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Abstract 

This thesis examines 2D Particle-in-Cell (PIC) simulations of a beat-wave interacting 

with a Near-Critical Density (NCD) plasma to generate an electron beam suitable for 

radiotherapy. The beat-wave is generated from the co-propagation of an 800nm laser, the 

primary laser, and a 400nm laser, the secondary laser. The lasers are simulated with a pulse 

duration of 35 fs and a respective energy of 100 mJ each. A beat-wave is used due to the 

desirability of a compact setup appropriate in a medical environment. Beat-wave accelerators 

have historically been used when the typical high-intensity lasers used to reach the bubble-

regime were not accessible, as the beat-wave is able to accelerate electrons in the plasma with 

relatively low intensity. Additionally, NCD plasmas are examined to enhance the charge 

generated from the interaction while limiting the maximum energy gain of the electrons. The 

lasers are examined with both linear and circular polarization to examine the polarization effect 

on overall charge and electron energy gain.       

 The beat-wave is compared to the propagation of the primary laser alone and is found to 

better propagate through NCD plasmas. The single laser is only able to form cavitons in the first 

half of the plasma and does not lead to a peak of MeV electrons. Additionally, the limiting of the 

energy differs from typical, high-energy laser acceleration setups due to the different energy 

range used in radiotherapy. Linear accelerators currently used for electron radiotherapy generate 

electron beams with energies from 5-25 MeV and a dose rate of 1-10 Gy/min. The NCD plasma 

interactions lead to MeV order electrons which meet the energy and dose requirements set by 

linear accelerators and show aptitude for high-dose rate electron radiotherapy applications.  
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Chapter 1 - Introduction and Background Theory 

1.1  Development of Particle Accelerators 

Particle accelerators were developed as a way of allowing study of high-energy physics 

unachievable through radiation sources available in earlier stages of the field. One of the earliest 

particle accelerators was developed by Cockcroft and Walton in 1932 [1]. Their device creates an 

electric field through an electrode of 400 kV at the entrance of a hydrogen proton source, 200 kV 

at the middle of an accelerating tube, and a ground state electrode at the target position [1] to 

create an accelerating column for protons. While the development of this method led to great 

discoveries and a Nobel Prize in 1951, the device is limited in application due to discharge 

created from breakdown of the surrounding air. To surpass this limitation, Ernst Ising in 1924 

proposed acceleration of particles by utilizing fields alternating in time [1]. Accelerators using 

this method are known as Radiofrequency (RF) Linear Accelerators or as a LINAC. LINACs 

consist of a linear accelerating structure lined with a series of cavities that confine 

electromagnetic fields and cause their oscillation [3]. These fields accelerate particles forward 

given they cross through the accelerating fields at a time when it is properly polarized. LINACs 

were developed to generate an acceleration gradient of 100 MV/m[4]. One of the most prominent 

LINACs currently in use is at the Stanford Linear Accelerator Laboratory (SLAC). The SLAC 

accelerator extends 3.2 km and can generate electron beams with an energy of 50 GeV [1]. 

However, the widespread usage of LINACs is also limited by the amount of space needed to 

accelerate to high energies. Similarly, usage is limited by the cost required to build large scale 

devices. A higher acceleration gradient is desired, as it would allow a more compact and cheaper 

setup; LINACs cannot achieve such a feat due to the material breakdown limitation of voltage 
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applied to the equipment. As such, alternate forms of acceleration are continually being 

researched.  

1.2 Laser-Plasma Acceleration 

In 1979, Tajima and Dawson proposed the idea of Laser Wakefield Acceleration (LWFA) 

[7] – a means of using plasma as an acceleration medium to surpass LINACs by overcoming the 

material breakdown limitation. Because of this limitation, LINACs can support accelerating 

fields of up to 100 MV/m [4]. However, plasma exists in a broken-down state and can thus 

support large fields without experiencing breakdown which limits the acceleration. Through 

LWFA, acceleration gradients of 100 GV/m are obtained and lead to considerably smaller scale 

experimental setups to achieve similar electron energies as LINACs.  LWFA occurs when a laser 

pulse propagates into a sufficiently underdense plasma. The ponderomotive force of the laser, a 

nonlinear effect, pushes electrons within the plasma towards areas of lower intensity while ions 

stay relatively stationary. This allows the laser to couple to the plasma by forming a wave in the 

plasma resembling a train of wakes. These wakes serve as accelerating structures within the 

plasma and trap many of the electrons within them, as a region of deceleration also exists. 

However, electrons can use the wakes as regions of acceleration if they begin with enough 

energy to move beyond the decelerating regions behind the driving pulse. An early scheme to 

achieve LWFA examined the interaction between a beat-wave generated from two co-

propagating laser pulses with an underdense plasma [7]. The two lasers are chosen to beat at or 

near the frequency of the plasma to resonantly excite a plasma and induce acceleration. With 

great advances in laser technology, however, the most studied interaction is between an 

underdense plasma with a single intense, ultrashort laser pulse. 
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The accelerating field strength within the plasma depends on the density perturbation 

created by the laser; with a stronger laser, a sharper density gradient can be formed within the 

plasma. When the field is sufficiently strong, the electrons trapped in the wakes can accelerate to 

velocities higher than the phase velocity of the plasma wave. When this happens, the wake 

breaks down and leads to a phenomenon known as wave-breaking [4]. When wave-breaking 

occurs, bulk electrons are self-injected and accelerated in addition to the low population of high-

energy electrons. Wave-breaking thus leads to an electron beam with a high energy spread rather 

than a monoenergetic beam. However, as injection caused by wave-breaking allows bulk 

electrons to accelerate, a high-charge beam can form. It can thus be considered that a trade-off 

between charge and maximum energy exists in this specific injection method.  

 Most LWFA experimental setups use plasmas with density on the order of 1018-1019 cm-3 

for the purpose of creating high energy, monoenergetic beams. A separate regime involves 

raising the density which allows the laser to excite a plasma wave with a lower phase velocity 

and can therefore couple to the bulk of a plasma. In such a medium, the acceleration mechanism 

no longer resembles the clean form visible in LWFA but transitions to a more turbulent 

interaction. By taking advantage of a higher-density interaction, a greater charge electron beam 

can be generated. While this beam will not have the GeV scale, monoenergetic beam desired in 

high-energy physics research, such a scheme would serve applications requiring high charge with 

MeV order electrons instead. 

 Aside from high-energy physics, a major application of accelerators is the use of 

comparatively lower energy electrons for radiotherapy. Particle beams generated by accelerators 

target cancer cells in a patient, which are then removed by the human body once the radiation 

damages the DNA of the cancer cells [9]. X-rays are typically used in different forms of 
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radiotherapy due to their ability to penetrate into the body to target deep-seated tumors using 

equipment which is readily available. Proton beams are used to similarly target deep-seated 

tumors and potentially decrease the level of radiation damage done to surrounding tissue [9]. 

Electron beams lead to radiation which is comparatively shallower than proton and x-ray based 

radiotherapy devices. Electrons are more suitable in treating shallow cancers, such as that of the 

skin, as they cannot penetrate further into the body but will not damage healthy tissue beyond the 

human exterior during treatment [9].  

1.3 Objective 

This thesis seeks to optimize a potential laser-plasma acceleration scheme for the 

application of electron radiotherapy. Allowing the transition from LINACs to laser-plasma 

accelerators would allow for a more compact setup which could conserve space and cost, and 

potentially making the machinery less imposing from the perspective of a patient. Current 

electron radiotherapy equipment generates electrons on the order of 5-25 MeV [10]. As such, a 

near-critical density (NCD) plasma is used to generate these electron energies. This work utilizes 

a Particle-in-Cell (PIC) simulation model to examine the interaction between a single laser and a 

laser beat-wave with a near-critical density plasma as a potential setup for an electron 

radiotherapy accelerator. The higher density effects were examined by scanning through 

densities approaching the critical density.  The results point towards the beat-wave setup which 

allows for further propagation of the pulses into a NCD plasma compared to a single pulse 

despite similar overall intensities. The beat-wave proves especially advantageous in selectively 

generating MeV order electrons. In addition to optimization, the acceleration mechanism in this 

interaction is analyzed due to transition to higher densities having indicators of differing 

acceleration mechanisms. 
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Chapter 2 - Theoretical Background 

2.1 Plasma Equations 

To understand plasma as a combination of individual and collective behavior, equations 

are formed using both particle and fluid approximations of plasma. In a fluid description 

considering two or more particle types, such as ions and electrons, the plasma is treated as two 

different fluids mixing together.  In this description, the individual particle velocity 𝑣⃑ is replaced 

with a fluid velocity, 𝑢⃑⃑, which represents the velocity of an element of the fluid.  

 

Figure 2.1: Example of differential fluid element with collection of particles with individual 

velocities represented by a singular fluid velocity, u.  

The fluid description is generally insufficient in capturing complicated behavior in 

plasma and thus moves onward into a more complete, kinetic description. In the kinetic 

description, each particle species adheres to a Maxwellian distribution, 𝑓(𝑣⃑) [12]:  

𝑓(𝑣⃑) = [
𝑚

2𝜋𝑘𝑏𝑇
]

3

2
exp (−

𝑚𝑣2

2𝑘𝑏𝑇
) =  [

𝑚

2𝜋𝑘𝑏𝑇
]

3

2
exp (−

𝑣2

𝑣𝑡ℎ
2 )  (2.8) 
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Figure 2.2: Example of a Maxwellian distribution. 

where 𝑣⃑ is the three-dimensional velocity vector, m is the mass of the particle species, 𝑘𝑏 is the 

Boltzmann constant, T is the species temperature, and 𝑣𝑡ℎ is the thermal velocity defined as: 

𝑣𝑡ℎ ≡ √
2𝑘𝑏𝑇

𝑚
  (2.9). 

This distribution function, plotted in Figure 2.2, is used in conjunction with the Boltzmann 

equation to relate the distribution to the effects from external forces and collision effects and is 

given as [12]: 

𝜕𝑓

𝜕𝑡
+ 𝑣⃑ ∙ ∇𝑓 +

𝑞(𝐸⃑⃑+𝑣⃑⃑×𝐵⃑⃑)

𝑚
∙
𝜕𝑓

𝜕𝑣
= (

𝜕𝑓

𝜕𝑡
)
𝑐
 (2.10)       

Where the term involving E and B represent the effect of electromagnetic fields, and the right-

hand term represents temporal collisional effects. In a collisionless plasma, the right-hand term 

can be neglected. 

 From taking moments through integration of the Boltzmann equation, the fluid equations 

of plasma are obtained [12, 13]: 
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𝜕𝑛

𝜕𝑡
+ ∇ ∙ (𝑛𝑢⃑⃑) = 0 Zeroth Moment: Continuity Equation (2.11a) 

𝑚𝑛
𝜕𝑢⃑⃑⃑

𝜕𝑡
+ 𝑚𝑛(𝑢⃑⃑⃑⃑⃑ ∙ ∇)𝑢⃑⃑ = 𝑞𝑛(𝐸⃑⃑ + 𝑢⃑⃑ × 𝐵⃑⃑) − ∇𝑝 First Moment: Equation of Motion (2.11b) 

(
𝜕

𝜕𝑡
+ 𝑢⃑⃑ ∙ ∇)

𝑝

𝑛𝛾 = 0 Second Moment: Equation of State (2.11c) 

With 𝑢⃑⃑ representing the fluid velocity of the particle species, n the number density, p the pressure 

of the fluid, and 𝛾 the term relating the number of degrees of freedom.  

