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Abstract

Electro-transmittance of molecular junctions was characterized electrically and

studied optically at 410nm and 532nm. Between 1kHz and 100kHz there was

no qualitative difference between the control samples and the molecular junc-

tion samples, however there were difficulties with reproducibility of the quan-

titative behaviour, so no hard conclusions could be drawn. A microfluidic ca-

pacitor device was designed and fabricated to study the electrical double layer,

using standard microfabrication techniques. A complimentary flux corrected

transport simulation was written using the same experimental geometry and

the results of this study found qualitative agreement between the simulation

and experiment. The experiment produced results about the concentration

dependence of the double layer formation time which allows an estimate of the

required frequency of an AC electrical signal for which the electrical double

layer doesn’t have time to form, and its effects can be ignored.
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Chapter 1

Introduction

1.1 Introduction

The movement of electric charge is responsible for many different effects in a

broad range of systems. This can be through charge transfer from one material,

or molecule to another or just the redistribution of charge in a system. This

thesis looks at the effect of the movement of charge in two different systems.

One system is that of the movement of ions in a liquid in the presence of an

external electrical field, studying the so called Electrical Double Layer[1]. The

other system is that of a molecular heterojunction with a molecular layer sand-

wiched between two electrodes[2]. These are two very different systems, but

the role played by the position and movement of electrical charge is important

in the behavior of both.

1.2 Electrical Double Layer

Microfluidics is a rapidly growing field of study. One of the areas of research is

using micro electronics as sensors to detect biological entities in vitro.[3, 4, 5]

Typically the buffer solution used for biological materials is a saline solution
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which has a reasonably high concentration of salts (NaCl, KCl, etc...) which

means it has a high concentration of positive and negative ions which have

a known mobility. The combination of microelectronics and saline solutions

naturally leads to the formation of electrical double layers which screen the

electric field created by an applied bias between two electrodes. If the electri-

cal double layer has time to form this can change the potential applied to a

biological material between the electrodes significantly. In these types of ex-

periments an AC bias is applied and a high frequency (MHz range) is chosen

with the assumption that the potential is switching faster than the electrical

double layer can form. However this has yet to be confirmed experimentally

and one of the experiments in this thesis will be looking at this question.

The equations governing the behavior of the the electrical double layer in

a 1-D system are[6]

∂n

∂t
=
∂(µnnE)

∂x
+

∂

∂x
(Dn

∂n

∂x
) (1.1)

∂p

∂t
= −∂(µppE)

∂x
+

∂

∂x
(Dp

∂p

∂x
) (1.2)

∂2V

∂x2
=

e

εrε0
(Zpp− Znn) (1.3)

where n is the negative ion density, p is the postive ion density, E is the electric

field. Dn and Dp are the negative and positive ion diffusion coefficients, µn

and µp are the negative and positive ion mobilities. The valence number of

the negative and positive ions are represented by Zn and Zp, the magnitude

of the electronic charge is e, and the dielectric constant of the fluid is εr

The first term on the right hand side of equations 1.1 and 1.2 is an advective

term, which causes the charges to flow in one direction because of the electric

2
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Figure 1.1: Geometry of a simple cell that could study the formation of the
electrical double layer. Two electrodes are separated by two dielectric layers
and a micrchannel that can be filled with fluid. The positive and negative
charges on the electrodes represent a voltage, ∆V applied across the electrodes.
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Figure 1.2: (a)has the Debye length, λD = 500nm, the channel width, d = 1µm
and the potential across the channel, V0 = 10mV and shows the difference
between the semi infinite and the parallel plate Gouy-Chapman solutions which
is significant. (b) has the Debye length, λD = 100nm, which is larger than
for the smallest concentrations that will be used in the experiment, channel
width, d = 4.5µm, which is half of the channel length of the final device and
the potential across the channel, V0 = 10mV and shows very good agreement
between the parallel plate and semi-infinite Gouy-Chapman solutions.
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field and the second term is a diffusion term. Equations 1.1, 1.2 and 1.3 need

to be solved simultaneously with the proper boundary conditions to get a

solution for the ion behavior.

The equilibrium behavior of the system can be found in the case of a small

potential. In this approximation the solution is called the Gouy-Chapman

solution for a semi-infinite system [7] where the potential, V is given by

V =
2kbT

e
ln(

1 + γe−κx

1− γe−κx
) (1.4)

where κ and γ are given by

κ =

√
2e2ρ0

εrε0kBT
(1.5)

γ = tanh(
eV0

4kBT
). (1.6)

The electric field, E is the negative derivative of the potential,

E = −
√

8ρ0kBT

εrε0
sinh(

eφ0

2kBT
). (1.7)

However, the system being studied is not a semi-infinite system. The Gouy-

Chapman solution, modified for a parallel plate system, has been found in the

low potential (<25mV)[8] regime and is given as

V = V0

cosh( x
λD

)

cosh( d
λD

)
(1.8)

where λD = 1
κ
is the Debye Length and d is the distance from one electrode

to the middle of the channel.

Since the Debye length is the characteristic length scale of the electrical

double layer, (as well as a property of the bulk fluid), if λD ≈ d, then there

5



will be an appreciable difference between the parallel plate and semi-infinite

Gouy-Chapman solutions(figure 1.2a), however, if λD � d the solutions are

effectively the same as can be seen in figure 1.2b.

1.3 Molecular Junction

Molecular based electronic devices have become very popular to investigate.

In this study molecular junctions which consist of a carbon based molecular

layer and insulating oxide layer are sandwiched between two transparent metal

electrodes. (Quartz/Cr/Au/C/Molecule /SiO2/Au)[9]

A schematic of the sample can be seen in figure 1.3 which shows the 5nm

transparent platinum electrode on the quartz substrate with a chromium adhe-

sion layer. The carbon layer is used to adhere the molecular layer, either 9, 10

Anthraquinone (AQ) or Nitroazobenzene (NAB) through an electrochemical

deposition. On top of that is a thin (10-15nm) insulating layer and lastly an-

other transparent electrode. The resultant sample is optically transparent and

able to be electrically excited. In previous work[9] on these molecular junc-

tions in-situ optical absorbence spectroscopy was performed on the molecular

junctions using a broad broadband light source.

The range of the wavelength of the broadband light source was λ = 320−

820nm and voltage pulses were applied to the molecular junction. Then

changes in the absorbance were measured. Figure 1.4a shows the change in

absorbance of the NAB molecular junction to a -4V and to a +4V pulse. Lo-

cal maxima and minima can be seen at λ ≈ 420nm and λ ≈ 550nm. Figure

1.4b shows the change in absorbance of the AQ molecular junction as well as

the change in absorbance of a Fluorene molecular junction which was used as

a control molecule in this work. The AQ shows local maxima and minima

6



Figure 1.3: Schematic of molecular junction sample where the molecular layer
is either 9, 10 Anthraquinone (AQ) or Nitroazobenzene (NAB). The Cr layer is
used as an adhesion layer for the transparent Pt electrode. The C layer allows
the molecule to bond to the junction. The insulating layer prevents current
from flowing from the top transparent Pt electrode to the bottom electrode.
Reprinted in part from [9]. Copyright 2008 American Chemical Society.

in the same range as the AQ molecule. The voltage pulses applied to the

molecular junctions in this work ranged from 100’s of milliseconds to several

seconds, and corresponded to possible chemical reduction of the molecular

layer with an applied voltage bias. This suggests the ability to dynamically

change the energy levels in a molecular junction with an applied bias. A next

step would be to change the time scale of the applied bias on the molecular

junctions to see if changes in energy levels can be observed on faster time scales.

This work will explore the behavior of the molecular junctions on time scales

short enough to eliminate chemical reduction as a mechanism for any optical

changes of the sample. Because of the stronger changes in absorbance of the

two molecules near λ = 420nm and λ = 530nm continuous wave lasers in the

blue (λ = 410nm) and in the green (λ = 532nm) will be used in transmission

mode through the samples.
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(a) (b)

Figure 1.4: (a)shows the change in absorbance of the NAB molecular junction
to a -4V and a 4V pulse that was applied for 100ms and caused reduction
of the NAB molecular layer and the changes in the absorbance spectrum.
(b)shows the change in absorbance of the AQ molecular junction to a -4V pulse
applied for 100ms and compared to the control Fluorine molecular junction
with the same -4V pulse. Reprinted in part from [9]. Copyright 2008 American
Chemical Society.

1.4 Charge Transport

The transport of charge plays an important role in both the behavior of molec-

ular junctions and the formation of the electrical double layer. Chapter 2 of

this thesis will discuss the fabrication of the devices used in both of these sets

of experiments. Chapter 3 will discuss the optical and electric experimental

setups for the experiments involving the molecular junctions. In Chapter 4 the

Flux Corrected Transport simulation of the formation of the electrical double

layer formed between two blocking electrodes will be discussed. The experi-

ment involving the microfluidic device designed and built to look at the effects

of the electrical double layer formation will be discussed in Chapter 5, and

lastly the conclusions from this work will be discussed in Chapter 6.
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Chapter 2

Device

2.1 Microfluidic Capacitor Design

2.1.1 Introduction

To study the formation of the electrical double layer a simple device is desired.

The simplest way to do this would be with a parallel plate capacitor structure

that is modified to have fluid between the plates which can be seen in Figure

2.1. Furthermore, since varying concentrations of ionic fluids will be used,

there needs to be at least one insulating layer between the plates to prevent

current flowing from one plate to the other and to prevent any chemical re-

actions from happening at the electrode surface. Since the capacitance of a

parallel plate capacitor is inversely related to the distance between the two

plates(C = Aε
d
), the two plates need to be placed fairly close together. Lastly,

the device needs to easily interface with the function generator and oscilloscope

that controls the experiment. The device also has to allow for easy cleaning

of the ionic solutions and a simple way to inject the fluid between the plates.

Lastly, the fabrication technique will have to allow for varying the thickness

of the insulator between the plates to study the effect of this insulating layer.

9



Figure 2.1: The desired design needs to have two electrodes separated by
a microchannel and an insulating layer to ensure no current flows from one
electrode to the other. The insulating layers are parylene to prevent any
current to flow from the fluid in the channel through the electrodes into the
external circuit, as well as preventing any electrochemical reactions to happen
on the surface of the electrodes. The entire device will be fabricated on 0211
glass substrates.

Another guide for device specifications comes from simulations[6] in which

a parallel plate capacitor area of 1 cm2 and a distance between the plates of 1

µm was assumed. This simulation also has an insulating layer of 10nm. All of

these simulation parameters should be kept in mind, and every attempt should

be made to use similar physical parameters so comparison can be made with

these results. The best route is to use microfabrication techniques to fabricate

this device.

2.1.2 Design

A few possible designs were explored and will be discussed. The first attempt

was a very simple design which involved lithographically patterning a 1cm2

electrode on glass slides with thin Chromium/Gold films. The insulating layer

used was SiO2 which was evaporated onto the surface with an electron beam

evaporation system. The gap between the two glass slides was created by

depositing aluminum through a shadow mask to create aluminum pillars on

both sides of the patterned electrodes on one of the glass slides. This design,

although simple, suffered from a few problems that could not be overcome.

10



The first problem was the SiO2 film. From the deposition process the film

was under a lot of stress, and when liquid was applied to it, cracks started

to form on the entire domain. This allowed water to reach the electrode and

it no longer functioned as an insulating layer. This problem was resolved

by using SiO2 layers thicker than 200nm, but that takes the insulating layer

thickness farther away from using ideal simulation parameters for experimental

comparison. The other problem was the aluminum pillars. When the two

plates were aligned they needed to be secured together. This force was enough

to change the pillar thickness and eventually bringing the plates into contact,

which damaged the SiO2 layer and destroyed the capacitor behavior of the

device. These issues caused this design to be abandoned.

The next attempt was to make a complete microfluidic device out of poly-

dimethylsiloxane (PDMS) with lithographically patterned capacitor plates.

The insulating layer for this device would be PDMS as well, which would

allow for the two plates to be easily bonded together. One of the electrodes

would be deposited on a glass slide, and then the PDMS would be spun on,

and then cured. The microchannel would be cast in PDMS on a patterned

piece of Silicon. The back side of this PDMS structure would be bonded to

another glass slide to give it strength and the second capacitor plate would

be deposited at the bottom of the microchannel on the PDMS. Lastly, the

two plates would be aligned and bonded together creating a closed microflu-

idic capacitor cell. One possible problem with this design is that PDMS can

absorb water, and possibly when ionic solutions were used it could absorb

some of the ions, which could change the dielectric properties of the PDMS,

making experiments unrepeatable. Also, with a closed cell, the only way to

clean it would be to pump fluid through the small channels, which would make

cleaning very slow. Before these problems became an issue, serious fabrication
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problems were encountered. Although a glass plate was bonded to the back of

the molded PDMS, it still remained very flexible. This caused the deposited

gold layer to have large cracks in it. Not all of the electrodes maintained con-

ductive behavior. Also, enough tests weren’t done to see if the conductivity

degraded over time, or because of adding and removing fluid to a finished cell.

Before PDMS is cured, it is quite a viscous fluid. Spin coating the PDMS

only achieved 10 micron layer thickness. Diluting the PDMS with hexane[10]

decreased the viscosity, but the thinnest layer achieved this way was still in

the single micron range. The last problem with this design related to the

flexibility of the PDMS. When attempting to bond the two plates together

it bonded unevenly, often leaving large sections without a proper bond. This

could cause the entire cell to become delaminated when fluid was injected into

the cell. Because of these issues this design was also abandoned.

The third design involves fabricating a microfluidic device out of glass

instead of PDMS and not bonding the plates together, so that cleaning is easy

and so that fewer samples need to be made. The cleaning can be done by

rinsing each individual plate with either water or acetone/IPA, which makes

it more thorough and significantly faster. Lastly, Parylene N was used as the

insulating layer. Parylene N was deposited using the SCS PDS 2010 Parylene

deposition system. Parylene N is a crystalline, linear polymer (poly para-

xylylene), which has good dielectric and insulating properties. Also, films can

be made anywhere from several angstroms to 10’s of microns in thickness. The

deposition is done by taking a specific weight of Parylene N and vaporizing it.

Parylene N does not have a liquid phase so it provides a conformal coating on

the substrate, which can later be measured using a Profilometer (Alpha Step

250) or an Ellipsometer (VASE).

This third design is the one that was ultimately successful and the specific
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Figure 2.2: Top and bottom plate mask designs made in L-Edit. a)Bottom
plate mask design with fluid ports which opens up the possibility to have
pressure driven fluid injection. The center has the 1cm2 electrode in the middle
if the fluid injection structure and the contact pad on the bottom right with a
thin connecting wire. b)Top plate mask design with 1cm2 electrode near the
middle on the left and the contact pad on the right. When the two plates are
aligned, the two contact pads will not be covered by glass from the other plate
so they can be connected to the function generator and oscilloscope.

details of the fabrication will now be discussed. The dimensions of each of the

chips were approximately 5cm x 5cm with a 1cm x 1cm contact pad placed

near the middle in such a fashion, so that when they were aligned there was un-

covered glass from each chip, so that a lead can be patterned on and a contact

pad for each chip can be available to solder on to. Figure 2.2a shows what will

now be referred to as the top plate, and Figure 2.2b shows what will now be

referred to as the bottom plate. The bottom plate had a microchannel etched

into the glass before the electrodes were deposited. The microchannel will be

etched in the exact same pattern so that electrical contact isn’t compromised

as the gold is deposited on the etched side walls.

2.2 Device Fabrication

To do the lithography steps photomasks needed to be designed and fabricated.

Photomasks consist of patterned Chromium on 5”x5” glass substrates. Three

masks where made in total, one for the top plate, and two for the bottom plate.

All three masks were designed using L-Edit and the design was exported into

the GDSII format for use on the Pattern Generator (Heidelberg DWL-200).
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The mask for the top plate was a positive photomask, which means that it

blocks the exposing UV light where the electrode will be and has Cr in the

yellow region is in figure 2.2a. The second mask was a negative mask of figure

2.2b, where the UV exposing light passes through where the electrodes will

eventually be. This is so that the Cr/Au can first be removed to etch the

microchannel. The third mask uses the same design as the second mask, but

is instead a positive mask. This allowed etching the unwanted Cr/Au after

the second deposition step is done.

The first step in the fabrication process is to properly clean the 4" x 4"

0211 (Paragon Optical Company, Inc) glass substrate. This was done with

a Piranha solution (3:1 H2SO4 : H2O2) for 15 minutes. Next a thin film of

Cr/Au was deposited in a Lester Magnetron Sputtering System. The substrate

was securely loaded into the rotatable substrate holder above the targets. The

system was closed and pumped down to approximately 1 ∗ 10−6 Torr base

pressure using a cryopump. Next, an argon gas was input into the system

and the cryopump valve was adjusted until a pressure of 7.0 ∗ 10−3 Torr was

maintained with the argon gas. The power supply was set at 300W for Cr and

75W for Au. The Cr was deposited first for 3 minutes (≈ 15nm) and then

the gold was deposited for 15 minutes 7.0 ∗ 10−3 Torr for a total film thickness

of approximately 90nm. This was not measured further, as the University of

Alberta Nanofab has a prescribed parameter list for desired thicknesses and

the thickness of the electrodes isn’t important in this experiment as long as

they are conducting. The Cr layer is a standard pre-deposition layer for Au

on glass and acts as an adhesion layer allowing good adhesion of the Au on

the substrate.

After depositing the Cr/Au film on the substrate, was diced into the correct

size. This was done using a Diamond Touch Dicing Saw. To get the correct
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size each 4’’ x 4’’ substrate was cut twice to yeild four, approximately 5cm x

5cm chips.

The next process step is the lithography step. For the top plate (Figure

2.2a) only one lithography step is needed. This uses the positive mask created

using the same design as figure 2.2a. A film of HPR 504 photoresist was spun

on each chip using a Solitec Spinner with 10 seconds at 500rpm to spread the

resist over the chip and 40 seconds at 4000rpm to thin the resist layer. The

substrates were then baked in an oven at 110º C for 30 minutes. After the

substrates had cooled they were aligned with the mask in the mask aligner

(ABM). Once aligned the substrate was brought into contact with the mask

and held there with the contact vacuum. The substrate was exposed to UV

light for 4 seconds, which is timed by the mask aligner. The exposed resist

was developed using 354 Developer, which is mixed in the Nanofab, for ap-

proximate 20s. Since the features are very large the development time need

not be precise, and when the developing was finished it could be determined

by eye, when the residue appeared to be washed away.

Next, the unwanted Cr/Au were removed to leave only the electrode, pro-

tected by the patterned photoresist. The Cr and Au etch solutions are pre-

mixed by the Nanofab. The chip is first submerged in the Au etch for approxi-

mately 20s. This time can be adjusted if the etching isn’t completed after 20s.

The chip is then thoroughly rinsed with de-ionized water and dried with nitro-

gen gas before it is submerged in the Cr etch for approximately 20s. Some of

the Cr gets oxidized sometime between the deposition and lithography steps,

so after the chip is thoroughly rinsed in de-ionized water and dried with nitro-

gen again it is dipped back into the Au etch for 1 or 2 seconds to remove the

CrOx. After one final rinse with de-ionized water and final dry with nitrogen,

the photoresist was ready to be stripped with acetone, then the acetone was
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immediately rinsed off the chip with IPA because acetone leaves a residue on

the substrate. The substrate was cleaned with Piranha once more to make it

ready for the Parylene N deposition.

Once the Parylene N was deposited onto the chip the fabrication of the

top plate is complete, however, under normal conditions Parylene N does not

bond well to glass, which is most of the area of the substrate. Fortunately the

parylene deposition system has a recipe for a solution that promotes adhesion

of the Parylene to the glass. This solution is made by mixing equal parts of

IPA and water and then adding 1 % of the total volume of this mixture in

Silane 174. This adhesion promotion solution is then left overnight, allowing a

chemical reaction to take place. Before use, the adhesion promotion solution is

tested to make sure it will be effective. This is done by taking 10-15mL of it in

a small beaker and dropping a few small grains of potassium permanganate. If

the solution is effective it will turn a yellowish colour after swirling it around

for a few seconds. If it is not effective it will turn bright pink. Once the

effectiveness of the adhesion promotion solution was determined the chip needs

to be submerged in it for about 15 minutes. After it has been submerged for

15 minutes the chip was allowed to drip dry for another 15 minutes, and lastly

rinsed with IPA for about 30 seconds. The chip was dried with nitrogen and

it is ready for deposition.

The Parylene Deposition system (SCS PDS 2010) is very simple to operate.

It can be used to deposit Parylene N or C, so a few parameters need to be

set depending on the particular deposition being done. For this deposition the

vaporizer was set to 160◦C, and the deposition pressure was set at 59 mTorr.

The thickness of the Parylene N film is controlled by the weight put into the

vaporizing chamber. The range of thicknesses achieved were from 3nm (0.5g)

to 375nm (5.4g) and the relationship between the weight and deposited thick-
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Figure 2.3: Shows the linear relationship between the weight of the parylene
N used in the deposition to the thickness of the parylene N film. Because the
parylene N provides a conformal coating a minimum weight is necessary to get
any coating on the sample, as the parylene N will coat the deposition chamber
as well. All depositions used a furnace temperature of 160ºC and a pressure
of 59mTorr.
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ness is shown in figure 2.3. The slope of the linear fit shows the approximate

thickness added for an increase in the start weight of the parylene N pow-

der, which works out to be (85 ± 10)nm/g. Much of the parylene that gets

vaporized ends up adhering to different parts of the deposition system, and

the x-intercept represents a guideline for the minimum weight of parylene that

needs to be used in order to get a film, which was (0.7 ± 0.4)g. During the

fabrication of the devices, the Parylene deposition system had to be repaired

and this probably accounts for the fairly large errors present on the deposi-

tion data. Once the deposition parameters are set and the substrate loaded

the chamber is pumped down and the program is run. The substrate is then

removed after the Parylene deposition system has vaporized and deposited all

of the Parylene N. Lastly, the system is cleaned thoroughly to remove all of

the remnant Parylene N.

The first several steps of the bottom (microchannel) fabrication were the

same as with the top plate. Starting with a 5cm x 5cm glass chip with a

Cr/Au layer HPR 504 photoresist was spun on (500rpm for 5 seconds and

4000rpm for 40s) and the photoresist was baked for 30 minutes at 110 C, the

negative mask version of Figure 2.2 b was used to expose the chip to UV light

for 4s. Then the chip was developed with 354 Developer and lastly etched

with Au/Cr/Au etch to remove the Au/Cr/CrO2. The Au was removed from

where the electrode will be on the completed chip. The next step is glass

etching with a Hydrofluoric acid (HF) based glass etchant.

To ensure the backside of the substrate is not etched, tape is placed on

the backside. Using HF requires extra safety precautions. During all work

with HF full acid gear (gloves, mask and apron) were worn and a supply of

calcium chloride solution was on hand to neutralize any spilled glass etchant,

as well as for cleaning after the process was completed. The glass etchant was
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placed on a magnetic stirrer and the chip was submerged in the etchant for 5

minutes to determine the etch rate. After 5 minutes the chip was removed and

immediately placed in water to stop the etching. The chip was then washed in

a dump rinser for 5 cycles to ensure it was safe to handle. The thickness was

measured and the etch rate determined. Then the chip was placed back in the

solution for the time calculated for the desired microchannel depth. The final

thickness for all of the channels was approximately 9 microns. It was actually

achieved in the 5 minutes of the etch rate test because the etchant was fresh.

Then the glass etchant was put away and any beakers and other tools used

were rinsed with the calcium chloride solution before being washed with water

to ensure no HF contamination.

The bottom plate was then stripped of its photoresist with acetone, then

rinsed with IPA and dried with nitrogen. Then the Au/Cr/CrOx was re-

moved using Au etch/Cr etch/Au etch to leave a chip with only a patterned

microchannel. Piranha was used once more to make sure the bottom plate was

sufficiently clean for the next Cr/Au deposition step. This was done exactly

the same as the first Cr/Au deposition in the Lester Magnetron Sputtering sys-

tem, with the only difference being the 5cm x 5cm chips being loaded instead

of 4" x 4" wafers.

The bottom plate was once again spin coated with HPR 504 resist and

baked. This time the positive mask of Figure 2.2b was used and aligned using

the mask aligner (ABM). This was the only lithography step that required

precise alignment and used the microscope lenses on the mask aligner to ensure

that the substrate was aligned in x, y and θ with the mask. This ensures that

the electrode is entirely inside of the etched microchannel and that some of

the area is not coming up the side walls and into the glass surface that will

come into contact with the other chip. Once the alignment was achieved the
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substrate was brought into contact with the mask and held in place with the

contact vacuum. The exposure was once again done for 4 seconds, and the

bottom plate was developed in 354 Developer. The unwanted Au/Cr/CrOx

was removed using Au etch/Cr etch/ Au etch and the photoresist stripped

with acetone and rinsed with IPA. The last step to complete the bottom plate

fabrication is to clean it with Piranha to remove any photoresist residue.

