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A bstract
W ith the advent of efficient computational algorithms, real-time solutions to the non­

linear Fault Detection and Diagnosis problem are nearing a reality. In  this thesis, we propose 

a new dynamical observer structure to solve this problem for a class of nonlinear systems 

referred to as Lipschitz systems. Lipschitz systems constitute a very important class, since 

any nonlinear system w ith continuously differentiable nonlinearities can be locally expressed 

in this form. Examples include trigonometric nonlinearities occurring in robotics, as well as 

nonlinearities which are square or cubic in nature. The new observer structure adds extra 

degrees of freedom over the classical observer structure, and lays the ground to the addition 

of the Fault Diagnosis objective in the design problem. I t  is shown that the Lipschitz observer 

design problem can be carried out using a systematic design procedure which is less restric­

tive than the existing design approaches and that can be solved using commercially available 

software. W ith in  this new framework, the sensor Fault Diagnosis problem is formulated as a 

standard convex optim ization problem solvable using Linear M atrix Inequalities (LMIs). I t  

is shown that the classical observer structure could not solve the problem in this case. The 

case of additive uncertainties is considered by extending the Unknown Input Observer (UIO) 

technique to the class of Lipschitz systems.

The new Lipschitz observer and sensor Fault Diagnosis designs are applied to a prac­

tical example, namely the Rotary Inverted Pendulum (ROTPEN) which falls in the category 

of planar robot manipulators. The experimental results illustrate the applicability of the 

proposed techniques in the robotics field, showing: (i) How to model a robot manipulator as 

a standard Lipschitz system, (ii) The importance of the dynamic Lipschitz observer in large 

operating regions and for large Lipschitz constants, (iii) The accurate velocity estimation
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obtained using the dynamic observer, alleviating the need to introduce velocity sensors in 

real-time, (iv) The efficiency of the dynamic observer in  diagnosing and tolerating sensor 

faults of different frequencies.
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Chapter 1

Introduction

Motivated by a growing demand for higher re liab ility in modern control systems, the 

Fault Diagnosis Problem is gaining increasing consideration world-wide in both theory and 

application. This problem is defined as the synthesis of a monitoring system to detect faults 

and specify their location and significance in  a control system [13]. Broadly speaking, the 

term Fault means failures, errors, malfunctions or disturbances in the functional units that 

can lead to undesirable or intolerable behavior of the system [10]. Fault Diagnosis is becoming 

of crucial importance in a wide variety of applications, including:

i) Safety-critical systems such as nuclear reactors, chemical plants, aircraft control sys­

tems, fire alarms and medical devices, where the need for fast and accurate detection 

of anomalous situations is of utmost importance.

ii) Systems operating in remote and hazardous environments, where a high degree of au­

tonomy and safety is required (such as free-flying space robots and advanced unmanned 

combat aircraft).

iii)  Applications in which a safe and reliable man-machine interaction is of primary concern. 

Today’s automobile industry is a good example where the auto manufacturers have 

introduced many electronic functions such as anti-lock brake, chassis control, climate 

control, traction control, etc [10].

In  addition to safety concerns, Fault Diagnosis is very important from an economical 

perspective. This is due to the fact that fast fault detection could prevent unexpected and 

to ta l failure that can lead to plant shutdown and loss of revenues. Besides, the environmental

1
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CHAPTER 1. INTRODUCTION  2

concern is now becoming an important factor in the incorporation of Fault Diagnosis tech­

niques in  many industries. A good example is the California A ir Resource Board (CARB) 

and Environmental Protection Agency (EPA) legislations concerning all light duty vehicles 

sold in North American fleet as of 1998. The law requires on board fault detection capability 

for all vehicle components whose failure can result in  emission levels beyond a certain value 

[10].

The Fault Diagnosis problem (referred to as Fault Detection, Isolation and Identifica­

tion in the literature, abbreviated as FDI henceforth) is also very important in fault-tolerant 

control. A fault-tolerant control system is designed to retain some portion of its control 

integrity in the event of a set of possible component faults. This is achieved by incorpo­

rating an element of automatic reconfiguration, once a malfunction has been detected. FDI 

plays an important role in  this case, as before any control law reconfiguration is possible, the 

fault must be reliably detected, isolated and the information should be passed to a super­

vision mechanism to make proper decisions [13]. Fault-tolerance is considered as one of the 

characteristics of intelligent systems [3, 104].

1.1 H istory  o f  F D I

A large amount of knowledge on model-based fault diagnosis has been accumulated through 

the literature since the beginning of the 1970s [13]. The term model-based is used to charac­

terize the application of the powerful techniques of mathematical modelling, state estimation 

and system identification for FDI. Model-based FDI is also referred to as analytical redun­

dancy in contrast w ith  hardware redundancy, the other widely applied approach for FD I such 

as the well-known trip le  module redundancy (TMR) schemes used in industries. Figure 1.1, 

[13], demonstrates the concepts of the two approaches when applied for sensor fault diagnosis.

In  hardware redundancy, e.g. sensor redundancy, multiple lanes of sensors are used to mea­

sure a particular variable, and a voting scheme is applied to decide if  and when a fault has 

occurred and to specify its likely location. On the other hand, in the model-based approach, 

redundant analytical relationships between various measured variables of the monitored pro­

cess are used to solve the problem. The major advantages of analytical redundancy over 

hardware redundancy is that the former is cost-effective, can be implemented in software on 

the same computer used for process control and offers high reliability. Figure 1 also shows 

that only additional storage capacity and possibly greater computer power is needed for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 3

Hardware Redundancy

ALARMOutputInput
Diagnostic logic

ALARM

Process
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FDI algorithm using 

a mathematical 
model

Analytical Redundancy

Figure 1.1: Analytical versus Hardware Redundancy.

implementation of a model-based FD I algorithm.

The most extensive period of development of model-based FDI took place between late 

1970s and early 1990s. During this period, many fundamental definitions were established and 

a general model-based FD I system structure was proposed [13, 44]. The objectives of a model- 

based FDI algorithm have become widely accepted as the monitoring of the plant during its 

normal working conditions so as to detect the occurrence of faults (Fault Detection), recognize 

their location (Fault Isolation) and, if  possible, their time evolution (Fault Identification). 

W ith in this context, many techniques have been proposed and much work has considered 

the practical side of the problem. From the early important works in this direction are the 

works by Clark et. al in  1975 [19] who first applied classical observers to develop sensor fault 

isolation schemes. Mironovski [81] originally proposed the parity relation approach, in 1979, 

based upon consistency checking on system input and output data over a time window. The 

parameter estimation approach, which is based directly on system identification techniques, 

was first illustrated by Bakiotis et. al in  1979 [4].

A ll of these methods share the same framework in  which the diagnosis objective is 

achieved by comparing the actual system’s behavior w ith the corresponding expected behavior 

derived via its mathematical model. The result of this comparison is a set of variables (referred 

to as residuals) which are sensitive to the occurrence of a fault. In  other words, when a fault 

occurs, a fault signature affects the residuals, and this information is then processed to 

identify the size and the location of the fault by using numerical and statistical techniques.
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CHAPTER 1. INTRODUCTION

1.2 R ob u st and N on lin ear F D I

4

Since the existence of a good mathematical model is the basic building block of all model- 

based approaches used in FDI, mathematical modelling and system identification techniques 

are of crucial importance for a ll these techniques. An important problem occurs when a per­

fectly accurate and complete mathematical model for the system under hand is not available 

or is hard to obtain. This is due to the fact that discrepancies between the actual process and 

its model cause fundamental methodology difficulties in  FDI applications. They constitute 

a source of false and missed alarms which can corrupt the FDI system performance to such 

an extent that it  may become to ta lly ineffective. This problem has encouraged much work 

towards the so-called “Robust FDI” problem where the effects of modelling uncertainties as 

well as noise and disturbances are considered.

The main objective of “Robust FD I” is to design residuals that can differentiate be­

tween faults and uncertainties. Although the best case scenario is to design residuals which 

are insensitive or even invariant to uncertainties, this is a challenging problem and a more 

meaningful formulation of the Robust FDI problem is to reduce the effect of uncertainties, 

w ithout losing (or even w ith an increase of) fault sensitivity. A number of methods have 

been proposed to tackle this problem, for example the unknown input observer by Frank et. 

al [31, 32, 38], the eigenstructure assignment approach by Patton et. al [85, 86, 88, 90], the 

optimal robust parity relation method by Gertler et. al [45, 48, 49], the optimal fault detection 

filter design by Frank, Ding et. al [27]. However, the research is s till under the way to develop 

more practically applicable methods.

Another important problem that results from mathematical modelling is when a model 

exists but is highly nonlinear. This yields the “Nonlinear FDI” problem which is the main 

focus of this thesis. Nonlinear FDI has traditionally been approached in three different direc­

tions: (i) Linearization methods, (ii) Observer-based approaches and (iii) Learning method­

ologies. In  linearization, the model is first linearized at an operating point, and robust FDI 

techniques are then applied for residual generation. This method only works well when the 

linearization does not cause a large mismatch between linear and nonlinear models and the 

system operates near the operating point. On the other hand, the observer-based methods 

deal w ith systems w ith high nonlinearity and wide operating range by tackling the FDI prob­

lem directly using Nonlinear observer techniques. This approach w ill be discussed in more 

detail in Chapter 2.
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CHAPTER 1. INTRODUCTION  5

Learning methodologies (or sometimes referred to as “knowledge-based” methods) are 

conceptually different techniques that attempt to overcome the difficulty of analytical treat­

ment of the nonlinearity by using non-analytical (qualitative and knowledge-based) method­

ologies such as neural networks or fuzzy system techniques. The main idea is to find an 

approximate model which can be used to represent the nonlinear system, as well as a mech­

anism which can automatically identify this model. The Neural Network has therefore been 

used as a powerful tool of handling such problems, and there have been a large number of 

publications on neural networks-based FDI, e.g [37, 57, 82, 103, 114]. Some typical problems 

in these methods include the network selection, the training algorithms and the representa­

tion of system dynamics. Therefore, research focusing on the practical side of the problem is 

s till under the way.

As a conclusion, the Fault Diagnosis (FDI) problem is an important problem from both 

the theoretical and practical perspectives. Different approaches have been adopted to solve 

this problem. However, challenges s till exist and many questions need to be answered for this 

field to become maturely established. Besides, the gap between theory and practice is yet to 

be explored.

1.3 O verview  and S ta tem en t o f  C ontributions

In  this thesis, we restrict attention to model-based FDI, focusing on a class of nonlinear sys­

tems known as “Lipschitz systems” . Although sufficient conditions for observer convergence 

have been known for many years, observer design for Lipschitz systems has remained an open 

problem. Using the concept of “Dynamical Observers” we provide a general solution to the 

Lipschitz observer synthesis problem. Furthermore, we use this concept for diagnosing d if­

ferent faults affecting the system as well as for cancelling the effect of disturbances that may 

cause false alarms. We show the effectiveness of the introduced strategies in  the Robotics 

field, by conducting experiments on a two-degrees of freedom manipulator (the Rotating 

Inverted Pendulum).

The rest of the thesis is organized as follows:

•  Chapter 2: In  this chapter, we survey the techniques currently used for model-based 

fault diagnosis focusing on the nonlinear observer-based approach. W ith in this context, 

different Nonlinear FDI techniques are discussed and the motivation of our research is
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CHAPTER 1. INTRODUCTION 6

highlighted.

•  Chapter 3: In  this chapter, we consider the problem of observer design for Lipschitz 

nonlinear systems. A new dynamic framework which is a generalization of previously 

used Lipschitz observers is introduced and the generalized sufficient condition that 

ensures asymptotic convergence of the state estimates is presented. The equivalence 

between this condition and an Hqo optimal control problem which satisfies the standard 

regularity assumptions in Hao optim ization theory is shown and a parameterization of 

all possible observers is also presented. A design procedure which is less restrictive 

than the existing design approaches is proposed, and a simulation example is given to 

illustrate the observer design.

•  Chapter 4: In  this chapter, we apply the dynamic observer structure introduced in 

chapter 3 to the FDI problem. The extra degrees of freedom are used for treating the 

sensor fault diagnosis problem w ith  the objective to make the residual converge to the 

faults vector achieving detection and identification at the same time. The use of appro­

priate weightings to solve this problem in a standard convex optim ization framework is 

also demonstrated. A Linear M atrix Inequality (LM I) design procedure solvable using 

commercially available software is presented w ith  a simulation example to illustrate the 

proposed design.

•  Chapter 5: In  this chapter, we consider the robust FDI problem by studying the case of 

additive uncertainties. Firstly, the standard Unknown Input Observer (UIO) approach 

(used to deal w ith additive uncertainties in linear systems) is generalized to nonlinear 

Lipschitz systems. The new observer is then applied in the robust fault diagnosis 

problem, by modelling the problem as a two-objectives optim ization problem that is 

solved using numerical techniques. In this problem, the first objective is to achieve 

observer stability, while the second is to decouple the effect of uncertainties from faults 

in the estimation error.

•  Chapter 6: In  this chapter, we consider the application of the proposed techniques 

in th e  R o b o tic s  fie ld . Tech n iq ues  o f  m o d e llin g  ro b o t m a n ip u la to rs  as s ta n d a rd  L ip s  

chitz systems are first introduced. Experimental results on a two-degrees of freedom 

manipulator (the Rotating Inverted Pendulum) are also presented.

•  Chapter 7: In  this chapter, we explore the idea of additional dynamics in  the sampled- 

data state reconstruction problem. We consider the linear time invariant case proposing
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CHAPTER 1. INTRODUCTION 7

a new fu ll order observer structure that can generate intersample state estimation. The 

observer synthesis is carried out using the framework and is shown to have some 

important advantages over the classical liftin g  technique that has been used to study 

similar problems. The introduced techniques are applied through simulations in  the 

fast rate fault detection problem.

•  Chapter 8: In  this chapter, concluding remarks are presented, and future research topics 

are proposed.
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Chapter 2

Background and M athem atical 

Framework

In  this chapter we survey the techniques that are currently used for model-based fault di­

agnosis, followed by background material that motivates our research. The mathematical 

framework and notation used throughout the thesis are introduced1.

2.1 T h e M od el-b ased  F D I A pproach

As seen in Figure 1.1, analytical redundancy (model-based) techniques have many advantages 

over the hardware redundancy schemes used in fault diagnosis. Therefore, the trend is to use 

the model-based FDI approach represented by the structure in  Figure 2.1. This two-stage 

structure was first suggested by Chow and W illsky in 1980 [16], and is now widely accepted 

by the fault diagnosis community [13]. I t  consists of the following:

a) Residual generation: Its purpose is to generate a fault indicating signal (residual), using 

available input and output information from the monitored system. This auxiliary 

signal is designed to reflect the onset of a possible fault in  the analyzed system. The 

res id u a l should be normally zero or close to zero only when no fault is present.

b) Decision making: The residuals are examined and a decision rule is then applied to

determine if  a fault has occurred. The decision process usually consists of a simple

1This chapter is a pure survey of previous work in areas related to the thesis. No new results can be found 

in this chapter.
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CHAPTER 2. BACKGROUND AND MATHEMATICAL FRAMEWORK  9

threshold test on instantaneous values or moving average of the residuals. I t  may also 

consist o f methods of statistical decision theory, such as Generalized Likelihood Ratio 

(GLR) testing or Sequential Probability Ratio Testing (SPRT) [5, 6, 20, 112, 116].

Input Output

Residuals

I )  ALARMS

Residual
generation

Decision Making

System
affected by faults:
* Actuator faults
* Sensor faults
* Component faults

Figure 2.1: Structure of the Model-based FDI System.

Most of the work done in this field is focused on the residual generation problem 

because the decision making based on well designed residuals is relatively easy [13, 116]. 

Several approaches appeared in  the literature for the residual generation problem of linear 

systems. These are briefly described below [13], focusing on the applicability to the nonlinear 

case:

1. The observer-based approach: an observer is designed and the residual is constructed 

as a weighted difference between the measured and estimated output. This approach is 

very well developed for the linear case and standard techniques exist in the literature 

providing solutions to both the theoretical and practical aspects of the problem (see 

[31, 33, 35, 36, 116] for good surveys). Extension of the above results to nonlinear 

systems requires the design of a nonlinear observer. However, the nonlinear observer 

design is not yet mature due to the complexity of this problem [41].

2. P a r i ty  space techniques: these tech n iq ues  are  m a in ly  ap p lied  to  d iscrete  t im e  system s. 

Unlike the observer-based approach, the residual generator has no dynamics but uses 

instead a collection of measurements through a time window of appropriate size [13, 17, 

31, 36, 49]. Again, almost a ll results employing this technique assume a linear model.

3. Factorization methods: this is a frequency domain approach. I t  has been shown that
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all these factorization methods can be made equivalent to the observer-based methods 

except that the design is done in frequency domain [13, 27, 36]. These methods can 

not be applied to the nonlinear case.

4. Parameter estimation: this method uses system identification techniques assuming that 

faults are reflected in the system parameters. I t  is the input-output mathematical 

model of the system that is usually employed. It  is possible to handle nonlinearities 

using identification techniques for nonlinear systems [13, 36, 64].

Many variations of these techniques also appeared in the literature; including extensions 

to stochastic systems, and robustness issues, etc. However, the basic building block of the 

residual generation invariably accommodates to one of the four techniques described above.

2.2 T h e O bserver-based  A pproach

Motivated by the future extension to nonlinear systems, we w ill focus in this section on the 

observer-based approach trying to cover different aspects of the problem. Two steps are 

needed to get a valid residual using this approach: modelling and design. The former consists 

of choosing a model for the monitored system including the effect of faults to be considered. 

For example, a widely accepted model for the Linear Time-Invariant (LTI) case (considering 

the three types of faults shown in Figure 2.1) is the following state-space model [13, 36]:

x(t) =  Ax(t) +  B u(t) +  B fa(t) +  f c(t), x € R " ,u € R m (2.1)

y(t) =  Cx(t) +  Du(t) +  D fa(t) +  f s(t), y G Rp (2.2)

where f a(t) G Rm , / c(f) G Rn and f s(t) G are vectors representing actuators, components 

and sensors faults respectively. I t  is important to consider how a possible fault fits in a model 

and the importance of (2.1)-(2.2) is that this model can accommodate several types of faults 

for the LTI case.

Once a model has been determined, the next step consists of the synthesis of an output 

estimator as a part of the residual generation. For the LT I case, the simplest residual form is 

r{ t) =  Q(y(t) — y(t)) where y is an output estimation using a Luenberger type observer and 

Q is an appropriate weighting. The observer structure is as follows:

x(t) =  (A — LC )x(t) +  Bu(t) +  Ly(t) — LD u(t) (2-3)

y(t) =  Cx (t) +  Du{t) (2.4)
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w h e re  L, the observer gain, is the design parameter responsible for achieving asymptotic 

convergence of the state estimates “x” to the actual system states “x” . As a result of 

the observer stability, the residual is guaranteed to converge to zero only if  no fault affects 

the system. Other than the Luenberger observer, many other observer techniques are also 

available in literature such as: the Unknown Input Observer (UIO), Beard Fault Detection 

F ilter (BFDF), the combined UIO and BFDF observer, and the eigenstructure assignment 

approach, etc [13, 36]. These methods w ill be briefly discussed later.

Regardless of the particular observer structure used in the residual generation, the FDI 

algorithm requires certain conditions to be met. These conditions are either related to the FDI 

application, such as fault detectability, detection delay, fault isolability, fault identifiability, etc; 

or they are related to the modelling assumptions such as the Robustness issue, the Stochastic 

and Nonlinear problems, etc. Some of these important concepts are briefly discussed below 

[13] (the Nonlinear case is left to section 2.3 where it  is discussed in  more details):

- Fault detection: The technique must guarantee that the occurrence of every fault (in the 

considered fault vector) has a remarkable effect on the response of the residual. Missed 

alarms should be avoided. Besides, the detection delay (the time interval between the 

occurrence of a fault and its successful detection by the FD I algorithm) should be as 

small as possible.

- Fault isolation: To distinguish a particular fault, its effect on the residual should be not 

only remarkable, but also different in  a certain way from the effect of other faults. Two 

approaches have been traditionally used to solve this problem:

(i) Using fixed directional residuals (or residuals that lie in a fixed and fault-specified 

direction in  the residual space). The Beard Fault Detection F ilter (BFDF) [7] is one of 

the famous techniques that use this approach for the LTI case.

(ii) Using structured residual sets, or a bank of residual generators where each residual 

is designed to be sensitive to a subset of faults, whilst remaining insensitive to the 

remaining faults [45].

- F a u lt  id e n tif ic a tio n : T h is  is d e fin ed  as th e  o b je c tiv e  o f  e s tim a tin g  th e  size as w e ll as th e  

type and nature of the fault. W hilst undoubtedly helpful, it  may not be as essential as 

detection and isolation if  no reconfiguration action is involved.

- The stochastic case: In the case of random noise, the residual generator has to be de­

signed to suppress the effect of noise on residuals. A  common approach is the use of
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Kalman-filter based residual generators which, although having a similar structure to 

the observer, axe based on a stochastic model of the dynamic system (instead of a de­

term inistic one). In  normal operation, the Kalman filte r residual vector is a zero-mean 

white noise process w ith known covariance m atrix, and the use of different statistical 

tests to detect faults in the system was first proposed in [78]. Since then, many variants 

of the idea of hypothesis testing for FD I have been published [5, 116, 124], As each fault 

has its own signature, a set of hypotheses can be used and checked for the likelihood 

that a particular fault has occurred, and the idea common to all these approaches is to 

test, amongst all possible hypotheses, that the system has a fault or is fault-free.

- Robustness: The observer used for FD I should be robust to system uncertainties (dis­

turbances, modelling errors, discretization errors, etc) to avoid missed and false alarms. 

This is more important for the detection of incipient faults than for hard and abrupt 

faults, since incipient faults have a small effect on the residuals and can be hidden as 

a consequence of uncertainty. However, unlike the use of observers in output feedback 

applications, it  is only the output estimation error that has to be robust to these un­

certainties in FDI. Techniques available in the literature range from tota l cancellation 

of the uncertainty effect (Unknown Input Observers (UIO) [14] and Nonlinear UIO 

(NUIO) [117] are examples of disturbance decoupling techniques for linear and nonlin­

ear cases respectively) to the minimization of its effect using optim ization techniques 

(multiobjective, frequency domain and H 00 optim ization techniques are some examples)

[13]. However, a tradeoff between cancelling (or minimizing) the uncertainty effect and 

maintaining fault detectability is a main concern. Robustness is very important for the 

nonlinear case especially when using the discretized model (which is always an approx­

imation of the actual discrete model unlike the LTI case). I t  is also very important 

when using linearization, considering the linearization error as an uncertainty affecting 

an LTI model. When residuals can not be made robust against system uncertainty, 

another approach has been used to achieve robustness at the decision making stage by 

using Adaptive Thresholds. This was studied extensively by Ding et. al [24, 25, 26] and 

som e a p p lic a tio n  exam p les  were reported in [1.1, 58],
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The most important part of the nonlinear observer-based FDI is the design of a nonlinear 

observer. In this section, we first focus on this part of the problem (which is the design of an 

observer that estimates the fu ll state of a nonlinear system), then we discuss the application 

of this observer in FDI.

2.3.1 N on linear O bserver S yn th esis

Unlike the LTI case, nonlinear observer design is s till an open area of research. Contributions 

to this field are scattered and range from continuous-time to discrete-time systems, from 

ordinary to partial differential equations and from special applications (mechanical, electri­

cal, chemical, etc.) to general nonlinear system models [83]. A general class of nonlinear

continuous systems can be represented as follows

x =  g(x,u), (2.5)

y — h(x,u), y £ R p (2 .6 )

Before designing an observer, the observability of (2.5)-(2.6) needs to be considered and this

problem has been widely investigated. The definition of observability is the same for both 

linear and nonlinear systems:

D e fin itio n  2.1 [83] (Observability): Observability is the property that fo r any pair of dif­

ferent in itia l conditions (x j, Xq), there exists an input u such that this pair is distinguishable 

from the output.

Despite the similar definition, the conditions for observability are tota lly different in 

linear and nonlinear systems. For the linear case, the well known observability rank condition

rank CT (CA)T ... (CAn" x)T — n j is necessary and sufficient for global observability 

and does not depend on the input u. On the other hand, the nonlinear case lacks a similar 

condition, may be only locally observable and may have singular inputs. The concept of

singular inputs is a special characteristic of nonlinear systems and can be clarified by the

following example [83]

x i =  ux 2 (2.7)

X2 ~  - X 2  (2.8)

y =  x i  (2.9)
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which is observable according to the previous definition and yet u =  0  is called a singular 

input since it  makes the pairs (x j, Xq) having the same x i indistinguishable from the output. 

Therefore, a stronger definition of observability (referred to as uniform observability) is widely 

accepted for nonlinear systems.

D e fin itio n  2.2 [83] (Uniform observability): A system is uniformly observable i f  it  has no 

singular inputs.

I t  is important to note that both observability and uniform observability are equivalent in 

the linear case.

In view of the above definitions, testing the observability of nonlinear systems is much 

more involved than that in  a linear case. The observability rank condition is the most widely 

known su ffic ien t condition for a local version of observability [74, 75]. For single output 

systems it states that the observation space q(x) =  h; Lgh\ . . . ;  has a fu ll rank

codistribution at the origin, i.e,

rank |(jvh(O ); VLgh{ 0); . . . ;  VL” - 1/ ^ ) ] ) =  n

where V and Lg are the gradient and Lie derivative operators respectively. A weaker sufficient 

condition, yet more difficult to test, is that q(x) constitutes an injective (one to one) map in 

a local region [119]. Many variations of these results also exist in the literature.