 From the plasma equations, paired with a physical description, the oscillatory behavior of 

plasma is derived; the evolution of an initial push on the plasma converting into an oscillation is 

shown in Figure 2.3. In a plasma consisting of ions and electrons, motion of ions relative to 

electrons can be considered stationary due to the longer response times and higher mass of the 

ions. The ions are thus considered stationary when the electron density is perturbed. The 

electrons push forward from perturbation and create a space-charge gradient as the electrons pile 

together. This charge imbalance creates a reactionary electric field which pulls the electrons back 

towards their initial position. However, the inertia of the electrons in motion cause them to move 

beyond their initial position of equilibrium which causes another space-charge gradient. This 

converts into an oscillation of the electrons about their initial equilibrium point and represents 

the parameter known as the plasma frequency. The plasma equations can be linearized through 

treating the density, velocities, and fields as equilibrium terms with perturbations added on, e.g.: 

𝑛 = 𝑛0 + 𝑛1    (2.12) 

where 𝑛0 is the initial density at equilibrium, and 𝑛1 is the treated as an oscillatory perturbation 

such that 𝑛1 = 𝑛1 exp[𝑖(𝑘𝑥 − 𝜔𝑡)]  [12,13] and 𝑛1 ≪ 𝑛0. Using the linearized equations, the 

plasma frequency is found as: 
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𝜔𝑝 = √
𝑛0𝑒2

𝜖0𝑚𝑒
 (2.13) 

 (a)  (b) (c) 

Figure 2.3: (a) Plasma at equilibrium with a background of ions in red and electrons in blue 

experiences force pushing electrons forward. (b) Space charge imbalance creates a restorative 

force on the electrons. (c) Electrons overshoot equilibrium and experience restorative force once 

again and converts to an oscillation. 

From the Vlasov equation, the dispersion relation of electron plasma waves is derived: 

𝜔2 = 𝜔𝑝
2 +

3

2
𝑘2𝑣𝑡ℎ

2  (2.14) 

The field generated by each particle has an effective range caused by shielding from other 

particles called the Debye screening length, 𝜆𝐷𝑒𝑏𝑦𝑒. The Poisson equation solves for the electric 

potential: 

∇2𝜙 =  −
𝜌

𝜖0
 (2.15) 

where 𝜙 is the electric potential and 𝜌 is the charge density. Using this, 𝜙 is found to be [13]: 

𝜙 =
𝑞

𝑟
exp [−

𝑟

𝜆𝐷𝑒𝑏𝑦𝑒
] (2.16) 
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With the Debye length found to be: 

𝜆𝐷𝑒𝑏𝑦𝑒 = √
𝜖0𝑘𝑏𝑇

𝑛𝑒2  (2.17) 

From (2.16) and (2.17), the effect of the Debye length is visible in that the potential drops 

drastically beyond the Debye length. This illustrates the collective effect of particle shielding and 

shows that the particles affect each other only within the range of the Debye length.  

2.2 Laser Interaction with Plasma 

With the groundwork for plasma behavior when experiencing small perturbations, interactions 

with a propagating electromagnetic wave can be analyzed.  

  2.2.1 Gaussian Laser Pulses 

The electromagnetic waves in lasers are described through Maxwell’s equations which 

derive relationships in interactions from charge and electromagnetic waves. Maxwell’s equations 

are given in differential form as [11]: 

∇ ∙ 𝐸⃑  =
𝜌

𝜖0
    (2.3𝑎)        ∇ ∙ 𝐵⃑ = 0   (2.3𝑏) 

∇ × 𝐸⃑ = −
𝜕𝐵

𝜕𝑡
 (2.3𝑐)   ∇ × 𝐵⃑ = 𝜇0𝜖0

𝜕𝐸⃑ 

𝜕𝑡
+ 𝜇0𝑗  (2.3𝑑) 

where 𝜌 is the charge density of the medium, 𝜖0is the permittivity of free space, 𝜇0 is the 

permeability of free space, and 𝑗  is the current density present in the medium. From Maxwell’s 

equations, the E and B fields are solved and presented in potential form through a scalar 

potential, 𝜙, and vector potential, 𝐴 [11]: 

𝐸⃑⃑ = −∇ϕ −
∂𝐴⃑

𝜕𝑡
 (2.4a)              𝐵⃑⃑ = ∇ × 𝐴 (2.4b) 
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 The normalized vector potential, a0, is a frequently used parameter in laser physics to indicate 

the strength of a laser and is defined as: 

𝑎⃑ =
𝑒𝐴⃑

𝑚𝑒𝑐
 (2.5𝑎)   𝑎0 =

𝑒|𝐸0|

𝑚𝑒𝜔𝐿𝑐
= 0.85 × √𝐼 [

𝑊

𝑐𝑚2] × 𝜆𝐿[𝜇𝑚] (2.5b) 

with e as the charge of an electron, me the mass of an electron, E as the electric field strength of 

the laser, 𝜔𝐿 and 𝜆𝐿the laser frequency and wavelength, and I as the intensity of the laser.  

The primary focus of this work is analyzing the interaction between a Gaussian laser 

pulse and plasma. A Gaussian pulse propagating in the z-direction is presented in Figure 2.4 and 

with the equation [4,14]:  

𝐸⃑⃑(𝑟, 𝑧, 𝑡) =
𝐸0

2
exp [−

𝑟2

𝑤(𝑧)2
] exp [−

(𝑡−
𝑧

𝑐
)
2

𝜏0
2 ] cos(𝜔𝐿𝑡 − 𝑘𝐿𝑧 + ϕL) 𝑒𝑝𝑜𝑙(2.18) 

𝑤(𝑧) = 𝑤0√1 + (
𝑧

𝑧𝑅
)
2

(2.19) 

𝑧𝑅 =
𝜋𝑤0

2

𝜆𝐿
  (2.20) 

E0 is the peak electric field of the laser, r is the radial distance from the axis of propagation; w(z) 

is the waist width of the beam as it propagates with w0 representing the initial beam width; 𝜏0 as 

an indicator of the pulse duration; 𝜔𝐿 and kL represent the frequency and wavenumber of the 

laser respectively; 𝜙𝐿 is the phase of the laser; and 𝑒𝑝𝑜𝑙 is the polarization vector of the pulse, 

which can change depending on whether the pulse is linearly, circularly, or elliptically polarized. 

Additionally, zR is defined as the Rayleigh length. The Rayleigh length indicates how far a pulse 

can propagate until defocusing effects grow and intensity becomes markedly weaker where the 

beam waist becomes 𝑤 = √2𝑤0. 
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Figure 2.4: Temporal profile of a gaussian pulse with 𝑡𝑓𝑤ℎ𝑚 = 30 𝑓𝑠. 

Further parameters of importance in laser considerations are the peak intensity and power of the 

pulse, which are given as [4]: 

𝐼0 = 0.83
𝑊𝐿

𝑡𝑓𝑤ℎ𝑚𝑑𝑓𝑤ℎ𝑚
2  (2.21a)   𝑃0 = 0.94

𝑊𝐿

𝑡𝑓𝑤ℎ𝑚
 (2.21b)  

WL is the energy of the laser used, dfwhm is the spot size of the laser, and tfwhm is the pulse duration 

of the laser, where dfwhm and tfwhm are defined as: 

𝑑𝑓𝑤ℎ𝑚 = √2ln (2)𝑤0 (2.22𝑎)          𝑡𝑓𝑤ℎ𝑚 = √2ln (2)𝜏0  (2.22𝑏)  

2.2.2 Laser Propagation 

The dispersion relation of an electromagnetic wave propagating into a plasma is given as: 

𝜔2 = 𝜔𝑝
2 + 𝑐2𝑘2 (2.23) 

where c is the speed of light, and 𝜔 and k are the frequency and wavenumber of the 

electromagnetic wave respectively. For a laser, the condition 𝜔𝑝 = 𝜔 leads to a solution of a 

density known as the critical density, given from using (2.23) with (2.13) as: 
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𝑛𝑐 =
𝜔2𝜖0𝑚𝑒

𝑒2
 (2.24) 

When 𝑛 > 𝑛𝑐, the plasma is called an overdense plasma and cause the incident laser to fully 

reflect from the surface. The phase and group velocities of waves are known to be:  

𝑣𝑝ℎ =
𝜔

𝑘
 (2.25𝑎)     𝑣𝑔𝑟𝑜𝑢𝑝 =

𝜕𝜔

𝜕𝑘
 (2.25𝑏) 

From these relations, an underdense plasma is found to have a higher vph than in higher density 

plasmas. The high phase velocity waves only couple to the portion of electron population on the 

tail-end of the distribution with similarly high velocities. When 𝑛 ≥ 𝑛𝑐, the phase velocity of the 

excited plasma wave approaches vth and interacts with the bulk of the plasma. In such a 

condition, the generated wave has a much smaller wavenumber and appears as a sheath structure.  

The ponderomotive force of a laser, which serves as the main coupling mechanism of a laser to a 

plasma, is determined by the gradient of the electric field of the laser. For a Gaussian pulse, it is 

given as 𝐹⃑𝑝 = −𝑚𝑒𝑐
2∇𝑎 (2.25) [4]. From the ponderomotive force, the ponderomotive potential 

takes the form [4,7,13]: 

𝜙𝑝𝑜𝑛𝑑 = 𝑚𝑐2(√1 + 𝑎0
2 − 1) (2.26) 

Using the ponderomotive potential, the expected energy gain supplied directly by the laser is 

derived. 

Energy gain in a laser-plasma accelerator is limited by a characteristic length of 

acceleration called the dephasing length, Ld. The dephasing length describes the length electrons 

trapped in the laser wakes travel before experiencing deceleration. This deceleration occurs when 

the electrons are accelerated to velocities approaching and greater than the plasma wave vph. 
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When the electrons move past the plasma wave, they enter the positive regions of the plasma 

wave which serve to decelerate them. Ld  is given as [4]: 

𝐿𝑑 =
𝜆𝑝

2

𝜔𝐿
2

𝜔𝑝
2 (2.27) 

Laser-plasma accelerators optimize energy gain through increasing the dephasing length based 

on its density dependence. A separate characteristic length is called the pump depletion length, 

Lpd, which describes the length along a plasma the laser can travel and transfer energy to the 

plasma through a plasma wave and is given as [4]: 

𝐿𝑝𝑑 =
𝜔𝐿

2

𝜔𝑝
2

𝑐𝜏𝐿

𝑎0
2  (2.28)  

In underdense plasmas, the pump depletion length becomes the main limiting factor of 

acceleration in the relativistic regime of 𝑎0 > 1, while the dephasing length dominates in the 

linear regime. However, the dephasing length is the dominating term in near-critical and above 

interactions.  

