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Abstract 

 

One of the main sources of uncertainty in vein type deposits is found in the calcula-

tion of the tonnage. The boundary limits often applied to a vein type deposit are cal-

culated from sparse data using deterministic methods that offer no measure of uncer-

tainty. The most common method used to calculate the tonnage of a vein-type deposit 

is to convert the volume of the deposit defined by a wireframe model into a tonnage. 

Wireframe models are deterministic in nature being created from the interpretation of 

level plans and cross sections. These types of models have no provision for the calcu-

lation of tonnage uncertainty. One method of calculating the tonnage uncertainty in 

vein deposits is through the use of a distance function.  This thesis presents a distance 

function (DF) approach that allows for the introduction of uncertainty into the model-

ing process by defining a zone or bandwidth that is quantifiable. This approach uses 

individual drillhole samples coded with a distance calculated by the DF rather than a 

wireframe model to estimate the vein tonnage resulting in considerable savings in 

time by skipping the wireframe modeling process. Three dimensional models are then 

extracted for probability intervals across the bandwidth. Through standardization, 

tonnages corresponding to any probability interval can be extracted.  Modifying the 

distance function modifies the size and shape of the bandwidth. Two parameters are 

used to modify the distance function. The first parameter controls the bandwidth and 

is the uncertainty parameter. The second parameter controls position of bandwidth 

and is the bias correction parameter. With proper calibration, the values of the two 

parameters used to modify the distance function will result in models that are both 

accurate and precise. A method for full calibration of the uncertainty and bias cor-

rection parameters is presented. An example using synthetic models is also presented 

and demonstrates that the method does produce results that are accurate and precise 

within a defined tolerance. 
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Chapter 1  

Introduction 

1.1 The Problem 

Modeling the geometry of vein-type deposits is a time consuming and complicat-

ed exercise for the majority of the deposits. This thesis will introduce a straight 

forward methodology for calculating tonnage of vein deposits with a measure of 

uncertainty. 

An understanding of the geometry of the deposit is required for reasonable model-

ing. The volume and tonnage are calculated from the geometry. 

 

 

Figure 1-1: Example of Cross sections and Level plans. From Dennen 1989 

Three dimensional models of vein-type deposit geometry are often made by tying 

together a series of deterministically interpreted geological sections. Geological 

interpretations are the opinions of geoscientists based on experience. It is common 

that a second interpretation is inconsistent with the first. These interpretations of 

vein geometry lead to a single solution based on the interpreter with no quantita-

tive measure of uncertainty. The reliability of the interpretation is unknown. To 
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report fair and unbiased tonnage estimates it is important that tonnage uncertainty 

be included with the estimation process. 

This thesis presents a methodology for calculating the tonnage uncertainty in 

vein-type deposits. A distance based algorithm is used to map the boundaries of 

the orebody and therefore the tonnage. 

1.2 Background 

In the context of this thesis a vein is an irregular tabular zone of finite extent that 

has been filled with some material of interest. This broad definition serves well 

because we are interested in the physical characteristics of the deposit such as the 

length, width and thickness of the deposit. Multiple veins and other complex fea-

tures of vein-deposits is beyond the scope of this thesis. The essential characteris-

tics of vein-type deposits are described below. 

1.2.1 Geometry of Vein Deposits 

Vein-type deposits vary from a single narrow structure to large brecciated zones 

and stockworks. Some deposits form as a set of veins confined to a single strata-

bound horizon and mined as a single unit (Peters, 1976). The orientation of vein-

type deposits varies from steeply plunging to flat lying. They are made up princi-

pally of quartz veins. Mineralized dykes, however, can also be included since they 

often display similar geometric characteristics to veins. Vein-type deposits are 

most commonly confined by faults, shear zones or stratigraphic units (Gilluly, 

1968, Park, 1975). This is different from large disseminated orebodies where lim-

its are more gradational and often defined on cut-off grade. 

Vein-type deposits are most commonly formed by hydrothermal fluids (Gilluly, 

1968, Dietrich, 1979). Vein-type deposits have well defined zones of mineraliza-

tion, are generally inclined and discordant with local geology. They come in all 

sorts of shapes and sizes with many different levels of complexity and occur in 

fault or shear related zones. Vein systems occur as groups of veins which exhibit 

similar characteristics which are related to the same structural event. 
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In the context of this thesis the term orebody is synonymous with ore shoot in the 

sense it reflects a closed area of increased thickness with respect to the areal ex-

tent of the vein or vein system.  

Vein deposits form from superheated hydrothermal fluids that ascend towards the 

surface from deep within the earth through faults, fractures or any low pressure 

conduit. As the fluids cool they react with the host rock and if pressure and tem-

perature conditions are right, will begin to create alteration zones, precipitate 

minerals and possibly develop an orebody. Sometimes, vein deposits are subject 

to subsequent tectonic forces which rework and remobilize them resulting in 

complex structurally controlled orebodies. 

Most vein deposits include gold and silver however vein type copper and lead-

zinc deposits exist but to a much lesser degree. 

The principal component of vein-type deposits is quartz (Dietrich, 1979). Quartz 

veins commonly occur in coarse crystalline form or as finely laminated bands 

parallel to the vein wall rock contact. 

The general tendency is for deposits (oreshoots) to be thicker in the centre rather 

than have a uniform thickness in the strike direction defined as the intersection of 

the vein with a horizontal plane (Dickinson, 1942). Deposits often terminate ab-

ruptly, possibly caused by faulting or some other structural presence or extend for 

some distance and gradually pinch out. Narrow veins hosted in shear zones have 

an associated thickness typically in the range of 0.25 and 1.75m and up to 60m in 

replacement vein deposits (Peters, 1993).  

Fluids moving through fractured rock in the near surface form epithermal deposits 

and whereas deep seated fluids form mesothermal deposits.  

1.2.2 Epithermal Deposits 

Epithermal type deposits form at low temperatures (<250°C) and low pressure 

often deposited within 1-2 kilometres of the surface, Figure 1-2. Epithermal de-

posits are more persistent laterally than vertically and very rarely have a vertical 

extent greater than 600m (Panteleyev, A., 1986). Epithermal veins usually form as 
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vein fillings, irregular branching fissures, stockworks or zones of brecciation and 

breccia pipes. Epithermal deposits are not uniformly mineralized. Mineralization 

varies along strike and is subject to vertical zoning with only a portion of the total 

vein being mineralized. Precious metals dominate epithermal veins and often are 

host to bonanza style high grade deposits. 

 

Figure 1-2: Relationship between epithermal and mesothermal ore deposits (Modified from Kess-

ler, 1994) 

1.2.3 Mesothermal Deposits 

Mesothermal deposits occur at moderate temperature (>250°C) and pressure con-

ditions that correspond to a depth in the range of 5-15 km, Figure 1-2. 

Epithermal type mineralization grades into Mesothermal type mineralization. 

Mesothermal veins often form banded structures parallel to vein walls caused by 

tectonic stresses. The mineralization in mesothermal deposits can have a variety 

of forms and can occur in shear/fault zones, as discordant quartz veins or quartz-

vein sets (stockworks) as well as in stratabound zones. Mesothermal veins occur 

in rock packages of all ages but are commonly hosted in metamorphosed interme-

diate to mafic volcanics (greenstone-hosted type) such as the deposits of the Red 
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Lake camp in Ontario, and sedimentary/metasedimentary rocks (slate-belt or tur-

bidite-hosted type) such as those found in the Meguma Group in Nova Scotia 

(R.J. Ryan , P.K. Smith, 1997). 

Each type is significant as each is associated with different styles of vein deposi-

tion from a single near vertical narrow vein to shallow dipping zones of vein sets. 

There is a wide and varied set of possible deposit configurations. This thesis will 

use simple non trivial models as the starting point for modeling the tonnage un-

certainty of vein type deposits. The models will mimic the basic characteristics of 

vein deposits described in the previous sections.  

1.3 Previous Work 
There is not much written on the subject of calculating tonnages, and the associat-

ed uncertainty, using distance functions. McLennan and Deutsch (2006) devel-

oped a methodology using a volume (distance) function for boundary simulation 

with the capability of assessing uncertainty. The method calculates uncertainty by 

using a spatial bootstrap to calculate separate realizations of the mean value for 

different p-values. The method presented here calculates uncertainty using a set of 

realizations interpolated from independently sampled orebodies. The orebodies 

are sampled using the same sampling method. 

There are other methods used to model boundaries in 2D using indicator kriging 

to define the uncertainty bandwidth between dry wells (barren holes) and produc-

ing wells (ore holes),  (Pawlowsky, Olea, and Davis, 1993).  Soares (1990) 

showed a method of boundary assessment utilizing an indicator type approach 

similar to the one above but, modified by conditioning the data to the anisotropy 

of the global covariance. Srivastava (2005) presented a probabilistic method for 

modeling lens geometry using a p-field simulation; a method similar to the indica-

tor kriging method. Shcheglov (1991) demonstrated the use of a probabilistic 

method based on the drillhole spacing and the number of ore holes to calculate the 

area of an expected orebody. No uncertainty assessment was carried out. None of 

the methods use a distance function as the basis for interpolation. 
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1.4 Thesis Summary 

1.4.1 Statement 

The objective of this thesis is to demonstrate a method for calculating tonnage 

uncertainty of vein-type deposits which is both unbiased and fair. The work fo-

cuses on non-trivial flat lying closed veins, a simple but common scenario for 

vein-type deposits. We will compile a set of “true” vein tonnages from a set of 

synthetic simulated vein structures. Using the distance function approach, the es-

timated volumes of the pseudo deposits will be compared to the true volumes. A 

set of guidelines for the parameterization of the distance function will be created 

from the results. From this foundation the methodology could be expanded to 

more complex deposits with multiple veins, veins of different orientations and 

veins with different continuities. 

1.4.2 Outline 

This thesis is a study on the distance function approach to calculate the tonnage of 

vein-type deposits with the goal of reproducing true measurements with some de-

gree of measurable uncertainty. This thesis contains six chapters. Each chapter 

targets one specific aspect behind the study. 

In Chapter 2, the framework behind tonnage uncertainty is presented and a dis-

cussion of the parameters and calibration techniques is offered.   

Chapter 3 will discuss parameter inference and will look at the various parame-

ters used in the methodology and the values required to produce results that are 

unbiased and fair. The majority of this thesis deals with the calibration of the dis-

tance function parameters that will provide an estimate of the vein boundary and 

deposit volume that best conforms to the known geology of the deposit. The final 

section, Assessing Uncertainty, will discuss the methods used to measure the 

goodness of the estimation process so that estimates are unbiased and fair. 

Chapter 4 will discuss the application of the methodology to a set of synthetic 

deposits. The chapter begins with an overview of the methods used to create the 

synthetic models and the methods used to sample them. The chapter will discuss 
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the interpolation method used and explain how the fairness and uncertainty was 

derived.  

Chapter 5 will discuss some practical considerations for vein-type modeling and 

some of the complexities that can arise such as the impact of widely spaced data. 

In closing, Chapter 6 will discuss some conclusions and comment on future re-

search. 
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Chapter 2  

Framework for Tonnage 

Uncertainty 

2.1 Problem Setting 

There is a need for an unbiased and fair estimate of the tonnage of a deposit. The 

more widely spaced the drillholes the more uncertainty there will be in the esti-

mated tonnage due to the increasing uncertainty in the actual location of the de-

posit boundary between drillholes.  

The tonnage calculation is an important part of any resource calculation. Uncer-

tainty in the calculated tonnage will have a direct impact on metal content and 

mine life. Little attention has been given to modeling tonnage uncertainty in vein 

type deposits. A model of the geometry is usually developed based on the deter-

ministic interpretation of a set of sections and becomes the container within which 

grades are modeled. A central idea of this thesis is to model the tonnage uncer-

tainty with a probabilistic model. 

The uncertainty in tonnage can be quantified by using a distance function (DF) 

approach. The DF is based on calculated distances between specific sample loca-

tions in and between drillholes. Down-the-hole samples form a continuous string 

of data and result in smooth boundaries interpolated between holes. These smooth 

boundaries are used to calculate the tonnage uncertainty. 

 

The DF methodology relies on the definition and implementation of two parame-

ters with the objective of defining the optimal set of parameters needed to give a 

fair and unbiased representation of tonnage uncertainty. The two parameters dis-

cussed in detail later are: 

• The distance function uncertainty bandwidth parameter, C and 

• The distance function bias correction parameter, β  
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In addition to these two parameters, selection of a suitable variogram model, sim-

ple kriging mean and modification for anisotropy will also be discussed. 

The DF is the Euclidean distance between different types of samples. The dis-

tance is the shortest distance to a sample with a different rock type (vein or non-

vein). The distance is a signed attribute and is given a positive sign in one rock 

type and a negative sign in another. The contact between samples has a distance 

function of zero. An isoline connecting successive ‘zero’ points in each drillhole 

defines a surface or shell. The tonnage uncertainty cannot be calculated directly 

using this unmodified Euclidean distance. The unmodified distance produces a 

single boundary as shown in Figure 2-1A and Figure 2-1B. In order to calculate 

tonnage uncertainty, the DF must be modified. The modified distance function, 

DFmod, considers the uncertainty component C, and fairness component β , creat-

ing a range of probable vein boundaries as depicted in Figure 2-1C and Figure 

2-1D. The corresponding vein tonnage uncertainty can be calculated using these 

different vein boundaries. 
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Figure 2-1: A) DF distribution with no modification, B) Drillhole example, C) DF distribution 

with C modification, D) Drillhole example  

 

The method presented here is tested using a set of predefined, closed, 3D vein-

type deposits designed specifically for this exercise. The true tonnage is extracted 

and tabulated from these pseudo deposits. The pseudo deposits are then sampled 

on a regular grid in a manner that replicates diamond drilling. The result is a rec-

tangular array, representing the XY coordinates of the drillhole collar locations. 

The XY spacing of the sample locations represent drillhole spacing. At each XY 

(drillhole collar) location, a contiguous string of samples is taken in the vertical 

from the top of the model to the bottom and represents a completely sampled 

drillhole. The data recorded is the location of the sample in the model XYZ coor-

dinates and an indicator for the vein type, either vein or non-vein. No other data is 
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required. Each sample in the dataset is then assigned a distance calculated by the 

modified DF, DFmod. Once the sample data has been modified, the orebody is es-

timated using simple kriging. Simple kriging uses a variogram model and a prede-

termined mean value. The resulting kriged models are compared to the true ton-

nages. The process is iterative and repeated for different values of C and β  until 

optimal values are found that produce fair and unbiased estimates. As a final step, 

the exercise is repeated using datasets with different drill spacing to test the ro-

bustness of the method. 

Each of the aforementioned parameters is discussed in detail in the following sec-

tions. The criteria for good uncertainty must be established first. 

2.2 Criteria for Good Uncertainty 

The criteria for good uncertainty include: (1) the result needs to be unbiased, (2) 

the result needs to be a fair measure of uncertainty, and (3) the result must have 

low uncertainty. 

2.2.1 Unbiasedness 

Bias is a tendency for one particular outcome to be favoured over another. It is a 

measure of the expected difference between an estimate and the true value of the 

variable being estimated. If the estimates are on average greater than the true val-

ue, then this would indicate a bias toward over estimation. A measure is unbiased 

if the expected difference between the estimate and the true value is zero; 

 { } { }*  E Z E Z=  (2.1) 

A cartoon showing a plot of the estimate, T
*
, versus the true value, T, is shown in 

Figure 2-2. If the points fall along the 45° (1:1) line, Figure 2-2 left, the estimates 

are considered unbiased. If however, the estimates fall above or below the 45° 

line as depicted in the top and bottom right of Figure 2-2, the estimates are biased. 

Through calibration we can correct for bias in the estimates. 
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Figure 2-2: Schematic illustration of bias; (Left) Unbiased Estimator; (Upper Right) Biased esti-

mator – Estimate less than true value; (Lower Right) Biased estimator – Estimate greater than true 

value. 

2.2.2 Fair Uncertainty 

Fair uncertainty is the precision with which the reference models estimate the 

truth. Recall that for a set of estimates to be unbiased, they should on average ap-

proximate the true value. For example, if half the estimates are greater than the 

truth and half the values are less than the truth, we would expect them on average 

to approximate the truth and thus be unbiased. However, this does not give an in-

dication whether or not the estimates are fair. There needs to be a measure of fair-

ness that will indicate if the spread of values are realistic. If the spread is not real-

istic then there is a problem with the fairness of the estimates. One way of deter-

mining if estimates are fair is to measure the frequency with which the true value 

falls within defined probability intervals or percentiles derived from the estimates. 

