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Abstract

Human food production activities can dominate natural systems, altering eco-

logical and evolutionary aspects of the environment. Disease-mediated interactions

are of particular concern. For example, parasites may “spill-over” from farms to

wildlife. Parasites isolated on farms can evolve resistance to treatment chemicals ,

but “spill-back” from wildlife to farms may alter evolutionary dynamics. Here, we

consider exchange of parasites (Lepeophtheirus salmonis) between wild (Oncorhynchus

gorbuscha) and farmed salmon. We derive and analyze discrete-time models that

implicitly include wild salmon migrations. First, we extend a standard fisheries model

to show parasite exchange affects “line-dominance” in the population ecology of

salmon. Second, we extend a classic population genetics model to show that wild

salmon can theoretically provide an “ecosystem service” by delaying the onset of

chemical resistance in parasites on farms. This service, however is affected by a

nonlinear feedback if farm parasites spill-back to affect wild salmon.
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Chapter 1

Introduction

As is increasingly recognized, human activities shape the ecological (Vi-

tousek et al., 1997) and evolutionary (Palumbi, 2001) environments of

“natural” populations across terrestrial (Ellis & Ramankutty, 2008) and

marine (Halpern et al., 2008) systems. This has far reaching consequences,

not only for conservation of wild populations (Vitousek et al., 1997), but for

the sustainability of the human population (Ehrlich, 2009). One concern

gaining prominence is the potential for exchange of diseases and parasites

between wild and domesticated animals (Daszak et al., 2000). When wild

and domestic animals are sympatric, pathogens can “spill-over” from domes-

ticated to wild animals, which raises concerns for conservation and emergent

diseases of wildlife (Daszak et al., 2000; Costello, 2009b). Sympatry also

permits “spill-back” of pathogens from wild to domestic hosts, which can

hamper control efforts in animal production (Bengis et al., 2002; Costello,

2009b).

Life histories of many wild animals involve migration (Dingle, 1996), and

regular movements between habitats can give rise to alternating periods of

sympatry and allopatry with domestic animals. These movements of wild

hosts can play an important role in determining the effects of spill-over

and spill-back on conservation (Morgan et al., 2005; Krkošek et al., 2007b)

and disease spread (Kilpatrick et al., 2006). Classical host-parasite and

epidemiological models, however, do not include host movement or migration

(Morgan et al., 2004), and efforts to understand the role of host migration in

parasite and disease systems have often employed predictive statistical mod-

els requiring large data sets (Kilpatrick et al., 2006), and spatially-explicit

simulation models requiring a large number of parameters (Morgan et al.,
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2007). Spill-over and spill-back of disease with domestic animals occurs in a

wide variety of migratory wild hosts, including terrestrial mammals like elk,

bison and antelope (Cervus canadensis, Bison bison, Saiga tatarica; Cheville

et al., 1998; Morgan et al., 2005), waterbirds (Anseriformes:Anatidae; Gilbert

et al., 2006; Muzaffar et al., 2006), and fishes such as salmon (Oncorhynchus

gorbuscha, O. keta; Krkošek et al., 2006, 2007b). With the rise of aquacul-

ture (FAO, 2007), these type of interactions may become more prevalent,

particularly in the ocean (Krkošek et al., 2007b; Krkošek, 2010)

To increase our understanding of the effects of these interactions there is

a need to develop models for pathogen exchange between migratory wild

hosts and domesticated hosts. These interactions occur in complex systems,

often during disease emergence when knowledge is scarce, and may arise

in systems that are poorly-understood in general. Thus, initial efforts at

modelling must often proceed without highly-detailed understanding of host-

parasite biology or detailed spatial information. Ideally, however, models

can aid in understanding and eventually in management. Some types of

models may be better suited to help developing understanding. One useful

classification of models is into “strategic” models that describe important

processes in a coarse way, and “tactical” models that include much detail

and can aid to decision-making (Pielou, 1981). Here, we focus on developing

strategic models that aim to include the important effects of space and

migration, without introducing a large number of parameters or requiring

spatially-explicit knowledge.

1.1 Mathematical modelling of parasites and

hosts

Mathematical modelling has a long history in developing qualitative the-

ories of host-parasite and disease ecology (Anderson & May, 1992) and

population genetics (Crow & Kimura, 1970), and is increasingly important

in management. Scientific understanding is ever-evolving, and phrasing

scientific ideas in the language of mathematics permits rapid evaluation

of the ideas inadequacies (Hastings, 1997). This owes to the observation

that models in science are never correct, but some are useful in that they

improve understanding (Box, 1979). In this thesis, to approach questions
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of pathogen exchange and migration, we build on models that have proved

useful in population ecology and population genetics.

Modelling is a valuable tool in investigating questions of population

ecology, especially where species interactions are concerned (Turchin, 2003).

Here, we focus on dynamics of the host species, a semelparous fish with

dynamics that inspired the Ricker (1954) curve:

nt+2 = nte
r−nt , (1.1)

where nt is population abundance in year tand r is the population growth

rate. This equation, for over-compensating population growth, has become

a classic in population ecology. In part, this is because the Ricker curve

was used to demonstrate that simple mappings can exhibit a rich variety of

complex dynamics. These include chaos (May & Oster, 1976), with increasing

growth parameter r. Although we focus on the role of migration, a spatial

process, we largely neglect the rich array of spatially-explicit modelling

approaches (Tilman & Kareiva, 1997) in favour of a simple, spatially-implicit

approach that captures the effect of migration.

Mathematics has also been fundamental to the development of population

genetic theory1 (Crow & Kimura, 1970). Many important models in genetics

are mathematically simple, e.g. the Hardy-Weinberg law, but have been

immensely successful in increasing knowledge and guiding enquiry (Hastings,

1997). Here, we employ a theory of genetic change under selection for discrete

generations that dates back to Fisher, Haldane and Wright, specifically

Fisher’s fundamental theorem of natural selection:

∆pi =
pi(1− pi)

2w̄(pi)

∂w̄(pi)

∂pi
, (1.2)

where pi is the frequency of an allele under selection in the ith generation,

w is average fitness. The equation (1.2), defining change in the frequency of

an allele as proportional to its effect on fitness, becomes quite simple under

the assumptions of Hardy-Weinberg (Crow & Kimura, 1970). Although this

model is simple, it has been used in a wide variety of efforts to model the

evolution of insecticide resistance (Georghiou, 1977b,a; Comins, 1977a,b;

Alstad & Andow, 1995).

1And vice-versa, at least for statistics.
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1.2 System & Approach

Here, we develop theory motivated by the interactions between sea-cage

salmon aquaculture and migratory wild salmon. Spill-over and spill-back of

parasitic sea lice (Lepeophtheirus salmonis) occurs between wild salmonids

(Oncorhynchus spp., Salmo spp.) and farm salmon (Salmo spp.) (Gargan

et al., 2003; Costello, 2006, 2009b; Krkošek, 2010). Sea lice are native

copepod ectoparasites, transmitted primarily as planktonic larvae, common

on both adult wild hosts and in sea-cage salmon aquaculture (Costello,

2006). Sea-cage salmon aquaculture production is associated with declines

of wild salmon populations in Europe and North America (Ford & Myers,

2008). At the same time, sea lice cause economic losses through decreased

production, and may serve as vectors for other diseases (Johnson et al.,

2004; Costello, 2009a). Although chemical treatments are used to control

sea lice in aquaculture, the development of resistance to these treatments

is a major concern (Denholm et al., 2002; BCPSF, 2009), with resistance

to the most commonly-used treatment, emamectin benzoate, apparently

emerging in the Atlantic (Lees et al., 2008). Migrations of wild salmon

may play an important role both in explaining the observed declines in wild

populations when spill-over infections from farms occur, and in determining

the dynamics of spill-back infections of farms due to wild-origin parasites.

The interaction of spill-over infection from farm salmon and migrating

wild salmon is one proposed mechanism for the observed declines in wild

salmon associated with aquaculture (Krkošek et al., 2006, 2007a; Costello,

2009b). Intensive infections of juveniles early in their marine life do not occur

without farms, because the migratory behaviour of salmon results in a spatial

separation of juveniles in early marine life from adults and their parasites, a

characteristic termed “migratory allopatry”; host migration creates a barrier

to adult-juvenile transmission during early marine entry (Krkošek et al.,

2007b). Aquaculture can break down this migratory barrier when farms

containing adult fish are placed on migration corridors for juvenile salmonids

(recent reviews: Krkošek, 2010; Costello, 2009b).

The migrations of wild salmon also influence the dynamics of spill-back

infections of farms due to wild-origin parasites, potentially with implications

for resistance management. On farms, treatment with chemicals selects

parasites for resistance, while on wild hosts, which are not treated, selection
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is neutral or against resistance (Denholm & Rowland, 1992). A sea lice

population parasitic on both farm hosts and sympatric wild hosts thus

experiences variable selection for resistance. Migration of wild salmon means

that periods of between wild and farm hosts alternate in time with periods of

allopatry. Further, migrations of wild salmon provide connections between

sea lice subpopulations in farming regions and the population of sea lice at

the scale of the ocean basin, which is panmictic (Todd et al., 2006; Messmer

et al., 2010).

Models that are mathematically simple have been used to link salmon mi-

gration and parasite exchange with farms to observed declines in wild salmon

populations in Europe and North America (Krkošek et al., 2006, 2007a,b;

Ford & Myers, 2008). These studies have focused on the consequences of

infections (due to the interaction of host migration and aquaculture) of

juveniles early in marine life for salmon population dynamics, primarily

in pink salmon (Oncorhynchus gorbuscha), and avoid developing complex,

spatially-explicit models of host-parasite population dynamics. Here, we

extend that tradition in two ways. First, we couple a model for transmission

to a model for pink salmon dynamics to obtain a host-parasite model for

pink salmon and sea lice, permitting us to explore effects of spill-over and

spill-back on wild host population dynamics. Second, we consider the poten-

tial effect of immigration of susceptible sea lice, mediated by wild salmon

migrations, on emergence of resistance to chemical treatment in lice.

The focus of Chapter 2 is to understand the implications of parasite

spill-over and spill-back with farm hosts for population dynamics. To do

this, we introduce a discrete-time model for the host-parasite system of wild

pink salmon (Oncorhynchus gorbuscha) and parasitic sea lice. In keeping

with the approach of earlier work on this system (Krkošek et al., 2007a,b),

we use the classic Ricker (1954) model for pink salmon population dynamics.

To this model, we couple a simple transmission model derived under the

assumption of migratory allopatry. This results in a simple, spatially implicit,

formulation for our host-parasite model of salmon and sea lice as a system

of discrete-time equations.

The focus of Chapter 3 is to understand if chemical treatment decisions,

interacting with wild salmon migrations, can delay emergence of resistance

to chemicals in lice. To examine this question, we use a population genet-

ics framework. We focus on time-to-resistance, the number of years for
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the frequency of a resistance gene to reach a threshold from a low initial

frequency. This extends a model based on Fisher’s fundamental theorem

that was introduced by Comins (1977b). We complement this analysis with

numerical simulations. In these, we consider the possible effect of spill-over

on abundance of migratory wild populations, examining what happens to

the effects of treatment strategies on time-to-resistance if farm-origin lice

reduce the abundance of salmon populations that migrate near farms.
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Chapter 2

Aquaculture-induced changes

to dynamics of pink salmon

and sea lice

2.1 Introduction

In recent decades, exchange of diseases and parasites between wild and

domesticated animals has become a prominent concern for conservation

and disease emergence (Daszak et al., 2000), as well as management of

pest species in food production (Bengis et al., 2002; Costello, 2009). The

occurrence of “spill-over” and “spill-back” of disease between wild and

domestic animals has been demonstrated in a wide variety of taxa that have

migratory life histories, including terrestrial mammals (Cervus canadensis,

Bison bison, Saiga tatarica; Cheville et al., 1998; Morgan et al., 2005), birds

(Anseriformes:Anatidae; Gilbert et al., 2006; Muzaffar et al., 2006), and

fishes (Oncorhynchus gorbuscha, O. keta; Krkošek et al., 2006, 2007b). Host

migration plays an important role in determining the effects of spill-over

and spill-back on conservation (Morgan et al., 2005; Krkošek et al., 2007b)

and disease spread (Kilpatrick et al., 2006). Foundational host-parasite

and epidemiological models, however, do not include host movement or

migration (Morgan et al., 2004). Thus, efforts to understand the role of host

migration in parasite and disease systems often employ complex tools, e.g.,

data-intensive statistical models (Kilpatrick et al., 2006) or parameter-heavy,

spatially-explicit simulation models (Morgan et al., 2007).
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One application where simple models are successful in understanding the

effects of host migration and disease exchange is in linking the declines of wild

salmon populations in Europe and North America to their association with

sea-cage salmon aquaculture production (Ford & Myers, 2008). One proposed

explanation for the declines, at least in the Pacific, is that spill-over and spill-

back of parasitic sea lice (Lepeophtheirus salmonis) between wild salmonids

and farm salmon leads to infections of juvenile wild salmon in early marine

life (Krkošek et al., 2006; Costello, 2006; Krkošek et al., 2007a; Costello,

2009). Without farms, such infections do not occur because the migratory

behaviour of salmon results in a spatial separation of juveniles in early

marine life from adults and their parasites, a characteristic termed migratory

allopatry; host migration creates a barrier to adult-juvenile transmission

during early marine entry (Krkošek et al., 2007b). Studies of sea lice and

salmon have described how aquaculture can break down this migratory

barrier when farms containing adult fish are placed on migration corridors

for wild juvenile salmonids (recent reviews: Krkošek, 2010; Costello, 2009).

Rather than develop complex, spatially-explicit models of host-parasite

population dynamics, these studies have focused on the consequences of

infections during early marine life (which are due to the interaction of

host migration and aquaculture) for salmon population dynamics, primarily

in pink salmon (Oncorhynchus gorbuscha). Using this approach, Krkošek

et al. (2007a) demonstrated declines in pink salmon populations associated

with epizootics in aquaculture regions. Another theoretical paper reports a

probabilistic analysis of equilibrium infection levels to explain these declines

(Frazer, 2009). The primary focus, however has been effects on equilibrium

abundance of wild hosts. Salmon farming effectively augments host diversity,

however, which according to epidemiological theory is expected to affect

behaviour of population dynamics as well (Dobson, 2004).

Here, to understand the implications of parasite spill-over and spill-back

with farm hosts for population dynamics, we introduce a model for the host-

parasite system of wild pink salmon and parasitic sea lice. In keeping with

the approach of earlier work, we use the classic Ricker (1954) model for pink

salmon population dynamics, which we couple with a simple transmission

model derived under the assumption of migratory allopatry. This permits

a rather simple, spatially implicit, formulation of the model as a system

of discrete-time equations. Because pink salmon have a two-year lifespan,
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even- and odd-year lineages breed in alternate years in a given river. These

lineages can have consistently different relative abundances of adults, a

phenomenon termed “line dominance” in the salmon literature (Groot &

Margolis, 1991). Mathematically, line dominance arises in our model through

a period-doubling bifurcation, which links the degree of dominance with the

strength of inter-lineage interactions. To understand the effects of introduced

aquaculture hosts on wild host population dynamics, we focus on changes in

this dominance relationship, demonstrating that a line dominance naturally

maintained by negative density-dependent interactions between lineages can

be altered by the introduction of farm hosts.

2.2 Models

Pink salmon, like many fish, display migratory allopatry in which juvenile

fish are spatially separated from adult fish due to differences in habitat

requirements, food supply, natural enemies, and migration. With a two-

year generation time, a pink salmon population consists of two distinct

lineages, or year-classes, that use river (breeding) and ocean (maturing)

habitat sequentially in time. Without farms (Figure 2.1A), pink salmon of

different lineages potentially interact through two means: (i) through effects

on the environments (river and ocean habitat) that are sequentially used

by the juvenile and adult age-classes in alternate years, and (ii) through

transmission of a specialist parasite from adult hosts to juvenile hosts, i.e.,

between lineages.

Interactions of the first type occur through changes in the biotic or abiotic

environment of the river or ocean habitat due to host density and include a

variety of mechanisms proposed by Ricker (1962) to explain line dominance

in pink salmon, including direct suppressive interactions between lineages,

fouling of the rearing environment by large runs, and competition for food

in ocean habitat (Groot & Margolis, 1991). Interactions of the second

type occur due to parasite transmission, when the offspring of parasites

associated with adults of one lineage infect juveniles of the other lineage as

the two age-classes of host temporarily share space during migration. These

“infection windows” are shown as shaded regions of Figure 2.1A between the

river and ocean habitat. We assume that the density-dependent interactions

of both types act to increase mortality.
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Introduction of farmed hosts to migration routes between river and ocean

habitats (Figure 2.1B) leads to infection of hosts earlier in life. Juveniles

migrating out from the river are infected earlier in time and closer to the

river in space by “spill-over” infection from farms than when farms are not

present (Figure 2.1A). Farm infection status may, in turn, be influenced by

“spill-back” infection from parasites of wild adult hosts. In this case, the

farm provides a route of transmission within a lineage that is not present

without farms (Figure 2.1A). This intra-lineage transmission mediated by

the farm is shown in Figure 2.1B. When adult hosts migrate from ocean

to river, they bring parasites that influence farm infections. These adult

hosts breed to produce juveniles that out-migrate and receive infections from

farms. For example, in Figure 2.1A adults of dash-dot lineage are migrating

to the river at census time n. These adults breed, producing offspring that

out-migrate and receive infections from farms just before census time n+ 1.

