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Abstract 

An effective navigation process requires the ability to determine the navigators’ current 

position and heading in the environment (referred to as self-localization) and localize the points 

of interest, such as home. Humans and non-human animals typically use self-motion cues (i.e., 

path integration) and landmarks (i.e., piloting) to keep track of their position and orientations and 

find their homes. Chapter 1 reviews the previous research regarding the usage of these two 

processes in human navigation and their contribution to determining orientation and briefly 

discusses the systematic homing errors observed in path integration. Chapter 2 presents a study 

that examined the usage of different landmarks in human orientation and Chapter 3 presents a study 

that examined the sources of systematic biases in human path integration. Chapter 4 summarizes 

the findings of the two studies and discusses the implications and limitations of these studies. 

Chapter 2 involves a study investigating the roles of distal and proximal landmarks in 

determining human orientations. It has been a long-standing theoretical argument and 

foundational assumption in research paradigms that distal landmarks dominate as orientation 

cues over proximal landmarks. Participants learned object locations with proximal and distal 

landmarks in an immersive virtual environment. After walking a path without seeing objects or 

landmarks, participants were disoriented and pointed to the objects with the reappearance of a 

proximal landmark being rotated -50°, a distal landmark being rotated 50°, or both (Conflict). 

Heading errors were examined. Experiment 1 manipulated the relative cue precision. Results 

indicate that besides the relative cue precision, prior knowledge of distal cue dominance also 

influences orientation cue usage. In Experiments 2 and 3, participants walked a path stopping at 

one object location. Participants were informed of it explicitly in Experiment 2 but not in 

Experiment 3. Results showed that distal cue dominance still occurred in Experiment 3. 
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However, in Experiment 2, proximal cue dominance appeared, and it was not predicted by the 

relative cue precision. These results suggest that prior knowledge of proximal cue dominance 

might have been invoked by the instruction of locations. Consistent with the Bayesian inference 

model, human cue usage in orientation is determined by relative cue precision and prior 

knowledge. The choice of prior knowledge can be influenced by instructions. 

Chapter 3 involves a study employing computational modeling to investigate potential 

sources of systematic biases observed in human path integration. Systematic biases (compression 

patterns in the inbound responses) have been well documented in human triangle completion 

tasks. Cross-validation modeling was used to compare three plausible theoretical models that 

assume that systematic errors occur in the encoding outbound path solely (encoding-error 

model), executing the inbound responses solely (execution-error model), and both (bi-component 

model), respectively. Unlike traditional triangle completion tasks with a single inbound response 

(i.e., the homing vector) for each outbound path, the triangle-completion task used in this study 

required participants to indicate three learned locations (including the home location) during the 

response phase. The results demonstrated that the bi-component model outperformed the other 

models in accounting for the systematic errors using multiple inbound responses. This finding 

suggests that both encoding the outbound path and executing the inbound responses contribute to 

the systematic biases in human path integration. Additionally, the results showed that the 

algorithm using only the home response could not distinguish among these three models, 

suggesting that the typical triangle-completion task with only the home response for each 

outbound path cannot determine the sources of the systematic biases. 
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Desert ants forage up to hundreds of meters and find their nest within 1 square centimeter 

of error (Gallistel, 1990; Wehner & Srinivasan, 1981). Puluwat sailors navigate canoes between 

islands separated by distances of up to 800 kilometers, arriving at their destination with ease 

(Gladwin, 1970). As for us, modern humans heavily rely on navigation for daily necessities 

including commuting to work and school, exploring restaurants and attractions across town, and 

hiking unfamiliar trails. Successful navigation requires the ability of determining navigators’ 

current position and heading in the environment (referred to as self-localization) and localizing 

the points of interest (referred to as goal-localization). Humans and a wide range of mobile 

animals are able to navigate by means of two basic navigation processes: path integration relying 

on self-motion cues (Etienne & Jeffery, 2004; Loomis et al., 1993) and landmark-based 

navigation (also referred to as piloting) relying on landmark cues (Doeller & Burgess, 2008; Foo 

et al., 2005).  

The current dissertation investigates two questions related to the navigation processes of 

path integration and piloting in human navigation. In Chapter 1, I first review the previous 

research regarding the usage of these two processes in human navigation and their contribution 

to determining orientation and discuss the systematic homing errors observed in path integration. 

Chapter 2 presents Study 1 which examined the roles of visual distal and proximal landmarks in 

providing spatial orientation. Chapter 3 presents Study 2 examining the potential sources of the 

systematic biases in human path integration using computational modeling. Chapter 4 

summarizes the findings and implications of these studies and suggests possible future studies. 

1.1 Path integration and piloting 

Landmark-based navigation or piloting utilizes previously encoded visual landmarks in 

the environment to determine the positions and headings of navigators (e.g., Cheng & Spetch, 
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1998; Etienne et al., 1996, 2004; Foo et al., 2005; Wehner et al., 1996), as well as the locations of 

other objects (Doeller & Burgess, 2008; Hermer & Spelke, 1994; Zhou & Mou, 2016). Piloting 

relies on visual perception to encode the spatial relationships between visual items as well as the 

spatial relationships between those items and the navigators themselves (Cheng & Spetch; 1998; 

Doeller & Burgess, 2008; Mou & Zhang, 2014; Taube, 2007; Yoder et al., 2011). Some salient 

items (i.e., landmarks) can serve as reference points to specify other locations. As a result, people 

can localize themselves and their goals by recognizing familiar landmarks. For instance, a 

shopper might try to find their parked car by recalling that it was near the shopping cart corral 

outside of a grocery store. The shopping cart corral acts as a landmark, providing relative spatial 

information (e.g., distance and bearing) about the car’s location. Regarding the landmark-based 

navigation, its accuracy does not require the continuous presence of landmarks; instead, 

navigators can intermittently refer to landmarks when necessary (Etienne et al., 2004; Yoder et 

al., 2011).  

Path integration, also referred to as dead reckoning, is a navigation process through 

which organisms utilize cues generated by self-motion to keep track of their moving direction 

and velocity. This enables them to constantly update their position and orientation in relation to 

some known reference point (e.g., the starting point, home) as they move through their 

environment (Etienne et al., 1996; Mittelstaedt & Mittelstaedt, 1982). The self-motion cues 

include proprioceptive cues, vestibular cues, motor efference copies, and optic flow (Collett & 

Collett, 2000; Etienne & Jeffery, 2004; Kearns et al., 2002; Loomis et al., 1999; Tcheang et al., 

2011). Path integration is a prevalent navigation method among many species, including desert 

ants (Muller & Wehner, 1988; Wehner & Wehner, 1986), rodents (Etienne & Jeffery, 2004), crabs 



 4 

(Layne et al., 2003), fish (Hughes & Blight, 1999), honeybees (Dyer et al., 1993), geese (Saint 

Paul, 1982), gerbils (Mittelstaedt & Glasauer, 1991), and humans.  

Path integration operates as a continuous process, where navigators perceive and estimate 

their moving distance and orientation (akin to specific vectors) from one moment to the next. 

Due to potential estimation noise in each vector, path integration is prone to accumulating errors 

from the summation of these vectors. As a result, path integration performs reasonably well in 

smaller-scale navigation, the cumulative uncertainty and errors can become substantial 

significantly over greater distances and durations of travel (Harootonian et al., 2020; Souman et 

al., 2009). In contrast, piloting operates intermittently and is unaffected by cumulative errors 

along the navigation path, as it relies on the stored long-term memory of environmental cues 

(Cheng & Spetch, 1998; Etienne et al., 2004). 

Path integration and landmark-based navigation rely on distinct sensory inputs (self-

motion cues vs. landmarks) and can operate independently. Humans and certain non-human 

species can exclusively employ either of these processes for navigation (Collett et al., 1999; 

Hermer & Spelke, 1994). For instance, blindfolded participants, (i.e., devoid of visual 

landmarks), can accurately turn to face the initial origin after physically walking a two-leg path 

with a turn between legs (Klatzky et al., 1998). Additionally, mice can learn to navigate to 

specific locations solely using visual landmark cues presented within a virtual environment 

displayed on a single computer monitor, without any physical movement (i.e., with the absence 

of self-motion cues) (Youngstrom & Strowbridge, 2012). 

Human navigation in everyday life commonly incorporates a variety of accessible cues 

and is the outcome of the interaction between the processes of path integration and piloting. Even 

a simple activity like walking to a class in a distant building on campus may encompass 
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perceiving environmental objects and landmarks along the route, as well as sensing bodily 

motion during movement. Existing literature implies that the interaction between path integration 

and piloting is neither fixed nor enduring; rather, it is dynamic, adaptable, and guided by specific 

goals (Chen et al., 2017; Etienne et al., 1990; Zhao & Warren, 2015b). The interaction between 

path integration and piloting can be broadly categorized into two formats: cue combination and 

cue competition. In cue combination, individuals integrate spatial estimates based on self-motion 

cues and landmarks to generate an averaged estimation (Nardini et al., 2008; Zhao & Warren, 

2015b). In contrast, in cue competition, individuals exclusively rely on the estimates of one cue 

while disregarding the other. 

Regarding when the path integration and piloting systems interact, recent research (Mou 

& Zhang, 2014; Zhang et al., 2020; Zhang & Mou; 2017) has attempted to address it during 

human homing behaviors. Returning to the origin of a path, known as homing, is a fundamental 

navigation behavior (Loomis et al., 1993). Zhang et al. (2020) proposed the self-localization 

hypothesis, which speculates that navigators combine the self-motion and landmark cues in 

localizing themselves (e.g., estimating their heading) prior to determining the home location. 

Participants in their study learned the locations of five objects (one at the home location) before 

walking an outbound path starting from the origin (home). They were asked to replace these 

objects to the remembered locations when participants reached the end of the outbound path 

under four cue conditions: path-integration only (by removing the landmarks), landmark only (by 

rotating participants in place to disrupt their self-motion sense), both consistent cues and 

conflicting cues (by rotating the landmarks around participants covertly). The results of Zhang et 

al. (2020) showed that in homing behaviours the combination of path integration and piloting 
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occurs in determining navigators’ self-localization (e.g., estimating their heading), instead of 

determining the home location. 

1.2 Contributions of visual landmarks in orientation 

 Orientation in navigation generally refers to knowledge about one’s direction or heading 

with respect to the external world and being oriented within an environment is essential for 

effective navigation. When lost in an unfamiliar place (e.g., in a theme park or a shopping 

center), knowing one’s orientation can help determine the appropriate direction to head to find a 

way out. Also, a sense of direction during navigation is essential for establishing an 

understanding of the spatial relationships between different locations in space and improving the 

stability of internal representations of object location (Wang & Spelke, 2000).  

1.2.1 Dominance of visual landmarks over self-motion cues in orientation 

In humans, the utilization of visual landmarks seems to be predominant for orientation 

when they are accessible and perceived as stable (Foo et al., 2005; Mou & Zhang, 2014; Warren 

et al., 2001; Yoder et al., 2011). Mou and Zhang (2014) showed the dominance of landmarks 

over self-motion cues in determining navigators’ headings. In their study, participants learned 

object arrays at the path origin, with distal landmarks indicating directions. They walked an 

outbound path with the absence of distal landmarks after learning. They replaced objects to the 

remembered locations after navigation with the reappearance of the distal landmarks being 

rotated covertly. The results showed that participants’ heading estimates followed the rotated 

distal landmarks whereas participants’ position estimates followed the self-motion cues, 

suggesting that the rotated distal landmarks overrode the self-motion cues to dominate 

participants’ heading estimates. Piloting reset the heading representations produced by path 

integration might be attributed to the fact that path integration is prone to accumulating errors 
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during continuous locomotion. In contrast, piloting is not subject to accumulated errors during 

continuous locomotion and can be considered a method to intermittently correct the accumulated 

errors in path integration (Etienne et al., 2004; Foo et al., 2005; Kelly et al., 2008; Zhang & Mou, 

2019). 

The dominance of visual landmarks over self-motion cues in orientation was supported 

by neuroscience studies (Goodridge & Taube, 1995; Taube & Burton, 1995; Zugaro et al., 2000). 

Specifically, head direction cells displayed more consistent firing patterns in response to 

landmarks when directional information from self-motion cues conflicted with the directional 

information derived from environmental landmarks.  

1.2.2 Distal and proximal visual landmarks in orientation 

Landmarks are often considered to fall into two broad categories based on their proximity 

to the destination: close or proximal landmarks, and distant or distal landmarks (O'Keefe & 

Nadel, 1978). In general, distal landmarks are the cues located beyond the immediate 

surroundings of humans and animals. They can be observed from various angles and distances, 

often attached on or outside the behavioral enclosure, and cannot be directly contacted (Chan et 

al., 2012; Cressant et al., 1997; O’Keefe & Speakman, 1987; Parron et al., 2004). Distal 

landmarks are too distant to pinpoint a specific position in space (Jacobs & Schenk, 2003; 

Knierim & Hamilton, 2011). In contrast, proximal landmarks are objects that are located within 

immediate surroundings. They are visible only from a limited area and specific directions, 

usually part of the apparatus itself, and can be directly approached during exploration (Chan et 

al., 2012; Parron et al., 2004). Proximal landmarks allow precise encoding of a location in space 

(Cheng & Spetch 1998; Wilson & Alexander, 2008). During a picnic in the park, for example, a 
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water tower and a church in the distance can serve as distal landmarks and a specific gazebo and 

trees near the picnic area can function as proximal landmarks. 

Although both distant and proximal landmarks are commonly used to support navigation 

behaviors, previous research has emphasized the predominant role of distal landmarks in 

providing orientational information, while proximal landmarks primarily offer locational 

information during navigation (Buckley et al., 2015; Bullens et al., 2010; Doeller & Burgess, 

2008; Jacobs & Schenk, 2003; see Knierim & Hamilton, 2011, for a review).  

These conclusions are primarily derived from neuroscientific evidence obtained through 

animal studies. In scenarios where familiar distal and proximal landmarks were subjected to 

opposing rotations, indicating conflicting orientations (i.e., double-rotation method), it was 

observed that distal cues exerted greater control than proximal cues over the preferred firing 

directions of the head direction cells and the firing fields of place cells (Knierim, 2002; Shapiro 

et al., 1997; Tanila et al., 1997; Yoganarasimha et al., 2006). Furthermore, other research 

demonstrates that the rotation of a set of objects situated near the periphery of the behavioral 

arena correspondingly resulted in the rotation of place fields (Cressant et al., 1999; Muller & 

Kubie, 1987); in contrast, the rotation of the same objects, when located near the center of the 

arena, failed to exert such a control (Cressant et al., 1997). Although distal cues are demonstrated 

to be the primary source of orientation information in animal studies, there has been research 

indicating the opposite (Brown & Skaggs, 2002; Renaudineau et al., 2007), implying that the 

privileged status of distal cues over proximal ones in determining orientation may not be 

absolute but rather flexible and contingent on other factors. 

The rationale behind this proposition is rooted in the idea that distal landmarks offer a 

relatively consistent and precise reference for orientation as individuals navigate within a local 
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environment. By contrast, proximal landmarks tend to provide less precise orientational 

information during individuals’ navigation because they are more subject to self-induced motion 

parallax (Benhamou & Poucet, 1998; Hebb, 1949; Nadel & Hupbach, 2006; O’Keefe & Nadel, 

1978). For example, when people move around their picnic area, their locomotion only leads to 

minor directional changes with respect to a distal tower but more significant directional changes 

in relation to the nearby tree. 

1.2.3 The purposes of Study 1 

In the realm of human navigation, however, to our knowledge, there is a lack of direct 

empirical studies focused on examining the roles of distal and proximal landmarks in 

determining human orientations and the underlying mechanisms. Study 1 in Chapter 2 aims to 

close this gap. Experiment 1 of Study 1 was designed to investigate whether distal landmarks 

take precedence over proximal ones as orientation cues for humans and the crucial factors that 

influence the role of distal and proximal landmarks in providing spatial orientation. Experiments 

2 and 3 of Study 1 were designed to identify the circumstances in which proximal landmarks can 

prevail over distal ones for orientations. 

1.3 Systematic errors in human path integration  

Certain animals, like desert ants and nocturnal hamsters, may have developed remarkable 

path integration abilities, allowing them to navigate back to their nest or home location with 

impressive accuracy (Müller & Wehner, 1988; Séguinot et al., 1993; Wehner & Wehner, 1986; 

Wittlinger et al., 2006), humans may possess coarse path integration abilities (Foo et al., 2005; 

Zhao & Warren, 2015a). Humans often exhibit systematic distortions in homing performance 

when relying on path integration, especially as the complexity of the path increases (Kearns et 

al., 2002; Kelly et al., 2008; Klatzky et al., 1999; Loomis et al., 1993). 
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The widely used task for investigating human path integration is known as the triangle-

completion task. In this task, participants walk along an outbound path composed of two linear 

segments with a turn angle between them. Subsequently, they return to or point toward the 

starting point of the outbound path (Klatzky et al., 1998; Loomis et al., 1993). Participants’ 

responses of the inbound path (i.e., homing vector) include the turn angle and leg length (see 

Figure 1.1). Participants usually overshot small values (illustrated in Figure 1.1A), and 

conversely, undershot large values (illustrated in Figure 1.1B), showing a compression pattern 

relative to the correct values of both turn angle (𝛽) and path length (PO). This systematic 

distortion was distinguished from random errors (Chrastil & Warren, 2017; Harootonian et al., 

2020).  

 

Figure 1.1. Illustration of the systematic distortion in performing  triangle completion. A 

hypothetical participant walks a path starting at home location O, turns at T, stops at P, with the 

heading of h, and then pinpoints the home location at Oresp. 𝛽 and PO denote the correct values 

of the inbound turn angle and path length to complete the triangle. 𝛽resp and POresp denote the 

participant’s actual response of inbound turn angle and path length. (A) An illustration of 
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participants overshooting the relatively small inbound angle and length that they were supposed 

to produce. (B) An illustration of participants undershooting the relatively large inbound angle 

and length that they were supposed to produce.  

 

The triangle-completion task has been deconstructed into three primary cognitive stages 

to help identify the source of the systematic errors (Fujita et al., 1993; Loomis et al., 1993). 

These stages involve: 1) Encoding the length and angles along the outbound path, requiring 

sensing the traversed path and forming the internal representations of the outbound path; 2) 

Integrating these internal representations to calculate desired inbound responses; and 3) 

Executing the desired inbound response. It is possible for systematic errors to accumulate during 

any of these processes.  

1.3.1 Models of path integration 

Previous work has proposed different models to account for the nature of the systematic 

bias observed in human path integration, and the evidence appears inconclusive (Chrastil & 

Warren, 2021; Fujita et al. 1993; Harootonian et al., 2020). The encoding-error model, a well-

known model of path integration proposed by Fujita et al. (1993), suggests that systematic errors 

in the inbound response are due to errors in encoding of the outbound paths and there is no 

systematic error in either the integration of path segments via cognitive trigonometry or 

execution of the desired inbound responses. Moreover, the encoding-error model assumes that 

leg lengths are encoded by a constant linear encoding function and turn angles are encoded by 

another constant linear encoding function, both of which determine the corresponding encoded 

values based on the actual values of the outbound path. On one hand, several studies have fit 

their empirical data to the encoding-error model and found that the model accounts for a large 
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portion of the variance (Klatzky et al., 1999; May & Klatzky, 2000; Péruch et al., 1997; 

Wartenberg et al., 1998). On the other hand, there is evidence suggesting that several of its 

foundational assumptions do not hold up to scrutiny. Both the assumption of no execution error 

and the assumption of a constant encoding function have been subjected to questioning (Bakker 

et al., 1999, 2001; Chrastil & Warren, 2017; Harootonian et al., 2020; Klatzky et al., 1990, 

1999). 

Recent work, however, suggests that executing the inbound responses makes the largest 

contribution to systematic errors in path integration (Chrastil & Warren, 2021). Chrastil and 

Warren (2021) tested models of encoding errors solely (i.e., encoding-error model), execution 

errors solely (i.e., execution-error model), and both types of errors. They used distance and angle 

reproduction tasks to estimate participants’ encoding functions and execution functions for 

triangle-completion tasks. Then the three models, using the corresponding functions (e.g., an 

encoding-error model used the encoding functions), generated the predictions for the inbound 

response errors in the triangle-completion task. The results showed that the execution-error 

model outperformed the encoding-error model in predicting path integration errors. Furthermore, 

the model incorporating both types of errors did not outperform the execution-error model. These 

results suggest that the observed systematic errors in inbound responses were sufficiently 

explained by the systematic errors in executing the inbound path, challenging the long-standing 

assumption that errors reflect encoding alone.  

1.3.2 The purposes of Study 2 

The purpose of Study 2 is to identify the potential sources of the systematic biases in 

human path integration using computational modeling. Study 2 compared three plausible 

theoretical models that assume that systematic errors in human path integration occur in the 
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encoding outbound path solely (encoding-error model), executing the inbound responses solely 

(execution-error model), and both (bi-component model), respectively. Different from the typical 

triangle-completion task with only one inbound response (i.e., the homing vector) for each 

outbound path, the triangle-completion task used in this study required participants to indicate 

three learned locations (including the home location) during the response phase. Previous studies 

(Mou & Zhang, 2014; Zhang et al., 2020) have indicated that multiple inbound responses enable 

to recover participants’ encoded positions and headings at the endpoint of the outbound path. I 

conjectured that the contribution of encoding and execution processes to the systematic errors in 

the human triangle-completion task can be separated by using multiple inbound responses for 

each outbound path.
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2.1 Abstract 

A prevailing argument posits that distal landmarks dominate over proximal landmarks as 

orientation cues. However, no studies have tested this argument or examined the underlying 

mechanisms. This project aimed to close this gap by examining the roles of relative cue precision 

and prior knowledge in cue preference. Participants learned object locations with proximal and 

distal landmarks in an immersive virtual environment. After walking a path without seeing 

objects or landmarks, participants disoriented themselves by spinning in place and pointed to the 

objects with the presence of a proximal landmark being rotated -50°, a distal landmark being 

rotated 50°, or both (Conflict). Heading errors were examined. Experiment 1 manipulated the 

relative cue precision. Results showed that in Conflict condition, the observed weight on the 

distal cue (exceeding 0.5) changed with but remained higher than the weight predicted by the 

relative cue precision. This indicates that besides the relative cue precision, prior knowledge of 

distal cue dominance also influences orientation cue usage. In Experiments 2 and 3, participants 

walked a path stopping at one object location. Participants were informed of it explicitly in 

Experiment 2 but not in Experiment 3. Results showed that distal cue dominance still occurred in 

Experiment 3. However, in Experiment 2, proximal cue dominance appeared, and it was not 

predicted by the relative cue precision. These results suggest that prior knowledge of proximal 

cue dominance might have been invoked by the instruction of locations. Consistent with the 

Bayesian inference model, human cue usage in orientation is determined by relative cue 

precision and prior knowledge. The choice of prior knowledge can be influenced by instructions. 

 

Keywords: Spatial orientation, distal landmark, proximal landmark, path integration, navigation 



 26 

2.2 Introduction 

To navigate successfully through an environment, people need to know their position 

(where they are located) and heading (which direction they are facing). To achieve these goals, 

people may utilize various spatial cues. On one hand, navigators can utilize cues derived from 

self-motion to track their travel direction and speed, allowing them to update their position and 

heading relative to a specific point within the environment. This process is referred to as path 

integration (Etienne & Jeffery, 2004; Mittelstaedt & Mittelstaedt, 1982). On the other hand, 

humans, being highly visual beings, have the remarkable ability to rely on previously encoded 

visual landmarks in the environment to determine their position and heading. This process is 

known as landmark-based navigation (Foo et al., 2005; Wehner et al., 1996) or piloting 

(Gallistel, 1990). 

Visual landmarks have been classified into two main categories based on their proximity 

to the navigator: proximal landmarks and distal landmarks (O’Keefe & Nadel, 1978). Distal 

landmarks, generally located beyond the immediate “working space” of navigators, are cues that 

typically lie outside the enclosure and cannot be directly contacted with (Cressant et al., 1997; 

O’Keefe & Speakman, 1987; Parron et al., 2004). Distal landmarks are too far away to pinpoint a 

specific position in space (Jacobs & Schenk, 2003). In contrast, proximal landmarks refer to cues 

that can be directly approached during exploration within the immediate space of navigators 

(Parron et al., 2004), enabling precise encoding of spatial locations in space (Cheng & Spetch, 

1998; Wilson & Alexander, 2008). During camping, for instance, while a mountain in the 

distance can be regarded as a distal landmark, a camping tent at the campsite can function as a 

proximal landmark. 
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While distal and proximal landmarks are commonly employed to facilitate navigational 

behavior, previous research has highlighted the different roles of these landmarks. In particular, 

distal landmarks primarily offer orientation information, whereas proximal landmarks primarily 

offer positional information during navigation (Buckley et al., 2015; Bullens et al., 2010; Doeller 

& Burgess, 2008; Jacobs & Schenk, 2003; see Knierim & Hamilton, 2011, for a review).  

These conclusions are primarily based on neuroscientific evidence from animal studies, 

involving neurons that fire at precise spatial locations as an animal navigates (termed place cells) 

and neurons that fire when the animal’s head points in a certain direction (termed head-direction 

cells). Some studies used a double-rotation method, where proximal and distal cues were rotated 

in opposite directions and showed that the distal cues exert greater control than proximal cues 

over the preferred firing directions of head direction cells and the firing fields of place cells 

(Knierim, 2002; Shapiro et al., 1997; Tanila et al., 1997; Yoganarasimha et al., 2006). Other 

studies only rotated three objects within a high-walled circular platform. They showed that the 

rotation of the objects controlled the head direction cell of rodents only when the objects were 

placed at the periphery of the platform but not when they were placed at the center of the 

platform (Cressant et al., 1997). Furthermore, Zugaro et al. (2001) also showed that the control 

of the rotating objects placed at the periphery of the platform disappeared when the walls were 

removed, allowing the rat to see the curtains in the surrounding square room. The preferred 

directions of the head direction cells did not align with the objects but instead remained fixed 

relative to the room. These findings suggest that the head-direction system may automatically 

utilize the most distal cues to establish orientations. 

Can we generalize this conclusion that distal landmarks control orientations to human 

navigation? Unfortunately, there is no direct empirical evidence available to address this 
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question, to the best of our knowledge. The differences between rodent and human visual 

systems may impact how each navigates using visual landmarks (Ekstrom, 2015). Rodents 

possess a broader field of view but lower visual acuity than many other mammals (Douglas et al., 

2005; Wallace et al., 2013), and they likely lack a specialized brain system for object processing 

akin to the high-resolution ventral stream in humans, which processes detailed object 

information through multiple stages (Kravitz et al., 2013). However, some researchers have put 

forward a theoretical argument suggesting that distal landmarks may still play a more significant 

role than proximal landmarks in determining human orientations (Nadel & Hupbach, 2006). The 

reasoning behind this theory is that distal landmarks, being situated farther away, provide a 

relatively constant orientation reference as individuals navigate within a local environment. For 

example, when people move around within their campsite, their locomotion only results in minor 

directional changes relative to a distant mountain. On the other hand, proximal landmarks offer 

less precise directional information due to the potential effects of self-induced motion parallax. 

When people move within their campsite, their locomotion can cause significant directional 

changes in relation to the camping tent, including the opposite directions before and after 

moving, leading to varying orientation estimates (Benhamou & Poucet, 1998; Hebb, 1949; Nadel 

& Hupbach, 2006; O’Keefe & Nadel, 1978). Thus, the greater precision of distal cues used for 

orientation leads to the dominance of distal cues in determining orientation.  

This theoretical argument has been widely utilized in the field of human spatial cognition. 

It has been employed post-hoc to explain the notable finding that human toddlers relied on color 

walls in a large rectangular room but not in a small room to distinguish between two diagonal 

corners that are identical based on the room geometry (e.g., Cheng & Newcombe, 2005; 

Learmonth et al., 2002). Moreover, it has served as a foundational assumption in designing 
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paradigms to study human spatial behaviors (e.g., Doeller & Burgess, 2008; Padilla et al., 2017; 

Zhang & Mou, 2017). For instance, Doeller and Burgess (2008) employed distal mountains as 

orientation cues while examining how a boundary (a circular wall) and a within-boundary 

landmark (a traffic cone) competed with each other in encoding the locations of objects within 

the boundary. 

Given the importance of this theoretical argument, it is surprising that there is no human 

study that systematically and directly investigates the extent to which distal landmarks dominate 

over proximal landmarks in determining orientations during human navigation. The current study 

was conducted to close this gap.  

2.2.1 Explaining distal cue dominance by three hypotheses 

We began by investigating whether the cue precision, which determines the dominance of 

distal landmarks, is dependent on or independent of a specific navigation environment. We 

proposed three hypotheses to guide this investigation. The first hypothesis, referred to as the 

relative-precision hypothesis, stipulates: the usage of distal and proximal cues for orientation is 

based on the relative precision of specific cues in a specific environment. The precision of a cue 

can be assessed by its inverse relationship with the variability observed when people estimate 

orientation using that cue alone (Chen et al., 2017; Cheng et al., 2007; Nardini et al., 2008). The 

usage of distal and proximal cues for orientation can be measured by relative distances between 

the observed heading estimates and the headings indicated by two conflicting cues. According to 

this hypothesis, when two cues are available to the navigator, they sense and evaluate the 

precision associated with each orientation cue and compare them to obtain their respective 

relative precision. The navigators’ reliance on each cue in determining orientations is directly 

determined by its relative cue precision. Specifically, if we manipulate the relative precision of 
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two orientation cues through experimental settings, this hypothesis predicts that the observed 

reliance on these cues will also change accordingly. 

In our everyday navigation scenarios, we may have engaged in the process of evaluating 

and comparing the relative precision of specific orientation cues, described in the first 

hypothesis, across numerous occasions.  Consequently, we might have developed or acquired a 

predisposition (prior belief) to favor distal landmarks when estimating orientation. Building on 

this idea, we propose the second hypothesis, referred to as the prior-beliefs hypothesis.  

According to this hypothesis, the reliance on distal cues in determining orientations can be 

attributed to the prior beliefs held by navigators, which prioritize distal landmarks over proximal 

landmarks because distal landmarks are generally more precise in specifying directions. These 

prior beliefs are top-down in nature and exist prior to the availability of any specific landmark 

cues in a given navigation scenario, likely to enhance efficiency and reduce computational costs 

(McNamara & Chen, 2022).  Specifically, distal cues are always preferred, and the degree of cue 

preference is not sensitive to manipulation of the relative precision of two orientation cues 

through experimental settings. Therefore, this hypothesis predicts that the observed reliance on 

these cues will remain fixed across different levels of relative cue precision. The influence of 

prior beliefs and knowledge has been the subject of investigation in human spatial memory for a 

long time (Huttenlocker et al., 1991; Sampaio et al., 2020) and has been extended to human 

navigation in recent years (Harootonian et al., 2020; Negen et al., 2020; Petzschner et al., 2012; 

Petzschner & Glasauer, 2011; Roy et. al, 2023; Wang et al., 2018; Wang & Mou, 2020; also see 

Newman et al., 2023 for a review).  

The third hypothesis takes into account both relative precision and prior beliefs, and it is 

referred to as the dual-factor hypothesis. This hypothesis speculates that both the relative cue 
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precision and prior beliefs regarding the superiority of distal cues influence the usage of both 

distal and proximal landmarks for orientation. Before being presented with a specific 

navigational environment, navigators may hold beliefs, knowledge, and expectations about 

certain types of landmarks being more likely to be used for orientation compared to others. 

Subsequently, when navigators perform navigation tasks in a specific environment and need to 

determine orientation within it, they evaluate the precision of specific landmarks as orienting 

cues while also considering their preexisting prior beliefs. Navigators combine their prior 

knowledge with the information they sense from the navigation scenario to estimate orientations 

using these landmarks. 

