
Reinforcement Learning for  

Optimization and Control  

of Ultracold Quantum Gas  

Production 

by 

       Nicholas Milson  

  

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

Department of Physics 

University of Alberta 

  

© Nicholas Milson, 2024



ii

Abstract

Machine-learning techniques are emerging as a valuable tool in experimental physics,

and among them, reinforcement learning offers the potential to control high-dimensional,

multistage processes in the presence of fluctuating environments.

In this experimental work, we apply reinforcement learning to the preparation of an ul-

tracold quantum gas to realize a consistent and large number of atoms at microkelvin temper-

atures. This reinforcement learning agent determines an optimal set of thirty control paramet-

ers in a dynamically changing environment that is characterized by thirty sensed parameters.

By comparing this method to that of training supervised–learning regression models, as well

as to human-driven control schemes, we find that both machine learning approaches accur-

ately predict the number of cooled atoms and both result in occasional superhuman control

schemes. However, only the reinforcement learning method achieves consistent outcomes,

even in the presence of a dynamic environment.

This thesis provides a comprehensive overview of the theoretical groundwork necessary

for understanding the experimental sequence and machine learning techniques employed.

Technical details of the cooling apparatus and machine learning agents are presented, along

with the results of allowing the trained machine learning agents to autonomously control the

cooling sequence.



iii

Preface

The contributions to the work presented in this thesis are as follows.

The atom cooling apparatus was designed by Dr. Lindsay LeBlanc. It was constructed

and subsequently modified over the years by many people, including Dr. Lindsay LeBlanc,

Dr. Erhan Saglamyurek, Dr. Andrei Tretiakov, Dr. Arina Tashchilina, Dr. Logan Cooke, Greg

Popowich, Taras Hrushevskyi, Benjamin Smith, Joseph Lindon, Manvir Gill, and myself.

The environmental parameter sensing hardware was built by Tian Ooi, Anna Czarnecka,

James Maldaner, and myself. Environmental parameter post processing software and integra-

tion with the machine learning agents was done by Tian Ooi and myself.

Design, programming, and integration with the system of the machine learning methods

were done by myself, with fruitful consultation and discussion with Dr. Arina Tashchilina,

Zaheen Ahmad, and Abilmansur Zhumabekov. Data for the machine learning agents was

collected by Dr. Arina Tashchilina, Tian Ooi, and myself.

Subsequent modifications and repairs to the system, based on conclusions from this thesis

work, were done by Dr. Arina Tashchilina, Manvir Gill, and myself.

The results of themachine learning algorithms, serving both as predictive tools and for real-

time control of atom cooling, are presented in the publication NMilson et al 2023Mach. Learn.:
Sci. Technol. 4 045057. Sections of figures and text from this article have been incorporated into

this thesis, subject to varying degrees of modification for contextual relevance and coherence



iv

Acknowledgements

I would like to express my gratitude to all of the members of my research group for their

patience, support, and friendship.

I extend special thanks tomy supervisor Dr. Lindsay LeBlanc, postdoctoral fellowDr. Arina

Tashchilina, and senior graduate students Dr. Logan Cooke and Joey Lindon. Their guidance

has been invaluable in helping me navigate the challenges of graduate school and adapt to this

new academic environment. I have learned a lot from these role models about how a scientist

ought to operate, and I feel that with the conclusion of this Master’s work and the beginning

of my Ph.D. candidacy, my work as an experimental physicist is just getting started, and I am

primed to embark on some new and productive scientific endeavours.

I would also like to thank Anindya Rastogi, Anna Czarnecka, Kusum Meena, and Tian Ooi

who frequently worked alongside me in the lab, for always being willing to chat and share a

laugh, which made work more fun than the hours in between.

Lastly, I would like to acknowledgemy parents, Susan and Rob, for supportingmy interests

from day one, and my girlfriend Cali for her extreme patience as I strive towards competency

as an independent scientist.



v

Contents

Abstract ii

Preface iii

Acknowledgements iv

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background Considerations: Machine Learning 4
2.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Calculation of Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Policies and Actor-Critics . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Nelder–Mead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background Considerations: Atom Cooling 15
3.1 Magneto-Optical Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Optical Molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Magnetic Field Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Sub-Doppler Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Magnetic Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Experimental Design 21
4.1 Atom Cooling Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Cooling Sequence Overview . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Laser System Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



Contents vi

4.1.3 Magnetic Field Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.4 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Estimating Atom Number From TOF Images . . . . . . . . . . . . . . . . . . . 29

4.3 Environmental Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Agent Design 35
5.1 Supervised–Regression–Based Agent . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Reinforcement Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Parameter Importance Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Results 47
6.1 Supervised–regression–based Agent Performance . . . . . . . . . . . . . . . . 47

6.2 Reinforcement-Learning-Based Agent Performance . . . . . . . . . . . . . . . 49

7 Discussion 52

References 55



vii

List of Tables

4.1 Agent controllable parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Monitored environmental parameters . . . . . . . . . . . . . . . . . . . . . . . 31



viii

List of Figures

2.1 Structure of a neural network’s linear transforming layer . . . . . . . . . . . . 7

2.2 Diagrammatic representation of a Markov decision process . . . . . . . . . . . 8

3.1 Magneto-optical trap conceptual diagram . . . . . . . . . . . . . . . . . . . . . 17

3.2 87Rb transition probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 System schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Marked Transitions on D2 Line . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Laser beam control flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Vacuum system schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Sample TOF images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Sample measured current signal . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Laser monitoring detector scheme . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Supervised learning model sample training curve . . . . . . . . . . . . . . . . 39

5.2 Regression–based agent schematic diagram . . . . . . . . . . . . . . . . . . . . 40

5.3 Actor-critic agent schematic diagram . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 RL agent exploding gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Supervised learning model predictive results . . . . . . . . . . . . . . . . . . . 48

6.2 Importance of environmental parameters . . . . . . . . . . . . . . . . . . . . . 49

6.3 Machine learning live-control performance . . . . . . . . . . . . . . . . . . . . 51



1

Chapter 1

Introduction

As a general tool, machine learning (ML) offers remarkable advantages in far-reaching do-

mains, ranging from large-language models to control-systems instrumentation. In the realm

of scientific research, ML promises to improve the design, control, and optimization of ex-

perimental processes, particularly when these procedures are high-dimensional, when uncon-

trolled environmental factors affect outcomes, and when systematic optimization is implaus-

ible, leaving only intuition or trial and error [1]. The production of cold, dense ensembles of

neutral atoms for Bose-Einstein condensates (BECs), for example, involvesmany detailed steps,

each with several free parameters [2]. While experimentalists have risen to the challenge to

create systems that consistently result in BECs, applications ofML to optimizemagneto-optical

traps [3, 4], evaporation curves [5–9], and simultaneous laser and evaporative cooling [10, 11]

show the potential for creating greater reliability for these systems.

These impressive results in atom-cooling applications are examples of supervised ML, in

which a model learns from labeled examples, aiming to predict or classify new instances of

the same problem based on prior training. Outside of atom-cooling applications, supervised

machine learning has been used successfully in many areas of physics, such as searches for

exotic particles in high-energy physics [12], predictions of eigenvalues in photonic crystals

[13], determination of transitions between many-body localized and thermalizing regimes in

many-body quantum systems [14], and even reconstructions of the Cosmic Microwave Back-

ground [15]. So far, the supervised learning atom-cooling approaches have used Gaussian pro-

cesses [16] or deep neural networks [17] to apply a ML regression model (sometimes known

as a surrogate function), and then have used the trained model to find experimental control

inputs that maximize the predicted output. These methods to find efficient cooling schemes

demonstrated superior performance compared to human optimization and direct numerical

optimization techniques, such as differential evolution [5]. However, in scenarios where op-

timal control parameters depend on changing environmental conditions, these approaches

are inadequate. A direct maximization via Bayesian optimization [18] is unsuited, as the ob-

jective function varies with the environment. Furthermore, modeling the output metric as a



Introduction 2

function of controllable and environmental factors and optimizing the model alone is likely

insufficient, as previous investigations that only considered the controllable factors failed to

yield consistent superhuman control parameter choices [3, 10]. Robustness of the found ex-

perimental control inputs is now also a consideration, as the usefulness of finding a single

high-performing set is now highly dependent on how strongly the performance of this set

changes with the dynamic environment.

Beyond the scope of supervised ML, machine learning also includes two more general ap-

proaches: unsupervised ML and reinforcement learning (RL). Unsupervised ML deals with

finding patterns and structures in unlabeled data, through techniques such as clustering and

dimensionality reduction. Some example use-cases for unsupervised learning in physics are

the detection of both quantum and classical phase transitions [19–22], as well as generative

models for complex physical systems [23, 24]. RL, on the other hand, represents a class of prob-

lems where an agent interacts with an environment, learning to make sequential decisions to

maximize cumulative rewards. While still a young subfield in physics, the power of reinforce-

ment learning has been demonstrated in the control of noisy andmany-body quantum systems

[25–30], control of nuclear fusion apparatuses [31], optimal design of molecules for different

chemical applications [32], experimental control and navigation in stochastic turbulent envir-

onments such as micro-sphere carrying optical tweezers [33] and microorganism simulating

artificial nano-swimmers [34]. Despite this recent wave of RL successes, live, autonomous op-

timization and control of atom-cooling apparatuses with RL remains largely unexplored, par-

ticularly in the context of high-dimensional control–parameter and environmental-parameter

spaces.

In this thesis work, we optimize a rubidium-87 atom cooling experiment using ML ap-

proaches that consider the environment the apparatus is in. We focus our work on the cru-

cial initial production stages of a BEC, including laser cooling and trapping, up to a high-

field-gradient magnetic trap (MT) [35, 36]. Our high-dimensional ML schemes include thirty

measured environmental parameters, sensed at specific times throughout the experimental

sequence, in addition to thirty control parameters that are subject to ML optimization. We

develop an RL controller that determines optimal control parameters based on the current en-

vironmental conditions, and find that the overall atom number achieved exceeds that of all

other methods. We specifically compare this RL controller to a supervised regression model

that maps the combined input space of control parameters and sensed environmental paramet-

ers to the number of atoms in the trap, and uses the model to find optimal control parameters

that maximize atom number for a given environmental state. Our results show that RL of-

fers unique advantages to experimental control in high-dimensional systems, especially for its

ability to react to drifts in the environmental conditions that have influence over the outcomes



Introduction 3

Chapter 2 introduces the theory behind the machine learning methods used in this thesis.

Broadly, supervised learning, reinforcement learning, and function optimization are described.

Chapter 3 introduces the physics of the atom cooling techniques used in this thesis. The

principles of magneto-optical trapping, motion induced orientation sub-Doppler cooling, and

magnetic trapping are specifically described.

Chapter 4 presents a detailed description of the experimental system used in this thesis.

The cooling apparatus is described, including the laser, vacuum, and magnetic field controlling

systems. Furthermore, the aspects of the cooling system which the machine learning methods

are given control of are described. The estimation of atom number, as well as sensing and

processing of environmental factors are also described.

Chapter 5 details the design of the two artificially intelligent agents used in this thesis.

Both agents are built to optimize the number of atoms following the cooling procedure in

response to environmental changes, but the philosophy of the two agents are fundamentally

different. The first is built upon the optimization of a supervised learning model, whereas the

other is a reinforcement learning agent trained explicitly to learn a probabilistic policy. In this

section, an algorithm to use the models to determine the relative importance of environmental

factors is also described.

Chapter 6 presents the results of deploying both agents. The predictive capabilities are

tested, as well as the capability to generate control parameter sets resulting in large atom num-

ber, in response to environmental changes. The live control performance is contrasted with

other baselines to demonstrate the suitability of the two agents for use in such apparatuses.

Chapter 7 summarizes the work done in this thesis, and presents a retrospective on the

aspects of this work that may be considered relative successes and failures. Lastly, realistic

extensions to this work are given, both in general as well as specifically for our laboratory.



4

Chapter 2

Background Considerations: Machine Learn-

ing

This chapter seeks to introduce the theory behind the machine learning numerics used in

this work, with physicists as an intended audience. This chapter is organized as follows: first,

machine learning as a field is broadly described and categorized. The areas ofmachine learning

applied in this thesis, namely supervised and reinforcement learning, are then described in

more detail. For supervised learning, neural networks as universal function approximators are

described, along with the mechanism of how they are trained. Within reinforcement learning,

policy gradientmethods are themain focus, specifically actor-critic methods. Themechanisms

and intuitions behind training such actor-critics are described. Lastly, twomethods to optimize

the output of neural networkmodels are described. Specifically, the Nelder–Meadmethod, and

the method of Bayesian optimization with Gaussian processes.

2.1 What is Machine Learning?

Machine learning is the field concerned with the development of algorithms to learn from

data automatically, i.e. without explicit programming. Instead of following rigid, rule-based

instructions, machine learning models adapt and improve their performance by learning from

experience.

The field of machine learning may be conceptualized as dividing into three subcategories:

supervisedmachine learning, unsupervisedmachine learning, and reinforcement learning. Su-

pervisedmachine learning is an approach where a model learns from labeled examples, aiming

to predict or classify new instances based on prior training. Unsupervised machine learning,

on the other hand, deals with finding patterns and structures in unlabeled data, through tech-

niques such as clustering and dimensionality reduction. Lastly, reinforcement learning rep-

resents a class of problem where an agent interacts with an environment, learning to make

sequential decisions to maximize cumulative rewards. The content of this thesis will make use



Supervised Learning 5

of supervised and reinforcement learning.

2.2 Supervised Learning
Supervised learning is the subfield concerned with building models to map input data to de-

sired output labels by using a labeled dataset. This can be symbolically formulated in the

following way. Given a dataset 𝐷 = (X,Y), where X is a matrix of input variables and Y is a

matrix of output variables, some model f(x; 𝜃𝜃𝜃) maps a given input vector x to output vector

y via a set of adjustable parameters 𝜃𝜃𝜃. A loss function 𝐿(Y, f(X; 𝜃𝜃𝜃)), sometimes analogously

called a cost function, is then defined to evaluate the quality of the model, so that the optimal

model parameters can be found by minimizing said loss function, i.e.

𝜃𝜃𝜃∗ = argmin𝜃𝜃𝜃 {𝐿(Y, f(X; 𝜃𝜃𝜃))} . (2.1)

A default choice of loss function is the sum-of-squared residuals.

A key challenge in supervised learning is finding a balance between “training” a model

that can make an accurate mapping and ensuring that it does not overfit, meaning it becomes

too specialized in fitting the training data, resulting in poor generalization to out-of-sample

data. This challenge is often addressed by splitting the dataset into two subsets: a training

set and an evaluation set, where the evaluation set is withheld during training and used to

evaluate the models performance on out-of-sample data.

2.2.1 Neural Networks

An artificial neural network, or simply a neural network, is a powerful model often used for

f(X; 𝜃𝜃𝜃) [37]. In essence, neural networks consist of a series of interconnected layers, each

comprising linear transformations and non-linear functions known as activation functions. A

given layer 𝑖, being a linear transformation, consists of a matrix of slopes or “weights”W(𝑖) =(w(𝑖)1 ,w(𝑖)2 , ...,w(𝑖)𝑑 ), and a vector of intercepts or “biases” b(𝑖) = (𝑏(𝑖)1 , 𝑏(𝑖)2 , ..., 𝑏(𝑖)𝑑 ), such that a

layer accepts an input vector x(𝑖) and outputs

z(𝑖) = W(𝑖)x(𝑖) + b(𝑖) . (2.2)

This output vector is then passed through the activation function, which may then be used as

the input for subsequent layers. i.e.

x(𝑖+1) = 𝜎(𝑖)(z(𝑖)) . (2.3)

The layers situated between the initial input and the final output layers are referred to as

“hidden” layers. When a neural network comprises multiple hidden layers, it is termed a “deep”



Supervised Learning 6

neural network.

The power of neural networks lies in their ability to approximate complex functions ef-

fectively. This ability is described by the universal approximation theorem, which asserts

that a deep neural network with a sufficient number of learnable weights can approximate

any continuous function with arbitrary accuracy. A complete graphical proof of the universal

approximation theorem may be found in [38].

2.2.2 Calculation of Gradients

The training of neural networks is the iterative process of finding a set of optimal network

parameters, i.e. weights and biases 𝜃𝜃𝜃∗ = (W, b), that satisfy equation 2.1. With a given loss

function specified, gradient descent-based algorithms may be used to minimize said loss func-

tion. While different gradient descent-based algorithms may vary in sophistication, including

elements of stochasticity and dynamical adjustment, the basic algorithm is

𝜃𝜃𝜃𝑡+1 = 𝜃𝜃𝜃𝑡 − 𝜂𝑡∇𝜃∇𝜃∇𝜃𝐿(Y, f(X; 𝜃𝜃𝜃)) , (2.4)

where the coefficient 𝜂𝑡 is known as the learning rate at iteration 𝑡, which controls the step

size taken in the direction of the gradient.

Directly estimating gradients of the loss function with respect to all parameters at each

training iteration using brute force numerical methods would be computationally impractical.

