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Abstract

Thre numan A-Char.n 4A ccombinant bacteriophage clones, that had previously
been shown to contain fis ¢ mtron-  taining (RN AT genes, v ere turther characterized
and an additional IRNAIM gene 1 "R\ AAk pene were identified The restriction maps
of these three clones were determined u- a novel partial digestion technique. The
clone, 2HtM4, contains a tRNA gene b crowuster consnling ol two intron-containing,
tRNATY genes and an alanine tRNA gene on a 2.4 kb DNA fri ment The tRNA genes
on AHtM4 were all in the same orientation. Two of the clones, AHIM2 and AHtM: | were
shown to overlap and the overlapping region included the sole tRNATV gene cartied by
AHtM2. The four intron-containing tRNAT'" genes on AHtM6, found on a4 9.2 kb DNA
fragment, were also all in the same orientation. The extensive homology in the flanking
sequences of these genes suggests that a single progenitor tRNATY gene gave rise to the
%mgm%othM&'Hwﬁﬂhmmﬂnmemwwmmg%mmmaamﬂwcmM§mt
with gene duplication events. Experiments using in vilro transcription systems, derived
from human cell lines, have shown that the tRNAY genes and the tRNAA gene are all
expressed. All of the tRNATY genes are expressed at similar levels, except for 4-2 which
does not appear to be as transcriptionally active as the others. The transcriptional
efficiencies of these seven tRNA genes were not affected by deletions of their 7" and 3
flanking sequences.

The pre-tRNA transcripts obtained from in vitro transcription reactions have been
shown to exhibit limited exhibit Mg?*-dependent RNA. self cleavage activity. This activity
can be inhibited or modified by oligonucleotides complementary to the intron or exon

sequences.
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1. Introduction

1.1 The Structure of tRNA

The principal function of transfer RNA (tRNA) is to serve as an adapter in the
translation of a nucleotide sequence in messenger RNA into the amino acid sequence of a
protein, which involves interaction of the tRNA with both the ribosome and the mRNA.
All functional tRNAs are able to occupy the P and A sites of the ribosome, to allow the
mRNA and the tRNA anticodon to pair as the polypeptide chain is elongated. In order for
tRNAs to associate with translation factors it is necessary for them to share certain
characteristics. Their adaptor function, however, requires that they also be
distinguishable. This strict requirement is especially evident when tRNA aminoacylation
occurs. The aminoacyl-tRNA synthetase brings together the amino acid, an appropriate
{RNA and ATP in order to synthesize an aminoacyl-tRNA. As an example of how subtle
a determinant for aminoacylation can be, the G3 -U70 base pair (bp) in the acceptor stem
of Escherichia coli tRNAA is the major feature allowing the cognate aminoacyl-tRNA
synthetase to identify this tRNA (Hou and Schimmel, 1988; Francklyn ez al., 1992). The
tRNAs aminoacylated by a single aminoacyl-tRNA synthetase are referred to as
isoaccepting tRNAs.

A compilation of tRNA and tDNA sequences, prokaryotic and eukaryotic, has
shown that some positions are invariant (i.e., present in >90-95% of tRNAs). The
invariant positions include Ug, A4, Gig, Gro, Ay, Uss, Gs3, Tss, s, Cses Asg, Ce1, Cos
Cs. and Ay (Sharp et al, 1985). There are also semi-invariant positions that are
occupied by either a pyrimidine (Y) or a purine (R); for example, Y1y, Rys, Ry4, Y32, R37
Y 4. Rs7, and Yo (Sprinzl ef al., 1989). The secondary structure features of tRNAs can
be summarized by a universal cloverleaf structure. All tRNAs conform to this general
secondary structure (with the exception of some mitochondrial tRNAs which exhibit a

modified form of it) by having sequences which allow base pairing between short
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complementary regions. The cloverleaf secondary structure has four common features
which include the acceptor arm, the TWC arm, the D arm, and the anticodon arm (Figure
1). The acceptor arm consists of the 5" and 3' ends of the molecule. The 3' end contains
an unpaired sequence to which the amino acid is esterified at either the 2' or 3' hydroxyl
group. Another feature of the cloverleaf structure is the extra arm, the most variable of
the secondary features, that divides tRNAs into two classes. These two classes are
distinguishable by the size of the extra arm, with Class 1 tRNAs having an arm of only 3-5
bases and Class 2 tRNAs having an arm of 13-21 bases.

The first three-dimensional tRNA structure elucidated was that of yeast tRNAPh;
it was determined to have an "L-shaped" backbone by X-ray crystallography (Kim et al.
1974, Figure 2). This tertiary structure suggested that all tRNAs are likely to adopt the
"L-shape" as a result of tertiary hydrogen bonds and that most of the conserved and semi-
conserved bases are involved in tertiary hydrogen bonding (Kim 1978).

The presence of a variety of modified bases is a characteristic feature of tRNAs.
More than fifty modifications have been .dentified in tRNAs (reviewed in Bjork and Kohli,
1990). In most cases these modifications arise from enzymatic modification of an existing
base. These modifications are not restricted to the bases; methylation at the 2'-O position
of the ribose also occurs. An instance where the modification is not to an existing base is
the formation of Q bases, where a tRNA transglycosylase exchanges free queuosine for a
guanosine residue in the tRNA (Okada et al., 1979).

The numbers of tRNA genes present in the genomes of several organisms, both
prokaryotic and eukaryotic, have been estimated using the technique of RNA-DNA
hybridization. Hatlen and Attardi (1971) estimated 1300 tRNA sites per human haploid
genome, based on saturation and competition hybridization experiments using a purified,
radioactively labeled tRNA fraction. By further fractionating isolated tRNA using reverse-
phase chromatography, it was concluded that there are more than 80 isoaccepting tRNA

species encoded in the human genome (Lin and Agris, 1980). To obtain numbers for a



Figure 1.  The cloverleaf secondary structure of tRNA with the standard

numbering notation.

The invariant bases are indicated by the actual base, while the semi-invariant bases

are shown either as Py for pyrimidine or Pu for purine. An asterisk (*) indicates bases that

are usually modified in the mature tRNA. The small circled numbers represent nucleotides

which are not present in all tRNAs. The terminal CCA, shown as shaded circles, is always

added post-transcriptionally to eukaryotic tRNAs but is encoded in some prokaryotic

tRNA genes. The arrow indicates the intron splice site. This figure has been adapted

from Kim ef al. (1974).
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Figure 2.  The tertiary folding patterns exhibited by tRNA,

The bases that appear unpaired in the cloverleaf structure (panel A) are usually
involved in base pairing with other regions of the tRNA molecule to assist in achieving the
final L- shaped tertiary structure as shown in the yeast tRNAPhe example (panel C). The
folding of the D and T arms in the tRNA tertiary structure is stabilized by hydrogen bonds

and base stacking interactions. This figure was adapted from Kim er al. (1974).
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particular tRNA species, total genomic DNA restriction endonuclease digests have been
probed with either highly purified tRNA species or DNA fragments encoding tRNA genes.
This strategy was used to detect 13 tRNAVa (Arnold er al., 1986), 12 tRNA,Met (Santos
and Zasloff, 1981), and 12 tRNAT¥ (van Tol and Beier, 1988) gene-containing fragments.
These values are at best estimates of the actual numbers of the respective tRNA species
since it is quite possible for a restriction fragment to harbur more than one gene and it is
also possible for the probe to hybridize with pseudogenes. The term pseudogene is used
to refer to DNA sequences that consist of either a partial tRNA gene or a tRNA gene-like
structure for which no novel RNA species has been or, perhaps, can be isolated (Sharp ef
al., 1985).

In the human genome, tRNA genes occur either in clusters, both homo- and
hetero-clusters, or as individual genes. A few human tRNA gene clusters have been
cloned and characterized. Roy ef al. (1982) cloned and sequenced a 1.65 kb fragment of
DNA from a human-A recombinant that contained tRNALYs, tRNAGI, and tRNALeu
genes separated from one another by about 0.5 kb. A homocluster of four tRNATY genes
was described by MacPherson and Roy (1986), which was also the first example of human
tRNA genes with intervening sequences. Shortridge e al. (1989) reported a 6 kb
fragment from a human-A recombinant containing a heterocluster consisting of tRNAThr,
tRNAPro_ and tRNAVa! genes. Chang e al. (1986) have characterized a human-A
recombinant which has four tRNA genes (two tRNAPr, tRNATHT, and tRNAL#Y) on a 8.2
kb HindllI fragment. Doran ef al. (1987) have described a tRNA cluster consisting of
two tRNAPhe and two tRNALYS genes. Examples of individually occurring human tRNA
genes include tRNAGH (Shortridge et al., 1985, Pirtle ez al., 1986), tRNAG (Goddard er
al., 1983), and tRNAAST (Ma er al., 1984). Originally one of the tRNAG! genes described
by Doran et al. (1988) was thought to be a solitary gene; however, it has since been
shown by Morrison er al. (1991) to be linked to the tRNA gene cluster previously

described by Roy er al. (1982). As more gene mapping, cloning and sequencing projects



are undertaken other tRNA genes, once considered isolated, may become linked to known

tRNA gene clusters.

1.2 tRNA Splicing

While intron-containing tRNA genes are common in Saccharomyces cerevisiae,
which has ten intron-containing isoaccepting tRNA gene families (Ogden ¢ al., 1984,
Stucka and Feldmann, 1988), they are uncommon in higher eukaryotes. However, tRNA
splicing is essential in all eukaryotes since all known tRNANY genes contain introns
(MacPherson and Roy, 1986; van Tol and Beier, 1988). Introns in precursor tRNAs (pre-
tRNAs ) do not have any consensus sequences, even at the splice junctions, however they
are always located one nucleotide to the 3' side of the anticodon and do not alter the
mature tRNA domain (Szekely er al., 1988). The splicing of a pre-tRNA consists of an
endonucleolytic excision of the intron, by a specific endoribonuclease, with subsequent
ligation of the 5' and 3' halves to form the mature tRNA sequence (Peebles ef al., 1983).

It has been shown that the pre-tRNAs have a common tertiary structure, with the
tRNA portion adopting the L-shaped conformation, the 3' splice site always being single-
stranded, and the intron probably on the surface of the molecule available to the splicing
endoribonuclease (Lee and Knapp, 1985). It is these common secondary and tertiary
structural features the enzyme must recognize since a single endoribonuclease can cleave
all intron-containing pre-tRNAs (Peebles ez al., 1983). By studying the effects of
nucleotide substitutions in pre-tRNAs of both Xenopus and yeast it has been determined
that the splice sites are chosen according to the length of the anticodon stem (Greer ¢/ al.,
1987; Mattoccia et al., 1988; Reyes and Abelson, 1988). The splicing endoribonuclease
(the endonuclease which excises introns) cleaves the pre-tRNA generating a 5' half-
molecule with a terminal 2', 3'-cyclic phosphate and a 3' half-molecule beginning with a 5'
hydroxyl group (Peebles ef al., 1983). In yeast this endoribonuclease is an integral

membrane protein composed of three subunits (Rauhut ez al., 1990), while in Xenopus the



endoribonuclease is soluble (Gandini-Attardi et al., 1985). Similar endoribonucieases
have been found in HeLa cells (Laski e7 al., 1983) and in wheat germ (Stange et al.,
1988). In addition to the biochemical evidence, in yeast there is also genetic evidence that
this endoribonuclease is involved with tRNA splicing since temperature-sensitive mutants
accumulate pre-tRNA splicing intermediates (Ho et al., 1990; DeMarini ef al., 1992).
There has also beer a report of non-enzymatic pre-tRNA intron excision from human
tRNATY precursors (van Tol er al., 1989). However, no other reports supporting this
claim have appeared. In that paper, van Tol et al. (1989) proposed that the role of the
splicing endoribonuclease was to assist the pre-tRNA in attaining the proper conformation
for autocatalytic intron excision and the prevention of non-specific self-cleavage.

Two types of ligases have been found which join tRNA half-molecules. One of the
best characterized of these is the yeast tRNA ligase, which is a 95-kD protein (Westaway
et al., 1988). This enzyme possesses three distinct catalytic activities required for ligation:
a cyclic phosphosdiesterase to open the cyclic phosphate, a kinase to phosphorylate the 3'
half-molecule, and an adenylase which ligates the half-molecules (Phizicky et al., 1986;
Apostol ef al., 1991). When the yeast tRNA ligase joins the 5' and 3' half-molecules the
resulting mature sequence tRNA bears a 2'-phosphate at the splice junction. The removal
of the 2'-phosphate is carried out by a NAD-dependent 2'-phosphate-specific
dephosphorylating enzyme, which has been observed in vitro in HeLa extracts (Zillmann et
al., 1991) and in yeast extracts (McCraith and Phizicky, 1990, 1991). This type of ligase
has also been detected in wheat germ (Konarska et al., 1981). The other type of ligase
ligates the 5' and 3' half-molecules without the resulting 2'-phosphate (Nishikura and De
Robertis, 1981). This type of ligase was first characterized in HeLa cell extracts, where it
was found to be approximately 160 kD and capable of ligating RNAs bearing 5' hydroxyl
and 2',3' cyclic phosphate termini in an ATP-requiring reaction (Filipowicz et al., 1983;
Perkins e7 al., 1985). Although this type of ligase is the principal ligase in vertebrates, a

yeast tRNA ligase-like activity has also been found in HeLa cells, suggesting that both the
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endonuclease and tRNA ligase reactions are evolutionarily conserved in eukaryotes
(Zillmann er al., 1991). These two types of ligase are distinguishable by determining the
origin of the junction phosphate. The yeast-like tRNA ligase incorporates a phosphate
from ATP into the splice junction, while the Hela-like tRNA ligase uses the phosphate
derived from the $' precursor backbone as the janction phosphate (Nishikura and De

Robertis, 1981; Figure 3).

1.3 RNA Polymerase 111

There are three types of eukaryotic nuclear RNA polymerases. This classification
was originally based on the separation of three forms of RNA polymerase by DEAE-
Sephadex chromatography. Each form has been further characterized according to its
chromatographic properties, ionic strength optimum, divalent cation requirement, template
preference and o.-amanitin sensitivity. While these criteria are sufficient to differentiate
RNA polymerases of a particular cell type, the specific characteristics of each polymerase
are not necessarily universal among eukaryotes. The eukaryotic RNA polymerases have
been designated RNA polymerase I, 11, and 111, They are also known as RNA polymerase
A, B, and C, respectively. Each RNA polymerase transcribes its own set of genes, RNA
polymerase I transcribes ribosomal RNA precursors, RNA polymerase 11 transcribes
messenger RNA precursors, as well as some small nuclear RNAs (snRNAs), and RNA
polymerase I transcribes 5S rRNA, tRNAs, some snRNAs and several small viral RNAs.

Analysis of purified eukaryotic RNA polymerases has shown each to be a multi-
subunit enzyme composed of two large distinct polypeptides and of several smaller
polypeptides, with some of the polypeptides common to all three forms (Sentenac, 1985,
refer to Table 1). The Saccharomyces cerevisiae nuclear RNA polymerases have been
studied extensively, with the genes for several subunits having been cloned. There are
three subunits that appear to be shared among the S. cerevisiae nuclear RNA polymerases.

They have molecular masses of 27, 23, and 14.5 kD and are encoded by the RPBS, RPB6,



Figure 3.  An outline of tRNA splicing.

The first step in tRNA splicing is the excision of the intervening sequence by an
endoribonuclease, which generates 2', 3'-cyclic phosphate and 5' hydroxy! ends. The
subsequent ligation of the exons can be carried out by two specific types of tRNA ligases:
a HeLa-like tRNA ligase and a yeast-like tRNA ligase. The HeLa-like tRNA ligase joins
the §' and 3' half-molecules by a direct reaction between the 2, 3'-cyclic phosphate and 5'
hydroxyl ends. The yeast-like tRNA ligase prepares the half-molecules for ligation by
hydrolysis of the 2', 3'-cyclic phosphate to yield a 2! phosphate with a free 3'-hydroxyl,
phosphorylation of the 5'-hydroxy! group, and the adenylation of the 5' phosphate. The
adenylation reaction is indicated on the diagram as the addition of A-P- i0 the 5'
phosphate of exon 2. The ligation reaction leaves a 2' phosphate at the splice junction
which is rumoved by a NAD-dependent 2! phosphate-specific phosphatase. Once the 2'
phosphate is removed, a 5' - 3' phosphate linkage is left at the splice junction. Portions of

this figure were adapted from Phizicky et al. (1992) and from Zilimann ef al. (1991).
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Table 1. Polypeptide content of the nuclear RNA polymerases from

Saccharomyces cereivisae®

Pol | Pol Il Pol III
190 220 160

135 150 128
49 44.5 82
43 32 53
40 27* 40
34.5 23* 37
27*b 16 34
23* 14.5% 31
19 12.6 27*
14.5* 23*
14 19
12.2 14.5*
10 11

10

s Polypeptides are identified by their molecular weights in kD. The molecular weights cited
for the subunits were obtained from Huet e/ al. (1985) and from Sentenac (1985).

b Common polypeptides are identified with an asterisk (*).
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and RPBS genes, respectively (Wovchik ¢ al., 1990). The product of the RPB6 gene has
been detected in all three RNA polymerases by immunoprecipitation, suggesting that this
common subunit is identical in all three RNA polymerasaes (Woychik e al., 1990).
Human RNA polymerase 111 was first purified from KB cells by Roeder and coworkers
(Jaehning et al., 1977). The RNA polymerase 1II subunits range in size from less than 10
kD to approximately 170 kD, as determined by SDS polyacrylamide gel electrophoresis
(Table 2). The molecular weight of RNA polymerase Il varies from 600-680 kD in the

characterized enzymes as determined by analysis of their subunit components, assuming

that each subunit is represented once.

1.4 In Vitro Transcription Systems

Transcription by RNA polymerases I and 111 has been investigated using in vitro
techniques, as had been done with the bacterial RNA polymerase. Initially, in vitro
transcription systems were based on isolated Xenopus laevis oocytes (Ng et al., 1979) or
nuclei (Birkenmeier ef al., 1978; Schmidt er al., 1978) made from these oocytes which
transcribed genes from chromatin. /n vifro systems that contain isolated nuclei are of
limited value for studying transcription because manipulation of the active components is
difficult and transcription of exogenous genes requires the injection of DNA templates into
the nuclei. As limited as these early systems were, they still provided insight into the basic
requirements for eukaryotic gene transcription. It was observed that chromatin isolated
from immature Xenopus laevis oocytes contained endogenous RNA polymerase activity
that synthesized predominantly 5S rRNA. Supplementing the RNA polymerase activity
with exogenous purified RNA polymerase III stimulated total RNA and 58 rRNA
synthesis up to 50 fold (Parker and Roeder, 1977). However, oocyte RNA polymerase
has been shown to transcribe cloned 5S rRNA genes on recombinant plasmids in a near
random fashion. These studies suggested that chromatin-associated proteins are required

for the selective and asymmetric transcription of the 5S rRNA genes in Xenopus laevis
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oocytes. Similar observations were made using a human transcription system consisting of
isolated nuclei from KB cells (Jaehning and Roeder, 1977). Both the Xenopus laevis and
the human KB cell expression systems indicated very strongly that additional factors were
required for selective RNA polymerase 111 transcription. A modification of these
expression systems did allow the expression of endogenous and exogenous genes,
however, it was a laborious technique which involved microinjecting template DNA into
Xenopus laevis oocytes (Kressmann e/ al., 1978). The first DNA-dependent, soluble
transcription system was reported by Wu (1978). This transcription system used
exogenous DNA, ribonucleoside triphosphates and a cell-free post-mitochondrial
supernatant (S-20) from human KB cells. This methodology took advantage of the fact
that most of the RNA polymerase 111 leaches out of the nucleus when cells are lysed
hypotonically, which allows nuclei, mitochondria, ribosomes and other cell debris to be
removed by centrifugation. The supernatant also contains, in addition to RNA
polymerases, other factors necessary for accurate transcription. Using this soluble
transcription system, Wu demonstrated that the VA, gene from purified adenovirus 2
DNA was selectively transcribed by RNA polymerase 111, based on transcription
experiments which included o-amanitin. Weil et al. (1979) also described a similar DNA-
dependent, soluble transcription system that is derived from a high speed centrifugation
(S-100) of a cytoplasmic fraction from cultured cells, based on the method of Wu and
Zubay (1974). Another transcription system was described by Manley e al. (1980) which
was initially described as a Hel.a cell RNA polymerase II system, but has since been
shown to have considerable RNA polymerase III activity. This transcription system
consists of a lysate containing RNA polymerase and transcription factors obtained from
HeLa cell nuclei. Initially the proteins are stripped from the chromatin by ammonium
sulphate, allowing the DNA and cell debris to be removed by centrifugation. The
remaining supernatant is further treated with ammonium sulphate to concentrate its

transcription activity. Soon after these transcription systems were described, several
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similar protocols were developed for other eukaryotic cell lines and organisms, and, aside
from some minor modifications, these expression systems are still in use for studying gene
expression and regulation. Some examples of soluble, DNA-dependent transcription
systems include Bombyx mori silkgland extracts (Sprague ef al., 1980), nematode extracts
(Honda ¢t al. 1986), Drosophila cell extracts (Dingermann e/ al., 1981; Rajput et al.,

1982) and yeast extracts (Kiekamp and Weil, 1982).

1.5 RNA Polymerase 111 Transcription

Transcription studies of RNA polymerase I1I genes revealed an unexpected result
in 1980, when it was discovered that these genes have an internal promoter (Sakonju et
al., 1980; Bogenhagen ef al., 1980). The first RNA polymerase III-dependent promoter
determined was for a Xeropus somatic 5S rRNA gene. Through a series of deletions
which removed 5' and 3' flanking and coding sequences, it was determined that base pairs
50 to 83 were absolutely required for accurate initiation of transcription (Sakonju et al.,
1980; Bogenhagen ef al., 1980). Studies of tRNA gene transcription suggested that these
genes are controlled by two regions, one of which is external and another which is internal
(DeFranco et al., 1980, Kressmann et al., 1979; Sprague, et al., 1980). The internal
control region is responsible for a basal level of transcription and the external control
region in some cases acts to modulate the transcription from the internal promoter. This
model for a tRNA gene promoter was further refined in 1981 with the discovery of the
split internal promoter of 2 tRNA gene (Galli et al., 1981; Hofstetter et al., 1981; Sharp ef
al., 1981). The tRNA gene promoter was characterized by deletions of the §' and 3'
flanking sequences until transcription was abolished. The same strategy identified the 5S
rRNA gene internal promoter. Sharp ef al. (1981) studied the transcription of several
modified versions of a Drosophila tRNA/T gene construct using a variety of homologous
and non-homologous in vitro transcription systems. The deletion studies suggested that

the first tRNAATE transcription control region resided between nucleotides 8 and 25 and



the second between nucleotides 50 and 58, based on the numbering of the mature tRNA
sequence. A similar study of transcription of the Xenopus laevis tRNAA' gene by
Hofstetter e al. (1981) mapped its internal control regions, the first between nucleotides 8
to 13 and the second between nucleotides 51 to 72. Galli ef al. (1981) mapped the split
internal promoter sequence of a Xenopus laevis tRNAL< gene to nucleotides 13 through
20 and nucleotides 51 through 64 and they also coined the terms A block and B block to
describe these internal regions, respectively. The analogous promoter elements in the 5S
rRNA gene are referred to as the A and C boxes (Geiduschek and Tocchini-Valentini,
1988).

