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Abstract

Dynamic Thermal Line Rating (DTLR) is a technology that optimizes the utility of

overhead power transmission lines by dynamically adjusting the rating according to

current ambient conditions. To be truly useful, forecasting of DTLR must be applied

within processes governing the function of the electrical system. This thesis focuses

on medium term DTLR forecasts on the timescale of days and hours.

Two DTLR forecasting systems are developed within this thesis. Both systems

are categorized as indirect probabilistic rating systems, where Numerical Weather

Predictions (NWP) are processed to estimate the rating. The systems differ in the

method used to quantify uncertainty. In the first system, the uncertainty is described

by a custom statistical model that is fitted onto the historical forecasts of the model

in a scheme called Model Output Statistic. In the other system a Random Forest

machine learning model is employed to produce probabilistic output associated with

the NWP output. This system uses the regression-via-classification approach, where

most processing occurs in the discrete domain even though the inputs and outputs are

continuous. Both developed systems provide DTLR predictions that perform better

than Static Line Rating and a reference method.

The DTLR forecasting systems in this thesis have been specifically designed to

produce forecasts of temporally discretized rating. Temporal discretization is a term

defined in this thesis as the process of taking the continuous DTLR and turning it into

a single value valid over a period. Temporal discretization decreases DTLR benefit

and this relationship has been studied and simulated across a vast dataset spanning

all of Canada. A figure with the relative benefit of DTLR for different lengths of

ii



discretization periods is provided.

The effects of temporal discretization on DTLR forecasts are also addressed. A

simulation of DTLR forecasts with different discretization period lengths was per-

formed to analyze the sensitivity of DTLR forecasts to this variable. It was revealed

that the overall benefit of DTLR forecasts is relatively insensitive to the discretization

length.

It was argued that temporal correlations within DTLR time series impact the

discretized value. It was argued that ignoring these correlations will negatively affect

the probabilistic prediction by skewing the distribution toward the extreme value.

This was demonstrated on the simulated forecast. A Monte Carlo system with a

novel sampling method was proposed to mitigate this problem by generating realistic

time series that are used to estimate the rating. This method yields well calibrated

results.
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Chapter 1

Introduction

Electricity has become an essential pillar in society and the advancements made in this

field have revolutionized everyday life. It was not too long ago when candles were

used to illuminate homes, cooking was done on wood burning stoves, and nobody

owned cell phones. Now it seems as though electricity is integrated into all facets of

daily living from turning on lights, to driving electric vehicles, all the way to cleaning

with robot vacuums. It truly feels like everything is or soon will be just a flick of a

switch away.

In 1873, the first electrical light was switched on in Winnipeg, Canada. Then

the first Canadian movie theater opened in 1906. Soon after, in 1964, Canada was

the third country to launch a satellite into space [1]. It is evident, that there has

been tremendous growth in the electrical system over the years. In fact, 100% of the

Canadian population has access to electricity [2]. So while at one time it may have

only been possible to power a single light bulb, as a society we have become capable

of the unimaginable.

At the heart of all these achievements lies the transmission and distribution system.

In order to get to its target location, electricity must first be produced and then

delivered through this complex system. To produce electricity, power plants use

either fuel or harvest renewable natural resources. Then the electrical grid provides

the infrastructure to transport the electricity from the producers to the consumers
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who utilize the energy for personal, business, or industrial use.

Power can be injected into the electrical network at any location and then ex-

tracted in another completely distant location. Thus, the electrical grid works behind

the scenes and over vast distances only to be noticed if something goes wrong. As

we increase our electrical demands, power lines are being pushed to operate at their

maximum capacity. Consequences of insufficient transmission capacity are price el-

evations due to a lack of access to cheaper sources, curtailment of renewable power

sources, and in the most unfortunate case load shedding. Congestion is therefore, a

serious emerging problem that demands innovation and investment into the system.

Dynamic thermal line rating (DTLR) is one such innovation that aims to best

utilize the available capacity of the current transmission system. It does this through

precisely estimating the true capacity. This is in contrast to the more conservative

but crude approach known as static line rating (SLR). While simple and easy to

implement, it wastes a lot of potential capacity as it sets a rating that assumes the

worst possible conditions.

1.1 Motivation

DTLR, by definition allows for the optimal utilization of conductor capacity. Assum-

ing the sensors perfectly monitor both the conductor and environment without error

or uncertainty, the operator can use the thermal model to calculate the true rating.

This process is termed Real-Time DLR (RT-DTLR) [3].

This strategy, while theoretically optimal, comes with practical limitations that

reduce its utility in many scenarios. Firstly, highly accurate sensors with substantial

spatial and temporal resolution are required to be installed directly on the trans-

mission line conductor. The sensors are distributed in sufficient quantities and are

capable of providing real-time communication with the center of operations. This

process implies costs associated in installation, ongoing maintenance, and data col-

lection.
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Figure 1.1: The timeline of the electrical market. Figure from [4]

The second and arguably more important issue is the impracticality of rating in

real-time with the current electrical system. For many processes, the available trans-

mission capacity needs to be preemptively known. Figure 1.1 shows a timeline of a

typical electrical market spanning across 15 orders of magnitude. The RT-DTLR can

be assumed to be valid for up to several minutes due to the thermal inertia of the

conductor and can be extrapolated to a few hours using statistical methods. How-

ever, this only covers processes that facilitate sub-second operations, and respond

to demand spikes and emergency situations. Any process that operates on a longer

time scale, such as weekly and day-ahead scheduling, therefore cannot benefit from

RT-DTLR.

For DTLR to be more valuable within the current infrastructure and system, it

needs to be incorporated into longer scale processes that operate in horizons of hours

or days. To achieve this, DTLR must be forecasted with sufficient accuracy, precision

and reliability.

The focus of the research presented in this thesis is on the innovation and de-

velopment of medium-term DTLR forecasting to be used with daily to weekly scale

processes within electricity markets.
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1.2 Thesis Objectives

The objectives for the research presented in this thesis can be arranged into 3 groups

as listed below.

1. Design a novel DTLR forecasting system:

• Review the available literature to find the most promising combination of

methods for DTLR prediction.

• Develop a technique to provide a probabilistic prediction of DTLR.

2. Examine the effects of temporal discretization on DTLR:

• Develop a process for calculating the temporal discretization of DTLR.

• Establish a baseline for DTLR when temporal discretization is applied.

3. Improve the performance of discretized DTLR forecasts:

• Analyze the impact of temporal correlations on transmission line rating

predictions.

• Propose a technique to integrate temporal correlations into the DTLR

forecasting system.

• Evaluate the proposed methods on experimental data.
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1.3 Research Originality

The work presented in this thesis is rooted in the present state of the art, however,

a substantial portion of the research is novel and original. This section highlights

the contributions to the current state of knowledge. These original contributions are

significant not only from the academic perspective, but they also promise important

improvements to the electric power transmission industry.

Two novel extensions to an established algorithm are proposed in Chapter 3, which

describes an algorithm for predicting time series data collected by wireless sensors.

The first extension, Delayed-DBP, allows the user to make a compromise between

the latency of the algorithm and the compression ratio. An additional configura-

tion option was added to the algorithm and the modified pseudo-code is provided.

The second extension aims to decrease the latency, while providing a portion of the

compression ratio benefit by performing local prediction using an artificial neural

network.

A probabilistic rating prediction system is presented in Chapter 4. The system dif-

fers from other DTLR forecasting systems as it concentrates solely on daily forecasts.

The majority of available research in DTLR focuses on predicting real-time rating.

In this chapter, the limitations of daily rating are clearly outlined and daily rating

is compared to realtime rating to highlight the impact of temporal discretization.

Moreover, this research uses Model Output Statistics (MOS) with a custom statisti-

cal model. While MOS is usually used with ensemble systems, this work applies it

to a single NWP with the understanding that the forecast uncertainty is inversely

correlated with wind speed.

The concept of temporal discretization is formally introduced in Chapter 5. To the

best of the author’s knowledge, this topic had not previously been addressed. In this

chapter, the implications of temporal discretization on extreme values of winds speed

and DTLR are discussed. Additionally, the effects are evaluated on a large scale
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simulation and arguments are presented to support the claim that DTLR benefit

decreases according to the power law. Finally, the connection between DTLR and

reproductivity through formation of the minimum, a not commonly known property

of Weibull distribution, is established.

The work in Chapter 6 applies the idea of temporal discretization to DTLR pre-

diction, which prior to this had not been done before. The sensitivity of DTLR

prediction to the discretization period length is evaluated. An unexpected result is

obtained when the DLR prediction is not very sensitive to the change in discretization

period. Furthermore, the DTLR benefit is lower for a 1-hour discretization period

than for a 2-hour one. The regression-via-classification framework was applied to

DTLR prediction for the first time. To estimate temporally discretized forecasts, a

novel method based on Monte Carlo simulation is proposed.

1.4 Thesis Outline

The thesis is structured into 7 chapters.

Chapter 2 - Background and Related Work

In this chapter the related work from the field of DTLR is summarized. This chapter

contains background information that is relevant for the subsequent chapters.

Chapter 3 - Derivative Based Prediction with Look Ahead

RT-DTLR requires sensors to be installed on multiple locations on the transmis-

sion line. The data must be transmitted nearly in real-time. This chapter presents

Derivative Based Prediction with Look Ahead, which is a compression algorithm that

reduces the number of messages transmitted through wireless sensor networks. It is

an extension to the derivative Based Prediction (DBP) algorithm. The algorithm

computes a linear fit over the time series and sends only updates of the linear model

to the base station. Two extensions of the original algorithm that further decrease
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the number of data packets sent are introduced. The first variant, Delayed DBP,

computes the slope of the linear fit using data points in front of and after the model

reference point. This is in contrast to basic DBP that uses only the reference point

itself. The second extension, DBP with look-ahead, is based on Delayed DBP, but

uses a recurrent neural network (RNN) to predict several points from the future for

slope computation. All three algorithms have been implemented and simulated on

a temperature time series. DBP reduced the number of required transmissions to

transfer the entire dataset to 4.4 %, Delayed DBP to 2.6 % while introducing 7.5

minutes of delay and, DBP with look ahead to 4 %.

Chapter 4 - Day-Ahead Dynamic Thermal Line Rating using
Numerical Weather Prediction

In this chapter, a DTLR medium-term forecasting system is developed and tested.

The rating is set daily based on a Numerical Weather Prediction (NWP) generated

the previous day. This method is similar to a seasonal rating, also known as Quasi or

Semi-Dynamic line rating, but differs in that it uses a very short time frame of one

day instead of a month or quarter year. A statistical model is used to quantify the

uncertainty in prediction to assure reliability of the predicted ampacity. The method

is tested on measured data from a transmission line located in southern Alberta,

Canada.

Chapter 5 - The Effect of Temporal Discretization on Dy-
namic Thermal Line Rating

DTLR is often applied in discrete time periods during which the rating is held con-

stant. As the applied rating must always be safe under the worst case conditions, it is

selected as the minimal rating over the time period. This conservative approach de-

creases the potential benefit of DTLR because the capacity that is over the minimum

of the period is unused. In this chapter the effect of different discretization period

lengths is investigated. The stability under the minimization property of Weibull
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distribution is used to derive the relation between the discretization length and the

expected value of discretized wind speed. Moreover, data from 490 weather stations

located across Canada are used to support the analytical result and to quantify the

benefit of DTLR over a large geographical area.

Chapter 6 - Probabilistic Forecasting of Dynamic Line Rating
with Temporal Correlations

In this chapter, the effects of temporal discretization on rating prediction are exam-

ined, the importance of temporal correlations are discussed, and an algorithm that

includes these correlations in a rating prediction system is proposed. The sampling

algorithm is based on iterative sampling from a chain graphical model, where the

values of already sampled variables influence the distribution of their neighbours to

emulate the correlations seen in real data. The system is able to produce samples that

are usable in a Monte Carlo optimization of an objective function and yield overall

good calibration.

Chapter 7 - Conclusion and Final Remarks

The thesis is recapitulated and concluded in this final chapter.
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Chapter 2

Background and Related Work

2.1 Background

The purpose of the electrical system is to provide electricity for personal, business,

and industrial use. The three main components of the system include generation,

transportation, and distribution. The purpose of generation is to convert different

forms of energy to electricity. Conventional generation uses fuel to spin generators

that provide electrical power, whereas renewable generation utilizes energy that is

freely available in the environment like wind, solar, or hydro [5, 6].

After generation, the energy has to be transported to the users. The transmission

network achieves this by converting the electricity to higher voltages and sending it

through power transmission lines over great distances. Once it reaches its destination,

the electricity is converted back to a lower voltage and is delivered to users through

Figure 2.1: Diagram of the electrical system. Image from [6]
.
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a distribution network [5, 6].

Historically, the electrical system was operated by one entity or a small number

of parties controlled by the state or local government. In recent years, however,

many regions have moved to a free market electrical system, not too different from

regular commodity markets. In this free market electrical system, electricity is traded

between the parties that produce it (the generation) and those that consume it (the

consumers) [7].

Electricity has several properties that make the market unique. Unlike a con-

ventional commodity, electricity cannot be easily stored in large quantities [8]. The

production has to be equal to the consumption at all times. This poses a problem, as

cheap forms of electricity cannot be produced in advance and used when needed. The

cost of generation follows the economies of scale, where larger quantities of energy

can be produced at lower unit costs. Furthermore, as larger generators are more dif-

ficult to control the cost of electricity is typically proportional to the reaction speed

at which the output of the generator can be changed. In other words, generation that

can be altered at moments notice is more expensive than generation that takes hours

or even days to control [7].

To overcome this limitation, a hierarchy of power generation has been established.

There is bulk power generation that covers the baseline energy needs at low costs.

These generators produce power at a steady rate and rarely have a change in output.

Then there are smaller peaking generators that engage as needed to satisfy any power

demand peaks that exceed the limits of the bulk generators.

Another issue with electricity is that the amount of consumption cannot be con-

trolled. Physically, a customer can draw as much or as little electricity as they want

regardless of any previous arrangements or contracts [8].

A different distinctive property of the electricity market is that many consumers

are generally insensitive to the cost of electricity [7]. In other markets, when the cost

of a commodity increases, a certain portion of buyers will decide not to buy, thereby
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decreasing demand and subsequently price. Hence, this process provides a degree of

self regulation. In the electricity market, however, many customers utilize electricity

regardless of the price.

A typical electricity market works on the principle of an auction. The producers

and consumers submit their bids and then the operator clears the market to find the

price. The bids of the producers are sorted by cost and the lowest cost that satisfies

the demand is found. This process guarantees the lower cost energy sources will be

used first followed by the more costly generators [7].

After the auction is closed, the price and the total amount of generation is known.

It is at this time that the operator of the electrical network can notify the generators

of how much energy is needed to be produced at specific times.

The locations of electrical generation and consumption are typically in different

geographical areas. Consumption is concentrated around cities, whereas large pro-

ducers of electricity are often located in remote areas. It is postulated that proximity

to fuel or energy sources, as well as concern for pollution from a large power plant

may be the rationale for this. Thus, electricity is often transferred over extensive

distances.

Additionally, the capacity of transmission lines are not unlimited and several fac-

tors are known to restrict this capacity. To achieve sufficient quality and stability over

medium distances (80-240 km), good control of electrical flow is needed, and the para-

sitic parameters of inductance and capacitance should be taken into account. In even

longer lines (over 240 km), these parameters must to be treated as distributed, and

even greater accuracy of control is required [6]. Figure 2.2 illustrates this relationship.

In short lines (less than 80 km), the limiting factors are simply the thermal prop-

erties of the conductor [6]. When electricity flows through the conductor, heat is

generated secondary to the effects of electrical and magnetic losses, and the temper-

ature of the conductor rises. The temperature of the conductor has to be capped for

three reasons. Firstly, if the temperature of the metal were to rise to its annealing
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Figure 2.2: The relationship between the length of the transmission line and its rating.
Figure from [8].

point, the conductor would abruptly loose tensile strength and break. Secondly, an

increased temperature accelerates the ageing of the conductor. The lifespan of a con-

ductor is measured in decades, however, if it is operated over its design temperature

the conductor might fail before its projected service time [9]. Finally, an increased

temperature causes metal expansion and subsequent loss of tension and increased sag

over a segment of the power transmission line. When a transmission line is built, a

specific amount of clearance between the conductor and the other object is assumed

to accommodate for sag [10]. If, however, the conductor were to sag below the allotted

clearance, it may come into contact with foreign objects, which can cause deleterious

effects to the line itself or nearby property. In the worst case scenario this may lead

to human injury or death.

For the reasons specified above, it is therefore critical to carefully control the

amount of power being transmitted to ensure it does not surpass the defined limits.

Methods of controlling power transmission are limited. Traditionally, it was not a

straightforward task to decrease the power flow in a transmission line, because power
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flows through a network following Kirchhoff’s circuit laws. Often, the only methods

for control are changing the output of the power plants, or shedding load. Recent

developments in power electronics, however, has enabled the application of devices

that offer a more directed but still limited control over power flow [8].