However, we can leverage the hierarchical architecture of neural networks by using the back-

propagation algorithm [39]. For a neural network with layer number indexed by 𝑖, each layer

containing a weight matrix with elements 𝑤(𝑖)𝑗𝑘 , and bias vector with elements 𝑏(𝑖)𝑗 , we wish to

determine 𝜕𝐿(Y,f(X;𝜃𝜃𝜃))𝜕𝑤(𝑖)𝑘𝑗 and 𝜕𝐿(Y,f(X;𝜃𝜃𝜃))𝜕𝑏(𝑖)𝑗 . See figure 2.1 for a graphical representation of how the

weights and biases of the network are indexed. Using the chain rule, we can write the change

in the cost function with respect to the output of a given layer’s linear transformation as the

derivatives of the subsequent layer:

𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖)𝑗 = ∑𝑘 𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖+1)𝑘
𝜕𝑧(𝑖+1)𝑘𝜕𝑧(𝑖)𝑗 (2.5)

= ∑𝑘 𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖+1)𝑘 𝑤𝑖+1𝑗𝑘 𝜕𝜎(𝑖)𝜕𝑧(𝑖)𝑗 , (2.6)

where the derivatives of activation functions 𝜎(𝑖)(z(𝑖)) are known analytically.



Reinforcement Learning 7

… …

…

…

…

…

Figure 2.1: Structure of a neural network’s linear transforming layer z(𝑖) = W(𝑖)x(𝑖) + b(𝑖). Index 𝑖
notates the layer number. Indices 𝑘 and 𝑗 respectively notate the input and output vector elements.

With equation 2.6, all one needs to notice is that the derivatives with respect to biases are

𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑏(𝑖)𝑗 = 𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖)𝑗
𝜕𝑧(𝑖)𝑗𝜕𝑏(𝑖)𝑗 = 𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖)𝑗 , (2.7)

and the derivatives with respect to weights are

𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑤(𝑖)𝑗𝑘 = 𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖)𝑗
𝜕𝑧(𝑖)𝑗𝜕𝑤(𝑖)𝑗𝑘 = 𝜕𝐿(Y, f(X; 𝜃𝜃𝜃))𝜕𝑧(𝑖)𝑗 𝑥(𝑖−1)𝑘 . (2.8)

Putting these three equations together, the backpropagation algorithm works by first feeding

forward through the network, starting with x(1) and calculating all subsequent z(𝑖) and x(𝑖+1).
Also, the very last layer’s derivative must be calculated. From here, propagate the layers’

derivatives backwards using equation 2.6, therefore determining the desired derivatives via

equations 2.7 and 2.8.

2.3 Reinforcement Learning
Reinforcement learning tackles the problem of sequential decision making within a Markov

decision process (MDP) framework [40, 41]. An MDP may be described by five key compon-



Reinforcement Learning 8

Figure 2.2: Diagrammatic representation of an RL agent operating in an MDP framework.

ents: an agent, an environment, a state, an action, and a reward. The agent is the artificially

intelligent entity responsible for making decisions. The environment represents the external

system or context in which the agent operates. The set of quantitative representations of the

environment, denoted S, are known as states, such that the current situation or configuration

of the environment at a given time 𝑡 is the state 𝑆𝑡 ∈ S. In response to a given state, the agent

may choose an action 𝐴𝑡 ∈ A, whereA is the set of all possible actions. After taking action 𝐴𝑡,
the environment is represented by state 𝑆𝑡+1 ∈ S. For choosing action 𝐴𝑡 in response to state𝑆𝑡, the agent is given a reward 𝑅𝑡+1 ∈ R where R is the set of possible rewards. The tuple

comprising the current state, the chosen action, and the resulting state and reward make up

what is known as an experience 𝑒𝑡 = (𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1, 𝑅𝑡+1). This typical RL sequence is depicted

in figure 2.2.

Generally speaking, in an MDP, an action 𝐴𝑡 taken influences not just the resulting reward𝑅𝑡+1 but also the subsequent state 𝑆𝑡+1. A fully deterministic, pedagogical example is a chess

playing agent taking an action to move a piece, therefore changing the state of the board.

More generally, where the environmental state changes in ways both related and unrelated

to the actions being taken, the transition to a given state and receiving a given reward has

some conditional probability distribution 𝑝(𝑆𝑡+1, 𝑅𝑡+1|𝑆𝑡, 𝐴𝑡). An intelligent agent will not

just attempt to maximize the next reward, but the long term cumulative reward 𝐺𝑡. To avoid

dealing with diverging series, RL agents often are made to maximize a discounted cumulative

reward

𝐺𝑡 = ∑𝑗 𝛾𝑗𝑅𝑡+1+𝑗 , (2.9)

where 𝛾 is a hyperparameter known as the discount factor.



Reinforcement Learning 9

Situations where the environment is full decoupled from the actions taken are known as

contextual bandits [42]. In such cases

𝑝(𝑆𝑡+1, 𝑅𝑡+1|𝑆𝑡, 𝐴𝑡) = 𝑝(𝑆𝑡+1|𝑆𝑡)𝑝(𝑅𝑡+1|𝑆𝑡, 𝐴𝑡) . (2.10)

Furthermore, agents need not worry about maximizing cumulative rewards, which is equi-

valent to stating 𝛾 = 0. An agent’s experience tuple is now sufficiently described by 𝑒𝑡 =(𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1).
2.3.1 Policies and Actor-Critics

An agent’s action taking strategy may be formalized as a policy. There are many different

algorithms and frameworks which inform how the policy is learned. One common family of

approaches to RL is to directly optimize the policy. These approaches are known as policy

gradient methods. Instead of estimating the value of taking specific actions in certain states

(as in so-called value-based methods), policy gradient methods focus on learning a paramet-

erized policy that maximizes the expected cumulative reward. Polices are often written as

conditional probabilities 𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝜃𝜃), which should be understood to mean the probability that

taking action 𝐴𝑡 is optimal, given current state 𝑆𝑡 and a policy parameterized by 𝜃𝜃𝜃.
Policies can be defined in various ways, but as long as it is possible to calculate gradients

with respect to their parameters, we can use gradient descent methods to optimize a perform-

ance metric denoted as 𝐽(𝜃𝜃𝜃). This flexibility allows us to use powerful function approxim-

ators, such as neural networks, to represent policies. Neural networks can naturally handle

continuous action spaces and even learn stochastic policies, which involve making probab-

ilistic decisions. This stochasticity is essential for balancing exploration and exploitation in

reinforcement learning tasks.

In some policy gradient methods, the agent aims to not only learn a policy but also estimate

the expected cumulative reward that the policy generates, known as the value function. This

leads us to the concept of actor-critic methods. Actor-critic architectures involve two compon-

ents: an actor, responsible for learning and improving the policy, and a critic, responsible for

estimating the value function. The value function, denoted as 𝑣𝜋(𝑆𝑡), represents the expected

cumulative reward when starting in state 𝑆𝑡 and following policy 𝜋. It is formally defined by

the equation: 𝑣𝜋(𝑆𝑡) = 𝔼𝜋[𝐺𝑡|𝑆𝑡] (2.11)

where 𝔼𝜋[⋅] is the expected value following a policy 𝜋.
Learning the parameters of the policy involves iterative updates, typically using a gradient

descent optimization approach, with the goal of maximizing the value function as a measure

of performance. The policy gradient theorem provides a way to calculate the gradients of

the performance metric with respect to the policy parameters [43]. This result simplifies the



Optimization Algorithms 10

update rule for the policy parameters, making it computationally feasible. A detailed proof of

the policy gradient theorem may be found in [41], but the result conventionally states that

∇𝜃𝐽(𝜃𝜃𝜃𝑡) = 𝔼𝜋[𝐺𝑡∇𝜃 ln(𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝜃𝜃𝑡))] . (2.12)

There are many algorithms that use this powerful result. For actor-critic methods, we may

use our critic’s value function to provide feedback on the expected cumulative reward 𝐺𝑡 in
equation 2.12, as the value function is being learned simultaneously with the policy anyway.

The value function estimate, i.e. the critic, we may notate as ̃𝑣𝜋(𝑆𝑡,𝜙𝜙𝜙𝑡), where 𝜙𝜙𝜙 are the critic

learnable parameters. The critic is intuitively updated as

𝜙𝜙𝜙𝑡+1 = 𝜙𝜙𝜙𝑡 + 𝜈𝑡𝛿𝑡∇𝜙 ̃𝑣𝜋(𝑆𝑡,𝜙𝜙𝜙𝑡) , (2.13)

where 𝜈𝑡 is the critic’s learning rate, and

𝛿𝑡 = 𝑅𝑡+1 + 𝛾 ̃𝑣𝜋(𝑆𝑡+1,𝜙𝜙𝜙𝑡) − ̃𝑣𝜋(𝑆𝑡,𝜙𝜙𝜙𝑡) . (2.14)

𝛿𝑡 is known as the temporal difference error, and it essentially measures the difference between

the predicted value (based on the agent’s current knowledge) and the actual received reward,

so we therefore update the critic’s weights depending on how off it’s prediction was, and in

what direction. The actor is similarly therefore updated as

𝜃𝜃𝜃𝑡+1 = 𝜃𝜃𝜃𝑡 + 𝜂𝑡𝛿𝑡∇𝜃 ln(𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝜃𝜃𝑡)) , (2.15)

changing the policy to make a given action more or less probable depending if outcomes were

better or worse than expected.

2.4 Optimization Algorithms

When optimizing the weights and biases of neural networks, whether for supervised learn-

ing tasks or for reinforcement learning purposes, the go-to optimization method is gradient

descent. More complex optimization techniques exist, but they often become computationally

infeasible when dealing with the substantial size and complexity of neural networks used in

modern problems. Gradient descent, with its simplicity and efficiency, remains realistically the

most reliable choice for efficiently updating network parameters and achieving convergence

in training [17].

Once a neural network is trained, another area of interest arises: finding the inputs that

either maximize or minimize the network’s outputs, as undertaken in this thesis work. For

these types of problems, the dimension of optimization is significantly lower, typically on the

order of 10, as opposed to the tens of thousands to millions often encountered during network



Optimization Algorithms 11

training. In such cases, more sophisticated and faster optimization methods come into play.

In this work, we highlight two methods used to find optimal inputs for our neural network

models: the Nelder–Mead method [44, 45] and Bayesian optimization [46, 47]

2.4.1 Nelder–Mead

The Nelder–Mead method, sometimes called the downhill simplex method, is a versatile and

intuitive optimization technique. It is particularly well–suited for scenarios where the dimen-

sion of the optimization space is relatively small, making it an ideal choice for finding optimal

inputs to neural network models in various applications.

The Nelder–Mead method operates by forming a simplex, which is a geometric shape con-

sisting of 𝑑 + 1 vertices, 𝑑 being the input dimension of the function being optimized. It is a

triangle in two dimensions, tetrahedron in three dimensions, and so on, within the optimiza-

tion space. This simplex evolves iteratively by modifying its vertices in response to function

evaluations. The key idea is to adapt the shape of the simplex based on the function values at

its vertices, ultimately converging towards the optimal solution.

The algorithm starts by building the simplexwith 𝑑+1 randomly chosen points (x1,x2, ...,x𝑑+1).
The function is evaulauted at each simplex point, and the resulting tuple (𝑓(x1), 𝑓(x2), ..., 𝑓(x𝑑+1))
is sorted from largest to smallest for maximization problems, or visa-versa for minimization.

The worst point x𝑤 is taken and “reflected” through the centroid C connecting the remaining

better points, computed as

C = 1𝑑 ∑𝑖≠𝑤x𝑖 . (2.16)

The reflected point has coordinate

x𝑟 = C + 𝛼(C − x𝑤) , (2.17)

where 𝛼 is a hyperparameter of the optimization.

The function is then evaluated at the reflected point, and if it is better than at least one of

function evaluations at the original vertices, but not better than every single one the original

vertices, then the reflected point is accepted and becomes the newest vertex.

If the reflected point is better than all of the original vertices, then the algorithm knows it

is going in the correct direction, and the reflected point is “expanded” further to coordinate

x𝑒 = C + 𝛾(C − x𝑤) , (2.18)

where 𝛾 > 𝛼. If this expanded reflection beats the original reflection, then the expanded

coordinate x𝑒 is taken as the new vertex, otherwise x𝑟 is taken.
If though that the reflected point is not better than a single one of the original vertices,



Optimization Algorithms 12

then two “contracted” reflections are tried, given by coordinates

x𝑐𝑖 = C + 𝛽(C − x𝑤) (2.19)

x𝑐𝑜 = C + 𝛽(C − x𝑟) . (2.20)

𝛽 < 𝛼 is chosen such that x𝑐𝑖 lies inside the original simplex, while x𝑐𝑜 lies outside it. If the

function at either of these contracted points beats 𝑓(x𝑤) , the best performing one is chosen

as the new vertex. If both contracted points fail to beat our worst performer, then the simplex

is “shrunk” inwards towards the best original vertex x𝑏, so all points (aside from x𝑏) become

x′𝑗 = x𝑏 − 𝛿(x𝑗 − x𝑏) (2.21)

where 𝛿 is another hyperparameter.

After one of the operations (reflect, expand, inside/outside contract, or shrink) is applied,

the process repeats with the new simplex until a convergence criterion is sufficiently achieved.

One of the Nelder–Mead method’s strengths is its simplicity and ability to handle non-

smooth and non-convex objective functions. It is particularly useful for solving optimization

problemswhere the objective function is not easily differentiable or lacks a closed-form expres-

sion. This method is well-suited for black-box optimization scenarios like finding the inputs

to a neural network that maximize or minimize its output.

2.4.2 Bayesian Optimization

Bayesian optimization is a global optimization method within a class of methods known as

surrogate methods. In this family of optimization techniques, surrogate models are construc-

ted to approximate the true objective function, allowing for optimization in situations where

direct evaluations of the objective function may be computationally expensive.

The distinctive feature of Bayesian optimization lies in its approach to constructing a prob-

abilistic surrogate model, based in Bayesian statistics. This surrogate model is designed to

capture and quantify the uncertainty associated with the objective function. Among the vari-

ous surrogate models employed in Bayesian optimization, Gaussian process regressors [48]

are prevalent, and we will focus on them here. Note however that other surrogates such as

random forests [17] can be used within the Bayesian optimization framework.

The idea behind Bayesian optimization with Gaussian process modeling is to first assume

that a set of evaluations of a function at𝑛 different input points, 𝑓(x1∶𝑛) = [𝑓(x1), 𝑓(x2), ..., 𝑓(x𝑛)]
were drawn from a multrivariate Gaussian distribution

𝑓(x1∶𝑛) ∼ Normal(𝜇0(x1∶𝑛), Σ0(x1∶𝑛,x1∶𝑛)) , (2.22)

where 𝜇0(x1∶𝑛) and Σ0(x1∶𝑛,x1∶𝑛) are the mean and covariance functions defining the Gaus-



Optimization Algorithms 13

sian. This assumed distribution is known as the prior.

Given some new point of interest x, if we would like to know the conditional probability

that the unknown function takes a certain value at x, given our previous 𝑛 observations mak-

ing up the prior, we may use Bayes’ theorem. For a detailed computation of said conditional

distribution using Bayes’ theorem, one may consult [16], but in short

𝑓(x)|𝑓(x1∶𝑛) ∼ Normal(𝜇𝑛(x), 𝜎𝑛(x)) (2.23)

where 𝜇𝑛(x) = Σ0(x,x1∶n)Σ−10 (x1∶𝑛,x1∶𝑛)(𝑓(x1∶𝑛) − 𝜇0(x1∶𝑛)) + 𝜇0(x) (2.24)

and 𝜎𝑛(x) = Σ0(x,x) − Σ0(x,x1∶𝑛)Σ−10 (x1∶𝑛,x1∶𝑛)Σ0(x1∶𝑛,x) . (2.25)

This distribution-defining mean and variance is thus directly computable with matrix in-

verting algorithms. The distribution is known as the posterior distribution, and is in essence

a probability distribution over function values at the new point of interest x given the prior

observations. Exactly which functions are likely to be sampled is controlled by the form of the

covariance function. A standard choice of covariance function for Gaussian process modeling

is the radial basis function

Σ0(x𝑖,x𝑗) = exp{(||x𝑗 − x𝑖||2)} , (2.26)

where additional hyperparameters may be inserted as a pre-factor or into the argument of the

exponential to modify the scale over which function is varying or the rate of frequencies of

oscillation.

With the posterior distribution computed, one may be tempted to numerically find the

input x∗ that minimizes (or maximizes) 𝜇𝑛(x), but such a strategy fails to account that differ-

ent values of the learned surrogate 𝑓(x)|𝑓(x1∶𝑛) are more certain than others, and therefore it

may be helpful to sample regions of high uncertainty to update the posterior distribution. This

trade-off between exploration (sampling in uncertain regions) and exploitation (sampling in

regions where the objective function is expected to be optimal) is tackled by acquisition func-

tions, which provide a criterion for selecting the next point to evaluate the objective function.

Expected Improvement (EI) is a commonly used acquisition function. It quantifies the expected

gain in objective function value compared to the current best observed value 𝑓∗𝑛 , i.e.
EI(x) = 𝔼[max((𝑓(x) − 𝑓∗𝑛 ), 0)] (2.27)

In otherwords, it measures howmuch improvement one can expect by evaluating the objective

function at a specific point. EI can be evaluated in closed form (see [49]), and unlike the object-

ive function, it is generally inexpensive to compute. Therefore, it can be maximized quickly at



Optimization Algorithms 14

every iteration of Bayesian optimization, even with methods that require a significant number

of function calls and higher-order gradient calculations, such as Newton’s method.