We derive two models here, one for the case without farms (Figure

2.1A) and one for the case with farms (Figure 2.1B). In our models we

census the salmon and parasite populations at the time period after summer

sympatry of juveniles and adults. That is, after the period of transmission

from adult to juvenile fish in coastal marine environments. We track num-

bers of wild adult (A) and juvenile (J) hosts, and average abundance of

juvenile-associated parasites Pw. Because we are concerned with the parasite

population attached to hosts, which provide a convenient sampling unit of

the parasite population, we track parasites in terms of average abundance

per host (Hudson & Dobson, 1995).

For transmission, both farm-wild and wild-wild, we use an approximation

that applies when the number of juvenile hosts is low relative to the inverse

probability of transmission. Sea lice are an ectoparasite with a direct life

cycle: by “transmission” we refer to infection of juveniles by copepodid

stage offspring of mature parasites on returning adult hosts. Developmental

rates of sea lice are strongly dependent on temperature and salinity, with

larvae becoming infective copepodids after surviving through a naupliar

period that lasts from one to nine days (Johnson & Albright, 1991). In a

well-mixed coastal environment, the probability that any one larva both

survives to become infective and attaches to a host is low. Further, the

number of juveniles at census is attenuated from the large numbers at initial

out-migration. Our approximation assumes that the number of juvenile
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hosts is low relative to the probability of any one infective larva becoming

a mature parasite, and states that the average load of juvenile-associated

parasites Pw following transmission increases with the number of mature

parasites on returning adults at time of transmission. The full derivation is

given in Appendix 2.A.

Importantly, our models substitute temporal heterogeneity in transmis-

sion for the spatial dynamics of migratory hosts. This captures the main

effect of space and migration on host-parasite dynamics without farms:

preventing adult-juvenile transmission during early marine life. Thus, our

transmission function is derived by assuming that infection occurs only

within “infection windows” that are brief relative to the yearly census time

and defined by periods of sympatry between wild juveniles and adults:

farm-wild transmission requires sympatry with farm adults (Figure 2.1B);

wild-wild transmission requires sympatry with wild adults (Figure 2.1A).

2.2.1 Host-parasite system with migratory allopatry

To model the farm-free case (Figure 2.1A) we begin with the Ricker (1954)

model, which for a species with a two-year life cycle like pink salmon is

At+2 = Ate
r−bAt . The parameter r is intrinsic growth rate of the host

and the term exp(−bA(t)) represents density-dependent mortality, such as

competition for food among juvenile salmon or increased mortality of eggs

at high spawner density. To this classic model, we introduce age-structure to

track both adult and juvenile fish. We also add two forms of general negative

density-dependent interactions between lineages. The first, exp(−c0J(t)),

represents reduced survival of juveniles due to lagged influences of prior-year

populations on the nursery environment. Such an interaction could occur

if detritus from large runs fouled river habitats (Groot & Margolis, 1991).

The second, exp(−c1A(t)), represents reduction in survival of juveniles to

become adults due to lagged influence of prior-year adults on the marine

environment. This type of interaction could be due to direct suppressive

effects, e.g., cannibalism, or to competition for food at sea during summer

sympatry (Groot & Margolis, 1991). We also add a term for parasite impacts

on juveniles, exp(−aPw(t)), consistent with the parasite impact term used in

empirical studies (Krkošek et al., 2007a). Finally, we add a model for average

parasite transmission between wild adults and juveniles. This function is a

14



transmission

reproduce reproduce

Ocean

Rivers 

t = n t = n+1

Par.Juv. AdultPar.Juv. Adult

t = n+2

Coastal 

farm

transmission

reproduce reproduce
t = n t = n+1

FarmAdult

t = n+2

Ocean

Rivers 

Coastal 

(A)

(B)

- -

Par.Farm Juv.

-

Figure 2.1: Schematic depiction of interactions between two lineages of
wild host without (A) and with (B) farm hosts. The solid and dash-dot
lines correspond to the two lineages, dashed lines correspond to the parasite
population. The y axis depicts spatial extent of migration between breeding
and maturing ranges, the x axis depicts time. Without farms, parasite
transmission is only inter-lineage, from adults to juveniles, and occurs in
space and time within the gray “infection windows” as adults of one lineage
share space with juveniles of the other. Infection of juveniles by adult-origin
parasites during inter-lineage transmission and subsequent parasite-induced
mortality is depicted in the dotted boxes at each census time. With farms
(light gray bar), static in space and acting as reservoir hosts, both inter-
and intra-lineage transmission can occur, with the latter mediated by farm
hosts. Intra-lineage transmission through the farm is shown as short dash
lines within the light gray bar.
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combination of transmission, during the period of summer sympatry (the

infection window of length τw), and growth of the parasite population during

the period of allopatry (the remainder of the year, of length 1 − τw); see

Appendix 2.A for derivation. This gives our full host-parasite model for pink

salmon and lice without farms,

J(t+ 1) = s0s2A(t) · elog(f)−bA(t)︸ ︷︷ ︸
Reproduction of lineage

· e−c0J(t)︸ ︷︷ ︸
Negative effect of other lineage

(2.1a)

A(t+ 1) = s1J(t)︸ ︷︷ ︸
Survival of lineage

· e−c1A(t) · e−awPw(t)︸ ︷︷ ︸
Negative effects of other lineage, parasites

(2.1b)

Pw(t+ 1) = βwτwk︸ ︷︷ ︸
Inter-lineage transmission

· λ(1− τw)Pw(t)︸ ︷︷ ︸
Parasites per adult

· s1J(t)e−c1A(t)−aPw(t)︸ ︷︷ ︸
Wild adults A(t+ 1)

,

(2.1c)

where s0, s1, and s2 are survival probabilities, and f is the expected fecundity

of salmon. Note that we assume inter-lineage negative density-dependent

effects are less strong than the intra-lineage negative density dependence of

the traditional Ricker model, i.e., c1 < b. Table 2.1 summarizes our notation.

We introduce a scaling of (2.1) to obtain the nondimensional equations,

N0(t+ 1) =N1(t)e
r−N1(t)− s1c0

b
N0(t), (2.2a)

N1(t+ 1) =N0(t)e
− c1
b
N1(t)−P (t), (2.2b)

P (t+ 1) =ηP (t)N0(t)e
− c1
b
N1(t)−P (t). (2.2c)

Dynamical variables are N0 = bs1J , N1 = bA, and P = awPw. Host growth

rate is er = s0s1s2f . The nondimensional parameter for parasite-mediated

density-dependence is

η =
βwτwkλ(1− τw)

bs1

. (2.3)

2.2.2 Host-parasite system with farms

The parasites due to farm-origin infections affect the juveniles prior to

census, which follows the period of summer sympatry between wild adults

and juveniles in coastal marine waters (Figure 2.1B). Farm-origin infections

occur during a period of sympatry between wild juveniles and farms of length

τf . Including these infections in the model (2.1) decreases the juveniles at
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Table 2.1: Summary of notation for salmon-sea lice model without farms

Symbol Meaning Units

J(t) Juvenile hosts at time t [host]
A(t) Adult hosts at time t [host]
Pw(t) Mean mature parasites per juvenile at

time t
[parasite][host]−1

f Fecundity of salmon —
s0 Density-independent survivorship of

juveniles prior to transmission
—

s1 Density-independent survivorship of
juveniles during transmission

—

s2 Density-independent survivorship of
adults post-transmission

—

r Intrinsic growth rate of host at low
density r = log fs0s1s2

—

b Density-dependent mortality of host
associated with reproduction

[host]−1

c0 Negative density-dependent effect of
prior-year juveniles on current-year ju-
veniles

[host]−1

c1 Negative density-dependent effect of
prior-year adults on current-year
adults

[host]−1

aw Average parasite virulence (wild-
origin)

[host][parasite]−1

k Infective parasites produced per adult-
associated parasite

—

βw Attachment rate of infective parasites
per host (wild-wild)

[time·host]−1

λ Geometric growth rate in average par-
asite load

[parasite][host·time]−1

τw Infection window, wild adults and ju-
veniles sympatric

[time]

(1− τw) Maturation period, wild adults and
juveniles allopatric

[time]
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census and increases their average parasite load. The resulting model has

modified transmission (2.4c) and adult-to-juvenile (2.4a) maps,

J(t+ 1) =s0s2A(t) · elog(f)−bA(t) · e−c0J(t) · e−afβf τfkNPf (t+1)︸ ︷︷ ︸
Parasites (farm-origin)

, (2.4a)

A(t+ 1) =s1J(t) · e−c1A(t) · e−awPw(t) (2.4b)

Pw(t+ 1) =βwτwkλ(1− τw)Pw(t)J(t)e−c1A(t)−aPw(t)

+ βfτfk︸ ︷︷ ︸
Farm-wild transmission

· NPf (t+ 1)︸ ︷︷ ︸
Total parasites on farm

. (2.4c)

With the effect of farms, the number of parasites per juvenile, Pw, is the

sum of contributions from parasites hosted by wild returning adults (first

term) and the total number of parasites NPf on farm hosts (second term).

For consistency with our method of tracking parasites on wild hosts, we

describe farm infections as average lice per farm fish Pf times the number of

fish on the farm N . We assume throughout that the number of fish on the

farm, N , is constant. Table 2.2 summarizes notation for the system with

farms (2.4).

The number of parasites on the farm NPf depends on several factors.

Farm infections are influenced by the wild-associated parasite population.

Perfect infection control, i.e., NPf = 0 is not obtainable, and management

of infections on farms can proceed in two broad ways: control infection

to a constant level or control infection to some function of the number of

parasites from wild hosts. The simplest mathematical expression of the

first case is that the number of parasites on the farm is a constant each

year NPf (t+ 1) = γ1. For the second case, the simplest assumption is that

farm status depends linearly on prior-year wild infections, NPf(t + 1) =

γ2A(t)Pw(t− 1), where the expression on the right hand side of the equation

is the number of adult-associated parasites at time t. The index on variable

Pw, the average number of parasites on juveniles tracked in model (2.1), is

lagged one year relative to the index on variable A, the adults, to obtain

the number of parasites on adults at time t. Combining these expressions,

parasites on farm hosts are the sum of two terms, a contribution from

constant management and a contribution dependent on wild-origin infection:

NPf (t+ 1) = γ1 + γ2A(t)Pw(t− 1).
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Table 2.2: Summary of notation for sea lice-salmon model with farms

Symbol Meaning Units

N Fish on farm at time t [fish]
Pf (t) Parasites per fish on farm at time t [parasites][fish]−1

N · Pf (t) Parasites on farm at time t [parasites]
βf Attachment rate (farm-wild) [time·host]−1

τf Infection window (farm-wild), wild ju-
veniles and farms sympatric

[time]

af Average parasite virulence (farm-
origin)

[host][parasite]−1

γ1 Farm input under constant manage-
ment

[parasites]

γ2 Farm-mediated transmission under
proportional management

—

We also introduce a scaling of (2.4) to obtain nondimensional equations

N0(t+ 1) =N1(t)e
r−N1(t)− s1c0

b
N0(t)−φ−

af

aw
ηfN1(t)P (t−1)

, (2.5a)

N1(t+ 1) =N0(t)e
− c1
b
N1(t)−P (t), (2.5b)

P (t+ 1) =ηP (t)N0(t)e
− c1
b
N1(t)−P (t) + ηfN1(t)P (t− 1) + φ, (2.5c)

where scaled dynamical variables are as in (2.2) This scaling introduces a

nondimensional parameter that represents farm-mediated transmission,

ηf =
βfτfkγ2

b
, (2.6)

which incorporates the effect of prior year wild infections on farms. The

scaling (2.5) also introduces a non-dimensional that represents constant

input of infection from farms,

φ = awβfτfkγ1. (2.7)

2.3 Methods

We analyzed the dynamical behaviour of systems without farms (equations

2.1) and with the effects of farm hosts (equations 2.4). Our focus was on
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line dominance relationships between host lineages, specifically how farm

hosts can change these relationships. Because model (2.1) includes both

adult and juvenile hosts in each year, it represents both lineages. The

adults, A(t), in model (2.1) represent the odd-year lineage in odd years, and

the even-year lineage in even years. The opposite holds for the juveniles

J(t). Mathematically, line dominance corresponds to a two-year periodic

equilibrium of the system (2.1). The transition from a one-year periodic

equilibrium, a fixed point of (2.1), to a two-year periodic equilibrium, a

two-cycle of (2.1), occurs through a period-doubling bifurcation. Thus we

use stability and bifurcation analysis, with a combination of analytical and

numerical methods, to analyze changes to dominance induced by farm hosts.

In equations (2.1) density- and parasite- independent survivorship is

partitioned among host-age classes according to terms s0, s1, and s2. We

show in Appendix 2.B that this partitioning does not affect equilibrium

dynamics, which are governed by a combined host growth parameter r,

where r = log(fs0s1s2). The empirical estimate of host reproduction r for

pink salmon is r∗ ≈ 1.2 (Myers et al., 1999). Our interest is in the biological

interpretation for pink salmon. Accordingly, we focus on behaviour for r < 2

because above 2, increases in r will drive a period-doubling cascade. When

numerical analysis required fixing a value for r, we use the empirical estimate,

which is consistent with the range of pink salmon population growth rates

estimated for numerous stocks from Washington through Alaska (Dorner

et al., 2008).

Without farms, the behaviour of the model (2.1) depends on host popu-

lation growth rate r, on negative density-dependent interactions between

hosts, i.e c0 and c1, and on parasite-mediated interactions summarized by the

nondimensional parameter η defined in equation (2.3). For systems with no

nursery competition (c0 = 0), the farm-free system (2.1) is amenable to stan-

dard analysis of qualitative behaviour from the theory of dynamical systems

(Hale & Kocak, 1991). Because of our assumption that inter-lineage density

dependence is less strong than intra-lineage density dependence, we require

c1 < b. Full details are in Appendix 2.B. When c0 > 0, transcendental

equations define the equilibria so we use numerical tools.

With farms, the dynamics are governed by model (2.4). Expressed
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mathematically, our equation for farm status is

NPf (t+ 1) = ηfPw(t)A(t+ 1) + φ = ηfPw(t) · s1J(t)e−c1A(t)−awPw(t)︸ ︷︷ ︸
A(t+1)

+φ,

(2.8)

where φ the nondimensional parameter combination representing a con-

stant farm input under constant management defined in (2.7) and ηf is the

nondimensional parameter combination representing a farm-mediated trans-

mission under proportional management defined in (2.6). Relative to (2.1),

the first term when ηf > 0 modifies the dynamical structure of equations

(2.2) because its effect depends on the values of dynamical variables. On

the other hand, changes induced by φ > 0 are independent of dynamical

variable values and assumed constant at each time. We examined two cases:

where parasites are managed to a constant level, i.e., ηf = 0 but φ > 0, and

where parasites depend on prior-year wild infections i.e., φ = 0 but ηf > 0.

For the first case, an analytical solution for the equilibria is impossible, and

in the second case it is difficult. Therefore for both, we used the numerical

continuation package cl matcontM (Dhooge et al., 2003) to compute stability

diagrams for the location of the period-doubling bifurcation as a function of

the farm parameters, ηf or φ.

Numerical computation of a period-doubling bifurcation also gives a

quantitative prediction of how dominance varies as a function of the parame-

ters with which we conducted bifurcation analysis. Dividing the equilibrium

abundance of the non-dominant line by that of the dominant line yields an

inverse measure of dominance, the “equivalence ratio.” An equivalence ratio

of unity means that both lineages have the same equilibrium abundance,

i.e., there is a stable one-year periodic equilibrium.

2.4 Results

For a migratory allopatric host with a two-year lifespan and no farms,

negative density-dependent inter-lineage interactions of sufficient strength

can result line dominance. These interactions include both parasite-mediated

and environment-mediated negative density-dependence, and a sufficiently

strong level of either of these or a sufficiently strong combination of these is

enough to produce line dominance. As shown below, introduction of farm
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hosts can either decrease or increase the line dominance, depending on the

manner in which farm management responds to wild-origin infections. If farm

management controls infections to a constant level regardless of the intensity

of wild infections, the presence of the farm increases line dominance. On the

other hand, if farm control of infection is only proportional to the intensity

of wild infections, then the farm’s presence decreases line dominance.

2.4.1 Host-parasite dynamics without farms

Without farms, the model (2.1), has several distinct qualitative behaviours

that depend on parameters governing host growth, r and on negative density-

dependent interactions between hosts, i.e c0 and c1. Parasite-mediated

interactions also influence system behaviour, and though (2.1) has many

parameters governing parasites, these are summarized by the nondimensional

parameter η defined in equation (2.3). Negative density-dependent inter-

lineage interactions, both general, ci, and parasite-mediated, η, have similar

qualitative effects on dynamics. Stability diagrams for two pairings of

parameters are in Figure 2.2. The dashed lines in Figure 2.2 separate

regions labelled “stable,” where both age-classes of the host has a constant

abundance at every time step, from regions labelled “dominance,” where age-

class abundance alternates between relatively abundant and less abundant

years. Two-year lifespans mean the hosts exist in lineages that breed

independently, e.g., the odd- and even- year lineages in pink salmon, thus

behaviour in the “dominance” region corresponds to constant abundance

within a given lineage, but with abundance differing between lineages.

In the “stable” regions of parameter space shown in Figure 2.2, dynamics

of the system (2.1) are a one-year periodic equilibrium. In the “dominance”

regions, dynamics are a two-year periodic equilibrium. Transition between

these regions in parameter space is through a period-doubling bifurcation.

The bifurcation arises as negative density-dependent interactions between

host lineages increase in strength. Dominance results from a sufficiently

strong combination of general negative density-dependent interactions, ci,

between host lineages and inter-lineage transmission, η. In our model, inter-

lineage transmission acts as a form of parasite-mediated negative density

dependence. Parasites have a negative effect on juvenile hosts that increases

with the average parasite abundance per juvenile Pw following transmission.
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Parasites on juveniles arise through inter-lineage transmission from parasites

of adult hosts, and Pw increase with the absolute abundance of parasites

on adults. Because we track the average parasites per host, the absolute

parasite population is larger when the abundance of adult hosts is greater.

