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ABSTRACT: Using raw GC/MS data as the X-block for
chemometric modeling has the potential to provide better
classification models for complex samples when compared to
using the total ion current (TIC), extracted ion chromato-
grams/profiles (EIC/EIP), or integrated peak tables. However,
the abundance of raw GC/MS data necessitates some form of
data reduction/feature selection to remove the variables
containing primarily noise from the data set. Several
algorithms for feature selection exist; however, due to the
extreme number of variables (106−108 variables per chromato-
gram), the feature selection time can be prolonged and
computationally expensive. Herein, we present a new prefilter
for automated data reduction of GC/MS data prior to feature
selection. This tool, termed unique ion filter (UIF), is a
module that can be added after chromatographic alignment and prior to any subsequent feature selection algorithm. The UIF
objectively reduces the number of irrelevant or redundant variables in raw GC/MS data, while preserving potentially relevant
analytical information. In the m/z dimension, data are reduced from a full spectrum to a handful of unique ions for each
chromatographic peak. In the time dimension, data are reduced to only a handful of scans around each peak apex. UIF was
applied to a data set of GC/MS data for a variety of gasoline samples to be classified using partial least-squares discriminant
analysis (PLS-DA) according to octane rating. It was also applied to a series of chromatograms from casework fire debris analysis
to be classified on the basis of whether or not signatures of gasoline were detected. By reducing the overall population of
candidate variables subjected to subsequent variable selection, the UIF reduced the total feature selection time for which a perfect
classification of all validation data was achieved from 373 to 9 min (98% reduction in computing time). Additionally, the
significant reduction in included variables resulted in a concomitant reduction in noise, improving overall model quality. A
minimum of two um/z and scan window of three about the peak apex could provide enough information about each peak for the
successful PLS-DA modeling of the data as 100% model prediction accuracy was achieved. It is also shown that the application of
UIF does not alter the underlying chemical information in the data.

Gas chromatography/mass spectrometry (GC/MS) is a
versatile tool that has been applied in various fields of

chemical analysis including environmental, pharmaceutical,
petrochemical, and forensics, among others. This is due to
the remarkable separation power of the GC and the rich
multivariate data generated by the MS detector. Mass
spectrometers such as time-of-flight MS (TOF-MS) or even
modern high-speed quadrupole MS (qMS) systems are capable
of rapidly acquiring spectra and generating data containing
several thousands of spectra per sample. This renders data
interpretation daunting, especially when dealing with complex
samples. The underlying chemical information can be obscured
by the enormity of the data. Chemometric techniques involve
the use of statistical and computational methods to extract
useful information from complex chemical data and have
become very useful.1,2 Reviews by Levine and Workman have
highlighted the application of chemometrics in various fields of
analytical chemistry.3,4 Supervised pattern recognition techni-
ques, for example, partial least-squares discriminant analysis

(PLS-DA), and unsupervised exploratory techniques such as
principal component analysis (PCA) and cluster analysis have
been applied to the interpretation of various types of GC/MS
data. Chemometric techniques have been used in the
identification of jet fuels,5 classification and chemical finger-
printing of gasoline,6−11 tracking and weathering of oil
spills,12,13 classification of casework arson samples,14 classi-
fication of vinegars and wines,15−17 biomarker identifica-
tion,18,19 drug discovery and verification of herbal medi-
cines,20,21 and compound identification22,23 as well as
metabolomics and breath analysis.24−28

Raw GC/MS data presents as a two-dimensional matrix with
rows representing mass-to-charge ratio (m/z) and columns
representing time (scan #). High data rate mass analyzers are
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desirable since they allow for rapid separations and provide
sufficient data density along the time axis to ensure accurate
peak description, especially for very narrow peaks.29 However,
these detectors deliver a huge amount of data (>106 data points
per chromatogram) which complicates the data analysis. Prior
to chemometric analysis, the data are subjected to various
preprocessing techniques such as retention alignment, baseline
correction, smoothing (noise removal), scaling, and data
simplification or reduction.30,31