As stated earlier, we expect 50% of our estimates to be greater than the true value 

and 50% less than the true value. Moreover, we would expect a smaller percent-

age of true values fall within a smaller interval centred on the mean of the esti-

mates. For example, one would expect 10% of the true values to fall within 10% 
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of the mean and 90% of the true values falling within 90% probability interval. If 

estimated probabilities follow these rules, then they can be regarded as a fair es-

timate of uncertainty. 

Fairness can be quantified by the following equation; 

 [ ]* *  Z        0,1
2

P
E Z P P P
 

∈ ± = = ∀ ∈ 
 

 (2.2)

that states, the expected true value falls within an interval defined as the estimate 

bounded by plus or minus one half the percentile, and, that the actual fraction, P
*
, 

is equal to the expected fraction, P, for all percentiles in the range 0 and 1.  The 

expression 
2
P±  is then simply the tolerance applied to Z

*
. Consider 10 P classes 

each with a width of 0.10 covering the range 0 to 1.  As P increases the width of 

the interval *

2
PZ ±  increases and the likelihood that Z

*
 falls within the interval 

increases. For example, the tolerance associated with the probability interval P50, 

is 0.50
2

±  or ± 0.25 so that the interval *

2
PZ ±  will include all true values that fall in 

the probability interval of the estimated values from 0.25 to 0.75. Similarly for the 

probability interval P90, the tolerance is 0.90
2

± or ± 0.45, and the interval associat-

ed with the P90 will be 0.05 to 0.95, with the assumption that 90% of the true 

values should fall within this interval defined by the estimates. Figure 2-3 shows 

examples of fair and unfair estimates. As with bias, we can achieve fairness 

through calibration. 
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Probability Interval -p Probability Interval -pProbability Interval -p  

Figure 2-3: An illustration of accuracy plots, (Left) fair estimate, actual proportion is equal to the 

assigned proportion. (Centre) unfair estimate, too many estimates fall within the assigned p-

interval. (Right) unfair estimate, too few estimates fall within the assigned p-interval. 

 

2.2.3 Low Uncertainty 

Finally, the third criterion required of a good estimate is low uncertainty. The 

lower the uncertainty associated with an estimate, the better. Quantifying uncer-

tainty allows for direct comparison of estimates generated using different parame-

ters. Low uncertainty is quantified by measuring the spread of the p80 interval. 

The measure is standardized by dividing by the p50 yielding a unitless measure 

and allows reference models to be compared regardless of size. 

 
90 10

50

P P
Uncert

P

−
=  (2.3)

where P10, P50 and P90 are the tonnages associated with those particular probabil-

ity intervals. Consider two distributions of estimates that are both accurate and 

precise. When ascertaining uncertainty, the distribution of estimates which has the 

lowest uncertainty will be considered the best. 

2.3 Distance Function 

2.3.1 Distance Function (DF) 

The distance function is at the heart of the methodology and is used to calculate 

and assign a distance to each sample location. The distance function is applied 

and modified for calibration.  
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Suppose for instance, the first sample is non-vein and has an indicator of 0, VI(0). 

The distance function is the distance to the nearest sample with indicator of 1, 

VI(1). This sample could exist next to the original sample if located at the contact 

between vein and non-vein or in a nearby drillhole if located at some distance 

from the vein, Figure 2-4. The actual distance is then modified depending on the 

value of the indicator VI. Consider the DF; 

 
( )
( )

2 2 2

2 2 2

 VI = 0

-1  VI = 1

dx dy dz C

DF

dx dy dz C

 + + + ∀


= 
+ + + ⋅ ∀

 (2.4)

where, 
2 2 2

dx dy dz+ +  is the Euclidean distance between the current point and 

the closest point with a different VI, C is the uncertainty parameter, and the value 

-1 is the indicator constant applied to values where the VI is equal to 1. When the 

indicator VI is 0, or non-vein, the DF returns a positive value equal to the distance 

plus the uncertainty parameter C. If the indicator VI is 1 signalling the presence of 

vein, the DF returns a value equal to the distance plus the uncertainty parameter C 

and is given a negative sign. 
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Figure 2-4: Schematic of distance function. Numbers indicate the distance assigned by the DF. 

The distance from –C to +C is defined as the width of uncertainty or the uncer-

tainty bandwidth. 

2.3.1.1 Uncertainty Bandwidth Parameter C  

The parameter C must be calibrated so that the width of uncertainty to neither too 

large nor too small. 

Consider two drillholes, Figure 2-5, one with a vein intercept, the other without, 

that are separated by some distance, ds, the drill spacing. The true vein boundary, 

or iso-zero boundary of the vein must exist at some location between the two 

drillholes. We therefore define the distance, ds, as the maximum geologically rea-

sonable distance that can be assigned to C and is equal to the drillhole spacing. 

For example, the vein shown in Hole A in Figure 2-5, could terminate at a point 

very close to the sampled location. This is possible although not very likely. Simi-
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larly, the vein could extend to a point which is just short of the sampled location 

in Hole B, again, not likely, but possible.  

The uncertainty parameter C is not designed to define the location of the iso-zero 

boundary but rather to define a reasonable bandwidth of uncertainty associated 

with the iso-zero surface boundary. The upper limit of the uncertainty bandwidth 

will be equal to the drill spacing.  

 

 

Figure 2-5: Schematic of the uncertainty bandwidth defined by C. 
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Figure 2-6: Examples of C parameters, increasing C from left to right. 

 

The schematic in Figure 2-6 demonstrates the effect of increasing C. Figure 2-7 

shows the effect when C=0, that is, when the uncertainty bandwidth has zero 
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thickness and in the case of Figure 2-8, a thickness of 8 corresponding to the C 

range of -4 to +4. 
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Figure 2-7: When C=0 the uncertainty bandwidth has zero thickness. 
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Figure 2-8: When C=4 the uncertainty bandwidth has a thickness of 8, -4 to +4. 

 

The drill spacing could represent a large bandwidth for widely spaced data which 

would produce large tonnage uncertainty. A symmetric erosion and dilation 
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through a constant C could possibly lead to a bias. There must be a parameter to 

center the width of the uncertainty band. The parameter chosen to center the un-

certainty bandwidth is beta ( β ). 

 

2.3.2 Modified Distance Function (DFmod) 

The DF discussed in 2.3.1 is modified in a second step by applying a bias parame-

ter, β , used to center the distribution of estimates. The bias parameter is applied 

to the original DF as shown in Equation 2.5.  

 mod

( ) /  VI = 0

( )  VI = 1

dist C
DF

dist C

β

β

+ ∀
=  + ⋅ ∀

 (2.5)

When the indicator VI is 0, or non-vein, DFmod returns a positive value equal to 

the original DF divided by β . If the indicator VI is 1, again signalling the pres-

ence of vein, DFmod returns a negative value equal to the DF multiplied by β . 

Thus all positive DFmod values are located outside of the vein structure and all 

negative DFmod values are located inside the vein structure with the contact be-

tween the two equal to zero. The values returned by DFmod are the values used in 

the interpolation process. 

Figure 2-9 illustrates the relationship of C to the DF and modified DF. As C in-

creases, there is a symmetrical increase in both the DF and modified DF. That is, 

both increase at the same rate and the ratio between DF and DFmod remains the 

same for both positive (non-vein) and negative (vein) values of DF and DFmod.  

Figure 2-11 illustrates the relationship of β  to the DF and modified DF. As β  

increases, the DF remains the same and DFmod decreases for positive values and 

increases for negative values in the sense it becomes more negative. As a result 

the slope or ratio between DF and DFmod decreases for positive values of DF and 

DFmod, i.e. Non-vein, and increases for negative values of DF and DFmod, i.e. vein. 
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2.3.2.1 The ISO-ZERO surface 

The iso-zero surface is the interpolated contact between vein and non-vein. Recall 

that distance values outside the vein are positive and inside the vein are negative 

therefore the contact between the two would reasonably be zero. This zero point is 

known in the drilling and will be honoured by the  
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Figure 2-9: Effect of C on the DF and modified DF. 
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Figure 2-10: Effect of β  on the DF and modified DF. 

At locations away from sampled locations, however, there will be uncertainty as 

to where the actual position of the contact surface is located. The shape and size 

of the iso-zero surface is controlled by β  and has the effect of dilating the iso-

zero for the larger values of β  shown as the outer dashed ellipse in Figure 2-11, 

or eroding the iso-zero surface for decreasing values of β  as depicted by the in-

ner dotted line in Figure 2-11. 
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Figure 2-11: Effect of β  on the iso-zero surface. With increasing β , the surface expands, with 

decreasing β the surface contracts. 

 

2.3.2.2 Bias Correction Parameter Beta 

The beta parameter ( β ) allows shifting of the interpolated set of realizations to-

wards the center and an unbiased distribution, the 45° (1:1) line on an accuracy 

plot, Figure 2-12. 

 

Increasing Beta shifts
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Figure 2-12: Behaviour of Beta on the distribution of a set of interpolated realizations 

The β  parameter is a number typically between 0.1 and 2 and is dependent on 

drillhole spacing. If the drill spacing tends to overestimate the tonnage, then β  

values greater than 1 are used to shift the distribution to the left towards the 45° 
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line, Figure 2-12 right. On the contrary, if drill spacing tends to underestimate the 

tonnage, then β  values less than 1 are used to shift the distribution to the right, 

Figure 2-12 left. The closer the set of realizations are to the 45° line, the closer β  

will be to 1. The implementation of β  imposes a control on the final surface and 

makes it possible to adjust the iso-zero surface so that fair and unbiased estimates 

can be obtained. The calibration of β is discussed in chapter 3. 

 

2.3.3 Distance Function Thresholds 

The tonnage is taken from the uncertainty bandwidth, the size of which is deter-

mined by the uncertainty constant C and the minimum and maximum limits of the 

bandwidth determined from both from C and β . 

The inner limit of the uncertainty band, DFmin is calculated as; 

 min

1

2
DF C DS β= − ⋅ ⋅  (2.6)
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Figure 2-13: As Beta increases from 1, the iso-zero surface expands. 

 

1.5β =

1.0β =



 

24 

 

Anisotropic weighted
Euclidean Distance to
nearest Non-Vein Sample

Assigned DF

if C=0.5

If Beta=1.0
DF unchanged

Assigned DF

if Beta=0.5

8

-10.5

-10.5

-5.3

10

12.5

12.5

25

Assigned DF

if C=0.5

If Beta=1.0
DF unchanged

Assigned DF

if Beta=0.5

Anisotropic weighted
Euclidean Distance to
nearest Vein Sample

Iso-zero

Iso-zero

Non-Vein

Vein

Distance Units

Assigned to Sample

Distance Units

Assigned to Sample

Nearest Vein

Nearest

Non-Vein

Contracts

Iso-zero

 

Figure 2-14: As Beta decreases from 1, the iso-zero surface shrinks. 

 

where DS is the drill spacing and is the lower limit defined as one half the dis-

tance function of the portion inside the vein structure. The outer limit of the un-

certainty band, DFmax is calculated as: 

 max

1

2

C DS
DF

β

⋅
=  (2.7)

and is the maximum limit defined as one half the distance function of the portion 

outside the vein structure. The concept is shown in Figure 2-15. 

1β =

0.5β =
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Figure 2-15: Uncertainty Bandwidth limits, DFmin inner limit, DFmax outer limit. 
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Figure 2-16: Schematic of uncertainty bandwidth between drillholes. 

The probability thresholds within the bandwidth are defined as a p - probability 

value.  The bandwidth interval is rescaled to [0,1] so that 
min

0DF =  and 

max
1DF = . The solid line in Figure 2-15 is the p50 and has a p value of 0.5. The 
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p values are used to extract tonnages for defined probability intervals by convert-

ing individual model cell values into p values. 

The p value is calculated as; 

 
min

max min

z DF
p

DF DF

−
=

−
 (2.8)

 

where z is the estimated value. The total tonnage for a particular probability inter-

val 
i

p , is the total number of cells where 
i

p p≤ . Recall the zone of uncertainty is 

located between DFmin and DFmax. If z < DFmin then z is certainly located within 

the vein structure. If z > DFmax then z is most certainly located outside the vein 

structure. By dividing the space between DFmin and DFmax into a [0,1] interval, we 

can readily extract tonnages from a mapped distance function for any  probability 

interval. 

A FORTRAN program u_tonnes was written to extract the tonnage for each prob-

ability interval. The program tabulates the tonnage from p05 to p95 using a prob-

ability interval of 0.05 and writes the output to a file. Subsequent tabulations are 

appended to the file for each additional realization thus building a database of 

completed realizations. 

2.4 Mapping of the Distance Function 

Kriging is a commonly used interpolator. The kriging weights minimize the error 

variance of a linear estimate. Kriging is a smooth interpolator that does not repro-

duce short scale variability, however, for mapping the distance function it is ideal. 

The simple kriging estimate is defined by the equation: 

 [ ]*

1

( ) ( )
n

d m d mα α
α

λ
=

− = ⋅ −∑u u  (2.9)

where *( )d u is the kriged estimate, m is the stationary mean over the area of in-

terest, and for each location α , ( )d αu  is the data and αλ is the weight assigned to 

that data. 
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Since the mean is considered to be stationary throughout the study area, Equation 

2.9 can be simplified by removing the mean. This is accomplished by equating; 

 ( ) ( )y d mα α= −u u  (2.10)

which leaves the residual Y and the kriging Equation 2.10 becomes;  

 
*

1

( ) ( )
n

y yα α
α

λ
=

= ⋅∑u u  (2.11)

The simple kriging equation can also be written as; 

 
*

1 1

( ) ( ) 1
n n

d d mα α α
α α

λ λ
= =

 
= ⋅ + − ⋅ 

 
∑ ∑u u  (2.12)

where the terms related to the mean are collected on the right hand side. Equation 

2.12 shows the relation between the weights, αλ , and the mean m. As the estimate 

becomes more distant from the data, the weights approach zero, along with the 

influence of the data, and the value of the estimate approaches the value of the 

mean. A very useful property when applied in conjunction with the distance func-

tion. Considering that the variable used for interpolation in this methodology is a 

measure of distance derived from the distance function, we can use distance to 

calibrate the SK mean. This methodology uses negative distance to refer to dis-

tances inside a closed geologic structure, whereas positive distances denote dis-

tance away from the structure. The simple kriging mean controls the estimate in 

areas where there is little or no information. By manipulating the SK mean, we 

can control the magnitude and sign of any point located some distance from the 

data. Since kriging is exact, the values at all data locations are honored.  

2.4.1 SK Mean 

Three examples have been created to demonstrate how the SK mean applies to the 

DF. The data set is a randomly generated 2D set of 27 points assigned with a dis-

tance function variable. Some locations have been assigned a negative distance 

function indicating the presence of vein, the rest are positive and represent non-

vein. The results are displayed in Figure 2-17. The kriged maps shown on the left 
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side of Figure 2-17 were generated using the same parameters with the exception 

of the SK mean. In each case, the uncertainty parameter C was given an arbitrary 

value of 2 so that the corresponding color bar ranges from -2 to +2, that is –C to 

+C. The specific determination of the C value was not considered for this exer-

cise. The purpose is to illustrate the relationship of the SK mean to C and the 

kriged results. The three examples shown in Figure 2-17 means of +5, 0 and -5. 

For reference, the centre map kriged with a mean of zero is the base case. On the 

left of Figure 2-17, we see a map of the estimated values using a mean of zero, on 

the right, a histogram of the estimated values. The dotted vertical lines show the 

limits of –C and +C. Using a mean of zero shows the bulk of the estimated points 

are contained within our uncertainty bandwidth. This means the majority of the 

map is uncertain and that the only ‘certain’ estimated cells are those close to the 

data points. 

Perhaps we know from acquired geologic knowledge that the majority of the area 

is likely to be non-vein, we can condition the SK mean to produce estimates that 

tend to be on the positive side, indicating non-vein. In the top example shown in 

Figure 2-17, a SK mean value of +5 units was chosen. It is evident from the cor-

responding histogram (Figure 2-17, top right), that the distribution has shifted to 

the right. The majority of estimated cells are now greater than +C, and these 

points will be classified most certainly as non-vein. 