The energy gain formula depends on the acceleration length, as it follows an integration 

of the longitudinal fields in the direction of the acceleration length. The formula for a relativistic 

interaction is found to be [4, 7]: 

Δ𝑊 = 
2

3
𝑚𝑒𝑐

2𝑎0
𝜔𝐿

2

𝜔𝑝
2 (2.29) 

  2.2.3 Beat-wave Advantages 

The laser beat-wave setup utilizes two co-propagating lasers which beat at the plasma 

frequency. Therefore, their frequencies must adhere to the condition: 
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𝜔𝑝 = |𝜔𝐿1 − 𝜔𝐿2| = 𝜔𝑏𝑒𝑎𝑡 (4.1) 

where 𝜔𝐿1 and 𝜔𝐿2 correspond to the frequencies of the first and second lasers respectively. By 

matching this condition, the beat-wave resonantly excites a plasma wave to facilitate 

acceleration. Beat-waves have typically been used in the long-pulse, relatively low intensity 

regime [56, 79]. The beat-wave setup allows for efficient plasma wave generation with lower 

energies compared to single lasers used to achieve wakefield conditions. Additionally, the higher 

frequency laser has a larger critical density value. This larger limit means the higher frequency 

laser creating the beat-wave propagates through NCD plasmas of the lower frequency laser 

without facing the same limitation. As such, the beat-wave propagates with little disruption in 

NCD plasmas compared to usage of the single, lower frequency laser alone. 

 

 2.3 Instabilities 

Instabilities in laser-plasma interactions arise when a laser propagates and excites a wave 

in a plasma which grows and evolves continuously until it can no longer be supported by the 

plasma. The plasma instabilities discussed in this text are the Raman (scattering) instability and 

modulational instability. These instabilities are important to study especially in the NCD regime. 

The Raman scattering density limit outlined in section 2.3.1 is reached, and the effect of its 

absence is seen in higher density interactions. Additionally, modulational instability occurs in 

higher density interactions from the generation of a large amplitude electrostatic (or Langmuir) 

wave from the propagation of the beat-wave. 

  2.3.1 Raman Scattering  
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Raman scattering describes the phenomenon of a laser propagating into a plasma and 

resulting in a plasmon (plasma oscillation) and a scattered light wave. The conservation of 

momentum thus demands the relationship:  

𝜔𝐿 = 𝜔1 + (𝜔𝑝 + 3𝑘2𝑣𝑒
2)

1

2  (2.30a)  

𝑘𝐿 = 𝑘1 + 𝑘𝑝 (2.30b) 

where 𝜔1 and 𝑘1 correspond to the frequency and wavenumber of the scattered light wave and 

𝑣𝑒is the velocity of the electrons. The instability arises when an incident electric field forms a 

plasma wave presented as density perturbations along the laser axis. The plasma wave forms a 

scattered light wave through the generated current of the moving charge. The generated light 

then creates its own density perturbation, which continues to evolve and form the instability. The 

dispersion relation illustrating this interaction is derived to be [13]: 

𝜔2 − 𝜔𝑝
2 − 3𝑘2𝑣𝑒

2 =
𝜔2𝑘2𝑣𝑜𝑠

2

4
[

1

𝐷(𝜔−𝜔𝐿,𝑘−𝑘𝐿)
+

1

𝐷(𝜔+𝜔𝐿,𝑘+𝑘𝐿)
] (2.31) 

𝑣𝑜𝑠 is the oscillatory velocity of electrons moving within the field of the light, and D(𝜔,k) is the 

dispersion function. The dispersion relation shows intervals of the dispersion function ±𝜔𝐿 to 

reflect the fact that only modes close to the original frequency are supported by the plasma; these 

modes are also called the Stokes and Anti-Stokes. When considering the dispersion relation 

(2.31), Raman scattering is found to require a plasma density of 𝑛 ≤
𝑛𝑐𝑟

4
 . 

  2.3.2 Modulational Instability and Cavitons 

A modulational instability in plasma arises from a large amplitude Langmuir wave 

decaying into several different plasma modes [13,16,17]. The plasma waves are non-uniform and 
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cause electrons to move towards regions where the wave is weaker. High frequency plasma 

waves are then trapped within a region of comparatively lower density. The wave becomes so 

impactful that ions begin moving in response towards regions of weaker wave amplitude. The 

ion density disturbance then modulates the wave trapped in the low-density region such that the 

non-uniformity increases. This in turn strengthens the effect on ions and continues in a feedback 

loop to serve as the instability.  

One outcome of the modulational instability which is visible in the NCD plasma 

interactions presented in this work is the formation of a caviton. A caviton is visible in the 

density profile of a plasma as a density cavity surrounded by regions of higher density. The 

caviton traps high-frequency plasma waves within its density depression and amplifies the 

resulting field. The cavitons continue widening until they reach a length on the order of 10 −

20 𝜆𝐷𝑒𝑏𝑦𝑒 [13]. After reaching this point, the caviton structures break down which strongly 

impacts the ions. The caviton breakdown thus leads to the formation of a longitudinal ion wave 

known as an Ion Acoustic Wave [13]. 
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Chapter 3 - Computational Method 

The results shown in this work are results of computational studies conducted using the 

Particle-in-Cell (PIC) code EPOCH to simulate laser-plasma interactions. EPOCH is a PIC code 

chosen due to its flexibility derived from its nature as an open-source code. To ensure the code 

properly captures the physics of the interaction, a sufficient understanding of the code is 

required.  

In plasma physics, computational solvers generally fall into two categories: fluid and 

kinetic. Fluid-based codes examine and solve the magnetohydrodynamic (MHD) equations. 

MHD codes are most frequently used in research studying large-scale plasmas with complex 

fields, such as in astrophysics or magnetic fusion devices [18]. Kinetic codes further branch into 

codes solving either the Vlasov and Fokker-Planck (VFP) equations or using the PIC method. 

PIC codes begin simulations by initializing macroparticles on a defined grid with fields driving 

into the plasma. Macroparticles, also called superparticles, are single particles representing the 

averaged characteristics of larger collection of smaller particles and serve to enhance 

computational efficiency. At each time step, the relativistic equations of motion are solved for the 

particles individually using the values of the field at that moment in time. Once the next 

positions and velocities are determined, the charge and current densities of the plasma species are 

calculated and collected onto the grid points or nodes. Using these variables, the fields are re-

calculated using Maxwell’s equations and interpolated to the particle positions to find the force 

acting upon them. With the new force and fields, the next process repeats at the next time step. 

VFP codes have an advantage over PIC codes in that PIC approaches require careful 

consideration of grid spacing and number of particles in each cell, while VFP codes do not 
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require such parameters. However, PIC codes are often the code of choice in laser-plasma 

interactions due to high flexibility and low computational costs, especially compared to VFP 

codes [19].  

3.1 Particle-in-Cell Method 

 3.1.1 Particle-Push Algorithm 

         The PIC method starts off by solving the equation of motion for the particles represented 

as: 

𝑚
𝑑𝑣⃑⃑

𝑑𝑡
= 𝐹⃑ (3.1a)  

𝑑𝑥⃑

𝑑𝑡
= 𝑣⃑ (3.1b) 

To solve through a known sequence of time, a finite-difference method is used. The finite-

difference method replaces the derivatives in the equations of motion with discrete values based 

on the old values of velocity and position with the length of the time step. The equations then 

take the form: 

𝑚
𝑣𝑛+1− 𝑣𝑛

Δ𝑡
= 𝐹⃑𝑛 (3.2a)  

𝑥𝑛+1−𝑥𝑛

Δ𝑡
= 𝑣⃑𝑛+1(3.2b) 

The subscripts of the variables represent the timesteps taken, where Δ𝑡 is length of the time step, 

and  𝑛 + 1 shows the value of the variable at the next time step. PIC codes utilize a finite-

difference method known as the Leap Frog method [18,19]. The leap-frog method utilizes time 

steps that are taken at the half-points rather than integer points for the velocity.  
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Figure 3.1: Time-steps of the leap-frog method, where the velocity is calculated at the half 

intervals while the position is at integer intervals. 

The code takes in the initial values presented for particle positions, velocities, and 

electromagnetic forces. From the force values, the velocity at a regressed time step of 𝑛 −
1

2
 is 

calculated. The equation of motion at the first step uses the initialized positions and forces to 

calculate the velocity at the next half time step, 𝑣
𝑛+

1

2

. The equations of motion reflecting this 

method are therefore: 

𝑚
𝑣
𝑛+

1
2

−𝑣
𝑛−

1
2

Δ𝑡
= 𝐹⃑𝑛 (3.3𝑎) and   

𝑥𝑛+1−𝑥𝑛

Δ𝑡
= 𝑣

𝑛+
1

2

 (3.3b) 

The leap-frog method is a desirable computational method due to its symmetry in time. In other 

words: if the simulation results are taken at a time step much later than the beginning, it could be 

retraced back to the original starting conditions showing a proper adherence to the conservation 

of energy.  

 3.1.2 Field Solver Algorithm 

To obtain the electromagnetic fields in the plasma, the charge density is required as a 

component of Maxwell’s equations. The charge density is used with Poisson’s equation to 

calculate the potential within the boundaries specified in the code. To solve the Poisson’s 
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equation in a PIC code, a finite-difference method is employed. When considering a 1D 

interaction, the equation takes the form [18,19]: 

𝜕2𝜙𝑖

𝜕𝑥2 =
𝜙𝑖−1−2𝜙𝑖+𝜙𝑖+1

Δ𝑥2 = −
𝜌

𝜖0
 (3.4) 

where the index “i” is illustrated in figure 3.2 as the spatial index of the nodes, and Δ𝑥 is the 

distance between nodes. 

 

Figure 3.2: 1D spatial grid of nodes separated by a spacing of Δx. 

With the derived electric potential, the electric field can be calculated using Faraday’s law (2.3c) 

assuming a static magnetic field. In this case, the electric field follows 𝐸⃑⃑ = ∇⃑⃑⃑𝜙 or 𝐸 =
𝜕𝜙

𝜕𝑥
 (3.5) 

in a 1D case. This differential equation is also solved using a finite-difference method to take the 

form [19]: 

𝐸𝑖 =
𝜙𝑖−1−𝜙𝑖+1

2Δ𝑥
  (3.6) 

While this differential equation is rather trivial to solve for most of the nodes, the problem 

becomes difficult at the boundaries of the grid without knowing the boundary conditions. With 

the electric field at each point solved, the fields are interpolated to the particle positions in each 

cell. This interpolation works using particle weighting, which connects the discretized quantities 

such as field to the continuous positions of the particles.  
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 3.1.3 Particle Weighting 

PIC codes require weighting to convert the continuous distribution of particles 

throughout the grid to values of charge density and force which are connected to the nodes of the 

grid. The weighting process applies cells to nodes nearest to them to lead to discrete values. In 

the simplest weighting process, all particles surrounding a node within a distance of 
Δ𝑥

2
 are 

gathered and assigned to that point. Figure 3.3 illustrates the way in which this collection occurs. 

