estimations of ice pan properties during freeze-up. Ghobrial et al. (2013) computed

time-series of ice pan drafts and lengths by analyzing Shallow Water Ice Profiling Sonar

(SWIPS) signals from a single freeze-up season. Jasek (2016) reported ice pan drafts

and lengths during frazil and anchor ice runs based on one week of SWIPS measure-
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ments. There is currently rather limited data on ice pan properties available in the

literature due to the challenging winter environments. The size distributions and inter-

annual variations of surface ice pans during freeze-up as well as time-series variation

of ice pan properties still remain largely unknown and require further investigation.

Therefore, it is of considerable interest to conduct long-term monitoring of surface ice

conditions especially detailed ice pan properties. Note that in this study the term ice

pan is used to represent both individual ice pans and multi-pan rafts.

There are two primary methods of monitoring surface ice conditions namely sonar-

based methods and camera-based method. Sonar-based methods can provide contin-

uous measurements of surface ice concentration, ice pan drafts, and lengths (Morse

et al. 2003; Ghobrial et al. 2013; Jasek 2016). Camera-based methods utilize im-

ages/videos of river surface ice conditions from different sources to monitor surface

ice conditions. The captured images are analyzed using image processing methods to

obtain quantitative measurements of surface ice characteristics that are visible in the

images. A variety of image sources have been used in past studies, including aerial pho-

tography (Daly et al. 1986), unmanned aerial vehicle or UAV (Kalke and Loewen 2018;

Zhang et al. 2020; Zhang et al. 2021), near-shore or bridge-mounted cameras (Kalke

and Loewen 2018; Ansari et al. 2017), web-based cameras (Vuyovich et al. 2009) and

infrared thermography (Emond et al. 2011).

The major advantage of the sonar-based method is its capability to measure ice pan

drafts and to conduct continuous measurements of surface ice characteristics. How-

ever, sonars only provide point measurements, parameters such as the threshold and

persistence levels are site-specific and need to be determined for each site and a se-

ries of assumptions need to be made in order to derive ice pan properties (Ghobrial

et al. 2013). The biggest disadvantage of sonars is that they need to be deployed un-

derwater on the riverbed and as a result, deployment and retrieval require a properly

equipped boat. Compared to the sonar-based method, most camera-based methods lack

the ability to conduct 24-hour continuous monitoring since there is insufficient light at
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night. Harsh winter weather conditions like fog or heavy snow may also compromise

the image quality. However, setting up, operating, and maintaining camera-based sys-

tems are significantly easier and less expensive than sonar systems. Another significant

advantage is that analysis of the captured images enables surface ice properties to be

monitored over a wide area. These advantages make camera-based methods the logical

choice for long-term multi-year measurements of surface ice characteristics.

A variety of methods have been developed to extract reliable surface ice informa-

tion from camera images. Early studies used manual inspection of the images to esti-

mate surface ice conditions (Osterkamp and Gosink 1983), which is time-consuming

and the accuracy of the resulting data is uncertain. Standard image processing tech-

niques like thresholding, contour-based edge detection and geo-rectification have been

applied alone or in combination to extract information of river ice conditions. For exam-

ple, Ansari et al. (2017) developed an automated algorithm based on standard image

processing techniques to monitor the ice cover characteristics from oblique shore-based

cameras consisting of image pre-processing, registration, rectification, target detection

and calculation of ice characteristics. The algorithm was evaluated with two sites on

the St. Lawrence River and quantified ice cover properties with acceptable accuracy.

Images captured during night time are typically not processed but Emond et al. (2011)

investigated the use of infrared thermography to measure river ice properties which

enables images captured at night to be analyzed. These previous studies that utilized

standard image processing techniques are heavily dependent on image quality and as

a result do not perform well when conditions such as the ambient light are changing.

Image processing algorithms that use machine learning methods have been found

to be more robust and perform better than traditional methods at extracting river ice

properties from images (Singh et al. 2020). First introduced in the late 1950s, machine

learning algorithms have evolved rapidly and have demonstrated superior performance

in many imaging applications such as medical image classification and disease diagnosis

(Li et al. 2014), nucleus segmentation (Xing et al. 2016), face recognition (Lawrence
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et al. 1997) and remote sensing (Maggiori et al. 2017). Recently, several studies have

applied machine learning algorithms to extract river ice properties from images. Kalke

and Loewen (2018) trained four SVMs (Support Vector Machine) to perform frazil/an-

chor ice pan segmentation using images captured from bridge-mounted trail cameras

and UAVs. Their results showed a significant increase in accuracy compared to thresh-

olding methods. Ansari et al. (2019) coupled fast superpixel segmentation with iter-

ative edge refinement technique to train an SVM and used it for the classification of

water, sky, bank, border ice, ice cover and pan ice. Singh et al. (2020) compared four

state-of-the-art deep learning models (UNet, SegNet, DeepLab and DenseNet) to SVM

and found that the deep learning models were significantly more accurate when seg-

menting images and videos of river surfaces into water, frazil pans and anchor ice pans.

Zhang et al. (2020) and Zhang et al. (2021) proposed a semantic segmentation deep

network called ICENET to segment UAV images of the Yellow River into water, ice and

land. Ansari et al. (2021) used a modified Mask R-CNN to perform segmentation of

open water, broken ice, frazil pan, frazil slush, border ice and ice cover in oblique UAV

photos and obtained good accuracy. Sola and Scott (2022) proposed a novel convolu-

tional block to construct a shallow UNet style architecture for river ice segmentation

and achieved comparable performance to UNet with higher efficiency.

The objective of this study is to investigate the use of oblique images of river surfaces

captured at long focus distances for long-term monitoring of surface ice conditions. Im-

ages from a public camera mounted on a building roof top captured during five freeze-

up seasons was used in this study. A deep learning based hybrid image processing

algorithm consisting of image classification, rectification, segmentation and extraction

of river ice properties was developed to compute surface ice concentrations as well as

ice pan size and shape properties. Time series of multi-year surface ice concentrations

as well as size distributions and shape properties of ice pans during freeze-up in the

North Saskatchewan River are presented.
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2.2 Study Site

Figure 2.1 shows three maps of the North Saskatchewan River (NSR) in the City of

Edmonton with varying scales. The NSR is a glacier-fed, regulated river that originates

from the Canadian Rockies. The discharge is affected by the Brazeau and Bighorn Dams

which are approximately 240 km and 430 km upstream of the Dudley B. Menzies LRT

bridge in the study reach, respectively. A daily water level fluctuation of∼0.3 m to∼0.4

m can be observed on the NSR at Edmonton due to hydropeaking effects of the upstream

dams (McFarlane et al. 2017). The river is irregularly meandering with point bars and

side channel bars. The average daily winter discharge at Edmonton is 126 m3/s (Hicks

1997), and the average depth and width in the study reach are approximately 1.4 m

and 180 m, respectively (Kellerhals et al. 1972). Freeze-up on the study reach can start

as early as late-October and a complete stable ice cover can form as late as the end of

December. During a typical freeze-up season frazil slush, frazil ice pans, border ice and

released anchor ice pans are observed in this reach. The only ice-induced flooding and

bank erosion that has been observed in this reach was caused by a freeze-up ice jam that

occurred in early December 2019. This was an unusual event that was likely triggered

by the construction of temporary cofferdams during bridge construction downstream

that constricted the channel by ∼50 %. The jam only caused some minor flooding but

significant bank erosion was observed. Under normal conditions flow regulation at the

two upstream dams virtually eliminates any risk of ice-induced or open water flooding

in this reach. In addition, multiple water intakes are located along the study reach

which can be blocked by the frazil ice formed during freeze-up. Warm water discharges

from the University of Alberta’s cooling water plant often lead to the formation of a

narrow open lead in the study reach.

17



Figure 2.1: Maps of the North Saskatchewan River showing (a) a large area including
11 km upstream of the field site, (b) study reach including the area of interest (AOI)
along with the EAS camera, water temperature logger and LRT bridge locations and (c)
zoomed-in view of the AOI.

2.3 Image Source and Instrumentation

Images of surface ice conditions were obtained from the University of Alberta (UA)

Department of Earth and Atmospheric Sciences (EAS) Weather Station Cameras. Four

AXIS P1355 network cameras are mounted on the roof of the UA Tory Building at an

elevation of ∼122 m above the NSR water surface. The cameras continuously sample

2.1-megapixel (1920 × 1080) RGB images at 15-minute intervals. Images from these

cameras are publicly available at the EAS website (University of Alberta 2021). The net-

work cameras were installed as a part of the EAS weather observation system and were

not intentionally set up for river ice research. However, the four cameras provide very

good views of the NSR near the UA campus and therefore provide an opportunity for

studying the river ice processes. The cameras are enclosed in weather proof housings

18



to prevent any undesired camera movement or damage. The location of the EAS cam-

eras is shown in Figure 2.1b and examples of raw images are presented in Figure 2.2.

Images captured during five freeze-up seasons (2015 - 2017 and 2019 - 2020) by the

camera with a horizontal FOV (field-of-view) of 41.5◦ looking∼0.4 km upstream of the

LRT bridge were obtained and processed. Note that images from the 2018 freeze-up

were not processed due to poor image quality that year (i.e. adverse weather condi-

tions). The AOI (area-of-interest) shown in Figure 2.1b-c is the water surface area that

corresponds to the sub-region in the images where it was possible to extract accurate

estimates of river ice properties. The AOI is located near the centreline of the NSR and

covers approximately 27 % of the river width. The line of sight distance to the centre

of the AOI is ∼460 m.

2.4 Image Processing

The appearance of the water surface and the different types of river ice in the EAS

images can vary significantly under different conditions. Figure 2.2 presents four ex-

amples of high-quality images when the water surface and several different types of

ice including slushy ice pans, crusty ice pans and ice cover were clearly visible. Slushy

ice pans (Figure 2.2a) are defined as newly formed “younger” ice pans which appear

relatively transparent in the image and their edges can be quite blurry. Crusty ice pans

(Figure 2.2b-c) are “older” ice pans that appear with whiter edges than the slushy pans

due to collisions with other ice pans. The ice cover imaged in Figure 2.2d is defined as

a static ice sheet that appears white and covers the majority of the water surface.

The visibility of the water surface and ice was reduced significantly by insufficient

light during the night and/or blurriness caused by inclement weather, which tended

to lower image quality and make extracting quantitative information on river ice prop-

erties more difficult or impossible. A deep learning based hybrid image processing

algorithm was developed to address the aforementioned challenges. The framework

of the algorithm is shown schematically in Figure 2.3 and includes four major steps:
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image classification, image rectification, image segmentation and ice pan properties

extraction. The algorithm was executed on a personal computer (Intel Core i7-8700

CPU @3.20GHz; 16 GB RAM) and it took approximately 25 s to analyze a single image.

(a) (b)

(c) (d)

Figure 2.2: Examples of raw EAS camera images: (a) slushy ice pan image with zoomed
in river surface, (b) crusty ice pan images (lower ice concentration), (c) crusty ice pan
images (higher ice concentration) with zoomed in river surface and (d) ice cover image.

2.4.1 Image Classification

The goal of the image classification is to remove unusable night and blurry images from

the dataset as shown in Figure 2.3. Therefore, in this study, the EAS camera images were

first classified into four categories: night, blurry, ice pan and ice cover and examples of

each are shown in Figure 2.4. The four image categories are defined as follows: night

images (Figure 2.4a) were captured when there was insufficient light to illuminate the

AOI; blurry images (Figure 2.4b) are any image in which the AOI is blurred or obscured

for any other reason (e.g. clouding of the housing lens and inclement weather); ice pan

images (Figure 2.4c) are images captured prior to ice cover formation which contain
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water surface and/or discrete ice pan elements; and ice cover images (Figure 2.4d) are

images that contain a static continuous ice cover.

Figure 2.3: Framework of the hybrid image processing algorithm.

A simple CNN architecture containing two convolutional layers (Pillai 2018) was

trained to automatically classify the EAS camera images into the four categories. A

total of 1893 full resolution camera images captured from the 2017 - 2019 freeze-up

periods were manually selected and labelled into the aforementioned four categories

to construct the training and testing datasets for image classification. Table 2.1 lists

the details of the labelled images in each category. A total of 1445 images were used

for training, and 448 images were used for testing. The inputs to the network are 256

× 256 RGB image patches resized and normalized from the original full-HD (1920 ×

1080) images, each patch was subjected to random shear, zoom and horizontal flip to

generate more augmented data. The commonly-adopted categorical cross-entropy loss

function was used since there are four output categories and implementation was done
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using the Keras framework (Chollet 2015). The model was trained for 300 epochs. The

trained model used for evaluation was the one with either the maximum validation

accuracy or the minimum validation loss depending on how well the training accuracy

and validation accuracy match in the two cases. Batch sizes of 16, 32 and dropout rates

of 0.25, 0.5 were tested which resulted in 4 combinations to train the model. Each

combination was evaluated and it was found a batch size of 32 and a 0.25 dropout rate

achieved optimum performance. Figure 2.5 shows the normalized confusion matrix

of each category. Results show that the model is quite accurate, identifying night, ice

cover, ice pan and blurry images with an accuracy of 100 %, 98.28 %, 98.69 % and

94.74 %, respectively. Overall, the model performed well with a frequency weighted

average accuracy of 98.66 % in all categories. As a final step the image sequences were

manually examined to identify and correct the small number of misclassified images to

ensure the accuracy of the following steps.

Table 2.1: The number of labelled images in each image category.

Class Train Test

Blurry image 127 38

Ice cover image 414 116

Night image 469 141

Ice pan image 435 153

Total 1445 448

2.4.2 Image Rectification

The EAS camera is mounted on a tower on the rooftop of the UA Tory Building looking

down at an oblique angle towards the NSR. The view angle from the north, dip and tilt

angles of the camera could not be directly measured due to its hazardous high instal-

lation position. However, estimates were made by calculating the geometric properties

of objects in the image, which gave a view angle of 47.2◦ from the north (i.e. NE di-
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(a) (b)

(c) (d)

Figure 2.4: Examples of four image categories (a) night image, (b) blurry image, (c)
ice pan image and (d) ice cover image.

Figure 2.5: Confusion matrix for each image category showing % accuracy.

rection), a dip angle of 7.8◦ and a tilt angle of -1.8◦. Since the camera was installed at

an oblique angle, the ice cover and ice pan images needed to be geo-rectified to obtain

quantitative data. In this study, an open-source MATLAB program “g_rect” (Bourgault
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2008) was used to geo-rectify the ice pan and ice cover images. This algorithm takes

camera view and positional parameters, ground control points (GCPs) and their associ-

ated image control points (ICPs) as inputs. It allows users to perform geo-rectification

with undetermined camera parameters and uses an iterative algorithm to minimize the

root mean square distance between the GCPs and associated ICPs, which is especially

suitable for conditions where camera parameters cannot be easily and accurately de-

termined.

The coordinates and elevation of 12 GCPs were surveyed using a Trimble R8 RTK

GPS system by wading into the river and capturing images in which the top of the rover

was visible. The EAS camera sampling frequency was changed briefly during the survey

to capture an image every 30 seconds. The GCPs were surveyed at locations in the reach

that were visible in the images that could be reached safely by wading and where RTK

GPS signals were reliable enough to ensure survey accuracy. At each GCP the rover was

held in place for two minutes, and four images were captured. The resulting average

horizontal and vertical precision of the GCPs recorded by the RTK GPS was 0.008 m and

0.014 m, respectively. Figure 2.6a shows the 12 GCPs used in the rectification algorithm

in a raw image and in Figure 2.6b superimposed GCPs and ICPs are shown plotted on

the geo-rectified image. The close alignment of the GCPs and ICPs in the geo-rectified

image indicates that there was a good fit between the calculated coordinates and the

original coordinates. The estimated root mean square error (RMSE) of the distance

between the GCPs and the rectified ICPs is 0.867 m, which is considered acceptable

given the scale of the domain included in the image.

2.4.3 Image Segmentation

The rectified images encompass a relatively large river surface area as shown in Fig-

ure 2.6b. However, the rectified images needed to be cropped to minimize the effect of

reflected sunlight and increase the effective pixel resolution. This resulted in smaller

images with pixel dimensions of 820 × 500 representing a smaller AOI near the cen-
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(a)

(b)

Figure 2.6: (a) Locations of the GCPs in a raw image and (b) a geo-rectified image
with superimposed GCPs , ICPs , and EAS camera location .

treline of the river which did not cover the entire river width. The cropped image has a

pixel length of 0.092 m and covers approximately 3470 m2 of water surface area, which

is shown in Figure 2.1c. The growth of border ice in the study reach was observed to

be restricted to regions very close to the banks which were not imaged in the selected

AOI. Therefore, this study focused exclusively on detecting surface ice pans and the ice

cover, and the surface ice concentration is defined as the percentage of water surface

in the AOI covered by surface ice pans and/or ice cover.
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Freeze-up generally begins with free-flowing surface ice pans and ends when a com-

plete ice cover forms on the water surface. The accuracy of various thresholding meth-

ods was first tested on both ice cover and ice pan images. The tests showed that for ice

cover images, using a thresholding method for ice segmentation produced accurate re-

sults. However, during the free-flowing surface ice phase, distinguishing ice pans from

water using thresholding was found to be inaccurate due to variations in the texture

and transparency of ice pans formed under different weather and light conditions. This

is especially the case when ice pans were newly formed on the water surface at the

beginning of freeze-up and appeared slushy and this required a more robust method

for accurate segmentation of surface ice pans from water. Therefore, in this study, the

cropped ice cover images were segmented using a thresholding method and the cropped

ice pan images were segmented using a deep-learning model as shown in Figure 2.3.

Five ice cover testing images were selected from the 2019 and 2020 freeze-up sea-

sons that showed a complete ice cover including some with open leads under different

light conditions and ice texture variations. The images were manually labelled to gen-

erate ground truth labels. The testing images were thresholded using 16 automatic

thresholding methods with morphological operations. The segmentation results were

evaluated using four metrics: pixel accuracy, mean accuracy, mean intersection over

union (IoU) and frequency weighted IoU (Singh et al. 2020) defined as follows:
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where n is the number of classes, n ji is the number of pixels of class j predicted to

belong to class i, and t i is the total number of pixels of class i in the ground truth test-

ing image labels. The pixel accuracy can also be considered as a frequency weighted
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accuracy. In addition, the mean absolute difference of surface ice concentration MAD

Cice between testing image labels and predicted image labels was calculated to esti-

mate the accuracy of ice concentration estimates. The Yen thresholding method (Yen

et al. 1995) with morphological operations was found to be the most accurate among

all tested thresholding methods, achieving 96.84 %, 95.81 %, 86.34 %, 94.48 % and

2.44 %, respectively for pixel accuracy, mean accuracy, mean IoU, frequency weighted

IoU and MAD Cice. Therefore, the Yen thresholding method was selected to segment ice

cover images.

UNet is a fully convolutional neural network initially designed for biomedical image

segmentation (Ronneberger et al. 2015). The network consists of a contracting path

to extract context features and an expansive path for accurate localization, forming a

symmetric “U” shaped encoder-decoder architecture. Since its introduction in 2015,

the UNet architecture has been shown to achieve promising performance with relative

fewer annotated training samples and heavy use of data augmentation, which makes it

quite suitable for ice pan segmentation. Singh et al. (2020) investigated the application

of four state-of-the-art deep learning methods including UNet for segmenting river ice

images. They concluded that UNet was probably the best method based on the fact that

it provided a good balance between generalization and overfitting. Therefore, the ice

pan images in this study were segmented using UNet.

A total of 50 rectified and cropped ice pan images from the 2019 - 2020 freeze-up

seasons were manually selected and labelled to train and test the UNet model for binary

ice and water segmentation. The images were selected to represent three different ice

conditions including no ice, slushy pans and crusty pans. The 50 labelled images were

divided into 80 % for training and 20 % for testing, images in the testing dataset were

randomly selected in each of the three ice conditions to ensure that each condition is

represented and evaluated in the testing dataset. The details of the labelled images for

each surface ice condition are listed in Table 2.2. To generate a large set of sub-images

from each training/testing image, each of the 820 × 500 images was first converted
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to grayscale, then resized and cropped into six 256 × 256 patches. Then each patch

was used to generate three more images by randomly rotating (0 - 45◦), width/height

shifting (0 - 20 %), shearing (0 - 0.2◦) and flipping. The blank areas generated during

these operations were filled by reflecting the pixel values along the image boundary.

The model was trained for 1000 epochs, a batch size of 8 and a dropout rate of 0.2

were used. The binary focal loss function (Lin et al. 2017) was used to address the

class imbalances of ice and water since it was found that the ice only covers 20 - 30

% of the water surface in the majority of the images. Implementation was done using

the Keras framework (Chollet 2015). Model training was conducted on the Compute

Canada Cedar platform using one GPU node with 6 CPU and 32000 MB memory. The

trained model used for evaluation was the one with either the maximum validation

accuracy or the minimum validation loss depending on how well the training accuracy

and validation accuracy match in the two cases.

Each of the 10 ice pan testing images was first cropped into 6 sub-patches for UNet

segmentation, then the segmented sub-patches were stitched back together to get the fi-

nal predicted results for evaluation. The segmentation results were evaluated using the

metrics in Equation (2.1) - Equation (2.4) and MAD Cice. Table 2.3 presents the UNet

segmentation performance for ice pan images. As shown in Table 2.3, UNet achieved

100 % in all accuracy/IoU metrics and 0 % in MAD Cice for images with no ice, demon-

strating that the model is accurate at detecting the water surface without mislabeling

shadows/ripples as ice. For slushy pan images, the frequency weighted accuracy and

IoU were 92.93 % and 91.37 %, respectively. The mean accuracy and IoU were 70.98 %

and 68.64 %, respectively which were significantly lower than the frequency weighted

values. The low mean accuracy and IoU may be due to the imbalanced water/ice ratio

in the low-concentration slushy ice pan images which may lead to biased evaluation

results since the number of pixels is not evenly distributed between ice and water class.

The low variance of pixel intensity between open water and slushy ice pans may also

influence the segmentation accuracy for slushy pan images. A MAD Cice of 1.80 % was
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Table 2.2: Details of the images and corresponding labels in each condition used for
UNet training/testing.

Water
surface
condi-
tion

Example training images Example training labels Total
train-
ing

images

Total
testing
images

Slushy
pan

18 4

Crusty
pan

21 5

No ice 1 1

Total - - 40 10

achieved. For crusty pan images, the model performed more uniformly with all four ac-

curacy/IoU metrics exceeding 70 %, and a MAD Cice of 2.68 % was achieved. This is not

unexpected since the ice concentration in crusty pan images is significantly higher than

in slushy pan images. Overall, the model achieved 85 - 87 % in frequency weighted

metrics, 74 - 77 % in terms of mean metrics, and about 2 % of MAD Cice.

In Table 2.4 the accuracy/IoU metrics achieved with UNet trained using EAS images

is compared with the UNet results of Singh et al. (2020) which were trained using im-

ages obtained from UAV and game cameras. The results obtained in this study using

UNet are comparable with the UNet results presented by Singh et al. (2020) except for

the mean accuracy. The EAS images were rectified from oblique camera images col-

lected from a much greater distance and as a result the image quality and resolution
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Table 2.3: UNet segmentation performance for ice pan images.

Evaluation metrics Slushy pan
images

Crusty pan
images

No ice
image

Overall
(Frequency
weighted)

Pixel accuracy (%) 92.93 79.59 100.00 86.97

Mean accuracy (%) 70.98 76.34 100.00 76.56

Mean IoU (%) 68.64 72.37 100.00 73.64

Frequency weighted
IoU (%)

91.37 76.78 100.00 84.93

MAD Cice (%) 1.80 2.68 0.00 2.06

are considerably lower than the images used by Singh et al. (2020). Therefore, be-

cause the UNet model developed in this study achieved comparable accuracy to Singh

et al. (2020), this was taken as confirmation that it was segmenting the ice pans with

sufficient accuracy in the EAS images.

Table 2.4: Comparison of UNet segmentation performance between this study and
Singh et al. (2020).

Evaluation metrics
This study Singh et al. (2020)

Image source: EAS
Camera

Image source:
UAV/Game Camera

Pixel accuracy (%) 86.97 88.69

Mean accuracy (%) 76.56 85.13

Mean IoU (%) 73.64 73.19

Frequency weighted IoU (%) 84.93 81.73

2.4.4 Ice Pan Properties Extraction

It was found that computing ice pan properties directly from the UNet segmented ice

pan images using simple connected component analysis (CCA) based separation some-

times led to overestimation of ice pan sizes when two or more individual ice pans were
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incorrectly identified as a single pan due to noisy boundaries. An example of this is

shown in Figure 2.7a-b where two separate pans in the raw image are shown con-

nected in the UNet segmented image and were subsequently identified as a single pan

using CCA based separation. Therefore, a marker-based watershed transformation was

used to extract ice pan properties and overcome this drawback. The watershed transfor-

mation is a widely used mathematical morphological method for image segmentation

and instance separation of definite object classes (Ibrahim et al. 2019). It treats in-

put grayscale images as a topographic surface and separates different components by

flooding this surface from its minima until a peak (edge) has been reached. Marker-

controlled watershed transformation (Roerdink and Meijster 2000) utilizes the exact

region of object instance markers to guide the flooding process. the region of objects

is often obtained by performing thresholding on the original images. Studies show

that binary labels generated by deep learning based segmentation can further improve

the accuracy of watershed transformation since deep learning based segmentation has

been shown to generate higher-accuracy results compared to thresholding (Eschweiler

et al. 2019; Ibrahim et al. 2019). In this study, the UNet segmented labels of ice pan

images were used to perform the marker-controlled watershed transformation. After

applying the watershed transformation the two separate pans in Figure 2.7a were cor-

rectly identified as separate pans as shown in Figure 2.7c-d.

(a) (b) (c) (d)

Figure 2.7: Example of UNet marked watershed transformation to separate wrongly
connected ice pans highlighted in a red circle, (a) rectified images, (b) UNet segmented
binary images, (c) watershed transformed markers and (d) overlaid marker boundary
in light blue.