Thus, increased abundance of adult hosts in one lineage result in increased

infections in juveniles of the other lineage, a negative density-dependent

interaction between the lineages.

A sufficient combination of the two types of negative density dependence

(general and parasite mediated) will induce line dominance. Figure 2.2A

shows stable and dominance regions in parameters space of intra-lineage

transmission and host growth. For moderate values of r, sufficiently strong

intra-lineage transmission results in dominance. Increasing general negative-

density dependence, e.g., c1 in legend, reduces the strength of transmission

needed for dominance. In the “host only” region there is no stable equilibrium

with coexistence of the parasite and host at positive abundance. In the

“cycles” region, equilibria with periods that exceed two years occur. Figure

2.2B shows the regions of qualitative dynamics in the parameter space of

inter-lineage transmission (parameter η) and the negative density-dependent

interactions that occur between lineages in the ocean habitat (parameter c1),

explicitly illustrating the trade-off along the dashed line. The regions of host-

only dynamics, stable one-cycle dynamics and dominant lineage dynamics

shift with changing c1 but maintain their qualitative relationship. Numerical

examination of behaviour for c0 > 0 confirmed that the qualitative nature

of the effect of c0 is similar to that of c1. See Appendix 2.B for analytical

details.

Figure 2.3A shows a numerically-computed bifurcation diagram for adult

hosts with inter-lineage transmission. The bifurcation branches in Figure

2.3A predict the equilibrium proportion of dominance as a function of η for

ci = 0. Dividing the equilibrium abundance of the non-dominant line by

that of the dominant line yields the “equivalence ratio,” which varies with

η. Thus, viewed with line dominance in mind, the bifurcation branches give

the equilibrium dominance relationship of the lineages as a function of the

bifurcation parameter η. Figure 2.3B shows the equivalence ratio computed

for adult hosts. Movement from the “stable” region into “dominance” in

η rapidly increases dominance, shown by the decreasing equivalence ratio

plotted in 2.3B.
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Figure 2.2: Behaviour of host-parasite system without farms in parameter
space. In the “host only” regions, the parasite population cannot persist. In
the “stable” regions, (2.1) has a stable one-year periodic equilibrium. Along
the dashed lines, this equilibrium bifurcates through period-doubling to a
two-year periodic equilibrium. Above the dotted line, which corresponds
to a Niemark-Sacker bifurcation, cycles of period greater than two occur.
The two-year periodic behaviour in the “dominance” regions corresponds
to line dominance, see Figure 2.3. The panels show different parameter
spaces: inter-lineage transmission η and host growth r (A) with changes
due to various values of scaled inter-lineage negative density-dependence
(coefficient c1

b
) given in legend; and inter-lineage transmission η and scaled

negative density-dependence c1
b

(B) for r = r∗. Note that within the “host
only” region, for r > 2, increasing r drives host dynamics on a period-
doubling cascade consistent with the Ricker equation. The period-doubling
and Niemark-Sacker bifurcations were identified and curves computed by
numerical continuation using Cl matcontM (Dhooge et al., 2003).

Further, the relationships between host density, parasite abundance and

density dependence permit quantitative descriptions of how strong these

interactions must be to induce line dominance in the nondimensionalized

version of (2.1). When dominance does occur in host-parasite systems

governed by (2.1), the more abundant lineage experiences proportionally

less mortality due to inter-lineage negative density-dependence (whether

mediated by parasites or not) than does the less abundant lineage. See

Appendix 2.C for details.
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Figure 2.3: Line dominance arises through a period-doubling bifurcation.
Bifurcation of adult hosts in η for r ≈ 1.2 (A) shows single period doubling
with increasing η, ( η = 2.5 for this value of r), and period-two dynamics
for a large range of η > 2.5. The period doubling occurs in the ηr plane
for η = 2.5 along the black dashed line of Figure 2.2A. Model-predicted
equivalence ratio as a function of η (B), computed by dividing lower branch
by upper branch. The ratio is 1.0 for η < 2.5; intermediate equivalence
ratios occur only for a small range of η.
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2.4.2 Host-parasite dynamics with farms

The introduction of farm hosts, acting as reservoirs, causes changes in

system dynamics from the model given in equations (2.1) to that given by

equations (2.4) and (2.8). The qualitative nature of the change depends on

the relationship of farm infections Pf to wild hosts and their parasites, i.e.,

dynamical variables J , A, and Pw. Farm infections are influenced by prior-

year infections of wild adults. Infection status the next year, however, is

dependent on management of infections on farms that arise from parasites of

wild salmon. Using equation (2.8), we examined two cases: where infection in

the farm is controlled to a constant level φ > 0, ηf = 0, and where infection is

linearly proportional to previous-year wild infections φ = 0, ηf > 0. Through

numerical bifurcation analysis we examined the changes induced by farm

hosts in terms of shifts in the boundary between the stable and dominance

regions, i.e., the onset of period-doubling, which without farms corresponds

to the dashed line in Figure 2.2A.

Figure 2.4 summarizes the effect of constant and proportional manage-

ment of infection on the location of the onset of period-doubling and resulting

line dominance relationships relative to the transmission parameter η. Figure

2.4A gives the numerically-computed continuation of the period-doubling

curve in the φη plane with constant farm input φ. For fixed η, farm input

moves the system further into the period-doubling region, increasing line

dominance. Numerically computed bifurcations and resulting line dominance

profiles shown in Figure 2.4B confirms the suggestion of Figure 2.4A that

constant input from farms increases dominance at equilibrium.

Under proportional management a farm acts as a transmission route

within a lineage. This has an effect opposite of constant farm input. Figure

2.4C shows the numerically-calculated continuation of the period-doubling

point in ηfη plane with farm-mediated transmission ηf . For fixed η, increased

farm-mediated transmission moves dynamics away from the period-doubling

region, decreasing line dominance. By recomputing bifurcations in adult

numbers for various values of ηf we numerically computed the effect of

farm-mediated transmission on the relationship between η and dominance,

as shown in Figure 2.4D for values of ηf given in legend. This computation

confirms the suggestion of Figure 2.4C that a farm under proportional

management decreases dominance at equilibrium.

Intuition suggests that the negative effect of increased parasite load
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on juvenile hosts means that increases in φ will decrease equilibrium host

abundance. Structural stability of (2.1) permits analysis with φ as a bifur-

cation parameter. Numerical bifurcations in φ for values of r < 2 revealed

that increased φ drives down equilibrium host abundance. Above a critical

level, constant farm input (φ > .5) results in host extirpation (equilibrium

abundance of 0) for the deterministic model analyzed.

2.5 Discussion

The effect of salmon aquaculture sites as reservoirs for sea lice have long been

recognized (Tully & Whelan, 1993; Costelloe et al., 1996). Empirical studies

have demonstrated that declines in wild salmon populations are associated

with aquaculture (Krkošek et al., 2007a; Ford & Myers, 2008). Recently,

Frazer (2009) introduced an equilibrium theory for effects of a farmed hosts

on sympatric wild hosts via a directly-transmitted parasite, demonstrating

that increased farm host density and infections of wild juveniles can combine

to explain observed declines. Such infections of juveniles arise when farms

act as reservoirs and break the allopatric barrier to parasite transmission

that is formed by the migratory life history of pink salmon under natural

conditions (Krkošek et al., 2007b). Though these infections are a consequence

of migration, the analysis of Frazer (2009) did not include salmon population

dynamics, so the inferred effect of reservoirs was limited to a decline in

equilibrium abundance. Other analyses have coupled lice infections to models

of population dynamics (Krkošek et al., 2007a,b; Krkošek, 2010), but have

not combined these with models for louse transmission. Here, we developed

a host-parasite model that couples population dynamics of pink salmon

with a simple transmission model incorporating temporal heterogeneity in

transmission driven by migratory allopatry. We found that, in addition

to declines in equilibrium population abundance, spill-over and spill-back

with farms can alter qualitative patterns in population dynamics, either

increasing or decreasing line dominance.

The direction of the change in line dominance depends on how farms

respond to wild-origin infections. When infections on farms are indepen-

dent of wild infections, farms provide a constant input of infection to the

wild hosts that increases dominance; on the other hand, when infections

on farms depend on wild-origin infection, farms provide an intra-lineage
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transmission route that decreases dominance. These situations correspond

to two management scenarios: in the first, infection on farms is managed to

a constant abundance, and in the second, infection of farms is managed to a
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Figure 2.4: Constant (row 1) and proportional (row 2) management of
infection of farms have opposite effects on dominance. Stability planes
giving changes in the onset of period-doubling (dashed lines) in η-space for
constant management (A), i.e., changing farm input φ and proportional
management (C), i.e., changing farm-mediated transmission ηf . Equivalence
ratio as function of η computed for r = r∗ ≈ 1.2 with constant management
(B) for various values given in legend of constant input φ, and proportional
management and (D) for various values given in legend of farm-mediated
transmission ηf . For constant management (A,B), the locations in parameter
space where period-doubling in η causes line dominance for different φ are
labelled (a) and (b). For proportional management (C,D), locations where
period-doubling in η causes line dominance for different ηf are labelled (c)
and (d).
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level proportional to prior-year wild infection.

The mechanism by which the first scenario (“constant” management)

increases dominance is that the constant farm input has a proportionally

larger effect on the less-abundant line. This is a depensatory effect and is

thus similar to a number of additional hypotheses proposed by Ricker (1962)

that related dominance to other mechanisms that can have depensatory

effects, including fishing and predation.

The second scenario (“proportional” management) decreases dominance

because the abundant parasites of the dominant lineage have a negative

affect on juvenile survival within that lineage. This result demonstrates

the potential, when wild hosts display migratory allopatry, of introduced

farm hosts to change the structure of density-dependence governing wild

host population dynamics. This farm-mediated intra-lineage transmission

alters the “process order” of density-dependence in the population. Turchin

(2003) defines process order as the number of population densities at earlier

times needed to adequately describe fluctuations in the focal population.

Populations governed by different structures of density dependence gener-

ally display different patterns of population fluctuations, e.g., period and

amplitude (Turchin, 2003), thus changes to density-dependent interactions

of the type demonstrated here are, in a more general context, expected to

alter patterns of population fluctuations.

Under either management scenario (constant versus proportional response

to wild-origin infection), equilibrium wild host abundance, averaged over

both lineages, decreases. This result is consistent with empirical observations

in wild salmon populations potentially affected by disease spillover from

aquaculture (Gargan et al., 2003; Krkošek et al., 2007a; Ford & Myers, 2008;

Costello, 2009). In the case of constant input, when dominance increases

the abundance of the non-dominant lineage goes to zero while the dominant

lineage increases slightly in abundance. In the second case, when dominance

decreases both lineages decrease in abundance but the dominant lineage

decreases more than the non-dominant lineage.

2.5.1 Connections to epidemiological theory

The reservoir effects of farms studied here have parallels in epidemiological

theory. Under the management scenario of constant input, farm-origin
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infection can be viewed as a deterministic, periodic forcing of the host-

parasite system. Forcing affects behaviour of a variety of dynamical disease

models (Hastings et al., 1993). Perhaps the most common epidemiological

application of forced models is to express seasonality, which has broad

importance across human and wildlife disease systems (Altizer et al., 2006).

In the context of seasonally-forced disease models, the shape of continuous-

time forcing has a strong influence on observed dynamics (Earn et al.,

2000). Though our study examined only one type of constant forcing, based

on management of parasites to a constant threshold, future studies might

benefit from considering a variety of forcing functions based on different

management scenarios.

On the other hand, the scenario of proportional management results in

farm-mediated transmission. This situation has conceptual connections to

epidemiology of multi-host parasites and indirect transmission. Farm hosts

can be viewed as a new introduced species that increases the number of

parasites in coastal waters. This accords with the theory of multi-species

epidemics for pathogens transmitted by free-living infective stages, where

host species diversity can amplify epidemic outbreaks (Dobson, 2004). Be-

cause parasites on farm hosts are managed, however, farm hosts could also

be viewed as a type of indirect or environmental transmission with the

functional form of transmission depending on management actions. Different

functions representing a variety of management response to infections could

result in different dynamics. Rohani et al. (2009) showed that for a stochas-

tic model of disease outbreaks in migratory hosts, neglecting the role of

environmental transmission can underestimate the probability of outbreak.

Though we did not include stochastic effects in the deterministic system

studied here, transmission through farms plays a similar role, increasing the

average intensity of infection in wild juveniles in the coastal region of the

farm. In the case we treat, the regular migrations of wild hosts and the static

location of the farm mean that the farm primarily mediates intra-lineage

transmission.

2.5.2 Assumptions and implications

The analysis presented here rests on a great many assumptions that should

be kept in mind when interpreting our results. Transmission poses a difficult
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modelling problem (McCallum et al., 2001). We assumed that transmission

occurs through mass action between well-mixed infective parasites and

wild juvenile hosts. We applied this assumption to infection both from

wild adult hosts and from farm hosts. In British Columbia, farm-to-wild

infections occur in fjords (Morton et al., 2004), while wild-to-wild infections

occur during a period of summer sympatry in neritic waters (Beamish

et al., 2007). Because these two types of transmission occur in different

hydrodynamic environments, our approximate transmission function may

not apply equally to both processes. The mass action assumption, however,

is perhaps better justified in these marine environments than in many

places where it has been applied. The difference between the transmission

environments for farm-to-wild and wild-to-wild infections would be expected

to result in lower transmission probability in the more dispersive neritic

environment. This, however, does not address the potential for a qualitative

difference in transmission between the fjord and the neritic zone. To address

this possibility, one could build approximations based on more detailed

models of transmission developed by Krkošek et al. (2005) for farm-to-wild

transmission.

In addition, we focused on larvae in our transmission derivation. For

sea lice, however, some evidence indicates that motile adult stages can

play a role in transmission (Ritchie, 1997; Krkošek et al., 2007b; Connors

et al., 2008, 2010). In general, very little is known about motile transmission

(Costello, 2009). Despite this, our mass action transmission function could be

adapted to describe motile transmission. The “infective parasites” attaching

to juvenile hosts (Appendix 2.A) would then be motile adults, this would

reduce the proportionality k between infective parasites and adults, but could

increase the attachment probability βw. Because motile adults swim actively

unlike naupliar stages, the assumption that fish and infective parasites

are well-mixed may be less justified for motile transmission. In addition,

spatial scale for motile transmission may also differ from that of larval

transmission. The differences in transmission between larval and motile

transmission indicate that a single equation of the simple single mass action

type used here may be inadequate to describe both processes. To consider

multiple modes of transmission using mass action, an extended model using

multiple transmission equations could be developed. Alternatively, a single

equation that is spatially explicit might capture both types of transmission.
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When farm hosts are present, our transmission function assumes that

parasites from farms and wild additively contribute to total parasites on

juveniles. Contributions may be additive when parasite abundance is low,

but when there are very many lice attaching to juveniles this likely breaks

down. Thus, during high intensity infections observed in salmon farming

regions (Morton & Williams, 2003; Morton et al., 2004; Krkošek et al., 2006),

the equations used here may overestimate the role of wild-wild transmission

in host-parasite dynamics.

Additionally, our transmission function uses an approximation that is

best when the number of juvenile hosts is small relative to the inverse

probability of transmission. Thus, the approximation is better when the

probability of transmission is lower. As discussed above, the probability of

transmission is possibly higher in farm-to-wild transmission than in wild-to-

wild transmission. Further, farm-to-wild transmission occurs earlier in time

and space (Krkošek et al., 2005), when populations of juvenile hosts are

larger (Groot & Margolis, 1991). These two facts mean that the transmission

function is likely less valid for farm-to-wild transmission than for wild-to-wild

transmission. This is an additional reason that future work should look to

bridge between the simple transmission model used here and more detailed

models for farm-to-wild transmission (Krkošek et al., 2005).

Another consequence of our transmission function is that more lice on a

farm result in more lice on juvenile hosts, proportionally. This linearity is

the reason that a constant farm input acts in a depensatory manner where

the less abundant line suffers higher average infections from the farm. The

increase in line dominance seen when farm status is constant is due to this

depensatory effect. Because this theoretical increase in line dominance is

clearly sensitive to assumptions on transmission, further work is needed to

better understand whether management of farms to constant infection levels

would be expected to increase line dominance.

Environmental stochasticity is thought to play an important role in pink

salmon population dynamics (Myers et al., 1999). Here, we focused solely on

deterministic results, but future studies should examine the role of reservoirs

in host-parasite systems in the presence of stochasticity. When noise is con-

sidered, the transient behaviour of the system is likely to be more important

than the asymptotic equilibria (Hastings, 2004). The particular values of pa-

rameters pointed out here as resulting in dominance are based on asymptotic
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analysis of equations (2.1). When transient behaviour of equations (2.1)

is considered, the region of parameter space in which transient two-cycles,

and thus line dominance, occurs may expand. Preliminary analysis and

simulation of a related model (Krkošek et al., 2010) indicates that when

noise is included and statistical two-cycles are considered, dominance occurs

over a large region of parameter space.

