
Opportunities and Limitations of Using Melting Curve
Dissimilarity to Determine Protein Interactions

by

Joshua Teitz

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Joshua Teitz, 2022

Abstract

Proteins are large biomolecules that perform many functions within an organ-

ism. Proteins frequently form interactions with other biomolecules. A group

of proteins held together by interactions is known as a protein complex.

Protein interactions are essential to many biological processes. Thus, de-

termining interactions is a key objective in biology. Since experimental tech-

niques that can directly infer interactions are currently expensive and time

consuming, there is considerable interest in computational techniques that

can determine protein interactions from biological data.

When a protein mixture is heated, the proportion of insoluble protein

molecules forming precipitant increases for each kind of protein. A protein’s

melting curve records the fraction of the protein that is soluble over a series

of increasing temperatures, relative to the amount of the protein that is solu-

ble at the initial temperature. Thermal Proximity Co-Aggregation (TPCA) is

the observation that interacting proteins tend to have similar melting curves.

Although a previous work has provided empirical evidence of TPCA, no work

has applied computational tools to melting curve datasets in an attempt to

determine protein interactions. In this thesis, we apply computational tools

to melting curve datasets, and describe the opportunities and limitations of

such tools for determining interactions.

Clustering is the task of finding groups of related objects in a dataset. We

first explore whether clusters found in melting curve datasets correspond to

protein complexes. We then turn our attention to pull-down assays, a com-

ii

monly used biochemical technique that generates a list of potential interaction

partners for a protein-of-interest. To determine interactions from the results

of a pull-down assay, subsequent validation experiments must be performed,

each involving the protein-of-interest and a potential interaction partner. Since

validation experiments are expensive and time-consuming, we explore whether

performing validation experiments in order of increasing melting curve dissim-

ilarity from the protein-of-interest can limit the number of experiments neces-

sary to find interactions. Lastly, we describe how melting curve dissimilarity

can be used to detect proteins that differentially interact in two conditions.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Jörg Sander for his

patience, support and insights as I worked on this thesis. I would also like to

thank Carlos Fernandez-Patron for introducing Jörg and I to melting curves,

sharing his expertise in biology, and serving on my thesis committee. A special

thanks goes to Hassan Sarker for our numerous meetings and his editing of

my biology-related writing. Lastly, I would like to thank Davood Rafiei and

Anup Basu for serving on my thesis committee.

iv

Contents

1 Introduction 1
1.1 Melting Curves . 2
1.2 Thermal Proximity Co-Aggregation 3
1.3 Thesis Outline . 6

2 Can clustering melting curve datasets provide useful informa-
tion about protein complexes? 7
2.1 Background . 8

2.1.1 Single Linkage Clustering 8
2.1.2 HDBSCAN* . 10
2.1.3 k-means . 15
2.1.4 Gaussian Mixture Models 16
2.1.5 Cluster Validation . 18

2.2 Datasets and Methods . 21
2.2.1 Melting Curve Datasets 22
2.2.2 Dissimilarity Metrics for Melting Curves 23
2.2.3 Converting Melting Curve Datasets to Standardized Para-

metric Form . 25
2.2.4 Clustering Procedures for Melting Curve Datasets . . . 27

2.3 Results . 29
2.3.1 Why are informative partitions relatively rare? 30
2.3.2 Can internal cluster validation scores identify informa-

tive partitions? . 33
2.4 Conclusion . 36

3 Are melting curves useful for limiting the number of validation
experiments necessary to find protein interactions? 38
3.1 Background . 39

3.1.1 Information Retrieval 40
3.1.2 Metric Learning . 42

3.2 Datasets and Methods . 46
3.2.1 Melting Curve Test Collections 47
3.2.2 Information Retrieval Systems for Melting Curve Test

Collections . 49
3.3 Results . 50

3.3.1 How often do information retrieval systems reduce the
need for validation experiments? 51

3.3.2 How many validation experiments are needed to find a
single interactor? . 52

3.3.3 Comparing Information Retrieval Systems Based on Learned
Metrics to IR-Eucl 55

3.3.4 Some Comments on Interpreting our Results 60
3.4 Conclusion . 61

v

4 How Melting Curve Dissimilarity can be Used to Detect Pro-
teins that Differentially Interact 63
4.1 Detecting Proteins that Differentially Interact 65
4.2 A Problem with F . 66
4.3 An Improved Differential Interaction Measure 67
4.4 Conclusion . 68

5 Conclusion 70

References 73

vi

List of Tables

2.1 Counts of positive ARI partitions and informative partitions . 31
2.2 ARI scores for clustering procedures applied to datasets of Fig 2.10. 31
2.3 P@k% values and corresponding thresholds for each clustering

procedure. The value in parenthesis are the counts of informa-
tive partitions. 35

3.1 Some statistics of the test collections 49
3.2 Percentage of rankings with improvement probabilities greater

than .95 and .5 . 52
3.3 Summary statistics for IR-Eucl applied to standardized test

collections. Column 3 counts the number of single experiment
successes. Column 4 is the expected number of experiments
to find a single interactor, according to the negative hyperge-
ometric distribution. Column 7 is the number of prey sets for
which an interactor is found in fewer experiments than would
be expected if the experiments were performed in random order. 55

3.4 Performance of IR systems on the 362 ML-compatible test col-
lections in terms of mAP and improvement probability 58

3.5 IR-Eucl applied to standardized ML-compatible test collec-
tions. If a cell’s value is in bold, then IR-Eucl performs better
than IR-ITML. See Table 3.3 for definitions of the columns. . 59

3.6 IR-ITML applied to ML-compatible, standardized test collec-
tions. If a cell’s value is in bold, then IR-ITML performs better
than IR-Eucl. See Table 3.3 for definitions of the columns. . 59

4.1 Soluble fraction values for the melting curves of Figure 4.2. The
right-most column is the Euclidean distance between a protein’s
condition 0 and 1 melting curves. 67

4.2 Differential interaction scores according to F and ∆. 68

vii

List of Figures

1.1 DNA repair complex graph. Each node is labelled with the
UniProt ID [8] of the protein it represents. 2

1.2 Example melting curves. (A) depicts the melting curves of two
non-interacting proteins. (B) depicts the melting curves of two
interacting proteins. Figure taken from [41]. 4

2.1 Dendrogram for single linkage clustering when the dataset is the
letters {A,B,F,H,K} and the dissimilarity measure is letters
apart. 9

2.2 Two example datasets. (B) differs from (A) in that it con-
tains two additional points. Single linkage clustering was run
on both datasets. (A) and (B) show their respective two-cluster
horizontal cuts . 10

2.3 Synthetic dataset depicting core distances for three points. Fig-
ure taken from [27]. 11

2.4 (A) Example dataset. (B) Dendrogram of dataset. Figure taken
from [3]. Dendrogram colors are added and not in the original. 13

2.5 Cluster hierarchy for dataset in Figure 2.4. Inside each node is
its stability. Green nodes form the optimal partition. 13

2.6 HDBSCAN* withmpts = 10 applied to the dataset of Figure 2.2.
Grey points are noise. 15

2.7 Two synthetic melting curve datasets. (A) Euclidean distance
between red and blue: .112; red and green: .447. Pearson dis-
similarity between red and blue: 8.10e-3; red and green: 0 (B)
Melting curves from two overlapping complexes. 24

2.8 Three-parameter log-logistic functions fit to two melting curves.
The diamond-shaped points are inflection points. The dotted
lines are lower limits. The parameters of Q6QNY0 are b =
22.3236, c = 0.1938 and e = 54.1. The parameters of Q86U86
is b = 15.2795, c = 0.1135 and e = 45.9. 26

2.9 ARI scores for each clustering procedure. 30
2.10 Synthetic datasets. Points should be viewed as melting curves

and points of the same color as belonging to the same complex.
The grey complex is of size 200. The other complexes are of
size 50. 32

2.11 Melting curves of three complexes used in our melting curve
datasets. 33

2.12 ICV scores of non-informative partitions vs. informative par-
titions. Salmom boxes are for non-informative scores and blue
boxes are for informative scores. 34

2.13 100 points from Gaussian N (1.3, 1); 1000 points from Gaussian
N (0, 1). 36

viii

3.1 Example ranking with four relevant documents shown in grey. 41
3.2 Number of experiments to find a single interactor when IR-

Eucl is used to rank prey sets of size 50 with between 1 and
5 interactors. A category’s navy point is the mean number of
experiments. A category’s navy diamond is the theoretical ex-
pected number of experiments if experiments are performed in
random order according to the negative hypergeometric distri-
bution. 53

4.1 (A) A protein mixture consisting of equal amounts of a 4-protein
complex and a 5-protein complex. The purple protein occurs in
both complexes. (B) The melting curves of the protein mixture. 64

4.2 Illustrative example of three melting curves obtained in two
conditions. 67

ix

Chapter 1

Introduction

Proteins are large biomolecules that perform many functions within an or-

ganism1. Antibodies, which bind and help neutralize foreign objects such as

viruses, and enzymes, which catalyze biochemical reactions, are both examples

of proteins.

Proteins frequently form interactions with other biomolecules. A group

of proteins held together by various chemical interactions2, such as hydrogen

bonds, hydrophobic interactions and ionic bonds, is known as a protein com-

plex. Figure 1.1 visualizes the DNA repair complex [15] as a graph. Each

node represents a protein and each edge between a pair of proteins represents

an interaction. Observe that the complex is formed from pairs of proteins

that interact. Not every pair of proteins in the complex interacts, but every

protein is connected to every other protein through a sequence of interactions.

In this thesis, whenever we refer to an “interaction”, we mean two proteins

that interact with each other.

Protein interactions are essential to many biological processes. Thus, de-

termining interactions is a key objective in biology [2]. Since experimental

techniques that can directly infer interactions are expensive and time consum-

ing, there is considerable interest in computational techniques that can de-

termine interactions from biological data [43], [44]. In this thesis, we explore

opportunities and limitations of using protein melting curve dissimilarity to

determine interactions. Melting curves are introduced in Section 1.1. The

1https://medlineplus.gov/genetics/understanding/howgeneswork/protein/
2https://en.wikipedia.org/wiki/Protein-protein_interaction

1

https://medlineplus.gov/genetics/understanding/howgeneswork/protein/
https://en.wikipedia.org/wiki/Protein-protein_interaction

Figure 1.1: DNA repair complex graph. Each node is labelled with the UniProt
ID [8] of the protein it represents.

relationship between melting curve dissimilarity and interactions is discussed

in Section 1.2.

1.1 Melting Curves

Denaturation3 is the process by which a protein’s internal bonds are broken,

causing it to loose its three-dimensional structure. Whereas a protein in its

natural three-dimensional structure is soluble, a denatured protein is insoluble.

A protein mixture consists of molecules of different kinds of proteins. Some

of these molecules are soluble and others are insoluble, forming precipitant.

As a protein mixture is heated, the proportion of insoluble molecules forming

precipitant increases for each kind of protein, as heat causes protein molecules

to denature.

A protein’s melting curve records the fraction of the protein that is soluble

over a series of increasing temperatures, relative to the amount of the protein

that is soluble at the initial temperature. Thus, melting curves have a soluble

fraction value of 1 at the initial temperature and are non-increasing. As Fig-

ure 1.2 shows, melting curves commonly have a sigmoidal shape, showing that

there tends to be one temperature at which a protein’s molecules begins to

3https://www.britannica.com/science/denaturation

2

https://www.britannica.com/science/denaturation

denature and a second (higher) temperature above which all of the protein’s

molecules are denatured. Given a protein mixture and a series of m increasing

temperatures t1, . . . , tm, the following steps give an overview of how melting

curves are generated.

1. Extract m aliquots4 from the protein mixture, one for each temperature.

2. For each temperature ti:

Heat the corresponding aliquot to ti degrees.

Once the aliquot is at ti degrees, use a protein detection method

such as mass spectrometry to measure the amount of each protein that

is soluble.

3. For each protein detected in the protein mixture:

Divide the amounts measured at t1, . . . , tm by the amount measured

at t1. The resulting m soluble fraction values form the protein’s melting

curve.

If a protein mixture contains thousands of kinds of proteins and mass spec-

trometry is used as the protein detection method, then thousands of melting

curves can be generated [41].

1.2 Thermal Proximity Co-Aggregation

Thermal Proximity Co-Aggregation (TPCA) is the observation of Tan et al.

[41] that interacting proteins tend to have similar melting curves. The rationale

for TPCA is that when a complex is heated, its proteins do not denature

independently. Instead, the complex as a whole denatures, leading to the

complex’s proteins precipitating together. Figure 1.2 (B) shows the melting

curves of two interacting proteins. Tan et al. provided evidence of TPCA by

performing numerous analyses over thousands of melting curves.

4An aliquot is a sub-sample extracted from an original sample.

3

Figure 1.2: Example melting curves. (A) depicts the melting curves of two
non-interacting proteins. (B) depicts the melting curves of two interacting
proteins. Figure taken from [41].

Firstly, they obtained the melting curves of 7,693 human proteins from

K562 lysate5. They assembled 111,776 protein interactions from multiple on-

line databases and used Euclidean distance6 to measure the melting curve dis-

similarity of each interaction. Compared to randomly formed pairs of melting

curves, they found that interactions tend to have statistically smaller Euclidean

distances (p < 2.2e-16, according to a one-tailed Mann-Whitney test7).

Secondly, Tan et al. considered 558 human protein complexes from the

Comprehensive Resource of Mammalian Protein Complexes (CORUM) database

[16]. For each complex, they computed the average Euclidean distance over all

protein pairs that can be formed from the complex’s proteins. The complexes

varied in size from 3 to 131 proteins. For each size s, they computed an em-

pirical distribution for average Euclidean distance according to the following

procedure:

1. Randomly sample s melting curves.

2. Compute the average Euclidean distance over all pairs of the s melting

5K562 is a cell line derived from leukemia cells [24]. Lysis is the process by which cell
membranes are destroyed. A lysate is a solution of lysed cells.

6Euclidean distance is defined in Section 2.2.2. The higher the Euclidean distance, the
more dissimilar two melting curves are.

7The one-tailed Mann-Whitney test is described in Section 2.3.2

4

curves.

3. Repeat steps 1 and 2 10,000 times.

For each complex, they used the appropriate empirical distribution for the

complex’s size to compute an empirical p-value. The p-value is the fraction

of values in the distribution that are smaller than the complex’s average Eu-

clidean distance. They found that 160 of the 558 complexes (28.7%) had

p < .05 and describe such complexes as “exhibiting nonrandom TPCA signa-

tures”.

Thirdly, they considered existing algorithms that predict complexes from a

protein interaction network (PIN). In a PIN, nodes correspond to proteins and

an edge between two proteins means they are known to interact. The edges can

be weighted or unweighted. Tan et al. built three weighted PINs over the same

set of nodes and edges: a Euclidean distance PIN, where each edge is weighted

as 1
1+dist

, with dist being the Euclidean distance between the two proteins’

melting curves; a publication number PIN, where each edge is weighted based

on the number of publications that mention it; and an interaction reliability

PIN, where each edge is weighted based on an introduction reliability score

introduced in [7].

They then applied five complex prediction algorithms to the three PINs and

evaluated how the PINs affected the predicted complexes. To summarize the

results, for three of the five algorithms, the Euclidean distance PIN resulted in

better complex predictions than the publication count PIN. For the other two

algorithms, neither PIN consistently made better predictions than the other.

Furthermore, for all five algorithms, neither the Euclidean distance PIN nor

the interaction reliability score PIN consistently made better predictions than

the other. The details of the results can be found in Figures S26 and S27 of

the supplementary material of [41].

Based on the performance of the five complex prediction algorithms on the

Euclidean distance PIN, Tan et al. came to the following conclusion: “TPCA

profiles8 could also serve to discover new interactions and protein complexes

8A TPCA profile refers to the melting curves of a group of proteins.

5

in combination with other approaches”.