The main limitation of Gaussian process Bayesian optimization is that the matrix inver-

sions become costly with both larger input dimensions, and many sampled points. Typically

Bayesian optimization is intended for input dimensions less than 20, and still the computa-

tional complexity of the Gaussian process regressor scales cubically with the number of points

used to update the posterior [50, 51]. Furthermore, while Gaussian processes are robust to

noise on the sampled function evaluations, the noise is assumed normally distributed, and

therefore noise with some dynamic structure (referred to as heteroscedasticity) causes the un-

derlying assumptions of a Gaussian process to fail.



15

Chapter 3

Background Considerations: Atom Cooling

This chapter seeks to introduce the pertinent theory behind the atom cooling techniques used

in this work. In particular, the operating principles of a magneto-optical trap (MOT) are de-

scribed. Following this, sub-Doppler cooling by motion induced orientation cooling is then

described as a means to cool below the limits of a MOT. Lastly, pure magnetic trapping is

described. In our laboratory’s typical ultracold atom preparation sequence, the magnetic trap

would be followed by subsequent cooling techniques such as evaporation by radio frequencies

and optical dipole trapping, but our machine learning agents were trained to optimize up to

and including a high-field gradient magnetic trap. This initial preparation sequence is crucial

for successfully cooling ensembles to (BEC).

3.1 Magneto-Optical Trapping

Magneto optical trapping is an integral tool for atomic cooling procedures, often being the

first stage in cooling sequences. MOTs can cool and confine atoms that are initially at tem-

peratures higher than room temperature. Conceptially, MOTs may be broken down into two

components, a velocity depended force via optical molasses, and a position depending force

via magnetic field gradients.

3.1.1 Optical Molasses

The cooling mechanism of a MOT is optical molasses, alternatively known as Doppler cooling.

Let us consider a cloud of two-level atoms, with a Maxwell-Boltzmann [52] distribution of

velocities, placed inside of a laser beam red detuned from resonance. The beam is not signi-

ficantly absorbed by the atoms at rest, but the atoms moving towards the beam Doppler shift

their transition to be resonant with the beam. The excited atoms will spontaneously emit iso-

ptropically, but are only being excited from one direction. Therefore they are experiencing a



Magneto-Optical Trapping 16

net force, given by

F = ℏk𝑅 . (3.1)

𝑅 is known as the scattering rate, and is given by

𝑅 = Γ𝜌22 , (3.2)

where Γ is the natural line width, and 𝜌22 is the density matrix element representing the frac-

tion of the population in the excited level. We may write the scattering force as a function of

beam intensity 𝐼 [52]
F = ℏk Γ𝐼2𝐼sat 11 + 𝐼/𝐼sat + 4(𝛿/Γ)2 , (3.3)

where saturation intensity is 𝐼sat = 𝜋ℎ𝑐Γ/(3𝜆3), and detuning 𝛿 = 𝜔−𝜔0+𝑘𝑣 is the difference

between laser frequency𝜔 and the atomic resonance frequency𝜔0, plus the Doppler shift from

velocity 𝑣.
If the atoms are in two beams counterpropogating each other, the total damping force is

Fmolasses = −𝛼v , (3.4)

which is linear in velocity and is therefore analogous to a frictional force. The coefficient 𝛼 is

given as 𝛼 = 4ℏ𝑘2 𝐼𝐼sat −2𝛿/Γ(1 + (2𝛿/Γ)2)2 . (3.5)

It’s crucial to note that the coefficient 𝛼must be positive to induce the effect of a damping

force in optical molasses. This requirement means a detuning 𝛿 < 0, i.e. a red detuning.

While the spontaneous emission is isotropic and these momentum kicks are on average

zero, these recoils are essentially a random walk of the velocity, and thus the final ensemble

due to the last random kick is thermal. Furthermore, the effect of the random walk heating

is cumulative, so to decelerate atoms along three spatial dimensions with a magneto-optical

traps consisting of three pairs of counterpropogating beams, the lowest temperature molasses

cooling can expect to achieve can be shown to be [53]

𝑇𝐷 = ℏΓ2𝑘𝐵 . (3.6)

3.1.2 Magnetic Field Gradient

The addition of a magnetic field gradient to an optical molasses set up, along with correct

choices of beam polarization, adds a spatial trapping capability to the cooling apparatus. For

a field magnitude that is minimum at the centre of the trap and larger in all directions, a pair

of coils with currents circulating in opposite directions can produce such a quadrupole field,

such as the anti-Helmholtz configuration used here. The field magnitude increases linearly in



Magneto-Optical Trapping 17

mFmF

11

-1-1

00

⍵laser

F’ 

F

BB

E

𝜎-𝜎+

x

-

Figure 3.1: Adapted from [52]. A conceptual diagram of the mechanism behind magneto-optical trap-
ping. The magnetic field Zeeman shifts moving atoms’ transitions, addressable by circularly polarized
light, into resonance.

every direction for small displacements about the centre point.

The principle behind the addition of the field gradient, pictorially shown in figure 3.1, is to

add a position dependant Zeeman effect. For an atom in a statewith total angularmomentum𝐹
in positions away from the centre, the states described by the angular momentum component

along the field axis𝑚𝐹 split in energy. The further from the centre an atom is located, the larger

the magnetic field, so the larger the Zeeman shift of the magnetic sub-levels. Restricting our

thought to a gradient along a single axis centred at 𝑥 = 0, an atom’s 𝑚𝐹 levels in the region𝑥 > 0 split such that those with negative 𝑚𝐹 values will become lower in energy and thus

a transition changing 𝑚𝐹 by −1 moves closer to resonance for a beam red detuned from the

manifold of states. Therefore a beam polarized 𝜎− (counter clockwise with respect to the

direction of the spatial axis e𝑥) will excite the Δ𝑚𝐹 = −1 transition that has been shifted

into resonance. For 𝑥 < 0, the Δ𝑚𝐹 = +1 transition is brought closer to resonance for a red

detuned beam, and may thus be excited with a 𝜎+ transition.

The detuning in equation 3.3 is now not only modified by 𝑘𝑣, but also by 𝛽𝑥, where

𝛽𝑥 ∝ 𝜕𝐵𝜕𝑥𝑥 . (3.7)

So the force on the atoms is now not only a friction analog, but also has a spatial restoring



Sub-Doppler Cooling 18

force component 𝐹𝑀𝑂𝑇 = −𝛼𝑣 − 𝛼𝛽𝑘 𝑥 , (3.8)

making a magneto-optical trap analogous to a damped spring system.

3.2 Sub-Doppler Cooling
As mentioned in the section previous, there is a limit to which temperatures optical molasses

can cool. For experiments requiring temperatures much below this limit, such as those in-

volving Bose-Einstein condensates, techniques beyond magneto optical trapping and optical

molasses are required. Laser cooling can go below this limit with the use of a spatial gradient

in the polarization of counterpropogating laser beams.

There are two types of polarization gradient cooling schemes [53, 54]. One type uses

beams with orthogonal linear polarizations, and is sometimes known as Sisyphus cooling. The

other type uses circularly polarized beams of opposite chiralities, sometimes referred to as the𝜎+–𝜎− configuration, or alternatively as “motion induced orientation cooling”. The 𝜎+–𝜎−
scheme is what is used in this thesis work, and will be the focus of this section.

Consider the two beams counterpropagating on the 𝑧-axis, with opposite circular polariz-

ations

E1 = 𝐸0 exp(𝑖(𝑘𝑧 − 𝜔𝑡))(e𝑥 + 𝑖e𝑦) (3.9)

E2 = 𝐸0 exp(𝑖(−𝑘𝑧 − 𝜔𝑡))(e𝑥 − 𝑖e𝑦) (3.10)

The total field field is the summation of the two beams

E = 2𝐸0 sin(𝜔𝑡)(cos(𝑘𝑧)e𝑥 − sin(𝑘𝑧)e𝑦) . (3.11)

Notice the 𝑥 and 𝑦 components are in phase, however the relative amplitudes rotate with 𝑘𝑧.
This describes a linear polarization with a direction that rotates as the 𝑧-axis is traversed.

For the propose of instruction, let us consider a simple atomic transition for this cooling

phenomenon: 𝐹 = 1 → 𝐹′ = 2. Two key effects cause the atoms to cool while traversing this

rotating linear polarization. The first is the simple observation that for atoms in the ground

state |𝐹 = 1,𝑚𝐹 = −1⟩, the Clebsch–Gordan coefficient coupling to |𝐹′ = 2,𝑚𝐹 = −2⟩ (a 𝜎−
transition) is unity, whereas the Clebsch–Gordan coefficient coupling to |𝐹′ = 2,𝑚𝐹 = 0⟩
(a 𝜎+ transition) is 1/√6. Likewise, for |𝐹 = 1,𝑚𝐹 = +1⟩, the Clebsch–Gordan coefficient

associated with a 𝜎+ transition is√6 times larger than that for 𝜎−. Note here that these states

mentioned are eigenstates of the 𝐹𝑧 operator (i.e. the direction of light propagation). See figure

3.2 for the relevant 𝐹 = 1 → 𝐹′ = 2 Clebsh-Gordan coefficients .

The second effect is the eponymous motion-induced atomic orientation. In short, atoms

moving along the field towards the𝜎− beam are pumped preferentially into the |𝐹 = 1,𝑚𝐹 = −1⟩



Sub-Doppler Cooling 19

mF = -1 mF = 0 mF = +1

mF' = -2 mF' = -1 mF' = 0 mF' = +1 mF' = +2 

11

Figure 3.2: Atom energy levels with their respective Clebsch–Gordan coefficients, for transitions
between 𝐹 = 1 and 𝐹′ = 2 manifolds.

state, and atomsmoving towards the𝜎− beam are pumped preferentially into the |𝐹 = 1,𝑚𝐹 = +1⟩
state. The mechanism behind this effect is outlined well in appendix A of [54], but we can

summarize it as follows. For an atom at rest, linear polarizations (let’s say along e𝑦) driving 𝜋
transitions will concentrate atoms in the |𝐹 = 1,𝑚𝐹 = 0⟩𝑦 state. Referring again to figure 3.2,

we can see this is because the pumping rates are proportional to (1/√2)2(1/√2)2 = 1/4 and(√2/3)2(1/√6)2 = 1/9 for |𝐹 = 1,𝑚𝐹 = ±1⟩𝑦 → |𝐹 = 1,𝑚𝐹 = 0⟩𝑦 and |𝐹 = 1,𝑚𝐹 = 0⟩𝑦 →|𝐹 = 1,𝑚𝐹 = ±1⟩𝑦 respectively. Note here that states |𝐹,𝑚𝐹⟩𝑦 are intended to represent ei-

genstates of the 𝐹𝑦 operator. For an atom moving with velocity 𝑣, the quantization axis defin-

ing linear polarization it sees is rotating with 𝜙 = −𝑘𝑣𝑡. Say at time 𝑡, the quantization axis

now lies along e ̄𝑦. For weak pumping, the atoms’ traversal of the field is non-adiabatic such

that to describe the state in the eigenbasis of the new quantization axis’s operator ̄𝐹𝑦, it is a

superposition where the ratio of the components’ amplitudes is proportional to the velocity of

transversal 𝑣. Calculating the expectation value of 𝐹𝑧 using these superposition states reveals

a non zero ⟨𝐹𝑧⟩, in other words, a motion induced orientation.

Since atoms moving towards the 𝜎− beam and away from the the 𝜎+ beam are oriented

in the |𝐹 = 1,𝑚𝐹 = −1⟩ state, they are more likely to absorb from the counter propagating

beam, thus slowing the atoms down. Likewise, those moving towards 𝜎+ and away from𝜎− are oriented in the |𝐹 = 1,𝑚𝐹 = −1⟩ state but absorb more from the counterpropogating,

therefore are slowed in the other direction. Applying such a scheme with three non-parallel

beam pairs will provide a frictional force along all spatial dimensions. Note however that as

the atoms cool and their average speed decreases, the cooling transition between the hyperfine

manifolds will become Doppler shifted out of resonance, and thus a continual decrease of the



Magnetic Trapping 20

beams’ red detuning is required to address a range of velocities.

3.3 Magnetic Trapping
Like with Doppler cooling, sub-Doppler cooling has a limit on how low it can make temperat-

ures [54]. Cooling below the sub-Doppler limit requires techniques beyond absorption based

cooling. These techniques, known as evaporative cooling, generally involve holding the atoms

in a trap and removing the warm tail of the Maxwell-Boltzmann distribution [53]. While the

final stage of BEC production often involves making an optical dipole trap [55] shallower so

that the warmest atoms fall out, temperatures following sub-Doppler cooling are too high to

load atoms in such small and shallow optical dipole traps. First, magnetic traps are used, from

which radio frequencies drive the warmest atoms into untrappable states. In this thesis work

demonstrating reinforcement learning control of atom cooling, the final step we control is a

magnetic trap.

The central idea behind magnetic trapping uses atoms in a spin-polarized state that have

lower energy for smaller magnetic field magnitudes. A magnetic field gradient will thus

provide a potential well, where these low-field seeking spin-polarized atoms prefer to sit at

the field minimum. Like with magneto-optical trapping, anti-Helmholtz coil pairs provide a

quadrupole trap, whose magnetic field may be derived analytically using elliptical integrals

[56, 57] . Near the origin, the field has magnitude given by

𝐵 ∝ √𝑥2 + 𝑦2 + 4𝑧2 . (3.12)

The force acting on an atom with magnetic dipole moment 𝜇, along a one dimensional

slice of the gradient is 𝐹 = −𝜕(𝜇𝜇𝜇 ⋅ B)𝜕𝑧 ∝ −𝑔𝐹𝑚𝐹 𝜕𝐵𝜕𝑧 , (3.13)

so whether or not the force attracts or repels atoms from the trap centre at 𝑧 = 0 depends

on the sign of the 𝑔𝐹𝑚𝐹 , the product of the magnetic quantum number and the total atomic

angular momentum g-factor [52, 57]. For the hyperfine manifold 𝐹 = 2, 𝑔𝐹 is positive, so

atoms pumped into 𝑚𝐹 > 0 are low field seeking, and 𝑚𝐹 = +2 constrains the atoms in as

tight a trap as possible.



21

Chapter 4

Experimental Design

This chapter outlines the practical aspects of the experimental system used in this thesis. In

Section 4.1, we break down the cooling sequence, detailing the apparatus and explaining how

our agents interact with it to modify the cooling process. At the core of this work is the

optimization of atom numbers resulting from the cooling sequence. Section 4.2 explains how,

after each cycle, we estimate the atom count, providing crucial feedback for our agents to

adjust their policies. For the agents to determine which controllable parameters of the cooling

sequence tomodify, we collect a representation of the environmental state. Section 4.3 explains

the monitored parameters, the collection process, and how they are automatically processed

for use in the agents’ policies.

4.1 Atom Cooling Apparatus

We allow both theML agents to control 30 parameters in our cooling sequence. TheML agents

interface with the apparatus via an analog board and radiofrequency (RF) signal generator.

For analog signals, a BNC2110 National Instrument Data Aqusition board is used, and for

RF signals a Novatech 409B Direct Digital Synthesized Signal Generator is used. These 30

parameters are listed in Table 4.1, and identified by the letter “A” and a number. A schematic of

the integration into the system of these agent controllable parameters, as well as themonitored

environmental parameters (section 4.3), is shown in figure 4.1. In this section, we describe in

detail the cooling sequence, and how the ML agents are given control of the various aspects

of our atom cooling apparatus.

4.1.1 Cooling Sequence Overview

The 87Rb atom-cooling process begins by capturing and cooling the atoms using two simul-

taneously applied magneto-optical traps (MOTs). This stage takes a total of 14 seconds. The

main cooling transition we use in our MOTs is the D2 ||52𝑆1/2, 𝐹 = 2⟩ → ||52𝑃3/2, 𝐹′ = 3⟩ trans-



Atom Cooling Apparatus 22

Table 4.1: Agent controllable parameters

Name Number Stage Implementation
2D coil 1 A1 MOT current to 2D coil 1
2D coil 2 A2 MOT current to 2D coil 2
2D coil 3 A3 MOT current to 2D coil 3
2D coil 4 A4 MOT current to 2D coil 4
3D x-bias A5 MOT current to x-axis bias coils

A6 Sub-Doppler
A7 Optical pump
A8 Magnetic trap 1
A9 Magnetic trap 2

3D y-bias A10 MOT current to y-axis bias coils
A11 Sub-Doppler
A12 Optical pump
A13 Magnetic trap 1
A14 Magnetic trap 2
A15 Imaging

3D z-bias A16 MOT current to z-axis bias coils
A17 Sub-Doppler
A18 Optical pump
A19 Magnetic trap 1
A20 Magnetic trap 2

2D repump A21 MOT laser power, via AOM
2D cooling A22 MOT laser power, via AOM
2D push beam A23 MOT laser power, via AOM
3D frequency A24 MOT laser frequency
3D repump A25 MOT laser power, via AOM
3D cooling A26 MOT laser power, via AOM
SD start freq. A27 Sub-Doppler laser frequency
SD end & OP freq. A28 Sub-Doppler laser frequency
OP power A29 Optical pump laser power, via AOM
Imaging freq. A30 Imaging laser frequency

ition. Figure 4.2 presents a diagram summarizing the transitions used in this work. There

is a small yet finite probability of off-resonant excitation to the excited 𝐹′ = 2 state, from

which decay to the 𝐹 = 1 ground state is a permitted channel. This would remove atoms from

the cooling cycle if allowed to run long enough. We therefore address the additional trans-

ition ||52𝑆1/2, 𝐹 = 1⟩ → ||52𝑃3/2, 𝐹′ = 2⟩ to return atoms to the cooling cycle through optical

pumping.