The A block is contained within the sequence that codes for the D loop and has
also been termed the D-control region, A box, or 5' internal control region (ICR). The B
block is contained within the sequence that codes for the T loop and has also been termed
the T- control region, B box, or 3' ICR (Sharp ef al., 1985). These initial reports
suggested that the internal split promoter elements are common to all eukaryotic tRNAs,
since the A and B blocks closely coincide with two conserved sequence blocks that are
present in all eukaryotic tRNA genes. These regions are conserved due to the presence of
invariant nucleotides, of which box A contains Ug, A4, Gyg, and G,o, while box B
contains Gs3, Tss, Csg, Asg, and Cg). These conserved regions were thought to be
important solely from the point of tRNA structure and function. It is now apparent that
these sequences are also important as gene promoters. This point became evident when L.
coli tRNAASP and tRNAT™P, which have strong A and B homologies, were shown to yield
specific transcripts in a eukaryotic transcription system while E. coli tRNATY, which has
weak A and B homologies, was transcriptionally inactive (Galli e al., 1981; Melton and
Cortese, 1979). These findings supported the observations made by Koski ef al., (1980)
who studied point mutations of a yeast tRNATS gene (SUP4) and found that invariant
nucleotides are important for gene expression. The tRNA gene promoter sequences were

investigated further by Ciliberto e al. (1982), who studied the transcription of hybrid
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tRNA genes constructed from existing genes of Caenorhabditis elegans. These
experiments showed that hybrid genes are efficiently transcribed regardless of the overall
structure of the tRNA genes, proving that A and B blocks are independent transcriptional
signals. They also constructed mutants of the C. elegans tRNAPre gene which had

variable spacing between the promoter regions and observed residual transcription when
separated by as much as 140 nucleotides. However, optimal transcription occurred when
the two regions were separated by approximately 40 to 50 nucleotides. It has been
established that the B box is the major determinant of promoter strength. If the A box is
deleted substitutes which determine a new start point for transcription are found readily
(Johnson e al., 1984; Wilson ¢f al., 1985). Transcription experiments such as these and
others, using tRNA gene constructs carrying internal deletions and substitutions, have
defined box A and box B as having the approximate coordinates of nucleotides 8-19 and
nucleotides 52-62, respectively. By aligning the promoter sequences (noncoding strand)
of several RNA polymerase I11-dependent genes, Galli e al. (1981) proposed consensus
sequences for the 5' ICR as TGGCNNAGTGG and for the 3' ICR as GGTTCGANNCC.
By aligning the promoter sequences of only eukaryotic tRNA genes, Sharp ef al. (1985)
determined the 5' ICR consensus as GTGGCNNAGT..GGT.AGNGC and the 3' consensus
as GGTTCGANTCC. A comparison of these consensus sequences suggests that there are
more constraints on the 3' ICR than on the 5' ICR.

The class 111 genes which contain ICRs have been divided into two sets, type 1 and
type 2, with 5S rRNA genes as the only member of the type 1 set. Type 1 ICRs contain
the A and C boxes, while type 2 ICRs (found in tRNA and viral-associated genes) contain
the A and B boxes (Geiduschek and Tocchini-Valentini, 1988; Kunkel, 1991).

Ever since tRNA genes were first expressed in vitro, reports suggesting that
extragenic sequences influence transcription have appeared in the literature (refer to the
Appendix for a suminary). The most common observation is that deletions of the 5'

flanking sequence, usually within 20 bp of the transcription start site, reduce transcription



in vitro. These in vitro results have been supported by in vivo experiments with
suppressor tRNA genes, which also demonstrated that deletions of the §' flanking
sequence reduced the expression of these genes. However, deletion of the §' flanking
sequence is not always detrimental to expression. In fact these deletions occasionally
cause an increase in transcriptional activity (Hipskind and Clarkson, 1983). Although
highly conserved sequences which act as universal extragenic control elements have not
been found, there are examples of specific sequences that modulate the expression of
particular tRNA genes.

While the promoters of most genes transcribed by RNA polymerase 111 are
internal, there is another set of genes transcribed by RNA polymerase 111 that contain
promoter elements in the 5' flanking regions. No significant amount of intragenic
sequence is required for their transcription, either in vitro or in vivo. The vertebrate U6
snRNA genes and a human 7SK RNA gene are members of this class of RNA polymerase
III genes (reviewed by Kunkel, 1991). Transcription of vertebrate U6 snRNA genes,
unlike the invertebrate U6 genes, is dependent on three rather than two upstream
elements. These three upstream elements include a TATA-like sequence, the proximal
sequence element, and the distal sequence element, composed mainly of the octamer
motif, ATGCAAAT, which is involved in the transcription of the 7SK RNA gene (Murphy
et al., 1987). Increased U6 snRNA gene transcription by RNA polymerase 111 was
observed when additional TATA box binding protien (TBP: see Section 1.6) was
introduced into in vitro transcription reactions (Margottin et al., 1791). The TATA-like
sequence element determines the polymerase specificity of the U6 gene, since the removal
of the element leaves a functional RNA polymerase II-type snRNA promoter and the
addition of this element to a RNA polymerase Il-type snRNA promoter creates a RNA

polymerase III external promoter (Mattaj et al.,1988; Lobo and Hernandez, 1989).
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1.6 RNA Polymerase i1l Transcription Factors

As soon as soluble, DNA-dependent transcription systems were described, work
began on characterizing the functional components that are responsible for transcription.
Segal et al. (1980) fractionated cell-free extracts (S-100) of mammalian KB cells, using a
phosphocellulose column, into four different fractions containing transcription factors
necessary for transcription by RNA polymerases II and IIL An alternative to traditional
chromatographic methods for transcription factor purification and characterization has
been biological fractionation by centrifugation, which selectively sediments transcription
complexes. This method takes advantage of the specific binding of transcription factors to
template molecules which forms complexes stable enough to allow quantitative and
selective sedimentation from an in vitro transcription system (Culotta e al., 1985; Jahn et
al., 1987). Lassar et al. (1983), using a two-step incubation-competition assay,
determined that the formation of stable pre-initiation complexes on specific templates
precluded transcription of competing templates added subsequently. For the accurate
transcription of a X. laevis tRNA;Met gene and an adenovirus 2 VA, gene by RNA
polymerase 111, transcription factors TFIIIB and TFIIIC were required. In contrast,
accurate transcription of a X. borealis 58 rRNA gene by RNA polymerase 111 required
transcription factors IIIA, 11IB, and IIIC (Lassar e? al., 1983). Baker and Hall (1984)
fractionated a yeast RNA polymerase I1I transcription system and also found two fractions
(B and C) which were required for the transcription of yeast tRNA genes. The yeast
{RNAAT2 and tRNASer genes were able to form stable pre-initiation complexes with
fraction C alone, while the tRNA;1<" and {RNATY genes formed stable complexes only
when both fractions C and B were present. The tRNA;Leu gene could be made to form
stable complexes with fraction C alone by reducing the A to B block distance from 74
nucleotides to between 34 and 53 nucleotides. However, this approach did not permit

{RNATY to form stable complexes with fraction C alone. Therefore, it was concluded that
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the distance between the internal control regions and sequence changes in either the A or
B block affect complex stability. Alteration of the A and B block sequences towards the
consensus sequence increases complex stability while alteration of these sequences away
from the consensus sequence decreases complex stability (Baker and Hall, 1984).
Template competition assays were conducted under conditions in which each necessary
component was made limiting to define the order with which the transcription factors
interact with a tRNA gene (Dean and Berk, 1988). These observations of Dean and Berk
(1988) were the basis of their model for the formation of stable transcription complexes
(Figure 4).

Human TFIIIC can be resolved into two components, TFIIC1 and TFIIIC2, that
bind to the A and B boxes respectively (Dean and Berk, 1987, Yoshinaga ef al., 1987). In
a human system it was established that the first step in complex formation is the binding of
TFIIIC2 with the tRNA gene B block. The next step is the binding of either TF1IIB or
TFIIIC1 with the tDNA-TFIIIC2 complex since, regardless of which factor binds, the
transcription of a competitor template is preciuded. Hel.a cell extracts made from
adenovirus-infected cells transcribe tRNA and adenovirus VA genes at more than 10-fold
higher levels than HeLa cell extracts made from uninfected cells (Berk, 1986; Yoshinaga
et al., 1986). It was found that RNA polymerase 11 transcription is stimulated by a
product of the E1A gene, which is found in the chromatographic fraction containing
TFIIC (Hoeffler and Roeder, 1985). Enhanced RNA polymerase II and RNA polymerase
111 transcription én vitro can be achieved by adding baculovirus-produced recombinant
E1A protein to a soluble DNA-dependent transcription system (Patel and Jones, 1990).
The phenomenon of transcriptional activation of promoters for class 11 and class I1I genes
has been observed not only with E1A protein but also with hepatitis B virus X-gene
product and SV 40 t antigen (Aufiero and Schneider, 1990). Adenovirus El A enhances
RNA polymerase III-dependent transcription by promoting the phosphorylation of TFIIC.
The changes in TFIIIC phosphorylation were observed by gel mobility shift assays that



Figure 4.  Schematic diagrams of RNA polymerase I1l preinitiation transcription

complexes.

One of the most accepted models for the RNA polymerase 111 preinitiation
transcription complex was proposed by Dean and Berk (1988) (panel A). This model has
evolved as more and more experiments were performed. Based on the data from
Bartholomew ef al. (1991) the model can now be drawn with TFIIIB interacting less with
TFIIIC and covering more upstream sequence (panel B). While the preinitiation
transcription complex on tRNA gene templates does not incorporate upstream regulatory
elements, the preinitiation transcription complex on vertebrate U6 snRNA genes (Lobo ef
al., 1991) relies exclusively on upstream regulatory elements (panel C). The arrows

indicate the start sites of transcription.
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revealed two distinct TFIIIC-promoter complexes, which suggested two forms of TFIIIC
(Hoeffler et al., 1988). However, adenovirus E1A does not cause an increase in TFIIIC
expression (Green et al. 1988).

In yeast the equivalent of TFIIIC is a multisubunit factor named tau (1), consisting
of two large DNA-binding domains, T, and g, of about 300 kD each. Each domain
protects about 30 bp of DNA, as determined by several footprinting experiments using
DNase I, A exonuclease and dimethylsulfate. This was observed regardiess of both the
spacing between the A and B blocks and the relative helical orientation of these blocks
(Baker ef al., 1987, Camier et al., 1990). The 1 domain has been isolated after partial
proteolysis and it retains its B block binding ability, while no such t,-tDNA complex has
yet been detected (Marzouki ef al., 1986). Examination by scanning transmission electron
microscopy of T and T-tDNA complexes shows two globular protein domains, with each
domain binding to a promoter element (Schultz ef al., 1989). Instances of DNA looping
were observed by scanning transmission electron microscopy when complexes formed
between t and tRNA genes with elongated spaces (82-99) between the A and B blocks.
With the wild type tRNALet gene these two domains are clearly separated on the DNA
molecule, suggesting an apparent dissociation reaction upon binding to the A and B
blocks. However, the electron microscopy data cannot exclude the existence of a hinge
region connecting the T, and 1;; domains which would also accommodate differences in A
and B block spacing and the variety of relative helical orientations of these blocks (Schultz
et al., 1989). From the data collected about T and the 1-tDNA interaction it appears that
the flexibility of this interaction, with regard to either the distance between or the relative
helical orientation of the promoter element, is due largely to the t protein itself (Camier ef
al., 1990). By incorporating 5-[N-(p-azidobenzoyl)-3-aminoallyl]-deoxyuridine
triphosphate, a photoreactive nucleotide analog, into specific sites within the S. cerevisiae
SUP4 tRNATY gene, four of five t/TFIIIC-associated polypeptide chains have been

crosslinked to this gene. The association of these polypeptides with the yeast SUP4 gene



was judged specific by the lack of crosslinking to extraneous sites and the ability of these
polypeptides to compete for their respective binding sites. From a compilation of
experimental results, Bartholomew et al. (1990) were able to determine that the 145 kD
subunit is accessible to crosslinking from the vicinity of the B box, the 95 and 55 kD
subunits are located on opposite sides of the helix in the vicinity of the A box, and the 135
kD subunit is crosslinked to a region of the A box and to the sequence between the A and
B boxes. Their results compare favourably to an earlier report by Gabrielsen er al. (1989)
that found four polypeptides of 145, 135, 100, and 65 kD specifically associated with a
tRNA gene.

On tRNA gene templates the prior binding of TFIIIC to the intragenic promoter is
required before TFIIIB can be bound, thereby resulting in a highly stable transcription
preinitiation complex which is resistant to dissociation by either high ionic strength or
heparin. Footprinting experiments have shown that the addition of TFIIIB to a TFIIC-
tDNA complex protects approximately 45 bp of upstream sequence, but enhances the
digestion of 3-5 bp immediately upstream of the transcription start site by DNase |
(Kassavetis ef al., 1989). Transcription factor TFIIIB has been highly purified from yeast
cells (Klekamp and Weil, 1987) and from HeLa cells (Waldschmidt e/ al., 1988), and
based on SDS-PAGE, was thought to consist primarily of a 60 kD protein. However,
only a small fraction (< 1%) of the yeast 60 kD protein in the purified TFHIB fraction was
capable of incorporation into a transcription complex (Kassavetis et al., 1989).

Reports of a transcription stimulating factor, which bound sequences upstream of
5S rRNA and tRNA genes and was responsible for the protection of §' flanking sequences
from DNase I digestion, suggested that the properties once thought to be associated with
TFIIIB were due instead to another factor. This new factor(s) could offer an explanation
for the transcription modulation effect of 5' flanking sequences observed in 5S rRNA and
tRNA genes (Kassavetis ef al., 1990; Oei and Pieler, 1990). The confusion about TFIIIB

properties was resolved by photocrosslinking experiments, using 5-[N-(p-azidobenzoyl)-3-



27

aminoallyl]-deoxyuridine triphosphate, which provided evidence that two polypeptides (70
kD and 90 kD) have the properties of TFIIIB and that these polypeptides are separate and
distinct components of yeast TFIIIB (Bartholomew e al., 1991). The 70 kD polypeptide
assembles onto TFIIIC-tDNA complexes, while the 90 kD polypeptide can bind to the
complex only after the 70 kD polypeptide has bound, and once both polypeptides are
bound the complex becomes resistant to disassociation by heparin and generates the
typical DNase I protection pattern of TFIIIB. The earlier reports which described the
major component of TFIIIB as a 60 kD protein were most likely due to a degradation
product of either the 70 kD or 90 kD polypeptide, in light of the low complex binding
activity of the 60 kD protein (Kassavetis e7 al., 1991). Further evidence in support of the
70 kD polypeptide as being part of TFIIIB comes from genetic experiments with
Saccharomyces cerevisiae, where mutants with reduced RNA polymerase I11
transcriptional activity have been isolated that lack a functional 70 kD TFIIIB subunit
(Buratowski and Zhou, 1992; Colbert and Hahn, 1992).

TBP, once thought to be restricted to only RNA polymerase II promoters, has
been shown to be a necessary component for transcription by all three nuclear RNA
polymerases (Cormack and Struhl, 1992; Schultz et al., 1992). Recent reports have
shown that transcription of class I11 genes can be significantly inhibited by sequestering
TBP from cell extracts with TATA element-containing oligonucleotides, prior to the
addition of DNA template and nucleoside triphosphates (White ef al., 1992). The genes
used in these experiments (tRNACIn, tRNALes, 5§ rRNA, VA,, B1, and B2 genes) lack
TATA boxes; however, the results indicate that TBP is involved in RNA polymerase III
transcription. Further experiments have shown that the inhibitory effects of TBP
depletion, either by sequestration on TATA element-containing oligonucleotides or by
heat inactivation, on RNA polymerase III transcription can be alleviated by the addition of

cloned human TBP, expressed in E. coli (White et al., 1992).



The assembly of the TBP and the TATA-binding protein-associated factors (TAFS) into
complexes generates the TFIID transcription factor, which is specific for RNA polymerase
11 promoters (Sharp, 1992). In mammalian cells, 10 polypeptides that range in size from
10-200 kD have been identified as TAFS (Pugh and Tjian, 1991). It is quite possible that
the RNA polymerase specificity is determined by the subset of TAFS that combine with

TBP in the complex; however, this model remains only hypothetical (Sharp, 1992).

1.7 Objectives of this Study

The main objective of this study was to identify and to sequence all of the human
tRNA genes (as well as their flanking sequences) carried by three A-human recombinant
bacteriophages (\HtM2, AHtM4, and AHtM6).

A second objective was to compare the effect of varying their 5' flanking sequence
on their rates of transcription with mammalian cell extracts. It was hoped that any
differences observed in the in vitro expression of these genes (six intron-containing
tRNATYT genes and one tRNAAI2 gene) could be correlated with the presence or absence
of extragenic sequences, which modulate the in vitro expression of these genes. The
localization of regulatory elements was attempted by changing various tRNA genes with
modified flanking sequences and expressing these constructs in vitro. The ultimate goal of
this study was to attribute differences in tRNA gene transcription rates to modifications
made to the native flanking sequences.

A third objective was to investigate the previously reported self-excision of

intervening sequence from pre-tRNATY transcripts.
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2. Materials and Methods
2.1 Materials

2.1.1 Chemicals and Enzymes

Cell culture supplies, including minimum essential medium powder, trypsin,
penicillin G, streptomycin sulfate, and fetal bovine serum, were purchased from Gibco
BRL. All riucleotides, including 2'-deoxyadenosine-5'-O-(1-thiotriphosphate) were
purchased from Pharmacia in a lyophilized form and subsequently reconstituted as 10 mM
stock solutions. The radioisotopically labeled nucleotides, [o-32P]-dATP and [y-32P}-
ATP, were purchased either from New England Nuclear or ICN Biochemicals Inc.
Nitrocellulose and nylon transfer membranes were purchased from Amersham.
Autoradiography was performed using either Kodak XARS X-ray film or Fuji XR X-ray
film, supplied by Innomed Imaging. Agarose gels were made using low electroendosmosis
agaroses from Boehringer Mannheim. Polyacrylamide gels were made using acrylamide
from either Boehringer Mannheim or Bethesda Research Laboratories, and N,N'-
methylene bisacrylamide from BDH. All oligonucleotides used in this study were
synthesized by the Department of Microbiology DNA Synthesis Facility, University of
Alberta, using Applied Biosystems model 381A or 391EP DNA synthesizers. Polymerase
chain reaction (PCR) amplifications were performed using a Techne PHC-2 thermocycler.
DNA quantification was performed using a Hoeffer TKO 100 mini-fluorimeter, based on
the binding of Hoechst 33258 dye specifically to DNA.

All restriction enzymes were purchased either from Boehringer Mannheim, New
England Biolabs, Pharmacia, or Bethesda Research Laboratories. T4 DNA ligase was
purchased either from Boehringer Mannheim or Bethesda Research Laboratories. T4
polynucleotide kinase was purchased from Pharmacia. Taq DNA polymerase was

purchased from Boehringer Mannheim. The Klenow fragment of E. coli DNA
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polymerase I was purchased either from Boehringer Mannheim or Bethesda Research

Laboratories.

2.1.2 Recombinant bacteriophage clones

The recombinant bacteriophages, AHtM2, AHtM4, and AHtM6, characterized in
this study, were originally isolated by MacPherson (1988). The E. coli strain, LE 392,
used to propagate the recombinant bacteriophages, was a gift from Dr. C. Strobeck,

Department of Zoology, University of Alberta.

2.1.3 Bacterial strains and plasmids

Plasmid pBS (formerly pBluescribe) was obtained from Stratagene, while E. coli
strains MV 1193 and MV 1183, M13 phage M13KO07, and plasmids pUC118 and
pUC119 were gifts from J. Vieira, formerly of the Department of Biochemistry, University
of Minnesota, USA. These E. coli strains, and M13KO?7 helper phage, were propagated
using the growth conditions described by Yanisch-Perron ef al. (1985) and Vieira and
Messing (1987). The tRNATYT gene-containing recombinant plasmids (pM6, pM6IT,
pM6128, pM612, and pIM4) were constructed by MacPherson (1988) from the
recombinant bacteriophages AHtM4 and AH{M6 using pAT153 (Twigg and Sherratt,
1980). Variations of these tRNATY gene subclones were constructed by deleting varying
amounts of 5' and/or 3' flanking sequences from each of the initial tRNAT/" gene plasmid
subclones. For purposes of identification, the tRNATY genes carried on the recombinant
plasmids pM6128, pM6, pM612 and pM6IT are named 6-1, 6-2, 6-3 and 6-4 respectively.
The subclone of AHtM4, pJM4, contains two tRNATY genes and one tRNAAl2 gene. The
tRNATY gene characterized by MacPherson (1988) was named 4-1, while the second

tRNATY gene and the tRNAAl2 gene were named 4-2 and 4-3, respectively.
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2.1.4 Mammalian cell-lines

The two mammalian cell lines used in this study were HeLa cells (WT/ED/MS5) and 293
cells. The HeLa cells (WT/ED/MS5) were a gift from Dr. A. R. P. Paterson, MacEachern
Cancer Research Laboratory, University of Alberta. The 293 cells (Graham ez al., 1977)
were a gift from Dr. Arnold J. Berk, Molecular Biology Institute, Department of

Microbiology, University of California, Los Angeles.

2.2 Preparation of bacteriophage DNA
Recombinant bacteriophages AHtM2, AHtM4, and AHtM6 were propagated as

described by Maniatis ef al. (1982). Cells were pelleted from an overnight 50 mL culture
of E. coli LE 392 by centrifugation at 3000 x g for 10 minutes and resuspended in sterile
SM buffer (50 mM Tris-HCI, pH 7.5, 100 mM NaCl, 8 mM MgSO, and 0.01% gelatin)
yielding a suspension that contained 1010 cells per mL. Two 2 mL aliquots of this
suspension were pipetted into sterile test tubes (13 x 100 mm) containing 2 mL of sterile
SM buffer and then 5x 105 bacteriophage particles were added to each test tube. The
bacteriophage and £. coli cells were then incubated at 37°C for 5 minutes to allow the
bacteriophage to adsorb. Following the incubation, each suspension was used to inoculate
a 2 L flask containing 500 mL of prewarmed (37°C ) 2 x YT broth. The cultures were
incubated for approximately 5 hours at 37°C with constant shaking at 300 rpm. During
the incubation, the ODg of the cultures was monitored to determine when the
bacteriophage had caused complete cell lysis to occur. When lysis occurred, 7 mL of
chloroform was added to each flask and the incubation continued for 10 minutes. The
lysed cultures were then cooled to room temperature before the addition of 2.5 mL of
RNase A (0.2 mg/mL) and 0.3 mL of DNase I (1 mg/mL) to each flask. The flasks were
left at room temperature for 30 minutes to allow the digestion of the E. coli nucleic acids
to occur. Sodium chloride was then added to each flask to a final concentration of 1 M

and the flasks were allowed to stand on ice for 1 hour after the sodium chloride had



dissolved. The culture lysates were centrifuged at 11 000 x g for 10 minutes at 4°C and
the cell-free supernatants pooled in a clean Erlenmeyer flask. Polyethylene glycol 8000
was added to a final concentration of 10% (w/v) to the supernatant and dissolved. After
the polyethylene glycol 8000 had dissolved, the suspension was left at 0°C overnight to
allow the bacteriophage to aggregate. The aggregated phages were collected by
centrifugation at 11 000 x g at 4°C for 10 minutes and the supernatant discarded. The
phage pellet was resuspended in 8 mL of SM buffer and combined with an equal volume
of chloroform, then this suspension was mixed by repeated inversion and the phases
separated by centrifugation at 1600 x g for 10 minutes. The aqueous phase was recovered
and 0.5 g of cesium chloride was added per mL of this bacteriophage suspension. The
bacteriophage were further purified by centrifugation on a cesium chloride step gradient in
an SW 40 rotor at 22 000 rpm for 2 hours at 4°C. The bluish bacteriophage band was

collected from the gradient by puncturing the tube with an 18-gauge needle.