Another problem w ith a nonlinear observer is that even w ith observability satisfied, 

there is no universal technique available to design the observer. Linearization could be helpful, 

however, it  only guarantees local convergence and is not the best choice if  the dynamic system 

has multiple operating points. Therefore, a nonlinear observer is required in order to achieve 

a better performance. Several methods have been employed and we can briefly classify them 

into the following groups:

- Geometric techniques [9, 43, 59, 63, 6 6 , 67, 73, 74, 107]: They all share the idea of pro­

viding conditions under which a nonlinear system may be transformed into an observer 

canonical form by means of coordinate transformations. They are the only techniques 

that make explicit use of the sufficient conditions on observability discussed earlier. The 

observability condition is always one of the necessary conditions for the existence of the 

transformation described above. This approach is very elegant since it guarantees exact 

linearization of the observer error dynamics, however, the existence conditions are very 

restrictive and various modifications have been employed.
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- Linearization techniques [23, 83, 96]: In  addition to the well known technique of operat­

ing point linearization, another widely used approach is the linearization around state 

estimate trajectories and the design of an observer for the resulting Linear Time-Varying 

(LTV) system. For both techniques, neglecting higher order terms is the main concern 

and among solutions to this problem is the use of the nonlinear identity approach [55], 

the extended Kalman filte r, etc. An important drawback of these approaches is the 

local convergence.

- Lyapunov-like techniques: The earliest and most famous among them is the one 

developed for the special class of Lipschitz nonlinear systems of the form 

(x =  Ax +  4>(:r, it); y =  Cx), under a Lipschitz restriction for the function <f>. The 

techniques in [92, 93, 106, 121] make use of quadratic Lyapunov function for the ob­

server error system and try  to develop sufficient conditions and methods for design. 

The main drawback is the lack of necessary conditions for stability and of simplified 

methods for design.

- Algebraic techniques: These techniques make use of linear algebra to deal w ith spe­

cial forms of nonlinearities as disturbances affecting a linear part whose effects have 

to be cancelled. The design of bilinear observers is a famous example where various 

techniques have been developed to deal w ith the class of nonlinear systems having the 

form (x =  Ax +  Y llL i 'tkAyx ; y ----- Cx) (see for example [62]). However, conditions 

are very restrictive and better design techniques are s till required.

- Adaptive techniques [41, 83, 111]: Adaptive observers have been considered for ro­

bustness against unknown parameters. They combine the state estimation and the 

parameter estimation approaches. Special forms are usually considered and the main 

hindrance is to find a suitable parameter update law.

- Numerical techniques [50, 84]: These can be classified as techniques that either use 

numerical differentiation when input and output derivatives are needed, or that formu­

late the estimation problem as a nonlinear algebraic system of equations which must 

be solved periodically (using for example N e w to n ’s m e th o d  o r fo rm u la t in g  i t  as an  

optim ization problem over some finite horizon). Local results axe always expected.

As a conclusion, the nonlinear observer design is a challenging problem and an active 

area of research. The available techniques usually deal w ith special cases of the general form
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in (2.5)-(2.6), or give restrictive conditions that guarantee its transformation into a simpler 

form, or develop assumptions that only guarantee local convergence. The need of better 

design techniques s till attracts researchers worldwide to work in  this field.

2.3.2 A pplication o f Nonlinear Observers in Fault Diagnosis

Before discussing the application of a nonlinear observer in FDI particularly, it  is important 

to mention the different applications of a nonlinear observer in general. This helps to compare 

their implications on the observer design problem discussed in section 2.3.1. We w ill categorize 

four different applications of observers, either linear or nonlinear; namely: output feedback 

control, system  monitoring, process identification, and F D I. For the first two, a 

complete knowledge of the model is im plic itly assumed and the observer is needed to estimate 

the states that can not be measured. A reduced order observer that only estimates the 

unmeasured states may be acceptable. On the other hand, the last two applications are 

considered as model validation ones where the model is not trusted either due to uncertain 

parameters to be identified or due to faults affecting the system. The observer, in this case, 

is needed to estimate the output in order to compare it  w ith the actual measurements.

I t  is now clear that the application of a nonlinear observer is an important factor 

that affects the design requirements and hence the design problem. Moreover, nonlinearity 

is an important factor that needs to be considered in  practice since it  may cause the loss 

of some desired properties that hold for the linear case. For example, in output feedback 

control applications, the well known separation principle is not satisfied for nonlinear systems. 

Nonlinearity is also expected to affect many aspects of the FDI problem. In the following 

discussion, we focus on these aspects such as fault detection, fault isolation and robustness.

Compared to the LTI system model w ith faults in (2.1)-(2.2), the general nonlinear 

faulty system model is shown below

x =  g(x, u, / ,  d), x € Rn, u € Rm (2 .1 0 )

y =  h(x, u, / ,  d), y € R p (2 .1 1 )

where /( f )  € I s , d(t) € R9 are vectors representing faults (actuators, components and sen­

sors) and uncertainties respectively. During the research of the last two decades on nonlinear 

observers in FDI, important results have been achieved for special cases of interest of the gen­

eral form (2.10)-(2.11). In  the following, we w ill briefly discuss some of these results focusing 

on the open problems that motivate our research:
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•  The Nonlinear Identity approach: This was the first reported work in nonlinear observer- 

based FDI and was carried by Hengy and Prank in 1986 [55]. They suggested the use 

of the nonlinear identity observer (understood as one that uses linearization around 

estimated state trajectories) for fault detection of the general class in (2.10)-(2.11). It  

was reconsidered in [2] for sensor fault isolation using structured residual sets. However, 

only local convergence was achieved.

•  Geometric techniques: For the class of systems (2.12)-(2.13):

m
x =  g0(x) + Y ^ 9 i{x)Ui +  e i(n )/i +  e2 (x ) f2 (2 .1 2 )

i= 1

y =  h(x) (2.13)

geometric techniques combined w ith high gain observers have been used for fault de­

tection and isolation when only two faults (modelled by f i  and f 2 respectively) are

considered [54], The same techniques have also been used [53] for the class of state

affine to output injection, i.e systems modeled as:

x =  A{u) x +  ip(y, u) +  e i(x ) /i +  e2{x ) f2 (2.14)

y = C  x  (2.15)

The robustness issue have been considered in  [101] for the more general class (2.16)-

(2.17):

x  =  g(x, u) +  E (x) d +  K (x, u) /  (2.16)

V =  h(x) (2.17)

where, under some restrictive assumptions, a transformation z =  T(x) can be found to 

cancel the effect of the uncertainty term aE{x) d" and hence robust fault detection is 

guaranteed. Fault isolation has also been considered when the fault term in (2.16) is 

not a function of the input and has the form uK (x) / ” .

•  The adaptive approach: Adaptive observers are more efficient than other robust ob­

servers in detecting incipient faults. A non adaptive technique which is robust to model 

uncertainties would normally have low sensitivity to incipient faults [109]. To overcome 

this difficulty, adaptive observers are used to estimate the states and the unknown pa­

rameters simultaneously. A good example is the work in [25] where the class of systems
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(2.18)-(2.19) was considered:

x  =  A x +  g i(y,u) +  g2 (y,u)e +  g3 (x ,u ) f  (2.18)

y =  C x (2.19)

An adaptive observer was designed to estimate both the states “x ” and the unknown 

parameter vector “9” . This observer was further used for fault detection. Adaptive 

observers were also used as a way for fault identification in  [6 8 ] for the class of nonlinear 

systems in (2 .2 0 )-(2 .2 1 ):

m s

X =  go(x) +  Y  9i(x) Ui +  Y ,  ei(x ) f t  (2-20)
i= 1 2=1

y =  h(x) (2 .2 1 )

where geometrical conditions guaranteeing input observability were combined w ith 

adaptive update laws to estimate the fault inputs f t (considered here as unknown pa­

rameters).

•  Bilinear systems: The study of bilinear systems is important since many physical sys­

tems (nuclear reactors, suspension systems, fermentation processes, hydraulic drives, 

heat exchange systems, etc.) can be modelled by bilinear equations. Therefore, much 

work has been done on FDI for this class of systems focusing on practical applications. 

For example, the fault isolation was considered in  [52] for (2.22)-(2.23) where only two 

faults were considered:
m 2

x — Ao x +  B  u +  Y2 ui A  x +  Y ^  x  +  &  (2 .2 2 )
i= 1 i= 1

y =  C x (2.23)

while robust fault (actuator and sensor) detection was considered in [120] for (2.24)-

(2.25):

m
x =  Ao x H v> T  ] Ui A i x  T  E d T  G fa (2.24)

i= 1

y = C x  +  Q f s (2.25)

Constructive necessary and sufficient conditions for observer design of (2.24)-(2.25)

were given in [62]. However, they are very restrictive and have not been used for fauft

isoiation.
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•  Lipschitz systems: We conclude this section by Lipschitz systems, since this class of 

nonlinear systems w ill be the main focus of this thesis. Tremendous work has been 

done for the observer design of Lipschitz systems, or nonlinear systems of the form 

(x =  Ax +  T fT , u)) w ith a linear read-out equation for the output (y =  Cx) and w ith 

a Lipschitz condition on the function $ (A fu ll discussion of the importance of Lipschitz 

systems and of the observer synthesis problem is left to Chapter 3, where some new 

results are proposed). However, not much work has been reported concerning their 

applications in FDI. The most important work reported to date is the one related to 

the faulty case in (2.26)-(2.27):

S

x =  A x  +  B u  +  $(x, u) +  ^2  Fi ®i(x ’ u) f i  (2.26)
i= 1

y = C  x (2.27)

where $ is a Lipschitz function and f i  represents the i th fault w ith mode Ft and all 

failure modes are assumed independent in the output space. The design has been 

considered in [41, 42] where under an assumption of some algebraic conditions as well 

as the solvability of the Riccati equation needed for the observer design, an observer 

that guarantees the fault detection and isolation (through directionality of residuals) 

can be found. An important drawback of this method is that the robustness issue was 

not considered. Open problems also include the sensor fault diagnosis, the relaxation of 

the existing design conditions, and the study of the discretization issue resulting from 

the practical sampled-data implementation.

As a conclusion, the observer-based FDI problem for many nonlinear systems is s till 

open for research. The approaches reviewed solve the problem partially and many questions 

s till remain unanswered. In this thesis, we w ill focus on the class of Lipschitz systems. 

A new observer design w ill be introduced in Chapter 3, while its application in the sensor 

FDI problem w ill be the focus of Chapter 4. New results for robustness against additive 

uncertainties w ill be introduced in Chapter 5, while Chapter 6  w ill focus on the application 

of these results in the robotics field. Some reflections on the sampled-data problem w ill be 

presented in Chapter 7.
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Throughout the thesis, we w ill use lower-case letters for scalars, vectors and functions, and 

capital letters for matrices, systems and operators. We w ill also make use of the following 

definitions and notation:

D e fin itio n  2.3 ( £ 2  space): The space £ 2  consists of all Cebesgue measurable functions u : 

K+ —> R9, having a finite £ 2  norm ||u||/;2, where ||«||,c2 =  y  Jo°° II u(t) II2 df, w ||M(f)|| as 

the Euclidean norm of the vector u (t).

D e fin itio n  2.4 (Eigenvalues and Singular values): Let A, a square n x n matrix, then the 

eigenvalues of A are the n roots of its characteristic polynomial p( A) =  det(XI — A ). This set 

of roots is called the spectrum of A and is denoted by A( A ). The set of singular values of a

n x m matrix R, cr{R), is equal to \/X {R TR).

For a system H  : £ 2 —> £ 2 , we w ill represent by 7  (H) the £ 2  gain of H  defined by 

7 (H) =  sup„ I t  is well known that, for a linear system H  : C2 —> £ 2  (w ith a transfer

m atrix H(s)), 7 (H) is equivalent to the H -infin ity norm of H(s) defined as follows:

7 (H ) =  || H(s) ||oo =  sup crmax(H(jto))

where crmax represents the maximum singular value of H (jlj). The matrices 0n and 

0 nm represent the identity m atrix of order n, the zero square m atrix of order n and the 

zero n by m m atrix respectively. Diagr {a) represents the diagonal square m atrix of order

r  w ith a a
l x r

as its diagonal vector, while Diag{a\, a^, ■ ■ ■ , ar ) represents the

diagonal square m atrix of order r  w ith a\ a2 as its diagonal vector. The symbol

Tyu represents the transfer m atrix from input u to output y. The symbol R H ^  denotes 

the space of a ll proper and real rational stable transfer matrices. The partitioned m atrix

H
A B

C D
(when used as an operator from u to y, i.e, y =  Hu) represents the state

space representation ( f  =  A£ +  Bu, y — C ( +  Du), and in that case the transfer m atrix of 

the system is H(s) =  C (s l — A)“ 1B +  D. We w ill also make use of the following property 

on the rank of H(s) [122]:

rank
A - s i  B  

C D
=  n +  rank (2.28)
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Figure 2.2: Standard Setup.

if  s is not an eigenvalue of A and where n is the dimension of the m atrix A. The standard setup 

in Figure 2.2 w ill also be used throughout the thesis along w ith the state space representation 

for the plant G of the form:
A B x B2 '

G(s) = C'i D n D \2

.
D21 D 22

(2.29)

The following result on the H cx> norm of J (T is useful in this case:

Theorem  2.1 [40] For the generalized plant in (2.29), assume stabilizability and detectability 

of {A, B‘2, Cf) and that £> 2 2  =  0 , and let A/1 2  and A/2 1  denote orthonormal bases of the 

null spaces of (B 'f, D j2) and (C2 , £>2 1 ) respectively. There exists a controller K  such that 

||?^T||oo < 7  i f  and only i f  there exist two symmetric matrices R ,S €  Rnxn satisfying the 

following system of Linear Matrix Inequalities (LMIs):

T
A/1 2 0

0 I

T
A/21 0

0 I

AR +  RAT R C f B i

C iR - 7 / D n

DJ i - 7 /  _

ATS +  SA SBi c f  '

B fS - 7 / D Tn

C'i D n - 7/_

A/1 2 0

0 I
<  0

A/21 0

0 I

R I

I s

< 0

> 0

(2.30)

(2.31)

(2.32)

The existence of an analytical solution to this problem is also considered, when the 

generalized plant in (2.29) satisfies the following conditions:

(1) (A , B i)  is controllable and (C'i, A) is observable.
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(2) (A, R'z) is stabilizable, and (C2 , A) is detectable.

22

(3) D j .2

(4)

C'i £>12 0 I
] ■

B i

b 11

0

D 21 1

(5) £>n =  0 and £ ) 22 =  0.

In this case, the problem is called “Simplified H ^  problem” [122]. This case is of interest since 

the solvability conditions are easy to check (compared w ith the LM I conditions in Theorem 

2.1). Also, the solution can be obtained by solving standard Algebraic Riccati Equations, 

for which vast literature and software packages can be used. We w ill elaborate more on this 

issue in  our discussion of Lipschitz observers in  Chapter 3.

We w ill also develop results related to the so-called “Linear Unknown Input Observer 

(UIO)” problem, which is the state estimation problem for the following system:

x(t) =  Ax(t) +  Bu(t) +  Ed(t), 

y(t) =  Cx(t), C G Kpxn

A  G \ £  G \ E e (2.33)

(2.34)

where A  G E nXn, £  G Rnxm,E  G Rn x r and C G Rpxn . The m atrix E  is referred to as the 

unknown input distribution matrix and is assumed to be a known fu ll column rank m atrix 

(w ith r  < p ). In  a ll the literature available for this problem, the observer proposed fa ll in the 

class of Luenberger-like observers, namely:

z(t) =  Fz(t) +  Ly(t) +  TBu(t) 

x(t) =  z(t) +  H y(t)

(2.35)

(2.36)

where F  G R "x ” , £  G Mnxp,T  G R” xn and H  G Rnxp, and the objective is to get state esti­

mates x that converge to the actual states x. and are to ta lly decoupled from the uncertainty 

term d(t) . The following definition of a UIO is taken from [14].

T h e o r e m  2 .2  The observer in  (2.35)-(2.36) is said to be an Unknown Inpu t Observer (U IO ) 

fo r the system in (2.33)-(2.34) i f  the following matrix equations are satisfied:
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H C E  =  E  (2.37)

T =  I - H C  (2.38)

F =  A -  H C A  -  L \C \ with F  stable (2.39)

L 2 =  F H  (2.40)

L  =  L i +  L 2 (2.41)

The necessary and sufficient conditions for the existence of a UIO were developed in

[14] as follows:

Theorem  2.3 Necessary and sufficient conditions fo r (2.35)-(2.36) to be a UIO fo r the 

system (2.33)-(2.34) according to Theorem 2.2 are:

(i) rank (CE) =  rank(E).

(ii) (A, C) is detectable , where A =  A — E  [(CE)TCE\ 1 (CE)TC A.
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Chapter 3

The Lipschitz Observer Design  

Problem

In  this chapter, we study the observer synthesis problem for a class of nonlinear systems 

known as Lipschitz systems. We introduce a new dynamic framework which is more gen­

eral than classical Lipschitz observers and which also ensures asymptotic convergence of the 

state estimates. Moreover, the proposed sufficient condition for observer stability is shown 

to be equivalent to an optimal control problem that satisfies the standard regularity 

assumptions in  H a0 optim ization theory, laying the ground to a design procedure which is 

less restrictive than the existing ones. Finally, a simulation example is given to illustrate the 

observer design1.

3.1 B ackground R esu lts

As discussed in section 2.3, nonlinear state observer design has been an area of constant 

research for the last three decades and, despite important progress, many outstanding prob­

lems s till remain unsolved. A class of nonlinear systems that has seen much attention in  the 

literature about nonlinear observers, and for which many Lyapunov-like design techniques

’ T h e  resu lts  in  th is  c h a p ter  h a v e  b e e n  p u b lish e d  in  th e  artic le : “A .M . P o r lo w , II.J . M arq u ez  a n d  Q . Z hao , 

Hoo Observer Design fo r L ipschitz Nonlinear Systems,” IE E E  transactions on A u to m atic  Contro l, Vol. 51, 

No. 7, p p . 1211-1216, Ju ly  2006.

24
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have been proposed is the class of Lipschitz nonlinear systems of the form:

x(t) — Ax{t) +  T(«, t ) +  <h(x, u, t) 

y(t) =  Cx(t), A  g »nxn, C G Mpx"

(3.1)

(3.2)

and where the function 4>(x, u, t ) satisfies a uniform Lipschitz condition globally in x, i.e,

Mu G Rm, t 6  1  and Mx\, x i G R". Here a G E + is referred to as the Lipschitz constant 

and is independent of x, u and t. Lipschitz systems constitute a very important class. Any 

nonlinear system x =  g(x, u) can be expressed in  the form of (3.1), at least locally, if  g{x, u) 

is continuously differentiable w ith respect to x. Many nonlineaxities are locally Lipschitz. 

Examples include trigonometric nonlinearities occurring in robotics, nonlinearities which axe 

square or cubic in nature, etc. The function $  can also be considered as a perturbation 

affecting the system [1 0 0 ].

Observer design for Lipschitz systems was first considered by Thau in his seminal 

paper, [106], where he obtained a sufficient condition to ensure the asymptotic stability of the 

observer. Thau’s condition is a very useful analysis tool but does not address the fundamental 

design problem. Encouraged by Thau’s result, several authors studied the observer design 

problem for Lipschitz systems. In  [121], Zak considered the use of Lyapunov functions and the 

Bellman-Gronwall lemma for this design problem, w ith application in feedback stabilization. 

In  [91, 92], Raghavan formulated an iterative procedure to tackle this design problem based 

on solving an algebraic Riccati equation. Haghavan’s technique was later extended by Garg 

and Hedrick, [42], to study fault detection in Lipschitz systems. Unfortunately, Raghavan’s 

algorithm often fails to succeed even when the matrices (A , C) satisfy the usual observability 

assumptions. Moreover, it  does not provide insight into what conditions must be satisfied 

by the observer gain to ensure stability. A rather complete solution of these problems was 

presented by Rajamani in [94, 93]. Rajamani obtained a sufficient condition which is directly 

related to the observer m atrix and that ensures asymptotic stability of the observer. He 

fo rm u la te d  a  design p ro ced u re  based  o n  th e  use o f a  g ra d ie n t based  o p t im iz a tio n  m e th o d . 

Rajamani also discussed the equivalence between the stability condition and the minimization 

o f the Hoo norm of a system in the standard form. However, he pointed out that the design 

is not solvable as a standard H 00 optim ization problem since the regularity assumptions 

required in the H <*, framework are not satisfied.

II ® (x i,u ,t) -  $ (x 2 ,u ,t)  II <  a II Xi -  x 2 (3.3)
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In  this chapter, we show that the condition in [93] is related to a modified H,x  problem 

satisfying all of the regularity assumptions. Based on this result, we propose a new observer 

design for Lipschitz nonlinear systems. The observer synthesis is carried out using I I ^  

optim ization and can therefore be done using commercially available software packages. I t  

is also less restrictive than the existing design techniques since it  is directly related to the 

stability condition. Our formulation employs the input-output observer framework introduced 

in [76, 77] in  which the static gain used in the classical observers is replaced w ith a dynamical 

filter.

In  the remaining of this section we summarize some prelim inary results on observer 

design for systems of the form (3.1)-(3.3) and where the pair (A, C ) is detectable (see [122] for 

mathematical definition of “detectability” ). The detectability condition ensures the existence 

of an observer for the linear part. This observer only guarantees local convergence when the 

nonlinear terms in $ are considered, but it  alleviates the need to test the observability 

condition discussed in Chapter 2 for this class of nonlinear systems.

In  all the literature available for this class of nonlinear systems, the observer proposed 

falls in  the class of Luenberger-like observers, namely:

x =  Ax +  T(«, t ) +  $ ( i,  u, t) +  L(y — y), L  £ Rnxp (3.4)

y =  Cx (3.5)

The observer error dynamics is then given by

e =  (A -  LC) e +  $(a:, u, t) — $ ( i,  u, t ) (3.6)

where e =  x — x. Thau was the first to introduce a sufficient condition for the asymptotic 

stability of the error in  (3.6). His result was as follows:

Theorem  3.1 [106] I f  the gain L  is chosen s.t a < un ^ 1 ^le Lyapnnov equation

(A — LC)T P  +  P(A — LC) =  —Q, then the estimation error in (3.6) is asymptotically stable.

Theorem 3.1 provides a very important sufficient condition for the existence of an observer,

but does not consider the design problem. Raghavan proposed a design algorithm based on 

the following theorem:

Theorem  3.2 [92] I f  there exists an e >  0 such that the Algebraic Riccati Equation (ARE) 

in (3.7) has a symmetric positive definite solution P, then the observer gain L
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stabilizes the e rror dynamics in  (3.6) fo r  a ll w ith a Lipschitz constant oi.

AP +  PA t  +  P (a2I  -  -C TC)P +  I  +  eI  =  0 
e

(3.7)

Based on this result, Raghavan proposed an iterative binary search procedure over e, to 

obtain the observer gain. However, given a particular system of the form (3.1)-(3.3) w ith 

a specific Lipschitz constant a *, this procedure may fa il even if  the pair of matrices (A ,C ) 

is observable. Moreover, Theorem 3.2 provides no insight into what conditions the m atrix 

(A  — LC) must satisfy to ensure the observer’s error stability. The answer to this puzzle was 

provided by Rajamani in  the following theorem:

Theorem  3.3 [93] The observer gain L  stabilizes the error dynamics in (3.6) fo r all $ with 

a Lipschitz constant a i f  L is chosen so as to ensure that {A — LC) is stable and such that

mm + crmm(A -  LC  -  jw l)  >  a (3.8)

Compared w ith  Theorem 3.1, the beauty of this result is that it  presents the condition for 

observer stability as a condition on the observer matrix itself. Besides, from the design 

perspective, it  can be related to the H ^  theory by rewriting (3.8) as [93]:

II [ s I - ~ { A - L C ) r l IU  < -
a

(3.9)

where the left hand side of (3.9) is equivalent to the H <*, norm of the transfer function between 

r  and (  in the following so-called standard form:

z = A z + T —T■Ln ±n

c In
Z +

O n O n T

f . C O p n O p n V

(3.10)

(3.11)
(p C  0 pji 0pn V

where:

r  =  — <!>(x, u, t) — &(x, u ,t), (  — e =  x  — x, v — L  (y — y), and ip — y — y (3.12)

This can also be represented by the standard setup figure (i.e, Figure 2.2) where the plant G 

has the state space representation in (3.13) w ith the matrices in (3.10)-(3.11) and where the 

controller K  is the static observer gain L.

A Bi b 2

6 (8) = Ci D u D \2

C2 D21 D22

(3.13)
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Therefore, focusing on the design problem, several design approaches have been pro­

posed to satisfy the stability condition in (3.8). In [93], Rajamani considered the use of a 

gradient based optim ization method to continuously change the locations of the closed loop 

eigenvalues to minimize a performance index related to (3.8). The special case of A  being 

Hurwitz has also been considered in [1, 95] introducing an analytical solution when a certain 

sufficient condition on the so called “distance to unobservabilittf of the pair (A, C) is satisfied. 

I t  can also be seen that the condition in Theorem 3.2 is a special form of (3.8). Moreover, 

the result in  [93] has been used to design reduced-order observers in [123]. However, all these 

design approaches are restrictive in the sense that they only provide sufficient conditions 

to satisfy (3.8). Moreover, they only consider the use of the Luenberger structure in  (3.4)- 

(3.5) and, hence, put another restriction on the observer gain order which may prevent the 

existence of a solution to the Hoo problem in (3.9).

In  this chapter, we focus on the design problem associated w ith the stability condition in 

(3.8). We first extend this condition to a more general dynamic framework making use of the 

input-output observer framework introduced in [76] where an observer gain is seen as a filte r 

designed so that the error dynamics has some desirable frequency domain characteristics. 