1.3 Thesis Outline

Although Tan et al. proposed TPCA and provided empirical evidence that it

exists, they did not attempt to determine interactions by applying computa-

tional tools to melting curve datasets. In this thesis, we applied computational

tools to melting curve datasets, and described the opportunities and limita-

tions of such tools for determining protein interactions.

Chapter 2 provides an overview of clustering, a computational tool for

finding groups of similar objects within a dataset. The chapter then investi-

gates whether clustering melting curve datasets can provide useful information

about protein complexes. Chapter 3 is motivated by pull-down assays, a com-

monly used biochemical technique that generates a list of potential interaction

partners for a protein-of-interest. To determine interactions from the results

of a pull-down assay, subsequent validation experiments must be performed,

each involving the protein-of-interest and a potential interaction partner. Since

validation experiments are expensive and time consuming, Chapter 3 explores

whether performing validation experiments in order of increasing melting curve

dissimilarity from the protein-of-interest can limit the number of experiments

necessary to find interactions. Lastly, Chapter 4 describes how melting curve

dissimilarity can be used to detect proteins that differentially interact.

6

Chapter 2

Can clustering melting curve
datasets provide useful
information about protein
complexes?

Computational techniques that predict protein complexes are of considerable

interest to scientists [43]. Although most of these techniques use an algorithm

to analyze a PIN, PINs have a number of limitations. Scientists estimate that

there are approximately 650,000 human protein interactions [40]. However, [41]

was only able to assemble 111,776 interactions from multiple online databases.

Thus a PIN is likely to contain only a small fraction of the interactions between

its proteins. Furthermore, a PIN is likely to contain many false positives (i.e.

edges between proteins that do not interact). In fact, [33] validated 33,000

purported interactions obtained from multiple online databases. Two thirds

of these pairs were reported by a single publication relying on a single detection

method. When the authors validated these low evidence pairs, they found their

rate of interaction to be only slightly higher than randomly selected protein

pairs. These limitations motivate a complex detection technique that does not

depend on a PIN. So in this chapter we investigate whether clustering melting

curve datasets can provide useful information about protein complexes.

Clustering is the task of summarizing a dataset in terms of a relatively

small number of groups (clusters) such that objects in the same cluster are

related to each other but not related to objects in other clusters [13]. Since

7

according to the TPCA observation the melting curves of a protein complex

tend to be similar to each other but not necessarily dissimilar to the curves

from other complexes, we investigate the extent to which protein complexes

correspond to clusters in melting curve datasets.

Section 2.1 provides necessary background information on clustering. Sec-

tion 2.2 describes the melting curve datasets on which our empirical analysis

is based and our methods for clustering melting curve datasets. Section 2.3

answers the motivating question of this chapter through an empirical analysis.

2.1 Background

Clustering algorithms can be broadly divided into non-parametric and para-

metric algorithms. Sections 2.1.1 and 2.1.2 describe two popular non-parametric

algorithms, and sections 2.1.3 and 2.1.4 describe two popular parametric al-

gorithms. Section 2.1.5 discusses cluster validation, which aims to assess the

quality of a partition.

2.1.1 Single Linkage Clustering

Single linkage clustering may be the most well-known non-parametric clus-

tering algorithm. It requires a dataset and a dissimilarity measure. A dis-

similarity measure quantifies dissimilarity between each pair of objects in a

dataset. Euclidean distance (see Section 2.2.2 for details) is an example of a

dissimilarity measure.

Single linkage clustering is an iterative algorithm with the following steps:

1. Place each object in its own cluster.

2. Compute the dissimilarity between every pair of clusters.

3. Merge the pair of clusters with the smallest dissimilarity.

4. Repeat steps (2) and (3) until all objects are in a single cluster.

The dissimilarity between a pair of clusters A and B is the minimum dis-

similarity between a point in A and a point in B.

8

A run of single linkage clustering can be described by its dendrogram.

A dendrogram specifies the dissimilarity at which each merge occurs. For

example, Figure 2.1 shows the single linkage dendrogram when the dataset is

the letters {A,B,F,H,K} and the dissimilarity measure d is “letters apart”.

At d = 1, clusters {A} and {B} are merged. At d = 2, {F} and {H} are

merged. At d = 3, {F,H} and {K} are merged. And at d = 4, {A,B} and

{F,H,K} are merged.

Figure 2.1: Dendrogram for single linkage clustering when the dataset is the
letters {A,B,F,H,K} and the dissimilarity measure is letters apart.

A dendrogram can be viewed as a sequence of partitions. For example, the

dendrogram of Figure 2.1 specifies the following sequence of partitions:

1. d = 0: {{A}, {B}, {F}, {H}, {K}}

2. d = 1: {{A, B}, {F}, {H}, {K}}

3. d = 2: {{A, B}, {F, H}, {K}}

4. d = 3: {{A, B}, {F, H, K}}

5. d = 4:{{A, B, F, H, K}}

A dendrogram’s sequence of partitions are called horizontal cuts. One strat-

egy to select a single partition from a dendrogram is to choose the horizontal

cut with the highest “clustering quality”. Techniques to assess clustering qual-

ity are discussed in Section 2.1.5.

Figure 2.2 (A) shows a dataset containing 200 points, where each point

is sampled from one of two uniform distributions. We applied single linkage

9

clustering to the dataset, and the two-cluster horizontal cut is shown. Notice

that it perfectly separates the points by distribution.

Figure 2.2: Two example datasets. (B) differs from (A) in that it contains two
additional points. Single linkage clustering was run on both datasets. (A) and
(B) show their respective two-cluster horizontal cuts

Figure 2.2 (B) shows the same dataset as (A), but with two points that do

not belong to either distribution. These points can be viewed as outliers. We

applied single linkage clustering to the dataset, and the two-cluster horizontal

cut is shown. Notice that all but seven points are placed in a single cluster.

The two-cluster horizontal cuts of (A) and (B) are very different.

Figure 2.2 shows that single linkage clustering is highly sensitive to outliers.

Section 2.1.2 discusses HDBSCAN* [4], a density-based clustering algorithm

that is not sensitive to outliers.

2.1.2 HDBSCAN*

HDBSCAN* is a hierarchical, density-based clustering algorithm that takes

a dataset D, a dissimilarity measure d, and a positive integer called mpts as

input. HDBSCAN* defines an internal dissimilarity measure called mutual

reachability distance (MRD) based on d and mpts. MRD is then used to build

a cluster hierarchy. As an optional step, HDBSCAN* can extract an optimal

partition from its cluster hierarchy.

10

Mutual Reachability Distance

In order to define MRD, we must first define an object’s core distance. The

core distance of an object x, denoted corempts(x), is the distance to its mpts-

nearest neighbor. The 1-nearest neighbor of an object is considered to be itself,

so core1(x) = 0. Core distance can be though of as inverse measure of density

for the region in which x is found. Figure 2.3 shows the core distances of three

objects when mpts = 6.

Figure 2.3: Synthetic dataset depicting core distances for three points. Figure
taken from [27].

Given two objects x and y, their MRD is defined as:

MRD(x, y) = max{corempts(x), corempts(y), d(x, y)}. (2.1)

Observe that in Figure 2.3, the core distance of the green point is greater

than the core distance of the blue point and the distance between the green

and blue points. Thus, the MRD of the two points is the core distance of the

green point.

Building the Cluster Hierarchy

The first step in building the cluster hierarchy is to use MRD to construct a

minimum spanning tree (MST) M over the objects in D. Each node in the

11

hierarchy will correspond to a sub-MST of M , with the root node representing

M in its entirety. The parameter mcl specifies the minimum size of a cluster

in the hierarchy. We follow the recommendation of [4] and set mcl = mpts for

all of our experiments.

The cluster hierarchy grows downward from the root by iteratively remov-

ing edges from M in order of decreasing edge weight. At each iteration, the

focus is on the node furthest down the hierarchy that contains the edge being

removed. If removing the edge results in the node’s MST splitting into two

sub-MSTs that both have at least mcl objects, then two child nodes (corre-

sponding to the two sub-MSTs) are added at the next level in the hierarchy.

If one of the sub-MSTs has less than mcl objects, then the node persists to

the next level, although it is now corresponds to the larger sub-MST. If both

child MSTs contain less than mcl objects, then the node has no children and

ceases to exist beyond the current level.

Figure 2.4 shows a dataset (A), its single linkage dendrogram (B), and

how a cluster hierarchy is constructed for mcl = 2. Observe that 13 edge

removals are depicted on the dendrogram. Those in green (4 total) result in

the formation of two child nodes (e.g. C2 gives way to C5 and C4 when the

edge connecting {6, 8, 7, 9, 5} to {1, 3, 2, 4} is removed; those in blue (4) result

in a node decreasing in size (e.g. C4 decreases in size when the edge connecting

4 to {1, 3, 2} is removed); and those in gold (5) result in a node ceasing to exist

after the split.

A cluster hierarchy can be far simpler than the dendrogram of the same

dataset. However, each node must record the density level λ = 1
MRD

at which it

was formed, and the density level at which each object leaves the node (either

from the node shrinking, disappearing, or splitting into two nodes). Let λbirth

be the λ value at which the node first forms, and for each object p, let λp be

the λ value at which p leaves the node. The stability of a node is defined as:

S(node) =
∑

p∈node

(λp − λbirth). (2.2)

Figure 2.5 gives the cluster hierarchy of the dataset in Figure 2.4, along with

12

Figure 2.4: (A) Example dataset. (B) Dendrogram of dataset. Figure taken
from [3]. Dendrogram colors are added and not in the original.

the stability of each node. As an example, we show how S(C4) is calculated.

C4 forms at λ = 1
5.78

, so λbirth = 1
5.78

. Object 4 leaves the node at λ = 1
2.56

,

object 2 at λ = 1
1.72

, and objects 3 and 1 leave when the node disappears, at

λ = 1
1.22

. Thus S(C4) = (1
2.56
− 1

5.78
) + (1

1.72
− 1

5.78
) + 2 · (1

1.22
− 1

5.78
) = 1.92.

Figure 2.5: Cluster hierarchy for dataset in Figure 2.4. Inside each node is its
stability. Green nodes form the optimal partition.

Extracting an Optimal Partition

One way to obtain a partition from an HDBSCAN* cluster hierarchy is through

a horizontal cut, where any objects not contained in a node get classified as

noise. There are two main drawbacks of a horizontal cut. First, it enforces

13

a single density threshold across each cluster. Second, the level at which to

perform the cut is often unclear. To remedy these drawbacks, HDBSCAN*

provides an algorithm that can automatically extract an optimal partition

from a cluster hierarchy.

The cluster extraction algorithm requires each node’s stability to be pre-

computed. Each node Ci gets an indicator variable δi ∈ {0, 1}, where δi = 1

if Ci is selected and δi = 0 if Ci is not selected. Initially, δi = 1 for all i. By

the end of the algorithm, the indicators that remain as 1 will choose the nodes

that form the partition.

The algorithm works by iterating through the nodes, from the lowest level

non-leaf node up to (but not including) the root node. At each iteration,

certain indicators are set to 0 and the current node Ci’s total stability Ŝ(Ci)

is set. Ŝ(Ci) is the maximum sum of stabilities that can be obtained from a

valid selection of nodes in the tree rooted at Ci. Accordingly, for each leaf

node Cleaf , Ŝ(Cleaf) = S(Cleaf).

At each iteration, the stability of the current node S(Cparent) is compared

to the sum of the total stabilities of its children Ŝ(Cchild1) + Ŝ(Cchild2). If

S(Cparent) ≥ Ŝ(Cchild1) + Ŝ(Cchild2), then two things happen: each descendant

of Cparent gets de-selected (i.e., δdescendant = 0), and Ŝ(Cparent) gets assigned

S(Cparent). If, on the other hand, S(Cparent) < Ŝ(Cchild1)+ Ŝ(Cchild2), then the

parent node gets de-selected (i.e., δparent = 0), and Ŝ(Cparent) gets assigned

Ŝ(Cchild1) + Ŝ(Cchild2).

In Figure 2.5, C5 gets de-selected because S(C5) < Ŝ(C8) + Ŝ(C9). Then

C6 and C7 get de-selected because S(C3) > Ŝ(C6) + Ŝ(C7). Lastly, C2 gets

de-selected because S(C2) < Ŝ(C4) + Ŝ(C5).

We applied HDBSCAN* with mpts = 10 to the datasets of Figure 2.2. The

resulting partitions are shown in Figure 2.6. Apart from the two outliers in

(B) but not (A), the only difference between the two partitions is that there

are twelve more noise objects in (B) than in (A). These partitions demonstrate

that HDBSCAN* is more robust to outliers than single linkage.

14

Figure 2.6: HDBSCAN* with mpts = 10 applied to the dataset of Figure 2.2.
Grey points are noise.

2.1.3 k-means

k-means may be the most well-known parametric clustering algorithm. It re-

quires a dataset and an input parameter k. The goal of k-means is to partition

the dataset into k clusters C = {C1, ..., Ck} such that within-cluster sum of

squares (WCSS) is minimized. The objective function of WCSS is given below:

WCSS(C) =
k∑

i=1

∑
x∈Ci

dist(x, µi)
2, (2.3)

where µi is the mean of Ci and dist(x, µi) is the Euclidean distance between

x and µi (see Section 2.2.2 for a description of Euclidean distance).

Minimizing Equation 2.3 is NP-hard [25], so there is not currently an ef-

ficient algorithm for this task and it’s highly unlikely that there ever will be

such an algorithm. In practice, the Expectation-maximization (EM) algorithm

[12] is used to find a local minimum for Equation 2.3. The EM algorithm for

k-means is quite simple and its steps are given below:

1. Initialize k centers.

2. E-step: Form k clusters C = {C1, ..., Ck} by assigning each object to its

nearest center.

3. M-step: Recompute the k centers as the means of the clusters.

15

4. Compute WCSS(C).

5. Repeat steps 2-4 until the decrease in WCSS is less than some pre-

specified amount.

The result of k-means can depend on how the k centers are initialized.

In practice, K-means can be run multiple times, each time with a random

initialization of the k centers. A single partition can be selected by choosing

the partition with the lowest WCSS.

It is sometimes unclear what value of k to use. In these cases, k-means

should be run for multiple values of k. A cluster validation technique called

silhouette analysis (Section 2.1.5) can then be used to choose the “highest

quality” partition.

A shortcoming of k-means is that it is biased towards compact clusters.

Section 2.1.4 discusses Gaussian Mixture Models, which can be viewed as a

generalization of k-means that is not biased towards compact clusters.

2.1.4 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) require a dataset and an input parameter

k. GMMs assume that the dataset was created by a particular data-generating

process. This process assumes that each object is sampled independently from

one of k Gaussian distributions Θ = (θ1, ..., θk), with the particular Gaussian

determined by a set of k mixture weights Ω = (ω1, ..., ωk),
∑k

i=1 ωi = 1. The

goal of GMMs is to learn the parameters (Θ,Ω) that control this process. The

GMM log-likelihood function for a dataset D is given below:

L(D | Θ,Ω) =
∑
x∈D

log

[
k∑

i=1

ωi · N (x | θi)

]
, (2.4)

where N (x | θi) is the probabibility density function (PDF) value for x in

the Gaussian distribution parameterized by θi.

Locally optimal parameters can be found through expectation-maximization

[12]. The EM algorithm for GMMs is given below.

16

1. Initialize Θ and Ω. Note that each θi consists of a mean vector µi and a

covariance matrix Σi.

2. E-step: For each object x, compute the probability that it comes from

the Gaussian θi for i = 1, ..., k. I.e., compute:

Pr[θi | x] =
ωi · N (x; θi)∑
j ωj · N (x; θj)

(2.5)

3. M-step: Recompute the parameters µ = (µ1, ..., µk), Σ = (Σ1, ...,Σk)

and Ω = (ω1, ..., ωk) according to the following equations:

µi =
1

ni

∑
x

Pr[θi | x] · x (2.6)

Σi =
1

ni

∑
x

Pr[θi | x] · (x− µi)(x− µi)
T (2.7)

ωi =
ni

n
(2.8)

where ni =
∑

x Pr[θi | x]. I.e., ni is the expected number of points

assigned to θi.