With the microfabrication complete, a sample holder was machined to hold

both the top and bottom plate so that they could be aligned and brought into

contact. A previously made sample holder that had SMA connectors held in

place was used as the base. Then two aluminum pieces had recesses milled

into them that were the width of the plates but not as long (so there would be

overhang to solder wires onto the contact pads). These recesses were milled

to a depth of approximately 250 microns (half the thickness of the 0211 glass

substrates used) to hold the chips reasonably still, but to ensure that the plates

were in physical contact with each other. In the aluminum piece that holds

the top plate a “window” was milled the entire way through the aluminum

where the capacitor plate would sit so that alignment could be done. Lastly

threaded holes (for 10-32 bolts) were drilled and tapped in the bottom plate

holder and wider alignment holes were drilled in the top plate holder to give

some alignment room for the holder. The bolts have a spring that slips around

it and a large washer to ensure that it presses on the top plate holder while

it is fastened into the bottom plate holder. The sample holder with device in

can be seen in figure 2.4, which shows the electrodes in the window and the

overhangs that have the contact pads.

Thin wires were soldered to all of the contact pads. Because the wire was

soldered to a thin film (≈ 90nm) a careful procedure was used. One end of

the wire was bent into a small loop, then dipped into resin flux. Then it was
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Figure 2.4: Sample holder with top and bottom plates together. The window
allows alignment of the two electrodes and wires on the contact pads are sol-
dered to the SMA connectors to the left of the pads. The over hang for both
glass plates is visible. The screws are springloaded to apply even pressure to
the top plate to resist the surface tension of the fluid trying to separate the
plates. The alignment of the electrodes is done using a stereo microscope.

run through a bead of solder on the tip of the soldering iron to get a small

amount of solder onto the wire. Next a small spot of flux was applied to

the contact pad. A piece of glass was put on top of the chip to insure no

flux splattered onto the rest of the chip during soldering. The small loop was

brought onto contact with the contact pad and flux and the soldering iron

was quickly touched to the wire, which created a small solder joint without

damaging the thin film contact pad.

To inject the fluid, a micropipette was used. Several drops of fluid are

placed on the bottom plate electrode and then the top plate holder with top

plate in the recess (held with double-sided Scotch tape) is positioned and low-

ered onto the bottom plate. The bolts were loosely fastened so that alignment

can be done under a stereo microscope. Once the alignment is complete the

bolts were completely fastened, and then the wires soldered to the SMA con-

nectors. The excess fluid was pushed into the rest of the microchannel, as
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well as onto some of the rest of the chip. This initially created a problem,

as glass is hydrophilic and Parylene N is hydrophobic. The resulting capillary

forces pulled the fluid out of the channel. This changed the capacitive behavior

rather dramatically in real time and the microchannel emptied completely in

approximately 1 hour. Two possible solutions were found. The first solution

would be to deposit a very thin layer of Parylene N on the bottom plate. The

second would be to treat the surface of the bottom plate with a Silane solution

to make the surface hydrophobic.

Depositing a thin layer of Parylene N has the advantage of guaranteeing

that capillary forces won’t pull the fluid out of the channel because not only

will both surfaces be hydrophobic, but both will have the same contact angle.

The deposition also won’t change the dimensions of the channel because the

Parylene deposition is a conformal coating due to the vapor/solid transition

and it won’t accumulate in the corners or be thicker in the channel compared

to on the chip surface, which would happen if a thin film was spin coated

on. However, since the Profilometer (Alpha Step 250) used has a minimum

resolution of 5nm, the thickness of a very thin film becomes very difficult

to measure accurately. This makes modeling the different dielectric layers

in the capacitor challenging. Lastly, if any absorption of ions from the high

concentration of ionic fluids were to occur it would be very difficult to use the

same bottom plate for the multiple top plates.

Treating the surface of the bottom plate with Silane will change the surface

from hydrophilic to hydrophobic, however it doesn’t ensure the same contact

angle, which will still give a possibility of capillary forces removing fluid from

the channel, however it would decrease this rate of removal. This has the

added benefit of not adding an extra dielectric layer to the system which then

needs to be added to the model. The treatment is also very simple to apply.
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The chip was cleaned with IPA, then the Silane solution was dropped on and

held on the chip for 15 seconds. Lastly, the chip was thoroughly rinsed with

methanol and dried with nitrogen gas.

Both methods were tried. The Silane method produced a similar contact

angle on the glass to that of the parylene, however, it made the decay times

approximately 10 times longer than before the Silane solution was applied.

The reason was not understood, so the silane method was abandoned. Thus,

depositing a thin layer of parylene N onto the bottom plate was chosen as the

method to eliminate the capillary forces.

After all of the samples were fabricated and the experiment was mostly

complete, it was discovered that the Profilometer made very inaccurate mea-

surements of the parylene film thicknesses. All of the measurements were

repeated with an Ellipsometer (VASE). The Ellispometer was used in reflec-

tion mode, so it could measure the thickness directly over the electrodes. To

do this a model of the substrate had to be created. A patterned substrate

without parylene deposited on it was used to get the properties of the sub-

strate and specific Au/Cr layer to ensure that the results would be accurate.

This gave much more accurate results than the Profilometer, and in some cases

very different thickness measurements.

2.3 Molecular Junction Fabrication

The molecular junction[9] structure was patterned on a Quartz substrate cut

into a rectangular shape about 1cm in width and 2-3cm in length. The first

step was to pattern the bottom semi transparent electrode onto the quartz

substrate. This was done using a shadow mask and depositing a Cr adhe-

sion layer of approximately 2nm, followed by an approximately 5nm layer of
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platinum, and then a 5nm layer of carbon. All three are deposited using an

electron beam evaporation system and the shadow mask used had a 500µm

wide “bar” opening aligned with the long dimension of the substrate. Shadow

mask has four of these “bars” so multiple junctions can be patterned onto the

same chip. The next step is to deposit the molecular layer of nitroazoben-

zene (NAB), which was done by submerging the substrate into a conductive

solution and performing cycles of cyclic voltametry, sweeping the voltage from

400mV to -600mV at sweep rate of 200mV/s. The number of cycles of cyclic

voltametry will be referenced in the molecular name. (i.e. NAB-4 means that

four cycles were performed for the deposition) After the molecular layer was

deposited electron beam evaporation was used again to deposit a thin layer

(10-15nm) of SiO2 was deposited on top of the molecular layer, and then a

top of the oxide layer a 10nm layer of Pt or Au is deposited.
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Chapter 3

Molecular Junction Experiments

3.1 Introduction

On the time scale of 100’s of milliseconds to 10’s of seconds the absorbance

of NAB molecular junctions has been investigated using in-situ optical ab-

sorbance spectroscopy.[9] This study found changes in absorbance when a bias

was applied across the molecular junction which can be attributed to the chem-

ical reduction of the molecular layer. When biases are applied for shorter times

it eliminates chemical reduction and other slower processes from governing op-

tical behavior. There might be other processes happening at these time scales,

but but this has not previously been explored. In this experiment this bias

will be an AC sine wave, applied across the electrodes of the molecular junc-

tion and the transmission of light through the junction of a continuous wave

laser (at 410nm and 532nm) will be monitored. The wavelengths of the lasers

were chosen because they are close to where the largest changes in the ab-

sorbance were observed for the DC biases. The transmission will be observed

over a fairly large frequency range (1kHz-100kHz) and over a range of applied

bias voltages (10mV-500mV). Since the active area of the molecular junction
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is larger than the focused spot size of the laser (500µm by 500µm active area

compared to sub 100µm diameter laser spot size) scans over the entire active

area will also be done to ensure that the sample behaves consistently over the

entire active area. As well as these optical experiments, the current/voltage

characteristics of the samples will be tested.

If reduction of the molecule is what causes the observed changes it is rea-

sonable to assume that the motion of electrons in the molecular layer, even if it

is not full electron transfer, will cause some changes in the absorbance even if

the molecules don’t have time to complete the reduction and gain an electron.

A very simple order of magnitude estimate can be made by comparing the

shorter times of the applied bias here to get an estimate of the absorbance.

For full reduction a chance in absorbance, ∆A ∼ 10−3 was found for a 100ms

(10Hz) pulse. A frequency of 1kHz would correspond to a characteristic time

of 1ms and would give a maximum absorbance change of ∆A ∼ 10−5 assuming

that there is a linear change in ∆A with time. Since this experiment looks at

transmission, then the measured signal should be ∆T ≤ 10−5 for a 1kHz bias

and should get smaller as the frequency increases.

3.2 Samples

The samples for this experiment were provided by the McCreery group, and

they were fabricated as described in Section 2.3. Three different types of

samples were provided. The first was a control sample, which consisted of

Quartz/Cr(2nm)/Pt(5nm)/C(5nm)/SiO2(10nm)/Pt(10nm). This sample will

be used to compare to the samples with a molecular layer to make sure

that any observed behavior is caused by the molecule, and not by any of

the other layers in the molecular junction. The second sample consisted of
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Quartz/Cr(2nm)/Pt(5nm)/C(5nm)/NAB-1(2nm)/SiO2(10nm)/Pt(10nm). NAB-

1 refers to the number of cyclic voltametry cycles performed and corresponds

to a thickness of the NAB-1 layer of ≈ 2nm. The third substrate consists of

Substrate/Cr(2nm)/Pt(5nm)/C(5nm)/NAB-4(5nm)/SiO2(10nm)/Pt(10nm) where

NAB-4 has a thickness of ≈ 5nm. Each sample had multiple junctions that

were tested and a representative sample of the results will be described.

3.3 Optical Set Up

The simple optical set up can be seen in figure 3.1. The laser can be either

a blue or green laser which can have its intensity adjusted with the use of a

variable neutral density filter as an attenuator. The lens, with a focal length

of approximately 20cm is used to focus the beam onto the sample. The long

focal length was chosen because the sample holder and stage (Melles Griot

Nanomax-HS 3D) is large and forces the photodiode detector to be placed

10-15cm behind the sample. A shorter focal length results in too much spread

of the laser light from the time it passed through the sample at its focus to

when it reaches the detector. The photodiode in the top of figure 3.1 is used

to to independently monitor the power of the laser to monitor any drift.

3.4 Laser Stability

Initially the green (532nm) laser being used was a Verdi diode laser. This

laser is used for multiple experiments, and was brought to the sample via an

fibre optic cable. This created problems with the power stability of the beam,

which fluctuated up to approximately 10% over the course of several hours,

which was shorter than some of the experiments to be performed. A different

532nm laser (Millenia) was tested, which still had power stability problems, of
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Figure 3.1: Shows a schematic of the optical set up to look at the transmission
through a molecular junction. The laser is either a blue (410nm) or green
(532nm). The attenuator was used to control the intensity at the sample.
The lens used has a focal length of ∼ 20cm. The beamsplitter splits the
beam into two so that the drift of the laser can be monitored separately from
the modulated signal through the sample. The signal is then measured by a
lock-in amplifier after a pre-amplifier. The sample is biased using the internal
oscillator from the lock-in amplifier with frequencies between 1kHz− 100kHz
and amplitudes between 100mV − 500mV .
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approximate 5% over similar time scales as the Verdi.

The improvement in power stability can be seen in figure 3.2. Figure 3.2a

compares the stability of the Verdi diode laser through the fibre coupler to that

of the Millenia beam after it has passed through an Electro-Optic Modulator

(LASS II - Con Optics). The EOM was used to modulate the amplitude of

the beam. Although in principle the EOM should operate effectively over any

range of desired amplitudes which are smaller than the minimum power of the

laser, it was found that the EOM worked most effectively between 50-60%.

To get the power of the EOM beam in figure 3.2a the initial beam power of

the Millenia was turned up to ≈ 60mW . Figure 3.2b shows the power of

the EOM magnified to show the change of scale of the drift. The drift shows

approximately an order of magnitude improvement in its stability, which is

significant but still requires monitoring for possible corrections.

3.5 Current Voltage Characteristics

Trying to measure the resistance of the molecular junctions using standard

multimeters gave different values of the resistance, which suggests that the

current/voltage characteristics of the molecular junction are non-linear.

3.5.1 Experimental Set Up

A schematic of the experimental set up to measure the I-V characteristics of

the molecular junction samples is shown in figure 3.3. The simplest way to

do this is to apply a DC voltage in steps across a resistor (2.085MΩ) wired

in series with the sample. A Data Acquisition device (6221 DAQ - National

Instruments) was used to apply the DC voltage. Two multimeters, (HP3478A)

were used, one to measure the voltage drop across the resistor, which was used
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Figure 3.2: (a)Shows the stability of the laser power with the Verdi laser
through the fibre optics and the stability of the Millenia after passing through
the Electro-Optical Modulator (EOM) for 5 hours. The laser power is reduced
by the EOM but is significantly more stable. (b) shows the stability of the
beam after passing through the EOM zoomed in which shows that although
the power is more stable it still fluctuates ∼ 0.3% over 5 hours.
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Figure 3.3: Schematic of the electronic set up to measure the I-V character-
istics of the molecular junction. The DC signal is from the DAQ and the AC
dither is from the lock-in on the left. The potential drops across the sample
and the resistor are both measured with multimeters. The capacitor is used
to protect the lock-in internal oscillator from the DC voltage. The DC volt-
age measurements are recorded from the multimeters with the DAQ and the
measurements from the lock-ins are measured using a GPIB connection. The
entire system is controlled by a custom labview program.

to determine the current in the circuit, and another to measure the voltage

drop across the sample. Also of interest is the derivative, dI
dV

vs V . If the

voltage steps are small enough this could be calculated numerically, however

it is better to measure dI
dV

directly to avoid any numerical errors. This can be

done by adding an AC dither to the DC signal. By taking the AC reference

signal off of a Lock in Amplifier (SRS 830 DSP) and coupling that into the

DC signal from the DAQ, dI
dV

can be measured directly. It is determined

by measuring the AC signal with one Lock in Amplifier from the resistor

to determine ∆I and using a second Lock in Amplifier to measure the AC

voltage signal across the sample to get ∆V . Although d2I
dV 2was not investigated

in this experiment, it could be monitored by looking at the second harmonic in

both lock in signals (2f). The I-V curves were made using a custom Labview

(National Instruments) program which controlled the DAQ, which outputted
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the DC voltage and recorded the output values on one of its input channels.

The program also controls the Lock-in Amplifier’s amplitude and frequency of

the AC dither applied to the DC voltage steps and records the voltage drops

across the sample and resistor. It also allows the amount of averaging to be

set for each voltage step.

3.5.2 I-V Results

The I-V curves in figure 3.4a show linear behavior of the control sample with

no molecule present. The control sample has the lowest resistance (133.8kΩ).

For the two NAB samples, the resistance is determined by finding the slope

of the curve in the low voltage regime where it behaves linearly. The NAB-1

sample has the largest resistance (665.8kΩ) and doesn’t show linear behavior

like the control sample does. The NAB-4 sample has a resistance between the

control and NAB-1 sample (415kΩ), which doesn’t make sense when thinking

of the molecular layer as only an extra insulating layer. In such a model, it

would be expected for the NAB-4 sample to have the largest resistance since it

is the thickest, having a 10nm layer of SiO2 and a 5nm layer of NAB. However

this suggests the NAB’s interaction with the rest of the substrate is dependent

on its thickness, and also on the bias between the electrodes. The NAB-4

sample also shows the most pronounced nonlinear behavior in the I-V curves.

Figure 3.4b shows the dI
dV

vs V curve for the 3 samples. The control sample

has the noisiest results and doesn’t appear to have any interesting behavior in

the voltage range measured, however something could just be hidden within

the noise. After many attempts, the noise was not able to be removed from the

control sample results. The NAB-1 sample showed two symmetric increases in

the dI
dV

signal at ±0.2V , which are well above the noise and were repeatable.

The NAB-4 sample showed similar symmetric spikes in the dI
dV

signal, however
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Figure 3.4: (a)Shows a representative current voltage curve for the 3 different
samples. The control sample has the lowest resistance. NAB-1 has the highest
resistance, and NAB-4 has the most nonlinear behavior of the 3 samples. The
control sample has a resistance of 133.8kΩ, NAB-1 has a low voltage resistance
of 665.8kΩ and the NAB-4 sample has a low voltage resistance of 415kΩ. (b)
shows a dI

dV
vs V curve. The control sample has a very noisy signal, with no

noticeable features. Both the NAB-1 and NAB-4 curves are less noisy with
distinguishable peaks present. NAB-1 has two peaks that appear at ∼ ±0.4V
and the NAB-4 sample has two peaks that appear at ∼ ±0.2V .

they appeared at ±0.4V . This would suggest that the cause of these spikes

was not something connected with the energy levels in the molecule, but leaves

open the possibility that it is related to the thickness of the molecular layer,

however no further investigation was done on this.

The characteristics of some samples changed over time. As the samples

aged the nonlinear behavior became closer and closer to linear, and in some

cases, if the sample was damaged the resistance would drop by several orders

of magnitude, suggesting that the insulating layer was compromised.

3.6 Raster Scan

The sample in the optical setup is mounted on a 3 axis translational stage,

which allows it to be moved in x, y, or z, where x corresponds to the position of
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the sample in the direction of the beam, the y is horizontal and perpendicular

to the beam, and z is vertical and perpendicular to the beam. The y and z

translation ability is used to move the sample in order to perform a raster

scan over the surface of the molecular junction. An AC bias is applied to

the sample using the internal oscillator of a Lock-in Amplifier. The lock-in

amplifier’s internal oscillator has a range of available frequencies from less than

1Hz-100kHz. The range of frequencies used will be from about 1kHz-100kHz so

that long integration times on the lock-in can be avoided so the measurement

doesn’t take too long. The photodiode detector is connected to a pre-amplifier

(SRS SR560) which is then connected to the Lock-in Amplifier which is able

to detect the amplitude and phase of the laser as it is modulated when it

passes through the sample. The DC level of the photodiode is also monitored

after the signal is passed through the pre-amplifier. The DC amplitude on the

photodiode, and the amplitude and phase from the lock-in are all recorded

with a DAQ. The rasterscan was performed by a custom Labview (National

Instruments) program written to control the DAQ and read the voltages the

photodiode and the lock-in amplifier. Importantly, this program automates

the movement of the sample in the translation stage and allows control of the

number measurements are taken at each position for averaging.

The DC amplitude as a function of position is a transmission profile of

the surface of the sample. This allows the structure of the junction to be

checked, and also makes it easier to determine what signal in the phase and

amplitude are from the sample by knowing what is the active area and what

is not. Figure 3.5 shows the DC transmission for the NAB-1 and NAB-4

samples with 532nm and 410nm lasers respectively. Both plots show the least

transmission in the center, revealing where the active area is. Also both have

an approximately constant amplitude showing no strange features that affect
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(a) (b)

Figure 3.5: (a)shows the DC amplitude raster scan of the NAB-1 chip with
the 532nm beam with a modulating amplitude of 400mV at 1kHz. Since the
DC amplitude is measured in transmission, the smallest magnitude of the
signal is where the active area is, because its the thickest and transmits the
least. The active area can be seen in the middle, with the highest magnitude
of the transmission in the corners where there is only the substrate. The
top, bottom, left and right in the middle each one one electrode, so there is
less transmission than through the glass, but more than in the active area of
the molecular junction. (b)shows the DC amplitude of the NAB-4 chip with
a 410nm beam of 400mV at 1kHz. Similarly to (a) the smallest magnitude
signal is in the center where the active area is. In both (a) and (b) the units
for the colour scale are Volts and each spatial step is 50µm in both the y and
z directions.

the DC transmission, such as scratches to the surface, or pieces of dust or other

particles. It shows the most transmission in the corners where the laser only

passes through substrate, and shows an intermediate level of transmission over

each individual electrode. Because of using different optical powers, and the

photodiode detector having different sensitivities to the different wavelengths

the scales of the two graphs do not match up.

From the lock-in Amplifier, the modulation of the beam at the frequency

of the driving voltage on the sample can be measured. Figure 3.6a shows this

amplitude measurement for an NAB-1 junction taken with a 532nm beam and

the sample modulated at 400mV and 1kHz. The active area of the sample has

a significantly larger signal than that of the background. (which includes both

the single electrodes where they haven’t intersected and the glass) Although

the entire active area has a signal larger than the background, the corners
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(a) (b)

Figure 3.6: (a)shows the change in amplitude of the sample surface for an
NAB-1 active area at 1kHz and 400mV driving voltage of the sample and a
532nm beam. The active area can be seen, with the largest amplitude being at
the four corners, but the entire active area having a signal that stands out from
the almost zero signal of the surrounding single electrodes and glass. (b)shows
the change in amplitude of the sample surface for the NAB-4 sample with a
410nm beam and a driving voltage of 400mV at 1kHz. The active area can
clearly be seen in this raster scan as well, however the corners do not show
a pronounced increase in the amplitude. For both (a) and (b) the units of
the colour scale are µV and each spatial step is 50µm in both the y and z
directions.

have the largest signal, and the edges have a larger signal than the middle.

This is quite possibly some artifact of the edge, and not really a characteristic

of the sample. Figure 3.6b shows the results for the amplitude on an NAB-

4 molecular junction illuminated with a 410nm beam. The sample is again

modulated at 400mV and 1kHz. This rasterscan had a larger scan field, but

the active area of the sample stands out from the background quite strikingly

as well. However, this sample does not have the strong increase in amplitude

associated with the corners and edges and has a pretty consistent amplitude.

As well as measuring the change in amplitude of the modulated signal,

the lock-in amplifier measures the phase change of the signal. Figure 3.7a

shows the phase over the scanned region of the NAB-1 sample with a 532nm

beam and a sample modulation of 400mV at 1kHz. The active area stands

out as a consistent region with a constant phase change compared to the
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(a) (b)

Figure 3.7: (a)shows the phase change of the 532nm beam passing through
the NAB-1 sample, which is modulated at 400mV and 1kHz. The active area
can be seen in red and orange having a consistent phase. Outside the phase
changes rapidly and the lock-in amplifier was not actually locked into a signal
when off of the active area. (b) shows the phase change of a 410nm beam
passing through the modulated NAB-4 sample at the same driving amplitude
and frequency as in (a). The active area can be seen to stand out from the
background again here, with the background having a signal that was not
locked into. For both (a) and (b) the units of the colour scale are degrees and
each spatial step is 50µm in both the y and z directions.

background which changes rapidly over spatial position. The raw data showed

wild fluctuations off of the active area, showing that there wasn’t a strong

enough modulation in the signal to be picked up by the lock-in amplifier.

Figure 3.7b shows a similar raster scan over the surface of an NAB-4 sample,

which is modulated at 400mV and 1kHz and probed with a 410nm beam.

Again, the active area stands out strongly from the background, with the

background modulated signal too small to be properly picked up with the

lock-in amplifier, and having wildly changing phases.

The results showing in figures 3.5,3.6 and 3.7 show fairly consistent be-

havior over the surface of the active area. This means that as long as care is

taken to keep the beam in approximately the center of the sample (which has

an area much larger than the spot size of the beam) that the results of any

further studies should be consistent and repeatable. The spatial position of

the beam on the active area should not be a particularly sensitive parameter
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Figure 3.8: Shows the active area surface profile of a sample which was dam-
aged and had its I-V characteristics dramatically changed. Measurements
taken with 532nm beam at 1kHz and 400mV. The units of the colour scale are
µV and each spatial step is 50µm in both the y and z directions. This was
taken on a larger sample where the entire active area was larger than the range
of the stepper motors, so the entire region of the graph is on the active area.
Since the large spike in signal corresponded to a large change in resistance,
falling by approximately 2 orders of magnitude, it could be damage to the
insulating layer at this position.

and one that doesn’t need to have any special precautions taken in order to

control.