Data reduction is of particular importance for GC/MS data
due to the sheer number of variables. Common approaches to
data reduction for GC/MS include the use of integrated peak
areas based on total ion currents (TICs) or mass spectrally
deconvoluted data.6,13,25,32,33 This approach is very simple and
computationally inexpensive but may oversimplify the data,
losing the m/z dimension, which could otherwise provide
useful information. Selection of signals from one or a few m/z
channels, known as extracted ion chromatograms (EICs), is
also a common approach. EICs are useful for well-characterized
samples in well-understood systems, but there is a risk of
accidentally removing informative ions if the system is not well-
understood. Additionally, this approach includes many variables
containing only noise (baseline variables). Combined, this
makes the EIC approach somewhat subjective and of little use
when modeling a poorly understood data set (e.g., biomarker
discovery). The advantage of using the entire GC/MS
chromatogram has been demonstrated and applied to very
complex samples.5,10,11,14,34 In these works, the entire GC/MS
chromatogram is unfolded along one axis into a single vector,
which makes each m/z at each scan an independent variable.
This results in several thousands or millions of variables for
each sample and produces a huge data set, which is
computationally expensive to manipulate.
The use of such a high number of variables for building

chemometric models is prohibitive due to the sheer size of the
data; moreover, the majority of the variables will not provide
useful information for the chemometric model that is being
built and their inclusion will be detrimental to the model.35 To
overcome this challenge, relevant variables are obtained using
feature ranking and feature selection protocols.5,36−39 Synovec
et al. employed a threshold-based feature selection based on the
Fisher ratio from analysis of variance (ANOVA) and selected a
number of top-ranked variables.5 The use of selectivity ratio as
a feature ranking technique has also be reported.11,36 The
ranking metric provides a starting point for identifying the
variables with a high potential to provide useful information,
though a highly ranked variable may not necessarily be the
most useful variable in the chemometric model, and similarly, a
lower-ranked variable may prove crucial. Thus, a strategy to test
and identify a subset of the most informative variables becomes
necessary. While there are multiple feature selection algorithms
that could be used, we have previously demonstrated the use of
a cluster resolution (CR)-guided, hybrid backward elimination/
forward selection (BE/FS) algorithm for feature selec-
tion.10,11,14,34

Briefly, the algorithm creates an initial model using a fraction
of top-ranked variables (e.g., by Fisher scores or selectivity
ratio). The quality of the model is evaluated using CR. During
the BE step, the effect of discarding a single variable is
evaluated. If discarding the lowest-ranked variable improves the
model, the variable is discarded; otherwise, it is returned to the
model, and then the next-lowest-ranked variable is tested. In
the FS step, the variables that were not included in the initial

BE step are tested sequentially to see if their inclusion improves
the model based on the variables that survived the BE step. CR
is based on the calculation of the size of the confidence ellipse
or ellipsoid that can be described around each cluster of points
without overlap in either PCA or PLS-DA scores space.
In theory, an exhaustive test on all variables should be

performed; however, this is impractical and unnecessary in the
case of GC/MS data where high data rate detectors are used, as
the vast majority of the variables are uninformative. When
studying the results of earlier research, it was found that several
hundreds or even thousands of variables were selected for a
single chromatographic peak.10,34 This number of variables
selected for each peak points to the potential for excessive
redundancy in the selected features. In principle, redundancy in
the data is helpful as the presence of multiple variables
providing identical chemical information adds stability to a
model as they reinforce each other. However, there is likely a
point where the benefits of redundancy are outweighed by the
additional noise and computing requirements needed to handle
the extra data. This excessive redundancy in the data could lead
to over fitting the training set data and/or confusion of the
learning algorithm, in this case, the feature selection
process.39−42 Hence, a reduction in the number of candidate
variables and variable redundancy should lead to faster, more
effective and efficient variable selection and ultimately
contribute to the construction of a more parsimonious
chemometric model.
In this paper, we present a preprocessing technique termed