4. Repeat steps 2 and 3 until the increase in likelihood is less than some

pre-specified amount.

The first step of the EM algorithm is to initialize Θ and Ω. In our ex-

periments, we use model-based hierarchical clustering (MBHAC) [14] for this

task. MBHAC can be viewed as single linkage clustering with a different merge

criterion. At each iteration, the merge that results in the smallest decrease

in GMM classification likelihood [5] occurs. Once an MBHAC dendrogram is

built, a k-component GMM can be initialized with the dendrogram’s k-cluster

horizontal cut.

By modelling clusters as Gaussian distributions, GMMs can find clusters

of varying shapes, volumes and orientations. This flexibility comes at the price

of a high number of parameters, which can make GMMs over-parameterized

for smaller datasets. However [6] showed that it’s possible to learn a GMM

17

with significantly fewer parameters by placing constraints on the eigenvalue

decomposition of each covariance matrix. These constraints affect cluster vol-

ume, shape and orientation. E.g., if the volume constraint is in place, then

each cluster contains approximately the same number of points.

When applying GMMs, it is often unclear what k should be and whether

the model’s covariance matrices should be constrained. A common strategy

is to use an information criterion such as the Bayesian Information Criterion

(BIC) [35] to score each candidate model. The model with the highest score

is then selected. The equation for BIC is given below:

BIC = L(D | Θ,Ω)− ν

2
log |D|, (2.9)

where ν is the number of free parameters in the model. Like all information

criterions, BIC seeks to find an appropriate trade-off between how well the

model fits the data and its complexity.

2.1.5 Cluster Validation

Regardless of the input dataset, all of the clustering algorithms discussed in

Sections 2.1.1 through 2.1.4 can return a partition. Cluster validation is used

to assess the quality of a partition. Internal cluster validation (ICV) assesses

quality based on properties internal to the dataset. External cluster validation

(ECV) assesses quality based on agreement with an external ground-truth

partition. We begin by discussing two ICV techniques (silhouette analysis and

DBCV) and end by discussing a frequently used ECV technique.

Silhouette Analysis

Silhouette analysis measures the extent to which a partition consists of com-

pact and well-separated clusters. For each point xi ∈ D, a silhouette coefficient

si is computed as follows:

1. Define ai as the average dissimilarity between xi and points in the same

cluster as xi.

18

2. For each cluster that xi is not in, compute the average dissimilarity

between xi and the points in that cluster. Define bi as the minimum

such value.

3. si = (bi − ai)/max(ai, bi)

A silhouette coefficient will always be between -1 and 1. A negative si

mean that, on average, xi is more similar to points in some other cluster than

to points in its own cluster. A positive si means that, on average, xi is more

similar to the points of its own cluster than to the points of any other cluster.

A cluster’s silhouette width is the average silhouette coefficient of the cluster.

A partiton’s average silhouette width refers to the average silhouette coefficient

over the entire dataset.

According to [20], a partition’s average silhouette width can be interpreted

as follows:

• 0.71-1.0: A strong clustering structure has been found.

• 0.51-0.70: A reasonable clustering structure has been found.

• 0.26-0.50: The clustering structure is weak and could be artificial.

• < 0.25: No substantial clustering structure has been found.

Silhouette analysis is commonly used to evaluate partitions found by k-

means. Euclidean distance is used as the dissimilarity measure.

Density-based Cluster Validation

Density-based Cluster Validation (DBCV) [28] measures the extent to which

a partition consists of density-based clusters, i.e., clusters that are regions of

high density surrounded by regions of low density. For each cluster, a DBCV

score is computed. This score is based on density sparseness and density sep-

aration. Density sparseness measures the minimum density within the cluster

and density separation is the maximum density between the cluster and some

other cluster. Both of these notions are based on a version of mutual reacha-

bility distance (MRD).

19

The MRD used by DBCV is the same as that used by HDBSCAN* except

it employs a different core distance. The core distance employed by DBCV is

known as the all-points core distance. Given a point x ∈ D that belongs to

cluster Ci, the all-points core distance of x is defined as follows:

aptscoredist(x) =

ni∑
i=2

(
1

KNN(x,i)

)d
ni − 1

− 1

d

, (2.10)

where ni is the size of cluster Ci, d is the dimension of D, and KNN(x, i)

is the dissimilarity between x and the i-nearest neighbor of x.

Given a cluster Ci, the first step in computing its density sparseness DSC(Ci)

is to use MRD to build a minimum spanning tree of Ci. DSC(Ci) is defined as

the maximum edge weight of the minimum spanning tree, and can be viewed

as an inverse measure of the minimum density within Ci.

The density separation between two clusters Ci and Cj is the minimum

MRD between a point in Ci and a point in Cj. This MRD is viewed as the

maximum density between Ci and Cj.

Let C = {C1, ..., Ck} be a partition. With density sparseness and density

separation defined, we can now define the DBCV score of a cluster Ci ∈ C as

follows:

V (Ci) =
min

1≤j≤l,j 6=i

(
DSPC(Ci, Cj)

)
−DSC(Ci)

max

(
min

1≤j≤l,j 6=i

(
DSPC(Ci, Cj)

)
, DSC(Ci)

) (2.11)

Observe that Ci is necessarily between -1 and 1. Greater values indicate

higher quality density-based clusters. The DBCV score of an entire partition

C is computed as follows:

DBCV (C) =
l∑

i=1

|Ci|
|D|

V (Ci) (2.12)

DBCV is commonly used to evaluate partitions found by single linkage

clustering and HDBSCAN*.

20

Adjusted Rand Index

The Adjusted Rand Index (ARI) [18] is based on the Rand Index [31]. The

Rand Index requires a dataset D = {o1, ..., oN}, a clustering partition X =

{X1, ..., XR}, and a ground-truth partition Y = {Y1, ..., YS}. Each pair of

objects oi, oj, i 6= j of D falls into one of these four categories:

• True Positive: oi, oj ∈ Xr for some r and oi, oj ∈ Ys for some s.

• True Negative:: oi, oj /∈ Xr for all r and oi, oj /∈ Ys for all s.

• False Positive: oi, oj ∈ Xr for some r but oi, oj /∈ Ys for all s.

• False Negative: oi, oj /∈ Xr for all r but oi, oj ∈ Ys for some s.

Let TP, TN, FP, FN be the number of true positives, true negatives, false

positives, and false negatives, respectively. The Rand Index is computed as

follows:

R =
TP + TN

TP + TN + FP + FN
. (2.13)

The Rand Index is 1 if there are no false positves or false negatives, and 0

if there are no true positives or true negatives. Intuitively, the Rand Index is

the fraction of “correct choices” made over the pairs of of D.

ARI can be viewed as the Rand Index adjusted for chance. This means

that if X is a random partition, the expected ARI between X and Y is 0. ARI

ranges from -1 to 1. It is 1 when the Rand Index is 1 and -1 when the Rand

Index is 0.

2.2 Datasets and Methods

This section introduces the datasets and methods used for our empirical anal-

ysis. Section 2.2.1 discusses the melting curve datasets on which our empirical

analysis is based. Section 2.2.2 discusses three dissimilarity measures that can

be used for melting curves. Section 2.2.4 discusses the methods we use to

cluster melting curve datasets.

21

2.2.1 Melting Curve Datasets

The authors of [41] generated the melting curves of 8260 proteins from K562

intact (not lysed) cells. Of these 8260 proteins, 1387 collectively form 529

CORUM [16] complexes. Each of these complexes contains between 3 and 131

proteins, with the median size being 5 proteins.

LetD be all 8260 melting curves and C = {C1, ..., C529} be the 529 CORUM

complexes, where each Ci contains the melting curves for a particular complex.

Let C = C1 ∪ ... ∪ C529 be the dataset containing all 1387 melting curves.

We have not clustered C for two reasons. First, since most of the complexes

intersect (share a common protein) with at least one other complex, we cannot

use complex membership to construct a ground-truth partition. Thus ARI

could not be used to evaluate a clustering of C. Second, we want to evaluate

clustering algorithms on a range of melting curve datasets, not just a single,

large one. This motivates the following procedure, which, given a positive

integer m and a seed complex Ci ∈ C, builds a melting curve dataset consisting

of the curves from m non-intersecting complexes, one of them being Ci:

1. Add the melting curves in Ci to the dataset D.

2. Randomly select a complex Cj from C such that Cj ∩D = ∅.

3. Add Cj to D.

4. Repeat steps 2 and 3 until D contains the melting curves of m complexes.

When a melting curve dataset is partitioned according to complex mem-

bership, we refer to the resulting partition as the dataset’s complex partition.

By setting m = 3 and making each complex in C the seed of one run of

the above procedure, we obtained 529 3-complex melting curve datasets. By

construction, each complex occurs in at least one dataset. The average size of

a dataset is 22.4; the minimum size is 9; and the maximum size is 169. The

dataset of size 169 contains a complex of size 131 (CORUM ID: 351).

22

2.2.2 Dissimilarity Metrics for Melting Curves

In order to be applied to melting curve datasets, single linkage clustering and

HDBSCAN* require a dissimilarity measure that is appropriate for melting

curve datasets. In this section, we introduce three such dissimilarity measures.

Euclidean Distance

Throughout [41], Euclidean distance is used as a dissimilarity measure for

melting curves. Intuitively, Euclidean distance measures the length of the

straight line between two points in space. Given two d-dimensional points

x = (x1, ..., xd) and y = (y1, ..., yd), Euclidean distance is computed as follows:

dist(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (2.14)

When applied to melting curves, each melting curve is treated as a d-

dimensional point, where the solubility at the lowest temperature corresponds

to the first dimension, the solubility at the second lowest temperature corre-

sponds to the second dimension, and so forth.

In Figure 2.7 (A), the salmon and blue melting curves differ by a solubility

of .05 at each temperature (apart from the reference temperature), leading to

a Euclidean distance of .112. In contrast, the salmon and green curves differ

by a solubility of .20 at each temperature, leading to a Euclidean distance of

.447.

Pearson Dissimilarity

Pearson correlation is a commonly used statistic to measure the degree to

which two variables X and Y lie on a straight line. The Pearson correlation

is 1 if the (x, y) pairs lie on a straight line with positive slope and -1 if the

pairs lie on a straight line with negative slope. Given two d-dimensional points

x = (x1, ..., xd) and y = (y1, ..., yd) whose mean values are x̄ and ȳ, Pearson

correlation is computed as follows:

23

Figure 2.7: Two synthetic melting curve datasets. (A) Euclidean distance
between red and blue: .112; red and green: .447. Pearson dissimilarity be-
tween red and blue: 8.10e-3; red and green: 0 (B) Melting curves from two
overlapping complexes.

φ′(x, y) =

∑d
i=1(xi − x̄)(yi − ȳ)√∑d

i=1(xi − x̄)2
∑d

i=1(yi − ȳ)2
(2.15)

Pearson correlation can be converted into a dissimilarity measure known

as Pearson dissimilarity through the following transformation:

φ(x, y) =
1− φ′(x, y)

2
(2.16)

Pearson dissimilarity necessarily takes on a value between 0 and 1. The

motivation for using Pearson dissimilarity is that it can detect dissimilarity in

the shapes of melting curves.

In Figure 2.7 (A) there is some dissimilarity in the shapes of the red and

blue curves, but the red and green curves have identical shapes (when the

reference temperature is omitted). So the Pearson dissimilarity of the salmon

and blue curves (8.10e-3) is greater than that of the red and green curves (0).

Figure 2.7 (B) contains the melting curves of two complexes (salmon and

blue) that occupy the same region of melting curve space. We performed two

runs of single linkage clustering on the dataset, once with Euclidean distance

and once with Pearson dissimilarity. The two-cluster horizontal cut of the

Euclidean distance dendrogram differed from the complex partition. This is

unsurprising, given that each curve’s nearest neighbor (according to Euclidean

24

distance) belongs to the other complex. However, when the same cut was per-

formed on the Pearson dissimilarity hierarchy, the resulting partition matched

the ground-truth partition. Thus, for melting curve datasets where distinct

complexes occupy the same region of melting curve space, Pearson dissimilarity

can be an effective dissimilarity measure.

2.2.3 Converting Melting Curve Datasets to Standard-
ized Parametric Form

Euclidean distance and Pearson dissimilarity do not take advantage of the

structured nature of melting curve datasets. According to [13], a dataset is

structured if each observation consists of “repeated measures of the same out-

come variable but under different conditions”. Melting curve datasets are

structured because each melting curve consists of repeated measures of solu-

bility over a range of temperatures.

The authors of [41] found that melting curves have an underlying functional

form that can be represented by a three-parameter log-logistic function with

upper limit set to 1. Using t to represent temperature, the equation of this

function is as follows:

f(t) = c+
1− c

1 + exp(b log(x
e
))

(2.17)

where c, b and e are real-valued parameters and log refers to the natural

logarithm. The parameter c is the lower limit of f(t), meaning that f(t) will

approach but never cross the horizontal line y = c.; e is the temperature at

which the inflection point occurs; b does not have a simple interpretation,

but it appears to be related to the slope at the inflection point. We used

the R package provided by [32] to fit three-parameter log-logistic functions to

melting curves. Figure 2.8 plots the three-parameter log-logistic functions of

two melting curves.

Suppose a three-parameter log-logistic function with upper limit set to 1 is

fitted to a melting curve, and the function’s resulting parameters are b, c and

e. We refer to the vector (b, c, e) as the melting curve’s parametric form. Given

25

Figure 2.8: Three-parameter log-logistic functions fit to two melting curves.
The diamond-shaped points are inflection points. The dotted lines are lower
limits. The parameters of Q6QNY0 are b = 22.3236, c = 0.1938 and e = 54.1.
The parameters of Q86U86 is b = 15.2795, c = 0.1135 and e = 45.9.

two melting curves’ parametric forms xi = (bi, ci, ei) and xj = (bj, cj, ej), their

Euclidean distance can be computed as follows:

dist(xi, xj) =
√

(bi − bj)2 + (ci − cj)2 + (ei − ej)2. (2.18)

For example, the parametric forms of Q6QNY0 and Q86U86

are (22.3236, 0.1938, 54.1) and (15.2795, 0.1135, 45.9), respec-

tively, as shown in Figure 2.8. Their Euclidean distance is√
(22.3− 15.3)2 + (.194− .113)2 + (54.1− 45.9)2 ≈ 10.78. However,

if the Euclidean distance is computed only over the b and e param-

eters, then the resulting Euclidean distance is practically unchanged:√
(22.3− 15.3)2 + (54.1− 45.9)2 ≈ 10.78, meaning that the values of c are

not affecting Euclidean distance. This is due to c being on a very different

scale than b and e. Whereas values of b and e routinely differ by more than 7

and 8, respectively, as shown in Figure 2.8, values of c are necessarily between

0 and 1, as c represents a log-logistic function’s lower limit.

Given a dataset of melting curves in parametric form, each of b, c and e

can be standardized. Standardization ensures that a parameter’s values have

mean 0 and standard deviation 1. We say that a melting curve dataset is in

26

standardized parametric form if each melting curve is in parametric form and

each parameter is standardized. If the Euclidean distance of two vectors from

such a dataset is computed, each parameter (including c) has the potential to

affect the resulting Euclidean distance.

2.2.4 Clustering Procedures for Melting Curve
Datasets

This section describes how the clustering algorithms of Sections 2.1.1

through 2.1.4 can be applied to the melting curve datasets of Section 2.2.1.

Single Linkage and HDBSCAN*

HDBSCAN* can be applied to a melting curve dataset using any one of the

three dissimilarity measures discussed in Section 2.2.2. We consider four values

for mpts:

• mpts = 1: Makes HDBSCAN* equivalent to single linkage clustering.

• mpts = 3: Ensures that each node in the cluster hierarchy contains at

least three melting curves. This is consistent with each CORUM complex

containing at least three proteins.

• mpts = 5: Makes HDSCAN* more robust to outlier curves.

• mpts = 9: Maximum value of mpts that can be applied to all of our

datasets, as the smallest dataset contains 9 melting curves.