Ideally, transmission line capacity far exceeds what is required and the market

operator needs not direct any special attention to the transmission network besides

accounting for transmission losses. On the other hand, if the transmission line is

utilized to full capacity, the operator has to schedule the generators in such a way

that the flows are lesser than the transmission limits. Typically, this can be achieved

by scheduling more generation at other locations to enable the required power to be

provided through alternative transmission lines. This ultimately decreases the load

on the congested line [7].

Unfortunately though, this solution deviates from the optimal schedule and leads

to what is commonly known as local pricing. This is when electricity is sold at an

inflated price due to both the inability to access cheaper electricity, and the necessity

to use locally available but more expensive generators [7].

The demand for electricity is ever increasing from a 20% share of total energy

consumption in 2020 to a projected 24-31% in 2040 [11]. This constant uplift of

electricity demand, together with wide spread adaptation of renewable generation,

requires adequate investments in the electrical system including the electrical grid.

In the next decade, an additional 2 million kilometers of transmission lines and 14

million kilometers of distribution lines are planned to be added [11]. Together with

the upgrades for the current grid, the investment is projected to reach $460 billion in

2030 [11].

Construction of new lines or upgrading existing lines is an extremely costly process

that necessitates not only large investments, but also causes interruptions in service

for the consumers, and opportunity costs for the producers. To minimize cost, the

investment strategy relies on modernization and digitization of current equipment to
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increase the capacity of the network by utilizing existing equipment in a more efficient

way. There are numerous new technologies in development that aim to optimize the

way transmission networks function.

The improvements in development related to demand include utility scale battery

electricity storage. Utility scale battery storage is essentially a large battery that is

able to provide power levels comparable to the power coming from a utility operator.

This storage can be charged when traffic on the electrical grid is low and used later

to supply energy when the network is congested. This process of smoothing large

surges of demand is called peak shaving and decreases costs by removing the need to

use expensive peaking generators [12]. It is projected that there will be 220 GW of

battery storage installed by 2030 compared to 11.5 GW in 2019 [11].

The greater utilization of decentralized production mainly from renewable sources

can be viewed as an improvement in electricity production. It is estimated, that

solar photo-voltaic additions will reach 280 GW by 2030, and wind power generator

additions will reach 145 GW [11]. The more consumers that can be satisfied with

renewable production of closer proximity, the greater the capacity of the transmission

system left free for bulk transfers. This does however bring its own problems, as the

transmission and distribution system has been designed for mainly one way flow from

large power plants to consumers.

Even the transmission system itself has been a focus of research in recent years.

To name a few examples, there are new discoveries in network topology [13]; new

optimization techniques for generation and transmission planning [14]; improvements

in DC converter technology that allow construction of high voltage DC lines which

are more efficient and economically beneficial over long distances [15]; and the intro-

duction of Flexible AC Transmission Systems (FACTS) devices that provide fast and

reliable way to modify flows in the network by controlling the voltage, current, or

impedance [8].

Dynamic Thermal Line Rating (DLR) is another technology that aims to optimize

14



the utility of the electrical grid [16]. As mentioned previously, the transmission lines

are subjected the operational limits. This limit is termed the rating of the transmis-

sion and dictates the maximal current that can flow through the conductor at any

given moment. It is a value decided by the operator to ensure equipment safety. For

shorter lines (¡80km) the rating is governed by the thermal properties of the conduc-

tor [8]. The rating is set in such a way, as to avoid the temperature of the conductor

rising beyond the safe limit of the material.

Historically, rating has been derived by using estimates of the worst case ambient

conditions to calculate the maximal possible current that does not result in overheat-

ing. This strategy is called Static Line Rating (SLR) [16]. It is apparent that SLR

is not optimal, as worst case conditions rarely occur and therefore, the amount of

energy carried by the line for the majority of the time will be well below its physical

limit. One of the conditions used in the selection of SLR, as defined by standard

CIGRE-299 [17], is that SLR must be lower than the real rating with 99% proba-

bility. This means that by definition, a transmission line controlled by SLR will be

operating sub-optimally 99% of the time.

It has been well known in the industry that SLR is a largely conservative method

that under-utilizes transmission line capacity. The need to overcome the inherent

limitations of SLR lead to the proposal of a new innovative strategy in the 1980s

known as Dynamic Thermal Line Rating (DTLR). Unlike SLR, this strategy takes

information from the current ambient conditions to set the rating of the line precisely

to the value that maximizes the capacity all while honoring the thermal limit. In

its simplest form, DLR is implemented by installing sensors on the transmission line

and using the measurements to estimate the constantly changing rating in real time.

Early deployments by the end of 1980s showed that DLR can increase the average

capacity by 20-70% over that of SLR [18].
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2.1.1 Benefits of DTLR

DTLR provides an increase of capacity to overhead power lines. This additional

capacity can reduce congestion and provide additional options to guarantee N-1 secu-

rity, support wind power integration, and increase economic benefits in general. The

following paragraphs mention several figures from other research papers regarding the

benefits of DTLR.

Dabbaghjamanesh [19] experiments with scheduling of a reconfigurable microgrid.

They show, that employing DTLR instead of SLR provides the necessary capacity to

allow the network to function safely even when the grid operates near full capacity.

Without DTLR, the scheduling algorithm was unable to find s solution to the flow

due to violation of limits in certain cases. Schneider [20] shows that employing DTLR

in the European grid could reduce the redispatch volume necessary to satisfy the N-1

condition by 60%.

Wind power integration and DTLR have natural synergy. Wind power plants

generate electricity when wind speed is high and, at the same time, the transmission

lines receive a lot of cooling. Kazerooni [21] investigated the application of DTLR to

support the installation of off-shower wind power plants in the United Kingdom. They

concluded DTLR application can decrease the constraint cost by 53% or £1.2 million.

Michiorri [22] estimated that deployment of DTLR in a transmission network on

Orkney Isles in Scotland could allow installation of an additional 4MW of generation

while reducing the Curtailment from 38.5 to 9.7%. Ringelband [23] discovered that

by simulating a part of the German power grid with thermal and wind power plants,

DTLR could reduce the redispatched energy by 85%. Viafora [24] presents a figure

showing a positive correlation between wind power and DTLR. They also conclude

that DTLR decreases wind curtailment thereby reducing the cost by 17.6% in their

test case.

An analysis of the potential economic benefit gained by application of DTLR to
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the power corridor that connects Siberian and European zones in Russia was con-

ducted by Bubenchikov [25]. It was concluded that up to 8% of costs could be saved

by transporting more of the cheaper Siberian energy to the European zone by em-

ploying DTLR. Bhattarai [26] presented a study where it was concluded that DTLR

application on a line in southern Alberta, Canada could increase the average rating

by 22%. Additionally, with DTLR this line could also allow for almost doubling of

the connected wind power capacity, which would not be possible with SLR. Teng [27]

comments on the synergy between DTLR and FACTS and they estimate that the

benefit can be increased by additional 30% when these two technologies are employed

together.

2.1.2 Thermal Model of Transmission Line

In this section the thermal model that is used to calculate the rating is described.

The IEEE-738 model is used throughout this thesis. There are other commonly used

models like CIGRE 601 [28], however, these models are very similar [29].

The model from IEEE-738 balances the elements that heat up the conductor (elec-

trical current and solar irradiation) with the elements that typically provide cooling

(environmental conditions).

qs + qj + qm = qc + qr, (2.1)

where qs is heat gained from solar irradiation, qj is heat generated by the electrical

current due to the non-zero resistance of the conductor, qm is the energy of magnetic

losses, and qc and qr are the amount of heat lost due to convection and radiation to

the environment.

The convective loss, qc, is divided into two types: natural convection and forced

convection. Natural convection is caused by the warm air rising from the conductor

and being replaced by cool air. This process occurs even in still-air condition. Forced

convection occurs when wind is moving the air around the conductor forcing cool air
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into contact with the conductor. Natural convection provides less cooling effect than

forced convection, to the point where natural convection is equivalent to around a 0.2

m/s wind speed.

For lower wind speeds, the recommended procedure of calculating convective loss

is to evaluate both the natural convection and the forced convection and use the

greater of these two values. The forced convection depends on the wind direction and

other variables. Wind that is perpendicular provides more cooling than wind that is

parallel to the conductor. During the calculation, the wind vector is converted into a

so called effective wind speed, which is a perpendicular wind speed that has the same

cooling power as the original wind speed vector.

The radiated heat loss, qr, occurs when the conductor is warmer than its sur-

roundings and radiates heat to the environment. The rate depends primarily on the

difference between the conductor temperature and the environment. It is also effected

by the emissivity, which is a material property of the conductor. Emissivity is a num-

ber between 0 and 1 and represents the emission efficiency of the material, with 0

and 1 being no emission and full emission, respectively.

The heat gained from solar irradiation, qs, can be calculated from the amount of

solar energy reaching the conductor, the conductor shape and orientation towards

the sun, and the absorptivity of the conductor material. The solar heat is calculated

from the Sun’s position in the sky, the solar constant, and the portion of the light

that is passed through the atmosphere.

The heat, qj, generated by the electrical current is calculated from Ohm’s law. The

conductor resistance depends on the material properties of the conductor. Typically,

it depends on the conductor temperature through a temperature coefficient. In the

case of conductors with a steal core, the resistance is a mixture of properties from

both materials. The conductor heat capacity determines the temperature increase

for a given gain in heat. A conductor with higher heat capacity needs more heat to

increase its temperature. The heat capacity also effects the dynamic properties of the
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conductor. For a higher heat capacity, more heat transfer is necessary to change the

temperature and therefore, the conductor will have more thermal momentum.

The exact formulas to calculate the quantities in the thermal model can be found

in the standard IEEE-738 [16].

The thermal rating can be calculated from the thermal model by separating the

current I from qj and setting the conductor temperature T to the maximal temper-

ature of the conductor.

I =

√︃
qc + qr − qs

RT
(2.2)

The conductor temperature cannot by directly calculated, but can be estimated

through numerical integration of the following equation:

qc + qr +m · Cp ·
dT

dt
= qs + I2 ·RT (2.3)

2.1.3 Static Thermal Line Rating

Static Thermal Line Rating (SLR) is a conservative rating strategy that ensures

safe thermal operation of a transmission line by assuming the worst case ambient

conditions for rating calculation. It is based on the assumption that the worst case

scenario is rare and therefore, the line will be operating safely most of the time.

CIGRE-299 [17] provides the requirements for rating as a) the average temperature

of a line segment does not exceed the operating temperature by more than 10 ◦C, b)

at least 99% confidence that the line temperature is within range, and c) the spot

temperature does not exceed the design temperature by more than 20 ◦C.

2.1.4 Time Series

Time series can be described using a number of different models. One can differentiate

between models based on knowledge of the underlying system and non-parametric

models that are generated based on the time series itself [30, 31]. As the former
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approach requires a deep understanding of the measured signal and the system, it

is not universal and reusable for different variables. Non-parametric linear models

for time series prediction include autoregressive, moving-average or autoregressive

moving-average (ARMA) models. As these models are linear, they do not perform

well when the nature of the underlying system is non-linear.

Time series prediction is the task of finding a function yt = ϕ(yt−1, yt−2, ..., xt−1, xt−2, ...)

that will take the history of the output signal y along with some additional variables

x, and generate the next value of y [32]. Variables x, called exogenous inputs, are

used if they can provide any correlation with the output signal. If x is omitted, then

the model (or network) is purely autoregressive. If the values of y are not included,

then the function transforms one time series to another.

2.1.5 Extreme Values of Time Series

In theory [33], the maximum of n arbitrary but independent random variables S =

{S1, ..., Sn} with cumulative distribution functions F1, ..., FN can be simply derived

as

P (max(S) ≤ t) =
∏︂
i

P (Xi ≤ t) =
∏︂
i

Fi(t). (2.4)

The minimum can then be found by exploiting the duality between minimum and

maximum:

P (min(S) ≤ t) = 1−
∏︂
i

(1− Fi(t)) . (2.5)

It is tempting to apply this equation to the probabilistic forecast to directly calcu-

late the distribution of the minimum value over a time period. This equation though,

assumes the random variables are independent which certainly does not hold for time

series data.

This can be illustrated by examining the equation for the distribution of maxima

when all variables are identically distributed. F (t)n depends on the number of vari-
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ables n. Now assume a real, temporally correlated time series has been sampled at

n timestamps and then 2n timestamps over the same time period. Intuitively, the

distribution of the maxima should not change based on the number of samples, but

the equations result in F (t)n and F (t)2n. This means the estimation is largely skewed

toward the extreme. The same principle holds for the minimum, as ignoring the

correlations between random variables will make the extreme values more extreme.

2.2 Related Work

There are numerous studies on the topic of DTLR. A good overview of topics related

to DTLR is a review by Karimi [34]. Forecasting DTLR is typically divided into

groups by length of the forecasting horizon. There are short term forecasts, typically

up to 4 or 6 hours, which are often based on statistical analysis of time series. These

forecasts can be used for contingency planning and allow the operator to adjust the N-

1 short-term contingency plan based on the long-term emergency capacity available

through DTLR [35, 36]. Longer forecasts with a horizon of 24-48 hours are often

used with day-ahead markets, which need to know the available capacity in the near

future. Methods that produce longer forecasts tend to require a general weather

forecast obtained though NWP [35, 36].

A commercially available NWP is used to forecast the safe value of thermal rating

for the next day by Uski [37]. In this study, only the ambient temperature forecast

is used as the input parameter. The other variables are considered too uncertain and

excluded from calculations. Aznarte [38] uses several machine learning methods to

estimate the ampacity from a NWP. One of the methods used, Quantile Regression

Forest, produces probabilistic predictions. Unlike the majority of research, this study

uses machine learning methods to directly estimate the rating from NWP without

the use of a thermal model. This makes the ampacity calculation purely a machine

learning method. Another study by Taillardat [39] uses machine learning to calibrate

the forecast. Ringelband [40] uses Monte Carlo simulation to derive a time series of
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probabilistic ampacities from an ensemble NWP calibrated by a probabilistic mixture

model.

The work by Dupin [3, 41] is especially notable because it combines several state

of the art approaches and new methods into a comprehensive rating system. Four

different machine learning methods for converting NWP into a probabilistic rating

are compared and Quantile Regression Forest is determined to outperform the oth-

ers. The authors then present two methods for rating selection from probabilistic

prediction. The first method is static quantile selection and the second method is a

risk assessment strategy. The risk assessment strategy is a method that allows the

operator of the line to select the rating based on how much risk they are willing

to accept. It works by finding the rating that makes the expected value of the risk

function equal to the accepted risk. The cost function aggregates the costs of lost

supply in the case of failure, damages, and accelerated ageing. The evaluation of

the cost function requires the temperature of the conductor, which is a value that

is impossible to calculate exactly from only the rating. The authors solve this issue

by using a lookup table of previous ratings and weather measurements, where they

select a row with a similar rating and then use the ambient parameters to estimate

the line temperature.
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Chapter 3

Derivative Based Prediction with
Look Ahead

One of the most important features of wireless sensor networks (WSN) is the ease of

their deployment and operation. User want to deploy the network at a deployment

site without the need to provide any infrastructure like communication lines or power

cables. They do not want to spend time manually recording the data from individual

nodes. They want to access the data from the comfort of their office as long as

possible, without need for frequent battery replacement.

There have been a number of different techniques developed to meet these require-

ments. The installation has been simplified using wireless communication and by

powering the devices from batteries and energy harvesting devices [42]. There are

various self-organizing routing protocols, that minimize the effort for an initial set-

ting of the network, so that user can place the devices at a desired locations and

turns them on [43]. The issues of limited range of wireless transmitters have been

overcome using multi-hop networks that use short range nodes to relay the packets

through the network to enable for longer virtual communication channels. The data

from the nodes is collected at a base unit that can be connected to the Internet for

convenient access to the data.

The length of the life of a network depends primarily on the energy available to

power the nodes and on their energy needs. A typical node is equipped with batteries,
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optionally supported by energy harvesting devices. The solar energy is very popular

due to its high power density and simplicity of use. Although significant advances

have been made in the areas of energy storage and harvesting, any reduction of node

energy consumption results in further extension of the network useful life. It has

been shown that nodes expend most energy towards wireless transmission. Wireless

transceivers are the most power hungry component of WSNs, usually exceeding the

power consumption of the remaining parts.

Therefore, it is important to minimize the time when the radio is waiting for,

receiving, or transmitting data. There are many levels at which the efficiency of

power use by wireless modules can be improved [44, 45]: a well-suited medium access

protocol can save energy through duty-cycling the transceiver active time; a smart

routing algorithm can forward the data efficiently through the network with a small

amount of service data and maintenance communications; and, in the application

layer, the volume of data to be transferred can be minimized through an appropriate

choice of sampling frequency and avoidance of redundant data transmissions.

There are several approaches to data reduction, including in-network data process-

ing (e.g. event detection triggering data transfer in an event monitoring scenario)

and data compression. Another option is data prediction, when a data model is build

(either on the node or on the base station) and data queries are retrieved from this

model.

