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ABSTRACT

The research work in this report deaia with the inelastic
behavior of multistory, planar steel frames. The study includes
a review of different types of formulation for stability and strength
analyses. A method to compute elastic buckling loads for multistory
frames is discussed.

A general approach to the elastic and inelastic nonlinear
analyses of multistory frames is presented and a finite element
formulation is developed. A technique to determine the load-
deformation characteristics of frameé, using the finite element equations
is discussed. The inelastic analysis includes the effect of axial
loads on the stiffness of the frame, gradual penetration of yielding
in the cross section, and the spread of inelastic zones along the
member length. The effects of residual stresses and strain hardening
have been taken into account in the analysis.

The features of the elastic-plastic response of frames for
first and second order analyses are presented. Throughout the study
numerical examples are given and compared with available results.

In the final section the behavior of a number of frames is
examined through inelastic and elastic-plastic analyses. Comparisons
are made between the two approaches and the effects of residual stresses

and strain hardening on the behavior of frames are studied.



ACKNOWLEDGEMENTS

This study was performed in the Department of Civil
Engineering at the University of Alberta. Financial support provided
by the Civil Engineering Department and the National Research Council

is acknowledged with thanks.

vi




Title . . .+ v+ . . .
Abstract . . . . . . .
Acknowledgements . . .
Table of Contents . .

List of Tables . . . .
List of Figures . . . .,

List of Symbols . ., .

CHAPTER I INTRODUCTION

1.1 Types of Frame Analysis

1.2

1.3

.

TABLE OF

1.4 Outline of Contents .

Inelastic Frame Analysis

Objective . . . . . . , .

CONTENTS

CHAPTER II REVIEW OF STABILITY THEORY . .

2.1 Introduction

2,2 Introduction to Linearly Elastic Formulation

o . .

2.2.1 Bifurcation and Buckling . . . .

2,2.2 Linearly Elastic Formulation for Frames

2.2.2a Flexibility Approach .

2.2.2b Stiffness Approach .

vii

Page
. |
. \
. i
o vii
. xiii
. xiv
xviii
. 1
. 1
. 4
. 7
. 7

9

9
.9
. 9
. 18
. 23
27



2.3

2.4

2.5

Page

Elastic Nonlinear Formulation . . . . . ¢ ¢ ¢ & o o & 32

2.3.1 Large Deformation Formulation for
Columns (The Elastica) . . . . . « « ¢ &+ o« & & 33

2.3.2 Elastic Nonlinear Analysis of Frames . . . . . 38
Inelastic First Order Stability Theory . . . + + « . . 41
2.4.1 Tangent Modulus Theory . . . . « ¢ « « o« « + . 41
2.4.2 Reduced Modulus Theory . . . « « o o s o o » o 43
2.4.3 Shanley's Contribution « « « o v o o o o v o . b4
2.4.4 Inelastic Behavior of Beam-Columns . . . . . . 44
2.4.5 Simple Plastic Analysis . . . . « ¢« ¢ « « o . . 47
Inelastic Nonlinear Analysis . . « + « « o o « + o o« o+ 49
2,5,1 The Step-by-Step Method of Analysis . . . . . . 51

2.5.2 Development of Second Order Plastic Analysis. . 51

CHAPTER III ELASTIC FORMULATIONS AND SOLUTIONS . . . . . . . . 54

3.1
3.2

3.3

3.4

Review of the Finite Element Method . . . . . . ¢« .+ 55

Basic Equations and Assumptions . . . « . « « « « o + 57

60

Formulation of Linear Stability Equations
3.3.1 Secant Stiffness for Elastic Element . . . . . 60
3.3.2 Structure Secant Stiffness Matrix . . . .. . . 62
3.3.3 Frame Critical Load « « « « « ¢« « ¢« ¢ ¢« « + o+ . 65

3.3.4 Inverse Power lteration Method . . . . . . . . 67

3.3.5 Computer Program . « . « « « + o o o o ¢ o o o 69

Numerical Results of Elastic Buckling Problems . . . . 70
3.4.1 Sample Solutions . . « ¢ « o + ¢ ¢ o o 0 0 o . 70

3.4.2 Comments on Results8 . « . « + « v ¢ o o o o s o 79

viitd

PR

JE———

[

[



_ 3.5 Formulation of Nonlinear Equations .
3.5.1 Description of Basic Formulation
- 3.5.2 Finite Element Model . . . .
f 3.5.3 Assembly of Finite Element Equations
= 3.5.4 Newton-Raphson Solution Procedure .
. 3.5.5 Summary . . . . . . . o0 . o.
-
3.5.6 Computer Program . . . . . .
— | 3.6 Nonlinear Elastic Solutions . . . .
‘ 3.6.1 Examples of Beam-Columns . .
~ 3.6,2 Examples of Frames . . . . .
3.6.3 Comments on Results . . . . .
CHAPTER IV BEHAVIOR OF ELASTIC-PLASTIC FRAMES
- 4.1 Basic Assumptions and Limitations .
- 4.2 The Incremental Method of Analysis .
4.2.1 Incremental First Order Analysis
— 4.2.2 Incremental Second Order Analysis .
4.3 The Iterative Method of Analysis . .
= 4.3.1 First Order Analysis . . . .
o 4.3.2 Iterative Second Order Analysis .
4.4 Comparison Between Incremental and Iterative
Approaches . . . . . . . . . .+ . . .
- 4,5 Computer Programs . . . . . ..
- 4.6 Elastic-Plastic Solutions . . . . . .
4,6.1 Sample Solutions . . . ., . .
- 4.6.2 Comments on Results ., . . . .
ix

Page
79
79
84
85
92
94
94
95
95
98

103

106
106
108
108
111
112
112

115

115
116
117
117

125



CHAPTER V NONLINEAR INELASTIC FORMULATION AND SOLUTIONS

5.1

5.2
5.3
504

5.5
5.6

5.7

Basic Formulation For Inelastic Behavior . . .
5.1.1 Main Assumptions . . . . . . . . . . .A.
5.1.2 Evaluation of Incremental Forces . . . .

5.1.3 Evaluation of Element Tangent Stiffness
Matrix L] L] . . [ ] L] . [ ] . . L] [ ] . [ ] L ] L] .

Transformation and Assembly . . . . . . . + . .
Newton-Raphson With Gradient Test . . . + . . .

Residual Stresses and Strain Hardening of
the Materfal . . . . + ¢ ¢ ¢ ¢« ¢ o o o ¢ o o &

Plastification of the End Zomes . . . . . « . .
Computer Program . . « « o ¢ o o o ¢ o o o o
Inelastic Solutions . « « ¢« ¢ ¢ ¢ o o o v o o
5.7.1 Sample Examples . . ¢« + « v o & & 2 o+ o

5.7.2 Comments on Results . . . . « ¢« o« o+ o &

CI{APTER VI BEHAVIORAL STUDIES L . . L] L] . . . . . . . .

6.1

6.2

Behavioral Study of a Beam-Column . . . . « . .
6.1.1 Inelastic Analysis Vs.Rajasekaran Method
6.1.2 Inelastic Vs. Elastic-Plastic Analysis .

6.1.3 Effects of Residual Stresses and Strain
mrdening * 8 6 e & @& e ¢ o s » o 5 s 0

Behavioral Study of Single Story Frames . . . .
6.2.1 Inelastic Vs. Elastic-~Plastic Analysis .

6.2.2 Effects of Residual Stresses and
Strain Hardening , . « « « &+ « ¢« o ¢ o &

Page

126
127
127

128

128
129
130

130
131
132
132
132
138

140
141
141

141

144
151
151

154

JUv————

[



i

6.3

Behavioral Study of Multistory Frames . . . . . .
6.3.1 Frames and Loading . . . « « « « « ¢« + & &

6.3.2 Presentation of Results . . « « « « « « o+ &

CHAPTER VII SUMMARY AND CONCLUSIONS . . . . « « + « « « & &

7.1 Nonlinear Strain-Displacement Relationship . . . .
7.2 Inelastic Vs. Elastic-Plastic Analysis . . . . . .
7.3 Gradual Penetrdtion of Yielding . . . . . . . . .
7.4 Effects of Residual Stresses and Strain Hardening
7.5 Incremental Vs. Iterative Method in the Elastic-
Plastic Analysis . . . . . . ¢+ ¢ ¢ o o ¢ o o« o o o
LIST OF REFERENCES . . « & « + ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o

APPENDIX A ELEMENT STIFFNESS MATRIX FOR BEAM-COLUMNS . . .

A.l

A.2

Virtual Work Equations for Linear Stability
Prob lems L] L] L] . * L * L] L . L] L] . . L] L] . . * . L]

The Finite Element Model . » « v v o o o o o o v o .

APPENDIX B DETAILS OF NONLINEAR ELASTIC FORMULATION . . . .

B.1
B.z

B.3

B.a

Basic Equationa . . . . ¢ ¢ ¢ ¢ ¢ ¢ o 0 e 0 0w
Nonlinear Elastic Response . . . .« « « + ¢« + « o+ &

Evaluation of Unbalanced Forces Vector for
Finite Element Model e e e e e e e e e e e e e

B.3.1 Vector of Incremental Forces of

Flexural Element . . . ¢« ¢ « v « ¢ o« o o o o &

B.3.2 Vector of Incremental Forces of
Truss Element e e s s e e o & s s e e e e

B.3.3 Assembly of Unbalanced Forces . . . . . . .
Evaluation of Stiffness Matrix [KT] e e e e e

B.4.1 Element Stiffness Matrix For a Flexural

Element . . . . & v ¢ ¢ ¢ o ¢ o e o o o o o =«

xi

Page
161
161

165

173
174

174
175

176

177

178

189

190

192

198
199

201

205

206

208
210

210

210



Page

B.4.2 Element Stiffness Matrix For a Trusi
Elmnt * . * L] . . * L] L] . L] * L ] L) . [ 2 L] L] [ ] L] 217

B.4.3 Assembly of Structural Stiffness [KT] e e e 221
APPENDIX C LARGE DISPLACEMENT TRANSFORMATION . « . « o « « « & 222

APPENDIX D CALCULATIONS OF S8ECTION PROPERTIES AND STRESS
MSULTMS FOR I"SECTION s o 4 & @ o 0 ¥ 0 * o ¢ o 227

D.1 Determination of Transformed Section . e s o s s e o 228

D.2 Evaluation of Cross~Section Properties . . . . . . o « 234

D.3 Evaluation of the Stress Resultants . . . « « . « « « 237

APPENDIX E INCREMENTAL STRESS RESULTANT VECTORS FOR
INEWTIC EumT . . [ ] . . L] L] L] . [ ] L] L] [ ] L] .' 1] . 239

E.1 Incremental Stress Resultent Vectors . . . + « « « « o« 240

L) L] L] . . L) L] [ ] L] L) L] L] . L4 . [ . L] L) . L] [ [] L] . L] . . ]

xid

A




IR ] - “y
r"—"“_, e P 4 ——

l_ '.—_‘.,

= —

LIST OF TABLES

Transformation Matrix . . . . . .

Critical Buckling Load of Columns . . . . .

Numerical Results of Frame (a)

Numerical Results of Frame (b)

s e & e o s

Iransformation Matrix For a Flexural Element

Transformation Matrix For a Truss Element .

Comparison Between Incremental
Cantilever Beam NL-4 . . . . .

Mechanical Properties . . . .

Member Properties . . . . . .

Loading; Frame 24-3 . . . . . .

Beam Sections; Frame 24-3 ., .,

Column Sections; Frame 24-3

Solutions For

e o o . o .

Incremental Stress Resultant Vectors For

Flexural Element (Elastic) . . .

Incremental Stress Resultant Vectors For

Truss Element (Elastic) .

Incremental Stress Resultant Vectors For

Flexural Element (Inelastic) .

s e o o .

Incremental Stress Resultant Vectors For

Truss Element (Inelastic) . .

xiii

o« & o & 2 e

PAGE
63
72
75
76
90

91

101
136
136
166
167

168

215

220

245

. 248



FIGURE

1-1

1-2

2-1

2-2

2-10

2-11

3-2
3-3
3-4

3-5

3-10

3-11

Types of Columns .

LIST OF FIGURES

Types of Analysis . . . . . . . . . .

LI

Idealized Moment-Curvature Relationship . . . . .

Load-Displacement Relation for Beam Clamped at

Both Ends . . . .

Equilibrium Paths for Initially Straight Column

load-Deflection Relation for Imperfect Column

Fixed End Column . . . . . . . . . . . .
Behavior of Frames . . . + « « « « « o &
Column Behavior for Large Deflections .
Sway Forces Due to Vertical Loads . . .

General Stress Strain Relationship . .,

.

Load-Deflection Curve of Shanley's Model . .

Maximum Carrying Capacity Interaction Curves

Idealized Moment-Curvature Relationship
Element Deformation . . . . . . . . . .
Nodal Displacements and Forces . . . . .
One Story-One Bay Frame . . . . . . . .

Two Story~Two Bay Frame . . . . . . . .

Multistory-Multibay Frame . . . . . . .

Local Nodal Displacements For Flexural Element

Local Nodal Displacements For Truss Element

Global Nodal Displacements . . . . . . .

Newton-Raphson Procedure . . . . . . . + +

Solution for The 'Elastica' . . . . . . .

xiv

PAGE

11
12

16
19

22
34
40
42
42
46
50
59
61
71
73
77
78
86
87
89
93

96




i
Ed

FIGURE
3-12 Solution for Cantilever Under Pure Moment . . .
3-13 Load-Deflection Curves for Cantilever Beam .
3-14 Cantilever Beam With Two Lateral Loads . . . .
3-15 toad-Deflection Curves for One Story Bent . .
3-16 Load-Deformation Curves for Two Story--Two
Bay Frame . . . ¢ &+ v ¢ v 4 ¢ o o o 0 o o o o o
3-17 Load-Deformation' Curve for Multistory Multibay
Frame . . . . ¢ ¢ v 4 v v v i e e e e e e .
4-1 Interaction Curve . . . . . . . « ¢ ¢« o v . . .
4-2 Load-Deformation Response . . . « o« « . . . .
4-3 Frame EP-1 . . . . . v ¢ 4 v v v o o o o o
4-4 Load-Deformation Relationship for Frame EP-1 .
4=5 Frame EP-2 . . . . ¢ v v v v v o v e o e e e
4-6 Load-Deflection Curve for Frame EP-2 ., ., ., . .
4-7 Frame EP-3 . . . . . 4 v v v v 0 e 0 e e e
4-8 Load-Deformation Characteristics For Frame EP-3
5-1 Results of Example IN-1 e e e e e e e .
5-2 Example Frame IN-2 . . . . . . « + 4 &« o o+ .
5-3 Example Frame IN-3 ., . . . . . . ... .. .
5-4 Load-Deformation Curves of Frame IN-2 , . . .
5-5 Load~-Deformation Curves of Frame IN-3 ., . . . .
6-1 Cantilever Beam-Column . . . . . . . . . . .
6-2 Inelastic Vs. Rajasekaran (1971) . . . . .
6-3 Inelastic Vs. Elastic~Plastic (Cantilever) .
6-3a - Colymn Interaction Curves ..
6-4 Load-Deformation Characteristics; Cantilever
(L/r = 14.4; P/Py =0.15) . . ... 0.
6-5 Load-Deformation Characteristics; Cantilever

(L/x = 14.4; P/Py =0.91) .. ..

Xv

PAGE
97

99

100

102

104

105
107
114
118
119
121
122
123
124
133
135
135
137
139
142
143
145

146

147

148



6-10
6-11
6-12
6-13
6-14
6-15

6-16
6-17
6-18
6-19
6-20

6-21

Load~-Deformation Characteristics, Cantilever

(L/r = 80; P/P = 0.15) . . . . ..

Load-Deformation

Characteristics;

(L/r = 80; P/Py =03 .....

Single Story Frame . . . . . . .

Cantilever

Inelastic Vs. Elastic-Plastic (Single

Story-Hinged Bases) .

s o e & e v .

Maximum Strength of Beam~Columns in Portal

Frames (L/r = 40) .

*» o ¥ o o .

Maximum Strength of Beam-Columns in Portal

Frames (L/r = 60)

Load-Deformation
Frame (L/r = 40;

" Load-Deformation

Frame (L/r = 403

Load-Deformation
Frame (L/r = 60;

Load-Deformation
Frame (L/r = 60;

Characteristics;
P/Py = (0,15) .

Characterisﬁics;
P/Py = 0.6) ..

Characteristics;

P/P_ = 0.15) . .
/ y 5)

Characteristics;
P/Py L 0.4) . [

Configuration and Working Loads;

Configuration and Working Loads;

Geometry; Frame 24-3 . . . . . .

Load~Deformation
Load~Deformation

Load-Deformation

Characteristics;
Characteristics;

Characteristics;

Single Story

Single Story

L L Y ) L

Single Story

Single Story

Frame 8-1 , .

Ftame 6‘2 . e

Frame 8-1 ., .
Frame 6~2 ., .

Frame 24-3 .

Basic Functions for Linear Displacements . . .

Basic Functions for Cubic Polynomial ., . . . .

Element Transformation . . . . .

Residual Strain Distribution ., .

xvi

L] L] L] (] L] . .

PAGE

149

150
152

153
155
156
157
158
159

160
162
163
164
169
170.
171
194
195
224
230

[




FIGURE

D-2

D-3

Trilinear Stress-Strain Diagram . .
Transformed Section of a Plate Segment
Cross Section . . . . . ¢ ¢« ¢« ¢« v « & &

Stresses in a Typical Plate Segment . .

xvii

PAGE
231
233
235
235



LIST OF SYMBOLS

In this dissertation, the notation generally corresponds
with the notation commonly encountered in textbooks. All symbols
are defined where they first appear in the text. However, in
certain cases it has not been possible to maintain uniform symbology

throughout the thesis.

Special Symbols

{1} denotes a column vector

<> denotes a row vector

[1 denotes a matrix

[ ]T denotes a matrix transpose

(17! denotes a matrix inverse

Il denotes a determinant

Z denotes a summation

A prefixed to other term denotes an increment

) prefixed to other term denotes a virtual
variation

9 denotes partial differentiation

d denotes ordinary differentiation

C,8 denote cosa and sina, respectively

' denotes differentiation with respect to the

single argument

xviii
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equilibrium matrix in Eq. 2.2.48
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constant of integration; stability function
in Eq. 2.2.59

integration constants
equivalent moment factor
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of the stiffness matrix

Young's modulug, plastic modulus, and strain
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element flexural, secant, tangent, and geometric
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inelastic element tangent stiffness matrix
submatrices defined in Eqs. B.4.5

matrix contains element stiffness matrices on
its principal diagonal

flexural, secant, tangent, and geometric stiff-
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entire structure

inelastic tangent stiffness matrix for the
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geometric stiffness matrix corresponding to some
reference value of the applied loading
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CHAPTER 1

INTRODUCTION

Almost all analysis carried out in engineering practice 1s
based on linear theory. Linear analysis, rather than nonlinear, is
performed because of its relative simplicity.

In recent years, there has been a considerable amount of theore-
tical work carried out on the effects of geometric and material non-
linearities on the behavior of structures. Nonlinear analyses by the
finite element method were first introduced for geometric nonlinearity
by Turner et al. (1960), and for elastic-plastic analysis by Gallagher
et al. (1962). More recent work has dealt with large strains (Hofmeister
et‘al. 1971), creep strains (Greenbaum and Rubinstein 1968), dynamic
forces (Stricklin et aql. 1971), and variation of material properties

with temperature (Marcal 1972).

1.1 Types of Frame Analysis

Several types of frame analysis may be illustrated with reference
to Fig.. 1-1. This figure shows the relationship between the gravity load,
P, and the lateral deflection at the top, A, for a simple portal frame,
as predicted by various approaches.

The simplest form of frame analysis is one which predicts the

~elastic critical load of the frame, Pe. In this method the material

is assumed to be elastic, the horizontal loads applied to the frame

are zero, and all prebuckling deformations (e.g. initial out-of-
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straightness) are ignored. When the deformations due to lateral loads
are included, a linear load~deflection curve, A, is produced. This
solution is usually referred to as a 'first order elastic analysis'.
When nonlinear effects, such as nonlinear strain-displacement relation-
ship and the effect of deformations on the equilibrium equations, are
considered, the formulation results in a nonlinear load-deflection
response, curve B. This method is usually called a 'second order
elastic analysis'. The elastic analyses give no indication of the
ultimate capacity of the frame or the true behavior in the region of
hltimate load.

If the material response of the frame is no longer perfectly
elastic, another critical load may be reached before the elastic
buckling load. This critical load, Pp, results from the formation of
a plastic mechanism, ignoring all'prebuckling deformations. This
method is referred to as a first order rigid-plastic analysis. and is
illustrated by curve C of Fig. 1-1. A second order rigid-plastic
approach considers the effect of the mechanism deflections on the
equilibrium equations, and the loads therefore must decrease to maintain
equilibrium, as shown by curve D.

In first order elastic~plastic analysis the material 1is assumed
elastic-perfectly plastic, and prebuckling deformations are considered.
The load-deformation response for such a solution is shown as curve E.
The upper limit of the first order elastic-plastic analysis is the first
order rigid-plastic limit, Pp. When the effects of sway deformations
on the equilibrium equations are considered, the formulation results in

a second order elastic-plastic analysis, shown as curve F, in Fig. 1-1.



The 'true' behavior of the frame is shown as curve T. The
difference between the results of a second order elastic-plastic analysis
and the 'true' behavior is due to gradual penetration of the yielded
zones, residual stresses, initial imperfection, and strain hardening.

The maénitude of the difference depends on the geometry and stiffness

of the frame, material properties, and loading conditions.

1.2 1Inelastic Frame Analysis

Extensive research has been conducted in recent years to
investigate the behavior of multistory frames and their components.
Much of this work has been aimed at the development of practical design
procedures which could account for material nonlinearity (Majumdar and
Adamg 1971; Davison and Adams 1974).

Several authors (Hodge 1959; Mecnamee and Lu 1972) have assumed
that yielding takes place only at generalized plastic hinges of zero
length (the concept of concentrated plqaticity). The researchers have
congidered multidimensional yield aurf;ces, with proposed procedures
for modifying the elastic stiffness of a 'frame membar‘to account for
yielding. General computational procedures have not been developed and
only simple cases have been considered. A few researchers (Moses 1964;
Kitipornchai and Trahair 1975) considered extended regions of plastic
deformations rather than discrete hinges, but ﬁo conclusions were
reached regarding their effect on the b@havior of frames.

Although steel exhibits some strain hardening, most investiga-
tors have assumed that the material is ideally elastic-plastic. The

influence of strain hardening on the ultimate load was studied by



Hrennikoff (1965), Sawko (1965), and Horne and Medland (1966). 1In

most cases an idealized moment-curvature relationship, as shown in

Fig. 1-2, was assumed. However, a rigorous solution that takes strain
'hafdening into account is at best a cumbersome and impractical approach.

A few authors (Alvarez and Birnstiel 1969) considered the
effect of axial load on the stiffness of columns and girders. Others
(Korn and Galambos 1968)ldeveloped stability functions for columns on
the assumption that the axial forces in the girders were small enough
to neglect their effect on girder stiffness. Parikh (1966) modified
the column moment-curvature relationship to compensate for the decrease
in bending stiffness due to the yielded condition of the cross section,
for axial loads greater than 0.7 Py, where Py represents the yleld load
of the column.

The influence of residual stresses was considered by Parikh
(1966) and Alvarez and Birnstiel (1969). The latter formulated the
member stiffness matrix so as to account for the gradual penetration of
yielding, the presence oflresidual stresses, the spread of inelastic
zones along the member lengfh, and strain reversal in previously yielded
fibers. However, their metﬁod was applicable only to relatively small
structures.

Extensive experimental work has been performed to investigate
the 'true' behavior of frames. Results of combined gravity and lateral
loading tests on large scale multistory frames have been reported by
Yura (1965), Yarimci (1966), and Majumdar et al. (1970). Schilling

dt al. (1956), and Arnold et al. (1968) performed some tests on single

story steel frames.
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1.3 Objective

The purpose of this investigation is to develop a nonlinear
method of frame analysis, based on large deformation theory, that is
applicable to both elastic and inelastic solutions of plane frame
problems under any conditions of loading and geometry.