2.2.2 Explaining distal cue dominance under a Bayesian lens 

According to the Bayesian inference (Wagenmakers, 2007),  

P(Hd|E)

P(Hp|E)
=

P(E|Hd)

P(E|Hp)
×

P(Hd)

P(Hp)
 .     (1) 

In general, Hd and Hp refer to two competing hypotheses1. E refers to evidence to 

compare hypotheses.  

In the current context, Hd could be explained as "the hypothesis of using distal 

landmarks” and Hp could be explained as “the hypothesis of using proximal landmarks”. E could 

be explained as evidence people perceive in the experimental environment to evaluate their 

hypotheses of using distant and proximal cues. As we only consider participants’ using distal or 

proximal cues, P(Hp|E) = 1 − P(Hd|E), P(Hp) = 1 − P(Hd).  

 

1 The two competing hypotheses are two generic hypotheses in Bayesian inference, not related to the three 

hypotheses we proposed above. 
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The ratio  
P(Hd|E)

P(Hp|E)
 is termed as the posterior odds. The ratio 

P(Hd)

P(Hp)
 is termed as the prior 

odds. The ratio 
P(E|Hd)

P(E|Hp)
 is termed as the likelihood ratio or the Bayes factor. Equation 1 can be 

rewritten as  

posterior odds =  likelihood ratio × prior odds   (2) 

We assume that participants’ cue usage in a given experiment reflects the posterior odds. 

As discussed earlier, participants’ cue usage is measured by the weights assigned to each cue in 

the conflict condition (i.e., Wd and Wp, weights for distal cues and proximal cues respectively, 

Wd + Wp = 1). Thus, we get 

posterior odds =
Wd

Wp
 .       (3) 

Previous studies have indicated that when a flat prior is assumed (noted as prior=1), the 

weights assigned to each cue are determined by the relative cue precision and defined to be the 

reciprocal of the variances of each cue (Chen et al., 2017; Nardini et al., 2008). Thus, 

 
Wd

Wp

𝑝𝑟𝑖𝑜𝑟=1
=

𝜎𝑝
2

𝜎𝑑
2, here  

Wd

Wp

𝑝𝑟𝑖𝑜𝑟=1
refers to 

Wd

Wp
 when a flat prior is assumed. According to Equation 

3, the posterior odds should also be the reciprocal of the variances of each cue., i.e., 

posterior odds 𝑝𝑟𝑖𝑜𝑟=1 =
𝜎𝑝

2

𝜎𝑑
2. In addition, when a flat prior is assumed, the likelihood ratio is the 

same as the posterior odds, i.e., posterior odds 𝑝𝑟𝑖𝑜𝑟=1 = likelihood ratio𝑝𝑟𝑖𝑜𝑟=1. Therefore, 

when a flat prior is assumed, likelihood ratio 𝑝𝑟𝑖𝑜𝑟=1 =
𝜎𝑝

2

𝜎𝑑
2. Note that the likelihood ratio should 

be independent of the prior odds (i.e., likelihood ratio = likelihood ratio 𝑝𝑟𝑖𝑜𝑟=1), we get  

likelihood ratio =
𝜎𝑝

2

𝜎𝑑
2       (4) 

From Equations 2, 3, and 4, we get  
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Wd

Wp
=

𝜎𝑝
2

𝜎𝑑
2  × prior odds     (5) 

Furthermore, we conceive of prior odds as the remembered prior knowledge of a 

collective of 
𝜎𝑝

2

𝜎𝑑
2.  In particular, the prior knowledge can be specified as the geometric average of 

all 
𝜎𝑝

2

𝜎𝑑
2 that participants remember based on the experimental context.  

prior odds = (∏ (
𝜎𝑝

2

𝜎𝑑
2)

𝑘

𝑛
𝑘=1 )

1

𝑛
                                                    (6)  

Here, (
𝜎𝑝

2

𝜎𝑑
2)

𝑘

is a collective of cue variance ratios that people remembered, different from 

the 
𝜎𝑝

2

𝜎𝑑
2 that participants perceive in the current experiment. 

In conclusion, Equation 5 presents a comprehensive Bayesian inference model that 

suggests cue preference is determined by both the relative cue precision and prior odds.  If we 

assume 
Wd

Wp
=

𝜎𝑝
2

𝜎𝑑
2 × prior odds > 1, this model aligns with the two-factor hypothesis discussed 

earlier. Similarly, if we assume 
Wd

Wp
=

𝜎𝑝
2

𝜎𝑑
2 > 1, it represents the relative-precision hypothesis. If we 

assume  
Wd

Wp
= prior odds > 1, it characterizes the prior-knowledge hypothesis. 

2.2.3 Is proximal dominance possible? 

 Although distal cues are demonstrated to be the primary source of orientation information 

in animal studies, there has been research indicating the opposite (Brown & Skaggs, 2002; 

Renaudineau et al., 2007). Renaudineau et al. (2007) conducted a study where they recorded the 

activity of place cells in rats while they engaged in a task of chasing food pellets on a circular 

platform containing three distinct proximal objects surrounded by a curtain with three distal 

visual patterns attached. The manipulation of both distal and proximal cue sets created a 180° 
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mismatch. Surprisingly, the results showed that although most place cells were not influenced 

significantly by either proximal or distal cues (i.e., remapping), the remaining cells were 

predominantly influenced by the proximal objects. This finding challenges the notion of distal 

cues' absolute dominance and suggests that other factors, such as the salience of landmarks, 

could modulate the effect. Renaudineau et al. (2007) used 3D objects as proximal cues on the 

platform, in contrast to other studies that utilized tactile surfaces as proximal cues (Knierim, 

2002; Shapiro et al., 1997; Yoganarasimha et al., 2006). These 3D objects, acting as potential 

obstacles, might have hindered the rats' movement on the platform, thus carrying a higher level 

of salience. Consequently, the privileged status of distal cues over proximal ones in determining 

orientation may not be absolute but rather flexible and contingent on other factors. 

Drawing inspiration from these intriguing findings, the second purpose of the current 

study is to investigate the specific circumstances under which proximal landmarks could prevail 

over distal ones in indicating orientations during human navigation. 

 The current study specifically focused on utilizing one single rotational symmetrical 

proximal landmark compared with distal landmarks. This focus was to eliminate any orientation 

information derived from the arrangement of multiple objects or the intrinsic orientation of a 

polarized object. While a single rotational symmetrical proximal landmark alone may not 

provide direct orientation information, the vector (comprising distance and direction) between 

the proximal landmark and the participant's own location can offer relevant orientation cues 

(Knierim & Hamilton, 2011). Real navigation scenarios often involve situations where 

individuals are aware of their position but uncertain about their orientation. For example, when 

exiting a subway station, individuals should know they are at the station, even if they are unsure 
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of their exact orientation at that moment. The vector between their current location and a familiar 

landmark can play a crucial role in helping them regain their orientation after feeling disoriented.  

Therefore, considering the vectors between the positions of the navigators and a single 

proximal landmark is important for investigating whether distal landmarks dominate over 

proximal landmarks in orientation. This approach allows researchers to examine the influence of 

the relative position and direction of the proximal landmark in relation to the navigators, which 

can provide valuable insights into how individuals use different cues for orientation in real-world 

navigation scenarios. 

In the literature, when researchers examine the roles of different visual cues in 

determining orientations, they often ensure that participants are deliberately disoriented, 

effectively preventing self-motion information from indicating orientations (e.g., Learmonth et 

al., 2002). However, it is important to note that disorientation could potentially impair human 

orientation representation while not necessarily affecting human position representations (Zhang 

et al., 2020). For instance, individuals may stand three meters north of a camping tent and then 

spin in place with their eyes closed. After sufficient spinning, they may find it difficult to 

accurately indicate their orientation with eyes remaining closed, but they would still be aware of 

their position - knowing that they are standing three meters north of the camping tent. Thus, 

people who lose their orientation but have position representations after spinning in place could 

still utilize the vectors between their positions and a single proximal landmark to regain their 

orientation when seeing the landmark. Their preference for distal landmarks or a proximal 

landmark in orientation could shed lights on whether distal landmarks dominate over proximal 

landmarks in orientation. 
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Is there a circumstance where people who lose their orientation but have position 

representations (e.g., when exiting a subway or after spinning in place) prefer one proximal 

landmark over distal landmarks to regain their orientation? We hypothesize that a proximal 

landmark may be preferred for orientation when navigators possess a clear and precise 

representation of their positions in relation to the proximal landmark. Our rationales are as 

follows. 

As mentioned earlier, self-motion cues play a significant role in helping navigators 

estimate their position relative to fixed reference points during locomotion. This process, known 

as path integration, allows navigators to continuously track their positions relative to a familiar 

proximal landmark in the environment, represented by a vector pointing from their estimated 

position to the proximal landmark. By using this vector, navigators can determine their 

orientations in the environment. It is argued that path integration primarily operates in the local 

environment rather than the global environment (Lei & Mou, 2023; Wang & Brockmole, 2003). 

As a result, the process of path integration motivates navigators to encode the spatial 

representation of the local environment more extensively, enhancing the salience of the proximal 

landmark within that particular area. Based on this understanding, we conjecture that when the 

vector originating from their own position and pointing towards a nearby familiar landmark 

becomes highly salient and unambiguous, navigators are more likely to rely directly on this 

vector rather than seeking out distal landmarks to determine their orientations within the 

environment. 

2.3 Current study and General Methods 

Experiment 1 of the current study was designed to investigate whether navigators’ 

reliance on distal and proximal landmarks for orientation is determined by relative cue precision, 
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prior beliefs, or a combination of both factors. Experiments 2 and 3 of the current study were 

designed to identify the circumstances in which proximal landmarks can prevail over distal ones 

for orientation. 

All experiments were conducted within immersive virtual reality environments. The 

experimental paradigm was similar to those used in previous studies (Mou & Zhang, 2014; 

Zhang et al., 2020). Participants were positioned at the path origin and learned the locations of 

five target objects in the presence of both proximal and distal landmarks. After learning, all the 

landmarks and objects disappeared, and the participants walked an outbound path until reaching 

the testing position (the endpoint of the path). Participants were disoriented at the endpoint by 

spinning in place and then asked to place the targets back to their original locations.  

Spinning in place at the end of the path was to disrupt the heading estimates based on 

self-motion cues. It did not impair the position estimates from self-motion so that the vector 

between participants’ position and the proximal landmark could indicate orientations. Following 

the methods developed by previous studies (Mou & Zhang, 2014; Zhang et al., 2020), we 

calculated participants’ representations of their headings and positions from participants’ 

responses of replacing objects. We then compared the calculated heading estimates in different 

cue conditions to examine the relative importance of distal and proximal landmarks. 

Participants replaced objects in three cue conditions: distal-landmark-only (DLM) 

condition, proximal-landmark-only (PLM) condition, and conflict-landmark (Conflict) condition. 

Specifically, in the DLM condition, one of the three distal landmarks reappeared at random, but 

its location was rotated 50° clockwise (clockwise is positive in the current project) around the 

center of the circular wall. In the PLM condition, the proximal landmark reappeared, but its 

location was rotated 50° counter-clockwise (i.e., -50°) around the endpoint of the path. In the 
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Conflict condition, both a distal landmark rotated 50° and a proximal landmark rotated -50° 

reappeared. 

In the DLM and PLM conditions, participants were hypothesized to rely on the rotated 

distal landmark (subjected to 50° rotation) or proximal landmark (subjected to -50° rotation) to 

estimate their heading during testing. The angular difference between the direction of the actual 

heading (h) and the estimated heading (h’) is referred to as the heading error, η, (i.e., η = h’ - h). 

Consequently, the predicted heading error based on the rotated distal landmarks in the DLM 

condition would be -50° (i.e., 𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝐷𝑙𝑚 = -50°) (see the illustration in Figure 2.1) and the 

predicted heading error based on the rotated proximal landmarks in the PLM condition would be 

50° (i.e., 𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝑃𝑙𝑚 = 50°).  

 

Figure 2.1. A hypothetical participant after disorientation sees a landmark that has been rotated 

with a degree of X (e.g., 50º). If their real heading is h and they think the reappeared landmark is 

in its original direction, then their estimated of their heading (h’) should be –X (e.g., -50°) 

relative to h. In other words, the heading error η (h’ – h) is –X (e.g., -50º) (i.e., η = h’ – h = 0º - 

50º).  
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We calculated the relative variance of the heading errors in the DLM and PLM conditions 

to reflect the relative cue precision. We then calculated the predicted weight on the distal cue 

(𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚)  based on the relative cue precision. 

                                                  𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 =
𝜎𝑃𝑙𝑚

2

𝜎𝑃𝑙𝑚
2  + 𝜎𝐷𝑙𝑚

2                                              (7) 

Where 𝜎𝑃𝑙𝑚
2   and 𝜎𝐷𝑙𝑚

2   are the variances of heading estimates measured in the PLM and DLM 

conditions, respectively.  

We measure the observed weight assigned to the distal landmark cue (𝑊Observed_Dlm) for 

heading estimates in the Conflict condition for each participant using the following equation 

(Equation 12 in Chen et al., 2017; Equation 1 in Nardini et al., 2008):        

         𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = 
𝜂𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐶𝑜𝑛𝑓 − 𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝑃𝑙𝑚

𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝐷𝑙𝑚 
− 𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝑃𝑙𝑚

    (8)        

Where 𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝐷𝑙𝑚 = -50° and 𝜂𝑃𝑟𝑒𝑑𝑖𝑐𝑡_𝑃𝑙𝑚= 50°. 𝜂𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐶𝑜𝑛𝑓 denotes the observed heading 

error in the Conflict condition. E.g., a 𝜂𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐶𝑜𝑛𝑓  of -50° indicates that participants rely 

solely on the rotated distal cue for heading estimates in the Conflict condition, assigning a weight 

of 1 to the distal cue. 

We compared the weights assigned to the distal cue based on their relative precision 

(𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) with the observed weights of the distal cue (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) in the Conflict 

condition. Any difference between these two weights would indicate that prior knowledge 

contributes to cue usage. For example, prior knowledge that distal landmarks are more precise 

than proximal landmarks in determining orientation (i.e., prior odds>1) would lead to a larger 

observed weight (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) than the predicted weight (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚). Wang et al. (2018) 

used a similar approach to demonstrate that the knowledge of a street configuration being more 
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stable than a single building led to a larger observed weight to the street layout than the predicted 

weight to the street based on the relative cue precision in a conflicting condition. 

2.4 Experiment 1 

The purpose of Experiment 1 was to investigate whether the usage of distal and proximal 

landmarks for orientation is due to the relative cue precision (i.e., relative-precision hypothesis), 

prior beliefs in the superiority of the distal cue (i.e., prior-belief hypothesis), or involves a 

combination of both factors (i.e., dual-factor hypothesis). We assumed that a proximal landmark 

further away from the participants, given similarly precise representations of participants’ 

positions, could provide more precise orientation information based on the vector between the 

proximal landmark and participants’ positions. When the precision of the distal cue is fixed, a 

further proximal landmark could lead to a higher relative precision of the proximal landmark or a 

lower relative precision of the distal cues. Accordingly, we manipulated the relative cue precision 

by using a longer distance (3.2m in Experiment 1a)2 or a shorter distance (1.6m in Experiment 

1b) between the testing position and the proximal landmark, respectively. 

Figure 2.2 illustrates the predictions on the results of Experiments 1a and 1b based on the 

three hypotheses. All hypotheses had the same prediction on the predicted weight. In particular, 

𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 should be smaller for a longer distance (3.2m) as a further proximal landmark 

could lead to a lower relative precision of the distal cues. However, these three hypotheses 

differed in their prediction about the observed weight. According to the relative-precision 

hypothesis, which claims that the utilization of distal landmarks as orienting cues is solely based 

 

2 We did not randomly assign participants to the conditions of longer or shorter distance. Therefore, we use 

Experiments 1a and 1b. 
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on considerations of relative cue precision, 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 would align with 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚. 

According to the prior-knowledge hypothesis, which claims that the dominance of distal cues is 

driven only by the prior knowledge that distal landmarks are superior for orientation, 

𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 would not be influenced by variations in 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚.  According to the dual-

factors hypothesis, which claims that both of the above contribute to the utilization of orienting 

cues, 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 would change in accordance with variations in 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 but would 

exceed 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 due to extra preference for distal cues imposed by prior knowledge. 

 

 

Figure 2.2. As the distance between the testing position and the proximal landmark varies in 

Experiments 1a and 1b, the predicted relationship between the weights assigned to the distal cue 

based on its relative precision (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) with the observed weights of the distal cue 

(𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) based on the three different hypotheses. (A) relative-precision hypothesis. (B) 

prior-belief hypothesis. (C) dual-factor hypothesis. The relative precision of the distal cue (i.e., 

𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 shown in red bars) was manipulated by the experimental setup and thus 

consistent across all three hypotheses. 
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2.4.1 Method 

2.4.1.1 Participants. In Experiment 1a and Experiment 1b, each had 28 undergraduate 

students3 from the University of Alberta participating (14 males). They received course credits as 

compensation for their participation. This study was approved by the University of Alberta 

Research Ethics Board and all participants provided written informed consent. The sample size 

of this study was chosen by assuming a medium effect size (Cohen’s dz = 0.5) to compare the 

predicted and observed weights using a paired t test. We used a sample size of 28 participants to 

reach a power of 72%4 at the 0.05 level for a two-tailed and paired t-test (find the MATLAB 

code for the power analysis at https://doi.org/10.7939/r3-na1j-g302).  

2.4.1.2 Materials and design. The physical experimental space was a 4 × 4 m room. A 

virtual environment was rendered using WorldViz Vizard software (Santa Barbara, California). 

The environment was displayed using a head-mounted display (HMD, Oculus Rift S) with a 115º 

diagonal field of view, a resolution of 1280 × 1440 pixels per eye, and an 80 Hz refresh rate. 

Participants’ head positions and orientations were tracked with an InterSense IS-900 (InterSense, 

Inc., MA) motion tracking system. To mask possible acoustic cues for orientation, white noise 

was played via HMD, and four fans were dispersed and positioned along the periphery of the 

experimental room, operated in rotation mode to generate noise during the whole experiment in 

all conditions. 

 

3 About 20% of participants dropped out due to motion sickness and were replaced. 

4 We adopted a power value above 70% but below 80% because we chose to use multiple experiments to reduce the 

chances of false positives and false negatives. 
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The virtual environment (see a screenshot in Figure 2.3A) had a grassy ground plane and 

a circular wall with a radius of 50 meters and a height of 10 meters. The center of the circular 

wall was also the center of the physical room. 

Three distinctive items (i.e., a grey tower, a yellow pillar, and a black lamp, each 

approximately 40 m high) served as distal landmarks. The distal landmarks were positioned at a 

distance of 50 m from the center of the circular wall (so overlapping with the wall), with each 

adjacent pair separated by an angular distance of 30º relative to the center of the circular wall. 

 The path origin (O) was located 1.6 meters away from the center of the wall and aligned 

in the direction opposite to the distal landmarks. Specifically, in Experiment 1a, the midpoint of 

the path OP is at the center of the circular wall (see Figure 2.3B). In Experiment 1b, the endpoint 

of the path (P) is at the center of the circular wall (see Figure 2.3C). 
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Figure 2.3. A screenshot of the virtual environment and schematic diagrams of path 

configurations in all experiments. (A). A screenshot of the experimental environment includes 

five target objects (e.g., scissors, brush, paperclip, wood, and hat), a proximal landmark (i.e., 
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traffic cone), and three distal landmarks (i.e., tower, pillar, and lamp). The labels of the objects 

and landmarks are added for readers only. (B, C & D) Solid arrow lines represent the walking 

paths from the origin (O) to the end of the path (P) and the 2-leg paths used in Experiments 2 

and 3 include the turning point (T) as well. Five dots in blue denote five target objects, the center 

object placed at the origin (O) of the path, and the other four (numbered 1–4) shape a square 

shape. The triangle in orange is denoted as the proximal landmark (PL). Three colored circles 

denote the three distal landmarks. In the interest of clarity, we use the initial walking direction 

(i.e., the direction of  𝑂𝑃⃗⃗⃗⃗  ⃗ in Experiment 1 and the direction of  𝑂𝑇⃗⃗⃗⃗  ⃗ in Experiments 2 and 3) as the 

reference direction (referred to as 0°) in the current study. 

 

A rotational symmetric traffic cone with a height of 0.3 m (see Figure 2.3A), located at 

the path origin, served as the proximal landmark (PL). Participants learned the locations of five 

targets (e.g., the scissors, brush, paperclip, wood, and hat in Figure 2.3A, respectively) and the 

traffic cone before walking an outbound path. One of the targets (scissors in Figure 2.3A or O in 

Figure 2.3B) overlapped with the traffic cone at the origin (O). The other four targets (brush, 

paperclip, wood, and hat in Figure 2.3A or 1, 2, 3, 4 in Figure 2.3B) were located 1.41 m from 

the origin at relative directions 315º, 45, 135º, and 225º clockwise to the initial walking direction 

(i.e., the direction of  𝑂𝑃⃗⃗⃗⃗  ⃗ in Experiment 1) respectively, forming a square shape (Mou & Zhang, 

2014). The association between these five target objects and their positions was randomized 

among participants but consistent for each participant across paths. 

The lengths of the walking path (i.e., OP in Figures 2.3B and 2.3C) were 3.2 meters and 

1.6 meters in Experiments 1a and 1b, respectively. The outbound path was marked by poles (with 

a radius of 0.05 meters and a height of 1.5 meters). The origin was indicated by a red pole, and 
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the testing position was indicated by a green pole. These poles appeared sequentially to guide 

participants’ walking and disappeared once the participant reached the locations. 

There are three cue conditions, differing only in the testing phase. Participants were 

required to indicate the locations of targets with the presence of different landmark cues: 1) a 

shifted proximal landmark being rotated -50° around the endpoint of the path (PLM condition), 

2) a shifted distal landmark being rotated 50° (DLM condition), and 3) both two above (Conflict 

condition). No feedback was given during the testing phase. 

All participants completed the four paths in each of the three cue conditions (12 path 

trials in total). Across the four paths, the relationship among the path, objects, and landmarks was 

constant in the virtual environment but the four paths started from different locations in the 

physical room (1.6 m north, south, east, or west of the room center). 

Path trials were blocked by condition, with four paths randomly presented within each 

block. For half of the participants, the order of the blocks was PLM-DLM-Conflict conditions 

and for the other half, the order of the blocks was DLM-PLM-Conflict conditions. For each path 

trial, participants were required to indicate the locations of all five targets which were probed in a 

random order with no time limit. Participants’ responses of the objects’ locations were recorded.  

The primary dependent variable was derived from the heading error on each path trial, 

which is the angular difference between participants’ correct heading and their estimates of their 

heading during testing (see data analysis below for the details of the calculation). 

2.4.1.3 Procedure. Each experimental trial consisted of a learning phase and a testing 

phase. In an immersive virtual environment, participants saw a red pole with a traffic cone (i.e., 

the proximal landmark) overlapping its base, along with three distinctive structures in the 

distance (i.e., distal landmarks) and a circular wall surrounding all of them. Participants were 
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instructed to walk to the location of the red pole (i.e., the origin of the path). Once participants 

reached the location, the red pole with the traffic cone disappeared. Participants were then 

instructed to maintain their orientation by aligning themselves with the direction indicated by the 

red arrows appearing at their feet, ensuring they faced directly toward the central distal landmark 

(i.e., the pillar). This facing direction aligns with the initial walking direction as well. Afterward, 

the red arrow disappeared and five target objects and the proximal landmark (i.e., the traffic 

cone) were presented.  

In the learning phase, participants learned the locations of all five objects, the location of 

the proximal landmark, and the directions of three distal landmarks. The learning time is one 

minute in the first trial and fifteen seconds in the remaining 11 trials given that the object-

location pairs remained consistent for each participant across trials. Then all objects and 

landmarks were removed, and participants were probed by a floating model of one of the targets 

of landmarks and asked to replace it back to the original location (for the proximal landmark and 

target objects) or direction (for the distal landmarks) by using a virtual stick. After each pointing 

response, the probed item was displayed in its correct location as feedback for two seconds. 

Once all objects and landmarks had been replaced once with feedback, they all appeared in their 

correct positions, providing participants with the opportunity to review them again if needed. 

Then they were removed. 

Participants walked from the origin toward a green pole located at P, which indicated the 

end of the path. Upon participants reaching the green pole, the green pole disappeared, and they 

were disoriented in place to disrupt their heading estimates from path integration (although their 

position estimates from path integration remain intact). Regarding the disorientation, participants 

were asked to sit on a spinning chair and were spun by an experimenter while performing a task 
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of counting backward for 12 seconds (approximately 80º per second). The initial direction of 

rotation was randomly determined, and the direction may change during the rotation.  

In the testing phase, all five targets were probed in random order and participants were 

required to indicate the locations of targets with the presence of different landmark cues. No 

feedback was given during the testing phase. 

Participants completed two practice trials to familiarize themselves with the experimental 

procedure before starting the formal experimental trials. In the practice trials, different target 

objects and the paths were used. Furthermore, the proximal and one of the distal landmarks 

reappeared in their original locations after participants were disorientated at the end of the path. 

2.4.1.4 Data Analysis. Figure S2.1 in the Supplementary materials of Chapter 2 defines 

the relationship between homing, position, and heading errors. We calculated the estimated 

position (P’) and heading (h’) in the testing phase on each experimental path for each participant 

employing a bidimensional regression (Friedman & Kolner, 2003; Zhang et al., 2020). Figure S2 

provides examples of using this approach for all three conditions. This approach involved 

establishing a mapping function (f) representing the transforming relationship (scale, rotation, 

and translation) between the configurations of correct locations (i.e., locations 1, 2, 3, 4, and O, 

the dependent variable) and the replaced object locations (i.e., locations 1’, 2’, 3’, 4’, and O’, the 

independent variable) (e.g. O=f(O’), see Figure 3 in Zhang et al., 2020 and Figure S2.2 in the 

Supplementary materials of Chapter 2). The mean r2 values for the regression models across 

paths and participants exceeded .82 in all experiments of the current project, indicating a high 

level of coherence in participants’ responses across objects within individual paths. Participants’ 

position and heading estimates (P’ and h’) were calculated by applying the mapping function (f), 
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with the participants’ testing position (P) and heading (h) as the independent values, respectively, 

i.e., P’ = f (P), h’ = f (h).  

Using the estimated position (P’) and heading (h’), we calculated the angular errors of 

heading (η = h’ - h), position, and home estimates for each path trial and for each participant. In 

the interest of brevity, we only present the results of errors in heading estimates. The results of 

errors in position and goal estimates are presented in the Supplementary materials of Chapter 2 

(see Table S2.1, Figure S2.4, and Figure S2.8 for main results).  

We referred to the heading error for each path trial and each participant as an individual 

heading error. For each participant, we calculated the circular mean and circular standard 

deviation (SD_DLM, SD_PLM, SD_Conflict) across individual heading errors in the same cue 

condition (referred to as participant-level circular mean and standard deviation). The circular 

mean in the Conflict condition was used to calculate the observed weight assigned to the distal 

landmark cue (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) based on Equation 2. The circular standard deviations in the DLM 

and PLM conditions were utilized to calculate the predicted weight (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) based on 

Equation 1 (𝜎𝐷𝑙𝑚 = SD_DLM, 𝜎𝑃𝑙𝑚 = SD_PLM). The comparison between the observed and 

predicted weights enables us to compare the three potential theoretical hypotheses.  

The group-level circular means of the participant-level circular mean and their 

corresponding confidence intervals were also calculated for each condition. The confidence 

interval (CI) of the mean was used to identify whether the observed group-level circular mean in 

the single cue conditions (i.e., DLM and PLM conditions) was determined by the rotated angle of 

the given cue. For instance, if the confidence interval of the group-level mean heading error in 

the PLM condition encompasses 50° (which is the heading error predicted by the rotated 

proximal landmark), it implies that the heading estimates were determined by the proximal 
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landmark (Batschelet, 1981). The variability of circular means of heading errors was examined 

by the parametric test for concentration across the conditions (Batschelet, 1981, p. 122). For each 

condition, we also conducted the Rayleigh Z test to assess whether the mean heading errors had 

uniform distributions across participants, which would indicate a random estimation. 

2.4.2 Results 

Before we discuss the results of heading errors in detail, we will summarize the results of 

homing and position errors briefly. The detailed results of homing and position errors are 

included in the supplementary materials. 

For homing errors, in the PLM and Conflict conditions, where the proximal landmark 

was presented during the test, their circular means were the same as the rotation angle of the 

proximal landmark (see Table S2.1, Figure S2.3) and their standard deviations (SDs) were very 

small (see Figure S2.4). These results indicate that participants used the rotated proximal 

landmark as the home location. In the DLM condition, where the proximal landmark was not 

available, their circular means followed those of the heading errors, and their SDs were large. 

These results indicate that homing errors were attributed to both position errors based on self-

motion and heading errors based on distal landmarks.  

For position errors, in the PLM and DLM conditions, their circular means did not show 

any systematic error, and their SDs were comparable between these two conditions. These results 

indicate that participants relied on their self-motion information to estimate their position. In the 

Conflict condition, their circular means appeared to be the sum of heading errors and homing 

errors, and their SDs appeared to be the same as the SDs of the heading errors. 

The summarized results for homing errors and position errors were consistent across all 

experiments, so they will not be repeated for the following experiments. 
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2.4.2.1 Participant-level circular means of heading errors. Participant-level circular 

means and their mean and confidence interval in all conditions are plotted in Figure 2.4. The 

group-level circular mean and circular standard deviation are summarized in Table 2.1. The 

Rayleigh Z test showed that the heading errors in all conditions were clustered around one 

direction (Zs ≧12.75, ps < .001). 

 

Table 2.1. Predicted heading errors based on distal or proximal landmarks and the circular 

means (circular standard deviations) of the participant-level heading errors in each cue 

condition of all experiments. 

Conditions 

Prediction 

from distal 

landmarks 

Prediction 

from proximal 

landmarks 

Observed mean heading errors (standard deviation) 

Exp 1a Exp 1b Exp 2 Exp 3 

DLM -50°  -39.1° (28.4°) -46.5° (23.8°) -43.9° (16.3°) -43.5° (12.2°) 

PLM  50° 43.9° (32.4°) 46.8° (50.8°) 57.1° (21.6°) 21.8° (64.9°) 

Conflict -50° 50° -11.9° (28.4°) -29.3° (23.7°) 36.4° (30.2°) -38.7° (28.8°) 
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Figure 2.4. Observed and predicted heading errors in the DLM (panels A and D), PLM (panels B 

and E), and Conflict conditions (panels C and F) in Experiments 1a and 1b. Each blue dot 

indicates one participant-level circular mean of heading errors across paths. The solid black line 

indicates the group-level circular mean of the heading errors across participants. The black arc 

indicates the 95% confidence interval of the group-level circular mean. The dotted red line 

indicates the predicted heading error based on the rotated proximal landmark (50°). The dashed 

green line indicates the predicted heading error based on the rotated distal landmark (-50°). 

 

In the DLM condition, the heading estimates clustered around the predicted heading 

errors (-50°) based on the rotated distal landmark (the dashed green line in Figures 2.4A and 
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2.4D) in both Experiments 1a and 1b (mean heading error = -39.1°, 95% CI [-49.6°, –28.6°] and 

mean heading error = -46.5°, 95% CI [-55.3°, –37.7°], respectively). These results indicate that 

participants used the rotated distal landmark for estimating their headings after disorientation. 

In the PLM condition, the heading estimates clustered around the predicted heading 

errors (50°) based on the rotated proximal landmark (the dotted red line in Figures 2.4B and 

2.4E) in both Experiments 1a and 1b (mean heading error = 43.9°, 95% CI [31.9°, 55.8°] and 

mean heading error = 46.8°, 95% CI [27.9°, 65.8°], respectively). These results indicate that 

participants used the rotated proximal landmarks for heading estimation after disorientation 

when path integration enabled them to estimate their position. 