Derivative Based Prediction (DBP) [46] lies between compression and prediction.

It builds a piecewise linear model of the measured data that is later used to recover the

signal. The model is build by the node, and only model parameters are transferred to

the base station. As a single model is transferred instead of a number of data samples,

a significant data compression can be achieved because the model itself consists only

of the parameters for the linear approximator.

Authors of the original DBP model showed that in routed networks, any further

reduction of the number of transferred messages would be ineffective [47]. Nodes in
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such networks periodically wake up to maintain network layer and forward packages

from other nodes, and corresponding service and forwarded packets are responsible

for most communication and thus cause the greatest energy expenses.

However, in networks without routing layers (typically networks with the star

topology, where each node has a direct connection to the sink), nodes can benefit

from any additional decrease of the number of messages that need to be sent.

This is the case of our network where nodes send measured values directly to the

sink using a powerful radio capable of transmissions over a kilometer range. The

devices wake up periodically, measure the value and transmit the data to a sink.

The transmitter current during the transmission can go up to 300 mA, which is

very expensive compared to sub mA currents required for actual measurements. In

comparison with many other nodes used in wireless sensor networks, the node uses

ARM Cortex M4 processor with a floating point calculation unit that can execute

relatively advanced algorithms in very short times.

DBP has already been used for temperature prediction by Pötsch et al. [48]. Au-

thors simulated the algorithm on several temperature time series with different sample

periods and showed, that the algorithm is able to suppress more than 95 % transmis-

sions.

In this paper, an improvement over the DBP algorithm will be presented. We will

describe the basic DBP algorithm and two novel variants that aim to further reduce

the number of generated models. Also results from simulation of the three algorithms

will be given together with the comparison among them.

3.1 Methods

3.1.1 Artificial Neural Networks

An alternative to the classical models of time series is the use artificial neural net-

works (ANNs) [49]. A well defined ANN is a powerful system, which can be used
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Figure 3.1: A schematic diagram of the NARX network. A block z−1 symbolizes one
time delay.

to approximate any function if the training algorithm is provided with a sufficient

amount of examples.

ANNs can be directly used to approximate function ϕ from data. Consider the

following network with linear output layer and L hidden neurons in the middle layer

with the activation function f

yt =
I∑︂

i=1

Wif

(︄
p∑︂

j=1

wijxt−j +

q∑︂
j=1

w′
ijyt−j + bi

)︄
+B

where yt is the output signal, xt is an additional exogenous signal, W are weights of

the output layer, wij and w′
ij are the weights for the hidden layer, and B and bij

are corresponding biases. A network defined as above, but without any additional

variables, is used throughout this paper. The activation function f is hyperbolic

tangent.

A network with this particular topology is called Nonlinear Autoregressive network

with eXogenous input (NARX) and its block diagram can be seen on Figure 3.1.

One forward step through this network predicts the value of the output one step

ahead. If the generated output is taken and fed back to the input of the network,

subsequent prediction is obtained. This approach, called multi-step ahead, allows to
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generate time series of arbitrary lengths [30].

3.1.2 Genetic Algorithms

Genetic algorithm (GA) is an optimization technique inspired by the genetic evolution

of living organisms [50]. There is a population of individuals that represent potential

solutions. Individuals can mate using a crossover function which mixes together

the properties of parents to create an offspring. They can be also mutated using

a mutation operator which changes a portion of the properties of the individual.

Both operations happen stochastically with defined rates. After producing a new

generation, the fitness of the individuals in the updated population is evaluated and

a new population is selected, giving higher chance to better performers. The crossover

operator aims to exploit the properties already found by combining them together

and the mutation operator introduces new features to the population, thus exploring

the solution space.

DBP algorithm and the two proposed variants have several parameters, that have

to be tuned for the best performance. Therefore, in this work, GA is used for opti-

mization of the parameters so that the comparison between algorithms is fair. This

choice is driven by the flexibility of GAs that place no constraints on the fitness func-

tion and on the solution space. In our case, the fitness function is evaluated using

simulations of the proposed algorithms, and the solutions are the parameters of the

algorithms with defined minimum, maximum, and integral constraints.

The GA used in this work is MI-LXPM [51] algorithm designed for mixed integer

problems and implemented in the MATLAB Optimization toolbox. It uses a modified

Laplace crossover and Power mutation that satisfy the integer constraint of variables.

Offsprings are selected using binary tournament selection function with elitism of 5 %

of the population size, which was set to 40.
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3.2 Improved DBP Algorithms

3.2.1 Original DBP

DBP is a lossy data compression algorithm that approximates a time series with a

sequence of linear models/lines [47, 52]. Measured samples are collected into a buffer.

Once the buffer is full, the slope, a, of corresponding line is computed from the first

and the last data point in the buffer. This slope, together with the sample, b, and

the timestamp, t0, form the following linear model

y = a · (t− t0) + b. (3.1)

The model output is then compared against the new measurements. As long as

the difference between the data predicted by the model and the actual samples does

not exceed a predefined threshold, the model remains valid. On the other hand, if

the error is higher than the threshold, the old model is invalidated and a new set of

model parameters is generated.

It is worth to note that this data compression algorithm works in real time. Once

the model is generated, it is transmitted over the communication channel to the sink

and used the replicate the time series. This allows to define the compression ratio,

C, for real-time communication in terms of the number of transmissions (assuming

that we one transmission is needed to transfer one sample or one model update)

C =
number of model updates

number of samples
.

DBP uses 4 parameters. First, there is the buffer length, m, which indicates how

far into the history to look for the first sample to compute the slope. Second, since the

data can have some noise, several samples around the beginning and end of the buffer

are averaged to compute the slope. The length of this average is given as parameter

l.
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Figure 3.2: An example of DBP fitting of a time series. The circles represent data
samples, the solid line is the linear approximation, and the dashed lines are the
absolute error margins. The first model was generated at time t0 with the slope
pointing slightly downwards. The event A did not trigger a new model generation,
since etime is set to 1 – the algorithms waits for two consecutive errors. At event B,
a new model with slope pointing upwards was generated using the sample at time t
and t−m+ 1.

The last two parameters control when a new model is generated. They are the

value error, eval, and the time error, etime. The value error has a unit of the measured

value and gives the threshold for the maximal difference between the predicted value

and the real value after which the model is assumed to be inaccurate. The time error

has a unit of time and determines how long an inaccurate model can be tolerated.

For instance, if etime = 1 then the algorithm will ignore one error and a new model

will be generated only after detecting a sequence of two inaccurate values.

To formalize the slope computation, a window is defined over which to generate the

slope. The window starts and stops at indexes lidx and ridx. The model is generated

for the data sample numbered xidx. For DBP, these values are evaluated as follows

lidx = t−m+ 1

ridx = t

xidx = t
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The slope, a, of the model at the time xidx is then computed as

a = (s(ridx)− s(lidx))/(m− 1)

where s(t) is the data sample at time t.

Please note that the averaging of the values around the beginning and the end of the

buffer has been omitted from the illustrations and algorithm description. However, it

has been implemented and used for every simulation in this paper. The left average

takes the first element in the buffer plus left average− 1 elements in front of it, and

the right one takes the last element in the buffer plus right average − 1 elements

after it. The lengths of both averages were optimized using GA together with other

parameters.

3.2.2 Delayed DBP

In the DBP algorithm described above, the prediction and the actual data is compared

at the time t. If the invalidity of the model is detected, the algorithm takes the current

value as the second point for the computation of the slope. This way, the generated

slope is for a line that starts in the past and stops at the current sample. In order to

generate a line that better reflects the trend present in the data, it would be better

to take the slope of a line which starts in the past and ends in the future.

An example of this behavior is shown in Figure 3.3. After the temperature stops

rising, the DBP algorithm keeps assuming the high slope. Delayed DBP is aware of

the future and generates a more appropriate model. This results in a lower number

of model updates.

In order to achieve this, the time series can be delayed by several samples. As

before, the current data sample would be used to compute the slope, but for a point

in the past. An illustration and comparison of Delayed DBP with DBP is shown in

Figure 3.4. A new parameter delay determines by how many steps is the point (at

which the model is evaluated and generated) moved to the past. This modification
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Figure 3.3: Comparison of the output of DBP and Delayed DBP with the same error
tolerances. The circles are updates of the model for DBP, while the stars are updates
for Delayed DBP.

cannot work in the real-time, as several data points must be collected in advance so

that the slope can be computed.

The indexes for the computational window follows

lidx = t−m+ 1

ridx = t

xidx = t− delay

3.2.3 DBP with look ahead

The third variant of the algorithm is DBP with look ahead. In this case, the model

generation point remains in the current time, but the right edge of the slope computing

window is moved to the future. The new parameter for this algorithm is look ahead

which tells us how far to the right the window should be moved. Since using the true

future values is impossible we will use a recurrent neural network to predict number
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Figure 3.4: All three variants of DBP. Standard DBP uses samples y1 and y2 at
times t −m + 1 and t to compute the slope for the model generated at time t. The
delayed DBP uses the same data points to calculate the slope of the model at time
t− delay. And finally, DBP with look ahead uses points at times t−m+ look ahead
and t+ look ahead to compute the model at time t.
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of future samples that will be used to perform the slope calculation.

The indexes for the computational window follow

lidx = t−m+ 1 + look ahead

ridx = t+ look ahead

xidx = t

An important observation is that Delayed DBP and the DBP with look ahead

using an ideal prediction give the same results, except for the time shift. This can

be shown by letting look ahead = delay and performing the following substitutions in

the equations for Delayed DBP

lidx = t−m+ 1 + (−delay+ delay)

= (t− delay)−m+ 1 + look ahead

ridx = t+ (−delay+ delay)

= (t− delay) + look ahead

xidx = (t− delay)

Indeed, the results correspond to the equations for DBP with look ahead shifted

by delay time steps. Therefore, performance of Delayed DBP can be used as an upper

limit of compression ratio improvement for the look ahead variant. It performs like

DBP with look ahead using the perfect prediction.

The general procedure is defined in Algorithm 1. It uses parameter p that specifies

on of the three variants of the algorithm. If p < 0 then the algorithm behaves as

Delayed DBP with the delay of −p, if p = 0 then it is the basic DBP, and finally with

p > 0 the look ahead variant is used with look ahead = p.
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Algorithm 1 Universal DBP

1: function DBP(s, eval, etime,m, p)
Require: A function Predict(n) that predicts n values.
Require: A function Compute slope(s) that returns the slope of the sequence s.
2: delay ← −1 ·min(0, p)
3: look ahead← max(0, p)

4: start pos← m− look ahead
5: a← 0, x0 ← 0, b← inf ▷ Initialize an empty model
6: err cnt← 0

7: for i← start pos, length(s) do
8: z ← a · (i− x0) + b ▷ Generate the value from the model
9: if abs(s[i− delay]− z) ≥ eval then
10: Inc(err cnt)
11: end if
12: if err cnt > etime then
13: seql ← s[i−m+ 1, i]
14: seqr ← Predict(look ahead)
15: a← Compute slope(seql|seqr)
16: x0 ← i− delay
17: b← x[i− delay]
18: err cnt← 0
19: end if
20: end for
21: end function
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3.3 Evaluation

All three algorithms have been implemented and evaluated on two temperature time

series. The first dataset was sampled with 15 second sampling period and has 102401

points. The second dataset has sampling period of 30 seconds and has 128991 points.

This covers 17.8 and 44.8 days, respectively. The eval maximal absolute error param-

eter has been set to 0.25 °C and the etime number of consecutive errors has been set

to 0 as we want to have a guarantee on the error.

Because the maximal allowed error is fixed by the parameter eval, standard error-

based measures cannot be used to evaluate the performance of the algorithm. Instead,

it can be assessed based on the number of models generated to cover the entire

time series. The smaller the number of generated models, the better the algorithm

performance.

To perform a fair comparison between the algorithms the parameters have been

optimized using genetic algorithm. Each individual from the population represents

a vector of parameters (m, averages, look ahead, delay) with look ahead and delay

forced to 0 as appropriate for given algorithm variant. The fitness of an individual

is the number of models that have been generated by running the algorithm on the

time series.

Figure 3.5 shows how Delayed DBP compares to the basic DBP for various values

of the delay parameter. As the delayed algorithm practically uses samples from the

future, a decrease of the number of generated models is expected. On both time

series the Delayed DBP was able to decrease the number of generated models to

60 % of the basic algorithm. This performance was achieved with the delay of 15 and

30 time delays (translates to 7.5 minutes) for sampling periods 15 and 30 seconds,

respectively. With one third of the delay (5 and 10 time steps) the algorithm yields

a reduction to 70 %.

In order to apply the modified algorithm in real-time, a RANN is trained to predict
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Figure 3.5: The number of models generated by Delayed DBP and DBP with look
ahead on the testing time series relative to the number of models generated by basic
DBP depending on the length of the time delay or look ahead. Other parameters of
the algorithm have be optimized by GA.

the samples needed to compute the look-ahead. The network has a 15 step input delay

and 5 hidden neurons for both time series. The network was trained in an open loop

configuration, receiving true data from the time series both as inputs and the desired

output (the next data point). After training, the loop was closed and the output of

the network was fed back to the input. This allows multi-step time series prediction.

The parameter values found by GA for the delayed DBP have been used for eval-

uation of the DBP with look ahead, except for the use of predicted values as the

look-ahead part of the input data. The results in terms of the model counts can be

found in the Figure 3.5. For the sampling period of 30 seconds the neural network

aided algorithm was able to reduce the model count to 91 % compared to basic DBP

using look ahead of 6. For the 15 second period time series the suppression was to

93 %.

The table 3.1 summarizes the performance of each algorithm on both time series.
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Table 3.1: The performance of DBP and its variants on two temperature series.

T= 15 s # of models C m p

raw time series 102,401

DBP 2,310 2.23 % 11

Delayed DBP 1,331 1.30 % 30 -30

DBP with LA 2.147 2.10% 7 8

T= 30 # of models C m p

raw time series 128,991

DBP 5,686 4.41 % 6

Delayed DBP 3,288 2.55 % 15 -15

DBP with LA 5,164 4.00 % 5 6

3.4 Conclusions

This paper presents an improvement over DBP, an algorithm for real-time data com-

pression by fitting the time series with linear approximations computed from a close

history. The basic DBP prediction has been simulated and evaluated on two tem-

perature datasets collected with 15 and 30 seconds sampling periods. The algorithm

reduced the number of data transmissions to 2.2 and 4.4 %, respectively, while keeping

the maximal absolute error bellow 0.25 °C.

The first contribution is Delayed DBP that postpones the time series by several

samples and then computes the slope of the linear approximator not only from the

historical but also using the data points corresponding to the close future. The al-

gorithm was simulated on two temperature data sets with sampling periods of 30 an

15 seconds and the best result was a reduction to 60% of model updates compared to

the basic DBP in exchange for introducing a delay of 7.5 minutes. If the delay was

set to 2.5 minutes, the reduction dropped slightly to 70%.

The second contribution aims to return the improved algorithm back to its real-

37



time functionality. Instead of delaying the time series, future data points are predict

using a RNN. Using a network with 5 hidden neurons, the reduction on the dataset

sampled with 30 seconds period was to 91% model updates of the basic algorithm

when predicting 6 samples.

The future work will focus on improving the prediction accuracy of the network for

the DBP with look ahead. The used time series has multiple issues like the seasonal-

ity of the data, non-stationarity, and long time dependences, that are decreasing the

performance of the network and must be targeted in order to improve the prediction

accuracy. The negative effects of seasonality and non-stationarity can be mitigated

using proper statistical techniques designed for preprocessing the time series data,

while the long time dependencies could be tackled using an advanced neural network

architecture like long-term short-term memory (LTSTM), which is specially designed

to overcome the vanishing gradient problem found in time series with long time de-

pendencies.

Another possible direction of the future work that will be explored is to replace

the linear model with a different function, or possibly with a set of functions. For

example the evaluated temperature time series typically do not change in a linear

fashion. According to the Newton’s law of cooling the instantaneous rate of change

of the temperature is proportional to the temperature difference between the object

and its surroundings which results in the temperature signal having an exponential

form. Therefore the linear model could be replaced with a parametrized model to

represent a convex, concave or linear shape depending on a parameter.

Also a more thorough simulation is required. This include testing the algorithms

on different types of signals, for instance on relative humidity or soil moisture data,

and on signals with different information content – signals that include some high fre-

quency components. In addition, performance under other sampling periods should

be examined. Last but not least, the computational, memory, and energy require-

ments of the algorithms must be evaluated. A more elaborate technique for the slope
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prediction might prove to have very hight energy demands that would diminish the

energy savings gained from the transmission count reduction.