In the inelastic formulation the effect of axial loads on the
stiffness of the structure is considered. Gradual penetration of
yielding, the spread of inelastic zones along the member length, the
presence of residual stresses, and strain hardening of the matérial are
also accounted for.

Numerical solutions are obtained by developing a set of finite
element equations applicable to stability problems. However, general
purpose computer programs have been developed to solve a variety of
problems. The most advanced of these can handle very complex nonlinear

analyses, but does not require an excessive amount of computer time.

1.4 OQutline of Contents

Chapter 2 reviews stability theory and discusses different
types of formulation for stability and strength analyses.
| | Chapter 3 1is divided into two parts. An elastic buckling
formulation is presented in the first part, with a solution technique
to determine the elastic critical load of frames. Numerical results
for a variety of problems are compared with those obtained through
classical techniques. The detailed derivation of the equations for

this approach is carried out in Appendix A.



Thé second part of Chapter 3 presents the nonlinear formula-~
tion, based on large deformation theory. The equations are then
specialized to elastic response, and a finite element model is developed
for this case. A solution method to solve for the response of the
frame using the finite element equations is discussed and a variety
of problems are solved to determine the accuracy and'efficiency of the
proposed technique. The detailed derivation of the equations for this
method is presented in Appendix B, with a large displacement trans-
formation matrix derived in Appendix C.

Features of the elastic-plastic response of frames for first
and second order analyses are presented in Chapter 4. Two techniques
are discussed, namely, the incremental method and the iterative technique.
The two methods and their results are compared with some published data.

The extension of the approach presented in part 2 of Chapter 3,
to the case of inelastic response, is pregented in Chapter 5. The
" finite element equations are formulated with respect to local reference
axes through the original centroid. Some experimental results are
coﬁpared with those obtained using the inelastic formulation. The
~detailed derivation of the section properties and stress resultants
for an inelastic element is given in Appendix D, and details of the
inelastic formulation are shown in Appendix E.

Chapter 6 illustrates a behavioxal study for a number of
frames subjected to combined vertical and lateral loads. Comparison
is made between the inelastic and the elastic-plastic methods of analysis.
The effects of residual stresses and strain hardening on the behavior of
frames are also studied.

‘A summary of the investigation and the conclusions reached are

presented in Chapter 7.
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CHAPTER 11

REVIEW OF STABILITY THEORY

2.1 Introduction

Knowledge of structural stability theory is of paramount
importance to the practicing structural engineer. In.many instances,
buékling is a primary consideration in the design of various structural
configurations. Because of thig, and because the formulation for
stability problems is more complex than for strength problems, few
other fields within strucfural engineering have such a varied history
as the theory of stability of metal structures (Bleich 1952).

This chapter presents a review of the basic concepts of

stability. The various methods of analysis used in solving stability

problems are discussed.

2.2 Introduction to Linearly Elastic Formulation

In elastic first order strength analysis two main assuyptions
are considered. The material of the structure is assumed to be linearly
elastic, and the equilibrium equations are formulated on the undeformed
shape of the structure. In elastic first order stability analysis the
material is assumed to gehave linearly elastic, but the formulation of

the equilibrium equations must include the effect of displacements.

2.2.1 Bifurcation and Buckling

A structure is considered to be in a state of stable equilibrium

when slight changes in loading do not produce disproportionate

-9-
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distortions of the system. A load-displacement history such as the

one shown in Fig. 2-1 is called an equilibrium path. Each point on the
path represents an equilibrium configuration of the structure. In
linear elastic analysis all equilibrium paths are straight lines that
pass through the origin (Brush and Almroth 1975).

Consider a straight, simply supported column of length L,
subject to a concentric applied compressive load, P, as illustrated in
Fig. 2-2a. Under the assumptions of "gmall" deflections, v, and
constant moment of inertia, Ix’ the equilibrium equation of the elastic

curve is given by Timoshenko and Gere (1961) as

d?v
EIx Y +Pv 0 (2.2.1)

Introducing the notation

K2 o= - (2.2.2)

Equation 2.2.1 can be written in the form

v +k¥v = 0 (2.2.3)

For constant k, this equation is a linear homogeneous differ-
ential equation the general solution of which is the homogeneous

golution and can be written as
v = Asinke + B cos kz ' (2.2.4)

For simply supported ends the boundary condition equations are

v = 0 at z = 0 (2.2.5a)

v = 0 at z = L (2.2.5b)

[—
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Substituting condition 2.2.5a into Eq. 2.2.4 leads to B = O.

Consequently

v = A sin kz (2.2.6)
From condition 2.2.5b one obtains

AsinklL = 0 (2.2.7)
Equation 2.2.7 can be saéisfied in one of two ways, either

A = 0 (2.2.8a)

or

sin k. = 0 (2.2.8b)

If A = 0, k and consequently P can have any value. But if A = 0, the
displacement, v, of Eq. 2.2.6 is identically zero. This result is
known as the trivial solution, in which a column 1is in equilibrium under
any value of axial load, P, as long as the member remains perfectly
straight.

- There are an infinite number of values of k for which

sin kL = 0, These are
kn L = nw (2.2.9)

Substitutinglthis expression into Eq. 2.2.2 gives the loads for which

nontrivial solutions of Eq. 2.2.1 can be obtained as

n? 72 ET_
P, ~ —r— (2.2.10)
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~

Problems of this type are called eigenvalue problems (Ziegler 1968).
The values kn or the cdrresponding loads Pn are called eigenvalues of

the problem, and the corresponding displacements

nnez (2.2.11)

are called eigenfunctions.

The only significant value of P arises from the lowest eigen-

value obtained by setting n equal to 1 and is known as the "Euler

buckling load":

(2.2.12)

Equilibrium paths for this column may be obtained by plotting
P versus midspan deflection (v at z = %3. Such a plot for n = 1 is
gshown in Fig. 2-2b. 1In this figure the primary equilibrium path
(1.e. the trivial solution) is intersected by a secondary equilibrium
path. The point at which equilibrium paths intersect is called a bi-
furcation point. At such a point the equilibrium equations have multiple
solutions, one corresponding to each branch. This leads to the classi-
cal cbncept of bifurcation as a condition in which two (or more)
adjacent equilibrium configurations exist at the same load.

In theory, the change in deformation that takes place when
the structure passes from a point on the primary equilibrium path to a
point on a secondary equilibrium path is generally known as buckling;
For a linearly elastic stability formulation, buckling occurs at the

bifurcation point. 1In general the load at which this happens is known

as the critical load.

" ’ [,
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Bifurcation of rectilinear framed structures occurs only if
the members remain straight during loading. Thus, if a column with an
initial imperfection vo(z) is8 considered, as 1llustrated in Fig. 2-3a,

the moment at any section along the column is
M = P (v+ Vo) (2.2.13)
and hence the differential equation of equilibrium takes the form

EI Eﬁ! +P (v+v) = 0 (2.2.14)
x dz? o *

Dividing by EIx and using the notation of Eq. 2.2.2 leads to

v+ kv = - k’vo (2.2.15)

For constant k, this equation i1s a linear inhomogeneous
differential equation, and the solution consists of two parts. The
first is the homogeneous solution, identical to Eq. 2.2.4, which can be
obtained by setting the right hand side in Eq. 2.2.15 equal to zero.
The second term is any particular solution whichvsatisfies Eq. 2.2.15.

If the initial shape of the axis of the bar is assumed to be

Tz
vo(z) = a gin i (2.2.16)

in which a is the initial midspan deflection, then Eq. 2.2.15 becomes

v' + k% = - k? a sin -’L—" (2.2.17)

and the general solution of this equation is (Timoshenko and Gere 1961)
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2 Deflection, v

(b) Load-Deflection Curve

FIGURE 2-3 Load-Deflection Relation for Imperfect Column
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1 T2
v = A sin kz + B cos kz + I -1 @ sin (2.2,18)

To satisfy the boundary conditions (v = 0 at z = 0 and z = L) for any
value of k, A and B both must be equal to zero, If the ratio between
the applied load and the critical load is defined as
2:2
F . 225 « kL (2.2.19)

B = P . w2EI/L% e
cr

then Eq. 2.2.18 becomes

Tz
v ) a sin (2.2.20)
and the final ordinates of the deflected curve can be obtained by adding
Eq. 2.2.16 to Eq. 2.2.20, which yields

a M2 .
v 1-8 sin L (2.2.21)

The load~deflection curve for this imperfect column, as P
varies, is nonlinear as shown in Fig. 2-3b. The deflection increases
without limit as P approaches Pcr'

The solution to the homogeneous equation (Eq. 2.2.1) 1is
unique and identically zero until the load reaches the critical load
which corresponds to the lowest eigenvalue of the differential equation.
At this point the magnitude of the deflectionAis undefined, because
Eq. 2.2.7 1is satisfied for arbitrary values of A. The solution to the
inhomogeneous equation (Eq. 2.2.15) is unique and nontrivial, until
the load reaches the critical load of the homogeneous problem, at which

point it increases without limit. Therefore, for this type of problem,

17
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the critical load of the homogeneous solution is adequate to determine

the stability limit of the structure.

It should be noted that the above conclusion is valid for any
'arbitrary initial imperfection, since it can always be expanded in a
Fourier series (Timoshenko and Gere 1961). The conclusion also remains
valid for a column with transverse loads, siﬁce these simply lead to a

different form of the inhomogeneous term in Eq. 2.2.15.

2.2.2 Linearly Elastic Formulation for Frames

The study of frame stability is associated with the determina-
tion of the buckling condition of a system of interconnected members
as well as with the &etermination of the maximum capacity of such a
system. Frame critical loads have been the subject of numeroug investi-
gations (Lu 1962), and many classical techniques are available for
evaluating such critical loads (Bleich 1952). " The following discussion
attempts to place these methods in a general context.

The most fundamental method of determining critical loads for
frames is a direct analytical solution. It is analogous to the solu-
tion of the buckling problem for a pin-ended column (see Sect. 2.2.1).

Equation 2.2.1 is valid only for pin-ended columns. If a
column is fixed at both ends and loaded as shown in Fig. 2-4, the

differential equation can be expressed as

BL 57 * - M(2) ©(2.2,22)

in which M(z) is the moment at any point on the column, due to the
end effects and the transverse loads. The boundary conditions influence

M(z) in an indeterminate manner. However, as shown by Timoshenko and




a(z)

FIGURE 2-4 Fixed End Column



Gere (1961), a single fourth order equation, applicable to any prismatic
column regardless of the boundary conditions, can be employed.

Differentiating Eq. 2.2.22 twice with respect to z yields

d*v d?v
EI P +P 122 q(2z) | | (2.2.23)

Dividing by EI, and using Eq. 2.2.2, leads to

2
1
4V 2 _.T:ZV - 25 a2 (2.2.24)

The general solution of Eq. 2.2.24 is

2+ C, sin kz + C

v = C. . +C 3 4

kz + 2.2,25
) 5 cos kz vp(z) ( )

in which the integration constants Cl’ CZ’ C3, and C4 are determined
from the boundary conditions of the case under investigation.

In most structures the ends of the columns are neither hinged
nor fixed. In frames the columns may be rigidly connected to the other
- members, which permits a limited amount of rotation to occur at the
ends of the columns. Supports of this type are referred to as elastic
restraints (Chajes 1974).

Both flexibility solutions and stiffness solutions of frame
buckling problems can be obtained directly from the solution of the
differential equation expressed by Eq. 2.2.25. All the classical
elastic approaches which use stability functions, become special cases
of this method. A general treatment of the problem may be carried out

as follows.

Equation 2.2.25 may be written in matrix form as

20
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v(z) = < ¢(z) > {c} + vp(z) (2.2.26a)
in which

< ¢ > =<1, z, 8in kz, cos kz > (2.2.26h)
and

{c = <cp, ¢y gy 07 (2.2.26c)

Using Eqs. 2.2.26 to evaluate the transverse displacements and rotations

at the ends of the member, and adopting the notation of Fig. 2-5a,

yields
( v [ N ( 1
§(0) < ¢(0) > vp(O)
8(0) < ¢'(0) > v' (0)
J > = fct+{ P (2.2.27a)
8(L) < ¢(L) > vp(L)
(8L ] (<o) > Lv;',<L)
/
which may be written, symbolically, as
{A} = (6,1 {c} + {Ap} (2.2.27b)

Similarly, the end forces may be evaluated from Eqs. 2.2.26. Using the
fundamental relations for moment and shear (Timoshenko and Gere 1961),

the following expressions can be written

M = - EI V" (2.2.28a)

and
V = - EI v''"' - P V' (2.2.28b)

Adopting the notation of Fig. 2-5a, Fqs. 2.2.28 yield

(vo)]  [E1 <¢™0)> - P <¢'(0) >] (1 Vi (0) - P vl (0) ]
M(0) -EI < ¢"(0) > - EI v"'(0)
’ - | {c} +{ P >
V(L) ~EI<¢'"(L)>-P<p'(L)> ~EI vr',' (L) - P vl') (L)
M(L)J EI < ¢"(L) > EI v"(L) J
\ — . - \ )

(2.2.29a)
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Using the notation of Eq. 2.2.2 leads to

(v [<4m (@) >-12 <4 (0) > V() - K2 ! (0) )
M(0) - < ¢"(0) > - v'(0)
- EI {ct+E1q P }
V(L) ( -<¢" (L) >-kZ<9'(L) > - vp'," (L) - kzv")(L)
M(L +<¢"(L) > e
) RRLAR | v W J
(2.2.29b)

which may be written, symbolically, as
{M} = [c,] {c}+ {Mp} (2.2.29¢)

Equations 2.2.27 and 2.2.29 become the basis for the following

developments.

2.2.2a Flexibility Approach

Solving Eq. 2.2.29¢c, for {C}, yields
{c} = (6,17} LED (2.2.30)
Substituting this result into Eq. 2.2.27b ylelds

{A} = [611[62]“{M—Mp} + {8} (2.2.31a)
or

(A} = [F] {M-Mp} + {Ap} (2.2.31b)

The matrix [F] in Eq. 2.2.31b is the (4x4) member flexibility matrix
for the displacement coordinates and their associated forces (Murray
et al. 1977), as indicated in Fig. 2-5a.

A classical flexibility analysis can now be carried out by
arranging all the element vectors appearing in Eq. 2.2.31b sequentially

into global vectors, and writing the result as -

23
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{r} = K] {r*} + {rp} ' (2.2.325

For the frame illustrated in Fig. 2-5b and 2-5c the vector {r} would

appear as

1
1’

2
1’

2

6ys

- 1 1 1 2 2 3 3 3 3
<r> < § 91, 62, 62, (Sl, e 92, 61’ 619 62, 62 >

(2.2.33)

The vector {rp} i8 a similar array of particular solution displacements,
whereas the vector {R*} is the associated array of end forces and
moments, in which each component represents the difference between
the total value and that associated with the particular‘solution. The
matrix PFy contains the element flexibility matrices of Eq. 2.2.31b
on its principal diagonal.

Compatibility equations for the frame illustrated in Fig. 2-5b,

are

5] = o =65 = 62 = 6 = 8 = 0 (2.2.34)
85+ 65 = 0 (2.2.35a)
o - 65 = 0 (2.2.35b)
o2 -8 = 0 (2.2.35¢)

Equations 2.2.34 and 2.2.35 may be written as

[A] {r} - {0} . (2.2.36)




in which all elements of the compatibility matrix [A] are either

0, 1 or -1. Substituting Eq. 2.2.32 into Eq. 2.2.36 yields
[A] PF] {R*} = - [A]{rp} (2.2.37)

This compatibility equation cannot yet be solved for the indeterminate

forces {R*}, since there are only 9 equations but there are 12 unknowns.
To complete the solution, the left-hand side of Eq. 2.2.36

may be considered to define a set of relative displacements {q}, such

that

{q} = [A} {x} (2.2.38)

A set of generalized forces {Q*} may be associated with these relative

displacements and, for work equivalence; it 1s necessary that

(Przemieniecki 1968)
T .
{R*} = [A]" {q*} . (2.2.39)
Substituting Eq. 2.2.39 into Eq. 2.2.37 yields
[A] PF] [A]T {Q*} = - [A] {rp} . (2.2.40a)
which may be written symbolically as
[F] {Q*} = - {qp} (2.2.40b)

Equation 2.2.40b is a set of compatibility equations which
permit the solution for the generalized redundant forces {Q*}, which

restore continuity to the frame by counteracting the incompatibility

25
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displacements {qp}. The matrix [F] is the flexibility matrix associated

with these relative displacements.

For the condition where distributed loads are applied to the
frame, the particular solution vp(z) of Eq. 2.2.25 is non-zero.
Hence, {qp} of Eq. 2.2.40b is non-zero. For any value of distributed
load and axial forces, Eq. 2.2.40b can be solved for {Q*}; {R*} can
be determined from Eq. 2.2.39; {c} from Eq. 2.2.30, and hence the

solution of Eq. 2.2.26a is known for each member. However, as

[l F |} » o0 (2.2.41)

in which || F || indicates the determinant of [F], the redundants
{Q*}, and hence all displacements, increase without limit. Similarly,
if all vp(z) are identically equal to zero, only the trivial solution

is possible until

I F || = 0 (2.2.42)

at which time the eigenvectors of the homogeneous form of Eq. 2.2.40b
can be determined, and forces and the associated displacements of
arbitrary magnitude may exist. Thus, a bifurcation solution of the
homogeneous problem and unbounded solutions of the inhomogeneous problem
arise in the’same manner as for a simﬁle‘column, and permit the same
interpretation, as illustrated in Fig. 2-5d.

The above technique is a general approach and has been used
for simple structures. Normally an analyst imposes the boundary
conditions of Eq. 2.2.34 on the differential equations prior to

writing the intermember compatibility conditions of Eq. 2.2.35

ares




(Timoshenko and Gere 1961). This reduces the size of the flexibility
matrix in the illustrative problem from 9 x 9 to 3 x 3. In non-
computerized analysis this could reduce the problem from an intract-
able solution to a tractable one. However, determining critical loads
by the figxibility method is still formidable. It is necessary to
assume or calculate the value of the axial force in each member, in
order to determine the values of k in the general solution, Eq. 2.2.25.
It may then be assumed that these axial forces, and hence the k-
values of the members, are proportional to the applied loads. If_
the load factor from the reference load is denoted by A, the stability
condition (Eq. 2.2.42) becomes a transcendental function of A, It is
necessary to find the smallest root, Acr’ of this 'characteristic'
equation.

The most practical method of doing this is by trial and errbr,
and this 1s called the 'determinant search' technique. Values of X
are assumed, and H F|| is evaluated for each assumed value. By plotting,
or interpolating between pairs of values, the value of Xcr can be |

determined (Bleich 1952).

2.2.2b Stiffness Approach

A classical stiffness formulation, exactly parallel to the
flexibility fotmulation, ﬁay be derived as follows. For a stiffness
formulation Eq. 2.2.27b, instead of Eq. 2.2.29¢, is solved for {C},

to yield

{c} = [cl]'1 {a - Ap-} (2.2.43)
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Substitution into Eq. 2.2.29c, yields

M = [6,] [Gl]'1 {n - Ap} + {Mp} (2.2.44a)

which may be written symbolically as

M} = [k] (A - Ap} + {Mp} (2.2.44Db)

Ain which the matrix [k] is the (4 x 4) member stiffness matrix,
expressing the member end forces of Fig. 2-5a in terms of the corres-
ponding displacements.

Arranging the element vectors appearing in Eq. 2.2.44b
sequentially into global vectors, Eq. 2.2.44b for all members may

be combined into the single matrix equation

(R} = ) {r*} + (R} ‘ | (2.2.45)

For the frame illustrated in Figs. 2-5b and 2-5c the vector {R} would be

a = <y, v, v e, v, v e, L s

2° 71 1 T2 2
(2.2.46)

The vector {Rp} is a similar array of particular solution end forces,
and the vector {r*} is the corresponding array of end displacements,
where each term represents the difference between the total value and
the particular solution value of the variable. The matrix fkJ)
contains the element stiffness matrices of Eq. 2.2.64bvon its princi-
pal diagonél. |
Equilibrium equations may now be written which, for the frame

. of Fig. 2-5b, are




1 .
MM+ Vs L = O (2.2.472)
2 5

Mi+M§+V2 L, = 0 (2.2.47b)

3 3 3

M1+M2+V2 Ll = 0 (2.2.47¢)

1 1 2 2 3 3

V2 + V1 = 0, V1'+ V2 0, V1 + V2 0 ’ (2.2.47d)

1 2 2 3 1 3

M, + M) 0, M, + M 0, v} -V, 0 (2.2.47e)
Equations 2.2.47 may be expressed symbolically as

[A] {r} = {0} (2.2.48)
in which the elements of the equilibrium matrix [A] are either 0, 1,
or -1.

Substituting Eq. 2.2.45 into Eq. 2.2.48 yields

[A] FK] {r*} = -[A] {Rp} (2.2.49)
Since Eq. 2.2.49 contains only 9 equations, and there are 12 unknowns
in {r*}, it cannot be solved directly. However, Eq. 2.2.48 can be
considered to define a set of unbalanced forces {Q}, such that

{Q} = [A] {r} _ (2.2.50)
for which the associated work equivalent set of generalized relative
displacements {q*} are related to the displacements {r*} by the
equation

{r*} = (KT {q%} (2.2.51)
Substituting Eq. 2.2.51 into Eq. 2.2.49 yields

[A] £k [A)T {q*} = - [A) (® )} (2.2.52a)

29
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whiéh may be written symbolically as

[k] {q*} = -{q)} (2.2.52b)

Equations 2.2.52 are a set of equilibrium equations that
permit the evaluation of the generalized displacements {q*} which
establish equilibrium between members of the frame. The matrix [K]
is the stiffness matrix associated with the generalized displacements.
For any distributed loading and axial forces, the particular solution
forces and the vector {Qp} may be formed. Similarly, the matrix [K]
may be constructed. Once {q*} has been determined from Eq. 2.2.525,
{r*} may be determined from Eq. 2.2.51 and all member end forces from
Eq. 2.2.45.

The stability condition is determined in the same manner
as was done for the flexibility formulation of Sect. 2.2,2a. A unique
set of finite displacements arises from the solution of the equilibrium

equations (Eq. 2.2.52b). However, as axial forces increase and
x|l » o (2.2.53)

displacements increase without limit. For the homogeneous case, the

solution to Eq. 2.2.52b is the trivial solution unless

|l x || = o0 (2.2.54)

in which case nontrivial eigenvectors of arbitrary magnitude exist
as solutions, The intefpretation of these solutions is, again, as
illustrated in Fig. 2-5d. The determination of the critical load
can be accomplished by a determinant search technique as discussed in

Sect. 2.2.2a.

o




The above stiffness technique represents a general approach.
It has been widely used in the more conventional form of the slope-
deflection technique or the moment distribution procedure. The element
slope-deflection matrix arises directly from Eq. 2.2.44b, as shown in
the following:

Equation 2.2.44b can be written as

M} = V[k] (A} + {Mp} - [k} {Ap} (2.2.55)

For zero member displacements the total forces, called the fixed end

forces and denoted by {MF}, are obtained from Eq. 2.2.55 as
M} = M) - [k (8} (2.2.56)

Consequently Eq. 2.2.55 may be written as

{M} = (k] {A} + (M) (2.2.57)

In the slope~deflection method, only the end moments are selected from

the vector {M}, to yield

= {a} + (2.2.58)

in which <k>i is the ith row of the matrix [k]. Recognizing that the
coefficients of 61 and 62 in these rows are numerically the same but

opposite In sign permits Eq. 2.2.58 to be written as



X - \ ()
{Ml [ s C  -(C+S) rel Mf
J r | J:z 5 S (2.2.59)
27 "1 F
M C s -(c +8)]| |——= M
\ ZJ - - \ L J . 2J

in which C and S are the standard‘stability functions (Galambos 1968).

