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Abstract

With the increasing popularity of Android smart phones in recent years, the amount
of Android malware is growing rapidly. Due to its great threat and damage to mo-
bile phone users, Android malware detection has become increasingly important in
cyber security. Traditional methods for android malware detection, like signature-
based ones, cannot protect users from the ever-increasing sophistication and rapid
behavior changes in new types of Android malware. Therefore, lots of recent efforts
have been made to use machine learning to characterize and discover the malicious
behavior patterns of mobile apps for malware detection. In this thesis, we propose
a novel and highly reliable machine learning algorithm for Android Malware detec-
tion based on the use of Factorization Machine and the extensive study of Android
app features. We first extract 7 types of features that are highly relevant to malware
detection from the manifest file and source code of each mobile app, including
Application Programming Interface (API) calls and permissions. We have two ob-
servations. First, the numerical feature representation of an app usually forms a
long and highly sparse vector. Second, the interactions among different features
are critical to revealing some malicious behavior patterns. Based on these obser-

vations, we propose to use factorization machines, which fits the problem the best,
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as a supervised classifier for malware detection. According to extensive perfor-
mance evaluation, our proposed method achieved a test result of 99.01% detection
rate with a false positive rate of 0.09% on the DREBIN dataset, and a 99.2% de-
tection rate with only 0.93% false positive rate on the AMD dataset, significantly
outperforming a number of state-of-the-art machine-learning-based Android mal-

ware detection methods as well as commercial antivirus engines.
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Chapter 1

Introduction

1.1 Android Malware

In recent years, we have witnessed the explosive growth of smartphone usage after
global sales surpassed the sales of basic mobile phones (or feature phones) in early
2013 [1]. Nowadays, smartphones are used everywhere in our daily life, e.g., for
online shopping, mobile games, online banking, personal heath care, and even as
remote controllers. According to a survey on global mobile OS market shares [2],
Android is the dominant mobile operating system with a 87.7% market share as
of the second quarter of 2017. Android is now powering not only smartphones
but also tablets, TVs, wearable devices and even [oT with Android Things. The
rapid growth of smartphone usage and the huge market share of the Android OS
have not only brought about the opportunities for mobile application development,
but also the challenges needed to defend devices from Android-targeting malware.
According to Kaspersky’s Mobile Malware Evolution 2016 Report [3], the number
of malicious installation packages amounted to 8, 526,221 in 2016—almost three
times more than that in 2015. Also, the distribution of malware through Google

Play and other online app stores is growing rapidly.



1.2 Signature-Based Approaches

To win the battle and protect mobile phone users, a number of anti-virus compa-
nies (e.g., McAfee, Symantec) provide software products as a major defense against
these kinds of threats. These products typically use a signature-based method [4]
to recognize threats. For example, [4] proposed a signature-based malware detec-
tion method that is well suited for mobile devices. With signature-based methods,
a unique signature is generated for each previously known malware, while detec-
tion involves scanning an app to match existing signatures in a malware database.
However, this can be easily evaded by attackers. Example counter-methods involve
changing signatures using code obfuscation or repackaging. To overcome this is-
sue, the heuristic-based method, introduced in the late 1990s, uses explicit expert
rules to recognize malware, although these rules are prone to human bias. In fact,
both methods will be less effective if the development of the malware database or
expert rules cannot keep pace with the speed at which new malware emerges and

evolves.

1.3 Machine Learning-Based Approaches

An alternative emerging approach for malware detection is to develop intelligent
malware detection techniques based on machine learning. Machine learning is po-
tentially capable of discovering certain patterns in previously undetected malware
samples. One major type of machine learning-based malware detection method use
the so called static analysis [5], [6] to collect features, this kind of analysis method
can make decisions about an app without executing it in a sandbox, thus incurring a
low overhead. Static analysis has two phases: feature extraction and classification.
In the first phase, various features such as API calls and binary strings are extracted
from an original file. In the second phase, machine learning is used to automat-
ically categorize the file sample into malware or benign-ware based on a vector-

ized representation of the file. Different machine-learning-based malware detection



methods could differ in both phases. For example, DroidMat [5] performs static
analysis on the manifest file and the source code of an Android app to extract multi-
ple features, including permissions, hardware resources, and API calls. It then uses
k-means clustering and k-nearest neighbor (k-NN) classification to detect malware.
DREBIN [6] extracts similar features from the manifest file and source code of an
app and uses a support vector machine (SVM) for malware classification based on
one-hot encoded feature vectors.

Many recent works are trying to find malicious behavior patterns through con-
trol flow graphs or call graphs. AppContext [7] classifies applications using ma-
chine learning based on the contexts that trigger security-sensitive behaviors. It
builds a call graph from an application source code and extracts the context factors
through information flow analysis. Then AppContext [7] is able to obtain the fea-
tures for the machine learning algorithms from the extracted context. In the paper
[7], 633 benign applications from the Google Play store and 202 malicious samples
were analyzed. AppContext correctly identifies 192 of the malware applications
with an 87.7% accuracy. Gascon et al. [8] also utilized call graphs to detect mal-
ware. After extraction of call graphs from Android applications, a linear-time graph
kernel is applied in order to map call graphs to features. These features are given
as input to SVMs to distinguish between benign and malicious applications. They
conducted experiments on 135, 792 benign and 12, 158 malware applications, de-
tecting 89% of the malware with 1% of false positives. This kind of method relies
heavily on the accuracy of the call graph extraction. However, current works like
FlowDroid [9] and IC3 [10] cannot fully solve the construction of Inter-component
control flow graphs (ICFG), especially the inter-component links with intents and
intent filters.

However, existing machine learning techniques for malware detection yields
limited accuracy, mainly due to the use of a first-order model or linear classifiers,
such as SVM [6]. These are insufficient to discover all malicious patterns. A natural
idea to introduce nonlinearity into malware detection is to consider the interaction

between features, or in other words, feature crossing or basis expansion. For ex-



ample, an app concurrently requesting both GPS and SEND_SMS permissions may
be attempting to execute a location leakage, while the presence of either one of
such requests alone does not point to any malicious behavior. However, machine
learning models involving feature crossing are not scalable to long feature vectors.