2.5.3 Significance and Future Directions

Our results suggest that when spill-over and spill-back occur with wild

migratory hosts, the way in which managers of farms respond to wild-origin

infections will determine the effect on wild host population dynamics. We

were able to study interaction of wild host migration, farm hosts, and

parasites by substituting temporal heterogeneity in transmission for an

explicit spatial model. Temporal heterogeneity is common in epidemiological

interactions and has been a focus of intensive study (Anderson & May, 1992;

Altizer et al., 2006). The importance of space and host movement have been

studied extensively in human disease systems (see, e.g., Grenfell et al., 2001),

and recognized in wildlife-farm interactions (Morgan et al., 2004). The model

we formulate here combines these ideas, permitting us to study the effect of

host movement through its connection to temporal changes in transmission

processes. Though this type of space-time substitution may prove fruitful

in other contexts, there are also reasons to develop explicit models of the

spatial and continuous-time processes at work in the salmon-sea lice system.

The difference between constant farm status and farm-mediated transmission

is essentially one of forcing a dynamical system versus altering its dynamical

structure. Future efforts to understand how infection management in farms,

and other reservoirs, can interact with spill-over and spill-back to alter

wildlife disease dynamics could examine a number of different functions

defining either management response to wild infection or changing farm

status over the time infections occur. Such research, however, might benefit

from modelling in continuous time. Further, as discussed above, the spatial

dynamics of lice transmission may differ between farm-wild and wild-wild

transmission, and between motile and larval transmission. Considering

the full richness of dynamics involved in these processes may require a

spatially-explicit host-parasite model.
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More broadly, we expect the processes of wild host migration, spill-over,

spill-back, and management of farms to result in changes to wild host popu-

lation dynamics in the large variety of avian, aquatic and terrestrial systems

where wild hosts display migratory behaviour and potentially interact with

domesticated animals. Our model is specific to the system of sea lice and

pink salmon, however, and the interaction of these processes should be

explored in other system-specific models, as well as more generally, e.g., in

the setting of theoretical epidemiological models.

Appendix 2.A Derivation of the parasite map

In this Appendix we suppress the w subscripts. The map governing average

parasite per juvenile dynamics, P (t + 1) = βτkλ(1 − τ)P (t)J(t)e−aP (t),

represents two processes, growth and transmission. For sea lice, problems of

transmission (Krkošek et al., 2005; Frazer, 2008) and growth (Stien et al.,

2005; Revie et al., 2005; Krkošek, 2010; Frazer, 2009) have been studied in

detail; however, the transmission models are spatially explicit descriptions

of dynamics occurring in fjordic habitats over small time scales, and the

growth models consider details of parasite age structure. We neglect the

details of these formulations in favour of generality, assuming only that

transmission results from low-probability infection events occurring in a well-

mixed environment. Here, we derive the map used above to approximate

a mass action process in a well-mixed environment that is valid when

transmission is based on low-probability attachment events. Additionally,

we assume that parasites grow without density dependence and have no

age-structure.

Each year includes a short infection window τ , the period of wild adult

and juvenile summer sympatry. During the remainder of the year, the

maturation period, (1 − τ), juveniles J(t) become adults A(t + 1) and

parasite population growth occurs. The total number of adult-associated

parasites at the end of the maturation period, which we denote Padult using

a calligraphic “P” to differentiate from the variables for average parasite

abundance used elsewhere, is reduced by host death due to parasitism and

other factors, and increased by parasite reproduction and growth. Assuming

the parasites are uniformly distributed on hosts, decline in host population

from juvenile to adults due to parasites (1 − e−Pw) affects the parasite
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population proportionally. Parasite population increase is expressed as

a geometric growth in the average parasites per host at rate λ over the

time (1− τ). Then, the number of adult-associated parasites at the end of

maturation and the onset of transmission is given by

Padult(t+ (1− τ)) = λ(1− τ)Pw(t) · A(t+ 1), (2.A.1a)

= λ(1− τ)Pw(t)J(t)e−aP (t)−c1A(t). (2.A.1b)

We consider transmission during the infection window τ in continuous

time. Specifically, we consider the process of infective parasites ψ, attaching

to juvenile fish F , during an infection window of length τ . Because τ is

short, we treat number of juveniles F as constant and ignore production or

immigration of new infective parasites ψ, of which we assume there are an

initial quantity proportional to the number of adult-associated parasites at

the beginning of transmission,

ψ0 = kPadult, (2.A.2)

which relates back to model (2.1) through the definition of Padult in equation

(2.A.1). We further assume that infective parasites ψ become attached

parasites P independently from one another at a constant rate β. Finally,

for consistency with (2.1), where the units of P are motile parasites per fish,

we track P = P/F the average attached parasites per fish. This gives the

following equations for t ∈ (0, τ),

ψ̇ = −βψF
Ṗ = β ψ

F

Ṗ = Ṗ
F

= βψ,

(2.A.3)

The equation for the change in parasites per fish, Ṗ , comes from dividing

the equation for total attached parasites Ṗ by F . Note that attachment

rate β implicitly includes mortality of infective parasites. This is similar to

equations underlying the macroparasite model of Anderson & May (1978),

but here considered only over a short time-scale.

With a constant number of juveniles F , we have L(t) = ψ0e
−βFt and

P (t) = βψ0

∫ t
0
e−βFsds on t ∈ (0, τ). This expresses average parasites per

fish at the end of the infection window as a function of juveniles, initial
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infective parasites, the transmission rate, and the length of the window:

P (τ ) = ψ0

F
[1− e−βτF ]. If βτF � 1 a first-order Taylor approximation yields

P(τ) ≈ βτψ0. For F < 1
βτ

, the error in this approximation is bounded by
ψ0βτ
e

(where e is Euler’s constant). Using equations (2.A.1) and (2.A.2) to

relate this approximation back to the variables in (2.1),

P (t+ 1) = βτkλ(1− τ)P (t)J(t)e−aP (t)−c1A(t), (2.A.4)

we also note that the relevant quantity of juveniles is J(t+ 1). We use this

equation under the assumption that the number of juveniles falls below a

threshold J(t + 1) < 1
βτ

, which is an inverse measure of the strength of

inter-lineage transmission. When inter-lineage transmission is very weak, β

is very low and 1
βτ

is very large.

Appendix 2.B Analysis of farm-free system

Using both analytical techniques from dynamical systems and numerical

bifurcation analysis we find regions where line dominance occurs in the two-

dimensional space of parameters governing (i) negative density-dependent

interactions between host lineages and (ii) host productivity. Line dominance

corresponds to mathematical two-cycles and arises from stable equilibria

through period-doubling so we focus on defining boundaries of the region

where period-doubling occurs in parameter space. In the results of the main

text we report how these boundaries shift with the introduction of farm

hosts.

Recall that we treat the low-juvenile case, where N0 ≤ 1
βwτw

. We intro-

duce a scaling of (2.1) to obtain the nondimensional equations,

N0(t+ 1) =N1(t)e
r−N1(t)−c̃0N0(t), (2.B.1a)

N1(t+ 1) =N0(t)e
−c̃1N1(t)−P (t), (2.B.1b)

P (t+ 1) =ηP (t)N0(t)e
−c̃1N1(t)−P (t), (2.B.1c)

where nondimensional parameters c̃0 = s1c0
b

, c̃1 = c1
b

relate to inter-cohort

density dependence. Dynamical variables are N0 = bs1J , N1 = bA, and P =

awPw. Host growth rate is er = s0s1s2f . The nondimensional parameter for

parasite-mediated density-dependence is η = βwτwkλ(1−τw)
bs1

. For the remainder
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of the appendix we suppress tildes on c̃i. The model (2.B.1) exhibits positive

invariance to R3
+. To see this, define N(t) as (N0(t), N1(t), P (t)) then take

N(t0) > 0 as initial data at time t0. Applying (2.B.1) once, N(t0 + 1) > 0

and repeated application of (2.B.1) results in N(t) > 0 for all t > t0.

We assume that parameters r and η are positive thereby restricting

attention to cases where wild adult-juvenile transmission occurs. Further,

we focus attention on changes in parameters governing negative density-

dependent inter-lineage interactions that result in two-cycles in (2.B.1).

Mathematically, these are period-doubling bifurcations of stable equilibria.

Standard linearized stability analysis requires solving (2.B.1) for equi-

libria. The analytical tractability of (2.B.1) depends on the values of the

parameters describing general negative density-dependent interactions ci.

We assume ci are non-negative and treat several cases. In two of these, one

parameter is zero and at least some analytical treatment is possible: (i)

when c0 = 0 but c1 > 0 and maturation range inter-lineage interactions

are possible, and (ii) when c0 > 0 but c1 = 0. In case (iii) where both

maturation range and nursery range inter-lineage interactions are possible,

i.e., ci > 0, but the fixed points of (2.B.1) are not expressible in terms of

elementary functions. We do not consider this case further. Biologically, this

means that we treat cases where negative density dependent interactions

occur between lineages either in ocean habitat (c1) or in breeding habitat

(c0), but not in both.

2.B.1 Equilibria

Bifurcations of equilibria from fixed points to two cycles through period-

doubling occur from both parasite-free NPFE and coexistence N∗ equilibria.

The cases treated here differ in their potential for period-doubling bifur-

cations from these two types of equilibria. For cases (i), (ii) parasite-free

equilibria are given in Table 2.3. Only for case (i) can the coexistence

equilibria be obtained analytically in terms of elementary functions; given

in Table 2.3.

In case (ii), when c0 > 0 and c1 = 0, the coexistence equilibria of

(2.B.1) are defined by transcendental equations. Specifically, let N
(ii)
∗ :=

(N∗
0 , N

∗
1 , P

∗) denote the equilibrium in this case. Dividing (2.B.1c) through
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Table 2.3: Fixed points of model for analytically tractable cases.

Case (i) Case (ii)

c0 = 0, c1 > 0 c0 > 0, c1 = 0

NPFE

(
re

r
c1

1+c1

1+c1
, r

1+c1
, 0

) (
r

1+c0
, r

1+c0
, 0
)

N∗

 
e
r− 1

η

η
, 1
η
,r− (1+c1)

η

! 0BBBB@
LambertW

0B@ c0e
r− 1

η

η

1CA
c0

, 1
η
,log

 
η
c0

LambertW

 
c0e

r− 1
η

η

!!1CCCCA

by P ∗, we see 1 = ηN∗
0 e

−P ∗
. Substituting this relation into (2.B.1b),

N∗
1 =

1

η
.

By substituting into (2.B.1a), we see that

N∗
0 =

1

η
er−c0N

∗
0−

1
η ,

a transcendental equation for N∗
0 . This equation does have a unique solution,

which expressible in terms of the Lambert W function (see, e.g., Corless

et al., 1996), and is given in Table 2.3.

2.B.2 Stability

Standard linearized stability also requires linearizing the system (2.B.1).

The linearization is expressed through the Jacobian matrix of the system:

D(t) =

(
−N1c0er−N1−N0c0 (1−N1)er−N1−N0c0 0

e−P−N1c1 −N0c1e−P−N1c1 −N0e−P−N1c1

Pηe−P−N1c1 −N0Pηc1e−P−N1c1 (1−P )N0ηe−P−N1c1

)
. (2.B.2)

We use standard local stability analysis of dynamical systems. For

discrete time systems, linear stability requires that each eigenvalue of the

Jacobian matrix (2.B.2) evaluated at an equilibrium lies within the unit

circle in the complex plane. If the linearized system at a particular equilibria

satisfies this requirement, then it is stable. For analysis of the parasite-free

equilibrium, NPFE we are able to analytically compute the eigenvalues

of (2.B.2) evaluated at the equilibrium and thus verify stability. For the

coexistence equilibrium, N∗, we use Jury’s criteria, which provide necessary
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and sufficient conditions on the characteristic polynomial of the Jacobian for

stability. We do not focus on the stability of equilibria per se, but instead on

the location in parameter space where stability is lost, through bifurcation.

Thus, results of our stability analysis are described below in our bifurcation

analysis.

2.B.3 Bifurcations

Throughout we focus on behaviour for moderate values of host reproduction,

i.e. r < 2, that correspond to the situation of biological interest. This

eliminates possible period-doubling bifucations due to the host reproduction

parameter r. Such bifurcations occur in the classical Ricker model, as

part of a period doubling cascade to chaos as outlined in (May & Oster,

1976). Because our concern is line dominance, we focus on period-doubling

bifurcations that occur with changes in parameters governing negative

density-dependent inter-lineage interactions, including general interactions ci

and parasite mediated interactions governed by the inter-lineage transmission

term η.

Period-doubling (PD) bifurcations of maps must satisfy two criteria

(Iooss, 1979, pp. 12):

Theorem 2.1 Consider the map (µ,Xi) 7→ fµ(Xi) : R4 → R3 where Xi ∈
R3 are dynamical variables and µ ∈ R is a parameter. If fµ is of class Ck

for k ≥ 2 near a fixed point X∗, then a period doubling bifurcation exists at

µ = µ∗ if the following conditions are satisfied:

(PD1) Eigenvalue location The Jacobian Dfµ(X
∗) has an eigenvalue

λ0(µ) with λ0(µ
∗) = −1 and |λi(µ∗)| < 1 for i = 1, 2; and

(PD2) transversal d|λ(µ∗)|
dµ

< 0.

Specifically, there exists a unique one-sided bifurcated branch of fixed

points of order 2, (µ(s), Xj(s), j = 1, 2) for fµ such that µ(X∗) = X∗,

µ(−s) = µ(s), X1(−s) = X2(s),
dX1

ds
(0) = 1, Xj(0) = X∗, fµ(Xj) =

Xj′ , j 6= j′. The functions µ and Xj are Ck−1.

Bifurcation from parasite-free equilibrium

For the parasite-free equilibria NPFE we characterized period-doubling

bifurcations for both case (i) and case (ii).
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In case (i), c0 = 0 the Jacobian (2.B.2) evaluated at NPFE from Table

2.3 is given by  0 − re
r− r

1+c1
1+c1

+e
r− r

1+c1 0

e
− c1r

1+c1 − c1r
1+c1

− r
1+c1

0 0 ηr
1+c1

 . (2.B.3)

The characteristic equation of (2.B.3) is

λ3 + λ2

(
c1r

1 + c1
− ηr

1 + c1

)
− λ

(
1− r

1 + c1
+

ηc1r
2

(1 + c1)
2

)
+

ηr

1 + c1
− ηr2

(1 + c1)
2 = 0.

(2.B.4)

The polynomial on the right hand side of (2.B.4) can be factored,

(
λ− ηr

1 + c1

)
·

(
λ+

c1r

2 + 2c1
− 1

2

√
4− 4

r

1 + c1
+

c21r
2

(1 + c1)
2

)

·

(
λ+

c1r

2 + 2c1
+

1

2

√
4− 4

r

1 + c1
+

c21r
2

(1 + c1)
2

)
.

To find potential curves in parameter space where period-doubling occurs,

we set one root of the characteristic equation (2.B.4) to negative unity. The

resulting curve is c1 = 1. Along this curve, one eigenvalue of (2.B.3), i.e.

root of (2.B.4), is negative unity. The eigenvalue of (2.B.3)

λPD(i) = − c1r

2 + 2c1
− 1

2

√
4− 4

r

1 + c1
+

c21r
2

(1 + c1)
2 (2.B.5)

evaluates to negative unity when c1 = 1. The other roots of (2.B.4) have

absolute value less than unity when conditions on η and r are satisfied: the

root ηr
1+c0

, has absolute value less than unity when η is sufficiently small,

i.e., η < 2
r

= 1+c1
r

; the other root is the complex conjugate of (2.B.5), and

has absolute value less than unity for values of r considered here, i.e., r < 2.

Thus the Eigenvalue location (PD1) criterion is satisfied for r < 2 and

sufficiently small values of η. For this eigenvalue,

∂λPD(i)(c1)

∂c1

∣∣∣
c1=1

= −1

8
r − 1

8

4r + r2

r − 4
,

thus satisfying the transversal (PD2) criterion for values of r considered
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here, i.e. r < 2.

In case (ii), c1 = 0, the Jacobian (2.B.2) evaluated at NPFE from Table

2.3 is given by − c0re
r− r

1+c0
− c0r

1+c0

1+c0
− re

r− r
1+c0

− c0r
1+c0

1+c0
+e

r− r
1+c0

− c0r
1+c0 0

1 0 − r
1+c0

0 0 ηr
1+c0

 . (2.B.6)

The characteristic equation of (2.B.6) is

λ3 + λ2

(
c0r

1 + c0
− ηr

1 + c0

)
− λ

(
1− r

1 + c0
+

ηc0r
2

(1 + c0)
2

)
+

ηr

1 + c0
− ηr2

(1 + c0)
2 = 0.

(2.B.7)

The polynomial on the right hand side of (2.B.6) can be factored,

(
λ− ηr

1 + c0

)
·

(
λ+

c0r

2 + 2c0
− 1

2

√
4− 4

r

1 + c0
+

c20r
2

(1 + c0)
2

)

·

(
λ+

c0r

2 + 2c0
+

1

2

√
4− 4

r

1 + c0
+

c20r
2

(1 + c0)
2

)
.

To find potential curves in parameter space where period-doubling occurs,

we set one root of the characteristic equation (2.B.7) to negative unity. The

resulting curve is c0 = 1. Along this curve, one eigenvalue of (2.B.6), i.e.

root of (2.B.7), is negative unity. The eigenvalue of (2.B.6)

λPD(ii) = − c0r

2 + 2c0
− 1

2

√
4− 4

r

1 + c0
+

c20r
2

(1 + c0)
2 (2.B.8)

evaluates to negative unity when c0 = 1. The other roots of (2.B.7) have

absolute value less than unity when conditions on η and r are satisfied: the

root ηr
1+c0

, has absolute value less than unity when η is sufficiently small,

i.e., η < 2
r

= 1+c0
r

; the other root is the complex conjugate of (2.B.8), and

has absolute value less than unity for values of r considered here, i.e., r < 2.