Now consider the opposite, that the majority of the area is actually more likely to 

be vein, we now condition the SK mean so that estimates on the negative side are 

favoured. In the bottom example of Figure 2-17, a SK mean value of -5 units was 

used. In this case, the distribution has shifted left and lies below the –C limit 

(Figure 2-17, bottom right). Most estimated cells points now have values less than 

-C and we are certain these points will be classified as vein. 

There is a continuous succession ranging from lenses of waste contained in a pre-

dominantly ore matrix for mean values less than –C, to lenses of ore or vein con-

tained within predominantly waste when values greater than +C are used. The 

context of this thesis, is single closed geological units that warrant the use of an 
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SK mean greater than the value of +C. Depending on the relationship of the size 

of the area of interest (A), compared to the size of the orebody (a), using the mean  
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Figure 2-17: Effect of changing SK mean. Each realization uses the same parameters with the 

exception of the mean. (top) Mean = +5 units, (centre) Mean = zero, (bottom) Mean = -5 units. 

of the data may not reproduce the desired geologic continuity. For example if the 

number of positive samples is much larger than the number of negative samples, 

i.e. long stings of positive waste samples with small vein structures, negative 
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samples, the mean will undoubtedly be positive. However, using the positive 

mean from the data may not reproduce the desired results. If this is the case, we 

can supply a different SK mean to condition the kriging to produce a result that is 

a better representation of the geology. 

A remedy to this situation would be to confine the sampled area to that immedi-

ately surrounding the zone or orebody of interest thereby giving a better estimate 

of the mean. 

2.4.2 Variogram 

The variogram is a necessary and essential part of the mapping process. The vari-

ogram supplies the spatial relationship between data pairs used by the kriging al-

gorithm. The variogram defined by; 

 [ ]{ }2
2 ( ) ( ) ( )E Z Zγ = − +h u u h  (2.13)

It is the expected value of the squared difference between a sample ( )Z u  and a 

sample separated by a distance h, ( )Z +u h . When applying the variogram to the 

mapping algorithm we use the semivariogram, ( )γ h  which is one half the vario-

gram. When modeling the DF we are interested in the short scale. That is, dis-

tances that are close to the vein boundary and in the range of the drillhole spacing. 

Since the idea is to map the boundary, any samples that are located more than half 

the drillhole spacing away are less important. The idea is to provide a variogram 

that will produce a smooth zone of uncertainty from drillhole to drillhole. The 

variogram range used in the variogram model to interpolate the DF is an im-

portant factor in the methodology. 

Note that β  is not the only parameter that controls the projection of the iso zero 

surface. The ranges specified by the variogram are important and will create the 

initial iso-zero surface, since it is unlikely that the initial surface will be free from 

bias. The larger the variogram ranges the farther the iso-zero will be projected as 

shown in Figure 2-18 and Figure 2-19.  
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Figure 2-18: Effect of smaller variogram ranges. 

 

 

 

Figure 2-19: Effect of larger variogram ranges. 

 

2.4.3 Anisotropy 

In tabular vein type deposits there is a larger range of correlation along, strike and 

dip, than for thickness. This correlation often results in oreshoots, for example, 

oriented in the plane of the vein, that are thicker in the centre tapering towards the 

edges, Figure 2-20.  Geometric anisotropy of an ore deposit is accounted for by 

modifying the distance function. The idea is to adjust the distance function to fa-

vour the direction maximum continuity rather than treating all directions equally. 

Recall the Euclidean part of the distance function; 

 2 2 2
dist x y z= ∆ + ∆ + ∆  (2.14)

The equation is modified to account for geometric anisotropy by dividing each 

direction by the anisotropic distance. The Euclidean distances in 2.14 can be re-
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duced to distances corresponding to the strike direction, 
s

h , dip direction 
d

h , and 

the thickness direction, 
t

h . We can define three new variables, 
s

V ,
d

V , and 
t

V . 

These correspond to anisotropic distances in each of the strike, dip and thickness 

directions respectively. 

 

 

Figure 2-20: Example of geometric anisotropy in a tabular vein oreshoot. 

 

The illustration in Figure 2-21 shows a representation of an ore lens intercepted 

by two drillholes. The lens is assumed to have a shape approximate to that shown 

in the diagram. From this we extract an approximation of the strike of the lens, Vs 

and the thickness of the lens, Vt. These anisotropic directions including the third 

direction, Vd, are applied to Equation 2.14 such that; 

 

2 2 2

s d t

s d t

h h h
dist

V V V

     
= + +     

     
 (2.15)
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Figure 2-21: Geometric Anisotropy, Vs - along strike direction, Vt – thickness 
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Figure 2-22: Geometric anisotropy applied to DF 

This modification for geometric anisotropy allows the uncertainty bandwidth to 

have preference in the direction of maximum continuity. The left example in Fig-

ure 2-22 shows how the uncertainty bandwidth expands in a spherical envelope. 

Applying anisotropy to the DF, Figure 2-22 right, allows the DF to expand hori-

zontally from hole to hole while constraining the tendency to expand in the verti-

cal. Anisotropy tends to shrink the uncertainty bandwidth which ultimately lowers 

the uncertainty associated with the anisotropic model. The inner limit of the 

bandwidth is the same between both models shown in Figure 2-22. Therefore, 

each model will have the similar tonnages in the lower probability intervals. 
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2.5 Implementation Considerations 

2.5.1 Procedure Summary 

The general workflow is as follows. A set of reference models are created. The 

DF will be applied to strings of sample data emulating drillholes extracted from 

the models. Ideally, the deposits should be of known size and volume (tonnage). 

One solution is to create the reference models from scratch. The process begins 

with the unconditional simulation of a grid of a predetermined size. Next, a se-

cond simulation conditioned to a data set that ensures the simulation follows a 

few simple rules. Negative or positive values are maintained along the outer edge. 

This will later help with merging the two grids to produce closed 3D orebodies. A 

conditioning point set to a positive value is placed at the centre of the conditioned 

grid thus ensuring a positive centre. Once the two surfaces are created they can be 

merged to form a simulated synthetic 3D orebody. To merge the surfaces, the 

conditional surface must first be modified. Recall the conditional simulation, con-

ditioning data is used to force the outer perimeter to be filled with negative val-

ues. The modifying procedure resets all cells with negative values to be reset to 

zero. After this is complete the resulting surface model will be a plane of zeros 

with a cluster of positive values located in the centre region of the grid. The clus-

ter of positive values is essentially the vein deposit. The deposit is located in 3D 

space with respect to the unconditioned surface by adding the modified condi-

tioned surface to the unconditioned surface. The true tonnage is calculated using 

the separation distance between the two surfaces. At each cell location in the grid 

the difference (thickness) between the surfaces is calculated and summed to give 

the true tonnage. Along the periphery, the surfaces are coincident and the differ-

ence is zero becoming more separated approaching the centre of the grid. The 

tonnage is recorded to be used for comparison at a later stage in the process. The 

process is repeated to create 50 separate synthetic vein reference models. 

In advanced exploration projects the majority of subterranean information comes 

through diamond drilling campaigns. Drilling on regular equally spaced sections 
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is often the norm. The methodology presented here follows a similar approach. A 

program is used to drill (sample) the synthetic vein deposits on a regular rectangu-

lar grid. A GSLIB compatible file is produced which contains each drillhole in the 

grid discretized into sample intervals corresponding to the cell size of the simulat-

ed vein grid. Each sample point contains the xyz coordinates of the sample, the 

location of the footwall and hangingwall surfaces, and a vein indicator (VI) indi-

cating whether the sample is located inside the vein(1) or outside the vein (0). The 

resulting drillholes are then modified using the distance function (DF). The DF 

calculates the distance between each drillhole sample and the closest sample with 

a different VI. Values for the parameters C and β  are also applied at this time. 

The DF program output is a modified drillhole file composed of the xyz coordi-

nates, Euclidean distance, DFmod distance, VI and drillhole ID number. Drillhole 

data files are created for a range of drillhole spacings, and values of C and β . 

The drillhole data will be used to estimate the synthetic deposits using simple 

kriging. 

The estimation process uses each drillhole data set as input to the kriging pro-

gram. The resultant 3D models are used to calculate the estimated tonnage of the 

models that are then compared to the true tonnages. The entire process is auto-

mated using two bash script files. The first script creates the synthetic vein depos-

its and calculates the true tonnages; the second drills them, does the estimation 

and reports the tonnage. The tonnages are loaded into a custom EXCEL
®

 spread-

sheet and analyzed for precision and accuracy. 

2.5.2 Soft Knowledge 

There is a place in this methodology for soft knowledge, that is, knowledge that is 

difficult to quantify or convey. Soft knowledge or expertise is an important topic 

of this methodology. There is some form of judgement required to determine if 

the methodology produces the desired results. Considering that the objective of 

the methodology is to calculate tonnage uncertainty by successfully modeling the 

geometry of a vein type deposit, it is important that the model reflect the image of 

what the orebody should look like. The width of uncertainty or the amount of un-
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certainty is another issue where soft knowledge can be useful. The size of the un-

certainty bandwidth to apply to a single deterministic model during half calibra-

tion is more likely based on some comfort level rather than a calculated value. An 

example of the need for soft knowledge is shown in Figure 3-27 found in section 

3.6.2.
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Chapter 3  

Parameter Inference 
Several key concepts behind the distance function approach were presented in 

Chapter 2. This chapter will discuss some of the important user defined parame-

ters in the methodology and explain how to determine reasonable values for those 

parameters such that fair and unbiased results are obtained. 

3.1 Data and Mean 

The most important information extracted from the drillhole data is the rock type 

at each sampled location. Each sample is assigned a distance to the nearest sample 

that has the opposite rock type. The methodology presented here uses two rock 

types (vein and non-vein). Assay information and the length of the samples are 

not used. The methodology relies on the coordinates of the midpoint of the sam-

ples and the value of the modified DF. To properly use the DF we must define an 

area of interest large enough to enclose the entire orebody. Exploration drilling is 

often done only in and around the zone of interest. This may also apply to many 

of the holes that pass through the bounding box where there are sections of un-

sampled drillholes. In such cases, the addition of “dummy” sample intervals to the 

data is warranted. Sample intervals need to be added so that a complete set of 

sample intervals can be generated within the bounding box. There are no defined 

guidelines on the sample interval but depending on the existing data spacing, the 

average sample length could be considered as a lower limit. 

The methodology presented here considers closed 3D orebodies. Enough drillhole 

length outside of the orebody should be included to ensure that the volume is 

closed. Also, a positive mean value must be chosen to ensure that kriging the DF 

values leads to a closed orebody. A mean equal to at least twice the drillhole spac-

ing was used for the examples shown in this thesis. 
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3.2 Variogram and Anisotropy 

The variogram is a measure of spatial variability between sample pairs. It is often 

referred to as a measure of dissimilarity between pairs of data separated by specif-

ic lag distances. The variogram is very important in kriging and simulation. Cal-

culating the proper experimental variogram will also quantify the anisotropy asso-

ciated with the data.  

Two common types of anisotropy associated with ore deposits are geometric ani-

sotropy and zonal anisotropy. Geometric anisotropy refers to anisotropy that ex-

ists when the variogram sill remains the same but the range varies with direction.  

Zonal anisotropy exists when the variogram sill varies with direction. With zonal 

anisotropy, the range in each direction can differ or remain the same.  Both types 

of anisotropy can coexist in a deposit (Gringarten and Deutsch, 1999). In the case 

of tonnage uncertainty, geometric anisotropy is of interest and will be defined by 

the geometry of an ore deposit. Geometric anisotropy implies that a particular de-

posit is more continuous in one direction. We can often infer geometric anisotro-

py through knowledge acquired from geological mapping. 

Variograms are used to analyze spatial data and are a measure of the spatial de-

pendence between sample locations. The main parameter of the variogram is the 

range, that is, is the distance where pairs of data become uncorrelated. The vario-

gram range is used when estimating the value at an unsampled location. The range 

parameter is derived from a model fitted to an experimental variogram.  
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Figure 3-1: Schematic diagram of Distance Function. Distance increases away from vein/non-vein 

boundary. 

 

In the simplest form, the distance function (DF) is calculated from a single drill-

hole with a single intercept. The data configuration resulting from the DF will 

possess a cyclic pattern, uniformly decreasing then uniformly increasing. Vario-

gram calculation on this arrangement of data will not produce a recognizable sill 

because paired data will always have some correlation with one another. 

Consider the single intercept, Figure 3-1. The contacts of this intercept are as-

signed a distance of zero. As one moves up the hole away from the intercept, the 

distance values increase and are positively assigned. As one moves down the hole 

away from the contact, the values increase and are negatively assigned. After 

crossing the midpoint of the intercept, the maximum distance from the vein con-

tact in either direction, the distance to the lower contact begins to decrease. The 

lower half of the hole, that is, from the midpoint to the bottom of the hole, is a 

mirror image of the upper half of the drillhole. This mirroring of the drillhole 
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causes a cycle in the variogram referred to as a hole effect. The hole effect is 

common in stratigraphically layered deposits. 

3.2.1 Theoretical Variogram Model 

Consider a single vertical drillhole of length (A) that intersects a single vein-type 

(tabular) structure which has a thickness (a). If the hole is discretized into equal 

sample intervals from top to bottom we are able to assign two variables at each 

sampled location; 1) a vein indicator (VI) corresponding to the presence of (1) or 

absence of (0) vein structure, and 2), the distance calculated by the DF. 

3.2.1.1 Drillhole Geometry 

The result of the DF calculation is a column or string of uniformly distributed dis-

tances that can be divided into regions that can be associated with the variogram. 

 

0

Non-Vein
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Figure 3-2: Drillhole geometry in simplified form. 

 

The drill data can be divided into four regions corresponding to the following lim-

its. The length (A) of the drillhole can be divided into two parts separated at the 

midpoint of the vein, Figure 3-2. The upper half is defined as –A/2 and the lower 

half as +A/2. Similarly the vein structure (a), can be divided into -a/2 and +a/2 

again at the midpoint of the intercept. The midpoint of the intercept or vein centre 
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(VC) in Figure 3-3, is defined as the zero point which separates the upper half of 

the drillhole from the lower half. Each half of the drillhole contains two regions, 

one non-vein and one vein. The regions in the upper and lower halves of the drill-

hole form mirror images of one another.  The limits of the four regions, separated 

at the centre of the vein and the upper and lower vein contacts, are labelled Re-

gion I to IV.  

 

Figure 3-3: Defined drillhole regions. 

 

Region 1 (RI) is a non-vein area extending from the upper limit of the drillhole, -

A/2, to the vein boundary located at –a/2, Figure 3-2 and Figure 3-3. Following 

this is Region 2 (RII) composed of vein and extends from the upper contact of the 

vein, –a/2, to the midpoint of the vein (VC) which is also the zero point. Region 3 

(RIII) is a mirror image of RII extending from the vein midpoint to the lower 

boundary of the vein located at +a/2. The final region, Region 4 (RIV), is the mir-

ror of RI and extends from the lower vein contact at +a/2 to the end of the drill-

hole at +A/2. 
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3.2.1.2 Variogram Geometry 

Consider that the limits of the variogram span the length of the drillhole from –

A/2 to +A/2 corresponding to the top and bottom of the drillhole, respectively. 

These limits define the minimum and maximum lag distance h. The vein structure 

can also be depicted on the variogram by plotting the positions of –a/2 and +a/2 

with respect to the values –A/2 and +A/2. When the lag distance h is greater than 

the vein thickness a, there will be no vein/vein pairs included in the calculation.  

Recall that samples classified as vein are negative and those classified as non-vein 

positive. Therefore one would expect the variance of vein/non-vein pairs to be 

greater than that of non-vein/non-vein pairs. Generally, it is expected that the vein 

thickness ‘a’ will be much less than the domain size A, therefore we should ex-

pect a lower average variance for vein/vein pairs than non-vein/non-vein pairs.  