In conclusion, if the user can accept the introduction of a small time delay to the

output data stream, the proposed delayed DBP can save a significant amount of data

transmissions – up to 40% on the time series used for testing. On the other hand, if

the real-time property of the system is required, using a suitable time series prediction

technique (such as a recurrent neural network) can result in an improvement of the

compression ratio provided by DBP.
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Chapter 4

Day-Ahead Dynamic Thermal Line
Rating using Numerical Weather
Prediction

Transmission networks play a key role in the electrical system, through the delivery

of electricity from generators to distributions networks. As the demand for electricity

increases and new generators are installed, the transmission lines are required to

transport an increasing amount of energy. However, transmission networks have

limited capacity and can reach a limit where no further expansion of the system is

possible without upgrading the network.

The maximal electrical current that can safely flow though a transmission line is

called ampacity or rating. For shorter lines, this limit is determined by the thermal

properties of the conductor, which has to be kept under its maximal allowed tem-

perature – the operating temperature. If the operating temperature is exceeded, the

conductor can sag or become damaged. Therefore, the ampacity is determined to be

the current that would cause the temperature to rise to the operating temperature

[16].

Besides electrical current, environmental factors such as air temperature, wind

speed, and solar iradiation directly affect the temperature of the conductor. This

must be taken into account when determining the ampacity of a transmission line.

The details of the thermal behaviour are captured in the standard IEEE-738, which
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provides the thermal equations for bare over-head conductors [16].

The ampacity of a transmission line is typically calculated assuming the worst pos-

sible ambient conditions. Explicitly stated, the day with the highest temperature and

lowest wind speed would used to calculate the ampacity for the entire season. Since

environmental conditions are often more favourable than the worst-case scenario, this

approach wastes available capacity. This approach is called Static Line Rating (SLR)

and the guideline on selecting appropriate conditions can be found in [17]. Figure 4.1

shows a histogram of the real-time ampacity versus the static limit that is used on

the transmission line studied in this paper. It clearly illustrates how a large portion

of the ampacity is not used, because the real-time ampacity is usually higher than

the static limit.

Dynamic Line Rating (DLR) overcomes the inefficiencies of SLR by modifying

the ampacity in real-time according to the current weather conditions. In the ideal

DLR scenario, a transmission line is equipped with sensors capable of measuring

the weather conditions and temperature of the conductor. The data captured is

transmitted to the control center, where the real-time ampacity is calculated and

can be applied to power lines for full optimization of capacity. A recent review [34]

summarizes various DTLR techniques.

Studies have shown that DLR is superior to SLR with regards to both efficiency

and optimal utilization of the transmission line [21, 53]. This more complex system,

however, requires some additional considerations. For example, the network of sen-

sors and associated communication infrastructure needs ongoing maintenance, and

support must be provided by the Energy Management System (EMS) of the network

operator.

A major transmission line operator in Alberta, Canada is interested in applying

DLR to some transmission lines to enable installation of more wind power plants.

DLR is well suited for this application because of the positive correlation between

power output from wind generators and transmission line capacity [54]. However,
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the EMS system that is used by the utility operator cannot easily ingest real-time

changes of the ampacity.

The proposed method addresses these issues through the use of Numerical Weather

Prediction (NWP) to forecast the weather conditions for the next day to calculate an

ampacity time series. To be conservative, the minimum ampacity would be selected

and applied to the transmission line in the EMS. The reliability of the predicted

line rating is assured by quantifying the uncertainty of the weather forecast through

statistical modelling of past forecast errors, and subsequent propagation through the

thermal model by Monte Carlo simulation. Finally, the ampacity that complies with

the selected level of confidence is determined. For example, if an ampacity with 97%

confidence is selected, then in 97% of cases the predicted ampacity will be lower than

the real ampacity.

Given that the forecast has an acceptable level of reliability, sensors are not re-

quired. The ampacity is manually changed daily and remains valid for 24 hours.

Thus, the problem of the EMS system not supporting real-time change of ampacity

would is overcome. The proposed method is feasible, as the utility operator already

uses seasonal line rating [55], which involves inputting ampacities several times per

year. NWP was used due to its high forecasting skill for medium range predictions.

Other DTLR forecasting methods can be found in a review by Dupin [56].

Related Work

In a similar study by Uski [37], a commercially available NWP is used to forecast the

safe value of thermal rating for the next day. Only the temperature forecast with a

safety margin, derived from historical predictions is used. Other variables are not con-

sidered due to their high uncertainty. Aznarte [38] evaluates several machine learning

methods to calculate the ampacity from a NWP. Notably, one of the methods used

is Quantile Regression Forest, which is a method capable of probabilistic predictions.

The thermal model is used only to generate the training dataset and not for the actual
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Figure 4.1: Histogram of the real-time ampacity of the studied transmission line in
2016. The static limit is smaller than the actual limit most of the time.

prediction. This makes the ampacity calculation purely a machine learning method.

In the work by Ringelband [40], a time series of probabilistic ampacities is derived by

Monte Carlo calculations from an ensemble NWP calibrated by a probabilistic mix-

ture model. Ensemble NWP provides information about the uncertainty by running

the NWP multiple times with different initial conditions emulating the randomness

in forecasts. However, ensemble forecasting is computationally demanding and not

easily obtainable. Another study using NWP ensembles was done by Taillardat [39],

where machine learning is used to calibrate the forecast as opposed to probabilistic

models.

Notation

The following symbols are used for the physical quantities:

T air temperature [◦C],

v wind speed [m/s],

d wind direction [◦],

s solar irradiation [W/m2],
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A ampacity [A].

Moreover the hat notation is used for estimated quantities like T̂ or v̂ for estimated

(predicted) temperature or wind speed, respectively.

The following symbols are used for other variables:

N number of days,

D current day (the present),

t forecast lead time [hours],

M number of Monte Carlo samples.

4.1 Methods

The calculations used for analysis will be introduced in this section. First, the thermal

model is described. Then the probabilistic ampacity prediction method is presented,

along with several alternative ampacity calculation methods for comparison.

4.1.1 Probabilistic Prediction

The NWP system used in this study is the Weather Research and Forecasting (WRF)

Model. This model produces a deterministic weather forecast, meaning it provides

the forecast in the form of a time series. This forecast does not come with any form of

uncertainty and thus, the reliability of the prediction cannot be directly evaluated. To

convert the deterministic forecast to a probabilistic forecast Model Output Statistics

(MOS) [57] are used. In MOS, historical forecasts together with measurements are

used to learn the model of uncertainty and obtain probabilistic forecasts.

The complete algorithm to issue an ampacity forecast for day D is outlined in

Algorithm 2. Described here briefly, N past weather forecasts together with the

measurements for days D −N to D − 1 are loaded from the database and then used

to learn the parameters of the probabilistic models for each variable. The NWP model
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Figure 4.2: Example of a probabilistic forecasts for two different weather variables.
The confidence levels were derived from the NWP forecast by the statistical model.
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then generates the deterministic forecast for day D. Starting with the first time-step,

the models are used to estimate the distribution of predicted variables from which M

samples are drawn and then M samples of ampacity are calculated in a Monte Carlo

fashion. The final ampacity estimate Ât for time-step t with confidence q is taken

as (q · 100)th percentile from the samples. After this calculation is repeated for each

time-step, the minimal occurring ampacity during the day is found and returned as

the daily ampacity.

The parameters of the probabilistic models are found by minimizing the negative

log-likelihood expression of individual models on the training dataset consisting of N

past forecasts. Limited-memory BFGS optimization algorithm was used to minimize

the expression.

Figure 4.2 shows an example demonstrating the result of using the statistical model

to convert a deterministic NWP to a probabilistic forecast. The statistical model was

trained on forecasts of N previous days and then used to generate the confidence

intervals for the forecast.

A separate statistical model is used for each weather variable. The models are

adopted from [40], with the exception of wind speed, which is assumed to have trun-

cated normal distribution. The statistical model is updated with each new forecast

using N past forecasts and associated measurements. This allows for adaptation to

changing weather patterns.

The ambient temperature T is modelled as being normally distributed, with the

mean depending on the temperature T̂NWP predicted by NWP.

T̂ (t) ∼ N(µ, σ) (4.1)

µ = a0 + a1T̂NWP (t)

σ = b0 + b1T̂NWP (t) + b2t+ b3 sin
15 + t

12π

The variance σ is independent of temperature, but depends on lead time t. It
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has been observed that the variance increases with lead time and has a periodic

component of 12 hours, as modelled by the sinus function.

Wind speed v, as a non-negative variable, is modelled using a truncated normal

distribution where the truncation point set at 0.

v̂(t) ∼ Ntrunc(µ, σ) (4.2)

µ = a0 + a1v̂NWP

σ = b0 + b1v̂NWP + b2t

In the case of wind speed, both the mean and variance depend on the wind speed

v̂NWP predicted by the NWP model. The variance also depends on the lead time t.

For learning the model parameters, censoring is applied to the normal distribution

on top of truncating because the data set contains numerous 0 m/s wind speed

measurements caused by the non-zero start-up speed of cup anemometers. Censoring

is crucial because a high concentration of values close to zero negatively impacts the

maximum likelihood optimization. Therefore, all measured wind speeds less than

0.5 m/s are set to 0.5 m/s for learning the parameters, and a compensation term is

added to the likelihood function of the model. A wind speed of 0.5 m/s was chosen

because it is a standard value that can be assumed for low wind speeds in the thermal

calculation [16]. During evaluation, the original values are used.

Wind direction is a circular variable and is modelled using both the von Mises

distribution, a probability distribution defined on a circle, and a uniform distribution.

The uniform distribution was specifically added to model the random errors caused

by measuring wind direction at lower wind speeds
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d̂(t) ∼ α · U(−π, π) + (1− α) · VM(µ, κ), (4.3)

µ = d̂NWP ,

α = a0 + a1v̂NWP (t),

κ = b0 + b1v̂NWP (t),

where α is the mixing ratio and κ is the shape parameter of the von Mises distribution.

Both parameters depend on wind speed because the prediction is more accurate as

wind speed increases.

Solar irradiation is not modelled due to its relatively small influence on the final

ampacity compared to other variables. Additionally, the NWP of solar irradiation

alone has a high level of reliability. A probabilistic model was tested, but in the end

did not yield a measurable effect on the results.

4.1.2 Naive prediction

A simple baseline method of DLR prediction is defined as the minimum value of daily

ampacity over the past several days. More precisely, the ampacity prediction Â
D+1

naive

for day D+1, issued on day D, is the minimum of N previous days {AD−N , · · · , AD}

Â
D+1

naive = min(AD−N , ..., AD). (4.4)

4.1.3 Perfect prediction

The perfect prediction represents the result that could be obtained from daily DLR

if access to a perfect forecast was possible. This method is not operationally feasible

because the perfect forecast is known only retrospectively.

Â
D+1

perfect = AD+1. (4.5)
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Algorithm 2 Probabilistic DTLR prediction algorithm

1: H ← days (D −N) . . . (D − 1) from database
2: Θv ← EM(wind speed model, H)
3: Θd ← EM(wind direction model, H)
4: ΘT ← EM(temperature model, H)
5: W ← NWP prediction for day d

6: t← 1
7: while t ≤ 24 do
8: samples← empty list
9: while length(samples) < M do
10: v ← sample(wind speed model(W (t),Θv))
11: d← sample(wind direction model(W (t),Θd))
12: T ← sample(temperature model(W (t),ΘT ))
13: s← W (solar)
14: A← IEEE738(v, d, T, s)
15: append A to samples
16: end while
17: samples← sort(samples)
18: Ât ← samples[⌊(1− q) ·M⌋]
19: t← t+ 1
20: end while

21: A← min(At)
return A
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This method confers value by defining maximal increase in ampacity possible using

daily DLR.

4.1.4 NWP with derating

The deterministic line rating calculation with derating is an alternative method that

uses NWP. In this method, the daily rating is calculated from the deterministic fore-

cast, and the thermal rating is then lowered by a fraction. Derating is applied because

NWP is not perfect. Specifically, the chance of exceeding the true ampacity is high

if the prediction is taken without modification.

Ânwp = Â
D+1
− (Â

D+1
− Astatic) · α, (4.6)

where α is the derating factor and Astatic is the static rating. By applying the derating

only to the portion of ampacity between the static rating and the forecasted rating,

the effect is higher when the prediction is farther from the the static rating.

4.2 Results

In this section the testing data and methodology are first described, and then the

results are presented.

Data

The algorithm was tested against real measurements taken at three weather stations

installed along a transmission line located in southern Alberta. The weather stations

were positioned with one at both ends and one in the middle. This was a relatively

short line with a voltage of 138 kV and a length of 2 km. The dataset is from 2016

and contains measurements for wind speed, wind direction, air temperature, and solar

irradiation recorded at 3 minute intervals.

The high resolution weather forecast was generated using the Weather Research

and Forecasting Model (WRF), which is a mesoscale numerical weather prediction
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system. The initial and lateral conditions for the model come from the North Ameri-

can Mesoscale Forecast System (NAM) datasets, which are released four times a day

in six hours intervals. Each dataset contains data up for to 84 hours in the future

with a spatial resolution of 12 km. WRF was used to further increase the time-step

to 20 seconds and the spatial resolution to 1 km over southern Alberta.

For the purpose of evaluation, WRF was run in hindcast mode, meaning it was

forecasting for past dates. Daily at 23:00 MST, a forecast was issued for the following

day and the output was recorded in 5 minute intervals. Both the measurement and the

forecast were resampled and aligned to 10 minute time-steps. Due to the time constant

of the heating process, a time resolution of 10 minutes is sufficient for calculating the

thermal rating [58]. While calculating the averages, special care was given to wind

direction, which cannot be averaged as a scalar [59]. Wind speed and direction were

converted to perpendicular components, averaged, and then converted back to angles.

Evaluation methodology

All of the methods previously defined are based on the principle of sliding window,

where M previous days are used for learning the parameters. Therefore, the evalua-

tion does not include the first 30 days of 2016 because there was no data from 2015

available for this training window.

The ampacity forecast and real-time ampacity were calculated for all three weather

station locations. Then, the smallest value from the three locations was used for

evaluation. The location with the lowest ampacity is called the critical segment. In

DTLR, the ampacity of the line is equal to the ampacity of the critical segment,

because it is the weakest part of the transmission line.

The probabilistic ampacity algorithm was evaluated for multiple levels of confidence

ranging from 50% to 99% allowing the relationship between confidence and gain in

ampacity to be visualized. For similar reasons, the derating algorithm was evaluated

with the derating factor α between 0 to 1. Considering the edge values of α, α = 0
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is equivalent to using the static rating and α = 1 is the same as directly using the

deterministic value of the forecast.

To evaluate and compare the performance of each method, the following metrics

were calculated. The first metric is the amount of energy E that would be transmitted

over the testing period if the line were loaded at its rating.

E = V ·
N∑︂

n=1

Â(n) · dt, (4.7)

where V is the voltage on the line, Â(n) is the ampacity estimate at interval n, N is

the number of time intervals in the testing dataset, and dt is the length of the time

interval in hours. The unit of E is V Ah.

The second metric is the overestimate Eo of the dynamic rating. In other words,

it represents the amount of energy in V Ah that would be transmitted while the

ampacity estimate is higher than the true ampacity.

Eo = V ·
N∑︂

n=1

max(Â(n)− A(n), 0) · dt, (4.8)

where Â is the ampacity estimate and A is the true ampacity. Ideally, this metric is

0 V Ah, meaning that the estimate is always less than or equal to the actual real-time

rating.

The third metric is the amount of time To that the estimate is higher than the

real-time rating.

To =
N∑︂

n=1

(1 if Â > A else 0) · dt (4.9)

Discussion

Figure 4.3 shows an example time series of the probabilistic rating, the real-time

rating calculated from the measurements, and the static rating. At the end of each
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day, a weather prediction is made and a rating is calculated for the following day.

This process is represented in Figure 4.3 as discrete steps that happen at midnight.

The overestimated-transmitted energy curves are plotted in Figure 4.4. The plot

shows how the amounts of transmitted and overestimated energy change, while vary-

ing the parameter of the algorithm. The static rating of the transmission line under

study is 500 A, but both transmitted and overestimated energy were calculated for

a range of static ratings to provide a curve for comparison. Both panels show the

same data, however, the panel on the right provides a more detailed look at the lower

values.

Looking at the left panel of Figure 4.4, it can be observed that both the probabilistic

and deterministic algorithm provide similar amounts of transmitted energy for higher

overestimates. It is worth noting that both algorithms perform better than the static

rating.

The right panel contains the curve for the lower values of overestimated energy.

This figure shows how the probabilistic algorithm performs better than the determin-

istic calculation for any confidence higher than 96%. This figure also confirms the

assumption that the derated deterministic calculation, with the derating factor of 0,

is the same as the static limit.

It is important to note that the static rating of 500 A also overestimates the

ampacity by 8 MVAh, which means that even with SLR, the thermal limit of the

transmission line can potentially be violated. This opens the possibility of using the

probabilistic prediction in two ways. Either the transmitted energy can be increased

by keeping the overestimate at the same level, or the overestimate can be decreased

to nearly zero while keeping the transmitted amount of energy the same.

These results are summarized in Table 4.1. This table also contains the results

from the two other weather stations that were not included in Figure 4.4.