Assembly of Eq. 2.2.59 into the equilibrium equations Eq. 2.2.47
by a standard slope deflection technique gives Eq. 2.2,52b, and the
"solution procedure then follows as described above. Thus, the magni-
tude of the axial forces which satisfy Eq. 2.2.54 are sought by a
determinant search technique.

Equation 2.2.59 is also the starting point for a moment distri-
bution search for critical loads (Hoff 1941). In this technique the
magnitudes of the axial forces are assumed and the stiffnesses, §,
and carry-over factors, C, are evaluated. Distribution factors are
computed with these. At the critical load the moment distribution
process diverges, leading to end forces and displacements which become
arbitrarily large (Winter et al. 1948). This is, in effect, a test

"that Eq. 2.2.54 has been satisfied.

2.3 Elastic Nonlinear Formulation

An elastic nonlinear formulation may be carried out to deter-
mine the behavior of the structure after the deflections are large
enough to cause significant cﬁangea in the geometry. This phenomenon
is referred to as geometric nonlinearity. To account for the effects
of changes in the geometry as the applied loading is increased, an

exact expression for the curvature must be used.

-




In Sect. 2.2.1 the deflection of a column was found to be
indeterminate at the critical load. This is strictly correct only as
long as the deflection remains "small' and may be better understood
by recognizing that the governing equation, Eq. 2.2.1, is based on the
approximate expression for the curvature of the buckled column %;% .
If the exact expression is used, the solution will not exhibit
indefiniteness in the value of the deflection. The shapé of the

elastic curve of a simple column, when developed on the basis of the

"exact" differential equation, is called the 'elastica'.

2.3.1 Large-Deformation Formulation For Columns (The Elastica)

To obtain a solution for the 'elastica', consider the simply
supported column shown in Fig. 2-6a. Except for the now invalid
assumption of "small" deflections, all idealizations are the same as
those of the Euler column. If the y-z coordinate system 1s taken as
shown in Fig. 2-6a, and the column is in equilibrium in a bent con-
figuration, then ;he moment (Pv) at any section is equal to the resisting

moment (-EI¢). Thus,
- EI¢ = Pv | (2.3.1)

in which ¢ is the angle change per unit length. If the slope 1is given
by 6, and the distance along the curve from the origin to the point

is s, then

dé
¢ = -(—l—s— (2-3.2)

Substituting this expression into Eq. 2.3.1 leads to

do )
ELE+Pv = 0 (2.3.3a)
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or

I;+ kzv = ( (2.3.3b)

Differentiating Eq. 2.2.3b with respect to s and replacing %% by
8in0, ylelds .
a2e

a—a—z—+k2' sind = 0 (2.3.4)

which is a nonlinear differential equation in 6.

Multiplying Eq. 2.3.4 by (2 d6) and integrating gives

d6y2 _ , 2 -
(ds) 2 k* cosb C (2.3.5)

The integration constant, C, is evaluated from the boundary conditions

of Fig. 2-6a, namely,

O = o and gg = 0 at 2z = 0 (2.3.6)
Hence

C = =~ 2 k? cosa (2.3.7)
and Eq. 2.3.5 becomes

(-g—g-)2 = 2 k? (cosf ~ cosw) (2.3.8)
or |

L. + k V2 v cosd - cosa (2.3.9)

ds



Solving for ds gives

ds = - d9 < (2.3.10)

kv 2 V cosb - cosa

in which the positive sign has been dropped because © always decreases
as 8 increases.
" The total length of the column is obtained from

L -0

L = [ ds = -J dd (2.3.11)
o +o kv 2 v cosb - cosa

Equation 2.3.11 may be written as (Timoshenko and Gere 1961)

L o= —2K (2.3.12)
v P/EL
in which
K = db (2.3.13)

oo

-0 4 v sin? % - sin?

18 a complete elliptic integral of the first kind, which is
tabulated in mathematical handbooks (Jahnke and Emde 1945).

Solving Eq. 2.3.12 for P yields

2
L (2.3.14)
cr
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in which P = 7%EI/L?

cr

If the deflection of the member is very small the value of
K approaches'%. Equation 2.3.14 then becomes

T2EI -

P = (2.3.15)

The nonlinear theory thus leads to the same critical load as the linear
theory.

The load-deformation characteristic of the column can be
obtained as follows.

Noting that dv = 8inf ds, and making use of Eq. 2.3.10, gives

dv = - sind do (2.3.16)

kv 2 ¥ cosb - coso

The midheight deflection, 8, is obtained as

§ = - | dv = sind d6 (2.3.17)
5 kv 2 V cosb - cosa

o

from which it can be shown that (Timoshenko and Gere 1961)

2 sin a/2
m v P/P

(2.3.18)

o

cr

Using Eqs. 2.3.14 and 2.3.18 it is possible to compute for
various values of a the corresponding values of P/Pcr and §/L. The

load-deformation characteristic i1s shown in Fig. 2-6b. Comparison
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between this figure and Fig. 2-2b shows that large deformation theory
‘ leads to the same critical load as linear theory, but pre&icts a very
slight increase in load with increasing deflection above the critical
load. The increase in load becomes pronounced only after consider-
able deformation has taken place. This indicates tﬁat the prediction
of bending at constant load, as implied by the linear theory, is a

good approximation for a considerable range of deformations.

2.3.2 Elastic Nonlinear Analysis of Frames

In a structural framework made from a linearly elastic
material, nonlinearity arises when the effect of the deformations on
the equilibrium equations is considered.

In Sect. 2.2.2 an approximate expression for the curvature
was used, and the axial force in each column was assumed to remain
constant during buckling. These assumptions result in a linearv
formulation of the problem. The classical solutions, as presented
in Sect. 2.2.2, may be modified to account for geometric nonlinearity.
In this case an exact expression for the curvature is used, resulting
in an 'exact' differential equation (See Sect. 2.3.1). The axial
force also may be assumed to be changing in each column during
buckling. A modified classical formulation, however, would not be
easy to solve. A few authors have considered the nonlinear strain-
displacement relationship (Turner et al. 1960; Martin 1965), and
many others have incorporated the effect of joint displacement on the
overall behavior of the structure (Nair 1975).

An approximate method of analysis for elastic nonlinear

problems has been described by Adams (1972). The effect of joint

~

-

o darim
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displacements on the overall behavior of a multistory frame is
accounted for by modifying the results of a standard (linear formula-
tion) analysis. The method is usually referred to as the P-A method,
and the secondary effects as the P-A effects.
The mechanics of the P-A method can be described as follows,
using Fig. 2-7 (Johnston 1976).
1 - The loads are applied to the frame, and the lateral displacements
Ai due to primary moments are computed.
2 - The additional story shears that are caused by the displaced
vertical loads are calculated as

P
V! o= —L (A

H hi A) ' (2.3.19)

i+1 ~ °i

in which Vi is the additional shear in story i due to the sway
forces, ZPi is the sum of the column axial loads in story i, h1
is the height of story i, and Ai+1 and A1 are the lateral dis-

placements of the frame at levels i+l and 1, respectively.

3 - The fictitious sway forces, Hi, are computed at each floor level as

H = Vi -V} (2.3.20)

4 - The sway forces, Hi, are added to the applied_loads and a new
linear analysis is performed. |

5 = When the deflected shape remains unchanged from one iteration cycle
.to the next, the solution has converged, and the resulting forces
now include the secondary moments.

In practical applications the convergence is fast, and the

first iteration produces acceptable results (Springfield and Adams
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1972). Slow convergence is a sign that the structure 1s excessively
flexible, and lack of convergence indicates that the structure is

unatable (Wood et al. 1976),

2.4 1Inelastic First Order Stability Theory

Early tests of steel columns of practical proportions showed
that failure occurred at loads less than the Euler load. The difference
can be attributed to the assumptions made in deriving the Euler load.

In each of the preceding sections it has been assumed that the
material behaves linearly elastic, but in order for this to be valid,
the total stresses in the member must remain below the proportional
1imit of the material. However, in most columns the elastic limit is
exceeded before the load reaches the Euler load. The results of the
elastic analysis therefore are not valid and the buckling load must

be determined by taking inelastic behavior into account.

2.4.1 Tangent Modulus Theory

Engesser (1889) suggested that if column failure occurred
at a stress above the proportional limit of the material, the column
strength could be obtained by simply replacing E by Et’ the tangent
modulus, in the Euler formula (Eq. 2.2.12). The slope of the tangent
to the stress-strain curve of the material at any point A is Et’ as

shown in Fig. 2-8. That is

do
Et ' de (2.4.1)

To justify the substitution of Et instead of E, it is

assumed that the column remains straight and that the stress-strain
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FIGURE 2-9 Load-Deflection Curve of Shanley's Model
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characteristics are the same throughout the length of the member.
Thus, the average stress at the tangent modulus load for a short

- column, such as the one shown in Fig. 2-2a, is

ant
ocr = o2 (2.4.2)

2.4.2 Reduced Modulus Theory

When a column begins to bend at the critical load, there is
a possibility ;hat stresses on the convex side decrease. Referring
to Fig. 2-8, any incremental decrease in the compressive strain from
point A involves a decrease in stress equal to (A€)E, whereas an
incremental increase in the strain involves an increase in stress
equal to (Ae)Et. This line of reasoning is the basis for the reduced
modulus theory, or as it is sometimes called, the double modulus
theory.

Based on the above reasoning, Engesser (1895) realized the
theoretical contradictions inherent in the tangent modulus theory, and
suggested the use of a reduced modulus, Er’ for E in the Euler formula.
The magnitude of Er lies between those of E and Et’ The expression
for Er and the position of the axis of bending at critical load are
determined so as to satisfy the traditional buckling concept that
the load remains constant during buckling.

Von Karman (1910) revised the theory, and determined the
expressions for the reduced modulus for a rectangular cross section
and for the idealized I-section. His subsequent experimental work
showed that the actual buckling loads were closer to the tangent

modulus values than to the reduced modulus values. 1In contradiction



to the understanding of column behavior at that time, this problem was

not resolved for another 35 years.

2.4.3 Shanley's Contribution

Shanley (1947) resolved the apparent contradiction between
theory and tests through a revised tangent modulus model. He
demonstrated that upon reaching the tangent modulus load, Pt’ there
is nothing to prevent the column from bending and at the same time
support an increasing axial load.

Figure 2-9 illustrates the load-deflection curve according
to Shanley's model. He concluded that the column load may exceed
the tangent modulus load, but cannot be greater than the reduced
modulus load, Pr' Shanley also noted that the tangent modulus theory

predicts more accurately the maximum load that an inelastic column

may support.

2.4.4 1Inelastic Behavior of Beam—-Columns

Inelastic action must be considered in the determination of
the ultimate strength of a beam-column. The behavior of beam-columns
is different from the behavior of either columns or beams. The term
defines a member subjected to axial load as well as bending moment.

A set of tests was performed by Ketter et al. (1955) on W8 x 31 beam~

columns loaded up to failure. The results showed that the fully

plastic moment capacity of a beam-column cannot be reached. The study

cbncluded that the maximum moment capacity of members is a function

of the axial force as well as the moment applied to the member. |
Calambos and Ketter (1961) presented theoretical ultimate

strength interaction curves for beam-columns with various end

bé

et




conditions, correlating the analysis with earlier tests by Mason

et al. (1958). One set of such curves is shown in Fig. 2-10,

repreaenting strong axis bending of a W8 x 31, subjected to equal

end moments. The curves are a reasonable approximation for moat

typical wide-flange sections. The validity of such interaction

curves has‘been verified by extensive experiments (Van Kuren and

Galambos 1964), and the correlation between tests and theory is good.
The sﬁrength of members subjected to bendihg moments and

axial loads can be approximated by interaction formulas in terms of

the ratios P/Pu and MO/Mu as

cm Mo

P
P . . < 1.0 (2.4.3)
PN Q P/Pe)

in which P is the axial load at failure, Pu is the ultimate load for
a concentrically loaded pin-ended column, Mo is the maximum applied

moment (not including second order effects), and Mu is the ultimate

‘moment capacity in the absence of axial load. The coefficient

Cm is the equivalent moment factor that accounts for unequal end
moments, and Pe is the elastic critical load for buckling in the
plane of the applied moments. The term 1/(1 - P/Pe) in Eq. 2.4.3 is
the amplification factor, covering the effect of the axial load
acting on the deflected column.

Equation 2.4.3 is based on failure of the beam-column due to
ingtability. It approximates the experimental interéction curves,
and 1s the basis for the Canadian Standards Association Specification

(CSA 1974).
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2.4.5 Simple Plastic Analysis

The objective of the plastic methods of analysis 1is to
predict the loads at which a struéture may fail by the development of
excessive deflections. It is assumed that whenever the moment at any
section reaches the plastic moment capacity, Mp, a plastic hinge
forﬁs, which'can undergo extensive rotation while the moment femains
constant. The arrangement of plastic hinges together with real
hinges which are functioning at collapse is known as the collapse
mechanism or, simply, mechanism (Neal 1977). The plastic limit load
for a frame is the maximum load it can carry, assuming that no
increases will take place after a mechanism has formed.

Two approaches were commonly used in plastic analysis in
early studies (Pippard and Baker 1968) namely, the equilibrium method
and the mechanism method.

The equilibrium method of analysis consists of constructing a
moment diagram for the stfuctute after it has been rendered statically
determinate by replacing a sufficient number of the re&undant moments
with the fully plastic moment Mp (Phillips 1956). Since it is not
always possible to choose the correct locations of the plastic hinges,
the method essentially is based on trial and error. If Mp is not
exceeded at any point in the moment diagram, but is attained at a
sufficient number of points to form a mechanism, the proper plastic
moment diagram has been found. If a moment greater than Mp appears at
any point, it becomes necessary to assume another moment distribution.
When the correct moment diagram has been found, the plastic limit

load may be evaluated by statics.

47
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The mechanism method is often less cumbersome than the equili-
brium method. It consists of equating the external work done by the
loads acting on the deflected structure to the internal work performed
by plastic hinge rotations during a virtual displacement of an
assumed mechanism. As in the case of the equilibrium method, a trial
and error procedure is needed where there are two or more poésible
mechanisms. The mechanism which yields the smallest collapse load
| governs the solution of the problem.

The above methods predict the failure load, but giye no
indication of the load-deformation characteristics of thg structure.
The methods also are difficult to use for large frames, since the
number of possible mechanisms may be very large.

The complete 1oad-deformation response of complex frames can
be determined by a computerized step-by-step analysis (Wang 1963).

In this approach the difficulty of locating and verifying plastic
mechanisms for large structures is avoided. During the first step

‘a linear elastic computation is performed, based on the original
geometry and stiffness of the structure. The search for the location
of the first plastic hinge is conducted, and the loads on the
structure are increased until the section with the highest moment

has reached the plastic moment of the member at that point. The first
plastic hinge now has formed, and the stiffness of the structure must
be modified by changing the particular member stiffness. The search
for the next hinge to be formed is then conducted by the same procedure,
which is continued until a plastic mechanism has been formed.

Two different step-by-step approaches can be utilized. One

is an elastic-plastic analysis, where elastic behavior is assumed

et
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until the hinge has formed, and the moment-curvature relationship
shown in Fig. 2-1la is used. According to this assumption, the
segments of the frame between the hinges will remain elastic. The
resulting load-deformation characteristic is termed the first order
elastic-plastic curve, and is illustrated by curve E in Fig. 1-1.
The second approach based on the step-by-step method is
a rigid-plastic analysis, which gives a first estimate of the
ultimate load of the frame (Beedle 1958). According to this theory
the frame remains undeformed until a mechanism has formed. This is
consistent with the moment-curvature relationship assumed in
Fig. 2-11b. The behavior is termed first order rigid-plastic and

is illustrated by curve C in Fig. 1-1.

2.5 Inelastic Nonlinear Analysis

The determination of the ultimate strength of a frame is a
nonlinear bending problem (Alvarez and Birnstiel 1969). The non- -
linearity results from changes in stiffnesses of the members due to
axial force and plastification, and from changes in the geometry of
the structure due to displacements. The true ultimate strength has
been reached when the combination of yielding, axial force, and joint
disblacements reduce the stiffness of the structure to such an extent
that the frame cannot carry any more load.

Experiments have shown that the ultimate strength is less
than that predicted by simple plastic theory based on the plastic
hinge concept. The actual and the predicted values differ because

nonlinear effects are neglected in the simple plastic theory.
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2.5.1 The Step-by-Step Method of Analysis

The step-by-step method described by Korn and Galambos (1968),
and outlined in Sect. 2,4.5, can be modified to account for nonlinear
effects. In this case the analysis is formulated on the deformed
structure thus incorporating both strength and stability effects into
the analysis. This can be done by performing a P~A analysis,
discussed in Sect. 2.3.2, on a frame with plastic hinges.

If the moment-curvature relationship is of the type shown in
Fig. 2-lla, indicating an elastic-plastic material, a second order
elastic-plastic analysis can be performed. Such a model can
adequately represenf complex inelastic behavior within the limita-
tions imposed by confining inelastic effects to individual cross
sections. The results of the analysis is the complete load-deformation
response of a frame, and is shbwn as curve F in Fig. 1-1, A second
orde? rigid-plastic analysis can be performed on the frame for which
the moment~curvature relatfonship for the'material is as illustrated
in Fig. 2-11b. In this approach the frame remains undeformed until
a mechanisw is developed, at which point the frame exhibits lateral
deformation with a decrease in load. This behavior is shown in
Pig. 1-1 as curve D. The plastic collapse load obtained from the
rigid-plastic-analyﬁis will always give an upper bound value for the

true maximgm load.

2.5.2 Development of Second Order Plastic Analysis

A technique for the inelastic stability analysis of portal
frames with hinged bases, neglecting the effect of axial forces, has

been presented by Ang (1960). Ojalvo and Lu (1961) developed a
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procedure for the analysis of portal frames, symmetrically loaded
inte the inelastic region. Mosee (1964) showed a procedure for the
inelastic analysis of portal frames with hinged bases, considering
the spread of the-tnelastic zones and the effects of akxial forces.
In this procedﬁrg the frame is given a lateral displacement and the
compatible forces and moments are determined by iterations. Adams
(1964) presented.a.similar method, but~§eglected the axial force in
the: beam, as did Chusend Pabarcius (1964). The latter:also assumed
eleatic behavior of tie beam. ’

The effectiof lateral joint displacements oh the inelastic
behavior of a hinged: be#e portal frame.was included in a paper by
Yura and Gelambos (1963). The influence of beam axial foxce was
| neglected. This is tha mathod called the P-A approach, as discussed
in Sect. 2.3.2, + : 4 ‘

gﬁorne~andvxigdd'(1966) incorporated both design and analysis
features into a setond:order program capable of considering reductions
in plastic moment cepacity due to axial forces, but restrictions are
pliccd on the column plastic hinges. 'The progfam is limited to
considering only bendéng deformations.:

Devison and Adams (1971) considered the effect of a finite
column width on the lateral stiffness of the structure. Considering
the width of vertical members reduces the clear span of girders, thus

increasing the bending stiffness and decreasing the fixed end moments.
- McNamee and Lu (1972) examined the frame buckling problem,
and presented an engineering solution for inelasti¢ buckling loads of
multistory frames. In this approach only flexural deformations are

considered, and small deformation theory is used. The plastic hinges
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are assumed to take place at discrete points, and an idealized elastic-
plastic behavior is implied.

Davison and Adams (1974) developed a method to analyze the
atability of braced and unbraced frumes. The formulation i{s based
on the slope-deflection equations, modified to incorporate the effect
of plastic hinging and finite column widths. The material is assumed
elastic-perfectly plastic, and P~A effects are covered. The plastic
moment capacity of the column is reduced fgr axial force, and the
effect of axial force on the stiffness and carry-over factors for a
column is considered by using elastic stability functions.

Frame collapse analysis has been presented by Tranberg et al.

(1976). The concepts of geometric and tangent stiffness are used,

'together with an initial strain procedure. An attempt was made to

incorporate most of the flc%oru that influence frame collapse into
a single analysis. Extended plastic zones, axial deformations, and
strain hardening are considered, but residual stresses are ignored.
Cohn and Rafay (1977) investigated second order analysis
using the P-A method. The analysis made use of the plastic hinge
concept, as well as considering the axial forces in the members.
Residual stresses and strain hardening were neglected, and only stress
distribution at collapse is obtained, with no information about the

complete load-deformation characteristics.



CHAPTER III

ELASTIC FORMULATIONS AND SOLUTIONS

In Chapter 2 a number of different kinds of classical formu~-
lations were reviewed for the solution of member and frame stability
problems. Relatively recently, the finite element method has proven
itself as one of the most versatile techniques available for the

numerical solution of complex structural problems (Gallagher and

Padlog 1963). In this chapter the elastic solutions of frame stability

problems,iusing the finite element method, are compared with those

obtained by the classical solutions, reviewed in Chapter 2.

The finite element method as a solution technique is reviewed

in Sect. 3.1. Section 3.2 is devoted to the basic equations and
assumptions. The formulation of stability equations of equilibrium
is derived in Sect. 3.3 together with a solution technique to solve
for the elastic critical load of frames. Numerical results for a
variety of problems are presented in Sect, 3.4. Formulation of non-
linear equilibrium equations as well as finite element models 5re
developed in Sect. 3.5, which also contains a solution technique to
solve for the load-deformation response of a framed structure using
the finite element equations. A variety of nonlinear problems are
checked, for accuracy and efficiency of the solution technique, in

Sect. 3.6.
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3.1 Review of the Finite Element Method

The development of the finite element method as an analysis
tool was initiated with the advent of the electronic digital computer.
In the solution of a continu#m problem it 18 necessary to establish
and solve a system of governing differential equatioﬁs. Using the
finite element method and a digital computer it 1is possible to discre-
tize and solve the governing equations for complex system in a very
effective way (Zienkiewicz 1971).

In the finite element method structures can be visualized
as an assemblage of structural elements interconnected at a discrete
number of nodal points. In an elastic continuum the true number of
interconnection points is infinite and therein lies the difficulty
of its numerical solution. The concept of finite element as originally
introduced by Turner et al. (1956) attempts to overcome this
difficulty by assuming the real continuum to be divided into elements
interconnected only at a finite number of nodal points at which work
equivalent fictitious forces are introduced. - If such an idealization
is possible the problem reduces to that of a conventional structural
type well suited to numerical treatment.

Although finite element formulations can be based on either
stress fields or displacement fields, most often a displacement based
finite element formulation is épplied in practice since it can easily
be programméd for digital computers. The procedure of the finite
element method as applied to a frame can be described by the following
steps (Chen and Atsuta 1977).

(a) Each member is separated by imaginary lines into a number of

finite elements.
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(b) The‘elements are assumed to be interconnected at a discrete number
of nodal points. The displacements of these nodal points become
the unknown parameters of the problem, as in simple structural
analysis. |

(c) A set of functions is chosen to uniquely define the state of
displacement within each finite element in terms of its nodal
displacements. These functions are so chosen that they ensure
continuity throughout the member.

(d) The displacement functions uniquely define the state of strain
within an element in terms of nodal displacements. These strains
together with any initial strain define the state of stress
throughout thé element and also at its boundaries.

(e) A system of forces concentrated at the nodes of the element,
equilibrating the boundary stresses and any distributed loads,
is determined. This results in a stiffness relationship of

the fdrm
(k] {q} = {q} (3.1.1)

in which {q} is the vector of nodal displacements, {Q} is the
vector of nodal forces, and [k] is the element stiffness matrix
whose typical 1Pfluence coefficien§ kij is the force Q1 due to a
unit displacement qj when all other displacements (q's) are zero.
(f) Once this stage has been reached the solution procedure can
follow the standard direct stiffness structural analysis.
Variational principles may be regarded as one of the most
important bases for the finite element method (Washizu 1969). They

have contributed to ﬁhe'develdpment of structural analysis by leading ’
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to rigorous finité element formulations. Numerous types of finite
element models may be derived based on variational principles. Since
continuum problems cannot usually be solved 'exactly', the variational
method provides an approximate formulation of the problem which yields
a solution compatible with the assumed degree of approximation. The
variational technique used herein, for the formulation of equations

such as Eq. 3.1.1, is the principle of virtual work (Fung 1965).