Thus the Eigenvalue location (PD1) criterion is satisfied for r < 2 and

sufficiently small values of η.
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For this eigenvalue,

∂λPD(ii)(c0)

∂c0

∣∣∣
c0=1

= −1

8
r − 1

8

4r + r2

r − 4
,

thus satisfying the transversal (PD2) criterion for values of r considered

here, i.e. r < 2.

Bifurcation from coexistence equilibrium

For the coexistence equilibrium, N∗, in case (i), the Jacobian (2.B.2) evalu-

ated at N∗ from Table 2.3 is given by 0 − e
r− 1

η

η
+e

r− 1
η 0

e
−r+ 1

η − c1
η

− 1
η

η(r− 1
η
− c1

η )e−r+ 1
η −c1(r− 1

η
− c1

η ) 1−r+ 1
η
+

c1
η

 (2.B.9)

The characteristic equation of (2.B.9) is

λ3 + λ2

(
r − 1− 1

η

)
+ λ

(
1− c1
η

− 1

)
+ 1− 1

η
= 0 (2.B.10)

To find potential curves in parameter space where period-doubling occurs,

we set one root of the characteristic polynomial (2.B.10) to negative unity.

The resulting curve is r = 3−c1
η

. Along this curve, one eigenvalue of (2.B.9)

is negative unity and thus part of the Eigenvalue location (PD1) criterion is

satisfied. The roots of (2.B.10) are obtainable through the formula for the

roots of a cubic. The formulae that result from these roots, however, are very

long and would be tedious to treat analytically. We use Jury’s criteria, which

provide necessary and sufficient conditions on the characteristic polynomial

of the Jacobian for stability, to verify that the remaining eigenvalues fall

within the unit circle. We state Jury’s stability criteria from (Cain, 2007):

Theorem 2.2 (Jury stability test) All roots of the polynomial

q(x) = amx
m + am−1 + · · ·+ a1x+ a0 (2.B.11)

lie in the open disc in the complex plane if and only if

— (J1): amq(1) > 0,

— (J2): (−1)mamq(−1) > 0, and
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— (J3.j): |rj| < 1 for j = 1, 2, . . .m, where rj are given by the following

iterative procedure. First, set bj = am−j for j = 0, 1, . . .m and define

rm = bm/am. Then, define anew
j−1 = aj − rmbj for j = 1, 2, . . .m. This gives

the coefficients am−1, am−2 . . . a0 for the next iteration.

The characteristic polynomial of (2.B.9) is given by the left-hand side of

the characteristic equation (2.B.10). To apply Theorem 2.2 to the lineariza-

tion (2.B.9), we identify coefficients of the polynomial from (2.B.10) with

coefficients aj of (2.B.11):

a3 = 1,

a2 = r − 1− 1

η
,

a1 =
1− c1
η

− 1,

a0 = 1− 1

η
.

The full set of Jury’s criteria from Theorem 2.2 for N∗ in case (i) are given

in Table 2.4. Equality in condition J2 of Table 2.4 corresponds to the curve

r = 3−c1
η

. Condition J1 is satisfied along this curve for c1 < 1, and condition

J3.1 is satisfied for η > 1
2
. Thus, along the curve r = 3−c1

η
, for r < 2, η > 1

2
,

and c1 < 1, when criteria J3.2 and J3.2 are also met, the full Eigenvalue

location criterion (PD1) is satisfied.

Because we did not explicitly compute the eigenvalues of (2.B.10), we

could not verify the transversal condition analytically. Using the numerical

continuation tool Cl matcontM (Dhooge et al., 2003), however, we verified

that the system undergoes a period-doubling bifurcation along the dashed

line of Figure 2.2A. This tool, like many software packages for numerical

analysis of bifurcations, solves equations that define a bifurcation type, e.g.

period-doubling, and computes corresponding normal forms to identify the

bifurcation (Dhooge et al., 2003; Kuznetsov, 2004).

Thus, equality in the conditions of Table 2.5 defines boundaries between

regions in which the coexistence and parasite-free equilibria are stable and

those in which two-cycles occur. For ci < 1 period-doubling bifurcations

from a stable coexistence equilibrium are possible. The dashed lines in

Figure 2.2 represent curves where the eigenvalue location (PD1) criterion

is satisfied for the coexistence equilibrium N∗. Numerical computations
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Table 2.4: Conditions for existence and stability of N∗ in case (i). The term
r3 is defined in line J3.1. The terms r2n and r2d are defined in line J3.2.

J1. 0 < r − (1+c1)
η

J2. 0 < 3−c1
η
− r

J3.1. |r3| := |1− 1
η
| < 1

J3.2. |r2n| := |1−c1
η
− 1− r3

(
r − 1− 1

η

)
| < |1− r3

(
1− 1

η

)
| =: |r2d|

J3.3
∣∣∣(r − 1− 1

η
−
(
1− 1

η

)(
1−c1
η
− 1
))(

1 + r2n
r2d

)∣∣∣ < ∣∣∣r2d −
(

r2n
r2d

)
r2n

∣∣∣
Table 2.5: Conditions that, if violated, result in loss of stability through
period-doubling of parasite-free NPFE and coexistence N∗ fixed points; for
analytically tractable cases.

Case (i) Case (ii)

NPFE c1 < 1 c0 < 1

N∗ r < 3−c1
η

—

using Cl matcontM (Dhooge et al., 2003) confirm these curves represent the

location of period-doubling bifurcations with increasing η. In this case the

dynamics undergo a qualitative transition from stable endemic equilibrium

to dominance through period doubling with increase in either η or c1.

The ηr stability plane, i.e. Figure 2.2A in the main text, shows curves

based on the applying Jury’s criteria to N∗ for case (i), i.e., Table 2.4, and

results from numerical continuation. The structure shown in this figure

indicate that the governing of dynamics by r is also typical for η > 0. For

fixed r, e.g. r = r∗ = 1.2 the empirical estimate for pink salmon (Myers

et al., 1999), as η becomes very large, a bifurcation across the dotted line

of Figure 2.2A to higher-order cycles is possible. This line corresponds

to Niemark-Sacker bifurcation, i.e. a Hopf bifurcation for maps (Hale &

Kocak, 1991). Bifurcation in η is shown in Figure 2.3A. The character of the

bifurcation in η is a single period doubling. In contrast to the “cascade to

chaos” familiar from the Ricker model (May & Oster, 1976), the period-two

regime is present for a large range, η ≈ 2.5 to η ≥ 100 (not shown).
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Appendix 2.C Differential mortality between

lines when dominance occurs

(A) (B)
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Figure 2.5: Bounds on mortality of “dominant” and “non-dominant” lineage
juveniles at equilibrium for (A) parasite-mediated and general negative
density-dependence between lineages, and (B) parasite-mediated interactions
only. The curves are computed for various values of r, given in legend, at the
boundary of the dominance region, i.e., at onset of period-doubling induced
by parameter c1. For a given value of r, mortality of the dominant lineage
has a value below the curve while mortality of the non-dominant lineage has
a value above the curve.

If dominance occurs in (2.1), the less abundant lineage experiences

40% mortality (or greater) due to negative density-dependent inter-lineage

interactions, while the dominant lineage experiences less mortality. Figure

2.5A shows the equilibrium mortality of juvenile hosts due to general negative

density-dependence and parasitism at the edge of the dominance region,

i.e., dashed lines in Figure 2.2. The degree of overall mortality due to both

factors decreases slightly as the general negative density-dependent, c1/b,

interaction strength is increased. The figure was computed for a system

with where negative density-dependent effects occur between lineages only

based on adult abundance (c1 > 0, c0 = 0). In the “dominance” region of

Figure 2.2A, mortality for the more-abundant lineage falls below the curves

given, while mortality for the less-abundant lineage is above the curve.

As the strength of general negative density-dependent interactions is

increased, the amount of parasite-mediated negative density-dependent

mortality needed to maintain dominance decreases. Figure 2.5B shows this
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effect, plotting the mortality due to parasite-mediated effects alone that is

needed to maintain line dominance plotted against the strength of general

negative density-dependent inter-lineage interactions c1/b.
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Chapter 3

Evolution of chemical

resistance in parasites of

aquaculture

3.1 Introduction

Sea lice, notably Lepeophtheirus salmonis in Scotland, Ireland, Norway and

Canada, and Caligus rogercresseyi in Chile, pose problems for salmon aqua-

culture, particularly economic losses due to decreased production (Johnson

et al., 2004). Salmon aquaculture managers have implemented sea lice con-

trol programs to mitigate these economic losses (Costello, 2009b). Salmon

aquaculture is also associated with declines in wild abundance, potentially

due to sea lice (Krkošek et al., 2007; Ford & Myers, 2008). As concerns

over the impacts of salmon aquaculture on wild stocks grow, lice control

programs also aim to reduce farm impacts on wild populations (Heuch et al.,

2005; Krkošek, 2010). Chemical treatment of lice on farms is a central tool

to achieve both conservation and economic goals (BCPSF, 2009; Costello,

2009b; Krkošek, 2010). Sea lice have developed resistance, or demonstrated

potential for resistance, to chemical treatments including organophosphates

(Fallang et al., 2004), pyrethroids (Sevatdal & Horsberg, 2003; Fallang et al.,

2005), and avermectins (Bravo, 2003; Lees et al., 2008). Resistance devel-

opment threatens the continued efficacy of management plans that rely on

chemical treatment.

The history of resistance development in sea lice differs between the
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North Atlantic and North Pacific basins. In the Atlantic, resistance has

occurred multiple times to multiple different compounds, while in the Pacific

resistance has not been observed. The two ocean basins differ in their history

of chemical use (Denholm et al., 2002). However, in the most recent episode

of resistance emergence, to emamectin benzoate, the chemical was used for

a similar time period in both basins (Lees et al., 2008). An alternative

explanation for the apparent difference in propensity for resistance is that

the basins may differ in the amount of immigration of susceptible parasites

from wild-origin parasite populations.

Wild salmonids are migratory in both Atlantic and Pacific basins. In

both basins, migrations of hosts may provide connectivity between parasite

populations, likely explaining panmixis of lice observed at the basin scale

(Todd et al., 2006; Messmer et al., 2010). The basins differ greatly, however,

in the abundance of wild salmonids relative to salmon in farms: in the

Atlantic, wild salmonids are greatly outnumbered by salmon in farms, while

in the Pacific this situation is reversed (Costello, 2009b; Krkošek, 2010).

Because the basins differ in the ratio of non-selective to selective habitat,

aquaculture sites in the Atlantic may receive lower immigration of susceptible

parasites from wild populations relative to the Pacific.

The amount of susceptible immigration can influence resistance evolu-

tion (Comins, 1977a). On domesticated hosts, chemical treatment selects

parasites for resistance. On wild hosts, no treatment occurs and resistance is

neutral, or selected against (Denholm & Rowland, 1992). Sea-cage aquacul-

ture results in “spill-over” and “spill-back” of parasites between sympatric

domesticated and wild hosts (Costello, 2009b). This means that a lineage of

sea lice can experience variable selection for resistance as infestations spread

back and forth between farms and wild populations.

This situation echoes a strategy employed in terrestrial agriculture to slow

resistance emergence: planting but not treating areas, termed “evolutionary

refuges,” adjacent to treated fields (Figure 1A; Alstad & Andow, 1995;

Gould, 2000). If wild migrating salmon mediate immigration of susceptible

lice (Figure 3.1B), they could help fulfil a human need for increased time

to resistance. Thus, salmon could provide an ecosystem service, where a

natural population serves a human demand (de Groot et al., 2002). This also

raises the question: can management of parasites on farms can maximize

the benefit potentially provided by salmon migrations? To address this

52



question, we use analytical approximations and numerical simulations within

a population genetics framework. We focus on “time-to-resistance,” the

generation in which the frequency of chemical resistance in a farm population

of parasites reaches a predetermined threshold from a low initial value. First,

we ask how a chemical treatment strategy can maximize time-to-resistance.

Second, we consider whether a decline in migratory wild populations due

to sea lice spill-over from the farm changes the strategy that maximizes

time-to-resistance.

3.2 Models

We model the genetic and demographic dynamics of parasite populations on

salmon farms that receive immigration from parasite populations on wild

hosts. Because sea lice are sexually-reproducing macroparasites, we begin

with the classical equations for selection of single-locus two-allele gene in a

randomly-mating, sexually-reproducing population with discrete generations

to describe the process of resistance evolution (Crow & Kimura, 1970). We

assume (i) major-gene control of a resistance trait, which (ii) has no cost

in a parasite population that (iii) reproduces without density-dependence.

Further, we assume that (iv) only one generation of the parasite is treated

per year, and (v) immigration to the parasite population takes place once

per year.

There are several reasons why we use a simple population genetic model.

First, there is a strong theoretical context for single locus models in resistance

management, based on the equations of population genetics describing

changes in gene frequency under selection (Comins, 1977b,a; Mangel &

Plant, 1983; Plant et al., 1985; Alstad & Andow, 1995; Lenormand &

Raymond, 1998). Second, field-origin resistance to pesticides is often single-

locus (Denholm & Rowland, 1992). Third, lice have physiological potential

for resistance to chemical treatments currently in widespread use against sea

lice, such as emamectin benzoate (Lees et al., 2008; Westcott et al., 2008).

Although the genetic and physiological bases of resistance in lice remain a

topic of ongoing research, potential single-locus mechanisms of resistance

have been identified in lice (Burridge et al., 2010).

Because we deal with resistance, we assume that the resistance allele is

beneficial during treatment and has no effect in the absence of treatment.
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Figure 3.1: A refuge strategy to delay chemical resistance in pests as em-
ployed in transgenic crops (A), and as embodied by seasonal immigration of
lice brought to farms by wild salmon migrations (B). We assume single-locus,
two-allele control of resistance. Under the refuge strategy in agriculture,
treated and untreated refuge habitats are planted. Pests with susceptible
genotype SS migrate (solid arrows) from refuge habitat (A) to reproduce
(dashed arrows) with heterozygote RS or resistant RR pests in treated
habitat (A). When wild adult salmon (B1) migrate past salmon farms (solid
boxes in B) in fall or late summer they bring immigrant susceptible SS lice
(dash boxes) to farms. Migrating wild juveniles (B3) move past farms in
spring, receiving spill-over infection from farms that may cause population
declines (note that we do not consider the genetics of these spill-over lice).
In winter, and perhaps early summer, (B2) the farm population of lice is
isolated.
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Some studies in resistance management (Comins, 1977a; Lenormand & Ray-

mond, 1998; Vacher et al., 2003) make a further assumption that resistance

has a cost and is selected against without treatment. That resistance has

a cost, however, is not universally true (Denholm & Rowland, 1992). In

lice, the tools to investigate whether resistance mechanisms have fitness

implications are just being developed. Further, the assumption of a cost is

less conservative because it increases time to resistance (REX Consortium,

2010). For these reasons, we assume no cost to resistance.

To derive an analytical formula for time-to-resistance, we assume that

numbers of immigration events and treatment events are constant from

year-to-year and that immigration and treatment overlap the same number

of times per year. For numerical simulations, we relax this assumption. We

assume that treatment occurs often enough to ignore any intrinsic density-

dependence in the parasite. Thus, we assume the population grows or

shrinks geometrically depending on treatment. We assume also that the

environment is constant except for changes due to treatment. We assume

treatment selects on survivorship, not fecundity, and precedes mating. Under

these conditions relative genotypic fitness acts as differential survivorship

(Bourguet et al., 2000).

We use approximations to classical population genetic models based

on the low initial frequency of resistance to describe emerging chemical

resistance. Using approximate models permits analytical results that would

not be possible when considering the full nonlinear dynamics of population

genetic change under selection.

We begin with an approximation for time-to-resistance based on Taylor

expansion of the classical Fisher-Haldane-Wright equations, originally due to

Comins (1977b), which we re-derive in Appendix 3.B using our notation and

assumptions. Under the assumptions of classical population genetics, the

change in resistance frequency p during the ith generation follows Fisher’s

fundamental theorem (Appendix 3.A; Crow & Kimura, 1970). The change is

proportional to the product of the genetic variability under selection and the

gradient of selection. We consider a resistance trait following these dynamics

with resistant allele R and susceptible allele S. Following Comins (1977b),

we parametrize the relative genotypic fitness according to the dominance of

resistance and strength of selection given in Table 3.1. To first order in p,

frequency of resistance during the ith generation changes according to the
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ratio of heterozygote fitness to susceptible homozygote fitness, pi+1 ≈ wRS

wSS
pi;

this is equation (3.B.1) in Appendix 3.B. This ratio, which we refer to

as “heterozygote advantage,” depends on treatment status, as well as the

strength and dominance of selection due to treatment.

We parameterize genotypic fitness using parameters s ∈ (0, 1) for the

strength of treatment and β ∈ (0, 1) for the dominance of resistance. When

s is closer to 1, selection due to treatment is more intense, i.e. treatment

strength is higher. When β is closer to 1, the resistance trait is more

dominant. Under this parameterzation, during treatment fitness of the

RS heterozygote is (1− s)1−β, which is intermediate between fitness of the

susceptible SS homozygote, 1−s, and fitness of the resistant RR homozygote,

1. Then, the heterozygote advantage as a function of treatment and the

genetics of resistance is wSR

wSS
=
(

1
1−gi·s

)β
, where s is selection strength due to

treatment, β is dominance of resistance, and gi indicates treatment (gi = 1)

or non-treatment (gi = 0). During treatment, the ratio exceeds unity so

resistance will increase in frequency, while without treatment the ratio is

unity. Dynamics are according to

pi+1 =

(
1

1− gi · s

)β
︸ ︷︷ ︸

Selection

· pi. (3.1)

When the number of treated generations is the same each year, the

emergence threshold frequency pe is the initial frequency of resistance p0

multiplied by the product of heterozygote advantages to the power of TR, the

number of years until resistance is detected. We perform this computation

in Appendix 3.B. With our assumption of one treatment per year, we set

gi = 1 for the one treated generation each year, time-to-resistance in years is

TR = Tg
log pe

p0

β︸ ︷︷ ︸
Biological

· 1

log 1
1−s︸ ︷︷ ︸

Treatment

, (3.2)

where Tg is the generation time. This equation, which we rederive in

Appendix 3.B as equation (3.B.3), is equivalent to equation (6) of Comins

(1977b) or equation (4) of May & Dobson (1986). The time to resistance

is affected by factors relating to parasite biology, e.g., generation time and

initial frequency of resistance, and to the strength of treatment. Note that
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this approximation only applies when resistance is not completely recessive;

however, even in this case, limβ→0 TR = ∞, the equation gives the correct

intuition: time-to-resistance is very long (May & Dobson, 1986).