For example, a total of 545, 000 features are used by DREBIN [6], the SVM-
based detector, which means that more than 297 billion interactions need to be
considered if feature crossing were to be used. One could expect this number to
be even larger in a more recent dataset; the Android Malware Dataset (AMD) [11],
which contains more file samples thus exposing more features. Moreover, although
the total number of features is large, the number of features activated by each file
sample is usually much smaller, leading to a sparse vectorized representation for
each individual app. This will further lead to even sparser interaction terms (the
cross terms), posing significant challenges to model training—there are not enough
non-zero entries in the dataset to train the coefficient of each crossed term.

In this thesis, to effectively model feature interactions as well as efficiently han-
dle long and sparse features, we propose a novel factorization machine (FM) model
for Android malware detection. In contrast to feature crossing or basis expansion,
which suffers from the model size issue and the sparsity issue mentioned above,
factorization machines [12] aim to learn the coefficient of each interaction as the
inner product of two latent variables corresponding to the two features, thus effec-
tively reducing the number of parameters to be linear to n, where n is the length of
the feature vector.

We fine-tuned the feature extraction process and performed extensive feature
engineering on Android apk files. We evaluated our model on two typical malware
datasets: the DREBIN dataset [6], involving 5, 560 malware samples, and the An-
droid Malware Dataset (AMD) [11], involving 24, 553 malware samples. On the
DREBIN dataset, we achieved a 99.01% detection rate with 0.09% false positives.
For the AMD dataset, a detection rate of 99.2% was achieved with a 0.93% false
positive rate. These results suggest that our proposed method is highly accurate and

reliable, substantially outperforming all state-of-the-art machine learning methods



for Android malware detection (including the SVM-based DREBIN [6] with a re-
ported detection rate of 94%) as well as most of the existing Anti-Virus engines
uploaded to VirusTotal by commercial vendors including Cylance and Kaspersky.
We also evaluated the performance of our method on malware family identifica-
tion, which is an important task in malware attribution. For this task, our model is
trained to identify the apps that belong to a certain malware family, among samples
from other families as well as clean files. We achieve an average detection rate of

98.73% with an average false positive rate of 0.17% for 7 malware families from

the AMD dataset.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. We first introduce the back-
ground of the Android system and describe our malware detection system in detail
in Chapter 2. Details about the proposed machine learning models and the motiva-
tions to use a factorization machine are given in Chapter 3. Experimental results
regarding malware detection, malware family identification are presented in Chap-
ter 4. Chapter S discusses related work, while the limitations of our current system

are discussed in Chapter 6. Finally, we conclude the thesis in Chapter 7.



Chapter 2

Background and System Overview

In this chapter we will first introduce some background information for the An-
droid operating system and Android application files (apk files). Then we briefly

introduce the architecture of our malware detection system.

2.1 Background

Android applications are written in Java and executed within a custom Java Virtual
Machine (JVM), and each application package is contained in a jar file with the file
extension of apk. Android applications consist of many components of differing
types, which are the essential building blocks for the application. Each component
has an entry point through which the system or a user can enter the application
and applications interact via components. Therefore, it is critical to analyze the
component APIs for security concerns. There are four fundamental building blocks

of applications on the Android platform.

1. Activities serve as the entry point for a user’s interaction with an app, and are

also central to how a user navigates within an app or between apps.

2. Services are components that can perform long-running operations in the
background without providing a user interface. A service can be started by

other application components and will continue to run in the background even



if the user switches to another application. In addition, components can be
bound to services to interact with them, and even perform inter-process com-
munication (IPC). For example, services can handle network transactions,
play music, perform file I/O, or interact with content providers, all of which

can occur in the background.

3. Broadcast receivers Android apps can send and receive broadcast messages
from the Android system and other Android apps. These broadcasts are sent
when an event of interest occurs. For example, the Android system sends
broadcasts when various system events occur, such as when the system boots
up or the device starts charging. Apps can also send custom broadcasts, for
example, to notify other apps of something that they might be interested in,

such as the completion of a download.

Apps can subscribe to receive specific broadcasts. When a broadcast is sent,
the system automatically routes broadcasts to apps that have subscribed to
receive that particular type of broadcast. Generally speaking, broadcasts can
be used as a messaging system across apps and outside of the normal user

flow

4. Content providers are components that are used to manage access to struc-
tured data sets, encapsulate data and provide mechanisms for defining data
security. A content provider is a standard interface for connecting data in one

process to code running in another process.

All components must be declared in the application manifest file before they can
actually be used. Communications between different components are through in-
tents and intent filters. Intents are messaging objects that can be used to request ac-
tions from other application components. An intent filter is an expression declared
in the application manifest file that specifies the intent type that the component will

receive.
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Fig. 2.1. System architecture of our malware detection model.

2.2 System Overview

Our malware detection system consists of four parts: Unpacking and Decompile,
Feature Extraction, Encoding, and Prediction - all shown in Fig. 2.1. By the end of

this section, we will have a detailed introduction for each part.

2.2.1 Unpacking and Decompiling

The original data we receive for each application is an Android apk file. Each apk
file is actually a zipped file that consists of the application source code, resources,
assets, and manifest file. The application source code is encoded as dex files (i.e.,
Dalvik Executable Files) that can be interpreted by the Dalvik VM. The manifest
file consists of a number of declarations and specifications. Finally, other resources
may contain images, HTML files, etc.. Unfortunately, the dex files, as executable
code, are hard to understand and therefore need to be converted into readable for-
mats such as smali code or even Java code. Smali code is an intermediate form
decompiled from the dex files. The takeaway is that, after unzipping the apk file we
still need to decompile dex code before we can continue to feature extraction.
There are some popular tools available for decompiling dex code such as APK-
Tool [13] or baksmali [14]), which can unpack the apk file and decompile the dex
files to smali code. In our system, we use aapt, which is a Android SDK tool, to
extract manifest file information into a readable text file, and use APKtool to con-
vert the classes.dex file into smali code. After this step, we obtain readable source

code and the manifest file AndroidManifest.txt for each Android app, based on



that representative features will be extracted.