3.2 Basic Equations and Assumptions

The following assumptions are used to formulate the basic
equations of beams and beam~columns throughout this work, unless other-
wise stated.

1 - The member is straight, prismatic and symmetric about the plane
of the frame (the y-z plane). The member z axis (the reference
axis) coincides with the centroidal axis of the cross-section.

2 - Loads are applied in the plane of the frame only at the ends of
an element.

3~ Only in-plane deformations occur and sections that were originally
normal to the z axis will remain undistorted and normal to the
beam axis after deformation.

4 - The slope at any point along the reference axis is given by
v!l = —— = ginb (3.2.1)

Assumption 4 1s basic to the nonlinear formulation developed
herein. Since a Lagrangian coordinate system is used, this expression

is 'exact' when the elemental length of beam (Az) does not change in
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length. Since the axls of a member may be expected to undergo only

very small deformations up to the point of collapse (of the order of

1 or 2 percent), Eq. 3.2.1 permits accurate solutions for large

displacement problems of frames, as will subsequently be demonstrated.
The above assumptions permit the displacements u and v of

an arbitrary point A on a beam cross section to be expressed in terms

of the displacements of the reference axis of the beam. Thus, referring

to Fig. 3-1, the displacements can be written as

u = u -y 8ind (3.2.2a)
and

v o= v -y (1 - cosf) (3.2.2b)
Assumption 4 permits Eqs. 3.2.2 to be written as

u = u -Y vé (3.2.3a)
and

v o= ov -y (- cos8) (3.2.3b)

The axial strain at the arbitrary point A may now be obtained
from the large displacement strain-displacement equations (Saada

1974) as

e, = v +% ()2 + (v')?] (3.2.4)
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Substitution of Eqs. 3.2.3 into Eq. 3.2.4 permits the strain to be
determined throughout the beam in terms of displacements of the

reference axes.

A variety of beam formulations are now available depending

on the degree to which Eqs. 3.2.3 and 3.2.4 are approximated during

the formulation. The assdmptions that yield the classical linear
stability equations are followed in Sect. 3.3. However, a large
displacement formulation, which retains all terms implied by Eqs.

3.2.1, 3.2.3 and 3.2.4, is developed in Sect. 3.5.

3.3 TFormulation of Linear Stability Equations

In this section a linear stability formulation is derived

-

and a solution technique to solve for the elastic critical load of

plane frame is described.

Detailed derivation of the equations of this section is

carried out in Appendix A.

_3.3.1 Secant Stiffness for Elastic Element

Within the limitation of "small" displacements and elastic
stresses the equilibrium equation for an element, as shown in Fig.

3-2a, can be written as (Ghali and Neville 1972)

(k] {q} = {q} (3.3.1)

in which {q} is the vector of nodal displacements, {Q} is the vector
of nodal forces, and [k] is the element stiffness matrix given by

Eq. A.2.6c.
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When the element is subjected to both axial force and bending
the stiffness of the element, which in this case may be called the
secant stiffness matrix, becomes a function of the axial load. The

equation of equilibrium, Eq. 3.3.1, in this case becomes (Chajes 1974)
(k) {a} = {q} (3.3.2)
in which

[ks] = [k] + [kg] (3.3.3)

The elastic stiffness [k] is that commonly used for frame analysis
(Eq. A.2.6c). For finite element analysis [k] is usually based on a
cubic displacement assumption with shear deformationa ignored. The
matrix [kg] 1s called the geometric ntiffnesa matrix (Eq. A.2.6d)

and is a function of the element axial force.

3.3.2 Structure Secant Stiffness Matrix

The vector of element local nodal displacements {q} can be
expressed in terms of the element global nodal displacements {rE}G,

shown in Fig. 3-2b, as

{q} = (1 {r)g (3.3.4)

in which (T] is a transformation matrix given in Table 3-1.
1f {RE}G is the vector of nodal forces associated with nodal

displacements {rE}G then, by the reasoning of Sect. 2.2

<q> {Q} = <rE>G {RE}G (3.3.5)




(T}

c

S
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cos ¢

sin ¢

TABLE

-C

Transformation Matrix
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Substituting Eq. 3.3.4 into Eq. 3.3.5 yields
> (Mt Q) = <>, {R) (3.3.6)
E'G ¢ ‘Rgle | -3

or

T
<r>e {[T] {q} - {RE}G} =0 (3.3.7)
Since this must be true for all <rE>G, Eq. 3.3.7 implies that
&}, = (1" {Q (3.3.8)
RE G . .

Premultiplying Eq. 3.3.2 by [T]T yields
(m1” [k, {q} = " {q} (3.3.9)

Substituting Eqs. 3.3.4 and 3.3.8 into Eq. 3.3.9 yields

T
[(T) [ks] [T] {rE}G - {RE}G | (3.3.10a)
or

[k 1. {r.}

oo trgle = {RE}G (3.3.10b)

The formation of the complete stiffness matrix for the entire structuyre
is obtained by direct addition for all the interface nodes. The

equilibrium equations for the entire structure can then be written as

[Ks] {r} = (R} (3.3.11)

in which {r} is the assembled vector of global nodal displacements,
{R} 1s the assembled vector of global nodal forces, and [Ks] is
the structure secant stiffness matrix and is a function of the

element axial forces. The matrix [Kh]consists of two parts as




[K‘s] | = [K] + [KG] : (3.3.12)

in which [K] is the structure stiffness matrix, and [KG] is the geometric
stiffneas matrix assembled for the overall structure.

Equation 3.3.11 is an inhomogeneous equilibrium equation that
can be used to obtain a unique solution for the frame behavior under a
set of loads {R}. 1In addition, the equation can be used to obtain the

frame critical load by the'reasoning discussed in Sect. 2.2.2,

3.3.3 Frame Critical Load

Solving, symbolically, for the displacement vector {r} in

Eq. 3.3.11 yields

{r} = [Ksl—l {R} (3.3.13)

The displacement vector {r} increases without limit, for finite

values of {R}, only when the inverse of the secant stiffness matrix
becoméé infinitely large. Since the inverse of the matrix is obtainéd
. by dividing the adjoint matrix by the determinant, the elements of the
inverse will become indefinitely large when the determinant 1is equal

‘to zero. Thus
[l = o (3.3.14)
gives the stability criterion as discussed in Sect. 2.2.2.

Equation 3.3.14 can be rewritten as

[l (k] + (kD[ = o (3.3.15)
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In dealing with linear stability problems it is assumed that the
buckling deformations are independent of all deformations prior to
instability. This leads to the possibility of expressing the axial
force for each element, at the buckling condition, as a multiple of
the axial force occurring for some reference loading. Since the
critical load is unknown a factor A, an arbitrary multiple of the
reference load vector {R}, 1is 1ntroduced'to represent the relative

magnitude of the applied loads. Thus
{R} = X {R} ' © (3.3.16)

The factor A is called the instability factor or eigenvalue. Since
the geometric stiffness matrix, derived from Eq. A.2.6d, 1s propor-

tional to the internal axial forces it follows that

(K.] = A [icl (3.3.17)

¢!
in which [KG] is the geometric stiffness matrix fdr the reference

value of the applied loading. Thus Eq. 3.3.15 can be written as
|| K1+ X2 [Rg) ] = o0 (3.3.18)

which is the requirement for nontrivial solution of the homogeneous
form of Eq. 3.3.11 and gives the eigenvalue, Acr’ that represents

the critical load.

Equation 3.3,18 can be solved, using the determinant search
technique discussed in Sect. 2.2.2, for' the critical load, Pcr'
However, since Eq. 3.3.18 1s a classical eigenvalue problem an

inverse power iteration method becomes more practical.

} .



3.3.4 Inverse Power Iteration Method

The inverse power iteration method is described by Householder
(1964) and Wilkinson (1965). It is one of the most efficient methods
available for solving for the lowest eigenvalue in the case of large
systems. It has the advantage of providing the buckling eigenvalue
Acr and the associated buckling mode simultaneously. Stability eigen-
systems of over 20,000 degrees of freedom have been handled efficiently

with the use of this method (Skogh et al. 1972).

To solve for the critical load of a frame the homogeneous

form of Eq. 3.3.11 is8 used. That is

[k, {r} = {0} (3.3.19)
or

[ K] + (K] ] {r} = {o} (3.3.20)
Substituting Eq. 3.3.17 into Eq. 3.3.20 yields

[ (K] + A[K,) ) {r} = {0} (3.3.21)
which can be written in the form

(K] {r} = -A[K,] {r) (3.3.22)

To solve for the lowest value of A, Eq. 3.3.22 can be rearranged as
3K {r} = - [R]{r} (3.2.23)

At this stage the inverse power iteration method 1is performed,
using 'Cholesky Decomposition' (Elwi and Murray 1977), to solve for

the eigenvalue Acr and the associated buckling mode {r}. The method
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be described by the following procedure.

The structure elastic stiffness matrix [K] is assembled.

For a particular set of loads, a simple linear elastic analysis

is performed and the axial force in each element is determined.
Using tﬁe axial forces obtained in Step 2, the geometric stiffness
matrix [KG] can be assembled.

An approximate normalized buckling mode {r} 1s assumed.

By substituting the vector {r} into the right hand side of Eq.

3.3.23, the equation can be rewritten as

Xl {5} = {Rg} (3.3.24a)
in which
[Rg] - - [RG] {r} (3.3.24b)

Equation 3.3.24a can be put in the form

i o W’ 5= (r) (3.3.25)
or

(Ll 61 {3} = (&} (3.3.26a)
in which

(6] = (o [’ (3.3.26b)

The solution is then obtained as

5} = 1617 {3} (3.3.27a)

s

R——
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in which

-1

{r} = [L] {Rg) (3.3.27b)

By forward substitution one can solve Eq. 3.3.27b, for the vector
{r}. Then substituting {r} into Eq. 3.3.27a and back substitution
yields {%} .

The largest value in the new vector {§J is determined and the vector
is divided by this valuye to obtain a new normalized buckling mode
{r}.

The new buckling mode {r}, obtained from Step 7, is compared with
the previous one.

Steps 5 to 8 are repeated using the new vector {r}, until the
difference between the buckling modes from two successive iterates
1s arbitrarily small.

The larggst value in vector {r}, obtained in Step 7 after convergence,
is equal to %-and the critical load on the frame is obtained by
multiplying the particular set of loads assumed in Step 2 by the

inverse of this value.

5 Computer Program

A computer program, called Eigenvalue Stability Analysis of

Frames (ESTANF), has been developed to perform an eigenvalue analysis

based on the formulation presented in this section. The results for

some example applications are presented in the next section.
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3.4 Numerical Results of Elastic Buckling Problems

The formulation given in Sect. 3.3 enables the solution of a
wide variety of problems. At this stage it is appropriate to examine
the numerical accuracy that may be a;tained in the solution and also
to check the efficiency of the computet program:. In general the ade~
quacy and validity of numerical formulation may be measured by comparing
its performance on problems for which accurate solutions have been

derived by classical methods.

3.4.1. Sample Solutions

In order to demonstrate the efficiency of the finite element
method in the solution of line;r stability problems several examples
are solved in this section and compared with classical solutions. For
each problem the cpu computer time 1is given as a measure of the cost

of running the program,

E-1 Critical Buckling Load of Columns

Three column types, shown in Fig. 3-3, are analyzed. Each
type is solved twice, by dividing the member into two elements and
then four elements. As can be observed from the results, in Table 3-2,
the difference between the classical solutions given by Timoshenko and
Gere (1961) and the present analysis {s less than 1.0%. For all types

of columns analyzed the cpu time ranges between .15 and 0.2 seconds.

E~2 One Story ~ One Bay Example Frame

Each of the frames shown in Fig. 3-4 is solved using different

values of G where G is given by

b omee b e
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L=120in
I =100Iin*
E = 30,000 ksi

FIGURE 3-3 Types of Columns
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. . :
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Frame (b)
FlGURE 3-4 One Storey - One Bay Frame
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IC/LC
C = T (3.3.1)
g 8
in which I and I are the moment of inertia of the column and beam,
and L and Lg are the length of column and beam respectively. For each
value of G the frame is solved twice, first assuming ‘the member as ohe
element and second by dividing each member into three elements with
the central element being 80% of the length of the member. The reasbn
for the unusual subdivision with three elements will be given later in-
the thesis, when inelastic behavior is considered.
 The results for frame (a), with hinged bases, 1s given in
Table 3-3 while the numerical results for frame (b), with fixed bases,
{s shown in Table 3-4. The differences in critical loads between the
present analysis and the classical solutions tabulated by Lu (1962) are
less than 1% even when treating each member as one element. It is
noted that the present analysis gives dn upper bound to the classical

golution. The cpu time ranges between 0.25 to 0.35 seconds.

E-3 Two Story - Two Bay Example Frame

The frame shown in Fig. 3~5 is solved treating each member as
one element. An energy formulation derived by Johnson (1960) gives a
critical load of 780.2 kips while the present formulation provides

a critical load of 778.4 kips with a difference of 0.23X. Unfortunately

there was not an exact solution available for this problem. The computer

cpu time is about 0.5 sec.

E-4 Multistory Multibay Example Frame

A classical method of analysis based on the energy formulation,

for the large frame shown in Fig. 3-6, is presented by Johnson (1960).
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It gives a critical load of 1189.6 kips compared to 1187.4 kips

-obtained from the present analysis furnishing a difference of 0.2%.

No exact solution was available. The cpu compufer time 1s, approxi-

mately, 1 second.

3.4.2 Comments on Results

The examples presented in this section have been selected to
test the ability of the computer ﬁrogram to analyze a variety of
rectilinear framed structures. The analysis, as it can be seen from

the previous examples, exhibits good results{

3.5 Formulation of Nonlinear Equations

In this section a technique for nonlinear stability formula-

tion of elastic multistory frames is presented. The formulation of

nonlinear equilibrium equations is derived, based on the principle of

virtual work. Nonlinearities enter the formulation as a result of non-
linear strain-displacement relationships, which contain strain products
of the same order of magnitude as the engineering strains.

The Newton-Raphson method is used to solve for the overall

load-displacement characteristics of multistory building frames.

3.5.1 Description of Basic Formulation

The basic gquations from which a nonlinear formulation may
be derived have beeﬂ given in Sect. 3.2. 1In Appendix A approximations
were made which produced a linear stability formulation. An effort is
made in this section to retain all nonlinear terms. Retaining the
(1 - cosf) term in Eq. 3.2.2b, the expression for v' required in Eq.

3.2.4 is obtain by differentiating Eq. 3.2.2b. This yields
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Ve ot d6
v vo oy sin 0O dz (3.5.1)

To evaluate the term d6/dz, differentiate the expression for vé

appearing in Eq. 3.2.1 to obtain

" oa 40
vo cos 0 iz (3.5.2)
from which
V"
de o
iz Py (3.5.3a)

The physical interpretation of v; contained in Fig. 3~1b allows cos §

to be approximated as
cos 8 = V1= (v)? (3.5.3b)

Substituting Eqs. 3.5.3 into Eq. 3.5.1, and using Eq. 3.2.1 yields

v = vyg - o9 (3.5.4)
y1- (v‘;)2

In contrast to the linear formulation (Sect. A.l), both non-
linear terms in Eq. 3.2.4 are now retained. Substituting Eqs. 3.5.4
and 3.2.3a into Eq. 3.2.4 yields the strain-displacement equation for

the nonlinear formulation as
1y 2
1 2 2 (vo)
- ' = ' ' - " [
CZ Uo + 2 [(Uo) + (Vo)] y Vo [1 + Uo + 7:.1??;:))_2"

1 2011\ 2 (Vé)z |
+-2- y (Vo) El +T—_-—(-‘E)—ﬂ (3.5.5)
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The variation in strain 682 can be obtained from Eq. 3.5.5, noting that
u;. v;, and vg may vary independently. The result is

"
0

662 - [1+u(',-yv:)'] 6u(')+E/é-—-—l—-—.(_;.5—_

L]
2y v,V

y (v;)3 veo o y? vi (vt (v))? (vg)’:]
Sv!
[o]

Bk A T ) L SR T R L

' . yoot o yreD? v )
+[—y (l+u°)+yvo-/_i____.(‘7£)_2_ + 1"("8)2 ] dvo
(3.5.6)

As in Appendix A, the principle of virtual work may be written

as

W = J g, Gez dV - <> {8q} = 0 (3.5.7)
\

Substituting Eq. 3.5.6 into Eq. 3.5.7 results in the equilibrium

equation.
2y v' V" y (V')3 v"
o 1+ L. " 6 ] + ' o o o - 0 fo)
(L A 2 3[ ul -y vol ul vy T GDT (- (vc.’)z)s/'z
A AR OO L A (A RSO I I I ,
L ] 11
+ T (vé)2 + 1 (v;)?)z évo + [jy (1 + uo) +y v,
y (v|)2 ) yZ (v|)2 V"
- = + 9O 6v"te dA - dz
V1e- Zvo'si 1~ (v('))z o

- <> {8q} = 0 (3.5.8)
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then Eq.

in which

and

Let stress resultants be defined as

n = f oz * dA (3.5.9a)
A

m = f Oz *y ¢ dA (3.5.9b)
A

mk = f o, ° y? ¢ dA (3.5.9¢)

3.5.8 can be rewritten, using the definitions in Eqs. 3.5.9, as

[{2(81 Gu; +a, dvé t+a, 5V2) dz] - <Q> {6q} = 0 (3.5.10a)

a, = n (1+ ué) ~-m vg (3.5.10b)

v'
0O O

v (vé)z
= LI e t———————
a2 n vo m ;FTEfE?ZZTTF-[Z + 1= (vé)z]

vl (v)* v))?
+ m* T (w2 (l + 1—:f7:733} (3.5.10¢)
(o) o
[ (v))* (v)?
T . ' % y"
a, m ll + uy + /TT:—Tvgyr ] +m ve (1 + i—:~?;ZTIJ

(3.5.10d)
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Equations 3.5.10 are approximate only to the extent intro-

duced by assumption 4 of Sect. 3.2.

If the displacements, u, and v, are functions of a discrete

set of N displacement coordinates, 9y Eq. 3.5.10a may be written as

b = 0 (3.5.11)

in which

au; av(') av'(;\
Yy = [ (al aqi + a, aqi + a, -a—('l-;sz - Qi (3.5.12)
)

and for which i has a range of N. (In this and the following equations
N = 4), Equations 3.5.11 are nonlinear. If Eqs. 3.5.11 are not satis-

fied, corrections to the q may be obtained by Newton-Raphson iteration

according to (Murray et al. 1979)
Awi. = —= qu - - wi (3.5.13)
in which the summation convention is used for repeated indices and }

also has a range of N.

Substituting Eq. 3.5.12 into Eq. 3.5.13 results in

da, du' %a, ov' da., ov"
I 1% "2 7o, "3 o], 4, aq
) 33;'8qi qu qu aqj qu 3

8u; avé BVg
= Q - f a, — +a, — + a, — | dz (3.5.14)
i 2[ 1 qu 2 aqi 3 qu ]
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Equation 3.5.14 is the basic Newton-Raphson equation and may be
adapted to geometric and material nonlinearity.

Once the expressions for u and v, are defined in terms of
the q's, all terms in Eq. 3.5.14 may be evaluated and numerical inte-~
gration with respect to z may be carried out to form an incremental
tangent stiffness matrix [kT] and unbalanced load vector {AQ}. Equation

3.5.14 may then be written symbolically as

[k, ] {Aq} = {AQ} (3.5.15)

in which the influence coefficient (k,r)ij is evaluated as

aal au; 3a2 ov' 8a3 ng
I [a s+ 5= 3 2 4 == 3 ] . dz (3.5.16)
g9y 3qy ~ day dq,  3qy dqy

(kp) g

; and the unbalanced load AQi' is evaluated as

. Bué av; ng
AQi = Qi - a, 5q + a, 5q + a3'5a— dz (3.5.17)
L i i i

All equations derived above are applicable to inelastic as
well as elastic behavior. The equations are specialized for elastic
response in Appendix B resulting in a tangent stiffness matrix [kT],
given by Eq. B.4.4 for a flexural element, or Eq. B.4.11 for a truss
element. The unbalanced load vector {AQ} is given by Eqs. B.3.4 and

B.3.11 for flexural and truss elements, respectively.

3.5.2 Finite Element Model

For computational purposes a finite element model is developed
to obtain a set of algebraic equations using a beam element function.

In the finite element approach the displacements at any point are

—_— [ J——



represented by interpolating functions denoted as {¢}, and the general-

1zed displacements {U} and {V} at the nodes. Thus

u, = <¢> {v} (3.5.18a)

and

v, = <¢> v} (3.5.18b)

in which {U} and {V} are defined in Fig. 3-7 for a flexural element and,
in Fig. 3-8 for a truss element.

The formulation developed in this study uses two types of
interpolating functions for two types of element, namely a flexural
element and a truss element. The functions selected for the flexural
element are cubic polynomials that can be expressed as linear combina-
tion of the four base functions illustrated in Fig. A-2 and given by
Eq. A.2.3b,

For a truss element, linear functions are used that may be
expressed as combination of the two base functions i1llustrated in
Fig. A-1 and given in Eq. A.2.3a.

Equations 3.5.18 are used in Appendix B to evaluate the finite

element equations, Eq. 3.5.15.

3.5.3 Assembly of Finite Element Equations

Equation 3.5.15 is the incremental equilibrium equation, for
an element. In this equation the element stiffness matrix has been
evaluated with respect to nodal displacements {q}, referenced to a
local coordinate system shown in Fig. 3-7 for a flexural element and
Fig. 3-8 for a truss element. The local nodal displacements can be

written as
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FIGURE 3-7 Local Nodal Displacements for Flexural Element
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‘U}T= (U], UJ)
VT = v, wid
Q") = <ul, vy

FIGURE 3-8 Local Nodal Displacements for Truss Element
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> = < <U>, <> > (3.5.19a)

or

> = <, (gggl Y, %5 I ot e, v, o7 > (3.5.19p)

for a flexural element; and

@ = <ul, v,V (3.5.19¢)

»

for a truss element; and I and J are nodal numbers.
In frame analysis it is convenient to select a different set
of reference axis for the global system of nodal displacements {rE}G as

shown in Fig. 3-9. The global nodal displacements can be written as

I J
<rE>G < L >G (3.5.203)
in which
I - 1 I 1 ,0UI 9V, 1
<r>e <uU-,v , 0, (——az) R (—-—aY) > (3.5.200)

The element displacements with respect to the local coordinate
system can be related to those in the global coordinate system by the

transformation

{q} = [T] {rE}G (3.5.21)

in which the transformation matrix [T] for a flexural element is derived
in Appendix C and given in Table 3-5. Also, the transformation matrix

[T] for a truss element is given in Table 3-6.




e = — [ — — [ —

{rl}.(r; = <Ulo vl’ 01! (UvZ)Iv (VvY)l>G

FIGURE 3-9 .Global Nodal Displacements
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Using the transformation procedure described in Sect. 3.3.2

results in
[kT]G {ArE}G = {ARE}G (3.5.22)
The element stiffness matrices can now be assembled to form

[KT]‘{Ar} = {AR} (3.5.23)

in which [KT] is the structural tangent stiffness matrix assembled for
. the entire structure, {Ar} is the assembled vector of incremental nodal
displacements, and {AR} is the assembled vector of incremental nodal
forces, called the unbalanced forces.

Once Eq. 3.5.23 is assembled the Newton-Raphson method can
be used to solve for the load-deformation characteristics of the

structure.