In the Conflict condition, the mean heading error was -11.9° with a 95% confidence 

interval [-22.4°, -1.4°] in Experiment 1a (Figure 2.4C) and the mean heading error was -29.3° 

with a 95% confidence interval [-38.1°, -20.6°] in Experiment 1b (Figure 4F). The 95% CI of the 

heading errors did not encompass the predictions based on either displaced distal (-50°) or 

proximal cues (50°), indicating that the participants do not rely entirely on either distal or 

proximal landmarks to determine their headings.  

In Experiment 1a, there were no significant differences in the variability of heading errors 

across any conditions, all Fs(27,27) ≤1.29, ps > .05 (Batschelet, 1981, p. 122). However, in 

Experiment 1b, the heading errors were more variable in the PLM condition than in the DLM 

and Conflict conditions, Fs(27,27) ≥ 3.92, ps < .01. There were no significant differences in the 

variability of heading errors between DLM and Conflict conditions, F(27,27) = 1.01, p > .05. 

 

 2.4.2.2 Participant-level circular standard deviation of heading errors. 
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Figure 2.5. The means of participant-level circular standard deviations of the heading errors in 

all conditions of all experiments. The solid lines represent significant comparisons (.01 < *p 

< .05, ***p < .001) and the dashed line represents an insignificant comparison (p > .05). Error 

bars represent ± 1 SE of the means (from the MSE of each repeated-measure ANOVA). 

 

The means of participant-level circular standard deviations in all conditions are plotted in 

Figure 2.5. We conducted repeated-measure ANOVA with one within-subject factor (cue 

condition: DLM, PLM, and Conflict) for Experiment 1a and 1b respectively. There were no 

significant differences among conditions in Experiment 1a, F(2, 54) = .22, p = .80, MSE = 

421.46, 𝜂𝑝
2 = .008, BF01=7.8 , indicating that the means of the participant-level SDs of heading 

errors were comparable across all conditions in Experiment 1a.  

There was a significant difference among conditions in Experiment 1b, F(2, 54) = 3.88, p 

= .03, MSE = 897.31, 𝜂𝑝
2 = .126. In particular, the SD in the PLM condition was significantly 

larger than that in the Conflict condition, t(27) = 2.67, p = .01, Cohen’s dz = .50, but did not 
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differ from that in the DLM condition, t(27) = 1.52, p = .14, Cohen’s dz = 0.29, BF01 = 1.80. The 

SD in the DLM condition did not differ from that in the Conflict condition, t(27) = 1.31, p = .20, 

Cohen’s dz = 0.25, BF01 = 2.30.  

 

2.4.2.3 Predicted and observed weights. In the Conflict condition, participants 

consistently favored the usage of the distal landmark over the proximal landmark. The observed 

weight on the distal landmark was significantly larger than the observed weight on the proximal 

landmark in Experiment 1a (mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .612, mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑃𝑙𝑚 = .388) 5, t(27) = 

2.06, p = .049, Cohen’s dz = .39 and in Experiment1b (mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .792, mean 

𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑃𝑙𝑚 = .208), t(27) = 6.38, p < .001, Cohen’s dz = 1.21.  

 

 

 

5 This comparison is equivalent to comparing 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 with .5. For example, 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 >  𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑃𝑙𝑚 

means 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 >.5. 
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Figure 2.6. The observed weights of the distal cue (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) and the weights of the distal 

cue based on its relative precision (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) in all experiments. The solid lines represent 

significant comparisons (.01 < *p < .05, ***p < .001) and the dashed line represents an 

insignificant comparison (p > .05). Cohen’s dz values are listed. Error bars represent ± 1 SE of 

the means. 

 

The mean predicted weights of the distal cue based on its relative precision 

(𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) and the observed weights of the distal cue (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) across participants 

in the two experiments are plotted in Figure 2.6. The relative precision obtained from the distal 

landmark significantly increased from Experiment 1a (mean 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .42) to 1b (mean 

𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .61), t(54) = -2.03, p = .047, Cohen’s d = -.54, providing evidence for the 

validity of our manipulation of relative precision of distal and proximal cues. 

To differentiate the three hypotheses, we first tested the prediction of the relative-

precision hypothesis: the predicted weights rely solely on the relative cue precision. We 

conducted paired-sample t-tests comparing the observed weights of the distal cue 

(𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) with predicted weights of distal cues based on its relative precision 

(𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) for each experiment separately. The observed weights of the distal cue were 

significantly larger than the predicted weights based on the relative precision in Experiment la 

(mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .612, mean 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .415), t(27) = 2.40, p = .02, Cohen’s dz 

= .45 and Experiment lb (mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .792, mean 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .610), t(27) = 2.74, 

p = .01, Cohen’s dz = .52. These results demonstrate that compared to the predicted weights 

relying solely on the relative cue precision, participants actually assigned greater weights to the 
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distal cues under the Conflict conditions, undermining the relative-precision hypothesis (see 

Figure 2.2a).  

We tested the prediction of the prior-knowledge hypothesis: the observed weight should 

not increase with the predicted weights from Experiment 1a to 1b (Figure 2.2b). We conducted 

an independent samples t-test comparing the observed weights (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) in Experiments 

1a and 1b. It revealed that the observed weights were smaller in Experiment 1a than 1b, t(54) = -

2.531, p = .014, Cohen’s d = -.68. This result undermined the prior-knowledge hypothesis, which 

suggests that orientation cue usage should not be influenced by variations in relative cue 

precision between Experiments 1a and 1b. 

However, the results that observed weights (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) were larger than the 

predicted weights and increased with the predicted weights from Experiment 1a to 1b were 

consistent with the dual-factor hypothesis (see Figure 2.2c).  

In addition, we examined whether the prior odds in Experiments 1 and 2 are consistent. 

We calculated the group-level prior odds based on the mean observed weights and the mean 

predicted weights for both experiments using the following equation. 

prior odds =  
𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚

1−𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚
÷

𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚

1−𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚
     (9)  

Here, 
𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚

1−𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚
 represents the posterior and 

𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚

1−𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚
 represents 

the likelihood ratio on the group level6. 

 

6 To calculate the group level prior odds, we could also use mean observed weight ratios as the posterior odds and 

mean predicted weight ratios as the likelihood ratio. However, it is hard to assume that weight ratios follow a normal 

distribution. Thus, mean weight ratios might not be a valid estimate of group level posterior or likelihood ratio. 
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Prior odds were 2.22 (i.e., 
0.61

1−0.61
÷

0.415

1−0.415
) for Experiments 1a and 2.43 for Experiment 

1b, indicating that they were consistent. To further qualify it, we test whether the 

mean 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 in Experiment 1a can be recovered if we replace the prior odds in 

Experiment 1a with that in Experiment 1b, following Equation 10.  

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚

1−𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚

𝑒𝑥𝑝𝐴
= 

𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚

1−𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚

𝑒𝑥𝑝𝐴
× prior odds𝑒𝑥𝑝𝐵 (10) 

Equation 10 calculated the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 in one experiment (e.g., 

expA) derived from the prior odds from another experiment (e.g., expB). If the prior odds in both 

experiments are consistent, then the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 should be consistent with 

the real 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 in the same experiment (e.g., expA). 

Therefore, 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚
𝑒𝑥𝑝1𝑎

 is a weight estimate derived from the 

prior odds from Experiment 1b (specifically, 
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚

1−𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚

𝑒𝑥𝑝1𝑎
=

𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚

1−𝑚𝑒𝑎𝑛 𝑊𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚

𝑒𝑥𝑝1𝑎
× prior odds𝑒𝑥𝑝1𝑏 =

0.415

1−0.415
× 0.243. We obtained 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚
𝑒𝑥𝑝1𝑎 = 0.633). We then compared the real mean observed 

weights of Experiment 1a (𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚= 0.61) to the 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚
𝑒𝑥𝑝1𝑎 (the value = 0.633). A one-sample t-test showed that they 

did not significantly differ, t(27) = -0.383, p = .71, Cohen’s dz = -0.072., BF01= 4.66. This result 

indicated that the prior odds from Experiments 1a and 1b were exchangeable and thus consistent. 

2.4.3 Discussion 

Consistent with previous research findings from animal studies (Knierim, 2002; Shapiro 

et al., 1997; Yoganarasimha et al., 2006) and theoretical arguments about human navigation 

(Bullens et al., 2010; Nadel & Hupbach, 2006), Experiment 1 confirmed that distal cues exert an 
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advantage in competition with proximal cues (i.e., observed weight of distal cues larger than .5). 

Furthermore, the dominance of distal cues was attributed to both the relative cue precision and 

the top-down cue preference of the distal cues based on the prior knowledge of cue precision. 

The results of Experiment 1 favor the dual-factor hypothesis over the other two 

hypotheses. Participants favored the distal landmark over the proximal one, using both the 

relative precision of specific cues and prior knowledge. When the relative precision of cues was 

altered in Experiments 1a and 1b, participants did not apply a constant weight to the distal 

landmark for orientation, which contradicts the prior-knowledge hypothesis. Additionally, 

participants assigned greater weights to distal cues than the predicted weight based on the 

relative cue precision, displaying a constant and significantly higher utilization (with constant 

prior odds of 2.22 - 2.43), which is incompatible with the relative-precision hypothesis. These 

results, however, are consistent with the dual-factor hypothesis, which predicts that while 

considering the relative cue precision of landmarks for orientation, navigators exhibit an 

additional top-down preference for distal landmarks. 

Experiments 2 and 3 further investigated whether there are circumstances in which 

proximal cues can override distal cues to dominate participants’ heading estimates. We 

hypothesized that when participants have a clear understanding of the spatial relationship 

between their current position and the proximal landmark in the environment (represented by a 

vector pointing from their position to the proximal landmark), they are more inclined to utilize 

this vector than distal landmarks to determine orientations in the environment. If this top-down 

inclination is large enough, proximal landmarks can override distal cues to dominate participants’ 

heading estimates. 



 60 

2.5 Experiment 2 

The purpose of Experiment 2 was to test situations in which a proximal landmark can 

override a distal one in determining participants’ heading estimation. Participants walked a two-

leg path that led to a previously learned object location (e.g., a brush in Figure 2.3A). In addition 

to utilizing path integration to estimate their own position, as in Experiment 1, participants also 

received verbal instructions upon reaching the end of the path, informing them of their current 

location (e.g., “You are now at the location of the brush”). Given the well learned spatial 

relationship between this object and the proximal landmark established during the learning 

phase, we hypothesized that when path integration and verbal instructions enable participants to 

have a clear understanding of their position relative to the proximal landmark, they might have a 

top-down preference for the vector involving the proximal landmark in determining their 

orientations. This extra top-down preference might cause the proximal landmark to be favored 

over the distal landmark for orientation in the conflicting condition.  

2.5.1 Method 

2.5.1.1 Participants. 28 undergraduate students from the University of Alberta 

participated in Experiment 2 and received course credits in return.  

2.5.1.2 Materials, Design, and Procedure. Experiment 2 was similar to Experiment 1 

except for the following changes. After the learning phase, participants walked a two-leg path 

(O-T-P, see Figure 2.3D). The turning point of the paths (T indicated by a red pole) was always at 

the center of the physical room (also the center of the virtual circular wall). Upon participants 

reaching the turning point T, the red pole disappeared, and they were asked to turn left or right to 

walk to a green pole indicating the end of the path (P). The end of the path (P) was one of the 

learned locations of the target objects (i.e., the target object labeled 1 or 2 in Figure 2.3). And 
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participants were informed of their current location when they were at the end of the path by 

verbal instructions from experimenters (e.g., “You are now at the location of the brush”).  

Across the four paths starting from different locations in the physical room, two had a 

turning angle of -121°, led to a left turn, and ended at the location of the target 1 in the upper left 

of the object array (see Figure 2.3D). The other two paths had a turning angle of 121°, led to a 

right turn, and ended at the location of the target 2 in the upper right of the object array (see 

Figure 2.3D). The lengths of the first (OT) and second legs (TP) are 1.6 m and 1.166 m, 

respectively. 

2.5.2 Results 

2.5.2.1 Participant-level circular means of heading errors. The heading errors for each 

participant across paths in all conditions are plotted in Figure 2.7. The mean heading errors 

across participants are summarized in Table 2.1. The Rayleigh Z test showed that the heading 

errors in all conditions were clustered around one direction (Zs ≧ 21.20, ps < .001). 

 

 

Figure 2.7. Observed and predicted heading errors in the DLM (panel A), PLM (panel B), and 

Conflict conditions (panel C) in Experiment 2. Each blue dot indicates one participant-level 

circular mean of heading errors across paths. The solid black line indicates the group-level 
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circular mean of the heading errors across participants. The black arc indicates the 95% 

confidence interval of the group-level circular mean. The dotted red line indicates the predicted 

heading error based on the rotated proximal landmark (50°). The dashed green line indicates the 

predicted heading error based on the rotated distal landmark (-50°). 

 

In the DLM condition, the heading estimates clustered around the predicted heading 

errors (-50°) based on the rotated distal landmark (the dashed green line in Figure 2.7A), mean 

heading error = -43.9°, 95% CI [-49.9°, –37.8°]. These results indicate that participants used the 

distal landmark for estimating their headings after disorientation. 

In the PLM condition, the heading estimates clustered around the predicted heading 

errors (50°) based on the rotated proximal landmark (the dotted red line in Figure 2.7B), mean 

heading error = 57.07°, 95% CI [49.05°, 65.08°]. These results indicate that participants used 

proximal landmarks for heading estimation after disorientation when they were aware of their 

position. 

In the Conflict condition, the mean heading error was 36.4° with a 95% confidence 

interval [25.2°, 47.5°]. The confidence interval of the heading errors did not encompass the 

predictions based on either displaced distal (-50°) or proximal cues (50°).  

The variability of heading errors in the PLM condition did not differ significantly from 

that in the DLM or Conflict conditions, Fs(27,27) ≤ 1.88, ps > .05. However, the variability of 

heading errors in the Conflict condition was significantly greater than that in the DLM condition, 

F(27,27) = 3.25, p < .01. 

2.5.2.2 Participant-level circular standard deviation of heading errors. Participant-

level circular standard deviations of all conditions in Experiment 2 are plotted in Figure 2.5. A 
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repeated-measure ANOVA with one within-subject factor (cue condition: DLM, PLM, and 

Conflict) was conducted. The results show no significant differences among conditions, F(2, 54) 

= 1.36, p = .27, MSE = 502.41, 𝜂𝑝
2 = .048, B01 = 2.92, indicating that the SDs of heading errors 

across paths were comparable for all conditions in Experiment 2. 

2.5.2.3 Predicted and observed weights. In the Conflict condition, the observed weight 

on the distal landmarks was significantly smaller than the observed weight on the proximal 

landmark (mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .151, mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑃𝑙𝑚 = .849), t(27) = -5.93, p < .001, 

Cohen’s dz = -1.12. This suggests the proximal landmark was favored over the distal landmark. 

The mean predicted weights of the distal cue based on its relative precision 

(𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) and the observed weights of the distal cue (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) across participants 

in Experiment 2 are plotted in Figure 2.6. A paired-sample t-test shows that the observed weight 

was significantly smaller than the predicted weight (mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .151, mean 

𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .539), t(27) = -4.62, p < .001, Cohen’s dz = .87. This suggests a top-down 

inclination of using the proximal landmark. 

In addition, we calculated the prior odds for Experiment 2 (see Equation 9), which was 

0.152. We tested whether the prior odds in Experiment 2 were consistent with the odds of 

Experiment 1. Using Equation 10, we recovered the mean observed weight for Experiment 2 by 

using the prior odds from Experiment 1b (prior odds = 2.43). The recovered 

𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 for Experiment 2 was 0.74. We then compared it with the real mean 

observed weights of Experiment 2 (𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = 0.151) using a one-sample t-test. The 

results showed that the mean observed weight of Experiment 2 was significantly smaller than the 

recovered mean observed weight based on the prior odds from Experiment 1b, t(27) = -10.01, p 
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< .001, Cohen’s dz = -1.89. This result indicated that the prior odds from Experiment 2 was much 

smaller than that from Experiment 1. 

2.5.3 Discussion 

Experiment 2 demonstrates that a proximal landmark can override a distal one to 

dominate participants’ heading estimates when they were clearly aware of their positions relative 

to the proximal landmark (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 smaller than .5). Importantly, the predicted weight 

based on the relative cue precision did not show any dominance of the proximal landmark 

(𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .539, not smaller than .5) (we will interpret this result in the General 

Discussion). Therefore, this dominance of the proximal landmark in Experiment 2 should be 

primarily attributed to participants’ choice of prior knowledge that favors the proximal landmark, 

in contrast to the choice of prior knowledge that favors the distal landmark in Experiment 1.  

In Experiment 2, participants were tested at the location of a target previously learned 

before walking the path. They were explicitly informed about this location after completing the 

walk. This information should have helped participants clearly understand their position at the 

end of the path. Indeed, the participant-level circular means of position errors approached zero 

(Table S2.1 and Figure S2.9), and the standard deviations (SDs) of position errors were small 

(Figure S2.8), especially when compared with those from Experiments 1a and 1b (Table S2.1, 

Figure S2.7, and Figure S2.8). Consequently, the vector from the participant's own position 

pointing towards the familiar nearby landmark became highly salient. In this context, participants 

might have relied on their prior knowledge, favoring the proximal landmarks. 

One concern may be the possibility that the proximal dominance appeared in heading 

estimates because participants overall preferred the proximal landmark over the distal landmark, 

attributed to smaller position errors in PLM condition than in DLM condition. However, 
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participants’ position estimates in the PLM and DLM conditions were comparable (Table S2.1, 

Figure S2.8, and Figure S2.9). This result was expected as participants relied on the same self-

motion information and instruction of self-location in both conditions. The results of Experiment 

2 extended the dual-factor hypothesis by showing proximal cue dominance (i.e., 
Wd

Wp
=

𝜎𝑝
2

𝜎𝑑
2 × prior odds < 1) and suggested that the prior knowledge used in Bayesian inference is not 

fixed and the choice of prior knowledge is affected by top-down variables. While participants in 

Experiments 1a and 1b used the prior knowledge that favored the distal landmarks, the salience 

of the vector to the proximal landmark in Experiment 2 might have invoked a top-down 

inclination to choose the prior knowledge of favoring the proximal landmark, which was large 

enough to demonstrate the dominance of proximal landmarks. 

However, it is not clear whether a clear understanding of their testing location 

(overlapping with one target) was attributed to the path integration process during walking or to 

the explicit instruction of the testing location. Experiment 3 addressed this issue.  

2.6 Experiment 3 

The purpose of Experiment 3 was to test whether a proximal cue would still override a 

distal cue in determining participants’ heading estimation if there was no explicit instruction. 

Participants walked a path and arrived at the location of one object they had previously learned 

but were not explicitly informed of their location upon arrival. They had to depend entirely on 

path integration to estimate their position. 

2.6.1 Method 

2.6.1.1 Participants. 14 males and 14 females from the University of Alberta participated 

in the experiment and received course credits in return. 
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2.6.1.2 Materials, Design, and Procedure. Experiment 3 was similar to Experiment 2 

except that after walking the two-leg path (O-T-P), participants were not informed of their 

endpoint location (P) by verbal instructions from experimenters.  

2.6.2 Results 

2.6.2.1 Participant-level circular means of heading errors. The heading errors for each 

participant across paths in all conditions are plotted in Figure 2.8. The mean heading errors 

across participants are summarized in Table 2.1. The Rayleigh Z test showed that the heading 

errors in all conditions were clustered around one direction (Zs ≧7.75, ps < .001). 

 

 

Figure 2.8. Observed and predicted heading errors in the DLM (panel A), PLM (panel B), and 

Conflict conditions (panel C) in Experiment 3. Each blue dot indicates one participant-level 

circular mean of heading errors across paths. The solid black line indicates the group-level 

circular mean of the heading errors across participants. The black arc indicates the 95% 

confidence interval of the group-level circular mean. The dotted red line indicates the predicted 

heading error based on the rotated proximal landmark (50°). The dashed green line indicates the 

predicted heading error based on the rotated distal landmark (-50°). 
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In the DLM condition, the heading estimates clustered around the predicted heading 

errors (-50°) based on the rotated distal landmark (the dashed green line in Figure 2.8A), mean 

heading error = -43.5°, 95% CI [-48.0°, –39.0°]. These results indicate that participants used the 

distal landmark for estimating their headings after disorientation. 

In the PLM condition, the mean heading error was 21.85° with a 95% confidence interval 

[-4.53°, 48.22°] (see Figure 2.8B). The mean heading error did not differ from 0°. These results 

indicate that participants might have had difficulty in using the proximal landmark for estimating 

their headings after disorientation. 

In the Conflict condition, the mean heading error was -38.7° with a 95% confidence 

interval [-49.38°, -28.12°] (see Figure 2.8C). These results indicate that participants primarily 

used the distal landmark for heading estimates. 

The heading errors were more variable in the PLM condition than in the DLM and 

Conflict conditions, Fs(27,27) ≥ 4.02, ps < .01. The heading errors were more variable in the 

Conflict condition than in the DLM condition, F(27,27) = 5.36, p < .01. 

2.6.2.2 Participant-level circular standard deviation of heading errors. Participant-

level circular standard deviations of all conditions in Experiment 3 are plotted in Figure 2.5. A 

repeated-measure ANOVA with one within-subject factor (cue condition: DLM, PLM, and 

Conflict) was conducted. There were significant differences among conditions, F(2, 54) = 34.71, 

p < .001, MSE = 391.57, 𝜂𝑝
2 = .56. In particular, the SD in the PLM condition was significantly 

larger than that in the DLM and Conflict conditions, t(27) = 9.02, p < .001, Cohen’s dz = 1.70, 

and t(27) = 4.93, p < .001, Cohen’s dz = .93, respectively. The SD in the Conflict condition was 

significantly larger than that in the DLM condition, t(27) = 2.26, p = .03, Cohen’s dz = .43. 
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2.6.2.3 Predicted and observed weights. In the Conflict condition, the observed weight 

on the distal landmark was significantly larger than the observed weight on the proximal cues, 

(mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .912, mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑃𝑙𝑚 = .088), t(27) = 6.96, p < .001, Cohen’s dz = 

1.32. This suggests participants favored the utilization of the distal landmark over the proximal 

landmark. 

The mean weights of the distal cue based on its relative precision (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚) and 

the observed weights of the distal cue (𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚) across participants in Experiment 3 are 

plotted in Figure 2.6. A paired-sample t-test shows that these two weights did not significantly 

differ (mean 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = .912, mean 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .884), t(27) = .41, p = .69, Cohen’s dz 

= .08. To qualify this null effect, BF01= 4.63.  

We compared the prior odds of Experiment 3 with those of previous Experiments. We 

calculated the prior odds for Experiment 3 (see Equation 9), and it was 1.36. To test whether the 

prior odds of Experiment 3 was different from the prior odds of Experiment 2, we recovered the 

mean observed weight for Experiment 3 based on the prior odds from Experiment 2 (prior odds = 

0.152) (see Equation 10). The recovered 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 of Experiment 3 was 0.537 and 

significantly smaller than the mean observed weight of Experiment 3 (𝑚𝑒𝑎𝑛 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 = 

0.912), t(27) = 6.33, p < .001, Cohen’s dz = 1.197. This result indicated that the prior odds from 

Experiment 3 was larger than that from Experiment 2. 

To test whether the prior odds of Experiment 3 was different from the prior odds of 

Experiment 1, we recovered the mean observed weight for Experiment 3 using the prior odds 

from Experiment 1b (prior odds = 2.43) (see Equation 10). The recovered 𝑚𝑒𝑎𝑛 𝑊𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 

of Experiment 3 was 0.949, which was not different from the mean observed weight of 

Experiment 3 (𝑚𝑒𝑎𝑛 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚  = 0.912), t(27) = -0.622, p = .539, Cohen’s dz = -0.117, 



 69 

BF01= 4.22. This result indicated that the prior odds from Experiments 3 and Experiment 1b 

were exchangeable and thus consistent.  

2.6.3 Discussion 

In contrast to the dominance of the proximal landmark in Experiment 2, the results of 

Experiment 3 showed the dominance of the distal landmark. Furthermore, while there was a top-

down preference for the proximal landmark in Experiment 2, the results of Experiment 3 did not 

show such a top-down preference for the proximal landmark. These results indicate that the 

instruction of the testing location in Experiment 2 was the key to invoking the top-down process 

of preferring the proximal landmark, which then caused the dominance of proximal landmarks in 

determining the orientation. 

In Experiment 3, the navigators were required to rely on path integration to estimate their 

positions during walking. However, errors in position estimation via path integration can 

accumulate rapidly, particularly with increasing path complexity (e.g., more legs in a path) 

(Kearns et al., 2002; Kelly et al., 2008; Rieser & Rider, 1991). Indeed, the SDs of position errors 

in DLM and PLM conditions were very large in Experiment 3, compared with previous 

experiments (see Figure S2.8). In addition, the participant-level circular means of position errors 

in DLM and PLM conditions varied more in Experiment 3 (see Figure S2.10), compared with 

Experiment 2 (Figure S2.9). Because position errors in DLM and PLM conditions should be 

attributed to self-motion cues, it suggests that participants in Experiment 3 might not have 

estimated their positions accurately based on self-motion. Therefore, participants might not have 

known that they were standing at a location that had been well-learned. As depicted in Figure 

2.8B, it is evident that the heading errors of some participants deviated significantly from the 

predicted values in the PLM condition. Additionally, the heading errors in the PLM condition 
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were much more variable than in the DLM condition in Experiment 3, whereas they were 

comparable in Experiment 2 (see Figures 2.7 and 2.8). The participant-level standard deviations 

of heading errors in the PLM condition were much larger than in the DLM condition in 

Experiment 3, whereas they were comparable in Experiment 2 (see Figure 2.5). Therefore, in the 

absence of verbal instructions regarding navigators’ self-location, the vector connecting their 

estimated self-location to the reappeared proximal landmark might be noisy and less salient. This 

lack of clarity prevented the top-down preference for the proximal landmark based on vector 

salience from being invoked, which could have otherwise demonstrated the dominance of 

proximal landmarks. 

Interestingly, the observed weights of the distal landmark were also not significantly 

higher than the predicted weights based on relative cue precision, failing to show the additional 

weight attributed to the prior knowledge demonstrated in Experiment 1. One possible 

explanation for this is a ceiling effect. The predicted weight of the distal landmark based on the 

relative cue precision alone was 0.884, while the predicted weight of the distal landmark based 

on the relative cue precision and prior odds from Experiment 1b (i.e., the recovered 

𝑚𝑒𝑎𝑛 𝑊𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐷𝑙𝑚 based on the prior odds of 2.43) was 0.949. Participants might still have 

used the prior odds from Experiment 1 as suggested by the fact that the observed weight of the 

distal landmark did not differ from that recovered based on the prior odds from Experiment 1b. 

The observed weight (0.913) was numerically larger than the prediction based on the relative-cue 

hypothesis (0.884). However, achieving a significant difference within such a limited room for 

improvement (from 0.884 to 0.949) can be quite difficult.  

2.7 General Discussion 
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The purpose of this project was to test the long-standing theoretical argument that distal 

landmarks dominate over proximal landmarks as orientation cues (e.g., Hebb, 1938; 1949; 

Knierim & Hamilton, 2011; Nadel & Hupbach, 2006; O’Keefe & Nadel, 1978) and explore the 

underlying mechanisms in human navigation. The study yielded two main findings. Firstly, both 

the relative cue precision of specific landmarks and the pre-existing prior knowledge of the 

superiority of distal cues as orientation cues contribute to distal dominance. Secondly, it was 

observed that a proximal landmark dominated over a distal one as an orientation cue when 

navigators were explicitly informed of their self-location. This proximal dominance was 

primarily attributed to a top-down preference for proximal landmarks, as evidenced by a 

significantly smaller observed weight on distal landmarks compared to the predicted weights 

based on the relative cue precision. 

Since there was no direct study testing the theoretical argument of distal dominance, the 

project proposed three hypotheses to conceptualize the underlying mechanisms. The first 

hypothesis, known as the relative-precision hypothesis, suggests that cue usage is determined by 

the relative cue precision, which is reciprocal to the relative variance of estimates based on 

individual cues. This hypothesis attributes the distal dominance to the smaller variance (i.e., 

larger cue precision) based on distal cues compared to proximal cues in a specific environment. 

Consequently, it predicts a comparable observed weight in the Conflict condition and the 

predicted weight based on the relative cue precision (Figure 2.2a). However, this hypothesis was 

undermined by the larger observed weight on the distal cues than the predicted weight in 

Experiments 1a and 1b (see Figure 2.6). Additionally, it was not consistent with the smaller 

observed weight on the distal cues than the predicted weight in Experiment 2. Although this 

hypothesis was consistent with the finding in Experiment 3, it seems to be an exceptional case. 
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The comparable observed and predicted weights in Experiment 3 might be attributed to a ceiling 

effect, wherein the predicted weight on the distal landmarks is too large to be increased further. 

The second hypothesis, the prior-knowledge hypothesis, posits that people develop prior 

knowledge that distal landmarks are more precise than proximal landmarks across life 

experiences, primarily due to the general reduction in motion parallax relative to distal 

landmarks compared to proximal landmarks (Benhamou & Poucet, 1998; Nadel & Hupbach, 

2006). According to this hypothesis, individuals might rely solely on this prior knowledge and 

disregard the relative cue precision in the specific environment when estimating their 

orientations. Therefore, the hypothesis predicts that the observed weights on the distal landmarks 

should be larger than .5 and consistent across varied relative cue precision (Figure 2.2b). 

However, this hypothesis was contradicted by the finding that the observed weight on the distal 

landmarks increased with the predicted weight from Experiment 1a to Experiment 1b (Figure 

2.6). Additionally, it was inconsistent with the observed weight on the distal landmark, which 

was smaller than .5 in Experiment 2. Furthermore, it fails to explain the changes in the observed 

weights from Experiment 2 to Experiment 3. 

The third hypothesis, the dual-factor hypothesis, posits that both the relative cue precision 

in a specific experiment and a prior belief of distal dominance contribute to distal dominance. 

This hypothesis provides a reasonable explanation for the effects of relative cue precision and the 

larger observed weight on the distal landmarks than the predicted weight in Experiment 1a and 

Experiment 1b (see Figure 2.2c and Figure 2.6). However, the dual-factor hypothesis appears 

inconsistent with the observed proximal dominance and the smaller observed weight than the 

predicted weight in Experiment 2. Originally, the dual-factor hypothesis was proposed to explain 

the underlying mechanism of distal dominance, assumed but not yet tested in the literature. It 
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solely considered the prior knowledge of distal dominance. To fit the findings in Experiments 2 

and 3, the dual-factor hypothesis should be modified. In the modified dual-factor hypothesis, 

people can choose the prior knowledge of proximal dominance based on instructions. By 

incorporating both the relative cue precision and the chosen prior knowledge, the modified dual-

factor hypothesis can better account for the observed variations in orientation cue preferences 

across different experimental conditions.  

The modified dual-factor hypothesis, which incorporates both the relative precision of 

individual cues and the influence of top-down cognitive variables, appears to be consistent with 

findings from previous studies that have examined other pairs of competing cues (e.g., Chen et 

al., 2017; Wang et al., 2018; Zhao & Warren, 2015b). Chen et al. (2017) demonstrated that 

participants’ cue preference for path integration and landmarks was biased towards the middle 

points of the estimates between these two cues, deviating from the predicted weights based on 

relative precision. This suggested that participants adopted a strategy of considering the average 

of the two estimates, rather than solely relying on one cue. Wang et al. (2018) found that when a 

building and a street configuration indicated conflicting orientations, participants exhibited a 

stronger preference for the street configuration compared to what could be predicted based solely 

on the accuracy of individual cues. This extra cue preference for the street configuration was 

attributed to participants’ prior knowledge that a street configuration is more stable than a 

building. Specifically, when participants detected changes in the spatial relationship between a 

building and a street configuration, they assigned additional weight to the street configuration. In 

Zhao and Warren’s study (2015b), when the landmarks unexpectedly shifted by 115º, 

participants' homing responses were completely influenced by the shifted landmarks, even 

though the shift exceeded the estimated discrimination threshold of path integration in this task. 
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The dominance of landmarks in the homing direction was attributed to participants’ belief and 

knowledge that the path integration process is noisy and that landmarks were more precise and 

stable cues.   