As atoms diffuse from a vaporized metallic source, the 2D MOT captures, cools and collim-

ates the atoms along two of the three cardinal directions. These atoms form an atomic beam,

which is accelerated using a push beam, which is blue-detuned above the 𝐹 = 2 → 𝐹′ = 3
transition. The push beam frequency is tuned such that slow moving atoms that would not

otherwise contribute to the atomic flux are accelerated. The atoms pass through a differ-



Atom Cooling Apparatus 23

2D + 3D MOT

14.0 s

20
m

s 100 ms

Sub-

Doppler

Optical

pumping
Magnetic trapping

2 
m

s

TOF + 

imaging

time

3D trap laser freq., power

3D bias coil currrents (x3)

2D push power

2D coil currents (x4)

2D trap laser power

2D repump laser power

3D repump laser power

Imaging power, freq.

3D vacuum pressure

Ambient magnetic field (3-axis)

3D coil temperatures

Rb

%

Agent/

Control

Ambient temperature, humidity

Camera image data

Environment

Atom number

A29 A30

A5-20 

2D laser power, polarization

3D laser power, polarization

A1 A2 A3 A4

A22 

A21 

A23 

A25

A24 A26 A27 A28

E1

E2

E3

E4

E5

E24 E25 E29 E30

E6

E7-18

E22

E23

E27

E28

push beam power

E26

Magnetic trap currentsE19-21

14.0 S 5.0 S

Figure 4.1: System schematic, adapted from our paper [58]. Top: A set x𝑐 of agent-defined para-
meters (A𝑖) control the experimental apparatus, while a set x𝑒 of environmental parameters (E𝑖) are
measured during each experimental sequence. The apparatus consists of an oven-fed 2D-MOT (with
agent-controlled coil currents and laser powers), which supplies a 3D-MOT (with agent-controlled laser
powers and frequencies) via an agent-controlled push beam. At the 3D-MOT, several cooling steps pre-
cede the magnetic trapping of the atoms, agent-controlled bias magnetic field coils are used to optimize
the environment throughout the sequence. The atom number 𝑁 is the reward and determined using
data obtained by the camera, with agent-controlled imaging laser power and frequency. Image credits
to Dr. Lindsay LeBlanc. Bottom: The timing sequence for each experimental cycle, which is repeated
after each destructive image of the atoms is recorded. The atoms are held in the high-field “compressed”
MT for 4.5 seconds, a comparable time to the radiofrequency evaporation duration used in BEC gener-
ation.

ential pumping tube and enter the second, lower-pressure vacuum chamber, where the 3D-

MOT is found. Here, the atoms are trapped and cooled in all three dimensions, resulting

in the a microkelvin-temperature atomic cloud. The 2D-MOT uses a cylindrical quadrupole

field, as well as two pairs of counter-propagating cooling laser beams red-detuned from the𝐹 = 2 → 𝐹′ = 3 transition. The 3D-MOT consists of a radially symmetric quadrupole trap,

and three counterpropagating laser beams red-detuned from the 𝐹 = 2 → 𝐹′ = 3 transition.

Each MOT also includes a pair of the counterpropagating repump beams, closing the cooling

loops with the 𝐹 = 1 → 𝐹′ = 2 transition.

After the MOT stage, the atomic cloud undergoes 20 ms of polarization-gradient cooling,

to cool the atoms below the Doppler limit. To achieve this, the quadrupole magnetic field is

removed, and the cooling beam’s frequency is linearly swept from a large red detuning to a

small red detuning. Before activating the magnetic trap (MT), the atoms are optically pumped

into the magnetically trappable Zeeman ground state |𝐹 = 2,𝑚𝐹 = 2⟩ using right-circularly



Atom Cooling Apparatus 24

Im
ag

in
g 

(A
30

)

C
oo

lin
g 

(A
24

)

R
ep

um
p 

(S
A

S
)

O
pt

ic
al

  (
A

28
)

P
um

pi
ng

Figure 4.2: Relevant transitions between hyperfine energy levels on the 87Rb D2 line. The cooling, ima-
ging, and optical pumping frequencies are controllable by our agents, whereas the repump frequency is
fixed by locking to the SAS resolved spectral feature, and serves as the reference frequency for beat-note
locking.

polarized light resonant with the 𝐹 = 2 → 𝐹′ = 2 transition. Repump light is also employed

to close the optical pumping loop.

Themagnetic trap is comprised of a quadrupolemagnetic fieldwhich is designed to confine

atoms in the |𝐹 = 2,𝑚𝐹 = 2⟩ state against the force of gravity, but is not strong enough to trap

atoms in the |𝐹 = 2,𝑚𝐹 = 1⟩ state against gravity, due to their smallermagneticmoment. This

results in a spin-polarized ensemble. In preparation for subsequent evaporation cooling (which

is not carried out in these experiments but is essential for BEC production), the magnetic trap

is compressed to increase the atomic density and elastic collision rates. This compression is

achieved by ramping the gradient of the magnetic field.

From here, production of BECs would normally proceed by forced evaporation via radio



Atom Cooling Apparatus 25

frequency spin flips of the high-energy atoms. In this investigation, we instead choose this

point to release the atoms from the trap and perform a destructive time-of-flight (TOF) image,

from which atom number is estimated.

4.1.2 Laser System Control

All of the required laser frequencies used in this work are generated by two lasers, both with

approximate central wavelengths of 780 nm to address transitions on the D2 line. The first,

which we refer to as the cooling laser, is the Toptica TAPro, a diode laser amplified by a tapered

amplifier. The output of the cooling laser has 1.6 W of power. The second laser, which we call

the repump laser, is a MOGLabs CEL external diode laser, with output power 95 mW.

The repump laser is locked directly to the 𝐹 = 1 → 𝐹′ = 2 repump transition using the

technique of Doppler-free saturated absorption spectroscopy (SAS) [52, 59]. A small percent-

age of the laser power is picked off to be sent through a cell of hot rubidium vapour. The

relevant hyperfine line is resolved within the spectrum, so that the laser may be fixed to this

frequency via proportional–integral–derivative (PID) controller [60]. Here, we allow no room

for agent tunability, as the fixed repump laser is used as a reference for all other frequencies

chosen by our agents. With the repump laser as the reference laser, and the cooling laser there-

fore as the secondary laser, in an optical fibre we combine a beam from each laser to generate

a beat-note signal. The beat-note has a frequency which is the difference between the two

lasers. With a reference signal provided as a control, the beat-note and reference signals are

compared via phase-locked loop circuit (EVAL-ADF4007EBZ1), so we may use another PID

controller to stabilize the frequency difference between the slave laser and its already-locked

master. When we require our agent to have frequency tunability during the different stages

of our cooling sequence, we allow it to set the reference signal frequency via our RF signal

generator. Specifically, this is how the MOT frequency is tuned (A24), the starting frequency

of our sub-Doppler ramp (A27), the ending frequency of the sub-Doppler ramp as well as the

optical pumping frequency (A28), and our imaging frequency (A30).

The main outputs of both the cooling and repump lasers are split into multiple arms, so we

may cool with both a 2DMOT followed by a 3DMOT, pump atoms into magnetically trappable

states, and image the resulting ensembles. Each arm goes through series of a acousto optical

modulators (AOMs) [61], as shown diagrammatically in figure 4.3. The AOM sound wave fre-

quencies and amplitudes provide both frequency and power modulation to our beams. While

we use only a constant frequency shift for each AOM (as our agents perform frequency tuning

via laser lock-point), we give our agent control over the sound wave amplitudes and therefore

the various beam powers. We allow the agent control of the 2D MOT repump (A21) and cool-

ing (A22) powers, and the 3D MOT repump (A25) and cooling (A26) powers. Transfer from

the 2D- to 3D-MOT can be optimized by our agents changing the acceleration of the atoms

via the power of a blue-detuned push-beam (A23). The pumping of atoms into the magnetic-



Atom Cooling Apparatus 26

Figure 4.3: Beam control flowchart, for both a the repump and b the cooling lasers. The agents may
control the AOM sound wave amplitude to modulate the power output sent into the various arms (see
table 4.1). AOMs also provide a constant frequency shift, and the agents may perform frequency fine-
tuning via laser lock-point. Light is picked off of the repump laser to be used for locking via SAS, as
well as picked off of both to be used for beat-note locking.

ally trappable 𝑚𝐹 = +2 state can too be optimized by the agent changing the power of the

right-circularly polarized optical pumping beam (A29). Note that during optical pumping, the

3D repump beam is also present to close the pumping cycle, but we keep its power constant.



Atom Cooling Apparatus 27

4.1.3 Magnetic Field Control

To provide the magnetic fields used for our cooling sequence, several sets of coils and power

supplies are used.

The 2DMOT operates along two of the three cardinal directions. Four rectangular coils are

used to create the necessary two dimensional quadrupole field to facilitate 2Dmagento-optical

trapping. Here, the coils have 25 turns of 12 AWGwire each. To keep the coils from excessively

heating, 16∘C water circulates through them. Two Agilent 6651A DC power supplies are used

for the four coils. To control exactly how much current passes through the individual coils,

each coil has an associated MOSFET (IXFN180N25T) placed in series. Our agents therefore

may control the current through each 2D MOT coil by setting the MOSFET gate voltages (A1-

A4).

To create the fields used for both the 3D MOT and the MT, we use a single pair of coils in

an anti-Helmholtz configuration, with a separation of 58 mm. The coils are made of Kapton

insulated hollow copper wire, with high pressure water circulated through the cavity inside.

Current is supplied by a single Agilent 6690A DC Power Supply, and controlled by a bank of

24 MOSFETS. As with the 2DMOT coils, we could give our agents dynamic control of the gate

voltages and therefore the coil current. The issue with this is that we also would like to mon-

itor coil currents as environmental parameters (section 4.3). To keep the environment fully

decoupled from the chosen actions so that equation 2.10 holds, we keep the current choices

for this coil pair static. During the 3D MOT, we run 28 A, giving a gradient of approximately

10.5 G/cm. Following optical pumping, we run an “uncompressed” MT at 65 A. This MT has

a gradient of 27.2 G/cm, which is sufficient to confine atoms in the |𝐹 = 2,𝑚𝐹 = 2⟩ state
against gravity, while atoms in the |𝐹 = 2,𝑚𝐹 = 1⟩ state are not trapped. If we were using

our system to its full BEC generating capability, the MT would be followed by a subsequent

evaporation cooling stage. To allow successful evaporative cooling, the magnetic trap is com-

pressed. This compression is achieved by linearly ramping the current to 425 A over a duration

of 0.1 seconds, making a magnetic field gradient of 176.4 G/cm. With the trap compressed to

425 A, the atomic ensemble is primed for evaporative cooling, but we choose here to be the

last step the agent may optimize.

Where the agents are given a lot of influence in the magnetic field control is via three

auxiliary coil pairs in Helmholtz configurations surrounding the 3D MOT cell, arranged in

each of the 3 orthogonal directions. These coils provide a bias magnetic field that is critical in

every step of the cooling sequence. During the 3DMOT, they shift the centre of the quadrupole

field such that it matches the six beams’ crossing point (A5, A10, A16). During sub-Doppler

cooling, the presence of bias fields (A6, A11, A17) becomes crucial to cancel out external fields

and facilitate the subsequent transfer of atoms into the magnetic trap. While optical pumping,

the y-bias defines the quantization axis for the pumping (A12), and the other axes bias fields

cancel out background fields (A12, A18). With the atoms in the MT, bias magnetic fields shift



Atom Cooling Apparatus 28

a

b

b

d
e

c

Figure 4.4: Schematic of our vacuum system. Key facets indicated as follows. a - rubidium oven. b -
ion pumps. c - gate valve. d - 2D MOT. e - 3D MOT and MT. Image credits to Dr. Lindsay LeBlanc.

the zero point of the trap (A8, A13, A19). When compressing the trap, again the magnetic-

gradient zero can be shifted (A9, A14, A20). Finally, when the atoms are dropped from the

trap and illuminated with the imaging beam, the imaging quantization axis is defined by a

magnetic field created by the 𝑦-bias coils (A15).

4.1.4 Vacuum System

The rubidium is kept under ultra-high vacuum for the entirety of the cooling sequence. The

vacuum system may conceptually be divided into two sections, separated by gate valve (c in

figure 4.4). The first section houses and vaporizes solid 87Rb (a in figure 4.4), while the second

section is where the cooling and trapping take place (d,e in figure 4.4).

The oven is a section of the vacuum system containing solid rubidium, wrapped with fibre-

glass heat tape. The oven temperature is kept stable at a desired set point via PID controller

and measurement by thermocouple. We do not allow the agents control of this set point. The

oven takes time to heat/cool to desired set points, so the effect of actions would not be in-

stantaneous. This would add much more complexity to this reinforcement learning problem,

therefore we keep the oven temperatures fixed. The main section is held at 45∘C, and the push

beam window at 50∘C to avoid rubidium accumulating and corroding the window seal.



Estimating Atom Number From TOF Images 29

Ultrahigh vacuum is maintained in the system by two ion pumps (Agilent VacIon 55 Star-

cell), one following the oven and one in between the 2D and 3D MOTs (b in figure 4.4). The

agents are not given control of the set vacuum pressures as both pumps act to their full capab-

ilities. Vacuum pressures as low as possible are desired to increases the efficiency of cooling

and extend trap lifetimes. Furthermore, control of vacuum pressures would encounter the

same issues with control of oven temperatures: pumping to desired pressures takes time and

therefore the effect of action taking would not be instantaneous.

4.2 Estimating Atom Number From TOF Images

Our ML agents operate by attempting to maximize the number of atoms present at the end of

our cooling sequence. Thus, accurate estimates of the number of atoms following each cycle

is necessary.

In our sequence, the final step is compression of the MT, following which atoms are re-

leased from the trap and a destructive image is acquired. We allow the atoms a 10 ms TOF

before they are illuminated with the 𝐹 = 2 → 𝐹′ = 3 resonant imaging beam. While the agent

chooses this resonant frequency via control parameter A30, estimates of the atom number are

extracted in the following way.

Three images are recorded by a BFLY-U3-13S2M-CS CCD camera. The first image is timed

to capture the atoms while they fall under gravity. The illuminating beam is partially absorbed

by these atoms, casting a shadow on the camera. A second image is recorded after the atoms

have fallen out of the field of view, with the absorbing beam on: this measures the nominal

intensity of the absorbing beam. A third image is recorded next, with neither beam nor atoms,

and thus captures the background illumination. By subtracting the third image from the first

two, and using Beer’s extinction law along with the well-known absorption characteristics of

the rubidium atoms [35], we measure the number of atoms at the end of each experimental

sequence.

𝑁 = ∑
num pixels

𝐴pixel𝜎scs ln ( CCD counts, no atoms
CCD counts, with atoms

) , (4.1)

where𝐴pixel is the area of single pixel, 𝜎scs is the resonant scattering cross-section for rubidium,

and the sum is performed over every pixel in camera’s field-of-view.

We show samples of experimental TOF images in figure 4.5. These images are processed

composites of the three raw images, allowing extraction of atom number estimates. The fun-

damental uncertainty in the extracted atom number is low, no more that a few percent at

most.



Environmental Sensing 30

0 2000 4000 6000 8000
0

2000

4000

6000

0 2000 4000 6000 8000

0.00

0.25

0.50

0.75

1.00

O
p
ti

c
a
l 
d
e
p
th

 (
n
o
rm

a
li
z
e
d
)

x position ( m)

y
 p

o
s
it

io
n
 (

m
)

a b

Figure 4.5: Processed TOF images, adapted from our paper [58]. Each image is within a 648 pixel by
488 pixel field of view, where the pixel size is 14.8 𝜇m. The colour scale shows the optical depth of
the atoms in cloud, normalized to the maximum. a Sample ensemble generated by a well performing
control parameter set. We estimate 2.3 × 108 atoms (log𝑁 = 8.37) are present in this image. b Sample
ensemble generated by a poor performing control parameter set. We estimate 3.37×107 (log𝑁 = 7.53)
atoms are present in this image.

4.3 Environmental Sensing

In this work, we rely on real-time monitoring of 30 environmental parameters that we suspect

play a vital role in our cooling process. These parameters collectively constitute the envir-

onmental state provided to our optimizing agents. For a quick summary of the monitored

parameters, please refer to Table 4.2.