3.2.1 Approximate dynamics of resistance emergence

with migration from a purely susceptible pool

To understand the effect of immigration on approximate time-to-resistance

(3.2), we extend the approximation of Comins (1977b). To model the

situation in the Pacific, where there are a large number of hosts and lice, we

assume that lice immigrating to farms via wild hosts come from a very large

pool. For qualitative insight into how immigration of susceptible genes and

treatment interact to affect time-to-resistance, we assume that immigrants

all have homozygous susceptible genotype SS. Therefore the frequency of

resistance in the immigrants is zero, p̄ = 0.

The resistance frequency in the farm after selection and immigration is

obtained by averaging the resistance frequency p in the resident population

with that of the immigrants, assumed to be zero. This average is weighted

according to the abundance of the farm population n and of the immigrants

n̄,

pi+1 =


(

1

1− gi · s

)β
︸ ︷︷ ︸

Selection

· 1
n̄·mi

ni
+ 1︸ ︷︷ ︸

Immigration

 pi. (3.3)

The effect of immigration enters through the ratio of immigrants to residents
n̄
ni

. Equation (3.3) is derived in Appendix 3.C (as equation (3.C.2)). This

formulation assumes that if immigration and treatment occur within the

same generation, immigrants are incorporated into the population before

treatment. The value of the ratio depends on demographic changes in the

parasite population, models of which are described in Section 3.2.2.

To first order in pi, the change over one year in the resistance frequency

is given by the term in the parenthesis on the right hand side of (3.3). When

the magnitude of this term is the same each year, the equation can be
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Table 3.1: Summary of notation

Symbol Meaning Units

wRR Resistant homozygote fitness = 1 —
wRS Heterozygote fitness = (1− g · s)1−β —
wSS Susceptible homozygote fitness = 1− g · s —
w̄i Average genotypic fitness in ith generation —
λ Geometric growth rate of parasite [parasite][time]−1

gi Indicator of treatment (gi = 1), non-
treatment (gi = 0)

—

β Dominance of resistance (β = 1 implies
dominant resistance gene)

—

s Selection strength of treatment —(
1

1−gi·s

)β
Heterozygote advantage under treatment —

pi Frequency of resistance in farm in ith gen-
eration

—

ni Farm parasite population in ith generation [parasite]
mi Indicator of immigration (mi = 1), no

immigration (mi = 0)
—

p̄ Frequency of resistance in immigrant par-
asite population

—

n̄t Immigrant parasite population in year t [parasite]
n̄
ni

Ratio of immigrants to residents in ith
generation

—

pe Emergence threshold for resistance fre-
quency

—

TR Time-to-resistance [years]
Tg Generation time, 1

Tg
assumed an integer [years]

i Time scale for parasite [generations]
t Time unit for migratory wild salmon (t ·

1
Tg

= i parasite generations)
[years]

∆ Number of generations between wild host
breeding and wild host juvenile migration

[generations]

er Geometric population growth rate for mi-
gratory wild salmon

[host][time]−1

b Inverse carrying capacity for parasites on
migratory wild salmon

[parasite]−1

a Parasite-induced mortality of juvenile wild
salmon

[host][parasite]−1

k Proportionality between parasites on farm
and on juvenile wild salmon

[host]−1
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rearranged for time-to-resistance with immigration,

TR =
Tg log pe

p0

β︸ ︷︷ ︸
Biological

· 1

log

(
1

1− s

)
︸ ︷︷ ︸

Treatment

− log

(
n̄

ni
+ 1

)
1
β︸ ︷︷ ︸

Immigration

. (3.4)

Equation (3.4) is derived in Appendix 3.C (as equation (3.C.6)). The ap-

proximate effect of immigration enters via the term labelled “Immigration”

in the denominator. When this term, which grows with the ratio of im-

migrants to residents n̄
ni

, approaches the term labelled “Treatment,” the

time-to-resistance becomes very long (theoretically infinite). Other terms

are as in (3.2).

3.2.2 Demography of farm parasites under treatment

and immigration

To simulate time-to-resistance, we require a model for the demographics of

the parasite population on farms. We employ the demographic model under-

lying the standard population genetic model from which our approximation

(3.4) is derived. The discrete-time geometric growth of the population is the

product of the maximum growth rate λ and average relative fitness w̄i which

depends on generation (Crow & Kimura, 1970). The equation for geometric

growth is ni+1 = λw̄(pi)ni, see Appendix 3.A for the full form of average

fitness. Average fitness is a function of the resistance frequency pi and

whether treatment occurs gi, as parametrized by the strength of selection

s and dominance of resistance β. Whenever immigration occurs (mi = 1),

the immigrants n̄ increase the size of the population. The demographic

dynamics are

ni+1 = λ(1− gi · s)︸ ︷︷ ︸
Susceptible growth

·

1 + 2pi

((
1

1− gi · s

)β
− 1

)
︸ ︷︷ ︸

Resistant growth

 · (ni + mi · n̄︸ ︷︷ ︸
immigration

).

(3.5)

This approximation states that the population grows at a rate determined

by the more-prevalent SS genotype with a correction term for demographic

growth under treatment in the fraction of the population that is resistant.

59



The correction, labelled “Resistant growth,” is proportional to the resistance

frequency and governed by the strength and dominance of selection on

heterozygotes under treatment. This is equation (3.C.7), derived in Appendix

3.C.1.

3.2.3 Immigration when parasites on farms affect wild

host abundance

To explore the implications for time-to-resistance if wild-origin infections

cause declines in abundance of wild hosts, we couple a model for salmon

population dynamics with the genetic (3.3) and demographic (3.5) models

for the farm population of parasites. The association between infections of ju-

venile pink salmon in farming regions and declines in pink salmon abundance

was shown in an empirical study of Krkošek et al. (2007). To incorporate

the potential effect of parasites on farms on wild salmon populations, we

assume that lice immigrating to farms are proportional to the number of

wild salmon migrating near the farm. Then, equations for population dy-

namics of salmon can be used to describe the number of lice immigrants.

For this, we use a extension to the Ricker model for pink salmon population

dynamics that accounts for the effect of spill-over infections. This extension,

introduced by Krkošek et al. (2007), states that salmon decline in abundance

exponentially with the average number of parasites per juvenile. We also use

the transmission function developed in Chapter 2, which assumes that the

average number of lice on juveniles during out-migration is proportional to

the number of lice on farms. In turn, the lice on juveniles result in declines

in the number of adults returning and thus the number of lice immigrating

to the farm. This yields an equation for the number of wild-origin sea lice

immigrating to the farm from year-to-year,

n̄t+2 = n̄t · er−bn̄t︸ ︷︷ ︸
Ricker production

· e
−akn

t·( 1year
Tg

)+∆︸ ︷︷ ︸
Lice-induced mortality

. (3.6)

In this equation, we use time units of years t appropriate to salmon popula-

tion dynamics, but we must convert the index on resident lice, ni, to to lice

generations. The term ∆ represents the time difference, less than a year and

measured in lice generations, between when wild host adults migrate in to

rivers and when wild host juveniles migrate out past farms. Equation (3.6)
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states that the number of immigrants in a given year (2 + t) is a function of

the number of immigrants two years in the past (t), but is also affected by

the population of lice on the farm at the time in the previous year when wild

host juveniles were migrating past the farm. Measured in lice generations,

this time is (t · (1year
Tg

)+∆), where the conversion from units of years to units

of lice generations is through the generation time Tg of lice. Although this

is a modified version of the Ricker (1954) equation, the dynamical variable

is parasites and not fish. This reflects our assumption that the number of

immigrant lice is proportional to the number of wild salmon returning to

the region of the farm. These units are connected to parasite generation

i by the relation 1year
Tg

· t = i. Parameter b reflects density-dependence in

salmon reproduction, and r is the growth rate of salmon. Note that b has

units [parasites]−1, while r is governed purely by host productivity. This

equation also assumes that infections on juveniles are proportional (k) to

the number of lice in the farm.

3.3 Methods

We analyzed the interaction of immigration and treatment using equation

(3.4) for time-to-resistance, as well as the underlying genetic (3.3) and de-

mographic (3.5) dynamics of the parasite. These dynamical equations also

served as the basis for numerical simulations of time-to-resistance, which we

used to examine the effect of treatment strategy. We also used numerical sim-

ulations to examine the effect of farm-wild interactions on time-to-resistance

under varying treatment strategy. These simulations employed genetic (3.3)

and demographic (3.5) dynamics of the parasite coupled with wild host

populations through (3.6). We define time-to-resistance in simulations as

the generation in which resident gene frequency reaches emergence threshold

pe, divided by the number of generations per year. Simulation of time-

to-resistance was based on the following recipe: (1) set the farm parasite

population to an initial abundance n0 and frequency of resistance p0 (as-

sumed to be low), (2) allow the resident population to vary from initial

values according to genetic (3.3) and demographic (3.5) dynamics, (3) when

pe is reached, stop the simulation.
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3.3.1 Interaction of treatment strategies and immigra-

tion

To assess how different treatment strategies interact with a constant yearly

immigration to affect time-to-resistance, we used numerical simulations of

two basic strategies: treatment based on timing relative to immigration,

and treatment based on a threshold. The strategy of treatment based on

timing relative to immigration that we considered is to treat only once

per year at a predetermined time (generation). To simulate this strategy,

we fixed a within-year time of immigration, a number of immigrants per

year n̄, and a timing of treatment relative to immigration. Then, for each

possible timing of treatment, we simulated time-to-resistance under genetic

(3.3) and demographic (3.5) dynamics as described above. The strategy of

threshold-based treatment that we considered is to treat when the mean

abundance of parasites per farm host, ni/N for N farm hosts, exceeds a

threshold. To simulate treatment based on thresholds, we fixed a number

of fish in a farm N and a treatment threshold. Then, we then simulated

time-to-resistance under genetic (3.3) and demographic (3.5) dynamics as

described above, treating whenever ni/N exceeded the threshold. We also

considered a combined strategy, with treatment both at a time relative to

immigration and based on a threshold.

3.3.2 Changes when farm infections cause declines in

wild abundance

To understand how the influence of immigration changes if we relaxed the

constant immigration assumption, we also employed numerical simulations

of time-to-resistance. We focused on the possible negative effect of farm

infections on wild host abundance, modelling the year-to-year changes

in the number of immigrants to the farm using (3.6). This model, in

addition to the genetic (3.3) and demographic (3.3) models for the parasite,

forms a system of equations that describe farm demographics and genetics,

and immigrant input. Model (3.6) assumes that impact on wild hosts

occur only during one generation per year during outmigration when wild

juvenile hosts migrate past and are sympatric with farms. In the model,

the generation of outmigration is defined relative to the time of wild host

immigration by parameter ∆. Accordingly, we examined several strategies:
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(1) treatment based on a threshold but only during this period of sympatry,

(2) treatment based on a threshold year-round, (3) treatment based on timing

of immigration only, and (4) treatment that combines treating based on a

threshold during out-migration and treating based on immigration timing.

The strategies of treating only during out-migration (1) or timed treatment

(3) treat a maximum of one generation per year. With threshold-based

treatment all year (2), treatment is possible in every generation. Under

the combined strategy of timing and threshold-based treatment during out-

migration, a maximum of two generations per year are treated. We simulated

time-to-resistance under the threshold-based strategies for a variety of farm

population densities, i.e., number of fish stocked, N .

3.3.3 Parameter values

For numerical simulations we fixed parameter values, listed in Table 3.2.

Parameters for genetics of resistance, i.e., β, s, p0, pe, were chosen to agree

with those used in general theoretical studies of chemical resistance (Comins,

1977b; May & Dobson, 1986). Lice life-history parameters, i.e., λ, Tg, were

based on louse biology (Johnson & Albright, 1991). The parameter for wild

salmon growth r, was drawn from a study of pink salmon (Myers et al.,

1999). Other parameters were chosen heuristically, i.e., b was set so that the

equilibrium of (3.6) was near n0, and a · k was set very small to reflect a

low probability of transmission for an individual larva.

3.4 Results

According to equation (3.4), the effect of immigration on time-to-resistance

is strong and positive. Mathematically, the effect is governed by term

(1 + n̄
ni

): the larger this term, the longer the time-to-resistance TR. At

the zero-immigration limit (3.4) corresponds to (3.2). When the ratio of

immigrants to residents n̄
ni

is increased from zero, time-to-resistance increases

as well, strongly at first, then less strongly and finally very strongly, diverging

to infinity when the denominator of (3.4) approaches zero. Maximizing

the ratio of immigrant to resident populations at immigration, n̄
ni

, thus

maximizes time-to-resistance.

63



Table 3.2: Summary of parameters employed in simulations

Parameter Value

λ 1.5
β 0.6
s 0.99(

1
1−gi·s

)β
15.85 (treated), 1 (untreated)

p0 1× 10−3

pe 0.5
n0 1× 105 [lice]
n̄ 0.3× n0 [lice]
p̄ 0
Tg

1
6

[year]
∆ 2 [generations]
er 3.32, i.e., (r = 1.2) [fish][two years]−1

b 1
n0

[immigrant lice]−1

a · k 1× 10−7 [farm lice]−1

3.4.1 Interaction of treatment strategies and immigra-

tion

With immigration however, timing of treatment relative to immigration

is important. Strategies that treat based on timing of immigrations take

advantage of the potentially strong increase in time-to-resistance with immi-

gration, while strategies where treatment is based only on a threshold do

not.

Altering timing of treatment within a year corresponds to changing the

generation in which the heterozygote advantage term,
(

1
1−gi·s

)β
, is greater

than unity (in all untreated generations the magnitude of the heterozygote

advantage is unity). Without immigration, in model (3.2), the term labelled

“Treatment” governs time-to-resistance. Changing treatment timing within

the year does not change the value of any of the parameters within (3.2).

Thus, without immigration, treatment timing within the year does not affect

time-to-resistance.

Timing

Strictly, our equation (3.4) for time-to-resistance applies only when n̄
ni

is

the same each year. Even if we assume constant immigration, however,
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Figure 3.2: Results of simulations of TR on log scale with different timing of
treatment (x-coordinate) relative to immigration. The vertical line represents
the timing of immigration within each year. The black lines represent timed
treatment, for full non-linear (solid) and approximate (dashed) genetic
dynamics. The gray line represents treatment that is not timed, but based
on a threshold of 3.5 lice per fish. The maximum in time-to-resistance occurs
with treatment during the generation just prior to immigration.
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the farm population changes dynamically as given by equations (3.3) and

(3.5). Numerical results indicate that even when the resident population

fluctuates in abundance, time-to-resistance increases with the ratio of initial

farm population to immigrants n̄
n0

.

Analysis of the demographic equation (3.5) indicates that treating im-

mediately before immigration each year maximizes time-to-resistance, if

there is a periodic, yearly immigration event and one treatment per year.

The strategy tunes the relative timing of immigration and treatment to

minimize the number of lice in the resident population at immigration.

This is possible because the approximate demographic model for residents

describes log-linear changes in population of lice. Because the number of

immigrants is the same each year, minimizing the number of residents at

immigration maximizes the ratio of immigrants to residents n̄
ni

, and in turn

maximizes time-to-resistance TR. Mathematically, altering timing corre-

sponds to altering the ordering of the heterozygote advantage terms, all of

which are unity except the during the one treatment event. The first term

in the denominator of equation (3.4), is the product of these terms. The

magnitude of this term is
(

1
1−gi·s

)β
regardless of the ordering of the product.

This implies the timing of treatment affects time-to-resistance only through

the immigrant-to-resident ratio n̄
ni

.

Numerical results support this simple analysis, indicating that, when

treatment strength s is the same each year, treating immediately before

immigration yields the longest (or equally longest) time-to-resistance. Figure

3.2 illustrates time-to-resistance TR on log scale versus immigration timing

of one treatment relative to an immigration event indicated by the vertical

dashed line. The maximum in time-to-resistance occurs when treatment

is the generation just prior to immigration. Simulations of the full non-

linear model for change in gene frequency (solid lines) show that under

these dynamics, relative timing of treatment and immigration has a similar

qualitative effect. Note however, that time-to-resistance is systematically

shorter under the approximate dynamics, indicating that the approximation

underestimates the benefits of timing. Under both approximate and full

dynamics, the effect of varying within-year timing of one treatment timed

relative to immigration is up to one order of magnitude. Threshold-based

treatment strategies are insensitive to within-year timing of immigration.
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3.4.2 Farm-origin infections and declines in wild abun-

dance

When parasites on farms affect wild abundance according to model (3.6),

timing of treatment relative to immigration to minimize the farm population

at immigration can still extend time-to-resistance. The largest potential

increase in time-to-resistance, however is given by a treatment strategy that

combines treatment timed relative to immigration with a threshold-based

treatment during out-migration to minimize spill-over infections of wild

juveniles. Figure 3.3 shows results of simulations using equations (3.3) and

(3.5) for parasite genetic and demographic dynamics and model (3.6) for the

effect of farm parasites on the abundance of wild hosts. When used alone, the

strategy of timing treatment relative to immigration (dashed lines) results

in relatively modest gains in time-to-resistance, with the best gains in time-

to-resistance occurring with treatment is immediately prior to immigration.