We now explain the details of how HDBSCAN* can be applied to a melt-

ing curve dataset and yield a single partition. Let HDB be the following

procedure:

1. Run HDBSCAN* with mpts = 1, 3, 5 and 9.

2. For each run, extract the optimal partition (according to the procedure

outlined in Section 2.1.2).

3. Use DBCV to validate the four partitions from step 2.

27

4. Output the partition with the highest DBCV score.

There are three variants of HDB, depending on which dissimilarity mea-

sure is used and whether the melting curve dataset is in parametric form.

We refer to these variants as HDB-Eucl (Euclidean distance), HDB-Pear

(Pearson dissimilarity), and HDB-Par (Euclidean distance applied to a melt-

ing curve dataset in standardized parametric form).

Next, we explain how HDBSCAN* can be applied to a melting curve

dataset without the procedure of Section 2.1.2. Let HDB-cut be the fol-

lowing procedure:

1. Run HDBSCAN* with mpts = 1, 3, 5 and 9.

2. For each of the four dendrograms, extract all horizontal cuts.

3. Use DBCV to validate each horizontal cut from step 2.

4. Output the partition with the highest DBCV score.

As with HDB, there are three variants of HDB-cut: HDB-cut-Eucl,

HDB-cut-Pear and HDB-cut-Par.

We make use of the R package provided by [17] in our implementations of

HDB and HDB-cut.

k-means

In this section, we explain how k-means can be applied to a melting curve

dataset. Even though we know each dataset contains three complexes, we let

k range from 2 to 6. This reflects the practical situation where the number of

complexes is unknown. Let k-means be the following procedure:

1. For each k in {2, 3, 4, 5, 6}, run k-means 10 times, each time with a

different random initialization of the k centers.

2. For each k, select the partition with the lowest WCSS.

3. For each k, compute the average silhouette width of the partition selected

by WCSS.

28

4. Output the partition with the highest average silhouette width.

We refer to the procedure as k-means-Par when the melting curve dataset

is in standardized parametric form. There is no k-means-Eucl or k-means-

Pear because k-means does not use a dissimilarity measure.

GMMs

In this section, we explain how GMMs can be applied to a melting curve

dataset. As with k-means, we let the number of components range from 2 to

6. Let GMM be the following procedure:

1. Apply MBHAC to the dataset.

2. For each k in {2, 3, 4, 5, 6}, fit a GMM of each model type (14 total),

using the MBHAC k cluster horizontal cut to initialize Θ and Ω.

3. Use BIC to score each partition (there are 5 · 14 of them).

4. Output the partition with the highest BIC score.

We refer to the procedure as GMM-Par when the melting curve dataset

is in standardized parametric form. There is no GMM-Eucl or GMM-Pear

because GMMs do not use dissimilarity measures. Our implementations of

GMM and GMM-Par make use of the R package provided by [36]

2.3 Results

This section describes our empirical analysis on whether clustering melting

curve datasets can provide useful information about protein complexes. We

began by applying the ten clustering procedures of Section 2.2.4 to the 529

melting curve datasets of Section 2.2.1. This resulted in 529 clustering parti-

tions per clustering procedure. For each clustering partition, we used ARI to

measure agreement with its corresponding complex partition.

Figure 2.2.4 shows the results in the form of boxplots. We see that for each

clustering procedure, the ARI scores tend to be positive and skewed towards

29

higher values. For example, k-means has a median of .103, a mean of .162,

and 408 (77.1%) of its scores are positive.

Figure 2.9: ARI scores for each clustering procedure.

For each clustering procedure, we performed a one-sided, one-sample t-test.

The null and alternative hypothesis are given below:

• H0: the mean of the ARI scores is 0.

• H1: the mean of the ARI scores is positive.

Each test rejected the null hypothesis at the p = 2.2e-16 level. Thus clus-

tering tends to provide information about a melting curve dataset’s complex

partition.

However, a partition with an ARI score of .103 (the median of k-means)

is unlikely to be of practical use to a scientist. This motivates the concept

of “informative” partitions, which we define as those partitions with an ARI

score of at least .5. Table 2.1 provides the count of informative partitions

for each clustering procedure. K-means has the highest count of informative

partitions, at 49, but this still represents a rate of informative partitions below

10%.

2.3.1 Why are informative partitions relatively rare?

In this section, we use synthetic datasets to explain the lack of informative par-

titions. Figure 2.10 depicts four synthetic datasets, where the points represent

30

Clustering Procedure
of Positive ARI
Partitions

of Informative
Partitions

HDB-Eucl 361 (68.2%) 41 (7.75%)
HDB-Pear 346 (65.4%) 40 (7.56%)
HDB-Par 304 (57.5%) 37 (6.99%)
HDB-cut-Eucl 364 (68.8%) 46 (8.70%)
HDB-cut-Pear 365 (67.0%) 43 (8.13%)
HDB-cut-Par 338 (63.9%) 42 (7.94%)
K-means 408 (77.1%) 49 (9.26%)
K-means-Par 379 (71.6%) 36 (6.81%)
GMM 409 (77.3%) 31 (5.86%)
GMM-Par 422 (79.8%) 39 (7.37%)

Table 2.1: Counts of positive ARI partitions and informative partitions

melting curves and points of the same color belong to the same complex. We

say that a complex is TPCA-consistent if its melting curves are similar to each

other. We say that a group of complexes overlap if they occupy approximately

the same region of melting curve space. Figure 2.10 (A) depicts four TPCA-

consistent complexes that do not overlap; (B) depicts four TPCA-consistent

complexes that do overlap; (C) and (D) depict the same complexes as (A) and

(B), respectively, plus a large complex that is clearly TPCA-inconsistent.

Any clustering algorithm should find the complex partition of Figure 2.7

(A). However, recovering the complex partitions of (B), (C) and (D) is a

more difficult matter, and it is unlikely that any clustering procedure could be

completely successful. We applied four clustering procedures to the datasets

of Figure 2.10, and computed the ARI of each clustering partition. The results

are shown in Table 2.2

A B C D
K-means 1.00 0.155 0.229 0.0180
GMM 1.00 0.00835 0.229 0.398
HDB 1.00 0.00280 0.291 0.111
HDB-cut 1.00 0.00140 0.355 -0.0688

Table 2.2: ARI scores for clustering procedures applied to datasets of Fig 2.10.

The results for (B) show that if complexes overlap, clustering may be inef-

fective at placing the complexes in distinct clusters. The results for (C) show

that the presence of a relatively large TPCA-inconsistent complex can lead

31

Figure 2.10: Synthetic datasets. Points should be viewed as melting curves
and points of the same color as belonging to the same complex. The grey
complex is of size 200. The other complexes are of size 50.

to each cluster containing some of its melting curves, resulting in the clusters

being “impure”. It is likely that informative partitions are rare because our

melting curve datasets tend to have more in common with (B), (C) and (D)

than they do with (A).

Figure 2.11 shows the melting curves of three complexes used in our melting

curve datasets. Figure 2.11 (A) plots the melting curves of a TPCA-consistent

complex. We make this designation because its p-value is .0018. See Section 1.2

for a description of how this p-value is computed. (B) plots the melting curves

of another TPCA-consistent complex (p = .0013). (C) plots the melting curves

from (A) and (B) together, demonstrating that TPCA-consistent complexes

used in our melting curve datasets can overlap. (D) plots the melting curves

of a large, TPCA-inconsistent complex. Although the median size of the com-

plexes we considered is 5, this complex contains 131 proteins.

32

Figure 2.11: Melting curves of three complexes used in our melting curve
datasets.

2.3.2 Can internal cluster validation scores identify in-
formative partitions?

We have already established that informative partitions are relatively rare.

However, if they are identifiable, then clustering melting curve datasets may

still be of practical use for finding new protein complexes. In this section,

we investigate whether informative partitions can be identified based on their

ICV scores.

Recall that Single linkage/HDBSCAN* partitions can be validated by

DBCV and that k-means/GMM partitions can be validated by average sil-

houette width. Figure 2.12 compares the ICV scores of informative parti-

tions to those of non-informative partitions for each clustering procedure. It’s

clear that informative partitions tend to have higher ICV scores than non-

informative partitions. To test the significance of these results, we performed

a one-tailed Mann-Whitney test [26] for each clustering procedure. The null

33

and alternative hypothesis are given below:

• H0: The informative scores are sampled from the same distribution as

the non-informative scores.

• H1: The informative scores are sampled from a distribution that is

shifted to the the right of the distribution from which non-informative

scores are sampled.

Each test rejected the null hypothesis at the p = .05 level.

Figure 2.12: ICV scores of non-informative partitions vs. informative parti-
tions. Salmom boxes are for non-informative scores and blue boxes are for
informative scores.

Figure 2.12 shows that there is no clustering procedure for which each

informative partition scores higher than all non-informative partitions. This

means that ICV scores cannot perfectly identify informative partitions.

To better understand the predictability of ICV scores, we looked at the top

1, 5 and 10% of ICV scores for each clustering procedure, and calculated the

fraction that correspond to informative partitions. We refer to these fractions

as “precision at the top k%”, or P@k%, for short.

Table 2.3 shows P@k% values for each clustering procedure. There is no

clustering procedure with the highest P@k% for each k, but k-means nearly

satisfies this requirement. It is tied for highest P@1% and P@10%, and only

34

one informative partition away from being tied for highest P@5%. So for the

task of predicting informative partitions from ICV scores, k-means seems to

be a good choice relative to the other clustering procedures.

P@k% ThresholdsClustering
Procedure k = 1 k = 5 k = 10 k = 1 k = 5 k = 10
HDB-Eucl .333 (2) .333 (9) .302 (16) .763 .670 .628
HDB-cut-Eucl .167 (1) .407 (11) .378 (20) .784 .722 .673
HDB-Pear .5 (3) . 333 (9) .302 (16) .946 .892 .843
HDB-cut-Pear .5 (3) .370 (10) .283 (15) .947 .895 .862
HDB-Par .333 (2) .333 (9) .283 (15) .671 .546 .504
HDB-cut-Par .5 (3) .259 (7) .283 (15) .723 .603 .568
K-means .5 (3) .370 (10) .378 (20) .745 .705 .669
K-means-Par 0 (0) 0 (0) 0 (0) .848 .774 .707
GMM .333 (2) .185 (5) .151 (8) .660 .568 .504
GMM-Par 0 (0) .222 (6) .245 (13) .622 .541 .500

Table 2.3: P@k% values and corresponding thresholds for each clustering pro-
cedure. The value in parenthesis are the counts of informative partitions.

Table 2.3 also includes thresholds. A threshold is defined as the minimum

validation score among the top k% of validation scores. These thresholds allow

for P@k% values to be interpreted as probabilities. As an example, the k = 5

threshold for k-means is .705. This means that if k-means is applied to a

melting curve dataset, and the resulting partition has an average silhouette

width of at least .705, then we expect it to be informative with probability

P@5% = .370. Thus, even if a k-means partition has strong cluster structure,

it is unlikely to be informative.

Based on the low P@k% values in Table 2.3, we conclude that internal

validation scores cannot reliably identify informative partitions. Figure 2.13

provides an intuitive explanation for why this is the case. The blue points

(n = 100) represent informative partitions while the salmon points (n = 1000)

represent non-informative partitions. Points to the right of the dashed line are

the top 10% of points (n = 110). The probability of a blue point being in the

top 10% is 43/100 = .43, but the probability of a salmon point being in the

top 10% is only 67/1000 = .067. However, due to salmon points outnumbering

blue points 10:1, the fraction of blue points in the top 10% is only P@10% =

43/110 = .390.

35

Figure 2.13: 100 points from Gaussian N (1.3, 1); 1000 points from Gaussian
N (0, 1).

2.4 Conclusion

This chapter was motivated by the following question: can clustering melt-

ing curve datasets provide useful information about protein complexes? Sec-

tion 2.1 provided the necessary background on clustering and Section 2.2 de-

scribed the datasets and methods used in our empirical analysis.

We began the current section by applying the clustering procedures of Sec-

tion 2.2 to each of the melting curve datasets. For each clustering partition,

we used ARI to measure agreement with its corresponding complex partition.

We found that clustering provides a statistically significant level of informa-

tion about a melting curve dataset’s complex partition. However, k-means

performed about as well as the other clustering techniques and its mean ARI

score is only .162, which is not high high enough to be practically useful. So

we turned our attention to “informative” partitions, which we defined as those

with an ARI score of at least .5.

The motivation of Section 2.3.1 was to propose a plausible explanation

for the relative rarity of informative partitions in our results. We used syn-

thetic datasets to show that overlapping complexes and TPCA-inconsistent

complexes can result in a melting curve dataset’s clustering partition being

non-informative. We then posited that most melting curve datasets contain

one or both of these types of complexes.

36

Even though informative partitions are relatively rare, if they are iden-

tifiable, then clustering melting curve datasets may still be of practical use.

Section 2.3.2 investigated whether ICV scores could be used to predict informa-

tive partitions. We found that informative partitions tend to have higher ICV

scores than non-informative partitions, and that this difference is statistically

significant.

To assess whether this difference is sufficient to identify informative par-

titions, we introduced a metric called P@k%, which computes the fraction of

informative partitions among those with the highest k% of ICV scores. Ta-

ble 2.3 shows P@k% values that are no larger than .5. This means that even

if a partition has a very high ICV score (in the top k%), chances are that it

is non-informative. We attributed this result to informative partitions being

outnumbered by roughly 10:1.

Since informative partitions are relatively rare and they cannot be identi-

fied with a reasonable degree of accuracy, we conclude that clustering melting

curve datasets does not provide useful information about protein complexes.

However, clustering is not the only computational technique that can be ap-

plied to melting curves. In Chapter 3, we use information retrieval and metric

learning to investigate whether melting curves can reduce the number of ex-

periments necessary to find interactions.

37

Chapter 3

Are melting curves useful for
limiting the number of
validation experiments
necessary to find protein
interactions?

A pull-down assay is a biochemical technique used to detect potential interac-

tion partners (prey) for a protein of interest (the bait) [23]. The assay relies

on beads engineered to bind the bait. The first step in a pull-down assay is to

incubate a purified solution of the bait with the beads, allowing the beads to

bind to the bait. Next, a protein mixture is incubated with the bait-attached

beads. During this incubation phase, interactors in the protein mixture will

bind to the bait. After incubation, the beads are washed using a wash buffer

to remove any unbound proteins. Finally, the bait-interactor complexes are

detached from the beads and subjected to protein detection techniques, such

as mass-spectrometry. We refer to the identified proteins as the bait’s prey

set. Unfortunately, the prey set will surely contain many proteins that do not

interact with the bait (false positives).

There are several reasons for false positives in a prey set1. One is non-

specific binding of proteins to the beads. This means that some non-baits in

the protein mixture are likely to attach themselves to the beads. Moreover,

1See https://www.sinobiological.com/category/ip-non-specific-binding for
more information.

38

https://www.sinobiological.com/category/ip-non-specific-binding

when a non-bait attaches to the beads, it brings along its interactors, further

increasing the number of non-interactors in the prey set. For reasons such as

this, interactions can only be determined by follow-up validation experiments.

Given a pair of proteins, a validation experiment determines whether the

pair interacts. A bait’s prey set can be validated by performing a series of

validation experiments, each involving the bait and a prey protein. It is there-

fore useful to order the prey set by some measure of “likelihood of interacting

with the bait,” and perform validation experiments in this order. This can

be expected to reduce the number of experiments needed to find interactions,

which is important given that validation experiments have associated costs of

time and resources.

If both the bait and prey set have corresponding melting curves, then the

prey set can be ranked in order of increasing melting curve dissimilarity from

the bait (from smallest dissimilarity to largest). According to the TPCA ob-

servation, interacting proteins tend to have similar melting curves. Therefore,

such a ranking can be expected to rank interactors highly, thereby limiting the

number of validation experiments needed to determine interactions.