As mentioned in section 3.5.2, samples can get damaged. When this hap-

pens, dramatic changes in the electrical properties were observed (Resistance

drops from ∼ 100kΩ to ∼ 100Ω) and similarly, dramatic changes were observed

in the modulated laser amplitude through the sample. Figure 3.8 shows part

of the active area of a large sample (4mm x 4mm) that was modulated with a

400mV bias at 1kHz and was illuminated by a 532nm beam. A large increase

in the amplitude was observed over a small area of the active area. This sug-

gests that there was some localized damage in that region, and combined with

the drop in resistance measured in the I-V characteristics, this suggests that

there might have been a pinhole in the insulating layer, or some other physical

damage.
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3.7 Modulation

Now that the molecular junctions have been characterized with their I-V

curves, and their behavior over the entire active area has been found to be

consistent, the samples can be modulated over the range of frequencies from

1kHz-100kHz and voltages from 100mV-500mV. Another custom Labview pro-

gram was written for this function, which records the frequency and amplitude

of the applied bias, as well as the modulated amplitude, phase, x and y sig-

nals from the lock-in amplifier. Since the internal oscillator of the lock-in is

used for the bias, the Labview program controls everything through the GPIB

connection between the lock-in and the computer. The program controls all

of the features of the lock-in, so they can be set from the computer, as well

as specifying how many measurements will be taken at each frequency and

voltage step for averaging.

Many measurements were taken with both the 532nm and 410nm beams.

Figure 3.9 shows the amplitude of a few runs for an NAB-1 sample with a

532nm beam at 400mV bias from 500Hz-100kHz. It shows that some of the

features remain qualitatively similar, however the amplitude from run to run

was not constant and not reproducible. The first peak for all three runs hap-

pens at approximately 25kHz, but has a different amplitude for all three runs.

The second peak occurs at approximately 75kHz and for the first and third

run happens at the same amplitude, however for run two happens at a much

higher amplitude. Also, the amplitude of run three is higher leading up to the

second peak than in the first run. The changes in amplitude don’t seem to

follow a trend with time, so this doesn’t appear to be attributable to aging

of the sample. It was not checked, but it could be as a result of temperature

fluctuations in the lab, which were known to fluctuate by a few degrees Celsius

over the course of days. The same problems with reproducibility were seen
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Figure 3.9: Shows the amplitude for three separate runs sweeping the fre-
quency from 500Hz-100kHz with 500Hz steps at 400mV at 532nm on the
NAB-1 sample. This shows that all of them have a qualitatively similar shape,
with the first peak at around 25kHz and the second peak at around 75kHz,
but the amplitude of the first peak is different for all three runs. The first and
third runs have similar amplitudes for the second peak, but different slopes to
get there, and this amplitude is different from the second run. These runs are
representative of the poor quantitative reproducibility for the samples.

with using the 410nm beam.

Figure 3.10a shows the amplitude of the control sample with no molecule

layer as well as the NAB-1 sample. Both samples have the same qualitative

shape, suggesting that the shape of the curves is not related to the molecular

layer. Because of the poor reproducibility of the curves it is difficult to draw

any solid conclusions. Figure 3.10b shows the results for the phase for the same

two samples. The behavior of the phase is very similar from one curve to the

other after approximately 20kHz. The local minimum in the phase at 75kHz

appears to line up exactly with the peaks in the amplitude signals, and the

control sample is shifted slightly to the right compared to the NAB-1 sample.

Figure 3.11 shows NAB-1 and NAB-4 illuminated with a 410nm beam through
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Figure 3.10: (a)Shows results for the amplitude while varying the frequency
from 500Hz-100kHz with frequency steps of 500Hz at 400mV for the control
sample and the NAB-1 with a 532nm beam. (b) shows the phase results for
the same samples, showing a pretty consistent phase over the range of 25kHz-
70kHz or so. As for any individual sample the results varied from run to run
no real conclusions can be drawn from this figure.

a frequency range of 500Hz-100kHz at a bias of 400mV. Similar to the 532nm

beam, two peaks are seen, however the shape of the peaks is different and the

second peak seems to be shifted slightly to the left to approximately 65kHz.

Figure 3.12 shows the amplitude signals for four experiments done on the

same sample at 400mV and a frequency range of 500Hz-100kHz with a 410nm

beam. The black curve shows the signal from the active area of the sample,

showing two peaks similar to the peaks that have been seen previously in all

of the amplitude vs frequency plots for the molecular junctions. The red curve

shows the signal off to the side of the active area on just bare quartz. The blue

and purple curves show the amplitude signal on the horizontal top electrode,

and the vertical bottom electrode respectively. All of these signals have the

same qualitative shape, further indicating that the peaks are not caused from

the molecule, but most likely from the substrate. As the amplitudes are known

to change from run to run, it is not certain if the strength of the signals is

related to the position of the beam was, or just a coincidence of the variation
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Figure 3.11: Shows the amplitude for NAB-1 and NAB-4 samples for a fre-
quency range of 500Hz-100kHz with 500Hz frequency steps at a 400mV bias
illuminated with a 410nm beam. Similarly to when the sample is illuminated
with a 532nm beam, there are two peaks, except they are broadened with the
410nm beam.

from run to run.

As well as varying the frequency, some runs were done varying both the

frequency and amplitude. Figure 3.13 shows a representative plot of one of

these experiments with the NAB-1 sample. The frequency was varied from

500Hz-100kHz and the AC bias was varied from 100mV-500mV and the sample

was illuminated with a 532nm beam. Similarly to the previous experiments

done at a constant AC bias, figure 3.13a shows that for the amplitude there are

still two peaks, and that as the AC driving voltage is increased the amplitude

increases. The first peak is still at approximately 25kHz and the second peak is

still at approximately 75kHz. The amplitude does not appear to undergo any

qualitative changes as the AC bias changes, only changes in its scale. Figure

3.13b shows the phase from the same experiment and shows the same decrease

in the phase as the frequency increases as seen in figure 3.10b, as an increase
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Figure 3.12: Shows the amplitude measurements for an NAB-1 sample with
an AC bias of magnitude of 400mV from 500Hz-100kHz with 500Hz frequency
steps and a 410nm beam. The black curve is with the beam on the active area,
the red is off of the active area passing directly through the quartz substrate,
the blue curve is with the beam on the horizontal top electrode, but off of the
active area and the purple curve is off of the active area on the vertical bottom
electrode.
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(a) (b)

Figure 3.13: (a)shows the amplitude response of an NAB-1 sample as the
frequency was varied from 500Hz-100kHz in 500Hz steps and the AC bias was
varied from 100mV-500mV in 25mV steps with a 532nm beam. The response
shows the same frequency dependence as the earlier experiments at a constant
bias potential as well as the magnitude of the signal increasing as the bias
potential is increased.(b)shows the phase response for the same experiment.

in the phase while the AC bias is increased.

3.8 Experimental Conclusions

In this chapter the experiments performed on the molecular junctions the

problems encountered were discussed. The problem with the optical power

was solved by introducing an EOM into the system and an order of magnitude

improvement in the stability of the optical power was achieved, which provided

a better architecture to perform the optical experiments. The I-V characteris-

tics were investigated and the NAB samples were found to exhibit non-linear

behavior, with the thicker NAB-4 layer showing stronger non-linear behavior

than the NAB-1 sample. The dI
dV

vs V curves found symmetric increases at

±200mV for the NAB-1 sample and ±400mV for the NAB-4 sample, which

suggests that these spikes were not related to the specific energy levels of the

molecule, but are possibly due to the thickness of the molecular layers.

The first optical experiment performed was to scan the change in amplitude

and phase across the entire active area of the sample to see if there was a spatial
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dependence of either signal. It was found that the active area had consistent

behavior, and as long as the beam stayed near the middle of the sample this

should not cause any problems with reproducibility.

Lastly the frequency and bias were both varied at a single spot on the

active area to see if the behavior changed in response to frequency of bias.

For all of the samples, the qualitative behavior was reproducible, however the

amplitude was not quantitatively reproducible. This made solid conclusions

difficult to draw, however qualitative conclusions can still be drawn. For both

the 410nm and 532nm beams increases in the amplitude were seen at around

25kHz and 75kHz. These were for the control sample, as well as the NAB-

1 and NAB-4 samples. On a single sample, when looking at the amplitude

response on the active area, on either electrode, as well as just on the quartz

substrate, the same qualitative behavior was seen. This suggests that the

frequency dependent features were not a result of the molecular layers, but a

property of the substrate. Although changes in the absorbance spectrum were

found in response to applied voltages at long time scales, at shorter time scales

there is no evidence for changes in the transmission that can be attributed to

the molecular layers and the signal did not appear to be reproducible enough

for a pump probe type of experiment to provide much useful insight into the

electron transfer in the molecular layers.
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Chapter 4

Electrical Double Layer Simulation

4.1 Introduction

Although much is known about the electrical double layer in equilibrium, an-

alytic solutions for the dynamical behavior can not be derived from equations

1.1, 1.2 and 1.3, so to learn about the dynamical behavior numerical simu-

lations must be done. There have been many simulations done to study the

ion behavior at blocking electrodes under the simple geometry presented here.

[6, 11, 12, 13] These simulations all use different numerical schemes of varying

accuracy. Franceschetti[12]uses a sophisticated PDE package and a finite ele-

ment scheme as well as breaking up equations 1.1, 1.2 and 1.3 into a system

of six coupled first order differential equations. Tankovsky[11] uses the same

system of coupled first order differential equations, but uses a first order nu-

merical scheme which suffers from numerical diffusion which increases as the

potential increases. This numerical diffusion causes the total ion number of

both the positive and negative ions not to be conserved. Both of these sim-

ulations use transformations which cast the variables into dimensionless form

with the Debye length
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λD =

√
εkBT

4πe2p0(Zn + Zp)
=

0.304nm
√
p0

(4.1)

and the dielectric relaxation time

τD =
ε

4πe2p0(µn + µp)
(4.2)

as the characteristic length and time scales of the system.

The simulation done by Morrow[6]uses a method called Flux-Corrected

Transport (FCT) which has been used for plasma physics and gas discharge

models[14, 15, 16] as well as a flux limiting method.[17]

The first simulation attempted was the first order method by Tankovsky[11],

but it suffered from the numerical diffusion already mentioned. Even at small

potential, the size of the microchannel could only be increased out to approx-

imately 10 Debye lengths before the simulation became very inaccurate. As

the concentration increases, the Debye length decreases, which means that the

characteristic length of the system becomes small compared to the size of the

system. This makes the first order method unsuitable and it was abandoned

in favor of the FCT method.

4.2 Flux-Corrected Transport Method

4.2.1 Introduction

The FCT algorithm is an algorithm that allows two different types of solutions

to be combined in a way that uses the strengths of both solutions and avoids

their weaknesses. Equations 1.1 and 1.2 are advective-diffusive continuity

equations and have been studied in constant electric fields previously.[18, 19]

Certain lower order solutions have the strength of being smoothly varying and
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positive everywhere, but the weakness is that they suffer from large amounts

of numerical diffusion. On the other hand, higher order solutions suffer from

less numerical diffusion and can pick up sharper features, but suffer from os-

cillations and possible negative solutions, even though these negative solutions

are unphysical. FCT allows an accurate solution to be built onto the lower or-

der solution which uses the higher order solution as much as possible without

adding the oscillations or any negative and unphysical aspects to the solution.

As well as using the ion density, as the name suggests, the density’s flux for

both the higher and lower order solutions is used to calculate the flux corrected

solution. In most of the previous studies the electric field was constant, but in

this work, as with the electrical double layer simulation by Morrow[6], equation

1.3 has to be solved simultaneously with the two continuity equations. Lastly

the results of the FCT solution will be used to calculate the current flowing in

the circuit, which will be compared to the current measured experimentally for

the microfabricated devices. Then, in this case the electric field and potential

can be compared to the Gouy Chapman solutions (Equations 1.7and 1.4) to

determine the accuracy of the solutions.

4.2.2 The Model

The model for this simulation is a 1 dimensional microchannel between two

blocking electrodes. The electrode is blocked by dielectric layers between the

electrodes and the microchannel, as can be seen in figure 1.1. This dielectric

layer, which experimentally is parylene N, (εparylene = 2.65) causes a potential

drop of the initial magnitude of the potential on the electrodes, so the potential

in the channel depends on the thickness of the parylene layer, even though the

input pulse magnitude is kept constant. The blocking electrodes also ensure

that ions don’t flow out of the channel, and also prevent the need to model
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any chemical reactions that might otherwise take place between the ions and

the electrodes. There will only be a non-Faradiac current flowing inside the

channel. Like the experiment, the channel length will be 9µm and two ion

species will be used, Potassium, K+, and Chlorine, Cl−. At the boundaries,

no ions can flow out of the channel, and no ions can diffuse from the dielectric

layer into the channel. This means that at the boundaries the ion mobility,

µp = µn = 0 and the diffusion constants, Dp = Dn = 0.

4.2.3 Lower Order Method

The Lower order method that was found to be non-negative and non-oscillating[19]

involved using a differencing of the diffusion term in equations 1.1 and 1.2 at

the current time step, and an explicit upwind differencing of the advective

term at the previous time step as well as backwards time differencing of the

time derivative.

This gives an implicit equation,

− 2sj− 1
2
p̃j−1 + (2 + 2sj− 1

2
+ 2sj+ 1

2
)p̃j − 2sj+ 1

2
p̃j+1 =

(cj− 1
2
+|cj− 1

2
|)pnj−1+

(
2− (cj+ 1

2
+ |cj+ 1

2
|) + (cj− 1

2
− |cj− 1

2
|)
)
pnj−(cj+ 1

2
−|cj+ 1

2
|)pnj+1

(4.3)

where sj+ 1
2

= Dp∆t

∆x2
, cj+ 1

2
= µp∆t

2∆x
(Ei+1 + Ei) , pnj is the known solution for the

ion density at time step n and p̃jis the lower order solution at the time step

n+1 on a uniform mesh. This implicit equation forms a tridiagonal matrix

system which can be solved once the appropriate boundary conditions have

been implemented. Many efficient solvers have been written, and for this

work the tridiagonal matrix solver from the GNU Scientific Library has been
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used. Rather than rederiving equation 4.3 for the negative ion case, the sign

of the mobility, µn was changed from positive to negative for movement in the

opposite direction.

The positive ion flux is given by

φL
j+ 1

2
=

∆x

2

[
(cj+ 1

2
+ |cj+ 1

2
|)pnj + (cj+ 1

2
− |cj+ 1

2
|)pnj+1 −

(
2sj+ 1

2
(p̃j+1 − p̃j)

)]
.

(4.4)

The tridiagonal matrix, which is in the form



b0 c0 0 0 0 0 0 0

a0 b1 c1 0 0 0 0 0

0 a1 b2 c2 0 0 0 0

0 0 ... ... ... 0 0 0

0 0 0 ... ... ... 0 0

0 0 0 0 ... ... ... 0

0 0 0 0 0 aN−2 bN−1 cN−1

0 0 0 0 0 0 aN−1 bN





p0

p1

.

.

.

.

.

pN



=



d0

d1

.

.

.

.

.

dN



(4.5)

the coefficients equation 4.3 can be written in the form aj−1pj−1+bjpj+cjpj+1 =

dj. Where aj−1 = −2sj− 1
2
and cj = −2sj+ 1

2
.bj = (2+2sj− 1

2
+2sj+ 1

2
) are defined

everywhere except at the boundaries. Since sj− 1
2

= sj+ 1
2

= s, so

aj = −2s (4.6)

bj = (2 + 4s) (4.7)
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Figure 4.1: Equilibrium ion density for the positive and negative ion solutions
for the Low order algorithm. It can be seen that, since the ions being depleted
at a boundary are restricted to remain non-negative, there is a visible difference
in the magnitude of the depletion compared to the equilibrium and that of the
accumulation compared to the equilibrium. The channel width is 9µm, and
the concentration of the solution is 0.0001mol/L. At this concentration the
cell is 296 Debye lengths and 5921 grid points are used with ∆x = 1.5nm
and an adaptive scheme which calculates a new time ∆t for each time step is
employed.

cj = −2s (4.8)

dj = (cj− 1
2

+ |cj− 1
2
|)pnj−1 +

(
2− (cj+ 1

2
+ |cj+ 1

2
|) + (cj− 1

2
− |cj− 1

2
|)
)
pnj (4.9)

−(cj+ 1
2
− |cj+ 1

2
|)pnj+1.

Equations 4.6, 4.7, 4.8 and 4.9 along with non conducting boundary conditions

will allow the simulation to behave appropriately, where at one electrode pos-

itive ions will accumulate and negative ions will be depleted, and the opposite

will happen at the other electrode. As mentioned in 4.2.2 the conditions at
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Figure 4.2: Showing the positive ion flux, as calculated from equation4.4 for
two different times. The channel width is 9µm, and the concentration is
0.0001mol/L. At this concentration the cell is 296 Debye lengths and 5921
grid points are used with ∆x = 1.5nm and an adaptive scheme is employed to
calculate ∆t. The slightly lower flux on the left is a result of the imbalance of
the depletion of the positive ions at one electrode, and the slightly higher flux
at the right is because of the same imbalance of the accumulation of ions at
the other electrode.

the boundary are that µp = µn = 0 and Dp = Dn = 0, which means that

c− 1
2

= cN+ 1
2

= 0 and s− 1
2

= sN+ 1
2

= 0. Applying this to equations 4.6, 4.7,

4.8 and 4.9 gives a−1 = 0, cN = 0, b0 = 2 + 2s and bN = 2 + 2s as well. The

boundary conditions applied to dj are

d0 =
(

2− (c 1
2

+ |c 1
2
|) + (c− 1

2
− |c− 1

2
|)
)
pn0 − (c 1

2
− |c 1

2
|)pn1 (4.10)

and

dN = (cN− 1
2

+ |cN+ 1
2
|)pnN−1 +

(
2− (cN+ 1

2
+ |cN+ 1

2
|) + (cN− 1

2
− |cN− 1

2
|)
)
pnN .

(4.11)

Figure 4.1 shows the behavior of the ion density. This shows the accumulation
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of positive ions and depletion of the negative ions on the right and the opposite

behavior on the left. In the middle the ion density has not changed, and as the

concentration of the solution increases, and the Debye length gets smaller the

change from the initial ion density to the high ion density at the boundaries

happens much closer to the boundary. The ion flux is shown for two different

times in figure 4.2 and shows that the ion flux is relatively flat in the middle,

with slight dip near the electrode where the depletion occurs and a slight

increase near the electrode where the accumulation occurs. This is because

the ions can’t deplete below zero, although there is not a similar condition

at the accumulation electrode, causing a slight asymmetry, which increases as

the ion concentration and applied potential increase. The ion flux also goes to

zero at both boundaries because of the non-conducting boundary conditions.

The decrease in the ion flux as time progresses is because the ions screen the

electric field as they accumulate and weaken its effects.

4.2.4 High Order Method

The Higher order method used was taken from[19]. To derive their equation

they started with a fourth order finite difference equation for the advective

part of equation 1.2[16] and combined that with a second order differencing

of the diffusion term in equation 1.2. For a uniform spatial mesh the Higher

Order Method equation is
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Figure 4.3: Shows the positive and negative ion density at equilibrium for the
higher order algorithm. The parameters for this simulation were a channel
width of 9µm and a concentration of 0.0001mol/L. At this concentration the
cell is 296 Debye lengths and 5921 grid points are used with ∆x = 1.5nm and
an adaptive scheme is employed to calculate ∆t.

(
2− 3cj− 1

2
+ (cj− 1

2
)2 − 6sj− 1

2

)
p̄j−1 +

(
8 + 3(cj+ 1

2
− cj− 1

2
)

−(cj+ 1
2
)2 − (cj− 1

2
)2 + 6sj+ 1

2
+ 6sj− 1

2

)
p̄j +

(
2 + 3cj+ 1

2
+

+(cj+ 1
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)
p̄j+1 =

(
2 + 3cj− 1

2
+ (cj− 1

2
)2 + 6sj− 1

2

)
pnj−1 (4.12)

+
(

8− 3(cj+ 1
2
− cj− 1

2
)− (cj+ 1

2
)2 − (cj− 1

2
)2 − 6sj+ 1

2
− 6sj− 1

2

)
pnj

+
(

2− 3cj+ 1
2

+ (cj+ 1
2
)2 + 6sj+ 1

2

)
pnj+1

again, where sj+ 1
2

= Dp∆t

∆x2
, cj+ 1

2
= µp∆t

2∆x
(Ei+1 +Ei) , pnj is the solution at time

step n and at mesh point j and p̄jis the solution of the higher order ion density

at n+1 and at mesh point j. Equation 4.12 forms a tridiagonal system in the

form of equation 4.5 which is also solved by using the tridiagonal matrix solver

from the GNU Scientific Library with
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aj−1 = 2− 3cj− 1
2

+ (cj− 1
2
)2 − 6sj− 1

2
(4.13)

bj = 8 + 3(cj+ 1
2
− cj− 1

2
)− (cj+ 1

2
)2 − (cj− 1
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)2 + 6sj+ 1

2
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(4.15)
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The same idea is applied for the boundary conditions as for the lower order.

a−1 = 0 and cn = 0, even though, with just the boundary conditions, these

would have a constant value of 2. Applying the boundary conditions to bn and

dn gives

b0 = 8 + 3(c 1
2
− c− 1

2
)− (c 1

2
)2 − (c− 1

2
)2 + 6s (4.17)

bN = 8 + 3(cN+ 1
2
− cN− 1

2
)− (cN+ 1

2
)2 − (cN− 1

2
)2 + 6s (4.18)

d0 =
(

8− 3(c 1
2
− c− 1

2
)− (c 1

2
)2 − (c− 1

2
)2 − 6s

)
pn0

+
(

2− 3c 1
2

+ (c 1
2
)2 + 6s

)
pn1 (4.19)
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Figure 4.4: shows the ion flux for two different times in the simulation, which
shows the flux decreasing with time. Like in the lower order case (figure 4.2)
the lower value of the flux on the left is from the smaller amount of depletion of
ions at the left electrode with respect to the larger amount of accumulation of
ions at the right electrode. The channel width is 9µm and the concentration is
0.0001mol/L. At this concentration the cell is 296 Debye lengths and 5921 grid
points are used with ∆x = 1.5nm and uses an adaptive scheme is employed
to calculate ∆t.

dN =
(

2 + 3cj− 1
2

+ (cj− 1
2
)2 + 6sj− 1

2

)
pnj−1 (4.20)(

8− 3(cj+ 1
2
− cj− 1

2
)− (cj+ 1

2
)2 − (cj− 1

2
)2 − 6sj+ 1

2
− 6sj− 1

2

)
pnj .

Just like for the lower order method, the negative ion solution is computed

by changing the sign of the ion mobility from positive to negative rather than

rederiving equations 4.13-4.20 for the negative ion system. The ion density for

the higher order solution looks very similar to that of the lower order solution

as is shown in figure 4.3. The two methods will be compared later.

The higher order flux is given by
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φH
j+ 1

2
=

∆x

12

[(
2 + (cj+ 1

2
)2
) (
p̄j+1 − p̄j − pnj+1 + pnj

)
+ 3cj+ 1

2

(
p̄j+1 + p̄j + pnj+1 + pnj

)
−6sj+ 1

2

(
p̄j+1 − p̄j + pnj+1 − pnj

)]
(4.21)

and can be seen in figure 4.4 which again shows similar behavior to the lower

order solution and qualitatively makes sense.

4.2.5 Electric Field and Potential

Assuming an initial known electric field and assuming it is constant over some

small time step, the redistribution of the positive and negative ion densities

can be calculated for either the higher or lower order methods. However, once

the new ion densities are known, the electric field must be updated by solving

Poisson’s equation (equation 1.3). The 4th order Runge Kutta method[20] was

chosen for this simulation to calculate the updated electric field for each time

step. Using the fact that E = −∂V
∂x

, equation 1.3 can be rewritten as

∂E

∂x
=

e

εwε0
(Zpp− Znn) (4.22)

which is in the correct form for the Runge Kutta method. However, since

Runge Kutta is a marching scheme, and a solution for initial value problems,

this poses some difficulties. The electric field has neither an initial value,

nor known boundary values (since the largest changes in the electric field

happen precisely at the boundaries[6]). However, the potential has two known

boundary values (one at each electrode). The Shooting Method[21] is a way

to solve initial value problems in the form of boundary value problems. In

this case, this is done by guessing an initial value for the electric field at

the left boundary, which is enough information to complete the electric field

57



- 2 . 5 0 . 0 2 . 51 0 1

1 0 2

1 0 3

1 0 4

1 0 5

 

 

Ele
ctr

ic F
ield

 (V
/m

)

P o s i t i o n  i n  C h a n n e l  ( µm )

 I n i t i a l
 5 0 µs
 3 0 0 µs

(a)

- 4 - 2 0 2 4
- 0 . 0 1 0

- 0 . 0 0 5

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

 

 

Po
ten

tia
l (V

)

P o s i t i o n  i n  C h a n n e l  ( µm )

 I n i t i a l
 5 0 µs
 3 0 0 µs

(b)

Figure 4.5: (a)Shows the evolution of the electric field as the positive and
negative ions redistribute, like in figures 4.1 and 4.3. As can be seen the electric
field changes sharply where the ions are accumulating, effectively screening
the electric field applied between the electrodes. (b)Shows how the potential
evolves as the ion densities change, again showing the largest change near
the electrodes. In equilibrium all of the potential drops across the electrical
double layer. The channel width is 9µm and the concentration of the solution
is 0.0001mol/L. At this concentration the cell is 296 Debye lengths and 5921
grid points are used with ∆x = 1.5nm and an adaptive scheme is employed to
calculate ∆t.
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calculation. Then, the electric field can be used to determine the potential.