2.3 Plasmid isolation and purification

Small scale plasmid DNA preparations were isolated from E. coli cells by alkaline
extraction (Birnboim, 1983). A 1.5 mL aliquot of an overnight E. coli culture was placed
in a micro-centrifuge tube and sedimented for 1 min at 13 000 x g. The supernatant was
removed by aspiration and the cell pellet was resuspended in 100 pL of ice-cold glucose
buffer (25 mM Tris-HCI pH 8.0, 10 mM EDTA, 50 mM glucose). Then 200 pL of lysis
solution (0.2 M NaOH, 1% SDS) was added to the micro-centrifuge tube and the cell
suspension mixed by inversion. After the cell suspension was lysed 150 uL of ice-cold 5
M potassium acetate solution was added and the cell suspension mixed by inversion. After
5 minutes on ice, the cell suspension was centrifuged at 13 000 x g for 5 minutes at 4°C.
Then 400 L of supernatant was transferred to a clean micro-centrifuge tube and mixed
with 500 pL of phenol:chloroform (1:1) on a vortex mixer for 30-45 seconds. The micro-

centrifuge tube was centrifuged at 13 000 x g for 5 minutes to separate the aqueous and
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organic layers, then the aqueous layer was transferred into another microcentrifuge tube
and mixed with 1 mL of 95% ethanol. This tube was then placed at -20°C for at least 15
minutes before the plasmid DNA was pelleted by centrifugation at 13 006 x g. After
centrifugation the ethanol was removed by aspiration and the DNA pellet was dried under
vacuum. It was redissolved by the addition of 100 uL of 10 mM Tris-HCl pH 8.0, 1 mM
EDTA (TE) buffer. The redissolved DNA was then treated with 5 pL of RNase A (10
mg/mL) at 37°C for 30 minutes. Plasmid DNA solutions were routinely quantified using a
fluorimeter, and 5 pL samples were run on a 0.75% agarose electrophoresis gel to
monitor DNA quality. For large scale plasmid preparations, a neutral SDS lysis was
performed with 250 mL of E. coli culture and the plasmid DNA obtained further purified

by isopycnic centrifugation in cesium chloride gradients containing ethidium bromide

(Maniatis er al., 1982).

2.4 Restriction enzyme digests

The restriction endonuclease digests were performed with at least one unit of
enzyme per pg of DNA, using commercially prepared buffers, and incubation for 2-3

hours at the temperature specified by the supplier.

2.5 Nucleic acid labeling

DNA fragments were usually labeled by the random primer method as described by
Feinberg and Vogelstein (1983, 1984). Oligonucleotide probes were labeled with T4
polynucleotide kinase and [y -32P]-ATP as described by Maxam and Gilbert (1980). DNA
size markers, prepared by digestion of A DNA with either Bs¢EIl, Clal, or HindIll, were
radioactively labeled by filling in recessed ends using Klenow with [.-32P]-dATP and
nonradioactive CTP, TTP, and GTP (Maniatis ef al., 1982). All labeled DNAs were
passed through either a Sephadex G-50 or G-25 column to remove unincorporated

radioactive nucleotides.
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RNA size markers were prepared with T4 RNA ligase by labeling E. coli SS rRNA
and yeast tRNAPhe with cytidine 3, 5'-[5'-32P]-bisphosphate ([5'-32P]-pCp) (England and
Uhlenbeck, 1978). The RNA labeling reactions were performed at 37°C for 45 minutes
with 2.5 units of T4 RNA ligase and [5'-32P]-pCp, which was synthesized by the transfer
of the terminal phosphate group of [y-3?P]-ATP to the 5' hydroxyl group of cytidine 3'-

monophosphate by T4 polynucleotide kinase.

2.6 Transformation and Transfection

Transformations were performed using competent cells prepared according to
either Morrison (1979) or Chung ef al. (1989). Competent cells were stored at -80°C and
thawed on ice just prior to use. Once thawed, a 200 pL aliquot of competent cells was
combined with the DNA in a sterile 13x100 mm test tube and left on ice for a minimum of
40 minutes. The tube was then put in a 42°C heating block to give the celis an 80 second
heat shock. The heat shock step was omitted when the competent cells used were
prepared according to Chung ef al. (1989). Immediately following the heat shock, the
tube was cooled on ice for 2 minutes, and 1 mL of sterile 2x YT medium was added to the
tube. The cells were incubated on a tube roller for 1 hour, then 200 pL aliquots were
plated on 2x YT plates containing 100 ug/mL ampicillin (amp). While plating the
transformed cells, X-gal and IPTG were added if blue/white screening was possible by a-
complementation between the vector and host E. coli strain.

The procedure described by Morrison (1979) was also used to transfect k. coli LE
392 with purified bacteriophage DNA in order to amplify viable AHtM2, AHtM4, and
AHtM6. The only modification was the replacement of 1 mL of sterile 2x YT medium
with 3 mL of soft agar overlay, which was mixed with the transfected cells and poured

onto a prewarmed agar plate.
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2.7 Unidirectional deletions with Exonuclease I11

Unidirectional deletions of recombinant plasmids were performed using
exonuclease I1I as described by Henikoff (1987). The resulting plasmids were screened by
agarose gel electrophoresis to select deletions based on their sizes. The DNA in these
agarose gels was then transferred onto nylon membranes (Rigaud ef al., 1987) and probed
with M13 universal sequencing primer. Plasmids that varied from one another in size by

approximately 300 bp and that had an intact primer binding site were used as sequencing

templates.

2.8 DNA sequencing

The sequences of the tDNA clones were determined in both orientations using the
dideoxy chain termination method (Sanger et el., 1977). Dideoxy sequencing was
performed as a two-step reaction, consisting of an extension/labeling reaction followed by
a termination reaction (Tabor and Richardson, 1987), that had been modified for use with
Thermus aquaticus DNA polymerase (Innis ef al., 1988). Sequencing reactions,
performed on either single-stranded or double-stranded DNA templates, were separated
on 6% denaturing polyacrylamide (38:2, acrylamide:N, N'-methylene bisacrylamide) gels.
The separated sequencing reaction products were visualized by 8-24 hours of
autoradiography at -20°C. The DNA sequencing results were analyzed using the
PCGENE DNA analysis software (Intelligenetics Inc.).

Single-stranded plasmid DNA templates were obtained by growing cells from a
single E. coli colony, which harboured the recombinant plasmid, with 0.2 mL of
concentrated M13KO7 helper phage stock in 10 mL of 2x YT broth containing 150
mg/mL amp at 37°C on a tube roller (Vieira and Messing, 1987). After an hour of
incubation, kanamycin was added to a final concentration of 70 pg/mL and the culture

returned to the tube roller at 37°C for an overnight incubation (12-16 hours). Single-
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stranded DNA was extracted from the overnight culture supernatant as described by
Messing (1983).

Double-stranded plasmid DNA templates were obtained as described by Birnboim
(1983) and further purified by isopycnic centrifugation in cesium chloride gradients
(Maniatis ef al.,1982). These plasmid DNA templates were alkali-denatured (Chen and
Seeburg, 1985) prior to sequencing by the dideoxy chain termination method.

DNA sequencing was also performed using an Applied Biosystems model 373A
DNA sequencer, primarily following the manufacturer's suggestions. This technology |
utilizes either fluorescent dye-terminators or dye-labeled primers to detect terminated

products.

2.9 Southern Cross experiment

In order to detect identical regions on the recombinant A bacteriophages Southern
cross experiments were performed (Keen ef al., 1988). One recombinant A phage was
digested with restriction endonuclease Hindlll, the products were separated
electrophoretically on a C.75% agarose gel with one well 15 cm across, and transferred
onto nitrocellulose. Another recombinant A bacteriophage was digested with restriction
endonuclease HindIII and the resulting fragments radioactively labeled by filling in the
recessed 3' ends with [0-32P]-dATP. The labeled DNA was also fractionated on a 0.75%
agarose gel with one well 15 cm across. This fractionated DNA was transferred onto the
same nitrocellulose membrane after appropriate blocking, perpendicular to the unlabeled
DNA. The second transfer was performed under conditions such that the labeled DNA
would only remain bound by annealing to the immobilized fragments of the first
bacteriophage. This second transfer used a Southern apparatus pre-equilibrated at 37°C
and a transfer solution of 50% formamide, 3 x standard saline phosphate EDTA (SSPE),

2.5 x Denhardt's solution and was conducted overnight (i.e. 12-16 hours). The points at
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which the labeled DNA annealed to the immobilized DNA were visualized by

autoradiography.

2.10 Restriction endonuclease mapping of recombinant bacteriophages AHtM2,

AHtM4, and AHtM6
Restriction endonuclease maps of AHtM2, AHtM4, and AHtM6 were determined

using a partial restriction digest mapping technique modified from the strategy first
described by Rackwitz e al. (1984). This technique is illustrated in Figure 5. The major
modification is that the recombinant bacteriophage DNA was first digested with one or
more restriction endonucleases that would release the insert DNA with as little vector
DNA attached as possible and without also cutting the insert DNA. The digested DNA
was precipitated with alcohol, redissolved in TE buffer, and divided into aliquots prior to
digestion with a second restriction endonuclease. Each sample of digested DNA was
treated with a doubling dilution of restriction enzyme (1-1/3,nd unit per tube) in order to
achieve the proper partial digest pattern necessary to map the restriction sites. The
partially digested DNA samples were electrophoretically separated on a 0.75% agarose
gel, in TEA buffer (20 mM Tris-HCl, 50 mM NaOAc, and 2 mM EDTA pH 7.8), which
was later stained with ethidium bromide, photographed, and transferred onto a nylon
membrane. The Southern transfer was probed twice at 50°C with oligonucleotides
specific for lambda sequences, one specific for the right arm and the other specific for the
left arm, bordering the insert DNA. The autoradiographs generated from the
hybridizations of the Southern transfer allow the restriction sites of the second enzyme to
be mapped within the insert DNA by simply determining the sizes of the DNA fragments
that hybridize with each oligonucleotide.

These oligonucleotide probes (DSP 5 and DSP 6) were derived from the wild-type

lambda sequence (Daniels e al., 1983) and can be used to map recombinant



Figure 5.  Schematic diagram of the partial digest restriction mapping technique.

This diagram illustrates how a recombinant A phage can be mapped with minimal
interference from the vector sequences. This recombinant A phage consists of a DNA
fragment cloned into restriction site I of the vector. The first digestion with restriction
endonuclease A removes as much of the vector sequences as possible, leaving the insert
DNA intact. The second digestion with restriction endonuclease B is performed under
conditions favoring partial digestion. The figure only shows the restriction fragments that
would be visualized by autoradiography after sequential hybridizations with the left and
right oligonucleotide probes. The left arm-specific probe is DSP §
(TCACCGTGACCGATGACCAT), while the right arm-specific probe is DSP 6
(CCGATAGACCTTACAGTG). The other restriction fragments are present; however,
their lack of binding sites for the mapping oligonucleotide prevents them from interfering

with the restriction map.
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bacteriophages constructed with either Charon 4A or EMBL 3 lambda vectors. The left
arm probe, DSP 5, is a 20-mer (18 569, TCACCGTGACCGATGACCAT, 18 588) and
the right arm probe, DSP 6, is an 18-mer (35 184, CCGATAGACCTTACAGTG, 35
201).

2.11 Analysis of the AHtM6 tRNAT'* gene cluster by PCR
The orientations of the 4 tRNATM genes on AHtM6 were not determined by DNA

sequencing alone because the genes are spread over an approximately 10 kb region.
Instead of DNA sequencing, PCR amplification (Kleppe f al., 1971; Saiki er al., 1988) of
the sequences between the genes was performed to determine both the location and
orientation of the 4 tRNATT genes on AHtM6. A total of 12 oligonucleotide primers were
used in a series of PCR reactions that generated a collection of PCR products that spanned
the entire length of the AHtM6 insert DNA. The 12 primers included 2 gene-specific
primers for each tRNATYT gene, 2 general tRNATY gene primers, and 2 lambda specific
primers:

DSP 1 (CCTTCGATAGCTCAGCTGGTAGAG), tRNADYT -R,

DSP 2 (TCCTTCGAGC(C/1)GGART(C/1)GRACCAG), tRNATY L,

DSP 5 (TCACCGTGACCGATGACCAT), left A arm;

DSP 6 (CCGATAGACCTTACAGTG), right A arm,

DSP 19 (GTCCACAAACGTTTCCGCAGT), 6-2 intron,

DSP 20 (GTCCGCARATGTCTGTACAAT), 6-1 intron,

DSP 21 (GTCCGCAAATGTCTATACAAT), 6-3 intron;

DSP 22 (GTCCACAAATGTTTC'IACAGG), 6-4 intron;

KLR 77 (GCATGCAATGCCACCTGGTGCT), 6-1 3' end,

KLR 78 (ACACGCACGCACCAAAACTACG), 6-4 3' end,

KLR 79 (AGCGCCTGACTCTTTTGCGCAC), 6-2 3' end,

KLR 80 (AAAGCCCTGCAGCTTCCAAGTA), 6-3 3' end.
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The PCR reactions were performed in 2 stages. The first stage consisted of 15
cycles involving a denaturation step at 95°C for 45 seconds, an annealing step at 55°C for
45 seconds, and an extension step at 72°C for 4 minutes. The second stage was identical
to the first, except for the omission of the annealing step at 55°C for 45 seconds. Each
reaction was performed in a 100 uL volume with 70 mM Tris-HCI (pH 8.8), 2 mM
MgCls, 0.1% Triton X-100, 1 unit of Taqg DNA polymerase, 0.01 pg of AHtM6, 30
pmoies of each primer, and 0.3 mM deoxyribonucleoside triphosphates. Aliquots from
each PCR reaction were fractionated electrophoretically on a 1.0 % agarose gel. Once the
gels had been stained with ethidium bromide and photographed, they were transferred
onto nylon membrane and hybridized sequentially with different tRNATYT gene-specific

probes. The autoradiographs of these gels made it possible to locate and orient the

tRNATY genes on AHtM6.

2.12 Cloning of PCR amplified tRNATST genes

In order to obtain tRNATYT gene-containing plasmid constructs lacking all native
flanking sequences, tRNATY gene sequences were amplified by PCR and these PCR
products were cloned into pBS. The primers used to amplify the tRNATYT genes, DSP 1
and DSP 2, ensured that the principal PCR products generated would not contain any
native flanking sequences. The PCR reactions were performed in a 100 pL volume with
70 mM Tris-HCI (pH 8.8), 2 mM MgCl,, 0.1% Triton X-100, 1 unit of Taqg DNA
polymerase, 0.01 g of a tRNAT'T gene-containing plasmid, 50 pmoles of each primer,
and 0.3 mM nucleotides. The reactions consisted of 25 cycles involving a denaturation
step at 95°C for 45 seconds, an annealing step at 55°C for 45 seconds, and an extension
step at 72°C for 1 minute. Aliquots from each PCR reaction were fractionated
electrophoretically on a 1.0 % agarose gel, which was later stained with ethidium bromide
and photographed. The PCR products, which were chloroform extracted and alcohol

precipitated, were cloned into pBS which had been digested either with restriction enzyme



Hindll (or Hincll) or restriction enzyme EcoRl followed by treatment with Klenow
fragment, dATP and dTTP to generate blunt ends. The ligation reactions were performed
in a volume of 10 pL with 50 mM Tris-HCI (pH 7.5), 7 mM MgCl,, | mM DTT, 1 mM
ATP, 0.5 units of T4 DNA ligase, 0.001 pg of digested pBS, and an aliquot of PCR
product for 16 hours at 11°C. Following the 11°C incubation, the ligation reactions were
used to transform competent E. coli MV 1193 cells. The transformed k. coli cells were
plated onto 2 x YT plates containing amp, X-gal, and IPTG and the resulting white
colonies were further analyzed by colony hybridization with a tRNATY gene-specific
probe. Positive clones were sequenced to ensure that t'he plasmid constructs contained an

intact tRNATY gene lacking all native flanking sequences.

2.13 Colony hybridization

Transformants were picked from an antibiotic-containing plate with sterile
toothpicks and plated onto two 2 x YT plates containing amp, one of which had a nylon
membrane on the agar. When there was sufficient growth on both plates, the colonies that
had grown on the nylon membrane were lysed and their denatured DNA baked onto the
membrane to allow hybridization with a radiolabeled probe.

The colony lysis was carried out by first placing the nylon membrane, colony side
up, on Whatman 3MM paper saturated with 0.5 M NaOH for 3 minutes, or until the
colonies became translucent. The nylon membrane was then placed on a second Whatman
3MM paper saturated with 1 M Tris-HCI (pH 8.0) for 4 minutes; this step was repeated
once more. The nylon membrane was then placed on a fourth Whatman 3MM paper
saturated with 1.5 M NaCl, 0.5 M Tris-HCI (pH 8.0) for 4 minutes. The nylon membrane
was then placed on a fifth Whatman 3MM paper saturated with 2 x SSPE for 4 minutes,
and then allowed to dry before being baked at 80°C for 30 minutes. Once the membrane
was baked the excess cell debris was washed away using a 0.1% SDS solution, leaving the

membrane ready for hybridization with a radiolabeled probe.
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2.14 Cell extract preparation for in vitro transcription

Cell extracts were made using a procedure adapted from Weil e al. (1979), which
yields extracts with high levels of RNA polymerase I1I for in vitro transcription
experiments. To obtain approximately 2-2.5 mL of cell extract usually 2-3 liters of either
HeLa or 293 cell spinner culture, with a density of approximately 5x 105 cells/mL, were
required. The cells were pelleted by centrifugation a7 4°Cin a Beckman JA 14 rotor at
800 x g for 5 minutes. The cell pellet was resuspended in sterile calcium and magnesium
free phosphate-buffered saline and centrifuged at 800 x g to determine the packed cell
volume. This step was repeated once more with sterile calcium and magnesium free
phosphate-buffered saline and again with 10 volumes of hypotonic buffer (10 mM Hepes
pH 7.9, 1.5 mM MgCl,, 10 mM KCl, 0.5 mM DTT, 0.5 mM PMSF), after which the cell
pellet was resuspended in 2 packed cell volumes of hypotonic buffer. After leaving the
cells in this buffer for 10-20 minutes on ice, the swollen cells were lysed by 13-16 strokes
of a Dounce homogenizer. Following cell lysis, a sample of one-ninth the total volume of
0.3 M Hepes (pH 7.9), 30 mM MgCl,, 1.4 M KCI was added to the lysate. The lysate
was then centrifuged for 1 hour at 4°C in a Beckman SW 55 rotor at 100 000 x g. The
supernatant was collected and a one-fifth volume portion of sterile glycerol was added and
the solution was mixed by repeated inversion. Aliquots of cell extract (200 uL) were

placed in 0.5 mL centrifuge tubes and quickly frozen in igi..:d nitrogen and stored at

-80°C.

2.15 In vitro transcription assays

Transcription assays were performed in 50 pL reaction volumes containing 25 uL
of S-100 cell extract. The 50 pL reaction mixtures contained 15 mM Hepes (pH 7.9);
10% (v/v) glycerol; 61 mM KCI; 5 mM MgCly; 0.6 mM DTT; 0.15 mM PMSF; 1 mM
each of ATP, UTP, CTP, and 0.1 mM GTP; 1.0 uCi of [¢-32P]-GTP at 3000 Ci/mmol,

and 1 pmol of tRNA gene-containing plasmid. Transcription assays were initiated by the
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addition of the S-100 cell extract to the other reaction components. Once the reactions
were initiated they were incubated at 36°C for 1.5 hours. Following the incubation, the
reactions were terminated by the addition of 200 pL of stop mix (6.4 M urea; 0.45 M
sodium acetate, pH 5.6; 0.4% SDS; 8 mM EDTA, pH 8.0; and 0.8 ng/mL of yeast RNA)
and 200 pL of phenol/chloroform (1:1). Each terminated reaction mixture was vortexed
hriefly, spun at 13 000 rpm for 1 minute in a MSE Micro Centaur centrifuge, and its
aqueous phase collected. The aqueous phase was combined with 1 mL of 95% ethanol
and left at -80°C for at least 30 minutes to ensure quantitative precipitation. The
extracted nucleic acids were redissolved in 5 uL of formamide dye mix (95% formamide,
0.05% bromophenol blue, 0.05% xylene cyanol, and 2 mM EDTA, pH 8.0) and
fractionated electrophoretically on a 10% denaturing polyacrylamide gel with constant
power at 32 Watts. The radioactively labeled RNA transcripts were visualized by 8-24

hours of autoradiography at -20°C.

2.16 RNA synthesis in vitro with bacteriophage T7 RNA polymerase

RNA was synthesized in vitro according to the procedure described by Milligan
and Uhlenbeck (1989). The RNA transcripts were synthesized by adding an appropriately
linearized DNA template (2-5 pg), containing a T7 promoter sequence, to a reaction
mixture with 40 mM Tris-HCI (pH 8.0); 30 mM NaCl; 8 mM MgCl,; 1 mM spermidine;
2.5 mM ATP, UTP and CTP; 0.25 mM GTP; 5.0 uCi of [a-32P]-GTP at 3000 Ci/mmol,
and 30 - 60 units of T7 RNA polymerase at 37° - 40°C for 1-2 hours. The synthesized
RNA was then precipitated with alcohol, redissolved in formamide dye mix and
fractionated electrophoretically on a 15% denaturing polyacrylamide gel to separate the
full length transcripts from the prematurely terminated transcripts. The band containing
the full length RNA species was excised from the gel and the RNA eluted using an
extraction solution (0.5 M NH,OAc, 0.1 M Mg(OAc),, 1 mM EDTA (pH 8.0), 0.1%
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SDS). The RNA was collected by alcohol precipitation and stored in ethanol until assayed

for self-cleavage activity.

2.17 Magnesium ion-promoted RNA self cleavage

The 32P-labeled pre-tRNA transcripts, synthesized either by T7 RNA polymerase
or by S-100 cell extracts, were tested for their ability to undergo non-enzymatic intron
excision under in vitro conditions. The reaction conditions used, which were identical to
the conditions described by van Tol ef al. (1989), involved incubating gel purified tRNA
transcripts in 100 mM NH,OAc (pH 8.0), 10 mM MgCl, , 0.5 mM spermine, and 0.4%
Triton X-100 for a minimum of 2 hours at either 37°, 42° or 46°C. These reactions were
also conducted including various oligonucleotides (50 pmoles per reaction) that were
either identical or complementary to portions of the pre-tRNA transcript. Following the
incubation step, the pre-tRNA transcripts were alcohol precipitated and redissolved in
formamide dye mix just prior to loading onto a 10% denaturing polyacrylamide gel. After
separation by polyacrylamide gel electrophoresis the RNA transcripts were visualized by

autoradiography for 3 days at -80°C with a Dupont Lightning Plus intensifying screen.
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3. Results

3.1 Restriction endonuclease mapping of AHtM2, AHtM4, and AHtM6

Three recombinant phages were isolated by MacPherson (1988) from a human-A
Charon 4A recombinant bacteriophage library (Lawn et al., 1978), using a DNA fragment
containing a tRNAT gene from the 3.18 kb Xenopus laevis tRNA gene cluster (Miller
and Clarkson, 1980) as a probe. Southern hybridization analysis of these three
recombinant bacteriophages, after digestion with several restriction endonucleases,
detected a total of six potential human tRNATT genes. Restriction maps, which indicated
the tRNATYT gene locations within the recombinant bacteriophages, were also generated by
MacPherson (1988). Four tRNATY genes were found on AHtM6, named 6-1, 6-2, 6-3
and 6-4, while AHtM2 and AHtM4 each apparently contained one tRNATY gene. These
were named M2 and 4-1 respectively.
The four tRNATY genes on AHtM6 were isolated on DNA fragments released by the
restriction endonuclease HindlIII and cloned into the plasmid vector pAT153 (Twigg and
Sherratt, 1980). These recombinant plasmids, which consisted of 1.3, 1.4, 1.5 and 2.0 kb
DNA fragments cloned into pAT153, were named pM6IT, pM6, pM6128 and pM612,
respectively. The 6-1, 6-2, 6-3, and 6-4 tRNATY genes were carried on plasmids
pM6128, pM6, pM612 and pM6IT, respectively. The tRNATY gene on AHtM4, 4-1, was
isolated on a 2.4 kb DNA fragment released by a double digest, with restriction
endonucleases HindIIl and EcoRl, and cloned into pAT153. The resulting recombinant
plasmid was named pJM4. Of the six potential tRNATYT genes, five were successfully
subcloned into plasmid vectors, sequenced, and verified as intron-containing tyrosine
tRNA genes (MacPherson and Roy, 1986; MacPherson, 1988). At the commencement of
this project the only known tRNAT) gene that was not cloned was the one present on

AHtM2, tentatively named M2.
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To accomplish the main objective of this study, which was the characterization of
extragenic sequences that might modulate the transcription of human tRNATYT genes, it
was necessary to have as many tRNATYT genes available as possible for comparative
transcription studies. Therefore the cloning and sequencing of the remaining tRNATY
gene, M2, from AHtM2 was undertaken. Since the location of the M2 tRNATY gene on
AHtM2 had been established by restriction mapping (MacPherson, 1988), a DNA
fragment released by double digestion with restriction endonucleases HindlII and Bg/I1
was chosen for cloning. The resulting recombinant plasmid, named pM2, consisted ofa
0.85 kb HindI11/Bglll DNA fragment cloned into pUC118. The nucleotide sequence of
pM2 confirmed the presence of an intron-containing tRNATY gene; however, this
sequence was identical to that of pM6128. This unexpected result suggested that AHtM2
and AHtM6 might be overlapping clones, although the restriction maps generated for
AHtM?2 and AHtM6 (MacPherson, 1988) did not show any clear evidence of an
overlapping region.