2.2.2 Feature Extraction

Feature engineering is the most important part for training a machine learning
model. The upper bound of the performance of the model is depend directly on
the used features. Through study of the Android system and tons of previous work,
we finally decided to extract 7 kind of features from both the source code and man-

ifest file. From the manifest file we extract the following four types of features:

1. App components: As we know, an app contains several components of
four types: activities, services, content providers and broadcast
receivers. Those components, declared in the manifest file, define different
user interfaces and interfaces to the Android system. The names of these com-
ponents are collected to help identifying variants of well-known malware, for

example the DroidKungFu family share the name of particular services [6].

2. Hardware features: If an application wants to request access to the hardware
components of the device, such as its camera, GPS or sensors, then those
features must be declared in the manifest file. Requesting certain hardware
components may have security implications. For example, requesting of GPS

and network modules may be a sign of location leakage.

3. Permissions: Android uses a permission mechanisms to protect the privacy
of users. An app must request permission to access sensitive data (e.g. SMS),
system features (e.g. camera) and restricted APIs. Note that the permission
system is one of the most important security mechanism in Android. Many
operations need specific permissions to be executed and these permissions are
granted by users upon installation. Malware usually tends to request a special

set of permissions. Similar ideas also apply to hardware resources.

4. Intent filter: Intent filters declared within the declaration of components in

the manifest file are important tools for inter-component and inter-application



communication. Intent filters define a special entry point for a component as
well as the application. Intent filters can be used for eavesdropping specific
intents. Malware is sensitive to a special set of system events. Thus, intent

filters can be hints.

Furthermore, we also extract another three types of features from the decom-

piled application source code (e.g., smali code):

1. Restricted APIs: In the Android system, some special APIs related to sen-
sitive data access are protected by permissions. If an app calls these APIs
without requesting corresponding permissions, it may be a sign of root ex-

ploits.

2. Suspicious APIs: We should be aware of a special set of APIs that can lead to
malicious behavior without requesting permissions. For example, cryptogra-
phy functions in the Java library and some math functions need no permission
to be used. However, these functions can be used by malware for code obfus-
cation. Thus, attention should be paid to the unusual usage of these functions.
We will mark these types of functions as suspicious APIs, following in the

footsteps of DREBIN [6].

3. Used permissions: We first extract all API calls from the app source code,
and use this to build a set of permissions that are actually used in the app by
looking up a predefined dictionary that links an API to its required permis-

sion(s).

2.2.3 Encoding

As seen in the previous section, all of the features are associated with string values,
so we need to encode them before they can be fed into a classifier. Here we use
an N-dimensional indicator to encode each application into a feature representa-
tion, where N is the feature dimension. To be specific, suppose all the extracted

features form a feature set S with size | S|, then each app will be represented as a

10
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Fig. 2.2. t-SNE view of 2,000 samples from the DREBIN dataset (1, 000) and clean file dataset
(1,000). All these samples have been encoded as a highly sparse vector and then t-SNE algorithm
is applied for dimension reduction and visualization.

|S|-dimensional indicator, where each dimension is either 1 or 0 indicating whether
the corresponding feature appears in the app. There are two things need to be no-
ticed. First, the feature set size | S| is often very large and grows as the dataset size
becomes larger. Second, the number of features extracted for each app is relatively
very small compared with the feature dimension, so we would often get a large,
highly sparse vector representation for each app. We will further discuss this in the
following chapter.

To show the effectiveness of our feature representation in distinguishing mal-
ware and clean files, we further apply t-SNE [15] algorithm on 2, 000 already en-
coded samples from the DREBIN dataset (1,000) and clean dataset (1,000) for
visualization. The result is shown in Fig 2.2, it is not hard to tell that all the samples

are nicely spaced apart and grouped together with their respective labels.

2.2.4 Classification

After encoding, we would get a vector representation of each application, based
on which we can then apply machine learning algorithms for automatic malware
detection. There are several learning algorithms that can be used for classification,
for example, DREBIN [6] uses support vector machine (SVM), [16] uses one-class

SVM with kernels. And as a general classifier, deep neural networks are also widely

11



used in malware detection [17], [18]. In this thesis, instead of randomly choosing a
general classifier to get a good prediction model by tuning the parameters, we first
make observations on the vector representations of the Android application and then
choose the factorization machine model that fits our problem the best. Notice that
FM model can also be used for malware family identification. Details are presented

in the next chapter.
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Chapter 3

Factorization Machine for Malware

Detection

At the core of our malware detection scheme is classification. Generally, a clas-
sification problem in machine learning is to infer a function & : R" — R for all
possible x € R" to predict how much it belongs to a class, e.g., the malware class
in this thesis. To find such a function, we are given a set of samples, each of which
has been marked as a “malicious” or “benign”. This initial dataset is used to teach
the machine.

After proper pre-processing has been performed on each Android application
file, it is then converted into a feature vector x in accordance with chapter 2. In this
chapter, we introduce the modeling of malware detection based on factorization
machine [12]. This machine has demonstrated high efficiency in learning high-
order interaction representation between sparse features with numerous applications

in various fields.
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A = {SEND_SMS, BIND_ADMIN, BLUETOOTH} = D:[jjj
+) B ={SEND_SMS, CHANGE_WIFI_STATE, NFC} == D:]:D:‘
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BT 1]

Fig. 3.1.  One-hot encoding for string features. Here we use different color blocks to represent
different feature values in permission set, and the block with color will be encoded as 1 and the
white block will be encoded as 0.

3.1 Feature Representation and First-order Classi-
fiers

We begin our modeling from feature representation in Android malware detection.
Suppose we have two applications, A and B, and each requests three permissions,
as illustrated in Fig. 3.1. As there are five unique permissions requested by A and
B, we can then create a vector x4,xp € {0, 1}5 such that each entry represents
exactly one permission, e.g., the first entry as a blue block represents the permission
SEND_MSG and the second entry represents the permission BIND_ADMIN. As a result,
we can write x4 = (1,1,1,0,0) and xg = (1,0,0,1,1). It is straightforward to
extend this idea to all kinds of extracted features as discussed in chapter 2. The
formal name for this scheme in literature is one-hot encoding.