We then prove that the new condition is equivalent to a standard Hoo problem satisfying 

all the regularity assumptions (unlike (3.10)-(3.11)). Based on these results, we present a 

systematic design procedure (which is less restrictive than the existing design approaches) to 

compute the observer gain w ithin the H aa framework. We also present a parameterization 

of all possible observer gains in  this case. The same definitions and notation introduced in 

section 2.4 w ill be used throughout the chapter. We w ill also use the standard notation in the 

literature on Hoo control [122], e.g. using dom(Ric) to denote the domain that consists of all 

Hamiltonian matrices H  w ith two properties, namely, H  has no eigenvalues on the imaginary 

axis and the two related spectral subspaces are complementary. We w ill also use Ric(H) to 

denote the unique solution to the Algebraic Riccati Equation (ARE) associated w ith H  in 

this case.
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3.2 G eneralization  to  D yn am ic Fram ework

29

In  this section, following the approach in [76, 77], we present dynamical observers of the form:

x(t) =  A x(t) +  T(u,t) +  4>(£, u, t ) +  r](t) 

y(t) =  Cx(t)

(3.14)

(3.15)

where t](t) is obtained by applying a dynamical compensator K  of order k ( “k” being arbi­

trary) on the output estimation error. In  other words rj(t) is given from

£ =  Al £ +  BL(y -  y), A l e Rkxk, Bh e

r, =  CLf  +  D L(y -  y), CL e Rnxk, DL e

We w ill also write
K

^nxp

Al B l

CL D l

(3.16)

(3.17)

(3.18)

to represent the compensator in  (3.16)-(3.17). I t  is straightforward to see that this observer

. The additional
0  k

r 
....£o

0  nk L
structure reduces to the usual observer in (3.4)-(3.5) when K

dynamics brings additional degrees of freedom in the design, something that w ill be exploited 

in the proposed H 0Q procedure. In this section, we generalize Theorem 3.3 to the dynamic 

framework as follows. F irst, note that the observer error dynamics in  (3.6) is now given by

e =  A e +  4?(x, u, t ) — &(x, u ,t) — rj (3.19)

which can also be represented by the standard setup in Figure 2.2 where G has the state 

space representation in (3.13) w ith  the same matrices defined in (3.10)-(3.11) and w ith the

same variables in  (3.12) except for v which is now given by

i / = y  =  K (y  -  y) (3.20)

We denote by Tqt the transfer function between r  and ( for this setup. The following theorem

is then the generalization of Theorem 3.3:

Theorem  3.4 Given the Lipschitz system of equations (3.1 )-(3.2), the state x of the observer

(3.14)-(3.18) globally asymptotically converges to the system state x fo r all $(-, •) satisfying 

(3.3) with a Lipschitz constant a i f  the dynamic observer gain K  is chosen such that:

1
s u Pu>eR & m a x  PO rtfw )] < a

(3.21)
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Proof : Using the variable definitions in (3.12) along w ith u in  (3.20) and the matrices in 

(3.10), (3.11) and (3.18), T^r  can be represented as:

(3.22)

a - d l c - C L In

i!i-e.
Y

b l c A l 0 kn

!n 0 nk 0 „

and is such that 7 (Tê ) =|| Tê  ||oo< ^  according to (3.21). The proof follows from noting 

that the estimation error e is given from the feedback interconnection of T ;̂  and A  as shown 

in Figure 3.1 where A  is the static nonlinear time-varying operator defined as follows:

A (t) : e —> </> =  $ (x, u, t ) — $(£, u, t)

=  <3>(e +  x(t), u(t), t ) — $>(x(t), u(t), t)

<t> T  --Le<j>
e

A

Figure 3.1: Feedback Interconnection.

In this loop, 7 (Tê ) < £ as mentioned earlier and, although an exact expression for A  is not 

available, we have 7 (A ) <  a  because from the Lipschitz condition in (3.3), it  follows that:

7 (A ) =  sup
d t

11 11 =sup
II e  | | £ 2 e y /S ^ ° [x -x ]T [ x - x ]  dt

< / iT * 2 II II2 d t
<  a

yjf™ II II2 d *
Using the bounds on the £ 2  gains of the operators Tê  and A, we w ill make use of a dissipa- 

tiv ity  argument by noting that the following properties are satisfied for the feedback loop in 

Figure 3.1:

(a) A  is a static nonlinearity (no internal states) and Tê  is the dynamic LTI system in 

(3.22).

(b) The mappings : <f> —> e and A  : e —> <fi have fin ite £ 2  gains 7 (T ^ ) and 7 (A ), and 

moreover they satisfy 7 (7 )^).7 (A ) < 1.
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(e) and A  are dissipative w ith the supply rates u>i =  4 - 'y(Tê 4 >̂'4> and u>2 =

+  a 2eTe respectively. We w ill denote by a*] and S2 the corresponding storage 

functions.

It  is a direct application of Corollary 1  in [56] (see also [75], Chapter 9, for a comprehensive 

review of the subject) that si +  as2 , a >  0, is a Lyapunov function for this system, and 

that, since 7 (2 ^ ) 7 (A ) <  1, the system is asymptotically stable. This implies that e 0 as 

t —> 0 0 . □

C o ro lla ry  3.1 Under the conditions of Theorem 3-4, i f  condition (3.3) holds locally, then 

local asymptotic convergence of the observer is guaranteed (and in this case the observer

(3.14)-(3.18) is a local one, i.e, it  is local in “x ”  and in the estimation error “e”).

3.3 A  new  H ^  O bserver D esign

In this section we present our main results by focusing on the design problem associated w ith 

the stability condition introduced in section 3.2. We first prove that the condition in (3.21) 

(and the one in (3.8) as a special case) is actually equivalent to a standard Hoo problem 

satisfying all of the regularity assumptions. We then propose a systematic design procedure 

to compute the observer gain w ith in the I I x  framework. This design has the advantage of 

being directly related to the stability condition, and hence avoids much of the restrictions 

associated w ith the designs in  [1 , 92, 93, 95]. We finally present a parameterization of all 

possible observers in this case.

3.3 .1  P rob lem  R egu larization

As mentioned earlier, the stability condition in (3.21) can be represented by the Hoo norm of 

the setup in Figure 2.2 where G has the state space representation in (3.13) w ith the matrices 

defined in  (3.10), (3.11). However, this Hoo problem does not satisfy all the regularity 

assum ption s  in  th e  Hoo fra m e w o rk  (n o tic e  that D'(2D i2 and D2 1 D2i are  b o th  s in g u la r). 

Although the LM I approach in [65], or the techniques in [99, 105] can be used to solve this 

singular problem, here we focus on the Riccati approach in  [28] by showing that the problem 

is actually equivalent to the so-called “Simplified Hoo problem” defined in [28, 122]. This 

helps to directly relate the stability condition to two Riccati equations (instead of the one in
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(3.7)) and lays the ground to a systematic design procedure which is less restrictive than the 

existing design appoaches. This also has the advantage of classifying the set of a ll possible 

observer gains by using the standard parameterization of H oo controllers in [28, 122], To 

this end, we adopt the following standard regularization procedure: By adding a “weighted” 

disturbance term in the output equation (3.2), now we tackle the problem of designing an 

observer for the system:

x(t) =  Ax(t) +  F(u, t) +  $ (2;, u, t ) 

y(t) =  C x(t) +  e d(t), e > 0

(3.23)

(3.24)

where the function u, t) satisfies the Lipschitz condition. Using the same observer defined 

by (3.14)-(3.18), it  can be seen that the standard form in (3.10)-(3.11) has now the following 

form:

A z + 0np

T

d(t)

V

z +
0„  0,'np

0pn t ip upn

T

d(t)

V

(3.25)

(3.26)

This can also be represented by the standard setup in Figure 2.2, except for redefining the

matrices of G(s) in (3.13) and replacing r  by f  defined as: f  =  

form, however, s till does not satisfy the regularity assumptions since D j2D \2 is singular. 

Fortunately, regularization can be done by extending the external output C to include the 

“weighted” vector [iv. This adds another change in the standard setup consisting of replacing 

C by C defined as: C =  [c P^\ • entries of G(s) in  (3.13) are then given by:

d(t) This standard

Pv.

A j z ■ 

In

On

G

[[■Li 0np

On 0  np 

On 0 f/p 

0pn t ip

T

d

v

0 „

S I

0 .pn

(3.27)

(3.28)

I t  is now straightforward to see that a ll the regularity assumptions below, [122], are now 

satisfied:
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(1) (A, B \ ) :is controllable and (Ci, A) is observable (for any matrix A).

33

(2) (A, B-j) is stabilizable (for any m atrix A), and (C f, A) is detectable ( iff {A, C) is 

detectable).

(3) D j2 C i  D 12 =  0 (32L

(4)
B i

D 21
D21

e2I „

(5) D 11 =  0 and D 22 =  0.

It  follows that the standard form in (3.27)-(3.28) satisfy the conditions of the so-called “Sim­

plified H qo problem” (see [122], Chapter 14, for more details about this problem and its 

analytical solution). I t  is also important to note that all these conditions are satisfied here 

iff (A, C ) is detectable, which does not impose any new design restrictions for the observer 

design. We now show the equivalence between the original problem and this “Simplified H x  

problem” in the following sense:

Let T i be the setup in Figure 2.2 associated w ith (3.10)-(3.11), 72  the one associated w ith

(3.25)-(3.26) and T3 the one associated w ith (3.27)-(3.28) where the three share the controller 

K  in (3.18). And let 2 \(s), 7^(s) and Tfis) be their corresponding transfer matrices. The 

following lemmas demonstrate a certain equivalence relationships among these setups (see 

Appendix A .l for the detailed proofs).

Lemma 3.1 Consider a stabilizing controller K  fo r the setups T j and IR, then 

II Ti(s) ||0 0 < 7  i f  and only i f  3 e >  0  such that || T2 (s) ||oo< 7 -

Lemma 3.2 Given e >  0 and a stabilizing controller K  fo r the setups T2 and I 3 , then 

II ? 2 ( s )  H o o< 7  i f  and only i f  3 f i >  0  such that || T3 (s) | | 0 0 <  7 .

3 .3 .2  P aram eteriza tion  o f  A ll O bserver G ains

We now present the main result of this chapter in the form of a theorem showing that the 

observer gain K  needed to stabilize the observer error dynamics according to Theorem 3.4 

must solve a “Simplified Hoo control problem” according to the definition used in [122]. To 

this end, we define the regular continuous Simplified Hoo problem “Problem 1” as follows: 

Problem 1: Given e > 0 and R > 0, find S, the set of admissible controllers K  satisfying
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II Tc,f ||oo< 7  f or the setup in Figure 2.2 with G having the state space representation in 

(3.13) along with the matrices in (3.27)-(3.28).

Defining the following two Hamiltonian matrices associated w ith Problem 1 (when 7  =  ^):

A 0? ln  — -j)pln
) J00 —

AT a2I n - ^ C TC

r !n - a t

—
1

11
1

Noo =

the main result is then summarized as follows:

(3.29)

Theorem  3.5 There exists a gain K  for the observer (3.14)-(3.18) (or a static gain L for 

(3-4)-(3.5)) that stabilizes the error dynamics according to Theorem 3-4 (or Theorem 3.3) if  

and only i f  3 e, (3 > 0 such that:

1) Noo e dom(Ric) and X ^  =  Ri^Noo) > 0.

2) Joo € dom(Ric) and Yqo =  Ric^J^) >  0.

3) p(X 00Y00) < A? (where p(.) is the spectral radius defined as the maximum magnitude over 

all eigenvalues).

Proof: A direct result of Theorem 3.4, Lemmas 3.1 and 3.2. □

Moreover, by using the result in [28], the set of all observer gains K  can be represented 

by the set of all transfer matrices from y to u in Figure 3.2:

J

Q

J(s)= 1 y
00

- h e

4 ( In -  a2Y00X 00) - 1Y00( F  - W n  -  O^ooXoc) - 1

I tp±n

0  pn

Figure 3.2: Parameterization of A ll Observer Gains, 

where A 00 =  A +  (a2 -  -k)Xoo -  ^ { In  ~ a2Y00X 00)~1Y00CTC, and Q is such that ||<2||oo < -■

3.3.3 A  new  H ^  D esign  P rocedu re

Following the approach in [92], the following iterative “binary search” procedure is then 

proposed to evaluate the observer gain:

Design procedure:

Step 1  Set e, (3 > 0 and 7  *—
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Step 2 Test solvability of Problem 1. I f  test fails then go to Step 3 ; otherwise solve the 

problem (using available software packages or the analytical results in [122]) and any K  <E S 

is a candidate observer gain that globally stabilizes the error dynamics.

Step 3 Set e <— §,/?<— f  • I f  e or 0 < a threshold value then stop ; otherwise go to Step 2 .

Remarks:

•  This design procedure is less restrictive than the designs introduced in [1, 92, 93, 95], 

since it  is directly related to the stability condition through the result in Theorem 3.5. 

This w ill be numerically demonstrated in Section 3.4.

•  When the optim ization problem can not be solved due to its infeasibility or due to 

lim itations of the used software, one can increase 7  which corresponds to a smaller 

Lipschitz constant a. The word stop in step 3 can then be replaced by: decrease a and 

go to Step 1. The algorithm is then guaranteed to work as a  —> 0. However, the region 

of convergence is decreased unlike if  original a  is used. The choice of the threshold in 

Step 3 is also important to avoid numerical instability of the used software.

•  Same design can be used when the output is disturbed as in (3.24). The small gain 

theorem guarantees that the estimation error e(t) e £ 2  if  d(t) € £ 2 .

•  Design of the H 00  observer can also be done by including appropriate weightings to 

emphasize the performance requirements of the observer over specific frequency ranges. 

This w ill be considered in Chapter 4 when studying the sensor fault diagnosis problem.

•  I f  some states are not affected by nonlinearities (i.e, if  some entries of the Lipschitz 

function 4> are zeros), the corresponding l ’s of the Identity m atrix in the m atrix B\ of 

the setup (3.27)-(3.28) can be replaced by zeros. As long as (A, B{) is controllable, the 

regularity assumptions w ill be satisfied, and the observer design is s till equivalent to a 

“Simplified H 00 problem!''.

3.4  S im ulation  R esu lts

We consider the following example from [92] to show the advantages of using the proposed 

Hoo design procedure. This is an example of a 2nd order system of the form (3.1)-(3.2) w ith

-2  3 0 0
, r = u, <h=

3 1 1 k s in(x 1 )
and c - = [  0 . The Lipschitz constant is a= |
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The system is open loop unstable and therefore the design techniques in [1, 95] can not be 

used to design an observer of the form (3.4)-(3.5). In [92], the case of a =  1.5 was considered 

and, although the design algorithm in Theorem 3.3 fails if  the original system matrices are
r i rused, the static gain L  was obtained after using a state transformation as L =  2 4 •

Case s tudy 1 : We here show the improvement that can be achieved by using a dy­

namic observer, in  terms of the maximum achievable a in (3.21). Using a static gain

, b  =  c  =  i 2,
T A B

1----<31
COCM1

' i
L  = a b in (3.22), we have Tqt = , w ith A =

“ C D 3 1 - 6

x i x3 

Xz X‘2
>  0  such thatand D — 0 2 - I t  then follows, [122], that [T^Hoo < 7  iff 3X =

X A  +  ATX  X B  CT

B t X  —7 / 2  D T <  0. The term X A  +  ATX  in the previous m atrix inequality

C D  - 7 / 2  _

—4xi +  6x 3 yi +  3x2
is , where y \  =  (3 -  a)x 1 -  (6 +  l)x 3 , 2/2 =  ( 6  — 20 )0:3 +  (2 -  2b)X2-

2/1 +  3x2 2/2

We now use convex optim ization as follows: by minimizing 7  subject to the previous Linear 

M atrix Inequalities (LMIs), using the Matlab2 command um in a f, the optimal 7  — 0.2774 

which corresponds to a — 3.6055. Therefore, the maximum possible a over all static ob­

servers satisfying the stability condition in  (3.21) is a =  3.6055. Using the H 00  design 

algorithm of section 3.3.3 for a =  25, a dynamic observer gain of order 2 can be obtained at 

e — (3 — 0.015625 as follows:

a r,e,A no h a  3  9 3 0  n
(3.30)

0

This shows the advantage of using a dynamic observer gain in this case.

Case s tudy 2: In  this case we consider the case of a =  1.5, comparing the dynamic ob­

server w ith the static observer in  [92], in a state feedback application. Using the H ^  design 

algorithm of section 3.3.3 (starting w ith e =  (3 =  2 ), and without using any state transforma­

tions, a candidate dynamic gain for the observer (3.14)-(3.18) is obtained after 4 iterations 

(a t  c' =  (3 =  0 .1 2 5 ) as:

-8.644 -8.5916 ]  [  8.7669 ]  |6.8861 2.9276
Al =  ,B l =  ,CL =r k D L =

0.1753 -21.5898 13.1211 2.9276 9.8137

(3.31)

-64.114 -4.803 4.564 62.114 3.239 0

A l =
0.256 -146.361

, b l  =
87.373

,CL =
3.239 70.79

& d l =
0

2The M atlab  software used in  th is  thesis is the  M a th  W orks Inc  M A T L A B ®  Version 6.5 Release 13.
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, and the objective is toIn the simulations, the system in itia l condition a;(0) =  j^l.6  2

stabilize the equilibrium point at the origin by using an observer-based state feedback control

law. To this end, the control law u = 11 13 x, based on linearization, is proposed and

Figure 3.3 (a), (b) compares the system performance for 3 different cases: (i) pure state 

feedback, (ii) observer-based state feedback w ith the static gain L =  ĵ 2 dj , (iii) observer- 

based state feedback w ith the dynamic gain in (3.31). The observers in itia l conditions is 

x ( 0 )  =  [0  o j  • The figures show the improvement in  the state convergence rate when the 

dynamic observer is used.

(a) (b)

><a>
5w

time

CMx

V)

time

Figure 3.3: (a) Response of State x \, (b) Response of State a; 2  •

3.5 C onclusion

In  this chapter, a new / i l0O observer design for Lipschitz nonlinear systems is proposed. I t  is 

first shown that the classical “Luenberger-like” observers are special cases of a more general 

dynamic framework, one that shows promise given the additional degrees of freedom. The 

equivalence between the observer design problem and a standard Ffoo control problem that 

satisfies all of the regularity assumptions is shown. A systematic design procedure which 

is less restrictive than the existing design approaches and that can be carried out using 

commercially available software is presented.
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Chapter 4

Lipschitz Sensor Fault Diagnosis

In  this chapter, we consider the sensor fault detection and identification problem for Lipschitz 

nonlinear systems, using the dynamic observer structure introduced in Chapter 3. We start by 

the LTI case showing that, unlike the classical observer structure, this problem is solvable w ith 

the additional dynamics by considering different frequency patterns for the sensor fault. The 

same approach is then extended to the Lipschitz case where the use of appropriate weightings 

to solve the problem in a standard convex optim ization framework is demonstrated, and an 

LM I design procedure solvable using commercially available software is presented1.

4.1 A n  in vestiga tion  o f th e  E ffect o f  D yn am ics in th e  LTI C ase

As discussed in  section 2.2, a widely accepted model for the Linear Time-Invariant (LTI) 

system w ith faults is the state-space model in (2 .1 )-(2 .2 ) which can also be represented by

x(t) =  Ax(t) +  Bu{t) +  R if( t )  (4.1)

y(t) -  Cx(t) +  Du(t) +  R,2f ( t )  (4.2)

where x(t) e E" is the state vector, u(t) e Rm is the control input, y(t) e Rp is the measured

output, and /(£ ) € Es is a single vector that represents all the faults in (2.1)-(2.2). In this

lrPhe results for the L T I case have been published in  the artic le: “A .M .  Pertow, II..I. M a r q u e z  and Q. Zhao, 

Hoo D ynam ic Observer Design w ith  A p p lica tio n  in  Fau lt D etection and Diagnosis,”  Proceedings o f the 441,1 

IE E E  Conference on Decision and C ontro l and European C ontro l Conference (C D C -EC C  2005), Seville, Spain, 

pp. 7943-7948, December 2005. The results fo r the  L ipsch itz  case have been subm itted  for pub lica tion: “A .M . 

Pertew, H.J. Marquez and Q. Zhao, LM I-based Sensor Fau lt Diagnosis fo r Nonlinear L ipsch itz Systems,” 

subm itted  to  A u tom atica , December 2005.

38
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model, A, B, C, D, 7?i and R2 are known matrices of appropriate dimensions. In  this case,

the most famous technique used for residual generation (i.e, for the purpose of generating a 

signal r ( t ) that can be used to detect faults) is the observer-based approach that uses the 

following Luenberger observer structure:

x(t) =  Ax(t) +  Bu(t) +  L  (y(t) -  y(t)) (4.3)

y(t) =  C x(t) +  D u(t) (4.4)

in addition to a weighting Q(s) to generate the residual as:

r  =  Q{s)(y -  y)\ r( t)  G I 9 (4.5)

The residual obtained from (4.5) is therefore the weighted output estimation error of the 

observer, and the residual generator (4.3)-(4.5) has two degrees of freedom, namely, the 

constant observer gain L  and the post filte r Q(s). W ith in this context, the fault detection, 

isolation and identification objectives (which were discussed in section 2 .2 ) can be defined

as follows [13]: (note that in  these definitions the transient period of the residuals is not

considered)

Definition 4.1 (Fault detection): The residual generator achieves fault detection (strong 

fault detection) i f  the following condition is satisfied:

r f it )  =  0 ; fo r i  =  1, • • • ,q ; Vt i f  ( if  and only i f )  f f i t )  = 0 ;  fo r i =  1 , • • • , s ; Vt

Definition 4.2 (Fault isolation): The residual generator achieves fault isolation i f  the resid­

ual has the same dimension as f ( t )  (i.e, q =  s) and i f  the following condition is satisfied:

(n {t) =  0 ; Vt f i( t )  =  0  ; Vt) ; fo r i  =  1 , • • • , s

Definition 4.3 (Fault identification): The residual generator achieves fault identification i f  

the residual r(t) has the same dimension as f ( t )  and i f  the following condition is satisfied:

(n (t) =  f i( t )  ; Vt) ; fo r i  =  1, • • • , s

According to the previous definitions, in  fault detection a binary decision could be 

made either that a fault occurred or not, while in fault isolation the location of the fault 

is determined and in  fault identification the size of the fault is estimated. The relative 

importance of the three tasks is subjective and depends on the application, however it  is
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important to note that fault identification implies isolation and that fault isolation implies 

detection (but not the opposite). Necessary and sufficient conditions for fault detection and 

isolation have been developed in [34].

For the sensor faults diagnosis problem (which is our focus in  this chapter), the system 

(4.1)-(4.2) is the special case where R\ =  i ?2 =  I P and /( f )  =  f s(t) G Kp. Using the

classical residual generator in (4.3)-(4.5), the observer error dynamics is given from:

e(t) =  ( A - L C ) e ( t ) - L f s(t) (4.6)

m  =  Ce(t) +  f s(t) (4.7)

where e =  x — x, y — y — y.

The fault vector f s has direct effect on the output estimation error y, and hence on 

the residual. Therefore sensor fault detection according to definition 4.1 is achievable by 

this structure [13]. Fault isolation can also be achieved by using the dedicated observer

scheme, where a bank of observers (4.3)-(4.4) is used to differentiate between different faults.

However, for this approach, the number of sensor faults need to be known a priori, and also 

restrictive observability conditions need to be satisfied [108], In  this section we consider the 

multiple sensor faults identification problem for LTI-M IM O systems using a novel approach. 

Our methodology is based on the extension of the static observer structure in (4.3)-(4.4) to 

a more general dynamic framework similar to the one used in Chapter 3 for the Lipschitz 

observer design problem. We tackle the case when f s is in a narrow frequency band by showing 

that the sensor fault identification problem is equivalent to an output zeroing problem which 

is solvable only w ith a dynamic observer. We further consider the cases of low and high 

frequency ranges showing that these two problems can be modeled as weighted Hex problems.

4.1 .1  T h e N arrow  Frequency B an d  Sensor Fault D iagnosis

For the sensor fault case (as seen in  equations (4.6)-(4.7)), the observer’s estimation error 

can be represented by Figure 4.1.

From this fig u re , i t  is c le ar that b y  m in im iz in g  “e” , the o u tp u t  e s tim a tio n  e rro r  y 

converges to f s which guarantees fault identification in this case. In  this subsection, we 

consider the solution of this minimization problem (when f s is in a narrow frequency band 

around a nominal frequency w0) by using a dynamic observer structure, showing that the 

problem is not tractable for the static gain structure in (4.3)-(4.4).
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/, A -L C - L

L h
c

+"

- r O
y

Figure 4.1: Error Dynamics of the Classical Observer Structure.

Same as in  Chapter 3, we w ill make use of dynamical observers of the form:

x(t) =A x(t) +  Bu{t) +  rj(t) 

y(t) = C x(t) +  Du(t)

(4.8)

(4.9)

where rj{t) is obtained by applying a dynamical compensator on the output estimation error 

{y — y), i.e r?(t) is given from

We w ill also write

i  =  A L(; +  BL(y -  y) 

n =  CL^ +  D L(y - y ) .

K  =
A l B l

_  C i d l

(4.10)

(4.11)

(4.12)

to represent the compensator in (4.10)-(4.11). The additional degrees of freedom provided 

by this observer w ill be exploited in the minimization of the sensor faults effect. First, it  can 

be seen that the observer error dynamics in (4.6) is now given by (e =  Ae — y) which can be 

represented by the following so-called standard form:

(4.13)

(4.14)
ip C Ip  0p n  V

where

1 T
z + 0n p  f r i l

V

c 1
z  +

0 
1

1 On T

C Ip Opn V

■r =  f s  , v  ^  'I  :  K ( y  -  y)

C =  e =  x -  x , ip -  y - y (4.15)

which can also be represented by the standard setup figure (i.e, Figure 2.2) where the plant 

G  has the state space representation in  (4.16) w ith the matrices in  (4.13)-(4.14) and where
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the controller K  is given in (4.12).