The ice pan objects identified by the watershed transformation were analysed to ex-

tract the following pan properties: area (A), perimeter (p) and the lengths of the major
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and minor axis of the ellipse that has the same normalized second central moments as

the ice pan. The size of the ice pans was calculated as follows:

d =

⌜

⎷4A
π

(2.5)

where d is the equivalent diameter of the ice pan. The ratio dp/d was used to quantify

the degree of distortion of an ice pan from a circle and is given by:

dp/d =
p
πd

(2.6)

where dp is the diameter derived from the perimeter of an ice pan assuming it to be a

circle. This ratio was initially introduced by sea ice researchers to evaluate the shape

of sea ice pans (Toyota et al. 2006). To illustrate how this ratio varies with shape four

cropped images of ice pans and rafts with shapes varying from approximately circular to

very irregular are shown in Table 2.5. The ratio is seen to vary from 1.14 to 3.38 as the

shape becomes more irregular and it is evident that higher dp/d values might indicate

the formation of rafts. The aspect ratio (AR) defined as the ratio of the major to minor

axis length was also provided to help characterize the shape of ice pans, as can be seen

in Table 2.5, AR increased from 1.35 to 2.84 for the first three pans as they became more

irregular but slight decreased to 2.79 for the most irregular pan. All detected ice pans

that intersected the image boundaries were excluded from the analysis. By manually

checking ∼300 individual ice pan objects and comparing them to the rectified image,

a cut-off d of 0.55 m was introduced to eliminate inaccurate results since it was found

that ice pans with an area less than 28 pixels (d = 0.55m) were either false positives

or produced by snowflakes in the air between the camera and water surface.

2.4.5 Overall Qualitative Performance

The qualitative performance of the proposed algorithm was assessed by applying the

algorithm to segment EAS images from the 2016 freeze-up season. Figure 2.8 presents

examples of raw images and the resulting processed images. The images show the pro-

gression of the 2016 freeze-up season from top to bottom representing various surface
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Table 2.5: Examples of ice pans of different shapes and its corresponding dp/d and AR.
Light blue lines denote overlaid ice pan boundary. Note that dp/d and AR was calculated
for the largest pan that appeared in each image.

Ice pan
image

dp/d 1.14 1.36 2.01 3.38

AR 1.35 1.50 2.84 2.79

ice conditions. The algorithm accurately identified no ice conditions in 98 % of unla-

belled no ice images such as the one shown in Figure 2.8a. Figure 2.8b-c demonstrate

that the algorithm can capture the initiation of surface ice pan generation by accurately

segmenting relatively larger slushy pans but tends to miss smaller pans that were too

transparent or blurry. As shown in Figure 2.8d-f, the algorithm performs well when ice

pans were crusty since most crusty ice pans were accurately identified and segmented.

Figure 2.8g shows that Yen thresholding can successfully segment ice cover images with-

out mislabelling shadows on the ice cover as water. Overall, the examples presented

in Figure 2.8 demonstrate qualitatively that the algorithm can accurately segment EAS

images captured over the full range of conditions.

2.5 Results and Discussion

2.5.1 Comparison of Ice Concentrations Estimated From EAS and
BridgeCam Images

In order to quantitatively assess the capability of the EAS images in estimating surface

ice concentrations, higher-quality images obtained during the 2016 freeze-up from the

two BridgeCams (Figure 2.1b) were segmented since they were installed close to the

AOI and have∼20 times smaller pixel length compared to the rectified EAS images. The

resulting BridgeCam ice concentrations were compared with concentrations estimated
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Figure 2.8: Examples of 2016 freeze-up image processing results on unlabelled images:
left to right: original EAS images, rectified images, predicted binary labels, watershed
transformed markers, overlaid marker boundary in light blue. Various surface ice con-
ditions shown: (a) no ice, (b-c) slushy pans, (d-f) crusty pans and (g) ice cover.

from the EAS images. A binary ice/water UNet model was trained and tested using

50 images and corresponding labels from the Alberta River Ice Segmentation Dataset

(Singh et al. 2019) to segment BridgeCam images. The training and testing processes

of BridgeCam UNet were kept the same as for the EAS camera images described in Sec-

tion 2.4.3. The resulting pixel accuracy, mean accuracy, mean IoU, frequency weighted

IoU and MAD Cice are 86.72 %, 82.68 %, 75.51 %, 80.17 %, and 2.97 %, respectively

which are comparable to the EAS UNet performance.

In Figure 2.9 time series of surface ice concentrations estimated from EAS and Bridge-

Cams images during the 2016 freeze-up are compared and examples of images from the

different cameras are also presented. As can be seen the surface ice concentrations are
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varying significantly each day in all three time series but the daily mean concentrations

all follow the same general trend. The daily mean concentrations estimated from the

EAS and right BridgeCam images agree closely most of the time prior to Dec. 5 with

a mean absolute difference of 2.9 % over this period. However, the daily mean con-

centration estimated from the left BridgeCam images are on average 17 % higher than

values estimated from the EAS camera images prior to Dec. 5. The significantly higher

values close to the left bank are likely due to the fact that this is the location of the

thalweg and the centrifugal force imposed by the river meander upstream of the AOI.

The EAS mean daily concentration remained relatively low at 24 % until Dec. 6 and

then it abruptly rose to 90 % on Dec. 7 indicating the formation of an ice cover in the

central region of the channel. The two BridgeCam concentrations reached 54 % and 50

% on Dec. 5 which is significantly higher than the EAS camera concentration. An ice

cover formed earlier in the regions closer to the banks on Dec. 6 and the two BridgeCam

concentrations reached 77 % and 84 % on that day.

As can be seen in Figure 2.9 the slushy ice pans are clearly visible in the Bridge-

Cam images from Nov. 26. Compared to the BridgeCams images from Nov. 26 it is

evident that the slushy pans also appeared to be visible but blurrier in the EAS images

because of the lower image quality. However, the blurriness of the slushy pans in the

EAS images did not appear to affect the ice concentration results much since the EAS

concentrations agreed closely with the right BridgeCam concentrations as shown in the

time series. Both BridgeCam images from Dec. 2 show that the ice pans were mainly

crusty and that because of their distinct white edges these crusty pans are also clearly

visible in the corresponding EAS image. Interestingly, on Dec. 5 when EAS ice con-

centrations are drastically different than the two BridgeCam concentrations, the pans

appeared much whiter in the EAS image while in the BridgeCam images there were a

lot of transparent slush balls visible in addition to the crusty white pans. This compari-

son indicates that the lower resolution EAS camera is capable of capturing both visible

slushy pans and crusty pans but may not capture the transparent slush balls which were
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Figure 2.9: Comparison of the time series of surface ice concentrations from the EAS
Camera images and BridgeCam images during the 2016 freeze-up between Nov. 24 and
Dec. 8 as well as image comparison for three selected times. Only the black information
banner has been cropped from the BridgeCam images.

captured by the BridgeCams. This is not surprising since the BridgeCams were mounted

much closer to the water surface pointing straight down which resulted in much higher

image quality compared to the EAS images. Overall the results from the lower-quality

EAS camera images are comparable to the right BridgeCam results, demonstrating that

images collected by the EAS camera can be used to accurately monitor surface ice pro-

cesses.

2.5.2 Time Series of Surface Ice Concentration

The algorithm was used to process five years of EAS camera images captured during

the freeze-up period. In each year, the start of the freeze-up period was defined as the

first day ice appeared and the end as when a stable continuous ice cover had formed.

Figure 2.10 presents the time series of surface ice concentrations and air temperatures
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during freeze-up for each year. A synopsis of freeze-up in each year is provided in Ta-

ble 2.6 including the start date, duration, mean air temperature and percentage of time

when air temperature was below zero. In each year, three surface ice conditions with

different ranges of concentration can be observed. When the daily mean ice concentra-

tion was less than 15 %, the ice pans identified in the images were mostly slushy. At

times when the daily mean ice concentration increased and was between 15 % and 35

% the ice pans visible in the images were mostly crusty. A continuous ice cover usually

formed quickly with daily mean ice concentration rising quickly from ∼25 % to 100

%. During freeze-up in 2017, 2019 and 2020 temporary bridging of the ice cover oc-

curred, and the ice concentration increased temporarily to between 80 % and 100 %

before decreasing to much lower values.

Table 2.6: Synopsis of freeze-up in each year.

Year Start date Duration (days) Mean Ta (◦C) % of time Ta

below zero

2015 Nov. 18 9 -5.7 87 %

2016 Nov. 20 17 -5.3 90 %

2017 Nov. 3 9 -9.9 100 %

2019 Oct. 29 46 -4.3 66 %

2020 Oct. 24 29 -2.8 63 %

It is evident in Figure 2.10 that the duration of freeze-up and the nature of the ice

concentration time series varied significantly from year-to-year. For the first three years,

freeze-up progressed relatively quickly with durations of 9 days in 2015/2017 and 17

days in 2016. As shown in Table 2.6, air temperatures were below zero for more than

85 % of the time during freeze-up in 2015, 2016 and 2017 and mean air temperatures

were all below -5 ◦C. These conditions promoted continuous surface ice generation

and resulted in shorter freeze-up durations. The concentration time series in 2015 and

2017 are nearly identical, which is not surprising since the mean air temperature and
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Figure 2.10: Time series of surface ice concentration (Cice) and air temperature (Ta) in
the AOI during freeze-up of (a) 2015, (b) 2016, (c) 2017, (d) 2019 and (e) 2020.

percentage of time the air temperature was below zero during these two years are very

similar. In 2016 concentration was <1 % for the first five days of freeze-up, then from

Nov. 25 - 30 increased to ∼4 % possibly due to the relatively warm air temperatures

up to 4.6 ◦C. On Dec. 1 the concentration increased and for seven days ranged from

15 % to 25 % until reaching ∼90 % on Dec. 7 indicating an ice cover had formed. The

freeze-up duration in 2016 is almost two times longer than the other two years.

In 2019 and 2020 freeze-up progressed relatively slowly with durations of 46 and

29 days, respectively. The concentration time series in Figure 2.10d-e show that the

freeze-up was effectively interrupted twice in 2019 and once in 2020 for extended pe-
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riods of time prolonging freeze-up. As shown in Table 2.6, the percentage of time when

air temperature below zero is significantly lower than the first three years and mean

air temperatures were all above -5 ◦C. Freeze-up in 2020 started with three days of

significant daily mean concentration followed by 13 days of interruption with concen-

trations less than 1 %. This interruption was due to a period of warm air temperatures.

After the interruption freeze-up progressed similarly to 2015/2017 over a period of 14

days. Freeze-up in 2019 was much more dynamic since it was interrupted twice due

to the above-zero air temperature periods, and a temporary ice cover was formed and

remained in place during the freeze-up for four days. Overall, the appearance of surface

ice pans and increased ice concentration most of the time correlates with the sub-zero

air temperature, while above-zero air temperature may halt the surface ice production

resulting in a near-zero ice concentration, or weakening the newly formed ice cover

which leads to the breakup of the ice cover.

2.5.3 Ice Pan Properties

Surface ice pan size distributions on the NSR from 2015, 2017, 2020 and 5-year com-

bined are plotted in Figure 2.11. Size distributions from 2016 and 2019 are not pre-

sented since they were very similar to the ones from 2015 and 2020. A theoretical

lognormal distribution can be seen to be a reasonable fit to all of the size distributions

in Figure 2.11 but it fits particular well to the 2015 and 5-year size distributions. The

peak in the size distributions computed for all years was slightly shifted to the left com-

pared to the theoretical lognormal distribution, which might be caused by the cut-off

diameter since only ice pans with a diameter larger than 0.55 m could be accurately

identified.

A summary of ice pan properties and statistics is presented in Table 2.7. A total of

314,606 ice pans were detected in the five years and the overall mean (dm), standard

deviation (σ) and maximum diameter (dmax) of the pans were 1.82 m, 1.08 m and 15.03

m, respectively. The yearly values of dm ranged from 1.75 - 2.09 m and σ ranged from
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Figure 2.11: Normalized size distributions of ice pans for (a) 2015 freeze-up, (b) 2017
freeze-up, (c) 2020 freeze-up and (d) Five-year combined. Blue line denotes fitted log-
normal distribution, N is the number of ice pans in each bin and NT is the total number
of ice pans.

1.02 - 1.38 m. The values of dm and σ in each year were generally comparable except

for in 2017 when both were maximums at 2.09 m and 1.38 m, respectively. In 2019

dm and σ were both the smallest of the five years at 1.75 m and 1.02 m, respectively

and interestingly both the total ice pan count (NT ) and the freeze-up duration were

maximums this year. This is possibly due to the more dynamic freeze-up process that

year hence more small pans were generated during the initiation of each ice pan event.

In all years the dmax exceeded 10 m and the biggest ice pan, which was likely a raft,

was detected in 2020 with a diameter of 15.03 m.

Several previous studies have reported ice pan sizes during freeze-up. Ghobrial et
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Table 2.7: Ice pan size properties during the freeze-up period. NT is the total ice pan
count, NI is the number of ice pans per image, dm, σ, dmax is the mean, standard devi-
ation and maximum ice pan size.

Year NT NI dm (m) σ (m) dmax (m)

2015 45,844 162.6 1.79 1.04 13.02

2016 46,561 113.8 1.79 1.06 11.26

2017 29,146 93.7 2.09 1.38 14.03

2019 119,335 93.5 1.75 1.02 11.66

2020 73,720 86.2 1.85 1.07 15.03

Combined 314,606 100.4 1.82 1.08 15.03

al. (2013) investigated ice pan lengths on the NSR computed from sonar data and found

they varied from less than 1 m to 20 m. They also found that during most of the time

when frazil pans were continuously detected, the pan length was quite stable and varied

between 1 - 3 m. These measurements were largely comparable to our findings, and the

33 % larger maximum ice pan size may be due to different definitions of ice pan sizes.

Sonars measure a chord length as an ice pan passes over the location of the acoustic

beam which is quite different than the equivalent diameter used in this study. Jasek

(2016) measured the ice pan parameters on the Peace River using a sonar and found

the 5th to 95th percentiles of freeze-up ice pan length ranged from 2.3 - 41 m. These

pans were significantly larger than those on the NSR, which is likely because the Peace

River is a significantly larger river.

In Figure 2.12a the equivalent diameter d is plotted versus the perimeter derived

diameter dp and in Figure 2.12b the major axis length is plotted versus the minor axis

length for all 314,606 ice pans identified in the five years. The data in Figure 2.12a

show that as d becomes larger the corresponding range of dp also becomes larger which

means that larger ice pans can be more irregular. On average the ratio dp/d is 1.25 with

a standard deviation of 0.21, and the aspect ratio AR (i.e. major axis length/minor axis

length) is 1.71 with a standard deviation of 0.50. The ice pan shape for each individual
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year was generally similar with the average dp/d ranging from 1.24 to 1.28 and the

average AR ranging from 1.70 to 1.76. It was also found that 90 % of the detected

ice pans have a dp/d less than 1.5 and an AR less than 2.3 which indicates that the

majority of ice pan are approximately elliptically shaped based on the examples given

in Table 2.5. The tendency for larger ice pans to be more irregularly shaped is consistent

with the images and field observations that large ice pans are usually irregularly shaped

rafts formed by small ice pans colliding and freezing together.

Figure 2.12: Scatter density plot illustrating (a) the relationship between d and dp, and
(b) the relationship between the major and minor axis length of the fitted ellipse for all
detected ice pans combined.
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2.5.4 Time Series of Ice Pan Properties

Time series of air temperature (Ta), surface ice concentration (Cice), water temperature

(Tw), diameter (d) and dp/d were evaluated for all five years to investigate the evolu-

tion of ice pan properties. Figure 2.13 and Figure 2.14 present the time series during

the 2016 and 2020 freeze-up periods, respectively to represent both continuous and in-

terrupted surface ice processes. In these plots slushy pan periods or time periods when

slushy pans were determined by visual examination to be dominant are shaded in grey.

Time periods when negligible numbers of ice pan were detected (i.e. less than 100 per

day) were excluded from the analysis of ice pan properties since including these would

skew the daily ice pan statistics.

As shown in Figure 2.13a, Cice was very small and the ice pans were mostly slushy

prior to Nov. 30 in 2016 and after this it increased and the ice pans became mostly

crusty. Figure 2.13b shows that there was a total of seven significant supercooling

events during this freeze-up period. The first supercooling event was observed from

midnight Nov. 19 to early Nov. 22 with a peak supercooling of -0.027 ◦C, but fewer

than 100 pans per day were observed during this event. The slushy pan period began

on Nov. 24 and lasted for six days until Nov. 29. During this time period daily mean Cice

was less than 6 % and the average Ta was -2.68 ◦C. Early on Nov. 29 Ta decreased from

close to zero to approximately -8 ◦C and remained approximately constant for several

days and as a result the crusty pan period started on Nov. 30 and lasted to the end of

freeze-up on Dec. 6 - 7. A supercooling event began in the morning on Nov. 29 the day

before the start of the crusty pan period and persisted for ∼5 days which might have

contributed to the initiation of the crusty pan period. The water was supercooled for

85 % of the time when significant numbers of ice pans appeared on the water surface

from Nov. 24 to Dec. 6. Figure 2.13c shows that both dmean and (dp/d)mean were larger

in the crusty pan period (1.65 m and 1.26) compared to the slushy pan period (1.23

m and 1.16). In Figure 2.13d, the daily dmax in the slushy pan period was ∼4 m but

increased to 8 - 12 m when the ice pans became crusty. The daily (dp/d)max followed
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a similar trend increasing from ∼2 in the slushy pan period to ∼3 in the crusty pan

period. An increasing trend of both daily dmax and (dp/d)max prior to the stable ice

cover formation was found and visual examination of the images confirmed that this

was due to the formation of large rafts.

Figure 2.13: Time series of (a) surface ice concentration (Cice) and air temperature
(Ta), (b) upstream water temperature (Tw) at Emily Murphy Park (red shading denotes
supercooling events), (c) daily dmean and (dp/d)mean and (d) daily dmax and (dp/d)max

during 2016 freeze-up between Nov. 20 to Dec. 8, grey shaded area corresponds to
slushy pan condition.

During the 2020 freeze-up, plotted in Figure 2.14, ice pans first appeared between

Oct. 24 - 26 which is quite uncommon on the NSR in Edmonton since freeze-up typically

begins several weeks later. During the first continuous ice pan event Ta was initially -10

◦C and then ranged from 5 ◦C to -13 ◦C (Figure 2.14a) and three typical supercooling

events with large peak supercooling up to -0.057 ◦C were observed (Figure 2.14b).

From Oct. 27 to Nov. 7, Ta remained mostly above zero and supercooling stopped,
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which interrupted freeze-up. On Nov. 7 Ta decreased to -8 ◦C, freeze-up resumed

and then progressed similarly to 2016 during and seven significant supercooling events

were observed. Ice pans were initially crusty on Nov. 9 then became slushy on Nov. 10

likely because Tw rose above zero for ∼8 hrs on that day (Figure 2.14b). Supercooling

occurred for 86 % of the time when non-negligible numbers of ice pans appeared on the

water surface in 2020. Figure 2.14c shows that both dmean and (dp/d)mean were larger

during crusty versus slushy pan periods, with the averaged dmean for slushy pans and

crusty pans of 1.39 m and 1.91 m, respectively. Figure 2.14d shows that both daily max

pan properties increased prior to the stable ice cover formation, which is also similar to

2016.

Figure 2.14: Time series of (a) surface ice concentration (Cice) and air temperature
(Ta), (b) upstream water temperature (Tw) at Emily Murphy Park (red shading denotes
supercooling events), (c) daily dmean and (dp/d)mean and (d) daily dmax and (dp/d)max

during 2020 freeze-up between Oct. 24 to Nov. 24, grey shaded area corresponds to
slushy pan condition.
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In general, the five-year time series results indicate that variations in Cice were often

correlated with fluctuations in Ta but typically lagged by a day or two. The daily mean

ice pan diameter dmean varied from 1 - 3 m and (dp/d)mean varied from 1.1 - 1.3. Both

dmean and (dp/d)mean were generally larger in the crusty pan period (1.85 m and 1.26)

compared to the slushy pan period (1.40 m and 1.17). An increasing trend in both

daily dmax and (dp/d)max prior to stable ice cover formation was observed which may

indicate the formation of large rafts.

2.6 Conclusions

A deep learning based hybrid image processing algorithm consisting of image classifi-

cation, rectification, segmentation and ice pan properties extraction was developed to

quantify surface ice concentration and ice pan properties from oblique low resolution

images. The accuracy of this method was first assessed by comparing to ground truth

estimates of surface ice concentrations. The accuracy was determined to be 2.44 % and

2.06 % when the method was applied to ice cover and ice pan images, respectively. The

accuracy of this method was further assessed by comparing surface ice concentrations

estimated from much higher resolution and higher-quality BridgeCam images and the

low-resolution EAS camera images. This comparison showed that estimates made from

the high- and low-quality images on average had a mean absolute difference of 2.9 %.

Therefore, it was concluded that an accuracy of 2 - 3 % was sufficiently accurate and

that this method could be used for monitoring surface ice processes.

Images captured during five freeze-up seasons on the North Saskatchewan River

were processed to illustrate the usefulness of this method for long-term monitoring

of surface ice concentrations and ice pan properties during freeze-up under changing

winter environments. Results clearly demonstrate that the method provides valuable

information of both the long- and short-term temporal variations on river ice condi-

tions as well as on the statistical properties of ice pans. A lognormal distribution was

found to fit ice pan size distributions from all five years. The size and shape of ice pans
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were observed to be relatively stable from year to year on the NSR. The diameter of

ice pans ranged from 0.55 - 15.03 m with a mean size of 1.82 m. The ice pans are

generally elliptical in shape with an average dp/d of 1.25 and an average AR of 1.71.

However, bigger ice pans can be more distorted and irregular in shape compared to

smaller ice pans. Time series of water temperature and ice pan properties indicated,

not surprisingly, that supercooling events and the appearance of ice pans typically coin-

cided. Analysis showed that on the NSR the daily mean ice pan diameter dmean varied

from ∼1 m to ∼3 m and (dp/d)mean varied from 1.1 - 1.3, and that slushy ice pans

were generally smaller than crusty pans (1.40 m versus 1.85 m) and slightly less irreg-

ular in shape. These types of detailed measurements of ice pan properties can be used

to further our understanding of freeze-up processes in rivers and can be particularly

valuable for discrete element modelling of surface ice processes (Zhai et al. 2022). It

is noteworthy that the production and evolution of ice pans are not only dependent

on the local meteorological variables, since older ice pans advecting through the AOI

would be affected by geo-morphological, hydrological and meteorological conditions

upstream. Therefore, further study that combines comprehensive spatial and temporal

measurements of ice concentration, pan properties and key hydro-meteorological vari-

ables including detailed heat flux components is needed to better understand the ice

pan evolution during the freeze-up process.

In conclusion, this study has demonstrated that surface ice characteristics can be ac-

curately monitored using images captured by a distant oblique-viewed camera that is

not intentionally set up for ice research. This finding may lead to intentional deploy-

ments of similar cameras for the purpose of river ice monitoring or the identification

of existing cameras that have unintentionally been capturing suitable images of cold-

region rivers that can then be analyzed. It should be possible to improve this method

for example by training a state-of-the-art deep learning multi-class segmentation model

to distinguish between crusty and slushy pans. Due to rapid advancement in the ma-

chine learning field it is important to review and evaluate the latest machine learning
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methods routinely when attempting to increase the classification and segmentation ac-

curacy. The proposed algorithm framework could also be applied to images captured

using inexpensive game cameras provided the cameras are installed with care. They

should be mounted sufficiently high and close enough to the riverbank so the water

surface fills the field of view and they should be pointed directly north to minimize the

effect of sunlight reflecting off the water surface. Further experiments assessing the

impacts of installation heights on ice visibility in images may be helpful for planning

field monitoring of surface ice conditions.
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Chapter 3

Measurements of Frazil Ice Flocs in
Rivers

3.1 Introduction

In northern rivers, individual frazil ice particles form when the water is turbulent and

supercooled below its freezing point due to heat loss to the atmosphere. These sus-

pended particles are ice crystals that are inherently adhesive in the supercooled water.

As they are transported by the turbulent flow, they may collide with each other due to

spatially varying particle velocities resulting from differential rising or due to spatially

varying flow velocities created by turbulent eddies and boundary shear (Mercier 1985).

Colliding particles may freeze together forming clusters of particles known as frazil flocs

in a process called flocculation (Clark and Doering 2009). Frazil flocs increase in size

either by the thermal growth of the crystals and/or by further aggregation of individual

frazil ice particles or flocs. Once frazil flocs gain sufficient buoyancy they rise to the

water surface forming surface ice pans or are deposited under existing surface ice con-

tributing to their mass increase (Hicks 2016). In addition, turbulent flow may transport

flocs to the river bed where they may adhere to the bed forming anchor ice (Kempema

et al. 1993). Once the surface ice pan concentration is high enough, congestion of in-

coming ice pans will occur at certain locations where there is a flow constriction and a

solid ice cover will form and propagate upstream (Beltaos 2013). The formation of a

continuous solid ice cover insulates the flowing water from further heat loss to the at-
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mosphere, thus preventing the occurrence of supercooling and the production of frazil

ice until the ice cover thaws or breaks up (Beltaos 2013). Frazil flocs may cause serious

problems at hydroelectric facilities and water treatment plants by adhering to water in-

take, trash racks and partially or fully blocking the flow (Ettema and Zabilansky 2004;

Barrette 2021; Ghobrial et al. 2023). Therefore, it is important to obtain a better un-

derstanding of the properties of frazil flocs as well as their evolution to better model

and predict their behavior.