Region one (RI) is the region of most interest. It is the area bounded by a lag dis-

tances from 0 to A/2–a/2. Variances calculated in this region are for short lag dis-

tances where h<a/2 and use all pair combinations, non-vein/non-vein, vein /non-

vein and vein/vein. The region is not dominated by a single pair type however, as 

the domain size A increases with respect to vein size ‘a’, or vice versa, the type of 

dominate pairs change. Small values of ‘a’ with respect to domain A, non-

vein/non-vein pairs dominate whereas for large values of ‘a’ vein/vein pairs dom-

inate. Variance increases with increasing lag distance. When the lag distance is 

equal to the vein thickness, that is, when h=a, this marks the end of inclusion of 

vein/vein pairs. For all h>a, there are no vein/vein pairs included.  Region 1 is 

most important since it will ensure that no pair combinations will be skipped, Fig-

ure 3-4. 

Region two (RII) is the area located between lag distances of A/2–a/2 and A/2, 

Figure 3-4. Since the minimum lag distance is equal to A/2–a/2, Region 2 will not 

contain any pairs from the same Region. Region 2 is dominated by vein /non-vein 

pairs for lesser lags, becoming predominantly non-vein/non-vein pairs for larger 

lags. In this region non-vein/non-vein pairs tend to have, on average, a lower vari-
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ance than vein /non-vein pairs, we expect the variance to decrease with increasing 

lag distance. 

Region three (RIII) is the area with lag distances between A/2 and A/2+a/2, Fig-

ure 3-4. This region is dominated by vein /non-vein pairs. The position of the 

point h=a has a strong influence on the variance in this region and controls the 

ratio of vein/vein pairs included from RII - RIII and non-vein/non-vein pairs in-

cluded from RI-RIV. As the lag distance h=a progresses through RIII, the ratio of 

vein-vein pairs increases and the ratio of non-vein/non-vein pairs decreases.  

Region four (RIV) is the area with a lag distances greater than A/2+a/2, Figure 

3-4. This area corresponds to large values of h. Values in Region 4 are paired only 

with values from Region1 and thus are very similar. Since the distance function 

values are similar in these regions, the variance decreases rapidly eventually go-

ing to zero.  

3.2.2 Numerical Verification 

As shown in the preceding section, the variogram is divided into regions whose 

limits are defined by the domain A, and the thickness of the vein structure ‘a’. The 

subdivisions create two regions of positive slope above the vein centre and two 

regions of negative slope below the vein centre, as depicted in Figure 3-5. 

The calculated variogram for lag distance h is defined as the expected value of the 

squared difference between pairs of data and is expressed as: 

 [ ]{ }2
2 ( ) ( ) ( )E Z Zγ = − +h u u h  (3.1)

The experimental variogram for the example is shown in Figure 3-5 and Figure 

3-6 including the relative positions of the defined regions. 
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Figure 3-4: Z(u), Z(u+h) pairs by Region. Diagram depicts which rock types are paired and from which regions as the lag distance increases. For example, when 

the lag distance is between (A/2 + a/2) and (A), the lag distance is longer than the thickness of the vein therefore no vein pairs exist. This is shown on the right 

outer edge of the diagram, RI-RIV, RII-RIV, RIII-RIV and RIV-RIV at the bottom. 
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Figure 3-5: Schematic of experimental variogram regions with respect to the domain A. 

 

 

 

Figure 3-6: Experimental variogram example for lag h where drillhole length A=100 and vein 

thickness a=20. 
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In integral from this can be expressed as the squared difference between pairs of 

data evaluated over the domain of interest. 

 [ ]
2

2 ( ) ( ) ( )

Upper

Lower

U

U

Z Z duγ = − +∫h u u h  (3.2)

The variogram is integrated over the finite domain of string data A, from 
2

A−  to 

2
A− − h  as shown in the following equation. 

 [ ]
2

2

2

2 ( ) ( ) ( )

A h

A

Z Z duγ

−

−

= − +∫h u u h  (3.3)

The data ( )Z u and ( )Z +u h  can be replaced by the following linear equations; 

  0 1
( ) ( )Z a a= +u u  (3.4)

 and, 

 0 1
( ) ( )Z b b+ = + +u h u h  (3.5)

where 
0

a  and 
0

b are the y intercepts of the curve and 
1

a and 
1

b  the respective 

slopes. For each defined region I through IV, there will be a different slope and 

intercept combination. Table 3-1 lists the combinations of intercept and slope for 

each region. The intercept is expressed in terms relating to the uncertainty con-

stant C as depicted in Figure 3-7. 

 

Table 3-1: Slope and intercepts by region 

Region Intercept a0 Slope a1 

I +C-a/2 -1 

II -C-a/2 -1 

III -C-a/2 1 

IV +C-a/2 1 



 

47 

 

From the parameters listed in Table 3-1, we can define four different equations 

corresponding to the four regions of the variogram. 

      RI
2

      RII
2

( )
      RIII

2

      RIV
2

aC

aC
Z

aC

aC

+ − −

− − −

= 
− − +

+ − +


u

u
u

u

u

 

In the small example here a constant slope is assumed, it is possible that the slope 

be variable, a case to be addressed in the following section on the beta parameter. 

Recall the integral for a variogram over a finite domain, if ( )Z u  and ( )Z u h+  in 

Equation 3.3 are replaced with the equivalent equations 
0 1

( )a a u+  and 

0 1
( )b b u h+ +  the resulting equation,  

 ( ) ( )
2

0 1 0 12 ( ) ( ) ( )

upr

lwr

U

U

a a b b duγ = + − + +  ∫h u u h  (3.6)

can be reduced to  

 

( ) ( )

( ) ( ) ( )

( )
( )

2

0 0 1

2 2

0 0 1 0 1

2

1 1 3 3

2 ( )

3

upr lwr

upr lwr

upr lwr

a b b U U

a b b a b U U

a b
U U

γ = − − ⋅ −

− − − ⋅ − ⋅ −

−
+ −

h h

h  
(3.7)

Where 
0

a  and 
1

a  are the intercept and slope of the tail region and 
0

b  and 
1

b are 

the intercept and slope of the head region, while 
uprU  and 

lwr
U  are the upper and 

lower limits defined by the two regions, h is the lag distance. Using the above 

equation the theoretical variogram was calculated and is shown in Figure 3-8. 
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Figure 3-7: Relationship of Data (left) to variogram slopes and intercepts (right) 

 

 

Figure 3-8: Theoretical Variogram calculated using Equation 3.7. 

3.2.3 Comments on Multiple strings / Multiple intercepts 

It is often the case that vein deposits contain more than a single vein structure. If 

multiple vein structures exist, they can vary in number from one drillhole to an-

other. If multiple vein structures exist then the cyclic nature of the variogram will 

be reproduced over the range of A for each intercept, producing a non-dampened 

hole effect. Hole effects in the variogram make the selection of a single range 

ambiguous and difficult.  The experimental variogram will have to be calculated 

and fitted.  
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3.2.4 Practical Considerations 

Nugget Effect - In theory, when h is zero the variance between pairs will be zero. 

In this example there are no tolerances used on lag distances and no search angles 

used. Therefore the nugget effect will be zero since the squared difference be-

tween any points with a zero separation will be zero and the sum of all squared 

differences in the zero class will also be zero. In practice the squared difference at 

zero lag can be non-zero due the closeness and the tolerances used. 

Shape – In the example shown in Figure 3-8, the variogram has a bell shape 

caused by the presence of only one structure and the symmetrical nature of the 

drillhole data. With the addition of strings and multiple intercepts, the shape will 

become more sinuous repeating once for each additional structure. The first range 

is the most important and will be controlled by the size of the vein. 

Anisotropy – The anisotropy will likely be approximated by other means such as 

acquired knowledge of the morphology of the deposit gained through drilling and 

mapping. 

3.3 Parameter Guidelines 

The following section presents some guidelines and comments on parameter se-

lection and application of the various components discussed in Chapter 2 needed 

to achieve a calibration of C and β . 

3.3.1 Variogram 

The goal of the interpolation process with respect to tonnage uncertainty is to 

produce a smooth surface representing the possible variation in the surface from 

drillhole to drillhole. Two of the criteria discussed here, as applied to variogram 

modeling, are the nugget variance and the variogram ranges.  

The nugget variance is the value of the variogram when the separation distance h 

is just greater than zero. It is recommended using a zero nugget variance for mod-

eling tonnage uncertainty to ensure that the surfaces vary smoothly. 
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In the previous section the theoretical variogram was discussed with specific de-

tail to the paired data and their respective vein types. The theoretical variogram 

reached the maximum sill for lag distances approaching A/2 or one half the size 

of the domain. Deutsch (2005) suggests using variogram ranges set between one 

quarter and one half of the domain size in order to create a smooth surface be-

tween drillholes. 

The examples used in this thesis were modeled using a single spherical model 

with zero nugget variance, maximum and minimum range of 35 units and a verti-

cal range of 16. These ranges were found to provide the best smoothing and con-

tinuity between drillholes as depicted in Figure 3-9, and represent approximately 

one third of the size of the domain. 

 

3.3.2 Unbiasedness parameter C 

The unbiasedness parameter C, also referred to as the uncertainty parameter, var-

ies from near 0 to 1. A value of 0 represents zero uncertainty and a value of 1 rep-

resents the maximum uncertainty bandwidth, a value equal to the drill spacing as 

specified in the dfv4 parameter file. In Figure 3-9, C values equal to 0.25, 0.5 and 

1.0 are shown as applied to drillhole spacing of 5, 10, 15 and 20 units. These ex-

amples were generated using a neutral β  value of 1 and therefore does not impact 

the DF. The results show that with increasing drillhole spacing and C there is in-

creased uncertainty. Figure 3-10 shows a matrix of β  versus C plots. Values of 

β  from 0.25 to 2 were used along with C values of 0.25, 0.5 and 1.0. The plots 

are used illustrate that with increasing β there is a tendency for the zone of uncer-

tainty to expand. With increasing C, the location of the iso-zero boundary, i.e. the 

centre of the uncertainty bandwidth, remains fairly consistent, and only the thick-

ness of the uncertainty band increases.  

The uncertainty of our estimates should be fair, that is, the range of uncertainty 

should be neither too large nor too small. This will be checked below.  
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Figure 3-9: Examples of uncertainty in orebody volume. Each example is same orebody realization, and same vertical slice through the centre in the XZ plane. 

Distance function calculated using β equal to one. The solid outline is the true orebody outline. 
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Figure 3-10: Examples of uncertainty using C and β  combinations. Each example is same orebody realization, and same vertical XZ slice through the centre of 

the model. Distance function calculated using β values from 0.25 to 2.0. The solid outline is the actual orebody.  
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3.3.3 Fairness parameter Beta 

The fairness parameter β controls the position of the iso-zero boundary located 

between conditioning points. The larger the value of β  the larger boundary. Fig-

ure 3-11 shows a cross sectional view through an orebody and the true geometry  

 

 
Figure 3-11: - Vertical section of the true orebody in the XZ plane through centre of simulated 

orebody. 

associated with it. The vertical strings shown in the figure represents drillholes 

evenly spaced every 10 units. Recall that β  modifies the DF and that if β =1, the 

modified DF remains unchanged. Figure 3-12 shows an estimation using β =1. In 

Figure 3-13, a β of 0.6 was used and comparing that with the base case shown in  

 

 
Figure 3-12: Vertical section in the XZ plane. Beta = 1, base case 

Figure 3-12, we see that the iso-zero boundary and its associated bandwidth has 

contracted. Contrary to this, when β >1, shows that the iso-zero and bandwidth 
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expands, demonstrated in Figure 3-14 where a β equal to 1.4 was used for estima-

tion. 

 

 
Figure 3-13: Vertical section in the XZ plane. Beta = <1, Iso-zero contracts 

 

 

 
Figure 3-14: Vertical section in the XZ plane. Beta >1, Iso-zero dilates 

 

3.3.4 Anisotropy 

The anisotropy for each simulated orebody was calculated using two vertical 

cross sections. The cross sectional dimensions through the centre of the orebody 

in XZ and YZ planes were used to calculate the average strike length and average 

vein thickness. A FORTRAN program was written to calculate and write the ani-



 

56 

sotropy values of each realization to a file which is read when applying the dis-

tance function. 

3.3.5 Simple Kriging Interpolator 

Simple kriging was implemented with a version of the program kt3d that was 

modified to speed up the run time. The modified program kt3d-df, reads an input 

file produced by the program dfopt that creates a bounding box around the object 

and assigns a value of 0 to all cells located outside and 1 to all cells located inside 

the box. This enables kt3d-df to skip the estimation process for cells that are too 

far away and assign them a code of -999 indicating the cell has not been estimat-

ed. The size in number of cells of the 3D models estimated in XYZ directions is 

100 by 100 by 80 for a total of 800,000 cells. The time to estimate this size of 

model using kt3d and the 10 unit drill spacing data set is just over four minutes. 

Recall that 50 realizations will be used so the total time needed is on the order of 

three and one half hours. The same run done using the bounding box and the mod-

ified kriging program is two minutes thirty seconds for a single run and just over 

two hours to complete the 50 runs for a total reduction in execution time of one 

hour twenty-five minutes, a 40% reduction in time. 

3.3.6 SK Mean 

The simple kriging mean can be used to help control the geologic connectivity as 

shown in Figure 3-15. Changing the SK mean has little effect of the width of the 

uncertainty band but helps connect the orebody between drillholes. The geologi-

cal objects simulated in this thesis represent 3D closed solids which have nearly 

equal X and Y lengths. The vertical Z axis (thickness) is typically one third that of 

the X and Y dimensions. A simple kriging mean of twice the drill spacing was 

chosen to ensure the closed nature of the solids was maintained in estimation and 

that no “ore” would be estimated outside of the closed objects as depicted in Fig-

ure 3-15 where the mean used is equal to a negative value 4x the drill spacing. 
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Figure 3-15: The effect of changing the SK mean on the DF. Vertical sections in the XZ plane. 

 

3.4 Assessing Uncertainty  

Accuracy is defined as the degree to which a measured value conforms to a speci-

fied standard. In this thesis the accuracy of the estimated tonnage is compared 

against the true tonnage. Precision is defined as a measure of reproducibility. 

Over a number of trials, precision is the number of times an experiment reproduc-

es results within a predefined margin of error. Precision does not imply accuracy. 

Precision and accuracy must both be considered. It is of little value to produce 
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precise estimates if they are inaccurate. The desired result of an experiment is to 

have all results clustered together as close to the truth as possible and therefore be 

accurate and precise.  

For any reasonable measure of uncertainty a set of estimates must be unbiased 

and fair. Bias is the expected value of the difference between the estimate and the 

truth; 

 { }*
bias E T T= −  (3.8)

If an estimator is unbiased, the expected value of the difference between the esti-

mate and the truth will be zero and Equation 3.8 can be rewritten; 

 { } { }*
E T E T=  (3.9)

An unbiased estimate is a requirement for good uncertainty. 

Figure 3-16 shows three different scatter plots. Figure 3-16 left, indicates a bias 

towards underestimation, all points in the data plot above the 45° line. Figure 3-16 

centre, shows an unbiased scatter plot. The data group plots reasonably close to 

the 45° line with some estimates plotting above the line while other plot below the 

line. Finally, Figure 3-16 right, is an example of a bias toward overestimation 

where all points plot well below the line. 

Estimate Estimate Estimate

 

Figure 3-16: Schematic showing, Bias toward underestimation (left); Unbiased (centre); Bias to-

ward overestimation (right); 
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3.4.1 Accuracy Plots 

The accuracy of a set of estimated values is determined based on the fraction 

times the estimated value falls within a symmetrical predefined range. 

 
( )

[ ]
0.5 /2 0.5 /2,

, 0,1
est p p

act

Count z z z
p p p

N

− +
 ∈  

= = ∀ ∈  (3.10)

The actual proportion act
p  is defined as the number times an estimate, est

z , falls 

within the mean centred interval 
0.5 /2pz −  through

0.5 /2pz + , divided by the number of 

estimates N. A set of estimates is considered accurate if the actual fraction is 

equal to, or greater than the theoretical probability p. The closer act
p is to p for 

each probability interval from 0 to 1, the more accurate the estimates. 

Consider a set of 50 estimates and a probability interval of  p90. It is expected that 

90% of the estimates will fall within the mean centred probability interval p90, 

defined as;  

 90
0.5 0.5 0.5 45

2 2

pp
z z z p± = ± = ±  (3.11)

and defines the probability interval z 05 - z95. If there are 50 estimates, then the ex-

pected fraction would be 45 out of 50 estimates falling within the mean centred 

range 0.05z  through 0.95z . 