To determine quickly if AHtM2 and AHtM6 were overlapping clones, Southern
cross experiments (Keen e/ al., 1988) were performed, as described in Materials and
Methods section 2.9. The restriction endonuclease HindIII was used for these
experiments because it isolated each of the four tRNATY genes in AHtM6 on a relatively
small DNA fragment (1.3 to 2.0 kb in length). The points at which the labeled AHtM2
DNA annealed to the AHtM6 DNA were visualized by autoradiography (Figure 6). These
points form a diagonal line across the autoradiograph indicating that certain DNA
fragments of AHtM2 and AHtMG are identical. On the autoradiograph the prominent
point that lies above the diagonal is due to a AHtM2 HindlIll fragment annealing to a
chimeric AHtM6 Hindlll fragment that contained both A and human DNA. The prominent
point seen below the diagonal is due to the chimeric AHtM2 HindIII fragment annealing to

a AHtM6 Hindlll fragment, which is of entirely human origin.



Figure 6.  Scuthern cross of AHtM2 against AHtM6.

A sample of AHtM6 DNA was digested with the restriction endonuclease
Hindlll, fractionated on a 0.75% agarose gel (with one well 15 cm across), and
transferred onto nitrocellulose. A sample of AHtM2 DNA was also digested with
restriction endonuclease HindIll, radioactively labeled by filling in the 3' recessed ends
with o-32P-dATP, fractionated on a 0.75% agarose gel (with one well 15 cm across) and
transferred onto the same nitroccllulose membrane perpendicular to AHtM6. This transfer
was performed under hybridization conditions, such that AHtM2 DNA would only bind by
annealing to AHtM6 DNA. The direction of electrophoresis of the AHtM2 and AHtM6

DNA fragments is shown by the arrows.
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A Southern cross ex~eriment was also performed with AHtM2 and ALitM4 to
search for an overlapping region because the restriction maps of these bacteriophage
clones appeared similar. However, in (his case the only three points seen on the diagonal
were the result of A Charon 4A DNA fragments annealing (Figure 7). The tRNANT gene-
containing HindIII fragment of AHtM2 annealed weakly to the gene-containing HindlIl
fragment of AHtM4, however, this point occurred above the diagonal. The prominent
point that was below the diagonal was the result of the right A arm fragment AHtM4
annealing to the left and right A arm fragments of AHtM2, joined together by the cohesive
(cos) ends. Since none of the DNA fragments liberated from the inserts of these
bacteriophage clones annealed to give rise to points on the diagonal, it was concluded that
the human DNA inserts of AHtM2 and AHtM4 do not overlap.

To identify clearly the overlapping region of AHtM2 and AHtM6, more restriction
endonuclease digestions were performed. Digestions of AHtM2, AHtM4 and AHtM6
DNA with restriction endonuclease HindIII were fractionated electrophoretically on an
agarose gel, transferred onto a nylon membrane and hybridized sequentially with AHtM2
DNA and a tRNATY gene-specific oligonucleotide, DSP 1. Hybridization of AHtM2
DNA to the Southern transfer (Figure 8, panel B) identified the 5.7 kb A DNA fragment
common to all three bacteriophages, as well as the larger chimeric human-A DNA
fragments, in lanes 3 and 4. The AHtM2 DNA probe also identified the overlapping
fragments between AHtM2 and AHtMBS, seen in lanes 3 and 5. These small bands (i.e. less
than 2.0 kb) common to AHtM2 and AHtM6 were due to the overlapping region, since
similar bands were not detected in AHtM4, seen in lane 4. The smear of low molecular
weight species in lane 4 (Panel B and C) is due to RNA contamination of AHtM4 DNA.
The tRNATY" gene-specific probe identified the 1.5 kb band as the 6-1 tRNATY gene-
containing fragment amongst the subset of common DNA fragments (Figure 8, panel C),

as well as the other gene-containing fragments. A simultaneous comparison of all the



Figure 7.  Southern cross of AHtM2 against AHtM4,

This autoradiograph indicates points where AHtM2 DNA has annealed to the
immobilized AHtM4 DNA. A sample of AHtM4 DNA was digested with restriction
endonuclease HindllI and fractionated on a 0.75% agarose gel (with one well 15 cm
across) and transferred onto nitrocellulose. An aliquot of AHtM2 DNA was digested with
restriction endonuclease Hindlll, radioactively labeled by filling in the 3' recessed ends
with o-32P-dATP, fractionated on a 0.75% agarose gel (with one well 15 ¢m across) and
transferred onto the same nitrocellulose membrane perpendicular to AHtM4. The second
transfer was performed under conditions such that AHtM2 DNA would bind only by

hybridizing to AHtM4. The direction of electrophoresis of the AHtM2 and AHtM4 DNA

fragments is shown by the arrows.
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Figure 8.  Restriction endonuclease digesiion of AHtM2, AHtM4 and AHtM6 DNAs with

HindlIll.

Three recombinant lambda DNAs were digested with HindIlI and fracti. nated on
a 1.5% agarose gel. The gel was stained with ethidium bromide and the DNA fragments
transferred onto a nylon membrane. Panel A is a photograph of the agarose gel stained
with ethidium bromide. Panel B is an autoradiograph of the Southern transfer of the gel
probed with radioactively labeled A\HtM2 DNA. Panel C is an autoradiograph of the
Southern transfer probed with DSP 1, an oligonucleotide specific for tRNATY genes.
Lane 1, A DNA digested with Clal and 2 DNA digested with Nael, and lane 2, pAT153
DNA digested with Hinfl, are DNA size markers. Lanes 3 -5 contain HindIII digested

AHtM2, AHtM4, and AHtM6 DNA respectively.
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panels in Figure 8 revealed that the 1.4 kb AHtM6 DNA fragment in lane 5 is a doublet,
consisting of an overlapping fragment and a tRNATY gene-containing fragment.

The previous restriction maps of AHtM2 and AHtM6 (MacPherson, 1988)
contained several errors and did not indicate any overlapping region. Therefore
corrections to these maps were necessary. To characterize the overlapping region
between AHtM2 and AHtM6 fuither, a comparison of their tRNATY gene-containing
DNA tragments was made by digesting them with several restriction endonucleases. The
digested AHtM2 and 2 HiM6 DNAs were fractionated on an agarose gel, transferred to a
nylon membrane and hybridized with a tRNATY gene-specific probe (Figure 9, panel B).
While all of the tRNATY genes were detected by this probe, comparing the sizes of the 6-1
{RNATT gene-containing fragments, in particular, aided in the assembly of revised
restriction maps.

Revisions to the AHtM2 and AHtM6 restriction maps required that more
restriction endonuclease digestions be performed. The restriction endonuclease digestion
patterns of AHtM2 are shown in Figure 10, which also identifies the 6-1 tRNATYT gene-
containing fragments. The tRNATYT gene-specific oligonucleotide probe DSP 1 also
annealed weakly to another site on the Southern transfer of the digested AHtM2 DNA
(Figure 10, panel B). However, this secondary binding is not due to another tRNATYT
gene, since it was not detected when the hybridization temperature was increased from
52° to0 56°C or the wash temperature was increased from 47° to 52°C.

To revise the AHtMG restriction map it was necessary to distinguish the tRNATY
genes from one another by sequential sybridizations with probes specific for cach
individual tRNATY gene. To reduce the chance of one oligonucleotide probe annealing to
more than one tRNATYT gene, these oligonucleotides were designed to anneal to the 3'
flanking sequences immediately downstream of the gene. The specificity of these probes
is demonstrated in Figure 11, which shows a Southern transfer of doubly digested AHtM6

DNA hybridized sequentiaily with each of these specific tRNATT gene probes. Panels B,



Figure 9. Comparison of AHtM2 and AHtM6 restiiction fragments carrying

tRNATYT genes.

Samples of AHtM2 and AHtM6 DNA (2-3 ng) were digested with restriction
enzymes and the products separated on a 1.0% agarose gel. The gel was stained with
ethidium bromide {A) and the products transferred onto a nylon membrane. The
restriction enzymes used to digest the AHtM2 DNA (lanes 2, 4, 6, 8, and 10) and the
AHtM6 DNA (lanes 3, 5, 7, 9, and 11) were BamHI, Bg/ll, L.coRl, Hindlll and Spl,
respectively. Lane 1, A DNA digested with Bs/Ell, serves as the DNA size markers.
Panel B s an autoradiograph of the Southern transfer probed with DSP 1, an

oligonucleotide specit- for iRNATT genes.
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Figure 10. Identification of AHtM2 restriction fragments carrying a tRNATY" gene.

Samples of AHtM2 DNA (2 - 3 pg) were digested with restriction enzymes, then
separated on a 0.75% agarose gel. The gel was stained with ethidium bromide (panel A)
and the DNA was transferred onto a nylon membrane. The restriction enzymes used to
digest the AHtM2 DNA in lanes 2 - 5 were BamHl, Bg/ll, EcoRl, and Hindlll,
respectively. The AHtM2 DNA in lanes 6 - 9 was doubly digested with BamHI/HindlIl.
Bgll/HindIll, BamHU/ EcoRl, and EcoRI/HindIll respectively. Lane 1, A DNA digested
with BsfEIL, and lane 10, A DNA digested with Hindlll, are DNA size markers. Panel B
is an autoradiograph of the Southern transfer probed with DSP 1, an oligonucleotide

specific for tRNATY genes.
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Figure 11. Identification of AHtM6 restriction fragments carrying specific tRNATY"

genes.

Samples of AHtM6 DNA (2 - 3 ng) were digested with restriction enzymes and
separated on a 0.75% agarose gel. The gel was stained with ethidium bromide (Panel A)
and the DNA transferred onto a nylon inembrane. Lane 1, A DNA digested with Bs/EII,
and lane 2, A DNA digested with C/al, serve as DNA size markers, although lane 2 is of
little use because insufficient DNA was loaded. The restriction enzyme used to digest the
AHtM6 DNA in lane 3 is £coRl. The remaining lanes (lanes 4 and 5) contain doubly
digested AHtM6 DNA. The DNA was first digested with FcoR1 and aliquots were
then digested with BamHI and Bg/11, corresponding to lanes 4 and 5, respectively. Panel
B shows the restriction fragments that carry the 6-2 gene, visualized by probing with
oligonucleotide KLR 79. Panel C shows the restriction fragments that carry the 6-3 gene,
visualized by probing with oligonucleotide KLR 80. Panel D shows the restriction
fragments that carry the 6-1 gene, visualized by probing with oligonucleotide KLR 77.
Panel E shows the restriction fragments that carry the 6-4 gene, visualized by probing with

oligonucleotide KLR 78.
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C, D and E of Figure 11 show the 6-2, 6-3, 6-1 and 6-4 tRNATYT gene-containing
fragments, respectively. The faint bands seen in lanes 3, 4 and 5 were due to traces of
probe from the previous hybridization that were not removed by stripping the nylon
membrane. Other Southern transfers of restriction endonuclease digested AHtM6 DNA,
previously hybridized with DSP 1, were also hybridized sequentially with each of these
four probes to identify specifically each of the four tRNATY genes (data not shown).

Due to the complexity of the A\HtM2 and AHtM6 digest patterns, these complete
digests alone were insufficient for generating unambiguous restriction maps. For example,
the DNA fragments generated by HindlIll digestion of AHtM6 vary in size from 2.4 to
0.15 kb, except for the left and right arm fragments of A Charon 4A. The data obtained
from hybridizing Southern transfers of these digested bacteriophage DNAs with several
oligonucleotide probes is summarized in Tables 3 and 4 for AHtM2 and AHtMS,
respectively. These Tables list by size the DNA fragments generated by digestion with
selected restriction endonucleases. In these Tables the gene-containing fragments are
identified by the particular tRNATYT gene(s) they carry. When these Tables were
combined with data obtained from partial digests of AHtM2 and AHtM6 DNAs the
ambiguities in their restriction map were resolved.

Partial digestion was undertaken to aid in the assembly of. Partial digestions of
AHtM4 were conducted to serve as controls for mapy ing since no errors were suspected
in its restriction map. A partial mapping strategy was devised for increased resolution by
designing oligonucleotide probes closer to the insert DNA. The new probes, DSP 5 and
DSP 6, made it possible to remove much of the vector DN % with complete restriction
endonuclease digests before continuing with the partial digests. This modification reduces
the length of DNA that has to be mapped by partial digestion from 45 kb to approximately
20 kb, which improves the separation of the resulting partially digested DNA fragments by
ordinary agarose gel electrophoresis with 0.75% gels. An example of this partial digestion

restriction mapping technique is shown in Figure 12, which illustrates the mapping of



Table 3. DNA fragments generated by restriction endonuclease digestion of

63

AHtM22,
BamHI1 Bglll EcoRlI HindIII
2x 17,140 21.8 20.0 20.0
5.6 9.65 14.0 7.8
3.9 4.8 11.0 2 x 5.7
1.3 2.3 2.0
2.0 1.5%
1.8% 1.4
1.3 1.1
1.0 0.35

a The sizes of the restriction fragments are given in kb.
b DNA fragments that carry the 6-1 {RNAT'T gene are indicated with a symbol (™).



Table 4. DNA fragments generated by restriction endonuclease digestion of

AHtMé62,
BamH]1 Bghl EcoRl Hindlll
18.2 21.2 20.0 21.5
2x9.24va¢ 6.25v 4 11.0 2x 5.7
5.6 58¢ 9.54% 2.4
3.9 4.8 1.854 2,044
1.5 2.8 1.75 LSab
2.0 2x 1.5¢ 2x 1.4w¢
2x 1.8 0.75 1.3e¢
1.3 0.60 1.1
0.90
0.85
0.70
0.35
0.15

a The sizes of the restriction fragments are given in kb.

b The 6-1 tRNATYT gene-containing DNA fragments are indicated with a symbol (*).
¢ The 6-2 tRNATYT gene-containing DNA fragments are indicated with a symbol (¥).
d The 6-3 tRNATY gene-containing DNA fragments are indicated with a symbol (4).
e The 6-4 tRNATYT gene-containing DNA fragments are indicated with a symbol (¢).
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J:coRl restriction sites on AHtM4. The AHtM4 DNA was first digested with restriction
endonucleases BamHI and Kpnl to remove the A Charon 4A vector sequences. This
digested AHtM4 DNA was then partially digested with restriction endonuclease EcoRl
and the cleavage sites mapped by hybridizing the Southern transfer sequentially with DSP
5 and DSP 6.

The three bacteriophage clones were digested with several restriction
endonucleases in order to find those that cleave the vector DNA and leave the insert DNA
intact. The screening procedure involved digesting AHtM2, AHtM4 and AHtM6 DNA:s,
electrophoretically fractionating the digestion products on agarose gels, transferring these
products to nylon membranes, and hybridizing sequentially with the mapping
oligonucleotides (DSP 5 and DSP 6) and with a tRNATYT gene-specific oligonucleotide,
DSP 1 (data not shown). The hybridization with DSP 1 was performed to determine if the
majority of the insert DNA was intact after the first digestion. Some of the restriction
endonucleases that were useful for removing the A Charon 4A vector sequences were
Bgll, Miul and Ss/11 (data not shown).

While searching for restriction endonucleases that would cleave the A sequences
and leave the insert DNA intact, a Southern transfer of digested AHtM4 DNA was
hybridized with a tRNATY gene-specific oligonucleotide (DSP 1) and two bands were
detected in the lane containing Apal-digested DNA. This observation indicated a potential
new tRNATYT gene within atM4, which was previously thought to contain only an
isolated tRNATT gene. The discovery of an uncharacterized tRNATY gene prompted a
reexamination of the AHtM4 restriction map. To improve the AHtM4 restriction map,
additional restriction endonuclease digestions of AHtM4 DNA were performed, the
digestion products fractionated electrophoretically on an agarose gel, and transferred to a
nylon membrane. These restriction digests are shown in Figure 13, along with the
autoradiograph of the Southern transfer that had been probed with DSP 1. Figure 13

shows that apart from 4pal, seen in lane 2, no other restriction endonuclease liberated two



Figure 12. Restriction endonuclease mapping of AHtM4 by partial digestion.

Approximately 2 pg of AHtM4 DNA were digested to completion with restriction
endonucleases BamHI and Kpnl (neither of which cuts in the human sequence of this
recombinant). The digested DNA was collected by ethanol precipitation, redissolved in
TE buffer and divided equally amongst five microfuge tubes for partial digestion. These
samples were partially digested for 5 minutes at room temperature with 1.0, 0.5, 0.25,
0.125. 0.0625 and 0.0 units of restriction endonuclease /coRI and fractionated
electrophoretically on a 0.75% agarose gel in lanes 2 - 7, respectively. Lane I, which
contains both BstEII and Nael digested A DNAs, is a DNA size marker. Panel A is a
photograph of the ethidium bromide stained agarose gel and panels B and C are
autoradiographs of the Southern transfer of the digested AHtM4 DNA probed sequentially
with DSP 5 (left arm probe) and DSP 6 (right arm probe), respectively.
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Figure 13. Identification of AHtMd restriction fragments carrying tRNATT genes.

Samples of AHtM4 DNA (2-3 ng) were digested with restriction enzymes and
separated on a 0.75% agarose gel. The gel was stained with ethidium bromide (A) and
transferred onto a nylon membrane. The restriction enzymes used to digest the AHtM4
DNA in lanes 2 - 7 were Apal, BamHI, Bglll, FcoRl, Hindlll, and Kpnl respectively.
Lane 1, A DNA digested with Bs7Ell, ind lane 8, A DNA digested with Hindl1ll, are DNA
size markers. The radioautograph of the Southern transfer (B) shows the restriction
fragments that carry a tRNATS gene(s), detected by hybridization with a a IRNATY gene

specific oligonucleotide probe (DSP 1).
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AHtM4 DNA fragments that annealed with DSP 1. For purposes of gene identification the
tRNATY genes found on AHtM4 are referred to as 4-1 and 42, which are found on the
4.55 kb and 10.8 kb Apa! restriction fragments, raspectively, The faint bands seen in lane
2 were probably due to incomplete digestion of AHtVia DDNA by Apal. Unlike the case in
lane 2, the faint bands seen in lane 7, were most likely due to overdigestion of AHtM4

I; JA by Kpnl, with possible star activity. Overdigestion was suspected because all the
restriction endonuclease digestions had been performed with equal amounts of AHtM4
DNA, however, significantly less DNA was present in lane 7 (Figure 13, panel A).

In order 1o obtain DNA fragments suitable for cloning the new tRNATY gene,
double restriction endonuclease digestions of AHtM4 and pJM4 (a pAT153 recombinant
which contains a 2.4 kb DNA fragmeit released from AHtM4 bv restriction endonucleases
EcoRI and HindIIl) were performed with Apal in combination with several other
restriction endonucleases. The double restriction endonuclease digestion products of
AHtM4 and pJM4 DNA were fractionated electrophoretically on agarose gels and
transferred to nylon membranes. The results of the AHiM4 DNA double digests are
shown in Figure 14, which compares a photograph of the agarose gel containing the
electrophoretically fractionated digestion products to an autoradiograph of its
corresponding Southern transfer that had been hybridized with DSP 1. On the
autoradiograph the faint band seen in lane 6 is probably due to overdigestion by restriction
endonuclease BssHIL, unlike the faint band seen in lane 10 which seems to be due to
incomplete digestion by the restriction endonuclease Hpal. The results of the pJM4 DNA
double digests are shown in Figure 15, which compares a photograph of the agarose gel
containing the electrophoretically fractionated digestion products to an autoradiograph of
its corresponding Southern transfer that had beer iiybridized with DSP 1. Since both
tRNATYT genes were contaimed on pJM4, it was necessary to sequence the entire 2.4 kb
inseri of this clone to characterize the new tRNATY gene and its surrounding flanking

sequences. DNA fragmzents were cloned, sequenced and a new intron-containing tRNATYT



Figure 14. Selection of AHtM4 restriction fragments carrying tRNATIT genes for

subcloning.

Samples of AHtM4 DNA (2 - 3 pg) were digested with restriction enzymes and
separated on a 0.75% agarose gel. The gel was stained with ethidium bromide (A) and the
products were transferred onto a nylon membrane. Lane 1, A DNA digested with Clal,
lane 9, &, DNA digested with Bs/Ell, and lane 16, A DNA digested with HindlIl, are DNA
size markers. The restriction enzyme used to digest the AHtM4 DN.. in lane 2 is Apal.
The other lanes (lanes 3 - 8 and 10 - 15) contain doubly digested AHtM4 DNA. The DNA
was first digested with Apal and aliquots were then digested with 4paLl, BamH], Bglli,
BssHIL, LcoRl, Hindl11, Hpal, Kpnl, Miul, Neol, Sacl, and Styl. These double digests
correspond to Janes 3 - 8 and i0 - 15, respectively. The radioautograph of the Southern
transfer {B) shows the restriction fragments that carry a tRNATY gene(s), detected by

hybridization with a tRNATM gene specific oligonucleotide probe (DSP 1).
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Figure 15. Identification of pJM4 restriction fragments carrying tRNATY genes.

Samples of pJM4 DNA (0.1 - 0.3 pg) were digested with restriction enzymes and
separated on a 0.75% agarose gel. The gel was stained with ethidium bromide (A) and the
DNA fragments were transferred onto a nylon membrane. Lane 2, A DNA digested with
Clal, and lanes 9, and 1o, A DNA digested with Bs/EIl, are DNA size markers. The
restriction enzyme used to digest the pJM4 DNA in lane 3 is Apal. The other lanes (lanes
1,4 -8, and 10 - 15) contain doubly digested pJM4 DNA. The DNA was first digested
with Apal and aliquots were then digested with ApaLl, BamHI, Bg/l], BssHIY EcoRl,
Hindlll, Hpal, Kpnl, Miul, Ncol, Sacl, and Sryl. These double digests correspond to
lanes 1, 4 - 8, and 10 - 15 respectively. The radioautograph of the Southern transfer ¢

shows the restriction fragments that carry tRNAT)T genes, detected by hybridization with a

a tRNATY gene specific oligonucleot.ie probe (DSP 1).
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gene, 4-2, was characterized, as well as a tRNAAR gene, 4-3. The nucleotide sequence of
this 2 4 kb DNA fragment is provided in section 3.3 of the Results.