As the constructing unit of frazil flocs, individual frazil ice particles have been in-

vestigated both in laboratory settings and field. These particles exhibit various forms

including dendric, needle, and irregular but are predominately disc-shaped with diam-

eters ranging from 0.022 to 6 mm (McFarlane et al. 2017) and diameter-to-thickness

ratios of 11 to 71 (McFarlane et al. 2014). A lognormal distribution can be used to de-

scribe the particle size distribution (Daly and Colbeck 1986; Clark and Doering 2006;

McFarlane et al. 2015). During the principal supercooling period when the water tem-

perature varies transiently, the time from the start of supercooling to when a steady

residual supercooling water temperature is reached, the mean diameter of particles

was found to first increase before reaching an approximately constant value (Clark and

Doering 2006; McFarlane et al. 2015). At the same time the number concentration of

suspended particles first increased slowly then more rapidly, peaking just after peak

supercooling occurred (i.e. the minimum water temperature) (Ye 2002; McFarlane et

al. 2015; Clark and Doering 2006). The rapid increase in particle concentration was

attributed to secondary nucleation which refers to the formation of new crystals due

to the presence of stable parent crystals (Evans et al. 1974). After peaking the particle

concentration decreased as particles were removed via flocculation.

There have been a small number of laboratory studies that investigated the properties

of frazil flocs as well as the flocculation process. Park and Gerard (1984) used artificial

flocs fabricated from plastic discs to investigate the hydraulic characteristics of frazil

flocs. They found that the sharp-edged floc surface resulted in a significantly higher
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drag coefficient compared to a solid smooth sphere of the same size and density. Kem-

pema et al. (1993) conducted racetrack flume experiments to investigate interactions

of frazil and anchor ice with sediments. They observed that in freshwater frazil easily

agglomerated into roughly spherical flocs up to 8 cm in diameter. Flocs that struck the

bed tended to entrain sediments into their voids and become heavy and settle to the

bottom in the shelter of ripples forming anchor ice. Reimnitz et al. (1993) observed the

characteristics and behaviour of rising frazil in seawater using a stirred vertical tube or

tank. They found that individual frazil crystals combine rapidly into flocs with diame-

ters as large as 5 cm. The rise velocities of flocs ranged from 1 to 5 cm/s and rapidly

rising large flocs induced small-scale turbulence. The porosities of the resulting surface

slush accumulations ranged from 0.68 to 0.85, with an average of 0.77. Clark and Do-

ering (2009) investigated frazil flocculation under different turbulence intensities using

a counter-rotating flume. Results showed that higher levels of turbulence increased the

rate of secondary nucleation, inhibited the formation of large flocs, and produced more

dense flocs.

Schneck et al. (2019) measured the size and number concentration of frazil ice par-

ticles and flocs in water of varying salinity using a stirred frazil ice tank. Results showed

that the mean floc size was 2.57 mm in freshwater and 1.47 mm in saline water and a

lognormal distribution fit the floc size distributions closely. The floc porosity was esti-

mated to vary from 0.75 to 0.86. Time series measurements of floc properties indicated

that, in freshwater, the floc number concentration and mean size started to increase sig-

nificantly just prior to peak supercooling, reached a maximum shortly afterwards. After

that floc number concentration decreased slowly while the mean floc size continually

increased very slowly during the principal supercooling period.

The above studies were all conducted in laboratory facilities that do not replicate

the complex natural environment. Measurements of frazil flocs in supercooled rivers

are needed to verify the laboratory results and improve numerical river ice process

models. However, no detailed quantitative field measurements of the properties or
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evolution of frazil flocs have been reported in the literature. The objective of this study

was to determine the statistical characteristics and temporal evolution of floc sizes and

concentrations, as well as to investigate the key factors affecting the properties of frazil

flocs in rivers. A submersible high-resolution camera system was used to capture time-

series images of frazil flocs. Images were analyzed to accurately determine floc sizes and

concentrations. Key hydraulic and meteorological measurements were collected and

air-water heat fluxes were estimated to investigate their influence on floc properties.

Time series of floc size, number concentration and volumetric concentrations as well

as size distributions measured in rivers during the principal and residual supercooling

phase are presented for the first time.

3.2 Study Reaches

Measurements were conducted in three regulated Alberta rivers, the North Saskatche-

wan River (NSR) at Edmonton, the Peace River (PR) near Fairview, and the Kananaskis

River (KR). Figure 3.1 shows the geographical locations of the study reaches, deploy-

ment sites and weather stations. The characteristics of the study reaches are summa-

rized in Table 3.1. The turbulent dissipation rate in Table 3.1 was estimated using the

listed slope as well as the average depth and width following Clark and Doering (2008).

The three rivers are significantly different in terms of their size and hydraulic charac-

teristics. The flow of the NSR is regulated by the Brazeau and Bighorn Dams which

are ∼233 km and ∼423 km upstream of the Laurier Park site, respectively. A daily

water level fluctuation of 0.3 to 0.4 m occurred in the study reach due to hydropeak-

ing (McFarlane et al. 2017). The estimated turbulent dissipation rate is 0.0058 m2/s3.

Freeze-up typically starts in early November and ends in early to late December with

the formation of a static ice cover. However, the 2022 winter freeze-up progressed in a

surprisingly rapid manner, starting on Nov 5, 2022, and ending just three days later on

Nov 8, 2022.

PR has the largest average discharge, depth, and width of the three rivers (Table 3.1).
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The estimated turbulent dissipation rate is 0.0051 m2/s3 which is slightly smaller than

NSR. The flow of PR is regulated by the W.A.C Bennett Dam and the Peace Canyon Dam

which are ∼309 km and ∼288 km upstream of the Fairview water intake deployment

site, respectively. These outflows at the dams are relatively warm water (∼6 ◦C) during

the winter, affecting the river thermal regime for up to 550 km downstream of the dams

(Jasek and Pryse-Phillips 2015) which is ∼250 km downstream of the deployment site.

Therefore, supercooling and frazil ice generation only occurs at the deployment site

when the zero-degree isotherm is located upstream and ceases when it retreats down-

stream. This unique condition allows freeze-up to persist until the ice front reaches the

Fairview intake site typically in mid-January.

KR is the smallest of the three rivers in terms of average discharge, depth, and width

(Table 3.1). It has the largest turbulent dissipation rate with a value of 0.2066 m2/s3,

which is not unexpected since KR is a small-steep river in the mountains. The flow is

regulated by the Pocaterra Dam which is 12 and 31 km upstream of the Fortress and

Evan Thomas deployment sites, respectively. In winter, a dramatic discharge fluctuation

from ∼1 m3/s to 21 m3/s occurred daily in the study reach due to hydropeaking (Gov-

ernment of Alberta 2023). Low flows promote border ice formation reducing channel

width, while high flows cause overtopping of existing ice and/or banks and prevent

the formation of a complete ice cover. Without an ice cover to insulate the water, su-

percooling events and frazil generation occur when the air temperature is sufficiently

cold.

3.3 Instrumentation, Methodology and Deployments

A submersible camera system initially designed for imaging suspended frazil ice parti-

cles named “FrazilCam” (McFarlane et al. 2017) was modified in this study to image

frazil flocs in the water column. Figure 3.2 shows the modified configuration of the

FrazilCam system. A 36-megapixel Nikon D800 DSLR camera equipped with a Micro-

Nikkor 60 mm f/2.8D lens was used to image underwater frazil ice particles and flocs.
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Figure 3.1: Maps showing (a) the locations of the deployment sites in Alberta, enlarged
views of the locations on (b) the North Saskatchewan, (c) Kananaskis, and (d) Peace
rivers.

Table 3.1: Summary of the study reach characteristics.

River Slope Average
discharge

(m3/s)

Average
depth
(m)

Average
width
(m)

Average D100

of suspended
sediment

(mm)

Estimated
turbulent

dissipation rate
(m2/s3)

NSR 0.00035 220 1.40 136 0.50 0.0058

PR 0.00025 1586 2.56 227 0.68 0.0051

KR 0.005 15 0.61 32 N/A 0.2066

Note: Slope, average discharge, average depth, and average width were obtained from
Kellerhals et al. (1972); Average D100 of suspended sediments were computed from
Water Survey of Canada historic size distribution data measured at North Saskatchewan
River at Edmonton (05DF001) and Peace River at Dunvegan Bridge (07FD003) (Water
Survey of Canada 2023).

54



The camera was enclosed in an Ikelite waterproof housing. Two 16 cm × 16 cm Cavi-

sion linear glass cross-polarizing filters were mounted 3.6 cm apart, which is 1.6 times

larger than the original configuration. A PVC enclosure with a brass fitting on the top

was installed in between the camera lens and polarizing filters to prevent ice or debris

from flowing through this region blocking the camera field-of-view (FOV). The brass fit-

ting was used for hot water injection to melt any ice that was initially trapped inside the

enclosure. A Nikon SB-910 Speedlight flash in a Subal SN-910 waterproof housing was

used as the light source, and a 5 mm thick white acrylic board was placed in between

the polarizers and flash to diffuse the light. The camera settings were determined by

submerging the system in a laboratory tank filled with tap water and capturing images

of a transparent plastic ruler placed inside the camera FOV. This yielded an ISO of 6400,

aperture f/25, and a shutter speed of 1/320. The configuration resulted in an image

scale of 25.6 µm per pixel and an average FOV of 11.6 cm by 15.6 cm which is 6 times

larger than the original configuration. The reason for enlarging the FOV and increasing

the gap between the polarizers was to enable larger flocs to pass through and fit within

the FOV.

Figure 3.2: An image showing the configuration of the FrazilCam system.

At the start of each deployment, the camera was programmed to acquire 5 images
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at 1 Hz every 9 s, 15 s, or 18 s depending on the field conditions until the battery was

depleted. A longer sampling interval (e.g. 18 s) was chosen for some deployments to

prolong the deployment duration with the goal of capturing a complete supercooling

event. Just prior to deployment of the FrazilCam in the river, the polarizers were rinsed

with hot saline water to prevent ice crystals from forming on them once submerged.

The system was then quickly deployed in the river and the PVC enclosure was filled

with hot fresh water from an elevated container. During deployments, anchor ice of-

ten formed on system components as shown in Figure 3.3 and ice that formed on the

polarizers could obstruct the FOV of the camera. To prevent or mitigate this problem,

the polarizers were inspected every 30 to 60 minutes and hot saline water was injected

onto the polarizers to melt any ice crystals.

Figure 3.3: An image showing the ice accumulation on the FrazilCam system.

During each deployment, an RBR Solo T (accuracy ± 0.002 ◦C) temperature logger

sampling every second was attached to the top of the frame to measure water temper-

ature, and a Van Essen Diver (accuracy ± 1 cmH2O) water level logger sampling every

10 minutes was attached to the bottom of the frame to measure the water depth (Fig-

ure 3.2). The water depth during the PR deployments was measured using a wading rod

since the Diver stopped working at that time. For all deployments the depth-averaged
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water velocity was estimated using velocities measured adjacent to FrazilCam at 60 %

of the water depth. During the 2021 winter, the water velocity was measured using a

2-MHz Nortek AquaDopp High Resolution Acoustic Doppler Current Profiler sampling

every second with a blanking distance of 0.1 m and averaging every two minutes. For

the rest of the deployments, the water velocity was measured using a SonTek Flow

Tracker Handheld Acoustic Doppler Velocimeter (ADV) sampling every second for a

total duration of 50 seconds.

Meteorological conditions for the NSR reach were measured by a weather station

installed at the E.L. Smith water treatment plant, which is located ∼90 m from the

river bank and ∼6 km upstream of Laurier Park site (Figure 3.1b). The weather station

measures the air temperature, solar radiation, relative humidity, atmospheric pressure,

wind speed and direction every minute and logs data every 10 minutes. An Apogee

SN-500-SS net radiometer was deployed on the river bank at this location, measuring

incoming and outgoing shortwave/longwave radiation every minute and logging data

every 10 minutes. For the PR, 1-hour interval meteorological data were obtained from

ECCC station Fairview AGDM (ID: 3072525) and 3-hour interval cloud coverage data

was obtained from the closest ECCC station Peace River A (ID: 3075041) as shown in

Figure 3.1d. For the KR, the Kananaskis Boundary Auto weather station operated by

Alberta Forestry, Parks and Tourism (ACIS 2021) was used to obtain 1-hour interval

air temperature, humidity, wind speed, and wind direction data. In addition, 1-hour

solar radiation data was obtained from the University of Calgary Barrier Lake Field Sta-

tion weather station (University of Calgary 2023), and 3-hour cloud coverage data was

obtained from the closest ECCC station Calgary Intl A (ID: 3031092) as shown in Fig-

ure 3.1c. Table 3.2 summarizes the distance between weather stations and deployment

sites. All weather stations are located within 30 km of their nearby deployment sites,

except for those providing cloud coverage data for PR and KR.

The FrazilCam system was deployed a total of eleven times during the 2021 and 2022

freeze-up periods, images of the FrazilCam during two of the deployments are shown

57



Table 3.2: The distances between weather stations and deployment sites.

River Deployment site Distance - weather station

NSR Laurier Park 6 km - E.L. Smith

PR Fairview Intake 18 km - Fairview AGDM; 68 km - Peace River A

KR
Evan Thomas 2 km - Kananaskis Boundary Auto; 15 km - Barrier

Lake Field Station; 82 km - Calgary Intl A

Fortress 16 km - Kananaskis Boundary Auto; 28 km - Barrier
Lake Field Station; 88 km - Calgary Intl A

in Figure 3.4. The image sampling protocols were 5 images at 1 Hz every 9 s for all NSR

and KR-E1 deployments, for KR-F1 and KR-F2 5 images at 1 Hz every 15 s, and for all

PR deployments 5 images at 1 Hz every 18 s. Table 3.3 lists the detailed location, date,

time, number of images processed, and deployment number for each deployment. The

mean air temperature Ta, mean water depth d, depth-averaged flow velocity U , and the

local Reynolds number Re computed from d and U are also presented in Table 3.3. Eight

of eleven deployments started in the afternoon around 2 PM ∼ 7 PM when the effect

of solar radiation reduced decreasing heat gain of the water body, the time duration of

deployments ranged from 1:48 to 3:21. As can be seen from Table 3.3, during these

deployments Ta ranged from -3.5 ◦C to -20.6 ◦C, d ranged from 0.41 m to 1.24 m, U

ranged from 0.12 m/s to 0.36 m/s, and Re ranged from 44,866 to 160,714, respectively,

indicating that frazil floc properties and concentrations were measured and analyzed

over a wide range of meteorological and hydraulic conditions. The eleven deployments

captured various phases of supercooling but NSR-L4 was the only deployment that cap-

tured a complete principal supercooling phase (i.e. from when the water temperature

first dropped below zero to when an approximately stable residual temperature was

reached).
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(a)

(b)

Figure 3.4: Image of the FrazilCam deployed during (a) NSR-L6, and (b) KR-E1. The
arrow indicates the flow direction.
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Table 3.3: Summary of the FrazilCam deployments and site conditions including the number (#) of images captured, mean air
temperature Ta, mean water depth d, depth averaged water velocity U , and local Reynolds number Re.

River Date
(yyyy.mm.dd)

Time period
(hh:mm∼hh:mm)

# of
processed

images

Site Deployment
No.

Ta

(◦C)
d

(m)
U

(m/s)
Re

NSR 2021.12.3 16:41∼18:49 4,099 Laurier Park NSR-L1 -7.2 0.89 0.21 104,297

19:05∼21:34 4,797 Laurier Park NSR-L2 -10.5 0.84 0.17 79,688

2021.12.9 14:46∼17:09 4,688 Laurier Park NSR-L3 -3.5 1.24 0.19 131,473

2021.12.12 15:02∼16:50 3,495 Laurier Park NSR-L4 -4.6 0.87 0.22 106,808

17:08∼19:31 4,091 Laurier Park NSR-L5 -9.2 0.86 0.20 95,982

2022.11.7 14:31∼16:22 3,596 Laurier Park NSR-L6 -12.1 0.80 0.36 160,714

PR 2022.12.12 10:40∼13:57 3,155 Fairview Intake PR-F1 -20.6 0.82 0.30 137,277

2022.12.13 9:41∼13:02 3,208 Fairview Intake PR-F2 -6.0 0.74 0.23 94,978

KR 2023.1.29 18:00∼20:02 3,728 Evan Thomas KR-E1 -15.8 0.41 0.22 50,335

2023.1.30 14:46∼17:59 3,379 Fortress KR-F1 -11.1 0.55 0.30 92,076

2023.1.31 7:28∼10:39 3,610 Fortress KR-F2 -13.3 0.67 0.12 44,866
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3.4 Data Processing

3.4.1 Image Processing

Figure 3.5a shows an example of a raw FrazilCam image with individual frazil ice parti-

cles, flocs, and ice crystals frozen on the polarizer. Frazil ice particles are predominantly

disk-shaped (McFarlane et al. 2017) and therefore depending on their orientation ap-

pear in the images as shapes that vary from a line to a circle with the majority being

ellipses. Flocs form through the aggregation of frazil ice particles, resulting in varying

shapes depending on the number, shape, and size of attached particles. Ice crystals

sometimes attached and froze to the surface of the polarizers despite the periodic hot

saline water rinsing. These crystals may appear anywhere in the image, blocking certain

regions of the FOV.

Figure 3.6 shows a flow chart of the image processing procedure used for extracting

frazil floc properties. For each deployment, images were first manually inspected to

exclude those taken when the polarizers were being rinsed, which constitutes 2 - 14 %

of the total images captured. Each image was then processed using an iterative thresh-

olding algorithm developed by McFarlane et al. (2014) to determine the location and

extent of each object. Objects intersecting with the image boundary were eliminated,

which also removed the ice crystals that were frozen near polarizer edges. For frozen

ice crystals that did not intersect with the image boundary, the affected image area was

removed either by cropping or masking, or a combination of both (Figure 3.6). The

corresponding processed binary image is shown in Figure 3.5b.

The processed binary images were analyzed to compute each object’s basic geometric

characteristics such as area, perimeter, centroid, as well as the major and minor axis

length of its fitted ellipse. The size S of both frazil particles and flocs was defined as

the major axis length of its fitted ellipse (Clark and Doering 2009). The objects in the

processed images may include small-suspended sediments that were thin enough to

refract light, which may significantly distort the size distribution of frazil ice particles

and flocs (McFarlane et al. 2017; Pei et al. 2022). McFarlane et al. (2019a) used a
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(a)

(b)

Figure 3.5: An example of (a) a raw FrazilCam image captured on Dec 3, 2021, and
(b) the corresponding processed binary image.

support vector machine (SVM) to distinguish between ice particles and sediments and

compute accurate particle size distributions. However, this method requires ice-free

sediment images at each site for site-specific SVM training, which is not possible for
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Figure 3.6: A flow chart showing the image processing procedure.

this study due to the lack of ice-free images at the PR and KR sites. Since this study

focuses on flocs, which are considerably larger than particles, a simple cut-off criterion

was used to minimize the effect of sediment particles in the images. Objects smaller

than the average D100 of suspended sediment (see Table 3.1) in a given study reach

were removed from the dataset (Figure 3.6). For the KR, since no suspended sediment

size distribution measurements were available in the literature, the cut-off size was

determined to be 0.27 mm, which is twice the average of seven mean sediment size

measurements estimated from FrazilCam images by McFarlane et al. (2019b).

For each object, the following geometric parameters were used to classify the objects

into either flocs or particles: the ratio of the object area to that of the fitted ellipse a/ae,

the absolute percentage difference between the object perimeter and its fitted ellipse
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perimeter Pdiff%, the ratio of an object’s fitted ellipse area to its ellipse perimeter di-

vided by the ratio of the object’s actual area to its perimeter (ae/Pe)/(a/P) (McFarlane

et al. 2014; Schneck 2018). Preliminary experiments found that flocs formed by a very

small particle attaching to a significantly larger particle remain approximately elliptical

since the boundary does not change significantly. As a result, comparing changes in

overall area/perimeter with the fitted ellipse did not help with classification. There-

fore, the form index was introduced to assess minor changes in object shape (Masad

et al. 2001; Al-Rousan et al. 2007). The form index is calculated using the following

equation:

FI=
θ=360−∆θ
∑︂

θ=0

|Rθ+∆θ − Rθ |
Rθ

(3.1)

where θ is the directional angle and R is the radial length between the centroid of the

particle and the boundary of the particle. The incremental change in angle ∆θ is set

to 2.81◦, dividing the particle boundary into 128 segments to factor in minor boundary

changes. A perfectly circular object has an FI of 0, and FI will increase as an object’s

boundary becomes more irregular.

A total of 568 objects were manually labelled as either flocs (109) or disk-

shaped frazil particles (459) to construct a test dataset to determine the op-

timal classification criteria of the aforementioned parameters. Results showed

that {a/ae ≥ 0.9 and Pdiff% ≤ 0.1 and S ≤ 6} for disk-shaped particles, and

{(a/ae < 0.9 or Pdiff% > 0.15) and ((ae/Pe)/(a/P)> 1.1) and FI ≥ 6} for flocs pro-

vided the optimum classification accuracy of 97.0 % and 92.7 % for particles and flocs,

respectively. In NSR-L4 the camera lens was slightly out of focus due to an accidental

jarring of the camera during deployment. However, because this was the only deploy-

ment that captured a complete principal supercooling event, additional processing was

performed on these images to allow for their inclusion in the dataset. Visual examina-

tion and analysis of these images indicated that the blurriness predominantly affected

the boundary clarity of dim objects with a mean pixel intensity less than 24 and did not

significantly affect brighter objects. Therefore, an additional criterion was introduced
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for NSR-L4 eliminating flocs with a mean pixel intensity less than 24. The rate of floc

detection in the blurry images from deployment NSR-L4 was 4.1 flocs per minute and it

was 4.4 flocs per minute in NSR-L5 which occurred immediately afterwards. Therefore,

the additional criterion, applied to the blurry images, only slightly reduced the number

of flocs detected.

In order to prevent line-shaped frazil ice particles from being misidentified as flocs,

frazil particles in the shape of a line were first identified if the aspect ratio of the object

(i.e. the ratio between the major and minor axis length) was greater than 11 based on

minimum frazil ice particle aspect ratio measurements made by McFarlane et al. (2014)

as shown in Figure 3.6. Then the classification criteria mentioned above were applied

to the remaining objects to identify disk-shaped particles and flocs (Figure 3.6). After

classification, the number of flocs NT , mean floc size µ f , standard deviation σ f , 95th

percentile of floc size S f 95, maximum floc size S f max , average floc number concentration

C f n, and average volumetric concentration C f v for each deployment were computed. It

is worth noting that the properties of frazil ice particles were not included in this study

since the cut-off size likely eliminated up to 50 % of the particle population which

would significantly skew the data. In addition, the mean floc size µ f , floc number

concentration C f n, floc volumetric concentration C f v were computed for each image

throughout a deployment, and a moving average over a period of 35 images was applied

to the resulting time series to smooth the data. Note that the 35-image moving average

was computed only if two or more non-zero values occurred in the window, if there

were less than two non-zero values no average value was recorded. This created gaps

in the moving average time series and the rationale for this is that two or more samples

are required to compute a valid average value. The measuring volume used for the

concentration calculations was the image FOV times the gap distance between the two

polarizers. The volume of a frazil floc was assumed to be the volume of an ellipsoid

with semi-axis lengths a, b, and c where a and b were equal to the semi-major and

semi-minor axis lengths of the floc’s fitted ellipse, and c was equal to the average of a
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and b but no larger than the gap between the two polarizing filters. The volume of ice

in a frazil floc Vf was estimated as:

Vf =
4
3
πabc(1−η) (3.2)

where η is the porosity of floc taken to be 0.8 (Schneck et al. 2019).

3.4.2 Heat Flux Analysis at the Water Surface

The net heat flux Qn at the river surface is given by:

Qn =Qsw +Q lw +QE +QH (3.3)

where Qsw is the net shortwave radiation; Q lw is the net longwave radiation; QE is the

latent heat flux; QH is the sensible heat flux. A positive sign denotes heat loss from the

surface. Qsw was calculated as:

Qsw = −(1−αws)Qs (3.4)

where Qs is the measured incoming solar radiation; αws is the albedo of water surface

to solar radiation, taken to be 0.15 for this study following Howley (2021). The net

longwave radiation Q lw was calculated as:

Q lw =Qout
lw − (1−αwl)Q

in
lw (3.5)

Qout
lw = ϵwσsbT 4

wk (3.6)

where Qout
lw is the outgoing longwave radiation emitted from the water; αwl is the albedo

of water surface to longwave radiation, taken as 0.03 (Raphael 1962); ϵw is the emissiv-

ity of water taken as 0.97 (Ashton 2013); σsb is the Stefan-Blotzmann constant (5.67 ×

10-8 W/(m2K4)); Twk is the water surface temperature in K . Note that it was assumed

that the water column was completely mixed and therefore the water temperatures that

were measured at the top of the FrazilCam frame (i.e. not at the water surface) were

used in Equation (3.6). Qin
lw is the incoming longwave radiation which was measured
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by a net radiometer for the NSR. For KR and PR, Qin
lw is estimated using the following

equations:

Qin
lw_c = ϵacσsbT 4

ak (3.7)

ϵac = 1.08
�

1− ex p(−ea
Tak/2016)
�

(3.8)

es = 6.11ex p(
17.62Ta

243.12+ Ta
) (3.9)

ea = RH × es (3.10)

Qin
lw =Qin

lw_c

�

1− N 4
�

+ 0.952N 4σsbT 4
ak (3.11)

where Qin
lw_c is the incoming longwave radiation under the clear sky; ϵac is the clear sky

atmospheric emissivity calculated using Equation (3.8) by Satterlund (1979); Tak is the

air temperature in K; es and ea are the saturated and actual vapour pressure of water,

respectively; RH is the relative humidity; Ta is the air temperature in degree Celsius; N

is the fractional cloud cover. Note that Equation (3.11) was developed by Konzelmann

et al. (1994).