In this chapter we evaluate whether ranking a prey set in order of increas-

ing melting curve dissimilarity from the bait is useful for limiting the number

of validation experiments necessary to find interactions. Section 3.1 introduces

information retrieval, which deals with the task of ranking documents in re-

sponse to a query. The second part of Section 3.1 focuses on metric learning,

which we consider for its potential to increase the performance of information

retrieval systems. Section 3.2 describes how information retrieval can be used

as a framework to evaluate the effectiveness of ranking prey sets by melting

curve dissimilarity. And Section 3.3 contains our empirical evaluation.

3.1 Background

Section 3.1.1 describes information retrieval systems and how they can be

evaluated. Section 3.1.2 introduces metric learning and overviews a class of

metric learning algorithms.

39

3.1.1 Information Retrieval

Information retrieval (IR) systems rank objects in response to user queries.

According to [34], “the typical interaction between a user and an IR system

has the user submitting a query to the system, which returns a ranked list of

objects that hopefully have some degree of relevance to the user’s request with

the most relevant at the top of the list.”

Before a new IR system is deployed, it should be empirically evaluated

and compared to existing systems. A typical evaluation requires a test collec-

tion and one or more evaluation measures. A test collection consists of three

components:

• Q: a set of queries. Each query has a unique ID known as its qid.

• D: a set of objects known as “documents”. Each document has a unique

ID known as its docid.

• R: a set of relevance judgements in the form of qid, docid pairs. R

describes the documents in D that are relevant to each query in Q.

In response to each query in Q, an IR system ranks the documents in D,

ideally so that relevant documents (as defined in R) are highly ranked. An

IR system is evaluated by applying an evaluation measure to each ranking. In

general, an evaluation measure evaluates the extent to which relevant docu-

ments are highly ranked.

In what follows, we describe three evaluation measures. To make their

descriptions as clear as possible, we note that a binary sequence can represent a

ranking and its relevance judgments. For example, Figure 3.1 shows a ranking

of ten documents, where the first, second, fifth and seventh highest-ranked

documents are relevant.

Precision/Recall at k

Precision at k and Recall at k, commonly referred to as P@k and R@k, re-

spectively, are two evaluation measures used to evaluate IR system rankings.

40

Figure 3.1: Example ranking with four relevant documents shown in grey.

For each run, they both compute a score based only on the k highest ranked

documents. They are well-suited to evaluate IR systems for which the user is

unlikely to examine more than k documents, such as internet search engines.

P@k computes the fraction of the k highest-ranked documents that are

relevant. In Figure 3.1, P@5 = .6 because three of the top five documents are

relevant. P@k < 1 if the total number of relevant documents is less than k.

R@k computes the fraction of relevant documents that are among the k

highest ranked documents. The ranking in Figure 3.1 contains four relevant

documents. R@5 = .75 because three of the four relevant documents are

among the top five documents. R@k is non-decreasing as k increases and

becomes 1 when k is the rank of the lowest-ranked relevant document.

P/R@k can vary considerably depending on the query. It is therefore

standard to report the mean P/R@k value over all queries.

Average Precision

Average precision (AP) is different than P/R@k in that it evaluates a ranking

in its entirety. AP is computed by calculating P@k at each k where there

is a relevant document, and then taking the average of the P@k values. For

example, in Figure 3.1 relevant documents occur at ranks 1, 2, 5 and 7, so AP

is computed as follows:

AP = (P@1 + P@2 + P@5 + P@7)/4 = (1 + 1 + .6 + .57)/4 = .793 (3.1)

The maximum value of AP is 1, which occurs when a ranking contains r

relevant documents that occupy the top r positions in the ranking. AP can

vary considerably depending on the query. It is therefore standard to report

41

the mean AP value over all queries, a measure known as mean average precision

(mAP).

AP is not an absolute measure. This means that an AP value by itself

is not enough to know whether the ranking is “good” or not. To see why,

consider two rankings represented by the following binary sequences: 01 and

0100000000. Although both rankings have an AP score of .5, 01 is the worst of

two possible rankings for a document set consisting of one relevant document

and one non-relevant document, but 0100000000 is the second best of ten

possible rankings for a document set consisting of one relevant document and

nine non-relevant documents.

Instead of being an absolute measure, AP is a relative measure. This

means that given two rankings on the same set of documents, AP can be used

to assess which one is better. For example, consider two rankings represented

by the following binary sequences: 01000 and 00010. The first has an AP score

of .5 and the second an AP score of .25. In this way AP assesses that the first

ranking is better relative to the second one.

It is common to apply two IR systems to a test collection and assess which

one performs better in terms of mAP. However, in order to conclude that one

system outperforms another, it is necessary to perform a statistical test and

obtain a sufficiently small p-value. The authors of [38] show that a paired

t-test is suitable for assessing whether two systems differ significantly in their

respective mAP values. The test is conducted over the AP values of the two

systems, which can be paired based on query. The null hypothesis is that the

systems do not differ in their mAP values. The alternative hypothesis is that

the systems do differ in their mAP values. In this chapter we conclude that

one IR system outperforms another when p < .05.

3.1.2 Metric Learning

Metric learning is the task of learning a dissimilarity metric from the informa-

tion provided in a set of training examples. This allows the resulting metric

to incorporate domain-specific information. For d-dimensional vectors x and

y, many metric learners learn a Mahalanobis metric dM(x, y), parameterized

42

by a d× d matrix M , where

dM(x, y) =
√

(x− y)TM(x− y). (3.2)

Observe that when M is the identify matrix, dM corresponds to Euclidean

distance. All the Mahalanobis learners discussed in [1] learn M such that

M = LTL for some k × d matrix L. This allows the equation for dM to be

re-written as follows:

dM(x, y) =
√

(x− y)TM(x− y)

=
√

(x− y)TLTL(x− y)

=
√

(L(x− y))TL(x− y)

=
√

(Lx− Ly)T (Lx− Ly).

The final line of the derivation shows that a learned Mahalanobis metric

can be viewed as Euclidean distance over a space that has undergone the

linear transformation induced by L. This interpretation is one reason for the

popularity of Mahalanobis learners.

Weakly Supervised Metric Learning

There are a number of different forms that training data for a metric learner

can take. Here we consider metric learners that require weakly supervised

training data.

Weakly supervised training data consists of a set of positive pairs of points

S and a set of negative pairs of points D. When a weakly supervised metric

learner is applied to S∪D, it attempts to construct a dissimilarity metric such

that each positive pair gets a small dissimilarity score and each negative pair

gets a large dissimilarity score.

A weakly supervised metric learner has been employed successfully if it

results in a metric that generalizes to a new set of points. For example, suppose

a metric learner is applied to a set of training pairs such that each positive

pair corresponds to two pictures of the same person and each negative pair

corresponds to two pictures of different people. Given a new pair of pictures,

43

the learned metric should assign a small dissimilarity score if the pictures are

of the same person and a large dissimilarity score if they are of different people.

ITML

metric-learn [11] is a popular Python implementation of various metric learn-

ers. It implements three weakly supervised Mahalanobis learners: ITML [10],

MMC [42], and SDML [30]. Of these three algorithms, ITML (Information

Theoretic Metric Learning) is the only one we make use of in this chapter’s

empirical analysis. We therefore give an overview of ITML and explain why

it is used over MMC and SDML.

ITML (Information Theoretic Metric Learning) assumes a d × d positive-

definite2 prior matrix M0. Given a set of training pairs S ∪ D, ITML seeks

to learn M that approximates M0 while also ensuring that dM(x, y) is small

for (x, y) ∈ S and large for (x, y) ∈ D. Since M must approximate M0, it is

desirable that dM0 be a suitable metric for the problem at hand. Therefore,

M0 is often set to the identity matrix so that dM0 is Euclidean distance.

Suppose p is a probability density function (PDF) and q is the PDF of a

distribution that approximates p. The Kullback-Leibler (KL) divergence [21]

of p and q, denoted KL(p || q), measures the amount of information that is lost

when q approximates p. If q is identitcal to p, KL(p || q) = 0, and the higher

the KL divergence, the more information that is lost. KL(p || q) is computed

according to the following equation:

KL(p || q) =

∫
x

p(x) log
p(x)

q(x)
. (3.3)

Although M0 and M are not probability distributions, they can be mapped to

corresponding multivariate Gaussian distributions for a fixed µ:

p(x | A) =
1

(2π)d/2 det(A)1/2
exp

(
−1

2
dA(x, µ)

)
, (3.4)

where A ∈ {M0,M} and det(A) denotes the determinant of A. ITML com-

putes KL (p(x |M0) || p(x |M)) as a proxy measure for the extent to which M

2A d × d matrix M is positive-definite if it can be written as M = LTL for some k × d
matrix L with linearly independent columns. A � 0 denotes that A is positive-definite.

44

approximates M0. Thus, ITML learns M through the following optimization

problem:
min
M�0

KL (p(x |M0) || p(x |M))

subject to dM(xi, xj) ≤ u for all (xi, xj) ∈ S,

dM(xi, xj) ≥ l for all (xi, xj) ∈ D.
(3.5)

Note that u and l are user-provided threshold values, where u is the max-

imum dissimilarity a positive training pair can have and l is the minimum

dissimilarity a negative training pair can have.

Given two d×d matrices A and B, LogDet divergence is defined as follows:

Dld(A,B) = tr(AB)− log det(AB)− d. (3.6)

A result from [9] established a relationship between the KL divergence of

two multivariate Gaussians and the LogDet divergence of their correspond-

ing covariance matrices. The result implies that KL (p(x |M0) || p(x |M)) =

1
2
Dld(M,M0). Building on this result, the optimization problem of Problem 3.5

can be reformulated as follows:

min
M�0

Dld(M,M0) + γ
∑
i,j

ξij

subject to dM(xi, xj) ≤ u+ ξij for all (xi, xj) ∈ S,

dM(xi, xj) ≥ l − ξij for all (xi, xj) ∈ D.
(3.7)

The purpose of using LogDet divergence in the objective function is that unlike

KL divergence, it is finite if and only if M is positive definite, thereby ensuring

that M is positive definite without the need for additional constraints. Each

training pair in Problem 3.7 has a corresponding slack variable. The slack

variables guarantee that the constraints can be satisfied.

The objective function of Problem 3.7 consists of the sum of two terms. The

first term Dld(M,M0) measures the difference between M and M0; the second

term measures the amount of slack that is used to satisfy the constraints. In

general, there is an inverse relationship between the amount of slack that is

used and the difference between M and M0. If γ is large, then using slack

45

is costly. This puts pressure on dM to closely satisfy the constraints at the

cost of increasing the difference between M and M0. If γ is small, then using

slack is less costly. This means that M can be learned such that M closely

approximates M0 at the cost of dM only loosely satisfying the constraints.

ITML was the first algorithm to frame Mahalanobis learning as a LogDet

optimization problem requiring a prior matrix. SDML (Sparse High-Dimensional

Metric Learning) is similar to ITML in that it also relies on LogDet optimiza-

tion and a prior matrix. The primary difference between SDML and ITML is

that SDML explicitly seeks to learn a sparse matrix by minimizing the abso-

lute sum of the learned matrix’s off-diagonal elements. However, this aspect of

SDML seems unnecessary for the application of metric learning in this chap-

ter. Firstly, the melting curves to which we apply metric learners have only

9 dimensions, so there is not an exceedingly large number of parameters to

learn. Secondly, we use ITML with its prior set to the identity, which implic-

itly ensures that ITML learns a sparse matrix. For these reasons, we do not

expect SDML to outperform ITML in our application, and therefore do not

use it.

MMC (Metric Learning with Application to Clustering with Side Infor-

mation) was the first Mahalanobis distance learner. However, as its name

suggests, it is designed to learn a metric for clustering applications. Since we

do not perform clustering in this chapter, we do not use MMC.

3.2 Datasets and Methods

This section introduces the test collections and IR systems used to evalu-

ate whether it is useful to rank a prey set based on increasing melting curve

dissimilarity from the bait. Section 3.2.1 describes how a bait and prey set

with corresponding melting curves can be modelled as a test collection, when

combined with a set of ground-truth interactions to form the relevance judg-

ments. Section 3.2.2 introduces some IR systems that can be applied to the

test collections of Section 3.2.1.

46

3.2.1 Melting Curve Test Collections

In this section, we describe a procedure that constructs a test collection from a

bait, its prey set, a set of melting curves, and a set of ground-truth interactions.

Some notation is necessary to describe the details of this procedure. For a bait

b, let prey(b) be the prey set of b, and for a protein prot, let loc(prot) be the

subcellular location of prot according to the Human Protein Atlas3 [37].

Given a bait b, a set of melting curves M , and a set of ground-truth inter-

actions ints, the following procedure constructs a melting curve test collection

if possible:

1. If b /∈M , exit the procedure.

2. Let somePreys be all prey ∈ prey(b) such that prey ∈M and loc(prey) =

loc(b). If somePreys is empty, exit the procedure.

3. Let someInts be all interactions in ints such that one of the interactors

is b and the other is in somePreys. If someInts is empty, exit the

procedure.

4. Construct a melting curve test collection by setting Q as the melting

curve of b and D as the melting curves of somePreys. For each interac-

tion (b, prey) ∈ someInts, form a relevance judgement with qid = b and

docid = prey.

Step 2 removes a protein from the prey set if it has a different subcellular

location than the bait or does not have a melting curve in M . This is done

because we are unaware of any interaction that involves proteins from different

subcellular locations. Step 3 identifies the interactions that can serve as rele-

vance judgments. If there are no such interactions, then a test collection is not

formed. Step 4 identifies the test collection’s query, documents and relevance

judgments. We refer to the above procedure as CTC (Construction of Test

Collections).

3https://www.proteinatlas.org/humanproteome/subcellular

47

Sources of data for CTC

Here we describe the data used as input to CTC. BioPlex 3.0 [19] is an online

repository4 of pull-down assay data for 10,128 human bait proteins. Each

experiment was performed with a protein mixture derived from 293T cells.

Tan et al. [41] published 7,945 melting curves5 derived from 293T intact

cells. They also compiled a set of 111,776 interactions6 from multiple online

databases, along with the number of scientific publications that support each

interaction.

As discussed in the introduction of Chapter 2, [33] validated 33,000 pur-

ported interactions obtained from multiple online databases. They found that

interactions reported by multiple publications had a significantly lower false

positive rate than interactions reported by a single publication relying on a

single detection method. Of the 111,776 interactions provided by [41], 13,601

are supported by multiple publications.

Due to the higher reliability of the 13,601 interactions supported by multi-

ple publications, we use these as our ground-truth interactions. Unfortunately

this set of ground-truth interactions is highly incomplete, as described below.

There are an estimated 650,000 interactions among human proteins [40].

Assuming that each gene codes for one protein, there are roughly 20,000 human

proteins [29]. The interactions in our ground-truth set are collectively formed

from 3852 proteins. Assuming that each pair of the 20,000 human proteins

is equally likely to be an interaction, then in expectation there should be

24,107 interactions formed from the ground-truth proteins. We derived this

by computing the expected value of the hypergeometric7 distribution with

its parameters set as n = 650000, N =
(
20000

2

)
, and K =

(
3852
2

)
. Thus, we

estimate that our ground-truth is missing 10,506 interactions, 43.6% percent

of its potential number of interactions.

4The BioPlex website is https://bioplex.hms.harvard.edu/. We specifically made use of
the BioPlex 3.0 Unfiltered Interaction List dataset downloadable from the website.

5See Table S21 of the supplementary material of [41]
6See Table S2 of the supplementary material of [41]
7The hypergeometric distribution describes the probability of drawing k marked objects

from a population of N objects with K total marked objects, when the draws occur without
replacement. The expectation of the distribution is nK

N

48

Running CTC

We ran CTC for each of the 10,128 BioPlex baits, with M set to the 7,945

melting curves derived from 293T intact cell and ints set to our 13,601 ground-

truth interactions. This resulted in 1414 melting curve test collections. As the

number of test collections relative to the number of baits shows, most baits

don’t result in a test collection. This is due to CTC exiting in steps 1 through

3 for most baits, often because only 4039 of the 10,128 baits have corresponding

melting curves.