We monitor the majority of parameters at the end of each cooling cycle, which decouples

the measured environmental parameters from the chosen control parameter values. Excep-

tions to this timing are our coil current parameters E19-E21. These parameters are measured

during different stages of the cooling cycle (MOT for E19, MT for E20, E21) via the same cur-

rent transducer used for our feedback stabilization (Danfysik Ultrastab 867-400). To prevent

interferences between our agent’s actions and the measured state, we do not allow our agent

to control the maximum current or the current stability of our MOT and MT, and in this way,

these parameters remain uncoupled from the control parameter actions of the agents. The

signal from the current transducers is split and sent to both our feedback controller as well as

to our primary data acquisition microcontroller, which samples the current 4 times per second.

This collection frequency is fast enough to sample several points of the current active during

the MOT, as well as during the high field “compressed” MT. A sample current signal for a

single cycle is shown in figure 4.6. Post processing is performed to determine which parts

the signal correspond to the MOT or the compressed magnetic trap. The maximum current



Environmental Sensing 31

Table 4.2: Monitored environmental parameters

Name Number Implementation
Vacuum pressure E1 Ion pump pressure gauge
Room temperature E2 Thermistor

E3
Room humidity E4 Capacitive humidity sensor

E5
Coil temperature E6 Thermocouple
magnetic field x component E7 Magnetometer

E8
E9
E10

magnetic field y component E11 Magnetometer
E12
E13
E14

magnetic field z component E15 Magnetometer
E16
E17
E18

Maximum MOT current E19 current transducer
Maximum MT current E20
MT current stability E21
2D repump beam power E22 Photodiode
2D cooling beam power E23
3D repump beam power E24
3D cooling beam power E25
push beam power E26
2D repump beam polarization E27 Photodiode pair &
2D cooling beam polarization E28 polarizing beamsplitter
3D repump beam polarization E29
3D cooling beam polarization E30

during the MOT (E19) and MT (E20), as well as the standard deviation of the MT current (E21)

are thus recorded for each cycle to be sent to the agents.

Environmental parameter E1 tracks the vacuum pressure of the oven chamber. Maintain-

ing ultrahigh vacuum is critical, as higher vacuum pressures may result in decreased trap

lifetimes and inefficient cooling procedures. Referring back to figure 4.4, our vacuum system

can be thought as being segregated by a gate valve into twomain components: the oven which

houses solid 87Rb used as a source, and the atom cooling chambers. Recall that each side of the

gate valve has an ion pump constantly pumping on the system. Measurements of the pressure

in each side of the system are estimated by the current generated by the pump. While the

pressure is so near vacuum on the cooling side of the valve (of the order 1 × 10−11 Torr) that

the ion current is too low to be read, we use the ion current by the oven chamber’s ion pump



Environmental Sensing 32

0 5 10 15 20 25
Time from cycle start (s)

0

100

200

300

400
Se

ns
ed

 c
ur

re
nt

 (A
)

MOT
Uncompressed MT
Compressed MT

Figure 4.6: Sample measured current signal for a single cycle. Points are sampled while the MOT
(green), uncompressed MT (orange), and compressed MT (red) are active. The points from the MOT
and compressed MT are then automatically processed to determine E19, E20, and E21 for the given
cycle. The black line connects adjacent sensed points, as a guide to the eye.

as a proxy. We read this pressure on 2 minute intervals and send it to our data acquisition

computer directly via serial communication.

Two ambient-condition probes (Adafruit AM2302) are placed in our laboratory, each meas-

uring room temperature and humidity once per cooling cycle. One is placed next to our power

supplies (E2 and E4), and connects directly to the the primary data acquisition microcontrol-

ler. The other probe is placed next to the 3D-MOT (E3 and E5), and communicates with the

primary data acquisition microcontroller via radio transceiver module (nRF24L01 - 2.4 GHz).

Temperature and humidity both may have effects on the cooling procedure by changing the

air index of refraction, slightly misaligning optical elements, and performance of the diode

lasers. Furthermore, a K-type thermocouple measures the temperature of the main magnetic

coil used both in the 3D-MOT and MT. The thermocouple is secured via Kapton tape to the

10 AWG cable connecting the two coils. Changes in the coil temperature would change the

resistance of the circuit, and therefore could effect the performance of the magnetic traps.

Using a magnetoresistive vector magnetometer (Honeywell HMC1053) placed next to the

3D-MOT, we take multiple readings at the end of each cycle, sent directly to our data acquisi-

tion computer via serial communication. We measure the field from a fixed current when just

the 𝑥-axis, 𝑦-axis, and 𝑧-axis bias coils are active, and when just the MOT coils are active. re-

spectively. We assign parameter numbers for these field readings in the following way. Along

the 𝑥−, 𝑦−, and 𝑧−axes respectively, we measure the magnetic field when the 𝑥-axis bias coils



Environmental Sensing 33

are active, alone, at a fixed current (E7, E11, E15), when the 𝑦-axis bias coils are active alone at

a fixed current (E8, E12, E16), when the 𝑧-axis bias coils are active alone at a fixed current (E9,

E12, E17), and when the 3D-MOT/MT coils are active at a fixed current (E10, E14, E18). We use

such a configuration to detect unwanted external fields along all three Cartesian axes, as well

as to detect potential issues with our power supplies. This separates completely independent

background fields from unintended fluctuations from our coil pairs.

From our Evanescent Optics custom beam splitting optical fibres, there are additional paths

which divert between 0.5% and 0.8% of the inputted beam power. We use this small amount of

diverted power of the 2D- and 3D-MOT’s repump and cooling light for monitoring of the beam

powers (E22-E25) and polarizations (E27-30). To obtain the polarizations of all four beams, we

need eight measurements, one for each polarization component. We achieve this with four

photodetectors (Thorlabs DET36A2), two polarizing beams splitters, and a staggered pulse

sequence at the end of each cycle. The four detectors are connected to our secondary micro-

controller, which we use just for monitoring of the laser powers and polarizations. Figure

4.7a presents a schematic of the photodetector-beam splitter configuration used. Each photo-

detector pair has diverted repump and cooling light of the same beam size. The first pulse is

the repump light, split into its vertical and horizontal polarization components and measured

by the detectors. The second pulse is the cooling light, which is also split into its constituent

polarization components and measured. The repump beams are weaker than their respective

cooling beams, and thus post processing to find which sections of the signal are from which

pulse is possible. Figure 4.7b shows a sample reading from one detector at the end of a given

cycle. The average beam intensity for each detector 𝐼1,2, during each pulse, is thus computed

by integrating over the post processed signal, and the powers 𝑃 (which is trivially proportional

to the measured intensity via the detector size which we omit) and polarization angles 𝜃 are

respectively calculated as [62] 𝑃 = 𝐼1 + 𝐼2 (4.2)

and 𝜃 = 12 𝐼1 − 𝐼2𝐼1 + 𝐼2 (4.3)

Drops in power or rotations of polarization would lead to inefficient cooling during both

the MOT and sub-Doppler stages (refer back to chapter 3 to see the importance of intensity

and polarization) .

The push-beam power (E26) is sensed via photodetector after passing through the entire

vacuum chamber and exiting a window near the 3D-MOT. The signal is sent to the primary

microcontroller. Post processing for pushbeam just requires integrating each end of cycle

pulse to find the average value. An underpowered push beam would fail to transfer the atoms

optimally from the 2D-MOT to 3D-MOT, whereas if overpowered it would destroy the MOT’s

ability to effectively capture atoms.

Acquisition of the sensed environmental parameters is donewith two simplemicro-controllers



Environmental Sensing 34

 
3D repump

3D repump - V

3D repump - H

3D cool - V

3D cool

3D cool - H

a b

Figure 4.7: a: Laser monitoring detector scheme. Small percentages of the beam powers used in the
cooling sequence are picked off via beam splitting fibre. Tomeasure powers and polarizations, fibres are
assembled in pairs of two, incident on a polarizing beam splitter. Two photodiodes follow each beam
splitter output, to record the horizontal and vertical polarization components of the beams. At the end
of each cooling cycle, the beams are pulsed in a staggered sequence so that polarization components
of each beam may be resolved. b: Sample signal from one of the two photodiodes. The timed and
staggered sequence of the pulsing makes it possible to resolve the two beams. With both detector
signals, power (equation 4.2) and polarization (equation 4.3) are calculated automatically every cycle,
for 2D and 3D cooling and repump beams. The green shaded region and points indicates timing of the
repump laser pulse. The red shaded region and points indicates timing of the cooling laser pulse. The
black line connects adjacent detected points as a guide to the eye.

(Arduino Mega 2560), along with our magnetometer which interfaces directly to our data ac-

quisition computer. The micro-controllers and magnetometer interface with a central com-

puter via USB serial communication.



35

Chapter 5

Agent Design

In this chapter, we outline our two different artificially intelligent agents. Fundamentally, the

question posed to the two agents we design is the same: given the current state of the envir-

onment x𝑒, what is the ideal agent action x𝑐 (i.e., the settings of some controllable parameters)

that maximizes the number of atoms imaged at the end of the cooling procedure? A direct

maximization with any method including Bayesian optimization is unsuited, as the object-

ive function being optimized varies with environmental fluctuations. Instead, we devise two

agents: one based on a supervised learning regression model, and one based on reinforcement

learning.

The implementation of all of the machine learning algorithms detailed in this chapter were

written from scratch in Python using Google’s neural network software library “Tensorflow”.

Including the reinforcement learning agents, no third party implementations were used. This

deliberate choice ensures the maximum reproducibility of this work, free from dependencies

on external software, as well as giving us full control over the implementation details.

5.1 Supervised–Regression–Based Agent

The first agent, which we refer to as our supervised–regression–based agent, is an extension

on the method used in most of the previous work on ML control of atom cooling experiments.

This class of ML is the one used in several previous studies investigating ultracold atom pre-

paration [3–11]. In such experiments, a desired output quantity is defined such as ensemble

temperature or number of atoms, and some a regression model is trained to map a set of

controllable parameters to the output quantity. The trained model is then optimized to find

the controllable parameter input set which maximizes the output. The universal–function–

approximating models commonly used for cold atom optimization are Gaussian processes

and artificial neural networks. Here, we use a deep, feed-forward, densely connected arti-

ficial neural network to extend this style of regression–based agent to control the control–

parameters cycle-to-cycle in reaction to environmental changes.



Supervised–Regression–Based Agent 36

The input layer of the regression–based agent’s neural network accepts a vector x =(x𝑐,x𝑒) that concatenates the control parameters and the environmental parameters, while

the output layer predicts log (𝑁). The internal architecture of the network consists of four

hidden layers, each with 128 neurons. This specific architecture was found to give the best

predictive capabilities on out-of-sample validation data. We choose the non-linearity follow-

ing each hidden layer to be the Gaussian-Error Linear-Unit (GELU) activation functions [63].

GELU activations have the form

𝜎𝐺𝐸𝐿𝑈(z) = z2 (1 + erf (z/√2)) (5.1)

where erf(𝑥) is the Gauss error function. We chose GELU activations for the supervised–

regression–based agent for several reasons: GELU is theoretically motivated because it dif-

ferentiates easily due to its smoothness, and does not saturate anywhere, so gradient descent

does not get “stuck”. Furthermore, it was also used successfully in previous work using neural

networks to model and optimize cold atom experiments [3], albeit without environmental

factors.

To avoid our network weights initialized too large or small (such that training is imme-

diately unstable), our network weights and biases are initialized using the Glorot-normal

method, which is common protocol for neural network design [64, 65]. Glorot-normal ini-

tialization sets the initial weights by drawing them from a normal distribution Normal(0, 𝜏2𝑖 ).
The crucial part of Glorot initialization is choosing the variance of the initial weights. The

variance for a given layer is set based on the number of input nodes and output nodes of that

layer. Specifically, the 𝑖–th layer’s variance is

𝜏2𝑖 = 2𝑑𝑖 + 𝑑𝑖+1 , (5.2)

where 𝑑𝑖 is the number of inputs and 𝑑𝑖+1 is the number of outputs. The factor of 2 in the

numerator is because in backpropagation, there are two sources of gradients: one during the

forward pass and another during the backward pass, and we assume that these two sources are

equally significant. When one computes the gradients during backpropagation, one considers

both the gradient of the loss with respect to the input (forward-pass gradients) and the gradient

of the input with respect to the weights (backward-pass gradients).

The weights and biases are adjusted with a gradient descent algorithm as written in equa-

tion 2.4. The procedure we choose for dynamically adjusting the learning rate 𝜂𝑡 is the Adam

algorithm, which is also standard protocol for modern neural network design [66]. Adam

works by adjusting the learning rate based on quantities known as the first and second mo-

ments of the gradients. The first moment is a moving average of the gradients, and is updated

at each iteration of gradient descent. At iteration 𝑡+1, the first moment of the gradient,m𝑡+1,



Supervised–Regression–Based Agent 37

is calculated as

m𝑡+1 = 𝛽1m𝑡 + (1 − 𝛽1)∇𝜃∇𝜃∇𝜃𝐿(Y, f(X; 𝜃𝜃𝜃)) (5.3)

The second moment is a moving average of gradients squared, and it essentially tracks how

much the gradients vary. At iteration 𝑡 + 1, the second moment of the gradient, v𝑡+1, is
calculated as

v𝑡+1 = 𝛽2v𝑡 + (1 − 𝛽2)[∇𝜃∇𝜃∇𝜃𝐿(Y, f(X; 𝜃𝜃𝜃))]2 (5.4)

where 𝛽1,2 are the hyperparameters controlling the moving average decay rates. To correct

bias of the raw first and secondmoments towards their initialized values of zero, bias corrected

moments m̂𝑡 and v̂𝑡 are calculated as

m̂𝑡 = m𝑡1 − 𝛽𝑡1 (5.5)

v̂𝑡 = v𝑡1 − 𝛽𝑡2 (5.6)

where 𝛽𝑡1,2 means 𝛽1,2 to the power of timestep 𝑡. Due to the fact that the moving averages are

being updated from a zero initial value, any small correction has a substantial effect. In prac-

tice, this can cause a bias towards lower values, making the optimization less stable. These

corrected moments amplify the moment estimates at initial times. With these corrected mo-

ments, the network parameters are updated as

𝜃𝜃𝜃𝑡+1 = 𝜃𝜃𝜃𝑡 − 𝜂0m̂𝑡√v̂𝑡 + 𝜖 , (5.7)

where 𝜂0 is the initial learning rate hyper-parameter and 𝜖 is a small constant added to prevent

division by zero. Note that the square root and subsequent division of vectors denotes element-

wise operation. For clarity, the network parameters denoted 𝜃𝜃𝜃 consists of weights and biases.

Each layer, being a linear transformation, has a weight matrixW𝑖 and bias vector b𝑖, such that

learning all of the parameters 𝜃𝜃𝜃means learning all the elements𝑤𝑖𝑗𝑘 of a rank-3 weight tensor,

and all elements 𝑏𝑖𝑗 of a rank-2 bias tensor.

In Adam, the first corrected moment plays the role of momentum for the gradient des-

cent, as it captures the historical trend of how the gradients have been changing, giving some

inertia to the parameter updates. The second moment keeps track of how much the gradi-

ents have been varying or fluctuating, essentially modulating the parameter updates based on

local curvature of parameter space. We find best predictive performance with decay factors𝛽1 = 0.9 and 𝛽2 = 0.995, stability factor 𝜖 = 1 × 10−7, and initial learning rate 𝜂0 = 0.00005.
A possible pitfall in this agent’s design is catastrophic untracked changes, such as the

spontaneous unlocking or mode-hopping of one of our lasers. As a contingency to make the

training more robust against these rare outlier points, performance evaluation is carried out



Supervised–Regression–Based Agent 38

using the Huber loss function [67]:

𝐿(Y, f(X; 𝜃𝜃𝜃)) = 1𝑁 𝑁∑𝑖 {
12 |f(x𝑖; 𝜃𝜃𝜃) − y𝑖|2 , if |y𝑖 − f(x𝑖; 𝜃𝜃𝜃)| < ΔΔ(|y − f| − Δ/2) , otherwise.

(5.8)

Huber is essentially a basic mean squared error loss function for errors less than some hy-

perparameter Δ, and it is linear for errors larger than Δ, while still remaining differentiable.

This makes the agent underreact to very large errors, such that the network’s learning is less

sensitive to large outliers.

Neural networks, such as this supervised learning regression model, are complex mod-

els with many fittable parameters. When there is noise present in data, neural networks can

overfit the noise, similar to how a high-order polynomial could perfectly fit data generated

by adding noise on top of a low-order polynomial [68]. To prevent overfitting in our model,

training is terminated when the model’s loss, validated on previously unseen data, no longer

improves with subsequent epochs. To be sure the solution is not just stuck in local minimum

which could be overcome with the stochasticity of our gradient descent method, we allow the

optimizer 50 epochs to find its way out before terminating and going back to the best perform-

ing parameter set. This is a common technique, sometimes refereed to as early-stopping [17,

69]. A typical training curve is shown in figure 5.1. Notice that the validation loss eventually

stops improving while the training loss continues to become smaller, showcasing the benefit

of our early stopping implementation.

It is important to note that, unlike with the RL agent (see subsequent section), we do not, in

the final model, include additional elements in the environmental parameter vector to handle

partial observability, such as information about the model’s previous performance. Trials that

included these elements resulted in inferior control–parameter actions within our architecture.