55



E [GVAh] 1− E/Estatic [%] Eo [MVAh] To [hour]

Real-time capacity 984.2 131.7 0.0 0.00

Daily Capacity, Âperfect 591.5 39.3 0.0 0.00

Naive algorithm 425.9 0.3 10.7 3.75

Static 475A 403.5 -5.0 4.6 2.00

Static 500A 424.8 0.0 17.6 5.50

Static 525A 446.0 5.0 51.1 13.75

Derated α = 0.01 426.8 0.5 17.8 5.50

Derated α = 0.05 434.9 2.4 18.6 5.50

Derated α = 0.10 445.1 4.8 19.8 6.00

Derated α = 0.15 455.2 7.2 23.6 8.50

Derated α = 0.20 465.4 9.6 33.5 11.25

Derated α = 0.24 473.5 11.5 45.9 13.00

Probabilistic q = 99% 425.0 0.1 0.3 0.75

Probabilistic q = 98% 442.5 4.2 7.3 1.75

Probabilistic q = 97% 457.2 7.6 17.6 3.50

Probabilistic q = 96% 469.9 10.6 37.7 7.75

Probabilistic q = 95% 481.3 13.3 68.1 12.75

Deterministic NWP 627.8 47.8 4249.8 248.25

Table 4.1: Simulation results of different transmission line rating techniques during
the year 2016.
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4.3 Conclusion

DLR is a promising technique that can unlock the additional capacity of power trans-

mission lines. However, its dynamic nature brings additional complexities and re-

quires explicit support for real-time line ratings in the EMS of the grid operator.

This paper evaluated a method of DLR where changes are applied daily, as opposed

to continuously, to allow DLR to be used even if real-time updates are not supported.

Several methods for calculating daily ratings were compared: a naive method that

predicts the minimum ampacity of ratings from several past days, a deterministic

method with derating based on NWP, and a probabilistic method based on NWP.

These methods were evaluated using real measurements taken from a transmission

line in southern Alberta in 2016.

Based on the calculations performed, the static rating was potentially exceeded

for 5.5 hours in 2016. This shows that even though the static rating was selected as

a conservative estimate, absolute safety is not guaranteed. With this in mind, the

performance of probabilistic DLR can be evaluated from two different standpoints.

The capacity of the line could be increased by 7.6%, while exceeding the real-time

rating for 3.5 hours by using the rating given by the 97% confidence level of the

probabilistic ampacity. Alternatively, the reliability could be increased while keeping

the same ampacity. When the 99% confidence level was used, the ampacity exceed

the real-time rating only by 0.75 hours, and the transmitted energy remained the

same as with SLR.

In conclusion, this experiment showed that daily DLR provide an increase in the

capacity of a transmission line regardless of whether implementation of real-time DLR

is possible. Unsurprisingly, the impact of daily DLR would never be as substantial as

that of real-time DLR – it was calculated, that by having an ideal forecast the daily

DLR would increase the capacity by 39.3% over SLR. In comparison, a true real-time

DLR achieved a 131.7% increase in capacity on the studied transmission line.
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Future work will focus on improving the forecast model so that the increase in am-

pacity can be brought closer to the 39.3% maximum of daily DLR. The probabilistic

model employed in this work used only a limited amount of information available from

the NWP model. For example, each variable was modelled separately, and the model

did not take advantage of temporal correlations. Therefore, a more involved model

will be tested. Ensemble NWP or alternative methods, such as pseudo-ensemble [60]

and time-lagged ensemble [61], will also be examined. Another area that could be

explored is testing different time intervals beside the presented daily DLR. It is pos-

sible that a slightly larger or shorter interval may provide better results, while still

remaining feasible for implementation without real-time DLR support.
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Chapter 5

The Effect of Temporal
Discretization on Dynamic
Thermal Line Rating

A well functioning power transmission network is transparent to the user. However,

when transmission limits are reached, various problems arise as there is insufficient

capacity to transport energy to the consumer. These problems include increases

in local electricity pricing and curtailment of renewable power resources. While an

upgrade to transmission capacity would avoid this, it comes with a high cost in

materials, labour, and outages.

Rating (also known as ampacity) is defined as the maximal limit of electrical current

that can be carried by any given transmission line. In shorter lines, the determining

factor is the maximal allowed temperature of the conductor. Current passing through

the line generates heat, thereby increasing the temperature of the conductor. If the

temperature surpasses a specific limit the conductor will begin to sag, which may

break ground clearance, accelerate conductor ageing, and cause annealing. To prevent

these changes the operator sets the thermal rating to guarantee the temperatures are

always within a safe range [16].

The simplest method to determine the rating of a line is to find and utilize the

highest rating that is safe under all possible conditions. This method is termed Static

Line Rating (SLR) and is commonly used in the operation of transmission lines. It
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works by identifying the worst case conditions that a line will be subject to and then

calculating the maximum electrical current that will reach the temperature limit of the

line. The conditions involved in the calculation include the electrical current, ambient

temperature, wind speed and direction, and solar irradiation. The advantage of this

method is its simplicity, however, it lacks efficiency due to its inherent conservative

assumption that only the worst case conditions occur [16].

To improve efficiency and postpone the need for costly upgrades, Dynamic Thermal

Line Rating (DTLR) was developed to harness the total potential capacity of the line

and is calculated based on actual conditions [34]. Theoretically, it can enable the

operator to utilize the full capacity of the transmission line if the parameters of the

transmission line and its surroundings are monitored closely and then used to calculate

rating in realtime. This ideal case is called Real-Time DTLR (RTLR) [3].

Currently, a major part of the electrical system relies on preemptive scheduling

and planning, such as in the case of the day-ahead electricity market. The rating

of the transmission network must be known during the flow calculation, as it affects

the pricing in case of network congestion [37]. Therefore, despite the ability of the

RTLR method to provide optimal performance, it would be impractical to implement

in the operation of transmission lines due to its realtime nature and reliance on ideal

measurements that are not known before hand.

Practically, DTLR is applied as an operator set limit that attempts to mimic RTLR

without exceeding it [3]. In contrast to instantaneous and continuous RTLR, DTLR

is typically applied in advance and in discrete periods where a) DTLR cannot be

higher than RTLR during any given period, and b) DTLR is based on the forecasts

of future RTLR. These implications adversely affect the benefit of DTLR, as in the

case of a) DTLR will be lower than RTLR by definition unless RTLR is a flat curve,

and b) any RTLR forecast comes with a certain amount of uncertainty that has to

be accounted for by decreasing the DTLR by a safety margin [35].

This paper focuses on the effects of temporal discretization, which is the process of
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converting the continuous RTLR into a discrete series of timesteps by taking the min-

imum rating during the period. The objective is to describe the relationship between

the length of the discretization period and the benefit of DTLR. It is hypothesized

that shorter periods of discretization will provide benefit near that of RTLR, while the

benefit of longer periods will converge to the value of SLR. Moreover, the function

will be expected to decrease monotonically because taking the minimum rating of

progressively longer periods will only decrease the benefit. The secondary objective

is to identify the longest discretization period where wind speed remains relevant.

The expectation is that due to the high temporal variability of wind speed, its effect

will drop significantly even with short discretization periods. Ambient-Adjusted Line

Rating (AAR) is a simpler rating method that considers only the ambient tempera-

ture. Therefore, finding the time scale where wind speed becomes irrelevant allows

for the determination of when DTLR transitions to AAR [35, 37].

Wind speed is generally considered to be the major factor affecting DTLR [16] and

thus, the temporal discretization of wind speed is analyzed first with other variables

held constant. Subsequently, all remaining variables are then discretized and DTLR

benefit is observed.

5.1 Temporal Discretization

Definition 1 Temporal discretization. Given a time series {x1, ..., xn} with equally

spaced measurements with a sample period T , a temporally discretized time series

{x̆D=d
1 , ..., x̆D=d

n } with a discretization period d is then defined as follows.

x̆D=d
i ≡ min({xj; j ∈ Z, j ÷ d = i÷ d}), (5.1)

where ÷ is integer division. Without the loss of generalization, the discretization

period D is assumed to be in the units of T . Described in words, the time series is

divided into segments of length D, and then each value is replaced by the minimum
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of the segment to which it belongs.

In Chapter 6 the definition is expanded to:

x̆D=d
i ≡ f({xj; j ∈ Z, j ÷ d = i÷ d}), , (5.2)

f is a function. In the previous definition, f was assumed to be the minimum function,

however, it could be an arbitrary function that summarizes the discretization block. In

brief, this process replaces the values of the time series by the summary value of each

block. It does not change the number of samples nor the sampling rate. For example,

replacing each time-step of a wind speed time series with its daily minimum would

be temporal discretization with a length of 24 hours using the minimum function.

Temporal variability affects a discretized time series such that higher variability

results in a lower mean value. This is due to the nonlinearity of the minimum function

used to calculate the discretized series. This principle is illustrated in the following

example. Assume 30 minute measurements of DTLR: 500, 500, 1000, 1000 A. When

this rating is discretized to 1 hour periods the result will be 500 A in the first hour and

1000 A in the second hour. Now consider a different series of 30 minute measurements:

500, 1000, 500, 1000 A. This series is transformed to 1 hour periods as 500 A for both

hours. Although both series can transfer the same amount of energy on the 30 minute

time scale, the second time series transports only two thirds the energy of the first

series on the hourly scale.

5.2 Wind speed model

Wind speed is often modelled using Weibull distribution [62], which is a nonnega-

tive distribution that can be specified using two parameters α and β, that represent

shape and scale respectively. A useful property of Weibull distribution is that it is

reproductive through formation of the minimum [63]. In other words, the minimum of
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Figure 5.1: Dashed curve of Weibull distribution CDF fits the Empirical CDF (ECDF)
of hourly wind speed data well. The solid line shows the CDF of daily minimal
wind speed. The parameters for the daily CDF were calculated from the hourly
measurements using Eq. 5.3.

several independent random Weibull variables is also distributed according to Weibull

distribution. The following equation shows the parameter values for the minimum of

n Weibull random variables.

Y = min{X1, ..., Xn}, Xi ∼ Weibull(α, βi)

Y ∼ Weibull

⎛⎝α,

[︄
n∑︂

i=1

β−α
i

]︄−1/α
⎞⎠ (5.3)

As n increases, the scale parameter β decreases, and the entire distribution shrinks

towards 0 while keeping the same origin and shape α. This property of Weibull

distribution is used to model the distribution of wind speed after discretization. If

∀i : βi = β, then Eq. 5.3 can be further simplified to β(n) = β/ α
√
n.

Eq. 5.3 assumes that samples {X1, ..., Xn} are independent, which does not hold in

the time series of wind speed data due to temporal correlations. In order to apply this

equation, the effective sample size neff will be used instead of n. Assuming that wind

speed is generated from an AR(1) process, neff can be estimated using the following

equation [64].
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Figure 5.2: Shape and scale parameters of the Weibull distribution of wind speed
estimated from hourly (D = 1) and daily discretized (D = 24) time series. β̂D=24

is the estimate of βD=24 calculated from Eq. 5.3. The calculated values are on the
horizontal axis and the values estimated from measurements are on the vertical axis.

neff = n
1− ρ1
1 + ρ1

= n
1

τ 2
, (5.4)

where ρ1 is the wind speed time series autocorrelation for the lag of 1, and τ is the

autocorrelation time (the number of time steps it takes for the samples to become

uncorrelated).

The parameters of the Weibull distribution are estimated through Markov Chain

Monte Carlo (MCMC) with positive HalfCauchy(1) priors for both α and β. Special

care must be given to the left side of the wind speed distribution because most of

the used data is collected from cup anemometers, which have high error for low

wind speeds due to their non zero start-up speeds. To overcome this problem and

improve parameter estimation, all wind speed values less than 1 m/s are censored and

integrated out of the model [65]. The model is implemented in the software package

PyMC3 version 3.8.

5.2.1 Static Line Rating

In this study, SLR is calculated from historical measurements as to satisfy the criteria

mentioned in Chapter 2. This selected approach provides the highest estimate of SLR,

which in turn produces a conservative estimate of DTLR benefits. Moreover, SLR
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bottom 1% ampacity during the season across the entire dataset.
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used in this study is calculated seasonally, meaning there are three separate limits

for winter (Dec-Feb), summer(Jun-Aug), and spring (Mar-May) together with fall

(Sep-Nov). Seasonal SLR is used as it is commonly seen in operation and provides a

fair baseline for comparison.

SLR is calculated by the following procedure. First, the rating is calculated for

the entire time series of hourly weather measurements using the IEE-738 steady state

model. The ampacity is then grouped into the three seasonal categories as defined

above. Finally, a seasonal ampacity that satisfies the CIGRE-299 requirements is

selected.

5.2.2 Dynamic Thermal Line Rating

Dynamic thermal line rating is calculated from hourly weather measurements using

Eq. 2.2. The temporal discretizations are then calculated by Eq. 5.1 with the hourly

data considered as discretization D = 1.

In order to compare different locations, the benefit of DTLR is defined as the

average of DTLR normalized by the seasonal SLR. For instance, a DTLR benefit of

1.2 means a 20% increase over SLR.

5.2.3 Dataset

This study uses Canadian Weather Energy and Engineering Datasets (CWEEDS)

to simulate rating calculations across Canada [66]. This dataset contains historical

weather information from 492 weather stations between the period of 1998 and 2014.

The data provided in this source include hourly measurements of temperature, wind

speed, wind direction, and solar irradiation, which permits the computation of hourly

rating for a hypothetical power transmission line segment placed at the location of

the weather station.

The dataset contains not only measurements, but also outputs from a numerical

weather model that are used to fill in gaps of missing data that were longer than
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3 hours. For the purpose of this study, these synthetic values of wind speed and

temperature were removed and only time periods of continuous real measurements

are kept.

5.3 Discussion

The following will discuss how Weibull distribution is used to estimate the effect

of discretization on wind speed and rating when other environmental variables are

held constant, and then how a similar analysis is conducted on the rating when all

environmental factors are included.

5.3.1 Temporal Discretization of Wind Speed

According to Eq. 5.3, the shape of the wind speed distribution will remain constant

after discretization, but the scale will decrease. This is tested on the dataset by a

3-step simulation. First, the parameters αD=1, βD=1, and τ are estimated for hourly

wind speed. Then, these parameters are used to calculate β̂D=24 according to Eq. 5.3.

Finally, the true parameters αD=24 and βD=24 are determined from the discretized

wind speed.

In theory, αD=1 = αD=24 and β̂D=24 = βD=24. Figure 5.2 shows a scatter diagram of

the calculated and measured parameters. The top panel portrays the shape parameter

α. While ideally these values should be equal, the plot shows a significant amount

of noise. The authors hypothesized two main causes of this problem: (1) estimation

of the parameter αD=24 is inaccurate because most of the measurements are located

close to 0 where the value is dominated by the sensor noise; (2) the assumption of

independence is invalidated and there is no correction mechanism like there is for the

parameter β. Despite this noise, the correlation is clearly visible with r2 = 0.65 in

ordinary least squares (OLS) regression.

The bottom panel of Figure 5.2 shows the relationship between the scale parameter

β̂D=24 that has been calculated from the hourly measurements, and βD=24 that was
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directly estimated from daily discretization. In this case, both Eq. 5.3 and Eq. 5.4

provide an accurate estimate of the parameter with r2 = 0.93 in OLS regression.

The expected wind speed Ws ∼ Weibull(α, β) is given by

E(Ws) = β Γ(1 + α−1), (5.5)

where Γ is the gamma function. Eq. 5.3 shows that α does not change as D increases

and therefore Eq. 5.5 can be combined with Eq. 5.3 to get the expected value of wind

speed after discretization D = d

E(WD=d
s ) =

β
α
√︁

d/τ
Γ(1 + α−1) = c · d−1/α (5.6)

where c is a constant independent of d. As this equation describes the power law, it

can be stated that the average wind speed after discretization follows the power law.

To address the secondary objective regarding when the effect of wind speed on

DTLR becomes negligible, the expected rating is compared with SLR. SLR is calcu-

lated as the steady state rating with an ambient temperature of 35 °C, perpendicular

0.6 m/s wind speed, and 1000 W/m2 solar irradiation. DTLR is calculated by the

following equation.

E(ID=d;α, β) = F (ws̄;α, β
(d)) · Ī

+

∫︂ ∞

w̄s

f(ws;α, β
(d))I(ws)dws,

where f and F are the probability distribution function (PDF) and cumulative dis-

tribution function (CDF) of Weibull distribution, and β(d) is calculated according to

Eq. 5.3. The following optimization was used to find d that results in E(ID=d) to be

within 5% of Ī.

argmin
d

[︁
E(ID=d;α, β)− 1.05Ī

]︁2
(5.7)

68



This equation is numerically evaluated for a typical range of α and β and the result

is shown in Figure 5.3. The contours represent values of D in hours for which the

dynamic rating is within 5% of SLR. It can be seen that the benefit of wind profiles

with higher β tend to decrease slower, which is in agreement with the observation that

higher wind speeds are more stable. To evaluate if Eq. 5.7 is in agreement with the

measured data, α, β and D are empirically estimated for the wind speed time series

from the weather stations. Fifteen randomly selected results are shown in Figure 5.3.