Table 3.1 shows that there is considerable variation among the test col-

lections, both in terms of the number of documents |D| (size of the prey set)

and the number of relevance judgements |R| (number of interactors in the

prey set). In general, only a very small percentage of a query’s documents are

relevant. For instance, the average number of documents in a test collection

with 5 relevance judgements is about 278, meaning that less than 2% of docu-

ments are relevant to the query. Moreover, the test collection with the highest

rate of relevant documents contains 33 relevant documents among its 89 total

documents.

of test
collections

Mean |D| Max. |D| Min. |D| Mean |R| Max. |R| Min. |R|

1414 276.3 1025 16 5.62 56 1

Table 3.1: Some statistics of the test collections

3.2.2 Information Retrieval Systems for Melting Curve
Test Collections

A standard way to create an IR system is by way of a dissimilarity measure

that can be applied to each possible query-document pair. For a given query,

the documents can then be ranked in order of increasing dissimilarity from the

query. Since the query and documents of each of our test collections are melting

curves, we used the dissimilarity measures of Section 2.2.2 to create three IR

systems: IR-Eucl (Euclidean distance), IR-Pear (Pearson dissimilarity),

and IR-Par (Euclidean distance applied after the melting curves of the query

49

and documents have been converted to standardized parametric form).

In addition to IR systems based on existing metrics, we also used ITML to

create two categories of learned-metric IR systems. IR-ITML-all systems

are based on ITML metrics learned on both positive and negative training

pairs, while IR-ITML systems are based on ITML metrics learned only on

positive training pairs. Each positive pair corresponds to the melting curves of

an interaction, and each negative pair corresponds to a random pair of melting

curves, which can be viewed as a non-interaction. Although it is possible to

select a random pair of melting curves that corresponds to an interaction, it

is highly unlikely. Indeed, out the
(
20000

2

)
pairs of proteins, only an estimated

650,000 (.325%) correspond to interactions.

3.3 Results

We applied IR-Eucl to each of the test collections from Section 3.2.1. This

resulted in 1414 rankings, one for each test collection. The mAP of these

rankings is .148. As discussed in Section 3.1.1, mAP is a relative measure, so

more context is necessary to interpret the mAP of IR-Eucl.

To see if IR-Eucl generates better-than-random rankings, we constructed

an empirical distribution of mAP for a random ranking system applied to our

test collections. Below is the procedure we followed:

1. Generate a random ranking of each test collection’s documents.

2. Compute the mAP of the 1414 random rankings

3. Repeat steps 1 and 2 10,000 times.

Performing the above procedure resulted in an empirical distribution of

10,000 mAP values. Since the mAP of IR-Eucl is higher than all 10,000

mAP values in the distribution, we conclude that IR-Eucl outperforms a

random ranking system. This means that compared to performing validation

experiments in random order, IR-Eucl on average reduces the number of

validation experiments needed to find interactions between a bait and prey

50

set, although at this point we do not know the magnitude of this reduction or

how often it occurs.

Next, we applied IR-Pear and IR-Par to the test collections and obtained

mAP values of .153 and .118, respectively. With the mAP values of IR-Eucl

and IR-Pear being so close, we performed a paired t-test over their respective

AP values to see how they compare. We obtained p = .0877 > .05 and

therefore do not have enough evidence to conclude that IR-Pear outperforms

IR-Eucl.

3.3.1 How often do information retrieval systems re-
duce the need for validation experiments?

So far we have seen that IR-Eucl on average reduces the number of vali-

dation experiments needed to find interactions between a bait and prey set.

However, this does not imply that IR-Eucl always or even often reduces the

need for validation experiments. Indeed, it is possible that IR-Eucl rarely

accomplishes this, but when it does, the reduction is large. Therefore, we now

investigate how often IR-Eucl reduces the need for validation experiments.

One way to assess the quality of a ranking is to find the probability that its

AP is higher than that of a random ranking. For each of our test collections,

we constructed an empirical AP distribution for a random ranking system

by generating 10,000 random rankings of the test collection’s documents, and

computing the AP of each ranking. Given a ranking of one of our test collec-

tions, we define the ranking’s “improvement probability” (IP) as the fraction

of values in the corresponding empirical AP distribution that are smaller than

the ranking’s AP. For each test collection, we computed the IP of the rankings

generated by IR-Eucl, IR-Pear, and IR-Par. The results are summarized

in Table 3.2.

Table 3.2 shows that 75.5% of IR-Eucl rankings have an improvement

probability exceeding .5 and 31.3% have an improvement probability exceeding

.95. A practical interpretation of these results is that for 75.5% of pull-down

assays, IR-Eucl has at least a .5 chance of reducing the need for validation

experiments. Moreover, for 31.3% of pull-down assays, IR-Eucl has at least a

51

IR system mAP
% of rankings
with IP > .95

% of rankings
with IP > .5

IR-Eucl .148 31.3 75.5
IR-Pear .153 32.4 73.7
IR-Par .118 23.8 72.6

Table 3.2: Percentage of rankings with improvement probabilities greater than
.95 and .5

.95 chance of reducing the need for validation experiments.

3.3.2 How many validation experiments are needed to
find a single interactor?

In this section, we quantify the number of validation experiments necessary

to find a single interaction between a bait and prey set. Of course, the size

of a prey set and the number of interactors it contains affects how many

experiments are required. To control for this, we standardized each of our test

collections to contain exactly 50 documents (prey proteins), with at most five

of them being relevant (interactors). Given a test collection (Q,D,R), our

procedure for standardizing it is described below.

1. Create a new set of relevance judgments Rnew. If |R| > 5, let Rnew

be a random sample of 5 relevance judgments from R. If |R| ≤ 5, let

Rnew = R.

2. Create two subsets of D, one made up of relevant documents (Drel) and

the other made up of non-relevant documents (Dnrel). Let Drel be all

documents in Rnew and Dnrel be all documents in D that are not in R.

3. If |Drel|+ |Dnrel| < 50, exit the procedure.

4. Create a new set of documents Dnew. Let Dnew consist of Drel plus a

random sample of 50−Drel documents from Dnrel,

5. Modify the test collection by making D = Dnew and R = Rnew.

Step 1 creates a new set of relevance judgements Rnew. Step 2 ensures that

the new document set will not contain any interactors without a corresponding

52

relevance judgment in Rnew. Steps 3 and 4 create the new document set

Dnew (if possible). We applied the above procedure to our test collections,

which resulted in 1,383 standardized test collections. Test collections with one

relevant document represent prey sets where 1
50
×100 = 2% of proteins interact

with the bait. Similarly, test collections with two, three, four, or five relevant

documents represent prey sets where 4%, 6%, 8%, or 10% of proteins interact

with the bait.

We applied IR-Eucl to each of the standardized test collections, recording

the rank of the highest-ranked relevant document. Figure 3.2 shows that there

is considerable variation in the number of experiments necessary to find one

interaction. In fact, among test collections containing only a single relevant

document, there are 50 (of 460) where the lone relevant document gets the

highest rank and five where it gets the lowest rank. Still, for each category of

test collection, the highest density region occurs between ranks one and five,

indicating that IR-Eucl tends to reduce the number of experiments to find

one interaction.

Figure 3.2: Number of experiments to find a single interactor when IR-Eucl is
used to rank prey sets of size 50 with between 1 and 5 interactors. A category’s
navy point is the mean number of experiments. A category’s navy diamond is
the theoretical expected number of experiments if experiments are performed
in random order according to the negative hypergeometric distribution.

53

Observe that each category in Figure 3.2 contains both a navy point and

a navy diamond. The navy point corresponds to the mean number of experi-

ments needed to find a single interaction when IR-Eucl defines the order of

experiments, while the navy diamond is the theoretical expected number of

experiments needed to find a single interaction, assuming prey proteins are

processed in random order. This expectation is derived from the negative

hypergeometric distribution [39], explained below.

Consider a population of N objects, M of which are marked. Suppose

objects are randomly drawn without replacement from the population until

m ≤ M marked objects are obtained. Then the number of objects X in the

sample follows the negative hypergeometric distribution. The expected value

of X is given by the following equation:

E(X) = m
N + 1

M + 1
(3.8)

In our context N corresponds to the size of the prey set, M to the number

of interactors in the prey set, and m to the desired number of interactions.

This means that for each test collection, N = 50, M ∈ {1, 2, 3, 4, 5}, depending

on how many relevant documents it contains, and m = 1. Thus, the expected

number of experiments needed to find a single interaction in a prey set of size

50 when prey are processed in random order is 51
M+1

, as shown by the blue

diamonds in Figure 3.2.

Table 3.3 reports some summary statistics for the results in Figure 3.2. We

say a ranking represents a “single experiment success” if the highest ranked

document is relevant. Although most rankings do not correspond to single

experiment successes, some do. Among test collections containing a total of

five relevant documents (modelling prey sets in which 10% of proteins are

interactors), nearly 40% of rankings are single experiment successes.

Table 3.3 also shows that, regardless of the total number of interactors in

a prey set, IR-Eucl on average results in fewer experiments to find one inter-

action than would be expected if the experiments were performed in random

order. The mean reduction varies from 28.6% for test collections that con-

54

Total # of
interactors

of
rankings

of 1-expt
successes

Expected #
of expts

Mean #
of expts

Mean reduction
in # of expts

of expt-reducing
rankings

1 460 50 (10.9%) 25.5 18.2 7.3 (28.6%) 306 (66.5%)
2 246 44 (17.9%) 17 11.9 5.1 (30%) 176 (71.5%)
3 135 32 (23.7%) 12.75 8.75 4 (31.4%) 99 (73.3%)
4 98 29 (29.6%) 10.2 7.28 2.92 (28.6%) 72 (73.5%)
5 444 176 (39.6%) 8.5 4.40 4.1 (48.2%) 373 (84%)

Table 3.3: Summary statistics for IR-Eucl applied to standardized test col-
lections. Column 3 counts the number of single experiment successes. Column
4 is the expected number of experiments to find a single interactor, accord-
ing to the negative hypergeometric distribution. Column 7 is the number of
prey sets for which an interactor is found in fewer experiments than would be
expected if the experiments were performed in random order.

tain one or four relevant documents, to 48.2% for test collections that contain

five relevant documents. The mean percentage reduction irrespective of the

number of relevant documents is 35.4%.

Lastly, Table 3.3 shows that for most prey sets, IR-Eucl can be expected

to reduce the number of experiments necessary to find one interaction. The

percent probability of reduction varies from 66.5% for test collections with one

relevant document up to 84% for test collections with five relevant documents

3.3.3 Comparing Information Retrieval Systems Based
on Learned Metrics to IR-Eucl

As in previous sections, we consider a scientist who has the melting curves of a

pull-down assay, and who would like to determine interactions between the bait

and proteins in the prey set. New to this section is the additional assumption

that the scientist has the melting curves of some proteins that are known to

interact with the bait. Although the scientist could use IR-Eucl to define

an order in which to perform validation experiments on the prey set, such

an approach ignores the melting curves of the known interactors, potentially

leaving useful information on the table. In this section, we describe how the

melting curve of a bait and the melting curves of its known interactors can be

combined to form a training set suitable for weakly supervised learning. We

then compare IR systems based on learned metrics to IR-Eucl.

55

Devising a training set suitable for weakly supervised metric learn-
ing

Let b be the melting curve of a bait and c1, ..., cn be the melting curves of

n proteins known to interact with the bait. Pairing b with each of c1, ..., cn

forms a set of positive pairs: S = {(b, c1), ..., (b, cn)}. Similarly, pairing b with

m randomly selected melting curves c′1, ..., c
′
m forms a set of negative pairs

D = {(b, c′1), ..., (b, c′m)}. Whereas each positive pair corresponds to a bait and

an interactor, each negative pair can be viewed as a bait and a non-interactor.

If a weakly supervised metric learner is applied to S ∪ D, the resulting

metric will place interactors in S close to the bait and likely non-interactors

in D far from the bait. It is reasonable to expect the interactors in S to bear

some degree of melting curve similarity to the interactors in b’s prey set, as

the TPCA observation suggests that all interactors of b should have similar

melting curves to b (and thus to each other). It’s also reasonable to expect the

melting curves of non-interactors in D to represent the distribution of non-

interactor melting curves in b’s prey set. If both these expectations hold, the

learned metric should generalize to the prey set and place interactors close

to the bait and non-interactors far from the bait. Thus, ranking a prey set

according to a learned metric could outperform IR-Eucl.

Evaluating learned-metric information retrieval systems

We began by modifying our test collections to make them suitable for the task

of comparing learned metric IR systems to IR-Eucl. Once a test collection is

modified, we refer to it as an ML-compatable test collection, where ML is short

for “Metric Learning”. For each test collection in which it was possible, we

extracted ten documents to form a training set suitable for a weakly supervised

metric learner. Given a test collection (Q,D,R), our procedure works as

follows:

1. If the test collection contains 5 or fewer relevant documents or 5 or fewer

non-relevant documents, exit the procedure.

2. Extract a random sample D1 = {d1, d2, d3, d4, d5} of 5 relevant docu-

56

ments from D. Remove their corresponding relevance judgments from

R.

3. Extract a random sample D2 = {d6, d7, d8, d9, d10} of 5 non-relevant doc-

uments from D.

4. Form a set of positive pairs S by pairing the query q with each doc-

ument in D1 so that S = {(q, d1), ..., (q, d5)}, and form a set of nega-

tive pairs D by pairing the query q with each document in D2 so that

D = {(q, d6), ..., (q, d10)}.

Step 1 ensures that the test collection contains sufficient documents to still

be meaningful after the extractions of steps 2 and step 3. We note that 1052

of 1414 test collections are eleminated due to having five or fewer relevant

documents, but no test collections are eleminated due to having five or fewer

non-relevant documents. D1 serves to model the melting curves of known

interactors and D2 contains a random sample of melting cures that can be

viewed as non-interactors. Step 4 creates a set of training pairs suitable for a

weakly supervised metric learner

We applied IR-ITML, IR-ITML-all and IR-Eucl to each of the 362

ML-compatible test collections, and computed the mAP of each system. Ta-

ble 3.4 summarizes the results and shows that IR-ITML has the highest mAP.

We performed a paired t-test over the AP values of IR-ITML and IR-Eucl

and obtained a p-value of 2.01e-4, showing that IR-ITML has a significantly

higher mAP than IR-Eucl. This means that IR-ITML on average generates

better rankings than IR-Eucl, although how much better is uncertain at this

point. It additionally shows that ITML is capabale of learning a metric that

not only places the known interactors in a training set close to the bait, but

also generalizes to place prey set interactors close to the bait.

We then performed a paired t-test over the AP values of IR-ITML and

IR-ITML-all and obtained a p-value of 6.63e-9, showing that IR-ITML

significantly outperforms IR-ITML-all. All things being equal, machine

learning algorithms perform better as the amount of training data increases.

57

IR system mAP
of rankings
with IP > .95

of rankings
with IP > .5

IR-ITML .257 182 (50.3%) 314 (86.7%)
IR-ITML-all .241 175 (48.3%) 314 (86.7%)
IR-Eucl .224 156 (43.1%) 291 (80.4%)

Table 3.4: Performance of IR systems on the 362 ML-compatible test collec-
tions in terms of mAP and improvement probability

For this reason, we need to explain why IR-ITML, whose metrics are based

on smaller training sets than IR-ITML-all, is the better performing of the

two.

One possible explanation relates to the negative pairs on which IR-ITML-

all was trained. Its negative pairs are formed from randomly selected melting

curves, making them highly variable. Thus, by chance some negative pairs

could be very close to some positive pairs, which could block some positive

pairs from affecting the resulting ITML metric. In such a case, we would

expect IR-ITML, which does not use negative pairs, to learn a more effective

metric than IR-ITML-all

We also computed the improvement probability of each ranking according

to the empirical procedure outlined in Section 3.3.1. Table 3.4 shows the

number and percentage of rankings with IP > .95 and IP > .5 for each of the

three IR systems. Compared to IR-Eucl, IR-ITML generates more rankings

with an improvement probability of at least .5 (314 vs. 291) and more rankings

with an improvement probability of at least .95 (182 vs. 156).