The potential is calculated using a Simpson’s[22] integration scheme with linear

interpolation.

Vj+1 = Vj −
∆x

2
(Ej+1 + Ej) . (4.23)

This requires the use of the left boundary condition on the potential to start the

calculation, as the Simpson’s integration scheme is also a marching scheme.

Once the potential has been determined, the calculated value at the right

boundary can be compared to the boundary condition. If it is within some

tolerance the calculation will stop, but if it is not, a new guess for the initial

electric field point is chosen and the calculation proceeds. The key with the

shooting method is to make smart initial guesses for the electric field. This

can be done by initially calculating both the electric field and potential with

two initial guesses, q0 and q1, and defining the difference between the two right

boundary values as d = f1 − f0 where f1 is the value of the right boundary

calculated with initial guess q1 and f0 is the value of the right boundary calcu-

lated with initial guess q0. Although the choice of the first two initial guesses

should be made reasonably carefully, the important thing is to choose any

further required guesses in a clever manner. This can be done by defining the

next initial guess as

q2 = q1 + (B − f1)
(q1 − q0)

(f1 − f0)
. (4.24)

Next q0 = q1 and q1 = q2 and the same procedure is repeated, calculating

the electric field and potential for both guesses. The calculation stops when

d < tolerance which can be changed depending on the accuracy of the solution

required. The Shooting method generally converges within a few iterations,

at least for these systems.
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Figure 4.6: (a)Shows the agreement of the electric field once the system has
reached equilibrium with the semi-infinite Gouy-Chapman solution (equation
1.7). (b) Shows the agreement of the potential of the system in equilibrium
with the semi-infinite Gouy-Chapman solution (equation 1.4). Both show
excellent agreement, but there is a slight error in the potential, which is because
Simpson’s method with a linear interpolation is only a second order method.
The better agreement for the electric field is because the Runge Kutta method
used is accurate to 4th order. The channel width is 9µm and the solution
concentration is 0.0001mol/L. At this concentration the cell is 296 Debye
lengths and 5921 grid points are used with ∆x = 1.5nm and an adaptive
scheme is employed to calculate ∆t.
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Using the current solver for the tridiagonal system, the Courant number

(cj+ 1
2

= µp∆t

2∆x
(Ei+1 + Ei)) needs to be less than one (cj+ 1

2
< 1) everywhere,

which is a necessary condition for convergence of the simulation. And since

the Courant number depends on the electric field, as the electric field grows at

the electrodes, ∆t needs to be modified at each time step. This is simply done

by finding the maximum value of the (Ej+ 1
2
) term and using that to calculate

∆t, where

∆t =
0.9∆x

µpEj+ 1
2

(4.25)

and the minimum ∆t is used after it is calculated for all Ej+ 1
2
. The factor of 0.9

is used as the value of the Courant number, as a number close to, but less than

1. Its choice was somewhat arbitrary. This works very well for keeping the

simulation going, but as the electric field nears equilibrium this makes ∆t very

small and takes many more time steps for the simulation to reach equilibrium.

The behavior of the electric field as the calculation proceeds can be seen in

figure 4.5a starting at a constant value and increasing rapidly at the boundaries

and decreasing towards zero in the middle. Figure 4.5b shows the evolution of

the potential when the the two electrodes are held at V0 and −V0 where the

potential profile starts as a linear decrease from V0 to −V0 and finishes moving

sharply from the left boundary at V0 to zero and then decreasing sharply from

zero to −V0 at the opposite boundary. Both the potential and the electric field

show the effects of screening that the accumulation of ions at the boundaries

produces.

Now that the evolution of the electric field and potential have been seen to

behave qualitatively as expected, they can be compared to the Gouy-Chapman

solutions discussed in the introduction. To decide when to stop the simulation,

some criterion is needed. Since the simulation asymptotically approaches the

solution, it needs to be cut off at some point which is effectively the equilibrium.
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To do this, the simulation was run for a long time, and the maximum value

of the flux at a time step where the ion densities don’t change noticeably.

This value of the flux was found to be approximately 105 ions/m2s, so the

simulation was run until the flux in the middle of the channel was greater

than 5 ∗ 104 ions/m2s. Figure 4.6a compares the calculated electric field after

the cut off to the Gouy-Chapman solution, showing excellent agreement. The

agreement for the potential is not quite as good, as can be seen in figure 4.6b

and this is because the potential is calculated only using a first order method.

Using a higher order integration scheme could improve this, but it would make

dealing with the boundary conditions for the shooting method more difficult.

Since the potential was only used for its boundary conditions and the electric

field agreed with the Gouy-Chapman solution well, it was determined to be

unnecessary.

4.2.6 Flux Corrected Transport Algorithm

Now that two algorithms have been introduced, which both have different

strengths, the Flux Corrected Transport algorithm can be introduced to com-

bine the two algorithms into a more accurate solution. The lower and higher

order fluxes, defined by equations 4.4 and 4.21 can be combined to define the

anti-diffusive flux,

φA
j+ 1

2
= φH

j+ 1
2
− φL

j+ 1
2

(4.26)

which allows the higher order solution to be transformed into the lower order

solution.

p̄j = p̃j −
1

∆x
(φA

j+ 1
2
− φA

j− 1
2
). (4.27)

At this point nothing has been gained. The lower order solution still has nu-

merical diffusion, and the higher order solution can still suffer from oscillations
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caused from over-shooting sharp features. The strength of the FCT algorithm

is the application of a flux limiter. This flux limiter modifies the anti-diffusive

flux to eliminate any oscillations that are present in the higher order solution,

but also to use the higher order solution as much as possible to achieve less

numerical diffusion. There exists more than one flux limiting scheme, but in

this thesis a limiter defined by Zalesak[17] will be used. The correction of the

flux was achieved with a simple multiplier

φC
j+ 1

2
= Cj+ 1

2
φA
j+ 1

2
, 0 ≤ Cj+ 1

2
≤ 1 (4.28)

where Cj+ 1
2
is the correction multiplier. The algorithm devised to apply the

limiter is fairly straightforward. First a condition is set on the anti-diffusive

flux.

φA
j+ 1

2
= 0 if φA

j+ 1
2
(p̃j+1 − p̃j) < 0

and either φA
j+ 1

2
(p̃j+2 − p̃j+1) < 0 (4.29)

or φA
j+ 1

2
(p̃j − p̃j−1) < 0

After these conditions have been applied to the anti diffusive flux, pmaxj and

pminj will be defined as

pmaxj = max(pnj−1, p
n
j , p

n
j+1, p̃j−1, p̃j, p̃j+1) (4.30)

pminj = min(pnj−1, p
n
j , p

n
j+1, p̃j−1, p̃j, p̃j+1) (4.31)

then, using pmaxj and pminj as well as the anti-diffusive flux

P+
j = max(0, φj− 1

2
)−min(0, φj+ 1

2
) (4.32)
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Q+
j = (pmaxj − p̃j)∆x (4.33)

R+
j =


min

(
1
Q+
j

P+
j

)
P+
j > 0

0 P+
j = 0

(4.34)

P−j = max(0, φj+ 1
2
)−min(0, φA

j− 1
2
) (4.35)

Q−j = (p̃j − pminj )∆x (4.36)

R−j =


min

(
1,

Q−
j

P−
j

)
P−j > 0

0 P−j = 0

(4.37)

where P+
j and P−j are the sums of the anti-diffusive fluxes into mesh point j and

out of mesh point j respectively. R+
j represents the smallest upper bound of

the fraction which corrects the antidiffusive flux to ensure that there is no over-

shoot of the ion density at mesh point j. Similarly R−j is the smallest upper

bound for the anti-diffusive flux correction which ensures no under-shoot at

mesh point j.[17] Since if the anti-diffusive flux is directed away from one mesh

point it will be directed towards an adjacent mesh point, the flux limiting will

take place with respect to undershoots for antidiffusive flux directed away from

a mesh point, and will take place with respect to overshoots for antidiffusive

flux directed towards a mesh point. To ensure that the correction is applied
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Figure 4.7: FCT, Higher and Lower Order algorithms applied to an input
density plus, which is 5 times the concentration elsewhere in the channel,
propagated forward for 1000 time steps. The FCT solution is free from the
oscillations that are prevalent in the higher order solution, as well as being
much sharper than the -ower order solution, illustrating that it is a superior
solution to both methods. For this test the electric field is held constant and
not recalculated each time step and the diffusion constant is made extremely
small to allow the pulse to hold its shape for over 1000 time steps. For this
simulation there are 14803 grid points and ∆x = 0.6nm in the 9µm channel
and a constant ∆t = 1ns.

properly

Cj+ 1
2

=


min(R+

j+1, R
−
j ) φA

j+ 1
2

≥ 0

min(R+
j , R

−
j+1) φA

j+ 1
2

< 0

. (4.38)

Then after correcting the flux, with equation 4.28 the flux corrected ion density

can be found with

pj = p̃j −
1

∆x
(φC

j+ 1
2
− φC

j− 1
2
). (4.39)

The FCT procedure will produce a more accurate solution for the ion density

than both the lower and higher order algorithms alone. The same procedure

was followed to determine the flux corrected negative ion density solutions.
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Figure 4.7 compares all three methods with the propagation of an initial

ion density pulse in a constant electric field. The electric field calculations de-

scribed in Section 4.2.5 were turned off and the diffusion constant was changed

to a very small value so that the ion density pulse wouldn’t smooth out ap-

preciably over the 1000 time steps of the calculation. The lower order so-

lution maintains its shape fairly well, with a lot of smoothing. The higher

order method picks up the sharp change at the edges of the ion density pulse

very well, however suffers from extreme over-shoots and undershoots and the

density oscillations take a long time to decay. However, the FCT solution

is a significant improvement over both other methods. The FCT algorithm

smooths out the under-shoots and over-shoots very nicely, as well as main-

taining sharper edges in the ion density pulse compared to the lower order

method. Figure 4.7 shows that the FCT algorithm is a significantly better

algorithm and confirms that more accurate results will be achieved by using

this algorithm to simulate the electrical double layer formation.

4.2.7 Realistic Voltage Pulse

Up into this point the simulation has been basically the same as the simulation

done by Morrow et al.[6] except for using a uniform mesh, rather than a

logarithmically varying mesh, which is simpler to program, although costly

for computation time. However, there are several modifications to make so

that the simulation matches the specific parameters of the experiment. In the

simulation done by Morrow et al. they define the potential in such a way that

it has a finite rise time, to be a more realistic pulse. The first attempt to make

a realistic voltage pulse was to record the applied pulse from the SRS function

generator and use that as a realistic voltage pulse. Figure 4.8 shows a sample

real pulse as well as a cubic spline interpolation so that any value of the pulse
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Figure 4.8: Shows the real pulse created from the function generator compared
with the cubic spline interpolation. The interpolation uses 2000 points from
the file recorded from the function generator on the oscilloscope. The agree-
ment is quite good, with some slight undershoot and overshoot at the sharp
change in the pulse.

can be found. Using this pulse allowed some of the fluctuations that appeared

in the real input pulse to be present in the simulated response. However,

although the pulse is applied to one side of the channel quickly from the

function generator, the potential drop across the cell, which is the important

parameter, is limited by the RC time of the total circuit. This means the

voltage drop is applied slower than if it came only from the function generator.

The applied voltage can then be given by VRC = V0(1 − e
−t

RCeq ). Simulations

were run using both types of input pulses, and it was found that the double

layer time constant was long enough that the pulse shape made very little

difference to the current generated from the ion flow.

In the Morrow simulation the input voltage pulse starts at V = 0 and

after the rise time is V = V0, however the function generator doesn’t actually

generate a voltage pulse, but a square wave which is centered at V = 0, and has
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a minimum value of V = −V0 and a maximum value of V = V0. This means

physically, that the initial ion density distributions are not at equilibrium with

V = 0 (and constant throughout the channel). If the pulse is positive, it means

that the initial ion density distribution is that of the system having reached

equilibrium with V = −V0 (a double layer has formed with V = −V0). To

have this initially formed double layer requires the program to be modified to

read in a file with an initial positive and negative ion distributions and to have

previously run the program with the parameters of interest (channel width,

number of mesh points, concentration, maximum magnitude of the voltage

pulse) with the signs on the voltage boundary conditions reversed. Since just

the final ion density distributions are required from this calculation, it can be

run with a perfect voltage pulse (rise time = 0) to simplify everything.

4.2.8 Current

The ultimate goal of this simulation is to calculate the current in the circuit,

which can be compared to the measured current from the experiment. The

starting current equation used is the modified Sato equation[23] which Morrow

used in his original double layer simulation. The equation is

I =
A

d
e

ˆ d

0

[
pWp − nWn +Dp

∂p

∂x
−Dn

∂n

∂x

]
dx+ C

dV

dt
(4.40)

where Wp = µpE and Wn = µnE are the ion velocities. The integral term is

an average of the non-Faradiac current at each grid point over the entire cell

generated from the flow of the ions, and the term with the time derivative of the

potential is the displacement current.[6] The ion drift terms (pWp and nWn)

are calculated at each grid point. Through the bulk of the cell the diffusion

derivatives are calculated with a centered difference formula ( ∂p
∂x

=
(pj+1−pj−1)

2∆x
)
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which has the diffusion centered at the grid point j. However, at the boundaries

this centered difference formula can’t be used, and a forward or backwards

difference equation must be used, which has the diffusion centered between

the two grid points. This means that the current calculated for the grid point

at the boundary is less accurate than the current calculated elsewhere, but

the accuracy can be improved by increasing the number of grid points. Figure

4.9 shows the spatial dependence of the current. The current is consistent

everywhere in the channel except at the boundaries. At the boundaries not

only the magnitude of the current is different, but it is no longer an exponential

decay as well. Figure 4.10 shows the current calculated at the left boundary

of the channel as the number of grid points is varied. As the number of grid

points is increased the steady state current at the boundary decreases towards a

constant, non-zero value. This shows that at the boundary, where the gradient

of the ion densities is largest, there are significant numerical errors. However,

these errors don’t extend far from the boundary, so the effect on the current

from the Morrow-Sato equation is small and doesn’t effect the time constants

that are determined from it.

The average current from equation 4.40 gives good qualitative agreement

with the measured current, with both following an exponential decay, but

is dominated by the non-Faradic current. The external circuit current term

in equation 4.40 is dependent on the choice of input pulse. Using VRC =

V0(1 − e
−t

RCeq ) ensures that the current calculated for the external circuit is

accurate. If the currents from the two terms were of similar magnitudes, the

choice of which voltage to use would be very important, however it turned out

that it was insignificant in the simulation. The simulation also found that the

double layer time constant was much larger than the RC time constant of the

circuit.
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Figure 4.9: Shows the spatial distribution of the current in the microchannel
as a function of time. Through the majority of the channel the current is
constant, but near the boundaries the current changes in both magnitude and
shape of the current. This simulation was run at p0 = 1 ∗ 10−5mol/L with
1872 grid points and ∆x = 4.8nm. The simulation ran with a constant time
step ∆t = 5ns until the initial double layer was driven through the uniform
density. Then the simulation switched to the adaptive algorithm for setting
∆t.

4.2.9 Parylene Model

Another addition to the simulation is to include the voltage drop across the

parylene layers, which decreases the strength of the initial voltage pulse.

This was done using a 3 level dielectric model with the two parylene lay-

ers (εparylene = 2.65) and the channel filled with water (εwater = 80). Figure

4.12 shows a schemetic of this dielectric model. The electric field in any layer

is given by Ei = σ
ε0εi

, where σ is the surface charge and εi is the dielectric

constant of the ith layer. The potential drop across any layer is given by the

electric field in the layer multiplied by its thickness, and the total potential is

the sum of each of the potential drops:

V = E1a+ Ewb+ E2c. (4.41)
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Figure 4.10: Shows the current calculated at the first grid point varying the
number of grid points from 20-160 points per Debye length (1872-14979 total
grid points). As the grid gets finer the current approaches a stable value
where it becomes independent of the number of grid points, showing that
the numerical error is large at the boundaries where the gradients of the ion
densities change the most significantly. The simulation was run for p0 =
1 ∗ 10−5mol/L with a 9µm channel depth which gives 93.6 Debye lengths in
the length of the channel and a constant ∆t = 10ns was used for all of the
simulations and ∆x = 4.8nm− 0.6nm from the least number of grid points to
the most.
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Figure 4.11: (a)shows sample measured current from the experiment, show-
ing a slightly noisy exponential decay which is more evident in figure 4.13b.
This signal is taken with a sample with a top plate thickness of 93.8nm and
a concentration of 0.0001mol/L taken with the variable load resistance set at
1kΩ.(b) shows the current calculated in the FCT simulation with 9µm chan-
nel depth and 0.0001mol/L which has 5921 grid points (∆x = 1.5nm) and
used the adaptive algorithm to adjust ∆t each time step. The simulated spa-
tially averaged current in (b) has some of the same qualitative features as the
measured current, although the time scales are significantly different and the
relative scales of the current are different, with the simulated current from the
double layer being larger.

Figure 4.12: Shows a schematic of the three layer dielectric model. This con-
sists of two layers of parylene, of thicknesses d1 and d3, separated by a channel
filled with water, of thickness d2. This model doesn’t take into consideration
the formation of the electrical double layer.
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Figure 4.13: (a)The parylene model for different thicknesses of the parylene
layer on the top plate applied to a 10mV input pulse. As the thickness of
the parylene increases, the magnitude of the pulse decreases. (b)The current
calculated using the modified input pulses from (a) for a channel thickness of
9µm and a concentration of 0.0001mol/L. At this concentration the cell is
296 Debye lengths and 5921 grid points were used with ∆x = 1.5nm and an
adaptive scheme was employed to calculate ∆t.

Substituting the expression for the electric field into equation 4.41 and solving

for the surface charge gives

σ =
V0εparyleneεwaterε0

εwater(a+ c) + bεparylene
. (4.42)

Equation 4.42 can be substituted into ∆Vi = σdi
εiε0

to give the potential drop of

the ith layer. Assuming that the potential drop across the parylene layer is

independent of the ion behavior in the channel, equation 4.42 can be applied

to the voltage pulse to get a reduction in the magnitude of the voltage pulse.

The potential drop through the parylene layer for various thicknesses of

parylene is shown in figure 4.13a using the pulse from the function generator.

As the thickness of the parylene increases, the potential drop across the pary-

lene layer increases (meaning a decrease in the potential across the channel),

but the pulse maintains the same basic shape. Figure 4.13b shows the current

calculated for the various input pulses with a concentration of 0.0001mol/L
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and a channel thickness of 9µm. As the thickness of the parylene layer in-

creases and the magnitude of the input pulse decreases, the maximum current

also decreases. The time constant appears to remain constant over this range

of potential, however this will be investigated over a larger potential range

later.

4.3 Simulation Parameters

In this simulation the diffusion constants used are DCl = 1.77 ∗ 10−9m2/s and

DK = 1.83∗10−9m2/s for Cl− and K+ respectively and their ion mobilities are

µCl = 6.88 ∗ 10−8m2/V s and µK = 7.12 ∗ 10−8m2/V s[24]. The concentration

of the KCl solution was varied from 1 ∗ 10−6mol/L to 0.1mol/L. As the

concentration of the solution increases, so does the number of grid points.

The number of points varied with the Debye length of the solution, and for

each Debye length there were 20 grid points. As the number of grid points

increased, the number of calculations per time step increased by the same

factor, and the number of time steps also approximately doubled, based on

the fact that ∆t, from equation 4.25, is proportional to the spacing, ∆x. The

run time for the simulations varied from approximately one minute for the

smallest concentrations, to days for the highest concentration on a Intel Core

2 Duo 2.1 GHz cpu with 4GB of ram.

4.4 Results

Since the external circuit current was so small compared with the current

from the ion flow, direct comparison of the currents in the experiment and

simulation might not be possible, so comparison with the experiment needs to

be made in a different manner. For this, the calculated current, using equation
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4.40 will be used. Figure 4.14 shows how the time constant for the double layer

formation time decreases as the concentration increases. It also shows that the

magnitude of the current increases significantly as the concentration increases.

This makes sense as the current depends mostly on the ion flux, which increases

as the concentration, and thus, total number of ions, increases. Figure 4.15

shows the relationship between the concentration and the time constant. It

also shows a power law fit, with τ = 0.8402p−0.4932
0 µs, compared to the data

from the simulations. This power law is similar in form to equation 4.1 for the

Debye length. The exponents are almost exactly the same suggesting that the

electrical double layer formation time is proportional to the Debye length. A

similar conclusion was found in the simulation work of Morrow et al.[6]. The

different coefficient between the the power law equation found by Morrow et

al, and found here is most likely a result of starting this simulation with a

fully formed double layer for a negatively valued voltage pulse and the use of

a real voltage pulse, rather than a finite rise time, analytic approximation for

a voltage pulse.

Lastly for p0 = 1 ∗ 10−4mol/L the magnitude of the input pulse was varied

from 5mV-40mV to see how the time constant of the double layer formation

varies with voltage. Figure 4.16a shows how the current varies with a con-

stant concentration as the magnitude of the input pulse varies. The maximum

current increases as the strength of the input pulse increases. Because of the

higher initial current, the larger input pulse requires a longer time to decline

to the same value, as can be seen by the increased value of the x-intercept

for a higher input pulse value. However, since the slopes look similar further

analysis needs to be done to determine the time constant. The time constant

was found the same way as before, and the results can be seen in figure 4.16b.

As the magnitude of the input pulse was increased the time constant can be
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Figure 4.14: The decay of the simulated current calculated using equation
4.40 for concentrations ranging from 5 ∗ 10−5mol/L to 1 ∗ 10−2mol/L. From
these concentrations the number of grid points varies from 4187 to 59211 which
corresponds to ∆x = 2.15nm to ∆x = 0.15nm and uses the adaptive algorithm
to change ∆t.
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Figure 4.15: Shows the time constants calculated from the simulated currents
for the different concentrations shown in figure 4.14. The red curve is a power
low fit giving the equation τ = 0.8402p−0.4932

0 µs.
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Figure 4.16: (a) shows the natural logarithm of the current plotted against
time for input pulse magnitudes of 5mV-40mV. (b) shows the value of the time
constant plotted against the input pulse magnitude. The channel thickness
used was 9µm and the concentration was 0.0001mol/L. All of the simulations
used 5922 grid points and a spacing ∆x = 1.5nm and the adaptive algorithm
for the time step, ∆t. The input pulses were all generated from the function
generator.

seen to increase, but not in a linear fashion, and appears to be approaching

some maximum value.

4.5 Future Work

The majority of the change inside the microfluidic cell happens within a few

λD of each boundary. This simulation is inefficient in the sense that it has

a constant grid spacing. This means that to increase the accuracy at the

boundaries a very large number of points needs to be added to the simulation

which causes long run times for the simulation. The next step would be to make

this simulation much more efficient by using a variable mesh which had very

small spacing between grid points near the boundaries and a larger spacing

near the middle of the cell where very little change is occuring in the ion

densities. Morrow used a logarithmically varying mesh[6]. However, to use a

variable mesh the higher order and lower order equations need to be modified
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for this. Equation 4.3 for the lower order ion density becomes
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and the lower order ion flux becomes
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where ∆xj+ 1
2

= xj+1 − xj and ∆xj = (∆xj+ 1
2

+ ∆xj− 1
2
)/2. The Courant

number becomes cj+ 1
2

=
U
j+1

2
∆t

∆x
j+1

2

, where Uj+ 1
2

= µ(Ej+1 + Ej)/2 is the ion

drift velocity and the diffusion constant is given by sj+ 1
2

=
D
j+1

2
∆t

(∆x
j+1

2
)2

where the
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and
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Using equations 4.43-4.46 for the lower and higher order solutions, applying the

boundary conditions in the same way, will increase the speed of calculations

by not wasting many calculations in the middle of the solution where there is

very little change, but also improving the overall accuracy of the solution by

allowing for more grid points within the first few λD where the ion densities

change the most over time.
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Chapter 5

Electrical Double Layer

Experiment

5.1 Introduction

A lot is known about the properties of the electrical double layer in equilib-

rium. It is known how the electrical double layer changes the capacitance of

the system[7] as well as many other or its chemical characteristics, however,

there are few experimental studies of the dynamics of the electrical double

layer formation. The capacitance of the double layer suggests electric detec-

tion of the double layer dynamics. Morrow and colleagues[25] performed an

experiment that looks at the formation of the electrical double layer, however

their experiment was on a much larger system, that was very different from

the simulation described in Chapter 4. Their system involved a large length

scale (∼5cm). They used a four point scheme where they applied a voltage

pulse between a working electrode and a counter electrode and then measured

the voltage drop in a region between the two outer electrodes to observe the

voltage drop of the system. When observing the time dependence of this volt-
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age drop they were able to reconstruct the voltage profile of the system and

from an equivalent circuit model were able to determine the charging time of

the circuit.