There are some popular models for a scalable and stable solution of classifica-
tion. One popular solution is support vector machine (SVM), which attempts to
find a hyperplane that separates malware samples from benign ones with a maxi-
mal margin. A maximal margin solution usually performs better in many machine
learning tasks, so SVM has been widely applied in many fields in addition to An-

droid malware detection [6]. More specifically, an SVM model attempts to find a

hyperplane such that
n
h(x) = Zwﬂi + wo,
i=1
where w;,7 = 0,1,...,n are trainable parameters such that it can maximize the

margin. To predict the probability of whether a given x is a malware, we can further

14
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la

Fig. 3.2. SVM classifier leads to maximal margin solutions. Here £ 4 leads to a larger margin than
{p and is believed to be a better classifier.

use a sigmoid function to calculate such value:

B 1
1+ exp(—h(x))’

§(x) := o (h(x)) 3.1

Here we denote y(x) (or g for short) as the estimated probability of being a malware.
Given a set of samples D = {(x, y)}, the optimal coefficients of w; can be obtained

by solving the following optimization problem:

1
min —HW||2
w2 (3.2)
st. y-h(x)>1, VY(x,y) €D,

where || - || denotes the ¢, vector norm, and y is the sample label, if a sample is
malware then y = 1, otherwise y = 0.

However, these models are not suitable for Android malware detection for two
reasons. First, the feature vectors from one-hot encoding are highly sparse. For ex-
ample, samples in the benchmark dataset DREBIN [6] will be encoded into vectors
with 93, 324 entries, in which only 73 nonzero elements are found on average. Sec-
ond, these models only exploit the first-order features, they do not take interactions
among entries into account. To make matters worse, the severity of these problems
is amplified in Android malware detection because the high sparsity of features im-
plies that each feature vector can provide little information for classification should

a model only exploit the information from nonzero values.
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3.2 Second-order Feature Crossing and Factorization

Machine

To overcome these issues, we attempted to incorporate feature interactions. Let us
take some toy examples to see how the relationship between two features can facil-
itate the prediction of malware. If an application requests the GPS hardware feature
as well as network modules permission, it is likely that this application may attempt
to send geo-location information to a command & control server, therefore it is more
prone to perform malicious behaviors. Another example is that some malware sam-
ples like BaseBridge can collect personal/device information and send it elsewhere
via SMS messages. They will request two permissions, READ_PHONE_STATE and
SEND_SMS.

A natural method for learning interactions of different features is through basis

expansion or feature-crossing:

=1

i=1 j=i+1

By assigning a weight I, ; for each pair of z; and x;, we have the easiest way
to capture pairwise interactions. However, it is not efficient here due to the large
number of parameters: this model has n(n — 1)/2 free parameters. In the DREBIN
dataset, for example, the input vector has a length of 93, 324 but the number of
nonzero entries is about 73 on average. In this case, full feature crossing like W
would necessitate four billion weights. This would impose a very heavy burden on
the training process since the model becomes too complicated and it requires a large
scale of data for training. Needless to say, the end result is very time-consuming.
In additon, it looks much worse for sparse data in the case of Android malware
detection, as each sample only activates an extremely small portion of entries in W
when using popular algorithms like stochastic gradient descent (SGD).

Popular techniques to overcome these issues are low-rank or dimension reduc-

16



@ @y Ty Ty Ty Tg Ty Ty Ty T1g
Loft]ofofr]ofsfofrfo]

Fig. 3.3. The architecture of factorization machine model for malware detection. Here the dark
gray node stands for the inner product operator, i.e., it calculates inner product of two incoming
vectors.

tion methods, such as using a factorization machine (FM) [12]. More specifically,
FM assumes that W is with the largest rank of £ and therefore, we can decompose
W = VVT. If we denote v; as the i-th row of V, FM will train a hidden vector v;
for each z; and the model the pairwise interaction weight w;; as the inner product

of the corresponding hidden vectors of entries z; and x;:

h(x) = wo + Z w;xT; + Z Z (Vi, vj)xiz;, (3.4)
i=1

i=1 j=i+1
where (-, - ) denotes the dot product of two vectors of length k:

k
(vi,v;) = Z Vi, fUj f5 (3.5)
f=1
In practice, the hyperparameter & is much smaller than the feature dimension n
(k < n). Thus, the number of parameters to be estimated is reduced from O(n?) to
O(nk).
We can further improve the performance of FM by using more sophisticated

feature engineering schemes for cross terms. For example, by using “partial FM”,
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which only involves interactions between selected features, e.g., between Used
permissions and Permissions, thus ignoring crossed terms that are not relevant

to malicious behavior discovery.
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Chapter 4

Evaluation

In this chapter, we evaluate the performance of our factorization-machine-based
Android malware detection system. We apply our system to malware detection task
and malware family identification task, based on two public benchmark datasets:
DREBIN [6] and AMD [11]. In addition to detection performance evaluation, we
further evaluate efficiency in terms of processing time and detection time for all

tasks.

TABLE 4.1
PERFORMANCE METRICS FOR ANDROID MALWARE DETECTION.

Metrics Description

TP # of malicious apps correctly detected
TN # of benign apps correctly classified
FP # of false prediction as malicious

FN # of false prediction as clean

Precision TP/(TP + FP)
Recall TP/(TP+ FN)
F1 2 % Precision * Recall/(Precision + Recall)
FPR FP/(FP+TN)

19



4.1 Experiment Setup

4.1.1 Datasets

We will start with a brief description for each malware dataset:

* DREBIN: it is a dataset with 5, 560 malware files collected from August 2010
to October 2012. All malware samples are labeled by one of 179 malware
families. This is one of the most popular benchmark dataset for Android

malware detection.