QE was calculated using the equation suggested by Ryan et al. (1974) following Yang

et al. (2023):

QE =

�

2.70
�

Twk

1− 0.378(es/P)
−

Tak

1− 0.378(ea/P)

�
1
3

+ 3.2V

�

(es − ea) (3.12)

where P is the atmospheric pressure; V is the wind speed. QH was calculated from QE

using Bowen’s ratio B as follows:

B =
CaP

0.622lv
×

Ts − Ta

es − ea
(3.13)

QH = BQE (3.14)

where Ca is the specific heat of air; lv is the latent heat of vaporization; Ts is the surface

water temperature. In a previous study, Yang et al. (2023) investigated various formulas
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used to calculate incoming longwave radiation and the latent and sensible heat fluxes

during freeze-up on the North Saskatchewan River in Alberta, and the combination

of formulas (Equation (3.7) - Equation (3.14)) used in this study were the ones that

provided the most accurate results in Yang et al. (2023). It is also worth noting that

only hourly meteorological data were available for the KR and PR regions as described

in Section 3.3. As a result, the heat fluxes were calculated on a 1-hour time interval

for the KR and PR deployments, and for all the NSR deployments the heat fluxes were

calculated on a 10-min time interval.

3.5 Results

3.5.1 Floc Shape, Size and Concentration

In Figure 3.7 images of typical shapes of frazil flocs observed during the different field

deployments are presented. Flocs from NSR deployments (Figure 3.7a-b) were com-

prised predominantly of disc-shaped frazil ice particles of varying sizes frozen together.

The floc shown in Figure 3.7b is representative of flocs observed during deployments

NSR-L3 and NSR-L6. As can be seen, it was comprised of much smaller individual par-

ticles than the flocs observed during the rest of the NSR deployments (Figure 3.7a).

Flocs from deployment PR-F1 (Figure 3.7c) were comprised of disc-shaped particles,

irregular particles, and some needle-shaped particles. Flocs from deployment KR-E1

(Figure 3.7d) were formed primarily by densely aggregated irregular particles and some

small disc-shaped particles. Flocs from deployments PR-F2, KR-F1 (Figure 3.7e), and

KR-F2 (Figure 3.7f) were mostly comprised of disc-shaped and irregular particles, im-

ages of flocs from PR-F2 were not shown since they are similar to those shown in Fig-

ure 3.7e-f.

Table 3.4 presents the number of flocs NT , mean size µ f , standard deviation σ f ,

95th percentile and maximum of the floc size S f , average floc number concentration

C f n, and average volumetric concentration C f v for each deployment. The supercool-

ing phase, the minimum water temperature Tp, and average net surface heat flux Qn
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are also presented. Deployments NSR-L1, NSR-L3, and NSR-L4 captured the principal

supercooling phase (Principal), while the rest captured only the residual supercooling

phase (Residual). Tp ranged from -0.021 ◦C to -0.031 ◦C for Principal deployments, and

from -0.007 ◦C to -0.017 ◦C for Residual deployments. In all deployments Qn was posi-

tive indicating an overall heat loss. NT varied significantly ranging from 442 to 187,288

with the largest NT of 187,288 occurring during deployment KR-E1. The mean floc size

µ f ranged from 1.19 to 5.64 mm with an overall average of 3.8 mm and σ f ranged

from 0.88 to 5.03 mm. S f 95 was greater than ∼8 mm except for deployments NSR-L3

and NSR-L6 with values of 4.44 mm and 2.47 mm, respectively. The largest value of

S f max , 99.69 mm, was observed during KR-E1 which also had the largest number of

flocs. The average floc number concentration C f n varied by three orders of magnitude

from 1.80×10-4 to 1.15×10-1 cm-3, and the average floc volumetric concentration C f v

over four orders of magnitude from 2.05×10-7 to 4.56×10-3.
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Figure 3.7: Images of frazil flocs of different sizes and shapes from the following de-
ployments: (a) NSR-L1, (b) NSR-L6, (c) PR-F1, (d) KR-E1, (e) KR-F1, and (f) KR-F2.
The white scale bar in each image represents a length of 3 mm. Note that in some
images the surrounding ice particles were masked out to highlight the floc at the centre
of the image.
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Table 3.4: Supercooling phase, minimum water temperature Tp, mean net surface heat flux Qn, number of flocs NT , mean floc size
µ f , standard deviation σ f , 95th percentile of floc size S f 95, maximum floc size S f max , average floc number concentration C f n, and
average volumetric concentration C f v for each deployment.

Deployment
No.

Supercooling
phase

Tp

(◦C)
Qn

(W/m2)
NT µ f

(mm)
σ f

(mm)
S f 95

(mm)
S f max

(mm)
C f n (cm-3) C f v

(cm3/cm3)

NSR-L1 Principal -0.021 183.3 2,428 4.33 3.08 8.73 89.58 9.65×10-4 1.39×10-5

NSR-L2 Residual -0.009 199.5 879 3.70 2.31 7.54 24.05 2.72×10-4 1.39×10-6

NSR-L3 Principal -0.023 95.4 839 1.87 1.31 4.44 9.02 3.06×10-4 2.05×10-7

NSR-L4 Principal -0.031 110.3 442 4.50 2.45 8.37 18.53 1.80×10-4 1.21×10-6

NSR-L5 Residual -0.016 121.8 631 3.50 2.57 8.40 14.31 2.60×10-4 1.19×10-6

NSR-L6 Residual -0.017 157.5 143,097 1.19 0.88 2.47 47.16 6.75×10-2 2.99×10-5

PR-F1 Residual -0.009 318.8 2,250 3.43 3.72 9.16 53.35 1.11×10-3 1.84×10-5

PR-F2 Residual -0.007 107.4 1,247 4.25 5.03 13.60 53.81 5.63×10-4 1.68×10-5

KR-E1 Residual -0.008 243.3 187,288 5.64 4.79 14.28 99.69 1.15×10-1 4.56×10-3

KR-F1 Residual -0.010 122.4 23,670 4.43 3.86 10.69 81.38 1.05×10-2 2.32×10-4

KR-F2 Residual -0.011 275.2 15,151 4.69 4.08 11.89 68.37 6.62×10-3 1.59×10-4
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3.5.2 Floc Size Distribution

In Figure 3.8, plots of the frazil floc size distribution as well as fitted lognormal distri-

bution curves for four deployments are presented. All of the size distributions obtained

from NSR deployments closely resemble deployment NSR-L1 shown in Figure 3.8a, ex-

cept for deployment NSR-L6 shown in Figure 3.8b. Size distributions from the KR and

PR are well represented by deployments KR-F1 and PR-F1 which are shown in Fig-

ure 3.8c and Figure 3.8d, respectively. It can be seen from Figure 3.8 that a theoretical

lognormal distribution is a reasonable fit to all of the size distributions but a particu-

larly good fit for deployment KR-F1. This may be attributed to the order-of-magnitude

larger sample size for KR-F1 (23,670) compared to NSR-L1 (2,428) and PR-F1 (2,250).

The size distribution for NSR-L6 shown in Figure 3.8b has the most flocs of the four

deployments plotted with a sample size of 143, 097 but it does not fit a lognormal dis-

tribution as closely as the others. This is because the distribution was cut off at 0.5

mm to eliminate sediment particles. A similar condition can also be observed for PR-

F1 shown in Figure 3.8d where the cut-off was 0.68 mm. Note that the cut-offs were

applied to all size distributions but only impacted the distribution significantly if there

were a significant number of smaller flocs detected.

3.5.3 Time Series

Time series plots of water and air temperatures Tw and Ta, heat flux Q, floc mean size µ f ,

floc number concentration C f n, and floc volumetric concentration C f v for deployments

NSR-L4, KR-F1, and PR-F2 are presented in Figure 3.9, Figure 3.10 and Figure 3.11,

respectively (Note that similar time series plots for the other eight deployments are

presented as Figure A.1 - Figure A.8 in Appendix A). Deployment NSR-L4 occurred

during the principal supercooling phase and is the only deployment that captured the

entire principal supercooling phase, while KR-F1 and PR-F2 captured the middle and

end of the residual supercooling phase, respectively.

During NSR-L4 (Figure 3.9a) supercooling started at 15:25 and after that Tw de-
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Figure 3.8: Distributions of floc size S f for deployments (a) NSR-L1, (b) NSR-L6, (c)
KR-F1, and (d) PR-F1. The red line denotes a fitted lognormal distribution, N is the
number of flocs in each bin, and NT is the total number of flocs.

creased almost linearly at a cooling rate of -0.0009 ◦C/min, reached a Tp of -0.031 ◦C

(i.e. peak supercooling) at 16:02 and then started to increase and reached a stable

residual temperature of -0.010 ◦C at 16:37. Ta decreased from -1.7 to -7.2 ◦C with

an average of -4.6 ◦C. Figure 3.9b shows that the net heat flux Qn increased from 26

W/m2 to 150 W/m2 primarily due to the decrease in the magnitude of shortwave ra-

diation Qsw. The rest of the heat flux components remained positive (heat loss) and

relatively stable throughout the deployment, with Q lw being the dominant component.

In Figure 3.9c µ f began increasing significantly ∼7 minutes before the peak supercool-

ing temperature was reached, reaching a maximum of 7.8 mm ∼37 minutes after peak

supercooling, then it decreased to ∼6 mm and remained approximately constant af-
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terwards. Figure 3.9d shows that significant numbers of frazil particles were detected

∼15 minutes before peak supercooling with C f n values below 2 × 10-4 cm-3. At ∼2

minutes before peak supercooling C f n increased rapidly and peaked ∼30 minutes after

peak supercooling at a value of 9.3 × 10-4 cm-3 and then decreased to 2 × 10-4 cm-3

at the end of the deployment. Figure 3.9e shows that C f v only increased notably after

peak supercooling and reached a value of 8.8 × 10-6 ∼30 minutes after the peak su-

percooling. After that it decreased before spiking to 1.6 × 10-5 ∼38 minutes after the

peak supercooling and then decreased to 1.7 × 10-6 at the end. An examination of the

images showed that the spike was caused by several large flocs up to 18.5 mm in size.

Figure 3.9: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment NSR-L4 on December 12, 2021. The vertical dashed
grey line indicates the time when the peak supercooling temperature is achieved.

During KR-F1, Tw fluctuating continuously around -0.008 ◦C, except for one anoma-

lous spike that occurred at 17:03 (Figure 3.10a), which was caused by ice contacting
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the sensor when the polarizers were being rinsed. Additionally, periodic upward spikes

with a period of 1 minute and magnitude of ∼0.001 ◦C were visible on the plot. While

the cause of these spikes remains uncertain, it is worth noting that their magnitude falls

within the range of accuracy of the sensor. The air temperature was relatively stable

with Ta varying between -10 to -12 ◦C. In Figure 3.10b, Qn rose during the deployment

from -2 W/m2 to 261 W/m2 largely due to the decrease in the magnitude of Qsw. Note

that the heat flux components here were computed on a 1-hour time interval. In Fig-

ure 3.10c-e, there are gaps in the data during these time periods 15:33 - 15:38, 16:17 -

16:23, 16:58 - 17:04, and 17:34 - 17:39, that are visible as short time series segments

with zero slope. These were created when the images collected during the time periods

when the polarizers were being rinsed were removed from the dataset. In Figure 3.10c,

µ f fluctuated around ∼4 mm before significantly increasing at 17:40, eventually reach-

ing 5.9 mm by the end of the deployment. Similar trends are evident in Figure 3.10d-e

for C f n and C f v, respectively. At 17:41 C f n started to increase significantly and reached

a peak value of 4.5 × 10-2 cm-3 at 17:53 while C f v started to increase significantly at

17:50 and eventually peaked at a value of 2.8 × 10-3. A hydropeaking wave arrived at

the Fortress site at 17:25 increasing the depth by 19 % by the end of the deployment

and causing rapid increases in floc size and concentration.

During deployment PR-F2, Tw was initially at -0.006 ◦C but then increased above

zero at 10:21, and eventually reached 0.033 ◦C at the end of the deployment (Fig-

ure 3.11a). Ta followed a similar trend to Tw rising from -7.6 to -4.1 ◦C. The net heat

loss Qn steadily decreased from 165 W/m2 to 12 W/m2 (Figure 3.11b) due to an in-

crease in the magnitude of Qsw. In Figure 3.11c µ f fluctuated between 1 mm and 10

mm during the deployment with an average of 4 mm. In Figure 3.11d-e the time series

of number and volume concentrations did not exhibit significant trends. C f n ranged

from 4.1 × 10-5 cm-3 to 2.4 × 10-3 cm-3 with an average of 5.6 × 10-4 cm-3 while C f v

was negligible most of the time with occasional spikes up to 4.2 × 10-4. One spike that

occurred at 10:39 caused both C f n and C f v to reach their peak values. Visual exami-
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Figure 3.10: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment KR-F1 on January 30, 2023.

nation of the images shows that at this time the number of flocs increased significantly

for three consecutive images and this was possibly caused by a large floc colliding with

the camera frame and fracturing.

3.6 Discussion

Images of typical frazil flocs shown in Figure 3.7 illustrate the complexity of their mor-

phology, which encompasses various ice crystal shapes, including disc-shaped, needle-

shaped, and irregular particles. Disc-shaped ice particles were observed in flocs from all

three rivers but were most pronounced in the NSR where flocs were almost all formed

by disc-shaped particles of different sizes (Figure 3.7a-b). The growth of frazil ice in

supercooled water is limited by the diffusive removal of the latent heat of solidification

from the ice-water interface and by the slow attachment kinetics in the perpendicular
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Figure 3.11: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment PR-F2 on December 13, 2022.

direction, which leads to the formation of disc-shaped particles (Mullins and Sekerka

1964; Rees Jones and Wells 2015). Flocs containing needle-shaped crystals as shown

in Figure 3.7c were observed during deployment PR-F1 which had a very low mean

air temperature of -20.64 ◦C. These types of crystals have been found to form primar-

ily at the surface of supercooled water (Hallett 1960; Clark and Doering 2002). The

cold air temperature during deployment PR-F1 may have promoted the growth of these

needle-shaped particles at the water surface before they were entrained in the water

column and subsequently attached to flocs. Irregular particles were observed in flocs

from both the KR and PR, most pronouncedly in deployment KR-E1 as shown in Fig-

ure 3.7d. Irregularly shaped particles are formed by unstable disk growth which is

known to be caused by the formation of temperature gradients in the water surround-

ing the particles (Kallungal and Barduhn 1977). This suggests that during the KR and
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PR deployments, frazil ice particles probably spent some time in relatively quiescent wa-

ter where the turbulence intensity was so low that temperature gradients could form in

the water surrounding the particles. Another possibility is that the particles were tem-

porarily transported to the river surface exposing them to cold air, which may also lead

to unstable disk growth. In addition, broken fragments of skim ice or border ice that

were entrained into the water column are another possible source of irregular particles

in flocs. Clark and Doering (2009) observed in the laboratory that flocs could become

denser over time when the turbulence intensity was higher. During deployment KR-E1,

although the locally measured depth-averaged velocity near the FrazilCam was rela-

tively low at 0.22 m/s, the water velocity ∼70 m upstream of the deployment site was

visually observed to be very turbulent due to the presence of four groins and a nar-

row channel width. Therefore, this may have contributed to the denser flocs that were

observed during this deployment.

The data presented in Table 3.4 and Figure 3.8 are the first quantitative measure-

ments of frazil floc sizes and concentrations in rivers. The mean floc size averaged

over all deployments was 3.80 mm, which was close to the mean values observed for

most of the individual deployments except for deployments NSR-L3, NSR-L6, and KR-E1

which had mean floc sizes of 1.87, 1.19, and 5.64 mm, respectively. As noted in Sec-

tion 3.5.1, flocs observed during deployments NSR-L3 and NSR-L6 were comprised of

much smaller disc-shaped individual particles (Figure 3.7b) than the rest of the deploy-

ments (Figure 3.7a). Deployment NSR-L3 took place during a principal supercooling

event in which the observed small frazil ice particles were likely newly formed and still

growing, which could be the reason why the flocs were smaller and comprised of sig-

nificantly smaller particles. In addition, deployment NSR-L3 took place as the crest of

a hydropeaking wave was passing the site that resulted in a mean water depth of 1.24

m which is 37 % to 55 % larger than the depths during the other NSR deployments

(Table 3.3). The significantly higher water depth reduced the fractional height where

the images were collected, which could also result in smaller floc sizes. This would be
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consistent with measurements by Reimnitz et al. (1993) that showed that larger flocs

have higher rise velocities. Deployment NSR-L6 occurred during the 2022 freeze-up

season, which was the shortest freeze-up in ∼10 years lasting only three days. Signif-

icantly smaller flocs were observed during this deployment (see Figure 3.7b) and this

may be because smaller relatively young flocs were generated during this rapid freeze-

up process. The largest mean floc size, maximum floc size and largest concentration

(see Table 3.4) were observed during deployment KR-E1 (Figure 3.7d). As discussed

previously the particles that formed flocs during KR-E1 included irregularly shaped par-

ticles and this could have resulted in larger flocs compared to flocs formed entirely by

disc-shaped particles.

The mean floc size and standard deviation ranged from 1.19 to 5.64 mm, and 0.88

to 5.03 mm, respectively as shown in Table 3.4. The 95th percentile of floc size ranged

from 2.47 to 14.28 mm, and the largest flocs found was 99.69 mm in size. Schneck

et al. (2019) conducted laboratory experiments in a frazil ice tank with an average

turbulent dissipation rate of 0.034 m2/s3 which falls within the range of the values

estimated in the three rivers in this study (0.005 - 0.207 m2/s3). They found that in

freshwater the size distribution of flocs followed a lognormal distribution and the mean

size, 95th percentile of floc size, and maximum size were 2.57 mm, 6.91 mm, and 95.1

mm, respectively. The mean and 95th percentile sizes fall within the range of the values

observed in this study. However, the overall mean floc size observed in the field was 3.80

mm, which is 48 % larger than the mean measured in the laboratory. The maximum

floc sizes observed in the laboratory and field are comparable. It is worth noting that

the largest floc size of 99.69 mm was just slightly smaller than the FOV dimensions and

considerably larger than the 3.6 cm gap, indicating that the floc size measurements may

have been physically limited by the FOV and the gap between the polarizers. Therefore,

further increases in both the FOV and the gap between the polarizers may be needed

in future studies to allow even larger flocs to be imaged and measured.

The size distributions obtained from different rivers are all a reasonable visual fit to
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a lognormal distribution as shown in Figure 3.8, which is consistent with the laboratory

measurements (Schneck et al. 2019). However, when the Chi-square test for goodness-

of-fit was applied none of the size distributions were quantitatively confirmed to fit a

lognormal distribution at the 5 % significance level. This could be primarily due to the

use of the cut-off size to eliminate sediment particles which produced a sharp cut-off

in the distributions. In addition, the small number of samples in some deployments

resulted in noisy size distributions making it unlikely that they would be a good quan-

titative fit to a smooth lognormal distribution. Nonetheless, the good qualitative com-

parison of the floc size distributions measured in the field with theoretical lognormal

distributions in Figure 3.8 does suggest that if the sample size was larger and sediment

particles could be filtered out that floc size distributions in rivers would also closely

follow a lognormal distribution.

The average floc number concentration C f n ranged from 1.80 × 10-4 to 1.15 × 10-1

cm-3 (Table 3.4), Schneck et al. (2019) measured a peak floc number concentration of

2.5 × 10-1 cm-3 in freshwater laboratory experiments, which is similar in magnitude

to the upper limit of values measured in the field. The average floc volumetric con-

centration C f v ranged from 2.05 × 10-7 to 4.56 × 10-3 (Table 3.4). Previous studies

reported suspended ice volumetric concentrations ranged from 2 × 10-6 to 6 × 10-3

(Tsang 1984; Marko and Jasek 2010; Richard 2011). These measurements were made

using comparative resistance probes and acoustic devices which in theory detect all of

the ice suspended in the water. The upper range of previous concentration measure-

ments is comparable to that reported in this study. However, the lower range is one

order of magnitude larger than this study, which may be due to the fact that the previ-

ous studies reported the total volume of frazil flocs and particles.

The time series of frazil floc properties in Figure 3.9 indicate that during the prin-

cipal supercooling phase, floc number and mean size started to increase significantly

just prior to peak supercooling and reached a maximum near the end of principal su-

percooling, the floc volumetric concentration only started to increase significantly after
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peak supercooling occurred. Deployment NSR-L3 that captured almost the entire prin-

cipal supercooling phase also showed a similar trend (see Figure A.3 in Appendix A).

The increasing trend of floc mean size and number concentration generally agrees with

previous laboratory measurements (Schneck et al. 2019; Pei et al. 2023). However, lab-

oratory measured mean floc size and number concentration stopped increasing signifi-

cantly shortly after peak supercooling, while in the field they stopped increasing later,

near the end of the principal supercooling period. For example, Schneck et al. (2019)

observed that the mean floc size and number concentration in freshwater stopped in-

creasing significantly at dimensionless times of t/tc = 1.13 and 1.27, respectively com-

pared to t/tc = 2.00 and 1.81 for NSR-L4 (tc is the time interval between the start of

supercooling and peak supercooling and t is the time). The peak floc number concentra-

tion measured during the three Principal deployments in this study ranged from 9.3 ×

10-4 cm-3 to 3.1 × 10-3 cm-3, which was more than two orders of magnitude lower than

the 2.5 × 10-1 cm-3 measured in the laboratory tank by Schneck et al. (2019). These

significantly lower floc concentrations suggest that particle concentrations in the field

were also much lower compared to laboratory measurements. At lower suspended frazil

concentrations the collision frequency of frazil particles would be reduced, increasing

the time for flocs to gain mass via collision-induced particle-floc aggregation, which

might explain the longer time period that mean floc size and number concentration

was observed to increase in the field.

Figure 3.10 shows that during KR-F1 the mean floc size was approximately con-

stant prior to the arrival of the hydropeaking wave during the residual supercooling

phase. Similarly, there were no trends observed in floc size in five other Residual de-

ployments, NSR-L2, NSR-L5, KR-E1, PR-F1 (see Figure A.2, Figure A.4, Figure A.7, and

Figure A.6 in Appendix A) and PR-F2 (Figure 3.11). McFarlane et al. (2019b) found that

in rivers the mean particle size remained approximately constant during the residual

supercooling phase if the environmental conditions were relatively stable. Therefore,

it follows that flocs observed during the residual supercooling phase would also have
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a stable mean size unless hydraulic and/or meteorological conditions changed signifi-

cantly. The mean floc size is the most stable during deployment KR-E1 (Figure A.7 in

Appendix A) with a fluctuation range of only 1.5 mm, which could be in part due to the

significantly larger sample size of 187,288. The only two Residual deployments that

did not have a stable mean floc size were NSR-L6 and KR-F2 (Figure A.5 and Figure A.8

in Appendix A), and in both cases, the size decreased and this coincided with minor

increases in Tw (∼0.005 ◦C). These results indicate that during the residual phase the

mean floc size does not typically vary significantly even at the end of the supercooling

event when Tw rises above zero, as was the case in PR-F1 and PR-F2. During the two

PR deployments the floc properties did not change significantly during the 1.3- and 2.5-

hour time periods between when supercooling ended, and the measurements stopped.

This is likely because the zero degree isotherm had moved upstream of the deployment

site but the frazil being generated upstream of it was still advecting past the FrazilCam

(i.e. the zero degree isotherm was not so far upstream that the advecting frazil had

time to melt.)

As shown in Figure 3.10, during KR-F1 the residual supercooling water tempera-

ture remained mostly approximately constant at a temperature of approximately -0.01

◦C. An approximately constant residual supercooling temperature was also observed in

NSR-L2, KR-E1 and NSR-L5 (see Figure A.2, Figure A.7, and Figure A.4 in Appendix A).

This means that during the residual supercooling phase ice was still growing and releas-

ing latent heat that balanced the heat loss from the water surface in order to maintain

the approximately constant water temperature. In this study, although the mean floc

size did not vary significantly during most of the measured residual supercooling de-

ployments, fluctuations and trends in the floc number and volume concentration time

series were observed. This indicates that there may have been frazil ice particles still

forming and growing, releasing latent heat to help balance the surface heat loss. In

addition, during the residual phase anchor ice, border ice, and surface ice pans were

likely growing as well and releasing latent heat, helping to maintain the stable residual
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supercooling temperature.

The time series of water temperature Tw and net heat flux Qn provided an opportu-

nity to theoretically estimate the total ice growth in the water column, which could be

compared to the measured floc volumetric concentration C f v to estimate the fraction of

ice sampled by the FrazilCam. Assuming there were no significant water temperature

gradients in any direction (i.e. the river had a uniform temperature) and that the water

depth was constant, the thermal balance of the water-ice mixture is given by:

ρCp
dTw

d t
= −

Qn

d
+ρi Li

dCi

d t
(3.15)

where ρ is the water density, Cp is the specific heat of water, ρi is the ice density, Li is the

latent heat of fusion of ice, and Ci is the total ice concentration due to thermal growth

(Souillé et al. 2023). Equation (3.15) was then used to estimate, Ci for deployment

NSR-L4, which captured the entire principal supercooling period. The result showed

that the FrazilCam was only sampling at most 2 % of the total ice that was forming in

the water. It should be noted that Qn used in the calculation does not account for the

effect of surface ice due to a lack of accurate surface ice data. In addition, mean water

depth d was used while in reality water depth varied spatially and temporally. These

approximations create considerable uncertainty in the calculations of the total heat loss

from the surface, and the volume of the water being cooled. Given all the simplifying

assumptions that were made the uncertainty in the calculated Ci is potentially quite

large, but is likely not greater than a factor of two or three. Therefore, despite this

potential large uncertainty, the calculations suggest that the FrazilCam was only sam-

pling less than∼5 % of the total ice being formed in the river. Similar calculations were

also performed using data collected in a laboratory frazil ice tank experiment using the

laboratory version of the FrazilCam. In the laboratory environment the water depth is

a constant, the tank has been shown to be well mixed and the surface heat loss can be

quantified from the water cooling rate with reasonable accuracy. These results showed

that Ci calculated using Equation (3.15) was comparable to the volumetric concentra-

tion of suspended ice calculated from the FrazilCam images prior to when flocs began
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rising to the surface. This demonstrates that the FrazilCam does provide accurate mea-

surements of the suspended ice concentrations. However, the only time the FrazilCam

would be sampling a significant fraction of the total ice being formed in a river would

be when suspended frazil is the only ice that is actively growing.