 

Figure 3.3: Grid of nodes separated by Δx; particles in the blue square are assigned to node 𝑛𝑖,𝑗.  

This method alone is insufficient due to noise generated from particles having drastically 

different effects when crossing the boundary to another node. This noise is especially evident in 

cases where there are an insufficient number of macroparticles. As such, this is considered a 

zeroth order weighting, and a first order weighting exists to decrease noise [19]. In first order 

weighting, the particles are collected onto all nodes surrounding it with fractional effects 

depending on the distance from the particle to the node.  
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Figure 3.4: For weighting, areas of a cell are considered for each node; the fraction of the cell 

area occupied by the orange square is applied to node 𝑛𝑖,𝑗, green square applied to 𝑛𝑖,𝑗−1, etc.  

Once weighting is conducted, the charge density can be calculated by taking the number 

of particles in the node, multiplying by the charge of the particle, then dividing by the node area. 

With the charge density now at each node, the electric field is calculated using the methods 

outlined in section 3.1.2. The fields from each node are interpolated onto the particles which are 

within a grid spacing length, and the entire process repeats through the time steps of the 

simulation. Higher order weighting methods exist but will expectedly increase computational 

costs. 
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Chapter 4 - Results 

 4.1 Parameters Examined 

The focus of this work is to examine the interaction of a beat-wave with a NCD plasma to 

enhance the interaction and create an optimal electron beam for electron radiotherapy purposes. 

Due to the focus on application, the parameters chosen for the PIC simulations presented in this 

work are chosen to match a potential experimental setup.  

In this work, the primary laser has a wavelength of 800 nm, while the second laser has a 

wavelength of 400 nm to reflect the generation of a frequency doubled harmonic of the primary 

laser. The energy of both lasers is set as 𝑊𝐿 = 100 𝑚𝐽 when considering a beat-wave. In all 

simulations using the primary laser alone,𝑊𝐿 = 200 𝑚𝐽. The primary laser interaction is set with 

a higher energy to ensure that the total energy interacting with the plasma is the same across all 

cases. The pulse duration for both lasers in all cases is 𝑡𝑓𝑤ℎ𝑚 = 35𝑓𝑠. The parameters which 

differ between the two lasers in the beat-wave case are listed in Table 4.1. The spot size for the 

primary laser is chosen to be 𝑑𝑓𝑤ℎ𝑚 = 10 𝜇𝑚 as an experimentally obtainable size, while 

𝑑𝑓𝑤ℎ𝑚 = 5𝜇𝑚 for the secondary laser due to effects of second harmonic generation in a 

realizable setup. The intensity for each laser is calculated using (2.21a). Additionally, the lasers 

are examined with both a linear polarization and circular polarization. 

Table 4.1: Parameters for the primary and secondary laser. 

 𝜆𝐿𝑎𝑠𝑒𝑟 𝑑𝑓𝑤ℎ𝑚 (𝜇𝑚)  Intensity [
𝑊

𝑐𝑚2] 
𝑎0 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝑛𝑐[𝑐𝑚

−3] 

 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 800 𝑛𝑚 10 2.5 ∗ 1018 1.3 1.7 ∗ 1021 



24 
 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 400 𝑛𝑚 5 9.7 ∗ 1018 2.7 6.8 ∗ 1021 

From these parameters, the condition (4.1) leads to a resonance condition when the density is 

equal to the critical density of the primary laser, which is 1.7 ∗ 1021𝑐𝑚−3.  

 This work examines 2D PIC simulation results to ensure effects which cannot be detected 

in 1D are properly captured. The box initialized by the PIC code is set to have a 40 𝜇𝑚 width 

and 50 𝜇𝑚 micron height. Each direction is divided into 1000 grid points which leads to a total 

of 1000000 grid points in the simulation with 100 particles simulated per cell. As a result, the 

longitudinal grid spacing, dx, is found to be 0.04 𝜇𝑚, while the transverse spacing, dy, is 

0.05𝜇𝑚. The grid spacing in both directions is small enough to capture the physics of the laser, 

as evidenced by the spacing being much smaller than the laser wavelengths. Additionally, a 

probe is placed in the vacuum region at 𝑥 = 39𝜇𝑚 to measure the characteristics of the particles 

passing through the plane of the probe and propagating beyond the plasma. 

 The plasma itself consists of both electrons and ions, where the electrons have a 

background temperature of 𝑇𝑒 = 10 𝑒𝑉 while the ion temperature is negligible. The plasma 

density profile follows a gaussian distribution varying longitudinally with a full-width half 

maximum of 15 𝜇𝑚 and centered about 𝑥 = 12.5 𝜇𝑚. The length of 15 𝜇𝑚 is chosen to match 

the dephasing length of the simulated lower density plasmas. This choice of length was also 

found to balance overall charge with the maximum energy for the higher density cases in initial, 

1D simulations. The density profile is set as a Gaussian to capture effects when using a gas jet 

target and to examine the propagation of the fields and particles in vacuum. A visualization of 

this profile is shown in Figures 4.1 and 4.2. The peak of the density profiles is chosen to be NCD 

to enhance the coupling of the beat-wave to the plasma through the resonance condition (4.1).  
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Figure 4.1: 2D presentation of the gaussian density profile varying longitudinally. The probe is at 

x=39 𝜇𝑚, and the primary and secondary lasers are in red and blue respectively. 

 

Figure 4.2: 1D cut of the 2D density profile taken across the laser axis, y = 0, for a profile with 

maximum density of 0.9nc.  

 

 

 

 



26 
 

 4.2 Linearly Polarized Laser 

  4.2.1 Low Density Case 

   4.2.1a Single Laser Interaction 

 The first case presented is a plasma with density 𝑛 = 0.1𝑛𝑐 = 1.7 ∗ 1020𝑐𝑚−3 

interacting only with the primary laser. This density is chosen to examine the behavior at a 

density one order below the critical and determine when differences from underdense theory 

arise. At 0.1𝑛𝑐, the interaction resembles that of seen in the underdense case. As the laser 

propagates through the plasma, a plasma wave is excited with it.  

(a) (b) (c)  

Figure 4.3: (a) Density profile at a snapshot in time where the laser is still present in the plasma. 

(b) Longitudinal fields, or plasma wave, generated by the laser. (c) Laser field profile. 

The plasma wave is shown in Figures 4.3a and 4.3b: Figure 4.3a shows the density gradients 

forming, while Figure 4.3b shows the longitudinal electric fields resulting from the plasma wave 

as the laser travels through, as shown in Figure 4.3c. The wave captures electrons within the 

regions the density gradient regions. Electrons with sufficient energy are accelerated. If the 

electrons have insufficient energy, such as at the tail end of the velocity distribution, the electrons 

become trapped within the wave and lead to instability and wave-breaking. 
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 (a)  (b) (c) 

Figure 4.4 (a-c): Phase space evolution of the electrons as the laser passes through the plasma. 

(a) Initial plasma wave formed from interaction with the laser. (b) Peaks in phase grow until the 

wave begins to break. (c) The plasma wave fully breaks down which accelerates electrons. 

The wave-breaking shown in Figure 4.4c leads to injection of electrons into the remaining 

accelerating field structures. This injection process leads to visible peaks of varying height in the 

phase space.  

The energy distribution is examined to compare with expected energy values from 

underdense theory. In Figure 4.5, the energy distribution exhibits wakefield-like behavior as seen 

through the peak at the tail end of the distribution. The maximum energy measured in this 

snapshot is found to be 28 MeV, while the peak at the tail corresponds to an energy of ~18 MeV. 

Based on the energy gain formula of LWFA, equation 2.29, the fields should impart an energy of 

18.5 MeV, and it can be assumed that the interaction exhibited here mirrors that predicted by 

LWFA theory. Additionally, the plasma wavelength can roughly be calculated in the peak region 

using the formula: 

𝜆𝑝 =
2πc

𝜔𝑝
 (4.1)  

This results in 𝜆𝑝 = 2.6 𝜇𝑚, which is a distance resolvable through the setup of the grid and its 

spacing.  



28 
 

 

Figure 4.5: Energy distribution of the electron based on true electron count after the onset of 

wave-breaking. 

 

Figure 4.6: Electron macroparticle energy distribution measured by the probe in vacuum. The 

distribution is the sum through each time step over 300 fs. 

   4.2.1b Beat-Wave Interaction 

 A beat-wave, formed from the beating of the primary and secondary laser, is sent into the 

same plasma as in the previous section and exhibits similar behavior.  
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(a) (b) 

Figure 4.7: (a) Density profile of the plasma in the beat-wave, 0.1𝑛𝑐 case when the wave is 

generated. (b) Longitudinal field profile showing the plasma wave and its resultant accelerating 

fields.     

The wave rapidly reaches the wave-breaking limit, causing injection of electrons into the 

accelerating fields. In the phase space shown in Figure 4.8 are two clear peaks formed which 

propagate transversely. Additionally, the peaks are taller and indicate a greater gain of energy. 

 

Figure 4.8: Phase space of electrons in the beat-wave, 0.1𝑛𝑐 case after wave-breaking. 

The expected energy gain from this interaction is calculated to be ~47 MeV through 

alteration of the use of an effective 𝑎0 taken for the beat-wave. The maximum energy in the 

distribution after wave-breaking is found to be ~80 MeV, with the peak at the tail corresponding 
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to an energy of ~50 MeV. The energy at the peak corresponds well to LWFA theory as in the 

single-laser case, showing that LWFA continues as the primary acceleration mechanism. 

 

Figure 4.9: Energy distribution in the beat-wave, 0.1𝑛𝑐 case after wave-breaking occurs. 

 

Figure 4.10: Longitudinal electron macroparticle energies measured by the probe in the beat-

wave, 0.1𝑛𝑐 case. 

The divergence of the electron beam is examined using the characteristics measured by 

the probe in vacuum and displayed in Figure 4.11. The electrons are primarily diffracted at 

angles of ±10°, but the electrons of interest measured in both energy distributions have less 

divergence. 
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Figure 4.11: Divergence of electrons as a function of their energy in the beat-wave, 0.1𝑛𝑐 case.  

A comparison of the performance of a single laser to a beat-wave setup shows a greater 

maximum and peak energy in the beat-wave setup. The charge of electrons measured by the 

probe in the tail-end of the distribution are similar, but the overall charge of electrons is greater 

in the beat-wave case. This is of great importance, especially when considering the greater 

charge occurs in the range of 1-10 MeV. 



32 
 

 

Figure 4.12: Combined plot of electron macroparticle distributions measured by the probes in the 

single laser and beat-wave case for a density of 0.1𝑛𝑐.  

  4.2.2 Quarter-Critical Density Case 

As expressed in 2.4.1, the Raman Scattering instability requires a density 𝑛 ≤
𝑛𝑐

4
. To 

examine the effect of reaching this limit, the peak density in the following simulations is set to 

𝑛 = 0.25𝑛𝑐.  