3.5.4 Newton-Raphson Solution Procedure

The Newton-Raphson method has proven to be one of the most

useful solution techniques available for nonlinear analysis (Rajasekaran

and Murray 1973). Many investigators have adapted the method quite
éuccessfully. Walker and Hall (1968) used it to study large deflec-
tions of beams while Brebbia and Connor (1969) used it to study the
geometrically nonlinear behavior of afbitrary shells,

The Newton-Raphson solution technique can be best described
with reference to Fig. 3-10 and the following algorithm.
1 - For any approximate {r}n, the stiffness matrix [KT] and the vector

of unbalanced forces {AR}n are evaluated.
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2 - The increment in displacements {Ar} necessary to equilibrate the
unbalanced forces, evaluated in step 1, are evaluated using

Eq. 3.5.23 as

-l
{Ar}n = [K n {AR}n (3.5.24)

)
3 - The displacements are updated. That is

{r} ., = {r}n + {Ar}n (3.5.25)

4 - Steps 1 to 3 are repeated until the vector of unbalanced forces
{AR} ié arbitrarily small. At this stage a point on the load-
displacement diagram is obtained.

5 - A new ioad level is applied and steps 1 to 4 are repeated to obtain

the 1oad-dgformation characteristics of the structure.

3.5.5 Summary

A large deformation theory for plane frame problems has been
formulated in this section. A finite element method has been developed
and a Newton-Raphson solution procedure, to solve for the complete

load-deformation curve, is explained.

3.5.6 Computer Program
To show the capability of the theory, formulated above, a

computer program, called Nonlinear Elpsticiépalysis (NONELA), is developed

to solve the set of equations presented in this section for the case of
linearly elastic material. The method of Newton-Raphson is used; the
stiffness matrix [KT] being evaluated at each step of the procedure.
Some applications are presented in the next section to demonstrate the

capability of the theory and the efficiency of the computer program.
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3.6 Nonlinear Elastic Solutions

The examples presented in Sect. 3,4 have dealt with elastic
buckling or bifurcation problems. When large deformation theory,
presented in Sect. 3,5, is considered the problem becomes nonlinear.
For this type of problem the load-deformation response 1is obtained by
applying the load incrementally and iterating to find the equilibrium

configuration for each loading condition as described in Sect. 3.5.4.

3.6.1 Examples of Beam-Columns

NL~1 'The Elastica' Problem

This example considers the elastic post-buckling behavior of
. a simply supported beam-column. A small transverse load was applied
to act as an initial imperfection. Results are shown in Fig. 3-11,
Agreement with the 'Elastica' solution, discussed in Sect. 2,3.1,
(Timoshenko and Gere 1961) is very good. The number of elements

used was 4 elements. The average number of iterations to get from one
load levél to the next with a relative error of 1 x 10~" was 4, with

an average cpu time per iteration of 0.1 sec.

NL-2 Cantilever Under Pure Moment

In this example a cantilever beam acted upon by a moment at
its free end is analyzed. A very good agreement with the solution of
Epstein and Murray (1976), was obtained with four elements for defor-
mations up to the semicircumference. Then the number of elements was
increased to six and deformations pursued up to the complete circum-
ference. Fig. 3-12 shows some of the exact deformed configuration

with the corresponding positions of the nodes as obtained from the
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FIGURE 3-12 Solution for Cantilever Under Pure Moment
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computer program. The number of iterations averaged 4 iterations per

each load increment with an average cpu time of 0.1 sec./iteration.

NL-3 Cantilever Beam With One Concentrated Load

The results summarized in Fig. 3-13 are for a cantilever beam
loaded, with a concentrated load, at its tip. The solid line represents
the exact solution, given by Bisshop and Drucker (1945). Two solutions
for the present formulation are introduced. One using 2 elements and
the other using 4 elements. It is seen that the solution obtained

using 4 elements is in excellent agreement with the exact solution.

NL-4 Cantilever Beam With Two Concentrated Loads

A comparative study by Ebner and Ucciferro (1972) gives
numerical results obtained by several different finite element techni-
quas for the cantilever beam shown in Fig. 3-14. The results reported
are :eproduced in Table 3~7 along with results obtained by the present
formulation. It is seen that the present solution with two elements
is as accurate as the solution by various other versions of the finite

element approach.

3.6.2 Examples of Frames

NL-5 One Story Frame

The results obtained for a simple one story.bent are shown in
Fig. 3-15. The results are compared with an approximate solution pre-
sented by Oran and Kassimali (1976). It is important to note that the
formulation developed as part of the present investigation did function
properly, with no significant convergence difficulties, up to even

beyond the critical load of the limiting case of the perfect bent. It

i
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FIGURE 3-14 Cantilever Beam with Two Lateral Loads




101

—

#~1IN weag 19A97TIIUeR) 103

SUOTINTOS Teluswdadu] u9asmlag QOWHHNQEOU /—-€ d19VL

0€° L9 10 * 1€~ 01°s2 g - - (196T1) Leg-yostay
£q 3oexy
0%°99 S%°0E~ YAl 4 8 L- '/ r4 jussaag
ST°1IS 10°ST- 09°02 96— 00T 0z
(8961) s8utuuap
0v°9 €0 - 0¢'t 0° - 174 r4
SL°0L 00°S€- 0€£°92 Z1°6~ 00T 0z
(¥96T) stTasBay
0Z2°SL 0Z°9¢- %0°62 90 6~ 0z r4
09°0¢ LE°YE-~ 62°92 11°6- 001 02
(S961) ur3zaey
0z %L 20°9¢- 6%° L2 L6°8~ 0z rA :
(*ux)d *3d| (°uwx))d *3d} (Cuy)qg -3d| (ur)g -3d
UOTId2TJo(q | UOFIODBTISQ| UOTIVITIS(Q| UOTIDV[I°(Q| SIuswaIdU] SIUSWATY PR
TeOT3II947 1e3U0ZTIO0H TEeOT3II37 1e3UV0ZTI0H JO aaqunN| 3O Iz9qunN TIET 4

ous




102

ovt

wag A0ig aup 10} saand uoRdaya(q peo] S1-€ 3HNDI4
(sayoul) v ‘uoroayaq LuoZUoH

sdny 8G Y F— — —

14 00t 08 09 ov 174 0
T T T T T T 3°
MLl =Y
ol 1'0lE =1
3 00008 = 3 (v261)e 1@ 60UWRT 0000 0
9.61) U —— —— N 0001
sisijeue JU8Sald e
: 0002 mm
-] \ p
° 7 -
° \\ LY
o ‘4 ° \..lMI
° ° ooot P

§ ooov

bnvm

000¢



may be of interest to note, in this connection, that an alternate
iterative technique, suggested by James et al. (1974), failed to con=-
verge at substantially lower load levels. A lack of convergence in
the iterative process was viewed by those authors as an indication of
instability. In the light of data presented herein, such a conclusion
would ;ot necegsarily bg jgatitiéd.

The solution obtained averaged about 4 iterations per each

load increment with average cpu time per iteration of 0.1 sec.

NL~6 ﬁnltistofi Framed; | . ‘

The two frames shown in Fig. 3e5,;nd Fig. 3-6 are analyzed
here. The results for the two story-twq!bay frame are shown in Fig.
3-16. In this example the average numbé; éf iterations to get from
one load level to the next Qas 5 with #h average cpu time per iteration
of 0.2 second. The results obtained fbr the multistory multibay frame
are illustrated in Fig, 3-17. 1In this casq‘the number of iterations
averaged 6 iterations per load increment with an average cpu time of
1.2 geconds per iteration.

Unfortunately there is no exact, or approximate, solution
available for these frames to compare with. However, according to the

results obtained from the previous examples, the author strongly feels

that the present formulation provides good results for these frames.

3.6.3 Comments on Results

Reshlts obtained in this section compared favorably to the
exact and approximate solutions available. The examples demonstrate
that the computer program developed is capable of analyzing a wide

variety of nonlinear frame problems with very good results.
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CHAPTER IV

BEHAVIOR OF ELASTIC - PLASTIC FRAMES

The determination of the complete load-deformation response
for plane frames, loaded to the 1ne1aot4c range, is possible by a
computeriged step-by-step alaetic-plasgic analysis, described in

Sect. 2.4.5. In this chapter, featurea of elastic-plastic analysis of

i

frames are presented. Two methods have been adapted, one is an incre-

ot

mental solution while the other is an iterative technique. For each
_ -

technique first and second order analyses are presented. A comparison

F

between the methods is furnished and réiults are compared to published

reports.

4,1 Basic Assumptions and Limitagions

In addition to the first three assumptions presented in Sect.

3.2, the following assumptions are also considered.

1 - The material is assumed to be linearly elastic-perfectly plastic
(1.e. strain hardening is not conaidcred).

2 - Residual stresses are ignored.

3 - Plastic deformations are concentratgd in generalized hinges.

4 - Plastic moment capacity, Mpc, in thi presence of axial load, P,
at a particular section is reduced in accordance with the inter-

action yield curve shown 1in Pig. 4-1.

-106-
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FIGURE 4-1 Interaction Curve



108

4,2 The Incremental Method of Analysis

Equation 3.3.11 is the equilibrium equation, for a structure,
asgsembled in a global coor&inate systém. zlﬁ that equation the geometric
stiffness matrix [KG] depends on the axial forces in the individual
members which in turn depend on the level of loading.

Since the geometric stiffness matrix [KG] va;ies between two

levéls of loading, Eq. 3.3.11 can be put in an incremental form as
[K] {Ar} + [K,] {ar} + [&K.] {£} = {AR} (4.2.1)

Equation 4.2.1 can be written, symbolically, as

_[KT] {or} = {AR} - [AxGl {r} (4.2.2)

which is an incremental equilibrium equation that can'be used in the
step~-by-step elastic-plastic analysis to obtain the complete load-

deformation characteristics of a frame.

4.2.1 Incremental PFiret Order Analysis

Consider a fraﬁo subjected to two sets of loads, one of which
is constant, {Rc}, while the other, {ARV}, varies proportionately. In
conducting a first order analysis the geometric stiffness is not con-

sidered and Eq. 4.2.2 becomes

[KT] {ar} = {AR} (4.2.3)

in which [KT] is the tangent stiffness matrix not including the geometric

nonlinearity.
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The step-by-step, elastic-plastic first order analysis, to

obtain the load-deformation response of a frame, can be best described

using the following procedure.

1-

An elastic analysis is performed based on the original elastic
stiffness matrix of the structure. The vectors of nodal displace-
ments {rc} and {Arv} as well as the vectors of member forces {Qc}

and {AQV}, due to the two sets of loads considered above, are obtained.

The moment capacity of each critical section is calculated as
(Mipv)i = (Mpc)i - M), (4.2.4)

in which (Mpv)i is the moment capacity that would resist the moment
at the ith section due to the variable set of loads {ARV}’ (Mpc)i is
the plastic moment capacity of the ith section and, (Mc)1 is the

moment at the ith section due to the constant set of loads {Rc}.

The load factors Ai are calculated, for each section, as
M )
A, = i » (4.2.5)
i (AMV)i

in which (AMV)i is thé moment at the 153 gsection, due to the variable
set of loads, {ARV}. The section having the smallest load factor will
be the first section to be plastified. This load factor then is
called Al which will cause the first hinge to be formed.

The applied loads, nodal displacements, and member forces are up-

dated, using the factor Al’ as
{R;} = (R} +1 {ar } (4.2.6a)

{rl} - {rc} + A {Arv} (4.2.6b)



and

{Ql} = {Qc} + Al {AQV} (4.2.6c)

in which {Rl}’ {rl}, and {Ql} are vectors of applied loads, nodal
displacements, and member forces'res;ectively at the formation of
the first plastic hihge. |

Now the first plastic hinge has been formed. A réal hinge 1is
placed at this section and the incremental stiffness matrix of
the structure is modified by changing the particular member stiff-
ness matrix where the plastic hinge has appeared.

An increment in the variable set of loads {ARV} 18 applied to

the structure and a new elastic analysis is performed on the
basis of the modified stiffness matrix. The member forces, nodal
displacements and plastic deformations due to the load increment
can then be evaluated.

The moment capacity remaining in each section may then be

calculated as

= (M (4.2.7)

pv)i pc)i -

( Dy

in which (Ml)i is the moment at the ith section developed at the
formation of the first plastic hinge and can be obtained from the
updated vector of member forces {Ql}’ given in step 4.

The search for the next section to be plastified is conducted,

as described in step 3, and the applied loads, nodal displace-

ments and member forces are updated accordingly as

(R} = {rR;} + 1, {8R} (4.2.8a)
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{rz} - {rl} + Az {Arv} (4.2.8b)

and

{o,} = fq;} + A, {aq)} . . (4.2.8c)

in which Az is the smallest load factor obtained.
The above procedure is continued until a failure mechanism
is formed. The failure criferion, as far as the’incremental analysis
is concerned, 1is fhe singularity of the global tangent stiffness matrix
of the structure. When a mechanism forms, a zero element appears on the

main diagonal of the triangularized structure stiffness matrix and the

solution is completed.

4.2,2 Incremental Second Order Analysis

In the case of a second order analysis, geometric nonlinearity
is_considered and Eq. 4.2.2 is used. The same procedure for first order
analysis, described in Sect, 4.2.1, is used for second order analysis
with few changes.

First, a new geometric stiffness matrix [KG] has to be assembled
at the beginning of each load increment. This matrix is a function of
the axial forces in the members up to this stage of loading.

The second change, that has to be introduced, is to modify the
vector of incremental loads {ARV} to acéount for the quantity [AKG]{r}
in Eq. 4.2.2. The incremental geometric stiffness matrix [AKG] is a
function of the incremental axial forces in the members due to {ARV}
while {r} is the vector of total nodal displacements obtained from a

previous step.



To account for the reduction in plastic moment capacity due to
the presence of axial forces in the mepberp,fhe interaction curve shown
in Fig. 4-1 is used. Two alternative methods are suggested. The first
method 1s to estimate, approximately, the final axial force in each
member and reduce the moment capacity according to this estimate. The
other alternative is to calculate the ﬁomeﬁt capacity based on the
axial force developed at the beginning of the load increment, neglecting
any change in this value due to any change in axial force once a hinge
has formed at this particular location. Both alternatives suggested
above are approximate solutions and fesult in some error. The second
suggestion is adapted in the analysis presented in this section. A
more precise method is presented in the following séctioh.

Once the above modifications are introduced, the procedure
described in Sect. 4.2.1 18 followed until a mechanism is formed.

When a mechanism forms the determinant of the decomposed structure stiff-
ness matrix will have a negative sign. At chis‘étage a negatibe incre-
ment in load is applied to the structure to obtain the descending line

of load-deformation characteristic, shown in Fig. 1-1 (Curve F).

4.3 The Iterative Method of Analysis

In this section the equilibrium equation, Eq. 3.3.11, is

satisfied at each equilibrium position, (i.e. at the formation of

each hinge).

4,3.1 First Order Analysis

For first order analysis, the geometric nonlinearity that appears

in Eq. 3.3.12 is not considered. In sucha case, Eq. 3.3.11 can be written

as

112
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K] {r} = {Rr} (4.3.1)

in which [K] is the elastic stiffness matrix assembled for the entire
structure,

The procedure presented in Sect. 4.2.1 can be used here, with
Eq. 4.3.1, up to and including step 5. However, the new stiffness matrix
in this case, obtained f;om step 5, is a tangent stiffness matrix.

The loads that produced the first plastic hinge Are then applied
to the modified structure together with an applied moment equal to the
plastic moment capacity, Mpc’ at the location of the hinge. The first
set of loads {Rv} increases until the formation of the second hinge
while the applied moment which can be assembled into the load vector
{Rc} is kept constant. It is important to note that because the stiff-
ness matrix is a tangent stiffness, the set of displacements {rv} and
{rc} are fictitious displacements. However, the difference 1s the real
displacement vector {r} defined in Fig. 4-2.

The maximum moment capacity left in any section after the first
hinge was formed can be obtained from Eq. 4.2.4 and the search for the
second section to be plastified is based on the smallest factor A defined
by Eq. 4.2.5.

Once A is determined, the applied loads, nodal displacements
and member forces are updated. Also, the constant set of forces {Rc}
is modified to include the plas;ic moment capacity as an applied moment
at the second hinge preparing for the next equilibrium position.

The above procedure 1s continued until a mechanism forms.
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4.3.2 Iterative Second Order Analysis

The first order analysis as described in Sect. 4.3.1 neglects
the effects of axial forces in the members as they influence the geo-
metric nonlinearity of the structure.

To account for the geometric noniinearity, the geometric
stiffness matrix 1s included in the analysis (Eq. 3.3.12), 1In this
case,a new geometric stiffness matrix is formed at each load level
based on the previous load level. This geometric stiffness matrix is
to be corrected through an iterative process up to the new level of
loading to be consistent with the updated applied loads {RV}.

The reduction in moment capacity Mp due to the presence of

axial force P at any section is considered based on the interaction

. curve shown in Fig. 4-1. The ratio P/Py at any section is checked to
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ensure that the moment capacity of the section does not exceed the plastic

moment capacity, Mpc.

A new moment capacity Mpc should be calculated at each itera-

tion to account for the change in the axial forces. Consequently, the

constant set of forces {Rc}, described in Sect. 4.3.1, must be modified

in accordance with the new moment capacity, Mpc’ at each iteration.

The same procedure, described in Sect. 4.3.1, is then used

for an iterative second order analysis.

4.4 Comparison Between Incremental and Iterative Approaches

- In the incremental method the geometric stiffness matrix is
evaluated at the beginning of the load increment as a function of the

total axial forces in the members up to this step. In the iterative



approach, howéver, the geometric stiffness matrix is re-evaluated with
each iteration as a function of the tocai member axial forces. This
results in a more accurate geometric stiffness matrix and,consequently,a
more accurate solution.

As discussed in Sect. 4.2.2, the incremental procedure does
not allow any change in the plastic moment capacity,Mpc,of a section
due to any change in the axial force, once a hinge has formed at this
barticular section. Two alternative solutions were suggested in Sect.
4,2.2 to overcome this problem. However, both alternatives are approxi-
mate and result in some error when evaluatiﬁg the load~-deformation
response of the structure. In the iterative procedure,the plastic
moment capacity of each section is re-evaluated with each iteration to
account for any change in the axial forces. This results in a more
accurate analysis.

The effect of the approximations made in the incremental method

will be demonstrated by some example applications in Sect. 4.6.

4.5 Computer Prggrams

Two computer programs have been developed to solve for the load-
deformation characteristics of frames by plastic analysis. The first
program performs an incremental plastic analysis of frames, based on
the procedure described in Sect. 4.2, and is called INPLAF. The second
program performs plastic gnalysis of frames using the iterative technique,
described in Sect. 4.3, and is called PLAFIT. Each program has the

option to perform first or second order analysis.
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4.6 Elastic-Plastic Solutions

Three example frames are checked in this section using the
incrémental and iterative procedures presented in Sects. 4.2 and 4.3,
respectively. The load-deformation characteristics for each frame
are obtained using the different analyses and the results are compared
with published results. For each analysis the cpu computer time is

given as a measure of the cost of running the program.

4.6.1 Sample Solutions

EP-1 Four Story Frame

The frame shown in Fig. 4-3 was analyzed by Korn and Galambos
(1968). 1In the analysis the loads were increased proportionately.
Figure 4-4 illustrates the load-deformation curves obtained by the
different analyses. Curves (1), (2), (3), and (4) represent iterative
first order, iterative second order, incremental first order, and
incremental second order analysis, respectively. The results obtained
by Korn and Galambos (1968) are identical to curves (1) and (2).

The cpu computer time for first order,analysis is about 1.7
seconds using the incremental approach and 5 seconds for the iterative
approach. For second order analysis the incremental technique used
about 1.3 sec. compared to 20 sec. for the iterative technique.

As can be observed from Fig. 4-4 the incremental second order
analysis (curve 4) is considerably different from the iterative second
order analysis (curve 2). This difference basically occurs during the
formation of the first hinge as the geometric stiffness matrix in the

incremental analysis is formulated at the beginning of the load incre-

" ment which in this case results in a null geometric stiffness matrix.
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At this stage it was thought that better results could be
obtained i{f an iterative procedure were_applied only up to the develop-
ment of the first hinge followed by an incremeﬁtal procedure up to the
collapse mechanism. This procedure, wﬁich may be called iterative-
incremental second order analysis, results in a load-deformation
relationship given by curve (5) in Fig. 4-4 and compares favorably to
curve (2). The cpu computer time used to obtain curve (5) is about 5 sec.

i

which i1s considerably less than that used to obtain curve (2).

EP-2 Three Story Frame

McNamee and Lu (1972) performed a second order analysis on the
frame shown in Fig. 4-5 increasing the loads proportionaily. The load-
deflection curve they oﬁ:aingd 1s curve (2) in Pig. 4~6. Curves (1)
and (3) represent the iterative and incremental second order analysis,
respectively, presented in this chapter. While the cpu.computer time
for the iterative technique is about 4 seconds, it is 1.2 sec. for the
incremental technique. It is important to note that an iterative-
incremental analysis, suggested in the previous example, results in a
load-deflection curve identical to curve (1) and uses only aboutb2 sec.

cpu computer time.

EP-3 One Story Three Bay Frame

In the frame shown in Fig. 4-7_the vertical loads, P, are kept
constant while increasing the horizontal force, H. The results of first
and second order analyses presented by Galambos and Lay (1965) are given
as curves (3) and (6), respectively, in Fig. 4-8. The present study
glves an iterative first order analysis (curve 1) and an incremental

first order analysis (curve 2) which are almost identical. The cpu time
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is about 0.6 sec. for thé iterative technique and 0.45 sec. for the
incremental one.

The second order analyses result in curves (4) and (5) represent-
ing the iterative and incremental technique, respectively. The cpu
computer time is about 2.4 sec. and .90 sec. for the iterative and
incremental technique, respectively. When an iterative-incremental

procedure is performed curve (7) is obtained with a cpu time of 1.4 sec.

4.,6,2 Comments on Results

The examples presented above indicate that the iterative
method of analysis, presented in Sect. 4.3, exhibits good results.
However, an iterative method up to the development of the first hinge
followed by an incremental procedure until collapse gives approximately

the same results and does not cost as much as the iterative method.



CHAPTER V

NONLINEAR INELASTIC FORMULATION AND SOLUTIONS

Nonlinear formulations relating kinematic and mechanical
variables may fall into one of the three categories: geometric non-
linearity, material nonlinearity, or comﬁined geometric and material
nonlinearities. The formulation presented in Chapter 3 falls into the
first category while this chapter is devoted to problems falling into
the third one.

In this chapter an inelastic stebility analysis of multistory
frames is presented based on a stiffness formulation which accounts
for geometric as well as material nonliqpatity. The formulation is an
extension of that presented in Sect. S.Q}to include material nonlinearity.
The formulation ronulti in finite element equations and the Newton-
Raphson method is then used to sovlve for the overall load-deformation
characteristics of the structure.

In the analysis presented herein, the effect of axial load on
the stiffness and strength of the inhdividual members is considered.
Partial plastification of sections ia taken into account. The influence
of raesidual stresses as well as strain hardening of the material is in-
cluded in the analysis. The formulation also permits consideration of
extended regions of plastic deformations rather than discrete hinges
in beams and beam~columns.

Also in this chapter, the formulation is checked by comparing

computed results with some of the available experimental test results,
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5.1 Basic Formulation for Inelastic Behavior

Equation 3.5.14 1s the basic incremental equilibrium equation,
derived in Sect. 3.5.1, and is applicable to elastic and inelastic

response. Equation 3.5.14 can be written in matrix form, for inelastic

response, as

[k}] {aq} = {aQ'} (5.1.1)

in which [k%] is the inelastic element tangent stiffness matrix and is
a function of geometric and material nonlinearities and {AQI} is the
vector of incremental forces, evaluated for an inelastic element.

The difference between the equilibrium equation for an elastic
element, Eq. 3,5.15, and that for an inelastic element, Eq. 5.1.1, basic-
ally arises in the evaluation of the tangent stiffness matrix and the

incremental load vector.