The effect of surface heat flux on floc properties was investigated. A positive mean

net heat flux Qn was observed for all deployments indicating a net heat loss from the

surface. The magnitude of Qn ranged from 95.4 to 318.8 W/m2 as shown in Table 3.4.

The dominant positive heat flux was Q lw and QH for six and five deployments, respec-

tively, while the dominant negative heat flux in all deployments was Qsw which is con-

sistent with previous studies (McFarlane and Clark 2021; Boyd et al. 2023). Efforts

were made to correlate the mean net heat flux Qn with the measured floc properties

listed in Table 3.4 (i.e. columns 5-11). No significant correlations were found when

using data from all deployments or when only the data from the six NSR deployments

that have 10-min heat flux data were used. It is worth noting that the heat flux anal-

ysis in this study did not account for varying surface ice concentrations and neglected

several heat fluxes (e.g. sediment-water). Clearly, more comprehensive and frequent

measurements of heat fluxes and surface ice properties are needed in future studies to

more fully understand the impact of varying heat fluxes on frazil floc properties.

To investigate the effect of hydraulic conditions on the mean floc size µ f , the local

Reynolds number Re is plotted versus µ f in Figure 3.12 along with the following linear

regression equation:

µ f = 6.82− 3.05× 10−5Re (3.16)

As Re increases from ∼40,000 to ∼160,000, µ f decreases from approximately 5.5

mm to 2 mm and the coefficient of determination (R2) is 0.69, indicating that the two

are moderately correlated. Clark and Doering (2009) found that higher turbulence in-

tensity inhibited the formation of large flocs. This finding is consistent with the corre-

lation presented in Figure 3.12 if it is assumed that turbulence intensity increased with

Re in the three study rivers. However, this is not necessarily the case. An alternate ex-
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Figure 3.12: Relationship between local Reynolds number Re and mean floc size µ f in
mm.

planation for the observed correlation is that as Re increased flocs experienced higher

shear strain rates (i.e. larger velocity gradients) and more violent floc-floc collisions

which would tend to rupture larger flocs and reduce their mean size.

The effect of water depth on the floc volumetric concentration was investigated by

correlating the average volumetric concentration with the fractional height dm/d where

dm = 0.198 m is the height above the bed at the centre of FrazilCam FOV and d is the

mean water depth. Figure 3.13 presents a scatter plot of the fractional height dm/d

versus the average floc volumetric concentration C f v. Results show that there is a strong

nonlinear correlation given by the following power law equation:

C f v = 4.80
�

dm

d

�9.69

(3.17)

where the R2 value equals 0.99. Ye (2002) and Morse and Richard (2009) reported

measurements of vertical frazil concentration profiles and found that the Rouse equa-

tion (Rouse 1937), previously used to characterize suspended sediment concentration
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profiles, could be used to describe the frazil ice concentration profile. Equation (3.17)

is similar in format to the Rouse equation, indicating that the vertical concentration of

both frazil particles and flocs may be accurately described by power law equations.

Figure 3.13: Relationship between the fractional height dm/d and the average floc vol-
umetric concentration C f v.

3.7 Conclusions

A submersible high-resolution camera system was deployed during supercooling in

three rivers from 2021 to 2023. Images from the eleven deployments were analyzed

to investigate frazil floc properties and their evolution. Images showed that frazil flocs

observed in the North Saskatchewan River were predominately formed by disc-shaped

particles, while flocs in the Peace River and Kananaskis River were comprised of var-

ious ice crystal shapes, including disc-shaped, needle-shaped, and irregular particles.

A lognormal distribution is a reasonable description of floc size distributions in rivers.

The mean floc size ranged from 1.19 to 5.64 mm and the overall mean floc size was
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3.80 mm. The mean floc size in rivers was found to 48 % larger than was previously

observed in the laboratory by Schneck et al. (2019) while the maximum floc size was

comparable in the laboratory and field. The average floc number concentration ranged

from 1.80 × 10-4 to 1.15 × 10-1 cm-3 and previous laboratory measurements fall within

the range of the values observed in this study. The estimated average floc volumetric

concentration ranged from 2.05 × 10-7 to 4.56 × 10-3, with the upper bound being

comparable to previous total ice volume concentration measurements while the lower

bound is an order of magnitude smaller.

Time series analysis indicated that during the principal supercooling phase, floc num-

ber concentration and mean size increased significantly just before peak supercooling

and reached a maximum near the end of principal supercooling. This increasing trend

was also observed in previous laboratory measurements (Pei et al. 2023; Schneck et

al. 2019) but the duration of the increasing trend was longer in the field. During the

residual supercooling phase, the mean floc size did not typically vary significantly even

2.5 hours after the water temperature rises above zero degrees. The effect of the air-

water heat flux on floc properties was investigated by conducting a linear regression

analysis. However, no significant correlations were found, and this may be due to the

limited dataset or the complexity of the field environment where heat fluxes can vary

temporally and spatially. Future field measurements of floc properties, especially made

during the principal supercooling phase and made continuously along multiple sites

along a study reach, are needed to more fully understand the factors that govern their

size and concentration.

Analysis of the influence of local hydraulic conditions on frazil floc properties showed

that as the local Reynolds number increases, the mean floc size decreases linearly. The

resulting equation can be used to estimate mean floc sizes in rivers using estimates

of the mean velocity and depth. It was also shown that the averaged floc volumetric

concentration can be related to the fractional height above the bed through a power

law equation. This relationship may be useful for describing the vertical concentration
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profiles of frazil flocs.

The detailed measurements of frazil floc properties and their evolution in rivers pre-

sented in this study could be used in several ways to enhance numerical modelling of

river ice processes in order to improve predictions of river freeze-up. At the present

time the frazil rise velocity is treated as a calibration parameter in comprehensive river

ice process models (e.g. Shen 2010; Blackburn and She 2019). However, it could now

be directly estimated by first using Equation (3.16) to predict the mean floc size using

the local Reynolds number and then the rise velocity could be predicted using Reimnitz

et al. (1993) measurements. In addition, the reported lognormal size distributions of

flocs, as well as time series evolution of mean floc size and concentrations, measured in

rivers for the first time, could provide opportunities to incorporate floc dynamics into

numerical models with the goal of improving how realistically they simulate frazil ice

evolution and surface ice progression.

In the future, it would be of interest to deploy the FrazilCam in lakes and oceans,

where the flow regime and salinity may be considerably different, to investigate frazil

particle and floc properties in these different environments. The FrazilCam system in

principle can be deployed in any sufficiently transparent waters, however, the system

would need to be modified to automate the polarizer rinsing process. This would be

challenging but might be possible using a mechanical wiper which would allow deploy-

ments on the bottom of deeper water bodies. In addition, the system could be attached

to an unmanned or autonomous underwater vehicle to allow observations to be made

at various depths in the water column in lakes and oceans.
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Chapter 4

Laboratory Study of Supercooling and
Frazil Evolution Under Varied Heat
Flux Scenarios

4.1 Introduction

Individual frazil ice particles are formed when turbulent water is supercooled below

its freezing point and seed ice crystals are introduced into the water column. These

tiny frazil ice particles, predominantly disk-shaped with sizes ranging from 0.022 to 6

mm (McFarlane et al. 2017), have been observed to form and grow in various natural

bodies of water including rivers (Osterkamp and Gosink 1983), turbulent surface layers

of lakes (Svensson and Omstedt 1998), and oceans (Martin 1981; Frazer et al. 2020).

As they are transported by the turbulent flow, they may collide with each other due to

spatially varying flow velocities and differential rise velocities (Mercier 1985). Colli-

sion may cause particles to freeze together into larger aggregates called frazil flocs in

a process called flocculation (Clark and Doering 2009). In northern rivers, flocs typ-

ically increase in size until they become buoyant enough to rise to the water surface

and contribute to the formation of a solid ice cover (Clark and Doering 2009). They

may also be carried by the turbulent flow to the river bed forming anchor ice (Kem-

pema et al. 1993). Frazil ice particles and flocs can adhere to underwater structures

causing blockages to water intakes (Barrette 2021) and large accumulations of frazil

ice both at the surface and on the riverbed may cause flooding and property damage
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(Beltaos 2013). Therefore, it is important to better understand frazil ice particle and

floc properties as well as their evolution with time during supercooling.

The supercooling temperature of water is a function of the latent heat released by the

growing ice crystals and the heat loss from the water (Daly 2008). Previous laboratory

studies have investigated supercooling characteristics by exposing turbulent water to a

constant sub-zero air temperature. Under these conditions, an approximately constant

heat loss from the water to the air is generated and this produces the so-called “classic”

supercooling curve or water temperature time series (Carstens 1966; Ye et al. 2004;

Clark and Doering 2006). During a classic supercooling event, the water temperature

initially decreases at a constant cooling rate and frazil ice crystals begin to form shortly

after the start of supercooling. The production and growth of the crystals release latent

heat into the water which decreases the water cooling rate. A minimum water temper-

ature referred to as the peak supercooling temperature is reached when the released

latent heat balances the heat loss (Tsang and Hanley 1985). As the crystals grow and

new crystals are generated, the latent heat overpowers the heat loss from the water.

The water temperature then starts to increase until an approximately constant sub-

zero temperature is reached due to the establishment of an equilibrium between the

heat generated from frazil formation and heat loss from the water (Tsang and Hanley

1985). The period when the water temperature varies transiently is often referred to as

the principal supercooling phase and the period when the water temperature maintains

a stable residual temperature is called the residual supercooling phase (Michel 1972).

There have been several laboratory studies that measured the evolution of frazil ice

particle properties during a classic supercooling event (Ye et al. 2004; McFarlane et

al. 2015; Clark and Doering 2006; Schneck et al. 2019) and a few simultaneously mea-

sured frazil floc properties (Pei et al. 2023; Schneck et al. 2019). Frazil ice particles in

suspension were observed to start forming a few minutes after the start of supercool-

ing, then increase in number rapidly and the particle number concentration reached

a maximum value shortly after peak supercooling (McFarlane et al. 2015). The intro-
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duction and rapid multiplication of frazil ice particles are most commonly considered a

result of secondary nucleation, which refers to the nucleation of new crystals due to the

presence of a stable parent crystal (Evans et al. 1974). After that the particle number

concentration continuously decreased to a negligible value due to flocculation and flocs

rising to the surface (McFarlane et al. 2015). Floc number concentration time series was

found to follow very similar trends as particle number concentration time series except

that flocs tended to start forming slightly later than particles and decreased to negligi-

ble values earlier (Pei et al. 2023). Several previous supercooling studies investigated

how different combinations of air temperature and turbulence intensity affected super-

cooling temperatures and frazil ice properties. It was found that lower air temperatures

resulted in higher cooling rates, greater peak supercooling magnitudes (Carstens 1966),

and larger maximum particle and floc number concentrations (Pei, She, et al. 2024).

Lower turbulence intensities resulted in lower cooling rates (McFarlane et al. 2015) and

smaller maximum particle and floc number concentrations (Pei, She, et al. 2024).

In rivers, the supercooling process may not always progress under a constant upward

heat flux as it does in laboratory settings due to variations in meteorological conditions

such as air temperature, solar radiation, and wind speed. Kalke et al. (2019) conducted

field measurements of supercooling in the North Saskatchewan River and classified the

shape of the supercooling curve into three types: classic, erratic, and parabolic. The

results suggested that only approximately one-third of the observed supercooling events

followed the classic supercooling curve shape likely produced by a constant heat flux.

The rest were either erratic or parabolic in shape likely due to a temporally varying

air-water heat flux. McFarlane and Clark (2021) investigated the heat budget during

six supercooling events measured in the Dauphin River. They reported that the net

heat flux during these supercooling events varied from -189 to 13.8 W/m2 and the

most significant negative heat flux during supercooling events was the net longwave

radiation. Richard et al. (2015) recorded four supercooling events during freeze-up in

the St. Lawrence River that occurred when the net heat flux dropped below -200 W/m2
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with the most extreme one reaching below -500 W/m2. Boyd et al. (2023) analyzed the

surface energy budget during 190 supercooling events measured in two Alberta rivers

and found the diurnal cycling of the net heat flux due to shortwave radiation was the

most significant factor in determining the start and end of supercooling events. They

also observed fluctuations in the net heat flux at the Peace River during one residual

supercooling phase that ranged between -354 to 256 W/m2 that did not produce any

noticeable change in the water temperature.

There have only been a few studies that have measured the temporal evolution of

frazil ice particles and flocs in rivers. It was found that in most cases mean frazil parti-

cle size remained approximately constant during the residual supercooling phase, but in

some cases changing environmental conditions during the residual supercooling phase

changed mean particle size (McFarlane et al. 2019b; Richard et al. 2011). No defini-

tive conclusions were reached regarding the evolution of frazil ice properties during the

principal supercooling phase due to limited data (McFarlane et al. 2019b). Pei, Yang,

et al. (2024) measured floc sizes and concentrations during eleven supercooling events

in three Alberta rivers. It was found that during the principal supercooling phase, floc

number concentration and mean size increased significantly just before peak supercool-

ing and reached maxima near the end of principal supercooling. During the residual

supercooling phase, the mean floc size did not typically vary significantly even 2.5 hours

after the water temperature had risen above zero degrees.

The only study that performed laboratory supercooling experiments during which

the heat flux was varied was reported in Carstens (1966). He performed cold room

experiments using a recirculating flume and measured the supercooling curve when the

heat flux was increased during the residual supercooling phase by changing the wind

speed from 0 to 3 m/s. He observed that a secondary peak supercooling was generated

with a magnitude significantly smaller than the first peak, but no frazil ice particle or floc

properties were reported. At present, the relationship between the varying heat flux and

the evolution of particle and floc properties remains largely unknown. This highlights
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the need to investigate supercooling, frazil ice, and floc evolution under varying heat

flux conditions in a controlled laboratory setting to better understand the fundamentals

of the effect of heat flux variations that were commonly observed in the field to the

evolution of frazil ice particles and flocs.

In this study, a series of laboratory experiments were performed to investigate the

characteristics of supercooling, as well as the evolution of frazil ice particles and flocs,

when the water heat loss was increased or decreased at different times during a su-

percooling event. Images of frazil ice particles and flocs passing between two cross-

polarizing filters were captured using a high-resolution camera system. Precision tem-

perature loggers were used to monitor water and air temperatures. The sizes and con-

centrations of frazil particles and flocs measured during supercooling events are pre-

sented. The effect of varying the heat flux at different times of supercooling on the

supercooling temperature time series and on the properties of frazil ice particles and

floc are discussed.

4.2 Methodology

4.2.1 Experimental Setup

The laboratory experiments were performed in the University of Alberta’s Cold Room

Facility in a frazil ice tank. The configuration of the experimental setup is shown in

Figure 4.1. The air temperature in the cold room can be varied between +20 °C to

-20 °C with ± 2 °C fluctuations. The tank has a base dimension of 0.8 by 1.2 m and

was filled with filtered tap water to a depth of 1.3 m. Four synchronized propellers

were mounted on the bottom of the tank and powered by a NEMA 34 DC variable

speed electric motor to produce turbulent flow in the tank. The propellers were set to

a constant speed of 325 rpm for all experiments using a laser tachometer. McFarlane

et al. (2015) conducted ADV measurements in the same tank setup. They estimated

the tank averaged turbulent kinetic energy dissipation rates ϵ was 335.6 cm2/s3 at a

propeller speed of 325 rpm. The side walls and bottom of the tank were insulated with
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51 mm thick Owens Corning FOAMULAR C-200 XPS rigid foam insulation boards to

minimize heat flux through the sides and bottom of the tank and to ensure that the

heat flux across the air-water interface was dominant.

Two openings were cut in the insulation on the back and front of the tank to allow for

backlighting and imaging of frazil particles and flocs. A Genaray SpectroLED Essential

360 Daylight LED light was used to provide backlighting and a 1.5 mm thick translucent

plastic sheet was used to diffuse the light. Two 16 cm × 16 cm square Cavision glass

linear polarizing filters, mounted 90° separated by a 3.1 cm gap, were installed inside

the tank against the front glass so that frazil particles and flocs passing through the

gap were visible in the images. The centre of the polarizers was located 29 cm below

the water surface. A 36-megapixel Nikon D800 DSLR camera with a Micro-Nikkor 60

mm f/2.8D lens was mounted outside of the tank, focused on the polarizers to capture

images of frazil particles and flocs as they were advected between the polarizers. The

camera was programmed to capture images at 1 Hz with an ISO of 6400, a shutter

speed of 1/2000 s, and a f-stop of f/25. The average image pixel size was 21.6 µm

and the field-of-view (FOV) was 159 mm × 106 mm. A space heater was placed beside

the camera to blow warm air onto the glass window to prevent frost formation on the

glass in the FOV. A Sea-Bird SBE 39plus temperature recorder (accuracy ± 0.002 °C)

was mounted at the same depth as the polarizer centroid and programmed to sample

water temperatures at 1 Hz. An RBR Solo T temperature logger (accuracy ± 0.002 °C)

was mounted 15 cm above the water surface and sampled air temperatures at 1 Hz.

4.2.2 Experimental Conditions and Procedures

Table 4.1 presents a summary of experimental conditions. Two groups of experiments,

named G1 and G2, were performed. Each group included five series of experiments with

one series of baseline experiment conducted under a constant initial air temperature Ta

and four other series of experiments in which the initial Ta was varied to a target Ta

at different times during supercooling. Note the initial and target Ta refer to the set
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Figure 4.1: (a) Rectified plan view image of the frazil tank and (b) front view of the
frazil tank showing the locations of instruments and equipment.

point temperatures of the cold room. Each of the 10 series of experiments (S1 - S10)

included three repeated runs to reduce the uncertainty of the results.

Table 4.1: Summary of experimental conditions. Note that bolded series title denotes
baseline series, tc1 (31 minutes) and tc6 (14 minutes) are the average cooling duration
for baseline series S1 and S6, respectively.

Exp.
Group

Exp.
Series

Initial
Ta

(°C)

Target
Ta

(°C)

Ta

Change
Time

Exp.
Group

Exp.
Series

Initial
Ta

(°C)

Target
Ta

(°C)

Ta

Change
Time

S1 -5 N/A N/A S6 -15 N/A N/A

S2 -5 -15 0.5tc1 S7 -15 -5 0.5tc6

S3 -5 -15 tc1 S8 -15 -5 tc6

S4 -5 -15 1.5tc1 S9 -15 -5 1.5tc6

G1

S5 -5 -15 2tc1

G2

S10 -15 -5 2tc6

As shown in Table 4.1, in group G1, series S1 was the baseline series performed at a

steady initial Ta of -5 °C. In S2 - S5, Ta was initially set to -5 °C and then decreased to

-15 °C at four different times during supercooling to generate four increased heat flux

scenarios. Conversely, in group G2, the baseline series S6 was conducted at a steady Ta

of -15 °C. In series S7 - S10, the initial Ta of -15 °C was changed to -5 °C at four different
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times to generate decreased heat flux scenarios. Note that in this study the term heat

flux was used to describe an upward heat flux (heat loss) from water to air. The two

air temperatures, -5 and -15 °C, were chosen because preliminary experiments showed

that these two temperatures balanced the need to increase/decrease the cold room air

temperature relatively quickly while at the same time producing a significant change in

air-water heat flux.

The times when the cold room air temperature was changed were based on the

average cooling duration for the baseline series S1 and S6, which were defined as tc1

and tc6, respectively. The cooling duration was defined as the time between the start

of supercooling (i.e. the first instance when the water temperature remained below

zero for ten consecutive seconds) and the time when peak supercooling defined as Tp

occurred. The average cooling durations tc1 and tc6, were calculated to be 31 minutes

and 14 minutes respectively, by averaging the cooling durations measured in the three

repeated runs of each baseline series. The four Ta heat flux change times were set to

0.5, 1.0, 1.5 and 2.0 times the cooling durations tc1 and tc6, respectively for groups G1

and G2 (Table 4.1). These times were spaced evenly with a dimensionless increment

of 0.5 to assess the effect of varying heat flux during both the principal and residual

supercooling phases on the supercooling curve and on the evolution of frazil particles

and flocs.

At the start of each experiment, the space heater was turned on and the cold room

was programmed to the initial Ta (Table 4.1). Filtered tap water was added to the tank

if the water depth had dropped below 1.3 m prior due to evaporation. The air and

water temperature loggers were programmed to start collecting data. Fifteen minutes

before supercooling started, the polarizers were mounted in the tank and the camera

was installed and focused on the polarizers. Scale images of a ruler placed at the front,

middle and back of the polarizer gap were taken to determine the average pixel size.

Ten background images were also captured prior to ice formation. One minute before

supercooling started, the camera was programmed to begin taking images. The super-
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cooling start time was recorded.

After supercooling started, the cold room temperature was reprogrammed to the tar-

get Ta of -15 °C at the change times listed in Table 4.1 for S2 - S5 in G1 to increase the

heat flux. For S7 - S10 in G2, preliminary experiments found that reprogramming the

cold room temperature to -5 °C resulted in a∼80-minute response time to reach the tar-

get temperature which was too long for this study considering tc6 was only 14 minutes.

The cold room is an enclosed space designed to maintain a set cold air temperature and

it was not designed to generate rapid temperature increases. To reduce the response

time when the air temperature was increased, the following enhanced ventilation pro-

cedure was developed by trial-and-error and then implemented. At the exact Ta change

times in S7 - S10, the cold room temperature was reprogrammed to the target Ta of

-5 °C and one minute after that the cold room door was fully opened for 8 minutes.

A Commercial Electric 24 inch High Velocity Drum Fan was placed on the floor of the

cold room 54 cm inside the door blowing cold air out of the cold room at an average

wind speed of 4 m/s, measured using a HoldPeak HP-866B digital anemometer. After

8 minutes the fan was removed, and the cold room door was closed. This procedure

forced cold air out of the lower half of the door opening and due to mass conservation

warm air from the room outside was drawn in through the upper half of the opening.

Each experiment was run for a total duration of four times the baseline average cooling

duration, which was 124 mins for group G1 and 56 minutes for G2. Note that during

each G1 experiment, the memory card and battery of the camera needed to be manually

replaced once which introduces a ∼90 second gap in the sampled image sequence.

4.2.3 Experiment Repeatability

For every experiment series, three repeated runs were performed, resulting in a total

of 30 experimental runs. Figure 4.2 presents a total of 18 superimposed air and water

temperature time series from six series of experiments in the two groups. Time series

from other series were similar to the ones presented in Figure 4.2. Figure 4.2a-b show
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the time series of Ta during the G1 and G2 experiments, respectively. In Figure 4.2a-b

the time series of Ta for baseline series S1 and S6 show that the cold room maintained a

stable air temperature with minor fluctuations ranging from -3.8 to -4.8 °C and -13.5 to

-15.1 °C, respectively. This demonstrates that the cold room air temperature was well

controlled with fluctuations less than 1.6 °C. The time series of Ta in Figure 4.2a-b of the

three repeated runs for S2, S4, S7, and S9 in which Ta was increased or decreased at dif-

ferent times all aligned quite well within each series, demonstrating that the cold room

air temperatures were being varied in a controlled and repeatable manner. The wa-

ter temperature time series in Figure 4.2c-d show that the supercooling curves aligned

quite well during the first half of the supercooling phase. However, in some series,

they started to deviate slightly from each other after reaching peak supercooling Tp.

This was most pronounced during S4 (Figure 4.2c) when the values of Tw varied by as

much as ∼0.005 °C within the repeated runs. Despite the small variations observed,

the trend of the supercooling curve within each series remained consistent throughout

each experiment, indicating that the water temperature time series were sufficiently

repeatable. Note that there are small spikes up to ∼0.01 °C in magnitude evident in

the supercooling curves plotted in Figure 4.2c-d that were caused by ice momentarily

contacting the thermistor tip of the Seabird logger. This makes the time series appear a

little noisy but this did not significantly impact the results or conclusions of this study.

Table 4.2 presents a summary of statistics from the Ta and Tw time series for each

experiment series. The statistics include the series averaged water cooling rate Rc and

the peak supercooling temperature Tp. The cooling rate Rc is defined as the slope of the

Tw time series from 10 minutes before supercooling started to the start of supercooling.

In addition, the root mean square differences RMSDa and RMSDw of paired Ta and Tw

time series (i.e. three pairs for each series) were calculated and averaged within each

experiment series. RMSDa and RMSDw values ranged from 0.15 to 0.71 °C and from

0.001 to 0.0021 °C, respectively. The series-averaged cooling rate Rc was similar within

each group, varying between -0.0019 and -0.0020 °C/min for G1 experiments, and be-
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Figure 4.2: Time series of (a-b) air temperature Ta and (c-d) corresponding water tem-
perature Tw time series from six series of experiments. Time t is normalized using the
average cooling duration used for the G1 and G2 experiments tc1 and tc6, respectively.
Note each color represents one series of experiments with three repeated runs plotted
and zero time is the start of supercooling.

tween -0.0056 and -0.0057 °C/min for G2 experiments. The series-averaged Tp ranged

from -0.052 to -0.066 °C. The coefficient of variation (COV), defined as the standard

deviation divided by the mean, was calculated for Rc and Tp, and they varied from 0.5

% to 5.5 % and 0.5 % to 4.6 %, respectively. Overall, this analysis demonstrated that

the time series were repeatable within acceptable limits.

4.2.4 Data Processing and Analysis

As noted in Section 4.2.1, the tank bottom and side walls are well insulated. In addition,

Schneck et al. (2019) measured water temperature at different locations throughout

the same tank under the same propeller speed, and concluded that the temperature

was approximately uniform and the tank was well mixed. Therefore, by reasonably
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Table 4.2: Summary of experimental statistics including the average root mean square
difference for air and water temperature time series RMSDa and RMSDw, respectively, as
well as the series averaged water cooling rate Rc and the peak supercooling temperature
Tp.