unique ion filter (UIF) for automated GC/MS data reduction
prior to chemometric analysis (Figure S1, Supporting
Information). Data reduction is achieved by reducing the
number of ions retained for each peak to a few of the most
abundant, unique ions (um/z) within a specified scan window
around each peak apex. Essentially, the UIF objectively filters
each raw GC/MS chromatogram independently to remove
variables that are likely unimportant or redundant in a
chromatographic sense. Using this approach, there is the
potential for a drastic reduction in the number of variables
passed to the feature selection step without losing the
multivariate nature of the data. There are two expected
outcomes of the variable reduction. Obviously, by reducing the
total number of variables under consideration, there should be a
significant reduction in computational time for feature
selection. The second outcome is more important, though
less obvious. The number of included variables in the final
model should be decreased, with a concomitant reduction in
included noise and artifacts, resulting in more parsimonious
models.

■ EXPERIMENTAL SECTION

A data set used for a previously published work10 was used in
this proof-of-principle work. Briefly, the data comprise a series
of GC/MS chromatograms from a set of gasoline samples to be
classified according to their octane ratings (87, 89, and 91
octane). For each class of gasoline, 24 chromatograms were
obtained.
The entire chromatogram for each sample was imported into

Matlab 2013a (The Mathworks, Natick, MA) as a 7500 × 271
(scan number × m/z) matrix. All data were handled with
Matlab algorithms written in-house. Chemometric models were
constructed using PLS Toolbox 7.3 (Eigenvector Research Inc.,
Wenatchee, WA). All chemometric analyses were performed on
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a MacBook Pro running on a core 2.9 GHz i7 Intel processor
and 16 GB RAM.

■ THEORY

Algorithm for UIF. UIF is an additional preprocessing
technique that is applied to individual sample chromatograms
after alignment and prior to feature selection (Figure S1,
Supporting Information). There are two main inputs, which are
the maximum number of unique ions (um/z) to be retained for
each peak and the number of scans surrounding the peak apex
to be included. In further discussion, the notation of UIF(p,w) is
used where p is the number of unique ions to retain for each
peak and w is the width of the window around the peak apex
(an odd number). For example, w = 5 would indicate that a
window of five scans (the peak apex plus two scans to either
side of the apex) would be retained. Accurate peak detection is
necessary for effective application of UIF, including retention
times and peak widths. In principle, any peak detection
algorithm that is capable of detecting peak apexes, starts, and
stops can be used.
Determination of Peak Parameters. The main parameters

critical to UIF are peak apex locations and the determination of
any peak overlap with neighboring peaks. Any robust peak
finding algorithm can be used for the determination of these
peak parameters. In this proof-of-concept work, a laboratory
written peak detection algorithm based on the aligned total ion
current (TIC) signal was used.
The TIC was generated by summing the chromatogram in

the scan dimension (eq 1), where X is the raw chromatogram, z
is the TIC vector, i is the scan number, j is the m/z, and J is the
total number of ions.
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Subsequently, peak apex and peak inflection points are
identified. Peak apexes are determined as the lowest valley
point with a negative value on sdz. Peak inflection points are
obtained from two positive maxima neighboring a negative
minimum of an apex location on the sdz vector. For this work,
peaks were assumed to be Gaussian, and the peak widths (4σ)
were estimated from the inflection points of each peak (±σ).
Three different types of peak groups can be identified from

peak start and peak stop locations (Figure S2, Supporting
Information). Group A are resolved peaks, where peak start and
peak stop locations do not overlap with any adjacent peaks.
Groups B1 and B2 are peaks with either front or tail overlap
only, and Group C are sandwiched peaks; i.e., both start and
stop locations overlap with neighboring peaks. The peak
resolution information in addition to the user specified number
of um/z and scans around peak apexes to be used are then