The target analogy is often used to explain accuracy and precision. In Figure 3-17, 

four different accuracy plot scenarios are presented. On the left side is a bullseye 

target showing a spread of twenty data points. The circles represent the probabil-

ity intervals increasing from the inner p10 through the outer p90. The actual num-

ber of data landing in the each p-ring is calculated and compared to the theoretical 

number and plotted on the graph on the right side of Figure 3-17. 

Starting with Figure 3-17a, visually the spread of data points on the target is con-

sistent and even. There is no obvious bias visible in the data. Further examination 

will show that each ring of the target contains the appropriate number of data. 

Plotting the actual fraction against the probability interval produces the graph 
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shown on the right side of Figure 3-17. In Figure 3-17a, the points fall on the 45° 

line indicating that the result is accurate and precise, or unbiased and fair. 

Moving to Figure 3-17b, visually the spread of data points on the target appears 

relatively consistent but more centrally concentrated than that shown in Figure 

3-17a. Again, there is no obvious bias visible in the data other than its closeness 

to the centre of the target. Examination of the probability intervals reveals that 

each interval contains more data than it should. Plotting the actual fraction against 

the probability interval produces a plot of points that fall consistently above the 

45° line indicating that the result is accurate and too precise and that the uncer-

tainty bandwidth is too narrow. In such situations the tendency will be to overes-

timate. 

The opposite is shown in Figure 3-17c. This example also appears to be unbiased 

and with the exception of not having any points located close to the centre, ap-

pears to be uniform. In this instance, examination of the probability intervals re-

veals that each one contains less data than it should. The right hand side of Figure 

3-17c reveals a that the plot of the actual fraction against the probability interval 

produces a plot where all points fall above the 45° line indicating that the result is 

accurate and imprecise meaning that that the uncertainty bandwidth is too wide. 

In such situations the tendency will be to underestimate. 

Finally, Figure 3-17d shows a case which is neither accurate nor precise. In these 

cases the situation occurs where there are too many points plotting in the upper 

probability intervals and too few in the lower probability intervals, or vice versa. 

On the bullseye target the result is that points are centred on the p50 ring, or some 

other interval, with the number decreasing inward and increasing outward. On the 

line plot of the data the result is an “S” shaped plot. The dividing point between 

over estimation, points above the line, and under estimation, points below the line 

can occur at any point on the 45° line, in Figure 3-17d, this point is the p50 inter-

val, and is shown this way for simplicity. 
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Figure 3-17: Accuracy and precision; A) Accurate and Precise, B) Accurate and too precise, C) 

Accurate and imprecise, and D) On average accurate and precise. 
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Figure 3-18: Same sample as Figure 3-17 D, different arrangement. Both are equally precise and 

on average accurate. This particular situation is difficult to control and is undesirable. 

3.5 Calibration of Parameters 

This section will discuss the calibration of the parameters C and β for accuracy 

and fairness. 

3.5.1 Objective function / criteria 

Objective functions allow for the quantitative assessment of the parameters cho-

sen for the estimation run. There are two principal objective functions used in this 

methodology, O1 and O2. Generally, objective functions refer to functions that 

are to be maximized or minimized to obtain the optimal result. In this case, the 

objective functions are both set to zero to find the optimal value. 

The objective function O1 is a measure of the closeness to the truth or the accura-

cy of the estimate. It is defined as the expected value of the estimate (T
*
) minus 

the truth (T), Equation 3.12, and approaches zero when the estimate approximates 

the truth. The function is standardized by dividing by the truth (T). 

 
{ }

{ }

*

1
E T T

O
E T

−
=  (3.12)
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When O1 > 0, on average T
*
 will be > T thus overestimating the tonnage. When 

O1 < 0, on average T
*
 will be < T and therefore underestimating the tonnage. Cal-

culating O1 for a different combinations of C and β  produces the plot shown in 

Figure 3-19. Two points can be concluded from the plot, the first point shows that 

as β  increases the value of also O1 increases, and the second, that the values of 

O1 are much more sensitive to β  rather than C. The zero contour represents the 

condition where T
*
=T. 

 

 

Figure 3-19: Contour plot depicting the relationship of O1 to C and β  . 

The objective function O2 is a measure of closeness of one estimate to another or 

the precision or fairness of an estimate. It is the sum of the difference between the 

number of times the estimate, P
*
, falls within a defined probability interval, Pi, 

and the expected times it should fall within that interval.  There are two varieties 

of the O2 objective function, O2a and O2b. O2a is the squared difference, written 

as; 
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The second variety, O2b, is the non-squared version of O2a and can take a posi-

tive or negative value. 
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When O2b > 0, on average, P
*
 will be > Pi thus overestimating the tonnage, Fig-

ure 3-17B. The result is accurate, but too precise, suggesting the uncertainty 

bandwidth is too narrow. When O2b < 0, on average P
*
 will be < Pi thus underes-

timating tonnage, Figure 3-17C. Calculating O1 for a different combinations of C 

and β  produces the plot shown in Figure 3-20. Two points can be taken from the 

plot, (1) shows that O2b is not monotonic as β  increases. For small β is increas-

ing, at some point, O2b reaches its peak and begins decreasing as β  continues to 

increase, (2) a single value of C can have multiple points where the O2b function 

is zero. The zero contour represents the point where P
*
=Pi. 
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Figure 3-20: Contour plot depicting the relationship of O2b to C and β . 

 

Unbiased and fair estimates of tonnage can be produced by setting both objective 

functions, O1 and O2, to zero. Presented in Figure 3-21 is a plot with O2b super-

imposed on O1. The location where the zero contours for O1 and O2b intersect 

provide a unique solution and optimal values for both β  and C. 

If the objective function O1 is not zero, that is to say, 

 
{ }

{ }

*

1 0
E T T

O
E T

−
= ≠  (3.15)

then the methodology becomes unstable and attempts to calculate the O2a and 

O2b will most likely lead to false results. All data that does not fall on (or ex-

tremely close to) the line 1 0O =  must be disregarded. 

Also, that the uncertainty is a strong function of β  suggesting that small changes 

in β  have a large effect on O2b. 
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Figure 3-21: Optimization of C and β . 

 

3.5.2 Parameter Optimization 

Parameterization (the choice of β  and C) can be subdivided into three categories 

representing the degree of accuracy required versus the amount of time desired. 

The categories are (1) empirical selection, (2) light calibration and (3), full cali-

bration. 

3.5.2.1 Empirical Selection 

Empirical selection refers to the application of β  and C based on the guidelines 

discussed in Section 3.3 previously in this chapter. 

3.5.2.2 Light Calibration 

In a light calibration scenario, the interpolated models are compared to a single 

solid model (wireframe) representation of the orebody. A C value is chosen based 

on the interpretation of representative sections and the expert judgement of the 
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person(s) doing the modeling. The value of C is chosen so that a reasonable range 

of uncertainty is produced. 

Once a reasonable value for C is chosen, β  is modified until the p50 value of the 

interpolated model coincides with the tonnage of the constructed solid model. 

3.5.2.3 Full Calibration 

In a full calibration scenario, multiple wireframe solid models are needed to be 

constructed that will be used as the reference models. For each reference model an 

optimization program is used to calculate the optimal β /C combination that pro-

vides an unbiased and fair estimate of uncertainty. A single run requires the inter-

polation of all reference models using a single β /C combination. To calculate the 

optimal β /C combination under full calibration requires multiple iterations using 

different β /C combinations. The research completed during this thesis has de-

termined the average number of iterations needed for full calibration is between 9 

and 12. If the input parameters and reference models are not sensitive to changes 

in β  and C it is possible that a full calibration could be completed in a minimum 

of 7 runs, however, as sensitivity to changes increases, the number of runs re-

quired to produce an optimal β /C combination will also increase. Because each 

iteration includes full interpolation of each model, full calibration requires con-

siderable CPU time and increases with the size and number of models used. 

3.5.3 Search Strategy C/Beta Space 

A FORTRAN program optdf.exe was written for full optimization. The program 

searches the C and β  space as defined by the user. The program reads a parame-

ter file, (see Appendix A), that passes the minimum and maximum values for C 

and β . These values create a bounding box within which the optimization takes 

place, Figure 3-22: Initial four points used in Full Optimization of C and 
β .. 

Starting with the minimum values ( )min min,C β , each reference model is interpo-

lated using the values Cmin and β min. The values of the objective functions O1 and 



 

69 

O2b are calculated using the current values of C/ β and the program moves to the 

next C/ β combination, ( )min max,C β , and the process repeats.  

 

Figure 3-22: Initial four points used in Full Optimization of C and β . 

Using the objective functions calculated at minβ  and maxβ , the value, A
β , the β  

value where the objective function O1 = 0 is extrapolated and the complete set of 

reference models are recalculated using the /C β  combination min ,
A

C β , Figure 

3-23. This method requires that the initial selection of minβ  and maxβ  be chosen so 

that the calculated objective function O1 at each location, minβ  and maxβ will have 

a different sign. If they do not the optimization program terminates. 
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Figure 3-23: Full Optimization O1 

The process is repeated at Cmax and the corresponding value of β  where the ob-

jective function O1=0 is calculated, B
β , Figure 3-23. At this stage in the optimi-

zation process we have completed six complete runs, corresponding to each point 

in Figure 3-23 interpolating the complete set of reference models. 

The next process in full optimization is to find the point on the O1=0 contour 

shown in Figure 3-23, where objective function O2b is also equal to zero. Recall 

that the objective function O2b is also calculated at A
β and B

β . The process be-

gins by extrapolating the likely position along O1=0 where O2b=0 using the val-

ues of A
β and B

β  as end members, Figure 3-24. For this example assume that the  
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Figure 3-24: Full Optimization O2b 

combination of parameters, minC and maxC , have the necessary requirement that 

the calculated values of objective function O2b at A
β and B

β have different signs. 

If they do not, then additional runs are needed until this requirement is met. 

Therefore, it is essential that the minimum and maximum values for C and β  are 

carefully chosen to prevent unnecessary runs. The process begins by selecting the 

midpoint between A
β and B

β which lies on the zero contour, C
β . The values of C 

and β  are calculated at C
β  and used to re-interpolate the set of reference models. 

The Objective function O2b is calculated and depending on its value another point 

along the line is chosen and the process repeated. If the points are close enough 

and the relationship is close to linear, finding the position on the line where O2b = 

0 can be reasonably found. Referring to Figure 3-24, if the value of O2b at C
β is 

found to be negative, we know that the location of O2b=0 lies to the right. We can 

extrapolate where the location of O2b=0 is and re-interpolate the models and re-

calculate the objective function. If the objective functions are zero, within a toler-

ance, then the optimal values for C and β  are reported, otherwise the process is 

repeated until the point where O2b on the O1=0 contour is found. 
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The final step is calculating indicator models for selected p-intervals. A 

FORTRAN program clipdf was written to calculate the indicator models. The in-

tervals usually chosen are the p10, p50, and p90. Calculating the indicator models 

is not a particularly CPU intensive operation however, the program clipdf has an 

option to produce a summary output file of the volume and tonnage for the 99 

percentiles. This operation is CPU intensive requiring 99 loops through the mod-

el, one for each percentile. An option to skip the summary output was put in place 

if the summary is not required.  

 

3.6 Implementation Considerations 

3.6.1 Computational considerations 

The time required for an operation depends on the level of calibration desired. At 

the lowest level, values for C and β  are chosen and a model created. The time 

required for this level is determined by the size of model. A model with 4.8 mil-

lion cells was completed in 40 minutes on a 3Ghz Pentium IV with 1Gb of ran-

dom access memory.  

If a more detailed calibration is considered then multiple models can be created 

using a single wireframe as a reference model. In this situation a single value of C 

is provided and models created for different levels of β until a model is produced 

in which the p50 tonnage matches that of the wireframe. The model will have a 

level of uncertainty defined by C. The time consuming part is the creation of mul-

tiple models.  

Full calibration requires multiple reference models. Recall from Section 3.5.3 that 

full optimization requires a minimum of eight combinations of C and β . These 

eight combinations are run for each reference model. The primary issue with the 

full optimization method is time. The most time consuming process is the kriging. 

The test case presented here required about three hours per run, or about 30 hours 

in total. The computer used was a 3 GHz Pentium 4 with 1Gb of ram. There were 

50 reference models kriged in each run for a total of 500 kriging runs. Each 3D 
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grid had a total of 800,000 cells. Changing the drill spacing or model size will 

have a significant impact on the time needed to carry out a similar optimization.  

Significant time could be saved by reducing the number of models needed to pro-

duce a stable result. Initial indications suggest that the total number could be re-

duced by half to 25 as shown in Figure 3-25 which plots the cumulative value of 

O2 with increasing number of reference models. The graph shows the value of O2 

becoming stable after about 25 reference models. The time reported here used a 

kriging optimization method not discussed. The technique places a bounding box 

around the complete orebody and instructs the kriging program to skip any cells 

located outside the limits of the box. More effective methods could be developed 

to improve efficiency. The speed of the optimization program itself could be im-

proved through a redesign of the algorithm and improvements in the source code. 
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Figure 3-25: Plot of O2 versus number of reference models interpreted. 

3.6.2 Practical Considerations 

Practical considerations include data configuration and geological considerations. 
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Figure 3-26: Vertical cross section example. Arrows point to the closest sample used in calcula-

tion of the DF. Colored background represents a 2D model of the DF. Hotter colors are father 

away from the vein. Cold colors (Darker blues) are closer to, or located inside vein. Note that in 

some instances the pairs cross structural boundaries. Also inclined holes and an inclined deposit 

can cause artefacts. 

Consider the example in Figure 3-26. The illustration shows inclined holes and a 

narrow inclined orebody. The upper three holes are separated from the lower three 

holes by a fault. The arrows point to the contacts used to calculate the DF and 

cause a number of artefacts. The presence of geological structures also plays an 

important part. Structures such as faults, the dashed line in Figure 3-26, are hard 



 

75 

boundaries. The DF has no knowledge of these structures and could produce un-

desirable results, Figure 3-27. 

 

Figure 3-27: Modeled and clipped DF shown crossing an interpreted fault (Dashed Line) on the 

lower three holes. However on the upper three holes the DF terminates before the fault due to the 

absence of vein down dip. Outline of wireframe vein shown for reference. 
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Chapter 4  

Synthetic Examples 
Chapter 4 discusses the application of the methodology presented in Chapter 2 to 

a set of synthetic orebodies. Beginning with a brief introduction to the processes 

used to generate the synthetic reference orebodies. Section 4.2, will also describe 

the methodology used to sample and interpolate the orebodies. Section 4.3 pre-

sents application and calibration of the parameters. Section 4.4 concludes with a 

discussion on the accuracy and fairness of the results 

4.1 Simulation and the Reference Models 

A set of synthetic orebodies forms the basis for the method. The orebodies are 

created using Sequential Gaussian Simulation (SGS). SGS takes a random path 

through the model assigning a value at every location until every cell in the model 

has been visited. As part of the process, every newly estimated cell is added to the 

dataset and used for subsequent cells. 

4.1.1 Creating the Reference Models 

The idea of using SGS to create synthetic orebodies is straightforward. Create two 

SGS generated realizations, one unconditionally simulated, the other conditioned 

to data, and add them together to produce a closed 3D object with finite volume 

and an adequate thickness, see Figure 4-1. The modifications applied to the reali-

zations are used to locate and add some definition to the surfaces. The first sur-

face created is an unconditionally simulated surface. The realizations are relative-

ly flat. By using a multiplier we can add some vertical exaggeration to the realiza-

tion. The unconditional simulation was multiplied by a value of 10.  
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Figure 4-1: (left) unmodified unconditioned 2d surface, (right) unmodified data conditioned 2d 

surface showing location of conditioning data. 

 

Figure 4-2: Modified conditional 2d surface, zeroed so outer fringes of area equal zero. 