* AMD: the Android Malware Dataset contains 24, 553 samples that are cate-
gorized in 135 varieties among 71 malware families. This dataset consists of
samples that were collected from 2010 to 2016. This is one of the largest, and
the newest dataset at April 2018. This dataset provides more recent Android

malware evolving trends.

Along with these malware datasets, we also collected a number of real-world An-
droid applications collected from the Internet. Resources of these files include Ap-
kpure [19] with 5,400 samples, 700 samples from 360.com and 13K commercial
applications from the HKUST Wake Lock Misuse Detection Project [20]. In sum-
mary, we have collected 19, 100 real-world applications.

Although these Android applications are mostly collected from well-known An-
droid markets and research projects, we should ensure whether they are clean. To
do so, we uploaded all these collected files to the VirusTotal service, a public anti-
virus service with 78 popular engines, and inspected scanning reports from the
VirusTotal service for each file. Each engine in VirusTotal would show one of three
detection results: True for “malicious”, False for “clean”, and NK for ‘“not known”,
respectively. If an application has more than one True result, we label it as mal-
ware; otherwise, we label it as clean. As a result, only 16, 753 out of 19K collected
samples passed all scanners on the VirusTotal service, and we will only use these

samples in further experiments.
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Details of these two datasets are shown in Table 4.2. When doing experiments
on the AMD dataset, we evaluated on all these clean files. When evaluating on
the DREBIN dataset, we randomly sampled 5, 600 clean files to match the number
of malware samples in this dataset. To simplify our terminologies, the DREBIN
dataset (or the AMD dataset) consists of both clean samples and malware samples
in the subsequent of this section.

Here we make some comparison between the DREBIN and the AMD datasets
for further experiments. Table 4.3 shows a detailed breakdown of these two datasets
in evaluation. As we can see in this table, the overall feature set size grows from
93, 324 to 294, 019 as the dataset size grows from 11, 160 to 41, 306. Note that app
components, intent filters and permissions are the three sets that grow the most. The
former two are defined manually by the developer so they tend to have different val-
ues. For permissions, even though there are a fixed number of system permissions
developer can apply in manifest file, they can still declare self-defined permissions,
e.g., com.zing.znews.permission.C2D_MESSAGE. So the permission set can also
grow as the dataset grows. The remaining feature sets have a relevant fixed size be-
cause they are linked to the Android system APIs or smart phone hardware, which

have a limited size.

4.1.2 Evaluation Tasks

We evaluate detection performance and run-time performance of our proposed sys-
tem on two separate tasks, and compared them with several baseline algorithms as
well as existing signature-based commercial anti-virus engines that available in the

VirusTotal service. Specifically, we focus on the following three aspects:

* Malware detection: in this kind of experiments, we compare our trained
factorization-machine-based system with some baseline machine-learning based
detection algorithms. In addition, we also send all samples, including mal-
ware samples, to the VirusTotal service to compare with commercial anti-

virus engines.
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TABLE 4.2
DATASETS FOR DETECTION PERFORMANCE EVALUATION.

Dataset # malware # Clean files Total Feature size
DREBIN 5,560 5,600 11,160 93,324
AMD 24,553 16,753 41,306 294.019

* Malware family identification: in this kind of task, each sample will be
sent into our system and our system will respond whether the input sample
belongs to a specific malware family. Here we regard clean files as a special

family named “clean”.

* Run-time: to further evaluate efficiency of our proposed system, we analyze
the run-time in terms of processing time and detection time. The processing
time counts from the beginning to the phase of feature encoding, while the

detection time counts on the classification phase.

For performance evaluation tasks, we evaluate the detection performance and fam-
ily identification performance using the measures shown in Table 4.1, and we focus
on the following four metrics: precision, recall, F1 and False Positive Rate (FPR).
Note that in the literature, recall and false positive rate correspond to malware de-
tection rate and false alarm rate for the detection system.

Moreover, the dataset is split into training (80%) and testing (20%) sets in both
experiments. All models are trained with 4-fold cross validation for hyper parame-
ter tuning and then tested on the testing set for performance evaluation. We repeated
this procedure 5 times and then averaged the results. The baseline algorithm and

our proposed method are trained and tested in the same manner.

4.2 Detection Performance

In this subsection, we conduct two sets of experiments to show the performance of
our proposed FM-based malware detection model as well as other baseline algo-

rithms. Comparison with existing anti-virus engines are also included.
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TABLE 4.3
SIZE OF THE EXTRACTED FEATURE SETS ON THE DREBIN AND AMD DATASETS.

Feature set DREBIN AMD
App components 79,523 250,612
Hardware features 86 143
Permissions 3,830 12,492
Intent filters 9,317 30,102
Restricted APIs 387 466
Suspicious APIs 42 43
Used permissions 139 161
Total feature 93,324 294,019

4.2.1 Comparison with Baseline Algorithms

We first evaluated our proposed FM-based method and compared it with other ex-
isting baseline algorithms, including SVM, which is used in DREBIN [6], classical
machine learning algorithms such as Naive Bayes [5], and neural networks e.g.,
multi-layer perceptron [21] .

Table 4.4 shows the test result of different algorithms on the DREBIN set. As we
can see, FM achieves the best performance for precision with a score of 99.91% and
0.09% false positive rate when the threshold is set to 0.5. The multilayer perceptron
classifier (MLP) gives the same precision and false positive rate scores, but it gives
even a better recall and the best F'1 scores on this small DREBIN dataset. The SVM
algorithm gives a recall score or detection rate of 92.35% with a 4.19% false positive
rate close to the result given in DREBIN [6], which is 94% and 1% respectively.
However, it is still not comparable with the result given by FM and MLP. Naive
Bayes with three different kernels, Gaussian, Multinomial and Bernoulli, all have
very high recall scores, but at the cost of high false positive rates and low precision,
resulting in bad overall performance and low F'1 scores.