Overall, the experimental values of D agree with the calculated contours.

5.3.2 Temporal Discretization of Rating

The distribution of rating does not lead to an analytical result for the distribution of

discretized rating as in the case of wind speed. However, the Fisher-Tippett-Gnedenko

theorem can be used to approximate the distribution for a sufficiently large d. The

theorem states that the distribution of the maximum of independent identically dis-

tributed (iid) random variables converges to either the Gumbel distribution (Type I),

the Fréchet distribution (Type II), or the Weibull distribution (Type III).

The selection of distribution type depends on the tail of interest of the modelled

distribution. Exponential distributions form Type I, distributions with fat tails (eg

Cauchy) form Type II, and limited distributions form Type III extremes. Rating is

created as a function of temperature, wind speed, and solar irradiation. Previously,

the Weibull distribution was used to model wind speed, therefore it may be tempting

to propose that the rating is Type III as Weibull is limited from the bottom. However,

it was demonstrated that as d increases the effect of wind speed diminishes and the

effect of temperature becomes more prominent. Thus, the distribution of discretized

rating will likely converge to the Type I distribution given d is large.

This behaviour is observed in the dataset. Figure 5.5 shows the distribution of

hourly (D = 1), daily (D = 24) and weekly (D = 168) rating. The Type III extreme

value distribution can be applied to the daily values, but for the weekly values it
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Figure 5.5: Extreme value distribution fitted to the discretized rating. Daily rating
D = 24 can be fitted with Type III, whereas weekly rating D = 168 is fitted with
Type I distribution.

clearly does not yield a proper fit. This phenomenon is observed in the majority of

datasets where D is sufficiently large.

To evaluate the overall benefit of DTLR on the dataset, the hourly rating is cal-

culated for all stations. The rating is then discretized for D = 1..168 and the mean

is normalized by SLR to calculate the benefit. The summarized result is plotted in

Figure 5.6. Based on the figure, the expectation that rating will decrease as D in-

creases and that the rating tends towards the value of SLR is confirmed. The value

of RTLR is not visualized because the hourly rate of the dataset is unable to capture

the fastest changes that are occurring in RTLR on approximately a 10 minute scale.

It can also be seen that the shape of the curve follows the power law function that

was derived in Eq. 5.6.

Table 5.1 quantifies the data from Figure 5.6 for commonly used discretization

periods. It can be seen that 90% of locations have an hourly DTLR benefit of 47-

103%. This decreases to 11-43% for 24 hour discretization, which means that almost

2/3 of the benefit has been lost going from 1 hour to 1 day.
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Figure 5.6: DTLR benefit for different temporal discretization periods. The power
law approximates the shape of the curve until D ≈ 72. The divergence for longer
periods is expected and is caused by the censoring of wind speed data.

Table 5.1: DTLR benefit for different temporal discretization periods. Values from
Figure 5.6 in a tabular form.

Period length [hours] 0.05 Quantile Median 0.95 Quantile

1 1.47 1.75 2.03

3 1.34 1.61 1.89

6 1.26 1.50 1.77

12 1.18 1.38 1.60

24 1.11 1.24 1.43

48 1.06 1.13 1.25
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5.3.3 Limitations

This study has some limitations, the majority of which are a result of the available

dataset. Firstly, the dataset was developed for environmental research and thus, the

locations of sensors are not representative of typical locations of power transmission

lines. Secondly, the resolution of the data is relatively low, as the data is provided

in 1 hour timesteps and the required resolution needed to capture RTLR is around

10 minutes. Therefore, RTLR cannot be calculated and the 1 hour DTLR is not

representative of it. Lastly, the rating is calculated only for one specific type of

conductor. Regardless of these limitations, the authors believe the overall conclusions

proposed are valid when acknowledging that the exact results cannot be taken at face

value.

5.4 Conclusion

RTLR is a technique that permits improved utilization of the installed capacity of

overhead transmission lines when compared to SLR. However, the realtime aspect

of RTLR makes it impractical to implement. Alternatively, DTLR can be applied

in discrete periods (eg. daily), which is simpler to incorporate into current systems.

This paper examines the effects of temporal discretization to the overall benefit of

DTLR.

The first part focuses on wind speed, as it is the major factor affecting the rating.

The commonly used Weibull distribution is fitted to the wind speed. One of the

properties of this distribution is that the minimum of a set of iid Weibull random

variables also follows Weibull distribution. This property is used to model the dis-

cretized wind speed, where the discretized distribution can be derived analytically

from the hourly statistics. The validity is illustrated on the experimental data, where

the calculated parameters of the discretized distribution are in agreement with the

parameters estimated from the measurements.
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Effective sample size is used in the calculation of the discretized wind speed dis-

tribution parameters to correct the effect of autocorrelated samples. This technique

proved successful and the r2 of a linear regression between the calculated and es-

timated β parameter was 0.93. The regression of the α parameter yields r2 = 63.

Theoretically, α should be constant. However, for reasons not currently understood,

it changes. This is a topic for further research.

It was derived that the mean of wind speed behaves according to the power law,

as the discretization period D increases (see Eq. 5.6). Although this was derived for

the wind speed, it was shown to also have an effect on the overall ampacity, as the

power law is visible in the summary in Figure 5.6 of DLR benefit calculated over the

entire dataset.

It is shown that for wind speed discretizations longer than 4 days the majority of

ampacity time series fall within 5% of the SLR – see Figure 5.3. This agrees with the

overall rating in Figure5.6, where at 4 days 95% of stations report a rating within 5%

of SLR.

Overall, the benefit of applying hourly DTLR over SLR is between 47 and 103% and

the benefit of daily DTLR (24 hour period) is between 11 and 43% for 90% of analysed

locations. However, the exact numbers are only representative of this specific study

because the calculation of ampacity is done only for one type of conductor. In an

attempt to correct this problem, the authors normalized all results to SLR calculated

for the same type of conductor and believe that the results are representative of

the general trends. Nevertheless, with different types of conductors the results will

inevitably change.

In conclusion, the authors found that in most cases, 96 hours is the maximal time

period where wind speed is relevant in RTLR calculations, assuming a perfect predic-

tion of wind speed is known in advance. In reality, this is an unrealistic expectation

and the uncertainty in wind speed prediction will push the threshold to much lower

values. This finding may also prove useful in DTLR prediction system design, because
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for longer discretization periods, resources would not need to be spent on wind speed

prediction as its effect would be minimal.

In answering the secondary objective, it was identified that discretized wind speed

has the same distribution as hourly wind speed with the exception of the scale param-

eter that changes. It was shown that the scale parameter could be calculated with a

high degree of accuracy using the measure of effective sample size and its reciprocal

value (autocorrelation time τ). It was also found that the average wind speed as a

function of the discretization period follows the power law, and that the distribution

of rating tends to the extreme value distribution of Type III for low discretizations

and Type I for high discretizations. This information can be used in Bayesian am-

pacity forecasting models, where it can provide an informative prior for discretized

wind speed.
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Chapter 6

Probabilistic Forecasting of
Dynamic Line Rating with
Temporal Correlations

The power transmission network is an essential part of the electrical system. Its

purpose is to deliver electricity from producers to consumers. In ideal situation the

network is fully transparent – the users of the system need not concern themselves with

its existence. However, when the utilization of the network increases and the amount

of transmitted power nears the line rating, the power must be rerouted through sub

optimal paths increasing electricity costs. If the rerouting of power flow becomes

unsolvable the undesirable result is load shedding [7]. Therefore, to avoid this it

is more forgiving to have sufficient transmission capacity available in the electrical

system at any given time.

While the easiest solution may appear to be upgrading the transmission lines,

it is exceedingly expensive when you factor in the cost of labour, materials, and

the opportunity lost during outages. Therefore, a more promising approach is to

better utilize preexisting transmission equipment. Historically, the thermal rating of

transmission lines was calculated for the worst case environmental conditions [17].

This technique is known as Static Line Rating (SLR) [67] and albeit very simple,

wastes a lot of potential capacity as the conditions are almost always more favorable.

A more efficient technique is called Dynamic Thermal Line Rating (DTLR) and
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sets line rating based on the current environmental conditions [67]. In an ideal case,

the factors affecting thermal capacity are measured in real time, and then the rating

is calculated and applied on the transmission line in the operator’s management

system [68]. Theoretically, this should be a continuous process, where the rating

is constantly updated. However, as it has been shown that the time constant of the

conductor’s thermal behaviour is approximately 10 minutes, discrete updates in times

steps shorter than this can be assumed to be equivalent to a continuous system [58].

This is known as Real-Time Dynamic Thermal Line Rating (RT-DTLR) and is the

process that sets the line rating to the current that brings the temperature of the

conductor to its design temperature [3].

RT-DTLR is therefore by definition, the optimal strategy that maximizes the trans-

mission capacity. A current any higher than RT-DTLR would cause the line to

overheat and age prematurely [9]. There are however, practical problems with RT-

DTLR. Firstly, its realtime nature limits the usefulness, as the majority of planning

and scheduling in the electrical system is done in advance [7]. The demand and

production is agreed upon in an ahead-of-time market and then the schedules for

power plants are created. Larger power plants need time to modify their output and

the capacity of the network needs to be known in advance. Secondly, these electri-

cal systems operate in finite granularity, meaning knowledge of continuous rating is

not necessary and may even be detrimental. For example, retrofitting some current

management systems with RT-DTLR would be impossible. Current systems often

expect the rating as a number that changes only a few times a year and at best could

accommodate daily changes, but not real time updates.

The objective of the research presented in this paper is to propose a method for de-

riving a single safe but economically desirable rating for a future period of time. Gen-

erally, the time period would be 24 hours, meaning the rating for the next day would

be generated and remains static over this period. This proposed method encompasses

three elements: weather forecast, probabilistic rating prediction, and rating summa-
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rization (ie. condensing the probabilistic rating over time into a single number). An

indirect calculation approach is used to estimate the rating, where rating is derived

from the weather parameters that affect the thermal behaviour of the conductor [69].

Ambient temperature, wind speed and direction, and solar irradiation are forecast

by a numerical weather prediction (NWP) system and then used in the IEEE-738

thermal model of an overhead transmission line to calculate the transmission line

rating [16].

The first component of the method is the NWP model that generates the forecast

in relatively high resolution in both temporal and spatial domains [70]. The second

component of the method is the probabilistic ampacity prediction, which takes the

weather prediction and calculates the probability distribution of the rating at any

time step. The importance of having a probabilistic prediction, as opposed to a

deterministic one, is that the degree of uncertainty is provided in the forecast [35].

For example, assume there are two predictions both with high accuracy, but one is

precise and the other is imprecise. Even though both forecasts provide the same

deterministic output, the forecast with low precision has a much higher degree of

uncertainty that has to be accounted for by increasing the safety margin. Having

a probabilistic output allows for objective determination of the safety margin and

minimizes the effect of uncertainty on DTLR benefit. The final component of the

method, the rating prediction, is to collapse the time series of probabilistic ampacity

predictions into one number that is used as a safe rating for the entire time period.

Simply put, the expected minimum of the rating over the time period is found in this

step. The main challenge is caused by the temporal correlations between close time

steps because they affect the estimated extreme value. Calculating the distribution of

minima and maxima for multiple dependant random variables is a difficult problem.

As such, an analytical solution is known only for a few well behaved distributions, for

instance two normal distributions [71].

Similarly, in DTLR when the correlation between samples of the rating is high the
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expected minimum of the rating will be higher. Therefore, it is important to take

temporal correlation into account when calculating the expected minimum for the

time period. The proposed solution to this problem works in a Monte Carlo fashion,

where a number of random time series that are compatible with both probabilistic

prediction and typical temporal correlations are generated. The distribution of the

minimum can then be determined by examining the samples to select the rating

through a quantile based method. Alternatively, the samples can be directly used

with an objective-based optimization method to select the rating by more complex

criteria.

Unlike most other research, the study presented in this paper focuses specifically

on temporally discretized rating, i.e. rating that changes at the edges of short periods

(hourly, daily) but otherwise stays constant. In the literature, this kind of DTLR is

sometimes called Ambient Adjusted DTLR (AA-DTLR) [35], although some authors

define AA-DTLR as dependant only on the ambient temperature. The detrimen-

tal effects of temporal correlation on rating estimation is described and a sampling

method to mitigate this problem is presented. The conductor temperature is used

during optimization, as in the study by Dupin [3]. A novel temperature estimation

method, however, is developed and provides an alternative approach to the problem

of conductor temperature estimation.

6.1 Methods and Procedures

The objective of the rating system is to provide a rating that maximizes the utility of

the transmission line all while keeping the temperature related risks at an acceptable

level. The system can be classified as an indirect dynamic thermal line rating system,

where the rating is derived from weather forecasts. The following section briefly

describes the individual processes in the system as presented in Figure 6.2. Detailed

descriptions of certain sections follow after the overview.
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Numerical Weather Prediction The rating system exploits the dependency be-

tween ambient variables and the transmission line rating, as described by the model

in Equation 2.2. This allows for capacity estimation by processing a weather fore-

cast. Weather Research and Forecasting (WRF) model [72] is an NWP system that

is used to generate high resolution weather forecasts on a 1 km spatial grid with 5

minute temporal resolution. For the experimental evaluation, a new 48 hour forecast

is generated daily to calculate the rating for the following day.

Machine Learning Model The weather forecast is processed into a probabilistic

rating prediction by a supervised machine learning model that has been trained on his-

torical forecasts and measurements. This is similar to the method used by Dupin [3],

where a variety of machine learning models are trained to convert a deterministic

weather forecast into a probabilistic rating prediction.

In this work, the rating is discretized before the training of a random forest model,

essentially turning the regression problem into a classification problem. This method

is called regression via classification [73]. The classes are uniformly distributed over

the range of the rating and the output is constrained to sum to 1, practically creating

a probability mass function over the classes.

Time Series Sampling Due to the problem described in the introductory section,

the probabilistic rating is not directly usable to estimate summaries of extremes.

If the temporal correlations are not taken into account, the extreme values will be

overestimated. To overcome this problem, a Monte Carlo sampling method is used.

Samples of time series are drawn from the probabilistic forecast and then used together

with a cost function to find a rating that incurs a cost acceptable by the line operator.

The samples are drawn in such a way that the temporal dependencies between

neighbouring samples are similar to samples from real measurements. The sampling

process uses temporal characteristics that are learned from historical measurements
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and thus, produces realistic looking samples of time series.

Line Temperature Estimation To allow for the cost calculation, the temperature

of the transmission line has to be estimated. The temperature affects both the sag

and conductor ageing calculations. Estimating line temperature from the rating is

not straightforward due to its dependence on multiple ambient variables that are

unknown at this stage of the process. This paper presents a novel method that uses

only the ambient temperature forecast to arrive at a conservative estimate for line

temperature. This innovative method is described in detail in a later section.

Over-Temperature Estimation The temperature of the line is calculated for a

range of ratings. At each rating, the estimated over-temperature is estimated which

creates a monotonically increasing function from rating to the over-temperature.

Rating Selection At the end of the process, the rating is selected from the inverse

of the function obtained in the previous step at the maximal over-temperature value

that is acceptable to the user.

6.1.1 Machine Learning Model

Machine learning is used to convert the deterministic weather forecast directly into a

probabilistic rating prediction. This is in contrast to the authors’ previous work [74],

where a statistical model was applied to the NWP to get a probabilistic weather

forecast. The this alternative approach was selected to avoid complications due to

correlations between the weather variables that complicated the Monte Carlo calcu-

lation of ampacity. Direct estimation of the rating from NWP is in line with other

publications [3, 38].

Unlike other research, the presented approach uses a classification algorithm to

convert the NWP to line rating. This technique is termed Regression by Classifi-

cation [73]. It was chosen because probabilistic prediction is required and there are
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many readily available classification algorithms that provide the probabilities for the

output classes. Furthermore, the proposed time series sampling method operates in

discrete space. In Regression by Classification the continuous target variable is first

discretized, a classification algorithm is then trained and applied to the data, and

finally the results are converted back to the original continuous space.

The transmission line rating has been discretized into 32 bins of equal width,

where the limits have been found on the training dataset. Values outside the limit

during evaluation were clipped into the lowest or the largest bin. Other discretization

strategies have been tested (equally populated bins and k-means clustering), however,

bins with uniform width performed best.

The algorithm used to perform the classification is Random Forest [75]. This

algorithm was chosen due to good performance of tree-based models in other publica-

tions [3, 38], options for probabilistic output, and due to the availability of the easy

to use and mature implementation of this algorithm in scikit-learn library1.

6.1.2 Conductor Temperature Estimation

In order to evaluate the effects of operating the line at a certain current, the tem-

perature of the conductor has to be estimated. If all ambient parameters are known,

this can be easily achieved through the application of the IEEE738 thermal model.

However, in the system presented in this paper, the ambient variables are lost because

only the rating is sampled.

Dupin [3] tackles this problem by keeping a database of historical ambient variables

and their associated ratings. When the line temperature is required, a row with the

closest rating is pulled from the database and these ambient parameters are then used

in the thermal model.