42

A Bi b 2

G(s) = Ci Dn Dl2

. B>21 d 22

A ll possible observer gains for the observer (4.8)-(4.12) (including the static case (4.3)-(4.4)) 

can then be parameterized by the set of “all stabilizing controllers” for the setup in Figure 2.2. 

This is a standard result (see [122]) and, for the problem considered in  this section, it  can be 

represented by the following theorem (as a special case of Theorem 11.4 in [122]):

Theorem  4.1 Let F  and L  be such that A  +  LC and A  — F  are stable; then all possible 

observer gains K  fo r the observer (4-8)-(4-12) can be parameterized as the transfer matrix 

from <p to v in Figure 4-2 with any Q(s) <E RH0Q.

A - F  +  LC - L - I n

J(s) = F O 1 In

- C Ip O p n

Figure 4.2: Parameterization of A ll Observer Gains.

As mentioned earlier, our objective is to minimize (in some sense) the effect of sensor 

faults (in a narrow frequency band around a nominal frequency ui0) on the state estimation 

error in order to achieve sensor faults estimation. In  this subsection, we consider the solution 

of this minimization problem in an C2 sense (when f s is in  a narrow frequency band around 

a nominal frequency w„) by using the dynamic observer structure introduced earlier, showing 

that the problem is not tractable for the classical structure in (4.3)-(4.4). Towards that goal, 

we w ill first assume that the fourier transform of the sensor fault Fs(ju>) have a frequency 

pattern restricted to the narrow band ujq ±  A oj as described by equation (4.17):

12 ; \u — u>01 < Aw 

6 : otherwise
(4.17)

where 5 is a small neglected number for the frequency magnitudes outside the region of 

interest. We w ill then define an observer gain K  as optimal if  |j e \\c2 can be made arb itrarily 

small for all possible sensor faults satisfying (4.17). But by studying the gain of the error
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dynamics in the standard setup, we have: ||e||jC2 < ||T"'e/s(.s)||O0 ||/,s||;c2. And since (as Aco —> 

0), Tefs(ju>) -> Tef. ( ju 0) then we have ||e||Jc2 < amax ( f efa(juj0f)  \\fs\\c2, and therefore, it  is 

easy to see that an optimal gain K  is one that satisfies Tefs(jui0) =  0.

The following theorem shows that a static observer gain can never be an optimal ob­

server gain according to the previous discussion.

Theorem  4.2 A static observer gain (such as the constant matrix L in (4-3)-(4-4)) can never 

be an optimal observer gain (i.e can not satisfy Tefs (jui0) =  0) fo r any nominal frequency oj0.

Proof: The proof follows by noting that the transfer m atrix from f s to e (as seen in (4.6)

and Figure 4.1) is Tefs(s) =
A - L C - L

!n O 1

. And since the gain L  is chosen to stabilize

(A —LC ), then (Vcu0) ju j0 is not an eigenvalue of (A — LC ). Therefore, by using (2.28), we have 

rank(T e/8 (jcu0)) =
A LC j^o^n ^ A LC ju j0I n - L

rank —n. But rank

1 s'" 0

1 In 0 np

rank
L Or,

Onp In
=  n +  rank(L). Therefore, rank ('Tefs{juj0)^ ^  0 unless L  =  0. This

implies that no gain L  can satisfy Tefs(jw0) =  0, and therefore a static observer gain can 

never be an optimal gain. □

We now consider the case of the dynamic observer introduced in (4.8)-(4.12). As 

a result of the gain parametrization presented in theorem 4.1, the transfer m atrix from 

f 3 to e, achievable by an internally stabilizing gain K , is equal to the Linear Fractional 

Transformation (LFT) between T  and Q as follows [122]:

Tefs (s) =  LFT(T ,Q ) =  Tn(s) +  T i2 (s)Q (s)f2 1 (s) 

where Q(s) G R H ^  and where T  is given from

T il Tu

T21 T22

(4.18)

A - F F Onp - I n

On A +  LC L On

In 0n Onp On

0 pn C Ip Opn

(4.19)

We w ill denote T’n(s), T i2 (s) and T2 i(s ) by T i(s), T2 (s) and Ta(s) respectively. The following 

theorem presents a result on the invertib ility of the transfer matrices T2 (s) and T3 (s) at a 

frequency u>0 (i.e, at s =  jio0).
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Theorem  4.3 The (n x n) and (p x p) matrices and Tiijuj,,) are invertible i f  ju >0 is

not an eigenvalue of A.

Proof: By using (4.19), T2 (s)

Similarly, we have T^(s) 

properties are satisfied:

1 . rank I

A +  LC

C

A - F  F  

0„ A +  LC

0 „

1

iu 1

r*

i

1...
..

s'" 0 „

. Therefore, using (2.28) the following two rank

rank(f2{j0Jo)j

2 . rank ^Ts(jw0) j  =  rank

A F  jto0I n I n 

In On

A  +  LC  — ju i0I n L  

C F
n .

A - F -  j 0JoI n - I n A +  L C ..jloJ u L
But rank =  2n, V u!0. We also have, rank

In On 1

Q
 

1 __

rank
A Ĵ 'nLi

o.pi! In
n +  p ; if  ju >0 is not an eigenvalue of A.

Therefore, rank ^TfjuJo)^ =  n and rank ( l 1:i(jL0o)'j 

of A, and the proof is completed.

; p (fu ll ranks) if  ju ia is not eigenvalue

n

Based on the results in  theorem 4.3, it  can be proven that, for Te/S(s) in (4.18), 

3 a transfer m atrix Q(s) e R H ^  that satisfies Tefs(jw0) =  0 (see Appendix A.2 for de­

tails about computing Q(s)). Therefore, for the dynamic observer in (4.8)-(4.12), an optimal 

gain can be found (unlike the static case). This shows the advantage of using the dynamic 

observer in  this case. To summarize, based on the previous results, we w ill define an optimal 

residual generator as follows:

Theorem  4.4 (Optimal residual fo r narrow frequency band): An observer of the form (f-8)- 

(4 -12)  along with r  =  y — y is an optimal residual generator fo r the sensor fault identification 

problem (with faults in a narrow frequency band around u>0) i f  the dynamic gain K  is chosen 

as the Linear Fractional Transformation LF T ( J, Q) in Figure 4.2 where Q(s) g RHryo solves 

the problem Tef 3(juj0) =  0 fo r the transfer matrix Tefs(s) in (4-18).
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Rem arks

- According to the previous theorem, an optimal residual generator guarantees sensor 

faults estimation and at the same time state estimation (w ith minimum energy for the 

estimation errors). An advantage of having state estimation in  presence of sensor faults 

is the possibility to use the observer in fault tolerant output feedback control (i.e, if  a 

reconfiguration control action is involved).

- From the special cases of interest is the case of sensor bias, where the previous approach 

can be used to get an exact estimation of a ll sensor biases at the same time. A sufficient 

condition is that the m atrix A  has no eigenvalues at the origin.

4.1.2 U se o f H o o  in the Low and High Frequency Cases

We here consider two different cases: the low frequency range and the high frequency range. 

For the first case, we assume the system to be affected by sensor faults of low frequencies 

determined by a cutoff frequency u>i, i.e the frequency pattern for f s(t) is confined to the 

region [0,n>z]. In  the high frequency case, we assume these frequencies to be confined to the 

region [w/*, oo). Since the error dynamics can be represented by Figure 2.2 w ith the plant G 

in (4.16) having the matrices defined in (4.13)-(4.14) and w ith the controller K  in (4.12), then 

these two cases can be solved by adding weightings to the setup in Figure 2.2 that emphasize 

the frequency range under consideration, and by solving these problems as weighted H 0c 

problems. Moreover, it  is important to note that, using a regularization procedure similar to 

the one introduced in  section 3.3.1, the standard form in (4.13)-(4.14) can be regularized (by 

extending the external output C in Figure 2.2 to include the “scaled” vector Bv\ w ith (3 > 0), 

and hence observer synthesis can be carried out directly using the standard Hoc solution. To 

this end, we replace (4.13)-(4.14) by the following augmented form:

A z +

e

P v .

np -In

Jnp

In

o „
Pin

'pn

(4.20)

(4.21)

which satisfies the regularity assumptions. Similar to Lemmas 3.1 and 3.2, the following 

lemma demonstrates a certain equivalence relationships between the standard form in (4.13)-

(4.14) and the regularized one in (4.20)-(4.21) (proof is omitted).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. LIPSCHITZ SENSOR FAULT DIAGNOSIS 46

Lem m a 4.1 Let R% be the setup in Figure 2.2 associated with (4-13)-(4-14), Rz be the one 

associated with (4-20)-(4-21) and consider a stabilizing controller K  fo r both setups. Then 

II Ri ||o o<  7  i f  and only i f 3 /3 > 0  such that || Rz ||o o<  7 -

We now consider faults of low frequencies determined by a cutoff frequency w;. The 

weighting wi(s) =  sŝ ,  [1 2 2 ], emphasizes this low frequency range w ith “b” selected as ug 

and ua” as an arbitrary small number for the magnitude of iiy (joj) as u> —► oo. Therefore, w ith 

a diagonal transfer m atrix W (s) that consists of these weightings, the problem in Figure 2.2 

can be modified to the weighted version in  Figure 4.3.

Figure 4.3: Weighted Standard Setup. 

I t  can be seen that G is given by:

G(s) =

0 .

0 .np

’pn

A

Jnp

On

cw c

o.'np

0 np 

Onp

D,„

O p n

~In

On

Pin

o,'pn

(4.22)

where Aw — 0P, Cw =  Diagp(b) and Dw =  Diagp(a). However, this standard form violates 

the regularity assumptions. Therefore, we introduce the modified weighting, [122], wimod(s) =  

w ith arbitrary small positive “c” . W ith  this modification, the augmented plant G is 

the same as (4.22) except for Aw which is now given by the stable m atrix Diagp(—c) and 

Cu, which is given by Diagp(b — ac). Similar to the non weighted case, all the regularity 

assumptions are satisfied if  and only if  A  has no eigenvalues on the imaginary axis. We define 

the regular Hoc problem associated w ith  the low frequency range as follows:

D e fin itio n  4.4 (Low frequency H x ) :  Given ft > 0, find S . the set of admissible controllers 

K  satisfying || T^f  ||oo< 7  fo r the setup in Figure 4-3 where G has the representation (4-22) 

with A w =  Diagp(—c), Cw =  Diagp(b — ac) and Dw =  Diagp(a).
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Based on the previous results, we now present the main result of this section in the 

form of the following definition for an optimal residual generator in C2 sense:

Theorem 4.5 (Optimal residual fo r low frequencies): An observer (4-8)-(f.l2 ) along with 

r  — y — y is an optimal residual generator fo r the sensor faults identification problem (with 

faults of low frequencies below uy) i f  the dynamic gain K  € S* (the set of controllers solving 

the H a0 optimal control problem in Definition 4-4 with the minimum possible 7 ).

Comments:

- A residual generator that is optimal in the sense of Theorem 4.5 can be found by 

using an iterative binary search algorithm over the constant (3 (in order to achieve the 

minimum possible 7  for the problem in Definition 4.4). Existing software packages can 

be used to solve the regular H ^  problem in Definition 4.4 for a given (3.

- The constants a and c should be selected as arbitrary small positive numbers, while b 

must approximately be equal to ay (the cutoff frequency). Different weightings could 

also be used for the different sensor channels. In  this case Aw =  Diag{ <7 , • • • , — cp), 

Cw =  Diag(b\ — a ic i, • • • , bp — apCp) and Dw =  Diag(ai, • • • , ap).

The high frequency range case:

The SISO weighting Whmod(s) =  -> [122], could be selected to emphasize the high

frequency range [wh, 0 0 ) w ith “6 ” selected as wy and, “a” and “e” > 0  as arbitrary small 

numbers. Similar to the low frequency range, a regular Hoo problem related to this case can 

be defined. Also, an optimal residual generator can be defined in a sim ilar way to Theorem 

4.5 (details are omitted due to sim ilarity).

4 .1 .3  S im u lation  R esu lts  on  a Tank S ystem

The PROCON Level/Flow/Temperature Process Control System (shown in Figure 4.4) in­

cludes two rigs which can be either controlled independently or by connecting them together 

to achieve simultaneous level and temperature control.

In  these simulation experiments, we consider the configuration obtained by connecting 

the two modules in  cascade as shown in Figure 4.5. In  this case, there are two water circuits, 

namely, the hot water circuit and the cold water circuit. The water of both circuits flows into
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Figure 4.4: The Level/Flow/Temperature Process Control System.

a heat exchanger where the heat energy can be transferred from the hot water flow into the 

cold water flow. The hot water temperature is controlled manually by the on-off switch of the 

heater, while the flow rates of both circuits can be controlled through the two servo valves 

connected to the computer. A level sensor is used to measure the level of the cold water in the 

main upper tank, while the temperature (at exactly one position) can be measured through 

the transm itter. I t  is important to note that there are 5 available positions for temperature 

measurement: T) (T2 ) for the hot water input flow to (output flow from) the heat exchanger, 

T3 (T4 ) for the cold water input (output) flow, and T5 for the cold water output flow from 

the cooling radiator. In  this experiment, our objective is to control the water level and the 

temperature of the hot water circuit by controlling the flow rates of the valves. According 

to this configuration, the process has two inputs (the cold water and hot water servo valves) 

and two outputs (the level of the water in the upper tank and the temperature T2 ). The 

inputs w ill be denoted u\ and U2 respectively and they both have the same operating range 

of 0 to 4 litres/m in. The operating ranges for the outputs y\ and 1/2 are (0, 14 cm) and 

(0, 100 Celsius) respectively. The heater set point (i.e, T i) is chosen as 80 Celsius, while the 

cold water in  the reservoir is at the room’s temperature (i.e, T3 ~  23 Celsius).

Using the first principle physical laws, a model of the process can be developed. However, this 

model is highly nonlinear and many of its parameters are unknown. Therefore, identification 

experiments are conducted, and based on the operating point (?/, 1 =  2 . 8  litres/m in, U2 =  0 . 8

litres/m in, y i — 6.35 cm and y-2 =  35 Celsius) a 5th order state space model of the form
r i t

(x =  Ax +  Bu; y =  Cx +  Du) is identified, where u =  u j U2 and y =  ly 1 y2 (see 

Appendix B .l for the system matrices). This model is used to demonstrate the proposed 

sensor faults identification schemes. Towards that goal, the system is controlled to stabilize
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□ I Valve Level
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Figure 4.5: Structure of the Connected Rigs.

the output at y\ — 8  cm and ?/2 =  40 Celsius as seen in  Figure 4.6 .

—  Level, y1 (cm )
_1 L Tem perature, y2 (Celsius)

tim e (sec)

Figure 4.6: Actual System Outputs for the Controlled Process.

Case study 1: In  this case, the system is assumed to be affected by sensor biases, where 

both measured outputs are affected by piecewise constant faults. This is the special case 

where w0 — 0 for the problem in section 4.1.1, and since the m atrix A  in Appendix B .l has 

no eigenvalues on the origin, an optimal observer gain that can estimate both sensor biases 

simultaneously can be designed. This optimal gain K , in our case, is the LFT in Figure 4.2 

w ith Q(s) (computed using the algorithm in Appendix A .2) as follows:
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Q(s) =  Q{0) -

104.9570 -116.5842

-75.2350 -356.1628

-6.8637 783.5496

-74.8358 -694.0620

36.3072 112.4389

(4.23)

0 0 0.1 0 0.005Using this observer gain w ith the observer in itia l conditions as 

biases simultaneously changing w ith time are successfully estimated as seen in  Figure 4.7

(a )

, two

£o

tim e (sec)

(b)

(03

tim e (sec)

Figure 4.7: (a) Bias Estimation for y\, (b) Bias Estimation for v/2  •

The state and output estimation errors also converge to zero in this case (Figure 4.8 shows 

the exact output estimation).

Case study 2: In  this case, we consider the case of low frequency sensor faults (in the range 

[0, 5 rad/sec]). Using the Hoo design introduced in section 4.1.2 for the low frequency case 

(and w ith the weighting selections as a =  0.01, 6  =  5 and c =  0.001), the optimal observer 

gain is obtained by solving the Hoo problem in Definition 4.4 using the command hinfsyn in 

MATLAB, w ith minimum 7  as 0.1 and w ith 0 =  1. Using this observer for the faulty outputs 

in Figure 4.9, a correct estimation of the low frequency sensor faults is shown in Figure 4.10. 

The maximum error in that case was 0.0839 for the first fault estimation, and 0.2787 for the 

second fault estimation.
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(a )

51

Actual output (y l > 
Eatbnatedoutpiiyyijiat}

£o

tim e (sec)

(b)
- Actual output (y2)

Estimated output (y2 hat) [

to 25 30

tim e (sec)

Figure 4.8: (a) Output Estimation for y\, (b) Output Estimation for y-2-

—  M easured y1 (cm) 
M easured  y2 (Celsius)

tim e (sec)

Figure 4.9: Outputs y\ and y-2 Affected by Low Frequency Sensor Faults.

4.2  E xten sion  to  th e  L ipsch itz C ase

The same approach that showed promise in the LTI case is now adopted for the case of 

nonlinear Lipschitz systems, namely systems defined by equations (3.1)-(3.3) and subject to 

the faulty output:

y(t) =  Cx(t) +  f s(t) (4.24)

A t this point, general sensor faults are assumed (i.e, no assumptions are made on the time-

domain or frequency-domain properties of the faults). The dynamic observer in (3.14)~(3.18),

w ith the residual:

r  =  y - y  (4.25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. LIPSCHITZ SENSOR FAULT DIAGNOSIS

Figure 4.10: (a) Fault Estimation for y\_, (b) Fault Estimation for ij2

is used as the residual generator, and the objective is to develop conditions on the observer 

gain K  that guarantee fault detection according to Definition 4.1. To this end, it  can be seen 

that the residual dynamics are given by:

e(t) =  Ae(t) -  r)(t) +  

r( t) -  Ce(t) +  f s(t)

where e =  x  — x is the observer estimation error, and (j> =  i f x .  u. t) — 4>(i, u, t). 

By defining the variables:

(4.26)

(4.27)

_A n 4>

n fs

v =  n =  K  ( y - y )  (4.28)

(  =  e =  x  — x 

T =  V - y  =  Ce +  f s

Then, the error dynamics in  (4.26) can s till be represented by Figure 2.2 (same as the LTI 

case) but w ith the following equations:

(4.29)

(4.30)

r r
z + [

>-?1&o

V

\ In
Z +

On 0 np On T
—

C 0pn Ip 0 pn V
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The following theorem is an extension of the observer asymptotic convergence result 

(obtained in Chapter 3) to the fault detection problem. It  uses the previous standard form 

to give the sufficient condition for achieving fault detection according to Definition 4.1. The 

proof is sim ilar to Theorem 3.4, and is hence omitted.

Theorem  4.6 Given the nonlinear system of equations (3.1)-(3.3), the residual generator

(3.14)-(3.18), (4-^5) achieves fault detection (according to Definition 4-1) fo r the sensor 

faults in (4-3,4) fo r all <£>(•, ■, •) satisfying (3.3) with a Lipschitz constant a i f  the observer 

gain K  is chosen s.t:
1

suPue 1  ^ m o z P c n lH ] <  “  (4-31)

4.2 .1  A  M u ltiob jec tive  O p tim ization  P rob lem

Throughout the rest of this chapter, we w ill assume the fault detection objective (i.e, the 

condition stated in Theorem 4.6) to be satisfied for the residual generator (3.14)-(3.18),(4.25). 

We w ill further consider the fault identification problem (according to Definition 4.3) w ith 

the objective to make the residual converge to the sensor fault vector achieving detection and 

estimation at the same time. In  this section, we focus on the case when the sensor faults 

are in a narrow frequency band around a nominal frequency cv0. Existence conditions for 

solving this problem are provided, and a numerical LM I design procedure is presented using 

the dynamic observer structure.

Since the residual “r ” is given from equation (4.27), it  is then clear that the observer 

estimation error “e” constitutes an important part of the residual response, and that by 

minimizing “e” the residual converges to f s which guarantees fault identification in this 

case. In  fact, the estimation error e can be represented by the feedback interconnection in 

Figure 4.11 (which is the modified version of Figure 3.1 introduced in Chapter 3), where 

f s is the sensor fault vector that affect the system. Hence, minimizing “e” is equivalent to 

minimizing the effect of f s on the feedback interconnection of Figure 4.11.

In  this section, we consider the solution of this minimization problem in an £ 2  sense 

(when f s is in a narrow frequency band around a nominal frequency w0) by using the dynamic 

observer structure introduced in Chapter 3. I t  is easy to show (same as for the LTI case in 

section 4.1.1) that the problem is not tractable for the classical structure in (3.4)-(3.5).

Towards that goal, same as in  section 4.1.1, we w ill first assume that the Fourier
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T „i

Figure 4.11: Feedback Interconnection: the Sensor Fault Case.

transform of the sensor fault Fs (juj) has a frequency pattern restricted to the narrow band 

wc ±  Aw as follows:

D ; |w — w0| < Aw 

8  ; otherwise
(4.32)

where 8 is a small neglected number for the frequency magnitudes outside the region of 

interest, and where If is a positive upper bound on these magnitudes inside the considered 

domain. We w ill then define an observer gain K  as optimal if  || e \\c2 can be made arb itra rily 

small for all possible sensor faults satisfying (4.32). But by applying the small gain theorem 

to Figure 4.11 when fault detection is satisfied (i.e, when K  satisfies || T ^  ||oo= p <  «) we 

have: ||e||,c2 < ||e2 ||,c2. And since (as Aw —► 0), Te/s(jw ) -> f efs(ju>0) then we have

11 ̂ 2 11 £ 2  — ®max ^ e / j (j^o  ))  II fs U 2, and therefore, it  is easy to see that an optimal gain K  is 

one that satisfies Te/S(jw 0) =  0. By assuming that the fault detection objective is satisfied 

(as stated in Theorem 4.6), it  follows that fault identification according to Definition 4.3 is 

satisfied if  the following two conditions are satisfied: (i) || Tê  ||oo< (h) U.f„(,?w0) =  0 ,

where the first one is a necessary condition in  order to achieve fault detection.

Based on the previous discussion, we w ill define an optimal residual generator as follows:

Theorem  4.7 (Lipschitz optimal residual generator fo r narrow frequency band): An observer 

of the form (3.1f)-(3.18) ,(4-25) is said to be an optimal residual generator fo r the sensor faults 

identification problem (with faults in a narrow frequency band around lj0) i f  the observer gain 

K  satisfies || T ^  ||oo< ^  and Te/S(jw 0) =  0, fo r the standard setup in Figure 2.2 where the 

plant G has the state space representation in (4-16) with the matrices defined in (4-29)-(4-30).

The same theorem used in the LT I case (Theorem 4.2) can be used to show that the
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classical observer structure in  (3.4)-(3.5) can never be an optimal residual generator according 

to Theorem 4.7, which shows the importance of having a dynamic observer gain in this case.

In  section 4.1.1, we showed that for the special case a =  0 (the LTI case), an analytical 

solution exists by using the dynamical framework. In the following section (section 4.2.2), 

we provide a numerical approach based on Linear M atrix Inequalities (LM I) for the more 

general case of a  by modeling the problem as a convex multiobjective optim ization problem 

using the dynamic observer structure introduced in Chapter 3.

4.2 .2  LM I D esign  P roced u re

After defining the fault identification problem as the two-objective problem in Theorem 4.7, 

we now show that the second objective, i.e Tefs(ju)0 ) =  0, can also be modeled as a weighted 

Hoo problem. To this end, we first note that for an observer gain K  that satisfies the fault 

detection condition (as stated in Theorem 4.6), the following two statements axe equivalent:

(i) Tefs(ju>0) — 0 .

(ii) W(s)Tefs(s) G RHoo.

where W(s) — Diagp( I )  if  tofJ — 0 and W(s) =  Diagp( if  w0 0.

The equivalence of the previous two statements can be seen by first noting that the 

condition in Theorem 4 . 6  implies that || T .7  | | o o <  j j  and hence that T e^  G  RHoo- I t  then 

follows that Tt,fa (s) G  R H ^  since Te/, and both have the same state transition matrix. 

Finally, since Tej s(jto0) =  0 corresponds to jcoa being a system zero of Tefs(s) (which is 

equivalent to cancelling the poles of W(s) on the imaginary axis), it  is then easy to see that 

Tefs(ju)0) =  0 is equivalent to having W(s)Tef H(s) G  RHoo■

According to the previous discussion, it  follows that the objective Tefs{jw0) =  0 can be 

restated as follows:

3e > 0 such that |e  || W(s)Tef t (s) | | o o <  —

where the scalar e is used for com patibility w ith  the first objective (i.e, || Tê  | | o o <  jj)- I t  

then follows that the two objectives can be combined in the unified framework in Figure 4.12, 

where the plant G has the state space representation in (4.16) w ith the matrices defined in 

(4.29)-(4.30), and w ith the weighting W  defined above.
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.G.

0 eW

Figure 4.12: Weighted Standard Setup: the Lipschitz Case. 

I t  can be seen that the augmented plant G in Figure 4.12 is given by:

Otn Hq
A B i b 2 '

£(«) = Gi D u D \2

£>21 £>22

Ao Ofe

One A

where

Op£ In 

eCe C

t —p. Ag—Op, Bg— Ip, C'o—Ip

In Onp

On Onp 

Opn Op

0 in

- I n

On

upn

t= 2p, Ae=Diagp
0  1 

~OJn 0

, Be=Diagp

if  uj0=  0  

, Cg=Diagp (

(4.33)

1 0 )  ; î o ¥= o 

(4.34)

Based on the previous results, the following theorem redefines the identification problem in 

Theorem 4.7 as follows:

Theorem  4.8 Given the nonlinear system of equations (3.1)-(3.2), there exists an optimal 

residual according to Theorem f . l ,  fo r all 4>(-, •, •) satisfying (3.3) with a Lipschitz constanta 

i f  and only i f  3e > 0 and a controller K  satisfying || l ( T ||00< I  fo r the setup in Figure f.12  

where G has the state space representation in (4-33).