The Southern transfers that had been used to detect tRNATYT genes on three
recombinant bacteriophages were hybridized with tRNAAl2 gene-specific probes, but no
additional genes were detected (not shown). The data obtained from hybridizing Southern

transfers of digested AHtM4 DNA with several oligonucleotide probes is summarized in

Table 5.
The restriction endonuclease digestions of AHtM2, AHtM4 and AHtM6, including

both complete and partial digests, were used to generate new restriction maps (Figure 16)

that indicate the tRNA gene-containing fragments. The specific locations and orientations
of the genes on AHtM2 and AHtM4 were determined by sequencing gene-containing DNA
fragments. However, the specific locations and orientations of the genes on AHtM6 were

determined by DNA sequencing in combination with PCR amplification of sequences

between the tRNATYT genes. These PCR amplifications are described in the next section.

3.2 Determination of the AHtM6 tRNATST gene orientations by PCR

The restriction map, even combined with the nucleotide sequence of the tRNA
gene-containing subclones, was not enough to establish precisely the locations and
orientatior:., of the tRNATY" genes on AHtM6. The tRNATY gene locations and
orientations on AHtM6 were therefore determined by PCR amplification (Kleppe et al.,
1971: Saiki et al., 1988) of the DNA scquences between the genes. To ensure that the
PCR conditions chosen were capable of yielding specific products of at least 3 kb in
length, control reactions were performed with AHtM2 DNA. Since the location and
orientation of the 6-1 tRNATY gene on AHtM2 were known, this bacteriophage DNA
served as an ideal control to test the PCR conditions. Several PCR amplifications were

performed with rrimers chosen from a group of 12 oligonucleotides te find prime:



Table 5. DNA fragments generated by restriction endonuclease digestion of
AHtM 42,

Apal BamH]I Bgll EcoRl Hindlll Kpnl
22.5 37.0 068 220&6aA 19.9 220404 255 h 0 A
10.8 ecad 5.6 4.8 11.0 8.5 17.4
10.0 3.9 3.7 INE XYY 6.8 3.5

4,55 &b 1.5 2.7 3.2 5.9 LS

2.5 2.3 2.1
2.45 2.25 1.4
2x 2.0 1.5 0.95

1.4
1.0
0.90
0.80
0.70

a The sizes of the restriction fragments are given in kb.
b The 4-1 tRNATY gene-containing DNA fragments are indicated with a symbol (*).
¢ The 4-2 tRNATY gene-containing DNA fragments are indicated with a symbol (¢ ).
d The 4-3 tRNAAl2 gene-containing DNA fragments are indicated with a symbol (4).



Figure 16. Restriction endonuclease digestion maps of the three recombinant

bacteriophage DNAs.

The A Charon 4A phage vector sequences are shown as dashed lines, with the
maps drawn from lefi to right. The human DNA inserts are represented by the darker
solid lines. The restriction endonuclease digestion sites are indicated by letters with B for
BamH1, G for Bglll, E for IicoR1 and H for HindIll. The tRNA genes are represented by
dots on the restriction maps; however, the orientations of the genes are shown below each
map. The arrows enclosed in boxes represent tRNA genes, with the point of the arrow
indicating the direction of transcription. The overlapping portions of AHtM2 and AHtM6

are indicated by solid lines under each respective restriction map.
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combinations that would yield PCR products extending from gene to gene. The 12
oligonucleotides, from which PCR primers were selected, consisted of 2 gene-specific
primers for each tRNATY gene on AHtMS6, 2 general tRNATY gene primers, and 2 A-
specific primers.

The primer combinations that generated PCR products reflected the tRNATY gene
orientations and the lengths of the PCR products confirmed the gene locations on AHtM6.
However, the likelihood of PCR artifacts occurring in the reactions was high dut "vthe ..
very large degree of homology between the tRNATY genes. Therefore, to distinguish
authentic PCR products from PCR artifacts the amplified products were fractionated on
agarose gels (Figure 17 Panels A and B), transferred to nylon membranes and hybridized
sequentially with tRNATYT gene-specific probes. In most cases when the primer
combinations gave rise to PCR products, the principal PCR product was found to
hybridize with tRNAT gene-specific probes. Although, in two instances (Figure 17 Panel
A, lane 12; Figure 17 Panel B, lane 11) a minor 2.5 kb PCR product, rather than the
predominant 4.5 kb PCR product, hybridized with the 6-3 and 6-4 tRNATY gene-specific
probes. The autoradiographs f these Southern transfers allowed the visualization of the
PCR products that extcnded from gene to gene (data not shown). The conclusions from

the PCR reactions and the hybridizations are summarized «. rigu:c 18, illustrating the A

HtM6 tRNATY gene locations and orientations.

3.3 DNA sequencir

While five ¢* :i:» +*« tyrosine tDNA sequences, as well as their immediate flanking
sequences, had been determined by MacPherson (1988) one tRNATY" gene sequence
re:nained to be determined. The tRNATYT gene that remaii:ed uncharacterized was named
M2 and it was located on AHtM2. To characterize this tRNATY gene, a 855 bp
Hind11l/Bgil fragmen: known to contain this gene was cloned into pUC118 and then

sequenced by the chain termination method (Figure 19). Analysis of this DNA sequence



Figure 17. Determination of the AHtM6 tRNAT)T gene orientations by PCR.
Panel A
A photograph of the ethidium bromide stained 1.0 % agarose gel on which samples
of the PCR reactions were fractionated. Lane 1 contains A DNA digested with restriction
endonuclease BsfEIl. Lanes 2 - 17 show the products from the amplification of AHtMo6
DNA, while lanes 18 and 19 show the products from the amplification of AHtM2 DNA.
The primers that were used for each PCR reaction are indicated in the table below, under

each lane number. See Section 2.11 (Materials and Methods) for the sequence of each

primer.
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Figure 17. Determination of the AHtM6 tRNATT gene orientations by PCR.
Panel B
A photograph of the ymide stained 1.0 %o agarose gel on which samples
of the PCR reactions were f nvowa. o Lanes I, A DNA digested with restriction
endonuclease BsEIl, and 16, A DNA digested with restriction endonuclease Hindlll, are
DNA size markers. Lanes 2 - 15 show the products from the amplification of AHtM6
DNA. The primers that were used for each PCR reaction are indicated in the table below,

under each lane number. See Section 2.11 for the sequence of each primer.

6171819110} 11(12[13]14]15

28]
)
BN
N

Tyrosine Primers
DSP 1 (Tyr-R) X XXX XXX
DsP 2 (Tv -L) X X[ X[ XX [X[X

pM6128 i - -
KLR 77 X X

pM6 Primer
KLR 79 X X
pM612 Primer
KLR 80 X X

pM6IT Primer
KLR 78 X X

LEFT A Primer
DSP 5 X! X

RIGHT A Primer
DSP 6 1] X X
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Figure 18. Schematic representation of the PCR products spanning from gene to

gene on recombinant bacteriophage AHtM6.

The » Charon 4A nhage vector sequences are shown as dashed lines, with the
maps drawn from left to right. The DNA insert is represented by th. darker solid line.
The restriction endonuclease digestion sites are indicated by letters with B for BamHI, G
for Bglll, E for LcoRI and H for Hindl1l. The tRNA genes are represented by dots on the
restriction maps, however, the orientations of the genes are shown below each map. The
arrows enclosed in boxes represent tRNA genes, with the peint of the arrow indicating the
direction of transcription The overlapping portion between AHtM2 and AHtM®6 is
indicated by solid line under the restriction map. The three most important PCR products
are shown below the restriction map, along with the primers used to amplify these

products. Note that the primers, represented by arrows, are not drawn the scale.
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Figure 19. Nucleotide sequence of the tRNATYT gene within pM6128,

The nucleotide sequence of the 855 bp Hindl11/Bglll DNA fragment from AHtM2
is shown The upper strand of sequence depicts the non-coding strand of DNA. The 6-1
tRNA™T gene which starts at position 395 is shown in bold, while the intervening
sequence is underlined A transcription termination signal of 4 T residues is found at

position 501 The nucleotide sequence initially determined by MacPherson (1988) is

indicated with dashed lines



101

151

401

451

501

551

601

651

701

751

801

851

GTTTTCTTTC
CARRAGAAAG

CAGGTGGAGG
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TCAGCGCTCT
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CCAATCAACT
GGTTAGTTGA

TCCATTTGCG
AGGTARAACGC

ATAGCTCAGC
TATCGAGTCG

ACATCCTTAG
TGTAGGAATC

TTTTGCATGC
AARACGTACG

ACTAGTATCC
TGATCATAGG

GATCACCTGG
CTAGTGGACC

CCCACTCATT
GGGTGAGTAA

GCCCCTTGCT
CGGGGAACGA

TCGCACCCCC
AGCCGTGGGGG

GGGTGCTGAG
CCCACGACTC

GATCT
CTAGA
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TCTTOTT
i

AGTTCT
TC AAGnAk,vn.'\

CACTTAGCCC
GTGGATCGGG

GCTGAGGGCT
CGACTCCCGA
AAGGCCACAG
TTCCGGTGTC

GGGACGCGAG
CCCTGCGCTC

GCGGTGGCAA
CGCCACCGTT

CTAAGTGTGT
GATTCACACA

GAAAGTCCAG
CTTTCAGGTC

TGGTAGAGCG
ACCATCTCGC

GTCGCTGGTT
CAGCGACCAA

ALTGCCACCT
TTACGGTGGA

ACCCACACCC
TGGGTGTGGG

TTTCCACACC
ARAGGTGTGG

CTTCCCACAG
GAAGGGTGTC

TCTGCTTTGT
AGACGAAACA

ACCATCCAGA
TGGTAGGTCT

GGCCATGGAC
CCGGTACCTCG

3Q
i
TCCTC*TCCI

ATCCICTETGA
TAGGGAGACT
GTCATCCTUA
CAGTAGSH
GCGAGAGU T
CGCTCT "GGA
GAAACCACAC
CTTTGGTGTG

CCAGCGCAAG
¢ TCGCGTTC

TGACTCCAGC
ACTGAGGTCG

TGATCCAGCT
ACTAGGTCGA

GAGGACTGTA
CTCCTGACAT

CGATTCCGGC
GCTAAGGCCG

GGTGCCTGGT
CCACGGACCA

TCCCAGTCAA
AGGGTCAGTT

TGTGCTGTGG
ACACGACACC

TCCAGGGACA
AGGTCCCTGT

GACCCAGTCA
CTGGGTCAGT

GCTCTTTCAC
CGAGARAGTG

TCTAGCAACA
AGATCGTTGT

J0

|
GUAASCCCTG
COTTGGGGAC

CUGAGTIeCTC
GGUTCGGGAG

CTTGTAAAAR

 GAACATTTTT

TCGTCCTGG
GGGCAGGACC

TCGGAGGATT
AGCCTCCTAA

GTTCTCTTCY
CAAGAGAAGA

GTTCCAAGGA
CAAGGTTCCT

CTTGCAGCGT
GARACGTCGCA

GATTGTACAG

KN

I
TCCCACAGGA
AGGCTGETCCT

TCACCCTS!T
AGTGGGAGAA

CAGAGATGCA
GTCTCTACGT

ATTGTGGTTA
TAACACCGAT

TGCTCCACCC
ACGAGGTGGH

AAGGCGGGETT
TTCCGCCCAN

CTTGGCTTCC
GAACCGAAGG

GCACCCTTCG
CGTGGGAAGC

ACATTTGCGG

CTAACATGTC

TGTARACGCC

TCGAAGGAAG
AGCTTCCTTC

CAAACGCC. . T
GTTTGCGGGA

AACCCAGAGA
TTGGGTCTCT

CCAGGAARCH
GGTCCTTTGT

GGTACTCTTC
CCATGAGAAG

GCCCCTCTCC
CGGGGAGAGG

TTTTATCCAC
AARRATAGGTG

TTGTGTGCTC
ARCACACGAG

TGCCCGATGC
ACGGGCTACG

GCAGCCTCCA
CGTCGGAGGT

AACCTTTCC'T
TTGGAAAGGA

CGCCCGTAAG
GCGGGCATTC

AACGCAAAGG
TTGCGTTTCC

CCRACCCCCT
GG TGGGGGA

AGACTGCTCT
TCTGACGAGA

ACCATTGATA
TGGTARCTAT

-
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showed that the tRNA DY gene and its surrounding flanking sequences were identical to
the 6-1 tRNATT gene on AHIMG  This was the observation which led to further
experiments which have since shown that 2HtM2 and AHtM®6 are overlapping
bacteriophage clones. The series of clones constructed to sequence this 855 bp DNA
fragment were later utilized for in vifro transcription experiments.

An additional project undertaken was the sequencing of a 2.4 kb HindlI/EcoRI
fragment of Al"tM4 which was thought to contain an additional tRNATY gene, based on
the hybridization of tRNA) gene-specific probes to two distinct bands on a Southern
transfer of doubly digested pJM4 DNA. This fragment had been cloned into pAT153 (to
give pJM4 by MacPherson (1988). The decision was made to subclone this fragment into
pUC118 to facilitate DNA sequencing in both orientations. The multiple cloning site of
pUC 118 was utilized for the generation of overlapping clones by the exonuclease 11
unidirectional deletion method (Henikoff, 1987). The resulting deletion clones were
selected on the basis of size and the presence of a universal primer binding site, with
suitable clones used for the production of single-stranded plasmid DNA to be used for
sequencing with the Klenow fragment of . coli DNA polymerase 1. Double-stranded
sequencing with Taq DNA polymerase was also performed. In places where deletion
clones did not overlap, specific oligonucleotide primers were designed and synthesized to
extend the sequence. In addition to the deletion clones generated, restriction fragments
were subcloned into pUC118 to aid in the sequence determination and to serve as
templates for in vifro transcription assays. This study identified two new tRNA genes, a
tRNATYT gene and a tRNAAI gene (Figure 20), that have been shown in the next section
to be transcriptionally active.

Further sequencing of the tRNA gene-containing clones was undertaken using the
Applied Biosystems Inc. automated DNA sequencer. The nucleotide sequence of the 1.4
kb AHtM6 HindIIl fragment that carries the 6-2 tRNATY gene was determined by

automated sequencing utilizing a series of custom oligonucleotide primers (Figure 21).



Figure 20. Nucleotide <« \cc »" the tRNA genes within pJMd.

T .o nucleotide scuene ot he 2455 bp HindIil'/-coR1T DNA fragment from
AHtM4 1s shown. The upper - i of the sequence depicis the non-coding strand of
DNA. The tRNA genesare w1 i bold and the intervening sequences are underlined,
tRNATT 4-1 at position 1.7, (RN 4-2 at pesiti n 1738, and tRNAAR 4-3 at position
1940. Termination signals (4 or m I residues) are tovad ar positions 1221, 1849,
2014, and 2036. The nucleotide sequence initially determi- Jd by MacPherson (1088 s

indicated with dashed lines
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LEGCTTTTRC 1T

TTCGRALA DG

ATTCCRETCT
TRAGGTTRGE

CTCAGTTTGG
GARGTCARARCC

GGGCHARRCC
CCCGTTTTGG
TGGGAATATG
KRCCCTTATAC

ARAATAGGCC
TTTTARTCCGG

TTTTARARTT
PAAATTTTAR

GATCTTCTTC
CTAGAAGAAG

CTAGGAACTT
GATCCTTGAA

TGTCTACAGA
ACAGATGTCT

GCCGGGGGTG
CGGCCCCrCGC

TGGACCGGTG
ACCTGGCCAC

TGCAGAAATC
ACGTCTTTAG

TAATGATTTC
ATTACTAAAG

AGGAGCTGGA
TCCTCGACCT

GCGCCACTGG
CGCGGTGACC

TGTTGAGAAC
ACAACTCTTG

AGGAAARAGTA
TCCTTTTCAT

CGGACCCCAG
GCCTGGGGTC

COOTTOCRCR
GGGRAGETGT

CCRREACCARC
GGTTTGGTTG

CRGGTCGTTG
GTCCAGCARC

GCRGCARACC
CGTCGTTTGG

GRCGARAGCAG
CTGCTTCGTC

RARCATARAR
TTTGTATTTT

CCTCTCTTTG
GGAGAGAAAC

AGTGACTCTG
TCACTGAGAC

ACCCCGGGCT
TGGGGCCCGA

TTCCGAGACC
AAGGCTCTGG

GCGCTGGTAA
CGCGACCATT

CAAACTGCTG
GTTTGACGAC

TGGTTTGTTA
ACCARACAAT

CCTACAATCT
GGATGTTAGA

CCTACCACGC
GGATGGTGCG

ACACTCGGCA
TGTGAGCCGT

CGACAAGGGG
GCTGTTCCCC

ACACCTGGGT
TGTGSACCCA

32
|
TCCTATCTTA

; WCGARTAGRAT

AATATTARCTA
TTATAATGAT

ATGATGCCTT
TACTACGGAA

GATGGTTTTT
CTACCAAAAPR.

TTAACARTTY
ARTTCTTAAA

GATTATARGC
CTAATATTCG

TAGGARCCAG
ATCCTTGGTC

CTTAGCCGGG
GAATCGGCCC

ATGTCTTAGT
TACAGAATCA

TCAGTGGCGT
AGTCACCGCA

CTCGGRGCCT
GAGCCCCGGA

GGCCTCCCGG
CCGGAGGGCC

GCATTCGCGG
CGTAAGCGCC

ACCTCAAGTG
TGGAGTTCAC

TCTGATGCGT
AGACTACGCA

TACTCCTTCA
ATGAGGAAGT

ACCACTTTAA
TGGTGARATT

GGGCGGTGGA
CCCGCCACCT

TGAGGGCCTT
ACTCCCGGAA

40

I
CAGGGGAGAT
GTCCCCTCTA

TAATAACATT
RTTATTGTAR

CTTGGTTAARA
GAACCAATTT

ACGCTACGCT
TGCGATGCGA

ATARACGCTA
TATTTGCGAT

CTATCTGGGA
GATAGACCCT

ATCAARAAAGA
TAGTTTTTCT

GGTTGGTGAG
CCARCCACTC

AGATGCGGTG
TCTACGCCAC

CTTCCTARCC
GAAGGATTGG

TCCCTTCACC
AGGGAAGTGG

GCTCAAAGTG
CGAGTTTCAC

TTTGGGGACG
AARCCCCTGC

ACAATAATGC
TGTTATTACG

GGTCAGACAC
CCAGTCTGTG

GTCGCCGTTG
CAGCGGCAAC

AGGACAACGC
TCCTGTTGCG

ATCGCAGGGT
TAGCGTCCCA

TCCCGGGTCA

50
)

TTAAGARATA
AATTCTTTAT

AAAATAGRARA
TTTTATCTTT

AGATCTCTAA
TCTAGAGATT

BACAACTGAG
TTGTTGACTC

TGACCTTACA
ACTGGAATGT

TTGAATAACT
RACTTATTGA

CATTCTATGT
GTAAGATACA

GGGACTTTCT
CCCTGAAAGA

GAACCAGCTC
CTTGGTCGAG

CGGCTTGCCT
GCCGAACGGA

CCGCGGGAGT
GGCGCCCTCA

CAACGGACAC
GTTGCCTGTG

CCAGAGGAGG
GGTCTCCTCC

CGAGCCAGGC
GCTCGGTCCG

GTTATCCCTT
CAATAGGGAA

GATTACTGTG
CTARATGACAC

AGGCTGGTAA
TCCGACCATT

CTTGGCATCG
GAACCGTAGC

GTCAGGCTAG

90
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CGAGCCGGAG
GCTCGGTCTC

CTCTGGGGCT
GAGACCCCGA

TTGCCTGGAC
AACGGACCTG

GACACACGTA
CTGTGTGCAT

TAGCTACTTC

-~

2 C
|

CGTTITGTCT
GCAAGACAGA

CTGCGCTCCT
GRCGCGAGGA

TAGCGOTCCG

ATCGCGAGGHT

CACGTCCCTT
GTGCAGGGAA

CTCAGCAGGA

30

TTCTGCGCAC

30
|
GCGTAGAGCA

ATGACGCGTG CGUATCTCGT

CGGATTACGC ATGCTCAGTG
GCCTAATGCG TACGAGTIAC

GTTTTTCTGT GOTHAACCTC
CAAARAGACA CGACTTGGAG

CGATAGCTCA GCTGGTAGAG
GCTATCGAGT CGACCATCTC

GACATCCTTA GGTCGCTGGT

ATCGATGAAG

GAGTCGTCCT

CTGTAGGAAT CCAGCGACCA

CTCGAAGGAG
GAGCTTCCTC

GCACTTTCCT
CGTGAAAGGA

TGAAAGTCTA
ACTTTCAGAT

ATTCTTTTTA
TAAGAAAAAT

CGCAGTGTGG
GCGTCACACC

CGTCTTCTTA
GCAGAAGAAT

GGCAGCGCCG
CCGTCGCGGC

GGGCAGCTTC
CCCGTCGAAG

GGGGTCCGCG
CCCCAGGCGC

AGAGAGAACA
TCTCTCTTGT

TGGAGACAAG
ACCTCTGTTC

AGCTGGTAGA
TCGACCATCT

CGCTGGTTCG
GCGACCAAGC

TTGTTGCTTT
ARCAACGARA

ACAAGTGCGG
TGTTCACGCC

TGGGTGCCTT
RCCCACGGAA

GCGCTTTCTC
CGCGAAARGAG

GCCATTCGCC
CGGTAAGCGG

GTCTGCGCTT
CAGACGCGAA

ACCCGTCTTT
TGGGCARGAAA

GCTCCAGGGG
CGAGGTCCCC

TGCGACCCGA
ACGCTGGCCT

GGAAGAGGTA
CCTTCTCCAT

CAATACTAAA
GTTATGATTT

GCGGCACCCG
CGCCGTGGGC

GCGGAGGACT
CGCCTCCTGA

ATTCCGGCTC
TAAGGCCGAG

GAACCARARARA
CTTGGTTTTT

TTTTTTTTCT CCAGCTCCCG
AAAAAARAGA GGTCGAGGGC

CAGTGACACA TTGCATTCCA
GTCACTGTGT AACGTAAGGT

CCCATTTTGG GCCTCCCAGC
GGGTAAARACC CGGAGGGTCG

CTGCGGGAAC GTGTCCGGGC
GACGCCCTTG CACAGGCCCG

GGCCGAGCGA CTGCCGGGTC
CCGGCTCGCT GACGGCCCAG

GGCATTGCCC GGGCCCCGAG
CCGTAACGGG CCCGGGGCTC

GCCAGGCGGG GACCTTCTCC
CGGTCCGCCC CTGGAAGAGG

GGGCTCGCAA CGGCTGCCGT
CCCGAGCGTT GCCGACGGCA

TCTGGCGCTC CCGGAACCTG
AGACCGCGAG GGCCTTGGAC

BAACACGAAGC CTAARAAATGA
TTGTGCTTCG GATTTTTACT

GGAAGCTGTG CCCGCTCCCT
CCTTCGACAC GGGCGAGGGA

GTAGGCGCGC GCCCGTGGCC
CATCCGCGLG CGGGCACCGG

GAAGGAGAGA CACCCCCCCC
CTTCCTCTCT GTGGGGGGGG

AGTCTGTCTT CAGCGCTCAA
TCAGRCEGRE GTCGCGAGTT

HO

|
CACAGCUCGRG
GTGTCCGGSC

CAATCTTCGG
GTTAGAAGCC

AGGGGACGCY
TCCCCTGCGG

CGGAGGACTG
GCCTCCTGAC

TCGATTCCRG
AGCTAAGGCC

ATGACTTATG
TACTGAATAC

ACGAGCAGTT
TGCTCGTCAA

CTGCACGGTA
GACGTGCCAT

AGGTTCCCAG
TCCAAGGGTC

ACGACTTCTG
TGCTGAAGAC

TCACACAGGA
AGTGTGTCCT

TCAGAGCCCC
AGTCTCGGGG

GAGGAGGTGG
CTCCTCCACC

GGARTCAGAA
CCTTAGTCTT

CACAATGTTA
GTGTTACAAT

TCGATAGCTC
AGCTATCGAG

ATCCTTAGGT
TAGGAATCCA

CCCCATTATT
GGGGTAATARAR

TGTTCTGACC
BCAAGRCTGG

oYl
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TCAAATGGTA
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CGARARTGGTGA

TTATCCTTCT
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CTTTTGTTTT

AACGTTTGCT
TTGCAARACGA
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I
RTRAGCCGTG
TATTCSGCAC

TTAGCATGCG
AATCGTACGC

TCCTGTCCCG
AGGACAGGGC

AAAGTCAGAC
TTTCAGTCTG

CTAARARCTTC
GATTTTGAAG

AGCTTTARAT
TCGAAATTTA

TTATTTTTGC
AATARRARCG

TCAGAATCCT
AGTCTTAGGA

TCTGAGGCTA
AGACTCCGAT

CAAGAAACAG
GTTCTTTGTC

CAACCGAGGA
GTTGGCTCCT

40

|
CCCAGCCGTG
GGGTCGGCAC

AGAGGTAGCG
TCTCCATCGC

TACGGTTTTT
ATGCCAARAAA

GAAGTCAGGT
CTTCAGTCCA

CCAGACAATG
GGTCTGTTAC

TTTTAGCCCC
AARBATCGGGG

TTCAAARATG
AAGTTTTTAC

TTATGATTTG
ARATACTAAAC

AGCTGCCCAT
TCGACGGGTA

AGAACTTGGA
TCTTGAACCT

AGCAGGAACT
TCGTCCTTGA

50

I
GGGGATTAGC
CCCCTAATCG

GGATCGATGC
CCTAGCTACG

CTTTCGATTC
GAAAGCTAAG

GAAGAGTAGG
CTTCTCATCC

AGTGGTGGGC
TCACCACCCG

ATTTAATTGG
TAAATTAACC

GCGACAGATT
CGCTGTCTAA

TGATARGATG
ACTATTCTAC

AGTTCGGGGA
TCAAGCCCCT

ARACGGACGCT
TTGCCTGCGA

GTTCGGCATG
CAAGCCGTAC



Figure 21. Nucleotide sequence of the tRNAT:T gene within pMeé.