passed to the UIF algorithm (Figure S3, Supporting
Information).
It is important to note that with this particular peak detection

algorithm there must be sufficient chromatographic resolution
between a pair of peaks such that a valley appears between their
apexes in order for the peaks to be identified as two separate
peaks (Resolution ∼0.7 for peaks with equal heights). Severely
coeluting peaks (i.e., those with no valley between their apexes)
appear to this algorithm as a single peak and are treated
together. Thus, it is possible that a minor peak coeluting with a
major peak could be lost if throughout every chromatogram in
the series its intensity is not high enough to have one of its ions
selected as a um/z for the sum of the coeluting spectra.
However, this limitation is a reflection on the peak detection
algorithm used herein and not on the UIF itself. Improved peak
detection algorithms that can deconvolute severely coeluting
peaks could also be used in conjunction with the UIF and
would be expected to yield improved results in the cases of
severely coeluting compounds.

Identification of Unique Ions. The signals at all peak apexes
for a chromatogram are extracted into a matrix (Y) with
dimension number peaks (n) × m/z. The extracted signals in Y
are converted into a mass spectrum matrix, YMS, according to
eq 3 where YMS is the mass spectrum at the apexes, n is the
peak number, and j is m/z.
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The group (A, B, C; above) into which a peak falls controls
how um/z are identified for that peak. Unique ions are stored in
U (initially, a matrix of zeros having the same dimensions as
YMS). Thus, for n = 1, 2, 3, ... N, where N is the total number of
peaks in the chromatogram, if peak n belongs to Group A, then
all m/z in YMS (n, j = 1, 2, 3, ... J) are um/z to peak n and all
ions above a minimum threshold are retained in U by setting
their coordinates in U = 1.
If peak n is a member of B1 or B2, the relative abundance

vector v is generated according to eq 4 or 5, respectively, where
j = 1, 2, 3, ... J.
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Since v is a vector of the relative abundances of m/z, elements
of v greater than 1 have higher abundances in peak n relative to
(n − 1) in (4) or (n + 1) in (5). Truly unique ions in v will
have a value of ∞, while pseudounique ions will have a large
value. Elements of v above a certain uniqueness threshold are
deemed to be um/z of peak n, and their coordinates in U are set
to a value of 1.
Finally, if peak n is in Group C (i.e., a peak with a coelutant

on both sides), two abundance vectors v1 and v2 are calculated
using eqs 4 and 5, respectively, and ions in v1 and v2 that exceed
the uniqueness threshold are set to a value of 1. A third vector
v3 is then generated from the diagonal of the outer product of
v1

T and v2. This vector v3 is composed of zeros, with ones
located at positions indicating ions that are unique (or
pseudounique) to peak n in the cluster of three peaks. The
coordinates of these um/z are set to a value of 1 in U.
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The resulting matrix U is a sparse matrix of zeros and ones
with the ones indicating the positions of um/z for each peak. A
Hadamard product of U and YMS yields V (V = U○YMS), a
matrix of the raw abundance of each um/z. On the basis of the
user-input number of unique ions to be chosen, p, the m/z
positions of the p most abundant unique ion(s) for each peak
can be obtained.
Generation of New Chromatogram. In the final step of the

UIF, a mask of zeros, M, of same size as the original data is
generated and modified such that ones are placed at the
coordinates where the p most-abundant unique ions in each
detected peak for a width of w scans in the scan direction,
centered on the peak apex. A Hadamard product of M and the
original data matrix X results in the unique ion filtered data,
UIF(p,w) = M○X.
Chemometric Analysis. Chromatograms were imported