  4.2.2a Single Laser Case       

 In the case of solely the primary laser interacting with the plasma, the density profile 

already shows a difference in behavior compared to the 𝑛 = 0.1𝑛𝑐 case. As the laser approaches 

the peak of the density distribution, a plasma wave is temporarily formed.  
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(a) (b)

(c) (d) 

(e) (f) 

Figure 4.13: (a-b) Density profile of the 0.25𝑛𝑐 peak interacting with the primary laser. (c-d) 

Longitudinal fields representing the fast formation and break-down of the plasma waves. (e-f) 

Laser profile passing through the plasma. 

The wave breaks down faster, where wave-breaking is visible at 55 fs compared to the 90 fs 

breakdown in the lower density case. The wave-breaking effect is also shown through 
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examination of the energy distributions in Figure 4.14. Aside from initial interaction between the 

laser and plasma which causes a transient wave, the tail-end of the distribution does not have a 

peak. Instead, the overall energy of the plasma increases, showing heating of the plasma resulting 

from the laser coupling to the bulk of the plasma, while the maximum energy is ~10 MeV. 

(a) (b) 

Figure 4.14: Electron energy distributions at 0.25𝑛𝑐 interacting with a single laser when (a) the 

laser first interacts with the plasma and (b) after the laser leaves the plasma.  

The electron distribution generated through the probe measurement shows a peak of electrons 

measured at 0.3 MeV, thereby indicating a potential resonant interaction exciting 0.1 MeV order 

electrons. This is a shift from the 𝑛 = 0.1𝑛𝑐 case, where the peak is found in the distribution tail 

rather than the body. Additionally, the higher energy electrons from this interaction are shown to 

have a similar divergence angle to that in the lower density case in Figure 4.16. 
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Figure 4.15: Electron macroparticle distribution measured by the probe in the 0.25𝑛𝑐, single 

laser case.  

 

Figure 4.16: Divergence of electrons as a function of their energy in the 0.25𝑛𝑐, single laser case. 
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4.2.2b Beat-wave Case 

 The beat-wave setup once again shows similar interactions between the laser and plasma 

as those in the single laser case. The beat-wave excites a plasma wave in the lower-density 

regions of the density gradient which breaks down upon entering the higher-density region.  

 (a) (b) 

(c) (d) 

(e) (f) 

Figure 4.17: (a-b) Density profile of the 0.25𝑛𝑐 peak interacting with the laser beat-wave.         
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(c-d) Longitudinal fields representing the fast formation and break-down of the plasma waves.           

(e-f) Laser profile passing through the plasma.   

The turbulent interaction between the beat-wave and the plasma can also be seen through the 

phase space. The wave-breaking injects bulk electrons into accelerating field structures. The 

more turbulent acceleration thus leads to more electrons accelerated to lower energies, with 

several peaks visible in the phase space compared to the two peaks visible in the 0.1𝑛𝑐 case. 

(a) (b) 

Figure 4.18: (a) Phase space of the 0.25𝑛𝑐 plasma interacting with the beat-wave when wave-

breaking occurs. (b) Phase space as laser propagates through. 

 

Figure 4.19: Comparison of the time-integrated electron macroparticle distributions measured by 

the probe at 0.25𝑛𝑐 between the beat-wave and single laser case. 
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When comparing the two probe distributions in Figure 4.19, the overall trend of the distributions 

is the same in both cases. The beat-wave, however, leads to a higher maximum energy in 

addition to a slightly higher overall charge up to ~20 MeV. It is also noted that, once again, peak 

visible at the distribution tail for 0.1𝑛𝑐 is no longer visible in the distribution for 0.25𝑛𝑐.  

The longitudinal fields eventually evolve to form a sheath along the exit of the plasma, as shown 

in Figure 4.20. The sheath forms towards the end of the simulation where the laser has already 

fully left the plasma, and the waves formed within the plasma have all broken down. The effect 

of the sheath is found through an examination of the probe measurements. Figure 4.22 shows 

electrons continue to accelerate to 1 MeV order energies in the time after the sheath is formed. 

The sheath acts as both an accelerating structure and a barrier for incident electrons. If the 

electrons possess sufficient energy, they can overcome the barrier of the negatively polarized 

portion of the sheath and move into an accelerating region. The electrons then once again 

experience deceleration after a duration in the positively polarized region. If the electrons cannot 

escape from the pull of the positive field, they return to the plasma and oscillate about the sheath 

 

Figure 4.20: Illustration of electrons moving through the region positive (red) and negative (blue) 

regions of the sheath.  
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(a) (b) (c) 

Figure 4.21: (a) Sheath formed at the edge of the plasma at the end of the simulation for 𝑛 =

0.5𝑛𝑐. (b) Electron phase space at the same moment in time. (c) Arrow shows the trapping of 

electrons by the sheath causing a vortex in the phase space. 

The perpetual oscillation is seen in an analysis of the phase space plot, Figure 4.21b. The sheath 

is most prominent at 𝑥 = 20𝜇𝑚 and 25𝜇𝑚. When examining the same regions in the phase 

space, we see negative and positive peaks. These are electrons which are being accelerated or 

decelerated by the sheath fields. If they have sufficient energy after interacting with the sheath, 

they escape the plasma. However, electrons with insufficient energy follow an orbit in the phase 

space illustrated in Figure 421, corresponding to the oscillation of electrons about the sheath. 

Sheaths are not unique to the quarter-critical density case and are still visible in the lower density 

cases. However, the strength of the sheath from the lower density interactions prevents 

acceleration to the 1 MeV order as in the quarter-critical case.  
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Figure 4.22: Electron macroparticle measurement towards the end of the simulation of the 

quarter-critical density beat-wave interaction.  

 In figure 4.19, the density is seen to form a large pair of cavities about the laser axis at 

𝑥 = 7.5𝜇𝑚, and a channel structure forms along the plasma. The cavities form at 0.25𝑛𝑐 but not 

0.1𝑛𝑐, and the effect of this cavity generation can be seen in Figure 4.23. 

 

Figure 4.23: Comparison of macroparticle electron distributions measured by the probe for 0.1nc and 

0.25nc 

The distribution for 0.1𝑛𝐶 shows the peak at the tail-end characteristic of wakefield acceleration. 

However, the 0.25𝑛𝑐 distribution does not show this peak forming. As such, the cavities can be 

determined to not play a role in generation of high-energy electrons. However, a steepened profile occurs 
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at ~1 MeV for 0.25𝑛𝑐, showing the increased MeV order generation which occurs in the presence of the 

fields generated by the cavities. 

When examining the divergence of the resulting electron beam, the high-energy electron 

products are found to have the same divergence as in the previous cases. However, a sizable 

measurement by the probe is found after the sheaths have formed corresponding to single MeV 

order electrons accelerated with negligible divergence. 

 

Figure 4.24: Density profile at the end of the simulation for a beat-wave interacting with 𝑛 =

0.25𝑛𝑐. 
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Figure 4.25: Divergence measured by the probe as a function of energy for 𝑛 = 0.25𝑛𝑐 

interacting with the beat-wave for the moment in time when the laser exits the plasma. 
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Figure 4.26: Divergence measured by the probe as a function of energy for 𝑛 = 0.25𝑛𝑐 

interacting with the beat-wave for the time where the sheath fields are the dominating structures 

in the plasma. 

4.2.3 Half-Critical Density Case 

The quarter-critical density results seem to support a shift in acceleration mechanism 

from theory predicted from underdense interactions. To examine this shift further, the peak is 

increased to half the critical density of the plasma, 0.5𝑛𝑐. The behavior of this interaction moves 

even further from that predicted by underdense theory and begins showcasing the most distinct 

advantage in using a beat-wave rather than a single laser.  
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   4.2.3a Single Laser Case 

 The density profile in the interaction of the primary laser with the half-critical plasma 

shows faster break-down of the plasma wave generated by the laser. Due to the higher density, 

the plasma wave breaks down closer to the initial interaction region. The faster wave-breaking 

subsequently causes an earlier injection of electrons.

(a) (b) 

Figure 4.27: (a) Slightly visible plasma wave in the density profile for 𝑛 = 0.5𝑛𝑐 interacting with 

the primary laser. (b) Wave-breaking of plasma wave leads to ripples in the density profile.  

The interaction results in electrons accelerating to lower energies, compared to the lower 

densities, with a greater charge.  

 

Figure 4.28: Electron phase space snapshot as the laser propagates through the half-critical 

plasma. 
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 The energy distribution of the interaction shows an initial peak as the laser propagates 

and first interacts with the plasma. However, the distribution rapidly flattens and leads to a 

smooth curve with a maximum measured energy of ~2 MeV, corresponding to electrons trapped 

within the sheath.  

(a) (b) 

Figure 4.29: (a) Initial electron distribution as the laser first enters the half-critical plasma.         

(b) Electron distribution at the end of the simulation for the half-critical plasma.  

Figure 4.30 shows no peak resulting from interaction with the half-critical plasma. The 

acceleration of 1 MeV order electrons continually accelerated out of the plasma through the 

pairing of the sheath and channel structures, as seen in the quarter-critical cases, is no longer 

found. 
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Figure 4.30: Time integrated electron macroparticle distribution of particles measured passing 

through the plane of the probe. 

This deviation in behavior from the quarter-critical single laser interaction can be 

attributed to the different end behavior shown in the density profile. The half-critical density 

profile shown in Figure 4.31b shows a more focused channel than the quarter-critical case in 

Figure 4.31a. However, the quarter-critical profile shows large cavities forming at the center and 

edge of the plasma, such as those in the beat-wave case. The half-critical profile shows more 

numerous cavity development that is restricted to the beginning half of the plasma. The cavities 

do not extend to the exit of the plasma where sheath fields may lie, meaning the electrons are not 

accelerated to the same energies. 

  

Figure 4.31: (a) Density profile at the end of the simulation for the 𝑛 = 0.25𝑛𝑐 interacting with a 

single laser. (b) Density profile at the end of the simulation for the 𝑛 = 0.5𝑛𝑐 interacting with a 

single laser.   
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 4.2.3b Beat-wave Case 

 The beat-wave case once again shows a similar initial interaction to that of the single 

pulse, where the beat excites a plasma wave which breaks down as the laser approaches the 

higher density regions of the plasma.  

  (a) (b) 

Figure 4.32: (a) Density profile as the laser first enters the half-critical plasma. (b) Density 

profile as the plasma waves break. 

 The time-integrated energy distribution of the probe shows many electrons accelerated in 

the range of 1-3 MeV. This number of electrons were not obtained in the single-laser case.  

 

 

Figure 4.33: Time-integrated energy distribution of electron macroparticles passing through the 

plane of the probe for the beat-wave at 𝑛 = 0.5𝑛𝑐. 
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 As initially stated in the previous section, the generation of these 1 MeV order electrons 

seem to correspond to the presence of a channel and cavity structures throughout the plasma 

density. The density profile at the end of the simulation for the beat-wave shows prominent 

cavity generation throughout the entire plasma, as shown in Figure 4.33a.  

(a) (b) 

Figure 4.34: (a) Density profile of the half-critical plasma at the end of the simulation after the 

pulse has left. (b) Longitudinal field profile at the end of the simulation.  