Exp.
Group

Exp.
Series

RMSDa (°C) RMSDw (°C) Rc (°C/min) Tp (°C)

G1

S1 0.1522 0.0014 -0.0020 -0.052

S2 0.3120 0.0016 -0.0019 -0.066

S3 0.7110 0.0016 -0.0019 -0.053

S4 0.3040 0.0021 -0.0019 -0.053

S5 0.3669 0.0016 -0.0019 -0.052

G2

S6 0.4147 0.0015 -0.0057 -0.065

S7 0.2677 0.0010 -0.0057 -0.054

S8 0.3971 0.0016 -0.0056 -0.065

S9 0.2954 0.0017 -0.0057 -0.066

S10 0.2514 0.0011 -0.0056 -0.065

assuming the tank water is well mixed and all the heat exchange between the water

and the surrounding environment occurred across the air-water interface, prior to any

significant ice formation, the net air-water heat flux Q in W/m2 is given by:

Q = ρDC p
dTw

d t
(4.1)

where ρ is the water density, D = 1.3 m is the water depth, Cp is the specific heat of

water and dTw/d t is the water cooling rate. As shown in Table 4.2, the average cooling

rate for all the G1 experiments that started with a constant air temperature of -5 °C

was - 0.0019 °C/min, and for all the G2 experiments that started with a constant air

temperature of -15 °C it was - 0.0057 °C/min. Therefore, the net air-water heat flux Q

under steady -5 °C and -15 °C air temperatures equate to -173 W/m2 and -519 W/m2,

respectively. This indicates that the heat flux varied by approximately threefold when

the air temperature was varied between -5 °C and -15 °C. However, in S4, S5, S9, and
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S10 the Ta change occurred after significant floc rises, and the presence of surface slush

reduced the threefold heat flux increase/decrease applied in other series. In preliminary

experiments, surface slush was manually removed periodically to maintain an ice-free

water surface. However, it was found that this action caused resuspension of the frazil

particles and flocs for up to 30 mins significantly affecting the time series of particle

and floc properties. Therefore, it was not used in formal experiments. Instead, tank

surface images at the time when the air temperature was varied in S4, S5, S9, and S10

were recorded using a GoPro HERO8 camera. The images were rectified using GIMP

software and the surface slush was manually annotated to compute the percentage of

surface slush coverage. The estimated surface slush coverage ranged from 31 - 37 % in

S4, S5, S9, and S10, indicating in these cases the desired heat flux variation was being

reduced at most 37 % and as a result, the heat flux was varied by a factor of two instead

of three.

Images captured during each experiment were analyzed to identify frazil particles

and flocs and to compute their properties. Figure 4.3a presents an example raw image

captured during a laboratory experiment showing different shapes of frazil particles

and flocs. Disk-shaped frazil particles appear in the image as shapes ranging from a

line to circular with most being elliptical. Flocs are formed by the aggregation of frazil

particles, resulting in different shapes depending on the number, shape, and size of at-

tached particles. First, the average of the 10 background images was subtracted from

each raw image to remove background noise. Then each image was iteratively thresh-

olded following McFarlane et al. (2014) to obtain the corresponding binary image with

particles and flocs or ice objects shown in white. Particles or flocs that intersected the

image boundaries were eliminated. An example of a processed binary image is shown

in Figure 4.3b.

The properties of each ice object including area a and perimeter P were computed

from the binary images. An ellipse was fitted to each ice object and the corresponding

ellipse major and minor axis lengths, aspect ratio (the ratio of the major axis length
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(a)

(b)

Figure 4.3: An example of (a) an annotated raw image captured during a laboratory
experiment, and (b) the corresponding processed binary image.
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to the minor axis length), area, and perimeter were also computed. The size S of both

frazil particles and flocs was defined as the major axis length of its fitted ellipse following

previous studies (McFarlane et al. 2015; Clark and Doering 2009). An ellipse with a

major axis of less than five pixels was deemed to be too pixelated for subsequent analysis

and therefore ice objects with an S smaller than this were eliminated. Based on the

computed geometrical properties, each ice object was classified as either a frazil ice

particle or a frazil floc using criteria presented in Section 3.4.1. The criteria used were

tested on a dataset comprised of 109 flocs and 459 frazil particles that were visually

identified and the accuracy for particles and flocs was 97.0 % and 92.7 %, respectively

(Section 3.4.1).

After classification, the mean particle size µp, mean floc size µ f , particle number

concentration Np, floc number concentration Nf , and total ice volume concentration Ci

were computed for each image, and a moving average over a period of 35 images was

applied to the resulting time series to smooth the data. The measuring volume is the

image FOV times the distance between the two polarizers and the number concentra-

tion is defined as the number of particles/flocs divided by the measuring volume. The

total ice volume concentration is defined as the combined volume of particles and flocs

divided by the measuring volume. Assuming a constant particle diameter-to-thickness

ratio of 37 based on the mean particle diameter-to-thickness ratio measurements made

by McFarlane et al. (2014), the particle ice volume Vp is given by:

Vp = πa2 ×
2a
37

(4.2)

where a is the semi-major axis length of the fitted ellipse of a given particle or floc. The

ice volume of a floc, defined as Vf , is given by:

Vf =
4
3
πabc × (1−η) (4.3)

where b is the semi-minor axis length of the fitted ellipse of a given particle or floc, the

third semi-axis length c was assumed to be the average of a and b but not greater than
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the spacing between the two polarizers (Schneck et al. 2019), and η is the floc porosity

assumed to be 0.8 (Schneck et al. 2019).

The measured time series of water and air temperature Tw and Ta can be used to

theoretically compute the time series of total ice growth in the water column, which

could be compared to the estimated total ice volume concentration Ci to evaluate the

fraction of ice sampled by the camera images. Assuming the tank was well mixed and

Ci ≪ 1, the thermal balance of the water-ice mixture is given by:

ρCp
dTw

d t
=

Q
D
+ρi Li

dCi

d t
(4.4)

where ρi = 920 kg/m3 is the ice density, Li = 3.33 × 105 J/kg is the latent heat

of fusion. The time series of air-water heat flux Q can no longer be estimated using

Equation (4.1) since frazil ice was forming and air temperature may change during the

experiments. However, Q can be estimated by a linear relationship (Hicks 2016), which

is given by:

Q = hwa(Tw − Ta) (4.5)

where hwa is the linear heat transfer coefficient between water and air in W/(m2 °C).

hwa = -37.5 W/(m2 °C) is obtained by calibration using the air and water temperatures

as well as the known Q calculated using Equation (4.1) from S1 and S6 experiments

prior to significant ice formation. Using Equation (4.4) and Equation (4.5), Ci was cal-

culated from the measured Tw and Ta data every second and an initial ice concentration

C0 of 3.5 × 10-5 was added to the results to avoid negative Ci values. It should be noted

that this method did not consider frazil rising, therefore the estimation is only appro-

priate for comparison to our suspended frazil ice measurements before Np decreases

significantly.

An example of a Np time series from S2 experiments normalized by its maximum

value (Npm) is plotted in Figure 4.4. Four specific times are labelled on the plot: tp10

and tp90a are the times when Np first reached 10 % and 90 % of Npm, respectively, and

tp90b and tp30 are the times when Np dropped below 90 % and 30 % of Npm, respectively.
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Clark and Doering (2006) found that during the time interval between tp10 and tp90a,

Np increased with an approximately linear slope. Similarly, between tp90b and tp30,

Np decreased with an approximately linear slope. These approximately linear slopes

are illustrated by dashed lines in Figure 4.4 and similar approximately linear slopes

were observed in the Nf time series as well. Therefore, these two time intervals were

used to estimate the production and decay rates of frazil particles and flocs. For each

experiment run, the frazil particle production rate npp and decay rate npd expressed as

the number of particles per cubic meter per second are given by:

npp =
0.8Npm

tp90a − tp10
(4.6)

npd =
0.6Npm

tp30 − tp90b
(4.7)

Similarly, the floc production rate n f p and decay rate n f d are given by:

n f p =
0.8Nf m

t f 90a − t f 10
(4.8)

n f d =
0.6Nf m

t f 30 − t f 90b
(4.9)

where Nf m is the peak value of Nf , t f 10 and t f 90a are the times when Nf first reached

10 % and 90 % of Nf m, respectively, in seconds, while t f 90b and t f 30 are the times when

Nf dropped below 90 % and 30 % of Nf m, respectively. The production and decay rates

of particles and flocs were calculated for each run and averaged over the three runs

within each experiment series and were presented as a series average with a standard

error.

Furthermore, the mean particle and floc number concentration, defined as N p and

N f , were computed by dividing the area under the Np or Nf time series from each run

by the duration. N p and N f were calculated for each run and presented as a series

average with a standard error. After all image data within each experiment series were

processed, the particle and floc size distributions were generated using all particles/flocs

detected from all three repeated runs in a series, and the series mean and standard

deviation of particle and floc sizes were computed.
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Figure 4.4: Typical time series of normalized particle number concentration Np/Npm.
Note the data used for plotting is from a S2 experiment, the shaded areas represent the
interval used to calculate the production (red) and decay (grey) rates.

4.3 Results

4.3.1 Time Series

Figure 4.5 presents a complete set of synchronized time series of air and water tem-

perature, particle and floc number concentrations and mean sizes, and total ice volume

concentration for all three repeated runs in S4 to demonstrate the repeatability and

variations in the time series. It can be seen from Figure 4.5 that in all subplots, the

time series from the three repeated runs have similar trends, confirming the repeata-

bility of the experiments. In Figure 4.5c-g, notable variations caused by the random

ice processes can be observed. In Figure 4.5c, Npm are shifted slightly in both time and

magnitude from each other, which could be due to the variations in the secondary nu-
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cleation and flocculation processes. In Figure 4.5c-f, a significant deviation in the Run

1 time series between 3,400 s and 3,800 s can be observed. This was caused by re-

entrainment of flocculated surface slush ice, leading to the appearance of particles and

flocs in the images. Figure 4.5g shows that the time series of Ci are quite spiky. This is

because Ci is very sensitive to the appearance of large flocs in the images. Similar time

series plots of repeated runs from the rest of the series had similar characteristics to

Figure 4.5 indicating that the three repeated runs in all series were sufficiently repeat-

able. Therefore, ensemble-averaged time series of air and water temperature, as well as

particle and floc mean sizes and concentrations were generated by averaging the time

series of the three repeated runs in each series. This averaging reduced the random

errors in the time series data and improved the subsequent analysis and interpretation

of the results.

Figure 4.6 presents the ensemble-averaged time series of air and water temperatures,

particle and floc number concentrations, and mean sizes plotted versus the nondimen-

sionalized time (t/tc1) for G1. Figure 4.6a shows that during S1, Ta remained steady

with a mean value of -4.49 °C. During S2 - S5, Ta initially aligned well with S1, then

as expected started decreasing at t/tc1 = 0.5, 1.0, 1.5, and 2.0, respectively, reached

a minimum of approximately -15 °C at ∼0.27 tc1 after the change and then fluctuated

between -13.24 and -14.68 °C.

Figure 4.6b shows that S1 has a "classic" supercooling curve with a Tp value of -0.052

°C. During S2 the slope of the supercooling curve increased immediately after Ta was

decreased at t/tc1 = 0.5, which resulted in a shorter cooling duration of 0.87 tc1 and

a significantly lower Tp of -0.064 °C. A linear fit of the S2 Tw time series before and

after the Ta change gives a slope of -0.0019 °C/min and -0.0038 °C/min, respectively.

This indicates that the water cooling rate increased by a factor of two in response to the

three-fold increase in heat flux. During S3 Ta was lowered at t/tc1 = 1 (Figure 4.6a).

The supercooling curve was very similar to S1 with a slightly longer cooling duration of

1.09 tc1 and similar Tp value (Figure 4.6b). During S4 and S5 the supercooling curve
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Figure 4.5: Time series of (a) air temperature Ta, (b) water temperature Tw, (c) particle
number concentration Np, (d) floc number concentration Nf , (e) particle mean size µp,
(f) floc mean size µ f , and (g) total ice concentration Ci for all S4 experiments in G1.

initially maintained a classic shape with similar Tp values and slightly longer cooling
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durations of 1.05 and 1.08 tc1, respectively compared to S1 (Figure 4.6b). Shortly after

Ta was decreased in S4 and S5, the water began to cool again at a rate of -0.0004 and

-0.0003 °C/min, respectively, and reached a secondary local minimum of -0.031 and

-0.033 °C, respectively (Figure 4.6b). These secondary local minimums, defined as Tp2,

were both achieved at approximately 0.7 tc1 after the decrease in Ta.

Figure 4.6c shows that in all series, Np initially increased significantly prior to Tp

and reached its maximum value Npm at 0.14 - 0.24 tc1 after Tp, and then decreased to a

negligible value (< 0.001 cm-3). Npm in S2 and S3 were 0.15 and 0.14 cm-3, respectively,

significantly higher than the ∼0.1 cm-3 in the rest of the series. In S4 and S5 where the

heat flux change induced a second supercooling period (Figure 4.6b), Np in S4 remained

at a near-constant value of 0.01 cm-3 before decreasing again at t/tc1 = ∼2.5, while in

S5 Np first decreased then started to rise again, reaching a secondary peak at t/tc1 =

2.88 with a value of 0.02 cm-3 before decreasing again. Figure 4.6d shows that the trend

of Nf time series followed that of Np closely and the time when Nf reached maximum

is similar to the time Np reached maximum. Nf m in S2 and S3 were 0.05 and 0.04 cm-3,

respectively, significantly higher than the 0.03 cm-3 in the rest of the series. During

the second supercooling period in S4 and S5, Nf only reached 0.001 and 0.003 cm-3,

respectively, an order of magnitude smaller compared to Np in Figure 4.6c.

Figure 4.6e indicates that in all five time series µp increased rapidly prior to when Tp

was achieved, reaching a local maximum of ∼1 mm, and then plateauing for ∼0.7 tc1.

During this plateaued period, µp slowly decreased then increased again and reached a

second local maximum of 0.85 mm in S2 and ∼1 mm in the rest of the series. After the

second local maximum µp had a decreasing trend in S1, S2 and S3, while in S4 µp sta-

bilized and fluctuated around ∼1 mm and in S5 µp rebounded (i.e. first decreased then

increased) to ∼1 mm again in response to the heat flux increase. In Figure 4.6f, time

series of µ f shows that in all five series µ f increased rapidly shortly after a significant

increase in µp shown in Figure 4.6e and reached a maximum of ∼3 mm. After that µ f

first decreased slowly then more rapidly to a negligible value in S1 - S3. While in S4
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µ f maintained at ∼0.6 mm before decreasing to a negligible value, and in S5 µ f first

decreased below 0.15 mm then started to increase and peaked again at 1.01 mm. The

response of µ f during the second supercooling period was significantly weaker than µp

due to the significantly smaller number of flocs being generated during the same period

as indicated in Figure 4.6d.

Figure 4.7 presents the ensemble-averaged time series of G2 experiments air and

water temperature, particle and floc number concentrations, and mean sizes plotted

versus the nondimensionalized time (t/tc6). It can be seen from Figure 4.7a that dur-

ing S6 Ta maintained a steady value averaging -14.35 °C. During S7 - S10, Ta started

to increase at t/tc6 = 0.5, 1.0, 1.5, and 2.0, respectively, reaching the targeted -5 °C

∼0.3 tc6 after the change occurred which is comparable to the response time in the G1

experiments. After Ta reached -5 °C it continued to rise to -3.3 °C before decreasing to

-6.8 °C, eventually increased again to ∼-4 °C in all four series. The average Ta values

after it reached -5 °C until the experiment ended were -4.34, -4.36, -4.72, and -5.03 °C,

respectively for S7 - S10, demonstrating the repeatability of these experiments.

Figure 4.7b shows that in S6 the supercooling curve has a Tp of -0.065 °C and a

residual temperature of -0.022 °C. The only impact of increasing Ta at t/tc6 = 1, 1.5

and 2 during S8 - S10, compared to the baseline case S6, was to slightly elevate Tw

after Ta was increased and this resulted in a higher residual temperature of -0.016 °C.

However, during S7 the cooling rate was reduced immediately when Ta was increased

at t/tc6 = 0.5, resulting in a significantly higher Tp of -0.053 °C compared to S6 and

the residual temperature was also slightly elevated to -0.016 °C.

Figure 4.7c-d show that compared to S6, increasing Ta at t/tc6 = 1, 1.5 and 2 during

S8 - S10 did not significantly change the trends or magnitudes of the Np and Nf time

series. However, increasing Ta at t/tc6 = 0.5 during S7 resulted in Npm and Nf m values

of 0.11 cm-3 and 0.03 cm-3, a 21 % and 40 % reduction, respectively compared to S6.

The times it took to reach the two maximums (Npm and Nf m) were also slightly longer

compared to S6. Figure 4.7e shows that all µp time series aligned quite well. This
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Figure 4.6: Ensemble-averaged time series of (a) air temperature Ta, (b) water tem-
perature Tw, (c) particle number concentration Np, (d) floc number concentration Nf ,
(e) particle mean size µp, and (f) floc mean size µ f for all G1 experiments. Note the
time t is nondimensionalized by tc1, the averaged cooling duration obtained from the
baseline experiment series S1.

was also the case for the µ f time series shown in Figure 4.7f except that during S7

µ f increased slightly slower at the beginning and reached a maximum ∼0.3 tc6 later

than other series. Overall, results show that increasing Ta at t/tc6 = 0.5 (S7) was

111



the only case that significantly impacted particle and floc number concentrations, by

prolonging the time it took to achieve Npm and Nf m and significantly reducing their

values. Increasing Ta at different times did not significantly affect the evolution of

particle and floc mean sizes.

Figure 4.7: Ensemble-averaged time series of (a) air temperature Ta, (b) water tem-
perature Tw, (c) particle number concentration Np, (d) floc number concentration Nf ,
(e) particle mean size µp, and (f) floc mean size µ f for all G2 experiments. Note the
time t is nondimensionalized by tc6, the averaged cooling duration obtained from the
baseline experiment series S6.
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Figure 4.8 shows time series of the ensemble-averaged measured and calculated

(Equation (4.4) - Equation (4.5)) total volume ice concentration Ci versus nondimen-

sionalized time for S1, S2, S6, and S7. The shaded area corresponds to the period when

Np the particle number concentration was decreasing, which can be seen in Figure 4.6c

and Figure 4.7c. In Figure 4.8a-b the Ci time series for series S1 and S2 are plotted.

Note that the time series for S3 - S5 are not presented since they were very similar to

S1. In Figure 4.8a, the measured Ci increased significantly at t/tc1 = 1, and reached

a maximum at 0.45 × 10-3 at t/tc1 = 1.2 before decreasing to a negligible value due

to the buoyancy driven vertical transport of suspended frazil ice to the water surface.

Figure 4.8b shows that during S2 the measured Ci started to increase at t/tc1 = 0.8 and

reached a maximum at 1 × 10-3 at t/tc1 = 1, the maximum value is 2.2 times larger

than in S1. Figure 4.8c-d presents the results for series S6 and S7, and plots of S8 -

S10 were omitted due to their similarities with S6. In both S6 and S7, the measured

Ci started to increase at t/tc6 = 1 and reached a maximum at approximately t/tc6 =

1.3. In S6 Ci reached a maximum at 0.66 × 10-3 while in S7 it reached the maximum

at a significantly smaller value of 0.35 × 10-3. It is worth noting that in all cases, the

measured maximum Ci was reached at approximately 1.1 - 1.3 times their experiment

cooling duration.

It is clear in Figure 4.8 that in all four series, the calculated Ci started rising earlier

than the measured Ci. In Figure 4.8a-b the calculated Ci started to rise ∼0.3 tc1 earlier

and in Figure 4.8c-d it was∼0.9 tc6. This is possibly because the measured data did not

include the surface skim ice growth nor ice crystals smaller than the minimum size de-

tectable by the camera system (108 µm). The trend of calculated Ci generally followed

measured values well after the measured Ci increased significantly. The percentage

difference between the measured maximum Ci and its corresponding calculated value

ranged from -5 % to 23 %. After that Np started to decrease as indicated by the shaded

area and measured Ci decreased accordingly while the calculated Ci was still increas-

ing since the calculation did not account for the rising of flocs. Overall, the alignment
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between the calculated and measured Ci time series prior to the rising of flocs demon-

strates that the camera system used in this study did sample a significant fraction of the

total ice being formed in the tank and provided accurate Ci measurements.

Figure 4.8: Ensemble-averaged time series of measured and theoretically calculated
total ice concentration Ci for (a) S1, (b) S2, (c) S6, and (d) S7 experiments plotted
with nondimensionalized time. The shaded area corresponds to the period after Np

started to decrease.

4.3.2 Production and Decay Rates

In Figure 4.9, bar plots of series-averaged production and decay rates of particles and

flocs are presented. The error bar represents the standard error, and the number above

the error bar indicates the significant p-value (< 0.05) from a two-sample t-test com-

paring the means between the baseline series (S1 or S6) and other series. Note that

heat flux change that occurred before or at t/tc1 (t/tc6) = 1 (i.e. S2, S3, S7, S8) could

potentially impact both particle and floc production and decay rates since the change

occurred prior to or during the period used for production rate calculation. Ta change

that occurred at t/tc1 (t/tc6) = 1.5 (i.e. S4 and S9) may only affect particle and floc
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decay rates since the change occurred after the period used for production rate calcula-

tion. Ta change occurred at t/tc1 (t/tc6) = 2 (i.e. S5 and S10) have negligible impact

on both the particle and floc production and decay rates.

As can be seen in Figure 4.9a, npp values for S1, S3, S4 and S5 were similar rang-

ing from 199 to 237 particles/(m3s). The value for S2 was significantly larger at 453

particles/(m3s) which was 2.3 times higher and the only statistically different value

compared to S1. Particle decay rates npd ranged from 116 to 202 particles/(m3s) and

no statistically significant differences were found comparing S1 to the other series. Fig-

ure 4.9b shows that floc production and decay rates were 2 - 3 times smaller than the

corresponding particle production and decay rates shown in Figure 4.9a. The effect of

heat flux changes on the floc production rates n f p was similar to the effect on particle

production rates npp. For S2 n f p was 159 flocs/(m3s) which was 1.9 times higher and

statistically different compared to S1 while the values for the other series ranged from

79 to 96 flocs/(m3s) and these were not statistically different from S1. The floc decay

rates n f d ranged from 54 to 67 flocs/(m3s) and no significant differences were found.

Figure 4.9c-d show that decreasing the heat flux at t/tc6 = 0.5 (S7) significantly

reduced both npp and n f p which is opposite to what was observed for G1 when the

heat flux was increased. Particle (npp) and floc (n f p) production rates were 172

particles/(m3s) and 75 flocs/(m3s), respectively for S7 and for the other series, they

ranged from 343 to 403 particles/(m3s) and 151 to 162 flocs/(m3s), respectively. The

production rates measured during S7 were comparable to those measured under a Ta

of -5 °C in G1 (i.e. S1, S3, S4, and S5). However, the production rates measured during

the rest of the G2 series were very similar to those measured in S2 when Ta was de-

creased from -5 to -15 °C at t/tc1 = 0.5. The decay rates plotted in Figure 4.9c-d show

that npd and n f d were 132 particles/(m3s) and 43 flocs/(m3s) for S7 and for the other

series in G2 they ranged from 180 to 223 particles/(m3s) and 69 to 120 flocs/(m3s),

respectively. Although no statistically significant differences were found comparing S6

to the other series, the decay rates measured in S7 were considerably smaller than the
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rest of the series indicating that increasing Ta at t/tc6 = 0.5 may also reduce the particle

and floc decay rates.

Figure 4.9: Bar plots of (a) particle production rate npp and particle decay rate npd , and
(b) floc production rate n f p and floc decay rate n f d during G1 experiments, and (c-d)
are for the G2 experiments. The error bar represents the standard error, and the number
above the error bar indicates the significant p-value (< 0.05) from a two-sample t-test
comparing the means between the baseline series (S1 or S6) and the plotted experiment
series.

4.3.3 Mean Number Concentrations

Figure 4.10 shows bar plots of N p and N f for both the G1 and G2 groups. As shown in

Figure 4.10a, N p was 0.012 cm-3 in S1 and it ranged between 0.015 and 0.016 cm-3, in

S2 - S5 which was 25 - 33 % larger than S1. This increase was statistically significant for

S2, S3, and S5 but was not for S4 due to its larger standard error. N f for all series in G1

ranged between 0.0035 and 0.0044 cm-3 and the values in S2 - S5 were not statistically

significantly different from S1. Figure 4.10b shows that for the G2 series N p ranged
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from 0.026 to 0.031 cm-3 with no statistical difference between S6 and S7 - S10 values.

However, N p in S7 was 10 % smaller than S6. N f ranged from 0.007 to 0.01 cm-3 and

the value of 0.007 cm-3 in S7 was statistically different from S6 and was 22 % smaller

than S6. The values of N p and N f in G2 (Figure 4.10b) were on average approximately

twice as large as those in G1 (Figure 4.10a). As indicated in Section 4.2.4, N p or N f

were calculated by dividing the area under the curve of Np or Nf time series by the

experiment duration, and G1 experiments have 2.2 times longer duration than G2.

Therefore, the approximately twice larger values of N p and N f indicate that the area

under the curve of the Np or Nf time series of G1 and G2 experiments are similar. This

suggests that the tank used in this study may only produce a certain amount of frazil

particles due to its limited water volume.

Figure 4.10: Bar plots of N p and N f , the mean particle and floc number concentration,
respectively, for the entire experiment duration of (a) G1 and (b) G2 experiments. The
error bar represents the standard error, and the number above the error bar indicates
the significant p-value (< 0.05) from a two-sample t-test comparing the means of the
baseline series (S1 or S6) and the indicated experiment series.
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4.3.4 Size Distributions and Properties

In Figure 4.11a-b the frequency size distributions of frazil particles and flocs, respec-

tively for the S2 series are plotted along with theoretical lognormal distributions. Note

that data over the entire duration of each experimental run were included when calcu-

lating these distributions. Although only distributions from the S2 series are presented,

plots from other series were very similar. It is apparent that both particle and floc size

distributions are slightly bimodal and deviate from a theoretical lognormal distribution.

In Figure 4.11a, the particle size distribution has a small secondary peak centred at an

Sp value of ∼2 mm. In Figure 4.11b, the floc size distribution has two approximately

equal peaks and the location of the dip between the two peaks is also at ∼2 mm. This

suggests that some flocs with sizes of ∼2 mm are likely being misclassified as particles.