In this experiment a two probe detection scheme will be used. In a mi-

crofluidic system it would be very difficult to get two suspended electrodes

between the outer electrodes to have a 4 point probe detection scheme. A

voltage pulse was applied to one of the two electrodes, and the response of the

system was measured at the other electrode. The circuit that describes the

system with the capacitor structure connected to a function generator (SRS

DS345) to apply a voltage pulse, and connected to an oscilloscope (Tektronix

TDS 3052B) to detect the response can be seen in figure 5.1a. The equivalent

circuit can be seen in figure 5.1b where R1 is the resistance of the function gen-

erator, R2 is the total resistance of the oscilloscope and variable load resistor

in parallel, C1 is the total capacitance of the sample and C2 is the equivalent

capacitance of the capacitive elements of the external circuit. The circuit was

analyzed from point P1. The oscilloscope is terminated at 1MΩ for the entire

experiment. A second order differential equation to describe the system can

be derived,

R2R1C2
d2Q1

dt2
+

[
R2

(
C2

C1

+ 1

)
−R1

]
dQ1

dt
− Q1

C1

= 0. (5.1)

The solution to equation 5.1 isn’t a simple exponential with an RC time con-

stant, however the second order term will be much smaller than the first order

term for any parameters of this experiment (by ∼ 109) and be neglected. From

this approximation, equation 5.1 becomes

[
R2

(
C2

C1

+ 1

)
−R1

]
dQ1

dt
− Q1

C1

= 0 (5.2)
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Figure 5.1: (a)Schematic of the circuit used in the experiment, without the
wire capacitance between the function generator and sample capacitor, C1,
because that capacitance was found not to make a difference. The oscillo-
scope is enclosed in the box. (b)Schematic of the equivalent circuit during
the discharging of a capacitor, where the function generator has been replaced
by a resistor, R1, R2 is the equivalent resistance of the variable resistor and
terminating resistance of the oscilloscope. C2 is the equivalent capacitance
between the coaxial wire and the oscilloscope. The analysis of the circuit is
done starting at the point, P1
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R2 = 47619Ω R2 = 4975Ω
C2 (pF) τModel τExperiment τModel τExperiment
210 14.76 15.93 1.54 1.61
310 19.52 20.07 2.03 2.08
620 34.28 33.68 3.58 3.21
760 41.42 40.42 4.32 3.89
1010 52.85 50.97 5.52 4.96
1070 59.99 58.71 6.26 5.83

Table 5.1: This table compares the model to the experiment while varying C2

which has a solution

Q1 = Ae

(
−t

C1[R2(C2
C1

+1)−R1]

)
. (5.3)

The solutions for equations 5.1 and 5.2 were compared and the deviation be-

tween the two is only at the nanosecond time scale. The denominator in the

exponent of equation 5.3 is the RC time constant,

τ = C1

[
R2

(
C2

C1

+ 1

)
−R1

]
. (5.4)

Equation 5.4 is derived assuming the capacitance, C2 of the equivalent circuit

is constant and is known, and compares quite well with measured values for

the time constant when tested with proper capacitors for C2 as can be seen

in table 5.1. Table 5.2 compares the measured value of the RC time con-

stant to the predicted value from the model when varying C1. Since τ ∝ R2

changing the value of R2 seems like a reasonable way of probing the system to

look at different time scales. A smaller value of τ should allow the effects of

the electrical double layer formation to be more easily observed. The double

layer effects would appear in a deviation from the normal exponential decay

associated with the discharge of a capacitor.
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R2 = 47619Ω R2 = 4975Ω
C1 (pF) τModel τExperiment τModel τExperiment
560 29.50 28.76 3.06 2.94
390 21.41 21.09 2.22 2.24
150 9.99 10.56 1.04 1.09
100 7.61 8.49 0.79 0.86

Table 5.2: Comparing the model to experiment while varying C1

5.2 Dielectric Model of Microfluidic Capacitor

There are two possible situations for the system. Case 1 will be when a step

function input pulse is applied that starts at V = 0 for t < 0 and steps to

V = V0 at t=0. The second case is when the input pulse is bipolar and flips

between V = −V0 when t < 0 and V = V0 when t ≥ 0.

Case 1

When V = 0 at t < 0 the system can be thought of as a three component

system with three dielectric layers, as shown in figure 5.2a. When the voltage

is turned on and the electrical double layers begin to form, a five layer model

becomes more appropriate, as shown in figure 5.2b. In this section a model

will be developed for this formation process based on the potential and the

capacitance of the system.

The three layer system, from figure 5.2a has an associated geometric ca-

pacitance, C. When the voltage is turned on, and the ions in the electrolyte

begin to form the electrical double layer, the capacitance will also start to

change from the geometric capacitance, however for now C will be assumed to

be constant. When the voltage between the electrodes at the outside of the

system, V is turned on at t = 0 the electrode of the capacitor will have some

charge which is related to the capacitance and potential by Q = CV . The
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(a) (b)

Figure 5.2: (a)Schematic of the 3 layer dielectric model at t = 0. The two
layers of parylene have thicknesses d1 and d3, and the channel has a thickness
of d2. (b) shows a schematic of the system for t > 0 where there are five
different regions. The double layers start to form at the boundaries of the
channel and modifies the 3 layer system by placing the double layers between
the channel and the parylene layers.

opposite electrode will have a charge −Q. The surface charge density is given

by σ = Q
A

= CV
A
. Since at this point we can think of the system as three linear

dielectrics, each region will have an associated electric field and potential drop,

such that the total potential is

V = V1 + V2 + V3 (5.5)

where Vi = Eidi where Ei is the electric field in that region and di is the

thickness of that region. Rearranging equation 5.5 to solve for the potential

in the channel gives V2 = V − V1 − V3. The electric field on region 1 or region

3 can be calculated using Gauss’s law[26] for linear dielectrics,

˛
ε1
−→
E1 · d ~A =

Qenc

ε0
(5.6)
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Figure 5.3: The three layer dielectric model using parameters V = 100mV ,
A = 10−4m2, d1 = d3 = 1mm and d2 = 6mm and those distances, as well as the
dielectric constants define the geometric capacitance as C = 1pF . (a)Electric
field in the two parylene regions and the channel. The regions are separated
with the vertical dashed lines. In each region the electric field is a constant
value and is discontinuous at the boundaries. (b)Potential in the three regions.
The potential is continuous, but has a different slope in the channel because
of the different dielectric constant of water.

which gives the electric field in region one to be

E1 =
Qenc

ε1ε0A
=

σ

ε1ε0
(5.7)

where ε1 = εparylene. Similarily the electric field in region 3 is E3 = σ
ε3ε0

where

ε3 = εparylene. The electrostatic boundary conditions in linear dielectrics state

that

εaboveEabove − εbelowEbelow = σf (5.8)

where σf is the free surface charge, however, since all of the charge between

two dielectric layers is bound charge, the free charge is zero between region 1

and 2, and between region 2 and 3. (σf = 0) So equation 5.8 simplifies to

ε1E1 = ε2E2
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and gives the electric field in region 2 to be E2 = σ
ε2ε0

which is of the same

form as equation 5.7, and is the same whether calculated from the top or the

bottom. Combining the equations for the electric fields in the three regions

with equation 5.5 gives the potential in the three regions. The electric field

for the three layer model can be seen in figure 5.3a where the three regions are

separated by the dashed lines. The electric field is constant in each region, but

has a different value in the channel because of the different dielectric constant

of water compared to that of parylene. The parameters are V = 100mV ,

A = 10−4m2, d1 = d3 = 1mm and d2 = 6mm which define the geometric

capacitance to be C = 1pF . The potential is shown in figure 5.3b. Each

region shows a linear decrease in the potential, but the slope of the potential

in the channel is smaller because the dielectric constant of water is larger than

that of parylene. When t > 0 and the ions in the channel start to move, the

system becomes more complicated. The original three regions turn into five

regions, with the behavior of the three regions in the channel (figure 5.2b) all

being time dependent. The effects of the electrical double layer increase with

time, and the behavior of the bulk channel region changes to compensate. The

potential in the five layer system becomes

V = V1 + V2(t) + V3(t) + V4(t) + V5. (5.9)

When rewriting in terms of the electric field, equation 5.9 becomes

V = E1d1 + E2(t)d2 + E3(t)d3 + E4(t)d4 + E5d5 (5.10)

where the electric field is still given by Ei = σ
εiε0

. It is expected, and seen in

the simulation, that the free ions in the channel move to screen the electric

field in the channel, so E3(t) should go to zero in the limit of t =∞. Also, as
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ions flow into the double layer region, the electric field in this region should

increase. Once this charge moves into the double layer region, however, it will

be modelled by thinking of it, not as a free charge, but a “fictitious” bound

charge so it can be modelled as another dielectric layer. Since to change the

field, the surface charge density must be changed, the time dependence in

regions 2, 3 and 4 will be added to the charge density. Also, since charge is

flowing from the channel (region 3) into the double layers, the charge in regions

2 and 4 is related to the charge in region 3. The surface charge density in the

double layer is defined as

σdl(t) = σ∞dl (1− e−
t
τ ) (5.11)

where τ is the time constant of the formation of the electrical double layer.

Equation 5.11 gives σdl(0) = 0 and σdl(∞) = σ∞dl so that the surface charge

density is turned on when t > 0 and increases to a constant value. Similarly the

surface charge density in the channel layer can be thought of as exponentially

decaying from some starting value at time t = 0.

σchannel(t) = σ0
channele

− t
τ

where τ is the same time constant as in equation 5.11 and σchannel(0) = σ0
channel

and σchannel(∞) = 0. Since, at t = 0 the system is a 3 layer system, σ0
channel =

CV
A

as defined for the 3 layer system. Since the charge flowing out of the channel

is related to the charge flowing into the double layer and should be proportional

to the charge flowing out of the channel (σ∞dl ∝ σ0
channel). Applying the time

dependence to equation 5.10 gives
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Figure 5.4: Using the same parameters as in figure 5.3 except adding d2 = d4 =
0.5mm and changing the distance of the water layer to d3 = 5mm. The regions
are separated by the vertical dashed lines. (a) shows the electric field in the 5
regions. The electric field is highest in the parylene layer, and smallest in the
channel and at an intermediate value in the forming double layers. (b)shows
the potential in the same regions. The slope is different in each region because
of the different dielectric constants, and in the 2nd, 3rd and 4th region because
the surface charge density is changing.
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Figure 5.5: Using the same parameters as figure 5.4 but at t =∞. The regions
are separated by the vertical dashed line. (a) shows the electric field, where the
ions have moved completely to screen the electric field in the channel so it is
zero through the bulk of the electrolyte. The electric field in the double layers
is at its maximum value. (b) shows the potential in the different regions. Since
the electric field in the electrolyte is zero, the potential through the electrolyte
is constant. The double layer has its maximum potential drop across it at
t =∞.
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V =
σd1

εparyleneε0
+
σ∞dl d2(1− e− t

τ )

εdlε0
+
σd3e

− t
τ

εwaterε0
+
σ∞dl d4(1− e− t

τ )

εdlε0
+

σd5

εparyleneε0
.

(5.12)

Equation 5.12 represents the total potential across the device at intermediate

times. Figure 5.4a shows the electric field in the five different regions at some

intermediate time where the double layer has started to form, so the electric

field in it is higher than the electric field in the bulk of the electrolyte. As

the electric field in the forming double layer becomes different from that in

the bulk electrolyte there is a potential drop across it, as seen in figure 5.4b.

This potential drop has a different slope than in the electrolyte because of

the different dielectric constant in the double layer. The effective dielectric

constant of the double layer can vary[7] between εdl = 6 − 32, so εdl = 20

was chosen. As time progresses the potential drop across the double layers

increases and the potential across the channel in region 3 decreases. At t =∞

the surface charge density in region 3 goes to zero, and so does the electric

field as seen in figure 5.5a and the potential in the bulk electrolyte remains

constant, as seen in figure 5.5b. If a bipolar input pulse, which varies from

−V0 to V0 instead of 0 to V0, is used, the bulk electrolyte has a value of the

potential, V = 0, as long as the two parylene layers are the same thickness.

At t =∞ equation 5.12 becomes

V =
σd1

εparyleneε0
+
σ∞dl d2

εdlε0
+
σ∞dl d4

εdlε0
+

σd5

εparyleneε0
. (5.13)

The thickness of the electrical double layers, d2 = d4 = λd, which is a function

of the concentration of the solution. The electric field in the channel, as a
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function of time is the electric field in region 3 and is given by

Ec(t) =
σe−

t
τ

εwaterε0
(5.14)

where dc is the depth of the channel. The reason that the electric field is of

interest is to calculate specifically the displacement current in the channel.

The displacement current is given by[27]

Id(t) = εwaterε0
dΦ

dt
(5.15)

where the flux, Φ = Ec(t)A. This allows an analytic equation for the displace-

ment current, which is

Id(t) = −Aσ
τ
e−

t
τ . (5.16)

This “displacement current” is caused by the motion of ions in the channel,

which are prevented from being a “real” current in the external circuit because

of the insulating parylene layer, preventing the charge to be physically moved

out of the channel. Though this current has the correct form, it is negative

which does not make sense. This equation does not include the current in

the circuit. The current in the external circuit, when the double layer is in

equilibrium, has an equivalent capacitance, Ceq, which includes the capacitance

of the wires and oscilloscope, as well as the device with the formed double layer,

as well as the equivalent resistance, Req which consists of the resistance of the

oscilloscope, as well as that of the variable load resistor. The current from this

is defined as

IRC(t) =
V

Req

e
− t
ReqCeq . (5.17)
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The total current defined similarly as in the Morrow and Franceschetti work, is

the sum of these two currents. The sign of the displacement current is wrong,

suggesting this method is incorrect. To arbitrarily make the displacement

current positive. The total current is given by

I(t) = IRC(t) + |Id(t)| =
V

Req

e
− t
ReqCeq +

Aσ

τ
e−

t
τ . (5.18)

So far in this derivation, the capacitance of the device has been assumed to be

constant. However, as the system evolves, with the three inner layers evolving

in time, the capacitance also changes. If we start with the 5 layer system, it

can be modeled as five capacitors in series, where the equivalent capacitance

is given by

1

Ceq
=

1

C1

+
1

C2

+
1

C3

+
1

C4

+
1

C5

where C1 is the capacitance of region 1, C2 is the capacitance of region 2, and

so on. C1 and C5 are constant in time, and are just given by the geometic

capacitances of the parylene layers, however C2 = C4 = C∞dl = εdlε0A
λD

and

C0
3 = εwaterε0A

dc
when both are in equilibrium. However, at t = 0 the electrical

double layer hasn’t started forming so there is no voltage drop across it, and

at t = ∞ there is no voltage drop through the channel, so in both cases, the

capacitance, as defined by C = Q
V
, is infinite. When any of the capacitances

is infinite, it doesn’t contribute to the equivalent capacitance of the system.

The time dependent double layer capacitance will be defined as

Cdl(t) =
C∞dl

1− e− t
τ

(5.19)

and the time dependent capacitance of the channel is given by
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Figure 5.6: Using the same parameters as for figure 5.4 and 5.5 as well as a
double layer formation time of τ = 500ns the time dependent capacitance from
equation5.21 is plotted against time, showing an exponential increase from the
value of the three layer dielectric to the final value of the capacitance.

Cc(t) =
C0

3

e−
t
τ

. (5.20)

The equivalent capacitance can then be defined as

1

Ceq(t)
=

1

C1

+
2(1− e− t

τ )

C∞dl
+
e−

t
τ

C0
3

+
1

C5

. (5.21)

Figure 5.6 shows the time dependent capacitance defined with equation

5.21 for the same parameters used to illustrate the electric field and potential

behavior of the model, as well as a characteristic double layer formation time

of τ = 500ns. This shows the capacitor starting at the geometric capacitance

of the three layer dielectric system and increasing in an exponential manner

to the equilibrium value of the 4 layer system. The intermediate region is the

time when all 5 layers are contributing to the equivalent capacitance of the

sample. Figure 5.7 shows the displacement current calculated from equation
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Figure 5.7: Shows the displacement current calculated from equation 5.16
using the parameters used in the previous figures. These parameters cause a
small change in the electric field so the displacement current is quite small.

5.16 including the time dependent contribution to the surface charge density

from the capacitor. The parameters used produce a small change in the electric

field so the displacement current is quite small. To be able to compare the

predicted displacement current with the RC current more realistic values for

the thicknesses of each of the layers will need to be chosen. The parameters

chosen for here were to make it easy to visualize the behavior in the different

regions.

Figure 5.9 shows a comparison using more realistic parameters, such as

parylene layers d1 = d5 = 100nm, a channel depth of d3 = 9µm, a concentra-

tion of p0 = 1 ∗ 10−5mol/L which defines the thickness of the double layers,

d2 = d4 = λD = 96.1nm. These parameters define a capacitance in equilib-

rium of Cmax = 10.4nF, and an equivalent resistance of Req = 50Ω was used

to calculate the RC current. An infinite rise time step function was used, with

a magnitude of V0 = 10mV . Figure 5.8 shows the total current using these
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Figure 5.8: Shows the total current, calculated from equation 5.18 using
a double layer formation time of τ = 100ns, parylene layer thicknesses of
d1 = d5 = 200nm, a channel thickness of d3 = 9µm, a concentration of
1 ∗ 10−5mol/L, which defines the Debye length, λD = 96.1nm, which is
the thickness of the two double layers. The dielectric constants used ear-
lier were used here as well. These parameters define a maximum capacitance
of Cmax = 10.4nF and an equivalent resistance of Req = 50Ω was used for the
RC current.
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parameters as a function of time, plotted on a logarithmic scale. This shows

the two regimes, the short time regime, showing the displacement current,

which has a characteristic formation time of τ = 100ns, and the longer time

regime with the RC exponential decay. This looks qualitatively like the cur-

rent produced in the experiment, however the capacitance calculated using the

geometry of the device doesn’t compare well with the capacitance measured

in the experiment, so to use this model to make quantitative comparisons, the

capacitance equation will need to be modified slightly so that a more accurate

capacitance can be used.

A comparison of one of the experimental curves taken with R = 50Ω vari-

able load resistance compared with the model both with the time dependent

capacitance from equation 5.19 (red) and with a constant capacitance (blue)

is shown in figure 5.9. The natural logarithm of the current is plotted against

time for all three, but the model currents are shifted down slightly because

an infinite rise time voltage pulse (V0 = 10mV ) causes a larger initial current

than a finite rise time pulse. The capacitor model was adjusted to give an

equilibrium capacitance of Ceq = 25.5nF . This capacitance was used for the

time independent capacitance. The difference in the slope for the long time

behavior is because tweaking the capacitance for the model couldn’t get closer

to the experimental capacitance (Cexp = 22.8nF ). The model uses a double

layer formation time of τ = 200ns for the time dependent capacitance model,

and τ = 400ns for the time independent capacitance model. The red curve

shows a slight downturn at the earliest times, which qualitatively does not

agree with the experiment. Although the agreement between the blue curve

and the experiment is not perfect, it is better than the red curve, and the

value of the double layer formation time was very similar to that found in the

experiment (τexp = 390ns), whereas the double layer formation time constant
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Figure 5.9: The experiment compared to the model from Case 1 plotting the
natural logarithm of the current against time for both the time dependent
capacitance (red) and time independent capacitance (blue). The experiment
has an equilibrium capacitance of Cexp = 22.8nF and the capacitor model was
tweaked to to have an equilibruim capacitance of Ceq = 25.5nF . This was the
the value that was used for the time independent capacitance. The double layer
formation time for the time dependent capacitance plot was τ = 200ns and for
the time independent capacitance τ = 400ns. An infinite rise time V0 = 10mV
input voltage pulse. The model current was shifted down, because using an
infinite rise time pulse makes the current larger. An external circuit resistance
of R = 50Ω was used in the experiment and the model.

chosen for the time dependent capacitance model was choosen for the best fit,

not based on a value close to the experiments.

Case 2

The difference between the bipolar case and case 1 is in the initial conditions.

When the system has reached equilibrium with V = −V0 applied to the sam-

ple, it starts out with fully formed electrical double layers. The system has

capacitances from both electrical double layers, as well as from both parylene

layers. When the voltage is initially switched, the transient current is then
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not from the formation of the electrical double layer, but from its discharge.

It could also be argued that the formation of the electrical double layer can’t

form faster than the RC time of the total circuit, because this RC time con-

stant is going to be the relevant time scale of the potential drop across the

sample. If we think of the sample as a simple capacitor, the potential drop

across it is going to be given by

∆VSample = V0(1− e−
t

RCsample ) (5.22)

and the ions in the electrolyte are going to be driven harder at later times

when the potential drop across the sample is larger. This goes against the

interpretation in case 1, where the transient current is given by the formation

of the electrical double layer, which is happening faster than everything else.

Starting from equation 5.10 again, but modifying the time dependence of

the electric field in a different way for the discharge, rather than formation of

the electric field is a natural place to start. The electric field is again given by

Ei(t) = σi(t)
εiε0

. Since the double layer starts off fully formed its expression needs

to start at a maximum value and end at σdl = 0 and in the channel, the surface

charge density needs to start at zero and end at its maximum value. This can

be achieved by applying the opposite time dependences as in case 1, where this

time σdl(t) = σ0
dl(1−e−

t
τ ) and the surface charge density in the channel is given

by σc(t) = σ∞c e
− t
τ . Applying this, and finding the displacement current gives

the same magnitude as equation 5.16 except the current is positive. Since the

double layer forms at the same time scale as the external circuit, it won’t need

to be included as another term in the current. However, since the potential

change at t = 0 is now twice as large, the voltage in the RC current needs

to be mulitplied by a factor of two. A fit parameter for the external circuit

current will also be used to account for any voltage division of the initial input
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Figure 5.10: The model found in Case 2 compared against the same experimen-
tal data. The model uses the same capacitance as in figure 5.9, but τ = 250ns.
The red (Double layer discharge model) curve was also shifted down slightly.

pulse by the resistive elements in the circuit. Putting the RC current and the

double layer current together gives

I =
2V0

Req

e
− t
ReqCeq +

Aσ

τ
e−

t
τ (5.23)

which is the same final result as in case 1, however it didn’t need to have any

arbitrary sign changes made on the displacement current. It also assumed the

same initial conditions as were found in the experiment. Figure 5.10 shows

this model compared to the experiment. The same external circuit parameters

as in figure 5.9 were used (Req = 50Ω, C = 25.5nF ) but a different double

layer time constant was used (τ = 250ns) and the plot from the model had

to be shifted down to lay onto the experimental data. However, there is good

qualitative agreement, with the model picking up both the short time scale,

and long time scale features. Another important distinction with this model

is that the argument that the transient current is from the discharge of the
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electrical double layer, and not the charging of it, can be tested. If the charging

really happens at the same time scale as the RC time constant of the circuit,

this could be seen by applying a pulse from V = 0 to V = V0. If the arguments

in this case are correct, no transient behavior would be seen in that situation.

This would provide evidence that the model in case 2 is qualatively correct,

but needs modification to better fit the behavior quantitatively.