Threshold based treatment used alone (dotted lines) is insensitive to the

timing of immigration. The best gains occur with a combined strategy that

times treatment the generation prior to immigration and also treats during

out-migration (solid lines). The effect of changing treatment timing on

time-to-resistance under this strategy is shown in Figure 3.3.

The increase in time-to-resistance under the best strategy, however, is

sensitive to the number of fish stocked in the farm, decreasing as the number

of fish stocked in the farm N increases. As the number of fish in the farm

increases relative to the average abundance of lice immigrating to the farm

(Figure 3.3 A-C), the gains in time-to-resistance under optimally-timed

treatment disappear and the effect of changing treatment timing becomes

negligible. Note that in Figure 3.3C the lowest solid curve is qualitatively

the same as without out-migration treatment. The range of fish stocking

densities N over which gains are seen depends on the treatment threshold

used during out-migration. When this threshold is relatively lower (darker

lines) gains are seen at relatively higher stocking densities, i.e., the solid

black line still reaches a peak in Figure 3.3C. In contrast, a relatively higher

threshold (lighter lines) means gains in time-to-resistance are seen only at

lower stocking densities.
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Figure 3.3: Effect of treatment timing relative to immigration on log time-to-
resistance when farms affect wild abundance according to model (3.6). The x
axis shows the timing of treatment relative to the immigration event (vertical
line). Several treatment strategies are shown, including (1) threshold-based
during out-migration only (large dotted), (2) threshold-based year-round
(small dotted) , (3) timed only (dashed), and (4) timed and threshold-
based treatment during out-migration only (solid lines). For threshold-only
strategies (1) and (2), the threshold is 2.5. For the mixed strategy (4),
out-migration is fixed at time 4 louse generations, and several thresholds
are shown: 1.0 (black), 2.5 (dark gray), and 4.0 (light gray). The panels
represent different values for the ratio of number of fish stocked N to the
average number of immigrants n̄ over the time-to-resistance: (A) 0.5, (B)
1.0, and (C) 2.0.
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3.5 Discussion

Our results show that when spill-over and spill-back between farms and

migratory wild salmon results in immigration of susceptible parasites to a

farm, managers of farms can use this as an ecosystem service to extend the

time-to-resistance on the farm.

These results lead to a strategy for maximizing time-to-resistance that

has several key aspects:

• treatment must be timed based on wild migrations: treating the

generation prior to immigration of parasites to the farm maximizes

the effect of susceptible immigrants,

• maintaining viable populations of migratory salmon near farms is

required, meaning

– if parasites on farms affect wild salmon abundance a combination

of treatment timed just prior to fall return and protection during

out-migration provides the best benefit in terms of extending

time-to-resistance,

– a combination of decreased intensity of production and threshold-

based treatment can provide protection during out-migration,

– there is a trade-off where increases in the intensity of production

on farms make delays in time-to-resistance harder to achieve.

3.5.1 Treatment timing relative to immigration

The importance of timing in mediating the ability of immigration to delay

resistance has been recognized since theoretical work on multi-year treatment

strategies by Mangel & Plant (1983). That study was inspired by cotton-

spider mites (Aracina: Tetranychidae), where seasonal infestations receive

continuous immigration from a “pool.” In that system, treating earlier in

the season delays resistance by permitting a longer period of interbreeding

with susceptible immigrants following treatment (Plant et al., 1985). Here,

we found that treating the generation prior to immigration delays resistance.

This result was based on analysis of the demographic equation (3.5) and

the formula (3.4) that we derived for time-to-resistance with immigration.

Our result is analogous to that of (Plant et al., 1985) for our system, which
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involves a single, discrete immigration event per year. Note that this result

contrasts with the situation without immigration, i.e., the formula (3.2) of

Comins (1977b), where altering treatment timing within the year does not

affect the time-to-resistance.

Operational and biological factors other than immigration also affect

time-to-resistance. Time-to-resistance is long when heterozygote advantage

is close to one during treatment, which corresponds to weak selection or

near-recessive advantage. This agrees with the original results of Comins

(1977b), discussed by May & Dobson (1986), because model (3.4) includes

several terms that appear in the approximation derived by Comins (1977b):

the ratio of emergence threshold to initial resistance frequency pe/p0 (in

the numerator) and the heterozygote advantage (in the denominator). The

magnitudes of these terms are fixed by the underlying biology and the

number of treatments per year (May & Dobson, 1986). Note also that

if treatment intensity affects dominance, then operational and biological

factors interact (Denholm & Rowland, 1992).

The link between intensity of treatment and dominance is part of the

“high-dose refuge” (HDR) strategy used in terrestrial agriculture (Alstad

& Andow, 1995). The observation that managers could create refuges

to facilitate such immigration, combined with the observation that reces-

sive resistance traits emerge much more slowly, led to the development of

the HDR strategy (Georghiou, 1977; Denholm & Rowland, 1992). This

strategy, shown schematically in Figure 3.1A, combines a refuge with a treat-

ment strength that is high enough to render resistance effectively recessive

(Denholm & Rowland, 1992). HDR was developed based on population

genetic models similar to those we employ (Comins, 1977a; Alstad & Andow,

1995; Tabashnik, 2008). The primary focus in developing HDR has been

genetically-modified plants, e.g., Bt corn and cotton, which continually

express toxins. Thus, timing has not often been considered as a component

of HDR, with studies focusing on other factors like dose strength (Den-

holm & Rowland, 1992), and spatial configuration of refuges (Lenormand

& Raymond, 1998; Vacher et al., 2003). Timing is critically important in

the situation we treat here, but otherwise there is some similarity to HDR.

Because a recessive resistance trait is slow to emerge in our situation as well,

if treatment strength can be used to influence dominance then the strategy

described in this paper will likely be more effective.
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Compared with treatment based on timing relative to immigration,

strategies that use thresholds to determine treatment provide less benefit

from immigration, in terms of extending time to resistance. For threshold-

based treatment, analytically determining the magnitude of the impact of

host migration on time-to-resistance is complicated because immigration

of wild-origin lice has two potentially-opposite effects: to increase time-to-

resistance TR by introducing susceptible alleles into the parasite population

and to decrease TR by increasing the number of treatments. Combined

strategies are likely to be required in practice, as some upper threshold is

needed to prevent economic losses to parasites (Costello, 2009a). Combining

thresholds and timing relative to immigration appears to preserve much of

the benefit of timing-based treatment, which is encouraging.

3.5.2 Maintaining viable populations of salmon near

farms

Simulations based on model (3.6) suggest that the benefits in terms of

decreased time-to-resistance provided by wild host migrations decrease as

the number of fish stocked in the farm, i.e., the intensity of production,

increases. When production is high, there are very many fish in farms near

where out-migration occurs. Threshold-based treatment means the absolute

number of parasites in the region scales with the number of fish in the farm.

Because of our assumptions on transmission, more parasites in a region

means more effects on wild out-migrant juveniles. This echoes a finding of

Frazer (2009), that stocking density influences the effectiveness of treatment

in conserving wild populations. Our result, however, suggests that stocking

density also influences ability of farms to use immigration from wild stocks

in resistance management. These results suggest that a combination of

decreased intensity of production and threshold-based treatment during

out-migration and treatment timed just before fall return may provide the

best benefit in terms of extending time-to-resistance.

Under the hypothesized link between farm parasites and wild abundances,

farm managers do have some degree of control over the refuge effect provided

by wild migrations. There are, however, critical differences between this

situation and HDR in terrestrial systems due to lack of direct control over

refuge habitat (wild fish) that is dynamic in space and time. In the case that
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we study here, the susceptible immigrants brought by migrating salmon are

the cause of the refuge effect. Because of salmon migrations, these susceptible

immigrants may come from a larger population of immigrants geographically

separated from the farm. Thus, wild host populations that migrate near

farms do not simply provide “habitat” for parasites proportional to their

area but form a link between a large panmictic population of parasites at

the scale of the ocean basin and the coastal regions where farming occurs.

As highlighted here, the effect of farm-origin infections on wild salmon

abundance (Krkošek et al., 2007) means that farms must manage infections

to maintain the ecosystem service provided by migrating salmon.

Because wild host migrations mediate immigration of susceptible individ-

uals they provide for a human demand, and are thus an ecosystem service

(de Groot et al., 2002). Though the term “ecosystem service” has often

been applied to benefits related to pest control, particularly in agriculture,

discussion has focused on biological control and provision of hosts that are

resistant to pests (Pimentel et al., 1997). In the marine context, discussion

of ecosystem services has focused on resilience, food provision, and water

quality (Holmlund & Hammer, 1999; Worm et al., 2006). Similarly, dis-

cussion of ecosystem services provided by salmon populations has focused

on salmon as a food resource, or source of enjoyment from recreational

fishing or ecotourism (Pimentel et al., 1997; Holmlund & Hammer, 1999).

In our study, the migratory hosts provide a service by delaying resistance,

which relies on spill-back of parasites from wild hosts to farms. So long

as managers of the farm are able to minimize the effects of spill-over in

reducing wild host abundance, this effect can be maintained. This points out

a potential upside of spill-over and spill-back with migratory hosts. However,

the potential for emerging disease threats to travel via the same routes and

impact wild populations means that caution should be taken employing the

type of “service” discussed here.

3.5.3 Assumptions and Implications

We assumed major-gene control of resistance. Though this is a very common

assumption in studies of chemical and antibiotic resistance (REX Consortium,

2010). The genetics of resistance in sea lice are a topic of current research,

and incorporating knowledge gained from these studies into future modelling
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efforts is critical (Burridge et al., 2010). In the meantime, theoretical

investigations of the interactions studied here when resistance is governed

by other genetic mechanisms, e.g. a quantitative trait, could be fruitful.

Our analysis neglects the production cycle of the farm, which in practice

will influence treatment timing (Heuch et al., 2005). It would be beneficial

to reconsider the strategies discussed here within a broader framework of

optimization, for example along the lines of (Plant et al., 1985). In this case,

economic losses to parasites would also need to be considered.

We have not thoroughly investigated the sensitivity of our results to

uncertainty in parameters used. For the parameters governing genetics of

resistance our models and simulations behave similarly to the early studies

of insecticide resistance (Comins, 1977b; Alstad & Andow, 1995). Strong

treatment, i.e., higher s, and more-dominant resistance, i.e. higher β, result

in fast emergence of resistance. Though uncertainty in these parameters

may change the quantitative output of our model, it is unlikely to alter our

qualitative conclusions. For the parameters involving salmon productivity,

and the effects of lice on salmon, however, the effects of uncertainty are

much less clear. Future studies should more thoroughly examine behaviour

of the system derived here relative to these parameters. Both mathematical

analysis and numerical simulations could be useful in assessing sensitivity.

The assumption of model (3.6) is that farm-origin parasites affect abun-

dance of migratory wild hosts and thus the magnitude of immigration of

parasites to the farm. The notion that wild salmon abundance is affected

by sea-cage salmon aquaculture salmon is supported by many recent studies

(Gargan et al., 2003; Krkošek et al., 2007; Ford & Myers, 2008). By using

model (3.6) for effects of lice on host populations, we also make several

assumptions about how parasites on farms affect wild hosts. First, we

assume that the average number of lice on juveniles during out-migration

is proportional to the number of lice on farms. This assumption is sup-

ported by the basic physics of lice transmission (Frazer, 2009), at least at

low density. In Chapter 2 we showed that this assumption follows from

an approximation to mass-action transmission that is most valid when the

probability of transmission is low. Second, we assume that lice infections

from farms have a negative impact on juvenile survival to adulthood of the

form exp(−a · lice/juvenile). This assumption has been employed in the

empirical studies demonstrating associations between salmon aquaculture

73



and wild salmon declines (Krkošek et al., 2007; Ford & Myers, 2008). We use

parameter values for pink salmon (Oncorhynchus gorbuscha) productivity.

These salmon, along with chum salmon (Oncorhynchus keta), form the

dominant biomass of migrations to farming regions in the Eastern Pacific.

Our assumption that lice from returning wild salmon are all homozygous

susceptible is not critical; however, the frequency of resistance in the immi-

grants must be low relative to emerging resistance in farms for immigration

to provide any break on evolution. Because of this, the results developed

here apply primarily to the North Pacific. Low resistance frequency in

immigrants is supported by ecology in Pacific where lice associated with

returning wild adults are (i) a major factor governing lice-infection dynam-

ics in Pacific farms (Saksida et al., 2007; Krkošek, 2010), and (ii) from a

population, mostly not selected for resistance, that is panmictic at the scale

of the Eastern Pacific (Messmer et al., 2010). Salmon farming, however,

occurs in many regions, including the Atlantic and South Pacific, where

the assumption of susceptible immigrants may not be justified because the

number of farmed hosts rivals or exceeds the number of wild hosts (Costello,

2009b).

3.5.4 Future directions

To truly accommodate panmixis and migratory connections when the abun-

dance of wild and farmed salmon is comparable, models should be posed at

the scale of an ocean basin. This issue of scale is pervasive in ecology (Levin,

1992), and it is unsurprising that it arises here. For example, at the scale of a

farming region gene flow can lead to spread of resistance genes among farms

(Denholm et al., 2002). The result of panmixis at the Atlantic basin scale,

combined with the high intensity of farming in that basin, means spread

of resistance may occur among farming regions at the basin scale as well.

To accommodate a situation where the selected and non-selected habitat

are of a similar size, the assumption of immigration from an infinite pool

would need to be relaxed. Cues could be taken from Comins (1977a), who

modelled resistance evolution with a regular migration between selected and

unselected populations. This model would need to be modified to account

for the feedback when farm-origin infections affect wild salmon. Plant et al.

(1985) also considered migration to a treated area from a finite pool, with a
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continuous-time model. This model assumed that the pool was depleted,

i.e., all residents moved from the pool to the treated field, by the season’s

end, which may not be justified in the case of salmon and sea lice because

of some salmonids inhabit the North Pacific year-round (Groot & Margolis,

1991).

Our study highlights the importance of including wild host ecology in

analysis of pest population biology. Here, the migration of hosts, combined

with parasite exchange and treatment, can delay evolution of resistance on

farms. Although our results appeal to evolutionary and ecological intuition,

it should be noted that our models are very simple, and “strategic” (Pielou,

1981). We aim only to give a qualitative idea of how immigration, wild

host migration, and treatment decisions might interact. For management,

“tactical” models will be required (Pielou, 1981). These models should assess

the quantitative benefits of the strategy proposed here for management of

resistance, conservation, and economic goals. Such models may need to

incorporate details of parasite biology, e.g., stage-structure, farm operation,

e.g., production cycle, and ecology of wild salmon, e.g., migration timing.

Appendix 3.A Population genetic model

We focus on the resistance frequency pi and abundance ni of parasites in

the farm during the i-th generation. We denote the vector of fitnesses

as w = (wRR, wRS, wSS). We assume selection due to treatment causes

differential survivorship or viability. Therefore the fitnesses will depend

on the environment of the parasites; as given by treatment (g = 1) or no

treatment (g = 0), so that fitness is a function of treatment w(g). When

treatment varies over time then gi will be either zero or one and wi = w(gi).

Census time matters for population genetic models (Crow & Kimura,

1970). Without fecundity selection, however average fitness at adult census

and zygote census are equivalent. We assume adult census, constant envi-

ronmental conditions, and no differential fecundity; i.e., that selection is on

survivorship of chemical treatment. Under these assumptions, the average

fitness w̄(pi;wi) is given by the sum of the second row of Table 3.3.

Under random mating, the resistance frequency follows Fisher’s funda-

mental theorem (Crow & Kimura, 1970): the change in the i-th generation

is proportional to the product of the genetic variability under selection and
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Table 3.3: Change in genotype frequencies during a generation assuming
selection-reproduction order. The average fitness, w̄(pi;wi), used in the
third row is given by the sum of the second row.

Zygote RR RS SS

Before selection p2
i 2pi(1− pi) (1− pi)

2

Fitness-weighted p2
iwRR 2pi(1− pi)wRS (1− pi)

2wSS
After selection p2

i
wRR

w̄(pi;wi)
2pi(1− pi)

wRS

w̄(pi;wi)
(1− pi)

2 wSS

w̄(pi;wi)

the gradient of selection,

∆pi =
pi(1− pi)

2w̄(pi)

∂w̄(pi;wi)

∂pi
.

Explicitly, the dynamics of pi follow the classical population genetics

equations of Fisher, Haldane, and Wright (see e.g., Crow & Kimura, 1970):

pi+1 =
(wRRpi + (1− pi)wRS)pi

p2
iwRR + 2pi(1− pi)wRS + (1− pi)2wSS

=: F (pi;wi). (3.A.1)

Assuming N = 1
Tg

generations occur per year and that each generation can

have differing relative fitness due to the variable environment arising from

treatment, these equations can be extended to cover a year. We denote the

change in frequency during the ith generation as F i(pi) := F (pi,wi), where

the effect of treatment gi on fitness w is included as wi = w(gi). The change

over the N generations during a year is pN = FN−1 ◦FN−2 ◦ · · · ◦F 1 ◦F (p0).

More compactly,

pN =
(
©N−1

i=0 F (·;wi)
)
(p0), (3.A.2)

where (3.A.2) specifies functional composition using F defined in (3.A.1)

and the generation-indexed genotypic fitness wi. The right-hand side of

(3.A.2) is a repeated composition of the nonlinear function F (pi;wi).