from .csv files and aligned using an algorithm written in-house10

which is based on a piecewise alignment algorithm.43 The total
of 72 samples were split into a training set (8 samples per
class), optimization set (8 samples per class), and validation set
(8 samples per class). In the benchmark work, all the
chromatograms were unfolded in the scan dimension yielding
a vector of 2 032 500 variables for each chromatogram. A data
set matrix, 72 samples × 2 032 500 variables resulted. Variable
positions where all samples had no signal intensity above a
minimum threshold (in this work, 150 counts) were removed
from consideration. Feature ranking was then performed with
the training set data using an ANOVA-based ranking technique
reported earlier.10,24 The training and optimization data sets
were used for the cluster resolution variable selection procedure
as done previously. Variables that passed the feature selection
process were used for chemometric analysis. Using the
combined training and optimization sets, the selected features
in each chromatogram were autoscaled and normalized to a
value of 1 and then used to construct PLS-DA models. Model
quality was assessed on the basis of the ability of the model to
correctly predict the validation set data. The UIF evaluation
pathway followed the same process, except that after alignment
the UIF was applied to all samples prior to unfolding and
subsequent feature ranking and selection steps.
Specificity, sensitivity, and accuracy of each optimized model

were calculated on the basis of validation data and used as an
objective parameter in comparing model quality for both
routes.44 Sensitivity measures the model’s ability to correctly
classify positive results, i.e., true positive rate (sensitivity = true
positives/number of positives). Specificity is the measure of the
model’s ability to correctly classify or predict negative results,
i.e., true negative rate (specificity = true negatives/number of
negatives). Accuracy is the measure of true results (accuracy =
(sensitivity + specificity)/2). These parameters present values
on a scale of 0 to 1, with 0 being the worst model and 1 being
the best model.

■ RESULTS AND DISCUSSION
The UIF offers a convenient approach for automated, objective
binning of GC/MS data that preserves the multivariate
information contained in the m/z dimension. Two principal
inputs, the number of um/z (p) and the scan window (w), are
required. Since the user does not decide which ions are unique
to each peak, the subjectivity and the risk of losing otherwise
relevant data are largely reduced. UIF reduces the number of
variables per peak by focusing on ions unique to each peak at
the peak apex.

For the data set used in this study, unfolding the 72
chromatograms without UIF application resulted in a matrix of
72 samples × 2 032 500 variables. After removing null variables,
i.e., columns having no signal above a minimal threshold (150
counts) for all chromatograms, the number of variables was
reduced to 1 668 403 (i.e., 72 samples × 1 668 403 variables).
When the UIF was applied and all the um/z across the entire
width of each peak were retained, the maximum number of
variables was reduced to 225 830 (i.e., 72 samples × 225 830
variables) representing an 86% reduction in the number of
variables from the original data set (after removal of null
variables). Selecting only a few um/z for only a few central
scans on each peak will further reduce the size of the matrix to
be considered by subsequent feature ranking and selection
routines.
For comparative purposes, we benchmark this work without

the UIF at the minimum number of top-ranked variables that
must be tested to achieve an excellent model prediction quality
(sensitivity, specificity, and accuracy of 1) for all classes using
ANOVA ranking and our hybrid BE/FS approach. We chose
this approach because it was readily available and has
demonstrated success in handling entire raw GC/MS
chromatograms.10,11,14,34 Fundamentally, the feature selection
method used on the GC/MS data is of little-to-no importance
to the efficacy or applicability of the UIF. Regardless of the
feature selection (and possible variable ranking) methods used,
the UIF will improve the situation as it will reduce the number
of candidate variables that must be considered, typically by 1−3
orders of magnitude (as will be shown below). In Figure 1, an

increase in the model sensitivity, specificity and overall accuracy
are observed, commensurate with an increase in the number of
top-ranked variables checked during the feature selection
process. A model that achieved a sensitivity, specificity, and
accuracy of 1.0 was achieved when 30 000 top-ranked variables
were tested. It must also be noted that increasing the maximum
number of features tested also increases the computation time
for the feature selection process. PLS-DA Y-predicted plots for
the three octane ratings using features selected by the
benchmark algorithm without the UIF are presented in Figure
2. Here, a total of 3001 of the 30 000 tested variables passed the