Can IR-ITML reduce the number of validation experiments to find
one interaction compared to IR-Eucl?

We saw previously that IR-ITML outperforms IR-Eucl by a statistically

signifcant margin. This motivates us to quantify the extent to which IR-

ITML can reduce the number of validation experiments necessary to find one

interaction compared to IR-Eucl.

In order to evaluate IR-ITML for this task, we first standardized our ML-

compatible test collections according to the standardization procedure of Sec-

tion 3.3.2. This resulted in 359 (a decrease of 3) standardized ML-compatible

58

test collections. We then applied IR-ITML and IR-Eucl to each test collec-

tion. As in Section 3.3.2, we evaluated each ranking according to the rank of

the highest ranked relevant document. The results for IR-Eucl are shown in

Table 3.5 and the results of IR-ITML are shown in Table 3.6.

Total # of
interactors

of
rankings

of 1-expt
successes

Expected #
of expts

Mean #
of expts

Mean reduction
in # of expts

of expt-reducing
rankings

1 49 5 (10.2%) 25.5 17.5 8 (31.4%) 33 (67.4%)
2 35 5 (14.3%) 17 14.9 2.1 (12.4%) 22 (62.9%)
3 35 11 (31.4%) 12.75 6.97 5.78 (45.3%) 29 (82.85%)
4 24 9 (37.5%) 10.2 5.63 4.57 (44.8%) 20 (83.3%)
5 216 98 (45.4%) 8.5 4.75 3.75 (44.1%) 177 (81.9%)

Table 3.5: IR-Eucl applied to standardized ML-compatible test collections.
If a cell’s value is in bold, then IR-Eucl performs better than IR-ITML. See
Table 3.3 for definitions of the columns.

Total # of
interactors

of
rankings

of 1-expt
successes

Expected #
of expts

Mean #
of expts

Mean reduction
in # of expts

of expt-reducing
rankings

1 49 6 (12.2%) 25.5 16.1 9.4 (36.9%) 32 (65.3%)
2 35 6 (17.1%) 17 9.71 7.29 (42.9%) 28 (80%)
3 35 8 (22.9%) 12.75 7.77 4.98 (39.1%) 29 (82.9%)
4 24 11 (45.8%) 10.2 4.13 6.07 (59.5%) 22 (91.7%)
5 216 107 (49.5%) 8.5 3.77 4.73 (55.6%) 190 (88.0%)

Table 3.6: IR-ITML applied to ML-compatible, standardized test collections.
If a cell’s value is in bold, then IR-ITML performs better than IR-Eucl. See
Table 3.3 for definitions of the columns.

The preponderance of bold cells in Table 3.6 compared to Table 3.5 pro-

vides evidence that IR-ITML outperforms IR-Eucl according to “number of

single experiment successes”, “mean number of experiments to find one interac-

tion”, and “number of experiment-reducing rankings”.To see if this difference

in performance is significant, we used a paired t-test to compare IR-Eucl to

IR-ITML in terms of the mean number of validation experiments to find one

interaction. This test was conducted over 359 pairs, where each pair consisted

of the rank of the highest-ranked relevant document in the IR-Eucl ranking

and the IR-ITML ranking of a test collection. On average IR-ITML results

in 1.30 fewer experiments than IR-Eucl and this difference is statistically

significant (p = 9.02e-3).

To summarize the extent to which IR-ITML outperforms IR-Eucl, we

computed the average percent reduction in number of experiments for both

59

systems. We found that on average, IR-ITML reduces the number of vali-

dation experiments to find one interaction by 50.4%, compared to 39.4% for

IR-Eucl. In other words, when performing validation experiments to find

one interactions, IR-ITML can be expected to save 11% more experiments

than IR-Eucl.

Since IR-ITML significantly outperforms IR-Eucl in terms of mAP and

the mean number of experiments to find one interaction, we conclude that

IR-ITML should be used over IR-Eucl whenever a scientist has access to

the melting curves of five or more known interactors.

3.3.4 Some Comments on Interpreting our Results

In this section, we make some comments on interpreting our results. Firstly,

ranking a prey set in order of increasing melting curve dissimilarity from the

bait does not necessarily require a scientist to invest the resources to pro-

duce an original set of melting curves. In fact, each of our test collections is

based on publicly available melting curves not derived from the corresponding

pull-down assay’s protein mixture. Thus, if a prey set has publicly available

melting curves, the ranking produced by our technique can be viewed as “free”

information.

However, Tan et al. [41] show that a protein’s melting curve can depend on

the protein mixture from which it was generated. For instance, they showed

that the melting curves of the Origin Recognition Complex vary considerably

depending on whether they are obtained from intact cells or lysate. Further-

more, [19] found that of 118,162 purported interactions in 293T cells, only

35,704 of them could be detected in HCT116 cells, indicating that many in-

teractions only occur in certain protein mixtures. In light of these results, we

expect our technique to perform best when the melting curves used are derived

from the pull-down assay’s protein mixutre. Thus, in cases where this is pos-

sible, the results presented in this chapter likely underestimate the capability

of our technique.

Our last comment is that relevant documents being mislabelled as non-

relevant leads to rankings getting lower-than-deserved evaluation scores. For

60

example, the ranking 1111100000 is perfect and achieves an AP of 1. However,

if the highest and fourth-highest ranked documents are incorrectly considered

non-relevant, then the ranking appears to be 011010000 and achieves an AP

of .589.

Recall that our set of ground-truth interactions is incomplete. Since each

relevance judgment in our test collections corresponds to a ground-truth in-

teraction, many of our test collections are surely missing relevance judgments,

leading to some relevant documents being mislabelled as non-relevant. This is

therefore another reason why the results of this chapter likely underestimate

the performance of our technique.

3.4 Conclusion

This chapter investigated whether ranking a prey set in order of increasing

melting curve dissimilarity from the bait is useful for limiting the number of

validation experiments necessary to find interactions. Section 3.1 introduced

information retrieval and metric learning. Section 3.2 described how IR tech-

niques and metric learning were applied to perform our empirical analysis.

The first result of Section 3.3 was that IR-Eucl significantly outperforms

random ranking systems. We then concluded that, compared to performing

validation experiments in random order, IR-Eucl reduces the number of val-

idation experiments necessary to find interactions.

Section 3.3.1 investigated how often IR-Eucl can reduce the need for

validation experiments. We found that for 75.5% of pull-down assays, the

ranking generated by IR-Eucl has at least a 50% chance of reducing the

need for validation experiments. Moreover, for 31.3% of pull-down assays,

the ranking has at least a 95% chance of reducing the need for validation

experiments.

Section 3.3.2 sought to quantify the number of validation experiments

needed to find one interaction. We found that for prey sets of size 50 with five

interactors, an IR-Eucl ranking results in a “single experiment successes”

nearly 40% of the time. Additionally, for prey sets of size 50 with a single

61

interactor, on average 18.2 experiments would be required to find a single

interaction, which is 7.3 fewer than would be expected if experiments were

performed in random order. We summarized this section by noting that on

average IR-Eucl reduces the number of validation experiments to find one

interaction by 35.4%.

Section 3.3.3 considered the situation where a scientist has access to the

melting curves of some proteins known to interact with the bait. To take ad-

vantage of this situation, we proposed IR-ITML and IR-ITML-all, two cat-

egories of learned-metric IR systems capable of learning a metric from training

pairs formed from the melting curves of known interactors. When evaluated

in terms of mAP, we found that IR-ITML significantly outperforms both IR-

ITML-all and IR-Eucl. We also found that on average IR-ITML reduces

the number of validation experiments necessary to find one interaction by 11%

more than IR-Eucl.

In Section 3.3.4 we made some comments on interpreting our results.

Firstly, since many melting curves are publicly available, our technique can

potentially be used without having to generate an original set of melting

curves. However, we expect our technique to perform best when the melting

curves used are obtained from the pull-down assay’s protein mixture. Since

our empirical analysis used publicly available melting curves and our relevance

judgments are based on an incomplete set of ground-truth interactions, we con-

cluded that our empirical analysis likely underestimates the capability of our

technique.

Based on the empirical analysis performed in Section 3.3, we conclude

that our technique, namely ranking a prey set in order of increasing melting

curve dissimilarity from the bait, is useful for limiting the number of validation

experiments necessary to find interactions.

62

Chapter 4

How Melting Curve
Dissimilarity can be Used to
Detect Proteins that
Differentially Interact

So far we have seen a number of limitations of using melting curve dissimilarity

to determine protein interactions. For example, we saw that melting curves

of distinct complexes may occupy the same region of melting curve space,

as shown in Figure 2.10 (B) and Figure 2.11 (C). This prevents clustering

algorithms from finding clusters that correspond to protein complexes. We

also saw that despite TPCA, some interactions do not have similar melting

curves. This can be see in Figure 3.2 and Table 3.3, which show that for 33.5%

of prey sets containing a single interactor, the interactor is more dissimilar to

the bait than most of the non-interactors. Below we give a biological reason

for an interaction’s melting curves being dissimilar.

It is not unusual for a protein to be involved in numerous interactions in

multiple complexes. In fact, UniProt ID: Q13547 is found in 41 of the 558 CO-

RUM complexes considered by [41]. Figure 4.1 (A) depicts a protein mixture

consisting of equal amounts of a 4-protein complex and a 5-protein complex.

Observe that the purple protein occurs in both complexes. When heated, half

of the purple proteins will denature as part of the 4-protein complex and the

other half will denature as part of the 5-protein complex. This leads to the

purple protein having a melting curve that is between the TPCA profiles of

63

the two complexes, as shown in Figure 4.1 (B). Therefore, any interaction in-

volving the purple protein and a protein from one of the two complexes will

consist of two dissimilar melting curves.

Figure 4.1: (A) A protein mixture consisting of equal amounts of a 4-protein
complex and a 5-protein complex. The purple protein occurs in both com-
plexes. (B) The melting curves of the protein mixture.

Due to the limitations of using melting curve dissimilarity to determine

protein interactions, it is unlikely that the empirical results of Chapters 2

and 3 can be meaningfully improved by computational tools that we have not

considered.

In this chapter, we describe how melting curve dissimilarity can be used

to detect proteins that differentially interact. A differential interaction occurs

between two proteins if they interact in one condition but do not interact

in another condition. According to TPCA, there is evidence of a differential

interaction if the melting curves of two proteins are similar in one condition

but dissimilar in another condition. Therefore, when melting curves are ob-

tained in two conditions, they can potentially be used to detect proteins that

differentially interact.

Section 4.1 describes a previously published differential interaction mea-

sure F , and how it can be used to detect proteins that differentially interact.

Section 4.2 identifies a problem with F through an illustrative example of

melting curves obtained in two conditions. Motivated by the problem identi-

fied in Section 4.2, Section 4.3 proposes an improved differential interaction

64

measure.

4.1 Detecting Proteins that Differentially In-

teract

Given two proteins a and b with corresponding melting curves obtained in

two conditions (denoted 0 and 1), Kurzawa et al. [22] proposed the following

differential interaction measure:

F (a, b) =
|d0(a, b)− d1(a, b)|

min (d0(a, b), d1(a, b))
, (4.1)

where d0(a, b) and d1(a, b) are the melting curve dissimilarities of a and b

in conditions 0 and 1. We use the variable F because that is what is used

in [22]. Suppose that d0(a, b) < d1(a, b). Then F (a, b) increases as d0(a, b)

decreases and d1(a, b) increases. Therefore, F (a, b) increases as the melting

curve evidence of a differential interaction between a and b grows stronger.

To detect proteins that differentially interact, Kurzawa et al. proposed

forming an empirical null distribution for F . This can be done by computing

F for a large number (e.g. 10,000) of randomly selected protein pairs. An

empirical p-value for two proteins a and b can be calculated as the fraction of

values in the null distribution that are at least as high as F (a, b). Two proteins

demonstrate melting curve evidence of a differential interaction if their p-value

is below a certain threshold (e.g. .05).

Forming an empirical null distribution for F requires a large number of

melting curves. In fact, a distribution of size 10,000 requires the melting curves

of at least 142 proteins in two conditions, as
(
141
2

)
= 9870 < 10, 000. Although

mass spectrometry can be used to generate thousands of melting curves [41],

less expensive protein detection methods may only produce melting curves for

a targeted class of proteins. If there are not enough melting curves to generate

a sufficiently large null distribution for F , we propose ranking protein pairs

in order of decreasing differential interaction scores (from highest F score to

lowest F score). The higher a protein pair’s rank, the more melting curve

evidence there is that the pair differentially interacts. Ranking is particularly

65

useful if a scientist is interested in obtaining the k protein pairs that are most

likely to differentially interact.

4.2 A Problem with F

Suppose the melting curve of a protein a has been obtained in two conditions

(0 and 1). If a does not differentially interact, then a is part of the same set

of interactions in both conditions. Therefore, a’s condition 0 and 1 melting

curves will be approximately the same, with any dissimilarity attributable to

measurement error. However, if a differentially interacts with a protein b,

then in one condition, a will denature as part of a complex formed with b,

but in the other condition, a will denature independently of b. Therefore, a’s

condition 0 and 1 melting curves may be quite dissimilar. Thus, the greater

the dissimilarity between a protein’s condition 0 and 1 melting curves, the

more likely the protein is to be involved in a differential interaction.

Figure 4.2 shows an illustrative example of three proteins’ melting curves

obtained in two conditions. Observe that the purple protein’s condition 0 and

1 melting curves are approximately the same. In contrast, the blue protein’s

melting curves are quite dissimilar and the green protein’s melting curves are

even more dissimilar than those of the blue protein. Table 4.1 provides the

soluble fraction values of each melting curve. It also contains the dissimilarity

of each protein’s condition 0 and 1 melting curves as measured by Euclidean

distance.

When Euclidean distance is used as the dissimilarity measure, F (green, purple) =

10.8 > F (green, blue) = 5.07, implying that the green and purple proteins are

more likely to differentially interact than the green and blue proteins. This is

because the difference in Euclidean distance of the green and purple melting

curves is greater than the difference in Euclidean distance of the green and

blue melting curves.

However, the purple protein’s condition 0 and 1 melting curves are ap-

proximately the same, as their Euclidean distance is only .0609 according to

Table 4.1. Therefore, the purple protein’s melting curves provide no evidence

66

Figure 4.2: Illustrative example of three melting curves obtained in two con-
ditions.

that the purple protein is involved in a differential interaction. In contrast, the

green and blue proteins’ condition 0 and 1 melting curves have high dissimi-

larities of .739 and .421, respectively, as measured by Euclidean distance. This

is evidence that the green and blue proteins are involved in differential inter-

actions. Therefore, contrary to the differential interaction scores produced by

F , we contend that the green and blue proteins are more likely to differentially

interact than the green and purple proteins. In the next section, we produce

a differential interaction score that is consistent with this assertion.

Condition 0 Condition 1
Protein

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

Euclidean
Distance

Green 1.00 .90 .29 .12 .09 .08 1.00 1.00 .88 .51 .25 .18 .739
Blue 1.00 .85 .25 .10 .07 .06 1.00 .92 .65 .21 .08 .05 .421
Purple 1.00 .97 .81 .45 .21 .14 1.00 .99 .84 .49 .23 .16 .0609

Table 4.1: Soluble fraction values for the melting curves of Figure 4.2. The
right-most column is the Euclidean distance between a protein’s condition 0
and 1 melting curves.

4.3 An Improved Differential Interaction Mea-

sure

In this section, we propose an improved differential interaction measure that

takes into account whether both proteins’ condition 0 and 1 melting curves

show evidence of a differential interaction. Given two proteins a and b with

67

corresponding condition 0 and 1 melting curves, the improved differential in-

teraction measure is defined as follows:

∆(a, b) = F (a, b) ·min(d01(a), d01(b)), (4.2)

where d01(a) and d01(b) are the dissimilarities of the condition 0 and 1 melting

curves for a and b.