Proof: a direct result o f Theorem 4.7 and of the discussion preceding (4.33). □

However, standard Hoo tools can not be directly applied for the I I x , problem defined 

in Theorem 4.8. For instance the Riccati approach in  [122] can not be implemented since
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the augmented plant G in (4.33) does not satisfy the needed regularity assumptions. More­

over, the LMIs in  equation (2.30)-(2.32) are not feasible due to the poles that G has on the 

imaginary axis, making the use of the LM I approach in [40] impossible.

In the following, we propose a numerical approach to solve this problem by replacing 

the weightings W(s) by the modified weightings W(s) where W (.s) — Diagp( j^ j )  if  uj„ -- 0 

and W(s) =  Diagp( ji+zihoa+w*) ^  UJ° ^  ^ € ®+ - W ith this change, the augmented

plant G in  Figure 4.12 is s till given by equation (4.33), but where Ag is now given by:

Ag

Diagp( -  A) ;

/ 0  1
Diagp

V -Wg -2  A w0

(4.35)

which has no poles on the imaginary axis.

Using this modified augmented plant and the result in Theorem 2.1, we then propose 

the following convex optimization problem to solve the problem defined in Theorem 4.8:

minims A

subject to “ the 3 LMIs in (2.30)-(2.32) w ith 7  — — ”

where the matrices in (2.30)-(2.32) are replaced by the corresponding matrices in (4.33), 

(4.34) and (4.35).

The set of a ll admissible observer gains K  for a given A can then be parameterized 

using R, S by using the result in [40]. I t  can also be seen, that these LMIs are feasible for 

all A > 0, and that minimizing A in this case is equivalent to minimizing amax ( Tefs(juj0)^. 

This guarantees that the proposed optim ization problem converges to the existing solution 

as A —> 0.

Comments

- From the special cases of interest is the case of sensor bias, where the previous approach 

can be used to get an exact estimation of a ll sensor biases at the same time. An impor­

tant advantage over the adaptive approaches used to diagnose sensor faults in nonlinear 

systems, such as [22, 32, 109, 111] is the ability to diagnose piecewise constant biases 

w ith the same observer. This w ill be shown in simulation in section 4.3. Moreover, 

unlike adaptive techniques, the proposed approach is not lim ited to sensor biases and 

can be used to diagnose faults of any harmonics.
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In  case o f  m u lt ip le  frequ ency  b ands, a  b a n k  o f  observers can  be used w h e re  each one  

estimates the faults vector in a specific range as in Figure 4.13. These multiple estimates 

can then be used to restore the original fault vector.

Actual
output

Band Pass 
Filter at CO-

Band Pass 
Filter at co

Band Pass 
Filter atm,

Observer 1

Observer 2

Observer N

Lipschitz Plant

Figure 4.13: Residual Set over a Frequency Range.

4 .2 .3  T h e  Low and H igh  Frequency R an ges

These two cases are very similar to the narrow frequency band, except that appropriate 

weightings should be used to emphasize the considered frequency range. For the low frequency 

range, using the same approach in section 4.1.2, we introduce the weighting u>irno(i(s) =

(see section 4.1.2 for guidelines on the selection of the parameters a, b and A).

I t  is easy to see that, w ith this weighting, the augmented plant G  in Figure 4.12 can 

be represented as follows (compare w ith (4.33) in the narrow frequency band case):

A Bx b 2 '

G(s) = Cx D u Dx2

O2 D2x D 22

Ag 0.'pn

onp

0 np In

eCg C

Be

’up

0 „  0 r,

(W  eD 0

ujm

- I n

[ on ]
(4.36)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. LIPSCHITZ SENSOR FAULT DIAGNOSIS 59

where Ag =  Diagp(—X), Dg — Ip, Cg =  Diagp(b — a \)  and Dg =  Diagp(a).

Similar to the narrow frequency band case, the assumptions of Theorem 2 . 1  are now 

satisfied and the LM I approach in  [40] can then be used to solve the associated Hoo problem. 

To this end, we define the continuous H ^  problem associated w ith the low frequency range 

as follows:

D e fin itio n  4.5 (Lipschitz low frequency Hoo): Given A > 0, e > 0, find S, the set of 

admissible controllers K  satisfying || Tqf  ||oo< 7  f or the setup in Figure 4-12 where G has the 

state space representation (4-36).

Based on the previous results, we now present the main result o f this section in the 

form of the following definition for an optimal residual generator in £ 2  sense:

Theorem  4.9 (Lipschitz optimal residual fo r low frequencies): An observer of the form

(3.14)-(S-18), (4-25) is an optimal residual generator fo r the sensor fault identification prob­

lem (with low frequency faults below the cutoff frequency uq) i f  the dynamic gain K  G S* 

(the set of controllers solving the Hoo problem in Definition 4-5 with 7  — 1/a and with the 

minimum possible A).

Com m ents

- Definition 4.5 and Theorem 4.9 can be viewed as the extensions of Definition 4.4 and 

Theorem 4.5 to the Lipschitz case.

- A residual generator that is optimal in the sense of Theorem 4.9 can be found by solving 

a convex optim ization problem sim ilar to the one presented in section 4.2.2. Existing 

software packages can be used to solve this optim ization problem.

- In  the high frequency case, where sensor faults are confined to the region [wh, 0 0 ), the 

weighting fi)hTOOd(s) =  , w ith ab” selected as wq and “a” as an arbitrary small 

number for \wh(juj)\ as oj —► 0, and w ith an arbitrary small A > 0. Similar to the low 

frequency case, the augmented G  is also given from (4.36) but w ith A g ,  D g ,  C g  and 

Dg as Diagp(—j) ,  I p, Diagp(sj -  — j? ) and Diagp( j )  respectively. An optimal residual 

generator can be defined in a similar way to Theorem 4.9 (details are omitted due to 

sim ilarity).
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time (sec)

Figure 4.14: Actual System Output for the Controlled Process.

4.3 A  D esign  E xam ple

We reconsider the numerical example introduced in  Chapter 3. We assume k =  1.5, and 

hence the Lipschitz constant is a =  1.5 (see section 3.4 for more details about the model). In 

section 3.4, the objective of pure state estimation (without any faults or disturbances affecting 

the system) was considered. We here consider the sensor fault diagnosis problem. To this 

end, we first assume the system in itia l condition as x (0 ) =  j^l. 6  2 j , and we use a state 

feedback control law to make the output track a sinusoidal input as shown in Figure 4.14. In 

[92], the design algorithm fails if  the original system matrices are used, and the gain m atrix

L needed to use the observer (3.4)-(3.5) was obtained (after using a state transformation)
r 1 Tas L  =  2 4 . Using the LM I approach to solve the design problem in theorem 4.6, and 

without using any state transformation, the dynamic gain for the observer (3.14)-(3.18) is 

obtained as:

-11.7202 3.3452 -6.5969 -2.6961 -7.4884 0
Al = , b l = , c L= and D l =

-9.8614 -12.0657 -12.0657 -7.3739 -3.9456 0

Figure 4.15 show the observers performance, where the in itia l condition for both observers 

is taken as x(0) =  |o  o j  • This figure shows the improvement in  the transient response by 

using the dynamic observer gain. This is an important advantage for the fault detection 

objective presented in theorem 4.6.

We now consider the fault identification problem. In this case, the system is assumed 

to be affected by sensor biases, where the measured output is affected by a piecewise constant 

fault. This is the special case where uj0 =  0 for the problem in section 4.2.1, and using the 

LM I design discussed in section 4.2.2, the dynamic gain for the observer (3.14)-(3.18) that
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3
!

time

estimation using static o«it

K
2<ft

time

Figure 4.15: (a) Estimation of State x i,  (b) Estimation of State x-i- 

achieves fault identification is obtained (at A =  10-15) as:

Al

and D l

-2.3056 -0.8143 -4.3747 1.6009

2.4066 -4.9397 2.3329 ,B l = -1.7743

-8.1999 -2.3151 -9.8718 5.8222

, CL
0.2305 -1.2755 8.4409 

0.4083 0.7954 13.6105

0  0 . Using this observer, a time varying sensor bias is successfully estimated

as seen in Figure 4.16.

- A ctual b ias I 
R esidual I

ft 10 12 14 16 18
tim e (sec)

Figure 4.16: Bias Estimation.

The state and output estimation errors also converge to zero by using this observer. 

Figure 4.17 shows the state estimation errors in this case.
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 x1 estim ation error
x2 estim ation error

tim e (sec)

Figure 4.17: State Estimation Errors.

4.4  C onclusion

In  this chapter, a new LM I observer design for Lipschitz nonlinear systems is proposed and 

is applied in the fault diagnosis problem. This design offers extra degrees of freedom over the 

classical static gain structure and we show how this freedom can be used for the sensor faults 

and state estimations problems. For the narrow frequency band case, the problem is shown 

to be equivalent to an output zeroing problem for which a dynamic gain is necessary. The use 

of appropriate weightings, for different frequency patterns, to transform these problems into 

standard Hoo optim al control problems is also demonstrated. A  systematic design procedure 

that can be carried out using commercially available software products is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

R obustness using Unknown Input 

Observers

In this chapter, we consider the robustness problem associated w ith the fault diagnosis 

schemes developed in  Chapter 4. We start by generalizing the standard Unknown Input 

Observer (UIO) approach (used to deal w ith  additive uncertainties in LTI systems) to the 

Lipschitz case. The proposed observer is then applied to the robust sensor fault diagnosis 

problem, by modelling the problem as a two-objectives optim ization problem similar to the 

one introduced in  Chapter 4, and which is solvable using numerical techniques. A  discussion 

on the applicability of the previous results to more general system faults is also presented1.

5.1 B ackground R esu lts

As discussed in section 1.2, the robustness problem, which is the problem of considering the 

effect of uncertainties in the FDI system, is of crucial importance in all model-based FDI 

techniques (including the observer-based approach adopted in this thesis). This is due to 

the fact that any discrepancies between the actual process and its model (such as modelling 

errors, plant disturbances and sensor noise) corrupt the state reconstruction given by the 

observer and constitute a source of false and missed a la rm s  which can c o rru p t th e  FDI 

system performance. Therefore, for successful operation of the observer-based FDI system,

1The results in this chapter have been published in the article: “A .M . Pertcw, H.J. Marquez and Q. 

Zhao, Hoc Synthesis of Unknown Input Observers for Non-linear Lipschitz Systems,” International Journal of 

Control, Vol. 78, No. 15, pp. 1155-1165, October 2005.
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certain measures of robustness need to be introduced in the observer design problem.

One of the most successful robust observer design techniques is the use of the distur­

bance decoupling principle, in which the estimation error is designed to be insensitive to 

unknown additive uncertainties. This problem deals w ith the model in (2.33)-(2.34), where 

the vector “d” represents the uncertainty terms and where “E ” is referred to as the unknown 

input distribution matrix and is assumed to be a known fu ll column rank matrix. This prob­

lem is also referred to as the unknown input observer (UIO) design and it dates back to 

1975 where Wang [110] proposed a minimal order UIO structure for linear systems w ith both 

known and unknown inputs. A fter this important work, several approaches for designing 

reduced order and fu ll order UIOs have been proposed, including the geometric approach of 

Bhattacharyya [8 ], the inversion algorithm of Kobayashi and Nakamizo [69], the m atrix alge­

bra method of Watanabe and Himmelblau [113], the singular value decomposition technique 

of Fairman [30] and the algebraic approaches of Hou and Muller in [60] and Patton, Chen and 

Zhang in [14] (see also [21, 51, 61, 70] for different UIO design techniques). Achieving less re­

strictive existence conditions and more direct design procedures has always been a challenge 

in this area. The UIO application in  fault diagnosis has also attracted many researchers. 

Watanabe and Himmelblau introduced the concept of UIO for robust sensor fault diagnosis 

in systems w ith modeling uncertainty [113]. Their approach was later extended in  a series of 

papers by Wunnenberg and Frank (see [39, 118] and references therein) and also by Patton 

and Chen (see [13, 14, 87]) to the detection of both sensor and actuator faults in which case 

the unknown input appears both in the state and output equations.

Despite these success stories, most of the previous results axe restricted to linear sys­

tems and results on nonlinear UIO are scarce. A direct extension of the linear results to 

the nonlinear case was considered by Wunnenberg in [117]. His approach was referred to as 

the NUIO (Nonlinear UIO) and considered a class of nonlinear systems w ith nonlinearities 

that are functions of inputs and outputs. However, this class of nonlinear systems is rather 

lim ited and many physical systems can not be modelled in  this way. Another lim itation is 

the difficulty of transforming a general nonlinear system into the required form. An alter­

n a tiv e  app ro ach  re fe rre d  to  as th e  DDNO (D is tu rb a n c e  D e c o u p lin g  N o n lin e a r Observer) was 

presented in a series of papers by Seliger and Frank [38, 101, 1 0 2 ]. The class of nonlinear 

systems considered by the DDNO is more general and the basic idea is the use of a nonlinear 

state transformation to satisfy the decoupling condition. However, the existence conditions 

for such a transformation are derived from the Frobenius theorem and are rather restrictive.
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Another drawback of the DDNO is that the transformation leads to another nonlinear sys­

tem for which a nonlinear observer design is not a straightforward and tractable problem. It 

is also important to note that much work has been done on estimating the unknown input 

distribution m atrix (the m atrix E  in  (2.33)) when it is not fu lly  known (see for example 

[12, 29, 46, 47, 87, 8 8 , 89]).

In  this chapter, we consider the UIO design problem for nonlinear Lipschitz systems 

and its application to the fault diagnosis problem that we studied in Chapter 4. In other 

words, we consider the extension of the model in  (2.33)-(2.34) to the following:

x(t) =  Ax(t) +  r (u ,t)  +  $ (x ,u ,t) +  Ed(t), E<= ! nxr (5.1)

y(t) =  C x(t) +  f s(t), A  G ffinxn, C G Rpx”  (5.2)

where <£> satisfies the Lipschitz condition in  (3.3), and where the term d(t) represents unknown 

additive disturbances and/or modelling uncertainties. Our main objective is to extend the 

fault diagnosis results in section 4.2 to this case. We w ill show that, w ith the same necessary 

and sufficient conditions of Theorem 2.3, the Lipschitz UIO design problem is solvable and 

can be used to diagnose different sensor faults using the numerical approach introduced in 

Chapter 4. The application of the proposed structure to more general system faults w ill also 

be discussed.

5.2 L ipschitz U nknow n In pu t O bserver

Consider the system in (5.1)-(5.2). We first consider the case of no sensor faults (i.e, f s =  0). 

We propose the following dynamical observer structure to achieve globally asymptotically 

convergent state estimates (i.e, x —> x as t —* oo) which are decoupled from the uncertainty 

term d(t) in  this case:

z(t) =  w\(t) +  W2 (t) +  T  T (u ,t) +  T4>(i, u, t) (5.3)

x(t) =  z(t) +  H  y (t) (5.4)

y{t) =  Cx(t) (5.5)

where w \(t) and wAt) are obtained by applying dynamical compensators of arbitrary orders

on the vectors z and y respectively. In  other words, w\ and ?/>a are given by :

a  =  Ap  a  +  Bp z (5.6)

W! =  CF a  +  Dp Z (5.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ROBUSTNESS USING UNKNOWN INPUT OBSERVERS

and

£ 2  = A t, Cl - I- B l  y 

W2 =  C l &  +  D i  y

This can be represented by the structure in Figure 5.1.

u(t) y (t)

66

(5.8)

(5.9)

T T (u ,t )  +  T<X>(x, u ,t)

A B,
Q A.

z (t )

A
tv A

o
4 t)

Figure 5.1: Dynamic Structure of the UIO.

Compare this structure to the one in (2.35)-(2.36) where it  can be seen that the new 

structure offers more dynamics (F  and L  are replaced w ith dynamic compensators). This 

w ill be used in this section to tackle the Lipschitz UIO (LUIO) design problem.

As a step towards that goal, we consider first its use to achieve “local” asymptotic 

convergence of the state estimates. The following lemma develops conditions that guarantee 

the observer stability in  this case (see Appendix A.3 for the detailed proof):

Lem m a 5.1 The error dynamics of (5.3)-(5.9) as an observer fo r (5.1)-(5.2) (with f s =  0) 

is locally asymptotically stable and decoupled from the uncertainty term d(t) i f  the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ROBUSTNESS USING UNKNOWN INPUT OBSERVERS

conditions are satisfied:

H C E  =  E

T =  In HC

Ap Bp 

Cp Dp
stable• with

A f  =  A l 

Bf =  B L lC 

Cf =  - C l

Dp  =  A -  H C A -  D Li C

Dl2 =  D pH  

Bl2 =  ~ BpH  

B l =  B l  1 +  Bl2  

D l  =  D l i  +  D l 2

67

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

In the following theorem, we show that same conditions of theorem 2.3 (which were necessary 

and sufficient to satisfy (2.37)-(2.41)) are s till necessary and sufficient for (5.10)-(5.16).

Theorem 5.1 There exists a dynamic UIO for the system (5.1)-(5.2) (according to the con­

ditions of Lemma 5.1) i f  and only i f  :

(i) rank (C E ) =  rank (E) (5-17)

(ii) (A ,C ) is a detectable pair, where A — A — E \{CE)TCE1\ 1 (CE)TCA. (5.18)

Proof: The proof is constructive (i.e, shows the steps needed to design a dynamic UIO). It  is 

a direct result of the proof of theorem 2.3 and of the interpretation of conditions (5.12)-(5.16) 

as follows. I t  was proved in [13] that (5.10) is solvable if  and only if  (5.17) is satisfied and 

that the general solution is

H  =  E (C E)+ +  H 0 [ lp -  C E(C E)+] (5.19)

where Ho G Rnxp is an arbitrary m atrix and (C E)+ is the left inverse of (CE) which is:

0c e )+ =  [(c e )t c e } ~ 1 (C E ) t

The rest of the proof follows by noting that satisfying (5.12) is equivalent to finding Ap, C l,

Al Bl i C

- C l  A -  H C A -  D L1C 
stabilization problem in Figure 5.2 which is solvable if and only if  (A —HCA, C) is detectable.

Bl i and D l i such that is stable. This is equivalent to the
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Plant “G”

A - H C A - I n

C 0  pn

Controller “i f ”

AL Bl i

Cl D l i

Figure 5.2: Stabilization Problem.

Finally, notice that for any H  that satisfies (5.19), ( A —H C A ,  C)  is detectable iff (A, C)  

is detectable (as proven in [13]) where A  is given by (5.18). Therefore, conditions (i) and (ii) 

are necessary and sufficient to satisfy (5.10)-(5.16) and the proof is complete. □

As a conclusion, w ith the same existence conditions of the UIO in [14], the locally stable 

LUIO design problem is reduced to the stabilization problem in Figure 5.2. The advantage 

of the dynamic framework is now evident since the solution to this stabilization problem is 

a set of controllers [122]. Therefore, disturbance decoupling is satisfied w ith extra degrees of 

freedom. We w ill make use of this freedom to solve the original problem of “global” observer 

stability as follows. I t  can be seen that the error dynamics of the observer (5.3)-(5.9) is given 

from (see proof of Lemma 5.1 in Appendix A .3):

p  = A f £  + B p e

e —Cf £ +  Dpe +  T  ($ (x, u, t) — <&(£, u, t))

(5.20)

(5.21)

This can also be represented (using (5.12)) by the transfer function between r  and (  

in the following standard form:

A  - H C A ]  + T - I n

c In 0 „ On T
= ip  +

C O p n 3pn V

(5.22)

(5.23)
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where

r  =  <j> =  & (x ,u ,t) — $ (x ,u ,t)  

v =  K  ( y - y )

(  =  e =  x — x

ip = y - y

(5.24)

and where K  is the dynamic controller

K
A l B l i

_ cL D l i

(5.25)

This can also be represented by the standard setup figure (Figure 2.2) where the operator G 

has the state space representation shown in (5.26) w ith the matrices defined in (5.22)-(5.23) 

and where the controller K  is given from (5.25).

A Bi b 2

G(s) = Ci Dn D12

c 2 D21 D22

(5.26)

We denote by Tqt the transfer function between r  and £ for this setup. The following theorem 

is the main result of this section. The proof is similar to Theorem 3.4 (hence om itted).

Theorem  5.2 Given the Lipschitz system of equations (5.1)-(5.2) (with f s =  0), the state x 

of the observer (5.3)-(5.9) (satisfying conditions (5.10)-(5.16)) globally asymptotically con­

verges to the system state x fo r all <f> satisfying (3.3) with Lipschitz constant a i f  K  in (5.25) 

satisfies

f Cr ( j 0
1

<  -  
a

(5.27)

I t  is important to note that the same discussion in section 3.3 applies to the LUIO 

presented in Theorem 5.2: a regular problem similar to the one in section 3.3.1 can be 

defined, a parametrization of all possible observers can be derived, and a design procedure 

sim ilar to the one in section 3.3.3 can also be developed. Moreover, i f  condition (3.3) holds 

locally, then local asymptotic convergence of the observer is guaranteed. Details are omitted 

due to sim ilarity.
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5.3 L ipsch itz R ob u st Fault D iagnosis

70

We w ill now consider the application of the LUIO to the fault diagnosis problem. We w ill 

first study the sensor fault effect on the observer’s error dynamics in (5.20)-(5.21). I t  can 

be seen that the error dynamics of the observer w ill be as follows (see Appendix A.4 for the 

derivation of this model)

£ +  BFe +  B i i / S

e =Cf £ +  D Fe +  T  ($ (*, u, t) -  * (x , u, t)) -  DL1f s -  H fs

(5.28)

(5.29)

Similar to (5.20)-(5.21), this model can be represented by a standard form similar to the one 

in (5.22)-(5.25) if  we augment the external input r  to include both f s and f s. However, to 

avoid dealing w ith f s and f s as two different inputs in  the following design, we consider a state 

augmentation in which only f s is added to the external input, and the state 'ip is augmented 

accordingly, thus obtaining the following model for the error dynamics in  (5.28)-(5.29):

=

A - H C A  0,n p

J p n

ip +
-H

Jp n

1
I

1

T

V

c I n O 1

ip  +
0„ 0n T:

C i p O pn o p O pn I/

where

f s

(5.30)

(5.31)

(5.32)

while v, p, and K  are same as (5.24)-(5.25).

Comments:

(1) The advantage of the model (5.30)-(5.31) over (5.28)-(5.29) is that first it  is in the stan­

dard “Plant-Controller” form where the dynamic observer gain “K ” is the design free­

dom in our case. Besides, the fault effect is manifested through a single external input 

“/s ” : assuming a certain frequency pattern for the fault f s, the frequency information 

of f s can  b e  d e te rm in e d  a  p r io r i, a n d  w e  can  th e n  use (5 .3 0 ) - (5 .3 1 )  to  p roceed  w ith  a  

fault diagnosis design similar to the one adopted in Chapter 4 for the deterministic case.

(2) Model (5.30)-(5.31) is also a natural generalization of the models considered in 

Chapter 4 (as (4.13)-(4.14) for the LT I case, and (4.29)-(4.30) for the Lipschitz case)
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to the unknown input case. Generally speaking, by considering all the different possi­

bilities of uncertainty/nonlinearity we get the following cases:

— Case of no uncertainty/no nonlinearity: H  =  0, T  =  0. The model reduces to 

(4.13)-(4.14), and the problem is equivalent to the one considered in section 4.1.

-  Case of no uncertainty/nonlinearity: H  — 0, T  =  I .  The model reduces to 

(4.29)-(4.30), and the problem is equivalent to the one considered in section 4.2.

— Case of uncertainty/no nonlinearity: H  ^  0, T  =  0.

-  Case of uncertainty/nonlinearity: H  ^  0, T  ^  0.

Our focus in the following is on the last two cases, w ith particular emphasis on the 

design problem associated w ith the last one.

T h e u n certa in ty /n o n lin ea r ity  case

We here adopt the same approach of section 4.2 by modeling the design problem associated 

w ith the error dynamics in (5.30)-(5.31) as a two-objective optim ization problem in which:

•  F irst objective is to minimize the effect of f s on the estimation error when the sensor 

fault f s has a known frequency pattern.

•  Second objective is to cancel the effect of the nonlinearity by designing the observer 

gain such that ||jTê || < w ith a as the Lipschitz constant for the nonlinearity in 

equation (5.1).

I t  is easy to see that the solution of this problem guarantees fault detection and es­

tim ation at the same time (the residual for this general case being y — y =  Ce +  f s). I t  is

also clear that the second objective is a standard H 00 problem similar to the one in section 

5.2, and unaffected by the state augmentation. Weighting functions can then be introduced 

to combine these two objectives into a single IIoo framework that can be solved using LM I 

techniques as was done in Chapter 4 (details are omitted due to sim ilarity).

I t  is also important to note that one case of interest is the case of sensor bias (where 

wQ =  0). The direct effect of f s on the error dynamics in (5.29) is cancelled, and the model
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(5.30)-(5.31) reduces to:

72

ip = h c a )  Tp+ [ [ r  0np]

c In
Ip +

On 0  np On
—

V. C
. 0 pn Ip 0 pn

-In

T

V

(5.33)

(5.34)

which is similar to (4.29)-(4.30), except for A  — H C A  replacing A  and the appearance of T  

instead of I n in (4.29).

G eneral sy stem  fault d iagnosis

The case of faults affecting the state equation can be represented by the following model

x (t) =  A x(t) +  T(u, t) +  $ (x, u, t) +  Ed(t) +  F f( t ) ,  

y(t) =  Cx{t) +  f s(t), A  G M "x " ,  C  G

(5.35)

(5.36)

where the vector / ( f )  can represent more general system faults (as actuator faults or com­

ponent faults) that may affect the system. The problem in this case can be solved using 

the same approach by augmenting the two-objective problem to include the transfer function 

from / ( t )  to e(t) as an additional design parameter. A complete study of the solvability of 

this problem is suggested as a future work.