 Figure 4.34b shows the effect these cavities have as prominent longitudinal fields 

propelling electrons from within the plasma towards the exit where the sheath structure lies. It is 

noted that the sheath structure no longer runs along the entire exit edge of the plasma, but it is 

instead focused about the region the laser has propagated through. Examination of a snapshot of 

the probe measured electron distribution shows continual generation of single MeV order 

electrons as the cavities and sheath remain the only structures within the plasma, such as the 

distribution shown in Figure 4.35. Consequently, the beat-wave interaction leads to an increase in 

charge for single MeV order electrons despite the same total laser energy. The presence of the 

secondary laser enhances the characteristics of the accelerated electrons which may be a factor of 

the secondary laser generating a separate mode in the plasma at the same time as the primary 

laser. 



49 
 

 

Figure 4.35: Electron macroparticle distribution measured by the probe towards the end of the 

simulation of the half-critical density plasma interacting with the beat-wave. 

 

Figure 4.36: Comparison of the single laser and beat-wave interaction for 𝑛 = 0.5𝑛𝑐 shown 

through the probe-measured macroparticle distribution.  

The continued effect of the cavities is also seen in the comparison of the beat-wave results for 

0.25𝑛𝑐 and 0.5𝑛𝑐. The peak of MeV order electrons first observed at 0.25𝑛𝑐 is enhanced as the 
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density increases to 0.5𝑛𝑐. This enhanced peak corresponds to the greater number of cavities 

generated throughout the density profile of the plasma, as well as the shrunken sheath region 

compared to the lower simulated densities.  

 

Figure 4.37: Comparison of macroparticle electron distributions measured by the probe for 

0.25nc and 0.5nc 

 4.2.4 Near-Critical Density Case 

The final density examined in this work is the density closest to the critical, where          

𝑛 = 0.9𝑛𝑐. This density is chosen as the density closest to the critical density to have the beat 

frequency close to the plasma frequency. With such a condition, the beat frequency can more 

easily resonate with the plasma. With the increased plasma density and better coupling to the 

plasma, a higher charge electron beam is expected and desired from this interaction. As the 

density increases, a downward trend in sheath field strength at the exit edge of the plasma is 

observed. Simultaneously, there is improved generation of cavity and channel structures 

throughout the plasma in the beat-wave interaction. The beat-wave shows an advantage over the 

single laser interaction once again in this NCD plasma case, where cavity structures are 

generated completely through the plasma using a beat-wave but not with a single laser. 
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   4.2.4a Single Laser Case 

 The single laser interaction with a density of 0.9𝑛𝑐 amplifies the behavior seen in 

interactions moving past 
𝑛𝑐

4
. The plasma density profile in Figure 4.36a shows the initial response 

of the plasma to the laser. The small wavenumber plasma wave formed reaches the wave-

breaking limit as soon as the laser pulse moves slightly into the near-critical plasma. The break-

down of the waves leads to the initial formation of cavities shown in Figures 4.34a and 4.34b. 

The cavities do not form throughout the plasma and instead stop once they reach the center of the 

density profile at 𝑥 = 12.5 𝜇𝑚. Beyond the centerline of the plasma density, the laser produces 

ripples, through the ponderomotive force, which propagate through the plasma. By the end of the 

simulation, standing cavity structures are visible in the initial half of the plasma.  

 As expected in a higher-density interaction, the electron distribution, Figure 4.37, shows 

that there is no acceleration of the relativistic electrons in the plasma. Instead, there is a coupling 

of the laser to the bulk of the plasma. The distribution from the moderate (quarter and half) 

densities to NCD in the single laser case all show similar behavior of electrons as a smooth 

distribution with a maximum of 2 MeV within the plasma. 

(a) (a) 
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Figure 4.38: (a) Snapshot when the laser reaches the edge of the plasma showing cavity 

formation. (b) Standing cavity structures present in the density profile at the end of the 

simulation. 

 

Figure 4.39: Electron energy distribution snapshot at the end of the simulation for the single laser 

interacting with 𝑛 = 0.9𝑛𝑐. 

 As in the half-critical case, the NCD plasma of 𝑛 = 0.9𝑛𝑐 does not show selective 

acceleration of single MeV order electrons found in the quarter-critical case, as shown in Figure 

4.38. Once again, the distinguishing factor between this case and the quarter-critical, single laser 

case is the lack of cavity structures throughout the plasma. 
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Figure 4.40: Time-integrated energy distribution of electron macroparticles passing through the 

plane of the probe for the single laser at 𝑛 = 0.9𝑛𝑐. 

   4.2.4b Beat-wave Case   

 The density profiles of the beat-wave interacting with the NCD are shown in Figure 

4.41(a-c). Similarly to the half-critical case, the beat-wave couples to the plasma beyond the 

center of the distribution to create cavity structures throughout the length of the plasma. With 

these cavities, a peak forms in the energy range of 1-3 MeV in the time-integrated distribution of 

particles measured by the probe (Figure 4.43). Compared to the previous cases of the beat-wave, 

the peak of single MeV order electrons is the main characteristic of this distribution. This differs 

from the half-critical case, for example, in that there are fewer electrons accelerated to energies 

of less than 1 MeV.  

Another behavioral change in this interaction can be seen in the longitudinal electric field 

profile shown in Figure 4.40. For this iteration of plasma density, there is no longer a polarized 

sheath field formed at the exit edge of the plasma which is visible in all previous cases. The 

removal of this sheath leads to electrons selectively accelerating to the MeV order solely through 
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the cavity fields which are now more pronounced and visible in the longitudinal electric field 

profile.        

(a) (c) 

Figure 4.41: (a) Early time snapshot of the density profile from the interaction of the beat-wave 

with a plasma with peak density 𝑛 = 0.9𝑛𝑐. (b) Density profile at the end of the simulation. 

 

Figure 4.42: Longitudinal electric fields present in the plasma at the end of the simulation. 
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Figure 4.43: Time-integrated electron macroparticle distribution from particles passing through 

the plane of the probe.  

 

Figure 4.44: Comparison of time-integrated distributions for 𝑛 = 0.9𝑛𝑐 between the single laser 

and beat-wave case.  

       The importance of the cavity structures is shown when comparing the distributions measured 

by the probe as well as the density profile at the end of the simulation. The beat-wave, due to the 

presence of the secondary laser, allows these cavities to form throughout the plasma and generate 

the peak of 1-3 MeV electrons. Without the secondary laser, the laser cannot couple effectively to 

the latter half of the high-density plasma. Subsequently, the single laser interaction does not form 

cavities in the second half of the plasma while the beat-wave generates cavities throughout.  
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          The MeV order electrons are also found to have varying levels of divergence, with 

electrons measured with negligible divergence, as the majority propagate with ±5° divergence. 

The effect of the cavities in accelerating these MeV order electrons is also seen to persist many 

periods after the laser has left the plasma. 

 

Figure 4.45: Divergence as a function of energy for electrons accelerated by the cavity structures 

present towards the end of the simulation. 

 4.3 Circularly Polarized Laser 

 The interaction between the previous plasmas and circularly polarized lasers are 

presented in this section. Laser pulses are treated as circularly polarized when two, equal 

intensity components with the same propagation vector have a 90° phase and are perpendicular 

to each other, as shown in Figure 4.46. Their superposition results in a seemingly rotating wave. 
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Figure 4.46: Individual, perpendicular linearly polarized lasers with a phase difference of 
𝜋

4
 

copropagating form a circularly polarized wave. 

Circularly polarized lasers have a different effect on the plasma compared to linearly polarized 

lasers, which can be considered a result of the differing ponderomotive force. Circularly 

polarized lasers are also of interest for the generation of low-divergence electron beams [21, 22].  

  4.3.1 Low Density Case 

The first case examined for the circular polarization interaction is that of 𝑛 = 0.1𝑛𝑐. Just as in 

the linearly polarized case, both the single laser and beat-wave lead to interactions similar to the 

underdense case typically studied in wakefield accelerators; wakes form behind the pulse, and a 

strong sheath at the edge of the plasma after the wakes dissipate. Unlike the linearly polarized 

case, the propagating waves are unable to form a peak at the tail-end of the distribution. 

Additionally, the circularly polarized interaction leads to less maximum energy measured by the 

probe in both cases. However, the use of the beat-wave still leads to higher maximum energy and 

greater charge than when using the primary laser alone. 
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(a) (b)

(c) (d) 

Figure 4.47: (a-b) Density and longitudinal field profiles as the primary laser propagates through 

and forms a wave. (c-d) Density and longitudinal field profiles at the end of the simulation. 

 

Figure 4.48: Electron macroparticle distribution integrated across the entire simulation for the 

circularly polarized, primary laser. 
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 (a) (b)

(c) (d) 

Figure 4.49: (a-b) Density and longitudinal field profiles as the beat-wave propagates through 

and forms a wave. (c-d) Density and longitudinal field profiles at the end of the simulation. 

 

Figure 4.50: Electron macroparticle distribution integrated across the entire simulation for the 

circularly polarized beat-wave. 
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When examining the divergence of the interactions of both the primary laser and beat-wave, 

there is more uniformity in the circularly polarized case. Figure 4.49a and 4.47b both plot the 

diverging angle as a function of energy of the particles measured by the probe for the beat-wave 

case. The circularly polarized laser leads to an electron beam with particles diverging singularly 

at ~20°, while the linearly polarized case has two peaks which form at ±10°.



61 
 

(a)

(b) 

Figure 4.51: Divergence measured of the electron macroparticles measured by the probe as a 

function of energy for (a) the single, primary laser and (b) the beat-wave. 
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4.3.2 Quarter-Critical Density Case 

The quarter-critical density plasma interaction with the circularly polarized primary laser 

exhibits similar overall behavior to the linearly polarized case in that the wave breaks rapidly and 

results in a strong sheath at the edge of the plasma at the exit edge, along with cavity structures 

remaining within the plasma itself. The density profile reveals a difference resulting from the 

polarization and its effects on the ponderomotive force.  The end-of-simulation density profile of 

the linearly polarized laser shows the formation of several cavity structures forming throughout 

the plasma; the profile of the circularly polarized laser case shows the formation of a single, 

well-defined cavity at the 𝑥 = 10 𝜇m region rather than several. The result of this single cavity is 

reflected in the electron beam distribution, Figure 4.51 – the electrons do not reach the same 

charge, as the cavities are not spread throughout the plasma, but the peak is higher in comparison 

to the rest of the distribution from the presence of a singular cavity. Additionally, the tail of the 

distribution is not accelerated to the same extent as in the linearly polarized case, and the 

electron beam does not show more focus at this density that was visible in the 𝑛 = 0.1𝑛𝑐 case for 

the higher-energy population of electrons in the resultant beam. The lower energy electrons 

accelerated by the presence of the cavity, however, show more focus. 

(a) (b)
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(c) (d)

(e) (f) 

Figure 4.52: Wave evolution in the plasma for the circularly polarized primary laser interacting 

with 𝑛 = 0.25𝑛𝑐,  where (a-b) shows the beginning formation of the wave, (c-d) shows the 

breakdown, and (e-f) shows the end behavior cavity formation. 