 

The realizations are translated to remove negative elevations. To locate the sur-

face, each cell in the grid has 100 added to the cell value so that the surface is 

“centered” on the 100 elevation. The modified surface for realization 1 is shown 

in Figure 4-3 left. 
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The second SGS surface, Figure 4-1 right, shows the conditioned realization. This 

realization is conditioned to a data set consisting of a bordering ring of negative 

values (-2.5) and one central point (+2.5) as shown in the figure. This will ensure 

that the data is positive in the centre and negative along the periphery. As for the 

previous realization, we multiply by a constant to provide more relief to the reali-

zation than that of the standard normal distribution used in SGS. For this realiza-

tion a multiplicative constant of 5 was used. Since the realization is conditioned to 

data with the range -2.5 to +2.5, the smaller constant of 5 was chosen because it is 

half of what was used for the unconditioned surface. An additive constant of 2 

was used with this realization. It was not the intention to fully remove negative 

values from this realization. Since this realization will be added to the uncondi-

tional surface and there is the desire to have a closed geometric object we can use 

the negative values create the intersection between the two surfaces. Consider the 

nature of the conditioning data. A central “high” point and a ring of low points 

around the perimeter, this will cause SGS realizations to have high values in the 

centre becoming increasingly smaller toward the edges at some point becoming 

all negative. If we reset all the negative values to zero, we are left with a realiza-

tion, Figure 4-2, which can be described as a dome sitting on a plane of zeros. If 

we add this realization to the unconditioned surface we will create a new surface 

that contains the same values of the unconditional surface around the edges, (un-

conditional + 0), and the value of the unconditional surface plus the conditional 

surface towards the centre, (unconditional + conditional). The result is two sur-

faces, Figure 4-3, coincident at the margins becoming separated towards the cen-

tre. The separation between the two surfaces is the thickness of the vein deposit 

and can be seen in the XZ cross section through the centre of the two surfaces, 

Figure 4-4. 
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Figure 4-3: (left) Modified final conditional 2d surface, zeroed so outer fringes of area equal zero. 

 

 

Figure 4-4: XZ Cross section through modified conditional and unconditional surfaces 

 

The modification of the initial unconditional and conditional realizations created 

by the GSLIB program sgsim.exe, were done using the program emode.exe. This 
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program reads in a parameter file containing the names of the SGS realization 

files, the output modified realization files, and the multiplication and addition fac-

tors to be used for manipulation. The program also contains a smoothing subrou-

tine to smooth out some of the short scale variations in the realizations. See Ap-

pendix A for an example of the emode parameter file. 

4.1.2 Smoothing 

The modified SGS realizations have some erratic and unrealistic features as de-

picted by the top example in Figure 4-5. A smoothing algorithm was developed 

based on a 5 point moving average which arithmetically averages the four adja-

cent cells and the current cell as shown in the schematic in Figure 4-6. 

The newly calculated cells are written to a separate file and not used in further 

averaging operations. To avoid any negative impact caused by using averaged 

values and original values together. The result of the smoothing is shown in the 

illustration at the bottom of Figure 4-5. 
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Figure 4-5: (top) Modified SGS surfaces without smoothing; (bottom) Modified surfaces using 

smoothing 
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4.2 Estimation Process 

The estimation process is concerned with all aspects involved with drilling, sam-

pling, estimating the tonnage of the orebodies created in Section 4.1. In Section 

4.4, we will ascertain the tonnage uncertainty of the estimates derived from the 

steps discussed in this section. We will begin with drilling the orebodies followed 

by the application of the volume function and a discussion of the parameters used 

to characterize the volume function. The variography, interpolator (simple 

kriging) and the anisotropy as it applies to the methodology are discussed. 

4.2.1 Drilling the Synthetic Orebodies 

A collection of sample data is needed as input to the interpolator. The sample data 

is collected by simulating the drilling phase commonly encountered in grass roots 

exploration projects. A rectangular drill grid in the XY coordinate plane is used to 

locate collar positions. Collar locations are established equidistant in the X and Y 

directions. Four different collar spacings are selected for testing, 5, 10, 15 and 20 

units. A program called drill5.exe was created to sample the simulated orebodies 

at the specified spacing. The program uses the two modified surfaces that define 

the orebody. The program needs the origin of the drill grid, the number of holes to 

drill in the x and y directions and the separation distance and the surface dimen-

5 2

4

1

3

X

Y

 

Figure 4-6: 5-point moving average used to smooth out modified realizations. 
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sions along with the model top and bottom. The output file contains the xyz coor-

dinates of the sample location, the elevations of the upper contact, Zu, and the 

lower contact, Zl, an indicator VI for holding the vein indicator value and a drill-

hole identification number. An example of drill5.exe output is shown in Figure 4-

7. The drillholes can be discretized to any value by specifying a zmin and zsize in 

surface grid parameter section of the parameter file. Since the surface grids are 

2D, the z components are not used and can be changed, however, the number of 

levels must remain as 1. 

At each location visited, the program queries the elevation of each of the surfaces. 

The elevations are stored as the upper elevation, Zu, and the lower elevation, Zl 

for that location. The program then checks the value of z and if z < Zl or z> Zu, 

that is, located below the lower surface or above the upper surface, the sample 

gets assigned a value of 0 and denotes the sample is located in non-vein. If the 

sample is located between Zl and Zu, it gets assigned a value of 1 signalling the 

presence of vein. See Appendix A for an example of the drill5 parameter file. 

4.2.1.1 Drillhole Spacing 

Drill spacing is generally regarded as the average spacing between drillholes con-

tained in a drillhole sample set. In the methodology presented here, drill spacing 

is used as the basis for defining the uncertainty constant C. The actual value of the 

uncertainty constant used in the DF calculation is not C but rather the specified 

drill spacing multiplied by C. For instance, consider the case where two orebodies 

with different dimensions are drilled using a rectangular grid of the same dimen-

sions as the orebody. Each grid uses the same number of holes. The drill density 

would be the same regardless of the actual distance between holes. By standardiz-

ing the average drillhole spacing to C we can remove the physical dimension from 

the distance function equation. This has the benefit of having the exact same lim-

its, [0,1] for C regardless of drill spacing. Therefore, specifying a C value of ½ 

has the same connotation regardless of project and means the same, ½ the effec-

tive drill spacing. 
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Figure 4-7: Drill5.exe output example. The hole is located at the centre of the 100x100 surface grid, (50, 

50). The upper surface is at 104.5 and the lower surface at 89.6. The Hole number is 41. If the sample 

elevation z, third column, is between Zu and Zl, VI =1. 
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Figure 4-8: Drill spacing shown superimposed on Realization #1. Spacings are relative to deposit 

size 

Each of the simulated orebody has a somewhat circular shape with an average ar-

eal extend of 48x48 units. The drill spacing considered for this study is shown in 

Table 4-1, and is not that different from the spacing one would find in actual drill-

ing programs of this scope. 
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Table 4-1: Comparison of methodology drill spacing to those found in real world. 

Simulated Orebody Actual Example

Spacing Strike % Spacing Strike %

Units Length Size Metres Length Size

5 48 10% 20 200 10%

10 48 21% 40 200 20%

15 48 31% 60 200 30%

20 48 42% 80 200 40%  

 

4.2.2 Application of the Distance Function 

The distance function is applied to drill data using a FORTRAN program called 

dfv4.exe, see Appendix A for details. The program works with any GSLIB for-

matted program so long as it is formatted correctly which means the first three 

columns are the xyz coordinates of the sample and the eighth column is the indica-

tor VI. The drillhole file can have any orientation. The drillholes do not have to be 

completely discretized from collar to end-of-hole (EOH), however, there must be 

sufficient contiguous samples in and around the zone of interest. The DF is calcu-

lated based on the anisotropy, discussed separately in Section 3.2.4.5, specified in 

the parameter file.  Anisotropy is specified either through reference to an external 

file or by parameters set in the DF parameter file itself. The DF program assigns a 

distance based on three parameters, 1) uncertainty constant C, 2) beta and 3) the 

anisotropy. 

Recall the unmodified distance function found in 2.15, where hs, hd and ht are the 

Euclidean distances between the selected data pairs, and Vs, Vd and Vt  is the asso-

ciated anisotropy in each direction. The anisotropy is specified in one of two 

ways, 1) by specifying and anisotropy file in the dfv4.exe parameter file, or 2) by 

specifying the anisotropy factors directly in the dfv4.exe parameter file. The ani-

sotropy file is created by the program anis.exe which calculates the geometric ani-

sotropy of each realization of the synthetic models and outputs the results to a file. 

The DF is modified by Cp and β  depending on the value of VI, Equations 4.1 

and 4.2. 
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 ( )mod /          VI=0dF dF Cp β= + ∀  (4.1)

 ( )mod           VI=0dF dF Cp β= + ∀i  (4.2)

 

The additive value Cp is calculated as C DSi where C is the uncertainty constant 

and DS is the drill spacing specified in the parameter file. The result, distances 

that are tuned to the geometric anisotropy of the orebody. See Figure 4-9. 
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Figure 4-9: (left) Euclidean distances to samples with different VI values, negative values are VI 

=1, Positive values are VI=0. (right) Modified distances applied by the DF when Cp=4 and 1β = . 
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4.3 Calibration 

In section 3.5 the process for full calibration was outlined. The full calibration 

process was applied using 50 synthetic models described above and the results 

tabulated for each of the four different drill spacings. The results show that the 

minimum number of iterations needed to find the optimal values for C and β  var-

ies from eight, for a drill spacing of ten units to eleven for the five and fifteen unit 

drill spacings. 

Table 4-2: Full Calibration Results for 5 unit drill spacing 

5 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 0.900 -0.053 -1.000

2 50 0.100 1.100 0.041 -0.924

3 50 0.100 1.013 0.002 -0.147

4 50 0.300 0.900 -0.052 -0.516

5 50 0.300 1.100 0.035 -0.031

6 50 0.300 1.020 0.001 0.653

7 50 0.250 1.018 0.001 0.573

8 50 0.213 1.017 0.001 0.484

9 50 0.185 1.016 0.001 0.409

10 50 0.164 1.015 0.001 0.298

11 50 0.121 1.014 0.002 0.049

β

 

 

Table 4-3: Full Calibration Results for 10 unit drill spacing 

10 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 1.000 -0.084 -0.689

2 50 0.100 1.200 0.062 -0.671

3 50 0.100 1.115 0.001 -0.382

4 50 0.300 1.000 -0.091 -0.227

5 50 0.300 1.200 0.041 0.227

6 50 0.300 1.138 0.001 0.431

7 50 0.200 1.127 0.001 0.138

8 50 0.173 1.124 0.000 0.000

β
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Table 4-4: Full Calibration Results for 15 unit drill spacing 

15 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 1.200 -0.098 -0.587

2 50 0.100 1.400 0.068 -0.493

3 50 0.100 1.318 0.000 -0.316

4 50 0.300 1.200 -0.123 -0.213

5 50 0.300 1.400 0.022 0.391

6 50 0.300 1.370 0.001 0.400

7 50 0.188 1.341 0.000 0.102

8 50 0.200 1.344 0.000 0.156

9 50 0.167 1.335 -0.001 0.018

10 50 0.150 1.331 0.000 -0.036

11 50 0.163 1.334 0.000 0.013

β

 

 

Table 4-5: Full Calibration Results for 20 unit drill spacing 

20 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 1.400 -0.074 -0.417

2 50 0.100 1.600 0.087 -0.343

3 50 0.100 1.498 0.007 -0.481

4 50 0.300 1.400 -0.108 0.014

5 50 0.300 1.600 0.033 0.426

6 50 0.300 1.560 0.006 0.421

7 50 0.200 1.529 0.004 0.111

8 50 0.183 1.524 0.005 0.037

9 50 0.150 1.514 0.005 -0.153

10 50 0.181 1.523 0.004 0.028

β

 

 

The full calibration results show that the optimized values of C do not greatly 

vary for the three larger drill spacings as shown in Figure 4-10 and that the value 

of β  increases as drill spacing increases, Figure 4-11. Subsequent runs using a 

constant C value of 0.2 for each drill spacing show that the optimized values of β  

are not highly sensitive to C as also seen in Figure 4-11. This also suggests that 

selecting a value of C for partial calibration between 0.15 and 0.2 is appropriate. 
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Figure 4-10 : Optimized values of C versus drill spacing 
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Figure 4-11 : Optimized values of β  versus drill spacing (solid line); Values of β  for a constant 

value of C = 0.2 for each drill spacing.(dashed line) 

 

4.4 Uncertainty Results 

Results are shown for four different drill spacings. Spacings can be converted to 

real world terms. Based on the average size of the reference models, 48x48 units, 

a 5 unit spacing represents an orebody drilled on ~10% of its strike length, 10 unit 

spacing represents an orebody drilled on ~20% of its strike length, 15 unit spacing 

represents an orebody drilled on ~15% of its strike length, and finally a 20 unit 
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spacing represents an orebody drilled on ~40% of its strike length. In comparison 

to real world scenarios, consider an orebody of interest that has a strike length of 

200 metres. The drillhole spacing used in the examples translates into drilling the 

real life orebody on 20, 40, 60 and 80 metre drill spacings. These are all reasona-

ble sized drill spacings in any exploration project. The results show that as the 

drill spacing increases so does the uncertainty and the spread of points on the ac-

curacy plots. The closer drill spacings of 20 and 40 are most likely too close for 

grass roots cases but help illustrate the methodology. As drill density increases the 

amount of uncertainty decreases and most likely the methodology would not be 

warranted. However, it would provide uncertainty not quantified with determinis-

tic methods and perhaps a half calibration of a deterministic model could be im-

plemented. 

 

4.4.1 Drill Spacing 5 

The 5 unit spacing is the most densely sampled example. The 5x5 grid utilized 

225 drillholes incorporating 17,775 samples. The drillhole sample interval is 1 

unit. Figure 4-13, Figure 4-14 and Figure 4-15 show accuracy plots for three 

points on the plot shown in Figure 4-12. Two points are located at the edge of the 

optimization area, point A corresponding to the Cmin endpoint of the O1 line, and 

point C, the Cmax, endpoint of the O1 line. A third point B, is the location of the 

calculated optimal values of C and β . All figures show accuracy plots with a nar-

row spread of points along the 45° line and within the 5% tolerance limits. This is 

expected from closely spaced drilling. The precision, shown on the right hand side 

in the figures show a curved trend for points A and C showing lower precision. 

The curve is subtle in Figure 4-13 because location A is close to the optimized 

location C. 
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Figure 4-12: C/ β space for 5 unit spacing. A) Cmin end member, B) Cmax end member and C) op-

timal C/ β . Letters refer to accuracy plots below. Full set of plots are available in Appendix B. 
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Figure 4-13: Accuracy plot for location A in Figure 4-16 
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Figure 4-14: Accuracy plot for location B in Figure 4-16 
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Figure 4-15: Accuracy plot for location C in Figure 4-16 

 

4.4.2 Drill Spacing 10 

The 10 unit spacing represents a drillhole spacing equal to about 20% of the strike 

length of the orebody. The 10x10 unit example produced 81 drillholes incorporat-

ing 6,399 samples at a sample interval of 1 unit. Figure 4-17, Figure 4-18 and 

Figure 4-19 show accuracy plots for three points on the plot shown in Figure 

4-16. The accuracy plots show a wider spread along the 45° line than the 5 unit 

plots with some, approximately 8%, of the points falling outside the 5% tolerance 

limits. The precision, shown on the right hand side in the figures show a pro-

nounced curve for both points A and C with most points falling away from the 

45° line indicating poor precision. However, the optimized values of C and 
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β show acceptable precision with all points falling inside the tolerance limits and 

close to the 45° line, see Figure 4-18. 

 

 

Figure 4-16: C/ β space for 10 unit spacing. A) Cmin end member, B) Cmax end member and C) 

optimal C/ β . Letters refer to accuracy plots below. Full set of plots are available in Appendix B. 
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Figure 4-17: Accuracy plot for location A in Figure 4-16 
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Figure 4-18: Accuracy plot for location B in Figure 4-16 
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Figure 4-19: Accuracy plot for location C in Figure 4-16 

 

4.4.3 Drill Spacing 15 

The 15 unit drillhole spacing is the equivalent to about 30% of the strike length of 

the orebody which is 3 or 4 drillhole over its entire length. The 15x15 unit grid 

has 49 drillholes incorporating 3,871 samples at a sample interval of 1 unit. 

Figure 4-21, Figure 4-22Figure 4-23 show accuracy plots for three points shown 

on the plot shown in Figure 4-20. The accuracy plots show a wider spread along 

the 45° line than the previous plots with ~30% of the points falling outside the 5% 

tolerance limits. The precision, shown on the right hand side in the figures show a 
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pronounced curve for both points A and C with most points falling away from the 

45° line indicating poor precision. The optimized values of C and β  show ac-

ceptable precision with all points falling inside the 10% tolerance limits and close 

to the 45° line, see Figure 4-22. 