Figure 5.10 shows the results subtracting a single offset from the total

current. However, justification can be made for having separate fit parameters

on the external circuit term and on the double layer discharge term. For the

low resistances, the response was scaled, as if the initial pulse was scaled by

a voltage divider in the circuit. Equation 5.23 uses the surface charge density

that would be found on one plate of the capacitor, but in the channel it makes

sense that only a fraction of this charge is moved, due to screening of the

dielectric layers. Another fit parameter can be used for this term. This will

modify equation 5.23 to become

I =
a2V0

Req

e
− t
ReqCeq +

bAσ

τ
e−

t
τ (5.24)

where a is the “voltage divider” scaling factor and b is the fraction of the surface

charge on that plate that is used to form the double layer. Figure 5.11 shows

the fit to equation 5.24 and gives τ = 375.1 ± 0.1ns, a = 0.1651 ± 0.0002

and b = 0.5802 ± 0.0004. Its not surprising that a better fit is found using

equation 5.24 because it has more flexibility. Although the fit parameters can

be justified, it would be expected that a would be the same throughout the

experiment, which it is not. Its justification as a voltage dividing scaling factor

is probably not correct. For all of the samples, the values of the double layer

discharge time constant ranges from τ = 37.9 ± 0.1ns → 439.7 ± 0.2ns and

was within this range no matter the thickness of the parylene layer on the top
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plate. From all of the data the equation for the time constant as a function of

the ion density is found to be

τ = (47± 5)p−0.15±0.01
0 ns. (5.25)

This does not compare well with the power law equation from the simulation,

which was found to have an exponent of approximately −1
2
. The actual mea-

sured time constants in the experiment ranged from ≈ 500ns and decreased

down to ≈ 50ns as the concentration was increased, however once the concen-

tration increased to greater than ∼ 0.001mol/L the double layer time constant

could not be measured accurately, so it is expected to get smaller than 50ns.

Equation 5.23 can be used to estimate the time constants for higher potentials

although not having the data, the predicted time constants should be used as

a guideline.

Lastly, using the displacement current in the channel, the magnetic field

in the channel can be calculated using Ampere’s law[28]

˛
~B · d~l = µ0(Ic + Id)enc. (5.26)

However, since in the channel there is only the displacement current, equation

5.26 reduces to

˛
~B · d~l = µ0Id. (5.27)

The capacitor is a square, a magnetic sensor would want to be placed farther

away than the diagonal from the center of the capacitor to one of the corners.

In such a case, the magnetic field would be
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Figure 5.11: Shows the fit of equation 5.24 to the raw data for 1 ∗ 10−5mol/L
KCl for the 290nm thick parylene layer on the top plate. τ , a and b where used
as fit parameters and it was found that τ = 375.1±0.1ns, a = 0.1651±0.0002
and b = 0.5802±0.0004. This modified fit (equation 5.24) gives a much better
fit than equation 5.10.

B =
µ0Id
2πr

(5.28)

where r is the distance from the center of the capacitor and r >
√

2L where L

is the length of the sides of the square capacitor. If the magnetic sensor was

placed in the channel, the displacement current would have to be modified

because not all of the area of the capacitor would be enclosed in an Ampe-

rian loop. For typical parameters this gives a maximum magnetic field of

approximately B = 5 ∗ 10−5gauss.
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5.3 Analysis

5.3.1 Initial Data Analysis

As a first check to make sure the devices are behaving properly, the capac-

itance of the devices with the channel only containing air will be measured

and compared to the expected values of the capacitance for a capacitor with

three dielectric layers. A capacitor with three dielectric layers can be mod-

eled as three capacitors in series, with each capacitor having the geometric

capacitance of that layer. Since the device uses the same microchannel bot-

tom plate and just varies the top plate, the thickness of the parylene layer on

the bottom plate is constant (d = 103nm) and the depth of the channel is also

constant (d = 9µm), so the only parameter that is varied is the thickness of

the parylene layer on the top plate, which varies from 2.7nm to 373nm. Figure

5.12 shows how the capacitance should vary with top layer thickness according

to the simple capacitor model. Its variation is quite small and the measured

capacitances don’t show any trend based on their thicknesses, however, they

are reasonably close to the values that are expected, only off by ∼ 10%. This

could easily be accounted for by slight missalignment of the electrodes, or

stray capacitances from the micropatterned leads which were not accounted

for. These measurements don’t show the expected trend, however appear to be

reasonable enough to suggest that the devices are working as designed. When

the channel is filled with water, which has a much higher dielectric constant

than air, the dependence of capacitance on thickness (neglecting the double

layers) is expected to be much larger.

The microfluidic structure that allows the probing of the electrical double

layer can be thought of like the schematic in figure 5.13 where the capaci-

tance of the electrical double layer is time dependent. Then the equivalent
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Figure 5.12: Shows how the capacitance is expected to vary with the thickness
of the top plate parylene layer with air filling the microchannel in red, and
the measured values of the capacitance in black. The bottom plate parylene
thickness was 103nm and the channel thickness was 9µm.

Figure 5.13: Schematic of the different components of the capacitances of the
microfluidic structure. The capacitances of the Parylene layers as well as the
channels are fixed based on the thicknesses of the parylene layers and their
dielectric constants, as well as the depth of the channel and dielectric constant
of water. The capacitance of the electrical double layer are time dependent,
reaching its final value once the system has reached equilibrium.
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capacitance will be given by

1

Ceq
=

1

CParylene1
+

1

CParylene2
+

1

CChannel
+

2

CDoubleLayer(t)
(5.29)

where each capacitance is defined by its geometric capacitance (C = εA
d
). To

ensure that before the formation of the electrical double layer its capacitance

has no effect on the equivalent capacitance of the circuit, at t=0 CDoubleLayer =

∞. Although this at first seems like an odd way to treat the capacitance, it

can be imagined that the “thickness” of the double layer at this point is zero,

which would lead to the infinite double layer capacitance before the input of

a voltage.

The time dependence of the input voltage pulse and of the response are

both recorded using the oscilloscope into data files which can be analyzed. An

example of one of the raw data for the response can be seen in figure 5.14

along with the input voltage pulse which caused this response. The sample

used in this measurement had parylene layers of 217.5 ± 0.7nm for the top

plate and 103.0 ± 0.5nm for the bottom plate, and it can be seen that the

peak-to-peak amplitude of the input pulse is larger than the height of the

pulse. This voltage drop can be attributed to the parylene layers and this

maximum amplitude of the response varied with the thickness of the parylene,

though not as predictably as was expected.

Since the input pulse was recorded for each experiment, the maximum

height of each response, normalized with the input pulse was plotted against

the thickness of the parylene layer on the top plate. The bottom plate had

a consistent parylene layer thickness of 103.0 ± 0.5nm. Figure 5.15 shows a

lot more spread than expected. A much more consistent trend was expected
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Figure 5.14: Shows a sample plot of the raw data of an input square wave
voltage pulse and a sample response with R2 = 50Ω and a concentration of
1 ∗ 10−5mol/L.

0 1 0 0 2 0 0 3 0 0 4 0 0

0 . 9 3

0 . 9 6

0 . 9 9

 
 

No
rm

aliz
ed

 Am
plit

ud
e

T h i c k n e s s  ( n m )

Figure 5.15: Maximum height of the response signal normalized with the peak
to peak voltage of the pulse that it is in response to. The red line is a line of
best fit.
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Figure 5.16: Plotting the exponential decay’s time constant, τ vs R allows
the capacitance of the system to be determined from the relationship τ = RC
where the slope of the linear fit is the capacitance. This particular plot shows
the top plate with a 93.8nm parylene layer and the capacitance of the system
in this case would be 16.1nF.

for the voltage drop across the parylene layer, however the trend still shows

a potential drop as the parylene gets thicker. Figure 5.15 shows that the

potential drop across the parylene is quite small.

The variable resistor used in parallel with the oscilloscope has seven dif-

ferent resistance values (50kΩ, 10kΩ, 5kΩ, 1kΩ, 500Ω, 100Ω and 50Ω) which

makes it easy to probe different timescales. The equation relating the time

constant to the resistance for an exponential decay of an RC circuit is τ = RC

so plotting τ vs R gives the capacitance, C directly from the slope of the graph.

Figure 5.16 shows the time constant plotted against the resistance for the top

plate with a 93.8nm layer of parylene which has an equivalent capacitance of

16.1nF if this is to be interpreted entirely as a capacitance. The linear fit looks

very good for the resistances ranging from 50000Ωto 500Ω but deviations at

the 100Ω and 50Ω points are apparent. This suggests that the effect of the
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electrical double layer is not being masked at these smaller time scales.

For this experiment both the concentration of the Potassium Chloride

(KCl) solution and the thickness of the parylene layer of the top plate were

varied. The top plate thickness varied from 2.7nm-373nm. The concentration

of the KCl solution was varied from 0.1mol/L - 1 ∗ 10−6mol/L.

A bit of data analysis needs to be done on the raw data. A sample raw

data curve can be seen in figure 5.17 which shows the device response in black

to the input square wave in red. A large, exaggerated offset of the response

can be seen. This offset is from the function generator. Because the square

wave switches between -V0 to V0, the offset in front of the rise in the response

could include some none zero current from the previous decay from the -V0

portion of the square wave. Because of this the response was recorded for

both the positive portion of the pulse, zoomed in to the initial decay, as well

as the negative portion of the pulse. This was done so that the tail of the

positive decay would be picked up in the negative response, and the negative

response tail is picked up at the beginning of the positive response. It is also

important to choose the frequency of the input pulse so that there are several

time constants within the cycle to ensure that the response has a chance to

decay to a constant value. The offsets for both the negative and positive

portions of the response are subtracted from the signal. The positive and

negative responses after the subtraction of the offsets can be seen in figure

5.18 which also has the responses triggered at the same time, since they are

recorded in two separate files. Since the voltage decay is exponential, (of the

form V ∼ e−t/τ ) the time constant can be found from the slope of the plot of

ln(V ) vs t. Figure 5.19 shows the natural logarithm of the positive response

and the natural logarithm of -V for the negative response for the sample with

a 103nm layer of Parylene for the bottom plate and a 93.8nm layer of parylene
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for the top plate with a 1 ∗ 10−5mol/L concentration of KCl measured across

a 50Ω resistor. The graph shows two distinct regions of the decay, a fast non

linear portion at the beginning and a slower linear portion, which has a time

constant, τ1 = 2.2µs.

5.3.2 Data Driven Model

This fast non linear portion shows up only for small resistances and gets faster

as the concentration of the KCl solution increases. Since as the resistance

is decreased shorter time scales are probed, this suggests that this feature is

related to the electrical double layer dynamics. To add further support to this

non linear feature being related to the double layer dynamics, the fact that it

decays to the linear region faster as the concentration increases, similarly to

the fact that the double layer time constant decreases with increasing concen-

tration. Since the time constant, τ is obtained from the linearized decay curve,

and is related to the RC characteristics of the circuit, the non linear portion

of the graph also makes sense because the capacitance of the device would

be changing with respect to time and should produce some time dependent

behavior that would appear as a non linear part to the otherwise linear ln(V)

vs t relationship. To further look at this, first a linear fit was done on the

data, and the linear “background” was subtracted from the signal. This can

be seen in figure 5.20. The behavior in the short time scales still appears not

to be linear. The data looks like it might again be an exponential decay, so to

check this, the natural logarithm of this data is taken one more time. Figure

5.21 shows that the non linear part displayed exponential behavior after the

first natural logarithm was taken. This suggests a physical model such as

V = V0e
− t
τ1

+Ae
− t
τ2 (5.30)
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where V0 is the maximum amplitude of the initial response if there was no

non linear part. τ1 is the RC time constant for the component of the circuit

that is not time dependent. τ2 is the time constant of the electrical double

layer formation and A is a fitting constant. If a linear fit is done to the data

in figure 5.21 all of the fit parameters can be extracted and the curve from

equation 5.30 can be constructed and compared to the raw data. Figure 5.22

shows how the empirical model fits to the raw data. Figure 5.22a shows the fit

between the raw data and equation 5.30 directly, showing very good agreement.

Figure 5.22b shows the fit between the natural logarithm of the data to the

natural logarithm of equation 5.30, also showing excellent agreement, further

supporting the use of this pieced-together model. Using this model allows

an easy way to extract a “time constant” for the formation of the electrical

double layer which can then be compared to the formation times from the

FCT simulation. For most of the data, this fast, non linear component was

not present, and in those cases, just the model V = V0e
− t
τ can be used to find

the time constant. This time constant should be the time constant of the entire

system, including the sample while it is in equilibrium with the applied voltage

pulse. Being in equilibrium, the electrical double layer should be formed and

be contributing fully to the capacitance of the system.

5.4 Results

The total capacitance can be calculated using equation 5.29. The double layer

capacitance is given by CDoubleLayer =
εDoubleLayerA

λD
. The Debye length, λD,

is the thickness of the double layer and is calculated using equation 4.1 and

the dielectric constant of the double layer is εDoubleLayer = 20, which is in the

middle of the range of dielectric constants quoted for the double layer.[7] Figure
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Figure 5.17: The raw signal from the oscilloscope for the response of the device
in black, and of the input square wave in red. A large, exaggerated offset can be
observed in the response signal. This curve was taken with de-ionized water
with a load resistance of 10kΩ. The offset from before t = 0 is subtracted
from the curve corresponding to the drop in voltage of the square wave. The
offset immediately before the drop in voltage is subtracted from the curve
corresponding to the rise in voltage of the square wave.
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Figure 5.18: Shows the positive (black) and negative (red) portions of the
response for a sample with a top plate parylene layer of thickness 253nm, a
concentration of 1 ∗ 10−5mol/L KCl and a load resistance of 50Ω after the
offsets have been subtracted. Because they are taken with two separate files
they are triggered with the change in slope of the input pulse.

5.23 shows the theoretical capacitance for a few different thicknesses. It can be

seen that as the concentration of the liquid increases so does the capacitance of

the device. The dependence on the thickness of the parylene layer on the top

plate can be seen, as the thickness of the parylene layer is increased the overall

capacitance of the device decreases. In the experiment, the time constant is

measured from the voltage decay. This can be converted to the capacitance by

dividing it by the equivalent resistance of the system. Figure 5.24 shows two of

these where (a) has a load resistance of 5000Ω and (b) has a load resistance of

10000Ω. Unfortunately the experimental capacitance’s are off in their absolute

values from the theoretical ones by a significant margin, and the thickness

scaling is not the same. They still follow the same trends with the capacitance

increasing as the concentration increases, as well as the capacitance decreasing

as the thickness of the top plate parylene layer increases. This is how the
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Figure 5.19: The natural log of V plotted against time of the positive (black)
response and the natural log of -V plotted against time of the negative (red)
response of the 253nm top plate sample with a concentration of 1∗10−5mol/L
KCl measured across a 50Ω resistance. A linear fit to the data is in blue with
a time constant of τ1 = 2.2µs. The portion at the beginning which does not fit
with the linear trend at the end only appears for small resistances and becomes
smaller as the concentration of the KCl solution is increased.
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Figure 5.20: A plot of raw natural logarithm of the voltage signal after the
linear fit has been subtracted from the signal, zoomed in to the non linear
portion of the graph. The behavior in the short time scale still does appear
not to be linear.
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Figure 5.21: A zoomed in look at the non linear part of figure 5.20 after the
natural logarithm has been taken after. A linear fit is taken to get A and τ2

from equation 5.30.
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Figure 5.22: (a) shows the empirical fit of equation 5.30 to the raw data with
τ1 = 2.2µs and τ2 = 0.56µs. (b) shows the fit between the natural logarithm
of equation 5.30 and the natural logarithm of the raw data.

system behaves when the load resistances are large enough to not allow the

non linear behavior of the formation of the electrical double layer. However,

when the resistance is small and the formation of the electrical double layer

can be seen, the dependence on concentration is reversed as can be seen in

figure 5.25. As of now this is not understood.

Now that the behavior of the double layer in equilibrium has been looked

at, the formation time of the electrical double layer can be looked at. As

mentioned above, this will be done by looking at τ2 and how it changes with

concentration and how it changes with the thickness of the parylene layer

on the top plate. The data for the various thicknesses was generally pretty

scattered. Like for the Case 2 model, a power law fit can be done on the data to

get the time constant as a function of the ion concentration. Figure 5.26 shows

the two best data sets that are closest to a power law fit in the form τ = apb0.

Table 5.3 shows the fit parameters for all of the top plate samples. Unlike

with Case 2 the values are not all that consistent. The fractional errors in a

and b are a factor of 3 larger than for Case 2. (τ = 0.015± 0.005)p−0.18±0.03
0 µs

compared to τ = (0.047± 0.005)p−0.18±0.01
0 µs) However, if instead of taking an
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Figure 5.23: Shows the theoretical capacitance of the sample once the electrical
double layer has formed. The thickness of the electrical double layer is defined
as the Debye length of the system at the concentration used. The dielectric
constant of the double layer was εDoubleLayer = 20. This shows a positive trend
where increasing the concentration increases the capacitance asymptotically.
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Figure 5.24: (a)Shows the capacitance plotted against the concentration for
four different thicknesses with a load resistance of 5000Ω. (b)Shows the same
plot with a load resistance of 10000Ω. Both show the same trends as was
visible in the plots of the theoretical capacitances. As the concentration in-
creases, both the experimental and theoretical capacitances increase, though
they follow different trends. As well, both show the same dependence on the
thickness, where as the thickness increases the overall capacitance decreases.
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Figure 5.25: Shows the capacitance of the same four samples as they vary with
concentration with a load resistance of 50Ω. Unlike for the larger load resis-
tances, the trend is reversed and as the concentration increases the capacitance
decreases.

average of all these values to make one equation, if you use each equation and

calculate the time constant for a given concentration it can be plotted against

the thickness of the top plate parylene layer to see if there is any trend based

on thickness. Using a concentration of p0 = 0.01mol/L, the time constants

were be calculated. Figure 5.27 shows a downward trend of the time constant

as the thickness of the top plate parylene layer increases for both models. This

makes sense, because as the potential drops across the parylene layers which

causes a smaller potential difference between the edges of the channel than

from the pulse. The thicker layers of parylene cause a larger potential drop,

and the double layer forms faster when a smaller potential difference is between

the channel. This makes sense physically because with a smaller potential the

ions aren’t packed as tightly and are able to get to those positions faster, and

is supported by the simulation and figure 4.16.

117



1 E - 6 1 E - 5 1 E - 4 1 E - 3

0 . 1

1

 

 

 3 7 3 n m  P a r y l e n e
 P o w e r  L a w  F i t
 1 0 . 9 n m  P a r y l e n e
 P o w e r  L a w  F i t

Tim
e C

on
sta

nt 
(µs

)

C o n c e n t r a t i o n  ( m o l / L )

Figure 5.26: Shows the time constant of the empirical model in µs plotted
against the concentration in mol/L for the two best data runs, in black with
the 373nm thick parylene top plate and in blue the 10.9nm thick parylene top
plate. They are plotted on a log log scale so that the linear fit is really a power
law fit in the form of τ = apb0 where p0 is the concentration, τ and a and b are
fit parameters. For the 10.9nm top plate a = 0.0296µs and b=-0.2328. For
the 373nm top plate a = 0.0246µs and b=-0.2325.

Thickness (nm) a (µs) b

2.7 0.0436 -0.1974
9.8 0.1484 -0.0414
10.9 0.0296 -0.2328
40.8 0.0627 -0.1293
71.5 0.0209 -0.2513
87 0.1688 -0.0457
93.8 0.0426 -0.1843
217.5 0.0210 -0.2503
253 0.0231 -0.2291
290 0.0406 -0.1809
373 0.0246 -0.2325

Table 5.3: Shows the power law fit parameters for all of the top plate parylene
thicknesses. b is the exponent of the concentration and a is the value of τ
when p0 = 1mol/L.
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Figure 5.27: Shows the time constant of the double layer formation calculated
from the fit parameters for p0 = 0.01mol/L plotted against the thickness of
the parylene layer in the top plate for the model developed in the “Case 2”
subsection in black and from the empirical model in red. The solid lines show
the best fit trends of the scattered data sets. Both do not fit the data very
well, but both show a trend that the double layer forms faster as the thickness
increases.
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Figure 5.28: Shows the current calculated with the circuit model with an RC
time constant defined with equation 5.4 compared against the experimental
data. No current from the electrical double layer is included. The parameters
used in the experiment and simulation were a load resistance of 5000Ω and a
concentration of 0.0001mol/L KCl, as well as a 9µm channel thickness in the
simulation. The capacitance of the device used (9.43nF ) was that from a fit,
since the geometric capacitance does not agree with the measured capacitances.

5.5 Comparison with Simulation

Since the attempt to include the external circuit parameters was unsuccessful

because the current from the electrical double layer formation was too large,

direct comparison between the measured and simulated current is not possible.

The experiment was done in two regimes, one where the double layer effects

were apparent and the other where they were not. The regime where the

double layer effects where not apparent is that with resistence R ≥ 1000Ω.

The RC time constant is given by equation 5.4. Using a realistic voltage pulse

the current can be calculated using

I(t) =
V0(t)

R2

e−
t
τ . (5.31)
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Figure 5.28 shows the comparison of the experimental current and the simple

circuit model, showing good agreement. The value of the capacitance used is

not the geometric capacitance, but from a fit, so it is not surprising that this

fit is quite good. Also, the relationships between the time constants and the

current can be compared. From the simulation the power law equation for

the time constant is τ = 0.8402p−0.4932
0 µs and the range of time constants are

from 750µs for p0 = 1 ∗ 10−6mol/L to 8.1µs for p0 = 0.01mol/L. All of the

time constants for the experiment are less than 1µs no matter the concentra-

tion. The exponent in the power law fit is much smaller for the experiment

and doesn’t compare well, but they do both have a trend of decreasing time

constants as the concentration increases. Another thing to note about the sim-

ulation, is that the double layer time constant is significantly longer than that

of the Morrow et al. simulation[6]. For the same potential and concentration

the Morrow et al. simulation had time constants over 5 times smaller than

calculated in this simulation. Its not surprising that the time constants are

different because they are not calculated the same way. Here it is found by

finding the time constant of the exponential decay of the current, meaning the

time constant is the value of the current when it has decayed to approximately

37% of its maximum. However the Morrow et al. simulation determines the

decay time when the simulation is a correlation coefficient of 0.98 between the

calculated potential and the potential from the Gouy-Chapman solution. An-

other difference between the simulations that would cause a difference is the

starting ion distributions. Morrow et al. starts with a uniform distribution,

and his time constant would be longer if the same initial ion distribution as in

this simulation was used.
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5.6 Experimental conclusions

The experiment to investigate the dynamics of the electrical double layer was

completed using a variety of concentrations (1∗10−6mol/L to 0.1mol/L) for a

range of thicknesses of the parylene layer for the top plate. The bottom plate

was held constant so only one thickness was used for the bottom parylene layer

and one channel depth was used. This experiment found that, although the

capacitor model was not right at predicting the actual value of the capacitance

of the devices when a double layer was present it predicted the correct trend, for

large load resistances(Figures 5.23 and 5.24). For the smaller load resistances,

which allowed the probing of the double layer formation, however, the trend

as the concentration increased was the opposite of what the capacitor model

predicted. (Figure 5.25) The cause of this is unknown, but it is interesting and

should be studied in more detail. Lastly, and most importantly, the double

layer formation times were investigated. They were found to decrease with

concentration (Figure 5.26)and in all cases were less than 1µs. The power law

fit equation from the “Case 2” model had more consistent results and a model

based on the physics of the problem rather than being guided by how the

data looks. This gives an equation to estimate the electrical double layer time

constant which can be used to estimate the frequency of an AC signal used in

a microfluidic. Since the time constant found here is from an exponential fit,

significant ion movement would occur in one time constant, so the frequency of

the AC signal should be much larger than the frequency which has one period

as the time constant. To ensure that double layer effects can be ignored f � 1
τ
.

Using equation 5.25 this relation becomes

f � p0.15
0

0.047
MHz (5.32)
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and now a safe estimate for the frequency used in microfluidic devices can be

found which is based on experimental evidence.
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Chapter 6

Conclusion

The importance of the position of electric charge can not be overstated. Elec-

tric charge position has been important in the work of both projects presented

in this thesis. This thesis described how a microfluidic parallel plate capaci-

tor was fabricated using mostly standard microfabrication processes, such as

sputtering, optical lithography and chemical wet etching, as well as some more

novel processes, such as parylene deposition, to create a microfluidic device

with blocking electrodes. This device had a bottom plate, which consisted of

an electrode deposited inside a microchannel and covered in a layer of parylene

and several top plates with different thicknesses of parylene.

The molecular heterojunction structures were made by depositing the first

transparent electrode with an electron beam evaporation system. The molecu-

lar layer of NAB was deposited with cyclic voltametry and then the insulating

layer of SiO2 and then the top transparent electrode was deposited again with

electron beam lithography. All of the fabrication of the molecular junction

was done by the McCreery et al.