 

Figure 4.53: Electron macroparticle distribution of the circularly polarized primary laser 

interacting with the quarter-critical plasma. 
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Figure 4.54: Divergence of the electrons following behind the pulse in the case of the circularly 

polarized primary laser interacting with the quarter-critical plasma. 
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Figure 4.55: Divergence of the electrons accelerated from the cavity structures at the end of the 

simulation for the circularly polarized primary laser interacting with the quarter-critical plasma. 

 The circularly polarized beat-wave shows similar behavior to the primary laser, but the 

density profile of Figure 4.54(e) shows the deviation in behavior due to the presence of the 

secondary laser. The density profile of the end behavior now shows cavity structures more like 

the linearly polarized case than the circularly polarized primary laser in that several cavities form 

throughout the plasma rather than one prominent cavity forming in the middle of the plasma. 

This difference is once again reflected in the electron beam distribution, Figure 4.55, in that there 

is a flat region of the curve at ~1 MeV rather than a sharp peak at a singular energy. Additionally, 



66 
 

the maximum energy of electrons in the generated beam higher than the primary laser case and is 

comparable to that of the linearly polarized beat-wave.  

 The divergence of the electrons in the resulting beam measured by the probe are shown in 

Figures 4.54 and 4.55 which show the divergence of the high-energy electrons accelerating 

behind the pulse and lower energy electrons accelerated by the cavities respectively. In both 

situations, the beam shows greater focus than the linearly polarized case. The higher-energy 

electrons show tighter angular peaks, but the electrons which are in the 10 MeV order still have 

similar angular variance as the linearly polarized case. The lower-energy, 0.1 MeV order 

electrons all accelerate about a single peak with less spread, such as that shown in Figure 4.25. 

However, this divergence changes at different snapshots and shows emission of electrons focused 

at different angles towards the end of the simulation. 
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(a) (b)

(c) (d)

(e) (f) 

Figure 4.56: Wave evolution in the plasma for the circularly polarized beat-wave interacting with 

𝑛 = 0.25𝑛𝑐,  where (a-b) shows the beginning formation of the wave, (c-d) shows the 

breakdown, and (e-f) shows the end behavior cavity formation. 
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Figure 4.57: Electron macroparticle distribution of the circularly polarized beat-wave interacting 

with the quarter-critical plasma. 

4.3.3 Half-Critical Density Case 

The half-critical density interacting with the circularly polarized primary laser shows 

deviation from the linearly polarized case in the end-behavior. The initial interaction, however, 

continues to show similarity to the linearly polarized and quarter-critical case. The high-energy 

electron distribution of the half-critical density interaction has the same maximum energy as the 

quarter-critical case. The ripples which form in the density profile, 4.56(c), convert into two 

main cavity structures at both the front and back edge of the fwhm of the density profile rather 

than a single cavity forming at the front edge. Despite the formation of these cavities, the probe 

measures fewer electrons on the order of 0.1 MeV than in the previous cases. Additionally, the 

electron bunches have varying divergence, which is also seen in the linearly polarized case. 
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 (a) (b)

(c) (d)

(e) (f) 

Figure 4.58: Wave evolution in the plasma for the circularly polarized primary laser interacting 

with 𝑛 = 0.5𝑛𝑐,  where (a-b) shows the beginning formation of the wave, (c-d) shows the 

breakdown, and (e-f) shows the end behavior cavity formation at the front and back edge of the 

fwhm of the density profile. 
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Figure 4.59: Electron macroparticle distribution of the circularly polarized primary laser 

interacting with the half-critical plasma. 

 The circularly polarized beat-wave leads to a channel-like formation as cavity structures 

form along the laser propagation axis. The cavity fields are again seen to grow stronger as the 

interactions move to higher density, and a sheath forms along the edge of the plasma at the end 

of the simulation. Compared to the linearly polarized case, the interaction resembles more of a 

quarter-critical interaction. The cavity structures form throughout the plasma, but the sheath at 

the exit edge of the plasma forms along the entire edge. This differs from the linearly polarized 

interaction behavior, as the sheath is less prominent and focused around the laser interaction 

region in the linearly polarized case. The result of this sheath can be seen in the lower charge 

measured by the probe. However, the effect of the cavities and density itself is seen through the 

peak of the measured probe distribution. The peak of the distribution matches the peak of the 

linearly polarized case with charge lower by an order of 10. 
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(a) (b)

(c) (d) 

Figure 4.60: Density and longitudinal field profiles from the interaction of the circularly 

polarized beat-wave with the half-critical plasma (a-b) as the laser exits the plasma and (c-d) at 

the end of the simulation. 

 

Figure 4.61: Electron macroparticle distribution of the circularly polarized beat-wave interacting 

with the half-critical plasma. 
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The impact of the beam polarization on electron divergence lessens as the density 

increases and causes a more turbulent laser interaction. Additionally, the acceleration of MeV 

order electrons at the end of the simulation continues to show little dependence on the 

polarization. Just as in the previous cases, Figure 4.62 shows probe measurements of electrons 

focusing along a single angle at different points in time at similar angles to that of the linearly 

polarized lasers. 

(a) 
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(b) 

Figure 4.62: Divergence of 1 MeV order electrons accelerated by the cavities in the half-critical 

plasma interacting with the circularly polarized beat-wave with (a) 10 fs earlier than (b). 

 

  4.3.4 Near-Critical Density Case 

The circularly polarized primary laser is insufficient in creating a proper electron beam. 

The probe barely measures electrons after the laser exits the simulation with much lower energy 

compared to the other cases. The interaction can be examined through the evolution of the 

density and field profiles in Figure 4.64. Figure 4.64 (a) and (c) show that the primary cavity 

formation is locked into the first half of the plasma rather than throughout. This shows that the 
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laser has insufficiently coupled to the entire plasma region which leads to the low charge and 

energy measured by the probe.  

(a) (b)

(c) (d) 

Figure 4.63: The density and longitudinal field profiles for the circularly polarized primary laser 

interacting with 𝑛 = 0.9𝑛𝑐 (a-b) when the laser exits the plasma and (c-d) at the end of the 

simulation. 
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Figure 4.64: Electron macroparticle distribution of the circularly polarized primary laser 

interacting with a peak of 𝑛 = 0.9𝑛𝑐. 

The beat-wave case shows unique behavior through the presence of two peaks at ~0.1 

MeV and ~2 MeV in Figure 4.66. The two distinct peaks coincide with the formation of three 

prominent cavity structures along the laser propagation axis. This result is similar to that of the 

quarter-critical interaction with the circularly polarized primary laser generating one prominent 

cavity responsible for the end-behavior acceleration; in the quarter critical case, the single cavity 

led to a peak ~0.2 MeV. The presence of these distinct cavities allows electrons to selectively 

accelerate to the 0.1-1 MeV order through the channel which forms.  

The linearly polarized beat-wave has a broad peak which forms from 1-3 MeV 

accompanied by the presence of many cavities throughout the plasma. However, the fewer 

cavities in the circularly polarized beat-wave interaction lead to a subsequently narrower peak in 

the energy spectrum compared to the linearly polarized beat-wave case at the same density.  The 

presence of more cavities in the linearly polarized case thus shows a wider acceleration region 

for electrons in the bulk plasma to accelerate to the MeV order. 
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  (a) (b) 

Figure 4.65: The density and longitudinal field profiles for the circularly polarized beat-wave 

interacting with 𝑛 = 0.9𝑛𝑐 after the laser has exited the simulation. 

 

Figure 4.66: Electron macroparticle distribution of the circularly polarized beat-wave interacting 

with a plasma with peak density 𝑛 = 0.9𝑛𝑐. 
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Chapter 5 - Application of Results to Electron 

Radiotherapy 

The objective of this work is to find a potential setup for an electron beam suitable for 

electron radiotherapy using a laser-plasma accelerator. Higher density plasmas are used to 

approach the resonance condition of a beat-wave, and higher-density plasmas are also good in 

applications requiring large charge due to the presence of more particles in general. Current 

LINAC-based electron radiotherapy beams require energies of 5-25 MeV with a dose rate of 1-

10 Grays/min (Gy/min) [10]. The unit Gray represents the amount of radiation absorbed by a 

target and has the base units of J/kg.   

The dose rate is a metric for how much radiation is deposited at a depth determined by 

the radiation type and energy. Dose rate can be calculated using the particle and/or energy 

fluence using the following formula [10]: 

𝐷(𝐸) = 1.602 ∗ 10−10Φ(E) ∙ (
dE

𝜌𝑑𝑥
) (5.1) 

Φ(𝐸) is the particle fluence, ie the total number of particles at various energies in the beam 

distribution per unit area, and (
dE

𝜌𝑑𝑥
) represents the mass stopping power of electrons through 

water, and 1.602 ∗ 10−10 represents the conversion from MeV/g to Gy.  

When comparing the distributions between the primary laser and beat-wave interactions, 

such as in Figure 4.40, the beat-wave interaction consistently leads to higher energy beams with 

greater overall charge. These results continue despite the use of the same overall laser energy of 

200 mJ for both cases. The charge of electrons with the required 5-25 MeV energy is considered 
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to find the optimal density. As expected through the energy gain predicted in laser-plasma theory, 

the 𝑛 = 0.1𝑛𝑐 case leads to the highest maximum energy. However, the electron beam in this 

work is examined and tailored towards electron radiotherapy requirements, meaning the highest 

energy is not the most important metric. Figure 5.1(b) shows the optimal density in generating 

charge greater than 5 MeV is 𝑛 = 0.9𝑛𝑐. This density readily meets the 5-25 MeV requirement 

for electron radiotherapy. Additionally, the electron population of electrons greater than 1 MeV 

in energy is optimized at 𝑛 = 0.9𝑛𝑐. The generation of these electrons is seen as the peak in the 

distribution between 1-3 MeV. This peak is present in the 0.5𝑛𝑐 case and above, showing a 

different acceleration regime than in the 0.25𝑛𝑐 and 0.1𝑛𝑐 cases. 

 

Figure 5.1: Electrons measured by the probe after accounting for weighting of each particle for 

the linearly polarized single-laser and beat-wave for (a) electrons with energy of at least 1 MeV 

and (b) electrons with energy of at least 5 MeV. 

By using the macroparticle distribution measured by the probe in each case, the particle 

fluence of electrons at a specific energy can be determined and used to calculate the dose rate. 

The dose rate is calculated for the 𝑛 = 0.9𝑛𝑐 of electrons at 5 MeV using equation 5.1 with mass 

stopping power through water calculated using the NIST database ESTAR [20] as 
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1.971 𝑀𝑒𝑉
𝑐𝑚2

𝑔
. The cross section of the particle fluence, 𝜙, follows a simple assumption that 

the electron beam follows the spot size of the laser and thus has an area of 𝐴 =
𝜋𝑑𝑓𝑤ℎ𝑚

2

4
 . 