The nucleotide sequence of the 1390 bp HindIll DNA fragment from AHtM6 is
shown. The upper strand of sequence depicts the non-coding strand of DNA. The 6-2
tRNATT gene which starts at position 998 is shown in bold, while the intervening
sequence is underlined. A transcription termination signal of 4 T residues is found at
position 1104. The coding strand of a putative Alu sequence, located between positions
89 to 386, is indicated by underlining, while the 4 bp direct repeats are indicated by double
underlining. The nucleotide sequence initially determined by MacPherson (1988) is

indicated with dashed lines.
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RIOGCTITTRT
TTCOARAARTA

MTCTGOGRGE
TAGACGCTCS
TTTTTARRATT
AARAATTTRA

GCTTACTGTA
CGARTGRCAT

20
!
GOTUSCOTTT
COROUCGGAAR
CoCTOLCCC
GlGRCTZGGEGH

GTCTCTGTCG
CRGAGACAGT

30

f
GGGGTTAGAG
CCCCRATCTC

ARCTCTCTCCC
TGRGAGRGGG

CCCAGGCTGG
GGGTCCGACC

40

l
GTAATGGGTA
CATTACCCAT

CACATATCTT
GTGTATAGAA

50

|
TCACATGGTG
AGTGTACCAC

TTTTTTTTTT
AAAAAAADNARA

AGTGCAGTGG
TCACGTCACC

CAAGATCACA
GTTCTAGTGT

GCCTCGRACH
CGGAGCTTGT

CCCGGGCTCA
GGGCCCGAGT

GATGATCCTC
CTACTAGGAG

CCACCTCAGC
GGTGGAGTCG

CTGCTGAGTG
GACGACTCAC

GCCELGGACCA
CGGTCCTGGT

CAGGTGCAGG
GTCCACGTCC

CACCACACCC
GTGGTGTGGG

GGATACTTTT
CCTATGAAAA

TAGAAGTTTT
ATCTTCAAAA

TCTGTAGAGA
AGACATCTCT

TGGCTTCTCC
ACCGAAGAGG

CTATGTTGCC
GATACAACGG

CAGGCTGATC
GTCCGACTAG

TCGAARCTCCT
AGCTTGAGGA

GCGTCAAGCG
CGCAGTTCGC

CCCCTTTCGC
GGGGAAAGCG

CTCGGCCCGC
GAGCCGGGCG

TAAATTGTTG
ATTTAACAAC

GAATTGCGGT
CTTAACGCCA

GCGAGCCACC
CGCTCGGTGG

ATACCTGGCC
TATGGACCGG

TCCACCTATC
AGGTGGATAG

TCCTCCCTCT
AGGAGGGAGA

ACACTGGGTA
TGTGACCCAT

GGGAAGTAGA
CCCTTCATCT

CAGACCCTGA
GTCTGGGACT

CTGGTTCTCC
GACCAAGAGG

CCATCAGTCT
GGTAGTCAGA

TCTGCCACTA
AGACGGTGAT

GAGAGGAAGG
CTCTCCTTCC

CGCCCCAGAG
GCGGGGTCTC

CGGAAAGGGG
GCCTTTCCCC

TCCAATTAAC
AGGTTAATTG

CTTCCCATTA
GAAGGGTAAT

GAAGGGCCGC
CTTCCCGGCG

GGACAGGCTG
CCTGTCCGAC

CGCTAGGCTG
GCGATCCGAC

TCTTTTCCTC
AGAAARGGAG

CACCAAGCCC
GTGGTTCGGG

AGGGCTGTCA
TCCCGACAGT

CCACAGGTGA
GGTGTCCACT

ACGCCAGGCA
TGCGGTCCGT

CGCAGTGGAG
GCGTCACCTC

TCAACGAGTA
AGTTGCTCAT

TGCCTCAATA
ACGGAGTTAT

GCACATCGAG
CGTGTAGCTC

TTAGGGCAGT
AATCCCGTCA

GGGTTGGAAG
CCCAACCTTC

CTCCAGTGTC
GAGGTCACAG

TCTGCCCTCG
AGACGGGAGC

TCTTCACAAG
AGAAGTGTTC

GAGCTCCTCC
CTCGAGGAGG

CCCCCCCGGG
GGGGGGGCCC

ACCGGCGCAG
TGGCCGCGTC

TTGGATCTCC
AACCTAGAGG

CTCCAAARAG
GAGGTTTTTC

AGGAGTGTGT
TCZTCACACA

GCCCCCTTAT
CGGGGGAATA

CTGCTTACAC
GACGAATGTG

CTCTCCTCCA
GAGAGGAGGT

CCGTCTTACC
GGCAGAATGG

CAGAAAGAGC
GTCTTTCTCG

TCGTGGATCG
AGCACCTAGC

CCCAGAGGAT
GGGTCTCCTA

AGTTCTCTTC
TCAAGAGAAG

GGTGGTCCAG

CTCCTGCATT
GAGGACGTAA

TGAGCATAGG
ACTCGTATCC

TTGAGGTGGT
AACTCCACCA

GG1CTTCCAT
CCAGAAGGTA

CACGCCCATG
GTGCGGGTAC

CTGGACCCAC
GACCTGGGTG

TCATTTTCCC
AGTAAAAGGE

GATGCAGAGG
CTACGTCTCC

TGGCTATCGG
ACCGATAGCC

TTGCTCTGTC
ARCGAGACAG

CAAGTCGGGT
GTTCAGCCChA

GGACTTGGCT

94
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TCCTCCATTT
AGGAGGTAAA

TCGATAGCTC
AGCTATCGAG

TGGACATCCT
ACCTGTAGGA

CTCTTTTGCG
GAGARRACGC

TTGCAGCCTT
BAACGTCGGAA

TCCTGCCTTT
AGGACGGAAA

CCTCATAGTC
GGAGTATCAG

GACCCCAATT
CTGGGGTTAA

BACTGCCCAC
TTGACGGGTG

AGCTGGTAGA
TCGACCATCT

TAGGTCGCTG
ATCCAGCGAC

CACAATGCTG
GTGTTACGAC

CCAGTCATAA
GGTCAGTATT

CCTGATCACA
GGACTAGTGT

TTCAGCTCAA
BAGTCGAGTT

ZGTGCCCCCA
GCACGGGGGT

CCATCCC *CT
GGTAGGGGGA

RIY
|
SAGTSASCCA

SOGTUASTGGET

GCGGAGGACT
CGCCTCCTGA

GTTCAATTCC
CAAGTTAAGG

CCTGGCTGCA
GGACCGACGT

CTACACTTTC
GATGT3AAAG

GGCCTGGGAG
CCGGACCCTC

AACAGTGCCC
TTGTCACGGG

CCATCCTACG
GGTAGGATGC

~TCCCAGACC
CAGGGTCTGG

40

|
GCOTTAACAG
CGGAATTGTC

GTAGACTGCG

HO

J
TGTGCATCCT
ACACGTAGGA

GAAACGTTTC

CATCTUGACGC CTTTGCAMAC

GGCTCGAAGG
CCGAGCTTCC
CCTGTTCCTC
GGACANGGAG

CCCAGGAAAN
GGGTCCTTTT

CCTATTCATT
GGATAAGTAA

CTTGCCTTGT
GAACGGAACA

CCTTTCCACT
GGAMRAGGTGA

CGTCAAGCTT
GCAGTTCGAA

AAGCGCCTGA
TTCGCGGACT

GTCAANGATC
CAGTTTITGG

CCCAGCAAAA
GGGTCGTTTT
CTTCCCGART
GANGGGCTTA
GACCCAGCCA
CTGGGTCGOGT

TGTATTTACA
ACATAAATGT

Os
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The nucleotide sequence of the 2 0 kb 2HtM6 HindIII fragment that carries the 6-3
tRNAY gene has also been determined in a similar fashion (Figure 22). Additional
sequences surrounding the 6-4 tRNA' gen= have also been sequenced (Figure 23). The
flanking sequences of the IRNATYT genes from AHtM6 were found to have extensive
regions of homology. An alignment of the four gene-containing sequences reveals the
extent of this homology (Figure 24).

A series of amplified tDNA sequences, cloned into pBS, have also been sequenced
in both orientations. The tDNA sequences that were successfully amplified and cloned
were from the 4-1, 6-1, 6-2, 6-3 and 6-4 tRNATY genes (Figure 25). However, due to
two degenerate positions on one of the oligonucleotide primers, mutations were
introduced into some of the tDNA sequences. These pBS clones were constructed to

serve as DNA templates for i virro transcription experiments described in the next

section.

3.4 In vitro transcription analysis of cloned human tRNA genes in mammalian cell

extracts

To accomplish the major goal of this study, which was the identification of

extragenic sequences that modulate human tRNATY gene expression, a collection of
tRNATY gene-containing plasmid clones was used to direct the synthesis of pre-tRNATY
transcripts in mammalian cell extracts. Restriction maps of these recombinant plasmids
show the positions of the tRNAT genes and the amounts of flanking sequences
surrounding the genes (Figures 26 - 30). Two human cell lines, HeLa and 293, were used
for the preparation of cell extracts. Since relatively large amounts of cells were required
(approx. 4 - § g) for these preparations, the cell lines wer= grown in suspension culture to
reduce the labor involved with cell propagation. In order to obtain the most

transcriptionally active cell extracts two whole cell extract procedures, one described by

Manley ez al. (1980) and the other described by Weil er al. (1979), were compared. The



Figure 22. Nucleotide sequence of the tRNAT' gene within pM612,

The nucleotide sequence of the 1971 bp Hindlll DNA fragment from AHtM6 is
shown. The upper strand of sequence depicts the non-coding strand of DNA The 6-3
tRNATYT gene which starts at position 1561 is shown in bold, while the intervening
sequence is underlined. A transcription termination signal of 4 T residues is found at
position 1667. The nucleotide sequence initially determined by MacPherson (1988) is

indicated with dashed lines.
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Figure 23. Nucleotide sequence of the tRNATY™ gene within pM6IT-E.

The nucleotide sequence of the 1437 bp LicoRl DNA fragment from AHtM6 is
shown. The upper strand of sequence depicts the non-coding strand of DNA. The 6-4
tRNATY gene which starts at position 1014 is shown in bold, while the intervening
sequence is underlined. A transcription termination signal of 4 T residues is found at
position 1120. The nucleotide sequence initially determined by MacPherson (1988) is

indicated with dashed lines.
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Figure 24. Nucleotide sequence alignment of the AHtM6 tRNATY" genes and their

flanking sequences.

The nucleotide sequence alignment depicts the non-coding strands of DNA from
each of the four recombinant plasmids. One kb of sequence from pM6, pM612 and
pM6IT was used for the alignment, however, only 855 bp of sequence from pM6128 was
available for the alignment. The pM6128, pM6, pM612, and pM6IT plasmids carry the 6-
1, 6-2, 6-3, and 6-4 tRNA''T genes, respectively. The tDNA sequences are shown in bold
type and their intervening sequences are underlined. The positions that are perfectly

conserved are indicated by an asterisk (*), while the positions that are well conserved are

indicated with a period (.).
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RTG----~- AAACTAGATGAAATATTTGAA-TAACATGTTAGARAATTGRATTC



Figure 25. Nucleotide sequences of the IRNAT:T genes cloned into pBS.

The sequences depict the non-coding strand of DNA. For the purpose of
identification the exon sequences have been separated from the intron sequences. The
tDNA sequence designated (1) for each tRNAT'T gene represent the wild-type sequences.
The mutations in the pBS clones are indicated by underlined positions. The 4-1 tRNATY
gene sequences (2) and (3) are from pBS clones pJM4 #60 and #527, respectively. The 6-
I tRNATY gene sequence (2) is from pBS clone pM6128 #272. The 6-3 tRNATYT gene
sequence (2) is from pBS clones pM612 #50. The M6IT tRNAT)T gene sequences
(2) and (3) are from pBS clones pM6IT #39 and #55, respectively. The 6-2 tRNATYT gene

sequence (2) is from pBS clone pM6 #436, which contains two tRNATYT genes in tandem.
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Figure 26. Restriction endonuclease maps of the recombinant plasmids

containing the tRNA genes from AHtM4.

These restriction maps were generated from the nucleotide sequence of pJM4, a
recombinant plasmid which contains a 2.4 kb HindIll/EcoRl DNA fragment. The tRNA
genes are each represented by an arrow enclosed in a box, with the point of the arrow
indicating the direction of gene transcription The recombinant plasmids pJM4-HA and
pJM4-MA both have 0.26 kb of 3' flanking sequence, but pJM4-HA has more 5' flanking
sequence. The recombinant plasmids pJM4 #60 and pJM4 #527, which differ by a single
mutation, both have no human flanking sequences on either side of the tRNATY gene.
The recombinant plasmids pJMS42-AE and pJMS42-AS both have 250 bp of 5' flanking
sequence, but pJMS42-AS has less 3' flanking sequence. The recombinant plasmid

pDSALA has 31 bp of 5' flanking sequence upstream of the tRNAAla gene,
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Figure 27. Restriction endonuclease maps of recombinant plasmids containing the

6-1 tRNAT:T gene,

These restriction maps were generated from the nucleotide sequence of the
pMo6128-HB, a recombinant plasmid which contains an 855 bp Hind11l/Bg/ll DNA
fragment from AHtM2. The tRNAT) gene is represented by an arrow enclosed in a box,
with the point of the arrow indicating the direction of gene transcription. The recombinant
plasmid pM6128-HB has 395 bp of §' flanking sequence, but 0.65 kb less 3' flanking
sequence than pM6128. The recombinant plasmid pM6128-S has 61 bp of 5' flanking

sequence. The recombinant plasmid pM6128 #272 has no human flanking sequences on

either side of the tRNA gene.
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Figure 28. Restriction endonuclease maps of recombinant plasmids containing the

6-2 tRNAT:T gene.

These restriction maps were generated from the nucleotide sequence of the pM6,
the recombinant plasmid which contains the 1390 bp HindIII fragment of AHtM6
subcloned into plasmid vector pUC118. The tRNA gene is shown as an arrow enclosed in
a box, with the point of the arrow indicating the direction of gene transcription. The
recombinant plasmid pMG6 has 997 bp of 5' flanking sequence. The recombinant plasmid
pM6 #436, which has no human flanking sequences, contains two tandem in vitro mutated

6-2 tRNATY genes as a result of cloning tDNA sequences that had been amplified by

PCR.
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Figure 29. Restriction endonuclease maps of the recombinant plasmids

containing the 6-3 tRNAT:T gene.

These restriction maps were generated from the nucleotide sequence of pM612, a
recombinant plasmid which contains a 1971 bp HindlIl DNA fragment from AHtM6. The
tRNA genes are each represented by an arrow enclosed in a box, with the point of the
arrow indicating the direction of gene transcription The recombinant plasmids pM612,
pM612-S and pM612-N have 1561, 219 and 2 bp of 5' flanking sequence, respectively.

The recombinant plasmid pM612 #50 has no human flanking sequences on either side of

the tRNATV gene.
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Figure 30. Restriction endonuclease maps of the recombinant plasmids

containing the 6-4 tRNAT)T gene.

These restriction maps were generated from the nucleotide sequence of pM6IT-E,
a recombinant plasmid which contains a 1437 bp FcoRl DNA fragment from AHtM6. The
tRNA genes are each represented by an arrow enclosed in a box, with the point of the
arrow indicating the direction of gene transcription The recombinant plasmids pM6IT-E
and pM6IT-HE have 1014 and 78 bp of 5' flanking sequence, respectively. The
recombinant plasmids pM6IT #39 and pM6IT #55, which differ by two mutations, have

no human flanking sequences on either side of the tRNAT)T gene.
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protocol described by Weil ef al. (1979) consistently produced active S-100 cell extracts
that had low RNase activity and very little batch-to-batch variation, especially when 292
cells were used.

All of the in vitro experiments described in this section were performed with the
same preparation of 293 cell S-100 extract to standardize the results. The preparation of
S-100 cell extract used for these in vitro experiments had high RNA polyinerase III
activity but had very low tRNA processing activity.

The plasmid vectors (pAT153, pUCI 18, pUC119, and pBS) used to clone gene-
containing restriction fragments were tested for transcriptional activity and found not to
direct the synthesis of specific RNA transcripts in mammalian cell extracts. These vectors
can give rise to nonspecific RNA synthesis when a significant amount of the plasmid DNA
is in the relaxed circular or linear form. This nonspecific RNA synthesis was responsible
for the high molecular weight bands observed on the autoradiographs from the in vitro
transcription experiments (Figures 31 - 36).

Five of the tRNATT gene-containing plasmids, pM6128, pM6IT, pM612, pM6 and
pJM4-HA, had very similar transcription efficiencies in vitro. The nearly idemical
transcription efficiencies of these gene containing plasmids is evident in lanes 3 - 7 of
Figure 31, which contain similar amounts of pre-tRNATD transcripts. The most abundant
RNA species were the pre-tRNAT transcripts (112 - 1 15 nt), while the minor speices
were the processing intermediates. The 5' half of pre-tRNATYT was approxiamtely 43 nt
and the 3' half was approxiamtely 52 nt. Similar expression levels amongst the AHtM6
tRNATY genes were not unexpected due to the sequence homology in the 5' flanking
sequences of these genes.

The transcription efficiency of the sixth tRNATY gene, 4-2, was difficult to
compare with the others due to the presence of the 4-3 tRNAAl2 gene in the pJMS42
constructs. When the in vitro transcription assays were performed with templates that

carried both the 4-2 and 4-3 tRNA genes, the pre-tRNAs were identical in size (112 - 115



Figure 31. RNA transcripts from in vitro transcription reactions directed by

recombinant plasmids containing cloned human tRNA genes.

The nucleic acids extracted from these in vitro reactions were separated
electrophoretically on 10% denaturing polyacrylamide gels and the RNA transcripts
synthesized in vitro were visualized by 8 - 16 hours of autoradiography at -20°C. Lanes 1
and 10 contain single-stranded, radioactively labeled size markers which consisted of a
mixture of 5S RNA from E. coli (121 nt.), tRNAPP¢ from brewer's yeast (77 nt.), and four
synthetic oligonucleotides (89, 53, 41 and 22 nt.). Lane 2 is a control lane, showing the
synthesis of products directed by the vector pUC118 alone. The recombinant plasmids
directing the in vitro synthesis in lanes 3- 9 were pM6128, pM6IT, pM612, pM6, pJM4-
HA, pJMS42-AE and pDSALA, respectively.
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Figure 32. RNA transcripts from in vitro transcription reactions directed by

recombinant plasmids containing the 6-1 tRNAT)T gene.

The nucleic acids extracted from these in vitro reactions were separated
electrophoretically on 10% denaturing polyacrylamide gels and the RNA transcripts
synthesized in vitro were visualized by 8 - 16 hours of autoradiography at -20°C  Lane |
contain single-stranded, radioactively labeled size markers which consisted of a mixture of
58 RNA from E. coli (121 nt.), tRNAP from brewer's yeast (77 nt.), and four synthetic
ohigonucleotides (89, 53, 41 and 22 nt.). Lane 2 is a control lane, showing the synthesis of
products directed by the vector pUC 118 alone. The recombinant plasmids directing the in
vitro synthesis in lanes 3, - 6 were pM6128, pM0128-HB, pM6128-S and pM6128 #272,

respectively.



1234567

121=—

89 —
77 - -

53 —

41= -

22 —



Figure 33. RNA transcripts from in vitro transcription reactions directed by

recombinant plasmids containing the 6-2 tRNATYT gene.

The nucleic acids extracted from these in vitro reactions were separated
electrophoretically on 10%6 denaturing polyacrylamide gels and the RNA transcripts
synthesized in vitro were visualized by 8 - 16 hours of autoradiography at -20°C. Lane 1
contain single-stranded, radioactively labeled size markers which consisted of a mixture of
5S RNA from E. coli (121 nt.), tRNAPhe from brewer's yeast (77 nt.), and four synthetic
oligonucleotides (89, 53, 41 and 22 nt.). Lane 2 is a control lane, showing the synthesis of
products directed by the vector pUC118 alone. The recombinant plasmids directing the in

vitro synthesis in lanes 3 and 4 are pM6 and pM6 #436, respectively.
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Figure 34. RNA transcripts from in vitro transcription reactions directed by

recombinant plasmids containing the 6-3 tRNATY gene,

The nucleic acids extracted from these in virro reactions were separated
electrophoretically on 1095 denaturing polyacrylamide gels and the RNA transcripts
synthesized in vitro were visualized by 8 - 16 hours of autoradiography at -20°C. Lane |
contains single-stranded, radioactively labeled size markers which consisted of a mixture
of 5S RNA from E. coli (121 nt.), tRNAPhe from brewer's yeast (77 nt.), and four
synthetic oligonucleotides (89, 53, 41 and 22 nt.). Lane 2 is a control lane, showing the
synthesis of products directed by the vector pUC118 alone. The recombinant plasmids
directing the in vitro synthesis in lanes 3 - 6 are pM612, pM612-S, pM612-N and pM612

#50, respectively.
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Figure 35. RNA transcripts from in vitro transcription reactions directed by

recombinant plasmids containing the 6-4 tRNAT" gene.