A different method is used in this paper. The goal is to calculate the maximal

potential line temperature for a rating value given that the actual rating is lower.

1https://scikit-learn.org/
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Figure 6.1: This figure shows how the temperature of an overloaded conductor
changes not only based on the rating, but also on the ambient air temperature, even
though the rating remains the same. The design temperature of the conductor is

80 ◦C and it has been overloaded by 100 A. The discontinuity in the curves is due to
the thermal model switching cooling regimes.

The idea behind this method is that the line temperature at the actual rating is

known – it is the design temperature of the conductor. Therefore the wind speed that

results in this temperature can be calculated from the thermal model and an ambient

temperature forecast. The calculated wind speed can then be used to estimate the

temperature at the selected rating.

It is important to evaluate the thermal model at the correct wind speed range

because of nonlinearity. The increase in temperature from over-current of 100 A at a

true rating of 1200 A is much lower than the temperature increase of the same over-

current but with a rating of 600 A. Similarly, given the same rating, the temperature

increase varies at different ambient temperatures. Figure 6.1 illustrates this issue.

Define M I ,MT ,Mws to be the IEEE-738 thermal model to calculate the current,

conductor temperature and wind speed respectively, from the other variables exclud-
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ing the target. Then the cost function f that assigns cost to the conductor temper-

ature can be evaluated for a series of rating samples I1, ..., In and selected rating I

as

F ([I1, ..., In], I) =
1

n

n∑︂
i=1

f(MT (Ti,M
ws(Ti, Ii)), I). (6.1)

This function is evaluated multiple times at gradually increasing values of I until a

rating that provides the target cost is found. It is possible to optimize the calculation

for cost functions that evaluate to 0 for temperatures lower than the design temper-

ature by skipping samples where I < Ii. The same principle could also be employed

when evaluating the expected value of the cost function over a part of the probability

function of rating p(I):

E[F ([I1, ..., In], I)] =

∫︂ I

0

p(I ′)f(MT (T,Mws(T, I ′)), I)dI ′ (6.2)

The relation between the ambient temperature T and the current I ′ in this equation

is lost because the calculation treats these as independent variables. For this reason,

the numerical evaluation in this paper is done on samples instead of summaries, as

samples can be exactly matched to their ambient temperature forecasts.

Example calculation: The rating I selected based on the forecast is 1000 A, but

the actual real-time rating Ir is 900 A. What is the temperature Tr of the line under

the 1000 A load, assuming the ambient low forecast is 10℃? The temperature at IR is

known, by definition it is the design temperature T of 85℃. The thermal model Mws

is used to estimate that a wind speed of 5 m/s results in a conductor temperature

of 85℃ under 900 A. Now, the thermal model MT is used to calculate the conductor

temperature under the condition of 5 m/s wind speed, 10℃ ambient temperature

and 1000 A load. The resulting conductor temperature is 94℃. 9℃ over the design

temperature.

This process is used to calculate the line temperature for each rating with nonzero
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predicted probability and the selected rating. This temperature is then used to esti-

mate the cost of operating the line at the selected rating.

6.1.3 Time Series Sampling

The objective of the proposed sampling method is to generate time series samples

that would

• mimic typical temporal correlations between time steps of a real-time rating

time-series,

• preserve marginal distributions of each random variable as generated by the

probabilistic prediction.

The algorithm is based on belief propagation through a graphical model with a

chain structure, where the vertices are the random variables and the edges are the

factors representing the transition between two time-steps. The algorithm samples

the variables in a random order and sends messages with the likelihood to the neigh-

bours. When the neighbours are sampled, the incoming messages from other nodes

are incorporated into their probability mass function. Therefore, the samples have

a higher probability of being closer to their neighbours in value. As the messages

propagate through the chain, the edge transition function is applied to the messages

diluting the likelihood. The amount of information contained in the messages de-

creases as the likelihood flattens, meaning the variables further apart have less effect

on each other. The propagation of a message stops when an already sampled variable

is reached.

Inputs and Outputs

There are two inputs to the algorithm. The first input is a set of n discrete random

variables {X1,· · · , Xn}, where each variable corresponds to one time step in the rating
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Figure 6.2: Diagram of the rating prediction system
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time series. Each random variable is defined by a probability mass function provided

by the probabilistic prediction algorithm.

The second input is a conditional probability distribution E = P (X|Y ), where

X and Y are two neighbouring variables. The distribution describes the probability

of X given that the value of Y is known. This distribution is further called the

edge function, as it represents the transition probability along one edge. Usually,

the probability of similar evaluations of two neighbouring nodes is higher than the

probability of more distant ones. The purpose of this input is to provide information

about how the value of one variable changes the probability of neighbouring variables.

In this algorithm, the probability distribution E is assumed to be stationary with

respect to the timesteps. This means all edges have the same transition function

regardless of the time-step.

The output of the algorithm is a random sample of a time series {x1,· · · , xn}. The

algorithm can be run repeatedly to produce more random samples.

Algorithm Description

In simple terms, the algorithm works by sampling the variables in random order and

then propagating the sampled values to its neighbours according to E. The variable

Xj is sampled from a PMF defined by the Bayes update rule:

P (Xj|Xi; i ̸= j) =

[︄∏︂
i ̸=j

P (Xi|Xj)

]︄
P (Xj)

P (Xi; i ̸= j)
, (6.3)

where P (Xj) is the prior distribution obtained from the probabilistic prediction,

P (Xi|Xj) are the likelihoods of all other variables received through messages, and

P (Xj|Xi; i ̸= j) is the posterior. Since the structure of the graphical model is a

chain, the variable Xi depends only on its neighbours Xi−1 and Xi+1:

P (Xj|Xi−1, Xi + 1) =
P (Xi|Xi−1)P (Xi|Xi+1)P (Xj)

P (Xi−1, Xi + 1)
. (6.4)
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Likelihoods are obtained through iterative application of the update rule, assuming

the posterior is unknown for variables that have not yet been sampled. The iteration

stops at the first observed variable because it stops the propagation of information

through the graph:

P (Xn+i)← P (Xn|Xn+1) · ... · P (Xn+i−1|Xn+i)P (Xn+i) (6.5)

=
i−1∏︂
j=n

P (Xj|Xj+1)P (Xn+i). (6.6)

Recalling that all transition probabilities are identical, the equation can be further

simplified to matrix multiplication. Assume that M is a matrix representing the con-

ditional probability P (Xj|Xj+1) where PMF are stored in columns. The conditional

probability of the chain between Xn and Xm is then Md, where d = |n −m| is the

number of edges between Xn and Xm:

P (Xn+i)← P (n)MiP (Xn+i). (6.7)

Algorithm 3 shows the implementation of the described procedure. In contrast

to Equation 6.6, the the algorithm calculates the likelihood messages when they are

transmitted, not when they are received. The transmitted messages are stored in two

separate arrays. The messages are propagated through the left and right message

arrays, overwriting the previous values until an already sampled location is reached.

This ensures that the subsequently sampled location will receive the messages only

from the two closest sampled nodes, one message from each side. Besides the message

arrays, the algorithm also stores the locations of already sampled variables.

6.1.4 Over-Temperature Cost Function

The average temperature over the design temperature of the conductor has been

used to evaluate rating selection methods. Assume a set of n conductor temperature

measurements [T1, ..., Tn]. The average over-temperature, ∆T , is then defined as
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Algorithm 3 The sampling algorithm

1: input: M1, Xi, n; i ∈ [1..n]
2: ∀i : µi ← 1 ▷ Initialize left messages
3: ∀i : νi ← 1 ▷ Initialize right messages
4: ∀i : κi ← false ▷ Initialize sampled flags
5: precalculate Mi : ∀i ∈ [0..n] ▷ Equation 6.7
6:

7: for i in random permutation of 1..n do
8: xi ← random sample from (µi · νi ·Xi) ▷ Sample from the posterior,

Equation 6.4
9: for j in i..n do ▷ Propagate messages to the right
10: if κj == true then ▷ Stop propagation if variable already sampled
11: Break
12: end if
13: µi ←M(j−i) · xi ▷ Update left message array
14: end for
15: for j in i..1 do ▷ Propagate messages to the left
16: if κj == true then ▷ Stop propagation if variable already sampled
17: Break
18: end if
19: νi ←M(i−j) · xi ▷ Update right message array
20: end for
21: κi ← true ▷ Mark sampled
22: end for

return xi
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∆T =
1

n

n∑︂
i=1

max(0, Ti − Td) (6.8)

where Td is the design temperature of the conductor.

6.1.5 Static Line Rating Overtemperature

The SLR values used in the evaluation are calculated to satisfy these criteria. More-

over, seasonal rating is used to make the comparison more fair. Seasonal rating is a

strategy that uses a different SLR for different seasons. Typically, winter months are

operated at a higher rating than summer months because the average high tempera-

ture over the winter is lower than in the summer. In this study winter SLR is applied

between October and March, and summer SLR between April and September.

The criteria for good SLR, according to CIGRE-299 [17], can be used to approx-

imate the expected value of over-temperature for SLR. Good SLR should be lower

than the real-time rating with confidence of 99%. Therefore, the temperature of the

line is at most 10 ◦C over the design temperature with probability pO = 0.01. As-

suming, that the over-temperature is distributed uniformly between 0 and 10 ◦C, we

can estimate the expected value of the over-temperature, ŌtextSLR, as

ŌSLR = pO · E[U(0, 10)] = 0.01 · 5 = 0.05. (6.9)

Based on this calculation, the expected over-temperature of SLR, selected accord-

ing to CIGRE-299, is approximately 0.05 ◦C.

6.1.6 Rating Estimation Methods

There are three rating estimation methods used in this study. Over-temperature esti-

mation strategy directly searches for a rating that results in the average temperature

to equal that of the target over-temperature. This method is implemented by using

the over-temperature cost function in Equation 6.8 in the temperature estimation

procedure defined by Equation 6.1.
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The second method is a simple quantile selection strategy that is commonly used

in DTLR studies. The objective of this method is to select a rating that makes

the temperature of the conductor less than the design temperature for a pre-selected

portion of time. Typically, low quantiles in the range of 1-5% are used with this

strategy. In this study, the strategy is applied to the samples obtained through the

proposed sampling method. In the diagram, in Figure 6.2, the samples are taken after

the step ”Time Series Sampling”.

The third method is called naive strategy. While somewhat similar to simple quan-

tile selection, the quantile is instead evaluated directly on the probabilistic forecast

of rating. This method is included to demonstrate the poor calibration of results

that occurs when temporal correlations are ignored throughout the calculation of

temporally discretized summaries.

6.2 Results

6.2.1 Dataset

The proposed system is evaluated based on a dataset that consists of 2 years of high

resolution measurements from several weather stations located alongside a power

transmission line in southern Alberta, Canada. The recorded variables are ambient

temperature, wind speed and wind direction, and solar irradiation. The data is

recorded every 3 minutes resulting in a dataset of 345,844 measurements.

There are several spans of missing measurements. Gaps smaller than 5 consecu-

tive measurements were filled by linear interpolation, whereas days that contained

longer gaps were discarded. There was also several days worth of data with incorrect

timestamps that were discarded. In total, there are 543 days of complete data.

The measurement dataset was aligned to the weather prediction dataset so that

there were 288 measurements each day with a sampling period of 5 minutes. IEEE738

thermal model was used to calculate the rating from the weather measurements for
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”Drake” 26/7 ACSR conductor with a working temperature of 80 °C. The emissivity

and solar absorptivity was assumed to be 0.8.

The weather forecast was down-scaled from daily runs of the North American

Mesoscale forecast system (NAM) model. This model is released 4 times per day

and provides forecasts with an 84-hour horizon with one hour resolution on a 12 km

spatial grid. The archived2 midnight runs of NAM were used in WRF to down-scale

the input model to a 24-hour weather forecast with a temporal resolution of 5 minutes

and a grid size of 1 km.

The system was validated on the dataset using 5-fold cross-validation. Days in

the dataset were split into 5 groups, where 4 groups were used for training and 1 for

testing. The presented results are the means across the testing splits.

6.2.2 Simulation details

The ampacity has been discretized to 32 bins of equal width between 500 and 2000 A.

A random forest model was applied to produce probabilistic predictions on these 32

classes. The model used 1000 trees, a maximal depth of 10, and each tree got 5% of

training data.

6.2.3 Classification model

Random forest is used to convert the deterministic forecast generated by NWP into a

probabilistic forecast. It does this by learning the typical uncertainty in the weather

forecast from historical data and then assigning a probability mass function to new

forecasts.

There are several aspects of forecast quality. The most important include accuracy,

reliability and, sharpness [76]. Accuracy refers to the average difference between

individual measurements and forecasts. Reliability is a measure that describes the

relationship between observed and predicted values conditioned on the prediction. In

2https : / /www.ncdc . noaa . gov/data - access /model - data/model - datasets /north - american -
mesoscale-forecast-system-nam
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other words, if the forecast predicts probability of an event to be 50%, the event will

occur on average in half of the instances. Lastly, sharpness describes the difference

between the forecast and climatological value. To elaborate, forecasts too similar to

the climatology have no sharpness, whereas sharp forecasts often differ. The goal of

a good forecast is to maximize sharpness without sacrificing calibration.

Mean Absolute Error (MAE) will be used to evaluate the accuracy:

MAE =
1

n

∑︂
|ōk − ok|.

The Probability Integral Transform (PIT) histogram assesses the reliability of the

forecast. It uses the property of random distributions that states that u = FX(x)

is uniformly distributed if samples x are drawn from a distribution with CDF FX .

Therefore, the predicted CDF will be applied to the the measurements. If the his-

togram of the result is close to uniform, the prediction is considered reliable.

Sharpness is evaluated using a prediction interval width of 90% [77]. The width

will be calculated from the inverse of CDF, as F−1(0.95)− F−1(0.05).

Figure 6.3 shows the distribution of the error over the entire dataset. The dis-

tribution of residuals is consistent with a student-t distribution centered around 0.

This suggests there is little bias in the model and that it performs well on the data.

The MAE of the probabilistic forecasts is 149.6 A and the average width of the 90%

prediction interval is 625 A.

The PIT histogram of the model output is in Figure 6.4. The graph shows a 10-bin

histogram of PIT together with the optimal shape. It can be seen that the model

performance is good and that the true distribution of the data is reflected well by the

probabilities assigned by the model.

When using a random forest model it is important to realize that the model cannot

be used to extrapolate outside of the space limited by the training data. Random

forest directly uses the training dataset to produce results and therefore, the outputs

will be clipped to the extent of the values in the training dataset. If using the model
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Figure 6.3: A histogram of the error between the median of the probabilistic
forecast and the measurements. The error is consistent with the student-t

distribution with 15 degrees of freedom.

in production, there has to be a diagnostic procedure that will identify clipping is

occurring and either notify the user or replace the output with a value from a different

model capable of extrapolation.

6.2.4 Percentile accuracy

Static percentile selection is a simple and commonly used strategy for determining

rating. It works by selecting a low percentile, n (typically 1%), and then finding a

rating lower than the actual rating n% of the time.

To validate that the generated samples can be used to reliably determine the rating

percentiles, the sampling model will be used to predict percentiles of the minimal

rating. Then the predicted value will be compared with the data and the actual

portion of minimal rating that exceeds the rating will be determined. Ideally, for a

reliable model these proportions should be equal. This means when the model is asked

for the 1st percentile prediction of minima, the actual minima should be lower than

the predicted in 1% of cases. This simulation was done for a number of prediction

window lengths ranging from 1 to 24 hours and percentiles between 0.5% to 10%.
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Figure 6.4: PIT Histogram of the probabilistic forecast. Ideally, a reliable forecast
should transform into a uniform distribution producing a flat histogram.

Generalized Pareto Distribution (GPD) is used to model the tail of the predicted

distribution of minima. The distribution is fitted to the generated samples using

Maximum Likelihood (ML) estimation, where the bin samples are treated as interval-

censored data. The ML estimation is then performed on F (xi +1)−F (xi) instead of

f(xi) to allow for inter-bin uncertainty.

The model has been used to predict quantiles between 0.01 and 0.1 for discretiza-

tion periods between 1 and 24 hours over the entire dataset. Figure 6.5 shows the

result of this simulation for discretization periods of 2, 6 and 24 hours. The agree-

ment between desired and actual predicted quantiles is generally good, where the

true and predicted values are always within 3 standard deviations estimated through

bootstrapping (shown for only one curve for clarity).

6.2.5 Distribution of sampled minimum

Figure 6.6 shows the PIT histogram of minima of 6 hour rating windows calculated

using Equation 2.5 and estimated from the sampled time series. This figure confirms

that disregarding the independence assumption and naive application of the equation
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Figure 6.5: The desired quantile against the forecasted quantile. The desired
quantile is input into the forecast algorithm, whereas the forecasted quantile is

estimated on the data after the fact. Ideally, these values should be equal. The error
bars represent 3 standard deviations generated through bootstrapping.
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Figure 6.6: PIT of minimal values estimated by applying Equation 2.5 and
calculated from sampled data.

results in a probability distribution that is consistently shifted towards lower values.