These findings collectively support the idea proposed in the modified dual-factor 

hypothesis, suggesting that this integrated approach of considering both relative cue precision 

and prior knowledge (aka Bayesian inference model of human cognition) may indeed reflect a 

universal principle for how humans weigh different cues in various navigation scenarios.  

 It is important to note that the choice of prior knowledge based on top-down variables 

appears to be too flexible and post-hoc. This concern was addressed as we carefully examined 

the consistency of the prior odds across experiments. Indeed, our results showed that participants 

might use consistent prior knowledge in similar situations. In all experiments without the 

instruction of self-location, the results showed consistent prior odds (2.2, 2.43, and 1.36 for 

Experiments 1a, 1b, and 3 respectively). When we used the prior odds of Experiment 1b to 

recover the observed weights of Experiment 1a and Experiment 3, the recovered observed 

weights were comparable to real mean observed weights (0.633 vs. 0.612 for Experiment 1a and 

0.949 vs. 0.912 for Experiment 3), suggesting that these prior odds were exchangeable and thus 

consistent. Participants only appeared to use a different prior odd (0.152) when they were 

informed of their location in Experiment 2. As this is the first and only report of a consistent 

effect of prior knowledge when participants were not given instruction and a different effect of 

prior knowledge when participants were given instruction, further research in this area will help 

solidify and validate the significance of these findings. 

The theoretical argument of distal dominance in orientations is widely used as a 

foundational assumption in research paradigms studying human navigation (e.g., Bullens et al., 
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2010; Doeller & Burgess, 2008; Zhao & Warren, 2015a; Zhou & Mou, 2019). This argument 

considers the transient nature often associated with proximal landmarks (Cheng & Spetch, 1998) 

and also takes into account the less precise direction information provided by proximal 

landmarks due to motion parallax (Nadel & Hupbach, 2006). However, this theoretical argument 

has limitations as it does not fully consider the role of the vector between a proximal landmark 

and the navigator’s self-location. 

When people move in the environment, they can update the vector between a proximal 

landmark and their self-location (Etienne et al., 1996; Rieser, 1989; Wang & Spelke, 2002). This 

vector can provide orientation information especially when people walk a simple path. For 

example, individuals who walk three meters south from their camping tent and then spin 

themselves in place until losing orientation should regain their orientation by seeing the camping 

tent again, as they have updated the vector between the tent and their self-location during 

walking. The importance of the vector is more obvious in a familiar environment, in which the 

locations of objects are well learned. People should easily know their orientation when standing 

at the location of one object and seeing the location of the other object. At the campsite, for 

example, people who have learned their car is west of the camping tent should know they are 

facing east when standing beside the car and directly facing the tent. Consequently, the vector 

between a proximal landmark and people’s self-location at one object can be sufficient to 

indicate orientations, making it not necessary to learn or use distal landmarks, potentially leading 

to proximal landmark dominance. In particular, when individuals have not thoroughly learned 

the distal landmark, relative cue precision favors the proximal landmark over the distal one, 

leading to proximal landmark dominance. Furthermore, this preference for proximal landmarks 

based on relative cue precision, established over time in environments individuals are familiar 
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with, can become a stored form of prior knowledge. This prior knowledge is then activated when 

participants encounter a familiar environment, further contributing to the dominance of proximal 

landmarks. 

The current project provides clear evidence indicating the important role of the vector 

between a proximal landmark and the self-location in orientation estimates. When participants 

walked a simple path, the variances of heading estimates in the single cue conditions were 

comparable in Experiment 1a, showing comparable cue precision. Therefore, it is not always true 

that less precise direction information is provided by proximal landmarks due to motion parallax 

(Nadel & Hupbach, 2006). More strikingly, when participants were informed of their location at 

one object, a proximal landmark even dominated the heading estimates in the Conflict condition 

of Experiment 2. These findings provide compelling evidence that people rely on the vector 

between a proximal landmark and their self-location in orientation estimates. When this vector is 

precise and salient, the privileged status of distal landmarks in establishing orientation can be 

eliminated or even reversed. 

The proximal dominance observed in Experiment 2 could indeed be attributed to the 

knowledge of the vector between the proximal landmark and the self-location overlapping one 

object. The experimental setup, where participants and the proximal landmark were positioned 

together at the center of an object array forming a rectangle, allowed participants to learn vectors 

from their self-location pointing to each object. During the navigation, participants moved to a 

new location in the environment and were then informed of their self-location being at one of the 

learned object's positions. At this point, participants could directly see the reappeared proximal 

landmark, which had been covertly shifted to a new location. This perceived vector, from the 

navigators’ current location to the reappeared proximal landmark, corresponded to the reverse of 
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one of the previously learned vectors. Given this direct and salient perceived vector, participants 

might have efficiently used it to determine their orientation, which resulted in the observed 

proximal dominance in orientation estimates in Experiment 2. This finding underscores the 

significance of considering the influence of perceived vectors in navigation tasks, as it can 

override the traditional dominance of distal landmarks in orientation judgments. 

As mentioned earlier, the direct and highly salient vector perceived from self-location to 

the landmark could contribute to the observed proximal dominance in Experiment 2, potentially 

influenced by relative cue precision, prior knowledge, or a combination of both. However, it is 

important to note that the relative cue precision in Experiment 2 did not predict proximal 

dominance (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐷𝑙𝑚 = .539, not smaller than .5). The reason that the relative cue precision 

in Experiment 2 did not favor proximal landmarks may be attributed to the fact that participants 

were required to learn both distal and proximal landmarks in the current study, which might have 

resulted in comparable cue precision between distal and proximal landmarks even when 

participants were explicitly instructed of their self-location. In familiar environments of daily 

life, however, people may not need to learn distal landmarks and favor proximal landmarks. 

The knowledge of the vector between the proximal landmark and the self-location 

overlapping one object might have been influenced by explicit instruction provided to the 

participants in Experiment 2. In contrast, in Experiment 3, where explicit verbal information was 

not given, participants did not show any top-down preference for the proximal cue and, instead, 

exhibited distal dominance. The lack of top-down preference for the proximal cue in Experiment 

3 suggests that without explicit instruction, participants may not have been able to pinpoint their 

testing location unambiguously (see Figures S2.8 and S2.10), possibly due to error-prone path 

integration (e.g., Kelly et al., 2008). As a result, they may have faced difficulties in using the 
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knowledge of the vector between the proximal landmark and the self-location overlapping one 

object to assign more weight to proximal landmarks compared to what could be predicted based 

on relative cue precision. 

Why should prior knowledge be considered in spatial orientation? Research indicates that 

the dominance of distal landmarks in the directional system may stem from evolutionary 

adaptations, which likely offered advantages to our ancestors in hunting and avoiding predators 

(Nadel & Hupbach, 2006; Renaudineau et al., 2007). Rapidly establishing their orientation and 

finding their way back to a safe shelter would have significantly enhanced their chances of 

survival. In this context, using prior knowledge favoring distal landmarks in orientations could 

have expedited spatial orientation and provided a reliable means of navigation in unfamiliar or 

open environments. Similarly, in a familiar environment with well-established spatial 

relationships between objects, using prior knowledge favoring proximal landmarks in orientation 

can also expedite spatial orientation. This strategy may be particularly effective in familiar 

settings, where proximity to known landmarks can quickly and accurately indicate one’s 

orientation. Moreover, we speculate that the reliance of proximal landmarks could be a flexible 

and adaptive strategy contingent on the environment. For instance, in a consistently foggy 

environment, our ancestors might have favored proximal over distal cues. Overall, by 

incorporating both prior knowledge and the relative precision of individual cues, individuals can 

make more accurate and expedient decisions in orientation tasks. The choice of which prior 

knowledge to rely on likely varies with the environmental context. 

There is one important methodological contribution from the current study. To thoroughly 

examine the influence of prior knowledge, we should manipulate prior knowledge. One 

straightforward approach is to provide participants with enough training examples so that they 
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can develop prior knowledge before the test. However, it is not clear if training examples are 

effective in developing prior knowledge different from the prior knowledge that participants 

have developed throughout their lives. Even if they are, it would be time-consuming to train. The 

current study suggests that we can use instruction to prime some prior knowledge (as in 

Experiment 2), as a more efficient way to manipulate prior knowledge. 

 

2.8 Conclusions 

The competition between proximal and distal landmarks in providing spatial orientation 

is indeed influenced by two seemingly independent crucial factors: the precision of each 

landmark in indicating orientation and the prior knowledge. In general, participants may have 

prior knowledge favoring distal landmarks as a superior orienting cue, which often results in 

distal dominance. However, the dynamics of this competition can change when navigators 

possess a clear and precise understanding of their position relative to a proximal landmark (for 

instance, they are informed that they are standing at a location they have previously learned). In 

such cases, they can choose the prior knowledge favoring the proximal landmark, leading to 

proximal dominance in orientation. 
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3.1 Abstract 

Triangle completion is a task widely used to study human path integration, an important 

navigation method relying on idiothetic cues. Systematic biases (compression patterns in the 

inbound responses) have been well documented in human triangle completion. However, the 

sources of systematic biases remain controversial. We used cross-validation modeling to 

compare three plausible theoretical models that assume that systematic errors occur in the 

encoding outbound path solely (encoding-error model), executing the inbound responses solely 

(execution-error model), and both (bi-component model), respectively. The data for cross-

validation modeling are from a previous study (Qi et al., 2021), in which participants learned 

three objects’ locations (one at the path origin, that is, home) very well before walking each 

outbound path and then pointed to the objects’ original locations after walking the outbound 

path. The modeling algorithm used one inbound response (i.e., response to the home) or multiple 

inbound responses (i.e., responses to two non-home locations and the home) for each outbound 

path. The algorithm of using multiple inbound responses demonstrated that the bi-component 

model outperformed the other models in accounting for the systematic errors. This finding 

suggests that both encoding the outbound path and executing the inbound responses contribute to 

the systematic biases in human path integration. In addition, the results showed that the 

algorithm using only the home response could not distinguish among these three models, 

suggesting that the typical triangle-completion task with only the home response for each 

outbound path cannot determine the sources of the systematic biases.  

 

Keywords: path integration; encoding-error model; execution-error model, cross-validation; 

triangle completion
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3.2 Introduction 

Path integration is the navigation process that employs idiothetic cues (i.e., 

proprioception, vestibular, and optic flow) and integrates the distances traveled and angles turned 

during motion so that navigators can continuously update their position and heading with respect 

to fixed reference locations in space (Etienne et al., 1996; Mittelstaedt & Mittelstaedt, 1982). The 

fixed locations can be the origin of the path traveled (e.g., the nest for an animal who is out for 

foraging) or remembered important locations in the environment (e.g., the grocery store for a 

human individual who will visit later after traveling from home to office). Thus, path integration 

plays an important role in navigation, especially when allothetic cues (e.g., visual landmarks) are 

scarce or navigation occurs in darkness (Klatzky et al., 1998). 

Path integration is ubiquitous among mobile animals, including ants (Müller & Wehner, 

1988), bees (Collett & Collett, 2000), rodents (Etienne & Jeffery, 2004), birds (Saint Paul, 1982), 

mammals (Mittelstaedt & Mittelstaedt, 1980), and humans (Loomis et al., 1999). Critically, path 

integration has been suggested as one important means of constructing spatial knowledge of the 

environment (Gallistel, 1990). By tracking the path lengths and turn angles, and linking routes 

between known places, path integration enables one to acquire a labeled graph that incorporates 

local metric information (Chrastil & Warren, 2014; Warren et al., 2017) or a cognitive map that 

includes globally consistent metric information (Jacobs & Schenk, 2003; Wang, 2016). 

Path integration is not an error-free process. Errors in path integration can be 

accumulated quickly with the increase of the complexity of the path, for example with the 

increase of the number of legs in a path (Kelly et al., 2008; Rieser & Rider, 1991). Previous 

studies using triangle-completion tasks have found that the human participants’ homebound 

behavior exhibits systematic distortion (Kearns et al., 2002; Klatzky et al., 1999; Loomis et al., 
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1993). In the triangle-completion task, participants walked an outbound path, which consists of 

two linear segments and a turn angle between them, and then returned to or pointed to the origin 

of the outbound path (Klatzky et al., 1998; Loomis et al., 1993). Participants’ responses of the 

inbound path (i.e., homing vector) include the turn angle and path length. Participants usually 

overshot small values, and conversely, undershot large values, showing a compression pattern 

relative to the correct values of both turn angle and path length. This systematic distortion was 

distinguished from random errors (Chrastil & Warren, 2017; Harootonian et al., 2020). 

A compression pattern relative to the correct values has been widely and long reported in 

magnitude judgments of various types of stimuli including size, weight, brightness, loudness, and 

duration (Stevens & Greenbaum, 1966). Stevens and Greenbaum (1966) referred to the 

compression pattern as the regression effect and attributed the effect primarily to participants’ 

tendency to shrink the judgment range under their control. Other researchers attributed the 

compression pattern to the stimulus range controlled by experimenters (e.g., Teghtsoonian & 

Teghtsoonian, 1978). Petzschner and Glasauer (2011) proposed a Bayesian model to explain the 

compression pattern in reproducing a previewed distance or angle. Participants in their study 

walked a distance to approach a visible target or turned an angle to face a visible target. They 

then reproduced the distance or angle without the presence of the target. The results showed that 

participants biased their reproduced magnitudes towards the mean of the previewed magnitudes. 

Hence, participants not only used the perceived magnitudes in the specific trial but also used the 

prior distribution of the magnitudes (Harootonian et al., 2022; McNamara & Chen, 2021). The 

prior knowledge could be learned from past trials (see also Harootonian et al., 2020). Note that 

other studies suggested that prior knowledge could be primarily determined by experiences 

outside the experiment (e.g., categorical information, Huttenlocher et al., 1991).  
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A strict Bayesian approach assumes that separate estimates of the true value (prior or 

perceived magnitude) are combined in judgment but do not change the representation of the 

perceived magnitude (Zhang & Mou, 2017). Hence, the representation of the perceived 

magnitude should be free of compression. However, to explain the compression pattern reported 

in the triangle-completion task, researchers proposed that compression could occur both in 

executing the inbound path (Chrastil & Warren, 2021) and in encoding the outbound path (Fujita 

et al., 1993; Harootonian et al., 2020). The latter proposal implies that participants might use the 

Bayesian inference in encoding rather than in response. Thus, examining the sources of the 

compression pattern reported in triangle completion is not only theoretically important in human 

navigation but also in broad fields of experimental psychology. 

Performing the triangle-completion task requires three cognitive stages (Fujita et al., 

1993). The initial stage involves sensing the traversed path and forming internal representations 

of leg lengths and turn angles, referred to as the encoding process. In the second stage, the 

internalized representations are employed to compute the desired inbound responses (i.e., 

inbound path length and turn angle), referred to as the integration process. Ultimately, the desired 

inbound response is executed, referred to as the execution process. The important yet 

inconclusive theoretical question is which stage or stages the systematic errors originate from 

(Chrastil & Warren, 2021; Fujita et al., 1993; Harootonian et al., 2020). Answering this question 

is important to advance our understanding of the nature of human path integration. 

One intuitive answer is that systematic errors in the inbound path length and turn angle 

originated from the execution process. However, Klatzky, Loomis, and their colleagues (Fujita et 

al., 1993; Klatzky et al., 1999; Loomis et al., 1999) provided innovative insights that systematic 

errors in encoding the outbound path can also well explain the systematic errors appearing in the 
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inbound path length and turn angle. Their influential model, the encoding-error model, assumes 

that while the systematic errors originate from encoding the outbound path, the subsequent 

processes, i.e., computing the desired inbound responses via cognitive trigonometry and 

executing it, are free of systematic errors (Fujita et al., 1993).  

There are three important theoretical contributions of the encoding-error model. First, it 

indicates that counter-intuitively the systematic errors appearing in response measures may not 

originate from execution and instead from encoding. Second, it suggests that human path 

integration may significantly differ from animal path integration. Animals may only represent 

and update the homing vector but do not encode the outbound path in memory (e.g., Benhamou 

& Séguinot, 1995; Etienne & Jeffery, 2004; Wehner et al., 1996). This type of spatial updating is 

referred to as continuous updating. In contrast, spatial updating with encoding of the outbound 

path in memory is referred to as configural updating (He & McNamara, 2018; Loomis et al., 

1999; Wiener et al., 2011). Hence, while researchers hypothesize that animal path integration is 

continuous updating (Wiener et al., 2011, p. 62), the encoding-error model suggests that human 

path integration is configural updating. Last, the encoding-error model suggests that humans can 

develop configural knowledge of the outbound path. This configural knowledge is different from 

route knowledge because the configural knowledge can support a novel short-cut between two 

points on the outbound path and thus is more like a survey (map-like) knowledge. Therefore, 

path integration can be a means to develop map-like knowledge (Gallistel, 1990). 

More specifically, the encoding-error model stipulates that there are two linear functions, 

the encoding function of leg lengths and the encoding function of turn angles, which determine 

the encoded values from the actual values of the outbound path. Each encoding function has two 

parameters, the slope, and the intercept. Therefore, for each given outbound path, the 

https://link.springer.com/article/10.3758/s13423-017-1307-7#ref-CR18
https://link.springer.com/article/10.3758/s13423-017-1307-7#ref-CR18
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corresponding internal representation of the path can be described by the encoding functions. As 

a result, the desired inbound response can be calculated from the encoding functions assuming 

no systematic bias in the integration process. Given that the desired inbound response is executed 

without systematic bias, the encoding-error model can predict the participants’ inbound response, 

at least on average. Fujita et al. (1993) fit the encoding-error model with empirical data of 

triangle completion. They estimated the parameters of the encoding functions by minimizing the 

discrepancy between the model’s predictions and participants’ actual responses to the path 

origins. For both functions, the slope tended to be smaller than 1 and the intercept tended to be 

larger than 0, showing a compression pattern of the encoded values relative to the correct values. 

Moreover, the modeling results showed that the encoding-error model fit the data very well. The 

performance of the encoding-error model was still impressive when data from other studies were 

applied, suggesting that encoding distortion captured the path integration errors under a variety 

of situations (Klatzky et al., 1999; May & Klatzky, 2000; Péruch et al., 1997; Wartenberg et al., 

1998).  

However, the demonstration that systematic distortion can be attributed to the encoding 

component (Fujita et al., 1993) does not exclude the possibility that systematic distortion can 

also be attributed to the execution component alone (referred to as the execution-error model). 

Intuitively, an execution-error model stipulating that execution errors follow a compression 

pattern (a linear function to predict the response values from the correct values with a slope less 

than 1 and an intercept larger than 0) can readily explain the observed compression pattern of the 

response values relative to the correct values. Thus, it is challenging to dissociate the encoding-

error model from the execution-error model empirically. We speculate that due to this challenge, 

Fujita et al. (1993) did not contrast the encoding-error model with the execution-error model to 
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prove the relative superiority of the encoding-error model. Although testing the encoding-error 

model is theoretically critical, no other modeling work had been conducted to further test the 

encoding-error model until two recent studies reported by Harootonian et al. (2020) and Chrastil 

and Warren (2021).   

Harootonian et al. (2020) still assumed that systematic errors occur in the encoding 

process rather than in the integration or execution process, similar to the original encoding-error 

model. However, they proposed that the systematic errors primarily occur in encoding the leg 

lengths but not in encoding the turn angles whereas the original encoding-error model claimed 

systematic errors in both leg lengths and turn angles of the outbound path. Furthermore, different 

encoding functions were used for the lengths of the first and the second legs whereas the original 

encoding-error model used one common function for both legs. They fit their model and the 

original encoding-error model to data in a triangle-completion task in which participants returned 

home after walking an outbound path on an omnidirectional treadmill. The model comparison 

results showed superior performance of their model over the original encoding-error model. 

However, as designed to examine variants of the encoding-error model, this study still cannot 

distinguish between the encoding-error model and the execution-error model.  

More relevantly, Chrastil and Warren (2021) tested models of encoding errors solely, 

execution errors solely, and both types of errors. In their study, participants did both simple tasks 

(e.g., distance or angle reproduction tasks) and triangle-completion tasks. They used data of 

reproduction tasks to estimate the parameters of the encoding and execution functions for 

triangle-completion tasks. Then the three models, using the corresponding functions (e.g., an 

encoding-error model used the encoding functions), generated the predictions for the inbound 

response errors in the triangle-completion task. The results of the model comparison showed that 
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the execution-error model performed better than the encoding-error model. Furthermore, the 

model including both types of errors did not perform better than the execution-error model. 

These results suggest that the observed systematic errors in inbound responses were sufficiently 

explained by the systematic errors in executing the inbound path, but not by the systematic errors 

in encoding the outbound path. The finding of Chrastil and Warren (2021) is theoretically 

important as it is the first modeling work clearly indicating that systematic errors in the human 

triangle-completion task are not solely contributed to the encoding errors, undermining the key 

argument of the encoding-error model (Fujita et al., 1993).  

However, the finding of Chrastil and Warren (2021) could not decisively lead to the 

conclusion that systematic errors in inbound responses are primarily attributed to systematic 

execution errors either. One critical concern is whether the reproduction tasks that Chrastil and 

Warren (2021) employed could truly measure parameters for the pure encoding and execution 

functions. In particular, in their reproduction tasks, participants walked a distance or turned an 

angle (encoding path). After being stopped by a sound, they reproduced the distance or the angle 

(response path). By assuming that there were only systematic encoding errors in the encoding 

path or only systematic execution errors in the response path, Chrastil and Warren separately 

estimated the parameters of the encoding and execution functions from the reproduction tasks. 

However, their assumption may be inaccurate because there could be both systematic errors in 

encoding and execution (Chrastil & Warren, 2014).   

Chrastil and Warren (2021) also measured the distance error in a blind-walking task. 

They then subtracted the errors in the blind-walking task from the errors in the reproduction task 

to get the pure encoding function. Specifically, in blind-walking, participants perceived an 

egocentric distance visually and then walked an equivalent distance while being blindfolded 
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(Chrastil & Warren, 2014). Assuming that there were no systematic encoding errors in perceiving 

an egocentric distance visually and considering that the response path was the same in the blind 

walking and the reproduction task, Chrastil and Warren attributed the difference of the errors in 

these two tasks to the pure encoding errors. Nevertheless, visual perceiving distance may 

introduce systematic encoding errors. Previous research suggested that there is a 

calibration/recoupling between locomotor displacement and the visually perceived distance 

(Rieser et al., 1990; 1995), hence systematic encoding errors in locomotion may also occur in 

visual perceiving distance. Consequently, these methods were not perfect to estimate either 

encoding or execution functions if there were indeed both systematic encoding and execution 

errors. In addition, one may also wonder whether the functions derived from the reproduction 

tasks are the same as those used in a much more complicated triangle-completion task.  

Therefore, the sources of systematic biases in the inbound responses of the triangle-

completion task are still not clear. The primary purpose of the current study was to further test 

the sources of systematic biases. Adopting a model cross-validation approach (Arlot & Celisse, 

2010; Refaeilzadeh et al., 2009), we tested three models: the encoding-error model, the 

execution-error model, and a bi-component model with both encoding and execution biases. We 

used the data of the triangle-completion task from Qi et al. (2021) for both model fitting and 

model validation. In the step of model fitting, we used half data to estimate the parameters of 

different models (i.e., encoding functions for the encoding-error model, execution functions for 

the execution-error model, and both functions for the bi-component model). In the step of model 

validation, we compared the performance of the three models in explaining the other half data. 

Because we estimated the parameters of encoding/execution functions directly using the data of 
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the triangle-completion task, we avoided the issues of estimating encoding/execution functions 

from other independent tasks (e.g., reproduction tasks) discussed above. 

Note that in a typical triangle-completion task, participants had one inbound response 

(i.e., homing vector) for each outbound path. Mou and Zhang (2014) indicated that from only 

one inbound response, researchers cannot correctly recover (or calculate) participants’ 

representations of their positions and orientations that guide their inbound responses at the end of 

the outbound path. They argued that many possible pairs of position and orientation 

representations at the end of the outbound path could lead to the same homing vector. Because 

position and orientation representations at the end of the outbound path are not only the outcome 

of the represented outbound path but also determine the desired inbound responses, we 

conjectured that from one inbound response, we could not determine the represented outbound 

path and desired inbound responses. Mou and Zhang (2014) further demonstrated that from 

multiple inbound responses, they could calculate participants’ representations of their position 

and orientation at the end of the outbound path (see also Qi et al., 2021; Zhang & Mou, 2017; 

Zhang et al., 2020). Following this result, we conjectured that from multiple inbound responses 

for one single outbound path, we could determine the represented outbound path and the desired 

inbound responses and then could estimate the encoding and execution functions. Unlike the 

typical triangle-completion task in which participants only need to make a single response (i.e., 

the homing vector), participants in Qi et al. (2021) were required to indicate multiple locations 

(including home location) that they had learned before walking a two-segment path. Thus, using 

the data from Qi et al. (2021), the current study validated models using multiple inbound 

responses for each outbound path. 
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3.3 Current study 

3.3.1 Description of the data 

The data used for model fitting and model validation in the current study came from the 

path integration conditions of the four experiments in Qi et al. (2021)7. Figure 3.1 illustrates the 

path configurations and object arrays used in the four experiments of Qi et al. (2021). The 

experimental task was conducted in an immersive virtual environment. Participants in Qi et al. 

(2021) learned the locations of three objects (i.e., A, B, and C in Figure 3.1) while standing at the 

origin O (i.e., the home location). O overlapped with either B or C across experiments. After 

learning, the objects disappeared. Participants traveled along the two outbound legs, i.e., OT and 

TP. At the endpoint of the outbound path (i.e., P), participants reported the three objects’ 

locations (including home location) by pinpointing the locations individually on the floor using a 

virtual stick in different cue conditions. Relevant to the current study, participants in the path 

integration condition only had iditothetic cues. There were 28 participants in each of the four 

experiments (112 participants in total). Each participant completed 8 outbound paths (three 

responses for each path) in the path integration condition. 

 As depicted in Figure 3.1, the length of the outbound path can be 0.9 m or 1.8 m. And the 

turn angle on the outbound path can be -20º, ±50º, -70º, ±80º, ±100º, 110º, ±130º, or 160º relative 

to the direction along the first outbound leg OT (reference direction). Clockwise is positive. 

 

7 The primary purpose of Qi et al. (2021) was to investigate how people combine self-motion and landmark cues to 

find home and non-home goal locations. Qi et al. (2021) did not examine the sources of systematic errors of path 

integration. 
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Figure 3.1. The schematic of outbound path configurations and locations of target objects in four 

experiments (a, b, c, and d corresponding to experiments 1, 2, 3, and 4 respectively) of Qi et al. 

(2021). O is the learning location and A, B, and C are the three target locations. An outbound 

path is comprised of origin O, turning point T, and end point P. The values of turn angles 

(positive if participants turned right from the direction of OT) and leg lengths are superimposed 

on each outbound path. 
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3.3.2 The compression pattern of the response inbound path length and turn angle 

The response measures include the inbound path length and the inbound turn angle for 

each target location (A, B, and C in Figure 3.1). Figure 3.2 depicts examples of the response 

measures for a target location overlapping with the origin (home target, O) and for a non-home 

target (A).   

 

 

Figure 3.2. Illustrating the response measures of the current study. O and A are the correct 

locations of two targets whereas Oresp and Aresp  are the response locations of two targets (O is the 

home, A is a non-home target). 𝛽O and 𝛽A are the correct inbound turn angles for the targets O 

and A. 𝛽Oresp and 𝛽Aresp are the response inbound turn angles for the targets O and A. 
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The response inbound path length (e.g., POresp) is the length between the end of the 

outbound path (i.e., P) and the response target location that the participant pinpointed using a 

virtual stick (e.g., Oresp). The response inbound turn angle (e.g., 𝛽Oresp) is the angular difference 

between the participant’s heading at P (i.e., the direction of TP) and the direction from P to the 

response target location (e.g., Oresp).  The correct inbound path length (e.g., PO) is the length 

between the end of the outbound path (i.e., P) and the correct target location (e.g., O). The 

correct inbound turn angle (e.g., 𝛽O) is the angular difference between the participant’s heading 

at P (i.e., the direction of TP) and the direction from P to the correct target location (e.g., O). In 

the rest of this paper, we will only use O to represent all target locations regardless of whether it 

is the home location or non-home location. 

Figure 3.3A plots the response inbound path length (including all three target objects for 

each outbound path) as a function of correct inbound path length, yielding a linear regression line 

(the yellow line with markers in Figure 3.3A) with a slope less than 1 and a positive intercept (y 

= 0.633x + 2.201, r = .243). That is, participants tended to overshoot the small distances that they 

were supposed to produce and reversely, tended to undershoot the large distances. Figure 3.3B 

plots the response inbound turn angle as a function of the correct inbound turn angle, yielding a 

linear regression line with a slope less than 1 and a positive intercept (y = 0.864x + 28.257, r 

= .632). That is, participants overturned small angles and underturned large angles. Overall, 

consistent with previous research (Klatzky et al., 1990; Loomis et al., 1993), the current study 

confirmed a compression pattern relative to correct values of the inbound responses in triangle 

completion. Note that the regression line did not cross with the diagonal line (y = x) at the mean 

of x, referred to as bias to the mean, for either length (mean = 2.5m) or angle (mean = 129º). 

Instead, participants overestimated all correct lengths and angles (referred to as bias to the upper 



 103 

extreme). Findings of bias to the extremes rather than bias to the mean were reported in previous 

studies (e.g., Chrastil & Warren, 2020, Figure 3.7A for length; Harootonian et al., 2020, for angle 

and length; Klatzky et al., 1999, Figure 3.3 for angle; also see Stevens & Greenbaum, 1966 for a 

variety of different stimuli). The results of biases to the extreme could occur because participants 

might use the prior distribution of the encoding values and response values from their 

experiences prior to the experiment (Klatzky et al., 1999) as well as from their experiences in the 

prior trials (Harootonian et al., 2020; Petzschner & Glasauer, 2011).  Specifically, participants in 

the current study might have the overall bias to point to their back (categorical information about 

the prior, Huttenlocher et al., 1991) because 80% of the correct angles (2156/2688) were larger 

than 90º (see Figure S3.1). In addition, Mou and Zhang (2014) suggested that participants might 

overall overestimate the inbound lengths using a virtual stick for pointing responses because the 

length of the virtual stick might be underestimated in virtual environments, which might partially 

explain the bias to the upper extreme for length.  
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Figure 3.3. (A) The response inbound length as a function of the correct inbound length. (B) The 

response inbound turn angle as a function of the correct inbound turn angle. The diagonal lines 

in red (y = x) indicate the perfect inbound response. The yellow lines indicate the regression 

lines. Each dot indicates one individual pair of predicted and response values from all three 

targets and all 896 outbound paths (2688 dots in total). 

 

3.4 Specifications of individual models 

To examine the sources of the compression patterns of inbound responses relative to the 

correct values, we formulated three theoretically plausible models (i.e., the encoding-error 

model, the execution-error model, and the bi-component model). In addition, we also included a 

baseline model that assumes no systematic bias and used the correct values as the predicted 

values for the inbound responses. 