5.1.1 Main Assumptions

In deriving the tangent stiffness for a partially plastic
section, it is assumed that no strain reversal occurs. If one considers
a section which has already yielded and an infinitesimal increment in
bending moment is applied, the resistance to this moment is a measure
of incremental bending stiffness. The yielded zones increase somewhat,
while some strain reversal may take place in the already yielded zones.
These effects are neglected in this study and the additional moment is
assumed to be resisted by all parts of the cross section with the stress
inctement determined from the tangent modulus of the material at the
current value of strain. The section properties relating increments

in stress resultants to increments in displacements may then be computed
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by a transformed area concept as described in Sect. D.1l. This concept
is applicable to thin wall open beam sections since the stress is
'essentially uniaxial and the effect of shear stress on the principal

'

stresses may be neglected.

5.1.2 Evaluation of Incremental Forces {AQI}

To evaluate the vector of incremental forces {AQI}, in Eq. 5.1.1,
it is necessary to evaluate the stress resultants n, m, and m*, defined
by Eqs. 3.5.9, at any section prior to the load increment. Equations
B.3.4 and B.3.11 give the vectors of incremental forces, for a flexural
element and truss alemggt. respectively, assuming an elastic response.

The same equations are applicable to 1nglaotié responge provided that
. the stress resultﬁnta are evaluated by &ircct integration of stresses

as detailed in Appendix D, Eqs. D.3.1 through D.3.3.

5.1.3 Evaluation of Element Tangent 8tiffness Matrix

The element tangent stiffness matrix for an elastic element

is given by Eq. B.4.4 fgr a flexural e;;nent, and by Eq., B.4.11 for a
- truss element. 'Theqe equations are applied to inelastic response with
two modifications. ‘,‘ “{
First the stress resultants n,;i and m* are numerically
evaluated by direct integration of stresmses (Eqs. D.3.lb, D.3.2b,
and D.3.3b).
The second modification that ghould be introduced for inelastic
snalysis is in the evaluation of the imcremental stress resultants

%%? , g%% , and ot . These increments are evaluated in detail in

8q5
Sect. B.2 for an elastic element. For an inelastic element detailed

evaluation of the incremental stress resultants is given in Appendix E




and the incremental stress resultant vectors are given in Tables E-1
and E-2 for a fiexural element and a truss element, respectively.

Once the stress resultants are evaluated and the incremental
streas resultant vectors arae formed the éama formulation, presented
in Sect. B.4 to derive the elastic tangent stiffness matrix can be
used to derive the inelastic tangent stiffness matrix for an inelastic
element. It should be noted that the finite element shape functions
selected for an elastic analysis (Eqs. A.2.3) are also applicable

to inelastic response evaluation.

5.2 Transformation and Asgembly

The incremental equilibrium'equation (Eq. 5.1.1) 18 formulated

in the y~z coordinate directions which are the reference axes of the

member. The local incremental displacements {Aq} may be ralated to the

incremental displacements in the global system {Ar} for a typical

element by the transformation matrices given in Tables 3-5 and 3-6 for
a flexural element and a truss element, respectivaly. Assembly of the
incremental equilibrium equation then proceeds by the direct stiffness

method, presented in Sect. 3.3.2, to yield

[K,i] {ar} = {AR1} ” (5.2.1)

in which [K;] is the inelastic tangent stiffness‘matrix for the entire
structure and is obtained by direct addition, {Ar} is the assembled
vector of incremental displacements, and {ARI} is the assembled vector
of incremental forces (called the unbalanced load vector).

Equation 5.2.i is the equilibrium equation for the structure

and becomes the basis for the Newton-Raphson solution.
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5.3 Newton-Raphson With Gradient Test

The Newton-Raphson technique,vdeaqribéd in Sect. 3.5.4, is
used in this chapter to trace the behavior of inelastic structures.

The procedure is identical to that of Séét. 3.5.4 except for the
detailed evaluation of tangent stiffness matrix and the vector of
unbalanced forces. The computational procedure and the associated
incremental equilibrium equation (Eq. 5.2.1) are applicable up to the
peak of the load-deflection curve.

To be able to trace the load-deflection characteristics
beyond the peak of the curve, a special treatment must be adapted
(Rajasekaran and Murray 1973). The descending branch of the load-
deflection curve in the inelastic region is characterized by a negative
definite stiffness matrix. Thie means that the structure can only
withstand a decrease in the load. .

To obtain the descending branch of the load~deflection curve, |
the determinant of the tangent stiffness matrix is checked for sign
change to determine if the stiffness matrix is still positive definite.
"If this sign is negative the load is decremented. The test for sign
is called a 'gradient test' and will determine exactly where to start

decreasing the applied loads in order to maintain equilibrium.

5.4 Residual Stresses and Strain Hardeming of the Material

Residual stresses are caused by a variety of factors and in
some cases they may be as large as the yield stresses (Huber and Beedle
1954; Tall 1964). They are a result of thermal effects and plastic

deformation during the manufacturing process. Tall (1964), Huber and

!




Beedle (1954), and Beedle and Tall (1960) provide a large number of

illustrations showing the measured residual stresses caused by hot

rolling, welding, or flange cutting for steel cross sections of various -

shapes and sizes.

In this investigation residual stresses are considered.

These may have a considerable effect on the behavior of the structure,
especially during the transition from the fully elastic to the partly
yielded condition. Full treatment of residual stresses is discuased in
Sect. D.1.

In most of the elastic-plastic formulations developed for
frame analysis the material is assumed to be ideally elastic-pléstic and
the influence of strain hardening on the ultimate load is neglected. In
the formulation presented in this chapter an attempt is made to include
the strain hardening of the material in the analysis. In this case the
idealized stress-strain relationship shown in Fig. D-2 is aésumed. The

treatment is detailed in Appendix D (Sect. D.1),

5.5 Plastification of the End Zones

Because of the distribution of the Gauss sampling points,
discussed in Sect. B.3.1, plastification at the ends of members does
not immediately show its effect on the element tangent stiffness matrix
when treating each member as one element, for this reason better
results may be obtained by subdividing the member into three elements
with the central element being 80% of the length of the member. The
result is that a number of Gauss points are located on each end within
the outer 10% of member length. Therefore, the influence of inelastic

strains is felt shortly after they are initiated at the member ends.
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An element tangent stiffness matrix is formed for each element
and a static condensation scheme, devéldped by Elwi and Murray (1977)
is used to eliminate tHe internal degtees of freedom and to then
assémble only the member end degrees of freedom inté the structure

stiffness matrix.

5.6 Computer Program: .. . .

’ A computer pfogram, called Tnélastic Stability Analysis of
Frames (INSTAF), has been developed to solve for the load-deformation
characteristics of an tnélastic structute. The program can analyze
braced and unbraced fratsies and has‘the'pfoﬁiéion of including residual

stresses and strain hdvdéning of thé material in the analysis.

i A
To demonstraté tHe accurady add to test the efficiency of the
inelastic formulation ptesented in this ‘Chaptet, some of the available
experimental test results are‘checked’uqing the computer program. The

results are presented in this section.

5.7.1 Sample Examples

IN-1 Beqm—Column Test

A W4 x 13 beaﬁ-column was tesggd‘by Van'Kurgn and Galambos
(1964), in which the’axial load, P, was kept constant while the applied
momeﬁt, Mb’ was increased until failurg}took place. Figure 5-1 shows
the comparison between the test results (curve 1) and the theoretical

moment-rotation curve obtained using the present formulation (curve 2).

Residual stress data were not given by Van Kuren and Galambos and therefore
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were not included in the theoretical study. This may explain the

difference in ultimate capacities between the two curves. The fact that

the slopes of the moment-rotation curves are different indicates that
there was geometric imperfection in the member before testing. Using
an analysis of the beam-column where a small lateral load (0.001 kips)
was applied at midspan, the geometric imperfection was simulated. An
assumed residual stress distribution was used, with a maximum compres-
sive value of 0.3 oy., The analysis gave curve 3, which compares favor-
ably to the test rasults.

Twelve load increments were used to draw the complete moment-
rotation curve, obtained in the present analysis, with an average of

5 iterations for each load increment and 0.15 second per iteration.

" IN-2 One Story Frame with Fixed Base

The one story-one bay frame shown in Fig. 5-2 was tested ﬁy
Arnold et al. (1968). The mechanical and member properties are given
in Tables S-i and_5-2 respectively. Two sets of load were applied‘to
the frame. The vertical set of load was kept constant while increasing
the lateral load, H. Figure S5-4 illustrates the results obtained using
different formulations. The load-deformation curves (1), (2), (3) and
(4) reﬁreaent the inelastic analysis presented in this chapter, the
experimental test 'readlta, the second order elastic-plastic analysis
and the first order elastic-plastic anaiysis, respectively. In the
inelastic analysis the effects of residual stressesand strain hcrdcn;ng
were considered. These effects are not included in the elasnic-plastic
analyses which were performed using the iterative method, described in
Sect. 4.3. The results show good agreement between the behavior of

the frame tested and the inelastic analysis.
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TABLE 5-1 Mechanical Properties
g
ypint v I M
b, q t w, Lor fy, | xps | P .""' Z
Section | in in in in -?- -g—- h, in in | per | M0 ki" n
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10225.4 | 4.660 | 10.00 | 0.491 [0.310 | 9.49| 32.3 |179.0| 4.07 | 0.7 | 38.67 [1070.6] - | 28.0
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TABLE 5-2 Member Properties
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IN~-3 One Story Frame With Hinged Base

Schilling et al. (1956) tested the frame shown in Fig. 5-3.
During the test the applied loads on the frame were increased propor-
tionally. Good agreement between the test results (curve 2)‘and the
inelastic analysis (curve 1) is observed from Fig. 5-5. The figure
also shows the first order elastic-plastic analysis (curve 4) and the
second order elastic-plastic analysis (curve 3), obtained using the |
iterative solution presented in Sect. 4,3.

In examples IN=2 and IN-3 about twelve load increments were
needed in the inelastic aﬁalysis to obtain the load-deformation character-
istics of the frames. The average number of iterations was 5 iterations

for each load increment with an average of 0.25 second per iteration.

5.7.2 Comments on Results

Results obtained from the inelastic analysis compare favorably
to the experimental test results available. The results show the
capability of the computer program to analyze inelastic frame problems

efficiently.
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CHAPTER VI

BEHAVIORAL STUDIES

In Chapter 5 an inelastic stability analysis based on a stiffness
formulation was presented, The validity of the theory was then
evaluated by comparing the results with some éanple problems. The
primary objective of this chapter #a to compare the results obtained
using the formulation given in Chapter 5 with those of the simple
plastic theory given in Chapter 4 (i.e. elastic-plastic analysis).

To this end, a cantilever bcam-columnluné single story frames have
been analyzed.

In addition to the basic study outlined above, the effects
of residual stresses and strain hardening on the behavior of single
story and multistori frames are examined. Although these effects
have been investigated by many researchers, their 1nf1uen9e on
frame behavior and strength has not been considered in detail.

Mild steel with a yield stress of 36 ksi is used in the
following analyses, unless otherwise specified. A maximum compressive
residual stress of °R = 0,3 oy is considered, and the fesidual strain
distribution shown in Pig. D-1b is assumed. A strain hardening modulus
of 900 ksi is used, and the strain-hardening strain is assumed equal
to twelve times the yield strain. Although the strain hardening
modulus is rather high it is thought to represent commercially

available structural iéeal grades.
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6.1 Behavioral Study of a Beam~Column

The cantilever beam-column shown in Fig, 6-1 is used in
this stu&y. The axial force, P, is kept constant, while the lateral

load, Q, 1s increased monotonically.

6.1.1 Inelastic Analysis Vs. Rajasekaran's Method

This example problem was previously analyzed by Rajasekaran
(1971) for a slenderness ratio (%) equal to‘14.4 and P/Py of 0.6.
Rajasekaran used an iterative incremental technique based on an
equilibrium balance to solve for inelastic beam-column problems.
Figure 6-2 ahéws the load-deformation curves that were obtained
using different solution approaches. It should be noted that in
the inelastic analysis, the residual stresses are not considered.
The results obtained by Rajasekaran are identical to curves 3 and 4

which were obtained using the present analysis.

6.1.2 Inelastic Vs. Elastic-Plastic Analygis

To compare the inelastic method to the elastic-plastic
golution, the cantilever shown in Fig. 6-1 was analyzed using each
method. In each approach the axial force was kept constant and the
corresponding ultimate value of Q is-calculated using the inelastic
as well as the elastic-plastic analysis. In the inelastic approach,

however, residual stresses and strain hardening are not considered,

as they are not accounted for in the elastic-plastic formulation. The

ratio p between the ultimate values of Q obtained by the two methods

has then been computed as
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Q) 4n

P " 1 D el-pl

x 100 (in percent) (6.1.1)

in which_(Qu)in and (Qu)el-pl are the ultimate values of Q obtained
uging the inelastic and the elastic-plastic analyseis, respectively.
Figure 6-3 shows the relationship between p and P/Py for different
values of L/r. The results show that the ultimaté l#tetal load as
predicted by the inelastic analysis is less than that obtained from
the elastic-plastic approach. The plot also shows that p is a
| function of L/r and Pl? .

The concluaionl that can be drawn from Fig. 6-3 may be mis-
leading. The figure actually compares the lateral strength of the
~ cantilever, as predicted by the inelastic solution, to that obtained
from the elastic-plancic approach. The overall ltrength of the
cantilever as prodicnod by both methods is analyzed more appropriately
through interaction curves as shown in Fig. 6-3a. In these curves
the nondimensionalized first order moment, QLc/Mp’ at the maximum
strength of the beam-column, is plotted against the nondimensionalized
éxial load, P/Py. Figure 6-3a indicates that the difference between
the overall strength given by the 1nalaat1é method and that obtained
from the elastic-plastic analysis is vcty.smallg The reason for the

difference in results between the two ;olutions will be examinéd

in Chapter 7 (Sect. 7.2)

6.1.3 Effects of Residual Stresses and Strain Hardening

A cantilever beam-column with different L/r-values is used
to study the effects of residual stresses and strain hardening.

The data are illustrated in Figs. 6-4 through 6-7. These figures
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show that when only the lateral strength is considered, residual

stresses will have signifiéant effect on the maximum lateral capacity,

i

especially for members with large axlal loads. The results of the

ultimate strength analysis, including the effect of residual stresses
are plotted as dashed lines in Fig. 6-3a. The results show that
when the overall strength is considered, the effect of residual
stresses 18 relatively insignificant.

Except for the cage of low values of L/r and P/Py (Fig. 6-4),
the data demonstrate that strain hardening of the material has no
effect on the maximum value of Q. Actually, it was found that the

strain hérdening tends to affect only the slope of the descending

line of the load-deformation characteristics. However, for the case

of L/r = 14.4 and P/Py = 0.15, the effect 18 pronounced. This can be

attributed to the low slenderness ratio of the member.

6.2 Behavioral Study of Single Story Frames

6.2.1 1Inelastic Vs. Elastic-Plastic Analysis

A study similar to that of Sect. 6.1.2 has been performed for
the frame shown in Fig. 6-8, to compare the inelastic and the elastic-
plastic analyses when applied to frames. The results are then
illustrated on plots similar to Fig. 6-3.

As in the case of the cantilever, the elastic-plastic method
tends to overestimate the lateral strength of the frame (Fig. 6-9).
The results of the ultimate strength analysis are given in the form
of interaction curves, where the nondimensionalized first order
moment , QLC/ZMp, at the maximum strength, is plotted again the non-

dimensionalized axial load, P/Py. Three different values of GT are
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congidered (0, 1, and 3), where GT is evaluated at the top joint
frpm Eq. 3.3.1. The results are given in Fig. 6-10 (L/r = 40) and
Fig. 6-11 (L/r = 60). The effective length factors corresponding to
GT values of 0, 1, and 3, with the bottom end of the column pinned
(GB = ), are 2,0, 2.3, and 2.92, respectively. This gives a range
of effective slenderness ratios from KL/r = 80 (K = 2.0, L/r = 40)
to KL/r = 175.2 (K = 2.92, L/r = 60).

Generally, the results show that the strength decreases as
the slenderness ratio increases. Also, the results of Figs. 6-10

and 6-11 indicate that the difference in overall strength, as

predicted by the two methods, is insignificant.

6.2.2 Effects of Residual Stresses and Strain Hardening

The effects of residual stresses and strain hardening are
evaluated in a study of the frame shown in Fig. 6-8. The gravity
loads are kept constanf, and the relationship between Q and A/L is
developed using different values of L/r and P/Py. The results are
given in Figs. 6-12 through 6-15.

It is clear that the residual stresses have a significant
effect on the lateral strength of the frame, particularly for frames
with high gravity loads (high P/Py values). In Fig. 6-12, where
L/r = 40 and P/Py = 0.15, the reduction in ultimate lateral load due
to residual stresses is about 2%. When the value of ?/Py is
increased to 0.6 (L/r = 40) the ultimate lateral load of the frame
(Qu) is reduced by about 30% (Fig. 6-13). The reduction in ultimate
lateral load is about 4% for the frame with L/r = 60 and P/Py = 0.15

(Fig. 6-14). When P/Py is increased to 0.4, for the same frame
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(L/r = 60), the lateral load capacity is reduced by about 35%
(Fig. 6-15).

The interpretation of the results shown in Figs. 6-12 through
6-15 may be misleading., In these figures only the lateral load
capacity of the frame is considered. The results of the ultimate
strength analysis, including the effect of residual stresses, are
plotted as dashed lines in Figs. 6-10 and 6-11. The results show
that the effect of residual stresses. is actually small in comparison
with the overall capacity. The figures alsé show that the residual
stress effect decreases as the level of axial load decreases, and
as the slenderness ratio increases.

Figures 6-12 through 6-15 show that strain hardening of the
material have no effect on the ultimate lateral load of the frame.
It may have an effect only on the slope of the descending portion
of the load-deformation characteristic. The change in slope is

particularly noticeable for frames with low values of P/Py.

6.3 Behavioral Study of Multistory Frames

6.3.1 Frames and Loading

The formulation developed in Chapter 5 is intended primarily
for the analysis of multistory frames. In the following, the three
frames shown in Figs. 6-16 through 6-18 are used for this'purpose.
Material properties, column lengths, and girder lengths are shown
for each frame. The frames are designated by a numeral indicating
the number of stories, followed by a numeral indicating the number

of bays. The loading on each frame is the service load, and it is
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assumed to be increased proportionally until collapse. Frames 8-1
and 6-2, analyzed by Korn and Galambos (1968), are subjected to
concentrated loads, as shown in Figs. 6-16 and 6-17. The loading for
both frames is given in ton units (1 ton = 2,24 kips). Frame 24-3,
analyzed by Parikh (1966), is subjected to distributed loads given
in Table 6-1. 'ﬁeam and column sections for Frame 24-3 are given in

Tables 6-2 and 6-3, respectively.

6.3.2 Presentation of Results

The load-deformation characteristics for the three frames
are shown in Figs. 6-19, 6-20, and 6-21, Each frame was analyzed
using different methods of analysis, as indicated on the figures.

It can be observed that residual stresses have a limited effect on
the ultimate capacity of frames. However, they have a slight effect
on the load-deformation curve during the transition from the elastic
into the fully plastic condition. It is believed that the effect

of residual stresses for large frames will become more significant
with increasing gravity loads.

The effect of strain hardening was found to be more signi-
ficant for large frames than for single story frames. When considered,
it caused an increase in the ultimate load ranging from 5 to 10%. This
is due to the large number of sections that have to be plastified
in order for the frame to reach its collapse load. When plasticity
develops in the last few critical sections, the strain at a sufficient
nuﬁber of the sections that reached the full plastic moment earlier

may have attained the strain hardening value. This does not occur



Working
Unit Load
Roof k/ft 3.00
Floor AB k/ft 4.36
Floor BC k/ft 4.73
Floor CD k/ft 4.06
Wind K 5.76
Wall K 24,5
Column K 7.5
TABLE 6-1 Loading; Frame 24-3
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_mo:““‘“ AB BC cD
1 W 14 x 26 12 x 11.8 W 16 x 45
2 W 16 x 36 12 x 16.5 W 8x 55
3 do do do
4 do do do
5 do 16 x 31 do
6 W 16 x 45 16 x 40 do
7 do do do
8 W 18 x 50 18 x 50 do
9 do do do
10 W21 x 55 21 x 55 W21l x 55
11 do do do
12 W 21 x 62 21 x 62 W21 x 62
13 do do do
14 W 21 x 68 21 x 68 W21 x 68
15 do do do
16 W 24 x 68 24 x 68 W 24 x 68
17 do do do
18 W24 x76 24 x 76 W24 x76
19 do do do
20 do do do
21 W 24 x 84 24 x 84 W 24 x 84
22 do do do
23 do do do
24 W 27 x 84 27 x 84 W 27 x 84

TABLE 6-2 Beam Sections; Frame 24-3
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Column
Story A c D
1 -3 W 12 x 40 W 12 x 40 W 12 x 58 W 12 x 58
3-5 W 12 x 58 W 12 x 58 W12 x 79 Wi1l2 x 79
517 Wl4 x 78 W 1l4 x 78 W 1l4 x 111 W 1l4 x 111
7-9 W 14 x 111 W 1l4 x 111 W 14 x 136 W 14 x 136
9 - 11 W 14 x 127 W 14 x 127 W 14 x 158 W 14 x 158
11 - 13 W 14 x 136 W 14 x 142 W14 x 193 W 14 x 158
13 - 15 W 14 x 142 W 14 x 167 W14 x 211 W 14 x 184
15 - 17 W 14 x 167 W 1l4 x 193 W 14 x 246 W 14 x. 202
17 - 19 W 14 x 211 W 14 x 237 W 14 x 314 W 14 x 246
19 - 21 W 14 x 246 W 14 x 264 W 14 x 342 W 14 x 287
21 - 23 W 14 x 287 W 14 x 314 W 14 x 370 W 14 x 314
23 - 25 W14 x 314 W 14 x 342 W 14 x 398 W 14 x 320
TABLE 6-3 Column Sections; Frame 24-3
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in the single story--single bay frame, as the critical sections
develop plasticity within a short time of one another.

It is important to note that the results of the first and
second order elastic-plastic analyges for Frames 8-1 and 6-2,
obtained using the iterative procedure described in Chapter 4, are
identical to those obtained by Korn and Galambos (1968). The
results obtained by Parikh (1966) for Frame 24-3 are very similar
to curve (2) of Fig. 6-21 (up to the peak load). It is noted that
Parikh took into consideration resi&ual stresses in the columns.

In Figs. 6-19 through 6-21, a comparison between the
inelastic response (curve 1) and the elastic-plastic response
(curve 5) shows a slight difference only near the ultimate load.
This difference, ranging between 2 to 4%, may be attributed to the
gradual penetration of yielding. If the strain hardening effect
is included in the inelastic analysis, there is no apparent
difference between ultimate loads. Thus, when the overall behavior
of the frame is considered, local losses in frame stiffness due to
inelastic action are often compensated for by the behavior of other

members and by the effects of strain hardening.




CHAPTER VII

SUMMARY AND CONCLUSIONS

An investigation of inelastic behavior of multistory steel
frames has been presented. The iﬁvestigation includes a review of
stability theory, with a discussion of the different approaches to
formulating stability and strength analyses. An elastic buckling
formulation with a solution technique to determine the elastic
critical load of frames 1s also given.

A nonlinear method of frame analysis, based on a simplified
large deformation theory that is applicable to both inelastic and
elastic responses has been developed. A finite element model has
been used for this purpose, and a solution method to solve for the
response of frames using the finite element equations is discussed.
In the inelastic analysis the effect of axial loads on the stiffness
of the structure is considered. Gradual penetration of yielding
through the cross section, the spread of inelastic zones along the
member length, the presence of residual stresses, and strain
hardening of the material are also accounted for.

The investigation also includes the features of the elastic-~
plastic response of frames for first and second order analyses. The
incremental and the iterative solution techniques are discussed in
this context.

During the course of the investigation computer programs
have been developed for all types of analyses. A variety of problems

are solved to determine the accuracy and efficiency of the proposed
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techniques and to demonstrate their performance in comparison with
other methods. |
The behavior of a number of frames under the action of
combined vertical and lateral loads has been presented. Comparisons
are made between the inelastic and the elastic-plastic methods of
analysis. The effects of residual stresses and strain hardening are

also studied.

The following sections outline the major conclusioms.