The core principle of this regression–based agent is to select the control–parameter set that

maximizes the atom number, given a specific environmental state, by partially optimizing the

model while holding the environmental parameters constant in the current configuration (Fig-

ure 5.2). The control parameter set that maximizes the atom number, given an environmental

parameter set, is

x∗𝑐 = argmax
x𝑐 {𝐹(x𝑐,x𝑒)}, (5.9)

where x𝑒 denotes the current environmental state, and 𝐹(x𝑐,x𝑒) represents the networkmodel

approximating the atom number as a function of control and environmental parameters.

The selection of control–parameter values in this scheme, as is common in similar experi-

ments, relies on finding the set that maximizes the network’s output. While neural networks

may not in general possess explicit analytical invertibility, approximate optimization methods

can be used, such as the gradient–free Nelder–Mead [44] method or probabilistic Bayesian op-



Supervised–Regression–Based Agent 39

0 20 40 60 80 100
Training epoch

0.00

0.01

0.02

0.03

0.04

0.05

L(
Y,
f(X

;
))

Training
Validation
Callback point

Figure 5.1: Sample training curve of the supervised learning model. Huber loss as a function of epoch
(epoch refers to a single pass through the entire training dataset during the training of a neural network),
for both training data (blue), as well as validation data (orange). The training and validation data are
partitioned in ratio 85:15, at random. The epoch with the lowest validation loss is indicated (green
cross), i.e. the weights to which the model is restored.

timization. In this experiment, we employ the Nelder–Mead algorithm, as it yielded the best

results given our time constraint that control parameters need to be generated before changes

to the environment occur, i.e. optimization ought to take a matter of seconds. Although we ex-

plored Bayesian optimization with Gaussian processes, and it returned similar optimizations

to the Nelder–Mead when tested offline, the computational feasibility was limited due to the

significant training time required for the Gaussian-process regressor: the computational com-

plexity of the Gaussian-process regressor scales cubically with the number of function calls [47,

50], making it impractical for optimizing the neural network within a reasonable timeframe,

i.e., before significant changes in the environmental state occur. We found that each Bayesian

optimization would take over 15 minutes. On the contrary, the Nelder–Mead optimizations

each took under 5 seconds.

To train the network, data was initially collected by sampling the control parameter space

randomly. Once 1000 such points were collected, we proceeded to construct the training set

using an iterative feedback loop. In this loop, the agent reads the current environmental state,

adjusts the control parameters accordingly, creates an atomic ensemble, and measures the



Reinforcement Learning Agent 40

Figure 5.2: Schematic diagram of regression–based agent’s live control loop, adapted from our paper
[58]. The neural network regressor uses its bank of training data to makes a map between the concat-
enated control and environment parameter vectors, and the numbers of atoms imaged. The network is
then partially optimized to find the control parameters that maximize the outputted number of atoms,
given the current environmental state. These maximizing control parameters are implemented into
our system, and the resulting cloud of cooled atoms is imaged. With this additional experience tuple
consisting of the new atom number and the control and environmental parameters that generated it,
the network weights and biases are retrained and the loop may repeat.

number of atoms. This experience tuple is added to the training data bank. By doing so,

the network has an expanding training set to improve its model fitting. The feedback loop

continues until a training set of 10 005 points is established. The size of this training data

bank is large compared to similar experiments [3, 10], which is necessary because our model

incorporates environmental parameters that our agent cannot directly control, meaning that

many iterations are required to obtain a representative sampling of the combined control and

environment space.

5.2 Reinforcement Learning Agent

We refer to the second agent as our reinforcement learning agent. Our system was specifically

designed such that the observed outcomes are decoupled from previous control parameter

actions, technically making it akin to a contextual bandit problem [41]. Solving contextual

bandits is a whole area of research separate from the more complex area of RL for Markov

decision processes [42]. Despite the reduced complexity resulting from the decoupling, we

opt for a more powerful RL approach as opposed to more traditional contextual bandit solving

algorithms. We make this choice for several reasons. The proximate reason being the con-

tinuously varying environment. The vast majority of work in the space of contextual bandits

are in on the case where the “contexts”, i.e. the environmental states, are discrete. We could

have discretized our environment state space such that sensed values within a predetermined

bin were recorded as a discrete value. However, it is difficult to know a priori how small or

large to make such bins, so as to not wash out significant changes in the state. The secondary

reasons for choosing the generically more powerful RL method are the high dimensionality

of the action space, our lack of knowledge about the objective function’s true form, the need



Reinforcement Learning Agent 41

for quick generation of control parameter actions, and the potential for a partially observable

environment leading to heteroscedasticity [70].

In contrast tomodels like our supervised regression–based agent, whichwas trained to pre-

dict the desired outputmetric based on inputs including the control parameters, the philosophy

of RL is to explicitly train an agent to learn an optimal policy, from which control parameter

actions may be drawn. Here, we build our agent as an actor-critic neural network. Actor-critic

networks are well-suited here, as they generalize naturally to continuous action spaces and

learn stochastic policies which allow our optimizing agent some degree of exploration. We

show a schematic of the control loop in figure 5.3.

Figure 5.3: Schematic diagram of the actor-critic agent’s live control loop, adapted from our paper [58].
The agent leverages the sensed current environment as well as information about its own previous
performance to output a probabilistic policy, from which control parameter actions are drawn. The
control parameters are implemented into our system, and the resulting cloud of cooled atoms is imaged.
The weights and biases of the actor-critic network are then adjusted depending on the number of atoms
in the cloud. This loop may then repeat.

Our actor-critic is built as a single neural network. In the literature, schemes exist where

the actor and critic are individual neural networks, as well as schemes where a single neural

network has output nodes for both the actor’s policy and the critic’s value function prediction

[71]. We chose a single network to both save memory and processing power by reusing parts

of the network for both tasks, and so the actor and critic can share learned features of the

problem.

The sole input to our network is the environmental state vector, x𝑒. The network out-

put has two heads: the first head, the actor, seeks to output an optimal policy that chooses

subsequent control parameter values, x𝑐. Considering the 30-dimensional control parameter

space in this problem, the actor is learning a 30-dimensional independent normal distribution

𝜋(x𝑐|x𝑒) = Normal(𝜇𝜇𝜇(x𝑒),𝜎𝜎𝜎(x𝑒)) (5.10)

The actor head consists of 60 output nodes, half of which are learning-control–parameter

means 𝜇𝜇𝜇, while the other half are the associated variances 𝜎𝜎𝜎2. To avoid outputed values in-

compatible with our system’s hardware (for example requesting a bias field that our power

supplies physically could not generate) the mean approximating nodes are bounded using



Reinforcement Learning Agent 42

hyperbolic-tangent activation functions, which limits the potential outputs within our allowed

range while maintaining differentiability of the network through back-propagation. Similarly,

we bound the variance-approximating nodes to be always larger than zero. To accomplish this

while still maintaining differentiability, these nodes are followed by softplus activations

softplus(𝑥) = log(exp(𝑥) + 1) . (5.11)

The other head, the critic, consists of a single node. The critic learns to predict the value

function ̃𝑣𝜋(x𝑒), that is it seeks to predict the resulting atom number while following the

actor’s policy, given the input environmental state.

The internal architecture of our actor-critic agent consists of four hidden layers, each com-

prising 128 neurons. Similarly to the supervised regression–based agent, the network is ini-

tialized using the Glorot-Normal method (equation 5.2), and network weight and bias updates

are computed using the Adam algorithm (equation 5.7) with hyper-parameters (𝛽1 = 0.9,𝛽2 = 0.995, 𝜖 = 1 × 10−7, 𝜂0 = 0.0001). Unlike the supervised regression–based agent, there

was a problem encountered during training: the issue of exploding gradients [72]. Explod-

ing gradients are a problem with neural networks during training, when the gradients of the

loss function with respect to the model’s parameters become extremely large. This leads to

numerical instability and makes it difficult for the network to learn effectively. The GELU

activation function allowed the gradients to blow up and the training to fail (see figure 5.4

for a sample training curve where the gradients explode and learning become unstable). To

address the issue of exploding gradients during training, we employ Scaled Exponential Linear

Unit (SELU) activation functions for each hidden layer [73]. Critically, SELU activations have

a self-normalizing property, which keeps the gradients from exploding. SELU activations en-

courage each neuron’s output to maintain a mean value close to zero and a variance close to

one. These activations have the form

SELU(𝑥) = 𝜆 {𝑥, 𝑥 > 0𝛼(exp(𝑥) − 1), 𝑥 ≤ 0 (5.12)

where 𝛼 and 𝜆 are scaling hyperparameters. Through experimentation with various activa-

tion functions, we found that SELU effectively mitigated the gradient instability and allowed

training to converge to a well–performing policy.

The supervised regression–based agent uses early stopping, which is a very natural mech-

anism for preventing overfitting. For reinforcement learning, where the goal is not as simple

as fitting models to data, other techniques are needed. For our actor-critic network, we apply

an 𝐿1-norm penalty term as regularization, which helps prevent overfitting [17] and has added

benefit of promoting sparsity in the network weights, meaning it has the potential to implicitly

reduce the dimensionality of the problem [74]. An 𝐿1-norm penalty, sometimes referred to as

LASSO (least absolute shrinkage and selection operator) is the addition of a term to the loss



Reinforcement Learning Agent 43

function proportional to the norm of each layer’s weight matrix ||W𝑖||. We add an 𝐿1 penalty
for each layer of our network, such that our network learns by minimizing the modified loss

function ̃𝐿(Y, f(X; 𝜃𝜃𝜃);𝜅𝜅𝜅) = 𝐿(Y, f(X; 𝜃𝜃𝜃)) + 𝑁∑𝑖 𝜅𝑖||W𝑖|| (5.13)

where 𝜅𝑖 determines how harsh the penalty is for the 𝑖-th layer. We follow a standard approach

and allow all the layers’ 𝜅𝑖 = 𝜅 = 0.01. Notice the penalty is only added to the weights, not

the biases. Overfitting occurs when a model becomes overly sensitive to small variations

in the input data, resulting in complex, oscillating functions that try to precisely match the

target values. This phenomenon demands a high degree of curvature in the model’s learned

function. The bias parameters, on the other hand, do not significantly influence the curvature

of the model. They primarily affect the model’s translation, shifting it up or down. Therefore,

regularizing bias terms often provides minimal benefit, as the focus of regularization is to

control the complexity and variance of the model.

The network’s critic node is optimized by iteratively adjusting the network’s weights and

biases according to equation 2.13. These updates, which follow the gradient of the critic’s value

function in a direction chosen by the sign of the temporal difference error, may be reformu-

lated by minimizing a squared-error loss function. This makes our agent network compatible

with Tensorflow’s gradient calculating capabilities [75]. For our case, in which subsequent

environmental parameters are decoupled from the previously chosen control parameters, the

critic loss function looks like

𝐿𝑐 = [log (𝑁) − ̃𝑣𝜋(x𝑒; 𝜃𝜃𝜃)]2, (5.14)

where 𝑁 is the measured atom number. Here we have assigned log(𝑁) as the quantity to

be maximized, i.e. reward 𝑅𝑡+1 = log(𝑁). ̃𝑣𝜋(x𝑒; 𝜃𝜃𝜃) is the critic’s value-function prediction,

which depends on learnable network parameters 𝜃𝜃𝜃. The critic’s value-function indicates the

expected number of atoms (on a logarithmic scale) that the network predicts when control–

parameter actions are chosen according to policy 𝜋, given the current environmental state

x𝑒.
The actor nodes are optimized according to equation 2.15, derived from the policy-gradient

theorem. As with the critic, this update rule may be reformulated as a minimization for com-

patibility with the gradient calculating software. This reformulation is less trivial than the

critic loss becoming a squared error, but it may intuitively be understood all the same. The

actor’s policy changes by trying to make a given control parameter set more or less probable

depending if outcomes were better or worse than expected. The actor loss looks like

𝐿𝑎 = − log[𝜋(x𝑐|x𝑒; 𝜃𝜃𝜃)] ⋅ [log (𝑁) − ̃𝑣𝜋(x𝑒; 𝜃𝜃𝜃)] , (5.15)



Reinforcement Learning Agent 44

where𝜋(x𝑐|x𝑒; 𝜃𝜃𝜃) is the probability that control parameter action x𝑐was chosen from the learn-

able conditional probabilistic policy 𝜋(⋅|x𝑒; 𝜃𝜃𝜃). When the critic overestimates the number of

atoms after a given control parameter action, such that zero-discount temporal difference er-

ror log (𝑁) − ̃𝑣𝜋(x𝑒; 𝜃𝜃𝜃) is negative, to make the loss as negative as possible, the probability

needs to be made unlikely. Likewise, if the critic underestimates the number of atoms such

that the temporal difference error is positive, minimizing the loss function requires making the

probability that that control parameter action is drawn to be highly probable. This tandem iter-

ative process of making the critic predict as accurately as possible, while adjusting the actor’s

probabilistic policy to make actions that the critic underestimated likely (and overestimated

unlikely) is exactly how our actor-critic agent converges to a high performing policy.

The total non-𝐿1-penalized loss function is thus a weighted sum of the two constituent

loss functions

𝐿 = 𝜌𝑎𝐿𝑎 + 𝜌𝑐𝐿𝑐 , (5.16)

where the weighting coefficients 𝜌𝑎,𝑐 are hyper-parameters that can be thought of as different

initial learning rates for the actor and critic. We found the balance between 𝜌𝑎 and 𝜌𝑐 quite

brittle. Too large of a 𝜌𝑐/𝜌𝑎 leads to an overly conservative actor, whereas if the ratio is made

too small the actor will take over-reactive actions. We found best results when over-weighting

the critic relative to the actor 100 fold, i.e. 𝜌𝑐/𝜌𝑎 = 100.
Despite the comprehensive sensor array we deploy, the complex nature of atom cooling

leads us to hypothesize that the recorded environmental parameters may not fully capture

the complete environmental state. This limitation, known as the issue of partial observabil-

ity, means that the agent has access to only a subset of the pertinent information required

for informed decision-making. Building upon prior research on autonomous curling robots

[76], we enhance the actor-critic network by incorporating temporal information from the

agent’s past performances. Specifically, we augment the environmental state with variables

such as the previous atom number, the previous value function, and the probability of selecting

the previous action based on the previous policy. Consequently, the agent can leverage not

only the current environmental measurements but also its recent performance history when

making decisions. For example, with these additional parameters the agent can know that

the previous critic prediction was a vast over-estimate, caused by some un-tracked environ-

mental parameter, and it should attempt to adjust its policy and value function estimation as

a response.

The vanilla policy gradient method used to train actor-critic models is generally an online

algorithm, where the networkweights and biases are updated after every new experience tuple

collected. Here, an experience tuple consists of the environmental parameters, control para-

meters, and the atom number: {x𝑒,x𝑐, log(𝑁)}. Re-calculating the gradient based on the entire

bank of past experiences is computationally expensive, and furthermore loses the benefits



Parameter Importance Algorithm 45

of randomly sampling experiences to introduce some stochasticity into the gradient descent.

Conversely, calculating the gradient using only the newest experience results in extremely

high variance in the updates. As a consequence, the model’s parameters can oscillate wildly

from one iteration to the next, making convergence very noisy and erratic. To ensure some

degree of gradient-calculation stability, we maintain a small experience-replay buffer [77] for

performing batch stochastic gradient descent. Due to the addition of historical performance

parameters to combat partial-observability, we refrain from randomly sampling the batches

for gradient calculation from the experience-replay buffer, so that only the most temporally

recent experiences are used in the calculations. Each new experience tuple is appended to the

beginning of the buffer, while the oldest point is discarded. Additionally, to use the previously

collected experiences from the supervised regression–based agent detailed below, we provide

the actor-critic agent with a head start. Before deploying the actor-critic and allowing it to

train itself, we train the it on this bank of previously collected points as if they were being

collected live, allowing the agent to benefit from this initial training data.

5.3 Parameter Importance Algorithm
Aside from using a regression–based agent for live control of atom cooling procedures, the

agents’ predictive capability could makes them valuable for experimental design purposes.

By leveraging the trained model, we can gain insights into the influence of different measured

environmental parameters on the resulting number of atoms. This analysis helps experimental

designers identify the critical components of the apparatus that require improvement and

optimization. Furthermore, lack of predictive ability can imply that certain key parameters

were not being tracked.

To estimate parameter importance, we use a feature permutation algorithm [78]. The al-

gorithm for estimating environmental parameter importance for our regression model is as

follows:

1. Train the model using an 85% randomly selected subset of the data bank, incorporating

all environmental parameters.

2. Evaluate the Huber loss for the predictions on the remaining 15% of the data, which

serves as the validation set.

3. Select an external parameter and randomly shuffle its values while keeping all other

parameters unchanged. Re-evaluate theHuber loss on the same validation set to quantify

the increase in the loss value, indicating the importance of the parameter.

4. Repeat this process for each parameter column in the input array.

We repeat the algorithm 50 times, selecting different validation sets at random in each iteration.