Appendix 3.B Approximate population genet-

ics without immigration

In this section we rederive the approximation of Comins (equation (6),

1977b) for time-to-resistance using our notation and assumptions. Though

analysis of (3.A.2) for time-to-resistance is impractical or impossible, a series
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approximation for small p yields insight (Comins, 1977b; May & Dobson,

1986). Following these authors we begin with (3.A.1), which is analogous to

equation (2) of Comins (1977b) or equation (1) of May & Dobson (1986).

The small p approximation to (3.A.1) states that resistance frequency p in

the next generation is linearly proportional to prior-generation frequency,

pi+1 = F (0;w) +
∂

∂pi
F (0;w)pi +O(p2

i ) = pi
wRS
wSS

+O(p2
i ), (3.B.1)

where we suppress the dependence of w on generation. This equation (3)

of Comins (1977b) or equation (2) of May & Dobson (1986) expressed in

our notation. Thus, the change in frequency is proportional to the ratio of

the genotypic fitnesses of the heterozygote and the susceptible homozygote.

Expressed in our parametrization this ratio is wRS

wSS
=
(

1
1−gi·s

)β
, see Table

3.1 and main text for details and discussion of this parameterization. The

heterozygote advantage exceeds unity in treated generations and is unity in

untreated generations (because we assume resistance has no cost). Figure

3.4 shows cobwebbing diagrams of the full nonlinear map. The gray line

illustrates the linear approximation based on heterozygote advantage. The

cobwebbing indicates that with treatment resistance becomes fixed ( p = 1

eventually). Note also that as p grows the linear approximation diverges

from the nonlinear map.

Over a year, N generations, the change in the frequency of the resistance

allele is given to first order in pi by the product of the heterozygote advantage

terms for each generation,

pN = p0

N−1∏
i=0

(
1

1− gi · s

)β
. (3.B.2)

This is equation (3) of May & Dobson (1986) expressed in our notation.

Because we assume one treatment per year and no cost to resistance

(recall without treatment g = 0), over one year the product in equation

(3.B.2) is equal to
(

1
1−s

)β
. Then, over the emergence threshold pe is related

to the initial resistance frequency p0 as

pe = p0

(
1

1− s

)β TR
Tg

,
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where TR is time-to-resistance in years and Tg is the generation time. Taking

logarithms and rearranging yields

TR = Tg
log pe

p0

β︸ ︷︷ ︸
Biological

· 1

log 1
1−s︸ ︷︷ ︸

Treatment

, (3.B.3)

which is analogous to equation (6) of Comins (1977b) or equation (4) of

May & Dobson (1986).

pi

p i
+1

Figure 3.4: Dynamics of gene frequencies pi+1 = wrs

wss
pi with treatment where

wRS > wSS

Appendix 3.C Genetic and demographic model

with immigration

To consider the effect of immigration mediated by wild host migration,

we focus on the dynamics of the resident population of parasites on the

farm only, considering immigration from a source population, e.g., the lice

population at the scale of the Eastern Pacific. This neglects the bidirectional

nature of the coupling between farm and source through host migration, but

reflects the concept of a very large source population. As size of the source

population tends to infinity, the genetics and demographics of the source

population become independent of any coupling to the finite population of

residents. We assume only one immigration event each year, and further

that this number is the same each year. We use n̄ and p̄ to denote the

abundance and resistance frequency of the immigrant population.

Accounting for changes in gene frequency due to both immigration
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and population processes on the farm requires tracking both genetics and

demographics in the farm. Both the number of migrants and the resistance

frequency in the source population determine the effect on the resident

population:

pi+1 = F (p̂i;wi)
∣∣∣
p̂i=

pi·ni+mi·n̄·p̄
ni+mi·n̄

≈
(

1

1− gi · s

)β
pi · ni +mi · n̄ · p̄

ni +mi · n̄
. (3.C.1)

Equation (3.C.1) is an extended version of (3.A.1), and reuses the function

F defined there. The input to the function F , however, is p̂i, the population

weighted-average of the resident frequency p and the frequency in immigrants

p̄. Because we assume that if immigration occurs within a generation, then

immigrants are included in the population that undergoes selection and

then reproduces, the gene frequency dynamics with immigration operate

on an abundance-weighted average prior to reproduction of the resistance

frequency pi in the resident population and p̄ the resistance frequency in

the immigrants. Equation (3.C.1) uses the approximation (3.B.1) of F

developed in Appendix 3.B.

To obtain simple analytical results that capture the qualitative effect of

immigration from a susceptible pool, we treat the case where p̄ = 0. Then,

the abundance-weighted average is taken on the resistance frequency pi

in the resident population with zero, the assumed resistance frequency in

the immigrants. Setting p̄ = 0 and rearranging, we see that the effect of

immigration enters through the ratio between residents and immigrants,

pi+1 =

(
1

1−gi·s

)β
mi·n̄
ni

+ 1
pi. (3.C.2)

In contrast to the situation without immigration, now the change in gene

frequency is coupled to demographic changes in population size.

If we denote the gene frequency dynamics of equation (3.C.2) as pi+1 :=

Gi(pi), then a series of functional compositions gives the change in gene

frequency with immigration over a year,

pi+N = GN ◦GN−1 ◦GN−2 · · · ◦G1(pi).

Thus to first order in pi, the change over the N generations in a year is
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given by

pN = p0

N−1∏
i=0

(
1

1− gi · s

)β N−1∏
i=0

1
mi·n̄
ni

+ 1
. (3.C.3)

Because we assume one treatment per year, no cost to resistance, and

one immigration per year, we can drop the products in equation (3.C.3).

Recall that
(

1
1−gi·s

)β
is the heterozygote advantage, which is greater than

one with treatment and equal to unity without treatment. Also note that

in generations without immigration, mi = 0 and the term 1
mi·n̄

ni
+1

is unity.

Then, the change over a year is

pN = p0

(
1

1− s

)β
1

n̄
ni

+ 1
. (3.C.4)

Note however, that n̄
ni

depends on demographics, which in turn depend on

the frequency of resistance when treatment occurs. Because of this, (3.C.4)

does not give a closed-form map from one year to the next and thus cannot

be used to derive a formula for time-to-resistance in general. If, however,

the ratio of immigrants to residents (n̄/n), the strength of treatment (s),

and dominance of resistance (β) are the same every year, then (3.C.4) can

be used to relate the initial frequency of resistance p0 and the emergence

threshold pe,

pe = p0

((
1

1− s

)β
1

n̄
ni

+ 1

)TR
Tg

, (3.C.5)

where TR is time-to-resistance in years and Tg is the generation time. Taking

logarithms and rearranging yields

TR =
Tg log pe

p0

β︸ ︷︷ ︸
Biological

· 1

log

(
1

1− s

)
︸ ︷︷ ︸

Treatment

− log

(
n̄

ni
+ 1

)
1
β︸ ︷︷ ︸

Immigration

. (3.C.6)

3.C.1 Demographic model

We use a standard model from classical population genetics that states that

the population grows geometrically at a rate determined by the average

fitness (Crow & Kimura, 1970). The average fitness depends on whether

treatment occurs, and on the frequency of allele R and the values of relative
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genotypic fitness, i.e., the vector w, so w̄(i) = w̄(pi;wi). The equation for

geometric growth is, ni+1 = λw̄(pi;wi)ni. Suppressing for now dependence

on generation i, average fitness is second order in p, explicitly w̄ = wSS +

p(2wRS − 2wSS) + p2(wRR + wSS − 2wRS). We also apply a first-order

approximation, valid for small resistance frequency p, to the demographic

equation and rewrite average first order, w̄(pi;wi) ≈ wSS + 2p(wRS − wSS).

Rewriting with our parametrization of genotypic fitness, w̄(pi;wi) ≈ (1− gi ·

s)

(
1 + 2pi

((
1

1−gi·s

)β
− 1

))
. Then, using indicator mi for immigration,

the demographic model is

ni+1 = λ(1− s)

(
1 + 2pi

((
1

1− s

)β
− 1

))
(ni +mi · n̄). (3.C.7)
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Chapter 4

Conclusion & General

Discussion

In this thesis, we developed simple models to address the interactions of

host migration and disease exchange with farms in a system of migratory

wild salmon (Oncorhynchus gorbuscha), parasitic sea lice (Lepeophtheirus

salmonis), and aquaculture. Our models implicitly include the effect of

wild salmon migrations on exchange of parasites between wild and farm

salmon. In Chapter 2, we explored implications of parasite exchange for

population ecology of wild pink salmon. We developed a model that couples

population dynamics of pink salmon with a simple model for transmission

of parasitic sea lice. We were able to make predictions for the effect of

parasite exchange on dynamics by focusing on “line dominance,” consistent

difference in abundance between two lineages (Groot & Margolis, 1991). In

Chapter 3, we explored implications of parasite exchange for population

genetics of chemical resistance in parasitic sea lice on farms. We used a

standard population genetic model for selection of resistance on farms. The

effect of parasite exchange entered this model through our assumption that

wild salmon migrations mediate yearly immigration of susceptible sea lice

to lice populations on farms. We included the potential effect of farms on

salmon abundance by using the model of Chapter 2.

Our work in Chapter 2 shows that, in addition to declines in equilibrium

population abundance, exchange of parasites with farms can alter qualitative

patterns in host population dynamics, either increasing or decreasing line

dominance. The direction of the change in line dominance depends on the

relationship between infections on farms and infections of wild salmon. When
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infections on farms are constant regardless of wild infections, farms provide

a constant input of infection to the wild hosts that increases dominance. On

the other hand, when infections on farms are proportional to wild infections,

farms provide an intra-lineage transmission route that decreases dominance.

The results of Chapter 3 show that with constant yearly migrations,

treatments that minimize the parasite population on farms when migration

occurs maximizes expected time-to-resistance. If parasites on farms affect

wild populations, a combination of protection during out-migration and

treatment timed just before fall return may provide the best benefit in terms

of extending time-to-resistance.

4.1 Key conclusions

The main outcome of Chapter 2 is the prediction that line dominance in

pink salmon can be affected by parasite exchange with salmon farms. The

direction of the effect on line dominance is tied to the way salmon farms

respond to infections originating from wild hosts. Thus, this prediction

could be tested hierarchically, first by examining the relationship between

infections on farms and those of wild adult salmon returning in the fall,

then by examining patterns of line dominance in pink salmon populations

in farming regions.

The main outcome of Chapter 3 is the idea that if wild salmon immigra-

tions bring susceptible parasites to farms, strategies for chemical use against

parasites on farms can be developed to use these immigrations to delay

evolution of chemical resistance. The potential effect of farm infections on

wild salmon abundance lends a subtlety to this idea, where protection of

juvenile wild salmon from intense infections during out-migration is required

to obtain the maximum benefit in terms of extending time-to-resistance.

4.2 Salmon population dynamics

In Chapter 2, we used line dominance relationships that naturally occur

in pink salmon to study the effects of farms on dynamics. In our model,

dominance occurs due to negative density-dependent interactions, both

general and parasite-mediated, between lineages. Ricker (1962) explored a

number of possible mechanisms for line dominance in pink salmon. These
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include mechanisms that operate in rearing habitat, such as fouling of the

river by large runs of salmon, and mechanisms that operate in the marine

habitat, such as direct suppression or food competition during sympatry. Our

model includes both types of mechanisms (parameters ci), and also includes

disease-mediated interactions (parameter η), which Ricker did not explicitly

consider, but which have similar dynamical effects. Through either general or

parasite-mediated means, adults of an abundant lineage cause proportionally

large negative effects on a relatively less abundant lineage. These negative

effects do not affect the offspring of the abundant line and this results in line

dominance. Introducing farms changes this scenario by either increasing line

dominance if farms provide a constant input of parasites, or decreasing line

dominance if farms provide a parasite transmission route within a lineage.

The scenario of constant input of parasites increases dominance because

it has a proportionally larger effect on the less-abundant line. This is a

depensatory effect and is thus similar to a number of additional hypotheses

proposed by Ricker (1962) that relates dominance to other depensatory

mechanisms, including fishing and predation.

4.3 Understanding farm-wild interactions

The results of Chapter 2 extend our understanding of farm-wild interactions

in salmon and sea lice to effects on the patterns in fluctuations of wild salmon

populations. This is in contrast to previous studies, which focused on the

effects on equilibrium population abundance or productivity (Frazer, 2009;

Krkošek et al., 2007a,b). Though our approach involves simple, discrete-time

maps and a spatially-implicit treatment of the effects of migration, we were

able to disentangle some effects of a complicated interaction that involves

space, migration, and disease exchange. This simple approach contrasts with

the often-complex tools used to understand the effects of wildlife migrations

and disease, which include detailed simulation studies (e.g. Morgan et al.,

2005) and highly-parametrized statistical models (e.g. Kilpatrick et al.,

2006). There is probably opportunity to use a spatially-implicit treatments

of the effects of migration along the lines of Chapter 2 within the context of

standard epidemiological models, e.g. an SIR-type (Anderson & May, 1992).

This would shed light on the generality of the effects seen here.

The results of Chapter 2 also provide a prediction that links the response
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of farms to infections originating from wild hosts to effects on pink salmon

line dominance. Though this prediction might be testable, doing so requires

collaboration between salmon farming operations and researchers of juvenile

salmon ecology. The link between farm status and wild infections has been

controversial in Canada (Costello, 2009; Krkošek, 2010). In part because

of this controversy, independent scientists have had little access to data

on farm infection status in Canada (Krkošek, 2010). In contrast, workers

in Europe have access to more detailed farm data, where management of

infections on farms and impacts on wild fishes has been coordinated for

several years (Heuch et al., 2005; Krkošek, 2010). Fortunately, collaborations

between industry, government, and independent researchers have increased

in Canada, due in part to activities of the Pacific Salmon Forum (PSF;

www.pacificsalmonforum.ca). Thus there is hope for future testing of our

model’s qualitative predictions.

4.4 Management of resistance & ecosystem

services

If wild salmon migrations bring susceptible parasites to farms, they provide a

service that can be used to manage chemical resistance on the farm. This is

perhaps a novel example of an ecosystem service (de Groot et al., 2002) that

relates conservation of wild animals to management of chemical resistance

in pests. In our study, the migratory salmon provide a service by bringing

susceptible parasites from wild hosts to farms, possibly permitting managers

to delay resistance. Our results suggest that for farms to take advantage of

this service, managers should time chemical treatment based on wild salmon

migrations. Further farm managers must minimize the effects of spill-over

in reducing wild host abundance to maintain the populations of salmon that

migrate near farms. Though this theory highlights a potential benefit that

arises for farm operations when migratory wild hosts and farms exchange

parasites, the exchange of other, more pathogenic, diseases is still a concern

for conservation and farm operations.
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4.5 Future work

In Chapter 2, we were able to study interaction of wild host migration,

farm hosts, and parasites without an explicit spatial model by substituting

temporal heterogeneity in transmission for explicit tracking of the wild

host movements that cause this heterogeneity. Though this type of time-

for-space substitution may prove fruitful in other contexts, there are also

reasons to develop models that include details of space, time, stochasticity, or

abiotic forcing. Spatial models could account for multiple modes of parasite

transmission, and potentially incorporate physical differences in processes of

transmission from wild-to-wild versus farm-to-wild. Continuous-time models

might incorporate various exogenous forcing functions based on different

management scenarios, rather than just constant forcing as examined here,

or alternatively various dynamical functions defining management response

to wild infection. Stochastic models could incorporate environmental noise in

host population dynamics, and in transmission. For lice in particular, abiotic

factors including oceanography, salinity, and temperature are important

in governing distribution and abundance (Krkošek, 2010). More detailed

models that account for some of these factors, but still capture important

processes of host population dynamics, could be useful for management.

Implications of disease exchange with stationary farms for population

dynamics could also be explored for other salmonids, including chum (O.

keta) and sockeye (O. nerka). These species have longer life cycles than

pink salmon (3-5 years for chum and 1-4 years for sockeye versus 2 years

for pink; Groot & Margolis, 1991). Their population dynamics also can

involve cycles of order higher than two (e.g. 4 year patterns of dominance for

Fraser sockeye; Groot & Margolis, 1991). Because of these facts, models of

chum and sockeye dynamics are more complex, and mathematical analysis

more difficult. Despite these facts, the type of analysis we applied here

(bifurcations theory) for two-cycles in pink salmon can in principle be used

to delineate and understand higher-order cycles in more complex models.

In Chapter 3, we show that, in theory, wild salmon can provide an

ecosystem service that permits managers of farms to delay evolution of

chemical resistance in lice. We derived a model that links population genetics

and demographics of parasites on farms, and immigration of susceptible

parasites that is mediated by wild salmon. Some of our results derive
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from numerical simulations of this system; however, analytical treatment

of this system using the tools of dynamical systems might yield deeper

understanding. Such analysis would be a good next step to understand the

implications of parasite exchange for resistance.

To derive the models of Chapter 3, we also assumed that the immigrants

to farms are purely susceptible. This may be an accurate approximation

for the Pacific, where populations are connected at the scale of the basin by

salmon migrations and most hosts are wild. In the Atlantic, however, the

high intensity of farming means wild host migrations may spread resistance

among farming regions. To reconcile these possibilities, models must include

both wild host migration and the relative sizes of selected and non-selected

hosts, i.e. farm and wild hosts. Such models could be posed in discrete time,

as we did in Chapter 3, or in continuous time. For discrete time, a good

starting point is the model of Comins (1977), which accounted for migration

between finitely-sized habitats. A continuous time approach might follow

Plant et al. (1985), who treated influx of parasites within a season and

linked seasons using discrete-time mappings. These models would need to be

modified to account for the fact that wild salmon migrations provide links

between selected and non-selected regions, and that farm-origin infections

may affect wild salmon abundance.
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