Overall, a theoretical lognormal distribution was found to be a reasonable fit for both

the particle and floc size distributions.

(a) (b)

Figure 4.11: Frequency distributions of (a) particle size Sp and (b) floc size S f in S2.
The red line is a fitted log-normal distribution, N is the number of particles/flocs in
each bin and NT is the total number of particles/flocs.

Figure 4.12 shows the empirical cumulative frequency distributions of particle and

floc sizes obtained from each series in G1. In Figure 4.12a the occurrence probability of

S4 is the lowest compared to other series at a given Sp, and in Figure 4.12b S1 has the

lowest occurrence probability at a given S f . This indicates that the particles observed
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in S4 and the flocs observed in S1 are distributed towards larger size bins compared to

other plotted series. However, all particle or floc cumulative size distributions aligned

closely with each other regardless of the heat flux change. Distributions from S6 - S10

in group G2, although not presented, also aligned closely with each other. This suggests

that changes in the heat flux scenarios did not result in significant changes in the shape

of the particle or floc size distributions.

(a) (b)

Figure 4.12: Empirical cumulative frequency distributions of (a) particle size Sp and
(b) floc size S f for series S1 - S5 in group G1. The y-axis limits for all inserts are from
0.4 to 0.6.

Table 4.3 summarizes the particle and floc mean sizes µp and µ f , and corresponding

standard deviations σp and σ f calculated from the entire dataset from each series (i.e.

data that included the entire duration from three repeated runs). The data in Table 4.3

show that in seven out of eight varied heat flux series µp was statistically significantly

different compared to the baseline experiments. However, only in S2 and S7 when the

heat flux was varied at 0.5 tc1(tc6) resulted in changes larger than 5 % in µp. In S2 µp

was 0.77 mm which was 6 % smaller than in S1 but was similar to in S6. Note that S6

was conducted under S2’s target air temperature of -15 °C. Conversely, in S7 µp was

0.82 mm which was 8 % larger than in S6 but was similar to in S1. For the flocs in the

G1 group, the mean floc size µ f was 2.71 mm in S1 and was decreased by 2 % to 5 % as

the heat flux increased later and later from S2 to S5 and these changes were statistically
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significant. σ f decreased from 2.7 to 2.41 mm as well. In the G2 group, µ f in both S7

and S10 were statistically significantly different than S6 but S7 had the most distinct

difference decreasing by 5 %. In the eight series with varied heat flux, seven resulted

in a decreased µ f compared to their baseline experiments, and only one (S9) resulted

in a slightly increased µ f compared to its baseline experiments (S6). This may indicate

that the mean floc size generally reduces when the surface heat flux is varied. Overall

µp and σp ranged from 0.76 to 0.84 mm and 0.46 to 0.58 mm, respectively, and µ f and

σ f ranged from 2.57 to 2.78 mm and 2.41 to 2.95 mm, respectively. Varying heat flux

resulted in a maximum of 8 % and 5 % change in µp and µ f , respectively compared to

the baseline series, indicating that the heat flux variations do not significantly change

mean particle or floc sizes.

Table 4.3: Ensemble particle and floc mean sizesµp andµ f , and corresponding standard
deviations σp and σ f in each series. The bolded number indicates the significantly
different values (p-value< 0.05) comparing the means of the baseline series (S1 or S6)
and the indicated experiment series using a two-sample t-test.

Group
G1

µp ±σp (mm) µ f ±σ f (mm) Group
G2

µp ±σp (mm) µ f ±σ f (mm)

S1 0.82 ± 0.54 2.71 ± 2.54 S6 0.76 ± 0.46 2.77 ± 2.73

S2 0.77 ± 0.49 2.67 ± 2.70 S7 0.82 ± 0.53 2.63 ± 2.42

S3 0.80 ± 0.53 2.65 ± 2.56 S8 0.78 ± 0.50 2.76 ± 2.86

S4 0.84 ± 0.58 2.59 ± 2.52 S9 0.77 ± 0.48 2.78 ± 2.95

S5 0.82 ± 0.56 2.57 ± 2.41 S10 0.77 ± 0.48 2.73 ± 2.66

4.4 Discussion

4.4.1 Supercooling Under Varied Heat Flux Scenarios

During the varied heat flux experiments, changing Ta between -5 °C and -15 °C equates

to a net heat flux variation between -173 W/m2 and -519 W/m2, respectively, as dis-

cussed in Section 4.2.4. Several studies have reported heat flux analysis during super-
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cooling events in rivers. Richard et al. (2015) recorded four supercooling events during

the 2005 - 2006 freeze-up season in the St. Lawrence River that occurred when the net

heat flux dropped below -200 W/m2 with the most extreme one dropping below -500

W/m2. McFarlane and Clark (2021) recorded six supercooling events in the Dauphin

River in Manitoba which occurred when the neat heat flux varied between -189 and

13.8 W/m2. Boyd et al. (2023) observed diurnal fluctuations in the net heat flux dur-

ing one prolonged supercooling event at the Peace River that ranged between -354 to

256 W/m2. The net heat flux variation in this study was close to the range of observa-

tions from Richard et al. (2015), but the lower value of -519 W/m2 was considerably

below the most extreme events reported by McFarlane and Clark (2021) and Boyd et

al. (2023). This suggests that the heat fluxes generated in this laboratory study were

simulating more extreme field conditions.

Figure 4.6b shows that increasing heat flux at different times resulted in different

supercooling responses compared to the baseline experiments S1. A threefold heat flux

increases at t/tc1 = 0.5 (S2) led to an immediate and significant increase in the cool-

ing rate and a significantly higher Tp magnitude. This is likely because at the time

of the temperature change there was no significant ice formation (see Figure 4.6c-d)

releasing latent heat to compensate for the increased heat flux, as a result, the heat

flux change is directly reflected in the increased cooling rate of water. Changes of heat

flux after when peak supercooling or Tp was achieved, at t/tc1 = 1.5 and 2 during S4

and S5, resulted in a second milder supercooling curve, with a smaller secondary cool-

ing rate and smaller magnitude peak supercooling compared to the first supercooling

curve. Carstens (1966) observed a similar secondary supercooling peak in cold room

experiments conducted using a recirculating flume, when the heat flux was increased at

twice the cooling duration time by changing the wind speed from 0 to 3 m/s. Carstens

(1966) reported that the smaller peak supercooling magnitude compared to the first

was probably due to significant surface ice coverage when the heat flux was increased.

As mentioned in Section 4.2.4, the surface slush insulated approximately one-third of
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the water surface. In addition, the growth of surface slush would also have been re-

leasing latent heat into the water. The effect of both reduced the cooling rates resulting

in milder second supercooling events during S4 and S5. In S3 when the heat flux in-

creased at the time of peak supercooling (i.e. t/tc1 = 1), the supercooling curve and

the magnitude of Tp surprisingly did not change significantly compared to S1 although

the timing of Tp was slightly later than S1. However, both maximum particle and floc

number concentrations were significantly higher than S1 (Figure 4.6c-d). At the time

when Tp was achieved, the latent heat released by ice just reached balance with the

surface heat loss. After the heat flux increased, the increased frazil particles and floc

number concentrations further balanced the elevated heat loss, thus maintaining an

unchanged supercooling curve.

Figure 4.7b shows that a threefold heat flux decrease at t/tc6 = 0.5 (S7) reduced the

cooling rate and significantly decreased Tp magnitude compared to the baseline series

S6. Decreasing heat flux at t/tc6 = 1, 1.5 and 2 only slightly elevated Tw afterwards and

resulted in a 27 % higher residual supercooling temperature compared to S6, but it did

not change the "classic" shape of the supercooling curve. This was expected since after

significant ice was formed, the decreased heat flux does not create new demand for

particle formation and growth, therefore, the latent heat released by ice only increased

the water temperature until a rebalance between the reduced surface heat loss and

latent heat was achieved. As a result, the residual supercooling temperature was raised

slightly.

Kalke et al. (2019) classified field measurements of supercooling in the North

Saskatchewan River into three types and concluded that about one-third of the observed

events followed the classic supercooling curve shape which was probably produced un-

der approximately constant upward air-water heat flux. However, in this study, classic

supercooling curves were observed when the heat flux increased at t/tc1 = 1 (S3) in G1

experiments, and decreased at or after t/tc6 = 1 (S8 - S10) in G2 experiments. These

observations demonstrated that approximately constant heat flux is not necessarily re-
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quired to achieve a classic-shaped supercooling curve.

4.4.2 Particle and Floc Number Concentrations

The ensemble-averaged time series of particle and floc number concentrations Np and

Nf in G1 experiments (Figure 4.6c-d) showed that, increasing heat flux threefold at

t/tc1 = 0.5 and 1 increased the maximum number concentration of particles and flocs

by 40 - 50 % and 33 - 67 %, respectively. Increasing heat flux threefold at t/tc1 = 1.5

and 2 resulted in secondary maximums in particle and floc number concentrations that

were 5 - 30 times smaller than the first. Overall, the heat flux increase led to increases

in the mean particle number concentration N p by 25 to 33 % but did not significantly

increase the mean floc number concentration N f as shown in Figure 4.10a. The in-

crease in particle number concentration when the heat flux increased is logical since

more latent heat release by ice generation is required to balance the increased heat flux

regardless of the timing of the heat flux increase, the increased Np provides an increased

likelihood for particles to flocculate, thereby increasing Nf as well. Another interest-

ing observation is that increasing heat flux threefold at t/tc1 = 1 led to increases in

both maximum number concentration of particles and flocs but did not increase the Tp

magnitude (Figure 4.6b). This may suggest that the seeding particles were sufficient in

the cold room environment to trigger the nucleation and growth of frazil particles in

response to the increased heat flux. Instead, if the seeding particles were limited pre-

venting more frazil particles from forming to compensate for the surface heat loss, the

water temperature may continue to decrease resulting in a much higher Tp magnitude.

The ensemble-averaged time series of particle and floc number concentrations Np

and Nf in G2 experiments (Figure 4.7c-d) showed that only by decreasing heat flux

threefold at t/tc6 = 0.5 (S7) did it significantly decrease the maximum particle and

floc number concentration by 21 and 40 %, respectively, which also decreased N p and

N f by 10 and 22 %, respectively as shown in Figure 4.10b. During S7, the heat flux

decreased prior to significant ice formation when the water was still cooling. Therefore,
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the decrease in heat flux directly decreased the demand for frazil particle production,

thus reducing particle and floc number concentrations and increasing water tempera-

ture. Results from S8 - S10 show that decreasing heat flux at or after Tp was achieved

did not significantly reduce particle and floc number concentrations. In these series, the

heat flux decrease occurred when or after latent heat released by frazil growth already

balanced the initial heat flux condition. This indicates that a significant amount of ice,

including small particles not visible to the camera, had already formed at the time of the

heat flux decrease. These particles likely continued growing with inertia and producing

new particles by secondary nucleation even after the heat flux was reduced. Therefore,

the particle and floc number concentrations shown in Figure 4.7c-d did not decrease

but remained similar to S6.

Series-averaged particle and floc production and decay rates shown in Figure 4.9

indicate that increasing or decreasing heat flux at a dimensionless time of 0.5 approx-

imately increases or decreases the particle and floc production rates by a factor of two

and that these changes are statistically significant. This indicates that the production

of particles and flocs quickly adapts when the heat flux is varied prior to the start of

significant ice formation. But particle and floc production rates did not change signifi-

cantly when the heat flux was varied at Tp. As discussed earlier at that time significant

number of ice particles might had already formed and would grow and multiply with

inertia. Therefore, the production rates did not change significantly.

It is worth noting that Clark and Doering (2009) measured particle production

rate in a laboratory counter-rotating flume and the values ranged from 82 to 1119

particles/(m3s). In this study, the particle production rate ranged from 172 to 453

particles/(m3s), which falls within the range observed by Clark and Doering (2009).

Clark and Doering (2009) also noted that the particle production rate increases with

increasing turbulence intensity and larger magnitudes of peak supercooling. Although

in this study the turbulence intensity was kept constant, larger magnitudes of peak

supercooling did correspond to higher particle production rates.
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4.4.3 Particle and Floc Sizes

Time series plots in Figure 4.6e-f show that significant changes in the trends and mag-

nitudes of the µp and µ f time series were observed in S4 and S5. In S4 increasing heat

flux at t/tc1 = 1.5 prolonged the plateau period duration of µp fluctuating around 1

mm and led to a secondary maximum in µ f of ∼0.6 mm, while in S5 increasing heat

flux at t/tc1 = 2 caused a rebound in the time series of µp and µ f with both peaking

at ∼1 mm before they decreased again. These changes were accompanied by slight

increases in the particle and floc number concentrations as seen in Figure 4.6c-d, in-

dicating that a small number of particles were forming and growing again in response

to the increased heat flux during the residual supercooling phase. Time series plots in

Figure 4.7e-f show that decreasing heat flux did not result in significant changes in the

trends or magnitudes of µp and µ f regardless of the time of change. This is logical

since decreasing heat flux does not create new demands for particles to form and grow,

therefore does not affect the size evolution of the existing particles and flocs.

Previous field measurements reported mean particle size measurements ranged from

0.32 to 1.32 mm (Marko and Jasek 2010; Richard et al. 2011; McFarlane et al. 2019b)

and mean floc size ranged from 1.19 to 5.64 mm (Pei, Yang, et al. 2024). Table 4.3

shows that the mean particle and floc sizes ranged from 0.76 to 0.84 mm and 2.57 to

2.78 mm, respectively, which falls within the range of those observed in field environ-

ments. However, the range of mean sizes observed in this study is considerably smaller

than the range observed in the field. This could be because this study only examined

varied heat flux scenarios, whereas in the field the availability of seeding particles and

varying hydraulic conditions might also affect the evolution of particle and floc.

4.5 Conclusions

A total of 30 experiments were performed to generate and image frazil ice particles and

flocs under constant air-water heat flux, as well as when the heat flux was increased

or decreased approximately threefold at different times during supercooling events.
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The sizes and concentrations of frazil particles and flocs were measured. The effect of

varying heat flux at different times of supercooling events on the characteristics of the

supercooling curve, as well as the frazil particle and floc properties, were investigated.

Results show that increasing heat flux at different times during supercooling raised the

mean particle number concentration N p by 25 - 33 % but did not significantly affect the

mean floc number concentration N f . Decreasing heat flux significantly reduced mean

particle and floc number concentrations (N p and N f ) by 10 and 22 %, respectively, but

only when the change occurred prior to peak supercooling. Overall, changes in heat

flux only had a minor effect on the mean particle and floc sizes and did not alter their

lognormal size distributions.

It is evident that increasing heat flux prior to peak supercooling (i.e. at 0.5 tc1 or tc6),

when no significant ice formation is detected, results in an immediate increase in the

cooling rate, raising the magnitude of peak supercooling, and significantly increasing

the particle and floc production rates as well as maximum number concentrations to a

level similar to constant heat flux experiments performed under the target heat flux con-

dition. Conversely, decreasing heat flux prior to peak supercooling reduces the cooling

rate and the peak supercooling magnitude, and significantly decreases production rates

and maximum number concentrations aligning them with post-change constant heat

flux experiments. This suggests that the formation and evolution of frazil particles and

flocs quickly adjust to the new heat flux conditions if the heat flux increases or decreases

prior to any significant ice formation. Increasing heat flux after peak supercooling (i.e.

at 1.5 and 2tc1) initiated a second supercooling period with five times smaller cooling

rates and 1.6 times smaller peak supercooling than the first supercooling period. Dur-

ing this second supercooling period, particle and floc number concentrations reached a

second maximum before decreasing although they were significantly smaller than the

first. This indicates that particles and flocs could start forming again during the residual

phase in response to the increased heat flux.

The most interesting observation is that increasing heat flux at peak supercooling
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(i.e. at 1 tc1) does not significantly change the shape of the supercooling curve or the

peak supercooling magnitude despite significant increases in particle and floc number

concentrations. This is important for two reasons: first, it demonstrates that the clas-

sic supercooling curve does not always indicate constant heat flux conditions; second,

particle and floc production does not necessarily cause dramatic changes in the super-

cooling curve. The fact that the peak supercooling magnitude did not increase while

particle and floc production increased significantly suggests that the laboratory experi-

ments may have been conducted under sufficient seeding particles. It also implies that a

lack of seeding particles might drive the peak supercooling to greater magnitudes rather

than keeping it unchanged, resulting in different particle and floc evolution processes.

This study demonstrates that varying heat flux during different stages of supercooling

leads to significantly different responses in particle and floc evolution. This highlights

the need to simultaneously monitor water temperature and heat fluxes in natural en-

vironments where heat flux is rarely a constant. It is also worth noting that this study

only examined threefold heat flux variation and the surface ice coverage in some cases

further reduced the magnitude of variation. The availability of seeding particles was

also not controlled and the hydraulic condition was kept the same. Therefore, future

studies should reduce the effect of surface ice coverage, and explore varying seeding

availability and hydraulic conditions together with heat flux to gain a more comprehen-

sive understanding.
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Chapter 5

Laboratory Study of the Correlation
Between Frazil Ice Particle and Floc
Properties

5.1 Introduction

Frazil ice particles form in turbulent water that is supercooled below its freezing point

by heat loss to the atmosphere. Suspended frazil ice particles may collide and adhere to

each other in the turbulent flow, forming clusters of particles known as frazil flocs and

this process is referred to as flocculation (Clark and Doering 2009). The collision be-

tween existing ice, as well as fluid shear, may also cause breakage of ice particles/flocs.

As frazil flocs grow in size, their buoyancy may overcome the turbulence of the flow

and then they will rise to the surface forming frazil ice pans (Hicks 2016). Typically,

the accumulation of surface ice pans results in the formation of a solid ice cover which

insulates the water and halts the supercooling as well as the frazil ice generation. The

evolution of frazil floc properties and subsequent floc rise has a profound influence on

surface ice generation and ice cover formation. However, it is still relatively poorly

understood.

A number of laboratory studies have investigated the size and concentration evolu-

tion of frazil ice particles during supercooling (Ye 2002; Clark and Doering 2006; Mc-

Farlane et al. 2015; Schneck et al. 2019). It was found that the number concentration of

suspended particles first increased slowly and then more rapidly, reaching a maximum
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just after peak supercooling (i.e. the minimum water temperature) occurred. After

peaking the particle concentration decreased. The mean particle diameter increased

before reaching a maximum around the time peak supercooling occurred, began to de-

crease and level off to an approximately constant size once the number of particles

began to decrease. Schneck et al. (2019) also reported simultaneous measurements of

floc properties together with particle properties. It was found that in freshwater, the

floc number concentration and mean size started to increase significantly just prior to

peak supercooling, and reached a maximum shortly afterwards. After that floc num-

ber concentration decreased slowly while the mean floc size continually increased very

slowly. The evolution of particle and floc sizes and concentrations are clearly correlated

as flocs are formed by the flocculation of particles. However, no detailed quantitative

study on the correlation between particle and floc properties during different stages of

supercooling has been reported. Therefore, it is of interest to look into the correlation

between the properties of particles and flocs during supercooling in order to further

our understanding of the physics behind frazil flocculation and improve frazil ice dy-

namics models that simulate the frazil flocculation process (Hammar and Shen 1995;

Rees Jones and Wells 2018).

In this study, a series of laboratory cold room experiments were performed in a frazil

ice tank to investigate the correlation between frazil ice particles and floc number con-

centrations and sizes under different air temperatures and turbulent dissipation rates.

Time series images of suspended frazil ice particles and flocs were obtained using a

high-resolution camera system. Images were analyzed to compute frazil ice particles

and floc number concentrations and sizes. Precision temperature recorders were used to

measure water and air temperatures. Time series of frazil ice particle and floc sizes and

concentrations are presented, and their correlation during different stages of supercool-

ing was analyzed. Effects of different turbulent dissipation rates and air temperatures

on the correlation between frazil ice and floc properties are discussed.
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5.2 Experimental Setup and Methods

The laboratory experiments were conducted inside the University of Alberta’s Cold

Room Facility in a frazil ice tank. The tank has a base dimension of 0.8 m by 1.2 m

and was filled with filtered tap water to a depth of 1.3 m. As shown in Figure 5.1,

Four synchronized propellers were mounted on the bottom of the tank and powered

by a NEMA 34 DC variable speed electric motor to generate turbulent flow in the tank.

The side walls and bottom of the tank were insulated with Owens Corning FOAMULAR

C-200 XPS rigid foam insulation board with a thickness of 51 mm so that the majority

of heat exchange occurred across the air-water interface.

Two openings were cut from the insulation. The back opening was used for mounting

a Genaray SpectroLED Essential 360 Daylight LED light against the back glass to provide

backlighting. The light was diffused by a translucent plastic sheeting with a thickness

of 1.5 mm. The front opening was located directly opposite to the light and was used

as a viewing window for the camera. Two 16 cm × 16 cm square Cavision glass linear

polarizing filters, mounted 90◦ separated by a 3.1 cm gap, were installed inside the tank

firmly against the front tank glass so that the ice particles and flocs passing through the

gap were visible in the front opening. A 36-megapixel Nikon D800 DSLR camera with

a Micro-Nikkor 60 mm f/2.8D lens was mounted outside of the tank, focused on the

polarizers to capture images of frazil particles and flocs as they were advected between

the polarizers. The camera was programmed to capture images at 1 Hz with an ISO

of 6400, a shutter speed of 1/2000 s, and a f-stop of f/25. The configuration resulted

in an average image pixel size of 21.6 µm per pixel and a 159 mm × 106 mm field of

view. A space heater was mounted beside the camera to blow warm air onto the glass

window to prevent frost formation. In addition, the water temperature was logged

in real-time at 1 Hz using a Sea-Bird SBE 39plus temperature recorder (accuracy ±

0.002 ◦C) mounted at the same water depth as the polarizer centroid. An RBR Solo T

temperature recorder (accuracy ± 0.002 ◦C) was mounted on the top of the tank 15 cm

above the water surface to measure the air temperature every second.
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Figure 5.1: Plan view of the frazil tank showing the locations of instrumentation and
equipment.

At the start of each experiment, the space heater was turned on, the cold room was

programmed to maintain a target steady air temperature, and the bottom propellers

were set to a desired constant speed using a laser tachometer. The air and water tem-

perature recorders were programmed to start collecting data. Fifteen minutes before

supercooling started, the polarizers were mounted in the tank and the camera was po-

sitioned and focused on the polarizers. Scale images of a ruler placed at the front,

middle, and back of the polarizer gap were taken to determine the average pixel res-

olution. Ten background images prior to ice formation were captured. One minute

before supercooling started, the camera was programmed to begin taking images. The

supercooling start time as well as the time when peak supercooling temperature (i.e.

minimum water temperature, defined as Tp) was achieved were recorded, and the pe-

riod between was defined as the cooling period tc. Each experiment was run for at least

a total duration of 3.5 tc to allow most suspended frazil ice particles and flocs to rise

to the surface, after that the equipment was retrieved from the cold room and the air
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temperature in the cold room was raised above zero degrees to thaw the ice.

Three groups of experiments were performed to examine the effect of turbulence

and air temperature on the correlation between particle and floc properties. Group

#1 (G1) and #2 (G2) were performed with a cold room air temperature of -5 ◦C and

propeller speeds of 325 rpm and 225 rpm, respectively. Group #3 experiments (G3)

were performed using a propeller speed of 325 rpm and a cold room air temperature of

-15 ◦C. McFarlane et al. (2015) conducted ADV measurements in ice-free water in the

same tank and estimated the tank averaged turbulent kinetic energy dissipation rates

ϵ to be 85.5 and 335.6 cm2/s3 at propeller speeds of 225 and 325 rpm, respectively.

Therefore, changing the propeller speed from 225 rpm to 325 rpm resulted in a∼4 fold

increase in ϵ.

5.3 Experiment Repeatability

For each experimental group, three repeat experiments were conducted to reduce the

uncertainty of the results. Figure 5.2 shows the superimposed air and water tempera-

ture time series from the three repeated G1 experiments. Note each color represents

one repeat experiment and the time series were aligned by the start time of supercool-

ing (i.e. water temperature first drops to below 0 ◦C). Figure 5.2a shows that the air

temperature fluctuated between -3.8 to -4.8 ◦C with a mean of -4.49 ◦C, indicating that

the cold room was controlled within a 1 ◦C range of fluctuation. Figure 5.2b shows

that the supercooling curves aligned quite well despite local spikes up to ∼0.01 ◦C in

magnitude which were caused by ice momentarily contacting the thermistor tip of the

Seabird logger.

Table 5.1 presents a summary of propeller speed and statistics from the repeatability

analysis for each experimental group including the mean (µ) and the coefficient of

variation (COV) for the mean air temperature Taµ, water cooling rate Rc, cooling period

tc, and the peak supercooling temperature Tp. The cooling rate Rc is defined as the slope

of the water temperature time series from 10 mins prior to the start of supercooling
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Figure 5.2: Superimposed (a) air temperature Ta and (b) water temperature Tw time
series from Group #1 experiments. Note each color represents one repeat experiment.

to the start of supercooling, an illustration is provided in Figure 5.3 showing Rc, tc,

and Tp labelled in a typical supercooling curve. As shown in Table 5.1, the measured

mean air temperature Taµ was -4.49 ◦C, -4.56 ◦C and -14.35 ◦C for G1, G2 and G3,

respectively. The cooling rate Rc, cooling period tc, and peak supercooling temperature

Tp ranged from -0.002 to -0.0057 ◦C/min, 13.91 to 35.69 minutes, and -0.052 to -0.071

◦C, respectively. Overall, the COV varied from 0.6 % to 4.9 %, demonstrating that the

air and water temperatures were well-controlled and the time series were repeatable

within acceptable limits.

Table 5.1: Summary of propeller speed and statistics including the mean (µ) and the
coefficient of variation (COV) for the actual mean air temperature Taµ, water cooling
rate Rc, cooling period tc, and the peak supercooling temperature Tp for each experi-
mental group.

Exp.