5.4 D esign  E xam ple

To illustrate the benefit of the LUIO design introduced in section 5.2, we consider the following 

example of a 2nd order system w ith modelling uncertainties:

X \

i

1 to CO

1

X l 0 0.4 s i^ ( ii)
— + u +

X 2 3 a X 2 1 0

V =  X  2

where a is an unknown parameter. The system can be represented in the form (5.1)-(5.2) 

w ith:

0.4 s it i( i i)

0

-2  3 0
, r  = , $  =

3 0 u

0 r
, E = , and C =  0 1

1
L
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The Lipschitz constant is a  =  0.4. Using the design procedure introduced in section 5.2, the 

matrices for the observer (5.3)-(5.4) are obtained as follows:

0 1 0
H  = and T  —

1 0 0

-2.9805 -4.1928 0 2.3525 8.1687 3
Al  = , b l = £ II and D l =

-5.3338 -24.6602 0 8.1687 33.2083 0

0 1.3145 -2  3
Af  =  A l , Bp =

0 1.0934
, Cf  — —Cl and Dp —

0  0

Figures 5.3 and 5.4 show the performance of this LUIO when applied to an actual plant w ith 

a =  1  and w ith in itia l conditions £ i( 0 ) =  1 . 6  and x'2 (0 ) =  2 .

time

Figure 5.3: Estimation of State x\.

tim e

Figure 5.4: Estimation of State X2-
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5.5 C onclusion

74

In this chapter, the robust FD I problem for Lipschitz nonlinear systems is considered by 

studying the case of additive uncertainties. Firstly, the standard Unknown Input Observer 

(UIO) approach (used to deal w ith additive uncertainties in linear systems) is generalized 

to Lipschitz systems. The new observer is then applied to the robust sensor fault diagnosis 

problem. The error dynamics of the proposed observer are affected by the time derivatives of 

the faults. An augmentation of the dynamics is proposed to avoid dealing w ith the faults and 

their derivatives as two separate inputs. The problem is then modelled as a two-objectives 

optim ization problem similar to the one introduced in Chapter 4, and is solvable using nu­

merical techniques. The applicability of the proposed results to more general system faults 

is briefly discussed, laying the ground for future research in this area.
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Chapter 6

Experim ental R esults and 

Application in R obotics

In  this chapter, we consider an application of the results of previous chapters to the Quanser 

rotary inverted pendulum (ROTPEN) available in  the Control Systems Lab, Electrical and 

Computer Engineering department, University of Alberta. Our intention is the application 

of the proposed approaches to Lipschitz observer design and sensor fault diagnosis to robotic 

systems. Towards that goal, the ROTPEN model as a special case of robot manipulators 

models, is represented in two forms: (i) a linear model around an operating point of interest,

(ii) a nonlinear model in the Lipschitz form. Different observer design and sensor fault diag­

nosis strategies are applied in real-time for these two cases. The experimental results assess 

the validity of the proposed techniques in a physical example, and illustrate the advantages 

of using the Lipschitz design in  this case.

6.1 R o b o t M anipu lator as L ipsch itz S ystem

The dynamic equations of a robot manipulator can be represented by the following structure 

[98]:

u =  M(0) 0 +  V(0,0) (6.1)

where 0 , 0  and 0  E M" are vectors representing the position, velocity and acceleration of the 

n robot joints respectively, u € R”  represent the actuator torques applied at these joints, 

M(0) is referred to as the inertia matrix, and V (0,0) is a vector representing the centrifugal,

75
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coriolis, gravity and friction terms. I t  is important to note that sensors are usually available 

to measure the joints positions and velocities. Therefore, 9 and 9 are assumed measurable for 

control and trajectory generation purposes (it w ill be seen, however, that for the ROTPEN 

model discussed in section 6 . 2  not all velocities are measurable).

By defining the state variables as x \ =  9, X2 =  9 (note that here x j , X2 represent 

ft-dimensional vectors) we get the state space model:

x  =  f (x )+ g {x )u

where f (x )  =
X2

- M  1(x i)V (x i,X 2)

1

0 3

1

II

M ~ 1{x\)
as:

1
O 3 s'

1 I

_ 0 n 0„  _

x ~  Ax +  $ (x, u)

Or,

(6.2)

, which can also be represented

(6.3)

. It  is important to notewhere A
M ~ 1( x i ) u -  M ~ 1(x i)V (x i,X 2) 

that the nonlinear terms in $  are locally Lipschitz, and an upper bound on the Lipschitz con­

stant can be found by computing J|d&(m, u)|| over the operating range. Another representation 

of (6 .2 ) is:

x =  Ax +  Bu +  $ (x, u) (6.4)

where A — ( U )  U*, B =  ) |x., $  =  (f ( x ) -  Ax +  g(x)u -  Bu).

I t  is also important to note that (6.3) and (6.4) are both exact models of (6.2). By 

neglecting the terms in  $  in  (6.4), one gets the approximate linearization around the operating 

point x *, i.e:

x =  Ax  +  Bu

where A — U*> B =  (g f)  U*> which is an approximate model of (6 .2 ).

(6.5)

6.2 T h e R O T P E N : M od els and A ssu m p tion s

The Quanser rotary inverted pendulum (ROTPEN) is shown schematically in  Figure 6.1, 

[72], The angle that the perfectly rig id link of length l\  and inertia J i makes w ith the x-axis 

of an inertial frame is denoted 9\ (degrees). Also, the angle of the pendulum (of length I2 

and mass m 2 ) from the 2 -axis of the inertial frame is denoted 6*2 (degrees).
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Pendulum

m

Link

Gear

Figure 6.1: The Rotary Inverted Pendulum (ROTPEN).

The system has one input which is the scalar servomotor voltage input (Volt). There­

fore, the system is a special case of the robot manipulator model discussed in section 6 .1 : a 

planar robot manipulator w ith two links (n =  2 ), w ith only one torque applied at the first 

jo in t, while the second jo in t is subject to the gravitational force. In fact, the ROTPEN has a 

state space model of the form x =  f { x )  +  g(x)u, where x =  \0 \ 62 0 \ O2]1 is the state vector, 

and u is the scalar servomotor voltage input (Volt). More details about this model and its 

parameters can be found in Appendix B.2.

The system has an infinite number of equilibrium points, representing the following 

two equilibrium points:

1) Pendant position: x\ — 0 (rad), X2 =  tt (rad), # 3  =  X4 =  0 (rad/sec).

2) Inverted position: x\ =  X2 =  0 (rad), X3 =  X4 =  0 (rad/sec).

By separating the nonlinear terms, the model can be put in  the form x =  Ax |-<t>(x, u), where:

. The nonlinear terms in $ axe 

mainly trigonometric terms, and using the symbolic MATLAB toolbox, an upper bound on

0 0 1 0 0

0 0 0 1 0
A = , $ (x ,u ) =

0 —25.14 -17.22 0 . 2 2 1 0 4>l(x,u)

0 68.13 16.57 -0.599 _(f>2(x,u)_
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||4>(a:, w)|| is found as 44.45, ajtid hence the Lipschitz constant for the R O TPEN  is <v =  44.45. 

This follows from the fact that if  $  : K" x E  —> Rm is continuously differentiable on a domain 

D and the derivative of <1> w ith respect to the first argument satisfies ||f jf  || < a on D, then 

$ is Lipschitz continuous on D w ith constant a, i.e.:

||$ (:r ,u )-$ (y ,u )|| < a ||a ;-y ||, V a y £ D  (6 .6 )

There are two encoders to measure the angle of the servomotor output shaft (91 ) and 

the angle of the pendulum (62) ■ An encoder is also available to measure the motor velocity 

0 i,  but no one is available to measure the pendulum velocity 62- In  our experiments, we use 

linear as well as nonlinear control schemes to stabilize the pendulum at the inverted position 

(0 2  =  0), while tracking a step input of 30 degrees for the motor angle.

6.3 E xp erim en t A  - L inear O bserver D esign  and Fault D iag­

nosis

In  this experiment, the results in section 4.1 are assessed on the linearized model around the 

inverted position. A  small operating range for the pendulum is guaranteed by using a linear 

state feedback controller and a feedforward gain as follows:

u = —F x + p r  (6.7)

where “r ” is the reference motor angle to be tracked. First, the linear model is obtained as 

(see Appendix B.3):

x =  Ax +  Bu  (6 .8 )

The control parameters in  (6.7) are computed by placing the poles of (A — BF)  at 

{ —18 +  18*', —18 — 18*, —1.5 -f 1.5*, —1.5 — 1.5*} (see Appendix B.3). In  this experi­

ment, different fault scenarios are assumed to affect the pendulum sensor. The linear design 

technique is used to diagnose these faults, and their effect on the tracking performance is also 

considered.

6 .3 .1  C ase S tu d y  1

In  this case study, sensor bias faults are assumed, and the design procedure in section 4.1.1 

is used to accurately estimate and tolerate these faults. The faults axe assumed to affect
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the pendulum measurement, and therefore the reduced LT I model is used for the design (see 

Appendix B.3 for all models and parameters of this case study). Two observers are compared 

in this case study:

1) A  high gain Luenberger observer of the form (4.3)-(4.4). The static gain L \  is computed 

by placing the poles of (A — L \C ) at { —70, —20 +  5i, -20  — Si}.

2) A dynamic observer of the form (4.8)-(4.12). The dynamic gain K \ is computed using 

the design procedure in section 4.1.1 for the special case lo0 =  0.

Figure 6.21 compares the two observers w ith respect to one sensor bias that results from 

the error in the in itia l condition of the pendulum. As can be seen in the figure, the dynamical 

observer outperforms the static observer in the bias estimation. This shows an important 

application of the dynamic observer in the problem of estimating the in itia l condition of the 

pendulum (this problem w ill be discussed in more details in section 6.5 using the Lipschitz 

observer design). In  Figure 6.3, a sensor bias of 10 degrees is added to the pendulum mea­

surement at the time 10 seconds. The two observers are used in observer-based control. The 

effect that the correct fault estimation has on the tracking performance is clear in the case 

of the dynamic observer. This is also illustrated in Figure 6.4 for a different fault scenario (a 

time-varying bias of 5 degrees that starts at 10 seconds, then increases to 10 degrees at 40 

seconds, and decreases back to 0 degrees at 70 seconds).

6.3 .2  C ase S tu d y  2

We consider the case of low frequency sensor faults (in the range [0, 1 rad/sec]). Using the 

design in section 4.1.2 (and w ith a — 0.1, 6  =  1 and c =  0.001), the optimal observer gain 

K 2 is obtained by solving the Hoo problem in Definition 4.4 using the command hinfsyn in 

MATLAB, w ith minimum 7  as 10 and w ith P =  1. Using this observer for fault diagnosis, a 

correct estimation of a low frequency sensor fault is shown in Figure 6.5. Figure 6 . 6  compares 

the response of the dynamic observer-based controller w ith the Luenberger-based controller 

in this case. The improvement in the tracking performance is clear in this figure.

1 A ll rem ain ing figures o f th is  chapter can be found in  section 6.7
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6.4 E xp erim ent B  - L ipsch itz O bserver D esign

In  this experiment, we focus on the nonlinear state estimation problem when no faults are 

affecting the system. We consider situations in which the operating range of the pendulum 

is either close or far from the equilibrium point, comparing the Luenberger observer w ith  the 

Lipschitz observer in these cases. For the purpose of applying the Lipschitz observer design, 

the nonlinear model discussed in  section 6.2 is used. We also compare the dynamic Lipschitz 

observer of Chapter 3 w ith  the static design method in References [91, 92]. In  this experiment 

the full-order linear and Lipschitz models axe used for observer design, where the output is 

assumed as y =  [x\ X2}1 (all observer parameters used in this experiment can be found in 

Appendix B.4).

6.4 .1  C ase S tu d y  3

In this case study, the same controller in Experiment A (6.7) is used w ith a small operating 

range around the inverted position. Three observers are compared:

1) Observer 1: A  Luenberger observer of the form (4.3)-(4.4), where the observer gain is 

obtained by placing the poles of (A — LC) at { —24, —3.8, —4.8, —1 2 .8 } (see L ;\-Slnau 

in Appendix B.4).

2) Observer 2: A  high gain Luenberger observer, which has the same form of Observer 1 

but w ith the poles placed at { —200, —70, —20 +  15i, —20 — 15*} (see L ^ - iarge in 

Appendix B.4).

3) Observer 3: A Lipschitz observer of the form (3.14)-(3.18), based on the full-order 

Lipschitz model of the ROTPEN. The dynamic gain is computed using the design 

procedure in section 3.3.3, for a  =  44.45 (see K% in Appendix B.4).

The three observers run successfully w ith stable estimation errors. Table 6.1 shows the 

maximum estimation errors in this case. I t  can be seen that both the Luenberger observer 

(large poles) and the Lipschitz observer achieve comparable performance, which is much 

better than the Luenberger observer w ith small poles. The three observers are also tested 

in observer-based control, and their tracking performance is compared in Table 6.2. We 

conclude that, due to the small operating range considered in this case study, a high-gain 

Luenberger observer achieves a good performance in terms of the state estimation errors and 

the tracking errors.
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Table 6.1: Case study 3 - Estim ation errors “e i” and “e2 ” in degrees

Small-gain Luenberger High-gain Luenberger Lipschitz

max ei| 3.6485 0.4323 0.1716

max |e2 j 1.5681 0.0925 0.1865

Table 6.2: Case study 3 - Tracking performance in degrees

pure state feedback High-gain Luenberger Lipschitz

Percentage of overshoot 20.3613% 12.7440% 48.4863%

| steady state error \ 2.5635 3.4424 3.7939

6 .4 .2  C ase S tu d y  4

We here consider a large operating range by using a nonlinear control scheme that stabilizes 

the pendulum angle at the pendant position (see Appendix B.4 for more details about the 

controller used in this case study). Using this controller, a large operating range is obtained 

as seen in Figure 6.7.

The same observers (Observers 2 and 3 of Case study 3) are used in parallel w ith  this 

control scheme, and the resulting estimation errors are compared in Figure 6 .8 .

The two observers are also compared in observer-based control, and the Luenberger 

observer fails in this case, causing to ta l system instability. The Lipschitz observer, on the 

other hand, runs successfully and its performance (as compared to the pure state feedback 

control) is shown in Figure 6.9. This case study illustrates the importance of the Lipschitz 

observer in large operating regions, where the linear observer normally fails.

6 .4 .3  C ase S tu d y  5

In  this case study, we conduct a comparison between static and dynamic Lipschitz observers, 

namely the observer (3.4)-(3.5) and the one in  (3.14)-(3.18). Our comparison is based on 

the new design proposed in Chapter 3 and the one in References [91, 92]. First, the design 

algorithm in Theorem 3.2 is tested for different values of a and e. I t  fails for all values of 

a >  1 , and the maximum attainable value is a — 1 (see is  in Appendix B.4), while the
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Lipschitz constant of the ROTPEN model is 44.45 as mentioned earlier. This observer is 

then compared w ith the dynamic Lipschitz observer successfully computed in Case study 3, 

and the estimation errors are compared in Figure 6.10. I t  is also important to note that the 

static Lipschitz observer fails in stabilizing the system, when used in observer-based control, 

for both the small and large operating range experiments. This illustrates the importance of 

the dynamic Lipschitz observer in  this case.

6.5 E xp erim en t C - L ipsch itz  Sensor Fault D iagnosis

In this experiment, the results in section 4.2 are assessed on the nonlinear Lipschitz model. A 

large operating range is considered by using a nonlinear, switching, LQR control scheme (w ith 

integrator) that stabilizes the pendulum at the inverted position (starting from the pendant 

position) while tracking a step input of 30 degrees for the motor angle as seen in Figure 6.11 

(the no-bias case). More details about the control scheme can be found in Appendix B.5.

In the first part of this experiment, an important fault that affects the ROTPEN in 

real-time is considered. This is a sensor fault introduced by the pendulum encoder. The 

encoder returns the pendulum angle relative to the in itia l condition, assuming this in itia l 

condition to be 02 =  0. This constitutes a source of bias, as shown in Figure 6.11(b), when 

the pendulum in itia l condition is unknown or is deviated from the inverted position. The 

effect of this fault on the tracking performance is also illustrated in Figure 6.11(a) for two 

different bias situations.

The dynamic Lipschitz observer (developed in section 4.2) is applied to diagnose and 

tolerate this fault. In  addition to this bias fault, the observer is also applied for a 2 rad/sec 

fault introduced in real-time, as well as for the case of a low frequency fault in the range 

[0 , 1  rad/sec].

6 .5 .1  C ase S tu d y  6

In  this case study, we use the design procedure in section 4.2.2 to accurately estimate and 

tolerate the bias faults shown in Figure 6.11(b). This is the special case where l j 0 =  0 for this 

problem. Using the reduced-order Lipschitz model w ith  a =  44.45 (see Appendix B.5) and 

using the LM I design, the dynamic gain for the observer (3.14)-(3.18),(4.25) that achieves 

fault identification is obtained as (see Appendix B.5).
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Using this observer, the biases affecting the system in Figure 6.11 are successfully 

estimated as seen in Figure 6.12. Moreover, by using this observer in an observer-based control 

scheme, the tracking performance in  the large bias case is illustrated in Figure 6.13. The 

performance is much improved over the one w ith no fault tolerance as seen in Figure 6.13(b). 

I t  also gives less overshoot than the no bias case, as seen in Figure 6.13(a). Similar results 

are obtained for the small bias case.

6 .5 .2  C ase S tu d y  7

We here consider the case of a sensor fault in the form of harmonics having a frequency of 

2 rad/sec. The dynamic gain for the observer (3.14)-(3.18),(4.25) is computed using the 

design in  section 4.2.2. This is the special case where w0 — 2 for this problem. The gain is 

obtained at A — 10~ 12 as Ay (see Appendix B.5). Using this observer, Figure 6.14 shows the 

correct estimation of a sensor fault of amplitude 2 0  degrees and frequency 2  rad/sec.

6 .5 .3  C ase S tu d y  8

We consider the case of low frequency sensor faults (in the range [0 , 1 rad/sec]). Using 

the design in section 4.2.3 (and w ith a — 0.1, 6  =  1 and e =  0.1), the optimal observer 

gain is obtained by solving the H,x  problem in Definition 4.5 using the command hinflmi in 

M ATLAB, w ith  minimum A as 10~ 12 (see Kg in  Appendix B.5). Using this observer for fault 

diagnosis, a correct estimation of a low frequency sensor fault (generated using the MATLAB 

command idinput) is shown in Figure 6.15.

6.6 C onclusion

In  this chapter, the rotary inverted pendulum (ROTPEN) is used as a demonstration for the 

dynamic Lipschitz observer design techniques in  a practical example. First, the linear model 

is considered in Experiment A, and the system is controlled over a small operating range. 

I t  is shown that adding more dynamics to the linear observer offers better fault detection 

capabilities w ith respect to sensor faults affecting the system.

In  Experiments B and C, the operating region is much increased, showing the impor­

tance of using the dynamic Lipschitz design either for the state estimation or the sensor fault 

diagnosis applications. The dynamic Lipschitz design is also compared to the static design
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technique in Experiment B. I t  is shown that, unlike the dynamic approach, the static method 

fails when applied to the ROTPEN due to the large Lipschitz constant that the system has.

The dynamic Lipschitz design is also very efficient in dealing w ith  an important fault 

that affects the ROTPEN. This is illustrated in Experiment C, where the pendulum bias 

(that results from error in the in itia l conditions of the encoder) is successfully estimated in 

real-time. The effect on the control response is also tested in different bias situations, and it 

is shown that better tracking performances are achieved in this case.

6 .7  F igures o f  E xp erim en ts A , B  and C

40
—  Bias estimation (dynamic observer) 

Actual pendulum bias
-  Bias estimation (static observer)

35

O)

-10

-1 5
20 25

time (sec)

Figure 6.2: Case 1 - Sensor Bias Estimation.
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—  static observer-based  control 
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—  dynam ic observer-based  control
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Figure 6.3: Case 1 - Observer-based Response.
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Figure 6.4: Case 1 - Observer-based Response (Time-varying Bias).
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estim ation using dynam ic observer
—  pendulum  angle fault
—  estim ation using static  observer
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Figure 6.5: Case 2 - Low Frequency Estimation.
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Figure 6 .6 : Case 2 - Observer-based Response.
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Figure 6.7: Case 4 - (a) Motor Response, (b) Pendulum Response.
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Figure 6 .8 : case 4 - (a) High-gain Luenberger Errors, (b) Dynamic Lipschitz Errors.
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Figure 6.9: Case 4 - (a) Pendulum Angle, (b) Motor Angle.
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Figure 6.11: Case 6  - (a) Tracking Performance, (b) Pendulum Angle.
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Figure 6.12: Case 6  - (a) Estimation of the Small Bias, (b) Estimation of the Large Bias.
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Figure 6.13: Case 6  - (a) No-bias versus Observer-based, (b) Large Bias versus Observer- 

based.
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Figure 6.14: Case 7 - Frequency Band Estimation.
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Figure 6.15: Case 8  - Diagnosis of Low Frequency Sensor Fault.
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Chapter 7

Some Related Sampled-data 

Results

In  this chapter, the problem of sampled-data state reconstruction in linear time invariant 

systems is considered. A new fu ll order observer structure that can generate intersample 

state estimation is introduced. The observer synthesis is carried out using the H x  framework 

and is shown to have some important advantages over the classical lifting  technique that has 

been used to study similar problems. A simulation example illustrates the application of the 

proposed design in the fast rate fault detection problem1.

7.1 P rob lem  D efin ition

In  this chapter, our interest is the sampled-data observer (SDO) design problem. I t  is the 

problem of reconstructing the states of a continuous-time plant using a discrete-time observer, 

which can operate w ith  a rate higher than the sample and hold devices connected to the plant 

because of the fact that the digital computer speed is normally very high compared w ith 

these devices. This is different from most linear and nonlinear observer designs discussed 

throughout the thesis that consider the continuous-time problem in which a continuous­

time observer is designed to observe the state of a continuous-time plant. An important 

advantage of the sampled-data framework is the possibility to provide intersample estimation

1The results in this chapter have been published in the article: “A .M . Pertcw, H.J. Marquez and Q. Zhao, 

Hoo Optim al Sampled-data State Observer Design,” IE E  Proceedings - Control Theory and Applications, Vol. 

153, No. 4, pp. 453-461, July 2006.
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and, therefore, better piecewise approximate reconstruction of the continuous-time states 

of interest. Such information is very useful for observer applications specially in system 

monitoring and fault detection where critical decisions should be taken w ithin relatively 

short periods of time. However, obtaining this information is a challenge given the fact that 

the output information (needed for observer design) is only available at the slow rate of the 

sample device.

A classical approach used for the SDO design problem mainly in control applications is 

the so-called inferential control approach. In this technique, selected (primary) measurements 

of both process inputs and outputs are used to estimate the effect of secondary measurements 

(these may include unmeasured states, disturbances affecting the system, etc.) and then a 

standard control system is used to adjust the fast rate control effort [115]. The most important 

part o f this technique is the design of an estimator that minimizes the estimation error of 

inferred measurements at fast sampling points where an actual measurement is unavailable 

[97]. In most cases, however, inferential control methods are restricted to specific types of 

control schemes or processes. Besides, the issues of practical importance (such as model 

uncertainty, system dynamics, unmeasured disturbances/noise, restrictions on the controller 

structure) are not incorporated [71].

This encouraged much research to be done in the area of sampled-data control and 

one of the successful approaches that has been introduced is the lifting technique [15, 80]. 

The main idea of the lifting  technique is to generate slow rate control inputs that depend 

on fast rate information of the reference input, using this additional information to control 

an augmented output which represents the fast rate error signal. Design of the controller 

in this case can be done w ith in the m ultirate digital control framework [79]. This technique 

can also be used for the dual SDO design problem. In this chapter, we apply the dynamical 

observer approach to solve the SDO design problem, comparing it to a design based on 

Lifting. An observer design based on the fast rate plant model is introduced. In  order to 

achieve intersample state estimation using this observer, we proceed as follows: two signals 

are fed to the observer; namely, the plant input and the plant output. The plant input is 

con s ta n t d u r in g  th e  in tc rs a m p le , o w in g  to  th e  h o ld  d evice  an d  is th e re fo re  fed  to  th e  observer 

at the fast rate. The plant output, on the other hand, is only available at the sampling instants 

and is therefore fed at the slow rate of the sample device connected to the plant. In order 

to obtain a robust estimate w ith respect to this unknown intersample output information, 

we formulate the problem as an Hoo optimal control problem, making use of the dynamic
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observer structure introduced in this case. Similar to the Lipschitz case, we show that the 

proposed SDO-ffoo problem is equivalent to a modified optimal control problem which 

satisfies the standard regularity assumptions in the discrete H a0  optim ization theory. The 

proposed Hoo approach is also compared to the classical lifting  approach through a set of 

simulation experiments conducted on the ROTPEN and is shown to have some important 

advantages over the lifting  technique when applied to a fast rate fault detection problem.

7.1.1 P relim inaries and N o ta tio n

Our attention is focused on the sampled-data observer (SDO) design design problem for 

sampled-data systems such as the one shown in Figure 7.1 where the sample and hold devices 

are both operating w ith the speed l / h s (hs being the sampling time). The objective of the 

SDO as seen in Figure 7.1 is to provide state estimates at a faster rate l / h j  using the available 

input-output information.

speed IP  A, * speed ( I d , )

controlingi
us (k) s u(kh.

“ Hold” u(<) “Plant" .... m...*
H €?r P e-)f

Sample (sampled output
S j 1 y7k)=y$K)

speed (l / h f j

Observer

^ state estimations r£khf )

Figure 7.1: The Sampled-data Observer (SDO) Design Problem.

Given the fact that most physical systems of interest in systems and control are natu­

ra lly continuous-time, in the sequel we consider the model of the plant P  to be a known LTI 

system £  of the form:

(x{t) =  A x(t) +  B u(t), A  G Knx” , B  G Knxm

y(t) =  C x{t) +  D u(t), C G Kpxr\ D  G i r x™

where the pair (A, C ) is observable.