Table 4.2 shows ∆(green, purple) and ∆(green, blue). ∆(green, purple) is

computed by multiplying F (green, purple) = 10.7 by d01(purple) = .0609,

where d01(purple) is obtained from Table 4.1. Likewise, ∆(green, blue) is

computed by multiplying F (green, blue) = 5.07 by d01(blue) = .421, where

d01(blue) is obtained from Table 4.1. Observe that ∆(green, blue) > ∆(green, purple),

as the purple protein’s condition 0 and 1 melting curves are approximately the

same in both conditions, causing d01(purple) to be nearly 0, but the blue

protein’s condition 0 and 1 melting curves are quite dissimilar in the two con-

ditions, causing d01(blue) to be nearly seven times higher than d01(purple).

Unlike F , ∆ is consistent with our assertion that the green and blue proteins

are more likely to differentially interact than the green and purple proteins.

Protein a Protein b F (a, b) ∆(a, b)
Green Purple 10.8 .658
Green Blue 5.07 2.13

Table 4.2: Differential interaction scores according to F and ∆.

4.4 Conclusion

In this chapter, we described how melting curve dissimilarity can be used to

detect proteins that differentially interact. Section 4.1 introduced the differen-

tial interaction score of Kurzawa et al., known as F , and two ways that F can

be used to detect proteins that differentially interact. The first way is to form

an empirical null distribution for F , and use it to compute p-values for protein

pairs. If a protein pair has a p-value below a certain threshold, then it demon-

strates melting curve evidence of a differential interaction. The second way is

to rank protein pairs in order of decreasing differential interaction scores. The

68

higher a protein pair’s rank, the more melting curve evidence there is that the

pair differentially interacts.

Section 4.2 began by noting that the greater the dissimilarity between

a protein’s condition 0 and 1 melting curves, the more likely the protein is

to be involved in a differential interaction. We then computed F for two

protein pairs, one pair containing a protein with condition 0 and 1 melting

curves that are approximately the same, and another pair made up of two

proteins that both have highly dissimilar condition 0 and 1 melting curves.

Despite our observation, we found the F score of the former protein pair to

be greater than that of the latter pair, implying that the former pair is the

most likely to differentially interact. Therefore, Section 4.3 proposed ∆, an

improved differential interaction measure that takes into account whether both

proteins’ condition 0 and 1 melting curves show evidence of being involved in

a differential interaction. In contrast to F , ∆ gave the latter pair the highest

differential score, implying that the latter pair is the most likely to differentially

interact.

69

Chapter 5

Conclusion

Although Tan et al. proposed TPCA and provided empirical evidence that it

exists, they did not attempt to determine interactions by applying computa-

tional tools to melting curve datasets. In this thesis, we applied computational

tools to melting curve datasets, and described the opportunities and limita-

tions of such tools for determining protein interactions.

Chapter 2 asked the following question: can melting curve datasets pro-

vide useful information about protein complexes? To answer this question, we

generated 529 melting curve datasets, each containing the melting curves of

three complexes. Although we found that clustering a melting curve dataset

provides a statistically significant level of information about the dataset’s com-

plex partition, in general the clustering partition is not close enough to the

complex partition to be practically useful.

We then turned our attention to “informative” partitions, which we de-

fined as clustering partitions that provide a meaningful level of information

about their respective complex partitions. Although informative partitions

are rarer than non-informative partitions, we noted that clustering melting

curve datasets could still be useful if informative partitions are identifiable

by internal cluster validation (ICV) measures. However, we found this not to

be the case, as even among clustering partitions with the highest ICV scores,

non-informative partitions are still more common than informative partitions.

Since informative partitions are relatively rare and cannot be identified by

ICV scores with any reasonable degree of accuracy, we concluded that cluster-

70

ing melting curve datasets does not provide useful information about protein

complexes.

Chapter 3 asked the following question: are melting curves useful for lim-

iting the number of validation experiments necessary to find protein interac-

tions? We answered this question in the context of pull-down assays. Recall

that given a bait protein, a pull-down assay generates a prey set consisting of

proteins that potentially interact with the bait. To determine interactions from

the results of a pull-down assay, validation experiments must be performed,

each involving the bait and a prey protein. In Chapter 3, we investigated

whether ranking a prey set in order of increasing melting curve dissimilar-

ity from the bait is useful for limiting the number of validation experiments

necessary to find interactions.

We first determined that ranking prey proteins in order of increasing Eu-

clidean distance from the bait (i.e. using IR-Eucl) results in a statistically

significant reduction in the number of validation experiments necessary to find

interactions. Since this result does not imply that IR-Eucl always limits the

number of required validation experiments, or even frequently does so, we

computed the probability that IR-Eucl reduces the need for validation ex-

periments for 1414 prey sets. We found that for 75.5% of prey sets, IR-Eucl

has at least a .5 probability of reducing the need for validation experiments,

and for 31.3% of prey sets, this probability is at least .95. We then quantified

the number of validation experiments needed to find one interaction if IR-

Eucl is used to rank the prey set, and found that IR-Eucl reduces the need

for validation experiments by 35.4%.

Next, we considered the the situation where a scientist has access to the

melting curves of some proteins that are known to interact with the bait, and

described how metric learning can be used to learn a metric that takes advan-

tage of the information in these melting curves. We established that ranking a

prey set based on a learned metric outperforms IR-Eucl by a statistically sig-

nificant margin. Furthermore, it reduces the number of validation experiments

necessary to find one interaction by an additional 11%.

Based on these empirical results, we concluded that melting curves are

71

indeed useful for limiting the number of validation experiments necessary to

find protein interactions.

Lastly, Chapter 4 described how melting curve dissimilarity can be used

to detect proteins that differentially interact. We began by introducing the

differential interaction measure of Kurzawa et al., known as F , and two ways

that F can be used to detect proteins that differentially interact. We then

noted that the greater the dissimilarity between a protein’s melting curves in

two conditions, the more likely the protein is to be involved in a differential

interaction. Since F does not consider the dissimilarity of a protein’s melting

curves in two conditions, we introduced a new differential interaction measure

∆ that does take this into account. On an illustrative example of melting

curves obtained in two conditions, we showed that ∆ is an improvement over

F .

72

References

[1] A. Bellet, A. Habrard, and M. Sebban, “Metric learning,” Synthesis lec-
tures on artificial intelligence and machine learning, vol. 9, no. 1, pp. 1–
151, 2015.

[2] T. Bergg̊ard, S. Linse, and P. James, “Methods for the detection and
analysis of protein–protein interactions,” Proteomics, vol. 7, no. 16, pp. 2833–
2842, 2007.

[3] R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, “A framework for
semi-supervised and unsupervised optimal extraction of clusters from hi-
erarchies,” Data Mining and Knowledge Discovery, vol. 27, no. 3, pp. 344–
371, 2013.

[4] ——, “Hierarchical density estimates for data clustering, visualization,
and outlier detection,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 10, no. 1, pp. 1–51, 2015.

[5] G. Celeux and G. Govaert, “A classification em algorithm for clustering
and two stochastic versions,” Computational statistics & Data analysis,
vol. 14, no. 3, pp. 315–332, 1992.

[6] G. Celeux and G. Govaert, “Gaussian parsimonious clustering models,”
Pattern recognition, vol. 28, no. 5, pp. 781–793, 1995.

[7] H. N. Chua, W.-K. Sung, and L. Wong, “Exploiting indirect neighbours
and topological weight to predict protein function from protein–protein
interactions,” Bioinformatics, vol. 22, no. 13, pp. 1623–1630, 2006.

[8] U. Consortium, “Uniprot: A worldwide hub of protein knowledge,” Nu-
cleic acids research, vol. 47, no. D1, pp. D506–D515, 2019.

[9] J. Davis and I. Dhillon, “Differential entropic clustering of multivariate
gaussians,” Advances in Neural Information Processing Systems, vol. 19,
2006.

[10] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proceedings of the 24th international con-
ference on Machine learning, 2007, pp. 209–216.

[11] W. de Vazelhes, C. Carey, Y. Tang, N. Vauquier, and A. Bellet, “Metric-
learn: Metric Learning Algorithms in Python,” Journal of Machine Learn-
ing Research, vol. 21, no. 138, pp. 1–6, 2020.

73

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal Sta-
tistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[13] B. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis, ser. Wi-
ley Series in Probability and Statistics. Wiley, 2011.

[14] C. Fraley, “Algorithms for model-based gaussian hierarchical clustering,”
SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 270–281, 1998.

[15] A.-C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch,
C. Rau, L. J. Jensen, S. Bastuck, B. Dümpelfeld, et al., “Proteome sur-
vey reveals modularity of the yeast cell machinery,” Nature, vol. 440,
no. 7084, pp. 631–636, 2006.

[16] M. Giurgiu, J. Reinhard, B. Brauner, I. Dunger-Kaltenbach, G. Fobo, G.
Frishman, C. Montrone, and A. Ruepp, “Corum: The comprehensive re-
source of mammalian protein complexes—2019,” Nucleic acids research,
vol. 47, no. D1, pp. D559–D563, 2019.

[17] M. Hahsler, M. Piekenbrock, and D. Doran, “Dbscan: Fast density-based
clustering with r,” Journal of Statistical Software, vol. 91, no. 1, pp. 1–
30, 2019.

[18] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[19] E. L. Huttlin, R. J. Bruckner, J. Navarrete-Perea, J. R. Cannon, K.
Baltier, F. Gebreab, M. P. Gygi, A. Thornock, G. Zarraga, S. Tam, et
al., “Dual proteome-scale networks reveal cell-specific remodeling of the
human interactome,” Cell, vol. 184, no. 11, pp. 3022–3040, 2021.

[20] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[21] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[22] N. Kurzawa, A. Mateus, and M. M. Savitski, “Rtpca: An r package for
differential thermal proximity coaggregation analysis,” Bioinformatics,
vol. 37, no. 3, pp. 431–433, 2021.

[23] A. Louche, S. P. Salcedo, and S. Bigot, “Protein–protein interactions:
Pull-down assays,” in Bacterial Protein Secretion Systems, Springer,
2017, pp. 247–255.

[24] C. B. Lozzio and B. B. Lozzio, “Human chronic myelogenous leukemia
cell-line with positive philadelphia chromosome,” 1975.

[25] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is np-hard,” in International Workshop on Algorithms and Com-
putation, Springer, 2009, pp. 274–285.

74

[26] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[27] L. McInnes, J. Healy, and S. Astels. (). “How hdbscan works,” [On-
line]. Available: https://hdbscan.readthedocs.io/en/latest/how_
hdbscan_works.html. (accessed: 09.15.2021).

[28] D. Moulavi, P. A. Jaskowiak, R. J. Campello, A. Zimek, and J. Sander,
“Density-based clustering validation,” in Proceedings of the 2014 SIAM
international conference on data mining, SIAM, 2014, pp. 839–847.

[29] E. A. Ponomarenko, E. V. Poverennaya, E. V. Ilgisonis, M. A. Pyatnit-
skiy, A. T. Kopylov, V. G. Zgoda, A. V. Lisitsa, and A. I. Archakov,
“The size of the human proteome: The width and depth,” International
journal of analytical chemistry, vol. 2016, 2016.

[30] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang, “An effi-
cient sparse metric learning in high-dimensional space via l 1-penalized
log-determinant regularization,” in Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, 2009, pp. 841–848.

[31] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[32] C. Ritz, F. Baty, J. C. Streibig, and D. Gerhard, “Dose-response analysis
using r,” PloS one, vol. 10, no. 12, e0146021, 2015.

[33] T. Rolland, M. Taşan, B. Charloteaux, S. J. Pevzner, Q. Zhong, N. Sahni,
S. Yi, I. Lemmens, C. Fontanillo, R. Mosca, et al., “A proteome-scale
map of the human interactome network,” Cell, vol. 159, no. 5, pp. 1212–
1226, 2014.

[34] M. Sanderson, Test collection based evaluation of information retrieval
systems. Now Publishers Inc, 2010.

[35] G. Schwarz, “Estimating the dimension of a model,” The annals of statis-
tics, pp. 461–464, 1978.

[36] L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: Cluster-
ing, classification and density estimation using Gaussian finite mixture
models,” The R Journal, vol. 8, no. 1, pp. 289–317, 2016. [Online]. Avail-
able: https://doi.org/10.32614/RJ-2016-021.

[37] E. Sjöstedt, W. Zhong, L. Fagerberg, M. Karlsson, N. Mitsios, C. Adori,
P. Oksvold, F. Edfors, A. Limiszewska, F. Hikmet, et al., “An atlas of
the protein-coding genes in the human, pig, and mouse brain,” Science,
vol. 367, no. 6482, eaay5947, 2020.

75

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://doi.org/10.32614/RJ-2016-021

[38] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of statistical
significance tests for information retrieval evaluation,” in Proceedings of
the sixteenth ACM conference on Conference on information and knowl-
edge management, 2007, pp. 623–632.

[39] Springer Verlag GmbH, European Mathematical Society, Negative hyper-
geometric distribution, Website, URL: https://encyclopediaofmath.
org / wiki / Negative _ hypergeometric _ distribution. Accessed on
2022-04-06.

[40] M. P. Stumpf, T. Thorne, E. De Silva, R. Stewart, H. J. An, M. Lappe,
and C. Wiuf, “Estimating the size of the human interactome,” Proceed-
ings of the National Academy of Sciences, vol. 105, no. 19, pp. 6959–
6964, 2008.

[41] C. S. H. Tan, K. D. Go, X. Bisteau, L. Dai, C. H. Yong, N. Prabhu,
M. B. Ozturk, Y. T. Lim, L. Sreekumar, J. Lengqvist, et al., “Thermal
proximity coaggregation for system-wide profiling of protein complex
dynamics in cells,” Science, vol. 359, no. 6380, pp. 1170–1177, 2018.

[42] E. Xing, M. Jordan, S. J. Russell, and A. Ng, “Distance metric learning
with application to clustering with side-information,” Advances in neural
information processing systems, vol. 15, 2002.

[43] J. Zahiri, A. Emamjomeh, S. Bagheri, A. Ivazeh, G. Mahdevar, H. S.
Tehrani, M. Mirzaie, B. A. Fakheri, and M. Mohammad-Noori, “Protein
complex prediction: A survey,” Genomics, vol. 112, no. 1, pp. 174–183,
2020.

[44] J. Zahiri, J. Hannon Bozorgmehr, and A. Masoudi-Nejad, “Computa-
tional prediction of protein–protein interaction networks: Algorithms
and resources,” Current genomics, vol. 14, no. 6, pp. 397–414, 2013.

76

https://encyclopediaofmath.org/wiki/Negative_hypergeometric_distribution
https://encyclopediaofmath.org/wiki/Negative_hypergeometric_distribution

	Introduction
	Melting Curves
	Thermal Proximity Co-Aggregation
	Thesis Outline

	Can clustering melting curve datasets provide useful information about protein complexes?
	Background
	Single Linkage Clustering
	HDBSCAN*
	k-means
	Gaussian Mixture Models
	Cluster Validation

	Datasets and Methods
	Melting Curve Datasets
	Dissimilarity Metrics for Melting Curves
	Converting Melting Curve Datasets to Standardized Parametric Form
	Clustering Procedures for Melting Curve Datasets

	Results
	Why are informative partitions relatively rare?
	Can internal cluster validation scores identify informative partitions?

	Conclusion

	Are melting curves useful for limiting the number of validation experiments necessary to find protein interactions?
	Background
	Information Retrieval
	Metric Learning

	Datasets and Methods
	Melting Curve Test Collections
	Information Retrieval Systems for Melting Curve Test Collections

	Results
	How often do information retrieval systems reduce the need for validation experiments?
	How many validation experiments are needed to find a single interactor?
	Comparing Information Retrieval Systems Based on Learned Metrics to IR-Eucl
	Some Comments on Interpreting our Results

	Conclusion

	How Melting Curve Dissimilarity can be Used to Detect Proteins that Differentially Interact
	Detecting Proteins that Differentially Interact
	A Problem with F
	An Improved Differential Interaction Measure
	Conclusion

	Conclusion
	References