The experiment on the molecular junction was an exploratory experiment,

using the results at wavelengths at 410nm and 532nm applying voltage pulses
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from times of ∼ 100ms to ∼ 10s which showed changes in the absorbance

spectrum. These changes were attributed to a physical change in the molecular

structure. This suggests that it would be worth looking at faster time scales

to see if changes in the optical behavior are seen that can’t be attributed to a

physical structure change in the molecule. The first experiment done was to

look at the electrical characteristics of the samples. This was done by taking an

I-V curve by stepping the voltage and measuring the current. An AC voltage

dither was also added to measure dI
dV

.

The rasterscan experiment varied the spatial position of the beam on the

sample and found that there was little to no spatial dependence of the signal.

This meant the experiment would not be sensitive to slight shifts in the beam

position as long as it was maintained in the middle of the active area.

As the frequency and magnitude of the bias were varied it was found that

the qualitative behavior of the system was consistent, however quantitative

results were not reproducible. The results however suggest that the behavior

of the NAB-1 and NAB-4 samples in the frequency range of 500Hz-100kHz

and the bias range of 100mV-500mV were the result of the properties of the

substrate, and not that of the molecular layer.

After the completion of the study of molecular junctions a flux corrected

transport simulation was performed with the same geometry as the electrical

double layer experiment to probe the formation time of the electrical double

layer. This simulation found a power law fit to the time constant as a func-

tion of frequency that is of similar form to the equation for the Debye length,

suggesting that the time constant is proportional to the Debye length. How-

ever, the experiment, combined with a dielectric model, it was found that the

power law fit had a significantly different exponent. The simulation also found

a trend that as the magnitude of the input pulse used increased so did the
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time constant. This trend was seen in the experimental data as the parylene

layer became thicker, hence the voltage between the channel became smaller

and therefore the time constant also decreased.

Lastly, the experiment found a range of values of the time constant for

the double layer formation, based on the concentration of the solution. This

is useful when using electrical detection techniques in microfluidic devices.

Equation 5.32 can be used as a guide to find a detection frequency that will

allow double layer effects to be avoided based on the ion concentration of the

buffer solution being used.
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Appendix A

FCT C++ Code

/******************************************************************************

This program calculates the current in a microfluidic channel with blocking

electrodes using a Flux Corrected Transport Algorithm.

As well as calculating the current it calculates the evolution of the electric

field, the potential and the positive and negative ion density distributions.

Steven Olson

Aug 3 2010

******************************************************************************/

#include <iostream>

#include <conio.h>

#include <cstdio>

#include <fstream>

#include <math.h>

#include <algorithm>

#include <vector>

#include <gsl/gsl_linalg.h>

#include <gsl/gsl_vector.h>

#include <time.h>

#include <gsl/gsl_statistics.h>

#include <gsl/gsl_spline.h>

#define up 7.12e-8 //mobility of positive ions

#define un -6.88e-8 //mobility of negative ions

#define Dp 1.83e-9 //diffusion coefficient of positive ions

#define Dn 1.77e-9 //diffusion coefficient of negative ions

#define NA 6.02214e23 //Avagadro’s number

#define elec 1.60e-19 //electron charge

#define Temp 294.0 //Lab temperature

131



#define kb 1.38065e-23 //Boltzmann constant

#define co 0.00001 //solution concentration in mol/L

#define dc 9e-6 //depth of the channel

#define ew 80.0 //dielectric constant of water

#define epar 2.65 //dielectric constant of parylene

#define d1 200e-9 //thickness of parylene layer on top plate

#define d2 100e-9 //thickness of the constant parylene layer

#define e0 8.854e-12 //Permittivity of free space

//Defining Poisson’s Equation for Runge Kutta Solution

#define gE(x1, x2) (elec/(ew*e0))*(x1-x2)

using namespace std;

int main(){

time_t start, end;

time(&start);

int SAM=5000; //Sampling the ion densities, E-field and Potential after SAM # of time steps

int fc=100, k=0;

int sam_rate=TN/fc;

double A=0.0001; //Area of electrode (1cm x 1cm)

double Vo=0.0100; //magnitude of initial voltage pulse

double R=50;

double C1=43e-9;

double sigma=0;

double Vrc1, Vrc2;

double C=A*ew*e0/dc;

double dV, dx, dy, a, a5, dt, sp, sn, q0, q1, q2, h1, h2, dif, tau;

double b, c, d, a1, a2, a3, a4, k1, k2, k3, k4, f0, f1, B, I1, Vp, I, I2;

double TIME=0;

double r=1, flux_current=10e10, flux_int;

double dtol=1e-7;

int i, j;

double ld=0.304e-9/sqrt(co); //Debye length

double NXD=((dc/ld)*20);

int NX=int (NXD); //number of steps

gsl_vector *gp1 = gsl_vector_alloc(NX+1); //current time step higher order solution vector

gsl_vector *gn1 = gsl_vector_alloc(NX+1); //current time step higher order solution vector

gsl_vector *dp1 = gsl_vector_alloc(NX+1); //higher order matrix main diagonal

gsl_vector *dn1 = gsl_vector_alloc(NX+1); //higher order matrix main diagonal

gsl_vector *ep1 = gsl_vector_alloc(NX); //higher order matrix above diagonal vector

gsl_vector *en1 = gsl_vector_alloc(NX); //higher order matrix above diagonal vector

gsl_vector *fp1 = gsl_vector_alloc(NX); //higher order matrix below diagonal vector

gsl_vector *fn1 = gsl_vector_alloc(NX); //higher order matrix below diagonal vector
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gsl_vector *dp2 = gsl_vector_alloc(NX+1); //lower order matrix main diagonal

gsl_vector *dn2 = gsl_vector_alloc(NX+1); //lower order matrix main diagonal

gsl_vector *ep2 = gsl_vector_alloc(NX); //lower order matrix above diagonal

gsl_vector *en2 = gsl_vector_alloc(NX); //lower order matrix above diagonal

gsl_vector *fp2 = gsl_vector_alloc(NX); //lower order matrix below diagonal

gsl_vector *fn2 = gsl_vector_alloc(NX); //lower order matrix below diagonal

gsl_vector *gp2 = gsl_vector_alloc(NX+1); //current time step lower order solution vector

gsl_vector *gn2 = gsl_vector_alloc(NX+1); //current time step lower order solution vector

gsl_vector *pH = gsl_vector_alloc(NX+1); //Higher order pos ion density solution

gsl_vector *nH = gsl_vector_alloc(NX+1); //higher order neg ion density solution

gsl_vector *x = gsl_vector_alloc(NX+1); //uniform grid vector

gsl_vector *pL = gsl_vector_alloc(NX+1); //Lower order pos ion density solution

gsl_vector *nL = gsl_vector_alloc(NX+1); //Lower order neg ion density solution

gsl_vector *cp = gsl_vector_alloc(NX+2); //Pos courant number

gsl_vector *cn = gsl_vector_alloc(NX+2); //Neg courant number

gsl_vector *wn = gsl_vector_alloc(NX+1); //neg ion velocity

gsl_vector *wp = gsl_vector_alloc(NX+1); //pos ion velocity

gsl_vector *pI = gsl_vector_alloc(NX+1); //initial pos ion density

gsl_vector *nI = gsl_vector_alloc(NX+1); //initial neg ion density

gsl_vector *E = gsl_vector_alloc(NX+1); //Electric field

gsl_vector *V = gsl_vector_alloc(NX+1); //Potential

gsl_vector *PhiHp = gsl_vector_alloc(NX+2); //Higher order pos flux

gsl_vector *PhiHn = gsl_vector_alloc(NX+2); //Higher order neg flux

gsl_vector *PhiLp = gsl_vector_alloc(NX+2); //Lower order pos flux

gsl_vector *PhiLn = gsl_vector_alloc(NX+2); //Lower order neg flux

gsl_vector *ADPhip = gsl_vector_alloc(NX+2); //Pos antidiffusive flux

gsl_vector *ADPhin = gsl_vector_alloc(NX+2); //Neg antidiffusive flux

gsl_vector *CADPhip = gsl_vector_alloc(NX+2); //Corrected antidiffusive flux

gsl_vector *CADPhin = gsl_vector_alloc(NX+2); //Corrected antidiffusive flux

gsl_vector *eE = gsl_vector_alloc(NX); //e for electric field

gsl_vector *fE = gsl_vector_alloc(NX); //f for electric field

gsl_vector *bE = gsl_vector_alloc(NX+1); //b for electric field

gsl_vector *dE = gsl_vector_alloc(NX+1); //ion density infortation for electric field

gsl_vector *diff_E = gsl_vector_alloc(NX);

gsl_vector *sum_E = gsl_vector_alloc(NX);

//gsl_vector *Im = gsl_vector_alloc(NX/10 +1);

vector <double> fluxp, fluxn;

vector <double> Cp, Cn; //Corrector multipliers for pos and neg antidiffusive flux

vector <double> p;

vector <double> n;

vector <double> pa, pb, pmax, pmin;
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vector <double> na, nb, nmax, nmin;

vector <double> Ppp, Qpp, Rpp, Ppm, Qpm, Rpm;

vector <double> Pnp, Qnp, Rnp, Pnm, Qnm, Rnm;

vector <double> Im, xm, Imr, Iml, Ipdr, Indr, IpDif, InDif, Ik;

Cp.resize(NX), Cn.resize(NX), p.resize(NX+1),n.resize(NX+1), pa.resize(NX+1),

pb.resize(NX+1), pmax.resize(NX+1), pmin.resize(NX+1), na.resize(NX+1),

nb.resize(NX+1), nmax.resize(NX+1), nmin.resize(NX+1), Ppp.resize(NX+1),

Qpp.resize(NX+1), Rpp.resize(NX+1), Ppm.resize(NX+1), Qpm.resize(NX+1),

Rpm.resize(NX+1), Pnp.resize(NX+1), Qnp.resize(NX+1), Rnp.resize(NX+1),

Pnm.resize(NX+1), Qnm.resize(NX+1), Rnm.resize(NX+1), fluxp.resize(NX+1),

fluxn.resize(NX+1), Im.resize(NX + 1), xm.resize(NX + 1), Imr.resize(61),

Iml.resize(61), Ipdr.resize(NX+1), Indr.resize(NX+1), IpDif.resize(NX+1),

InDif.resize(NX+1), Ik.resize(NX+1);

ofstream pOut("p.dat"), nOut("n.dat"), fluxpOut("Fluxp.dat"),

fluxnOut("Fluxn.dat"), EOut("E.dat"), VOut("V.dat"),

VgcOut("Vgc.dat"), EgcOut("Egc.dat"), fluxTOut("flux_test.dat"), IOut("I.dat"),

ImOut("Im.dat"), xmOut("xm.dat"), IlbOut("Ilb.dat"), IrbOut("Irb.dat"),

IpdrOut("Ipdr.dat"), IndrOut("Indr.dat"), IpDifOut("IpDif.dat"),

InDifOut("InDif.dat"), IkOut("Ik.dat");

/*************************************************************************

Reading in Input pulse from file and doing a spline interpolation

*************************************************************************/

int Nf=10000;

int Ns=4000;

int M=Ns-2000;

double AmpAve[M];

double mean;

double time1[Ns], amp1[Ns];

gsl_vector *time_2 = gsl_vector_alloc(Nf);

gsl_vector *amp = gsl_vector_alloc(Nf);

ifstream inputfile;

inputfile.open ("test2.dat");

for (i=0; i<Nf; i++){

inputfile >> a;

inputfile >> b;

gsl_vector_set(time_2, i, a);

gsl_vector_set(amp, i, b);

}

for (i=0; i<Ns; i++){

time1[i]=gsl_vector_get(time_2, i);

amp1[i]=gsl_vector_get(amp, i);

134



}

for (i=0; i<M; i++){

AmpAve[i]=amp1[i+2000];

}

mean = gsl_stats_mean(AmpAve, 1, M);

gsl_interp_accel *acc = gsl_interp_accel_alloc ();

gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, Ns);

gsl_spline_init (spline, time1, amp1, Ns);

/************************************************************************

Reading in Initial ion densities from files

************************************************************************/

ifstream input1, input2;

input1.open("pLinitial.dat");

input2.open("nLinitial.dat");

//for loop generating spatial grid, initial pos and neg ion densities as well

//the initial electric field

dx=dc/NX;

for (i=0; i<=NX; i++){

gsl_vector_set(x, i,-dc/2 + (i*dx));

input1 >> h1;

input2 >> h2;

p[i]=h2;

n[i]=h1;

//p[i]=1000*NA*co;

//n[i]=1000*NA*co;

}

input1.close();

input2.close();

/****************************************************************************

Adding density pulse to propogate

****************************************************************************/

/*for (i=1000; i<=2000; i++) {

p[i]=p[i]*2;

n[i]=n[i]*2;

}*/

/*************************************************************************

Starting main time loop

*************************************************************************/

j=0;

double tau2=2.0e-6;

dt=1.0e-8;
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//while (flux_current>50000000){

while (TIME<1.5e-3){

/*if (TIME<gsl_vector_get(time_2, Ns-1)){

Vo=gsl_spline_eval(spline, TIME, acc);

}

else {

Vo=mean;

}*/

Vo=-mean*(1-exp(-(TIME+1.0e-9)/tau2));

gsl_vector_set(V, 0, Vo);

gsl_vector_set(V, NX, -Vo);

dV=(gsl_vector_get(V, 0)-gsl_vector_get(V, NX)); //potential difference between opposite ends of

the channel

if (j==0){

B=gsl_vector_get(V, NX);

q0=10000;

q1=q0*1.001;

dy=1.0;

while (fabs(dy)>dtol){

gsl_vector_set(E, 0, q0);

for (i=0; i<NX; i++){

k1=gE(p[i],n[i]);

k2=gE(p[i]+0.5*dx*k1, n[i]+0.5*dx*k1);

k3=gE(p[i]+0.5*dx*k2, n[i]+0.5*dx*k2);

k4=gE(p[i]+dx*k3, n[i]+dx*k3);

gsl_vector_set(E, i+1, gsl_vector_get(E, i)+(dx/6.0)*(k1+2.0*k2+

2.0*k3+k4));

gsl_vector_set(V, i+1, gsl_vector_get(V, i)-(dx/6.0)*(3.0*

gsl_vector_get(E, i)+3.0*gsl_vector_get(E, i+1)));

}

f0=gsl_vector_get(V, NX);

gsl_vector_set(E, 0, q1);

for (i=0; i<NX; i++){

k1=gE(p[i],n[i]);

k2=gE(p[i]+0.5*dx*k1, n[i]+0.5*dx*k1);

k3=gE(p[i]+0.5*dx*k2, n[i]+0.5*dx*k2);

k4=gE(p[i]+dx*k3, n[i]+dx*k3);

gsl_vector_set(E, i+1, gsl_vector_get(E, i)+(dx/6.0)*(k1+2.0*k2+

2.0*k3+k4));

gsl_vector_set(V, i+1, gsl_vector_get(V, i)-(dx/6.0)*(3.0*

gsl_vector_get(E, i)+3.0*gsl_vector_get(E, i+1)));
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}

f1=gsl_vector_get(V, NX);

dy=f1-f0;

q2=q1+(B-f1)*(q1-q0)/dy;

q0=q1;

q1=q2;

}

cout<<"dV="<<dV<<endl;

for (i=0; i<=NX; i++){

//gsl_vector_set(E, i, dV/dc);

EOut<<gsl_vector_get(E, i)<<", ";

}

for (i=0; i<NX; i++){

gsl_vector_set(sum_E, i, fabs(gsl_vector_get(E, i))+

fabs(gsl_vector_get(E, i+1)));

}

EOut<<endl;

cout<<"p[1]="<<p[1]<<" p[NX]="<<p[NX]<<" n[1]="<<n[1]<<endl;

cout<<"dt="<<dt<<" & dx="<<dx<<" & ld="<<ld<<" & NX="<<NX<<endl;

TIME = TIME+dt;

cout<<"dt="<<dt<<" & dx="<<dx<<endl;

//Calculating diffusion coefficients

sp=Dp*dt/(pow(dx, 2));

sn=Dn*dt/(pow(dx, 2));

cout<<"s="<<sp<<endl;

}

/***************************************************************************

Calculating the Initial Courant Numbers

***************************************************************************/

for (i=0; i<NX; i++){

gsl_vector_set(cp, i+1, up*dt*((gsl_vector_get(E, i)+gsl_vector_get(E, i+1))/(2.0*dx)));

gsl_vector_set(cn, i+1, un*dt*((gsl_vector_get(E, i)+gsl_vector_get(E, i+1))/(2.0*dx)));

}

gsl_vector_set(cp, 0, 0);

gsl_vector_set(cp, NX+1, 0);

gsl_vector_set(cn, 0, 0);

gsl_vector_set(cn, NX+1, 0);

if (j==0){

cout<<"dt="<<dt<<" & dx="<<dx<<endl;

cout<<"sp="<<sp<<" cp(0)="<<gsl_vector_get(cp, 0)<<" cp(NX+1)="<<gsl_vector_get(cp, NX+1)<<endl;

}
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/* ********************************************************************

calculating matrix elements for the Higher Order solution.

The main diagonals, dp, dn, the upper diagonals ep, en and the lower

diagonals fp and fn. These elements definethe tridiagonal matrix.

gp and gn define the column vector in the equation A*p=g.

************************************************************************/

/********************************************************************

Positive Ion Density for Higher Order Solution

********************************************************************/

//Calculating ep1 = c which forms the upper diagonal of A

for (i=0; i<NX; i++){

a= 2.0+(3.0*gsl_vector_get(cp, i+1))+pow(gsl_vector_get(cp, i+1), 2)

-6.0*sp;

gsl_vector_set(ep1, i, a);

}

//Calculating fp1=a which forms the lower diagonal of A

for (i=0; i<NX; i++){

a=2.0-(3.0*gsl_vector_get(cp, i+1))+pow(gsl_vector_get(cp, i+1), 2)-

6.0*sp;

gsl_vector_set(fp1, i, a);

}

//calculating dp1[0] and dp1[NX] of the main diagonal of A

gsl_vector_set(dp1, 0, 8.0+(3*(gsl_vector_get(cp, 1)-gsl_vector_get(cp, 0)))-

pow(gsl_vector_get(cp, 1), 2)-pow(gsl_vector_get(cp, 0), 2)+(6.0*sp));

gsl_vector_set(dp1, NX, 8.0+(3*(gsl_vector_get(cp, NX+1)-gsl_vector_get(cp, NX)))-

pow(gsl_vector_get(cp, NX), 2)-pow(gsl_vector_get(cp, NX+1), 2)+(6.0*sp));

//Calculating dp1[i] = b for 0<i<NX of the main diagonal of A

for (i=1; i<NX; i++){

a=8.0+(3.0*(gsl_vector_get(cp, i+1)-gsl_vector_get(cp, i)))-

(pow(gsl_vector_get(cp, i+1), 2)+pow(gsl_vector_get(cp, i), 2))+

12.0*sp;

gsl_vector_set(dp1, i, a);

}

//Calculating gp1[0] of the vector g in the equation A*p=g

a=(8.0 - (3.0*(gsl_vector_get(cp, 1)-gsl_vector_get(cp, 0)))-

(pow(gsl_vector_get(cp, 1), 2)+pow(gsl_vector_get(cp, 0), 2))-

(6.0*sp))*p[0]+(2.0-(3.0*gsl_vector_get(cp, 1))+

pow(gsl_vector_get(cp, 1), 2)+(6.0*sp))*p[1];

gsl_vector_set(gp1, 0, a);

//calculating gp1[NX] of the vector g in the equation A*p=g

a=(2.0+(3.0*gsl_vector_get(cp, NX))+pow(gsl_vector_get(cp, NX), 2)+
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6.0*sp)*p[NX-1]+(8.0-(3.0*(gsl_vector_get(cp, NX+1)-

gsl_vector_get(cp, NX)))-pow(gsl_vector_get(cp, NX), 2)-

pow(gsl_vector_get(cp, NX+1), 2)-(6.0*sp))*p[NX];

gsl_vector_set(gp1, NX, a);

//Calculating gp1[i] for 0<i<NX of the vector g in the equation A*p=g

for (i=1; i<NX; i++){

a=(2.0+(3.0*gsl_vector_get(cp, i))+pow(gsl_vector_get(cp, i), 2)+

(6.0*sp))*p[i-1]+(8.0-(3.0*(gsl_vector_get(cp, i+1)-

gsl_vector_get(cp, i)))-(pow(gsl_vector_get(cp, i+1), 2)+

pow(gsl_vector_get(cp, i), 2))-(12.0*sp))*p[i]+

(2.0-(3.0*gsl_vector_get(cp, i+1))+pow(gsl_vector_get(cp, i+1), 2)

+(6.0*sp))*p[i+1];

gsl_vector_set(gp1, i, a);

}

/**********************************************************************

Negative Ion Density for Higher Order Solution

**********************************************************************/

//Calculating en1 = c which forms the upper diagonal of A

for (i=0; i<NX; i++){

a= 2.0+(3.0*gsl_vector_get(cn, i+1))+pow(gsl_vector_get(cn, i+1), 2)

-6.0*sn;

gsl_vector_set(en1, i, a);

}

//Calculating fn1=a which forms the lower diagonal of A

for (i=0; i<NX; i++){

a=2.0-(3.0*gsl_vector_get(cn, i+1))+pow(gsl_vector_get(cn, i+1), 2)-

6.0*sn;

gsl_vector_set(fn1, i, a);

}

//calculating dn1[0] and dn1[NX] of the main diagonal of A

gsl_vector_set(dn1, 0, 8.0+(3*(gsl_vector_get(cn, 1)-

gsl_vector_get(cn, 0)))-pow(gsl_vector_get(cn, 1), 2)-

pow(gsl_vector_get(cn, 0), 2)+(6.0*sn));

gsl_vector_set(dn1, NX, 8.0+(3*(gsl_vector_get(cn, NX+1)-

gsl_vector_get(cn, NX)))-pow(gsl_vector_get(cn, NX), 2)-

pow(gsl_vector_get(cn, NX+1), 2)+(6.0*sn));

//Calculating dn1[i] = b for 0<i<NX of the main diagonal of A

for (i=1; i<NX; i++){

a=8.0+(3.0*(gsl_vector_get(cn, i+1)-gsl_vector_get(cn, i)))-

(pow(gsl_vector_get(cn, i+1), 2)+pow(gsl_vector_get(cn, i), 2))+

12.0*sn;

139



gsl_vector_set(dn1, i, a);

}

//Calculating gn1[0] of the vector g in the equation A*p=g

a=(8.0-(3.0*(gsl_vector_get(cn, 1)-gsl_vector_get(cn, 0)))-

(pow(gsl_vector_get(cn, 1), 2)+pow(gsl_vector_get(cn, 0), 2))-

(6.0*sn))*n[0]+(2.0-(3.0*gsl_vector_get(cn, 1))+

pow(gsl_vector_get(cn, 1), 2)+(6.0*sn))*n[1];

gsl_vector_set(gn1, 0, a);

//calculating gn1[NX] of the vector g in the equation A*p=g

a=(2.0+(3.0*gsl_vector_get(cn, NX))+pow(gsl_vector_get(cn, NX), 2)+

6.0*sn)*n[NX-1]+(8.0-(3.0*(gsl_vector_get(cn, NX+1)-

gsl_vector_get(cn, NX)))-pow(gsl_vector_get(cn, NX), 2)-

pow(gsl_vector_get(cn, NX+1), 2)-(6.0*sn))*n[NX];

gsl_vector_set(gn1, NX, a);

//Calculating gn1[i] for 0<i<NX of the vector g in the equation A*p=g

for (i=1; i<NX; i++){

a=(2.0+(3.0*gsl_vector_get(cn, i))+pow(gsl_vector_get(cn, i), 2)+

(6.0*sn))*n[i-1]+(8.0-(3.0*(gsl_vector_get(cn, i+1)-

gsl_vector_get(cn, i)))-(pow(gsl_vector_get(cn, i+1), 2)+

pow(gsl_vector_get(cn, i), 2))-(12.0*sn))*n[i]+

(2.0-(3.0*gsl_vector_get(cn, i+1))+pow(gsl_vector_get(cn, i+1), 2)

+(6.0*sn))*n[i+1];

gsl_vector_set(gn1, i, a);

}

//Solving tridiagonal systems with Scientific Library Solver

gsl_linalg_solve_tridiag(dp1, ep1, fp1, gp1, pH);

gsl_linalg_solve_tridiag(dn1, en1, fn1, gn1, nH);