Parameter Importance Algorithm 46

20

15

10

5

0
L(
Y,
f(X

;
))

0 100 200 300 400
run number

0.06

0.04

0.02

0.00

0.02

Ex
am

pl
e 

co
nt

ro
l p

ar
am

et
er

, A
24

 
3D

 M
OT

 c
oo

lin
g 

se
t f

re
qu

en
cy

 f
f 0

 (M
Hz

) policy mean
policy uncertinaty (1 )

Figure 5.4: Sample offline training of the RL agent using GELU activations instead of SELU. Top:
Training loss (equation 5.16) as new experiences are collected and the agent’s network weights are
adjusted via batch gradient descent. Note for roughly the first 300 training epochs, the loss appears
relatively stable before rapidly diverging. This behavior occurs when the initial weights of the neural
network are such that the gradients remain manageable for the first few epochs, allowing for some
progress in training, before suddenly blow up due to exploding gradients. Bottom: Sample dimension
of the policy, as new experiences are collected and training progresses. This dimension corresponds to
theMOT laser cooling frequency (control parameter A24 in table 4.1) policy, where we display themean
value (green), and one standard deviation (gold). Note that when the gradient calculations become
unstable, the MOT laser frequency mean becomes further detuned off resonance, and the variance
collapses to zero.



47

Chapter 6

Results

In this chapter, we present the results of deploying our agents live. We show the predictive

ability of both agents, estimations of environmental parameter importance based on the pre-

dictive capability, and we compare the agents’ ability to vary the controllable parameters in

response to environmental changes. The live control performance of each agent is furthermore

compared to other baselines to gauge the viability of using such agents.

6.1 Supervised–regression–basedAgent Performance

Chronologically, we trained the supervised–regression–based agent before the RL agent. We

initially trained this agent on 7000 experiences split 85:15 into training:validation subsets. This

milestone was chosen as validation-data predictive ability begins to plateau around this num-

ber of experiences. The first 1000 experienceswere collected by randomly sampling the control

space while reading the environmental states. The next 6000 experiences fill out the training

set by numerically finding the control parameters maximizing the network output, given the

current environmental state. To allow fair comparisons between the agents, the regression–

based agent’s performance is ultimately re-evaluated using the full bank of experiences, in-

cluding those collected by the RL agent’s exploration, thus resulting in a total data bank of10 005 experiences.

To assess the predictive capability of adding environmental parameters to extend the class

of supervised learning based agents as we have done in this work, we evaluated the perform-

ance in predicting atom numbers for given control parameter sets {x𝑐} when including or

excluding the respective environmental parameter sets {x𝑒}. To accomplish this we retrained

the model 500 times, each time randomly divided into training and validation sets using an

85:15 split, with different random partitions of the data for each retraining.

On average, we observed a significant reduction in our loss metric when incorporating

environmental parameters into the model (Figure 6.1a). This provides confirmation both that

the parameters we chose to measure do indeed influence the resulting number of atoms cooled,



Supervised–regression–based Agent Performance 48

as well as that the architecture of the network underpinning this model is able to capture at

least some of the complex relationships between environment, control parameters, and atom

number.

Figure 6.1: Supervised learning model predictive results, adapted from our paper [58]. a Histograms
of validation data loss, for models including (green) and excluding (gold) environmental parameters.
The model is retrained 500 times with a different randomly selected validation set each time. b Model
prediction (gold) of drifting atom numbers (green). Control parameters are fixed, such that the drift is
driven solely by environmental changes. The model’s prediction (red) is also shown when excluding
the environment.

We further evaluated the predictive power of the model on a separate set of testing points,

where the control parameters were kept constant and atom-number fluctuations were driven

by the environment only. Our model often successfully predicted (varying) atom numbers

over periods as long as 2 hours, consisting of 160 iterations. Figure 6.1b shows a particularly

striking example of the model accurately predicting the atom number in response to solely the

environmental fluctuations.

After training the regression–based agent and verifying its predictive capacity, we evalu-

ated its performance in generating control–parameter actions in response to different envir-

onmental conditions. Ultimately, the effectiveness of the agent should be assessed on two

primary metrics: achieving a high overall atom number and maintaining consistent and stable

performance over time. To evaluate its live control capabilities, we grant the agent full con-

trol of the control parameters for a continuous period of two hours. For comparison, we also

assess the performance by fixing the control parameters at the best configuration determined

by human experts in our laboratory. This best “human expert” derived parameter set is found

by simply scanning each control parameter one at a time in an iterative pattern until further

improvement can not be achieved.

Figure 6.3c illustrates the results obtained from the agent’s live control and the human

expert’s best set. While the agent occasionally achieves control parameter sets that surpass

human performance, there remains a significant variance in the resulting atom numbers. Over

our 160 cycle showcase, the resulting log(𝑁) generated by the agent has a variance of 0.14,



Reinforcement-Learning-Based Agent Performance 49

compared to fixing the control parameters at the human expert’s best set resulting in a log(𝑁)
variance of 0.01. In figure 6.3d, we show the agent’s chosenMOT laser cooling frequency as an

example of the large cycle-to-cycle variability of the control parameters. Note that this high

variability in the resulting control parameter set quality is not unexpected. It is consistent

with observations from similar experiments [3, 10] inverting supervised learning models to

find control parameter sets. In these works, the environment is not considered, so all they

needed was a single high performing set which they could henceforth use every cycle. The

fact that most optimizations of their model result in poorly performing control parameter sets

is of little consequence. This variability however limits such supervised regression–based

agent’s suitability for live adaptive control and emphasizes the necessity of RL techniques to

address this challenge.

Although regression–based agents may be inadequate for live control of atom cooling pro-

cedures, their predictive capability makes them valuable for experimental design purposes. By

leveraging this trained model, we can gain insights into the influence of different measured en-

vironmental parameters on the resulting number of atoms. This analysis helps experimental

designers identify the critical components of the apparatus that require improvement and op-

timization. To estimate parameter importance, we use a feature permutation algorithm (see

section 5.3), and we present this metric for all parameters in figure 6.2.

Figure 6.2: Importance of environmental parameters E𝑖 (see table 4.2 for parameter names), adapted
from our paper [58]. The five most important parameters (highlighted gold) include the room temper-
ature (E5) and humidity (E2), as well as the 3D-MOT cooling power (E25) and polarization (E30), and
the 2D-MOT cooling power (E23).

6.2 Reinforcement-Learning-BasedAgent Performance

The RL-based agent is initially trained on an offline-collected dataset and subsequently re-

fined through live training using the learned probabilistic policy. The training set ultimately

comprises 10 005 experiences collected over a period of approximately three months.

To evaluate the performance of the agent, we assessed its actions by implementing the

control–parameter actions deterministically, i.e., solely from the policy’s mean. Aside from

allowing the regression–based agent to react live to the environment (figure 6.3c), for a com-



Reinforcement-Learning-Based Agent Performance 50

prehensive comparison, figure 6.3a shows the agent’s actions with two alternative baselines:

control parameters fixed at a human-optimized set, and fixed at the best set obtained from our

regression–based agent. Although we see the environment effecting our system’s perform-

ance, one may suggest instead of going through the effort of having an agent live reacting to

the changing environment, we could optimize a supervised learning model several times until

high performance is achieved, and then just apply this control parameter set from that point

onward, effectively treating the environment as background noise. This is why we compared

the RL agent’s live performance to a fixed control parameter set from humanmanual optimiza-

tion, as well as a fixed control parameter set from optimizing a supervised learning model. For

this we ran three independent experiments, and these three different methods are applied in a

sequence one after another. We interchange in between methods in order for the system to be

subjected to approximately the same environment for all three approaches. We assume that

control parameters from the previous experimental run don’t effect the current experiment, so

three approaches act independently. The RL agent can consistently, run-to-run, outperform

fixing the parameter set at human and supervised learning model derived control parameter

sets. This is what is demonstrated over 160 runs in figure 6.3a. We assessed the agent’s per-

formance over a period of 160 experimental runs as this period is long enough to assess the

capabilities of the agent, while being small relative to the size of the training set, so that any

change to agent’s network weights will have a negligible effect on performance.

We found that the RL-based agent generates control parameter actions that outperform

human optimization as well as holding x𝑐 constant at a single high performing set found by

the regression–based approach. Not only did it outperform these two baselines, it did so con-

sistently and autonomously cycle-to-cycle. As an example of the control parameters used to

generate this comparison, figure 6.3b displays the MOT laser cooling frequency dimension of

the multivariate policy. On the other hand, the RL agent was not able to fully compensate the

drift present in the atom number. While it was able to find a high performing x𝑐 set in spite of

the fluctuating environment and atom number drift, it lacked the capability to fully dampen

the effect of the environment.

To further assess the effectiveness of our actor-critic network, we examined the predictive

capabilities of the critic. Figure 6.3a additionally presents a comparison between the atom

numbers obtained by following the actor’s policy and the critic’s estimations. The critic’s

ability to accurately predict the atom numbers generated by the actor’s policy serves as extra

validation of the RL scheme. The effectiveness of the critic’s predictions is crucial in this

scheme for several reasons. The critic provides feedback to the actor by estimating the value

of different environmental states. These estimates act as a guide for the actor to discern which

actions are more likely to lead to higher rewards. If the critic’s predictions are inaccurate,

the actor will receive misleading information, hindering the learning process and the agent’s

ability to make optimal decisions. Additionally, a well-performing critic contributes to the

stability of the learning process. When the critic provides reliable assessments of state values,



Reinforcement-Learning-Based Agent Performance 51

it helps smooth out the learning trajectory, preventing erratic updates to the policy. This

stability is crucial for convergence to an optimal policy and ensures that the actor’s learning

process is grounded in meaningful evaluations of its actions. Lastly, the predictive ability of

our critic acts as confirmation that the architecture of the neural network is adequate to capture

the complex relationships between the environment, control parameters, and resulting atom

number.

2.0

0.0

-2.0

-4.0

4.0

critic prediction

reinforcement learning

regression-based: best

manual: best

8.8

8.6

8.4

8.2

8.0

L
o
g
a
ri

th
m

ic
 a

to
m

 n
u
m

b
e
r,

 l
o
g
(N

)
3
D

-M
O

T
 c

o
o
lin

g
 s

e
t-

fr
e
q

.,
 f
-f
0
 (

M
H

z
)

V
a
lu

e
 f
u
n
c
ti
o
n

E
x
a
m

p
le

 c
o
n
tr

o
l 
p
a
ra

m
e
te

r,
  
A

2
4

2.0

0.0

-2.0

-4.0

4.0

Reinforcement learning Supervised machine learning

a

b

c

d

Figure 6.3: Machine learning performance, adapted from our paper [58]. a In terms of the target
atom-number value function, we compare the reinforcement-learning actor-critic’s live control of the
control parameters (top, dark green) vs. fixing the control parameters at the best human-optimized set
(red) and the best ever set from our regression–based agent (gold). Each run of these three approaches
are performed one after another so that the system is subjected to approximately the same environment
for all three approaches, i.e., the RL agent takes an action, followed by the fixed regression-agent derived
action, followed by the human optimized action. Control parameters from the previous experimental
run do not effect the current experiment, so the three approaches act independently. Note here that a
run for a given approach constitutes applying the cooling sequence, followed by extracting the resulting
number of atoms from the TOF image. This pattern then repeats 160 times. The critic’s prediction of
the agent’s performance is also shown (light green). bMOT laser cooling frequency (control parameter
A24) policy, showcasing the mean value (green), and one standard deviation (gold). c Live performance
of the supervised ML agent (green), noting that scale is expanded compared to the RL results, in light of
the large fluctuations in the performance. dOptimizedMOT laser cooling frequency (control parameter
A24) policy determined by the supervised ML agent.



52

Chapter 7

Discussion

The impetus for this work was a genuine need to stabilize our Bose-Einstein condensate gener-

ating system. While this same unstable system was used successfully in various recent works,

including a demonstration of full control of an ultracold atomic qutrit [79], as well as Floquet

engineering non-Abelian geometric phase for the application of holonomic quantum comput-

ing [80], the fluctuation of atom number was a huge hindrance and potentially even a critical

limitation. At its most benign, it limited the use of the system to only a few hours per day, as

the generated ensembles could become so small that it was no longer possible to image the

transfer of fractions of the total ensemble population between different quantum mechanical

states. Furthermore, in the Floquet-engineering for holonomic quantum computing work, it

was found that such a scheme is unrobust to dynamic changes in resonance likely driven by ex-

ternal magnetic fields. Therefore, a self-correcting and environmentally stable system would

not only drastically increase the hours available for scientific use but also potentially enhance

the sophistication of the system’s scientific capabilities.

The idea of live, autonomous optimization and control of atom-cooling apparatuses was

largely unexplored, particularly in the context of high-dimensional control–parameter and

environmental-parameter spaces. In this way, the work presented in this thesis was a suc-

cess. We have taken existing machine learning methods used for atom cooling and extended

them to be live-reactive to environmental changes, as well as introducing a reinforcement

learning approach, which at the time of starting this work was entirely novel for cold atom

preparation. We have shown both methods to at least occasionally generate control parameter

sets that outperform sets derived by human optimization, and most notably, the reinforcement

learning approach was able to consistently cycle-to-cycle outperform all of our other baselines,

including human optimized.

When considering the problem of fluctuating atom number that this work was intended

to solve, it was less successful. The supervised learning-based agent had much too high of

a variance in quality to be suitable for live control, and although the reinforcement learning

agent could achieve consistent high performance, the resulting atom number did not have



Discussion 53

significantly less drift than the other baselines. The exact reason for this is hard to know and

is potentially multifaceted. The fact that the agents, particularly the RL agent, was able to

learn a high performing (albeit not significantly drift-resistant) policy gives confidence that

the architecture of the agent was not the issue. What is most likely seems to be that there

is some critical but untracked environmental parameters, or some critical control parameters

that the agent does not have control of, or a combination of both. In fact, this does appear

to be the case. At the time of writing this thesis, it has been discovered that the laser beam

providing the optical pumping transition was such an untracked source of drift. Specifically,

the polarization of the optical pumping beam was not always right-circularly polarized, such

that inefficient or even destructive optical pumping would sometimes occur. This appears to

be due to a combination of the beam before the fiber having a spurious elliptical polarization,

as well as the polarization rotating in the fiber due to light poorly aligned along the fiber’s two

orthogonal polarization-maintaining axes. The agent had neither a mechanism of sensing this

polarization issue, nor a mechanism of correcting it. It was after the partial failure of our

agent to compensate for drift given the environmental and control parameters, that led us to

know that other untracked and uncontrolled parameters were critical. While having the least

scientific novelty, it is perhaps in this way that this work has impacted the apparatus the most.

Given the apparent success of the RL agent relative to the supervised regression–based

agent, there is a very natural question of why it performs better.

Overall, while our findings suggest the applicability of RL actor-critic models in controlling

the production of ultracold ensembles, we envision this as just the beginning of this a bur-

geoning area of research, as well as a tool in our laboratory. We were likely limited by a

combination of not sensing all the relevant environmental parameters, not allowing control

of all the relevant control parameters, and a general dearth of training data. This work has

primed us to remove the parameters we found not to be important, and include parameters

that were since found to be important. Furthermore, there are some potential ways to in-

crease the speed of training point collection. Allowing a non-destructive imaging technique

like fluorescence imaging as opposed TOF absorption imaging would allow the data collec-

tion to run non-stop, irrespective of which experiment is being performed using the appar-

atus. With many points being collected offline, algorithms designed explicitly to be off-policy,

such as Soft Actor-Critic [41, 81], could be used to great effect. Additional computing power

could allow more-expensive global optimization of neural network regression models, such as

Bayesian optimization with Gaussian processes. This, coupled with significantly more train-

ing points, could enable regression–based approaches to achieve similar, or even superior,

performance compared to RL. Such a high-performing supervised learning model, forming a

trustworthy mapping between the combined space of control and environmental parameters

to resulting atom number, would have the additional benefit of allowing experimentalists to

see how control parameter sets predicted to be high-performing react to perturbations in the

environmental parameters, thus giving an estimate of control parameter robustness.



Discussion 54

There are many more directions that this work could take as well. Other forms of RL such

as Q-learning [41, 82, 83] or Monte-Carlo policy gradients [41, 84] may also hold potential

for producing interesting results when applied to the control and optimization of ultracold

atom experiments. Discretization of the environment space to enable the application of stand-

ard contextual bandit-solving algorithms like 𝜖-greedy or gradient bandits is a potential av-

enue for investigation [41]. Moreover, the incorporation of more complex reward schemes,

including ensemble temperature, cooling duty-cycle duration, and cloud shape, among others,

could further enhance the performance of such RL approaches. If stability is valued above all

else, a reward scheme that maximizes when the resulting atom number is equal to a target

atom number could be employed. Additionally, considering phase space density along with

atom number and giving the agent control over the details of the evaporation trajectory, our

RL protocol could naturally be extended to control the production of BEC. Integrating these

ML approaches with advanced environmental-state monitoring, such as magnetometry via

the Faraday effect [85] or even using a convolutional neural network to extract non-obvious

environmental factors reflected in the TOF images [21, 86], and implementing supplementary

hardware configurations like additional coils for magnetic-field compensation [87], RL control

could emerge as a crucial tool in the toolkit of atomic physics research and in other similarly

high-dimensional experimental systems



55

References

1 M. Krenn, M. Erhard and A. Zeilinger:

‘Computer-inspired quantum experiments’,

Nature Reviews Physics 2, 649–661 (2020).