Figure 1. Feature selection time and model quality plot for benchmark
pathway.
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feature selection process. The predicted plots for gasoline with
87 (solid red circles), 89 (solid blue squares), and 91 (solid
green triangles) octane ratings show that all validation set
samples were predicted with a 100% prediction sensitivity,
specificity, and accuracy.
To compare the effect of UIF on the feature selection

process and ultimately the quality of the chemometric model to
that of the benchmark, multiple combinations of p (number of
um/z) and w (window about apex) were investigated. um/z
ranging from 1 to 10 and scan windows of 1 to 17 (odd
numbers only) were investigated. The number of variables to

be passed to the feature selection algorithm after the
application of the UIF ranged from 3717 for UIF(1,1) to 107
982 for UIF(10,17). Due to this reduction in the total number of
variables, the number of top-ranked variables submitted to the
variable selection process was limited to 500. These experi-
ments show that, at a scan number of 1 (i.e., only ions at the
peak apex are retained), an increase in the number um/z
considered does not improve the model (Figure 3). However,

increasing w to 3, even when considering a single um/z per
peak, significantly improves model quality. This is likely due to
lessening the effects of minor shifts in peak position and
allowing some additional reinforcing variables containing nearly
identical information to be considered. The increase in w may
also allow some information about the peak’s profile to be
retained. For this particular data set, a minimum of two um/z

Figure 2. Y-predicted plot for PLS-DA classification of gasoline
samples after feature selection but without application of UIF. Red
circles, blue squares, and green triangles indicate 87, 89, and 91 octane
ratings of gasoline, respectively. Hollow markers indicate training and
optimization while solid markers indicate validation set.

Figure 3. Sensitivity (a), specificity (b), and accuracy (c) of UIF
experiments. See Tables S3−S5 in the Supporting Information for
numerical results.
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and three scans is necessary to achieve 100% model prediction
sensitivity, specificity, and accuracy (Figure S4, Supporting
Information).
The PLS-DA Y-predicted plots for the three classes of

samples when UIF(2,5) was applied prior to feature selection are
shown in Figure 4. This result is comparable to the benchmark
when 30 000 top ranked variables were checked during feature

selection. However, the model presented in Figure 4 is likely a
more robust model since the validation data for 87 , 89, and 91
octane project further away from the class discrimination
boundary (red line in plots). Additionally, the Y-predicted
positive and negative values for the samples are much closer to
the ideal values of 1 and 0, respectively, and have clustered
closer together relative to the benchmark case. This indicates a
significant reduction in within-class variance, likely due to the
exclusion of redundant variables and excess noise.
The overall effect of applying UIF(2,5) to a sample region of a

chromatogram is shown in Figure 5. The overall reduction in

the number of candidate variables is obvious. It is worth noting
that the m/z dimension in Figure 5b,c is restricted to that
showing the majority of ions. Thus, in some cases where only
one um/z is apparent for a given peak in Figure 5, the other
um/z is at a m/z value >140.
Comparing the features selected with and without the

application of the UIF, it is apparent that the features
correspond largely to the same compounds (Figure S6,
Supporting Information). These features have been tentatively
identified as 4-methyl heptane, toluene, and an unknown
compound. This observation indicates that the use of the UIF
does not alter the underlying chemical information in the data.
To demonstrate the need for feature selection, PLS-DA

models were generated on the raw chromatograms with no
feature selection or filtering. The overall model quality was
poor (Figure S7, Supporting Information). UIF was also tested
on a more challenging data set. The optimum UIF setting for

Figure 4. Y-predicted plot for PLS-DA classification of gasoline
samples with the application of UIF(2,5) prior to feature selection. Red
circles, blue squares, and green triangles indicate 87, 89, and 91 octane
ratings of gasoline, respectively. Hollow markers indicate training and
optimization while solid markers indicate validation set.