ROC curves on the DREBIN test set are also shown in Fig. 4.1. Obviously,
the FM and MLP algorithms give the best performance with an area under the

3

curve (AUC) score of 1.0 under the accuracy of e°. the naive Bayes classifier

with multinomial and Bernoulli kernel follow with AUC values of 0.998 and 0.997,
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TABLE 4.4
TEST RESULT ON THE DREBIN SET WITH A THRESHOLD OF 0.5. ALL VALUES ARE
MULTIPLIED BY 100.

Algorithm FM SVM NB-G NB-B NB-M MLP
Precision(x100) | 99.91 95.62 90.86 90.53 96.25 99.91
Recall(x100) | 99.01 9235 99.37 99.82 99.28 99.64
F1(x100) 99.46 9396 9493 9495 97.74 99.77
FPR(x100) 0.09 419 990 1035 384 0.09

ROC curves on DREBIN set
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Fig. 4.1. ROC curves for all the baseline algorithms and our FM method on DREBIN test set.

respectively. Naive Bayes with the Gaussian kernel and SVM are the worst with a
AUC scores of 0.947 and 0.98. For these two curves, the true positive rate grows
slowly as the false positive grows. That is to say, a high true positive rate is at the
cost of high false positive rate. Notice that in Table 4.4 SVM is better than Naive
Bayes with Bernoulli kernel, with similar F'1 score and much better false positive
rate. But with the ROC curve we now can see by adjusting the threshold of Naive
Bayes with Bernoulli kernel will always outperform SVM under the same false
positive rate limitation.

The same experiment procedure was then repeated on the larger AMD data set.
The result is shown in Table 4.5 from which we can see, on the large data set FM
gives the best performance under all metrics with a recall score and FPR of 99.20%

and 0.93%. MLP follows with a 99.16% and 1.52% recall score and FPR. Compared
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with what shown using the DREBIN dataset, where MLP is slightly better than FM
with a higher F'1 score, one can see the FM’s advantage in dealing with a highly
sparse vector becoming more obvious as the feature space size or the sparsity of the
vector representation grows, leading to a better performance than other algorithms
including MLP. We can say with confidence that our FM method would outperform
other algorithms with a larger margin on an even larger data set. The SVM method
has similar results to what we got with the DREBIN set with a FPR of 4.24% and
F'1 score of 96.94%. The same with Naive Bayes with three different kernels, they
still give high recall score at the cost of high false positive rate.

ROC curves on the AMD set are shown in Fig 4.2. Obviously, FM and MLP
give the best performance with a 0.999 AUC value, and Naive Bayes with Multino-
mial and Bernoulli kernels follow with AUC values of 0.994 and 0.993 respectively,
then SVM with 0.955.

The experiment results also support our claim that interaction terms are impor-
tant for revealing malicious behavior patterns. SVM and Naive Bayes directly use
the vector representation to learn the classifiers. On the other hand, FM achieved a
much better performance by adding interaction terms. MLP as a universal approx-
imator [24] can also output excellent results but more data will be needed to train
the model, especially when the input vector is highly sparse. Even though we can
not say, from current experiment result, that FM can definitely outperforms MLP,

we can still see the trend that FM tends to beat MLP when dataset grows.

TABLE 4.5
TEST RESULT ON THE AMD SET WITH THRESHOLD 0.5. ALL NUMBERS ARE MULTIPLIED BY
100.

Algorithm FM SVM NB-G NB-B NB-M MLP
Precision(x100) | 99.35 97.01 80.64 90.29 9220 9893
Recall(x100) | 99.20 96.87 99.35 99.41 99.54 99.16
F1(x100) 99.28 9694 89.02 94.63 95.73 99.05
FPR(x100) 093 424 3388 1519 1197 1.52
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ROC curves on AMD set
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Fig. 4.2. Zoomed in upper-left part of the ROC curves for all the baseline algorithms and our FM
method on AMD test set.

4.2.2 Comparison with AV engines

We also compared the performance of our malware detection algorithm with exist-
ing commercial Anti-Virus engines on VirusTotal [25]. The critical point to mention
is that all of the truly clean files used in our experiments are actually labeled by these
AV engines using the rule described in subsection 4.1.1. Therefore, AV engines are
supposed to have a better false positive rate than their normal performance. Due to
the page limit, we only list results of popular engines with best performance among
all 78 AV engines from VirusTotal, such as Kaspersky, Cylance and McAfee.

Table 4.6 summarizes scanning results from commercial AV engines on the test-
ing split of the DREBIN set. We can see that our method outperforms most of the
AV engines with a precision of 99.91% and 0.09% FPR. And for those engines that
have better recall or F'1 score than what our method presented would often have
either much worse precision or FPR, e.g. Cylance. Only several AV engines have
a comparable overall results, e.g. CAT-QuickHeal, Symantec.

The results on the AMD dataset are shown in Table 4.7. This time, our FM
model outperforms all of the AV engines with a F'1 score of 99.28%. We also found
that on this dataset most of the AV engines (include those that are not shown here)

give worse recall scores compared with what they get on the DREBIN set, but still
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have a good FPR. This is reasonable, because on the one hand, those AV engines all
use signature-based malware detection method so they cannot discriminate against
a piece of malware unless said malware has been seen before and recorded in the
AV’s database. To clarify, they can not detect newly emerged malware without
a database update. On the other hand, as mentioned before, all malware in the
DREBIN dataset was collected before 2014 and the AMD dataset was released
only last year, containing a fresher stock of malware. So the detection rate for some
AV engines could fall if they did not include the most recently malware in their data
base.

TABLE 4.6
PERFORMANCE OF VIRUSTOTAL SCANNERS ON THE DREBIN TEST SET. ALL VALUES ARE
MULTIPLIED BY 100.

Scanner Precision% Recall% F1% FPR%

FM 99.91 99.01 99.46 0.09
McAfee 99.91 98.74  99.32  0.089
CAT-QuickHeal 99.64 99.46  99.55 0.357
Symantec 99.91 99.28  99.59 0.089
Kaspersky 99.63 9721 9841 0.357
Cylance 50.09 9991 66.73 98.66
Qihoo-360 97.78 9496 9635 2.141

TABLE 4.7

PERFORMANCE OF VIRUSTOTAL SCANNERS ON THE AMD TEST SET. ALL VALUES ARE
MULTIPLED BY 100.