Group

Propeller

speed (rpm)

Taµ Rc tc Tp

µ (◦C) COV
(%)

µ
(◦C/min)

COV
(%)

µ
(min)

COV
(%)

µ (◦C) COV
(%)

G1 325 -4.49 0.6 -0.0020 1.4 31.27 0.2 -0.052 2.4

G2 225 -4.56 0.6 -0.0023 4.9 35.69 3.2 -0.071 2.1

G3 325 -14.35 0.9 -0.0057 0.7 13.91 3.1 -0.065 4.0
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Figure 5.3: Schematics of water temperature time series during a supercooling event
showing the cooling rate Rc, the cooling period tc, and peak supercooling temperature
Tp.

5.4 Data Processing

Sequences of images captured during each experiment were analyzed to compute the

properties of frazil ice particles and flocs. First, the average of the background images

was subtracted from each raw image to remove background noise. Each image was

then processed using an iterative thresholding algorithm developed by McFarlane et

al. (2014) to obtain the corresponding binary image containing the location and extent

of each ice object (i.e. frazil ice particles and flocs) that did not intersect the image

boundaries. The properties of each ice object such as area a and perimeter P were

computed from the binary images. Each ice object was also fitted to an ellipse and

the corresponding ellipse area ae, perimeter Pe, as well as the major and minor axis

lengths were computed. The size S of both frazil particles and flocs was defined as the

major axis length of its fitted ellipse following previous studies (McFarlane et al. 2015;

Clark and Doering 2009). Particles with a size smaller than 108 µm (five times of pixel

resolution) were eliminated because they were too pixelated. Next, each ice object

was classified as either a frazil ice particle or floc based on their geometrical properties
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following the criteria described in Section 3.4.1.

After classification, the mean particle size µp, mean floc size µ f , particle number

concentration Np, and floc number concentration Nf were computed for each image.

This time series data was smoothed by taking an average every 35 seconds and placing

the average value at the end of each time window. The ensemble-averaged time series

of water temperature as well as particle and floc number concentrations and mean

sizes for each group were then computed. The number concentration is defined as the

number of particles/flocs per unit volume. The measuring volume used for the number

concentration calculation was the image field-of-view times the distance between the

two polarizers. Several key times were defined to help characterize their evolution: the

time when peak supercooling temperature was achieved (tp), the time when Np first

reached a threshold value of 0.001 cm-3 (ts), the time when Np reached its maximum

(tN ), and the time when Np first dropped below a threshold of 0.001 cm-3 (te). The

mean particle size µp time series show that µp first increased significantly, reaching a

first local maximum, then decreased slightly before increasing again reaching a second

local maximum, and afterwards it decreased continuously. Therefore, two additional

times tµ1 and tµ1 were defined as the times when µp reached the first and second local

maximum, respectively.

5.5 Results and Discussion

5.5.1 Time Series

Ensemble-averaged time series plots of water temperature Tw, number concentration of

particle (Np) and floc (Nf ), as well as particle (µp) and floc (µ f ) mean size for exper-

iments G1, G2 and G3 are presented in Figure 5.4, Figure 5.5 and Figure 5.6, respec-

tively. Key times are labelled in the plots as reference lines, and the period between

ts and te is shaded in yellow. For G1, supercooling reached a Tp of -0.052 °C at tp of

1,882 s (Figure 5.4a), and then reached a residual temperature of -0.021 °C at 3,000 s.

Figure 5.4b shows that both Np and Nf increased above the threshold before tp, reach-
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ing a maximum of 0.10 and 0.03 cm-3, respectively at the same time (tN ), and then

decreased below 0.001 cm-3 during the residual supercooling phase. It is worth noting

that Np increased above the threshold 245 s earlier than Nf and decreased below it 483

s later. The earlier increase was likely because a certain concentration of particles is re-

quired to form flocs and the later time that Np fell below the threshold because flocs rise

to the surface quicker than particles. In Figure 5.4c, µp increased rapidly immediately

after ts, peaked locally at 0.90 mm at tµ1, and then reached equilibrium from tµ1 to tµ2.

During this time µp slowly decreased to 0.76 mm and increased again to a second local

maximum of 0.96 mm at tµ2. After that µp continually decreased. µ f started to increase

significantly slightly later than µp, peaked at 3.02 mm 210 s before tN , decreased slowly

to 2.18 mm 945 s after tN and then more rapidly till it reached negligible values. Both

µ f and µp were increasing before tµ1 and decreasing after tµ2. However, from tµ1 to

tµ2, µ f was mostly increasing as µp decreased slightly, then decreased when µp started

to increase again as shown in Figure 5.4c.

In Figure 5.5a, supercooling reached a lower Tp value (-0.070 °C) at a longer dura-

tion of 2,070 s than in G1 experiments that have higher propeller speed (Table 5.1).

Figure 5.5b shows that the overall trend of Np and Nf were similar to G1. However, the

peak value of Np and Nf was 0.08 and 0.02 cm-3, respectively, which was 20 % and 33

% lower than in G1, respectively. The trend of µp and µ f shown in Figure 5.5c were

also similar to those in G1. The two local peaks of µp reached 0.92 mm at tµ1 and 0.93

mm at tµ2, respectively, both resembling those in G1. µ f peaked at 2.80 mm at 2,589

s, which was slightly lower than in G1.

Figure 5.6a shows that for G3 experiment with three times colder air temperature

than G1, a lower Tp value of -0.064 °C and a shorter tp value of 860 s was achieved

compared to G1. Figure 5.6b-c shows for G3 experiments the particle and floc number

concentrations and mean sizes have similar trends compared to the other two groups. Np

and Nf peaked at 0.13 and 0.05 cm-3 (Figure 5.6b), respectively, both were the largest

in the three experimental groups. µp reached the first local peak with a value of 0.89
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Figure 5.4: Ensemble-averaged time series of (a) water temperature Tw, (b) number
concentration N of particle and floc, and (c) mean size µ of particle and floc for G1
experiments. The time period between ts and te is shaded in yellow.

mm, decreased slowly to 0.72 mm before reaching the second local peak at 0.83 mm,

while µ f reached a peak value of 2.97 mm before decreasing to a negligible value.

It is evident from Figure 5.4 to Figure 5.6 that the overall trend of particle and floc

number concentrations, as well as mean sizes, remained very similar as the turbulent

dissipation rate and air temperature were varied. The trend of the Nf time series fol-

lowed that of Np closely, except that Nf started to increase later and fell to a negligible
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Figure 5.5: Ensemble-averaged time series of (a) water temperature Tw, (b) number
concentration N of particle and floc, and (c) mean size µ of particle and floc for G2
experiments. The time period between ts and te is shaded in yellow.

level prior to Np. As for mean sizes, both µp and µ f increased between ts and tµ1 and

decreased after tµ2. Between tµ1 and tµ2, the trends in µp and µ f were generally in-

versely correlated. Comparing the G1 and G2 time series it can be seen that decreasing

the turbulent dissipation rate resulted in a longer cooling period and lower peak super-

cooling temperature, which agrees with previous numerical and experimental results

(Hammar and Shen 1995; McFarlane et al. 2015). The lower turbulent dissipation rate

138



Figure 5.6: Ensemble-averaged time series of (a) water temperature Tw, (b) number
concentration N of particle and floc, and (c) mean size µ of particle and floc for G3
experiments. The time period between ts and te is shaded in yellow.

also decreased the peak particle and floc number concentrations by 20 - 30 %, respec-

tively. A lower dissipation rate leads to lower turbulence intensity, making particles less

likely to collide likely reducing the secondary nucleation rate. Therefore, fewer parti-

cles would be produced resulting in a slower heat balance between water heat loss and

latent heat of fusion. Comparing the G1 and G3 time series it is evident that lower air

temperature resulted in a short cooling period, lower peak supercooling temperature,
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and larger peak particle and floc number concentrations.

5.5.2 Correlation Between Particle and Floc Number Concentra-
tions

The ensemble-averaged time series of particle and floc number concentrations were

broken into two time periods to investigate their correlations. The increasing period

was defined as the time from ts to tN when Np was increasing, and the decreasing pe-

riod was defined as the time from tN to te when Np was decreasing. In Figure 5.7a-b,

Np and the corresponding Nf values from each time step (35 seconds) during the two

periods were plotted against each other. A linear regression was fitted to each rela-

tionship and plotted in Figure 5.7a-b as well. In all cases Nf increased linearly as Np

increased with an R2 value greater than 0.97. The strong linear relationships indicate

that in both the increasing and decreasing periods, Nf was proportional to Np regardless

of variations in air temperature or turbulent dissipation rate. The linear fitted slope

for G1 and G3 experiments during the increasing period was both 0.33 (Figure 5.7a)

and during the decreasing period they also had similar but slightly larger slope values of

0.35 and 0.34 (Figure 5.7b), respectively. The slope of the regression equations for G2

experiments was 0.29 during both the increasing and decreasing period, which was sig-

nificantly different at the 95% confidence level compared to the other two groups with

values 12% and 15∼17% smaller during the increasing and decreasing period, respec-

tively. This is possibly because the decreased turbulent dissipation rate in G2 lowered

the collision frequency of suspended particles, reducing the proportion of flocs. The

intercepts of the increasing period regression equations were -0.003 and -0.0032 for G1

and G3, respectively, which is significantly larger compared to the G2 value of 0.0009.

This indicates that when the turbulent dissipation rate was higher, Np was significantly

higher when flocs first started to form (i.e. Nf started to increase significantly), hence

the time between when particles and flocs started to form was longer. Figure 5.8 shows

the comparison between the observed Nf time series and the time series calculated

based on the obtained linear relationships. The calculated values aligned well with the
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observed values, confirming the goodness-of-fit of the obtained linear relationships.

Figure 5.7: Correlation between particle number concentration Np and floc number
concentration Nf during (a) the increasing period from ts to tN and (b) the decreasing
period from tN to te.
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Figure 5.8: A comparison between observed and calculated floc number concentration
time series for the three groups of experiments.

5.5.3 Correlation Between Particle and Floc Mean Sizes

The ensemble-averaged time series of particle and floc mean sizes were broken into

three time periods to explore their correlations. The first period was from ts to tµ1

when both µp and µ f was increasing. The second period was from to tµ1 to tµ2 when

µp reached equilibrium (i.e. µp was approximately constant varying between 0.7 and

1.0 mm) and µp and µ f were approximately inversely correlated. The third period was

from tµ2 to te when both µp and µ f was decreasing.

In Figure 5.9 plots of µp versus µ f at each time step during the three time periods

are presented. As shown in Figure 5.9a, during the first period, the fitted nonlinear

regression curves show that µ f generally increased exponentially as µp increased, the

correlation was strong for experiments G1 and G2 with R2 values of 0.99 and 0.86,

respectively and weaker in G3 with an R2 value of 0.57. During this initial period,

particles and flocs had just started to form and it is reasonable to assume that floc-

culation was likely limited by the relatively small number of particles, that flocs were

all formed by aggregation of particles and breakup of flocs was rare. Also, during this
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period the mean particle size increased rapidly and larger and larger particles were in-

corporated into the newly formed flocs. This possibly leads to the exponential increase

in the mean size of flocs. During the equilibrium period (Figure 5.9b), linear regression

analysis shows that µ f generally decreased as µp increased, confirming the inverse cor-

relation observed from Figure 5.4 to Figure 5.6. The linear regressions have R2 ranging

from 0.24 to 0.72 indicating weak to moderate correlation. This period is particularly

interesting since µp was approximately constant while at the same time both Np and

Nf were varying continually and reached their maximum values. This indicates that

during this period the rate of flocculation (i.e. the rate at which particles are incorpo-

rated into flocs) was likely varying significantly, yet the average size of particles did not

vary significantly. As shown in the time series µp first decreased slightly as µ f continu-

ously increasing, then started to increase again as µ f started to decrease. The gradual

decrease in µp after tµ1 was probably due to the preferential flocculation of larger par-

ticles since their higher cross-sectional area results in higher collision volumes. The

subsequent gradual increase in µp that occurred as µ f already decreased may be due

to the fact that at this time larger flocs were breaking up, causing µ f to decrease and

µp to increase. Figure 5.9c shows during the third period µ f decreased exponentially

as µp decreased and all correlations had an R2 above 0.8. This is not surprising since

flocs were removed significantly faster than small particles by rising to the surface.
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Figure 5.9: Correlation between particle mean size µp and floc mean size µ f during (a)
the period from ts to tµ1, (b) the period from tµ1 to tµ2, and (c) the period from tµ2 to
te for the three groups of experiments.
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5.6 Conclusions

A series of experiments were performed to produce and image frazil particles and flocs

under different turbulent dissipation rates and air temperatures during supercooling.

The time evolution of the frazil particle and floc number concentration and mean size

were obtained and their correlations during different time periods were investigated.

Results show a strong linear relationship between particle and floc number concentra-

tions with the ratio Nf /N p ranging from 0.29 - 0.35 in both the increasing and decreas-

ing periods. This ratio did not change significantly with changing air temperatures but

was reduced by 12 - 17 % at a lower turbulent dissipation rate. Three time periods

were identified to establish the relationship between particle and floc mean sizes. It

was found that there was a moderate to strong nonlinear correlation between mean

particle size and mean floc size described by an exponential relationship when parti-

cle mean sizes increased or decreased significantly. When particle mean size reaches

an approximate equilibrium, a weak to moderate linear correlation was found between

mean particle and floc size and the negative slope suggests they are inversely correlated.

These relationships provide new insights into the evolution of flocs and the flocculation

process during supercooling, the robust linear relationship between particle and floc

number concentrations may be useful for estimating the time evolution of floc number

concentration in frazil dynamics models (e.g. Rees Jones and Wells 2018). Further nu-

merical modelling that accounts for the dynamics and population balance of both frazil

particles and flocs may help increase our understanding of the physics behind those

relationships.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

As beautiful as it looks, the river freeze-up process that begins with frazil formation

and ends with solid ice coverage may pose significant challenges to structures in rivers

and generate serious flooding particularly if ice jams occur (Ettema and Zabilansky

2004; Barrette 2021). Therefore, understanding river freeze-up is of great interest

to cold region communities because such knowledge helps them effectively monitor

river ice conditions. It would also allow engineers to better predict hazards related

to river ice formation and ice cover progression. A number of studies have focused on

observations of frazil ice particles during the freeze-up process (Daly and Colbeck 1986;

Ye 2002; Clark and Doering 2006; McFarlane et al. 2015; McFarlane et al. 2019b).

However, the mechanics of flocculation and the processes by which they rise to the

water surface forming frazil ice pans are still largely unknown which is in part due to

the limited data available on frazil flocs and surface ice pans. In this thesis, a series of

field and laboratory measurements were made to investigate the frazil flocs and surface

ice properties. These measurements led to the completion of four studies described in

detail in Chapters 2 to 5, each briefly revisited and key results summarized below.

Chapter 2 investigated the possibility of utilizing low-resolution public cameras that

were not set up for river ice research for long-term monitoring of surface ice condi-

tions. A deep learning based hybrid image processing algorithm consisting of image
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classification, rectification, segmentation, and ice pan properties extraction was devel-

oped to process images from a distant and oblique-viewed public camera mounted on

a building rooftop near the North Saskatchewan River. The accuracy of the algorithm

was assessed by comparing ice concentration results from processed images and manu-

ally annotated ground truth images, and by comparing concentrations from the public

camera to results from bridge camera images with a much higher resolution. A mean

absolute difference of surface ice concentration between 2 - 3 % was achieved. The

algorithm was used to process images collected during five freeze-up seasons under

changing environmental conditions. It was found that for all five seasons, the ice pan

size distribution follows a lognormal distribution and no significant annual variations

in the size and shape of ice pans were observed. The diameter of ice pans ranged from

0.55 to 15.03 m with a mean of 1.82 m. The pans were generally elliptically shaped

with an average aspect ratio of 1.71. Time series of water temperature and ice pan

properties show that supercooling events and the appearance of ice pans coincided,

and daily mean ice pan diameter varied from 1 to 3 m. These results demonstrated

that this method provides valuable information on both long- and short-term temporal

variations in river ice conditions and ice pan properties, which opens opportunities for

river ice researchers to identify and utilize river ice images for long-term surface ice

monitoring from suitable existing public cameras.

Chapter 3 presented detailed measurements of frazil ice flocs in rivers and inves-

tigated the key hydraulic and meteorological factors that govern the properties and

evolution of frazil flocs. Time series images of frazil ice particles and flocs were cap-

tured during eleven field deployments in three Alberta rivers using a submersible high-

resolution camera system. Images were processed to accurately identify flocs and to

calculate their sizes and concentrations. It was found that a lognormal distribution was

a good fit for the floc size distribution. The mean floc size ranged from 1.19 to 5.64 mm

and the overall mean floc size was 3.80 mm. The mean floc size decreased linearly as

the local Reynolds number increased. The average floc number concentration ranged
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from 1.80 × 10-4 to 1.15 × 10-1 cm-3. The average floc volumetric concentration ranged

from 2.05 × 10-7 to 4.56 × 10-3 and was found to correlate strongly with the fractional

height above the river bed described by a power law relationship. No significant cor-

relations were found between the air-water heat flux and floc properties. During the

principal supercooling phase, floc number concentration and mean size were found to

increase significantly just prior to peak supercooling and reached a maximum near the

end of principal supercooling. During the residual supercooling phase, the mean floc

size did not typically vary significantly. The correlation between mean floc size and the

local Reynolds number can be used to estimate mean floc sizes given mean flow veloc-

ity and depth. The reported lognormal size distributions of flocs, time series of mean

floc size and concentration evolutions, as well as the two correlations obtained, provide

opportunities to incorporate floc dynamics into numerical models to more realistically

simulate frazil ice evolution and surface ice formation.

In Chapter 4 results from a laboratory study investigating how the supercooling curve

as well as the properties of frazil ice particles and flocs vary under different air-water

heat flux scenarios were reported. A total of 30 cold room laboratory experiments were

performed in a frazil ice tank where the cold room air temperature was increased or

decreased threefold at different times during supercooling events. Images of frazil par-

ticles and flocs were captured and processed to obtain time series of their sizes and

concentrations. Results indicate that increasing the heat flux at different times raised

the mean particle number concentration N p by 25 - 33 % but did not significantly affect

the mean floc number concentration N f . However, decreasing the heat flux only sig-

nificantly reduced N p and N f by 10 and 22 %, respectively when the change occurred

prior to peak supercooling. Time series analysis showed that increasing or decreas-

ing heat flux prior to peak supercooling led to an immediate increase or decrease in

the cooling rate and peak supercooling magnitude. This caused the particle and floc

production rates and maximum number concentrations to change to levels that were

similar to those observed during constant heat flux experiments. Increasing the heat
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flux after peak supercooling resulted in a second milder supercooling period and smaller

secondary maximum particle and floc number concentrations compared to the first su-

percooling period. Increasing the heat flux at peak supercooling did not significantly

change the shape of the supercooling curve despite significant increases in particle and

floc number concentrations. These results demonstrated that heat flux variations at dif-

ferent times during a supercooling event led to significantly different responses in the

supercooling curve and particle and floc time series.

Chapter 5 explored the correlation between frazil particle and floc properties under

different air temperatures and turbulent dissipation rates to further our understand-

ing of the frazil flocculation process. Frazil ice particles and flocs were produced and

measured in a frazil ice tank inside a cold room under air temperatures of -5 °C and

-15 °C, respectively and turbulent dissipation rates of 85.5 and 335.6 cm2/s3, respec-

tively. A strong linear relationship between particle and floc number concentrations

was found with a floc-to-particle number concentration ratio ranging from 0.29 - 0.35.

The ratio was reduced by 12 - 17 % at the lower turbulent dissipation rate. A mod-

erate to strong nonlinear correlation was found between mean particle size and mean

floc size described by an exponential relationship when particle mean sizes increased

or decreased significantly. At times when particle mean size reached an approximate

equilibrium, a weak to moderate linear correlation was found between mean particle

and floc size and the negative slope indicated that they are inversely correlated. The

fact that the floc-to-particle number concentration ratio was only significantly affected

by turbulent dissipation rate demonstrated the importance of the role of turbulence

in the flocculation process. These observations provide novel insights into the floccula-

tion process and the linear relationship between particle and floc number concentration

may be used to estimate the temporal variations in floc number concentration in frazil

dynamics models that currently only model individual frazil ice particles.

In summary, this study offers novel insights into the properties and evolution of frazil

flocs and surface ice under changing environmental conditions, which advanced our
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understanding of river freeze-up processes and is a significant step toward linking un-

derwater frazil formation with surface ice generation. Some of the findings in this study

may help engineers estimate frazil ice conditions without directly measuring frazil par-

ticle and floc properties. For example, mean floc sizes could be estimated using the

local Reynolds number which only requires measurements of the depth-averaged flow

velocity and flow depth. In addition, laboratory observations showed that increases in

the air-water heat flux that occur earlier during a supercooling event led to higher par-

ticle number concentrations. This observation could be useful for predicting increased

frazil ice generation and increased risk of water intake blockage by simply monitoring

water temperature and meteorological parameters.

The detailed measurements of particle, floc, and surface ice properties could be used

to enhance numerical modeling of river ice processes and thus improve predictions of

the river freeze-up. For example, accurate estimates of long-term surface ice concentra-

tions can provide calibration and validation data, as well as boundary condition inputs

for comprehensive river ice process models such as River1D (Blackburn and She 2019)

and CRISSP1D (Shen 2010). Ice pan properties and size distributions could be used

to generate realistic discrete surface ice parcels to improve predictions of ice bridging

locations and modelling of freeze-up jams. The relationship between mean floc size

and local Reynolds numbers that was developed can be used in conjunction with the

relationship between floc size and rise velocity reported by Reimnitz et al. (1993) to

estimate frazil rise velocity, a key parameter in river ice processes models. In addition,

comprehensive river ice processes models (Blackburn and She 2019; Shen 2010), as

well as frazil ice dynamics models (Daly 1984; Souillé et al. 2020), assume frazil ice

in the water column consists solely of disc-shaped particles and neglect frazil flocs due

to limited data. The reported simultaneous time series measurements of particle and

floc mean sizes and concentrations, as well as the correlations between particle and

floc mean sizes and number concentrations, provide observational data for researchers

to incorporate floc dynamics into numerical models to improve how realistically they
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simulate the frazil flocculation process.

6.2 Recommendations for Future Research

Chapter 2 and Chapter 3 of this study demonstrated that the sizes and concentrations

of both surface ice pans and underwater frazil ice flocs can be accurately quantified in

rivers. This is the foundation for future field studies that simultaneously measure the

time series of both underwater frazil production and surface ice conditions, ideally in

longer river reaches over longer period of time. These comprehensive field measure-

ments may help us better understand the relationship between frazil ice production and

surface ice generation. For example, how long after the start of significant underwater

frazil production do flocs rise to the surface and solidify into crusty frazil ice pans, and

how do different geo-morphological, hydrological and meteorological conditions in dif-

ferent reaches affect this process. The current FrazilCam would need to be deployed

with a power supply cable and a data logger for a longer deployment duration, and

it would need to be modified to automate the polarizer rinsing process, for example

using a mechanical wiper to periodically wipe the ice off of the polarizers. As for sur-

face ice monitoring, appropriately located low-budget game cameras may be deployed

along the river reaches downstream of the FrazilCam and the glare of the sun may be

reduced using a polarizing filter on the camera lens.

In Chapter 3, time series images containing both frazil ice particles and flocs were

obtained in three Alberta rivers. However, only floc data was presented and analyzed

because to minimize the effect of suspended sediments a high cut-off size was intro-

duced which eliminated most of the small individual frazil ice particles. McFarlane et

al. (2019a) developed a site-specific SVM to distinguish between ice particles and sed-

iments, which requires ice-free sediment images at each site for SVM training. Future

field work could be carried out with the goal of collecting ice-free sediment images at

the four deployment sites listed in Chapter 3, and to train SVMs to get rid of the effect

of sediments on the frazil ice particle data. With the effect of sediments eliminated,
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particle and floc sizes and concentrations could be evaluated simultaneously, and their

correlations could be investigated to see if the laboratory findings presented in Chap-

ter 5 are valid in the field. Since Chapter 3 only reported three deployments during

the principal supercooling phase, more efforts could also be made to collect particle

and floc images during principal supercooling to better understand particle and floc

evolution in rivers.

Another important future study that would improve our understanding of the frazil

flocculation process would be to measure the rise velocity of frazil flocs. Floc rise ve-

locity determines the time scale for frazil flocs to rise to the surface forming surface

pans. Incorporating accurate estimates of rise velocities into current river ice models

should lead to more accurate simulations of surface ice formation and progression. The

only floc rise velocity measurements available in the literature were made by Reimnitz

et al. (1993) using a stirred vertical tube or tank filled with seawater. They reported

floc rise velocities ranged from 1 to 5 cm/s for floc sizes up to 5 cm, and noted that the

floc rise velocities were functions of their size. However, rapidly rising large flocs were

observed generating small-scale turbulence which caused their rise velocity to deviate

from the obtained linear function. Chapter 3 demonstrated that flocs found in different

hydraulic conditions were comprised of different shapes of ice crystals, including disc-

shaped, needle-shaped, and irregular particles. Therefore, it is of interest to investigate

the effect of different floc sizes as well as the predominate crystal shape in a floc on the

floc rise velocity.
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Appendix A: Time Series Plots for the
Remaining Eight Field FrazilCam
Deployments

Figure A.1: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment NSR-L1 on December 3, 2021.
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Figure A.2: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment NSR-L2 on December 3, 2021.
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Figure A.3: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment NSR-L3 on December 9, 2021.
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Figure A.4: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment NSR-L5 on December 12, 2021.
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Figure A.5: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment NSR-L6 on November 7, 2022.
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Figure A.6: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment PR-F1 on December 12, 2022.
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Figure A.7: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment KR-E1 on January 29, 2023.
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Figure A.8: Time series of (a) water and air temperatures Tw and Ta, (b) heat flux
Q, (c) floc mean size µ f , (d) floc number concentration C f n and (e) floc volumetric
concentration C f v for deployment KR-F2 on January 31, 2023.
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