The nucleic acids extracted from these in vitro reactions were separated
electrophoretically on 10% denaturing polyacrylamide gels and the RNA transcripts
synthesized in vitro were visualized by 8 - 16 hours of autoradiography at -20°C. Lane 1
contains single-stranded, radioactively labeled size markers which consisted of a mixture
of 5S RNA from E. coli (121 nt.), tRNAPh¢ from brewer's yeast (77 nt.), and four
synthetic oligonucleotides (89, 53, 41 and 22 nt.). Lane 2 is a control lane, showing the
synthesis of products directed by the vector pUC118 alone. The recombinant plasmids
directing the in vitro synthesis in lanes 3 - 7 are pM6IT, pM6IT-E, pMOIT-HE, pM6IT
#39 and pMG6IT #55, respectively.
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Figure 36. RNA transcripts from in vitro transcription reactions directed by

recombinant plasmids containing tRNA genes from AHtM4,

The nucleic acids extracted from these in vitro reactions were separated
electrophoretically on 10% denaturing polyacrylamide gels and the RNA transcripts
synthesized in vitro were visualized by 8 - 16 hours of autoradiography at -20°C. Lanes |
and 7 contain single-stranded, radioactively labeled size markers which consisted of a
mixture of 5S RNA from F. coli (121 nt.), tRNAP from brewer's yeast (77 nt.), and four
synthetic oligonucleotides (89, 53, 41 and 22 nt.). Lane 2 is a control lane, showing the
synthesis of products directed by the vector pUC118 alone. The recombinant plasmids
directing the in vitro synthesis in lanes 3 - 6 and 8 -10 are pJ]M4-HA, pJM4-MA, pJM4
#60, pJM4 #527, pIMS42-AE, pJMS42-SE and pDSALA.
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nt). However the RNA processing intermediates from each tRNA gene were distinct,
since the major tRNAA intermediate was 76 nt and the tRNADYT intermediates were 42
and 53 nt (Figure 31, lane 8; Figure 36, lanes 8 and 9).

The identification of extragenic sequences capable of modulating tRNA gene
expression was attempted by obtaining gene-containing plasmid clones with varying
amounts of native flanking sequence and testing the ability of these recombinant plasmids
to direct tRNA synthesis in vitro. The transcription efficiencies of the pM6128, pM6,
pM612, pM6IT, and both pJM4-HA and pJMS42 tRNATT gene-containing plasmids are
compared in Figures 32, 33, 34, 35 and 36, respectively. All of these tRNA gene-
containing plasmids were capable of directing the in vitro synthesis of pre-tRNA
transcripts regardless of the sequences flanking the tRNADT gene (Figures 31 - 36).
However, some of the plasmid constructs that lacked native flanking sequences directed
the synthesis of longer transcripts. The plasmid constructs that directed the synthesis of
these longer transcripts were pM6128 #272 (Figure 32, lane 6), pMOIT #39 and #55
(Figure 35, lanes 6 and 7), and pJM4 #60 (Figure 36, lane 5). The recombinant plasmid
pM6 #436 directed the synthesis of longer RNA transcripts due to the head-to-tail
arrangement of the two 6-2 tRNATYT genes it harbours (Figure 33, lane 4).

The inability of the 5' flanking sequence deletions to cause changes in the
transcription efficiencies, and the similar transcription activities of the tRNATY genes,
does not permit the identification of extragenic regulatory sequences. While there was
some variation in tRNA transcription efficiencies from experiment to experiment, there

were no consistent differences observed.

3.5 Self-cleavage of pre-tRNA
With the appearance of a report by van Tol et al. (1989) claiming that human
precursor tRNADT transcripts, from a gene identical to 4-1, can catalyze the excision of

their introns, experiments were designed to reproduce and to extend their results. The
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pre-tRNATY transcripts assayed for self-cleavage activity were generated by in vitro
transcription with either mammalian cell extracts or T7 RNA polymerase. It was reasoned
that if the pre-tRNATYT transcripts have catalytic activity it should be retained regardless of
the RNA polymerase that transcribes the tDNA sequence. All of the RNA self-cleavage
assays were performed with radioactively labeled RNAs to allow the visualization of
cleavage products by autoradiography. The experiments consisted of incubating gel-
purified pre-tRNATY in 100 mM NH,OAc (pH 8.0), 10 mM MgCl,, 0.5 mM spermine
and 0.4% Triton X-100 for a minimum of 2 hours at temperatures ranging from 37 to 46°
C, the same conditions that had been used by van Tol e7 al. (1989). The pre-tRNATY
transcripts synthesized by T7 RNA polymerase would also be free of any post-
transcriptional modifications that might occur in eukaryotic systems. Therefore, the T7
generated transcripts would serve as controls to test whether the RNA self-cleavage is a
consequence of post-transcriptional events (e.g. methylation of the pre-tRNA) that occur
in mammalian cell extracts.

To obtain pre-tRNAT transcripts synthesized by T7 RNA polymerase the tDNA
sequences were amplified by PCR and cloned into pBS, which has a T7 promoter adjacent
to the multiple cloning site. These T7 generated transcripts, while free of any eukaryotic
post-transcriptional modifications, did not have native 5° leader and 3’ trailer sequences.
T7 RNA polymerase initiated transcription from its promoter and transcribed both vector
and tDNA sequences until it reached the end of the linearized DNA template. The
resulting pre-tRNATY transcripts were chimeric, with the 5’ leader and 3’ trailer
sequences a consequence of the vector DNA flanking the cloned tRNATYT genes. Another
factor that made the T7 pre-tRNATT transcripts chimeric was the mutation(s) introduced
into the PCR amplified tDNA sequences as a result of degenerate positions on one of the
oligonucleotide primers (i.e. DSP 2).

In order to distinguish RNA self-cleavage from degradation by ribonuclease

contamination, three RNAs (E. coli 5S rRNA, yeast tRNAP and human pre-tRNAAL)



served as controls. These RNAs were chosen as controls because they do not contain
introns and they were available in sufficient quantities. The control RNAs were assayed
alongside the pre-tRNATY transcripts and did not usually show any self-cleavage or
degradation, except for the human pre-tRNAAI transcripts, which yielded cleavage
products when the incubation temperature was increased to 46°C. Occasional
ribonuclease contamination (e.g. lane 11 of Figure 38, lanes 2 and 11 of Figure 39, and
lane 10 of Figure 41) of the RNA self-cleavage assay did occur, which was evident from
the unusually high amount of RNA degradation products visualized.

Initially, the self-cleavage assays were performed at 37°C for 2 hours with pre-
tRNATY transcripts synthesized in vitro with 293 S-100 cell extracts. Under these
conditions the pre-tRNATM transcripts exhibited very little self-cleavage activity, which
required three days of autoradiography at -80°C to detect. To increase the amount of
RNA cleavage the experiments were repeated with the temperature increased from 37 to
42°C and the length of the incubation also increased slightly from 2 to 2.5 hours. The
higher temperature resulted in increased amounts of pre-tRNATY cleavage products,
which were detected by 18 hours of autoradiography at -80°C. With the assay conditions
modified for increased RNA cleavage activity, pre-tRNATY transcripts synthesized by T7
RNA polymerase and 293 S-100 cell extracts were assayed for self-cleavage.

All of the pre-tRNATY transcripts were capable of self-cleavage, regardless of
their origins. Figure 37 shows that self-cleavage of 4-1 pre-tRNATY" transcripts, whether
synthesized with 293 cell extracts of T7 RNA polymerase (lanes 3 and 12, respectively),
generated two major products and several minor species ranging in size from 50 to 70 nt.
The pre-tRNATYT transcripts (112 to approximately 135 nt) yielded cleavage products,
similar in size to the RNA processing intermediates generated during in vitro transcription
assays, that ranged in size from 50 to 70 nt.

While cleavage products derived from the pre-tRNATY transcripts were observed

by autoradiography it was still not certain whether the cleavage patterns were due to RNA



Figure 37. Autoradiograph of the 4-1 pre-tRNATYT transcripts and their

cleavage products.

The pre-tRNA transcripts and their cleavage products were fractionated on 10%
denaturing polyacrylamide gels and visualized by autoradiography. RNA self-cleavage
assays were performed at 42°C for 2.5 hours with 4-1 pre-tRNATY (lanes 2 - 9, 11 - 14
and 4-3 pre-tRNAAI (lanes 15 -18) transcripts. The DNA templates, combined with 293
S-100 cell extracts that directed the in vitro synthesis of the transcripts in lanes 2 - 5, lanes
6 - 9, and lanes 15 - 18, were pJM4-HA, pJM4 #60 and pDSALA respectively. The
transcripts in lanes 11 -14 were synthesized with T7 RNA polymerase using linearized
pJM4 #60 template. Lanes 1,10 and 19 contain radioactively labeled single-stranded size
markers. Lanes 2, 6, 11 and 15 contain samples of pre-tRNA transcripts after extraction
from polyacrylamide gels. The pre-tRNA transcripts in lanes 3, 7, 12 and 16 have been
assayed in the absence of oligonucleotides. The pre-tRNA transcripts in lanes 4, 8, 13 and
17 have been assayed for self-cleavage in the presence of 1 pmol of RWH 61, an
oligonucleotide complementary to the 4-1 pre-tRNATY intron. The pre-tRNA transcripts

in lanes 5. 9, 14 and 18 have been assayed in the presence of 10 pmol of RWH 61.
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Figure 38. Autoradiograph of the 4-1, 6-2 and 6-3 pre-tRNATT

transcripts and their cleavage products.

The pre-tRNA transcripts and their cleavage products were fractionated on 10%
denaturing polyacrylamide gels and visualized by autoradiography. The RNA self-
cleavage assays were performed at 42°C for 2.5 hours. The linearized DNA templates
that directed T7 RNA polymerase to synthesize the transcripts assayed in lanes 2 - 6, 8 -
12 and 14 - 18, were pJM4 #60, pM6 #436 and pM612 #50 respectively. Lanes 1,7, 13
and 19 contain radioactively labeled single-stranded size markers. Lanes 2, 8 and 14
contain untreated transcripts that served as controls. The pre-tRNA transcripts in lanes 3,
9 and 15 have been assayed for self-cleavage in the absence of oligonucleotides. The pre-
tRNA transcripts in lanes 4, 10 and 16 have been assayed with 10 pmol of RWH 61, an
oligonucleotide complementary to the 4-1 pre-tRNAT intron. The pre-tRNA transcripts
in lanes 5, 11 and 17 have been assayed with 10 pmol of DSP 2, an oligonucleotide
complementary to the 3' half of tRNATYT. The pre-tRNA transcripts in lanes 6, 12 and 18

have been assayed with 10 pmol of DSP 1, an oligonucleotide identical in sequence to the

5' half of tRNAYT,
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Figure 39. Autoradiograph of the 4-1, 6-4 and 6-1 pre-tRNATY"

transcripts and their cleavage products.

The pre-tRNA transcripts and their cleavage products were fractionated on 10%
denaturing polyacrylamide gels and visualized by autoradiography. The RNA self-
cleavage assays were performed at 42°C for 2.5 hours. The linearized DNA templates
that directed T7 RNA polymerase to synthesize the transcripts assayed in lanes 2 - 6, 8 -
12 and 14 - 18, were pJM4 #527, pM6 #55 and pM6128 #272 respectively. Lanes 1, 7
and 13 contain radioactively labeled single-stranded size markers. Lanes 2, 8 and 14
contained untreated transcripts that served as controls. The pre-tRNA transcripts in lanes
3, 9 and 15 have been assayed in the absence of oligonucleotides. The pre-tRNA
transcripts in lanes 4, 10 and 16 have been assayed with 10 pmol of RWH 61, an
oligonucleotide complementary to the 4-1 pre-tRNATY intron. The pre-tRNA transcripts
in lanes 5, 11 and 17 have been assayed with 10 pmol of DSP 2, an oligonucleotide
complementary to the 3' half of tRNATY. The pre-tRNA transcripts in lanes 6, 12 and 18

have been assayed with 10 pmol of DSP 1, an oligonucleotide identical in sequence to the

5' half of tRNATY,
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Figure 40. Autoradiograph of the 6-1 and 6-4 pre-tRNATST transcripts and

t.i *ir cleavage products.

The pre-tRNA transcripts and their cleavage products were fractionated on 10%
denaturing polyacrylamide gels and visualized by autoradiography. The RNA self-
cleavage assays were performed at 46°C for 2.5 hours. The self-cleavage assays in lanes
2 - 10 and in lanes 12 - 20 were performed with 6-1 and 6-4 pre-tRNATY transcripts
respectively, synthesized with 293 S-100 cell extracts using recombinant plasmids
pM6128 and pM6IT. Lanes 1 and 11 contain radioactively labeled single-stranded size
markers. Lanes 2 and 12 are controls which contain untreated pre-tRNA transcripts. The
pre-tRNA transcripts in lanes 3 and 13 have been assayed in the absence of
oligonucleotides. The 6-1 pre-tRNATYT transcripts in lanes 4 - 10 have been assayed in the
presence of 50 pmol of oligonucleotides RWH 61, DSP 19, DSP 20, DSP 21, DSP 22,
DSP 23 and DSP 2, respectively. The 6-4 pre-tRNATY transcripts in lanes 14 - 20 have
also been assayed in the presence of 50 pmol of oligonucleotides RWH 61, DSP 19, DSP
20, DSP 21, DSP 22, DSP 23 and DSP 2, respectively. The oligonucleotides RWH 61,
DSP 19, DSP 20, DSP 21 and DSP 22 are complementary to the intron sequences of the
4-1, 6-2, 6-1, 6-3 and 6-4 tRNATY genes, respectively. The oligonucleotide DSP 23 is
complementary to the 5' half of tRNATYT, while oligonucleotide DSP 2 is complementary

to the 3' half of tRNATYT,
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Figure 41. Autoradiograph of the 6-3 and 6-2 pre-tRNATYT transcripts and

their cleavage products.

The pre-tRNA transcripts and their cleavage products were fractionated on 10%
denaturing polyacrylamide gels and visualized by autoradiography. The RNA self-
cleavage assays were performed at 46°C for 2.5 hours. The self-cleavage assays in lanes
3 - 10 and in lanes 13 - 20 were performed with 6-3 and 6-2 pre-tRNATY transcripts
respectively, synthesized with 293 S-100 cell extracts using recombinant plasmids nM612
and pM6. Lanes | and 11 contain radioactively labeled single-stranded size markers.
Lanes 2 and 13 are controls which contain untreated pre-tRNA transcripts. The pre-
tRNA transcripts in lanes 3 and 13 have been assayed in the absence of oligonucleotides.
The 6-3 pre-tRNATYT transcripts in lanes 4 - 10 have been assayed in the presence of 50
pmol of oligonucleotides RWH 61, DSP 19, DSP 20, DSP 21, DSP 22, DSP 23 and DSP
2, respectively. The 6-2 pre-tRNATY transcripts in lanes 14 - 20 have also been assayed
in the presence of 50 pmol of oligonucleotides RWH 61, DSP 19, DSP 20, DSP 21, DSP
22, DSP 23 and DSP 2, respectively. The oligonucleotides RWH 61, DSP 19, DSP 20,
DSP 21 and DSP 22 are complementary to the intron sequences of the 4-1, 6-2, 6-1, 6-3
and 6-4 tRNATY" genes, respectively. The oligonucleotide DSP 22 is complementary to

the 5' half of tRNATYT, while oligonucleotide DSP 2 is complementary to the 3' half of

tRNADT,
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Figure 42. Autoradiograph of the 4-1 pre-tRNAT)T and the 4-3 pre-tRNAAl=

transcripts and their cleavage products.

The pre-tRNA transcripts and their cleavage products were fractionated on 10%
denaturing polyacrylamide gels and visualized by autoradiography. The RNA self-
cleavage assays were performed at 46°C for 2.5 hours. The self-cleavage assays in lanes
2 - 10 and in lanes 12 - 20 were performed with 4-1 pre-tRNATYT and 4-3 pre-tRNAAl2
transcripts respectively, synthesized with 293 S-100 cell extracts using recombinant
plasmids pJM4-HA and pDSALA. Lanes 1 and 11 contain radioactively labeled single-
stranded size markers. Lanes 2 and 12 are controls which contain untreated pre-tRNA
transcripts. The pre-tRNA transcripts in lanes 3 and 13 have been assayed in the absence
of oligonucleotides. The 4-1 pre-tRNATM transcripts in lanes 4 - 10 have been assayed in
the presence of 50 pmol of oligonucleotides RWH 61, DSP 19, DSP 20, DSP 21, DSP 22,
DSP 23 and DSP 2, respectively. The 4-3 pre-tRNAAI2 transcripts in lanes 14 - 20 have
also been assayed in the presence of 50 pmol of oligonucleotides RWH 61, DSP 19, DSP
20, DSP 21, DSP 22, DSP 23 and DSP 2, respectively. The oligonucleotides RWH 61,
DSP 19, DSP 20, DSP 21 and DSP 22 are complementary to the intron sequences of the
4-1, 6-2, 6-1, 6-3 and 6-4 tRNATYT genes, respectively. The oligonucleotide DSP 23 is
complementary to the 5' half of tRNATY, while oligonucleotide DSP 2 is complementary

to the 3' half of tRNADT,



12345678 91011121314151617181920

121 —

53 -

41—

s re
1.% cg fm—

¥




148

autocatalysis. In an attempt to resolve this problem, oligonucleotides, directed at either
the exon or intron portions of the pre-tRNATYT transcripts, were included in the RNA
cleavage assays. If the RNA cleavage patterns were due to inherent lability of the RNA at
certain positions in the transcript, it was hypothesized that the addition of antisense or
sense oligonucleotides should not modify the RNA cleavage patterns. However, if the
pre-tRNATY transcripts are autocatalytic, then perturbation of their secondary and tertiary
structure by the annealing of oligonucleotides should result in a loss of catalytic activity.

The addition of antisense oligonucleotides directed toward the introns of the pre-
tRNATY transcripts had an inhibitory effect on RNA self-cleavage, which seems indicative
of RNA self-cleavage by RNA autocatalysis. Increasing the amounts of antisense
oligonucleotide in the RNA cleavage assay also increased the amount of inhibition
observed (Figure 37). Inhibition of RNA self-cleavage was observed, regardless of the
origin of the pre-tRNAT transcripts, whenever an antisense oligonucleotide was capable
of annealing to the transcript's intervening sequence (Figures 37 - 42).

The incubation temperature for the RNA self-cleavage assay was raised from 42°
to 46°C to promote DNA-RNA duplex formation by reducing the tertiary and secondary
structures of the pre-tRNA transcripts. The RNA cleavage assays performed under these
conditions also resulted in specific cleavage patterns (Figures 40 - 42). Inhibition of RNA
cleavage occurred when antisense oligonucleotides designed for each pre-tRNATY intron
could anneal to the pre-tRNA in the assay (e.g. Figure 37, lane 5; Figure 40, lanes 6 and 7,
Figure 41, lane 18). However, antisense and sense oligonucleotides designed for the pre-
tRNATY exons only caused changes in the cleavage patterns on occasion (Figures 40 -
42). The change in temperature from 42° to 46°C led to self-cleavage of the 89 nt pre-
{RNAAl whose cleavage was not inhibited by any of the oligonucleotides designed for
the pre-tRNATY transcripts (Figure 42, lanes 13-20). The 121 nt pre-tRNAAI did not
undergo self-cleavage when the assay was performed at 42°C (Figure 37, lanes 16 - 18).

When 6-4 pre-tRNATV transcripts were assayed for self-cleavage in the presence of
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antisense oligonucleotides, designed for the intron sequences, cleavage was promoted
rather than inhibited (Figure 40). Further self-cleavage assays with 6-4 pre-tRNATYT
transcripts are required to ensure these anomalous results are reproducible.

While it appears that RNA self-cleavage, catalyzed by magnesium ions, has
occurred, it is not certain if it has released the intron. The cleavage products will have to

be sequenced, or the cleavage sites mapped, to determine if intron excision has occurred.
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4. Discussion

Three human-A recombinants carrying tyrosine tRNA genes were previously
isolated from a human-A Charon-4A recombinant phage library using a probe which
contains a tRNATY gene derived from cloned Xenopus laevis DNA (Miiller and Clarkson,
1980). Initially, MacPherson (1988) detected six intron-containing tyrosine tRNA genes
by Southern analysis, with four genes detected on AHtM6 and single genes detected on
both AHtM2 and AHtM4. The nucleotide sequences of five tRNATT genes and their
flanking sequences were determined, however, the tRNATYT gene on AHtM2 remained
uncharacterized. A portion of this study included determining the nucleotide sequence of
an 855 bp Hindlll/Bg/11 fragment from AHtM2, which contained this uncharacterized
{RNATY gene. The nucleotide sequence of this intron-containing tRNAT) gene,
tentatively named M2, and its flanking sequences were identical to those of the 6-1
tRNATY gene found on AHtM6. The identical flanking sequences surrounding these two
tRNAY genes suggested that AHtM2 and AHtM6 could be overlapping bacteriophage
clones. A Southern cross experiment between AHtM2 and AHtM6 provided additional
evidence that they are in fact overlapping clones (Figure 6). Since the existing restriction
endonuclease maps assembled by MacPherson (1988) did not show any common
overlapping region, revisions to these restriction maps were necessary. However,
complete restriction endonuclease digestions of AHtM2 and AHtM6 were found to be
insufficient for generating unambiguous maps.

Restriction maps were finally constructed by combining data from complete
restriction endonuclease digests with those of partial digests. Initially the restriction
endonuclease mapping strategy described by Rackwitz er al. (1984) was followed.
However, the length of the left and right arms of Charon 4A (19.9 and 11.0 kb,
respectively) severely limited the accuracy of this method, which was dependent on the

resolution of agarose gel electrophoresis. By removing vector sequences with restriction
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enzymes that do not cut the insert, partial digests were performed on 20 to 25 kb DNA
fragments instead of 45 to 50 kb recombinant bacteriophage. DNA fragments of 20 to 25
kb were partially digested, fractionated electrophoretically, transferred and probed
sequentially with left and right arm probes to generate a restriction map for each enzyme
chosen.

This modified strategy for restriction endonuclease mapping led to changes in the
AHtM2. AHtM4 and AHtMG6 restriction maps (Figure 16). The overlapping region
between AHtM?2 and AHtMG, that contains the 6-1 tRNATY gene, is now evident on the
revised restriction maps. Amendments to the restriction map of AHtM4 led to the
serendipitous discovery of a previously undetected tRNATT gene. Digestion of AHtM4
DNA with restriction endonuclease Apal was performed to remove bacteriophage A
vector sequences prior to partial digestion; however, Apal released two fragments that
were found to hybridize with an oligonucleotide probe specific for tRN ATy genes (Figure
13). Since the putative tRNATY gene was also contained on the AHtM4 subclone pJM4,
the sequencing of the 2.4 kb insert was continued in order to characterize this new tRNA
gene (Figure 20). The coding sequence of this new tRNATY gene; named 4-2, was
virtually identical to the other five human {RNATY genes, however, its intervening
sequence was markedly different from those of the other genes as indicated by its high GC
content. While searching the nucleotide sequence of this 2.4 kb EcoRI/Hindlll fragment
from AHtM4 for the locations of the tyrosine tRNA genes, an alanine tRNA gene was also
identified. This tRNAA® gene was later proved to be a hona fide gene based on sequence
comparisons with other tRNAAl genes (Figure 43) and by in vitro expression experiments
which have shown this gene to be transcriptionally active (Figures 31 and 36). The alaninc
gene that was isolated is identical to one of the tRNAAl2 sequences determined by Bunn
and Mathews (1987). They utilized antibodies against tRNAA found in the sera of
patients suffering from polymyositis, an autoimmune disease, to immunoprecipitate

sufficient quantities of tRNA for sequencing.