Figure 5. Effect of UIF(2,5) on an example segment of a chromatogram.
(a) TIC trace, (b) unfiltered GC/MS data matrix, (c) data matrix after
being filtered by UIF(2,5). Blue dots indicate locations of signals greater
than 150 count threshold.
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this work (i.e., UIF(2,5)) was applied to a data set comprising
GC/MS chromatograms of casework fire debris samples from a
previous study.14 In this case, features were being selected to
permit the identification of gasoline in casework arson data
using PLS-DA. A model with similar performance to that found
previously was achieved, and the resultant Y-predicted plot is
presented in Figure S8, Supporting Information.
Table 1 presents a comparison of the optimum benchmark

and UIF conditions. Even though excellent model quality was
achieved without the UIF, this required the testing of 30 000
top-ranked variables and prolonged the feature selection
process to over 6 h. As expected, data unfolding time when
the UIF is applied is slightly longer than for the benchmark
algorithm due to the additional computations applied by the
UIF. However, the total number of candidate variables was
reduced by 2 orders of magnitude over the non-UIF case, and
excellent model quality was achieved after testing only 500
variables. This is attributed to the reduction in irrelevant and/or
redundant features in the data by the UIF, making it easier for
the learning algorithm to focus on the relevant data. Due to this
reduction in the variables tested, excellent model prediction
accuracies were achieved from the resulting variables when a
fewer number of top-ranked variables were tested. This reduced
the overall feature selection time to 9 min including application
of the UIF. Results in Table 1 also show that, without the use of
the UIF, testing only the 500 top-ranked variables led to poorer
overall model quality.

■ CONCLUSIONS

UIF is a novel feature reduction approach for preprocessing of
multivariate data. The filter does not require the a priori
knowledge of the samples being analyzed. Using two major
inputs of the number of um/z and the scan window, the
algorithm selects unique features that contain the relevant
chemical information for each peak, while reducing redundancy
in the number of variables considered per peak by at least an
order of magnitude. This leads to the reduction in the number
of candidate variables for subsequent feature selection and
chemometric analysis. Consequently, feature selection time is
greatly reduced as is the amount of noise for which the model
must account. The reduction in noise results in an overall
increase in model quality.
Application of the UIF does not alter the fundamental

chemical information in analytical data upon which models are
ultimately based. It was also realized that the use of a single m/z
or only the peak apex scan does not provide enough
information for the classification of the samples we studied.
This indicates the need for some redundancy in variables of a
data set.
With the increase in the use of high data rate mass analyzers,

UIF provides an avenue for researchers to reduce the initial
number of variables without losing the multivariate nature of

the data. It must however be emphasized that UIF also relies on
the user having a robust peak detection algorithm.
While UIF was applied to GC/MS data in this study, it can

be adapted to other chromatographic data with a multivariate
detector (LC/MS, GC/IR, CE/MS, etc.). Readers may contact
the corresponding author for more information about the UIF
algorithm or a copy of the algorithm.
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J. M. Anal. Chim. Acta 2008, 608, 38−47.
(16) Weldegergis, B. T.; Crouch, A. M. J. Agric. Food Chem. 2008, 56,
10225−10236.
(17) Ballabio, D.; Skov, T.; Leardi, R.; Bro, R. J. Chemom. 2008, 22,
457−463.

Table 1. Result of Feature Selection and Model Quality for Selected Conditions

data unfolding feature selection model quality

condition time/sample (s) total checked passed time/min accuracy

UIF(2,5) 0.56 (0.016)a 13 838 500 53 9 (1)a 1.00
NO UIF 0.027 (0.002)a 1 668 403 500 116 8.4 (0.9)a 0.83
NO UIF 0.029 (0.004)a 1 668 403 30 000 3001 370 (18)a 1.00

aMean and standard deviation at n = 5.