3.4.1 The encoding-error model 

The encoding functions of the outbound path length and the outbound turn angle 

comprise a set of 4 parameters, 2 for each function. 𝜃𝐿_𝑠
𝑒𝑛𝑐, 𝜃𝐿_𝑖

𝑒𝑛𝑐 are the slope and the intercept of 

the linear function for encoding the outbound path length whereas 𝜃𝐴_𝑠
𝑒𝑛𝑐 , 𝜃𝐴_𝑖

𝑒𝑛𝑐 are the slope and 

the intercept of the linear function for encoding the outbound turn angle. Same as the original 

encoding-error model, 𝜃𝐿_𝑠
𝑒𝑛𝑐, 𝜃𝐿_𝑖

𝑒𝑛𝑐 are used for both the first and second legs of the outbound 

path. Thus, the encoded values of leg length 𝐿𝑒 and turn angle 𝛼𝑒 can be represented with these 

parameters, 

𝐿𝑒 = 𝜃𝐿_𝑠
𝑒𝑛𝑐 × 𝐿 + 𝜃𝐿_𝑖

𝑒𝑛𝑐,                                                                                                                    (1) 

𝛼𝑒 = 𝜃𝐴_𝑠
𝑒𝑛𝑐 × 𝛼 +𝜃𝐴_𝑖

𝑒𝑛𝑐,                                                                                                                     (2)                
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where L and 𝛼 are the correct length and turn angle of the outbound path, respectively (see 

values in Figure 3.1).  

As depicted in Figure 3.4A, hypothetical participants encode outbound segment L1, L2, 

and turn angle 𝛼 as 𝐿1𝑒, 𝐿2𝑒, and 𝛼𝑒. According to Formulas 1 and 2, 𝐿1𝑒 = 𝜃𝐿_𝑠
𝑒𝑛𝑐 × 𝐿1 + 𝜃𝐿_𝑖

𝑒𝑛𝑐, 

𝐿2𝑒 = 𝜃𝐿_𝑠
𝑒𝑛𝑐 × 𝐿2 + 𝜃𝐿_𝑖

𝑒𝑛𝑐, 𝛼𝑒 = 𝜃𝐴_𝑠
𝑒𝑛𝑐 × 𝛼 + 𝜃𝐴_𝑖

𝑒𝑛𝑐.  

In a Cartesian coordinate system, by means of theorems of trigonometry, the encoded 

outbound path can be represented in terms of vectors, 𝑂𝑇𝑒
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 

𝐿1𝑒

𝐿1
 × 𝑂𝑇⃗⃗⃗⃗  ⃗, and 𝑇𝑒𝑃𝑒

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐿2𝑒×  
𝑇𝑒𝑃𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑇𝑒𝑃𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ||
 . 

 Where the ‖𝑇𝑒𝑃𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ is the length of the vector of 𝑇𝑒𝑃𝑒

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  
𝑇𝑒𝑃𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑇𝑒𝑃𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ||
  equals to the unit vector (a 

vector with the length of 1) with the direction of the vector 𝑂𝑇⃗⃗⃗⃗  ⃗ being rotated by the angle of 𝛼𝑒. 

Accordingly, the participants consider themselves standing at 𝑃𝑒 and facing the direction 

of ℎ𝑒, same as the direction of 𝑇𝑒𝑃𝑒
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . To pinpoint the target location, they intend to produce the 

desired inbound vector 𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗, which consists of the desired inbound turn angle 𝛽𝑒 and the desired 

inbound path length 𝐿3𝑒: 

𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗  = - (𝑂𝑇𝑒
⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑇𝑒𝑃𝑒

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ),                                                                                                                 (3) 

𝛽𝑒 = dir (𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗) – (dir (𝑂𝑇⃗⃗⃗⃗  ⃗) + 𝛼𝑒 ),                                                                                               (4)   

𝐿3𝑒  = ‖𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗‖.                                                                                                                                  (5) 

Where the dir (𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗) is the direction of 𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗ and dir (𝑂𝑇⃗⃗⃗⃗  ⃗) is the direction of 𝑂𝑇⃗⃗⃗⃗  ⃗. The direction of 

a vector is specified by the angular distance from a fixed reference direction in the virtual 

environment (e.g., the UP direction in Figure 3.1) to the vector. Where the ‖𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗‖ is the length of 

the vector of 𝑃𝑒𝑂⃗⃗⃗⃗⃗⃗  ⃗. 
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As there is no systematic bias in executing the inbound path based on the assumptions of 

the encoding-error model, the participants are able to implement the desired inbound path length 

and turn angle without bias (e.g., 𝐿𝑟 = 𝐿3𝑒, 𝛽𝑟 = 𝛽𝑒 in Figure 3.4A) while standing at P and 

facing the direction of h actually. Thus, the predicted response vector 𝑃𝑂𝑝𝑟𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   can be given by 

𝑃𝑂𝑝𝑟𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = 𝐿3𝑒 × 

𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

||𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ||
 ,               (6) 

where 
𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

||𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ||
  equals to the unit vector with the direction of the vector 𝑂𝑇⃗⃗⃗⃗  ⃗ being rotated 

by the angle of (𝛼 + 𝛽𝑒). 

We then get the predicted response location Opred. 

𝑂𝑝𝑟𝑒𝑑 = P + 𝑃𝑂𝑝𝑟𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   .                                                                                                                    (7) 

Where Opred and P represent the coordinates in the Cartesian coordinate system used in Qi 

et al. (2021), where the direction of UP in Figure 3.1 is y positive and the direction of RIGHT in 

Figure 3.1 is x positive. 

Thus, following Formula 1-7, the coordinates of the predicted response location Opred can 

be expressed in terms of parameters 𝜃𝐿_𝑠
𝑒𝑛𝑐, 𝜃𝐿_𝑖

𝑒𝑛𝑐, 𝜃𝐴_𝑠
𝑒𝑛𝑐, and 𝜃𝐴_𝑖

𝑒𝑛𝑐, and several constants (e.g., L1, 

L2, and 𝛼) for each path.  
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Figure 3.4. Illustration of predictions of different models. In each panel, the outbound path of a 

participant, O-T-P (solid black), consists of lengths L1 and L2 and turn angle 𝛼. H is the 

participant’s heading at the end of the outbound path. The prediction of the participants’ inbound 

path, POpred (solid blue indicating inbound responses without systematic errors or solid green 

indicating inbound responses with systematic execution errors), consists of length 𝐿𝑟 and 

inbound turn angle 𝛽𝑟. Opred is the predicted location of O. (A) the encoding-error model. The 

encoded outbound path, O-Te-Pe (blue dotted), consists of lengths L1e and L2e and turn angle 
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𝛼e, which are determined by the encoding functions. ℎ𝑒 is the encoded heading at the end of the 

outbound path. The desired inbound responses are free of execution errors (i.e., 𝐿𝑟 = 𝐿3𝑒 and 

𝛽𝑟 = 𝛽𝑒). (B) the execution-error model. The outbound path is free of encoding errors (𝛼𝑒 = 𝛼 

and 𝑃𝑒 = P). The inbound responses (𝐿𝑟 and 𝛽𝑟) are solely determined by the execution 

functions. (C) the bi-component model. The inbound responses (𝐿𝑟 and 𝛽𝑟) are determined by the 

systematic errors in encoding (blue dots) according to the encoding functions and in execution 

(green solid) according to execution functions.  

 

3.4.2 The execution-error model 

The execution-error model assumes that the process of encoding is independent of the 

systematic bias and the navigators estimate their self-localization (i.e., 𝑇𝑒 = T and 𝑃𝑒 = P in 

Figure 3.4B) accurately. 

The execution functions for inbound path length and angle have 2 parameters, 

respectively. While 𝜃𝐿_𝑠
𝑒𝑥𝑒  and 𝜃𝐿_𝑖

𝑒𝑥𝑒  are the slope and intercept for the inbound path length, 𝜃𝐴_𝑠
𝑒𝑥𝑒   

and 𝜃𝐴_𝑖
𝑒𝑥𝑒  are the slope and intercept for inbound turn angle.  

The executed values of inbound length 𝐿𝑟 and turn angle 𝛽𝑟 (see Figure 3.4B) can be 

represented as: 

𝐿𝑟 = 𝜃𝐿_𝑠
𝑒𝑥𝑒 × 𝐿3𝑒+ 𝜃𝐿_𝑖

𝑒𝑥𝑒,                                                                                                                          (8) 

𝛽𝑟 = 𝜃𝐴_𝑠
𝑒𝑥𝑒 × 𝛽𝑒 + 𝜃𝐴_𝑖

𝑒𝑥𝑒,                                                                                                                  (9) 

where 𝐿3𝑒 and 𝛽𝑒 equal to the correct length L3 and turn angle 𝛽 for the inbound path, 

respectively, because there is no systematic error in encoding the outbound path. 

Therefore, the predicted response vector 𝑃𝑂𝑝𝑟𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   can be calculated according to Formula 

10: 
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𝑃𝑂𝑝𝑟𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = 𝐿𝑟 × 

𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

||𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ||
.                                                                                                              (10) 

Where 
𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

||𝑃𝑂𝑝𝑟𝑒𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ||
  equals to the unit vector with the direction of the vector 𝑂𝑇⃗⃗⃗⃗  ⃗ being 

rotated by the angle of (𝛼 + 𝛽𝑟). 

As a result, the predicted location Opred can be calculated by Formula 7. 

3.4.3 The bi-component model 

Since the bi-component model presumes that both the encoding and execution processes 

contribute to systematic errors, it incorporates the previously described encoding functions for 

the outbound path and execution functions for the inbound path (see Figure 3.4C). 

Specifically, Formula 1 through 5 still holds in encoding the outbound path and 

estimating the desired inbound response, i.e., 𝐿3𝑒 and 𝛽𝑒, for the current model. Formula 8-10 

still holds when executing the desired inbound response through the execution functions. As a 

result, Formula 7 can be used to calculate the model’s predicted response location Opred. 

3.4.4 The baseline model 

The baseline model presumes no systematic bias in both encoding and execution stages, 

i.e., the slopes are one and the intercepts are zero for all the encoding functions and the execution 

functions. Thus, the baseline model directly used the correct values of the target locations to 

predict participants’ response locations (Opred = O). 

Note that Harootonian et al. (2020) showed the influence of the immediately preceding 

trial. Participants tended to bias the encoded distance of the current trial towards the encoded 

distance of the previous trial (e.g., a larger distance in the previous trial would lead to 

overestimation of a short distance in the current trial), which indicates that the Bayesian prior of 

the true value assimilates the information of the immediately preceding trial. According to the 
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three models interested in the current study (encoding-error model, execution-error model, and 

bi-component model), a Bayesian prior could be considered in encoding the outbound path, 

executing the inbound path, or in both, predicting history effects in different processes. To 

simply the model comparison, we did not add parameters of the history effect to the models in 

the current study. 

3.5 Cross-validation for models without considering participant variable 

We conducted cross-validation for models without considering participants’ differences in 

their compression patterns in either encoding or response functions. Therefore, one value of each 

parameter (e.g., eight free parameters, 𝜃𝐿_𝑠
𝑒𝑛𝑐, 𝜃𝐿_𝑖

𝑒𝑛𝑐, 𝜃𝐴_𝑠
𝑒𝑛𝑐, 𝜃𝐴_𝑖

𝑒𝑛𝑐, 𝜃𝐿_𝑠
𝑒𝑥𝑒, 𝜃𝐿_𝑖

𝑒𝑥𝑒, 𝜃𝐴_𝑠
𝑒𝑥𝑒, and 𝜃𝐴_𝑖

𝑒𝑥𝑒 for the 

bi-component model) was estimated for all participants. 

For each model, the technique of 5 times of 2-fold (5 × 2) cross-validation (Alpaydm, 

1999; Dietterich, 1998) was employed for the computational modeling of the response locations. 

To be specific, the original dataset (all 896 outbound paths, 8 paths × 4 experiments × 28 

participants for each experiment) was partitioned randomly into two equal subsamples, S1 and 

S2, with 448 outbound paths each. One subsample (e.g., S1) was assigned to the model training 

to estimate the model parameters, and the other (e.g., S2) was used for the model validation. 

Then, the two subsamples were swapped, that is, S2 was used for model training and S1 was the 

subsample to test the model performance. The above random subsampling and cross-validation 

operations were repeated 5 rounds. Each half of the dataset was applied to both model fitting and 

validation in each round. Afterward, model performance in model validation can be averaged 

across the ten folds (5 × 2 folds) to obtain a more robust estimation of the model performance by 

reducing the impact of sampling (partitioning) errors. 
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The process of modeling was carried out using two different algorithms. One only used 

the data of the home response location for every outbound path, as in the previous typical 

triangle-completion studies, whereas the other used all three response locations for every 

outbound path. As we speculated above, only using the response to the home for every outbound 

path, cross-validation modeling may not distinguish the three models (single-component models 

and the bi-component model). In contrast, using the responses to three locations for every 

outbound path, cross-validation modeling may distinguish the three interested models.  

3.5.1 Model fitting 

The functions of each model were determined (i.e., the parameters of 𝜃𝑠 were estimated) 

by making the models’ predictions (Opred) as closely as possible to the participants’ responses 

(Oresp). The discrepancy was measured by the mean squared error (MSE) between the predicted 

and response locations across all outbound paths and all targets (3 for the algorithms using 

multiple response locations and 1 for the algorithms using home response locations only) in 

training subsamples (the data used for model fitting): 

MSE = 
1

𝑛
 ∑ [(𝑂𝑥𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑥𝑖
𝑟𝑒𝑠𝑝)

2
+ (𝑂𝑦𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑦𝑖
𝑟𝑒𝑠𝑝)

2
]𝑛

𝑖=1 ,                                                            (11)    

where the (𝑂𝑥𝑖
𝑝𝑟𝑒𝑑, 𝑂𝑦𝑖

𝑝𝑟𝑒𝑑
) is the predicted location based on the model, (𝑂𝑥𝑖

𝑟𝑒𝑠𝑝, 𝑂𝑦𝑖
𝑟𝑒𝑠𝑝

) is the 

response location, and n is the number of data points.  

Then using Matlab’s fminsearch function, we found the value of parameters that 

minimize the MSE for each model. The fminsearch function can detect the minimal value of an 

objective function (e.g., MSE) by means of various optimization algorithms. To boost the 

possibility of locating a global minimum rather than a local one for the objective function, the 

search ran 500 iterations and each time started with random initial values of parameters. After 
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500 iterations, the fitting procedure located the minimum of MSE at an optimal solver, and this 

solver was the set of best-fitting parameters. 

Table 3.1 summarizes the averaged ten-fold results of fitting different models to response 

data, including parameters and fitting performance, using two distinct algorithms (see 

Supplementary Materials of Chapter 3 and Table S3.1 for results of individual folds). These 

parameters would be held for the subsequent model validation.  

For brevity, the encoding-error model is referred to as Model 1, the execution-error 

model as Model 2, the bi-component model as Model 3, and the baseline model as Model 0 

(abbreviated as M1, M2, M3, and M0, respectively in the following sections).  

The fitting performance of a specific model M is evaluated by the squared root of the 

MSE (RMSE), the percentage of the variance of the baseline model explained by the individual 

model (Partial R2 = 1- 
𝑀𝑆𝐸 𝑜𝑓 𝑀

𝑀𝑆𝐸 𝑜𝑓 𝑀0
), and the maximum log-likelihood (MaxLogL). 

To calculate the maximum log-likelihood, we assumed that the deviations of the 

predicted locations from the response locations (𝑂𝑥𝑖
𝑝𝑟𝑒𝑑 − 𝑂𝑥𝑖

𝑟𝑒𝑠𝑝, 𝑂𝑦𝑖
𝑝𝑟𝑒𝑑 − 𝑂𝑦𝑖

𝑟𝑒𝑠𝑝), referred to as 

the locational residuals, were from a bivariate normal distribution with zero means (𝜇 = (0,0)) 

and undetermined covariance matrix (Σ). The maximum log-likelihood of the locational residuals 

were calculated by Formula 12 (Jordan, 2003; Taboga, 2021): 

MaxLogL = log [(
1

√2𝜋
)
𝑐𝑛

× 𝑒−
𝑐𝑛

2  × |Σ̂|
−

𝑛

2  ].                                                                               (12)    

Where c is the dimension of the data (c = 2 for the locational residuals), and n refers to 

the number of the data points (n = 498 × 3 for the algorithms of using multiple locations and n = 

498 for the algorithms of using the home response locations only). Σ̂ is 
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[
 
1

𝑛
 ∑ (𝑂𝑥𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑥𝑖
𝑟𝑒𝑠𝑝)

2𝑛
𝑖=1

1

𝑛
 ∑ (𝑂𝑥𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑥𝑖
𝑟𝑒𝑠𝑝)  (𝑂𝑦𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑦𝑖
𝑟𝑒𝑠𝑝)𝑛

𝑖=1

1

𝑛
 ∑ (𝑂𝑥𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑥𝑖
𝑟𝑒𝑠𝑝)  (𝑂𝑦𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑦𝑖
𝑟𝑒𝑠𝑝)𝑛

𝑖=1
1

𝑛
 ∑  (𝑂𝑦𝑖

𝑝𝑟𝑒𝑑 − 𝑂𝑦𝑖
𝑟𝑒𝑠𝑝)

2𝑛
𝑖=1

] from 

each individual models. |Σ̂| is the determinant of the matrix. 

 

Table 3.1. Model fitting performance using multiple locations (upper) or only home response 

locations (lower). Parameters are estimated slopes and intercepts of encoding functions (𝜃𝐿_𝑠
𝑒𝑛𝑐 

and 𝜃𝐿_𝑖
𝑒𝑛𝑐 for length, 𝜃𝐴_𝑠

𝑒𝑛𝑐 and 𝜃𝐴_𝑖
𝑒𝑛𝑐 for angle) and execution functions (𝜃𝐿_𝑠

𝑒𝑥𝑒 and 𝜃𝐿_𝑖
𝑒𝑥𝑒 for length,  

𝜃𝐴_𝑠
𝑒𝑥𝑒 and 𝜃𝐴_𝑖

𝑒𝑥𝑒 for angle) for all four models in the model fitting. The RMSE, maximum log-

likelihood, and partial r-squared are goodness-of-fit measures. M0 = the baseline model, 

M1=the encoding-error model, M2 = the execution-error model, M3 = the bi-component model.  

 

 

 

Model 

Multiple response locations 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.178 -5961.9 0 

M1 1.04 0.48 0.79 18.38 1 0 1 0 3.076 -5882.2 0.063 

M2 1 0 1 0 0.70 1.29 0.78 41.11 3.054 -5865.2 0.077 

M3 0.82 0.78 0.84 20.42 0.69 1.10 0.82 34.21 3.017 -5831.5 0.099 

 

 

 

Model 

Home response locations only 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.805 -1867.1 0 

M1 0.68 0.67 0.45 23.43 1 0 1 0 2.620 -1815.5 0.128 

M2 1 0 1 0 0.42 2.10 0.47 84.21 2.625 -1816.8 0.124 

M3 2.53 3.94 0.48 26.20 0.73 0.11 1.18 12.55 2.618 -1815.0 0.129 
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Table 3.1 shows that the bi-component model (M3) is the best model according to the 

three goodness-of-fit measures numerically when all three response locations were included in 

the model fitting. In contrast, although the three models of interest (M1-M3) are better than the 

base model (M0), they could not distinguish from each other when only the home response 

locations were included in the model fitting. However, the superiority of the bi-component model 

(M3) using all three response locations might be attributed to the fact that the bi-component 

model (M3) has more free parameters than the encoding-error model and the execution-error 

model (M1 and M2). This issue could be addressed by some model selection criteria (e.g., AIC, 

Akaike, 1973 or BIC, Schwarz, 1978) that penalize free parameters to be estimated. This issue 

could also be addressed by cross-validation which applied the estimated parameters to 

independent data (i.e., test subsamples) so that there is no free parameter in any models. The 

current study used the second approach. We still conducted AIC and BIC analyses for the 

training subsamples as some readers might be interested (see Supplementary materials of 

Chapter 3 and Table S3.3). 

3.5.2 Model validation 

In each round of cross-validation (five rounds in total), after fitting models to each 

training subsample (S1 or S2), we evaluated the generalizability of models using the 

corresponding test subsample (S2 or S1). Table 3.2 shows the averaged validation performance 

over ten test subsamples after performing the cross-validation five times for all four models (see 

Supplementary materials of Chapter 3 and Table S3.2 for results of individual folds). 

More specifically, for each model, the estimated parameters derived from each training 

subsample were applied to predict the response locations for the corresponding test subsample 

that were not involved in estimating the parameters. The residuals between the predicted and 

https://link.springer.com/article/10.1007/s11336-017-9572-y#ref-CR35
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response locations were used to calculate the RMSE, maximum log-likelihood, and partial r-

squared. 

 

Table 3.2. Model validation performance using multiple locations (upper) or only home response 

locations (lower). Parameters are the same as in Table 3.1 from model fitting. The RMSE, 

maximum log-likelihood, and partial r-squared are generalizability measures, which were 

calculated by applying the parameters to the test subsamples.  

 

 

 

Model 

Multiple response locations 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.178 -5961.9 0 

M1 1.04 0.48 0.79 18.38 1 0 1 0 3.085 -5889.9 0.058 

M2 1 0 1 0 0.70 1.29 0.78 41.11 3.060 -5868.9 0.073 

M3 0.82 0.78 0.84 20.42 0.69 1.10 0.82 34.21 3.031 -5843.6 0.090 

 

 

 

Model 

Home response locations only 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.805 -1867.1 0 

M1 0.68 0.67 0.45 23.43 1 0 1 0 2.632 -1819.2 0.120 

M2 1 0 1 0 0.42 2.10 0.47 84.21 2.633 -1819.1 0.119 

M3 2.53 3.94 0.48 26.20 0.73 0.11 1.18 12.55 2.634 -1819.8 0.118 

 

Table 3.2 indicates that the bi-component model (M3) is the best model according to the 

three generalizability measures when all three response locations were included in the model 
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evaluation. In contrast, although the encoding-error model, execution-error model, and the bi-

component model (M1, M2, and M3) are better than the baseline model (M0), they could not 

distinguish from each other when only the home response locations were included in the model 

evaluation.  

These conclusions were quantified by the maximum likelihood ratios (LRs) analysis. 

Because all models have the same number of free parameters for the test subsamples, LRs can be 

directly calculated from the MaxLogLs without adjustment due to difference in parameter 

numbers. Table 3.3 summarizes the results.  

 

Table 3.3. Maximum likelihood ratio (LR) between models (row model over column model) in 

model validation using multiple locations (left) or only home response locations (right). 

 

 Multiple response locations 

 

Home response locations only 

 

LR M0 M1       M2 M3         M0 M1 M2 M3 

M1 1.86 × 1031**     6.70 × 1020**    

M2 2.31 × 1040** 1.25 × 109**    7.55 × 1020** 1.13—   

M3 2.37 × 1051** 1.28 × 1020** 1.02 × 1011**   3.66 × 1020** 0.55— 0.49—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  

 

The results of the maximum likelihood ratio shown in Table 3.3 demonstrate that there is 

strong evidence in favor of the bi-component model (M3) over the encoding-error model (M1) 

and the execution-error model (M2) when the cross-validation included multiple response 

locations, whereas there was no clear evidence favoring any models when the cross-validation 

included only home response locations.  
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Furthermore, we adopted Alpaydin’s 5×2cv combined F test to examine the differences in 

models’ performance (Alpaydm, 1999, see also Raschka, 2018). To compare the results of two 

competing models, the difference in the value of RMSE (dRMSE) between them was calculated, 

generating 5 × 2 difference matrices (RMSEs of ten-folds in validation of each model are listed 

in Table S3.2). 𝑑𝑖
𝑗
 was used to denote the dRMSE value on the jth (j = 1, 2) fold of the ith (i = 

1, …, 5) round in a difference matrix and 𝑑𝑖
𝑎𝑣𝑔

 denotes the averaged RMSE difference in the ith 

round, 𝑑𝑖
𝑎𝑣𝑔

 = (𝑑𝑖
1 + 𝑑𝑖

2) / 2. 

Then the estimated variance of the difference for the ith round is given by 

𝑠𝑖
2 =(𝑑𝑖

1 − 𝑑𝑖
𝑎𝑣𝑔

)
2
+ (𝑑𝑖

2 − 𝑑𝑖
𝑎𝑣𝑔

)
2
.                                                                                         (13)    

The F statistic is calculated as: 

𝑓 = 
∑ ∑ (𝑑𝑖

𝑗
)
2

2
𝑗=1

5
𝑖=1

2∑ 𝑠𝑖
25

𝑖=1  
,                                                                                                                         (14)    

which approximately follows an F distribution with (10, 5) degrees of freedom.  

Table 3.4 summarizes the mean dRMSE of all pairs of the models and the corresponding 

significance of Alpaydin’s F-test. Consistent with the results indicated by Table 3.3, when three 

locations’ data were included (left panel), the results show that the bi-component model 

(RMSEM3 = 3.031) significantly outperforms the encoding-error model (RMSEM1 = 3.085, p 

< .001) and the execution-error model (RMSEM2 = 3.060, p = .02) in predicting the actual 

responses. The execution-error model presents significantly better performance than the 

encoding-error model (p < .01). All the three models of interest have substantially better 

predictive performance than the baseline model (RMSEM0 = 3.178, all p values < .001). 

By contrast, when only the data of home response locations were used in the cross-

validation (right panel), there was no significant difference in RMSE among M1, M2, and M3 
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although RMSEs in these three models, approximately 2.63, were significantly smaller than that 

of the baseline model (M0) (RMSEM0 = 2.805, all p values < .01). 

 

Table 3.4. Alpaydin’s F-test examining the differences in RMSE (dRMSE) between models (the 

row model minus the column model) when using multiple locations (left) or only home response 

locations (right).  

 

Multiple response locations 

 

Home response locations only 

 

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 

M1   -.093∗∗     M1  -.174∗∗∗    

M2 -.118∗∗∗ -.025∗∗    M2  -.172∗∗∗ .001—   

M3  -.147∗∗ -.056∗∗∗ -.029∗   M3  -.171∗∗∗ .002— .001—  

Note: Asterisks denote significant dRMSE (***p < .001; **p < .01; *p < .05) and a dash (—) 

indicates non-significant dRMSE. 

 

Figure 3.5 visually presents locational residuals of model validation. We calculated the 

mean predicted locations of each target (three for multiple response locations or one for home 

only) in each outbound path (32 in total) across the ten folds of the test subsamples based on 

different models. We also calculated the mean response location of the target across participants 

who replaced this target. The locational residual of one target for one model is the difference 

between the mean predicted location based on this model and the mean response location of the 

target across participants (mean predicted location – mean response location). 

Figure 3.5A, employing multiple response locations, reveals clear differences in 

predictive performance among all these models. In particular, the bi-component model achieves 
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more centric dots and a smaller area of 95% density contours of the residual distributions 

compared with other competing models, indicating that it is capable to predict the actual 

responses of the participants more accurately. By contrast, Figure 3.5B, employing only the 

home response locations, shows that apart from the baseline model, the performance of the other 

three models is not distinguishable (the dots of various colors are mixed up and the ellipses 

overlap). 

 

Figure 3.5. Visualizing the differences (locational residuals) between mean response locations 

and mean predicted locations from different models using (A) multiple response locations or (B) 

only home response locations. The open circle with a cross at (0, 0) indicates the response 

location, the coordinate of which varied in real experiments but is set to (0, 0) as a reference. 

Individual dots represent coordinates of the locational residuals for all targets (96 targets in A 

and 32 in B). Ellipses indicate the 95% density contours of the bivariate normal distributions 

with zero means (𝜇 = (0,0)) and covariance matrix (𝛴) of the locational residuals according to 
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the baseline model (green), encoding-error model (red), execution-error model (blue), and bi-

component model (black), respectively. 

 

3.5.3 Model recovery 

The results of 5 × 2 cross-validation indicated that the bi-component model was the best 

model to predict the response locations. Furthermore, although the algorithm of using all three 

objects can dissociate the bi-component model from the encoding-error and execution-error 

models, the algorithm of using only home response locations cannot. Because both these 

conclusions are dependent on the cross-validation methods used in the current project, these 

conclusions will be significantly strengthened if the cross-validation methods used in the current 

project can be shown to distinguish the true model from other models using the simulated 

response locations produced by each of the three models (the encoding-error, execution-error, 

and bi-component models).  

For each model (i.e., the true model), we generated simulated response locations for all 

ten subsamples (5 × 2 folds). Using the corresponding parameters derived from model fitting 

using multiple objects (e.g., the values for M1, M2, and M3 in the upper table of Table 3.1), we 

calculated the predicted locations for all three targets for each of the 448 outbound paths in each 

subsample. Using the corresponding RMSE in the upper table of Table 3.1, we generated random 

noises for both dimensions (x and y) of all predicted locations from a normal distribution (𝜇 = 0, 

σ = 
RMSE

√2
). Each simulated response location is then the sum of the predicted location and the 

noise. We applied both algorithms of 5 × 2 cross-validation (using multiple response locations or 

using only home response locations) to the simulated response locations and examined whether 

the generalizability measure (i.e., LR) in the model validation could distinguish the true model 
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from other models. We created 100 sets of simulated response locations and conducted 5 × 2 

cross-validation for all of them8.  

The frequency of successfully distinguishing the true model from other models could also 

indicate the discriminability of the cross-validation methods. For each true model, we calculated 

the likelihood ratio between any two models for each of the 100 simulations and classified the 

likelihood ratios into different categories (see details in Supplementary materials of Chapter 3 

and Figure S3.2). Figure 3.6 presents the confusion matrix in model recovery. The best model 

was determined only when it had likelihood three times higher than both other two models. The 

results showed that the algorithm of using multiple response locations can successfully 

distinguish the true model from other models. Occasionally the algorithm could not find the best 

model (i.e., no model had likelihood three times than both other two models) (e.g., for true model 

M2, 18% chance of failure to find the best model). However, in most instances, the algorithm 

recovered the true model (98% for true model M1, 82% for true model M2, and 100% for true 

model M3) and never recovered any competing models. By contrast, the algorithm of using 

home response locations cannot clearly distinguish the true model from other models. In most 

cases, the algorithm could not find the best model (with a rate larger than 49%). Consequently, 

the algorithm could recover the true model at a low rate (23% for true model M1, 50% for true 

model M2, and 7% for true model M3). The algorithm also at times recovered competing 

models. 

 

8 Note that it takes about 3.5 hours to finish 5 × 2 cross-validation for each simulation subsample using all three 

response locations of each outbound path. 
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 Figure 3.6. Confusion matrices in model recovery using multiple response locations (left) or 

home response locations only (right). The number in each cell indicates the frequency of the 

recovered model being the best model. NoRecoved means that no best model was recovered by 

the algorithm. 

 

3.5.4 Similarity of parameters’ values estimated from real and simulated response locations  

The algorithm using multiple response locations estimated 16 parameters (four 

parameters for M1, four for M2, and eight for M3, see Table 3.1) based on participants’ response 

locations. Similarly, this algorithm could also estimate 16 parameters based on simulated 

locations produced by each true model. The similarity between the estimated parameters based 

on real and simulated response locations should reflect the similarity between real and simulated 

response locations, thus indicating the closeness between the true model that produced the real 

response locations and each model. The model closest to the true model should be the best 

model. The similarity between parameters based on real response locations and simulated 

response locations from different models were illustrated by Figure 3.7 (see exact parameters in 

Table S3.4. The parameter distance was shortest when the simulated locations were produced by 

M3 (RMSE = 9.44, 6.8, and 1.5 for M1, M2, and M3 respectively). The parameters based on 
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simulated locations from M3 explained the largest proportion of the total variance of the 16 

parameters based on real response locations (r2 = 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟
 , r2 = .46, .72, and .99 for M1, M2, 

and M3 respectively). The rates of likelihood of M3 over other models were larger than 3.33 × 

1010 (logL = -58.64, -53.38, and -29.15 for M1, M2, and M3 respectively). Therefore, the 

similarity between real and simulated response locations from M3 was largest, indicating M3 

was the best model. 

 

Figure 3.7. Illustrating the similarity of estimated parameters based on real data and simulated 

data from different models. The diagonal lines in green (y = x) indicate the ideal outcome that 

the parameters derived from real data are perfectly recovered from simulated data. Open dots 

depict the individual pairs of values of parameters based on real and simulated response 

locations for each model. 