Figure 43.  Comparison of the 4-3 tRNAAIA gene sequence with tRNAAla gene

sequences from the literature

The alignment was done on six tRNAAl gene-containing scquences. The character to

show that a position in the alignment is perfectly conserved is "*'. The character to show that a
position 1s well conserved is ', The tDNA sequences are shown in bold letters. The sources of the
sequences used for the alignment are listed below:

( 1) human gene. 4-3

( 2) Drosophila gene (Delotto and Schedl. 1984)

( 3) Bombyx gene (Young ct al.. 1991)

( 4) Xenopus gene (Miller ct al., 1987)

( 5) chicken gene (Mezquita and Mezquita. 1992)

( 6) mousc gene (Russo ct al.. 1986)

( 7) chicken gene (Mezquita and Mezquita. 1992).
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While the restriction endonuclease maps of the three bacteriophage recombinants
allowed the gene-containing fragments to be positioned unambiguously, the orientations of
some of these tRNA genes were not evident from the restriction map alone. The
orientations of the tRNAT genes on AHtM2 and AHtM4 were determined from the
restriction endonuclease maps and defined by DNA ~quencing However, this approach
for establishing the gene orientation did not work for the 0 2, 6-3 and 6-4 fHNAL - genes
on AHtM6 because the nucleotide sequences of the regions between these tia /AT genes
were not known. The tRNATYT gene orientations of AHtM6 were determined by PCR
using primer combinations that tested all possible orientations of the four tRNATY genes.
Oniy the primer combinations that reflected the gene orientations as they occurred on
AHtM6 would yield PCR products that could be verified by hybridization with gene-
specific probes. These PCR experiments not only revealed the tandem orientation of the
tRNATY genes on AHtM6, they also confirmed the restriction map which indicated the
distances between these genes (Figure 18). The tRNA genes on AHtM4 are also arranged
in tandem, but this arrangement is not unusual among the tRNA gene clusters
characterized thus far (Chang ef al. 1986, Doran et al., 1987; Shortridge e/ al., 1989).

The six human intron-containing tRNATY gene sequences have high similarity to
several other eukaryotic tRNATY gene sequences, especially the Xeropus laevis tRNA
gene used as a probe to screen the recombinant phage library. An alignment of tRNATYT
gene sequences from a few eukaryotic organisms clearly illustrates the homology that
exists amongst these genes (Figure 44). All of the eukaryotic tRNATY genes which have
been characterized thus far contain introns. In some cases (Saccharomyces cerevisiae,
Drosophila melanogaster, and humen) evidencc has been presented to show that the
intron is essential for the pseudiout'sine modification in the anticodon (Chotfat ez al.,
1988: Johnson and Abelson, 1983; vau Tol and Beier, 1988).

The number of tRNAT' genes in the haploid human gencme bas been estimated at

12, with six intron-containing {RNA 17 geies having been cloncd thus far. This estimate is



Figure 44. Comparison of the isolated human tRNAT)T gene sequences

with tRNATT gene sequences from the literature

The alignment was done on 16 tRNAYT gene-containing sequences. The character
to show that a position in the alignment is perfectly conserved is '*'. The character to
show that a position is well conserved is . The tDNA sequences are shown in bold
letters, while the intervening sequences are underlined. The sources and names of the
sequences used for the alignment are listed below:

[ 1] Xenopus, TyrD (Gouilloud and Clarkson, 1986)
[ 2] Xenopus, TyrC (Gouilloud and Clarkson, 1986)
[ 3] Drosophila, Y85aa (Suter and Kubli, 1988)
[ 4] Drosophila, Y85ab (Suter and Kubli, 1988)
[ 5] Drosophila, Y85ad (Suter and Kubli, 1988)
[ 6] Drosophila, Y85ae (Suter and Kubli, 1988)
[ 7] Drosophila, Y85ac (Suter and Kubli, 1988)
[ 8] human, 4-1 (MacPherson, 1988)
[ 9] human, 6-1 (MacPherson and Roy, 1986)
[ 10] human, 6-3 (MacPherson, 1988)
[ 11} human, 6-2 (MacPherson and Roy, 1986)
[ 12] human, 6-4 (MacPherson, 1988)
[ 13] human, 4-2
[ 14] Nicotiana rustica, pNTT1 (Stange and Bei-r, 1986)
[ 15] Arabidopsis thaliana, pATT1 (Stange et al., 1988)
[ 16] Arabidopsis thaliana, pATT3 (Stange et al., 1988).
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AGTTGGAAAATTATGCAATAGAAATCCATAGGTCGCTGGTTCAAATCCGGCTCGA
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CGGA~———-— ATTTGCTCCCACATGAGAGCTTTTTATTTTTC-TTTCGTT -----
CGGA~————— T—-——CATTAAAATTGAAAGTTTTTTTTTTCCATTTCGTTT——--
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based on hybridizations of tRNATY gene-specific oligonucleotide probes to placental
DNA digested with restriction endonuclease EcoRI (van Tol and Beier, 1988). There are
probably more than 12 tRNAT genes per haploid human genome since it is possible for a
single FicoR] restriction fragment to carry multiple genes, as is the case in AHtM4 and
AHIMG. A 7.7 kb EcoRlI restriction fragment from AHtM4 contains three tRNA genes,
two tRNATY genes and one tRNAAl gene (Figure 16). A 9.5 kb EcoRI restriction
fragment from AHtM6 also contains two tRNATY genes (Figure 16). This suggests a
minimum of 14 tRNATY genes in the human genome. It is thus remarkable that all five of
the tRNATY genes characterized by PCR by Green ef al. (1990) are species present on
AHtM4 and AHtM6.

The nucleotide sequences of five of the six human tRNA genes studied were
determined by MacPherson (1988) and the tRNATYT genes carried on plasmids pM6 and
pM6128 have been published (MacPherson and Roy, 1986). Tyrosine tRNA genes
identical to the ones carried on plasmids pJM4 and pJMS42 have been described by van
Tol et al. (1987) and Green ei al. (1990), respectively. The tRNATY gene characterized
by van Tol ef al. (1987), named tRNA, T, that is identical to the 4-1 tRNADT gene, was
isolated from a human-A Charon 4A recombinant bacteriophage, AHtT1, on a 6.0 kb
FEcoRI fragment. These two tRNATY genes share identical 5' and 3' flanking sequences
(with the exception of a few polymorphisms) and could each be isolated on a 401 bp
Smal/Haelll DNA fragment. However, van Tol e/ al. (1987) did not detect the additional
tRNATY gene (4-2) that was 0.5 kb upstream of the first gene. Since the tRNA, {7 gene
was found on a 6.0 kb EcoRlI fragment and the 4-1 tRNATY gene was found on a 7.7 kb
EcoRI fragment, it is quite likely that the bacteriophage clone AHtT1 isolated by van Tol
et al. (1987) overlaps with the bacteriophage clone AHtM4 isolated by MacPherson
(1988). Evidence to support this claim of overlapping bacteriophage clones comes from a
comparison of restriction endonuclease digests of AHtT1 and AHtM4 DNA with EcoRI.

The restriction endonuclease digests of these two bacteriophage clones generate identical
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patterns of DNA fragments, except for the tRNATYT gene-containing EcoRl DNA
fragments. This situation would explain why a double digestion of AHtT1 DNA with
restriction endonucleases Smal and Haelll would fail to yield two DNA fragments that
would hybridize with the tRNATT gene-specific oligonucleotide probe used by van Tol e
al. (1987).

The tRNATY gene-containing plasmid subclones, which were partially sequenced
by MacPherson (1988), were sequenced further and the nucleotide sequences of these
clones were compared. The most striking feature of these nucleotide sequences is the high
degree of homology present in the 5' flanking sequences of the four tRNATY genes on
AHtM6. While the high degree of homology in the 5' flanking sequences of 6-1 and 6-2
tRNATY genes had been previously observed by MacPherson and Roy (1986), it is now
evident that this homology is also shared with the 6-3 and 6-4 tRNATY genes. The
identity observed in the 5' flanking sequences of the four RNATY genes on AHtMG6 ranged
from 67 to 74% over 400 bp, when pairs of sequences were aligned. With more 5'
flanking sequence available from the plasmid subclones pM6, pM612 and pM6IT,
additional alignments were performed and similarities ranging from 58 to 75% were
observed over 600 bp immediately upstream of the tRNATY genes on these plasmids.
These sequence analyses have shown that the 6-4 tRNATYT gene has the most divergent §'
flanking sequence of the four genes on AHtM6 (Figure 24). Similar analyses of the 3'
flanking sequences of the tRNATY genes revealed only limited regions of similarity ranging
from 29 to 64% over 100 bp immediately downstream of five tRNATY genes. The
homologous regions in the 3' flanking sequences included the putative RNA polymerase
111 termination signals, consisting of at least four consecutive Ts. The 4-2 tRNATY gene
had the most divergent 3' flanking sequence of the six tRNATY genes characterized.

The extensive homology in the 5' flanking sequences of the tRNATY genes on
AHtM6 makes this tRNA gene homocluster unusual. There are other examples of human

tRNA gene clusters with homology in the 5' and 3' flank =g sequences of isoaccepting
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tRNAs. Ma ef al. (1984) observed greater than 90% identity over 300 bp in both the 5'
and 3' flanking sequences of two tRNAAsT genes. Homology has also been found in the
flanking sequences of two tRNA Mt genes (Santos and Zasloff, 1981), but the homology
extends over only 110 bp of 5' and 70 bp of 3' flanking sequence. This high degree of
homology suggests that the tRNATYT gene homocluster on AHtM6 has arisen by gene
duplication events. Gene duplication may have occurred by either a series of reverse
transcription events, followed by recombination events, or by unequal crossing over.

Gene duplication by unequal crossing over is more likely, since it can account for both the
formation of the tRNATYT gene homocluster and the high percentage of sequence similarity
present in the flanking sequences.

In vitro transcription assays performed with the cloned tRNA genes have shown
each of them to be transcriptionally active. The tRNATYT transcripts and cleavage
products generated by the 293 cell extracts (Weil er al., 1979) were similar in size to those
observed by van Tol e al. (1987) using Hel.a cell extracts. The preliminary in vitro
transcription assays of the human tRNAT'T genes reported by MacPherson and Roy (1986)
found that pM6128 directed RNA synthesis at levels six-fold higher than pM6. When
these experiments were repeated the transcription levels among tRNATY" genes carried on
plasmids pM6128, pM6, pM612, pM6IT, and pJM4 were found to be nearly equal by
visual examination of the autoradiographs. The conformation of the template DNA can
affect transcription by RNA polymerase II1, since supercoiled DNA molecules are much
more transcriptionally active than relaxed DNA molecules (Sekiguchi et al., 1989).
However. the differences in expression first encountered between the tRNATY genes
probably arose from errors in DNA quantification. DNA quantification performed with a
TKO 100 fluorimeter and Hoechst 33258 dye preveiits RNA contamination from
interfering with readings, since the dye is highly specific for double stranded DNA. This

has ensured that equimolar amounts of template DNA were used in this study for each in

vitro reaction.
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Attempts to isolate expression-modulating extragenic sequence elements by
expressing plasmid constructs that had flanking sequence deletions also failed to
demonstrate any appreciable differences in expression levels. In fact, even the complete
replacement of the native flanking sequences with vector sequence (i.e. the multiple
cloning site of pBS) did not significantly alter expression of the tRNATY genes. However,
the DNA templates that carried tRNATYT genes lacking any native flanking sequences
often directed the synthesis of much longer pre-tRNATY transcripts. These longer
transcripts were due to RNA polymerase 111 having to transcribe further before a stretch
of four or more Ts was encountered, such sequences serve as RNA polymerase 111
transcription terminators (Bogenhagen and Brown, 1981). When pM6 #436 was used as
the DNA template for in vitro transcription, the longer transcripts observed were due to
the transcription of the two tandem 6-2 tRNATY genes carried on this plasmid. While a
slight decrease in the rate of expression was observed with these chimeric DNA templates,
it was not enough of a difference to allow conclusions to be drawn with regard to the
existence of upstream regulatory sequence elements. Since transcription factor I11B
(TFIIIB) interacts with sequences upstream of the mature coding sequence, near the
transcription start site (Bartholomew e/ al., 1991; Kassavetis ef al., 1991), the slight loss
in tRNATY transcriptional activity that occurred upon replacement of all the native
flanking sequence with vector sequences is not surprising. At present only the 4-2
tRNATY gene appears to be transcribed at lower levels than the others. However, this
observation may be misleading because pJMS42 also carries a tRNAAl gene that is
transcriptionally active. The lower levels of transcription of the 4-2 tRNATY gene may
just reflect the competition between the two genes for transcription factors. The 4-2
tRNATY gene will have to be transcribed alone before its transcriptional activity can be
compared meaningfully to those of the other tRNATY genes. Future experiments might
also examine the ability of the other tRNATT genes to compete with the 4-3 tRNAA gene

for transcription factors.
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The results of these in vifro transcription assays suggest that either there are no
extragenic modulatory sequences present in the flanking sequences of these tRNATYT genes
or that these sequence elements do not exert detectable effects under the in vitro
conditions of these assays. The transcription factors that interact with these hypothetical
modulating sequences may be inactive in the S-100 cell extracts because they are labile or
expressed at low levels.

A putative Alu sequence was found in the 5' flank of the 6-2 tRNATY gene.
However, it does not appear to affect the transcriptional efficiency of the tRNA gene.
Although the putative Alu element has 67% identity to a transcriptionally active Alu
sequence described by Perlino e/ al. (1985), and has only one divergent position in its B
box promoter element, it does not appear to be transcriptionally active in vifro. Alu
sequences have been detected in or around other human tRNA gene clusters (Chang et al.
1986; Doran et al., 1987, Shortridge ¢f al., 1989) and are not thought to influence tRNA
gene transcription.

There have been several attempts to isolate extragenic regulatory sequences in the
flanking sequences of human tRNA genes. While examples of 5' flanking sequences that
modulate tRNA gene transcription have bezn described, a consensus sequence for an
extragenic regulatory element has yet to be determined. It was observed by Shortridge e
al. (1989) that deletions of 5' flanking sequence did not cause any significant change in
transcriptional efficiency of a human tRNATHr gene until deletions left only 2 bp of 5'
flanking sequence upstream of the gene. However, the effects of the deletions became
more apparent when the tRNATIr gene had to compete with either a human tRNAP gene
or a tRNAGY pseudogene for transcription factors and RNA polymerase III. In
competition experiments with other human tRNA genes, the plasmid constructs with less
than 168 bp of 5' flanking sequence immediately upstream of the tRNATHr gene were not
able to compete for transcription factors as well as the plasmid constructs with additional

5' flanking sequence. Therefore, it was concluded by Shortridge er al. (1989) that the 168



163

bp of 5' flanking sequence immediately upstream of the tRNATHT gene contains one or
more cis-acting regulatory elements that are crucial for the high transcriptional activity of
this gene. Gonos and Goddard (1990) studied the effects of 5' flanking sequence deletions
on the in vitro transcription of a human {RNAGI gene with HeLa cell extracts and found
the efficiencies of the deletion clones correlated with their relative competitor strengths.
However, to explain the transcriptional efficiencies of the deletion clones it was suggested
that the 5' flanking sequence contained both a positive and a negative transcription
modulator. When these experiments were repeated in a heterologous system (i.e. Xenopus
laevis oocytes) the results were more straightforward, with increasing deletions of the §'
flanking sequence leading to decreasing transcription efficiency of the tRNAGI gene.
With data obtained from the expression of the human tRNAG! gene in both homologous
and heterologous systems, coupled to the new model for the assembly of transcription
factors on genes transcribed by RNA polymerase I11, Gonos and Goddard (1990)
proposed a model for transcrintion modulation by extragenic sequences. Their model
proposes that transcription modulation may occur by changes in TFIIIB activity via
interaction with tissue-specific factors that recognize different upstream sequences.
Comparisons of sequences upstream of tRNA genes have identified short sequence
elements that have been proposed to act as positive transcription modulators for these
genes. Sajjadi and Spiegelman (1987) have proposed the sequence TNNCT as the general
form of a positive transcription modulator for Drosophila melanogaster tRNA genes.
There are examples of extragenic sequences which have been found upstream of the
Bombyx mori tRNAAI gene (Larson ef al., 1983), the human tRNAVal gene (Arnold ef
al., 1987), the mouse tRNAASP gene (Rooney and Harding, 1988), and the
Saccharomyces cerevisiae tRNALen gene (Johnson and Raymond, 1984) that are known
modulate transcription. Of the 23 Drosophila melanogaster tRNA gene sequences
analyzed by Sajjadi and Spiegelman (1987) 13 genes had the TNNCT sequence in their 5'

flanking sequence in the region from =25 to -45. However, the TNNCT sequence was
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found upstream of 12 of the 14 tRNA genes that are transcribed at moderate to high
efficiency. Similar sequence comparisons in Saccharomyces cerevisiae have also
identified a canonical sequence, CAANAAA, as a positive transcription modulator in the
upstream sequences of several tRNA and 5S RNA genes (Raymond and Johnson, 1984).
A statistical analysis of the flanking regions of eukaryotic tRNA genes was performed to
identify consensus sequences (Makalowski ana Augustyniak, 1992). These conserved
signals may play a role in transcription regulation, since sequences that are functionally
more important evolve more slowly than less important ones. Makalowski and
Augustyniak (1992) identified a conserved sequence between positions ~32 and -27,
AyGAG, in the ' flanking sequences of 18 of 50 tRNA genes analyzed from vertebrates.
However, this consensus sequence was not found within 50 bp of any of the human tRNA
genes characterized in this study. Those upstream elements that have been described are
usually found up to 50 bp from the start of the mature coding sequence and tend to be
AT-rich, however there has not yet been a report explaining how any of these sequence
elements effect an increase in transcription.

The absence of any detectable regulatory elements in the 5' flanking sequences of
the six tRNATY genes and many other human tRNA genes suggests that these genes are
under global regulation. The cellular concentration of tRNA can be controlled by
regulating the availability of transcription factors and/or RNA polymerase 1L
Transcription-modulating extragenic sequences may only occur in the flanking sequences
of tRNA genes whose expression must respond immediately to meet the needs of the cell.
Since the six tRNATT genes characterized in this study recognize the same codon in
mRNA., the transcriptional efficiencies of these genes do not have to differ in response to
codon preferences.

There is a growing body of evidence suggesting that TBP is required for the
transcription of genes by RNA polymerase III. The uncertainty about the role of TBP in

tRNA gene expression was caused by the presence of TBP in phosphocellulose fractions
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containing TFIIIB and TFIIIC. This endogenous TBP masked the effect of added TBP on
tRNA gene expression in earlier studies. In the §' flanking sequences of the tRNAT and
tRNAA! genes TATA-box elements have been found, except in the §' flanking sequence of
the 6-2 tRNATY gene. However, only in the §' flanking sequences of tRNA genes carried
on pJMS42, 41 bp upstream of the 4-2 {RNAT gene and 9 bp upstream of the 4-3
tRNAA2 gene, have classical TATA box elements been found within 200 bp of the 1KNA
gene. At present it is difficult to determine if these elements have an effect on
transcription efficiencies. If purified TBP could be obtained readily, the expression of the
{RNATY and tRNAAl gene constructs might be repeated with additional TBP
supplementing the 293 cell extracts to determine if the native §' flanking sequences can
modulate transcription levels via interaction with TBP.

A report by van Tol er al. (1989) claimed that pre-tRNAYT transcripts are capable
of autocatalytic intron excision, however no other published reports supporting their claim
have appeared. Attempts at rep: oducing their results have been undertaken with pre-
tRNA transcripts synthesized either by T7 RNA polymerase or 293 S-100 cell extracts.
As shown in the Results, RNA self-cleavage was observed in vitro with pre-tRNA
transcripts regardless of their origin, but, some pre-tRNA transcripts are more prone 1o
cleavage than others. For example, 4-1 transcripts exhibited more RNA self-cleavage
activity than all other pre-tRNA™T transcripts. For in vitro RNA cleavage to be detected
the pre-tRNATY transcripts had to be incubated for at least 2 hours at temperatures
between 37 and 42°C. Although only a very small fraction of the pre-tRNATY transcripts
underwent self-cleavage, the amount of activity seen was comparable to other ribozyme
reactions (Haseloff and Gerlach, 1988). While van Tol et al. (1989) provided evidence
that the intron was cxcised, their observations and the RNA self-cleavages observed in this
study can be explained simply as magnesium-promoted cleavage of pre-tRNAY
transcripts. While there are both specific and nonspecific tRNA cleavages promoted by

metal ions, the specific cleavages involve the precise coordination of the metal ion with the
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RNA  The best characterized example of a spectfic intramolecular raetai-ion induced
¢lesvage is the lead-promoted cleavage of yeast tRNAPhe betv.een residues Dy and Gig
(Werner et ul., 1970)

In arder for these pre-tRNAYT transcripis to be catalytic thev - ust adopt a
specific rertiary conformation. Tiharefore, 1 hypothesized that anyi.ung which causes a
significant perturbation of the pre-tRNA uanscript's folding pattern should have an
adverse offect on catalytic activity. This hypothesis was tested by performing seif-
cleavage experiments in the presence of specific oligonucleotides that were either identical
or complenientary in sequense to portiors of the pre-tRNA transcripts to determine their
effects «m ¢ atalytic activity. It was observed that oligonucleotides complementary to the
intrion seG.ences were capable of inhibiting pre-tRINA self-cleavage. The degree of seif-
cleavay+ inhibition achieved by the oligonucleotide dep .Jded on its ability to anneal to the
intror: ~f the pre-tRNA transcripts, therefore, specific oligonucleotides could inhibit the
¢1cavage of more than one species of pre-tRNATYT. Cligonucleotides directed towards the
»xons had little if any affect on catalytic activity, except for an oligonucleotide
complementary to the 5' haif of tRN A (i.e. DSP 23). Instead of inhibiting self-cleavage,
this oligonucleotide modified the cleavage pattern, which indicated a change in the
reaction's specificity. This observation is intriguing because it has been nbserved that for
tRNA splicing to occur the pre-tRNA transcript must adopt a conformation similar to the
mature tRNA tertiary structure and the 3' splice site must be single-stranded (Lee and
Knapp, 1985, Szekely ef al., 1988). It appears that the requirement for the single-
stranded 3' splice site is important for intror excision, whether considering the activity of
the tRNA splicing endoribonuclease or the scapected intrinsic catalytic activity of the pre-
tRNATY transcript. However, the pre-tRNAAIS transcnyts, which lack an intervening
sequence, also displayed some RNA cleavage in vitro when the incubations were
performed at 46°C. The ability of both pre-tRNATYT and pre-tRNAAI transcripts to

undergo magnesium-promoted RNA self-cleavage suggests that tRNAs may share certain
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tertiary features that permit metal-ion catalyzed cleavages. These two tRNA species are
able to promote self-cleavage of specific phosphodiester bonds by coordinating
magnesium ions. The catalytic activity of these tRNA species defines them as ribozymes,
even though it is unlikely that these self-cleavage react:ons nceur in vivo. The first tRNA
ribozyme characterized was yeast tRNAPIe, which undergoes lead ion-promoted self-
cleavage (Behlen ¢r /., 1990). But, Pb2+ is much le<s relevant in biological systems than
is Mg2+.

The results presented in this study are similar to those reported by van Tol er al.
(1989), with respect to the numbers and sizes of the RNA self-cleavage products
observed. The RNA self-cleavage activity cannot be described as intron excision until the
cleavage sites on the pre-tRNATYT transcript are mapped or the RNA fragments arc
sequenced. The pre-tRNAIYT cleavage products are similar in size to the RNA processing
intermediates generated during in vitro transcription assays, which range in size from 50 to
70 nt. However, a more detailed comparison between the cleavage products and the RNA
processing intermediates will be technically challenging because it will involve sequencing

extremely small quantities of RNA.
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