Knowing hs and hf, it  follows that the two systems £ s and £ f  (seen as the exact 

discretizations of the system £  at the sampling rates l / h s and 1 /h f  respectively) are known
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and can be represented by the following step-invariant transformations [15]:

xs(k +  1 ) =  A s xa(k) +  Bs us(k) 

ys{k) =  C xs(k) +  D  us(k)
(7.2)

S f :
Xf(k +  1) =  A f Xf(k) +  B f Uf(k) 

Vf(k) =  C Xf(k) +  D Uf(k)
(7.3)

where for i  — (s , f ): Ai =  ehiA, B i =  erAd rB  and where X i ( k )  =  x { k h f ) ,  i t j ( f c )  =  u ( k h i )  

and y i ( k ) =  y ( k h i ) .

The sampling times hs and h f are assumed to satisfy the following:

(i) h f is strictly less than hs and the ratio between them is an integer number, i.e:

(ii) The sampling time h f  is non-pathological, i.e, no two eigenvalues of A differ by (j.fc |y ), 

fcgZ , k f-- 0, and j  being the imaginary number.

Assumption (i) is a technical assumption that guarantees that the slow rate data is a 

proper subset of the fast rate data. Assumption (ii) implies that the observability assumption 

is preserved for the pair (A f,C ) [15].

Luenberger observers for E s and S f w ill be denoted by Ify  and respectively and 

have the following structure:

of the m atrix (A* — LfC) lie in the open unit circle of the complex plane.

Throughout this chapter, we w ill also make use of the same definitions and notations

• D e fin itio n  7.1 (fy Space): The space fy consists of all Cebesgue measurable functions

where r  € Z+ and r  >  1 (7.4)

where L i (the observer gain) is a static m atrix designed to ensure that all of the eigenvalues

introduced in Chapter 2 (section 2.4) but for discrete-time signals and systems, w ith the main 

differences as:

u : lA  —* M9, having a finite fy norm ||u||£2, where ||u||f2 =  ||a(A;)||2, with ||m(A;)||

as the Euclidean norm of the vector u(k).
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•  In  the case of a linear time-invariant system G : 12  —>■ ^ 2  w ith a stable transfer m atrix 

G(z), 7 (G) is equivalent to the I I ^  norm of G(z) defined as follows:

7 (G) =  || G(z) ||oo== max < J m a x ( G ( e _ :? 0 ) ) .
[0,27r]

where <rmax(.) represents the maximum singular value of G(e_J0).

•  The partitioned m atrix K:
A B

C D

(when used as an operator from y to u, i.e, u =  K y ) represents the state space repre­

sentation:

£[k +  1) =  A £(k) +  B y(k) 

u(k) =  C £{k) +  D y(k)

and in that case the transfer m atrix is K(z) =  C (z l — A)~1B +  D.

•  In  all block diagrams used in  this chapter, solid and dashed lines represent continuous­

time and discrete-time signals respectively.

7.2 L ifting F orm ulation  for SD O  D esign

To solve the SDO design problem introduced in section 7.1 and represented by Figure 7.1, 

it  is necessary to find a model that captures the fast rate states that we need to estimate

(i.e, Xf(k)) and which is, at the same time, function of an available set of input/output

information. The model X s in (7.2) (which is an exact model of SPH) is a slow rate model 

though, and the Luenberger observer 'Fs in (7.5) (or any other observer designed for £ s) 

would just give a state estimation for the slow rate states xs{k). On the other hand, using 

the model X f in (7.3) to design an observer such as SFf in (7.5) is not a feasible solution for 

the SDO design problem, since it  assumes the complete knowledge of the fast rate output 

information y j { k )  (which is not available in  real-time). The multirate system SPH f, however, 

maps the fast rate input Uf(k) into the slow rate output ys(k) where both are measured 

“known” signals. In this subsection, we w ill use the L ifting  technique to find a model for 

S PH f that also captures the fast rate states X f ( k ) .  To this end, we w ill first give a brief 

introduction to the L ifting  technique, then we w ill present how it  can be used to design a 

SDO for the system in Figure 7.1. I t  w ill be shown that the L ifting solution is equivalent to
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a triv ia l design which consists of fast rate open loop estimations that are updated by a slow 

rate classical Luenberger observer.

7.2.1 L ifting Technique

The L ifting technique is one of the classical approaches used in multirate digital control. I t  

relies on the use of a linear, time-varying, non-causal operator L M, which operating on a 

discrete signal v ( k )  =  (v (0 ), u (l), v(2 ) , . . . }  gives another discrete signal referred to as the 

lifted signal v ( k )  where:

v ( k )  =  L l i v ( k )  =  <

v(0 ) v(p)

<
u (l)

?
v(p +  1 )

, . . .

y (h  - !). 1
r-H1

CSI j

(7.6)

Here p G Z +  is referred to as the L ifting order. The L ifting operator transforms a fast rate 

signal into a slow rate signal that contains the same information. This is clear by noting 

that if  v ( k )  is a discrete-time signal of vectors of order “q” sampled every “ /i” seconds, v_(k) 

can be considered as a signal of vectors of order ‘7 iq” (sampled every “ph” seconds) and 

that store the same information in v ( k ) .  According to the previous discussion on the L ifting  

operator, the two signals x s ( k )  £ R”  and X f ( k ) € R”  (defined in (7.2) and (7.3)) are two 

discrete signals of different sampling times (hs and h f respectively), while x s ( k )  £ R”  and 

x f ( k )  £ Rrn ( = L rx/(fc)) have the same sampling time and are related by:

x s ( k ) On o j  X f ( k )
J l x r  -----

The inverse of L ;l is denoted by L/t and is also a linear, time varying (but causal) operator. 

Both L /t and L M 1  preserve the £2 norms [15].

In  addition to lifting  signals, the L ifting operators are also used to lif t  systems as 

follows:

Consider Gd\ a discrete-time, LTI, single rate system (inputs and outputs are discrete signals 

sampled every “h” seconds) that has n  states, m  inputs and p  outputs, and that is represented 

as:

Gd =

where A , B , C and D  are matrices of appropriate dimensions. The lifted system Gj_ is

A B

C D

defined as the system G,i =  L /t Gd L /( . I t  can be shown that the representation of Gd is as
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fo llow s [15]:

101

Gd =

A» A ^ l B A ^ 2B  . . B

C D 0 pm 0 pm

CA CB D 0 pm

C A “ - 1 c a ^ - 2b c a ^ 3b  . . D

(7.7)

The system Gd is also a discrete-time, LTI, single rate system. But it  has /im  inputs and fip 

outputs and all these inputs and outputs are sampled every “/Lt/i” seconds. Therefore, Gd is 

considered as a slow rate representation of Gd- L ifting  a system preserves its Hex, norm, i.e, 

II Gi(z) HooH I Gd(z) Hoc-

Throughout this chapter, we w ill assume the L ifting  order to be the constant r  defined 

in (7.4), and we w ill use the operator L to refer to Lr. Finally, we present two important 

system relations that hold for sampled-data systems such as the one in  Figure 7.1 using the 

L ifting  operator (for proof refer to [15]):

Sf  H  =  L " 1 Q

where the operator Q  is the static linear m atrix 

And,

S P  H f =  R L Sf  P  H f  

where the operator R is the static linear m atrix

(7.8)

lm Jm In
l x r

(7.9)

I p  Op
l x r

7 .2 .2  A p p lica tion  to  th e  SD O  design  problem

As mentioned in the beginning of section 7.2, the multirate system S P H f  (which maps the

fast rate input u j(k ) into the slow rate output ys(k) as in (7.10)) is needed to solve the SDO

problem.

ys(k) =  SPHf  uf (k) (7.10)

To find a model for that system, it  is first easy to see (by using the L ifting  notation in (7.8)) 

that Uf(k) is related to us(k) by the equation:

u/(k) =  Q us(k) (7.11)

In  order to reflect the response of the fast rate states X f ( k ) ,  it  is also important to remark 

that the model of P  in  (7.1) can also be represented as:

P  =  M iP ' +  M 2 (7.12)
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where P '
A B

. In Onm
, M x

On

o.’p n c
and M 2

1

O 3 O n ro

O p n D
(all the partitioned

matrices here represent continuous-time state space representations). Therefore, using the 

L ifting properties introduced in section 7.2.1, along w ith equations (7.11) and (7.12), the 

multirate system S P H f  can be represented by the following state space representation (see 

Appendix A .5 for more details about the derivation of this model):

£(fc +  1 ) =  Arf  £(fc) +  [Arf ~l B f Arf 2Bf  . . .  Bf \ u ^k )

" In Onm 0 nm Onm

&

It

...
 

^
m  +

&  f  0nm Onm

1

u
* Arf 2Bf  A ^ B f  . Onm

uf {k) (7.13)

c D

V s ( k )  =  [1C 0;'p n u p n X f{k )+ [D  0 pm • * - 0 pm ]« /( * )

The following theorem presents an observer for this model and provides conditions for 

its convergence. The observer presented in this theorem is obtained by applying a classical 

Luenberger observer structure to the state space model in (7.13).

Theorem  7.1 The system described by the following equations:

i( k  +  1 ) =  Arf  i(k )  +  [Ars~l B f  Arf 2Bf  

x f { k )  — C i ( k )  +  D U f ( k )

B rj U j f k )  +  L e (y3(k) -  ys(k))

(7.14)

ys(k) = c 0.1p n J p n cf (k) D  0.'p m J p m uf (k)

is a sampled-data observer (SDO) fo r the system in Figure 7.1 i f  and only i f  the observer 

gain Lp is chosen such that ^A1)  — LpCj is Hurwitz.

Proof: By defining the error variables as ex =  X f ( k )  —  X f ( k )  and cp =  ( ( k )  — ( ( k ) ,  we have:

ex(k) =  C  ec(fe)
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But using (7.13) and (7.14) we have:

e€(fc +  l)  =  £(fc +  l ) - f ( *  + l)

=  Arf  £(k) -  (A rf  £(k) +  Le (ya(k) -  ys

e5(fc) - L t ( O  0p n  . .  . 0 pn

=  Arf  es(k) -  Le [ c  0 ^  ...  0 ^ ] C e^k)

=  (Arf - L eC )e ^k )

Therefore, (Ay — LpC'j Hurwitz is a necessary and sufficient condition for the error e^(fc) 

(and hence for the error ex{k)) to converge to zero. I t  follows that (7.14) is an SDO for the 

system in Figure 7.1 w ith X f ( k ) as a fast rate state estimation. □

Remarks:

1 ) A necessary and sufficient condition for arbitrary pole placement of the SDO introduced 

in theorem 7.1 is the observability of the pair (^ApC^j. I t  is important to note that 

this is not guaranteed by the “non-pathological” assumption for h f in section 7.1.1.

2) The observer has a time delay of hs (see [97] for more details about the lag problem 

associated w ith  L ifting). This is clear by noting that X f(0) (the first group of state 

estimations in the first inter-sampling period) is based on the in itia l guess for £(0). The 

correction term (ys(k) — ys(k)) has effect on £f(k) only starting from k =  1 .

3) The observer developed in this section through the L ifting technique is equivalent to 

two Luenberger observers performing in parallel as follows: the first one is \I/S given in 

(7.5) which is a slow rate closed loop observer having L s =  L( (of the L ifting  observer), 

and the other is 41/ (also given in (7.5) but w ith L f — 0np) as an open loop observer 

which updates its in itia l conditions every “r ” steps w ith the new state of <f's.

7.3 Hoo SD O  D esign

To avoid some of the drawbacks associated w ith the L ifting  technique (and discussed at the 

end of section 7.2.2), a direct use of the available fast rate model in (7.3) to design a SDO is 

necessary. However, as we mentioned before, any Luenberger observer for this model (such 

as the observer T 'f in (7.5)) is not a feasible solution due to the unavailable fast rate output
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information yf(k). Moreover, if  yf (k) is replaced by Vf(k):

Vf(k) =  y/(k) +  d(k)

104

(7.15)

(which is an arbitrary approximation to yf(k) w ith an error vector d(k)), then the observer 

4>f has an estimation error e — Xf — Xf w ith  dynamics given from:

e(k +  1) =  (A f -  L fC ) e(k) -  L f  d(k) (7.16)

which is affected by d(k) causing divergence of the observer. In this section, we solve the SDO 

design problem by using a dynamic observer structure (instead of the Luenberger structure 

in (7.5)). We apply the extra degrees of freedom to minimize the effect of d(k) on the 

estimation error, offering a robust alternative to the triv ia l design obtained by L ifting. We 

show that the proposed design overcomes some of the drawbacks associated w ith the L ifting 

technique. Moreover, we show that the problem is equivalent to an ffoo optimal control 

problem which satisfies the standard regularity assumptions in the Hoo optim ization theory, 

making the proposed design solvable using commercially available software, sim ilar to the 

Lipschitz observer design problems introduced in Chapters 3, 4 and 5.

Towards that goal, the proposed dynamical observer for the fast rate model (7.3) is:

Xf(k  +  1) =  A f Xf(k) +  B f Uf(k) +  rj(k) 

yf {k) =  C  Xf(k) +  D  Uf(k)

(7.17)

(7.18)

where r)(k) is obtained by applying a dynamical compensator on the output estimation error. 

In  other words r](k) is given from

z{k +  1 ) =  Al  z(k) +  Bl -  yf(k)); AL e

rj(k) =  CL z(k) +  D l  ( j r / ( A )  -  yf(k)); CL €

,Bl e

,D C €

(7.19)

(7.20)

where yf(k) is an approximation to yf{k) w ith an error vector d(k) as given in (7.15). We 

w ill also write

K
Al Bl

Cl D l
(7.21)

to represent the uqth order” compensator in  (7.19)-(7.20). I t  is straightforward to see that 

the observer error dynamics in (7.16) is now given by

e(k +  1) =  A f e(k) — r)(k) 

tl(k) =  K  (Ce(k) +  d(k))

(7.22)

(7.23)
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which can also be represented by the standard setup in Figure 7.2 having the variables in 

(7.24):

u> =  d ( k )

v =  n{k) (7.24)

C =  e(fc) =  X f ( k )  -  X f ( k )  

cp =  Ce(k) +  d ( k )

LO

V
r ........... ►

G

K

Figure 7.2: Standard Setup: the Discrete-time Case.

and the controller K  in (7.21), and w ith the plant G as the standard state space representation 

in:

A B i b 2 ' ' A f ^np -■In

G = C i D n D n = In Onp On

C2 D 2i D 22 C h Opn

Therefore, the SDO design problem reduces to the input/output stability problem of 

the setup in Figure 7.2 which has as input the approximation error d(k) and as output the 

observer estimation error e(k). W ith an arbitrary choice for yf(k) in (7.15), one can ensure 

that d(k) is a bounded signal and the problem in Figure 7.2 can then be solved as an C\ 

optim ization problem. However, we here focus on the use of Hoo optim ization to solve this 

problem, assuming d(k) to be of fin ite energy (i.e, d(k) 6  £-j) or to have a certain frequency 

pattern reducing the problem to a weighted Hoo optimal control problem. Unfortunately, the 

SDO design problem cannot be carried out directly using the standard Hoo solution since 

the standard form in (7.25) does not satisfy all of the regularity assumptions in the H a0 

framework, summarized in section 7.3.1 (Notice that D f2D n  is singular). In  the following 

we show that this irregular Hoo problem is equivalent to a modified Hoo problem satisfying
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all the regularity assumptions. Based on this result, we present a design procedure that can 

be used to compute the dynamic gain K  for the SDO in (7.17)-(7.21).

7.3 .1  P rob lem  R egu larization  and H ^  D esign  P roced ure

By adding a “weighted” disturbance term e <j>(k) in the state equation of the fast rate model

(7.3), and extending the external output £ to include the “weighted” vector (3r](k) (where 

/? >  0 ), it  can be seen that the observer error dynamics can s till be represented by the setup 

in Figure 7.2 w ith the variables in (7.24), except for replacing u  by Q defined as:

1 T
m  d(k)]'

and replacing (  by £ defined as:

and redefining the plant G  as:

c = e(k) (3ri(k)

(7.26)

(7.27)

A B i b 2

G  = Ci D n D 12

.  c * D 21 d 22

A f a\ 0 1 ~ I n

I r ? b n  0 n p 0 n

O n O n 0 n p 1

c 0  p n  I p 0  p n

(7.28)

which satisfies all of the regularity assumptions of the discrete H ^  problem summarized 

below [15]:

1 . (A Jh )  stabilizable: satisfied for any m atrix A.

(C2 ,A ) detectable: satisfied iff (Af ,  C ) is detectable.

2 . D 21D 21 =  I p, which is nonsingular.

D j2D \2 =  P2In, which is nonsingular.

3. rank

rank

A  -  XI b 2

Ci D 12

A - X I B i

c2 D2i

2n =  fu ll column rank VA.

n +  p =  fu ll row rank VA.

4. D 22 — 0.
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Therefore, all the regularity assumptions are satisfied if f  the pair (Af ,  C) is detectable which 

is implied by the “non pathological ” assumption on h j in section 7.1.1 (that guarantees (Af ,  

C) to be observable).

Similar to the Lipschitz case, a certain equivalence relationships among the setups T) 

and T2 can be demonstrated (T) being the setup in Figure 7.2 associated w ith (7.25), while 

T2 is the one associated w ith (7.28)):

Lem m a 7.1 Consider a stabilizing controller K  fo r the setups T\ and T<i, then || T\(z) ||oo< 7  

i f  and only i f  3 e >  0, ft >  0 such that || Ts(z) ||co< 7 -

Proof: Similar to the proof of Lemmas 3.1 and 3.2 in Chapter 3, hence omitted. □

We are now ready to present our main result in the form of a theorem showing that the 

observer gain K  needed to minimize the energy ( (2  norm) of the estimation error for the 

SDO in (7.17)-(7.21) must solve a regular optimal control problem. To this end, we 

define the regular discrete problem “Problem 1” as follows:

Problem 1: Given e > 0 and (3 >  0, find S, the set of admissible controllers K  satisfying 

II Tqu(z) | | o o < 7  fo r the setup in Figure 7.2 with G having the state space representation in 

(7.28).

The main result is summarized in the following theorem:

Theorem  7.2 Consider the SDO design problem in Figure 7.1 with the plant P  in (7.1) and 

the fast rate model in (7.3). Then the following two statements are equivalent:

(i) The observer (7.17)-(7.21) with the dynamic gain K  has a minimum estimation error 

energy.

(ii) 3 e* >  0, ft* >  0 s. t, K  £ S* (the set of controllers solving “Problem 1” defined above 

with the minimum possible 7 ).

Proof: Since the observer’s error dynamics is represented by T i (the setup in Figure 7.2 

associated w ith (7.25)), then the estimation error’s energy satisfies:

IM U2 <  \\Ti(z) Hoc \\d\U2

Then, ||e| |^ 2 is minimized, for a certain disturbance signal d(k), if  and only if  the controller 

K  minimizes ||2 \ ( 2:)||oc. The equivalence of the two statements then follows as a direct result 

of Lemma 7.1. □
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The following iterative “binary search” procedure is then proposed to evaluate the ob­

server gain K  that minimizes the estimation error’s energy of the SDO observer 

in (7.17)-(7.21):

Design procedure:

Step 1 Set 7 iow to an arbitrary small positive value and jhigh to an arbitrary large positive 

value.

Step 2 Set e > 0 and (3 > 0 and set 7 <- .

Step 3 Test solvability of Problem 1 (the regular Hoo problem defined earlier). I f  test fails 

then go to Step 5 ; otherwise solve the problem (using available software packages), select 

any K  € S as a candidate observer gain and set 'yhigh *— 7 -

Step 4 If  I'jhigh — llow\ < a threshold value then stop the algorithm, otherwise go back to 

Step 2.

Step 5 Set e <— |  and /3 <— | . I f  e or /? < a threshold value then 7 ;olu <— 7 and go to Step 4, 

otherwise go to Step 3.

Rem arks

• The Hoo design procedure is guaranteed to converge if  the pair (A j ,C) is detectable 

[15]. This detectability condition is guaranteed by the “non-pathological assumption” 

on hf (unlike the observability condition of the L ifting  technique as seen at the end of 

section 7.2.2).

• The Hoo SDO does not introduce a time delay in the state estimation. This is another 

advantage of the Hoo approach over the L ifting  technique in section 7.2 (see the remarks 

at the end of section 7.2.2 for more details).

• The assumption of finite energy is easily satisfied in step tracking applications if  y j{k ) 

is selected as yf(k) =  ys(r (k mod r)) (i.e, approximating the fast rate output as a 

constant signal between samples). In that case the approximation error term d(k) in 

(7.15) is guaranteed to be a finite energy signal, i.e d(k) e £2 -

7.4 S im ulation  R esu lts

In this section we consider an illustrative example using the rotary inverted pendulum (ROT- 

PEN) introduced in Chapter 6 . The linearized model about the pendant configuration, i.e 

the equilibrium point {0\ =  constant, 62 =  180 degrees and u — 0) gives the following 4th
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order SISO-LTI model (state vector x and units for this model are same as in Chapter 6 ):

(7.29)

0 0 1 0 0

0 0 0 1 0
X — x  +

0 -25.14 -17.22 - 0 . 2 2 1 0 26.3370

0 -68.13 -16.57 -0.599 25.3596

[l 0 0 o]z (7.30)

This model is open-loop unstable w ith the open-loop poles as (0, —13.3131, —0.9942 ±  

6.85107}. In  our simulation, we first stabilize the system, furthermore the closed-loop poles 

and the feedforward gain are chosen to make the output track a step input of magnitude of 

10 degrees. This is for the purpose of validating the convergence of the proposed observer 

schemes and demonstrating the results in a controlled manner. But it  is true that the 

observers can work for unstable systems. The simulation time is taken as 50 seconds.

The observer design in case of was done w ith the help of the Matlab command 

hinfsyn and using the Bilinear transformation approach [15] to get a discrete Hoo controller. 

In case of lifting , the command place was used to place the discrete poles of the observer 

(7.14) at {0.0183, 0.0025, -0.0563 ±  0.1231*}.

The value of h f is fixed to 0.1 and hs is changed to take the values {0.2,0.5,0.8, and 1}. 

This represents a study for different values of r  in  equation (7.4). The approximated output 

y/(k) is chosen as the held output between samples (i.e, y j (k) =  ys(r (k mod r))) as shown 

in figure 7.3 for the case hs =  1. The approximation error d(k) in (7.15) in this case is shown 

in Figure 7.4. I t  can be seen that the disturbance term d(k) in Figure 7.4 is a decaying signal 

having a finite £2 norm (note that a ll £ 2  norms are computed for the interval t — [0, 50 sec]).

Case s tudy 1: In  this case, the simulation is conducted to study the difference between the 

L ifting  technique introduced in section 7.2 and the Hoo technique of section 7.3. The observer
1 1

0.2 0 0 0 • Figure 7.5 shows thein itia l conditions (for both techniques) are taken as 

output estimation error for the two cases when hs — 1. Table 7.1 shows the trend of state 

estimation error’s £2 norm w ith the change of hs. W ith the increase of r  (the ratio between hs 

and hf), the number of inputs and outputs for the system defined by equation (7.13) increases 

making the implementation of the lifting  technique more complex. I t  is also important to 

note that for very large values of hs, the system in (7.13) could become unobservable making 

the use of the liftin g  technique impossible (as is the case for values of hs »  1). Two factors 

are important in the choice of r: the computer speed to implement the observer in  Figure 7.1;
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Figure 7.3: The Actual Output and the Approximated Output at hs =  1 sec.
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Figure 7.4: The Disturbance Term d(k) at hs =  1 sec.

and the required bound on the disturbance term since the norm of the vector d(k) in (7.15) 

increases w ith the increase of r.

Case s tudy 2: In  this case, the simulation shows the application of the L ifting and FTqo 

sampled-data observers in  the fast rate fault detection problem. In  this experiment, hs is 

assumed to be 1  second, and a sensor fault is assumed to start after 2 0  seconds in the form of 

a small bias of magnitude 1.75 degrees. The residual signal s(k) is taken as the summation 

o f th e  o u tp u t e s tim a tio n  e rro r (r-(fc)) over a  t im e  w in d o w , an d  a  s im p le  decis ion  schem e a t  

step k is assumed as follows:

k
4 k )  =  E  |r(fc)| > threshold => fault is detetected (7-31)

i—k—4

Applying both techniques (w ith the threshold in (7.31) as 2.0), the fault in  is detected at
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• - H-infirJfy technique 1 
Lifting technique _ J

Figure 7.5: Output Estimation Error for L ifting  and H x  at hs =  1 sec.

Table 7.1: Case study 1 - effect of change of hs on || e | |^ 2

Value of hs (in sec.) 0 . 2 0.5 0 . 8 1

H 0o technique 16.0328 16.9887 18.3506 19.5616

Lifting  technique 22.9438 36.9739 46.2796 57.2925

time =  20.1 seconds, while in L ifting  it  is detected at time =  22 seconds. The residual signals 

for both techniques are shown in Figure 7.6. This case study demonstrates that the proposed 

H qo observer scheme can provide updated residual signal in fast rate w ithout introducing 

much time delay. This is important in the fault detection applications. However, in  this 

example, no disturbance is added. In  the case of unknown disturbance, more treatment 

needs to be taken to eliminate or attenuate the effects of disturbance which is a robust fault 

detection problem. The proposed H a0 observer can find potential applications in this context.

(a) (b)

m
I0>5.
w3■o»s

tim e (sec)

3

£

20 30 351S

tim e (sec)

Figure 7.6: (a) Residual Signal for I I ^  Technique, (b) Residual Signal for Lifting.
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7.5 C onclusion

112

In  this chapter, we considered the problem of sampled-data state reconstruction in linear time 

invariant systems. An observer structure that can generate intersample state estimation is 

introduced and the problem is shown to be equivalent to a well defined Hoo optimal control 

problem. A design algorithm to solve the optim ization problem is presented and can 

be carried out using commercially available software, such as MATLAB. The proposed Hoc 

design has some important advantages over the classical lifting  technique. This has been 

demonstrated through simulation experiments conducted on the rotary inverted pendulum. 