 

3.5.5 Predictive performance on the response error of participants  

In addition, we compared the predictive performance of different models in terms of 

participants’ response error (inbound path length or turn angle), consistent with previous studies 
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(Chrastil & Warren, 2021; Fujita et al., 1993). We conducted the following analyses of the mean 

predicted locations of targets across the ten-fold test subsamples, which were used in model 

validation. The predicted inbound path (𝑃𝑂𝑃𝑟𝑒𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) was calculated from the testing position (P) to 

the predicted location (Opred) based on each model. The predicted error (inbound path length or 

turn angle) was defined as the difference between the predicted and correct values for each target 

and each unique outbound path (32 different types of paths, 8 in each of the four experiments). 

The individual response error (inbound path length or turn angle) was defined as the difference 

between the response and correct values. The mean response error for each target and each unique 

outbound path was the average of the individual response errors across participants for the specific 

target and the specific outbound path.  

Figure 3.8 illustrates the mean predictive performance of different models in terms of 

inbound length error and angle error. It shows that the bi-component model (M3) had the highest 

correlation coefficients for both inbound length (see rs in Figure 3.8A) and angle errors (Figure 

3.8C) when the cross-validation included multiple response locations of each outbound path. 

Nevertheless, the correlation coefficients of the three models were comparable when the cross-

validation only included the home response location of each outbound path (see rs in Figure 3.8B 

and Figure 3.8D). 

 



 125 

 



 126 

 

Figure 3.8. Illustrating the predicted errors in inbound path length (panels A and B) and turn 

angle (panels C and D) as a function of the mean response errors using multiple response 

locations or only home response locations. The diagonal lines in red (y = x) indicate the ideal 

outcome that the response errors are perfectly predicted. The yellow lines indicate the regression 

lines. Open dots depict the individual pairs of predicted errors and mean response errors across 
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participants, for each object, and for each path (32 paths in total), according to the encoding-

error model (M1), execution-error model (M2), and bi-component model (M3), respectively. 

 

The likelihood ratios were computed to compare the models’ performance in predicting 

inbound length errors and angle errors. Following Glover and Dixon (2004), the likelihood ratio 

of favoring Modeli over Modelj (i.e., 𝜆𝑖𝑗) can be computed as  

𝜆𝑖𝑗 = (
1−𝑟𝑗

2

1−𝑟𝑖
2)

𝑛

2

,                                                                                                                           (15)    

where the 𝑟𝑖
2 and 𝑟𝑗

2 are squared mean correlation coefficients from Modeli and Modelj in Figure 

3.8, indicating the variance that is explained by Modeli and Modelj, respectively, and n is the 

number of data points. In the current example, n equals 96 (i.e., 32 paths × 3 response locations) 

for taking multiple response locations or equals 32 (i.e., 32 paths × 1 response location) for taking 

only home response locations into the cross-validation.  

The results of likelihood ratios for the three competing models are reported in Table 3.5. 

For both length and angle errors, the method of employing multiple response locations 

demonstrates compelling evidence (i.e., five out of six likelihood ratios of over 100) that the bi-

component model is superior to the encoding-error and execution-error models in describing mean 

response errors. However, no clear evidence (i.e., no likelihood ratios of over 2) is presented by 

employing only home response locations, showing that it cannot distinguish between models in 

terms of predictive power. 

 

Table 3.5. Maximum likelihood ratios (𝜆) for competing models (row model over column model) 

in predicting inbound path length errors (left) and turn angle errors (right) using multiple 

locations or only home response locations. 
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Length errors  Angle errors 

Multiple response 

locations 

Home response 

locations only 

 Multiple response locations Home response 

locations only 

𝜆  M1   M2 M3  M1  M2 M3       M1 M2 M3 M1 M2 M3 

M1              

M2  0.8   0.5—   113.1**   1.6—   

M3  161.5** 203.9**  1.0— 1.9—  5.6 × 1011** 

 

4.9 × 109** 

 

 0.7— 0.5—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  

 

3.6 Groups of participants differing in compression pattern of the response  

In the cross-validation described above, we did not consider the participant variable. For 

each model, we estimated the best model parameters being applied to all participants. However, 

participants might differ in the compression pattern (i.e., some had a strong compression pattern 

whereas others had a weak compression pattern), so the best model parameters for each group 

might be significantly different from each other. Therefore, the conclusions on a model 

comparison based on the best model parameters for all participants and based on the best model 

parameters for each group of participants might not be consistent. We considered the variability 

of participants’ responses in their triangle completion and classified participants into two groups 

based on the compression pattern of the inbound responses.  

As illustrated in Figure 3.9, the participants showed variations in their compression 

pattern (e.g., the slopes of the regression lines) of the inbound responses. The dots inside the blue 

box in Figure 3.9C-D represent the participants who showed a compression pattern (i.e., with a 

slope between 0 and 1, and intercept larger than 0) or had strong compression whereas the dots 

outside the blue box represent the participants who did not show compression pattern or had 
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weak compression. Considering compression patterns in both length and angle, we could also 

divide participants into four groups based on both (47 in strong for both, 13 in weak for both, 22 

in strong for angle and weak for length, 30 in weak for angle and strong for length). However, 

we might not be able to conduct meaningful 5 × 2 cross-validations for all four groups, 

especially the group with only 13 participants. Hence, we divided participants into two groups 

instead of four so that we had enough participants in each group for 5 × 2 cross-validations. 

Across the regression lines of individual participants, the correlation coefficient (r) was 

significantly higher in the inbound turn angle (Figure 3.9D) than in the inbound path length 

(Figure 3.9C) (mean r = 0.65 for angle and mean r = 0.39 for length), t (111) = 6.36, p < .001, 

Cohen’s dz = .60. Moreover, the number of participants showing significant correlations (p 

≤ .05) was significantly larger in the regression for inbound turn angle (Figure 3.9D) than for the 

inbound path length (Figure 3.9C) (61 participants for angle and 22 participants for length, 

sharing 5 participants with significant correlations in both), McNemar’s χ2 (1) = 16.01, p < .001. 

Hence, the compression patterns of individual participants in terms of inbound turn angle were 

much more reliable than in terms of inbound path length. Consequently, we classified the 

participants into two groups according to their compression on the inbound turn angle: the strong 

compression group (69 participants showing compression) and the weak compression group (43 

participants showing no compression). Moreover, the distribution of participants in compression 

groups in terms of length was independent of in terms of angle (χ2 (1) = .03, p = .86), indicating 

that the strong and weak compression groups only based on angle had similar proportions of 

participants with strong and weak compression in length. Therefore, the strong compression 

group had strong compression in angle and average compression in length whereas the weak 

compression group had weak compression in angle and average compression in length. 
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Figure 3.9. Each line indicates the linear regression of response values on the correct values for 

one participant in terms of inbound path length (A) and turn angle (B), respectively. (C-D) 

illustrate the slope-intercept, correlation coefficient (i.e., r-value), and its significance (i.e., p-

value) of the linear regression relationship in terms of inbound path length (C) and turn angle 

(D), respectively. 
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 We conducted model validation for each group using the model parameters estimated in 

the model fitting described in section 3.5.1 (see details in Supplementary materials of Chapter 3 

and Tables S3.5-S3.8). Model validation based on the parameters from the algorithm using 

multiple locations showed that all the three models (M1-M3) even performed worse than the 

baseline model (M0) for the weak compression group (negative Partial R2 in Table S3.5) 

although the bi-component model (M3) was still the best model for the strong compression 

group. These findings suggest that the best model parameters for all participants might not be 

appropriate for the weak compression group. Therefore, it is important to conduct cross-

validation for each group and then calculate the overall model performance. 

3.7 Cross-validation for different groups 

We conducted 5 × 2 cross-validations for each group of compression. As we primarily 

used model validation performance in model comparison, we did not report the fitting results of 

two compression groups for the interest of brevity (see Supplementary materials of Chapter 3 

Table S3.9 for the averaged fitting performance across ten folds). 

3.7.1 Model validation  

As illustrated in Tables 3.6, 3.7, and 3.8, the algorithm using home response locations 

only could not differentiate the three models (M1-M3) regardless of the compression group.  

The algorithm using multiple response locations showed different model comparison 

results for the strong and weak compression groups. For the strong compression group, 

generalizability measures in Table 3.6, likelihood ratios in Table 3.7, and the results of Alpaydin’s 

F-test on dRMSE in Table 3.8 (also see Table S3.10 for RMSEs of individual folds) all suggest 

that the bi-component model (M3) was the best. By contrast, for the weak compression group, 
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none of the generalizability measures, likelihood ratios, or Alpaydin’s F-test on dRMSE could 

differentiate the four models including the baseline model.  

 

Table 3.6. Model validation performance for the strong (upper) and weak (lower) compression 

groups. Parameters are estimated from model fitting for each corresponding group. The RMSE, 

maximum log-likelihood, and partial r-squared are generalizability measures, which were 

calculated by applying the parameters to the test subsamples.  

 Strong compression group 

 

Model 

Multiple response locations  

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.382 -3770.4 0 

M1 1.14 0.49 0.79 15.45 1 0 1 0 3.214 -3692.0 0.096 

M2 1 0 1 0 0.60 1.86 0.68 58.50 3.125 -3645.5 0.146 

M3 0.64 1.19 0.88 18.69 0.57 1.76 0.72 52.07 3.084 -3623.2 0.168 

 

    

Model 

Home response locations only  

Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.037 -1190.9 0 

M1 0.84 0.58 0.46 18.64 1 0 1 0 2.738 -1139.7 0.186 

M2 1 0 1 0 0.44 2.42 0.50 81.24 2.745 -1140.7 0.182 

M3 2.88 0.84 0.43 12.46 0.72 0.86 1.51 12.50 2.743 -1140.5 0.183 

 Weak compression group  

 

 

Model 

Multiple response locations  

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 
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M0 1 0 1 0 1 0 1 0 2.817 -2169.2 0 

M1 0.86 0.46 0.80 21.2 1 0 1 0 2.814 -2169.3 0.002 

M2 1 0 1 0 0.85 0.46 1.00 2.96 2.816 -2170.0 5.48E-04 

M3 0.81 0.56 0.80 21.9 0.92 0.17 1.04 -1.73 2.810 -2168.3 0.005 

 

 

Model 

Home response locations only  

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.379 -662.8 0 

M1 0.51 0.69 0.44 33.0 1 0 1 0 2.329 -657.0 0.041 

M2 1 0 1 0 0.44 1.43 0.44 84.44 2.328 -656.9 0.042 

M3 1.54 11.7 2.25 17.8 0.58 0.06 2.24 17.13 2.342 -659.1 0.029 

 

 

Table 3.7. Maximum likelihood ratio (LR) between models (row model over column model) in 

model validation for the strong (upper) and weak (lower) compression groups using multiple 

locations (left) or only home response locations (right). 

 Strong compression group  

 Multiple response locations  Home response locations only 

LR M0 M1 M2 M3  M0 M1 M2 M3 

M1  1.06 × 1034**    1.64 × 1022**    

M2  1.72 × 1054**  1.62 × 1020**   6.03 × 1021** 0.37—   

M3  8.03 × 1063** 7.58 × 1029** 4.66 × 109**  7.84 × 1021** 0.48— 1.30—  

 Weak compression group  

 Multiple response locations  Home response locations only 

LR M0 M1 M2 M3  M0 M1 M2 M3 

M1  0.88—     322.58**    

M2  0.43— 0.49—    370.37**  1.15—   
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M3  2.50— 2.84— 5.81*   40.32**  0.13* 0.11*  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  

 

Table 3.8. Alpaydin’s F-test examining the differences in RMSE (dRMSE) between models (the 

row model minus the column model) for the group with strong (upper) and weak (lower) 

compression patterns when using multiple locations (left) or only home response locations 

(right).  

Strong compression group 

Multiple response locations  Home response locations only 

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 

M1   -.168∗∗     M1  -.299∗∗    

M2 -.257∗∗∗ -.125∗∗    M2  -.292∗∗ .007—   

M3  -.298∗∗∗ -.13∗∗∗ -.041∗   M3  -.294∗∗∗ .005— .002—  

Weak compression group 

Multiple response locations  Home response locations only 

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 

M1 .003—     M1  .050—    

M2 .001— -.002—    M2  .051— -.001—   

M3 .007— -.004— -.006—   M3  .037— .014— .014—  

 

 We also compared the overall performance of all models by combining the locational 

residuals of the two compression groups (see Tables 3.9-3.11 for generalizability measures, 

likelihood ratios, and the results of Alpaydin’s F-test). Figure 3.10 visually illustrates the 
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locational residuals of individual targets achieved by different models using the two algorithms. 

All results suggest that the bi-component model was the best based on the cross-validation using 

multiple response locations whereas there was no best model based on the cross-validation using 

home response. 

  

Table 3.9. The overall performance of model validation of the two compression groups using 

multiple locations (upper) or only home response locations (lower). Parameters are the weighted 

average of the best parameters for each group (weighted by the numbers of participants in 

different groups). The RMSE, maximum log-likelihood, and partial r-squared are generalizability 

measures, which were based on the combined locational residuals of the two compression 

groups.  

 

 

Model 

Multiple response locations 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.179 -5964.5 0 

M1 1.03 0.48 0.79 17.64 1 0 1 0 3.069 -5878.0 0.067 

M2 1 0 1 0 0.70 1.32 0.81 37.18 3.012 -5828.4 0.102 

M3 0.71 0.95 0.85 19.91 0.70 1.15 0.84 31.41 2.984 -5803.2 0.118 

 

 

 

Model 

Home response locations only 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.805 -1868.3 0 

M1 0.72 0.63 0.45 24.14 1 0 1 0 2.591 -1807.2 0.146 

M2 1 0 1 0 0.44 2.04 0.48 82.47 2.595 -1807.9 0.143 
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M3 2.37 5.03 1.13 14.50 0.66 0.55 1.79 14.28 2.600 -1809.7 0.141 

 

 

Table 3.10. The overall results of the maximum likelihood ratio (LR) between models (row model 

over column model) in model validation using multiple locations (left) or only home response 

locations (right). 

 

 Multiple response locations 

 

Home response locations only 

 

LR M0 M1 M2 M3  M0 M1 M2 M3 

M1  3.86 × 1037**     3.47 × 1026**    

M2  1.29 × 1059** 3.35 × 1021**    1.69 × 1026** 0.49—   

M3  1.08 × 1070**  2.80 × 1032** 8.36 × 1010**   2.74 × 1025** 0.08** 0.16*  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  

 

Table 3.11. The overall results of Alpaydin’s F-test examining the differences in RMSE (dRMSE) 

between models (the row model minus the column model) when using multiple locations (left) or 

only home response locations (right).  

 

Multiple response locations 

 

Home response locations only 

 

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 

M1   -.110∗     M1  -.214∗∗    

M2 -.167∗∗∗ -.057∗∗    M2  -.210∗∗ .004—   

M3  -.195∗∗∗ -.085∗∗∗ -.028∗   M3  -.207∗∗ .008— .003—  

Note: Asterisks denote significant dRMSE (***p < .001; **p < .01; *p < .05) and a dash (—) 

indicates non-significant dRMSE. 



 137 

 

 

 

Figure 3.10. Visualizing the differences (locational residuals) between mean response locations 

and mean predicted locations from different models using (A) multiple response locations or (B) 

only home response locations. The open circle with a cross at (0, 0) indicates the response 

location, the coordinate of which varied in real experiments but is set to (0, 0) as a reference. 

Individual dots represent coordinates of the locational residuals for all targets (96 targets in A 

and 32 in B). Ellipses indicate the 95% density contours of the bivariate normal distributions 

with zero means (μ = (0,0)) and covariance matrix (Σ) of the locational residuals according to 

the baseline model (green), encoding-error model (red), execution-error model (blue), and bi-

component model (black), respectively. 

 

3.7.2 Model recovery using varied values of parameters across participants 
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 In the model recovery described above (see section 3.5.3), we used the fixed values of 

model parameters for all participants (Table 3.1) to produce simulated locations based on each 

true model. The simulation results indicated that the algorithm using multiple responses could 

recover the true models very well whereas the algorithm using home locations could not recover 

the true models (see Figure 3.6 for the confusion matrix). As participants showed different 

compression patterns (Figure 3.9), it is important to examine whether the algorithms can still 

recover the true model when varied values of model parameters are used to create simulated 

locations (below we refer to it as model recovery with varied parameter values and refer to the 

previous one as model recovery with fixed parameter values). Note that we conducted 5 × 2 

cross-validations for strong and weak compression groups to address the issue of participants’ 

differences in the compression pattern. Unfortunately, 5 × 2 cross-validation is not feasible for 

each participant. Conducting model recovery with varied parameter values is especially 

important as it can further address the issue of participants’ differences in compression patterns. 

If we demonstrate that 5 × 2 cross-validations using the multiple response locations can recover 

the true model in model recovery with varied parameter values, our conclusion based on 5 × 2 

cross-validations using the multiple response locations should also be able to recover the true 

model using participants’ response locations. 

Same as the model recovery with fixed parameter values, we still created 100 sets of 

simulated response locations from each model and conducted 5 × 2 cross-validations for all of 

them in conducting model recovery with varied parameter values. Difference from the model 

recovery with fixed parameter values, we used varied values for each of the intercept and slope 

parameters. Specifically, we sampled each parameter from a uniform distribution with a mean 

same as the fixed value of the model parameters in model recovery with fixed parameter values 
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(i.e., the parameters illustrated in Table 3.1). The range of the uniform distribution for slope 

parameters was twice the distance between the mean slope and 1 (i.e., the upper limit). The range 

of the uniform distribution for intercept parameters was twice the distance between the mean 

intercept and 0. For example, 𝜃𝐿_𝑠
𝑒𝑛𝑐 in M3 (a slope parameter in Table 3.1) was sampled from a 

uniform distribution U (0.82 - |1 – 0.82|, 0.82 + |1 – 0.82|). 𝜃𝐴_𝑖
𝑒𝑥𝑒 in M3 (an intercept parameter in 

Table 3.1) was sampled from a uniform distribution U (34.21 - |0 – 34.21|, 34.21 + |0 – 34.21|). 

As a result, we created 112 samples for each parameter of each model and then assigned them 

randomly to 112 participants. Using the outbound paths and target locations of each participant, 

we created the simulated response locations based on each model by applying the assigned 

values of model parameters.  

Figure 3.11 presents the confusion matrix in model recovery (frequency in each category 

of likelihood ratio in model validation was reported in Supplementary materials of Chapter 3 

Figure S3.3.). The results showed that the algorithm of using multiple response locations upon 

most occasions can successfully distinguish the true model from other models (64% for true 

model M1, 84% for true model M2, and 100% for true model M3). By contrast, the algorithm of 

using home response locations cannot clearly distinguish the true model from other models. In 

most cases, the algorithm could not find the best model (with a rate larger than 55%). 

Consequently, the algorithm could recover the true model at a very low rate (12% for true model 

M1, 28% for true model M2, and 9% for true model M3). Moreover, the algorithm also at times 

recovered distracting models. 
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 Figure 

Figure 3.11. Confusion matrices in model recovery using multiple response locations (left) or 

home response locations only (right). The number in each cell indicates the frequency of the 

recovered model being the best model. NoRecoved means that no best model was recovered by 

the algorithm. 

 

3.7.3 Similarity of parameters values estimated from real and simulated response locations  

The similarity between parameters based on participants’ response locations and based on 

simulated locations from different models was illustrated in Figure 3.12 (see exact parameters in 

Supplementary materials of Chapter 3  and Table S3.11). The parameter distance was shortest when 

the simulated locations were produced by M3 (RMSE= 8.59, 6.82, and 1.13 for M1, M2, and M3 

respectively). The parameters based on simulated locations from M3 explained the largest 

proportion of the total variance of the 16 parameters based on participants’ response locations (r2 

= 1 −
𝑀𝑆𝐸

𝑉𝑎𝑟
 , r2 = .56, .72, and .99 for M1, M2, and M3 respectively). The ratios of likelihood of 

M3 over other models were larger than 2.97 × 1012 (logL = -57.11, -53.41, and -24.69 for M1, M2, 

and M3 respectively). Therefore, the similarity between participants’ response locations and 

simulated locations from the bi-component model was the largest, suggesting the bi-component 

model was the best. 
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Figure 3.12. Illustrating the similarity of estimated parameters based on real data and simulated 

data from different models. The diagonal lines in green (y = x) indicate the ideal outcome that 

the parameters derived from real data are perfectly recovered from simulated data. Open dots 

depict the individual pairs of values of parameters based on real and simulated response 

locations for each model. 

 

3.7.4 Predictive performance on the response error of participants based on best 

parameters for each group 

We compared the predictive performance of different models in terms of inbound length 

error and angle error, using the best parameters for each group. The predicted error and the mean 

response error (in terms of inbound path length or turn angle) for each target and each unique 

outbound path were defined and calculated in the same way mentioned above (2.4.5).  

Figure 3.13 illustrates the mean predictive performance of different models in terms of 

inbound length error and angle error. Table 3.12 shows that the bi-component model (M3) had the 

highest correlation coefficients for both inbound length (Figure 3.13A) and angle errors (Figure 

3.13C) when the cross-validation included multiple response locations of each outbound path. 
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Nevertheless, the correlation coefficients of the three models (Figure 3.13B and Figure 3.13D) 

were comparable when the cross-validation only included the home response location of each 

outbound path. 
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Figure 3.13. The overall performance of the predicted errors in inbound path length (panels A 

and B) and turn angle (panels C and D) as a function of the mean response errors using multiple 

response locations or only home response locations. The diagonal lines in red (y=x) indicate the 

ideal outcome that the response errors are perfectly predicted. The yellow lines indicate the 

regression lines. Open dots depict the individual pairs of predicted errors and mean response 

errors across participants, for each object and each path (32 paths in total), according to the 
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encoding-error model (M1), execution-error model (M2), and bi-component model (M3), 

respectively. 

 

Table 3.12. Maximum likelihood ratios (𝜆) for competing models (row model over column model) 

in predicting inbound path length errors (left) and turn angle errors (right) using multiple 

locations or only home response locations. 

 

Length errors  Angle errors 

Multiple response 

locations 

Home response 

locations only 

 Multiple response locations Home response 

locations only 

𝜆  M1 M2 M3  M1 M2 M3       M1 M2 M3 M1 M2 M3 

M1              

M2  9.2 *   0.5—   95.3**   1.2—   

M3  232.2** 25.2**  1.3— 2.8—  2.1 × 1010** 2.2 × 108**  1.3— 1.1—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  

 

3.8 Discussion 

The primary purpose of the current study was to identify the possible sources of the 

systematic biases in human path integration. We used model cross-validation to compare three 

plausible theoretical models (the encoding-error model, the execution-error model, and the bi-

component model) in explaining the systematic errors of the inbound responses when 

participants only had idiothetic cues in the path integration conditions of Qi et al. (2021). There 

are two important findings. First, cross-validation modeling using all three inbound responses for 

each outbound path indicated that the bi-component model outperformed the encoding-error 

model (Fujita et al., 1993) and the execution-error model (Chrastil & Warren, 2021). This finding 
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suggests that systematic biases in human path integration occurred in both encoding the 

outbound path and executing the desired inbound responses. Second, modeling using only the 

home response for each outbound path failed to distinguish among these three models.  

To the best of our knowledge, the current study provided the first modeling evidence 

indicating that there are systematic biases in both encoding the outbound path (path lengths and 

turn angles) and in executing the desired inbound responses (path lengths and turn angles) in the 

triangle-completion task. The finding of both encoding and execution biases unified the 

encoding-error model (Fujita et al., 1993) and the execution-error model (Chrastil & Warren, 

2021) into the bi-component model. 

Although the finding of the current study appears to challenge the encoding-error model 

by undermining its assumption that there is no systematic bias in execution, it supports the key 

theoretical claims of the encoding-error model (Fujita et al., 1993; Klatzky et al., 1999; Loomis 

et al., 1993; Loomis et al., 1999). According to the encoding-error model (one version of the 

configural updating models), people encode the configuration of the outbound path by encoding 

the leg lengths and turn angles between legs. People calculate the inbound response based on the 

remembered outbound path. Therefore, the systematic biases (compression patterns) in encoding 

the outbound path should lead to the appearance of systematic biases in the inbound responses. 

The evidence of systematic encoding errors (i.e., the encoding functions of the bi-component 

model) provided by the current study is consistent with these claims. Note that although Fujita et 

al. (1993) showed that the encoding-error model well explained the compression patterns in the 

inbound responses, it could not remove the possibility that the compression patterns in the 

inbound responses were caused solely by the systematic biases in executing the inbound 
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responses. Thus, we believe that the current study indeed provides clearer evidence for the 

encoding biases by separating the encoding biases from the execution biases. 

The current evidence of systematic execution errors is in line with the past studies 

(Bakker et al., 1999, 2001), which demonstrated systematic inaccuracies in simply producing 

specific angles. Specifically, the participants in Bakker et al. (1999) were required to produce 

cardinal angles (e.g., 90º, 180º, 270º) around a point under different combinations of sensory 

feedback. Note that in this task participants did not need to encode the angles by locomotion or 

visually but were only informed of the angles verbally. The significant undershoot pattern in all 

conditions would reflect the systematic errors in execution. 

Chrastil and Warren (2021) provided the first modeling evidence to indicate that there are 

systematic execution errors in the triangle-completion task. They separately estimated the 

encoding functions and the execution functions from reproduction tasks (the simple translation 

and rotation tasks) by assuming that there were only encoding biases or execution biases. They 

argued that if people only have systematic biases in encoding but not in execution, the encoding 

functions estimated from the reproduction task should well explain the systematic errors in the 

triangle-completion task. Their modeling results showed that the discrepancy between the 

predicted and observed inbound responses was greater when the predicted values were only 

based on the encoding functions than when the predicted values were only based on the 

execution functions. Thus, these results suggested that there were systematic execution errors. 

However, it is not clear whether the encoding functions or execution functions from the simple 

translation and rotation tasks are the same as those functions in the triangle-completion task. The 

current study, using cross-validation modeling, estimated encoding functions and execution 

functions in the triangle-completion task using half of the data measured in the triangle-
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completion task per se, instead of using other independent and simpler tasks (e.g., reproduction 

tasks in Chrastil & Warren, 2021). Therefore, the current study avoided the issues of assuming 

that the encoding functions or execution functions from the reproduction tasks are the same as 

those functions in the triangle-completion task. As the current study still showed that there are 

systematic biases in execution, separately from encoding biases, it provided clearer evidence for 

execution biases, one of the key claims of the execution-error model.  

Chrastil and Warren (2021) also showed that the model with both encoding functions and 

execution functions did not outperform the model with only execution functions. In contrast, the 

current study indicated that both encoding biases and execution biases contributed to the biases 

in inbound responses. This discrepancy might occur because these two studies used different 

methods of estimating the encoding functions and execution functions. Chrastil and Warren 

(2021) estimated the encoding functions and the execution functions from reproduction tasks by 

assuming that there were only encoding biases or execution biases. They then used these 

encoding and execution functions in the model with both encoding and execution biases. 

However, the best parameters of encoding functions in the model with both biases may differ 

from the best parameters of encoding functions in the model with only encoding biases. 

Similarly, the best parameters of execution functions in the model with both biases may differ 

from the best parameters of execution functions in the model with only execution biases. By 

contrast, the current study estimated the encoding functions and the execution functions for the 

bi-component model independently rather than simply borrowing the encoding functions 

estimated for the encoding-error model and the execution functions estimated for the execution-

error model. As shown in Tables 3.1 and 3.2, the parameters of encoding functions in the 

encoding-error model (M1) differ from the parameters of encoding functions in the bi-
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component model (M3). The parameters of execution functions in the execution-error model 

(M2) also differ from the parameters of execution functions in the bi-component model (M3).  

The finding that the bi-component model was the best is not attributed to more free 

parameters of the bi-component model than the other two models. In model validation, as the 

models were validated using the other halves of the data (test subsamples), the numbers of free 

parameters were the same for all three models. The likelihood ratio still showed the superiority 

of the bi-component model (see Table 3.3, left sub-table for multiple response locations). 

Furthermore, the findings of cross-validation modeling using the simulated response locations 

(multiple response locations) clearly indicated that if the true model was the encoding-error 

model (M1) or the execution-error model (M2), the bi-component model (M3) never 

outperformed the true model when the simulated locations were created using fixed values of 

parameters (Figure 3.6, upper panel) and seldom outperformed the true model when the 

simulated locations were created using varied values of parameters (Figure 3.11, upper panel).  

In addition to using cross-validation, using multiple inbound responses for each outbound 

path is also critical to differentiate the bi-component model from the other two models. Different 

from the typical triangle-completion task with only one inbound response (i.e., the homing 

vector) for each outbound path, the triangle-completion task used in Qi et al. (2021) required 

participants to indicate three learned locations (including the home location) during the response 

phase. Previous studies indicated that one inbound response may not be able to recover 

participants’ encoded positions and headings at the endpoint of the outbound path (e.g., Mou & 

Zhang, 2014). As one inbound response can be caused by many possible encoded positions and 

headings at the endpoint of the outbound path, this implies that the errors in the inbound 

response can be attributed to the encoding biases alone, the execution biases alone, or the 
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combination of both. In contrast, multiple inbound responses (multiple target locations) for each 

outbound path can recover the participants’ encoded positions and headings at the endpoint of the 

outbound path (e.g., Mou & Zhang, 2014; Qi et al., 2021; Zhang et al., 2020). Thus, we 

conjectured that the encoding functions and the execution functions can be separated by a cross-

validation algorithm using multiple inbound responses (multiple target locations) for each 

outbound path. These insights were confirmed by the modeling results based on the empirical 

data of Qi et al. (2021) (see Tables 3.3 and 3.4) and based on the simulated data (see Figures 3.6 

and 3.11 and also Tables S3.4 and S3.11).  

One may argue that the different discrimination abilities of the algorithms using multiple 

response locations and using home response locations alone might be attributed to the number of 

data points. The number in the former was three times that in the latter. According to Formulas 

12 and 15, the likelihood ratio is the proportion of xn (x is the ratio of RMSE, n is the data 

number). To address this issue, we calculated √𝐿𝑅
3

 for the LRs of M3 over M1 (LR31) and M2 

(LR32) in model validation using multiple response locations (see Table 3.3 left, LR31 = 1.28 × 

1020 and LR32 = 1.02 × 1011). The results were 5.04 × 106 and 4672.33, which still showed strong 

evidence favoring M3. Therefore, the evidence of favoring M3 using multiple response locations 

and the lack of evidence of favoring M3 only using home response locations should not be 

attributed to the different number of data points. 

The current study supported the bi-component model, which considers linear functions to 

represent the working mechanisms of both encoding and execution processes, on the basis of 

previous research (Chrastil & Warren, 2014; 2021; Fujita et al., 1993; Loomis et al., 1993). 

However, we do not claim that there would be an immutable set of parameters for the current 

model across all pathways and contexts. Klatzky et al. (1999) reflected that the parameters of the 



 150 

encoding functions based on the encoding-error model varied with the values of the outbound 

path (e.g., the path lengths of 1-3m or 4-6m). In addition, we admit that the encoding functions 

could also vary as Harootonian et al. (2020) showed that encoding functions of turn angles could 

be removed from their version of the encoding-error model when participants walked much 

longer paths. 

We acknowledge that the current study examined the sources of systematic biases in 

homing when participants pointed to the targets including the home object. In other studies, 

which tackled similar research questions (Chrastil & Warren, 2021; Fujita et al., 1993; 

Harootonian et al., 2020), participants physically walked back home. We do not believe that this 

method discrepancy should undermine the conclusion of the current study because of the 

following evidence. First of all, although not as often as walking to the origin, pointing to the 

origin was still often used in the history of studying human path integration. In a review chapter 

on human path integration, Loomis and his colleagues wrote “Other variants of path completion 

have had the subject indicate only the direction of the origin from the dropoff point, typically by 

pointing to it using a protractor (e.g., Able & Gergits, 1985; Adler & Pelkie, 1985; Baker, 1985; 

Gould, 1985; Klatzky et al., 1998; Rieser & Frymire, 1995; Sadalla & Montello, 1989; Sholl, 

1989).”  (Loomis et al., 1999, p. 134).  Hence, pointing, in addition to walking, can be used to 

study path integration. 