7.1 Nonlinear Strain-Displacement Relationship

In an energy formulation, deformations affect the equilibrium
equations through the nonlinear terms in the strain-displacement
equations for virtual strains. Additional nonlinear terms must also
be included in the formulation if the large geometric effects on
stresses are to be congidered. Thus, in the formulation presented
in Sect. 3.5.1, the effect of the deformations on the equilibrium
equations arises from the nonlinear terms of the expression for 6ez
in the virtual work equation (Eq. 3.5.7). The nonlinear terms as

they affect stresses arise from the nonlinear strain-displacement

equations. Thus, a stability formulation arises from the first effect,

while the second effect simply gives a more accurate estimate of

stresses in the deformed configuration of the structure.

7.2 TInelastic Vs. Elastic-Plastic Analysis

The elastic-plastic method of analysis is found to over-

estimate the ultimate capacity of frames under the action of lateral
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loads, together with large axial loads and column slenderness ratios.
When the overall capacity is considered, the difference between the
inelastic method and the elastic-plastic solution is fairly small.
This difference arises primarily because of two factors.

Firstly, the assumed interaction curve in the elastic-plastic
analysis (Fig. 4~1) overestimates the capacity of the section. This
curve is applicable only for strength analysis, since it applies to
the case of L/r = 0. However, the actual ultimate strength inter-
action curves are functions of the slenderness ratio, L/r (Fig. 2-10).
The true interaction curve values are the ones calculated as stress
resultants in the inelastic method of analysis as presented in this
investigation.

Secondly, the P-A moments which are included in the elastic-
plastic analysis, through the geometric stiffness matrix, are under-
estimated. For a cantilever member with an axial compressive force,
P, and a sway displacement at the top, A, the P-A method considers
the maximum secondary moment at the bottom of the cantilever. This
implies a triangular distribution of secondary moments along the
member. The true distribution, however, is a parabola with zero
moment at the top and PA at the bottom. This difference becomes
more significant for members with large axial loads and slenderness

ratios.

7.3 Gradual Penetration of Yielding

As the results of the examples presented in Chapter 5 show,

the load-deformation curves obtained using the inelastic and the



elastic~plastic methods are almost identical for frames with low
L/r values and P/Py ratios. This indicates that gradual penetration
of yielding has a megligible effect on the behavior of the frames.

However, for the large frames presented in Sect. 6.3, there is a

difference between the two analyses as the ultimate load is approached.

This may be attributed to the gradual penetration of yield. The
effect 18 apparent in large frames because of the large number of
gsections that develop fully plastic behavior before the ultimate
frame load is reached. 1In single story frames, however, only a

few sections had to be plastified for the frames to form mechanisms.
Thus, partial plastification of sections does not show its effect

'immediately on the element tangent stiffness matrix.

7.4 Effects of Residual Stresses and Strain Hardening

The effect of residual stresses on the overall strength of a
frame 18 found to be very small. It decreases as the axial load
decreases, and as the slenderness ratio increases.

Strain hardening of the material is more significant for
large frames than for single story frames. Although it only affects
the slope of the descending portion of the load-deformation curve
for a single story frame, it causes an increase in the ultimaﬁe

strength of large frames by up to 10%.
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7.5 Incremental Vs. Iterative Method in the Elastic-Plastic Analysis

Although more expensive, the iterative technique is found
to give more accurate results than the incremental method. However,
good results can be obtained if an iterative procedure is used
until the first hinge is developed, followed by an incremental
approach until the collapse mechanism has been reached. This
procedure has been called the iterative-incremental technique, and
it gives approximately the same results as the iterative method,

but the cost of producing the solution is significantly less than

that of the latter.
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APPENDIX A
ELEMENT STIFFNESS MATRIX FOR

BEAM-COLUMNS

In this Appendix the '"small-displacement" element beam-column

stiffness matrix is derived.

A.1 Virtual Work Equations for Linear Stability Problems

To formulate the virtual work equations for a linear stability
formulation it is necessary to simplify the strain-displacement equations
presented in Sect. 3.2, Assuming that 6, of Fig. 3-1, remains "small"

such that
1-co86 g O (A.1.1)
Eqs. 3.2.3 become
u = u -y vé (A.1.2a)
v = v (A.1.2b)

In addition, the (u’)2 term in Eq. 3.2.4 is assumed "small" with respect

to the other two terms so that Eq. 3.2.4 becomes
e = u' += (v')? (A.1.3)
z 2
Substituting Eqs. A.1.2 into Eq. A.1.3 yields

1 2
- L " 2 '
€, uy =y vy +3 (vo) (A.1.4)
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Equation A.1.4 1is the strain-displacement equation from which classical
linear stability formulations arise.

The principle of virtual work may be written for the length
of beam illustrated in Fig, 3-1 as
f
W = J o 8e dV - <Q> {6q} = O (A.1.5)
v 2 2
From Eq. A.l.4
- { . " ' '
Gez 6uo y 6vo +v) Gvo (A.1.6)

Substituting Eq. A.1.6 into Eq. A.1.5; integrating over the area of

cross—-section A, and defining the stress resultants n and m as

f
n = J o, dA (A.1.7a)
A

and

m = [ g, ydA (A.1.7b)
A

yields
W = Iz(n Su;-mlévg +n vé Gv;) dz - <Q> {8q} = 0 (A.1.8)

For linear elastic response it is assumed that
o = E¢ (A.1.9)

Substituting Eq. A.1.4 into Eq. A.1.9, and the result into Eqs. A.l.7,

the stress resultants may be expressed in terms of displacements as
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n = EA u; (A.1.10a)

and

m = - EI vg (A.1.10b)

in which I is the moment of inertia of the cross-section, and the first
moment of area vanishes because the axis is the centroidal axis. A term

involving (vé)2 has been discarded from Eq. A.1.10a for simplicity of

calculation.

To form the classical equation of linear stability, Egs. A.1.10
are substituted into the first two terms of Eq. A.1l.8, resulting in the

equilibrium requirement that

J (EA u' Su' + EI v 6v") dz
M o o o ©
1
+ j nv'8v' dz - <Q> {6q} = 0 (A.1.11)
g o o

Equation A.1.11 is now used to determine finite element matrices.

A.2 The Finite Element Model

The displacements u, and v, may be approximated in terms of the
displacement coordinates <q>, of Fig. 3-2a, as

- q
u = <P> 1 (A.2.1)
o q,

and
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— —

v = <¢> q3? (A.Z.Z)

Standard linear shape functions (Fig. A-1) are used for <$>. and

standard cubic shape functions (Fig. A-2) are used for <¢>. In

terms of the nondimensional coordinate i, shown in Figs. A-1 and A-2,

~the shape functions are

P = <-3@-D,F@+D > (A.2.3a)

and

P> = < % (z+2) (g -1)2 , % (z +1) (¢ - 1),

7C-D@+D? ,E@-D @+ (A2.30)

o

The derivatives required for Eq. A.l.11 are now evaluated by

differentiation of Eqs. A.2.1 and A.2.2 to yield

- T
ul o= < (P > < 9y, 9y > (A.2.4a)
v = <¢' > < q q q q >T (A.2.4b)

) 22 73 750 6 e
T
Vo = < 9" ><aq, q3, 45, g4 > (A.2.4c)
in which
) 1

<(P)'> = 7<-1,1> (A.2.5a)

<4t > = p<302-3 Loy,

- % 32 - 3) -4’9 (3g% + 20 - 1) > (A.2.5b)

<P"> = <L, AL -1) , - 6L, A3 4 1) > (A.2.50)
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Substituting Eqs. A.2.4, and their derivatives, into Eq. A.1.11;
using Eqs. A.2.5; carrying out the integration; and recognizing the

arbitrary nature of <8q>; Egs. A.1.11 may be written as

[ks] {q} = {q} (A.2.6a)

in which the '"secant stiffness matrix", [ks], can be subdivided into

the "elastic stiffness matrix", [k], and the "geometric stiffness matrix",

[kg]. That is

[ks] = (k] + [kg] (A.2.6b)
~in which
EA/L ]
0 12 E1
3 (SYM.)
0 6 EI 4E1
22
(k] = .
~EA/A 0 0 525
0 -12 EI -6 EI 0 12 EI
23 L 23
0 6 EI 2 EI 0 -6 EI 4 EI
2 L 22 2
(A.2.6¢)

and

ey,

SN

f—




[0

o 3
. 222 (SYM.)

S L R £ 3
(k] = =
8 2o 0 0 0

-6 - 6

0 5 10 0 5

0o X =22 0 L 282

i 10 30 10 15_J (A.2.6)

The matrix [k] is the standard elastic stiffness matrix commonly used
for frame analysis (Ghali and Neville 1972). The matrix [kg] is called
the geometric stiffness matrix (Chajes 1974; Porter and Powell 1971)

and 18 a function of the element axial force.
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APPENDIX B

DETAILS OF NONLINEAR ELASTIC FORMULATION
This appendix presents the analytical development of the basic
nonlinear equations used in this study. Also, a finite element model

is developed and the finite element equilibrium equations are formulated.

B.1 Basic Equations

In Sect., 3.5.1 the incremental equilibrium equation for an

element (Eq. 3.5.14) was written symbolically as
[ky] {Aq} = {Aq} (B.1.1)

in which the influence coefficients (kT)ij of the tangent stiffness

matrix were evaluated by Eq. 3.5.16 which may be rewritten as

du’ v’ A
| in which elj’ e2j’ and €3 are defined as
Bal
‘13 T 3, (B.1.3a)
1
J aqj
332
24 7 3q, (B.1.3b)
23 | qu
and
333
¢ ~ 3, : (B.1.3c)
3
J qu
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The quantities ays 8y, and a, are given by Eqs. 3.5.10. To evaluate

the e,, terms Eqs. 3.5.10 are differentiated with respect to qj’ which

1)

results in

= (1 +u on_ =2~y o _ n =2 (B.1.4a)

13 Uy 'aqj “aqj o 3q, %,

JOAN 5(v )* ] v, . vi vy [“ v)? Iam*
- (v')z)2 1- (v') 9q, 1-(v))? 1

vl (v')2 \ avg (v")2
+ m 1-(v;)2 [1 *1c (v')’J qu *1T (v')2 [1

b(v! )" 5(v')2 ] v'

O
ta- (v yohz t1- (v )2 aqj (B.1.4b)

and

f (vg)” ] am [ “9 Y ams
= - 11+4+u + + vy |1+ 4]
\ qu 1 (vo)‘ qu

° vi- (v')2

rau v' (vH* y ']
) {2 + —2 2] 0
Laqj / 1‘(V:))§ l-(Vo) aqj

reremed




- Ll
B ———

t
il
1}

oy,

(B.l.4¢)

To evaluate the incremental force AQi’ of Eq. B.1.1, Eq. 3.5.17 is

used. That 1is

(o' v "

' o o o
AQi = Qi - L’tal aqi +a, aqi + a, 3q1 dz (B.1.5)

All equations derived above apply to elastic and inelastic

response.

]

B.2 Nonlinear Elastic Response

To specialize the problem to elastic response the material
is assumed to be linearly elastic and the stress-strain relationship

obeys Hooke's law (Eq. A.1.9).

To evaluate the stiffness coefficients (k) and the

T 1j
incremental forces AQi’ it is necessary to evaluate first the stress
resultants n, m and m* and also their derivatives 2 R o y and ——
. 8qj aqj aqj

that appear in Eqs. 3.5.10 and B.1l.4.

Substituting Eq. A.1.9 into the stress resultants defined in

Eqs. 3.5.9 ylelds

n = I E* € < dA (B.2.1a)
A z
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m = J E o e,y dA (B.2.1b)
A ' :
and
f
mk = J Ece, * y? dA (B.2.1c)
A
Let the cross section properties for a symmetric section be
defined as
f
dA = A (B.2.2a)
‘A
f _
y+dA = 0 (B.2.2b)
‘A
[, '
y“dA = 1 (B.2.2c)
‘A
[
y*da = 0 (B.2,2d)
uA .
[ y' dA = I, (B.2.2e)
A

Substituting Eq. 3.5.5 into Eqs. B.2.1 and integrating, using

the definitions given by Eqs. B.2.2 leads to

1y 2 1y 2
(uo) (vo) ] .

(vl)2 (vn)z
n-EA{u;,+2+2 2 °]

1 "
'2" El [(Vo)z + —m;-:)T[—"

(B.2.3a)




m = - EI [u' v'+ vy
Lo o

and

(u(',)2

0o

(v;)z v" \

X w '
m El [uo + 2

+

I i —— J (B.2.3b)
v1- (vc'))E
(V")2 (vl)2 (vn)Z
o 1 "y 2 (2] 0
2 ] +2 B ((vo) te (v,
(B.2.3c)

Differentiating Eqs. B.2.3 with respect to the generalized

displacement qj yields

ou'

av'
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on [: o o
3~ = EA |(1+4+4u') m—+v' —
aqj o aqj 0 qu
v' (v")2 (v.)z Bv’ ( (vl)Z v
o o o o " o o
o [r‘t‘rf [+ 1ty w2+ v Lt
. o o ] ) ]
(B.2.4a)
r- 3u’ " v' v" (VV)Z v!
q 9y 9 1= (v "o %
(v')? ov"
0 0
L= (v)) 3
and
ou' ov'
m* [ "y O 4 o1 O
aq, " B[ ) b, " Yo B,
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+ EIA

1

Yo R, T N, Y )
1_(v:))2 [1+1-(V('))2] 3qj + Vo (1+1‘(Vé)2} aqj

(B.2.4c)

Equations B.2.3 and B.2.4 are expressions for the stress
resultants and their derivatives, respectively, derived for an elastic
element subjected to axial force and bending moments.

For an elastic element subjected only to axial force (truss
element) the bending effect is eliminated and the displacements at

any point along the element, Eqs. 3.2.3, become

u o=y (B.2.5a)
and

Vo= v, (B.2.5b)
Consequently

u' = “é (B.2.6a)
and

v' = v; (B.2.6b)

Substituting Eqs. B.2.6 into the strain expression given by Eq. 3.2.4

yields
z o

e = u +-§- l:(u:))l + (v('))z] (B.2.7)

Substituting Eq. B.2.7 into Eqs. B.2.1 and integrating using Eqs. B.2.2

yields the stress resultants
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(u)? (vl)?
- . ,
n EA Exo + > + 2 :[ (B.2.8a)
m = 0 (B.2.8b)
and
whH?  (v)?
- 1
m* EI Exo + 3 + 5 :I (B.2.8¢c)
Differentiating Eqs. B.2.8 with respect to qj yields
an aué avé
——— ' . v __ O
aqj EA {(1 + uo) aqj + v aqj] (B.2.9§)
L. SN (B.2.9b)
aq
h|
and
om* Bué avé
—— - ' ——— v __Y 3
aqj EI [(1 + ul 3qj + v.9 aqj] (B.2.9¢)

B.3 Evaluation of Unbalanced Forces Vector {AR} For Finite Element Model

The incremental force AQi as given by Eq. B.1l.5 can be evalu-
ated knowing the quantities u(',, v(; and vg, their derivatives with
respect to 9> and the stress resultants n, m and m*.

The quantities u('), v‘; and vg can be evaluated, from Egs.

3.5.18 as

ul = <¢'> {v} (B.3.1a)



v o= <¢'> {V}

and

<" > {V}

Differentiating Eqs. B.3.1 with respect to q, yields

Bu;
—2 = ¢
dqy q
avé
—2 - ¢
3q, 9y
and

av"

0
=0 . ¢n
dq, ay

(B.3.1b)

(B.3.1c)

(B.3.2a)

(B.3.2b)

(B.3.2c)

in which ¢A or ¢ai is the term of the differentiated shape functions

i
associated with the generalized displacement q, in {U} or {V}

defined in Fig. 3-7.

B.3.1 Vector of Incremental Forces {AQ} of Flexural Element

Substituting Eqs. B.3.2 into Eq. B.1l.5 yields

. AQi - Qi - [ al . ¢("Ii e dz
L

for 1+ =1 to 4; and

AQ1 = Q1 - I [a2 ¢éi + a, ;1 ] « dz
L

as

(B.3.3a)

(B.3.3b)
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for 1 = 5 to 8; and the quantities a, a, and a, are defined in
Egs. 3.5.10b, 3.5.10c, and 3.5.10d, respectively.

Arranging Eqs. B.3.3 in matrix form leads to

\ r a, {¢'}
{AQ} = {Q} - 82 w'} + 33 {¢"} dz (B.3.4)
L
which can be written, symbolically, as
{aQ} = {Q} - Q% (B.3.5)

in which {AQ} 1s the vector of incremental forces (8 x 1) associated
with the vector of nodal displacements defined by Eq. 3.5.19b, {Q}
1s the vector of applied loads and {QY} is called the vector of
resisting forces and is defined as

R a {¢'}
{7} = J a, {¢'} + a, {9"} dz
L

(B.3.6)

To evaluate the vector {QR} Gaussian integration method 1is
used. The basic assumption in Gaussian numerical integration is that

(Bathe and Wilson 1976)

b
[ {F(r)} dr = @ {F(rl)}+a2 {F(rz)}+ ceet o {F(rn)}
a (B.3.7)

in which {F(r)} is the matrix to be integrated, Aps Qo oee and a are
weighting factors, Ty Loy oo and r are sampling points and {F(ri)}

is the matrix {F(r)} evaluated at the ith sampling point.
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According to Eq. B.3.7, Eq. B.3.6 can be written as

a {¢'}

n
R
{Q } = iZl ai 32 {¢|} + 33 {¢VP} (B-3-8)

i

in which n is the number of sampling points (Gauss points) assumed
along the element and o, is the weight associated with the ith Gauss
point. Many references have tabulated a variety of sampling points
and the corresponding weights (Loxan et al. 1942; Bathe and Wilson
1976) .

In this study four sampling points are assumed along the
element. For each Gauss point assumed the matrices {¢'} and {¢"}
are evaluated. Also, the quantities ué, vé, and v; are calculated
using Eqs. B.3.1. At this point the stress resultants can be evalu-
ated from Eqs. B.2.3. Consequently the quantities a5, a7, and-a3 can
be calculated from Eqs. 3.5.10b, 3.5.10c, and 3.5.10d. Substituting -
the results into Eq. B.3.8 and using the appropriate weight ylelds
the contribution of one Gauss point to the vector {QR}. Summing over
all the Gauss points gives the vector of resisting force {QR} which
can be subtracted from the vector of applied loads {Q} to obtain the

vector of incremental forces {AQ} as defined in Eq. B.3.5.

B.3.2 Vector of Incremental Forces {AQ} of Truss Element

For an element subjected only to axial force the linear inter-

polation functions of Eqs. A.2.3a are used. Thus Eqs. B.3.2 become

du'
0

53; = (¢qi? (B.3.9a)
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av; _
‘aT- = (¢q )! (B.3.9b)
i i
and
aV"
o -
3q1 0 (B.3.9¢c)

Substituting Eqs. B.3.9 into Eq. B.1.5, and using Eqs. 3.5.10b,

3.5.10c, and 3.5.10d, yields

AQi = Qi - [ n(l + u;) ($q )' dz (B.3.10a)
i
'3
for 1 = 1,2; and
A = Q- [zn ve ($qi)' dz (B.3.10b)

for 1 = 3,4,

Writing Eqs. B.3.10 in matrix form leads to

¢ @ +ul) (B}
{AQ} = {q} - , a vy ] dz (B.3.11)

which can be written symbolically as

{8} = {Q - Q™ (8.3.12)

in which {AQ} is the vector of incremental forces associated with the
vector of nodal displacements defined by Eq. 3.5.19c and it is a 4 x 1

vector.
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'Again the vector {QR} can be evaluated by numerical integration

using Gauss method explained above.

B.3.3 Assembly of Unbalanced Forces

To solve for the incremental displaceﬁents {Ar} in Eq. 3.5.24
the vector of unbalanced forces {AR} must be evaluated. The incremental
forces {AQ)} are first obtained in local coordinate pystem by Eq. B.3.5.
These forces can be assembled into the global coordinate system using
Eq. 3.3.8 and the appropriate transformation. Assembling Eq. B.3.5

or Eq. B.3.12 into the global coordinate system yields

{ar} = {R} - {RR} (B.3.13)

in which {AR)} is the vector of unbalanced forces, {R} is the assembled

vector of applied loads and {RR} {s the assembled vector of resisting

forces.

B.4 Evaluation of Stiffness Matrix [Kp]

To solve for the incremental displacements {Ar}, in Eq. 3.5.24,
the structure tangent stiffness matrix [KT] must be evaluated. In
this section two different element étiffness matrices are developed,
one for a flexural element and the other for a truss element. The

element stiffness matrices are then assembled to form the structure

stiffness matrix [KT].

B.4.1 Element Stiffness Matrix for a Flexural Element

The influence coefficient (kT)1j must be evaluated to form
the element stiffness matrix [kT]. Substituting Eqs. B.3.2 into

Eq. B.1.2 yields:
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(a) for1 < i < 4

(kT)ij - J olj . ¢:11 * dz (B.4.1a)
)
and

(b) for5 < 4 < 8

—

(kT)ij = L'[ez:j . ¢'q1 + e3j . ¢"q1] dz (B.4.1b)

in which elj’ e2j’ and e3j are defined in Eqs. B.l1.4. Thus, the jth

column in the element stiffness matrix [k’l‘] can be written as

{¢'} - e

“(T}j - Jz {¢'}e2j n {'¢"}e3 dz (8.4.2)

3

The full matrix [kT] can be written as

{¢"} <e,> ]
[kT] = {¢'} <e2>+ {¢"} <e3>_J dz (B.4.3)
2

or it can be written, symbolically, as

(k1 7]
[kT] = Lw (B.4.4)

in which [k,r] is an 8 x 8 matrix, while [k1], [k2] and [k3] are 4 x 8

matrices defined as



: S ' r ' on - " om
[k, ] fz {¢'} Lfl +u!) < 5 vo.< 5 >
+n<¢i>-—m<¢'2'>:}-dz (B.4.5a)

t v"

gl = [ tonf vy <32 oo [oa=S < 2
2 4 9q -2 1-(v)3  39q

v' (V")2 (V )2 ] ‘
o] ) om¥ '
MEERE ll 1- (v)2J< g tn<e”

v L,
- ——————————— +______'___< "
" 1-(v')2[ 1""0’2] i
(o]

. oo o ? ( 32y
-t M 1= <VZ,>2] 2*+7s (v 7} < ¢
2 v' " (V )2
0O O o "
+ ot { (v))2 [ L+1= (Vé)z] <4
(vn)z ( (V )2 \ [ 4(V )2 N ]
+1oan? (Mo ene [T -(v'>2] KON
(B.4.5b)
and
r (vv)z om
gl = | 14)- [Lrugs—=r] < 22>
) ° J1-())? q
(vH? [
" o om* '
+vo (1+1-(v('))2J 3q>-ml<¢1>
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: (vH? 1
MATICAY ( oG <% j |

2 v; v: ‘ (v )2
+ m* - [1+1 whE) <%

(V )z ‘ " —l
+[1 T (v')2 ¢ > (B.4.5¢)

———

In Eqs. B.4.5, <¢i>, <¢é> and <¢;> are 1 x 8 row vectors

defined as
<¢i>=<<¢'>§<o>> (B.4.6a)
<¢5>-<<o>§<¢'> | (B.4.6b)
and
v <<o>§<¢">> (B.4.6c)
; and the vectors <%%>, <%%> and <%E;> are also 1 x 8 row vectors which

are called the incremental stress resultant vectors.

In order to be able to use the Gaussian integration method
to evaluate [kll, [kzl, and [k3] the incremental stress resultant vectors
must fe evaluated at each Gauss point. This can be done as follows:

Substituting Eqs. B.3.2 into Eqs. B.2.4 yields

(a) forl < j < 4

on 1yt
3qj EA (1 + uo) ¢qj | (B.4.7a)
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—a%;l_ - -EV 0 | " (B.4.7b)
h| h|
*

—g:—‘j— = EI (1 +u)) ¢('lj (B.4.7¢)

and,
(b) for5 < §J < 8

v' (vn)Z ("11)2
O foe e

3. = EA vV, 0! + El |=— -——-—,——]qs'
3, a [1-(v0)2 1-(v)2) "ay

(vh)?
.y [1 PR I VY ‘l (B.4.74)
o 1- (V0)2J qj_-_l

(IR ) _l

+ + + " L.