Equation (5.1) thus results in a dose of 2.4 ∗ 106 Gy, which can be considered as 2.4 ∗ 106 𝐺𝑦

𝑠
 if 

the repetition rate is on the order of 1 Hz. Therefore, the electron beam generated by the NCD 

interaction easily meets the dose requirement currently met by LINACs. A laser beat-wave 

interacting with the presented laser parameters and a target at 𝑛 = 0.9𝑛𝑐 proves the most 

favorable setup for short penetration depth electron radiotherapy based on the high charge, MeV 

order electrons generated. Additionally, the simulations of linearly polarized lasers lead to more 

charge than the circularly polarized laser, while the circularly polarized lasers are seen to emit 

more focused electron bunches of high-energy electrons than the linearly polarized lasers at the 

lower to moderate densities. For the end acceleration, the differing ponderomotive force of the 

circularly polarized lasers leads to fewer, distinct cavities with steep density gradients compared 

to the linearly polarized interactions.  

When considering the generation of 1 MeV or higher energy electrons as the goal, a 

target of 𝑛 = 0.5𝑛𝑐 leads to twice as many electrons compared to 𝑛 = 0.9𝑛𝑐 for the linearly 

polarized beat-wave. As such, tailoring of the laser parameters and target may increase this lower 

limit to the 5 MeV required for electron radiotherapy and create a higher dose beam. However, 

the charge generated for 5 MeV order electrons at 𝑛 = 0.25𝑛𝑐and 0.1𝑛𝑐 is sufficient in 

generating at least 10 Gy/min from the simple assumptions made in dose calculation. 
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(a) (b) 

Figure 5.2: Electrons measured by the probe after accounting for weighting of each particle for 

the circularly polarized single-laser and beat-wave for (a) electrons with energy of at least 1 MeV 

and (b) electrons with energy of at least 5 MeV. 

 

(a) (b) 

Figure 5.3: Electrons measured by the probe after accounting for weighting of each particle 

comparing the results of the differently polarized beat-wave for (a) electrons with energy of at 

least 1 MeV and (b) electrons with energy of at least 5 MeV. 
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Chapter 6 - NCD Electron Acceleration Mechanism 

 From a quarter of the critical density onwards, the main mechanism of electron 

acceleration shifts away from the known underdense behavior towards a more turbulent method. 

The moderately dense plasmas of 0.25𝑛𝑐 and 0.5𝑛𝑐 both show the influence of a sheath forming 

at the edge of the plasma, while 0.5𝑛𝑐 and 0.9𝑛𝑐 show the importance of the cavity structures 

forming in the plasma. The higher density cases with the most prominent cavity formation are 

shown to accelerate more electrons to the order of 1 MeV than in the cases without. These cavity 

structures are known as cavitons [13, 23] which trap resultant plasma waves and lead to a soliton 

wave.  

Cavitons are a type of modulational instability arising from a strong initial Langmuir 

wave amplitude. Cavitons form from the conversion of the laser into a Langmuir wave through 

the ponderomotive force which then couples and resonates with a local region of the NCD 

plasma; the plasma in the NCD regime only supports local regions of plasma waves from this 

interaction from the nature of high-density interactions breaking the pulse and shortening the 

characteristic length of the resulting wave. The ponderomotive force of the local waves creates a 

density cavity if the amplitude is sufficiently high which forms the caviton [13, 23, 24]. These 

cavitons thus form solitons as the density gradients of the cavitons trap the local, high-frequency 

waves. As the plasma evolves, the caviton continues to widen until reaching 10-20𝜆𝐷𝑒𝑏𝑦𝑒 [13]. 

This can be seen in Figure 6.2, where the interaction of a beat-wave and 𝑛 = 0.9𝑛𝑐 plasma leads 

to cavitons with a width of 1.2 𝜇𝑚 with a debye length of ~0.06 𝜇𝑚. The caviton width matches 

the expected range as it goes up to 20𝜆𝐷𝑒𝑏𝑦𝑒. The density cavity creates a polarized region 

between the electrons and background ions. The cavitons persist long enough for the ions to 
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experience sizable repulsion between each other [27].  This repulsion causes the ions to start 

drifting away from equilibrium and form the channel structures visible in the end-simulation 

density profiles of Chapter 4. The damping of the solitons thus forms an ion wave which leads to 

the acceleration of ions [13, 26].  

 (a) (b) (c)  

Figure 6.1: (a) 1D averaged density profile plot showing the formation of cavitons in (b) the 2D 

density profile for the linearly polarized beat-wave interacting with 𝑛 = 0.5𝑛𝑐. (c) 1D cut of the 

large amplitude plasma waves formed and trapped within the regions of the cavitons. 

 (a) (b) (c) 

Figure 6.2: (a) 1D averaged density profile showing the cavitons fully formed at the end of the 

simulation in (b) the 2D density profile for the linearly polarized beat-wave interacting with 𝑛 =

0.5𝑛𝑐. (c) 1D longitudinal field profile showing the high-frequency solitons trapped within the 

cavitons. 

Cavitons are seen in the results of this work in the plasma densities corresponding to 

quarter-critical, half-critical, and 0.9𝑛𝑐. Additionally, the most prominent formations occur in the 

beat-wave cases. The cavitons form the best in these cases due to the ability of the plasma to 
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couple and resonate with the laser and cascade into higher wave modes easier with the beat-

wave. This is supported by the plasma frequency at quarter-critical and 0.9𝑛𝑐, where the plasma 

frequency is half and approximately equal to the beat frequency respectively. At half-critical, the 

plasma frequency is half the frequency of the secondary laser. The efficient coupling and 

conversion at these densities is shown in Figure 5.1 which compares the particle count measured 

by the probe of 1 MeV electrons between the linearly polarized primary laser and beat-wave.  

The charge of the 𝑛 = 0.9𝑛𝑐 case for the primary laser shows a peak of electrons with a 

comparable charge resulting at the critical density itself. The close values of the laser and plasma 

frequencies enhance the charge through the resonant interaction. In the beat-wave interaction, the 

resonance occurs in the densities corresponding to half the primary and secondary laser 

frequency at the quarter and half critical density respectively. Additionally, the 1 MeV order 

electrons can be considered a result of this resonance and soliton formation.  

 

 

 

 

 

 



84 
 

Chapter 7 – Conclusion 

7.1 Summary 

The purpose of this work is to examine the interaction of lasers with NCD plasmas to 

obtain a feasible and optimal setup for electron radiotherapy. 2D simulations were conducted 

using a PIC code called EPOCH to examine the behavior of the interaction and the resulting 

electron beam. To compare to the currently used linear accelerators, the generated electron beam 

must have electrons with energies of 5-25 MeV and a sufficient dose. The use of an NCD plasma 

as the target is shown to facilitate bulk acceleration of electrons at the lower end of this desired 

energy range with a large dose. The electrons measured through these simulations show similar 

energies and high radiation dose, especially in the beat-wave cases. While 𝑛 = 0.9𝑛𝑐 led to the 

highest charge generation of 5 MeV order electrons, all higher densities deviating from 

underdense expectations lead to sufficient dose. The setup thus seems to be a feasible alternative 

electron source for radiotherapy compared to linear accelerators. 

First, the interaction of the plasma with a linearly polarized setup was examined. The 

lowest density of 𝑛 = 0.1𝑛𝑐showcased behavior reminiscent of underdense interactions geared 

towards LWFA. As the peak density of the plasma increases, lower, MeV order electrons begin to 

accelerate in bulk. The mechanism for these electrons accelerating is determined to be through 

cavitons and the ability of the laser to generate cavitons throughout the plasma. The cases where 

cavitons could form in one specific region of the plasma lead to fewer MeV order electrons 

measured by the simulated probe in vacuum. In these higher density cases, the beat-wave 

allowed for better penetration into and coupling with the plasma. This results in a charge ten 

times greater than that of the single laser interaction. The caviton acceleration is aided by the 
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lesser sheath formed along the back edge of the plasma, as electrons can then accelerate and 

leave the plasma without interference from the sheath.  

The same plasma and laser parameters were simulated with circular polarization rather 

than linear. The circularly polarized lasers led to better focus in the resulting electron beams in 

the low and quarter-critical density cases compared to the linearly polarized lasers. However, the 

circularly polarized lasers showed little benefit in the higher density cases of half-critical and 

0.9𝑛𝑐 where caviton formation becomes the main accelerating mechanism. The charge generated 

by the beat-wave is similar between the circular and linear polarization cases. However, circular 

polarization leads to generation of fewer cavitons than linear polarization. Additionally, the peaks 

in the electron count graphs shown in Chapter 5 at quarter-critical and half-critical for linear 

polarization are absent in the circular polarization graph. The linearly polarized case thus shows 

better mode conversion/plasma wave cascade in caviton and soliton formation.  

7.2 Potential Next Steps 

Through examination of these results, a potential experimental setup involving a target of 

𝑛 = 0.9𝑛𝑐 with a linearly polarized beat-wave proves favorable. As such, the transition to an 

experimental setup is a logical next step in verifying the feasibility of this regime in electron 

radiotherapy. However, the soliton acceleration mechanism of the quarter-critical and half-

critical case leads to a much higher amount of 1 MeV order electrons than at 0.9𝑛𝑐. The laser 

parameters and density can be altered to examine the possibility of raising the peak seen in the 

charge distribution spanning from 1-3 MeV to 5 MeV, thereby meeting the minimum energy 

desired by electron radiotherapy. This can be done by examining the effect of the laser intensity 

which can be altered through parameters such as the spot size and pulse duration. Additionally, 
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the generation of the plasma target itself proves a challenge due to the high density desired. Gas 

jet are used to create plasma targets and can vary the nozzle to meet different density 

requirements, such as the profile or the density value itself. Experiments utilizing an 800nm laser 

have been shown to generate maximum densities of 
𝑛

𝑛𝑐
= 0.43 [21]. However, going to a density 

such as 
𝑛

𝑛𝑐
= 0.9 proves difficult due to the high pressure generated from such a configuration. 

As such, a potential experimental setup would require careful consideration of the plasma target. 

However, the simulations shown in this work show that sufficient dose can be created from the 

interaction between the beat-wave and 𝑛 = 0.5𝑛𝑐 and 0.25𝑛𝑐 to keep in line with the caviton 

formation seen as the density increases.  

With a computational study, the ion characteristics can be examined in addition to the 

electron characteristics; additionally, 3D simulations can be conducted to supplement findings 

from 2D simulations. The structures seen in the higher density plasmas show the formation of 

cavitons which are known to decay into Ion Acoustic Waves [13]. The ion behavior in these 

interactions can thus be examined to determine feasibility of this laser setup for other 

applications, such as proton-based radiotherapy. To ensure that the characteristics are properly 

captured, 3D simulations can support the 2D work conducted. The transition to 3D is desired due 

to the impact the transition from 1D to 2D had on the simulations. In lower densities, 1D 

simulations proved sufficient in capturing wakefield behavior. However, as the density increases, 

1D becomes insufficient in capturing effects from parameters such as the laser spot size. 

Likewise, 2D effects may not properly capture effects such as the effect of a circularly polarized 

laser on the plasma due to no particles simulated in the direction of the laser oscillating in the z-

direction. However, 2D simulations prove sufficient in examining the effect of the linearly 

polarized lasers as well as caviton generation. 
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