Scanner Precision% Recall% F1% FPR%
FM 99.35 99.20 99.28 0.93
McAfee 99.73 93.82 96.69 0.358
CAT-QuickHeal 99.70 08.84 99.27 0418
Symantec 99.57 67.26 80.29 042
Kaspersky 99.84 5335 69.54 0.119
Cylance 58.86 99.64 74.00 98.96
Qihoo-360 97.50 68.92  80.76 2.507
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4.3 Malware Family Detection

Another important task for Android malware detection is malware family classifi-
cation. To evaluate our model on this task, we built another two data sets. Details
about those two data sets are shown in the first column of Table 4.8 and Table 4.9
respectively. All samples from the 6 largest malware families in the DREBIN set
and another 1, 500 clean files form the first data set. The second dataset contains
all samples from the 7 largest malware families in the AMD dataset and also 1, 500
clean applications. To shown our model’s capacity to distinguish one malware fam-
ily from other families as well as clean files, each time we label all the samples
from one family as "True" and samples from all the other families as "False" then
shuffle and randomly split the dataset into training (80%), to train a new model, and
test set (20%) to evaluate the model. Notice that if the "clean" family is labeled as
‘True’ this is then actually a malware detection task.

Table 4.8 gives the experimental results of malware family detection on the
DREBIN set. As is shown, our model can achieve a weighted average detection
accuracy of 99.04% with an average false positive rate of 0.187%. In particular, all
families show a recall score above (.93, precision score above (.98, F'1 score above
0.96 and false-positive rate below 0.4%. For family P1ankton our model produces
a perfect result with an F'1 score of 1.0 and FPR of 0.

The results on the AMD set are shown in Table 4.9. On this dataset, our method
managed an average detection rate of 98.94% with a 0.095% false positive rate. All
families show a recall score above 96%, precision above 96.7%, F'1 score above
96.48% and false positive below 0.25%. We can tell that the overall performance
on the AMD set is slightly better than what was produced with the DREBIN set.
This may because the samples for each family on the AMD set are much larger than
we have on DREBIN set.

In summary, the FM method achieves great performance for malware family
classification and can be used to predict the family of a piece of malware if enough

training samples are provided.
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TABLE 4.8

FAMILY CLASSIFICATION RESULTS ON THE DREBIN DATASET.

Family Samples Precision% Recall% F1% FPR%
Fakelnstaller 925 99.52 99.52 99.52 0.126
DroidKungFu 666 100.0 98.57 99.28 0.00
Plankton 625 100.0 100.0 100.0 0.00
Opfake 613 98.43 98.43 9843 0.229
GinMaster 339 98.70 98.70  98.70 0.108
BaseBridge 330 100.0 9390 96.86 0.00
Clean 1500 98.99 100.0  99.49 0.426
Average — 99.33 99.04 99.17 0.187
TABLE 4.9
FAMILY CLASSIFICATION RESULTS ON THE AMD DATASET.
Family Samples Precision% Recall% F1% FPR%
Airpush 7606 99.73 99.54 99.64 0.162
Youmi 1256 99.60 97.66 98.62 0.027
Mecor 1762 100.0 100.0  100.0 0.00
Fakelnstaller | 2129 99.77 100.0  99.89 0.028
Fusob 1238 100.0 100.0 100.0 0.00
Kuguo 1122 100.0 96.73  98.34 0.00
Dowgin 3298 99.69 98.48  99.08 0.060
Clean 1500 96.97 96.00 9648 0.244
Average — 99.57 98.94 99.25 0.095
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4.4 Processing Time Evaluation

In this section, we evaluate the processing time efficiency of our malware detection
model. As is shown in previous sections, our system consists of four parts. Nor-
mally, the last two phases, encoding and classification, take much less time than fea-
ture extraction and decompiling. Also, for different applications these two phases
would often take a fixed processing time due to the fixed feature space size. There-
fore, we focused on evaluating the processing time for unpacking, decompiling and
feature extraction, then give out an average processing time for all applications on
the encoding and prediction phase.

The evaluation was done on a virtual machine hosted on ESXi. The VM is
running Ubuntu 16.04 with a memory of 4G and 2 CPUs. We randomly sampled
3,794 AMD samples, 6, 120 clean files and all the 5, 560 DREBIN samples to test
this experiment. The results are shown in Fig 4.5; the three figures in the first row
show the relation between dex source code size and processing time. The figures
in the second row show the relation between apk file and processing time. We can
tell from the figure that the processing time and dex code size almost have a linear
relation and for samples in those three datasets the slops are approximately similar
to 0.4. There is no fixed relation between apk file size and processing time and this
is because apart from the dex code and manifest file, an apk also contains other
resource files like HTML, figures, etc. In some applications these files may take a
lot of space, for example games, while for others this is not the case. The histogram
of processing time and dex code size of all 15, 474 samples are shown in Fig 4.3 and
Fig 4.4 respectively. We can see, over 78% of samples have a dex code size of less
than 3M B and over 70.6% samples have a processing time of less than 5 seconds.
On the same samples we also measured the mean time for encoding and prediction.
The former took our system an average 4.7ms and 0.021ms for the latter.

Compared with DREBIN [6], it seems that our system does not have much of
an advantage in processing time. However, this is not the case. To begin with, the

test is done on a system that is not fully integrated, the output of Smalisca is first

30



Source code size distribution

[}
[=]
o
o

4000

Number of samples
N
=)
S
o

0 2 4 6 8
Dex code size (MB)

Fig. 4.3. Dex source code size distribution for the 15,474 samples from AMD (3, 794), DREBIN
(5, 560) and real-world apps (6, 120) from online app stores.
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Fig. 44.  Processing time distribution for the 15,474 samples from AMD (3, 794), DREBIN
(5, 560) and real-world apps (6, 120) from online app stores.

written into a json file and then reloaded into RAM for further processing. The I/O
between RAM and flash storage would often take a long time. Second, the feature
sets used in our system are simpler and smaller than sets used in DREBIN, so under

the same conditions our system should take less processing time than DREBIN.
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Fig. 4.5. Scatter plot of processing time vs. file size. Figures in the first row illustrate how long it
takes in terms of dexcode file size, and those in the second row illustrate that of APK file size. Three
columns refer to clean files, malware samples in the DREBIN dataset, and malware samples in the
AMD dataset, respectively.
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Chapter 5

Related Work

Static analysis of Android applications focuses on analyzing internal components
of an application, it is able to explore all possible execution paths in malware sam-
ples and has long been used for detecting of malicious behaviors and application
vulnerabilities. This analysis typically based on source code or binary analysis to
search for malicious patterns.