Second, to our best knowledge, there is no study showing that walking and pointing to 

the origin led to different conclusions about human navigation. Rather, studies using either 

pointing or walking showed the same results. Tcheang et al. (2011) showed that participants after 

adapting to a smaller vision-locomotion gain (i.e., visual cues indicated a smaller turn angle than 

did locomotion), overestimated the inbound turn angle in the following triangle completion task 
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without vision. This result indicated that participants underestimated the turn angle in the 

outbound path because of the smaller gain. Du et al. (2020) replicated this result although 

participants in Tcheang et al. (2011) walked to the origin while participants in Du et al. (2020) 

pointed to the origin. Hence, underestimating the turn angle in the outbound path led to 

overestimating the inbound turn angle regardless of whether the response methods were walking 

or pointing. Thus, pointing, in addition to walking, can examine the biases of encoding the 

outbound path. 

Can pointing, in addition to walking, be used to examine the biases of executing the 

desired inbound path? Walking (including walking forward and turning the body) and pointing 

appear to be two different kinds of actions. While walking is gradual (e.g., step by step), pointing 

seems more immediate. One may assume that execution biases occur in gradual actions but not 

in immediate actions. Following this assumption, one may speculate that pointing has very 

minimal execution errors. This speculation sounds reasonable but is inconsistent with the 

findings of the current study. The current study demonstrated the compression patterns (slope is 

smaller than 1 and intercept is larger than 0) in both inbound path length and inbound turn angle 

on the group level and individual levels (Figures 3.3 and 3.9). Furthermore, the best model (i.e. 

the bi-component model) clearly showed the compression pattern in the execution functions for 

both length (𝜃𝐿_𝑠
𝑒𝑥𝑒 = 0.69 and 𝜃𝐿_𝑖

𝑒𝑥𝑒 = 1.10) and angle (𝜃𝐴_𝑠
𝑒𝑥𝑒 = 0.82 and 𝜃𝐴_𝑖

𝑒𝑥𝑒 = 34.21) (see Table 

3.1 for M3 using multiple locations). Therefore, pointing can reflect the execution biases. Hence, 

there is no reason to believe that the compression patterns in inbound pointing responses in the 

current study were caused by a mechanism different from that caused the compression patterns in 

inbound walking responses. 
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We speculated that one of the reasons why pointing to the origin was less used than 

walking to the origin in the research of human path integration is that in real environments, 

pointing may generally only indicate the direction of the origin whereas walking can indicate 

both direction and distance of the origin. However, nowadays in immersive virtual environments, 

participants could point to the exact location of the home with a virtual stick in a relatively small 

environment (e.g., up to 6m in Qi et al. (2021), see Figure S3.1 in the current chapter). We argue 

that pointing is a more effective way to study human path integration. First, it is fast to collect 

participants’ pointing responses than walking responses. Second, there are fewer safety issues or 

space requirements to collect participants’ pointing responses than walking responses. Last, it is 

possible to collect several inbound pointing responses for a single outbound path, which is 

important as the current study showed that the algorithm using multiple responses could 

differentiate models but the algorithm using homing only could not differentiate models.  

Participants in the current study pointed to three objects after each outbound path, which 

provided a unique opportunity to differentiate models. However, one may be wondering whether 

the task of pointing to multiple objects invokes spatial updating mechanisms different from that 

used in pointing to the home location only. When people keep track of three objects during 

locomotion, they might only be able to update self-to-object vectors and have no extra resources 

to update the path configuration at the same time. In contrast, when people only keep track of the 

home location, they might have enough resources to update both the self-to-object vector and 

path configuration. Hence, participants pointing to three objects in the current study might have 

been less likely to have configual updating than those who only had a homing response in the 

typical homing studies (Kearns et al., 2002; Klatzky et al., 1999). We appreciated this concern 
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but argued that this concern had been addressed by the learning procedure in the paradigm of 

pointing to multiple objects used in the current study. 

Mou and Zhang (2014), when originally introducing the paradigm of pointing to multiple 

objects in the inbound phase, acknowledged and addressed the issue of different memory loads in 

the paradigms of pointing to multiple objects and pointing to the origin only. They wrote 

“participants were allowed enough time to learn the directions of five objects accurately (see 

details in Experiment 1 for the evidence). When participants replaced the objects, they used a 

visible virtual stick to indicate the positions without any time pressure to ensure that they 

executed their responses as accurately as possible.” (Mou & Zhang, 2014, p.557).  Zhang et al. 

(2020) directly compared the paradigm of pointing to multiple objects with the paradigm of 

pointing to the home location when they investigated whether the Bayesian cue combination 

occurred prior to or during homing. Their results in experiments 1 and 2 showed the same 

results, that is no Bayesian cue combination in homing occurred when the second leg of the 

outbound path was much longer than the first leg of the outbound path. Furthermore, Lu et al. 

(2020) showed that online/offline spatial updating (analogue to continuous/configural updating) 

was not only determined by the number of objects to update during locomotion but also by the 

fidelity of spatial memory. When the same objects were placed at the same locations across all 

updating trials, participants appeared to use offline spatial updating regardless of the number of 

objects to update.  

Therefore, as long as participants had well-learned target locations before walking the 

outbound path in the paradigm of pointing to multiple objects, they used the updating 

mechanisms similar to participants in the typical homing paradigm. Participants in the current 

study (i.e., Qi et al., 2021) had enough time to learn the three object locations. Furthermore, they 
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saw the non-home objects at the same locations across all outbound paths so they should have 

learned the locations of objects very well. As a result, in addition to execution biases, the current 

study showed encoding biases, suggesting that participants in the current study still used 

configural updating. 

5. Conclusions 

The results of modeling, using multiple inbound responses for each outbound path, 

support a bi-component model that incorporates both systematic biases in encoding the outbound 

path and executing the desired inbound responses to account for the systematic errors (regression 

to mean pattern) in the inbound responses. In addition, the results of modeling using only the 

home response for each outbound path could not dissociate the bi-component model from the 

encode-error model and the execution-error model. Our findings reconcile the execution-error 

model with the encoding-error model of human path integration. Furthermore, the current study 

demonstrates that cross-validation modeling using multiple inbound responses for each outbound 

path can be a powerful tool to understand human path integration. 
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Humans and non-human animals use self-motion cues (i.e., path integration) and 

landmarks (i.e., piloting) to keep track of their position and orientations and find their homes. 

The current dissertation work aims to provide new evidence to understand humans’ two primary 

navigational processes. In Chapter 4, I first summarize the findings of the two studies presented 

in Chapters 2 and 3 and then discuss the implications of these findings. 

4.1 Summary 

Study 1 in Chapter 2 investigated the underlying mechanisms of utilizing distal and 

proximal landmarks to establish spatial orientation. In this study, participants familiarized 

themselves with the locations of objects with the presence of both proximal and distal landmarks 

and then walked a path. After participants spun at the end of the path to disrupt their orientations, 

they pointed to the objects when a clockwise-shifted proximal landmark (Proximal-Landmark 

condition), a counter-clockwise-shifted distal landmark (Distal-Landmark condition), or both 

reappeared (Conflict condition). Experiment 1 manipulated the relative cue precision by varying 

the distance between the testing position and the proximal landmark. The results revealed that in 

the Conflict condition, the observed weight on the distal cue (exceeding 0.5) changed with but 

remained higher than the weight predicted by the relative cue precision. This indicates that in 

addition to the relative cue precision, participants in general may hold a prior belief favoring 

distal landmarks as a superior orienting cue, which frequently results in distal dominance. 

Experiments 2 and 3 investigated when participants could change cue dominance and 

prefer proximal landmarks for orientation. Participants walked a path stopping at one learned 

object location. Participants were informed of it explicitly in Experiment 2 but not in Experiment 

3. Results showed proximal cue dominance in Experiment 2 but distal cue dominance in 

Experiment 3. The observed weight on the distal cue was lower than the predicted weight based 
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on relative cue precision in Experiment 2, and these two did not differ in Experiment 3, 

suggesting a top-down preference for the proximal landmark (invoked by the instruction of 

locations) attributing to the proximal landmark dominance. When navigators possess a clear and 

precise understanding of their position relative to a proximal landmark, a proximal landmark can 

override a distal one and become the dominant orientation cue. In such cases, people confidently 

use this knowledge to favor the proximal landmark, leading to proximal dominance in 

orientation. Therefore, orientation cue usage is determined by the relative precision of the cues 

available in the specific experiments and top-down factors (e.g., beliefs and instructions). 

Study 2 in Chapter 3 examined the contributions of potential sources of systematic errors 

in human triangle completion. This study used cross-validation modeling to compare three 

plausible theoretical models: (1) encoding-error model, which assumes systematic biases in 

encoding the outbound path alone, (2) execution-error model, which assumes systematic biases 

in executing the inbound responses alone, (3) bi-component model, which assumes systematic 

biases in both encoding the outbound path and executing the inbound responses. The data of the 

triangle completion for cross-validation modeling were obtained from a prior study (Qi et al., 

2021). In this earlier research, participants well-learned three objects’ locations, one of which 

was located at the starting point (home). They then walked each outbound path and subsequently 

pointed to the objects’ original locations after completing the outbound path. The modeling 

algorithm used one inbound response (i.e., response to the home location) or multiple inbound 

responses (i.e., responses to two non-home locations and the home) for each outbound path.  

The results of the modeling demonstrated that the bi-component model outperformed the 

other models in accounting for the systematic errors when using multiple inbound responses for 

each outbound path. This finding suggests that both encoding the outbound path and executing 
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the inbound responses contribute to the systematic biases in human path integration, unifying 

two opposite models in the literature (i.e., encoding-error model and execution-error model). In 

addition, the results of Study 2 showed that using only the home response in the algorithm could 

not distinguish among these three models, suggesting that the typical triangle-completion task 

with only the home response for each outbound path cannot determine the sources of the 

systematic biases. In summary, this study helps to advance our understanding of the mechanisms 

underlying human path integration and also provides important contributions to the research 

methods to study human path integration. 

Study 1 and Study 2 are closely connected. In Study 1, participants used path integration 

for position estimation in DLM and PLM conditions (particularly when explicit instructions were 

not provided in Experiments 1 and 3), and used the landmark provided for heading estimation. 

The transition from one-legged paths in Experiment 1 to two-legged paths in Experiment 3 led to 

increased errors in position estimation via path integration. This finding is echoed in Study 2, 

which identifies the encoding of the outbound path as a key factor in the systematic biases 

observed in human path integration. 

4.2 Implications of the current studies 

The two studies in this dissertation shed light on how human adults acquire spatial 

representation during navigation by relying on the processes of path integration and piloting. In 

this section, I will discuss two aspects of the implications of the current findings. 

4.2.1 Utilizing proximal landmarks for positional information in experimental paradigms 

There are numerous studies employing experimental paradigms in which distal landmarks 

orientation information, whereas proximal landmarks offer positional information during 

navigation (e.g., Buckley et al., 2015; Bullens et al., 2010; Doeller & Burgess, 2008; Padilla et 
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al., 2017; Zhang & Mou, 2017). For example, Bullens et al. (2010) employed distant extramaze 

(e.g., arrays of LED lights) as orientation cues while examining how children encode object 

locations relative to a boundary (a circular wall) and a proximal intramaze landmark (a traffic 

cone).  

It is noteworthy that Study 1 in the current dissertation clearly demonstrates that a 

proximal landmark can provide orientation information and may even override a distal landmark 

to dominate participants’ heading estimates when they were clearly aware of their positions 

relative to the proximal landmark. Therefore, when formulating experimental paradigms that 

incorporate one or multiple proximal landmarks intended solely for conveying positional 

information, it becomes crucial to exercise caution regarding the potential utilization of these 

proximal landmarks for orientation purposes.  

To illustrate, suppose one is designing an experiment to investigate whether navigators 

combine cues from path integration (self-motion cues) and piloting (visual cues) to estimate their 

current position, rather than their home location. This could further examine Zhang et al.’s 

(2020) self-localization hypothesis, which posits that the combination of path integration and 

piloting occurs in navigators’ self-localization but not in homing. In a typical paradigm, 

participants learn the locations of target objects in the presence of proximal and distal landmarks. 

Subsequently, participants traverse a path without seeing objects/landmarks and are required to 

indicate the objects’ locations at the end of the path. Distal landmarks would be available for 

participants to orient themselves upon reaching the end of the path. However, the availability of 

different positional cues (i.e., self-motion cues and proximal landmarks) would be manipulated, 

generating different conditions to examine cue combination in position estimations, such as a 

path-integration-only condition with self-motion cues, a landmark-only condition with proximal 
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landmark, and a both-cue condition with proximal landmark and self-motion cues. In both-cue 

condition, navigators can update the vector between their self-location and the proximal 

landmark during walking relying on self-motion cues, and this vector can provide orientation 

information. It is plausible that participants employ self-motion cues for determining their 

position and the proximal landmark for orientation in the both-cue condition, which deviates 

from the intended objective of the design and cannot test the cue combination in position 

estimations appropriately. 

In order to minimize the likelihood of the proximal landmark being utilized for 

orientation in this experimental setup, one effective approach is to locate the landmark and the 

navigators’ response location in close proximity, to a certain extent. The closer they are, the less 

effectively it functions as an orientation cue. The findings from Experiment 1 of Study 1 have 

demonstrated that the precision of the orientation cue diminishes as the distance between the 

proximal landmark and participants' response position varies, ranging from 3.2 meters to 1.6 

meters. 

4.2.2 The format of spatial knowledge based on path integration  

Humans and other animals navigate and develop spatial awareness through path 

integration, but the fundamental format of resulting spatial knowledge remains a subject of 

debate (Tobler, 1976; Trullier et al., 1997; Tversky, 1993). The metric cognitive map hypothesis, 

initially introduced by Tolman (1948), has been a prevailing theory (Gallistel & Cramer, 1996; 

O’Keefe & Nadel, 1978). According to this hypothesis, a cognitive map retains metric details of 

known locations within a common coordinate system (Gallistel, 1990; O’Keefe & Nadel, 1978; 

Tolman, 1948). It assumes accurate measurement of distances and angles and requires precise 

integration to create a globally accurate metric representation. 
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However, the current findings of substantial systematic encoding errors pose a problem 

for the concept of a metric cognitive map. Instead, these findings suggest that the format of 

spatial knowledge on the basis of path integration may be better suited for constructing a labeled 

graph (also known as a cognitive graph). A labeled graph is a place graph with local metric 

information. In this representation, edge weights approximate path lengths, while node labels 

provide estimates of the angles between adjacent paths at intersections (as depicted in Figure 1 in 

Warren et al., 2017 or Warren, 2019). Notably, a labeled graph does not demand highly precise 

encoding (Warren, 2019). The quantitative information it preserves remains local and tends to 

exhibit biases and imprecision, resulting in spatial knowledge that lacks geometric consistency 

(Warren, 2019). 

Additionally, other empirical evidence suggests that path integration is more suited for 

constructing a labeled graph. Firstly, path integration may not operate continuously and 

automatically but rather intermittently. In an environment with stable visual landmarks for 

piloting, the operation of path integration may be suppressed or completely deactivated. In such 

scenarios, the unexpected disappearance of these landmarks can lead to complete disorientation 

among navigators (Zhao and Warren, 2015a). Moreover, familiar landmarks could reset the 

representation derived from path integration, such as navigators' orientation and position 

estimates. (Mou & Zhang, 2014; Zhang & Mou, 2017; Zhao & Warren, 2015b). Consequently, 

the path integration system is better suited for capturing local, incremental measurements of 

approximate travel distances and turn angles, which are then incorporated into a cognitive graph. 

4.3 Limitations and future research 

The study in Chapter 2 investigated whether distal landmarks dominate over proximal 

landmarks as orientation cues. This study focused on a single independent proximal landmark to 
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avoid the orientation indicated by the configuration of multiple landmarks. Previous studies 

suggest that the spatial arrangement of multiple proximal landmarks and their placement within 

the environment can have a significant impact on their role as orientation cues (Lee & Spelke, 

2010; Pecchia & Vallortigara, 2010; for review, see Lew, 2011). The specific geometric 

configuration of landmarks and their relationship to the navigational space may influence how 

they interact with distal landmarks in determining orientations. In addition, the current studies 

used relatively simple and short paths. The generalizability of the findings to navigation 

scenarios with complex and long paths remains an open question that requires further research. 

Therefore, considering these factors in future research will be essential for gaining a 

comprehensive understanding of how humans integrate and utilize different cues for spatial 

orientation in various navigation scenarios. 

The study in Chapter 3 investigated the sources of systematic errors in human triangle 

completion and supported the bi-component model. Additional studies are needed to examine the 

applicability of the bi-component model under various conditions, such as path integration on 

more complex paths, since navigators may adopt different navigational strategies depending on 

the complexity of the path (Klatzky et al., 1990; Wiener et al., 2011; Wiener & Mallot, 2006). On 

simple pathways, navigators are more likely to remember the path configuration, and calculate 

the vector to go home only when needed (that is, an offline process), which is a configural 

strategy. On complex pathways, however, storing the presentation of the path configuration is 

challenging for navigators, and they tend to switch to continuously updating the homing vector 

(that is, an online process), which is a continuous strategy. Wiener and Mallot (2006) 

demonstrated that participants pointed homeward even faster and more accurately as path 

complexity increased while maintaining the overall path length, turn angle, and turning direction 



 170 

constant. In addition, an outbound path with path crossover might also be hard to encode the 

configuration (Fujita et al., 1993; Klatzky et al., 1990). However, Yamamoto et al. (2014) found 

that the presence of path crossover in traveled paths caused little impact on path integration 

performance. Future studies may test the bi-component model using outbound paths with more 

turns and path crossover. 

Another potential limitation of the current bi-component model is presuming minimal 

systematic integration errors, as with previously proposed models of path integration (Benhamou 

& Séguinot, 1995; Chrastil & Warren, 2021; Fujita et al., 1993; Harootonian et al., 2020). The 

integration errors emerge from computing the desired inbound responses based on the 

internalized representation of the traversed path. In addition to cognitive maps, humans also 

build labeled graphs (Warren, 2019; Warren et al., 2017), and the difference between these two 

may reflect the involvement of integration errors. One conjecture is that as the complexity of the 

outgoing path increases, the integration errors will subsequently surge (if one keeps using the 

configural navigation strategy). Future modeling studies may consider some possible systematic 

biases in the integration errors instead of assuming that there were random integration errors. 
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Supplementary materials of Chapter 2 

The relationship between heading errors, position errors, and homing errors 

Figure S2.1 illustrates the angular error for participants’ heading, position, and homing 

estimates, denoted as η, π, θ, respectively.  

 

Figure S2.1. Illustrating the response measures of the current study. A hypothetical participant 

starts from his or her original position O (home) and ends at the position P and with the heading 

h after navigation. His or her estimates of P and h are P’ and h’. He or she points to O’ as the 

estimate of O. Heading error (η) is the angle from the direction h to the direction h’. Position 

error (π) is the angle from 𝑂𝑃⃗⃗⃗⃗  ⃗ to 𝑂𝑃’⃗⃗ ⃗⃗ ⃗⃗  . Homing error (θ) is the angle from 𝑃𝑂⃗⃗⃗⃗  ⃗ to 𝑃𝑂’⃗⃗ ⃗⃗ ⃗⃗  . 

 

Previous research has demonstrated the relationship between heading errors, position 

errors, and homing errors: the homing error (θ) depends on both heading error (η) and the 

position error (π), as described by the following equation (Zhang et al., 2020, Equations 5). 

θ = π – η                                                                   (S1) 
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Figure S2.2 provides examples of a presentative participant (specifically, Participant No. 

14 from Experiment 1a) to illustrate the bidimensional regression approach used in calculating 

the estimated positions and headings for all three conditions.  

 

Figure S2.2. Demonstrating the bidimensional regression approach used for calculating 

estimated positions and headings. A participant memorizes the original locations of five targets 

(e.g., target O). After navigation, the participant replaces the targets at a testing position P with a 

heading direction h. Conceptually, the bidimensional regression generates a prediction function, 

encompassing a transformation matrix that includes uniform scaling, rotation, and translation. 
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This prediction function converts the replaced locations (e.g., O’) to the predicted locations that 

minimize the overall distance from the original locations (e.g., O) (Friedman & Kohler, 2003). 

Subsequently, the prediction function calculates h’ and P’ using h and P as the predictor values, 

respectively. Lines connect the locations solely to illustrate their configuration, aiding readers in 

understanding the relationships among the three configurations. 

 

Predictions of homing errors and position errors 

The home location (i.e., the origin of the path) was overlapped with the traffic cone (i.e., 

the proximal landmark) before navigation. For the PLM and Conflict conditions, the traffic cone 

(being rotated -50°) reappeared when participants were asked to replace targets after navigation. 

For the PLM and Conflict conditions, the predicted homing error (θ) would be -50° (see Table 

S2.1) if participants used the reappeared proximal landmark to indicate the home location. For 

the DLM condition, participants would use the distal landmark for heading estimates (η = -50°) 

and path integration for position estimates (π = 0°). The predicted homing error for the DLM 

condition would be 50° based on the Equation 1 (θ = π – η = 50°). 

Participants were disoriented at the endpoint of the path so that their heading estimates 

from path integration was disrupted but their position estimates from path integration remain 

intact. For the single-cue conditions (DLM and PLM conditions), participants were expected to 

use the reappeared landmark for estimating headings and rely on path integration for position 

estimates. The predicted position errors for DLM and PLM conditions are 0° (π = 0°). For the 

Conflict condition, as the predicted homing error (θ) is -50°, the predicted position error would 

be π = θ + η = -50 + η. For example, if participants use the rotated distal landmark for heading 

estimates (i.e., η = -50°, 𝑊𝐷𝑙𝑚 = 1), the predicted position error would be -100° (π = θ + η = -50° 
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+ (-50°) = -100°); if participants use the rotated proximal landmark for heading estimates (i.e., η 

= 50°, 𝑊𝐷𝑙𝑚 = 0), the predicted position error would be 0° (π = θ + η = -50°+50° = 0°). 

 

Table S2.1. Predicted homing and position errors and the circular means (circular standard 

deviations) of the participant-level homing and position errors in each cue condition of all 

experiments. 𝑊𝐷𝑙𝑚 = 1 indicates that participants use distal landmarks for heading. 𝑊𝐷𝑙𝑚 = 0 

indicates that participants use the proximal landmark for heading. 

Conditions DLM PLM Conflict 

Predicted homing errors 50° -50° -50° 

Observed homing errors (Exp 1a) 25.0° (45.7°) -51.4° (3.9°) -50.8° (2.7°) 

Observed homing errors (Exp 1b) 19.4° (63.8°) -49.7° (2.1°) -47.7° (10.1°) 

Observed homing errors (Exp 2) 37.7° (24.6°) -49.9° (5.7°) -46.5° (14.6°) 

Observed homing errors (Exp 3) 36.0° (57.1°) -52.7° (8.7°) -52.4° (5.8°) 

Predicted position errors 0° 0° 

-100° 

(𝑊𝐷𝑙𝑚 = 1) 

0° 

(𝑊𝐷𝑙𝑚 = 0) 

Observed position errors (Exp 1a) -14.4° (27.7°) -8.2° (31.4°) -62.2° (26.5) 

Observed position errors (Exp 1b) -2.4° (53.9°) -8.7° (48.2°) -75.2° (26.7°) 

Observed position errors (Exp 2) -3.1° (9.5°) 6.0° (15.7°) -7.1° (21.2°) 

Observed position errors (Exp 3) -6.5° (44.5°) -26.6° (66.1°) -86.1° (27.7°) 

 

Results of homing errors and position errors  

For each participant, we calculated the circular mean and circular standard deviation 

(referred to as participant-level circular mean and standard deviation) across individual homing 



 178 

errors and position errors in the same cue condition, respectively. The group-level circular means 

of the participant-level circular mean and their corresponding confidence intervals were also 

calculated for each condition. 

Homing errors of Experiment 1 

Participant-level circular means of the homing errors and their mean and confidence 

interval in all conditions are plotted in Figure S2.3. The group-level circular mean and circular 

standard deviation are summarized in Table S2.1. The Rayleigh Z test showed that the homing 

errors in all conditions were clustered around one direction (Zs ≧8.11, ps < .001). 

Participant-level circular means: In the DLM condition, the mean homing error was 25.0° with 

a 95% confidence interval [8.2°, 41.8°] in Experiment 1a (Figure S2.3A) and the mean homing 

error was 19.4° with a 95% confidence interval [-6.1°, 45.0°] in Experiment 1b (Figure S2.3D). 

In the PLM condition, the homing estimates clustered around the predicted homing errors 

(-50°) based on the rotated proximal landmark (the dotted orange line in Figure S2.3B and 

S2.3E) in both Experiments 1a and 1b (mean homing error = -51.4°, 95% CI [-52.8°, -49.96°] 

and mean homing error = -49.7°, 95% CI [-50.5°, -48.9°], respectively). 

In the Conflict condition, the homing estimates clustered around the predicted homing 

errors (-50°) based on the rotated proximal landmark (the dotted orange line in Figure S2.3C and 

S2.3F) in both Experiments 1a and 1b (mean homing error = -50.8°, 95% CI [-51.9°, -49.8°] and 

mean homing error = -47.7°, 95% CI [-51.5°, -43.97°], respectively). 
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Figure S2.3. Observed and predicted homing errors in the DLM (panels A and D), PLM (panels 

B and E), and Conflict conditions (panels C and F) in Experiments 1a and 1b. Each blue dot 

indicates one participant-level circular mean of homing errors across paths. The solid black line 

indicates the group-level circular mean of the homing errors across participants. The black arc 

indicates the 95% confidence interval of the group-level circular mean. The dotted orange lines 

indicate the predicted homing errors in corresponding conditions.  

  

Participant-level circular standard deviation: The means of participant-level circular 

standard deviations in all conditions are plotted in Figure S2.4. We conducted repeated-measure 

ANOVA with one within-subject factor (cue condition: DLM, PLM, and Conflict) for 



 180 

Experiment 1a and 1b respectively. There was significant difference among conditions in 

Experiment 1a, F(2, 54) = 60.25, p < .001, MSE = 151.23, 𝜂𝑝
2 = .69. The SD in the DLM 

condition was significantly larger than that in the PLM condition, t(27) = 7.70, p < .001, Cohen’s 

dz = 1.45 and that in the Conflict condition, t(27) = 7.87, p < .001, Cohen’s dz = 1.48. The SDs in 

the PLM and Conflict conditions did not differ, t(27) = 0.84, p = .41, Cohen’s dz = 0.16, BF01 = 

3.61. 

There was a significant difference among conditions in Experiment 1b, F(2, 54) = 34.64, 

p < .001, MSE = 445.67, 𝜂𝑝
2 = .56. The SD in the DLM condition was significantly larger than 

that in the PLM condition, t(27) = 6.52, p < .001, Cohen’s dz = 1.23 and that in the Conflict 

condition, t(27) = 5.92, p < .001, Cohen’s dz = 1.12. The SDs in the PLM and Conflict conditions 

did not differ, t(27) = 0.17, p = .87, Cohen’s dz = 0.03, BF01 = 4.93. 

 

Figure S2.4. The means of participant-level circular standard deviations of the homing errors in 

all conditions of all experiments. The solid lines represent significant comparisons (***p 
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< .001). Error bars represent ± 1 SE of the means (from the MSE of each repeated-measure 

ANOVA). 

 

Homing errors of Experiment 2 

Participant-level circular means: In the DLM condition, the mean homing error was 

37.7° with a 95% confidence interval [28.6°, 46.8°] in Experiment 2 (Figure S2.5A). 

In the PLM condition, the homing estimates clustered around the predicted homing errors 

(-50°) based on the rotated proximal landmark (the dotted orange line in Figure S2.5B) in 

Experiment 2 (mean homing error = -49.9°, 95% CI [-51.9°, -47.8°]). 

In the Conflict condition, the homing estimates clustered around the predicted homing 

errors (-50°) based on the rotated proximal landmark (the dotted orange line in Figure S2.5C) in 

Experiment 2 (mean homing error = -46.5°, 95% CI [-51.9°, -41.1°]). 

 

Figure S2.5. Observed and predicted homing errors in the DLM (panel A), PLM (panel B), and 

Conflict conditions (panel C) in Experiment 2. Each blue dot indicates one participant-level 

circular mean of heading errors across paths. The solid black line indicates the group-level 

circular mean of the heading errors across participants. The black arc indicates the 95% 
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confidence interval of the group-level circular mean. The dotted orange lines indicate the 

predicted homing errors in corresponding conditions.  

  

Participant-level circular standard deviation: The means of participant-level circular 

standard deviations in all conditions are plotted in Figure S2.4. We conducted repeated-measure 

ANOVA with one within-subject factor (cue condition: DLM, PLM, and Conflict). There was a 

significant difference among conditions, F(2, 54) = 50.42, p < .001, MSE = 213.50, 𝜂𝑝
2 = .65. The 

SD in the DLM condition was significantly larger than that in the PLM condition, t(27) = 8.60, p 

< .001, Cohen’s dz = 1.63 and that in the Conflict condition, t(27) = 7.77, p < .001, Cohen’s dz = 

1.47. The SDs in the PLM and Conflict conditions did not differ, t(27) = 0.07, p = .94, Cohen’s 

dz = 0.01, BF01 = 4.98. 

Homing errors of Experiment 3 

Participant-level circular means: In the DLM condition, the mean homing error was 

36.0° with a 95% confidence interval [14.1°, 57.8°] in Experiment 3 (Figure S2.6A). The 

predicted homing error for the DLM condition (50°) was encompassed in the 95% CI. 

In the PLM condition, the homing estimates clustered around the predicted homing errors 

(-50°) based on the rotated proximal landmark (the dotted orange line in Figure S2.6B) in 

Experiment 3 (mean homing error = -52.7°, 95% CI [-55.9°, -49.5°]). 

In the Conflict condition, the homing estimates clustered around the predicted homing 

errors (-50°) based on the rotated proximal landmark (the dotted orange line in Figure S2.6C) in 

Experiment 3 (mean homing error = -52.4°, 95% CI [-54.5°, -50.2°]). 
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Figure S2.6. Observed and predicted homing errors in the DLM (panel A), PLM (panel B), and 

Conflict conditions (panel C) in Experiment 3. Each blue dot indicates one participant-level 

circular mean of heading errors across paths. The solid black line indicates the group-level 

circular mean of the heading errors across participants. The black arc indicates the 95% 

confidence interval of the group-level circular mean. The dotted orange lines indicate the 

predicted homing errors in corresponding conditions.  

 

Participant-level circular standard deviation: The means of participant-level circular 

standard deviations in all conditions are plotted in Figure S2.4. We conducted repeated-measure 

ANOVA with one within-subject factor (cue condition: DLM, PLM, and Conflict). There was a 

significant difference among conditions, F(2, 54) = 95.34, p < .001, MSE = 295.78, 𝜂𝑝
2 = .78. The 

SD in the DLM condition was significantly larger than that in the PLM condition, t(27) = 10.67, 

p < .001, Cohen’s dz = 2.02 and that in the Conflict condition, t(27) = 9.87, p < .001, Cohen’s dz 

= 1.87. The SDs in the PLM and Conflict conditions did not differ, t(27) = 0.29, p = .78, Cohen’s 

dz = 0.05, BF01 = 4.80. 

Position errors 
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Position errors of Experiment 1 

Participant-level circular means of the position errors and their mean and confidence 

interval in all conditions are plotted in Figure S2.7. The group-level circular mean and circular 

standard deviation are summarized in Table S2.1. The Rayleigh Z test showed that the position 

errors in all conditions were clustered around one direction (Zs ≧11.54, ps < .001). 

Participant-level circular means: In the DLM condition, the mean position error was -

14.4° with a 95% confidence interval [-24.6°, -4.1°] in Experiment 1a (Figure S2.7A) and the 

mean position error was -2.4° with a 95% confidence interval [-22.7°, -18.0°] in Experiment 1b 

(Figure S2.6D). 