 

 

Figure 4-20: C/ β space for 15 unit spacing. A) Cmin end member, B) Cmax end member and C) 

optimal C/ β . Letters refer to accuracy plots below. Full set of plots are available in Appendix B. 
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Figure 4-21: Accuracy plot for location A in Figure 4-20 
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Figure 4-22: Accuracy plot for location B in Figure 4-20 
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Figure 4-23: Accuracy plot for location C in Figure 4-20 
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4.4.4 Drill Spacing 20 

The 20 unit drillhole spacing is the most sparsely spaced set equivalent to about 

40% of the strike length and represents only 2 to 3 drillholes over the entire strike 

length. The 20x20 unit grid has 25 drillholes containing 1,975 samples at a sam-

ple interval of 1 unit. Figure 4-25, Figure 4-26 and Figure 4-27 show accuracy 

plots for the three points shown on the plot shown in Figure 4-24. The accuracy 

plots shows the widest spread along the 45° line with ~50% of the points falling 

outside the 5% tolerance limits. The precision, shown on the right hand side in the 

figures show a pronounced curve for both points A and C with most points falling 

away from the 45° line indicating poor precision. The optimized values of C and 

β show acceptable precision with all points falling inside the 10% tolerance limits 

but are more erratic than previous plots, see Figure 4-26. 
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Figure 4-24: C/ β space for 20 unit spacing. A) Cmin end member, B) Cmax end member and C) 

optimal C/ β . Letters refer to accuracy plots below. Full set of plots are available in Appendix B. 
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Figure 4-25: Accuracy plot for location A in Figure 4-24. 

 

4,000

6,000

8,000

10,000

12,000

14,000

16,000

4,000 6,000 8,000 10,000 12,000 14,000 16,000

T
tr

u
e

T* p50

C= 0.181 Beta= 1.523
Accuracy Drill Space 20

5% Tolerance
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

A
ct

u
a

l 
F

ra
ct

io
n

Probability Interval -p

C= 0.181 Beta= 1.523
Precision Drill Space 20

10% Tolerance

 

Figure 4-26: Accuracy plot for location B in Figure 4-24. 
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Figure 4-27: Accuracy plot for location C in Figure 4-24. 

 

Recall from section 2.2.3 that uncertainty can be quantified by dividing the spread 

of the p80 interval by the p50 interval. A desirable quality of any estimate is low 

uncertainty. Uncertainty for each realization of the final optimized run for each of 

the four drill spacings is shown in Figure 4-28. The plots show as expected, that 

uncertainty increases and becomes more erratic as the drill spacing increases. 
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Figure 4-28: Uncertainty plots for final optimized C and β  
for; (A) 5 unit spacing (top left); (B) 

10 unit spacing (top right); (C) 15 unit spacing (lower left); (D) 20 unit spacing (lower right). 

 

4.5 Linkages & Implementation Challenges 

The methodology presented here is best implemented in early stage exploration 

projects where there is limited and widely spaced drilling information. As the 

availability of data increases so does the knowledge of the geometry of the ore-

body and therefore the practicality of the method is diminished. In an operating 

mine, where there is usually an abundance of data, the methodology seems of lit-

tle use as ore boundary limits are more defined through more dense drilling and 

mine excavation. However, in near-mine exploration, especially along strike and 

down dip, the methodology can be used to generate tonnage uncertainty in those 

sparsely drilled areas far removed from main mining activities. The methodology 

would also be applicable in feasibility or pre-feasibility studies when drilling is 

usually sparse. 

Some of the challenges to apply this methodology are contained in the original 

data configuration. In many vein type deposits, drilling is stopped soon after the 

drillhole has exited the orebody, usually within meters of the contact. Although 

this scenario has not been tested, it is the belief of this author that the lack of data 

on the footwall side of the vein deposit could provide insufficient sample data that 

may produce erroneous results. 
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4.5.1 Multiple intercepts 

It is common for vein type deposits to consist of more than a single vein structure. 

The methodology presented here does not explore multiple vein systems and how 

the DF would behave in those instances. The DF will need to incorporate a coding 

method to differentiate multiple vein intercepts especially if they belong to differ-

ent domains. 
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Figure 4-29: Simplified vertical XZ cross sectional schematic of multiple vein intercept scenario. 

4.5.2 Anisotropy 

As seen in section 2.4.3 the application of a geometric anisotropy can significant-

ly impact the calculated result of the DF. Assumptions made about the actual ani-

sotropy of the orebody in the presence of insufficient data could lead to poor or 

unacceptable results. 

4.5.3 Widely Spaced Data 

Data that is too widely spaced will present an additional challenge. A general lack 

of data could produce unrealistic models of the geometry of the deposit. As seen 

with the synthetic examples, as the drill spacing increases so does beta and the 
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uncertainty. It is possible that there exists a point where the drill spacing will pro-

duce a level of uncertainty that is unacceptable. 
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Chapter 5  

Practical Application 

5.1 Introduction 

To demonstrate the viability of the methodology in an actual situation, the meth-

odology was applied to a data set supplied to the University of Alberta by Inmet 

Mining Corporation of Toronto, Canada. The data set is from the Çayeli mine in 

northeastern Turkey, see Figure 5-1. The mine is a volcanogenic massive sulphide 

(VMS) but displays the characteristics of a vein type deposit. The part of the de-

posit modeled in this exercise consists of two mineralization types, 1) a hanging 

wall zone consisting of massive sulphide with >10% sphalerite termed ‘clastic’ 

ore due to its structural characteristics, and 2), a footwall zone made up of a mix 

of massive sulphide and stockwork. The deposit strikes NNE with a length of 

more than 900m and a vertical extent in excess of 600m. The average thickness of 

the orebody is 20m, ranging from a few metres to 80m in the thickest sections. 

The deposit dips -65° to the NNW. The data set is restricted to the Main Zone lo-

cated in the upper mine above the 800m level. 
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Figure 5-1: Çayeli mine location map. (reproduced from “Technical Report on Mineral Resource and Mineral 

Reserve Estimates, Çayeli Mine, Turkey”, RPA, March, 2006) 

The data set consists of 37 drillholes spaced across 13 sections on 40m centres. 

The author had no access to solid or wireframe models or the resource tonnage for 

individual zones making a comparison impossible. 

 

5.2 Methodology 

The Çayeli drillhole data was initially modified by adding sample intervals to 

non-sampled areas. The result is a dataset where each hole is sampled from collar 

to toe. This allows a complete string of distance data to be assigned to each drill-

hole. The sample data was modified using the FORTRAN program calcdf which 

calculates the distance and assigns a modified distance to each sample interval. A 

partial calibration was used on the example data. Since no wireframe was sup-

plied with the data set, one was created based on the defined vein geometry. The 

wireframe is shown in Figure 5-2. The wireframe tonnage was used as the average 
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tonnage or p50 tonnage. The optimal value of β  will be the value that best repro-

duces the tonnage for the wireframe for the p50 interval. Indicator probability 

models are extracted for p10, p50 and p90 intervals using the program clipdf. Fig-

ure 5-3 shows a section through the indicator model. Additional examples are 

contained in Appendix C. 

 

Figure 5-2: 3D View of wireframe used to calculate the p50 interval tonnage. 
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Figure 5-3: p50 Interval Indicator map of vertical section 1840N showing wireframe outline. 

 

5.2.1 Selection of C and β  

The modifiers used in calcdf are based on the results of the synthetic trials dis-

cussed in Chapter 4. Figure 5-4 shows the full calibration results for the uncertain-

ty parameter C for the various drill spacings used in the synthetic examples. 
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Figure 5-4: The optimized values of C for drillspacing. 
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Recall that the drill spacings discussed in Chapter 4 are based on the percentage 

of strike length and that a spacing of 20 units represents about 40% of strike 

length. For the Çayeli data, the average drill spacing is between 60m and 80m 

with a 500m strike length and down dip limit of 300m. In terms of unit spacing 

this is a similar drill density to the 10 to 20 unit spacing discussed in Chapter 4. 

A quick examination of the synthetic results, Table 5-1 shows that for each drill-

hole spacing a C value of 0.2 resulted in an O1 objective function of close to zero 

suggesting an unbiased estimate.  

Table 5-1: Comparison of Optimal values of C and Beta with selected values 

Drill Space C O1 O2

5 0.121 1.014 0.002 0.049

5 0.200 1.017 0.001 0.450

10 0.173 1.124 0.000 0.000

10 0.200 1.127 0.001 0.138

15 0.163 1.334 0.000 0.013

15 0.200 1.344 0.000 0.156

20 0.181 1.524 0.000 0.000

20 0.200 1.529 0.000 0.100

β

 

Also of interest in Table 5-1 the closeness of the β values between the optimal 

value and the value for C=0.2. As drillhole spacing increases so does the need for 

a larger β as shown in Figure 5-5. 
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Figure 5-5: The optimized values of β for drillhole spacing. 
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Using the table as a guide, a C value of 0.2 was selected as a C value for the exer-

cise and a selection of 'sβ since it is unclear from the table what value of 

β should be used. The example was calculated using β  values ranging from 0.80 

to 1.7. 

5.2.2 Anisotropy 

The anisotropy for the deposit was calculated using the model area extents as a 

partial representation of the deposit anisotropy. The model covers a strike length 

of 500m and a vertical (down dip) extent of 300m. Together with the average 

thickness of the deposit, 20m, a geometric anisotropy of x=1, y=0.6 and z=0.1, 

was applied to calcdf. 

5.2.3 Variogram 

Variogram used for the estimation was a single spherical model with zero nugget 

and an anisotropic search of 100m along strike (principal), 85m down dip (per-

pendicular) and 15m across the structure (z) which is close to the average thick-

ness of the orebody. To ensure that sufficient data was found a large search in the 

principle direction was used equal to 2.5 times the drill spacing. 

5.3 Results 

The results should reproduce the wireframe tonnage at the p50 interval and visual 

inspection of the uncertainty bandwidth. The process is trial and error and since 

no reference models exist for the practical example accuracy plots cannot be cal-

culated. The results indicate that a β  value of 1 is appropriate for a C value of 0.2 

and the anisotropy ratios selected. The individual percentiles for each β  value are 

plotted in Figure 5-6. 

The uncertainty parameter was discussed in Chapter 2. Recall that the uncertainty 

parameter is chosen so that the width of the uncertainty bandwidth is neither too 

large nor too small. The uncertainty parameter is expressed as a percentage of 

drill spacing. In this example, a value of 0.2 represents 20% or 12m of the average 

drill spacing of 60m. Figure 5-7 shows vertical cross section 1840 north and the 
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bandwidth associated with an uncertainty constant of 0.2 on the left and 0.5 on the 

right. Both figures represent a beta of 1.0. As stated earlier, an uncertainty con-

stant of 0.2 was used for the final model of the practical example. This number 

was arbitrarily chosen based on the optimized results of the calibration studies 

done in Chapter 4, see Figure 5-4. The uncertainty bandwidth shown on the right 

in Figure 5-7 for a C of 0.5 is much larger than that for a C of 0.2. 

Table 5-2 shows individual p-value volumes associated with both the C=0.2 and 

the C=0.5 bandwidths. The width of the 0.2 bandwidth has a volume equal to 

643,000 or about 40% of the wireframe volume. The width of the 0.5 bandwidth 

is more than 1,000,000 or nearly 70% of the wireframe volume and is too large. 

Figure 5-8 shows the distribution of p-values for both uncertainty parameter val-

ues C=0.2 and C=0.5. The width of uncertainty for each can be seen in relation to 

the wireframe volume, which is shown as a circle. The distribution of volumes for 

C=0.5 uses a beta of 1.6. The p50 volume is close to the wireframe volume. With 

further modification the p50 for the C=0.5 case could be made to better match the 

wireframe volume but the purpose is to show the width of the uncertainty band-

width so this volume is close enough to demonstrate the idea.  

The resulting models produced by the method are used as the limits for minerali-

zation. The indicator models produced by clipdf can be used to create volume 

shells for any p-value. The method offers more flexibility in the determination or 

selection of the resource tonnage. Rather than reporting the single tonnage associ-

ated with the wireframe model a tonnage range can be reported. Since the cali-

brated p50 or median tonnage is close to the wireframe tonnage, a measure of un-

certainty to the wireframe tonnage based on the p50 tonnage can be applied. 
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Figure 5-6: Model volume results using an uncertainty constant of 0.2 and the specified beta. The 

red dot represents the wireframe volume. 
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Figure 5-7: Uncertainty bandwidth for C = 0.2 (left) and C=0.5 (right), vertical cross section 

1840N.  
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Figure 5-8: Range of volumes (uncertainty) associated with the C=0.2, beta = 1.0 model and the 

C=0.5, beta = 1.6 model. The red circle represents the wireframe volume. 

 

Table 5-2: p-value Volumes 

C=0.2 C=0.5

Volume Volume

p99 1,926,928             2,181,864   

p90 1,857,088             2,039,232   

p75 1,746,360             1,827,912   

p50 1,570,936             1,537,808   

p25 1,416,288             1,291,472   

p10 1,331,608             1,165,144   

p1 1,283,304             1,094,616   

Bandwidth 643,624                 1,087,248   

Wireframe 1,588,315             1,588,315   

Relative Size* 41% 68%

* Bandwidth / wireframe Volume

Percentile

 

A complete set of sections and plans through one of the models is contained in 

Appendix C. 
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Chapter 6  

Conclusion 

6.1 Conclusions 

The tonnage of vein type deposits can be a significant source of uncertainty in 

mining projects. Tonnages of vein deposits are commonly calculated using 

wireframes built from the interpretation of geologic level plans and sections.  

The construction of wireframe models is a deterministic process that is often time 

consuming. The wireframe models created provide a single tonnage estimate with 

no provision for the determination of the uncertainty associated with the estimate.  

The purpose of modeling the boundary using a distance function is to provide a 

measure of the uncertainty in the tonnage. The novel method proposed in this the-

sis provides an estimate of the tonnage with uncertainty without the need to create 

a wireframe model. However, in the case of partial calibration it is desirable to 

have a wireframe for a base case volume. 

The methodology was tested using 50 synthetic reference models with known true 

tonnages. The modeling process creates an uncertainty bandwidth that is calibrat-

ed to allow the calculation of tonnages corresponding to any probability value. 

Tonnages are calculated by summing the tonnages from all grid cells within the 

vein accounting for the chosen probability value.  

The method when calibrated properly is shown to provide an estimate of vein de-

posit tonnage uncertainty that is both fair and accurate. 

In Chapter 3, full optimization of the required parameters (C and β ) was present-

ed. Chapter 4 showed how the framework is implemented with a synthetic exam-

ple. The optimization process is time consuming, requiring a minimum of ten runs 

to completely optimize the needed parameters C and β . The time required in-

creases with the size of the reference models and the number of reference models 
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used. The number of reference models required could be reduced through a sensi-

tivity analysis. Further efficiency could be obtained through modification of the 

optimization process.  

In Chapter 5, partial calibration was shown to produce encouraging results in the 

framework of an actual setting using a data set from the Çayeli mine in Turkey. 

Although many refinements could be considered, the foundation has been estab-

lished for a methodology to accurately and precisely evaluate tonnage uncertainty 

in vein-type deposits. 

 

6.2 Future Work 

Vein type structures are constrained by the geology. A flat lying orebody may be 

contained within a specific lithological horizon, or a steeply dipping vein structure 

may be confined to a certain rock type close to a contact with another rock type. 

In these cases the methodology presented here may not produce the desired re-

sults. A closer investigation of structurally controlled zones, and how to incorpo-

rate that type of data into the distance function procedure is warranted. 

The presence of bounding structures such as faults are common in vein type de-

posits. Structures such as faults and shear zones often truncate vein type struc-

tures. This situation was encountered in the practical example shown in Chapter 5. 

The vertical cross section in Figure 3-27 contains a major fault that truncates the 

mineralized zone. Future work will need to study the effects of structures such as 

faults on the methodology and how to incorporate them in the procedure to ensure 

that they are properly handled. 