Some works focus on the detection of specific malicious behavior such as pri-
vacy breach and over privilege. For example, [26], [27] goes through source code
with a predefined source and sinks to find a potential privacy breach. [28] further
examines all the URL addresses to see if the app is trying to steal users’ private
information. Stowaway [29] detects over privilege in Android applications by com-
paring the maximum set of permissions needed for an app with the actual request
permissions. [30] uses data flow analysis for security certification. However, static
taint-analysis and over privilege are prune to false positive.

Other works [5], [6], [22], [23], [31] try to directly classify an application as
malicious or benign through permissions requests analysis for application installa-
tion (e.g. [32]-[34]), control flow (e.g. [35], [36]), or signature-based detection
(e.g. [37], [38]). These works take different approaches in both the feature extrac-
tion and the classification phase. Peiravian and Zhu [23] used permission and API
calls as features and SVM, decision trees and ensemble as classifiers. [22] tried

random forest, SVM, LASSO and ridge regression on features based on system
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calls. Hindroid [31] built a structured heterogeneous information network (HIN)
with Android application and related system APIs as nodes and their rich rela-
tionships as links, and then used meta-path for malware detection. DREBIN [6],
which extracted features from manifest files and source code, including permis-
sions, hardware, system API calls and even all the URLSs, and then uses SVM as the
final classifier for malware detection. Differentiating ourselves from existing work
and instead of only focusing on feature engineering and ignoring the importance of
choosing a suitable algorithm. After acquiring the feature representations of apps,
we first make two observations. Then the optimum machine learning algorithm
that handles our problem the best is chosen for malware detection according to the
observations.

Lots of recent works are trying to find malicious behavior patterns through con-
trol flow graphs or call graphs. AppContext [7] classifies applications using ma-
chine learning based on the contexts that trigger security-sensitive behaviors. It
builds a call graph from an application source code and extracts the context fac-
tors through information flow analysis. It is then able to obtain the features for
the machine learning algorithms from the extracted context. In this paper, 633
benign applications from the Google Play store and 202 malicious samples were
analyzed. AppContext correctly identifies 192 of the malware applications with an
87.7% accuracy. Gascon et al. [8] also utilized call graphs to detect malware. After
extraction of call graphs from Android applications, a linear-time graph kernel is
applied in order to map call graphs to features. These features are given as input to
SVMs to distinguish between benign and malicious applications. They conducted
experiments on 135,792 benign and 12,158 malware applications, detecting 89% of
the malware with 1% of false positives. This kind of method relies heavily on the
accuracy of call graph extraction. However, current works like FlowDroid [9] and
IC3 [10], [39] cannot fully solve the construction of Inter-component control flow

graphs (ICFG), especially the inter-component links with intents and intent filters.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this project, we point out the importance of considering interaction terms across
features for the discovery of malicious behavior patterns in an Android app. The
features used to represent an application are app components, hardware features,
permissions, intent filters from the manifest file and restricted APIs, suspicious
APIs and used permissions from source code. Based on the extracted features, a
highly sparse vector representation was constructed for each application using one-
hot encoding. We then propose a factorization-machine-based malware detection
system to handle the high sparsity of vector representation and model interaction
terms at the same time. To the best of our knowledge, this is the first approach that
uses FM models for malware detection. A comprehensive experimental study on
real sample malware collections, DREBIN and AMD datasets, and clean applica-
tions collected from online app stores were performed to show the effectiveness of
our system on malware detection and malware family identification tasks. Promis-
ing experimental results demonstrate that our method outperforms existing state-
of-art Android malware detection techniques as well as most of the commercial

antivirus engines on VirusTotal.

35



6.2 Limitations of Our Current Work

Our system takes advantage of machine learning to recognize malicious behavior
patterns for malware detection. While machine learning techniques provide a pow-
erful tool for automatically inferring models, they require a representative dataset
for training. That is, the quality of the detection model depends on the availabil-
ity and quality of both malware and benign applications. While it is straightfor-
ward to collect benign applications, gathering recent malware samples is not that
easy and requires some technical effort. Fortunately, offline analysis methods, e.g.
RiskRanker [38], can help to acquire malware and provide the samples for updating
and maintaining a representative dataset in order to continuously update our model.

One limitation for our system is processing time. We plan to integrate our sys-
tem into Wedge networks’ in-line, real-time security solution which only allows us
to have millisecond-scale processing time. For encoding and prediction our system
takes about 4.8ms, however, decompiling and feature extraction takes on the order
of seconds. Fortunately, we still have space to improve our system’s time efficiency
such as reducing I/O and finishing all work at once in main memory (RAM), or even
using Application-specific integrated circuits (ASIC), such as FPGAs, for speed up.
In addition, we note that decompiling apk files can fail when using some existing
tools. In our experiments, we observed such failures for some files, and we found
that malware samples are more likely to fail in decompiling. This is in our expecta-
tion as malware samples may use some additional techniques like code obfuscation

that may lead to decompiling failures, which limits Android malware detection.

6.3 Future Work

Our future work will focus on the aforementioned limitations of our current system.
To begin with, we will try to get more real world malware examples as well as clear
files by either cooperating with tech companies or implement a sandbox ourself.

Then, we also will try to improve the time efficiency of our system by implementing
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specialized tools such as reverse engineering tools. New features are also important
for discovering new malicious patterns in new emerging malware. So we need to

pay attention to malware trends and keep our system up to date.
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