Analytical Chemistry Article

dx.doi.org/10.1021/ac501660a | Anal. Chem. 2014, 86, 7726−77337732

http://pubs.acs.org
mailto:james.harynuk@ualberta.ca
mailto:james.harynuk@ualberta.ca


(18) Li, X.; Xu, Z.; Lu, X.; Yang, X.; Yin, P.; Kong, H.; Yu, Y.; Xu, G.
Anal. Chim. Acta 2009, 633, 257−262.
(19) Beckstrom, A. C.; Humston, E. M.; Snyder, L. R.; Synovec, R.
E.; Juul, S. E. J. Chromatogr., A 2011, 1218, 1899−1906.
(20) Pietracci, E.; Bermejo, A. M.; Álvarez, I.; Cabarcos, P.; Balduini,
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Figure S1. Flow chart showing benchmark pathway (A) and UIF pathway (B) 
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Figure S2. Peak groups for unique ion identification (1 – A, 2 –B1, 3 – B2 and 4 – C) 
 

 

 
 

 
Figure S3. Flow chart for peak detection and UIF application 

S-3 
 



  
 

 
Figure S4. Y-predicted plot for PLS-DA classification of gasoline samples at the minimum UIF 
conditions that gave excellent model prediction accuracy: UIF (2, 3). Red circles, blue squares and 
green triangles indicate 87, 89 and 91 octane ratings gasoline, respectively. Hollow markers 
indicate training and optimization while solid markers indicate validation set.  
  
  

S-4 
 



 
 
 

 
Figure S5. Y-predicted plot for PLS-DA classification of gasoline samples with UIF providing 
the least number of variables passed when UIF was used: UIF (2, 11). Red circles, blue squares 
and green triangles indicate 87, 89 and 91 octane ratings gasoline, respectively. Hollow markers 
indicate training and optimization while solid markers indicate validation set.  
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Figure S6. Features selected by the feature selection algorithm without (A) and with (B) the 
application of UIF. Dark regions in (A) show non-zero variables, color map in (B) shows the 
number of times each feature was selected for the separate UIF conditions 
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Figure S7. Y-predicted plots for predicting gasoline class using PLS-DA directly on the raw 
GC-MS data. Top: expanded scale to show all points; Bottom: close-up of -0.5 – 1.5. Red circles, 
blue squares and green triangles indicate 87, 89 and 91 octane ratings gasoline, respectively. 
Hollow markers indicate training and optimization while solid markers indicate validation set.  
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Figure S8. Y-predicted plots for predicting the presence or absence of gasoline in casework fire 
debris sample from a previous study. Open symbols are training/optimization set; filled symbols 
are the validation set. Red circles indicate samples containing gasoline; blue squares indicate 
samples that do not contain gasoline. Experimental details for this data set can be found in 
Sinkov, N. A.; Sandercock, P. M. L.; Harynuk, J. J. Forensic Sci. Int. 2014, 235, 24–31.  
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Table S1. Number of top-ranked variables checked, the number passed and the PLS-DA model 
quality for the benchmark pathway 

Feature Selection Variables PLS-DA Model Prediction 
Checked Passed Sensitivity Specificity Accuracy LV 

500 116 0.88 0.92 0.83 6 
3000 342 0.88 0.83 0.85 3 
5000 565 0.96 0.92 0.94 3 
10000 929 1.00 0.94 0.97 3 
15000 1425 1.00 0.98 0.99 3 
20000 1094 1.00 0.96 0.98 4 
30000 3001 1.00 1.00 1.00 5 
40000 4101 1.00 1.00 1.00 5 

 
  
Table S2. Number of variables selected in final model after UIF and feature selection for 
different combinations of p and w in UIF tested 

 
 
 

Table S3. PLS-DA model sensitivity for various UIF filter combinations 
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Table S4. PLS-DA model specificity for various UIF filter combinations 

 
 
 

Table S5. PLS-DA model accuracy for various UIF filter combinations 

 
 

S-10 
 


	AC_86_15_7726
	ac501660a_si_001