2 R. Heck, O. Vuculescu, J. J. Sørensen, J. Zoller, M. G. Andreasen,M. G. Bason, P. Ejlertsen, O. Eliásson,

P. Haikka, J. S. Laustsen et al.:

‘Remote optimization of an ultracold atoms experiment by experts and citizen scientists’,

Proceedings of the National Academy of Sciences 115, E11231–E11237 (2018).

3 A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam,

B. C. Buchler and G. T. Campbell:

‘Multiparameter optimisation of a magneto-optical trap using deep learning’,

Nature communications 9, 4360 (2018).

4 S. Xu, P. Kaebert, M. Stepanova, T. Poll, M. Siercke and S. Ospelkaus:

‘Maximizing the capture velocity of molecular magneto-optical traps with bayesian optimization’,

New Journal of Physics 23, 063062 (2021).

5 P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian, M. A. Sooriyabandara, G. D. McDonald,

K. S. Hardman, C. D. Quinlivan, P. Manju, C. C. Kuhn et al.:

‘Fast machine-learning online optimization of ultra-cold-atom experiments’,

Scientific reports 6, 25890 (2016).

6 I. Nakamura, A. Kanemura, T. Nakaso, R. Yamamoto and T. Fukuhara:

‘Non-standard trajectories found by machine learning for evaporative cooling of 87 rb atoms’,

Optics express 27, 20435–20443 (2019).

7 Y. Wu, Z. Meng, K. Wen, C. Mi, J. Zhang and H. Zhai:

‘Active learning approach to optimization of experimental control’,

Chinese Physics Letters 37, 103201 (2020).

8 E. Davletov, V. Tsyganok, V. Khlebnikov, D. Pershin, D. Shaykin and A. Akimov:

‘Machine learning for achieving bose-einstein condensation of thulium atoms’,

Physical Review A 102, 011302 (2020).

9 J. Ma, R. Fang, C. Han, X. Jiang, Y. Qiu, Z. Ma, J. Wu, C. Zhan, M. Li, B. Lu et al.:

‘Bayesian optimization of bose-einstein condensation via evaporative cooling model’,

arXiv preprint arXiv:2303.05358 (2023).

10 A. J. Barker, H. Style, K. Luksch, S. Sunami, D. Garrick, F. Hill, C. J. Foot and E. Bentine:

‘Applying machine learning optimization methods to the production of a quantum gas’,

Machine Learning: Science and Technology 1, 015007 (2020).



References 56

11 Z. Vendeiro, J. Ramette, A. Rudelis, M. Chong, J. Sinclair, L. Stewart, A. Urvoy and V. Vuletić:

‘Machine-learning-accelerated bose-einstein condensation’,

Physical Review Research 4, 043216 (2022).

12 P. Baldi, P. Sadowski and D. Whiteson:

‘Searching for exotic particles in high-energy physics with deep learning’,

Nature communications 5, 4308 (2014).

13 D. Finol, Y. Lu, V. Mahadevan and A. Srivastava:

‘Deep convolutional neural networks for eigenvalue problems in mechanics’,

International Journal for Numerical Methods in Engineering 118, 258–275 (2019).

14 F. Schindler, N. Regnault and T. Neupert:

‘Probing many-body localization with neural networks’,

Physical Review B 95, 245134 (2017).

15 J. Caldeira, W. K. Wu, B. Nord, C. Avestruz, S. Trivedi and K. T. Story:

‘Deepcmb: lensing reconstruction of the cosmic microwave background with deep neural networks’,

Astronomy and Computing 28, 100307 (2019).

16 M. Seeger:

‘Gaussian processes for machine learning’,

International journal of neural systems 14, 69–106 (2004).

17 P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher and D. J. Schwab:

‘A high-bias, low-variance introduction to machine learning for physicists’,

Physics reports 810, 1–124 (2019).

18 J. Snoek, H. Larochelle and R. P. Adams:

‘Practical bayesian optimization of machine learning algorithms’,

Advances in neural information processing systems 25 (2012).

19 S. J. Wetzel:

‘Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders’,

Physical Review E 96, 022140 (2017).

20 S. J. Wetzel and M. Scherzer:

‘Machine learning of explicit order parameters: from the ising model to su (2) lattice gauge theory’,

Physical Review B 96, 184410 (2017).

21 N. Käming, A. Dawid, K. Kottmann, M. Lewenstein, K. Sengstock, A. Dauphin and C. Weitenberg:

‘Unsupervised machine learning of topological phase transitions from experimental data’,

Machine Learning: Science and Technology 2, 035037 (2021).

22 C. Wang and H. Zhai:

‘Machine learning of frustrated classical spin models. i. principal component analysis’,

Physical Review B 96, 144432 (2017).

23 A. Rocchetto, E. Grant, S. Strelchuk, G. Carleo and S. Severini:

‘Learning hard quantum distributions with variational autoencoders’,

npj Quantum Information 4, 28 (2018).

24 Z.-Y. Han, J. Wang, H. Fan, L. Wang and P. Zhang:

‘Unsupervised generative modeling using matrix product states’,

Physical Review X 8, 031012 (2018).



References 57

25 Y. Ding, X. Chen, R. Magdalena-Benedito and J. D. Martiń-Guerrero:

‘Closed-loop control of a noisy qubit with reinforcement learning’,

Machine Learning: Science and Technology 4, 025020 (2023).

26 M. Bukov, A. G. Day, D. Sels, P. Weinberg, A. Polkovnikov and P. Mehta:

‘Reinforcement learning in different phases of quantum control’,

Physical Review X 8, 031086 (2018).

27 T. Haug, R. Dumke, L.-C. Kwek, C. Miniatura and L. Amico:

‘Machine-learning engineering of quantum currents’,

Physical Review Research 3, 013034 (2021).

28 F. A. Cárdenas-López, L. Lamata, J. C. Retamal and E. Solano:

‘Multiqubit and multilevel quantum reinforcement learning with quantum technologies’,

PloS one 13, e0200455 (2018).

29 L. Lamata:

‘Basic protocols in quantum reinforcement learning with superconducting circuits’,

Scientific reports 7, 1609 (2017).

30 A. Seif, K. A. Landsman, N. M. Linke, C. Figgatt, C. Monroe and M. Hafezi:

‘Machine learning assisted readout of trapped-ion qubits’,

Journal of Physics B: Atomic, Molecular and Optical Physics 51, 174006 (2018).

31 J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Abdol-

maleki, D. de Las Casas et al.:

‘Magnetic control of tokamak plasmas through deep reinforcement learning’,

Nature 602, 414–419 (2022).

32 Z. Zhou, S. Kearnes, L. Li, R. N. Zare and P. Riley:

‘Optimization of molecules via deep reinforcement learning’,

Scientific reports 9, 10752 (2019).

33 M. Praeger, Y. Xie, J. A. Grant-Jacob, R. W. Eason and B. Mills:

‘Playing optical tweezers with deep reinforcement learning: in virtual, physical and augmented environ-

ments’,

Machine Learning: Science and Technology 2, 035024 (2021).

34 S. Colabrese, K. Gustavsson, A. Celani and L. Biferale:

‘Flow navigation by smart microswimmers via reinforcement learning’,

Physical review letters 118, 158004 (2017).

35 W. Ketterle, D. Durfee and D. Stamper-Kurn:

‘Making, probing and understanding Bose-Einstein condensates’,

in Bose-einstein condensation in atomic gases (IOS Press, 1999), pp. 67–176.

36 Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman and J. V. Porto:

‘Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential’,

Phys. Rev. A 79, 063631 (2009).

37 C. M. Bishop:

Neural networks for pattern recognition,
(Oxford university press, 1995).



References 58

38 M. A. Nielsen:

Neural networks and deep learning,
Vol. 25 (Determination press San Francisco, CA, USA, 2015).

39 D. E. Rumelhart and D. Zipser:

‘Feature discovery by competitive learning’,

Cognitive science 9, 75–112 (1985).

40 R. A. Howard:

Dynamic programming and markov processes.
(John Wiley, 1960).

41 R. S. Sutton and A. G. Barto:

Reinforcement learning: an introduction,
(MIT press, 2018).

42 C.-C. Wang, S. R. Kulkarni and H. V. Poor:

‘Bandit problems with side observations’,

IEEE Transactions on Automatic Control 50, 338–355 (2005).

43 R. S. Sutton, D. McAllester, S. Singh and Y. Mansour:

‘Policy gradient methods for reinforcement learning with function approximation’,

Advances in neural information processing systems 12 (1999).

44 J. A. Nelder and R. Mead:

‘A simplex method for function minimization’,

The computer journal 7, 308–313 (1965).

45 W. H. Press:

Numerical recipes 3rd edition: the art of scientific computing,
(Cambridge university press, 2007).

46 J. Mockus and J. Mockus:

The bayesian approach to local optimization,
(Springer, 1989).

47 R. Garnett:

Bayesian optimization,
(Cambridge University Press, 2023).

48 M. I. Jordan:

Learning in graphical models,
(MIT press, 1999).

49 D. R. Jones, M. Schonlau and W. J. Welch:

‘Efficient global optimization of expensive black-box functions’,

Journal of Global optimization 13, 455–492 (1998).

50 G. Lan, J. M. Tomczak, D. M. Roijers and A. Eiben:

‘Time efficiency in optimization with a bayesian-evolutionary algorithm’,

Swarm and Evolutionary Computation 69, 100970 (2022).

51 P. I. Frazier:

‘A tutorial on bayesian optimization’,

arXiv preprint arXiv:1807.02811 (2018).



References 59

52 C. J. Foot:

Atomic physics,
Vol. 7 (OUP Oxford, 2004).

53 H. J. Metcalf and P. Van der Straten:

Laser cooling and trapping,
(Springer Science & Business Media, 1999).

54 J. Dalibard and C. Cohen-Tannoudji:

‘Laser cooling below the doppler limit by polarization gradients: simple theoretical models’,

JOSA B 6, 2023–2045 (1989).

55 R. Grimm, M. Weidemüller and Y. B. Ovchinnikov:

‘Optical dipole traps for neutral atoms’,

in Advances in atomic, molecular, and optical physics, Vol. 42 (Elsevier, 2000), pp. 95–170.

56 J. D. Jackson:

Classical electrodynamics,
(American Association of Physics Teachers, 1999).

57 J. Pérez-Riós and A. Sanz:

‘How does a magnetic trap work?’,

American Journal of Physics 81, 836–843 (2013).

58 N. Milson, A. Tashchilina, T. Ooi, A. Czarnecka, Z. F. Ahmad and L. J. LeBlanc:

‘High-dimensional reinforcement learning for optimization and control of ultracold quantum gases’,

Machine Learning: Science and Technology (2023).

59 D. W. Preston:

‘Doppler-free saturated absorption: laser spectroscopy’,

American Journal of Physics 64, 1432–1436 (1996).

60 K. H. Ang, G. Chong and Y. Li:

‘Pid control system analysis, design, and technology’,

IEEE transactions on control systems technology 13, 559–576 (2005).

61 R. W. Boyd:

Nonlinear optics, third edition,
3rd (Academic Press, Inc., USA, 2008).

62 W. Gawlik and S. Pustelny:

Nonlinear magneto-optical rotation magnetometers,
(Springer, 2017), pp. 425–450.

63 D. Hendrycks and K. Gimpel:

‘Gaussian error linear units (gelus)’,

arXiv preprint arXiv:1606.08415 (2016).

64 X. Glorot and Y. Bengio:

‘Understanding the difficulty of training deep feedforward neural networks’,

in Proceedings of the thirteenth international conference on artificial intelligence and statistics (JMLRWork-

shop and Conference Proceedings, 2010), pp. 249–256.



References 60

65 L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamariá, M. A. Fad-

hel, M. Al-Amidie and L. Farhan:

‘Review of deep learning: concepts, cnn architectures, challenges, applications, future directions’,

Journal of big Data 8, 1–74 (2021).

66 D. P. Kingma and J. Ba:

‘Adam: a method for stochastic optimization’,

arXiv preprint arXiv:1412.6980 (2014).

67 P. J. Huber:

‘Robust estimation of a location parameter’,

in Breakthroughs in statistics: methodology and distribution (Springer, 1992), pp. 492–518.

68 E. Meijering:

‘A chronology of interpolation: from ancient astronomy to modern signal and image processing’,

Proceedings of the IEEE 90, 319–342 (2002).

69 F. Girosi, M. Jones and T. Poggio:

‘Regularization theory and neural networks architectures’,

Neural computation 7, 219–269 (1995).

70 Q. V. Le, A. J. Smola and S. Canu:

‘Heteroscedastic gaussian process regression’,

in Proceedings of the 22nd international conference on machine learning (2005), pp. 489–496.

71 K. W. Cobbe, J. Hilton, O. Klimov and J. Schulman:

‘Phasic policy gradient’,

in International conference on machine learning (PMLR, 2021), pp. 2020–2027.

72 B. Hanin:

‘Which neural net architectures give rise to exploding and vanishing gradients?’,

Advances in neural information processing systems 31 (2018).

73 G. Klambauer, T. Unterthiner, A. Mayr and S. Hochreiter:

‘Self-normalizing neural networks’,

Advances in neural information processing systems 30 (2017).

74 E. J. Candes, M. B. Wakin and S. P. Boyd:

‘Enhancing sparsity by reweighted l1 minimization’,

Journal of Fourier analysis and applications 14, 877–905 (2008).

75 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg

S. Corrado, AndyDavis, JeffreyDean,MatthieuDevin, SanjayGhemawat, IanGoodfellow,Andrew

Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,

Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu and Xiaoqiang Zheng:

TensorFlow: large-scale machine learning on heterogeneous systems,
Software available from tensorflow.org, 2015.

76 D.-O. Won, K.-R. Müller and S.-W. Lee:

‘An adaptive deep reinforcement learning framework enables curling robots with human-like performance

in real-world conditions’,

Science Robotics 5, eabb9764 (2020).



References 61

77 L.-J. Lin:

‘Self-improving reactive agents based on reinforcement learning, planning and teaching’,

Machine learning 8, 293–321 (1992).

78 A. Fisher, C. Rudin and F. Dominici:

‘All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of

prediction models simultaneously.’,

J. Mach. Learn. Res. 20, 1–81 (2019).

79 J. Lindon, A. Tashchilina, L. W. Cooke and L. J. LeBlanc:

‘Complete unitary qutrit control in ultracold atoms’,

Physical Review Applied 19, 034089 (2023).

80 L. W. Cooke, A. Tashchilina, M. Protter, J. Lindon, T. Ooi, F. Marsiglio, J. Maciejko and L. J. LeBlanc:

‘Demonstration of floquet engineered non-abelian geometric phase for holonomic quantum computing’,

arXiv preprint arXiv:2307.12957 (2023).

81 T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel

et al.:

‘Soft actor-critic algorithms and applications’,

arXiv preprint arXiv:1812.05905 (2018).

82 C. J. Watkins and P. Dayan:

‘Q-learning’,

Machine learning 8, 279–292 (1992).

83 S. Gu, T. Lillicrap, I. Sutskever and S. Levine:

‘Continuous deep q-learning with model-based acceleration’,

in International conference on machine learning (PMLR, 2016), pp. 2829–2838.

84 A. Lazaric, M. Restelli and A. Bonarini:

‘Reinforcement learning in continuous action spaces through sequential monte carlo methods’,

Advances in neural information processing systems 20 (2007).

85 D. Budker, D. Kimball, S. Rochester, V. Yashchuk and M. Zolotorev:

‘Sensitive magnetometry based on nonlinear magneto-optical rotation’,

Physical Review A 62, 043403 (2000).

86 E. Zhao, T. H. Mak, C. He, Z. Ren, K. K. Pak, Y.-J. Liu and G.-B. Jo:

‘Observing a topological phase transition with deep neural networks from experimental images of ultracold

atoms’,

Optics Express 30, 37786–37794 (2022).

87 J. Li, K. Lim, S. Das, T. Zanon-Willette, C.-H. Feng, P. Robert, A. Bertoldi, P. Bouyer, C. C. Kwong,

S.-Y. Lan et al.:

‘Bi-color atomic beam slower and magnetic field compensation for ultracold gases’,

AVS Quantum Science 4 (2022).


	Abstract
	Preface
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background Considerations: Machine Learning
	What is Machine Learning?
	Supervised Learning
	Neural Networks
	Calculation of Gradients

	Reinforcement Learning
	Policies and Actor-Critics 

	Optimization Algorithms
	Nelder–Mead
	Bayesian Optimization


	Background Considerations: Atom Cooling
	Magneto-Optical Trapping
	Optical Molasses
	Magnetic Field Gradient

	Sub-Doppler Cooling
	Magnetic Trapping

	Experimental Design
	Atom Cooling Apparatus
	Cooling Sequence Overview
	Laser System Control
	Magnetic Field Control
	Vacuum System

	Estimating Atom Number From TOF Images
	Environmental Sensing

	Agent Design
	Supervised–Regression–Based Agent
	Reinforcement Learning Agent
	Parameter Importance Algorithm

	Results
	Supervised–regression–based Agent Performance
	Reinforcement-Learning-Based Agent Performance

	Discussion
	References