/*********************************************************************

Calculating Positive Ion Densities for Lower Order Scheme

*********************************************************************/

//calculating gp2[0]

a=-((gsl_vector_get(cp, 1)-fabs(gsl_vector_get(cp, 1))))*p[1]+

(2+(gsl_vector_get(cp, 0)-fabs(gsl_vector_get(cp, 0)))-

(gsl_vector_get(cp, 1)+fabs(gsl_vector_get(cp, 1))))*p[0];

gsl_vector_set(gp2, 0, a);

//calculating gp2[NX]

a=((gsl_vector_get(cp, NX)+fabs(gsl_vector_get(cp, NX))))*p[NX-1]+

(2+(gsl_vector_get(cp, NX)-fabs(gsl_vector_get(cp, NX)))-

(gsl_vector_get(cp, NX+1)+fabs(gsl_vector_get(cp, NX+1))))*p[NX];

gsl_vector_set(gp2, NX, a);

//calculating dp2[i] for 1<=i<=NX
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for (i=1; i<NX; i++){

a=(2.0+(4.0*sp));

gsl_vector_set(dp2, i, a);

}

//Setting dp2[0]=1-fp2[1] and dp2[NX]=1-ep2{NX-1]

gsl_vector_set(dp2, 0, 2.0+(2.0*sp));

gsl_vector_set(dp2, NX, 2.0+(2.0*sp));

//calculating ep2[i] and fp2[i] for all i

for (i=0; i<NX; i++){

a=-2.0*sp;

gsl_vector_set(ep2, i, a);

gsl_vector_set(fp2, i, a);

}

//calculating gp2[i] for all i except i=0 and i=NX

for (i=1; i<NX; i++){

a1=(gsl_vector_get(cp, i)+fabs(gsl_vector_get(cp, i)));

a2=(2.0+(gsl_vector_get(cp, i)-fabs(gsl_vector_get(cp, i)))-

(gsl_vector_get(cp, i+1)+fabs(gsl_vector_get(cp, i+1))));

a3=(gsl_vector_get(cp, i+1)-fabs(gsl_vector_get(cp, i+1)));

a=(a1*p[i-1])+(a2*p[i])-(a3*p[i+1]);

gsl_vector_set(gp2, i, a);

}

/************************************************************************

calculating the negative ion solutions with the lower order scheme

************************************************************************/

//calculating gn2[0]

a=-((gsl_vector_get(cn, 1)-fabs(gsl_vector_get(cn, 1))))*n[1]+

(2+(gsl_vector_get(cn, 0)-fabs(gsl_vector_get(cn, 0)))-

(gsl_vector_get(cn, 1)+fabs(gsl_vector_get(cn, 1))))*n[0];

gsl_vector_set(gn2, 0, a);

//calculating gn2[NX]

a=((gsl_vector_get(cn, NX)+fabs(gsl_vector_get(cn, NX))))*n[NX-1]+

(2+(gsl_vector_get(cn, NX)-fabs(gsl_vector_get(cn, NX)))-

(gsl_vector_get(cn, NX+1)+fabs(gsl_vector_get(cn, NX+1))))*n[NX];

gsl_vector_set(gn2, NX, a);

//calculating dn2[i] for 1<=i<=NX

for (i=1; i<NX; i++){

a=(2.0+(4.0*sn));

gsl_vector_set(dn2, i, a);

}

//Setting dn2[0]=1-fn2[1] and dn2[NX]=1-en2{NX-1]
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gsl_vector_set(dn2, 0, 2.0+(2.0*sn));

gsl_vector_set(dn2, NX, 2.0+(2.0*sn));

//calculating en2[i] and fn2[i] for all i

for (i=0; i<NX; i++){

a=-2.0*sn;

gsl_vector_set(en2, i, a);

gsl_vector_set(fn2, i, a);

}

//calculating gn2[i] for all i except i=0 and i=NX

for (i=1; i<NX; i++){

a1=(gsl_vector_get(cn, i)+fabs(gsl_vector_get(cn, i)));

a2=(2.0+(gsl_vector_get(cn, i)-fabs(gsl_vector_get(cn, i)))-

(gsl_vector_get(cn, i+1)+fabs(gsl_vector_get(cn, i+1))));

a3=(gsl_vector_get(cn, i+1)-fabs(gsl_vector_get(cn, i+1)));

a=(a1*n[i-1])+(a2*n[i])-(a3*n[i+1]);

gsl_vector_set(gn2, i, a);

}

//solving the tridiagonal matrix for the lower order scheme

gsl_linalg_solve_symm_tridiag(dp2, ep2, gp2, pL);

gsl_linalg_solve_symm_tridiag(dn2, en2, gn2, nL);

/**********************************************************************

calculating the flux’s for pos and neg ions for the higher order scheme

***********************************************************************/

for (i=1; i<=NX; i++){

//Pos Higher Order Ion Flux

a=(dx/12.0)*(2.0+(pow(gsl_vector_get(cp, i), 2)*

(gsl_vector_get(pH,i)-gsl_vector_get(pH, i-1)-p[i]+p[i-1]))+

(3.0*gsl_vector_get(cp, i)*(gsl_vector_get(pH, i)+

gsl_vector_get(pH, i-1)+p[i]+p[i-1]))-(6.0*sp*

(gsl_vector_get(pH, i)-gsl_vector_get(pH, i-1)+p[i]-p[i-1])));

gsl_vector_set(PhiHp, i, a);

//Neg Higher Order Ion Flux

a=(dx/12.0)*(2.0+(pow(gsl_vector_get(cn, i), 2)*

(gsl_vector_get(nH,i)-gsl_vector_get(nH, i-1)-n[i]+n[i-1]))+

(3.0*gsl_vector_get(cn, i)*(gsl_vector_get(nH, i)+

gsl_vector_get(nH, i-1)+n[i]+n[i-1]))-(6.0*sn*

(gsl_vector_get(nH, i)-gsl_vector_get(nH, i-1)+n[i]-n[i-1])));

gsl_vector_set(PhiHn, i, a);

}

gsl_vector_set(PhiHp, 0, 0);

gsl_vector_set(PhiHp, NX+1, 0);
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gsl_vector_set(PhiHn, 0, 0);

gsl_vector_set(PhiHn, NX+1, 0);

/*********************************************************************

calculating the flux’s for pos and neg ions for the lower order scheme

*********************************************************************/

for (i=1; i<=NX; i++){

//Pos Lower order ion flux

a=(dx/2.0)*((gsl_vector_get(cp, i)+fabs(gsl_vector_get(cp, i)))*

p[i-1]+(gsl_vector_get(cp, i)-fabs(gsl_vector_get(cp, i)))*p[i]-

(2.0*sp*(gsl_vector_get(pL, i)-gsl_vector_get(pL, i-1))));

gsl_vector_set(PhiLp, i, a);

//Neg Lower Order ion flux

a=(dx/2.0)*((gsl_vector_get(cn, i)+fabs(gsl_vector_get(cn, i)))*

n[i-1]+(gsl_vector_get(cn, i)-fabs(gsl_vector_get(cn, i)))*n[i]-

(2.0*sn*(gsl_vector_get(nL, i)-gsl_vector_get(nL, i-1))));

gsl_vector_set(PhiLn, i, a);

}

gsl_vector_set(PhiLp, 0, 0);

gsl_vector_set(PhiLp, NX+1, 0);

gsl_vector_set(PhiLn, 0, 0);

gsl_vector_set(PhiLn, NX+1, 0);

/*calculating the anti diffusive flux before any correction is applied */

for(i=0; i<=NX+1; i++){

a=gsl_vector_get(PhiHp, i)-gsl_vector_get(PhiLp, i);

gsl_vector_set(ADPhip, i, a);

a=gsl_vector_get(PhiHn, i)-gsl_vector_get(PhiLn, i);

gsl_vector_set(ADPhin, i, a);

}

/***********************************************************************

Starting Zalesak’s flux limiting procedure

***********************************************************************/

/*Checking conditions on Antidiffusive flux’s for p and n for Zalesak’s

scheme*/

for (i=0; i<NX; i++){

b=gsl_vector_get(ADPhip, i+1)*(gsl_vector_get(pL, i+1)-gsl_vector_get(pL, i));

if(i==0){

c=gsl_vector_get(ADPhip, i+1)*(gsl_vector_get(pL, i+2)-gsl_vector_get(pL, i+1));

d=gsl_vector_get(ADPhip, i+1)*gsl_vector_get(pL, i);

}

else if(i>NX-2){

d=gsl_vector_get(ADPhip, i+1)*(gsl_vector_get(pL, i)-gsl_vector_get(pL, i-1));
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c=0;

}

else{

c=gsl_vector_get(ADPhip, i+1)*(gsl_vector_get(pL, i+2)-gsl_vector_get(pL, i+1));

d=gsl_vector_get(ADPhip, i+1)*(gsl_vector_get(pL, i)-gsl_vector_get(pL, i-1));

}

if(b<0&&(c<0||d<0)){

gsl_vector_set(ADPhip, i, 0);

}

b=gsl_vector_get(ADPhin, i+1)*(gsl_vector_get(nL, i+1)-gsl_vector_get(nL, i));

if(i==0){

c=gsl_vector_get(ADPhin, i+1)*(gsl_vector_get(nL, i+2)-gsl_vector_get(nL, i+1));

d=gsl_vector_get(ADPhin, i+1)*gsl_vector_get(nL, i);

}

else if(i>NX-2){

d=gsl_vector_get(ADPhin, i+1)*(gsl_vector_get(nL, i)-gsl_vector_get(nL, i-1));

c=0;

}

else{

c=gsl_vector_get(ADPhin, i+1)*(gsl_vector_get(nL, i+2)-gsl_vector_get(nL, i+1));

d=gsl_vector_get(ADPhin, i+1)*(gsl_vector_get(nL, i)-gsl_vector_get(nL, i-1));

}

if(b<0&&(c<0||d<0)){

gsl_vector_set(ADPhin, i+1, 0);

}

}

/***********************************************************************

calculating pa, pb, pmin, pmax, na, nb, nmin, nmax for Zalesak’s Limiter

method

***********************************************************************/

for (i=1; i<NX; i++){

pmax[i]=max(max(p[i-1], p[i]), max(max(p[i+1], gsl_vector_get(pL, i-1)),

max(gsl_vector_get(pL, i), gsl_vector_get(pL, i+1))));

pmin[i]=min(min(p[i-1], p[i]), min(min(p[i+1], gsl_vector_get(pL, i-1)),

min(gsl_vector_get(pL, i), gsl_vector_get(pL, i+1))));

nmax[i]=max(max(n[i-1], n[i]), max(max(n[i+1], gsl_vector_get(nL, i-1)),

max(gsl_vector_get(nL, i), gsl_vector_get(nL, i+1))));

nmin[i]=min(min(n[i-1], n[i]), min(min(n[i+1], gsl_vector_get(nL, i-1)),

min(gsl_vector_get(nL, i), gsl_vector_get(nL, i+1))));

}

pmax[0]=max(max(p[0], p[1]), max(gsl_vector_get(pL, 0), gsl_vector_get(pL, 1)));
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pmax[NX]=max(max(p[NX-1], p[NX]), max(gsl_vector_get(pL, NX-1), gsl_vector_get(pL, NX)));

pmin[0]=min(min(p[0], p[1]), min(gsl_vector_get(pL, 0), gsl_vector_get(pL, 1)));

pmin[NX]=min(min(p[NX-1], p[NX]), min(gsl_vector_get(pL, NX-1), gsl_vector_get(pL, NX)));

nmax[0]=max(max(n[0], n[1]), max(gsl_vector_get(nL, 0), gsl_vector_get(nL, 1)));

nmax[NX]=max(max(n[NX-1], n[NX]), max(gsl_vector_get(nL, NX-1), gsl_vector_get(nL, NX)));

nmin[0]=min(min(n[0], n[1]), min(gsl_vector_get(nL, 0), gsl_vector_get(nL, 1)));

nmin[NX]=min(min(n[NX-1], n[NX]), min(gsl_vector_get(nL, NX-1), gsl_vector_get(nL, NX)));

for (i=0; i<=NX; i++){

Ppp[i]=max(0.0, gsl_vector_get(ADPhip, i))-min(0.0, gsl_vector_get(ADPhip, i+1));

Ppm[i]=max(0.0, gsl_vector_get(ADPhip, i+1))-min(0.0, gsl_vector_get(ADPhip, i));

Pnp[i]=max(0.0, gsl_vector_get(ADPhin, i))-min(0.0, gsl_vector_get(ADPhin, i+1));

Pnm[i]=max(0.0, gsl_vector_get(ADPhin, i+1))-min(0.0, gsl_vector_get(ADPhin, i));

}

for(i=0; i<=NX; i++){

Qpp[i]=(pmax[i]-gsl_vector_get(pL, i))*dx;

Qpm[i]=(gsl_vector_get(pL, i)-pmin[i])*dx;

Qnp[i]=(nmax[i]-gsl_vector_get(nL, i))*dx;

Qnm[i]=(gsl_vector_get(nL, i)-nmin[i])*dx;

}

for(i=0; i<=NX; i++){

//Calculating Rpp

if(Ppp[i]>0){

Rpp[i]=min(1.0, Qpp[i]/Ppp[i]);

}

else if (Ppp[i]==0){

Rpp[i]=0.0;

}

//Calculating Rpm

if(Ppm[i]>0){

Rpm[i]=min(1.0, Qpm[i]/Ppm[i]);

}

else if (Ppm[i]==0){

Rpm[i]=0.0;

}

//Calculating Rnp

if(Pnp[i]>0){

Rnp[i]=min(1.0, Qnp[i]/Pnp[i]);

}

else if(Pnp[i]==0){

Rnp[i]=0.0;

}
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//Calculating Rnm

if(Pnm[i]>0){

Rnm[i]=min(0.0, Qnm[i]/Pnm[i]);

}

else if(Pnm[i]==0){

Rnm[i]=0.0;

}

}

/*calculating the positive and negative corrector multiplers to multiply

with the antidiffusive flux to get the corrected, limited antidiffusive

flux */

Cp[0]=0;

Cp[NX+1]=0;

Cn[0]=0;

Cn[NX+1]=0;

for (i=1; i<=NX; i++){

//Calculating Corrector Multiplier for positive antidiffusive flux

if(gsl_vector_get(ADPhip, i)>=0){

Cp[i]=min(Rpp[i], Rpm[i-1]);

}

else{

Cp[i]=min(Rpp[i-1], Rpm[i]);

}

//Calculating Corrector Multipliier for negative antidiffusive flux

if(gsl_vector_get(ADPhin, i)>=0){

Cn[i]=min(Rnp[i], Rnm[i-1]);

}

else{

Cn[i]=min(Rnp[i-1], Rnm[i]);

}

}

//calculating the corrected antidiffusive flux

for(i=0; i<=NX+1; i++){

gsl_vector_set(CADPhip, i, Cp[i]*gsl_vector_get(ADPhip, i));

gsl_vector_set(CADPhin, i, Cn[i]*gsl_vector_get(ADPhin, i));

}

/* calculating the flux corrected ion densities */

for (i=0; i<=NX; i++){

p[i]=gsl_vector_get(pL, i)+(gsl_vector_get(CADPhip, i)-gsl_vector_get(CADPhip, i+1))/dx;

n[i]=gsl_vector_get(nL, i)+(gsl_vector_get(CADPhin, i)-gsl_vector_get(CADPhin, i+1))/dx;

}
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/*******************************************************************

Calculate Flux for Pos and Neg ions

*******************************************************************/

for (i=0; i<=NX; i++){

if (i<=NX/2){

fluxp[i]=(up*p[i]*gsl_vector_get(E, i))-((Dp/dx)*(p[i+1]-p[i]));

fluxn[i]=(un*n[i]*gsl_vector_get(E, i))-((Dn/dx)*(n[i+1]-n[i]));

}

else {

fluxp[i]=(up*p[i]*gsl_vector_get(E, i))-((Dp/dx)*(p[i]-p[i-1]));

fluxn[i]=(un*n[i]*gsl_vector_get(E, i))-((Dn/dx)*(n[i]-n[i-1]));

}

}

if (j<10000){

flux_current=10e10;

}

else {

flux_current=fluxp[NX/2];

}

/********************************************************************

Calculating Electric field based on ion redistribution

********************************************************************/

/**********************************************************************

Setting Vp to the potential at the left boundary from the previous time

to be used in the current calculation*********************************/

/*Calculating E with 4th Order Runge Kutta, and V with Simpson’s rule

combing with the shooting method */

a4=0;

B=gsl_vector_get(V, NX);

q0=gsl_vector_get(E, 0);

q1=q0*1.001;

dy=1.0;

while (fabs(dy)>dtol){

gsl_vector_set(E, 0, q0);

for (i=0; i<NX; i++){

k1=gE(p[i],n[i]);

k2=gE(p[i]+0.5*dx*k1, n[i]+0.5*dx*k1);

k3=gE(p[i]+0.5*dx*k2, n[i]+0.5*dx*k2);

k4=gE(p[i]+dx*k3, n[i]+dx*k3);

gsl_vector_set(E, i+1, gsl_vector_get(E, i)+(dx/6.0)*(k1+2.0*k2+

2.0*k3+k4));
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gsl_vector_set(V, i+1, gsl_vector_get(V, i)-(dx/6.0)*(3.0*

gsl_vector_get(E, i)+3.0*gsl_vector_get(E, i+1)));

}

f0=gsl_vector_get(V, NX);

gsl_vector_set(E, 0, q1);

for (i=0; i<NX; i++){

k1=gE(p[i],n[i]);

k2=gE(p[i]+0.5*dx*k1, n[i]+0.5*dx*k1);

k3=gE(p[i]+0.5*dx*k2, n[i]+0.5*dx*k2);

k4=gE(p[i]+dx*k3, n[i]+dx*k3);

gsl_vector_set(E, i+1, gsl_vector_get(E, i)+(dx/6.0)*(k1+2.0*k2+

2.0*k3+k4));

gsl_vector_set(V, i+1, gsl_vector_get(V, i)-(dx/6.0)*(3.0*

gsl_vector_get(E, i)+3.0*gsl_vector_get(E, i+1)));

}

f1=gsl_vector_get(V, NX);

dy=f1-f0;

q2=q1+(B-f1)*(q1-q0)/dy;

q0=q1;

q1=q2;

}

/********************************************************************

Calculating the non Faradiac current

********************************************************************/

I1=0;

for (i=0; i<NX; i++){

I1=I1+(((p[i]+p[i+1])*gsl_vector_get(cp, i+1)*dx/(2.0*dt))-((n[i]+n[i+1])*

gsl_vector_get(cn, i+1)*dx/(2.0*dt))-((Dp/dx)*(p[i+1]-p[i]))+

((Dn/dx)*(n[i+1]-n[i])))*dx;

}

for (i=0; i<NX; i++){

Ipdr[i]=up*p[i]*gsl_vector_get(E, i);

Indr[i]=un*n[i]*gsl_vector_get(E, i);

if (i>0&&i<NX){

IpDif[i]=Dp*(p[i+1]-p[i-1])/(2.0*dx);

InDif[i]=Dn*(n[i+1]-n[i-1])/(2.0*dx);

}

else if (i==0){

IpDif[i]=Dp*(p[i+1]-p[i])/dx;

InDif[i]=Dn*(n[i+1]-n[i])/dx;

}
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else {

IpDif[i]=Dp*(p[i]-p[i-1])/dx;

InDif[i]=Dn*(n[i]-n[i-1])/dx;

}

if (i<100||i>NX-100){

IpdrOut<<Ipdr[i]<<", ";

IndrOut<<Indr[i]<<", ";

IpDifOut<<IpDif[i]<<", ";

InDifOut<<InDif[i]<<", ";

}

}

for (i=0; i<=NX; i++){

Ik[i]=A*elec*(Ipdr[i]-Indr[i]

-IpDif[i]+InDif[i]);

if (i%40==0){

IkOut<<Ik[i]<<", ";

}

else if (i==NX){

IkOut<<Ik[i]<<", ";

}

}

I2=0;

for (i=0; i<=NX; i++){

I2 = I2+Ik[i]*dx/dc;

}

IkOut<<endl;

IpdrOut<<endl;

IndrOut<<endl;

IpDifOut<<endl;

InDifOut<<endl;

I=((A/(dc))*((elec*I1))+((mean/50)*exp(-TIME/tau2)));

/***********************************************************************

Calculating the size of the next time step

***********************************************************************/

for (i=0; i<NX; i++){

gsl_vector_set(diff_E, i, fabs(gsl_vector_get(E, i))+

fabs(gsl_vector_get(E, i+1)));

}

if (p[0]>1.01*p[NX/2]){

dt=5.0e-8;

}
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else {

a5=0.9*dx/(up*fabs(gsl_vector_max(sum_E)));

//dt=a5;

//dt=5.0e-7;

if (a5<1e-7){

dt=a5;

}

else {

dt=0.1e-7;

}

}

TIME=TIME+dt;

sp=Dp*dt/(pow(dx, 2));

sn=Dn*dt/(pow(dx, 2));

IOut<<TIME<<", "<<I<<", "<<gsl_vector_get(V, 0)<<", "<<(A/(dc))*((elec*I1))

<<", "<<((mean/50)*exp(-TIME/tau2)) <<", "

<<((A*ew*e0/(dc*dt))*(gsl_vector_get(V, 0)-Vp-Vrc2+Vrc1))

<<", "<<(gsl_vector_get(V, 0)-Vrc2)/R<<", "<<(A/(dc))*(elec*I1)+((mean/50)*exp(-TIME/tau2))<<",

"<<dt<<", "<<I2<<endl;

//Re-Calculating the Courant Numbers with the new Electric field

for (i=0; i<NX; i++){

gsl_vector_set(cp, i+1, up*dt*((gsl_vector_get(E, i)+gsl_vector_get(E, i+1))/(2.0*dx)));

gsl_vector_set(cn, i+1, un*dt*((gsl_vector_get(E, i)+gsl_vector_get(E, i+1))/(2.0*dx)));

}

gsl_vector_set(cp, 0, 0);

gsl_vector_set(cp, NX+1, 0);

gsl_vector_set(cn, 0, 0);

gsl_vector_set(cn, NX+1, 0);

fluxTOut<<fluxp[NX/2]<<endl;

if (j%SAM==0){

cout<<"j="<<j<<", ";

for (i=0; i<=NX; i++){

VOut<<gsl_vector_get(V, i)<<", ";

EOut<<gsl_vector_get(E, i)<<", ";

pOut<<p[i]<<", ";

nOut<<n[i]<<", ";

fluxpOut<<fluxp[i]<<", ";

}

}

else if (j==TN){

for (i=0; i<=NX; i++){
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VOut<<gsl_vector_get(V, i)<<", ";

EOut<<gsl_vector_get(E, i)<<", ";

pOut<<p[i]<<", ";

nOut<<n[i]<<", ";

fluxpOut<<fluxp[i]<<", ";

}

}

VOut<<endl;

EOut<<endl;

pOut<<endl;

nOut<<endl;

fluxpOut<<endl;

j++;

/****************************************************************************

Ending Time Loop

****************************************************************************/

}

/************************************************************************

Calculating Guoy Chapman solution

************************************************************************/

double gamma, kappa, po;

vector <double> Vgc;

vector <double> Egc;

Vgc.resize(NX/2);

Egc.resize(NX/2);

gamma=tanh((elec*gsl_vector_get(V, 0))/(4*kb*Temp));

kappa=sqrt(co)/(0.304e-9);

po=pow(kappa, 2)*ew*e0*kb*Temp/(2.0*pow(elec, 2));

for (i=0; i<NX/2; i++){

Vgc[i]=(2.0*kb*Temp/elec)*log((1+gamma*exp(-kappa*(gsl_vector_get(x, i)+

gsl_vector_get(x, NX))))/(1-gamma*exp(-kappa*(gsl_vector_get(x, i)+

gsl_vector_get(x, NX)))));

VgcOut<<Vgc[i]<<", ";

Egc[i]=sqrt(8.0*po*kb*Temp/(ew*e0))*sinh(elec*Vgc[i]/(2.0*kb*Temp));

EgcOut<<Egc[i]<<", ";

}

FILE * f=fopen ("x.dat", "w");

gsl_vector_fprintf(f, x, "%.5g");

fclose(f);

//Freeing up spline objects

gsl_spline_free (spline);
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gsl_interp_accel_free (acc);

cout<<"# of timesteps="<<j<<" Total time="<<TIME<<endl;

time(&end);

dif = difftime(end, start);

cout<<endl;

int diff=int (dif);

int hr=diff/3600;

int min=(diff%3600)/60;

int sec=((diff%3600)%60);

cout<<"Time to run program is "<<hr<<"hr "<<min<<"min "<<sec<<"s"<<endl;

return 0;

}
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