The solution of this problem in the Lipschitz case is suggested as future work.
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Chapter 8

Conclusion and Future Work

This thesis undertook the observer-based approach for the solution of the fault diagnosis 

problem in a class of nonlinear control systems, known as Lipschitz systems. The observer- 

based approach adopted in this thesis falls in the category of analytical redundancy techniques 

where the powerful techniques of mathematical modelling, state estimation and system identi­

fication are used for Fault Detection and Isolation (FDI). The major advantages of analytical 

redundancy over hardware redundancy is that the former is cost-effective and can be imple­

mented in software on the same process control computer.

8.1 Sum m ary o f  C on tribu tion s

The main results of this thesis are as follows:

•  The Lipschitz observer design approach in [91, 94] provided a good starting point for 

this research, but could not be applied directly to the FDI problem because of their 

restrictive observer structure and also because of their idealized natures that did not 

take into account uncertain model parameters and disturbances. A dynamic observer 

structure was proposed to solve the Lipschitz observer design problem. The main contri­

butions of this structure were twofold: (i) The observer stability condition that ensures 

asymptotic convergence of the state estimates is satisfied by a fam ily of observers, 

adding extra degrees of freedom to the observer and laying the ground to the addition 

of the FDI objective in the design problem, (ii) The observer design can be carried out 

using a systematic design procedure which is less restrictive than the existing design 

approaches and that can be solved using commercially available software.

113
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•  A sensor FD I formulation was introduced and applied to both the LT I and Lipschitz 

cases. The additional observer dynamics showed to be effective in adding the identifi­

cation objective to the problem (in addition to the detection and isolation objectives). 

I t  was proven that the classical observer structure could not solve the problem in this 

case. An analytical solution was presented for the LT I case, while for the Lipschitz case 

the problem was shown to be equivalent to a standard convex optim ization problem 

(solvable using LMIs). In  these formulations, different frequency patterns for the sensor 

faults were considered, and systematic design procedures were presented to solve the 

problem.

•  The robust FDI problem was considered by studying the case of additive uncertainties 

(modeling uncertainties, disturbances, noise). The Unknown Input Observer (UIO) 

technique, used to deal w ith additive uncertainties in  the LTI case, was generalized to 

Lipschitz systems. The new observer was applied to the robust sensor FDI problem. 

The problem was modelled as a two-objective optim ization problem (solvable using 

numerical techniques) where the first objective is to achieve observer stability, while 

the second one is tota l decoupling of the effect of uncertainties in the estimation error.

•  The new Lipschitz observer and sensor FDI designs were applied in a practical example, 

namely the Quanser rotary inverted pendulum (ROTPEN) in the Control Systems Lab, 

Electrical and Computer Engineering department, University of Alberta. The ROT­

PEN model falls in the category of planar robot manipulators, and the experimental 

results illustrated the applicability of the proposed techniques in the robotics field. The 

experiments showed the following:

i) How to model a robot manipulator as a standard Lipschitz system.

ii)  The importance of the dynamic Lipschitz observer in large operating regions where 

the linear observer normally fails.

iii)  The accurate velocity estimation obtained using the dynamic observer, alleviating 

the need to introduce velocity sensors in  real-time.

iv) How the static observer fails, unlike the dynamic observer, when applied to the 

ROTPEN due to the large Lipschitz constant that the system has.

v) The efficiency of the dynamic observer in diagnosing and tolerating sensor faults 

of different frequencies (including an important bias introduced by the error in the 

in itia l conditions of the pendulum sensor).
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•  Other important contributions included the application of the dynamic observer struc­

ture in the sampled-data state reconstruction problem for the LTI case. Using the 

H qo framework, it  was shown that the dynamic observer has some important advan­

tages over the classical L ifting technique that has been used to study similar problems, 

including: shorter time delay and more relaxed observability conditions.

8.2 F uture W ork

The following are suggested areas that could be pursued in future research.

General Lipschitz fault diagnosis The question of solving the FDI problem in (5.35)- 

(5.36) remains an open research problem. Using the dynamical observer structure, the 

problem is equivalent to a three-objective optim ization problem for which an analytical 

solution is hard to find. Finding approximate solutions to this problem is another area 

that is important to the improvement of Lipschitz FDI algorithms.

The Lipschitz dynamic sam pled-data observer problem Extension of the SDO prob­

lem introduced in  Chapter 7 to the Lipschitz case is an important proposition. More 

research needs to be done to integrate the sampled-data design w ith the overall dy­

namical observer structure. Such design may make the Lipschitz FDI strategies more 

reliable, especially in practical examples w ith large sampling times, where a continuous­

time model is not a good approximation.

Experimental results for the robust Lipschitz FDI problem Applying the results in 

Chapter 5 to a real-time practical example could be pursued in future research. The 

ROTPEN model used in Chapter 6 is not affected by uncertainties in the state equa­

tions, and was therefore an infeasible example. A future research direction would be 

model any unknown centrifugal, coriolis, gravity or friction terms (in the dynamic equa­

tions of a robot manipulator) as modeling uncertainties of the form “Ed(t)” and show 

that one can always obtain a solution for the robust Lipschitz FDI problem in this case.

Application of the dynamic structure to bilinear system s For generalization to other 

nonlinear systems one can first try  to extend this thesis results to the class of Bilinear 

systems, of the form (2.22)-(2.23). This class of systems has very important applica­

tions especially in chemical and nuclear engineering. The application of the dynamical
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observer structure can add extra degrees of freedom to the observer design and the FDI 

problems.
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A ppendix A

Proofs

The purpose of this appendix is to provide a proof of several lemmas and theorems encoun­

tered throughout the book. For easy of reference we re-state the lemmas and theorems before 

each proof.

A .l  P ro o f o f  L em m as 3.1 and 3.2

Lemma 3.1:

Consider a stabilizing controller K  for the setups T\ and T2, then || T\(s) ||oc< 7  if  and only 

if  3 e > 0 such that j| Th.{s) ||oo< 7 - 

Lemma 3.2:

Given e >  0 and a stabilizing controller K  for the setups T2  and T3 , then

II %{s) ||0 0 < 7 if  and only if  3 f3 > 0 such that || Tz(s) ||oo< 7.

Proof:

Using the definitions of T i,T 2 and T3 , along w ith  the definition of r , (  and f ,  the

transfer m atrix 7) (s) is given from (3.22), while T2 (s) and 7}t(s) are given from:

,T3(s)=

A - D l C - Cl In - eDL

f 2(s)= Bl C Al eBi

in 0  nk On O/i p

a ~ d l c - C L In - eDL

Bl C A l Okri *B h

In 0 nk On 0 np

PDLC PCL On e/3DL

(A -l)

128
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We w ill define A  as the common state m atrix
A - D LC ~Cl 

B l C Al
, and we w ill hence re-

fer to the state transition m atrix of T) (s), T2(s) and # j(s) as: # (s ) =  (s ln+k - A ) 1 

# i i  (s ) H 12(s)

# 2 l(» ) # 2 2 # )

From (3.22), (A .l), and from the definition of # # ) , we have:

T i(s) =  H n (s), T2(s) =  [ i f n (s) -e H u (s)DL + e H 12(s)BL\ , (A.2)

# n  (s) -e H n (s)DL +  eH12(s)BL

M ( « )  0 2 (s)

N i(s )= D l C H u (s )+ C lH 2i(s), N2(s)=e ( - N ^ D l  +  DLCH12(s)BL +  CLH 22{s)BL +  D t ) .

Proof o f Lemma 3.1 (Sufficiency) For the “two input/one output” standard setup T2, 

let 3e > 0 and a stabilizing controller K  s.t || T2(s) ||oo< 7 - But from (A.2) we have 

II f 2 (s) ||oo= max (|| # n (s ) Hoc, || -e H n (s)DL +  eHi2(s)BL H ^). Hence, || T i(s) ||oo< 7- 

(Necessity) Let 3 a controller K  such that || T i(s) ||oo< 7 . I t  follows that || # n (s ) ||oo= <r < 7 .

II T2(s) ||oo= max ^cr, e || - H u (s )D l  +  H n(s)B L ||oo)- 

But since FT is a stabilizing controller, then || —H u ( s ) D l  +  H i2{ s )B l  Hoc-- P (where p is a 

finite number). Hence, 0  < e < p  =HI T2{s) ||oo< 7 -

P roof o f Lemma 3.2 (Sufficiency) For the “two input/tw o output” setup T3 , 

let 3e > 0, (3 > 0 and a controller K  s.t || #3 # ) ||oo< 7 . But || Ts(s) ||oo= max ^|| # n (s ) ||oo,

|| -e H n (s)DL +  eH12(s)BL IU  || 0 # i(s ) IU , II P M * )  ll~ ).

Therefore, || T2(s) Hqq- max (|| # n (s ) ||oo, || -e # ii# )£ > i +  eH\2(s)BL | |o o )  < 7-

(Necessity) Let 3e > 0, K  s.t || T2(s) ||oo= & <  7 -

.-. max (|| # n (s ) ||oo,€ || H n(s)D L -  H 12(s)BL 1 ^ ) =  a.

.’. || T3(s) ||oo~~~ max (|| (3N\(s) ||oo, || PN2(s) ||oo, o’) .

But since K  is a stabilizing controller, then || N i(s) ||oo= Pi and || N2(s) ||oo= P2 (where p\ 

and p2 are fin ite numbers). Hence, 0 < 0 <  max^ -  —-j => || T:s(s) ||oo< 7 .

□

A .2  C om p u tation  o f  th e  Transfer M atrix  Q(s)

Based on the results in  theorem 4.3, it  can be proven that, for Te/,(s ) in (4.18), 3 a transfer 

m atrix Q(s) G R H that satisfies Tefs(jui0) =  0
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Proof: I f  ju ia is not an eigenvalue of A , then (from theorem 4.3) the matrices p ( jix 0) and 

Ti(juJ0) are invertible, and the m atrix equation Tefs(jix0) =  0 can be solved for Q(ju>0) as 

follows:

Q(juJo) — 12 I \  i j^o )  I;i (joJo) — Qre 4" jQ im

where Qre and Qirn are n x p  matrices that represent the real and imaginary parts respectively.

Let Q(s) Bq '

_ c q Dq
; where Ag £ K*x /, Bq € Rfxp, Cq £ ■p nx£ and D a £ K "xp and where

£ is the order of Q(s). Then the problem of computing Q(s) £ RBCXl reduces to solving:

I)/ — d</) Bq +  Dq =  Qre +  jQ im  (d ■ 3)

for a stable Aq w ith a suitable order £, and for B q, Cq and Dq. By choosing £ =  n, Cq =  I n 

and Aq =  l j  , the problem in (A.3) reduces to:

B 0 i) +  Df )  =  Q&). i  =  1 , . . . , j  =  1 , . . . ,p

~~2 B q 3) =  G i m '  * =  1, • • ■ , j  =  1, • • • ,P
1 +  W;

(A.4)

(A.5)

where Bq^  and Dq^  are the elements in row i and column j  of the n x p  matrices B q and 

D q respectively. Equations (A.4) and (A.5) can be solved simultaneously for all the elements 

of Bq and D q. This completes the solution for Q(s) £ RH:XJ.

□

A .3  P ro o f o f  L em m a 5.1

The error dynamics of (5.3)-(5.9) as an observer for (5.1)-(5.2) (w ith f s =  0) is locally 

asymptotically stable and decoupled from the disturbance term d(t) if  conditions (5.10)- 

(5.16) are satisfied:

Proof: Using (5.3)-(5.9) as an observer for the system (5.1)-(5.2) (w ith f s =  0) and defining 

the error ez =  Tx — z and the state £ =  £ 2  — £ 1  we have (w ith the help of (5.10)-(5.12)):

ez =  T(Ax  +  T(u ,t) +  Ed) — w i —1x2 — TT(u,t) +  T ($ (x , u, t ) — $(£, u, t ))

=  TAx  -  (C f£ i +  D Fz) -  (Cx£ 2 +  D Fy) +  T($(x, u, t ) -  <$(£, u, t))

=  -  Cf £,i  ~  C x 6  -  [D p(Tx  -  ez) -  TAx  +  DLCx] +  T(<b(x, u, t ) -  $ ( £ , u, t ) )

=  CF(, + D Fez -  (D f T  - T A  +  D l C )x  +  T ($(x, u , t) -  $(£, u, t))
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But from (5.11)-(5.13) and (5.16): TA  -  D FT  =  D LC.

ez =  Cf € +  DFez.

For the state £ =  £ 2  — £1 , we have:

i  =  +  B l V  -  4 f£ i  -  B f z

=  2 +  BpCx — A f£ i — Bp(Tx -  ez)

=  AF£, +  BFez -  {BpT -  BhC)x

But from (5.11), (5.12), (5.14) and (5.15): B pT =  BpC.

i  — Ap£ +  Bpez.

Therefore, the observer error is equivalent to

i  =  A p f  +  Bpez 

ez =  CFt  +  DFez +  T4>

Ap Bp
And since is stable from (5.12) and <p is bounded from the Lipschitz condition,

CF D f

then the error dynamics is locally asymptotically stable according to the “perturbation anal­

ysis theorem” (Theorem 4.6.1 in [75]) and decoupled from d(t) and the proof is completed by 

noting that e =  x — x =  x — (z +  H y ) =  ( I  — H C )x — z =  ez. □

A .4  D erivation  o f  th e  R ob u st Error D yn am ics M od el

In  this section, we develop the error dynamics model (5.28)-(5.29). Similar to Appendix A.3, 

by assuming ez =  Tx  — 0  and the state £ =  £ 2  — £ 1 we have:

i  =  A ht2 +  Bpy -  Ap£i -  Bpz 

=  A l &  +  B L(Cx +  f s) -  A p t 1 -  BF(Tx -  ez) 

=  Ap£ +  Bpez -  (BpT  -  BpC)x +  B p fs 

=  Apf, +  Bpez +  B p fs
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and

ez — T(Ax  +  F(w, t) +  Ed) — w\ — w2 — TT(u, t) +  T(<b(x, u, t ) -  <$(£, u, t)) 

=  TAx  -  ( 0 £ i +  D Fz) -  (CL&  +  DLy) +  T ($ (s , u, t ) -  $ (* , u, t)) 

=  -  Cf £i -  CLZi -  [D f ( T x  -  ez) -  TAx +  D LCx +  DLf s] +  T {$(x, u, t) -  $(x, u, t))

=  CFZ +  D Fez -  (D FT  - T A  +  DLC) x +  T ($(x, u, t) -  $ (* , u, t)) -  D Lf s 

=  Cf Z +  D Fez +  T ($ (x , it, t) -  $(&, it,t) )  -  D Lf s 

Defining e =  x — x, we have ez =  Tx — (x — Hy) =  e +  / / / 5, and hence we get: 

e = C FZ +  DF (e +  H fs) +  T($(®, u, t ) -  $ (* ,« , t)) -  DL/ S -  /„

=  CfC +  Dpe +  (D pH  -  D L) fs +  r ($ (s , u, t ) -  * (» , « ,< ))-  fT /s 

=  CFZ +  Dpe -  DLi f s +  T (*(® ,it, t) -  $ (* , « ,* ) ) -  F / s

□

A .5  D erivation  o f  th e  M u ltira te  M od el

In  this section, we develop the model in (7.13). The expression for y s ( k ) in  (7.10) can be 

further reduced as:

y s ( k )  =  S P H fL - 1 U f ( k )

=  S A R P 'H f ir1 Uf{k) +  S M iH fL - 1 Ufik) 

=  (R L S fM iP 'H f)  IP 1 «/(&) +  (KLSf M 2H f ) L _ 1  «/(fc); by using (7.9).

=  R M i L S f P ' H f L ^ 1 U f ( k )  +  i ? M 2L S ' / i 7/ L - 1 u / ( f c ) ;

(since M j and M 2  are static matrices.)

=  T iM iL S /P '-fl/L T 1 U f ( k )  +  R M 2 U f ( k ) :  since S fH f =  I  (the identitiy operator).

C 0,'p n o.’p n L i^ IT 1 uf (k) + D  0  pm • ■ • 0 pm uf(k),

(by using (7.9) and (7.12).) 

where P  ̂is the step invariant transformation of P ' (i.e, Sj P 'I I j ) defined as Pd — '  A f B f '

. In Onm

w ith A f =  ehf A, and B f =  f£ f  eTAdrB.

■ ■ V s (k )  [ c  0 pn . . . Opn 5 jU /( * ) + [ l?  0pm Opm] M k)

The state space model (7.13) is then obtained by using (7.7) to get a representation for P'd.
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Simulation and Experim ental 

M odels

B . l  M od el M atrices o f  th e  Tank S ystem

-0.0084 - 0 . 0 0 1 2 0.0155 0.0280 0.0017 0.0028 - 0 . 0 0 2 2

-0.0046 -0.0352 -0.0227 0.0150 0.0082 -0.0016 0.0118

A = -0.0825 - 0 . 0 1 2 2 -0.0773 0.0661 0.3209 , B  = -0.1157 0.2819

-0.2105 0.0336 -0.0929 -0.3418 -0.1551 -0.2818 -0.1153

0.0388 -0.0754 -0.1532 0.0126 -0.1602 0.0552 -0.2418

-6.7795 -0.7974 0.0766 0.1585 0.0444 0 0.0090
C = , D =

-0.1862 19.2450 -0.4087 -0.0602 -0.3102 0 -0.0388

B .2  T h e R O T P E N  M odel

The system parameters are: l\ =  0.215 m, I2 =  0.335 m, m2 =  0.1246 Kg, fi =  0.135iVm/.s, 

fj, =  0 .2 0 6 5 N m /V , 6 2  =  0.0018KTp/s, g — 9.81m/s2, and J i =  0.0064 Kg.m2. W ith the state 

defined as x =  [x\ X 2 x.-j X 4 ]7 ' =  [0\ (rad) 0 2 (rad) 0t (rad/s) 02 (rad/s)]T, the state space model

133
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has the form x =  f (x )  +  g{x)u as follows (This model was derived in [72]):

x ■

x3

a?4

h3(x) 3A

h i{x) +

0

0
+ Inm2l2

3A
—p,m2hl2C2

L 2A J

where sk — s i n ( x k ) ,  C& =  c o s ( x k )  are used to simplify notation, and where:

m2^2 { - \9 h s 2 c 2  -  \h h x \s 2 (^  + h ,hx iC 2 /(m 2h ) + \h h x \s 2  -  \ l 2x 3XiS2C2) 
  2A

h3(x) ~  

hi{x) \ m 2 g h  (^ 2^1 + \ m 2 l 2 S 2  + Jl) S2 (1 T I2 I1 + \ m 2 l 2 S 2  + J l )  t>2X i

A A

+ \m 2l2 [rn2 l ‘i(x 3 -  xf)s2c2 +  +  ./] x|.s2c2 +  m2 l i l 2x3X4S2Ĉ ]
A

A =  m2l2 ( ^m 2l j  +  j^ m 2l2S2 +  5 -J i -  jm 2lfc?
1

3 ‘
1r

B .3  M od els and P aram eters for E xp erim ent A

Linear model parameters :

0 0 1 0 0

0 0 0 1 0
A = ; B =

0 -25.14 -17.22 0 . 2 2 1 0 26.3370

0 68.13 16.57 -0.599 -25.3596

Control parameters:

F  =  -2.5207 -35.9896 -2.4878 -3.4189 ; P =  -2.5207

Reduced-order model fo r  observer design (x — \6 2 Q\ Q2Y ) ■

0 0 1 0

x  — -25.14 -17.22 0 . 2 2 1 0 a; + 26.3370

68.13 16.57 -0.599 -25.3596

v = 1 0  0 ] X

Luenberger observer:

L i =  [9 2 . 2  95.7 1643.9]
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Linear dynamic observer fo r  sensor bias : (Ki )

93 0 0 0 0 -103

11850 -150 0 0 0 11850

Al i = 20836 0 - 2 0 0 0 0 , B i  i  = -20836

0 0 0 - 1 0 0

0 0 0 0 - 1 0

-197 0 1 0  0 207

Cl i = -10280 133 0 0  0 > D u  = 10255

-22713 17 199 0  0 22781

Linear dynamic observer fo r  low frequencies : (K 2 , obtained for a =  0 .1 , b 

0 .0 0 1 , p =  1 , 7  =  1 0 )

A l2

10.6178 10.6118 0.0049 -0.0349 ■ -47.5

-34.9216 -63.2524 -2.9453 -3.3428
, B l 2 =

155.9

34.1085 6.0292 -17.5710 -0.3241 -152.6

-240.9994 -177.2030 16.0249 -0.9341 1077.7

0.0126 6.3495 0.6567 0.9843 0

0.0013 0.6567 0.0803 0.1090 > D l2 = 0

0 . 0 0 2 0 0.9843 0.1090 0.1661 0

C l2

B .4  M odels and P aram eters for E xp erim en t B

Luenberger observer with small gain :

L z ~ s m a l l  —

5.9207 -7.4414 -13.0209 -9.9019

-1.5356 21.6603 -7.2493 108.1343

High-gain Luenberger observer:

L z —la r g e  —  1 6

0.0716  0.0070  0.1432  - 0.5022 

0.0203 0.2206 1.4312 4.4841
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Dynamic Lipschitz observer : (K 3 , obtained for a =  44.45, e =  j i  =  0.00048828)

136

-0.3428 0 0 0 0.138 0

0 -0.3428 0 0 0 0.138
Am  = 1 0 4 , b l 3  =  1 0 4

-6.2073 0 -0.2048 0 6.2072 0

0 -6.2073 0 -0.2048 0 6.2072

2.048 0 0.0005 0 0 0

0 2.048 0 0.0005 0 0
, d l 3 =

0.0005 0 2.0480 0 0

0 0.0005 0 2.0485 0 0

Cm = 1 0 d

Nonlinear “normal fo rm ” Controller :

By considering y =  x2 , and using the nonlinear model of the ROTPEN in Appendix 

B.2, the following coordinate transformation:

V £ 2

6 X 4

m X I

X 3  f li c 2)  + X 4 |

is used to put the system in the so-called normal or tracking form  [74], that is:

6 ’ 6

£ 2 U (x) +  9 a { x ) u

m X 3

A _-h.x3x 4 s2 +  y c2/3(x) +  y/4(x)_

and using the control law:

u =
9i{x)

-9 x 2 -  6 x 4  -  / 4 (x)]

where f ^ { x )  and <Ja ( x ) denote the 4th elements of /(x )  and g(x) in Appendix B.2 respectively. 

The subsystem (£1 , £2) is then stabilized. I t  is important to note that the the zero dynamics 

in this case, i.e the subsystem (rji, iff) is unstable, and therefore the motor angle is not 

guaranteed to converge to the reference input.

Static Lipschitz observer : (obtained for a =  1 , s =  0.5)

r  - 1  t

1.7108 -2.1247 1.9837 -5.4019
L 5 =

1.7108

0.4338

-2.1247 1.9837 

-0.2089 1.1030

-5.4019

-2.8972
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B .5  M od els and P aram eters for E xp erim ent C

LQR control scheme with integrator :

U — -  K i g r  x + K i ( a “re fC D  it .measured'
' ) •

K i=  -  2.6310,

K egr=  [-4.4721 -63.9745 -5.2972 -9.2556

obtained using the MATLAB command

[Keqr] =  LQ R (A ,B ,Q ,R ),

Q =  drag (300,1000,150,50),

R =  15.

Lipschitz reduced-order model fo r  observer design (x =  [ 0 2  (h\r ) '■

0 0 1 0

X  = -25.14 -17.22 0 . 2 2 1 0 x +

68.13 16.57 -0.599 fa  (x,u)

1 0  0

Lipschitz dynamic observer fo r  sensor bias : (K q, obtained for A =  10

A l6 =

-12 0 .

-175.7353 3.8503 0.1710 -30.6336 5.0462

16.8182 -171.9539 26.7652 32.1257
> BL6 —

-44.8932

35.1361 16.5360 -97.3465 114.1349 -75.4539

-87.9041 25.7568 62.1442 -87.8099 106.5497

C l6  =

167.6750 -5.0531

-7.1899 155.5373

5.3053

-8.5208 42.0138

-42.6804 -11.1441

18.7128 -120.8293 171.1055

L>L6 =
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Lipschitz dynamic observer fo r  fau lt o f 2 rad/sec : (Kj ,  obtained for A =  10~12, e — 0.1)

-816.9997 -12.5050 -51.0842 -64.0861 31.8003 9.2096

23.8482 -772.7024 149.1621 122.7602 -75.3718 -73.6540

A n  = -3.0714 139.9543 -412.1421 361.2027 -176.7926 , B n -80.3861

-193.3011 128.2831 346.2370 -405.3024 201.2094 177.6628

71.5547 -47.7237 -104.0209 129.8922 -64.7247 -67.4227

809.4037 11.3091 28.1928 88.3295 -43.7581 0

Cl7 = -13.1309 758.2718 -276.6110 4.7255 12.0717 D n  = 0

-15.9908 -176.8554 -509.7118 587.8999 - -294.7496 0

Lipschitz dynamic observer fo r  low frequencies : (K$, obtained for A =  10 12, e =  0.1)

-217.7814 1.8898 -4.8573 -38.2385 -30.2950

-1.5288 -185.0261 38.1186 36.8585

£ 00 II

26.3896

108.5437 28.4810 -87.0920 135.1710 147.7784

-618.9648 28.9348 82.1016 -164.6086 -637.5223

-184.6168 3.4213 1.8716 -51.2266 0

C l8 = 6.5728 -171.5615 49.1851 16.3542 , D ls = 0

-4.3022 15.0586 114.2413 -224.5769 0
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