Another area of future work is case where not all available intercepts belong to 

the same geologic structure, that is to say, when the data is comprised of inter-

cepts belonging to different structural entities. The schematics shown in Figure 

6-1 show a simple section where one drillhole has two intercepts. The figure on 

the left assumes the intercepts belong to the same structure and the methodology 

presented here will produce a similar geometrical shape. However, if the inter-
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cepts belong to different structures as depicted in the figure on the right, then the 

methodology will fail to produce the desired result. Therefore, there is a need to 

enhance the methodology to deal with multiple intercepts or vein structures. 
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Figure 6-1: Vertical cross section schematic showing two possible interpretations. A) The two 

intercepts in drillhole B belong to the same structure. B) The two intercepts in drillhole B belong 

to different structures. 

 

Many vein type deposits are more complex than a single planar vein in a single 

orientation. Deposits may have multiple veins at multiple orientations and multi-

ple stages of development. The order of development and any cross cutting rela-

tionships that exist are important. Therefore the order in which the structures are 

interpolated is important. Figure 6-2 shows a simple schematic of two structures 

with different orientations and stages of development. Future work will need to 

study the effects of multiple structures and orientations on the distance function 

approach to vein tonnage uncertainty. 



 

115 

Structure A
Older

Structure B
Younger

NOT TO SCALE

 

Figure 6-2: Vertical cross section schematic showing the cross cutting relationship of two vein 

structures. In this example structure A is also offset by structure B. 

Finally, the methodology presented here assumed drilling on a regular rectangular 

grid. The effects and implications of drilling on an irregular grid need to be stud-

ied to determine if acceptable results are produced. 
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Appendices 

Appendix A: Program summary, parameter files 

and scripts 

Appendix B: Program results 

Appendix C: Practical example figures 
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Appendix A: Program Summary, Parameter 

files and scripts 

Listing of FORTRAN programs, associated parameter files and BASH script files. 

A.1 SIMULATION MODE PROGRAMS 

Program: E_MODE3 

Modifies the output from SGSIM to construct the vein deposit. Each SGSIM realization 

must be must be modified and assembled into a simulated vein deposit. E_MODE3.EXE 

modifies each conditional and unconditional simulation, adds them together and outputs 

the modified surface. Three output surfaces are created, a modified unconditional surface 

and two modified conditional surfaces, one added to the unconditional surface, and one 

subtracted from the unconditional surface. The program also creates a thickness map 

which can be used for verification and visualization of the virtual deposit. 

 

INPUT: SGS_U_TEST.OUT -The unconditional simulation realizations 

PART I: Multiply by Factor A (10) and output to TEMP1A.OUT 

PART II: Add Factor B (100) and output to TEMP1B.OUT 

PART III: Smooth and output to MSGS_1A.OUT 

 

INPUT: SGS_C_TEST.OUT -The conditional simulation realizations 

PART I: Multiply by Factor A (5) and output to TEMP2A.OUT 

PART II: Add Factor B (10) and output to TEMP2B.OUT 

PART III: Smooth and output to MSGS_1B.OUT  

PART IV: Zero and output to TEMP2D.OUT 

PART V: ADD to MSGS_1A.OUT and output to MSGS_1B.OUT 

PART VI: SUBTRACT from MSGS_1A.OUT and output to MSGS_1C.OUT 

 

OUTPUT: Thickness Model   TSGS_xA.OUT (U+C) 

OUTPUT: Thickness Model   TSGS_xB.OUT (U-C) 
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Parameter File: emode.par

 

 

Program: TFTMAP 

Calculates the tonnage from the thickness maps produced by E_MODE3. The values in 

the thickness map are multiplied by a tonnage factor (TF). The tonnage factor is equal to 

the cell x-size * y-size * specific gravity. Tonnages are appended to report after a com-

pleted iteration.  

 

IMPORTANT: The program appends to the report file if it exists. To avoid having bo-

gus entries the user must delete any existing file if needed. 

 

INPUT: TSGS_1A.OUT  -Thickness created from E_Mode3 output. 

OUTPUT: TMAP_TABLE1.RPT -Tabulated report 

 
Parameter File: ttmap.par

 

 

 

Program: E_TONNES2 

Calculates the true tonnage. The program calculates the vertical separation between the 

surfaces and multiplies it by a tonnage factor (TF). The tonnage factor is equal to the cell 

x-size * y-size * specific gravity. Tonnages are appended to report after a completed iter-

ation. 
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IMPORTANT: The program appends to the report file if it exists. To avoid having bo-

gus entries the user must delete any existing file if needed. 

 

INPUT: MSGS_1A.OUT  -Modified Unconditional Surface 

INPUT: MSGS_1B.OUT  -Modified Upper Model UC + C 

INPUT: MSGS_1C.OUT  -Modified Lower Model UC - C 

OUTPUT: TONNAGE_TABLE1.RPT -Tonnage Report 

OUTPUT: FSGS_1A_xxx.out  -Tonnage Model A 

OUTPUT: FSGS_1B_xxx.out  -Tonnage Model B  

 
Parameter File: etonnes.par

 
 

 

Program: ANIS 

Calculates the anisotropy of a specified realization contained in the true thickness map 

produced by E_MODE3. The program appends the data to the report file if it exists other-

wise it creates the file. The anisotropy is calculated using the XZ and YZ cross sections 

through the centre of the map. Recall that simulated orebodies are centred on the grid due 

to the use of conditioning data used when simulating the orebodies.  

 

IMPORTANT: The program appends to the report file if it exists so if required the user 

must delete the existing file to start fresh with a clean file. 

 

INPUT: TSGS_1A.OUT  -Thickness created from E_Mode3 output 

OUTPUT: TRUE_ANIS_1A.RPT -Tabulated anisotropy report 
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Parameter File: anis.par
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A.2 Subroutines 

Subroutine: SMOOTH5 

Used in the program E_MODE. The subroutine smoothes the SGS models to remove some 

of the roughness. The program uses a five point moving window. The algorithm uses the 

cells immediately preceding and following the working cell in the same row and the cells 

directly above and below the working cell. The result is the arithmetic average of the five 

cells. Filters are applied for cells located at the beginning or at the end of a row as well as 

for cells located along the bottom or top row. In these instances the average is based on 3 

to 5 cells depending on the location. The calculated average value is not used in subse-

quent calculations. 

 

Subroutine: SETZERO 

Used in the program E_MODE. The subroutine zeros the background of the conditional 

model. Specifically, all cells with a value less than zero are reset to zero. When this mod-

el is added to or subtracted from the unconditional model, all cells in the final model will 

retain the value of the unconditional model, therefore, the models will have a zero differ-

ence in these areas and they will be coincident with one another. 

 

Subroutine: ADDMOD 

Used in the program E_MODE. The subroutine adds and/or subtracts the conditional mod-

el from the unconditional model and writes it to the final model output file. 

 

Subroutine: TMAP 

Used in the program E_MODE. The subroutine calculates and outputs a thickness Model 

which can be used for verification and visualization of the simulated vein deposit. 
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A.3 ESTIMATION MODE PROGRAMS 

Program: DRILL5 

Drills the simulated orebody built from two surfaces. Output drillhole file contains the 

xyz coordinates, the elevations of the upper and lower surfaces, and the vein indicator 

(VI). 

 

INPUT: MSGS_1B.OUT  -Modified Upper Model UC + C 

INPUT: MSGS_1A.OUT  -Modified Unconditional Surface 

OUTPUT: DRILL.OUT   -Drillhole file 

 

 

 

Program: CALCDF 

The distance function. Calculates the distance from one sample to the closest sample with 

a different VI. Modifies the DF using the specified uncertainty constant C, and the speci-

fied β constant. The DF is also modified using the xyz anisotropy values stored in the 

anisotropy file. The output is used as the kriging input file. 

 

INPUT: DRILL.OUT   -Drillhole input file (from DRILL5) 

INPUT: ANIS.OUT   -Anisotropy file 

OUTPUT: MDRILL.OUT  -VF modified drillhole file 
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Program: DFOPT 

Used to optimize the kriging program kt3d.exe. The program takes advantage of the 

drift option in kt3d.exe to produce a file that flags all cells outside the area of the ore-

body defined by a bounding box so they are skipped during the kriging process. This 

greatly enhances the speed of a kriging run. The output file contains a flag, 0 or 1, which 

tells kt3d.exe whether to skip the block (0), or calculate the cell, (1). Skipped blocks 

are assigned a default value of -999. 

 

INPUT: TRUE.OUT   -True thickness map 

INPUT: VI.DAT   -Vein Indicator 

OUTPUT: OPT.OUT   -Optimized Model 
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Program: U_TONNES 

Calculates the tonnage for each proportion of C from –C to +C. There are 21 classes de-

fined, from P0 to P100 corresponding to the value from –C (P0), to +C (P100). The value 

at P50 corresponds to the iso-zero surface. Tonnage is calculated as the cell volume mul-

tiplied by the specific gravity. After each iteration the tonnages are appended to report.  

Optionally, the program can write out the tonnage to a model file. 

 

IMPORTANT: The program appends to the report file if it exists. To avoid having bo-

gus entries the user must delete any existing file if needed. 

 

INPUT: MSGS_1.OUT  -Modified Unconditional Surface 

INPUT: MSGS_1A.OUT  -Modified Upper Model UC + C 

INPUT: MSGS_1B.OUT  -Modified Lower Model UC - C 

OUTPUT: TONNAGE_TABLE1.RPT -Tonnage Report 

OUTPUT: FSGS_1A_xxx.out  -Tonnage Model A 

OUTPUT: FSGS_1B_xxx.out  -Tonnage Model B  

 

Parameter File: uton.par

 

 

Program: OPTSEARCH 

Automated program to locate the optimal β  and C combination for a data set. The file 

calls inner.bsh which calculates the set of realizations for a given C/ β  combination. 

Output summary file, .SUM, contains the number of realizations used, C, β , and the ob-

jective functions, O1, O2a, O2b and OF. The input report file from inner.bsh contains the 

realization number, drill spacing, C, β , True tonnage, p0 through p1.0 (0.05 increments), 

the average estimated tonnage and the objective functions O1 and O2b. 

Optsearch.exe is given a maximum and minimum C and β  and finds the optimal 

C/ β  combination within the defined space. 

 

OUTPUT: SUMMARY.SUM  -Output Summary file 
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INPUT: INNER.BSH   -Bashfile to calc realizations 

INPUT: INNER.RPT   -Summary output from Bashfile 

 
Parameter File: optsearch.par

 

 

Program: CLIPDF 

Extracts indicator models from a model estimated using C and β . Multiple models can be 

extracted to the same file. The indicator models are specified using probability limits.  

For example, specifying 3 models at 0.1, 0.5, and 0.9 will extract indicator models repre-

senting the p10, p50 and p90 model limits. The program also output the volume and ton-

nage of the 99 percentiles, 0.01-0.99. For large models this can be time consuming. An 

option to disable the summary output is available. Cell sizes (dx,dy,dz) are used to calcu-

late Volume. Tonnage is calculated by applying the specified specific gravity to the vol-

ume. 

 

INPUT: MODEL.OUT   -Input DF model 

OUTPUT: VEININD.OUT  -Output Indicator Model 

OUTPUT: SUMVOL.OUT  -Output Summary file 

 

 
 

 

Program: kt3d-mjm.exe 
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A modification of the program kt3d.exe to speed the execution of the optimization of 

C and β . The modification makes use of the built-in external drift handling capability. 

An external file of cell indicator values, 0 or 1, is used to determine whether a cell is cal-

culated or skipped. Slipped cells are assigned a value of -999, this value is universally 

used to indicate unestimated cells in GSLIB.  The input file is generated using 

DFOPT.EXE previously discussed.
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A.4 Execution BASH scripts 

Script:  inner.bsh 

Script called by OPTSEARCH.EXE used to automate the selection, drilling and estima-

tion of an ore body. 

Script File: inner.bsh
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Script File: inner.bsh
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Script File: inner.bsh
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Appendix B: Program Results 

B.1 5 Unit Drillhole Spacing 

 

Table B.1: Run Results 

5 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 0.900 -0.05 -1.00

2 50 0.100 1.100 0.04 -0.92

3 50 0.100 1.013 0.00 -0.15

4 50 0.300 0.900 -0.05 -0.52

5 50 0.300 1.100 0.04 -0.03

6 50 0.300 1.020 0.00 0.65

7 50 0.250 1.018 0.00 0.57

8 50 0.213 1.017 0.00 0.48

9 50 0.185 1.016 0.00 0.41

10 50 0.164 1.015 0.00 0.30

11 50 0.121 1.014 0.00 0.05

β

 

 

Accuracy and Precision Plots – 5 Unit Spacing in order of run number 
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B.2 10 Unit Drillhole Spacing 

Table B.2: Run Results 

10 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 1.000 -0.08 -0.69

2 50 0.100 1.200 0.06 -0.67

3 50 0.100 1.115 0.00 -0.38

4 50 0.300 1.000 -0.09 -0.23

5 50 0.300 1.200 0.04 0.23

6 50 0.300 1.138 0.00 0.43

7 50 0.200 1.127 0.00 0.14

8 50 0.173 1.124 0.00 0.00

β

 

 

Accuracy and Precision Plots – 10 Unit Spacing in order of run number 
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B.3 15 Unit Drillhole Spacing 

Table B.3: Run Results 

15 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 1.200 -0.10 -0.59

2 50 0.100 1.400 0.07 -0.49

3 50 0.100 1.318 0.00 -0.32

4 50 0.300 1.200 -0.12 -0.21

5 50 0.300 1.400 0.02 0.39

6 50 0.300 1.370 0.00 0.40

7 50 0.188 1.341 0.00 0.10

8 50 0.200 1.344 0.00 0.16

9 50 0.167 1.335 0.00 0.02

10 50 0.150 1.331 0.00 -0.04

11 50 0.163 1.334 0.00 0.01

β

 

 

Accuracy and Precision Plots – 15 Unit Spacing in order of run number 
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B.4 20 Unit Drillhole Spacing 

Table B.4: Run Results 

20 Unit Drillhole Spacing

Run N C O1 O2

1 50 0.100 1.400 -0.08 -0.44

2 50 0.100 1.600 0.08 -0.32

3 50 0.100 1.498 0.00 -0.49

4 50 0.300 1.400 -0.11 -0.02

5 50 0.300 1.600 0.03 0.42

6 50 0.300 1.560 0.00 0.41

7 50 0.200 1.529 0.00 0.10

8 50 0.183 1.524 0.00 0.02

9 50 0.150 1.514 0.00 -0.16

10 50 0.181 1.524 0.00 0.00

β

 

 

Accuracy and Precision Plots – 20 Unit Spacing in order of run number 
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Appendix C: Practical Example Figures 

C.1 3D View 

 

Figure C-1: Oblique slice through DF model (Not to Scale). 

 

Figure C-2: Isometric View of DF Model bounded by -C and +C (Not to Scale). 
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C.2 Vertical Cross Sections of the DF 

 

Figure C-3: Distance function model on vertical cross section 1520N. 
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Figure C-4: Distance function model on vertical cross section 1560N. 
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Figure C-5: Distance function model on vertical cross section 1600N. 
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Figure C-6: Distance function model on vertical cross section 1640N. 

0 20 40 60 80 100

metres  



 

C-6 

 

Figure C-7: Distance function model on vertical cross section 1680N. 
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Figure C-8: Distance function model on vertical cross section 1720N. 
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Figure C-9: Distance function model on vertical cross section 1760N. 
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Figure C-10: Distance function model on vertical cross section 1800N. 
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Figure C-11: Distance function model on vertical cross section 1840N. 
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Figure C-12: Distance function model on vertical cross section 1880N. 
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Figure C-13: Distance function model on vertical cross section 1920N. 
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Figure C-14: Distance function model on vertical cross section 1960N. 
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Figure C-15: Distance function model on vertical cross section 2000N. 
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C.3 Horizontal Level Plans of the DF 

 

Figure C-16: Horizontal level plan elevation 870m showing DF. 
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Figure C-17: Horizontal level plan elevation 970m showing DF. 
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C.4 Indicator Models Vertical Cross Section 1560N 

 

Figure C-18: Vertical cross section 1560N, p10 Indicator Probability model created using clipdf.exe. 
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Figure C-19: Vertical cross section 1560N, p50 Indicator Probability model created using clipdf.exe. 
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Figure C-20: Vertical cross section 1560N, p90 Indicator Probability model created using clipdf.exe. 
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