L ul — J ¢q1—! (B.4.7¢e)
o :

(] (vn)z (V )2
om* o o 0
oW . EIv' ' 4+ EI [_ .[1+-—-—-—-;——-]¢'
aqj o 1. 4 Ll-(vo'S‘ 1-(\10)2 1
( (v a ]
+ v {1+ " (B.4.7€)
0 (v )z jJ

Equations B.4.7 can be written in a column vector form as

listed in Table B-1.
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( \
S EA (1 +u!) {¢')
{"a"(']‘} '< v; (vg)2 (v;)r \ r
1 ?
[EAv°+EIT-_-7;g)-2- [1 +T—:Tw7:,_)TJ] {¢"}
(v)?
" o "
+ El vo [l + mj {¢ }
X o )
( \
5m - EI v} {9'}
{'9" - 4 T o i 0 : f
q v'v (v')2 1
- g1 —2_© (z+ oz 1)
Y, l-(v('))? - (vo)
(v')?
- EI (1 +u' + —-——-‘2—-—] {¢"}
° VI
\ ; )

TABLE B~1 Incremental Stress Resultant Vectors

‘For Flexural Element



(om¥y

aq

Note:

fg%} is 8 x 1 column matrix

{¢'} and {¢"} are 4 x 1 column matrices

TABLE B~1 (Cont.) Incremental Stress Resultant

Vectors for Flexural Element

( 3

é EL (1 +u)) {¢'}
v (V') CANEY
' o o o '
[EI vi+ El, TNz CHE [1 Y TN ? (v;)2]J {¢}
" f (v‘;)z '
+ EI[‘ Vo ll + T-—:-(_VTT{J {¢ }
\ o J
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Now to evaluate [kT], the quantities u(’), vé and v; are calcu-
lated from Eqs. B.3.1 at each Gauss point. Thus the stress resultants
can be evaluated from Fqs. B,2.3 and alao the incremental stress
resultant vectors can be evaluated as listed in Table B-1. At this

stage the Gaussian integration method explained above is used to eva-

- luate Eqs. B.4.5 leading to the element stiffness matrix given by

Fq. BA.4.

B.4.2 Element Stiffness Matrix for a Truss Element

For a truss element the influence coefficients (kT)ij are

obtained by substituting Eqs. B.3.9 into Eqs. B.1.2 to yield

(a) for1<if_2

- » LI .
(k’l‘)ij L elj (5q1) dz (B.4.8a)
and
(b) for 3 < 1 < 4
(k.r)i.1 = f €3 (¢ ) dz (B.4.8b)
The jth column in the element stiffness matrix can then be written
as

{($)'} e
g@), s dz (B.4.9)

and the full matrix [kT] can be written asg
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" {(@®'} <ep>
» e | d2 ' (B.4.10)
“r L (@) <e,>
or it can be written, symbolically, as
(k,]
(k] = r-——l—-] (B.4.11)
| k]

in which [kT] is a 4 x 4 matrix and [k1] and [kZ] are 2 x 4 matrices
defined by Eqs. B.4.5a and B.4.5b. In such a case {(§)'} replaces {¢'}
and it is a 2 x 1 vector. Also <($1)'>,, <($2)'>, and <($2)"> replace
<¢1>» <¢5>, and <¢)>, respectively. In this case <($1)'>, <(52)'>, and

<'($2)"> are 1 x 4 matrices given as

< ($1)' > = é ' > E < o> (B.4.12a)
< (52)' > = <o > < (3)'> (B.4.12h)

< ($2)" > = << 0>+«<0 >> (B.4.12¢)

in which <¢> 1s the shape functions for a truss element given by

and

Eq. A.2.3a; and the incremental stress resultant vectors are 1 x 4
row vectors,
To evaluate the incremental stress resultant vectors

Eqs. B.3.9 are substituted into Eqs. B.2.9 to obtain
(8) forl1 < J < 2

dn g (1 +u!) (&q )' (B.4.13a)
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. " 0 (B.4.13b)
h|

om* v Y ]

gq—j— = EI (1 + uo) (¢q1) (B.4.13¢)

and

(b) for3 < j§ < 4

jﬁL - ' (& ' . 4.1
aqj EA v! (¢q3) , (B. - 3d)
dm .

'é—q;' = 0 - (B.4.13e)
om* " (4 '

343 EI v, (¢qj) (B.4.13f)

Equations B.4.13 can be written in a column vector as given
in Table B~2.

Substituting the 1ncrementai stress resultant vectors as
given in Table B-~2 and the stress resultants as given in Eqs. B.2.8
into Eqs. B.4.5a and B.4.5b, the matrices [kll and [k2], in Eq. B.4.11,

can be redefined as

T ' on -\
[kll = L {(®'} [(1 + uo) < 3 >+ n < (¢1) >:| dz (B.4.l4a)

and

[k,] = {($)"} E‘; <§;—‘ >+n < ($2)' >:" dz (B.4.14b)
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EA (1 +u!) ((§)')
% " A v, (9]

@ - {0}

mr, _ |EL @ *uw) (®
EL v (9]

Note

{g%} is 4 x 1 column matrix

{(§)'} 18 2 x 1 column matrix

TABLE B-2 Incremental Stress Resultant

Vectors for Truss Element
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lntegtation leads to the element stiffness matrix [kT] in

Eq. B.4.11.

B.4.7 Assembly of Structural Stiffness (K]

The assembly of element stiffness matrix into the structure

stiffness matrix is explained in detail in Sect. 3.3.2.
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APPENDIX C

LARGE DISPLACEMENT TRANSFORMATION

Consider the element shown in Fig. C-1. The relation between
the reference axis in local and global coordinate systems can be
written as

Z = zcoso-ysinao (C.1a)

and

Y = zsina -~y cosa (C.1b)

Also the relation between the local displacement ¢ and Vv and

the global displacements 6 and 6, at any point, can be expressed as

U cos a+ V sin o (C.2a)

(=13
L

and

Vo= U sin a - V cos a (C.2b)

in which U and Vv are functions of z and y. Differentiating Egqs. C.2

with respect to z yields

~

o YA v 3z 3V 3Y v Y
3z szgz—cosa_+a—z-azsina+-5-Y—-a-z-cosa+Wazsina
(C.3a)

and
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11

FIGURE C-1 Element Transformation




~

v all a7 v 7 U 9y VY
'5; = 57? 32 bnu-ﬁ~$ (,osa+§—y~-é-; Sina-w'sz— cos o
(C.3b)
Differentiating Eqs. C.1 results 1in
%% = cosQ (C.4)
-g-} = gina (c.5)

Also there 18 no change in angle between the axes after deformation.

This constraint has been approximated by imposing the condition that

5
%’ - ‘E;TI (C.6)

Substituting Eqs. C.4, C.5, and C.6 into Eqs. C.3 results in

3 | = 8 _ 23U o,V .,

e 'y-o nZ 3z cos‘a + N sin‘o (C.7a)
and

ov ov oU oV oV

Yy g0 Y 7 cosa sina =5y cos o sina - 7 (C.7b)
Introducing the notation

v
6 = A (C.8)
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then the transformation from local to global coordinate system may be

written in a matrix form as

- - ( \

ru c 8 v U

u' c?  s* v :
5 = J e (C.9)

v s -c 3u r

A -1 c¢cs -cs oz
- 5 B av

BYJ
.

in which ¢ and s denote coso and sinco, respectively. The trans-

formation matrix for the element is tabulated in Table 3-5.
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APPENDIX D

CALCULATION OF SECTION PROPERTIES

AND STRESS RESULTANTS FOR

I-SECTION
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APPENDIX D
CALCULATION OF SECTION PROPERTIES AND

STRESS RESULTANTS FOR I-SECTION

To evaluate the tangent stiffness matrix for an elastic
element, 1t 1s necessary to know the cross section properties. In
the case of inelastic analysis, it is important to evéluate the trans-
formed section in order to evaluate the tangent stiffness matrix.
Once the transformed section has been determined, the evaluation
of the cross section properties is identical to that of any arbitrary
elastic section,

In this Appendix the method of determining the transformed
section 18 discussed. The equations for numerically evaluating
gection properties are presented and the equations used to evaluate

the stress resultants for an inelastic section are given.

D.1 Determination of Transformed Section

For any set of nodal displacements the strain at any point on
the element, due to axial and bending displacements, may be cvaluatced

as (Eq. 3.5.5)

u(;Z v(|)2 { v(|)2 )
£ = u' +——+—-=-yv' {l+u +—-
z 2 2 o JIIN?
[4]
y2 an vv2
+———-2-—9—- l+l_—ov,"2-] (D.1.1)
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Adding the residual strain at this particular point results in the

total strain given as

€ = ¢ +¢
2

2t (D.1.2)

R
in which ezt is the total strain at any point in the z direction, ez
Is the strain given by Eq. D.1.1, and ER is the residual strain.

If the residual strain distribution varies in some arbitrary
manner, as shown in Fig. D-la, it can be approximated by linear
gegments, shown in Fig. D-1b.

For equilibrium

f
J op *dA = 0 (D.1.3a)
A

and
{ OR s ye*dA = 0 (D.1.3b)
A

Consider a plate segment of the cross section with a linear
variation of residual strains. By superposition, the total strain
distribution will also be linear in the segment.

The stress-strain curve used in the analysis is the tri-
linear curve shown in Fig. D~-2. To approximate the curve for mild
steel curve 2, the dashed curve, is used. It is apparent from Fig. D-2
that the strain hardening of the material can approximately be accounted

for in the analysis.



(a) Actual Residual Strain

'\/
(b) Assumed Residual Strain

FIGURE D-1 Residual Strain Distribution
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FIGURE D-2 Trilinear Stress-Strain Diagram
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Consider a plate segment under a linear variation of strain
as shown in Fig. D-3. When the strain at the two ends A and B are of

the same sign, €, and € may be in any of the three strain ranges

A B
given below:
>
€5 est eA > €t (D.1.4a)
< < <
& 2 €p S €t €y X Ea < € (D.1.4b)
< < < < 1.4e
0 < eg 2 ey 0 < CA ey (h.1.4c)

in which Ey and €gp are the yield strain and strain hardening strain

t
respectively, defined in Fig. D-2.

Thus, there are nine combinations of strain distribution when
€4 and CB areiof the same sign. Also, there will be nine other combin-
ations when they are of the opposite sign. In each segment of the
cross gsection the tangent moduli Et are determined from the strain
distribution assuming no strain reversal. This divides the plate
segment into at most five regions as shown in Fig. D=3, in which
moduli are different (Rajasekaran 1971).

If each element of area is transformed such that the product

of the current tangent modulus, E_, times the original element of

t

area, A, is equal to the original modulus, E, times the element of

t
transformed area, A, then

E,+A = E- At (D.1.5)

»
gt

I —
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(a) Plate Segment

(b) Strain Distribution
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[ Segment Length
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(c) Transformed Segment

FIGURE D-3 Transformed Section of a Plate Segment Region



In order to calculate the tangent properties it is sufficiently accurate
to modify the thickness between the corresponding regions by the modular

ratio according to the form

t
br Et br/E (D.1.6)
in which bt is the transformed thickness of a particular region r, and
b is the original thickness of this region.

Now the section is transformed and the cross section properties

of the transformed area can be evaluated as indicated in the following

gsection.

D.2 Evaluation of erjl~Section Properties

Once the transformed thickness of each region is evaluated,
the area and moment of inertia of each region are calculated about
the centroidal axis of the transformed segment. Moments of inertia
of each plate segment are then transformed to the global axis orienta-
tion of the cross section. Summing the properties for all segments

gives the centroid and moment of inertia of the total cross section.

t
3

the inelastic analysis are defined, using Fig. D-4, as

The section properties, At,.Ii, I;, I, and IZ’ needed for

At = I dat (D.2.22)
At

rr

(D.2.2b)

-
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FIGURE D-5 Stresses in a Typical Plate Segment
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r . .
t
1, = J y?+da ~ . (D.2.20)
K
t f 3 .t
I, = J y3edA (D.2.2d)
K
and
t 4 t :
I4 - [ y ' *dA (n.2.2e)
At

These properties can be written in numerical form with respect to

the x and y axes, of Fig. D-4, as

n
t Al
AT = ) A (n.2.3a)
k=1
t %
I, = .Y (D.2.3b)
1 o1 A Yk
t § § 2
I, = (r.), + A Y (D.2.3c)
2 oy kT2 Tk Tk
SR P
I, = 3 (1.), Y, + Y (D.2.3d)
3 Ly B et b A
and
1, = (I, ), +6 (1.), Y2 + Y (D.2.%e)
4 k=1 4xx” k k=l XX k 'k =1 Ak k

in which (Ixx)k is the moment of inertia of segment k about the centroidal
axis x-x of this segment and (Iéxx)k is defined by Eq. B.2.2e for the kth

segment about x-x axis of the segment.

O S R |

i

]

S
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D.3 Evaluation of The Stress Resultants

From the stress-strain relationship shown in Fig. D-2, and
assuming the strain distribution is known, the stresses in each region
of the plate segment can be evaluated. The stress resultants may then
be calculated numerically in the x-y reference system from their
definitions. Referring to Fig. D-5, the numerical evaluation of the

stress resultants can be written in the following forms (Rajasekaran

1971).
( dA (D.3.1a)
n = o D.3.1a
J, %
or
BE
n = =% t (o, +0,) (D.3.1b)
ksl r=1 2 'r k ir jr
also
r
m = J o,y dA (D.3.2a)
A
or
n 5 zrtk
m = g + 2 + 0 + 2
kzl rzl 6 [1r (yjr y1r) jr (yir yjr)]
(D.3.2bh)
and

m* = J o, y? dA (D.3.3a)
A
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or

n 5 ﬂ,r tk l— ,
nk = o] 4 + 2yt - g2
kzl r-zrl 12 | Tir Gy Yir r)
o2 2 _ g2
+ ojr 4y jr + 2 yir Er):l (D.3.3b)

in which r is the plate re_gion, n is the number of plate segments, k is
"~ the plate segment index, t;k is the plate segment thickness, Jl,r is the

plate region length and 1 and j refer to the two ends of each region.
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INCREMENTAL STRESS RESULTANT VECTORS
FOR INELASTIC ELEMENT
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APPENDIX E
INCREMENTAL STRESS RESULTANT VECTORS

FOR INELASTIC ELEMENT

To evaluate the element tangent stiffness matrix, for an

inelastic element, it is necessary to evaluate the incremental stress
Sm

aqj ’
{incremental stress resultant vectors are derived. The transformed

*
resultants 2o , and-ég— , in Eqs. B.4.5. In this appendix the
993 9qj

gection properties needed to evaluate such matrices are determined in

Appendix D.

E.1 Incremental Stress Resultant Vectors

Consider variations in the stress resultants n, m, and m* at

any stage of loading. These variations can be written, from Eqs. 3.5.9,

as
én = [ Et 8¢ dA (E.1.1la)
' A
m = [ Et 8e y dA (E.1.1b)
A
and
Sm* = [ Et 8¢ y2 dA (F.1.1¢)
A

in which Et is the tangent modulus at this particular stage of loading.
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From the transformed area concept, discussed in Sect. D.1,

it can be written that

B, *dA = Eda® (E.1.2)

in which E 1s the original modulus and A and At are the original
clement of area and the element of transformed area, respectively. Thus

Eqs. E.1.1 can be written as

%‘. - E 33(]_5. dat (E.1.3a)
3 e Y
A
m J€ t
w— = E =y dA (E.1.3b)
]
A
and
%ﬁi - f E g%i y? dat (E.1.3¢c)
i e

Let the transformed section properties be defined by Eqs. D.2.2.
Differentiating Eq.3.5.5 with respect to qj and substituting into

Eqs. E,1.3 and integrating using Eqs. D.2.2 yields

on t t t

3qj EA _blj EI1 sz + EI2 b3J (Efl.Aa)
am t | t . - t [ ] t L ]

qu EI1 blj E12 sz + EI3 b3j (E.1.4b)



and
omk t, - g1t . t, .
aqj E12 blj EI3 sz + EI4 b3j (E.1.4¢)
in which
au(') 3v(')
b<1j (1 + uo) qu + ve 3qj (E.1.5a)
[ [ 1] 1y 2 ]
) - Buo . ve Ve {2 . (vo) ] 3v°
— (!
23 ) aqj /-1—_—?7;71 1 (Vo)2 qu
(v-)z "
+[1+u(’)+ 2 ] a° (E.1.5b)
ST Y
and
(] 1"y 2 1v2 ) '
) i v (vo) Ls (vo) Bvo
33 1 - (vols2 1- (v(',)2 qu
(v;,)2 vy
+ vo 1+ 1= (v('))z aqj (E.1.5c)

For each gauss point on the element the values u('), v"), and
vg are evaluated from Eqs. B.3.1. Then substituting Eqs. B.3.2 into

tqs. E.1.4 yields

(a) Forl < § < 4

an t ' t _n ' : ,
—'55; = [EA" (1 +u)) - ELy v] ¢qj (. 1.6a)
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ﬁ [ Elf 1+ u) - gyt vl
) 93 (E.1.6b)
and
om* e
a‘q\ d EIz (1 + u') - El-t V" '
J 0 3% 1 ¢qj -
(b) Foi-s < g < 8
3 ' o
——— - t t v , | 2
3q E4 v’ o Er ° "o / (vo)
y 1 /kvg“ 2 +%/
t Vv’ (v 2 (o2
+ Er o 'V vy
2 I- 1+ 0 ]
-G =&, ] "
-~ t (v')z
+[EI,1 [1 +u0' +\o.\]'f~21t v 1+ (vo')2 "
I~ oy 2 % %ﬂ %,
om I



and
« V 3! W ( (vv)‘l-
%“;, \Fftz 'o—m“3 ° \2-\-/\151'& \
3 1- Yo o
(vn) ( (v!)l ’\ -
- 1oy \»*1- AR X a3
) o
et et e
+—EI 1-\—u-\- y 81 W 1+ ‘2\6)
3 0 1’(‘1'072 L ©° 1 (vo) a3
(E.l.bf)
pauati® s B ¢ are the mctanet\tal geres eaultant quati® for @ .
(\emra \,emenc. and can bve wﬂtten b vec oY for® as qgable w-le
yor 8 cruee e} ent the centtoi of the ttanaiotmed red
of any cro8® 8 criot ine at the cem:toid of the elast.h, ectio® B
becaus che 'section is sub{\ected 0 axid gorce only T sulting, in unt '
gor™ atteés A&stﬁbution qnie 3% g O
£ =0 R
1 .
£ =0 RARAL
a A
| ALBO gor 8 grus® elemem: 8 1ined mtetpolation fu ctlo is used w\\lc\\
\\ 1ead® co (EQ* B.'B.lc)
n o= o « 0 (\’,.\.1(-‘)
0 ay

A



am t ] " []

—-—-aqj = [EI; (1+u) - EI; ve 1 44 (E.1.6b)
and

Imk e

-——azj = [EI, (1+u) - EI va 1 6 (E.1.6c)

n [ T { (vg)~ )
= = | EA -El;, —>—2— 2 4 — O __
%9y, o ATy U T
. v (vn)2 (V )2
+E12 i—_——-rr[l-l'-—(—v—r;—]] ¢"lj
+ [ EI (1 + () “o)”
- ' ————— "
1 Yo /T.—z:;;yz"] +EL v [“ -?V')Z
i (E.1.6d)
v' y" (v|)2
%-LEI;V;-EI; °_o [2+1‘(’.)2}
] VI-zvéjﬁ - W

e Vo (V2 g (v))? '
+ EI 3 1 (v')z {l + "'l'_ (v(l))Z] ¢qj

(v')*? ¢ ( (V )2 \_]

+ [: EL, [1+ ' —-——"————] " _._...._._
L 2 Uo"'/_l_:_z‘_’_é)_z +EI3 Vo ll 1 - (V )2 J ¢qj

(E.1.6e)
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and

) " 1y 4
LA r;,xt o oomt ooy, o ]
8% L 2 3 1= (v l 1-(vc',5Z
(o]

+

14—

v (v)E o (vc’,)2 ]—I
1- (vé)z

t o —j ¢éj

EI} —>——0r
41 (vo)

t {,. (vg)” t (vg)”
+ |- 1} [1 +ul+ ]+EI4 v [1+——————1_(v.)2] by
/1= R j

Equations E.l1.6 are the incremental stress resultant equations for a

flexural element, and can be written in a vector form as in Table E-1.
For a truss element the centroid of the transformed area

of any cross section remains at the centroid of the elastic section

because the section is subjected to axial force only reaulting’in uni-

form streés distribution. This leads to

I1 = 0 . (E.1.7a)
t
13 = 0 (E.1.7h)

Also for a truss element a linear interpolation function is used which

-4

leads to (Eq. B.3.1lc)

v; - ¢gj = 0 (E.li7v)

g

——



: on
- 5

(
J [EA® 1+ u(;) - EI; vg] {9}
t gt o Vo ( (vg)? ]
E'IA v, - 1 -(v) 2+~——-—-1_(v<,))2
[} "y 2 1y 2
e Yo (V) [ vy J—] {¢"}
EI , 1 t
tEL ThT BE 1-(vo)2_]
ry 2 ')2 \—I
Foe [ (vg) ] t [ (vg "
+ | EI 1+ —F——| -FI' |1 + + {¢"}
L2 Yo 1-(v('))2 1 uo m—)—J
\ J
(

t [] t ") ]
[EI1 1+ uo) - EI, v¥] {¢'}

"

t t Vo V% [ (vg)® ] ?
E1 ' - EI 2+
. V (vn)2 ( (V('))z -[ '
+ El, —————.7—1 C ll T (v('))’] {¢'}
(v')?
t . (o]
+ E!I:; v, [l +—~—-—-—1 = (v('))z

(v")?

t
- EI [l+u'+—'—"———— {9"}
.2 y1-(vD2Z ("')‘_l

)

TABLE E-1 Incremental Stress Resultant Vectors

for Flexural Element
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( \
I (EIS (1 +u!) - EI; Vil {9')
Tab TS
q ¢ . vé v; ( (Vé)2
EL; v! - EI, : l2+1-(V')2]
vy 1- (vo)‘ )
t vo (vn)2 ( (v )2 3 '
*+EI, 1- '("v')2 L+ o)) o)
2
+ [E1b v 1+ -—(—\—'-"-’3-—7]
4 o 1-(v')
- 1t [1 +u' b —- ] 16"
4 3 ° J1- (v')2 /
Note

{gg} is 8 x 1 column matrix

{¢'} and {¢"} are 4 x 1 col

TABLE E-1 (Cont.)

umn matrices

Incremental Stress Resultant

Vectors for Flexural Element
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From KEqs. E.1.7, Eqs. E.1.6 can be modified for a truss element as

E-2.

by Eqs. D.2.3.

(a) For 1 < j < 2

|

AL 1 py ' .
i (1% ) ()

t ' + [
al'j— EIZ 1+ Uo) (¢qJ)

t [ =T '
3q. = EI, v} (¢qj)

(E.1.8a)

(E.1.8b)

(E.1.8¢)

(E.1.8d)

(E.1.8e)

(E.1.8f)

The column vectors arising from Eqs. E.1.8 are given in Table

All section properties needed to form these matrices are given

Once the incremental stress resultant vectors are

formulated, for an inelastic element, they are used in Eq. B.4.4 or

Eq.

B.4.11 to evaluate the inelastic tangent stiffness matrix.
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t ' e}
20 BAS (L +u) { @)

% EA* v { (' )

L {0}

t !
o EIL L +u) L B )

% el v { ')

Note

fg%} 18 4 x 1 column matrix

{(P'} 18 2 x 1 column matrix

TABLE E~2 Incremental Stress Resultant

Vectors for Truss Element
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