On the other hand, the PIT of the probabilistic prediction of minima produced by

the proposed method is sufficiently well calibrated and provides a reliable result with

a slight bias toward higher values.

6.2.6 Comparison of rating strategies

In this section, the SLR, naive quantile selection, static quantile selection strategy,

and over-temperature estimation strategy will be compared in terms of average rating

and over-temperature.

All three algorithms are executed on the output from NWP to generate the rating

forecast. The actual measurements are then used to calculate the over-temperature

that would occur while operating the line at the forecast rating. Each evaluation

is repeated for different lengths of discretization periods. The periods tested in this
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Figure 6.7: This figure shows the dependence of the line rating on the length of the discretization period. The left panel shows
the optimal DTLR, the predicted rating by the over-temperature strategy, and the static rating all aligned to an

over-temperature of 0.05 ◦C. The purpose of this figure is to illustrate the large disparity between the optimal possible rating
and the predicted rating. Ideally, the predicted rating would be equal to the ideal rating. The middle and right panel compare

three different rating strategies under constant over-rating of 0.05 and 0.1 ◦C.
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study are 1, 2, 3, 6, 12, and 24 hours. The system uses the high resolution day-ahead

NWP to produce a series of discrete ratings covering the next 24 hours. For example,

the forecast for the next day discretized to 6 hours would produce a series of 4 ratings,

each valid for 6 consecutive hours.

To form a point of reference, the optimal rating is calculated from the measure-

ment data as the rating that maximizes the average rating without ever exceeding the

temperature limit. The left panel of Figure 6.7 shows the optimal rating for different

discretization periods and also the SLR and rating selected by over-temperature esti-

mation. The optimal rating is 918 and 660 A for 1 and 24 hour discretization periods

respectively. As anticipated, the rating fall-off follows the power law, where the rate

of the decline decreases as the line approaches the SLR. The optimal rating provides

a major increase in capacity compared to SLR, where a 63.4% and 17.5% increase

over SLR can be achieved at 1 and 24 hour discretization periods, respectively.

The middle and right panels of Figure 6.7 visualize the effects of temporal dis-

cretization on the predicted rating. As expected, the benefit of DTLR is greater at

shorter discretizations, but the difference is not large. Especially in comparison with

the optimal rating shown in the left panel, where the forecast rating looks almost

flat. This is a very important observation, as it suggests that there is only a small

benefit in increasing the temporal resolution of rating prediction for these forecasting

strategies. The difference in rating between 24 hour (604 A) and 2 hour (617 A)

discretization periods is 12.4 A and between 6 (615 A) and 2 hours is only 2 A for an

average 0.05 ◦C over-temperature.

The cause of this effect is currently unknown and should be the focus of further

research. Improving the scaling of DTLR benefit with the length of discretization

would unlock shorter discretization periods for practical use. The authors believe the

limiting factor is currently the low precision of the probabilistic rating forecast. The

width of the 90% prediction interval has been established at the beginning of this

section as 625 A. This large range forces the value of the high reliability forecast to
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be rather low to ensure safety regardless of the size of discretization. Improving the

forecast precision would permit the forecasting strategy to produce bolder predictions

and allow it to follow the shape of the optimal DTLR more closely.

This data also suggests that discretization is affecting the naive approach more than

the other two strategies that use samples that include temporal dependencies. The

authors hypothesize this is caused by the collapse of CDF of the estimated minima,

where the majority of probability mass is concentrated only on a small range of

values. The discrete CDF is incapable of capturing this narrow distribution and thus

the estimated rating is a result of simple interpolation between two bin edges for most

forecasts.

Figure 6.8 provides a different view of the results. The figure shows the relationship

between the average over-temperature and the rating for the three different rating

strategies. The left and right panel show the result of the rating strategies applied to

the same data, but under different discretization lengths (24 hours on the left panel

and 6 hours on the right panel). This data has been obtained by varying the input

parameter of the rating algorithm and recording the resulting over-temperature and

rating. It also shows the over-temperature of SLR when the static rating is artificially

increased from the base rating of 559 A in steps of 10A.

The figure confirms that all three strategies are more efficient than SLR. It also

shows that the marginal benefit of DTLR diminishes with respect to increasing the

over-temperature. The left panel shows the relationship when discretization of 24

hours is applied. In this time-frame, both over-temperature and quantile estimation

clearly perform better than naive strategy. This behaviour is expected because the

longer the discretization period, the more error that is introduced by omission of

temporal correlations into the calculation of the extreme value. This effect is sub-

stantially lower on the data with 6 hour discretization, as can be seen on the right

panel of Figure 6.8.

The difference between the over-temperature and quantile selection strategy is not
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large. The over-temperature selection performs better on low over-temperature tar-

gets under longer discretization periods, but in other cases the results are similar.

The over-temperature strategy directly optimizes the temperature, which might con-

tribute to its performance under this metric. It also takes into account the actual

value of the forecast over-temperature, whereas the quantile strategy uses only the

information that rating is higher or lower than the actual measurement, regardless of

the amount over the limit.

The parameters of over-temperature estimation and naive quantile strategy are

annotated on the figure next to the appropriate data point. The parameter for over-

temperature estimation is the target over-temperature, and for naive strategy it is the

quantile. By projecting the data-points on the X axis and comparing the parameters it

can be seen that there is good correspondence between the target and the actual value,

as calculated on the test data. This relationship also holds at different discretization

period lengths, which can be seen by comparing the left and right panels representing

24 and 6 hour periods, respectively. On the other hand, naive strategy requires the

selection of an arbitrary quantile through a calibration process to achieve the results

at a selected over-temperature level. Furthermore, a different quantile is required to

produce the same over-temperature for different discretization periods, as can be seen

by comparing the two panels.

6.3 Conclusion

Temporal discretization of transmission line rating is a process of establishing a single

constant rating that is safe to use throughout the entire time period. In other words,

this rating has to be lower than the actual rating with high probability to ensure

the safe operation of the transmission line. The concept of temporal discretization

of correlated data and its effect on DTLR has been discussed in this paper and a

computational method to overcome this problem has been proposed.

At the beginning of the paper, the effects that temporal correlations have on the
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calculation of extreme values were introduced. It was explained that temporal cor-

relations make the calculated extreme values more extreme and result in poorly cal-

ibrated estimates. This effect was illustrated by an experiment on the measurement

data, where a minimum of 6-hour windows was estimated from the probabilistic fore-

cast using a naive method that assumed samples are independent. It is clear that the

naive calculation underestimates the minimum and that the majority of samples fall

into the 90th percentile or higher.

The system uses an indirect method to estimate the rating through a NWP model

that predicts the weather conditions. A machine learning model is then used to

convert the deterministic NWP to a probabilistic rating prediction by learning the

typical uncertainty of the model on a training dataset. To mitigate the problem of

correlated data, a sampling procedure was developed. The proposed method gen-

erates samples of an entire time series that has similar temporal correlations as the

input data. These samples can now be used to estimate the rating by sorting the

samples and selecting the appropriate percentile according to the chosen reliability

requirement, or proceed by optimizing cost function over the samples to select the

rating based on more sophisticated criteria. 11 The entire system is based on an ap-

proach known as regression-via-classification. In this framework, continuous inputs

are converted to discrete variables. The computation then proceeds in the discrete

domain using discrete algorithms such as classification. At the end, the results are

converted back into the continuous domain. The advantage of this approach is that

it opens the possibility to use powerful machine learning methods like random for-

est with probabilistic output, graphical models, classification deep neural networks,

and others, in regression problems. The positive results in the evaluation demon-

strate that regression-via-classification is a viable option for DTLR forecasting and

should be considered in further research as an alternative to more common regression

techniques.

There were certain challenges with converting discrete outputs back into continu-
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ous space. Two techniques that assisted in the process were dithering and fitting a

Generalized Pareto distribution (GP) to the discrete data treated as interval-censored

data. Dithering was used to smooth the output from discrete Monte Carlo simulation,

where a small amount of noise was added to the sampled data before optimizing the

cost function. This removed the visible clusters of data around the edges of the bins

and greatly improved the output statistics. GP distribution was used when a low

quantile was required to estimate from a PMF. GP is often used to model tails of

other distributions and is therefore, a good fit for this purpose. The problem of fitting

a GP distribution, which is continuous, to a discrete PMF was solved by treating the

PMF as an interval-censored dataset. In other words, the actual values are unknown,

but the number of values between two edges of a bin can be used in a maximum

likelihood estimation to fit the distribution. Again, this technique provides smooth

output without any sign of the bin edges in the data.

The purpose of the sampling method is to generate random time series that are

compatible with both the probabilistic prediction from NWP and the temporal statis-

tical properties of the real measurements. The proposed method works by sampling

each random variable in random order and modifying the PMF of neighbouring vari-

ables so that the samples of the neighbours are closer together according to the corre-

lations seen in measurement data. It was demonstrated that this method is capable of

producing samples that can be used to estimate the PMF of extreme values. The PIT

histogram of the minima prediction over 6 hour blocks of real time rating is nearly

flat, indicating that the predicted probability is reliable. This is in sharp contrast

to the PIT histogram of the raw probabilistic prediction. Moreover, the calibration

works well when the samples are used in the over-temperature estimation strategy.

This is supported by the results on the test set being very close to the targets of the

algorithm across a wide range of targets and different discretization periods.

Over-temperature estimation uses a novel method to approximate the conductor

temperature from the predicted rating. This method is particularly useful in cost
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optimization, where the expected conductor temperature for a certain rating has to

be known in order to calculate the expected cost of operating the line. This problem

is not straightforward, as the thermal model is highly nonlinear and different combi-

nations of ambient temperature and wind speed produce different conductor temper-

atures for the same current over the limit. The proposed method is able approximate

temperature from the predicted rating, the evaluated rating, and the forecast tem-

perature. The nature of this method guarantees that the approximation error will be

always conservative, which means the approximated temperature will be higher than

the actual temperature given a conservative forecast of ambient temperature.

The proposed method together with two other simpler methods has been tested on

two years of high resolution weather data. All training for the involved machine learn-

ing methods was done using 5-fold cross validation over daily batches of measurement

data and NWP forecasts. There was no overlap between the individual folds. The

MAE of the probabilistic forecast of rating obtained from the random forest classifi-

cation model was 149.6 A and the average width of the 90% prediction interval was

625 A. The errors are equally distributed around zero, which suggests little bias in

the model. PIT histogram shows the reliability of the probabilistic forecast is good.

Although this research is focused on temporal discretization, it is important to

note the similarity between temporal and spatial discretization of transmission line

rating. In the spatial domain, the final rating is dictated by the smallest rating of all

segments. Typically, the critical span of the line is identified and then the rating for

the entire line is derived from this segment. The technique proposed in this paper

could also be applied to spatial correlations, where the correlated rating alongside the

length of the line is generated and then directly used to estimate the rating applicable

to the entire transmission line.

The relationship between the length of the discretization period and the benefit

of the DTLR forecast was also examined. It was expected that the shorter the dis-

cretization period, the more beneficial DTLR would be. The relationship generally
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holds, however, the effect was much lower than anticipated. The difference in rating

between 24-hour (604 A) and 2-hour (617 A) discretization was 12.4 A and between

6-hour (615 A) and 2-hour only 2A, given a 0.05 ◦C over-temperature. This was a

very small difference, especially between 6 and 2 hours. The authors believe this

may be caused by the low precision of the probabilistic forecast, where the rating

estimation procedure must compensate for the uncertainty by increasing the safety

margin thereby nullifying the benefit of DTLR. In the conducted experiment, there

was only minimal improvement when the discretization window was decreased to less

than 6 hours. Interestingly, the results showed there was actually a small decrease in

benefit when using the shortest window of 1 hour, compared to 2 hours.

An area for further research on this topic would be to thoroughly examine the un-

derlying reasons as to why scaling the benefit with length of the discretization period

produced a DTLR benefit that was less than expected. The sources of error should

be isolated by generating synthetic forecasts where the amount of precision and accu-

racy is controlled. The effects of various types of uncertainty could then be evaluated.

Another possible direction for this research is to explore alternative methods of gener-

ating random samples of time series. Most notably, Generative Adversarial Networks

(GAN) seems promising given the latest advancements in generating poetry, music,

or images. GANs could be tested with DTLR as there have already been applications

noted in the literature where they were used to generate time series data [78, 79].
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Chapter 7

Conclusion and Final Remarks

DTLR is a promising technology that works to optimize the capacity of a transmission

system. To allow for wider practical use, reliable systems capable of forecasting DTLR

up to several days into the future are necessary.

Two distinct DTLR forecasting systems were developed throughout this thesis.

Both systems utilize NWP, although differ in that one system uses a statistical model

to quantify forecast uncertainty, while the other employs a machine learning method.

In this thesis, temporal discretization was defined and its effects on DTLR deduced.

The effects were then validated on DTLR measurements and forecasts.

The importance of temporal correlation of time series in conjunction with tem-

poral discretization was elucidated and its effect on DTLR analyzed. A method to

incorporate temporal correlations into a DTLR forecasting system was proposed to

improve result calibration.

The contributions of the work presented in this theses can be summarized in the

terms of the research objectives:

DTLR forecasting system:

• The available literature was analyzed and it was concluded that an indirect

NWP driven forecasting system with a probabilistic output is currently the

best choice for the practical implementation of a DTLR prediction system.
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• A time-series compression method termed DBP with Look Ahead has been

proposed for use in data collection by a Wireless Sensor Network. Evaluation of

this method on typical sensor data revealed that up to 98% of data transmissions

can be saved. This method greatly reduces communication costs of widespread

DTLR sensors deployment.

• Two different DTLR systems were developed and evaluated on experimental

measurement data. Both systems utilize a NWP weather forecast system to

derive the prediction, however, the systems differ in rating estimation technique.

The first system uses a custom statistical model, that is simple to implement,

but provides an output that requires additional calibration. The second system

uses machine learning and a more involved probabilistic sampling method to

produce a realistic time series output that can be used with a cost function to

generate calibrated predictions.

• Probabilistic predictions are provided by both systems. The ratings estimated

from such values result in increased capacity when compared with SLR and

have a higher degree of reliability.

Effect of temporal discretization on DTLR:

• A dataset containing 16 years of measurements from 492 weather stations across

Canada was used to estimate the effects of temporal discretization.

• It was concluded that the benefit of DTLR decreases with increasing length of

temporal discretization. In the test scenario, the majority of locations exhibited

an hourly DTLR increase in capacity when compared to SLR by between 103

and 47%. For daily DTLR, the increase was only by 43 and 11%.

• It was derived that the average wind speed decreases following the power law.

It can therefore, be argued that the line rating approximately follows the same

curve. This was experimentally validated on the measurement data.
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Forecasting temporally discretized DTLR with temporal correlations:

• It was concluded, that temporal correlations have detrimental effects on DTLR

if temporally discretized ratings are predicted.

• The issue manifests in poorly calibrated predictions where the probability func-

tions of the results are skewed towards the extreme value. This effect increases

with longer temporal discretization lengths.

• A sampling method has been proposed that can be used in a Monte Carlo

simulation to mitigate the problem. The sampling method generates samples

of time series that emulate the temporal correlations in historical data. These

samples can be used to optimize a cost function to estimate an objective rating.

• The methodology was tested on measurement data and the results revealed that

this method provides results that are well calibrated.

7.1 Future Research Direction

Several areas that warrant future ongoing investigation and research are discussed

below.

An algorithm to generate random samples for a Monte Carlo evaluation was pro-

posed in Chapter 6. The purpose of this algorithm is to generate random samples

that imitate the temporal correlations in measurement data. As this was the first

attempt made to overcome this issue, the author believes alternative methods should

be explored. For instance, Generative Adversarial Networks (GANs) have been re-

cently used to generate time series [78, 79]. Given the success of GANs in generating

dependant data in other areas, the author suspects GANs are a promising candidate

for future testing in DTLR application.

In Chapter 6, the benefit of DTLR prediction was unexpectedly low for lower

discretization period lengths. The author expected the benefit to grow with decreasing
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discretization period length, however, the result showed that the benefit was relatively

insensitive to the variable. This finding was intriguing and a detailed study regarding

the source of this behaviour should be conducted.

Related to the previous paragraph, the results of Chapter 6 suggest a discretization

of 1-hour performs worse than a 2-hour one. This counter-intuitive result should

be explored further to determine if this finding was merely an artifact of the used

evaluation and forecasting method or if a longer discretization could have been truly

more beneficial.

There is a remarkable similarity between the effects of temporal discretization

discussed in this thesis and the problem of critical span selection. The purpose of

both concepts is to select the smallest rating over a series of data points. In temporal

discretization these points are in time and in critical span selection they are in space.

It might be beneficial to merge both of these techniques and unify the rating selection

into a single framework. Theoretically, it should be possible to use a two dimensional

method to perform the discretization in both time and space to predict a safe rating

throughout the time period and over the entire length of the line.
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