In the PLM condition, the position estimates clustered around the predicted position 

errors (0°) based on path integration (the dotted red line in Figure S2.7B and S2.7E) in both 

Experiments 1a and 1b (mean position error = -8.2°, 95% CI [-19.8°, 3.4°] and mean position 

error = -8.7°, 95% CI [-26.5°, 9.1°], respectively). 

In the Conflict condition, the mean position error was 25.0° with a 95% confidence 

interval [8.2°, 41.8°] in Experiment 1a (Figure S2.7C) and the mean position error was 19.4° 

with a 95% confidence interval [-6.1°, 45.0°] in Experiment 1b (Figure S2.7F). 
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Figure S2.7. Observed and predicted position errors in the DLM (panels A and D), PLM (panels 

B and E), and Conflict conditions (panels C and F) in Experiments 1a and 1b. Each blue dot 

indicates one participant-level circular mean of position errors across paths. The solid black line 

indicates the group-level circular mean of the position errors across participants. The black arc 

indicates the 95% confidence interval of the group-level circular mean. The red lines indicate the 

predicted position error (0°) when participants use path integration for position estimates. The 

dashed green line indicates the predicted position error (π = θ + η = -50° + (-50°) = -100°) if 

participants use the rotated distal landmark for heading estimates and the rotated proximal 

landmark for homing estimates.  
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Participant-level circular standard deviation: The means of participant-level circular 

standard deviations in all conditions are plotted in Figure S2.8. We conducted repeated-measure 

ANOVA with one within-subject factor (cue condition: DLM, PLM, and Conflict) for 

Experiment 1a and 1b respectively. There were no significant differences among conditions in 

Experiment 1a, F(2, 54) = .21, p = .81, MSE = 478.76, 𝜂𝑝
2 = .008, BF01=7.99 , indicating that the 

means of the participant-level SDs of position errors were comparable across all conditions in 

Experiment 1a.  

There was a significant difference among conditions in Experiment 1b, F(2, 54) = 3.97, p 

= .03, MSE = 899.80, 𝜂𝑝
2 = .128. In particular, the SD in the PLM condition was significantly 

larger than that in the Conflict condition, t(27) = 2.57, p = .016, Cohen’s dz = .49, but did not 

differ from that in the DLM condition, t(27) = 0.96, p = .34, Cohen’s dz = 0.18, BF01 = 3.27. The 

SD in the DLM condition was significantly larger than that in the Conflict condition, t(27) = 

2.45, p = .021, Cohen’s dz = 0.462.  
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Figure S2.8. The means of participant-level circular standard deviations of the position errors in 

all conditions of all experiments. The solid lines represent significant comparisons (.01 < *p 

< .05, ***p < .001) and the dashed line represents an insignificant comparison (p > .05). Error 

bars represent ± 1 SE of the means (from the MSE of each repeated-measure ANOVA). 

 

Position errors of Experiment 2 

Participant-level circular means: In the DLM condition, the position estimates 

clustered around the predicted position errors (0°) based on path integration (the dotted red line 

in Figure S2.9A) in Experiment 2 (mean position error = -3.1°, 95% CI [-6.6°, .4°]). 

In the PLM condition, the position estimates clustered around the predicted position 

errors (0°) based on path integration (the dotted red line in Figure S2.9B) in Experiment 2 (mean 

position error = 6.0°, 95% CI [.2°, 11.9°]). 

In the Conflict condition, the position estimates clustered around the predicted position 

errors (0°) based on path integration (the dotted red line in Figure S2.9C) in Experiment 2 (mean 

position error = -7.1°, 95% CI [-15.0°, .7°]). 
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Figure S2.9. Observed and predicted position errors in the DLM (panels A and D), PLM (panels 

B and E), and Conflict conditions (panels C and F) in Experiments 1a and 1b. Each blue dot 

indicates one participant-level circular mean of position errors across paths. The solid black line 

indicates the group-level circular mean of the position errors across participants. The black arc 

indicates the 95% confidence interval of the group-level circular mean. The red lines indicate the 

predicted position error (0°) when participants use path integration for position estimates. The 

dashed green line indicates the predicted position error (π = θ + η = -50° + (-50°) = -100°) if 

participants use the rotated distal landmark for heading estimates and the rotated proximal 

landmark for homing estimates.  

 

Participant-level circular standard deviation. Participant-level circular standard 

deviations of all conditions in Experiment 2 are plotted in Figure S2.8. A repeated-measure 

ANOVA with one within-subject factor (cue condition: DLM, PLM, and Conflict) was 

conducted. The results show no significant differences among conditions, F(2, 54) = 2.60, p 

= .08, MSE = 567.94, 𝜂𝑝
2 = .088, B01=1.03, indicating that the SDs of position errors across paths 

were comparable for all conditions in Experiment 2. 

Position errors of Experiment 3 

Participant-level circular means. In the DLM condition, the position estimates 

clustered around the predicted position errors (0°) based on path integration (the dotted red line 

in Figure S2.10A) in Experiment 3 (mean position error = -6.5°, 95% CI [-22.8°, 9.9°]). 

In the PLM condition, the mean position error was -26.6° with a 95% confidence interval 

[-53.8°, .5°] in Experiment 3 (Figure S2.10B). The predicted position error for the PLM 

condition (0°) was encompassed in the 95% CI. 
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In the Conflict condition, the mean position error was -86.1° with a 95% confidence 

interval [-96.3°, 75.9°] in Experiment 3 (Figure S2.10C). 

 

Figure S2.10. Observed and predicted position errors in the DLM (panels A and D), PLM (panels 

B and E), and Conflict conditions (panels C and F) in Experiments 1a and 1b. Each blue dot 

indicates one participant-level circular mean of position errors across paths. The solid black line 

indicates the group-level circular mean of the position errors across participants. The black arc 

indicates the 95% confidence interval of the group-level circular mean. The red lines indicate the 

predicted position error (0°) when participants use path integration for position estimates. The 

dashed green line indicates the predicted position error (π = θ + η = -50° + (-50°) = -100°) if 

participants use the rotated distal landmark for heading estimates and the rotated proximal 

landmark for homing estimates.  

Participant-level circular standard deviation: The means of participant-level circular 

standard deviations in all conditions are plotted in Figure S2.8. A repeated-measure ANOVA with 

one within-subject factor (cue condition: DLM, PLM, and Conflict) was conducted. There were 

significant differences among conditions, F(2, 54) = 11.04, p < .001, MSE = 584.54, 𝜂𝑝
2 = .29. In 

particular, the SD in the PLM condition was significantly larger than that in the Conflict 
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condition, t(27) = 4.13, p < .001, Cohen’s dz = 0.78, but was not different from that in the DLM 

condition, t(27) = 1.16, p = .26, Cohen’s dz = .22, BF01 = 2.72. The SD in the Conflict condition 

was significantly larger than that in the DLM, t(27) = 3.64, p < .01, Cohen’s dz = .69. 
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Supplementary materials of Chapter 3 

Description of the data 

 Figure S3.1 plots the correct values of the inbound responses in triangle completion of Qi 

et al. (2021). 

 

Figure S3.1. The distributions of the correct inbound path lengths (A) and turn angles (B). 

   

Cross-validation without considering participant variable 

Cross-validation results of individual folds. All ten folds’ cross-validation results based 

on two different algorithms using participants’ responses are summarized separately (model 

fitting performance in Table S3.1 and model validation performance in Table S3.2). 

 

Table S3.1. Model fitting performance using multiple response locations or only home response 

locations. Parameters are estimated slopes and intercepts of encoding functions (𝜃𝐿_𝑠
𝑒𝑛𝑐 and 𝜃𝐿_𝑖

𝑒𝑛𝑐 

for length, 𝜃𝐴_𝑠
𝑒𝑛𝑐 and 𝜃𝐴_𝑖

𝑒𝑛𝑐 for angle) and execution functions (𝜃𝐿_𝑠
𝑒𝑥𝑒 and 𝜃𝐿_𝑖

𝑒𝑥𝑒 for length, 𝜃𝐴_𝑠
𝑒𝑥𝑒 and 

𝜃𝐴_𝑖
𝑒𝑥𝑒 for angle) for three models in the model fitting. The RMSE, maximum log-likelihood, and 

partial r-squared are goodness-of-fit measures.  
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Model 

Multiple response locations (1st round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.378 -6121.00 0.000 

M1 0.96 0.64 0.81 15.49 1 0 1 0 3.269 -6042.04 0.063 

M2 1 0 1 0 0.75 1.22 0.77 44.16 3.242 -6023.67 0.079 

M3 0.70 0.93 0.85 19.41 0.73 1.08 0.80 39.17 3.208 -5994.13 0.098 

 

 

 

Model 

Home response locations only (1st round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.922 -1904.77 0.000 

M1 0.53 0.94 0.54 12.72 1 0 1 0 2.727 -1854.58 0.129 

M2 1 0 1 0 0.48 1.98 0.45 87.29 2.735 -1856.25 0.124 

M3 0.28 0.68 0.58 -10.00 1.96 -1.0 0.90 6.56 2.725 -1854.30 0.130 

 

 

 

Model 

Multiple response locations (1st round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.976 -5799.43 0.000 

M1 1.12 0.31 0.77 21.45 1 0 1 0 2.884 -5722.36 0.061 

M2 1 0 1 0 0.66 1.34 0.80 38.07 2.865 -5704.63 0.073 

M3 0.86 0.73 0.83 21.21 0.66 1.12 0.83 32.42 2.830 -5671.87 0.096 

 

 

Home response locations only (1st round, subsample 2) 

 Parameters   5×2 Fitting  
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Model 

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.693 -1830.55 0.000 

M1 0.87 0.36 0.36 34.38 1 0 1 0 2.517 -1778.07 0.126 

M2 1 0 1 0 0.36 2.20 0.47 83.69 2.522 -1779.29 0.123 

M3 0.89 0.55 0.32 55.32 0.81 0.59 1.13 -9.98 2.514 -1776.50 0.128 

 

 

 

Model 

Multiple response locations (2nd round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.343 -6074.95 0.000 

M1 1.26 0.16 0.73 26.60 1 0 1 0 3.229 -5995.91 0.067 

M2 1 0 1 0 0.69 1.38 0.80 40.16 3.212 -5987.98 0.077 

M3 1.18 0.26 0.74 31.17 0.75 0.94 0.82 34.20 3.175 -5953.92 0.098 

 

 

Model 

Home response locations only (2nd round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.969 -1901.85 0.000 

M1 0.91 0.32 0.38 29.54 1 0 1 0 2.760 -1855.84 0.136 

M2 1 0 1 0 0.38 2.25 0.44 88.46 2.772 -1858.12 0.128 

M3 0.69 0.14 0.35 27.26 1.33 0.11 1.05 -10.0 2.759 -1855.72 0.136 

 

 

 

Model 

Multiple response locations (2nd round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 
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M0 1 0 1 0 1 0 1 0 3.015 -5838.87 0.000 

M1 0.80 0.83 0.84 12.70 1 0 1 0 2.925 -5763.77 0.059 

M2 1 0 1 0 0.71 1.20 0.77 41.93 2.900 -5735.84 0.075 

M3 0.55 1.18 0.89 14.64 0.67 1.10 0.84 32.75 2.861 -5701.30 0.099 

 

 

 

Model 

Home response locations only (2nd round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.642 -1824.93 0.000 

M1 

M2 

M3 

0.44 

1 

9.10 

1.05 

0 

17.87 

0.51 17.71 1 0 1 0 2.482 -1768.70 0.117 

1 0 0.46 1.93 0.48 82.97 2.482 -1768.79 0.117 

0.84 27.26 0.03 1.97 0.63 66.94 2.479 -1767.48 0.120 

 

 

 

Model 

Multiple response locations (3rd round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.320 -6083.85 0.000 

M1 1.05 0.42 0.81 14.42 1 0 1 0 3.227 -6015.45 0.055 

M2 1 0 1 0 0.70 1.31 0.83 35.29 3.206 -6001.36 0.067 

M3 0.76 0.83 0.86 15.29 0.68 1.16 0.87 26.89 3.179 -5977.51 0.083 

 

 

 

Model 

Home response locations only (3rd round, subsample 1) 

 Parameters   5×2 Fit  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.937 -1908.71 0.000 
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M1 0.83 0.44 0.57 12.96 1 0 1 0 2.777 -1871.03 0.106 

M2 1 0 1 0 0.52 1.84 0.58 68.69 2.782 -1871.64 0.103 

M3 0.70 0.26 0.62 6.09 1.11 0.37 0.97 2.39 2.777 -1870.90 0.106 

 

 

 

Model 

Multiple response locations (3rd round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.041 -5854.76 0.000 

M1 1.03 0.52 0.77 22.35 1 0 1 0 2.931 -5763.24 0.071 

M2 1 0 1 0 0.70 1.27 0.74 47.14 2.906 -5743.56 0.087 

M3 0.65 1.07 0.79 27.14 0.68 1.13 0.77 42.32 2.857 -5697.42 0.117 

 

 

 

Model 

Home response locations only (3rd round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.677 -1831.85 0.000 

M1 0.54 0.90 0.33 32.72 1 0 1 0 2.461 -1764.61 0.154 

M2 1 0 1 0 0.31 2.36 0.43 90.00 2.468 -1766.52 0.149 

M3 0.70 1.23 0.29 53.94 0.65 0.67 1.13 -10.00 2.460 -1763.85 0.155 

 

 

 

Model 

Multiple response locations (4th round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.443 -6172.66 0.000 

M1 1.28 0.08 0.81 18.80 1 0 1 0 3.352 -6111.46 0.052 
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M2 1 0 1 0 0.67 1.34 0.78 42.48 3.328 -6096.82 0.066 

M3 1.27 0.08 0.83 24.01 0.68 1.10 0.82 35.14 3.295 -6069.04 0.084 

 

 

 

Model 

Home response locations only (4th round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.056 -1945.06 0.000 

M1 0.73 0.56 0.38 26.93 1 0 1 0 2.869 -1899.73 0.119 

M2 1 0 1 0 0.37 2.23 0.44 90.00 2.872 -1899.84 0.117 

M3 1.52 7.13 0.12 64.78 0.40 -3.0 3.19 55.65 2.868 -1899.11 0.119 

 

 

 

Model 

Multiple response locations (4th round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.900 -5730.81 0.000 

M1 0.80 0.86 0.78 17.69 1 0 1 0 2.785 -5628.82 0.078 

M2 1 0 1 0 0.73 1.23 0.79 39.90 2.767 -5610.79 0.090 

M3 0.49 1.27 0.85 15.96 0.70 1.09 0.84 31.88 2.725 -5570.60 0.117 

 

 

 

Model 

Home response locations only (4th round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.540 -1784.59 0.000 

M1 0.60 0.81 0.51 19.78 1 0 1 0 2.357 -1726.92 0.139 

M2 1 0 1 0 0.47 1.96 0.49 80.44 2.366 -1729.52 0.133 
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M3 0.82 0.79 0.69 -10.00 0.70 0.37 0.82 21.36 2.356 -1726.83 0.140 

 

 

 

Model 

Multiple response locations (5th round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.108 -5919.57 0.000 

M1 1.11 0.24 0.80 16.70 1 0 1 0 3.041 -5866.22 0.043 

M2 1 0 1 0 0.70 1.14 0.80 39.54 3.009 -5839.97 0.063 

M3 1.07 0.24 0.85 17.29 0.71 0.94 0.85 31.47 2.988 -5820.31 0.076 

 

 

 

Model 

Home response locations only (5th round, subsample 1) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.732 -1849.03 0.000 

M1 0.74 0.48 0.45 23.28 1 0 1 0 2.582 -1803.53 0.107 

M2 1 0 1 0 0.41 1.97 0.49 80.60 2.586 -1804.16 0.104 

M3 2.57 0.88 0.52 23.01  0.25 0.80 0.93 12.41 2.581 -1803.11 0.107 

 

 

 

Model 

Multiple response locations (5th round, subsample 2) 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.257 -6023.06 0.000 

M1 0.98 0.70 0.79 19.58 1 0 1 0 3.118 -5913.01 0.084 

M2 1 0 1 0 0.70 1.43 0.77 42.46 3.104 -5907.36 0.092 

M3 0.64 1.18 0.88 18.05 0.66 1.30 0.81 35.89 3.052 -5858.41 0.122 

 Home response locations only (5th round, subsample 2) 
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Model 

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.886 -1889.97 0.000 

M1 0.62 0.86 0.43 24.32 1 0 1 0 2.663 -1832.26 0.149 

M2 1 0 1 0 0.41 2.25 0.43 90.00 2.669 -1833.68 0.144 

M3 8.07 9.90 0.42 24.32 0.08 0.21 1.06 -9.83 2.663 -1832.31 0.149 

 

Table S3.2. Model validation performance using multiple response locations or only home 

response locations. Parameters are the same as in Table S3.1 from model fitting. The RMSE, 

maximum log-likelihood, and partial r-squared are generalizability measures, which were 

calculated by applying the parameters to the test subsamples. 

 

 

 

Model 

Multiple response locations (1st round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.378 -6121.00 0.000 

M1 1.12 0.31 0.77 21.45 1 0 1 0 3.274 -6044.00 0.061 

M2 1 0 1 0 0.66 1.34 0.80 38.07 3.247 -6023.54 0.076 

M3 0.86 0.73 0.83 21.21 0.66 1.12 0.83 32.42 3.213 -5995.38 0.095 

 

 

 

Model 

Home response locations only (1st round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.922 -1904.77 0.000 

M1 0.87 0.36 0.36 34.38 1 0 1 0 2.739 -1857.78 0.122 
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M2 1 0 1 0 0.36 2.20 0.47 83.69 2.739 -1856.74 0.121 

M3 0.89 0.55 0.32 55.32 0.81 0.59 1.13 -9.98 2.742 -1858.34 0.119 

 

 

 

Model 

Multiple response locations (1st round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.976 -5799.43 0.000 

M1 0.96 0.64 0.81 15.49 1 0 1 0 2.889 -5727.83 0.058 

M2 1 0 1 0 0.75 1.22 0.77 44.16 2.872 -5710.81 0.069 

M3 0.70 0.93 0.85 19.41 0.73 1.08 0.80 39.17 2.835 -5677.57 0.092 

 

 

 

Model 

Home response locations only (1st round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.693 -1830.55 0.000 

M1 0.53 0.94 0.54 12.72 1 0 1 0 2.530 -1782.19 0.118 

M2 1 0 1 0 0.48 1.98 0.45 87.29 2.527 -1780.98 0.119 

M3 0.28 0.68 0.58 -10.00 1.96 -1.0 0.90 6.56 2.533 -1783.70 0.115 

 

 

 

Model 

Multiple response locations (2nd round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.343 -6074.95 0.000 

M1 0.80 0.83 0.84 12.70 1 0 1 0 3.247 -6001.53 0.061 

M2 1 0 1 0 0.71 1.20 0.77 41.93 3.215 -5986.01 0.075 



 200 

M3 0.55 1.18 0.89 14.64 0.67 1.10 0.84 32.75 3.186 -5961.14 0.092 

 

 

 

Model 

Home response locations only (2nd round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 

M1 

M2 

M3 

1 

0.44 

1 

9.10 

0 

1.05 

0 

17.87 

1 0 1 0 1 0 2.969 -1901.85 0.000 

0.51 17.71 1 0 1 0 2.771 -1856.74 0.129 

1 0 0.46 1.93 0.48 82.97 2.776 -1857.42 0.126 

0.84 27.26 0.03 1.97 0.63 66.94 2.779 -1858.43 0.124 

 

 

 

Model 

Multiple response locations (2nd round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.015 -5838.87 0.000 

M1 1.26 0.16 0.73 26.60 1 0 1 0 2.937 -5776.22 0.051 

M2 1 0 1 0 0.69 1.38 0.80 40.16 2.904 -5738.89 0.073 

M3 1.18 0.26 0.74 31.17 0.75 0.94 0.82 34.20 2.883 -5723.42 0.086 

 

 

 

Model 

Home response locations only (2nd round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.642 -1824.93 0.000 

M1 

M2 

M3 

0.91 

1 

0.69 

0.32 

0 

0.14 

0.38 29.54 1 0 1 0 2.494 -1772.74 0.109 

1 0 0.38 2.25 0.44 88.46 2.486 -1770.31 0.115 

0.35 27.26 1.33 0.11 1.05 -10.0 2.497 -1774.01 0.106 
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Model 

Multiple response locations (3rd round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.320 -6083.85 0.000 

M1 1.03 0.52 0.77 22.35 1 0 1 0 3.232 -6017.62 0.052 

M2 1 0 1 0 0.70 1.27 0.74 47.14 3.211 -6005.37 0.064 

M3 0.65 1.07 0.79 27.14 0.68 1.13 0.77 42.32 3.190 -5985.37 0.077 

 

 

 

Model 

Home response locations only (3rd round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.937 -1908.71 0.000 

M1 0.54 0.90 0.33 32.72 1 0 1 0 2.789 -1874.63 0.099 

M2 1 0 1 0 0.31 2.36 0.43 90.00 2.788 -1874.16 0.099 

M3 0.70 1.23 0.29 53.94 0.65 0.67 1.13 -10.00 2.790 -1874.82 0.098 

 

 

 

Model 

Multiple response locations (3rd round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.041 -5854.76 0.000 

M1 1.05 0.42 0.81 14.42 1 0 1 0 2.935 -5768.42 0.068 

M2 1 0 1 0 0.70 1.31 0.83 35.29 2.911 -5747.98 0.084 

M3 0.76 0.83 0.86 15.29 0.68 1.16 0.87 26.89 2.869 -5708.85 0.110 

 Home response locations only (3rd round, subsample 2) 
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Model 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.677 -1831.85 0.000 

M1 0.83 0.44 0.57 12.96 1 0 1 0 2.475 -1769.70 0.145 

M2 1 0 1 0 0.52 1.84 0.58 68.69 2.479 -1770.26 0.142 

M3 0.70 0.26 0.62 6.09 1.11 0.37 0.97 2.39 2.475 -1769.72 0.145 

 

 

 

Model 

Multiple response locations (4th round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.443 -6172.66 0.000 

M1 0.80 0.86 0.78 17.69 1 0 1 0 3.359 -6118.21 0.048 

M2 1 0 1 0 0.73 1.23 0.79 39.90 3.329 -6096.64 0.065 

M3 0.49 1.27 0.85 15.96 0.70 1.09 0.84 31.88 3.302 -6075.20 0.080 

 

 

 

Model 

Home response locations only (4th round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.056 -1945.06 0.000 

M1 0.60 0.81 0.51 19.78 1 0 1 0 2.876 -1900.73 0.115 

M2 1 0 1 0 0.47 1.96 0.49 80.44 2.876 -1900.38 0.114 

M3 0.82 0.79 0.69 -10.00 0.70 0.37 0.82 21.36 2.878 -1901.72 0.113 

 

 

Multiple response locations (4th round, subsample 2) 

 Parameters   5×2 Validation  
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Model 

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.900 -5730.81 0.000 

M1 1.28 0.08 0.81 18.80 1 0 1 0 2.794 -5636.87 0.072 

M2 1 0 1 0 0.67 1.34 0.78 42.48 2.768 -5611.56 0.090 

M3 1.27 0.08 0.83 24.01 0.68 1.10 0.82 35.14 2.743 -5587.92 0.105 

 

 

 

Model 

Home response locations only (4th round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.540 -1784.59 0.000 

M1 0.73 0.56 0.38 26.93 1 0 1 0 2.364 -1730.65 0.134 

M2 1 0 1 0 0.37 2.23 0.44 90.00 2.371 -1732.53 0.129 

M3 1.52 7.13 0.12 64.78 0.40 -3.0 3.19 55.65 2.365 -1730.73 0.133 

 

 

 

Model 

Multiple response locations (5th round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.108 -5919.57 0.000 

M1 0.98 0.70 0.79 19.58 1 0 1 0 3.057 -5882.08 0.032 

M2 1 0 1 0 0.70 1.43 0.77 42.46 3.024 -5855.21 0.053 

M3 0.64 1.18 0.88 18.05 0.66 1.30 0.81 35.89 3.010 -5842.31 0.062 

 

 

 

Home response locations only (5th round, subsample 1) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 
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Model 

M0 1 0 1 0 1 0 1 0 2.732 -1849.03 0.000 

M1 0.62 0.86 0.43 24.32 1 0 1 0 2.600 -1810.65 0.095 

M2 1 0 1 0 0.41 2.25 0.43 90.00 2.602 -1811.29 0.093 

M3 8.07 9.90 0.42 24.32 0.08 0.21 1.06 -9.83 2.599 -1810.56 0.095 

 

 

 

Model 

Multiple response locations (5th round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.257 -6023.06 0.000 

M1 1.11 0.24 0.80 16.70 1 0 1 0 3.134 -5926.20 0.074 

M2 1 0 1 0 0.70 1.14 0.80 39.54 3.118 -5913.54 0.083 

M3 1.07 0.24 0.85 17.29 0.71 0.94 0.85 31.47 3.079 -5878.83 0.106 

 

 

 

Model 

Home response locations only (5th round, subsample 2) 

 Parameters   5×2 Validation  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐
 𝜃𝐴_𝑠

𝑒𝑛𝑐 𝜃𝐴_𝑖
𝑒𝑛𝑐

 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒
 𝜃𝐴_𝑠

𝑒𝑥𝑒 𝜃𝐴_𝑖
𝑒𝑥𝑒

 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.886 -1889.97 0.000 

M1 0.74 0.48 0.45 23.28 1 0 1 0 2.680 -1835.94 0.138 

M2 1 0 1 0 0.41 1.97 0.49 80.60 2.686 -1836.49 0.134 

M3 2.57 0.88 0.52 23.01  0.25 0.80 0.93 12.41 2.681 -1835.76 0.137 

 

AIC and BIC analyses for adjusting the number of free parameters in model fitting. 

We used the Akaike information criterion (AIC; Akaike, 1973), Bayesian Information Criterion 

(BIC; Schwarz, 1978), and the adjustment of the likelihood ratio approach (Glover & Dixon, 
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2004) to qualify these results, correcting the effect of model complexity (i.e., M3 has more 

parameters than M1 and M2). The AIC and BIC for a model Mi can be defined as: 

𝐴𝐼𝐶𝑖= -2 log 𝐿𝑖 + 2 𝐾𝑖.                                                                                                                (S1)    

𝐵𝐼𝐶𝑖= -2 log 𝐿𝑖 + log(N) × 𝐾𝑖.                                                                             (S2)    

 Where the Li is the maximum likelihood of Mi and 𝐾𝑖 is the number of free parameters in 

Mi. In particular, 𝐾3 - 𝐾1 = 4, 𝐾3 - 𝐾2 = 4. N is the number of data, N = 498 × 3 for multiple 

response locations and N = 498 for home response locations only. 

 The adjusted maximum likelihood ratio (aLR) indicates the relative likelihood of data 

under two models, and the aLR in favor of Mi over Mj (i.e., aLRij) with AIC and BIC values can 

be written as: 

𝑎𝐿𝑅𝑖𝑗
𝐴𝐼𝐶 = exp (

𝐴𝐼𝐶𝑗 − 𝐴𝐼𝐶𝑖

2
).                                                                                                           (S3)  

𝑎𝐿𝑅𝑖𝑗
𝐵𝐼𝐶  = exp (

𝐵𝐼𝐶𝑗 − 𝐵𝐼𝐶𝑖

2
).                                                                                                          (S4)      

 

Table S3.3. Adjusted maximum likelihood ratio (𝑎𝐿𝑅𝐴𝐼𝐶 and 𝑎𝐿𝑅𝐵𝐼𝐶) between models (row 

model over column model) in model fitting using multiple locations (left) or only home response 

locations (right). 

 

 Multiple response locations 

 

Home response locations only 

 

𝑎𝐿𝑅𝐴𝐼𝐶 M0 M1 M2 M3  M0 M1 M2 M3 

M1  7.30 × 1032**    4.70 × 1020**    

M2  1.82 × 1040** 2.49 × 107**   1.35 × 1020** 0.29*   

M3  1.51 × 1053** 2.11 × 1020** 8.32 × 1012**  1.45 × 1019** 0.03** 0.003**  

𝑎𝐿𝑅𝐵𝐼𝐶 M0 M1 M2 M3  M0 M1 M2 M3 

M1  6.95 × 1031**    1.17 × 1020**   
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M2  1.73 × 1039** 2.49 × 107**    3.33 × 1019** 0.29*   

M3  1.45 × 1051** 2.02 × 1019** 8.10 × 1011**  8.89 × 1017** 0.008** 0.03**  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10 (Glover & Dixon, 2004). 

 

 The results of aLR in Table S3.3 clearly showed that the bi-component model (M3) is the 

best model when all three response locations were included in the model fitting. In contrast, 

although the encoding-error model, execution-error model, and the bi-component model (M1, 

M2, and M3) are better than the baseline model (M0), the bi-component model (M3) was even 

worse than the encoding-error and the execution-error models (M1 and M2) when only home 

response locations were included in the model fitting. 

The frequency of the pairwise likelihood ratio in different categories in model 

recovery. Figure S3.2 plots the frequency of different categories of evidence for the true model 

in model validation on the 100 sets of simulated response locations. The results showed that the 

algorithm of using multiple response locations can successfully distinguish the true model from 

other models. Specifically, when the true model was M1, we got evidence favoring M1 over M2 

and M3 with possibilities of 100% and 98% respectively. When the true model was M2, we got 

evidence favoring M2 over M1 and M3 with possibilities of 100% and 82% respectively. When 

the true model was M3, we got evidence favoring M3 over M1 and M2 with 100% for both. We 

never got evidence favoring the other two models over the true model. 

In contrast, the algorithm of using home response locations only cannot clearly 

distinguish the true model from other models. When the true model was M1, we got evidence 

favoring M1 over M2 and M3 with possibilities of 40% and 52% respectively. When the true 

model was M2, we got evidence favoring M2 over M1 and M3 with possibilities of 93% and 
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51% respectively. When the true model was M3, we got evidence favoring M3 over M1 and M2 

with possibilities of 37% and 26%. In addition to the relatively low chances to recover the true 

models, we also got evidence favoring the wrong models over the true model. There was 

evidence favoring M2 over the true model M1 with a possibility of 6%, evidence favoring M3 

over the true model M2 with a possibility of 1%, and evidence favoring M1 and M2 over the true 

model M3 with possibilities of 9% and 17%. 

 

Figure S3.2. Frequency in each category of likelihood ratio in model validation using (A) multiple 

response locations or (B) home response locations only. These locations are simulated locations 

from different true models (M1, M2, or M3). Mi/Mj indicates the ratio of model Mi over model 

Mj. >10 indicates strong evidence supporting Mi, >3 indicates clear evidence supporting Mi, <10 

indicates strong evidence supporting Mj, <3 indicates clear evidence supporting Mj. 
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Values of parameters estimated from real and simulated response locations 

 Table S3.4 lists the values of parameters estimated for the three models using real data 

(i.e., true parameters in the upper table) and using the simulated data generated from different 

models. The simulated data for each model were produced by fixed values of model parameters 

for all participants (Table 1). 

 

Table S3.4. The similarity between values of parameters based on real response locations (the 

upper panel) and simulated response locations from different models (the lower panel). S_M1, 

S_M2, and S_M3 denote the simulated response locations from the true models of M1, M2, and 

M3 respectively. 

 

 

 

Values of parameters based on real response locations 

M1                  M2                                   M3 

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 

 1.04 0.48 0.79 18.38 0.70 1.29 0.78 41.11 0.8

2 

0.78 0.84 20.42 0.6

9 

1.10 0.82 34.21 

 Recovered parameters based on simulated locations from each true model 

S_M1 1.04 0.48 0.79 18.37 1.10 0.19 0.87 20.69 1.0

0 

0.53 0.80 17.99 0.9

8 

0.08 0.98 2.54 

S_M2 1.39 -.36 0.92 1.55 0.69 1.30 0.78 41.05 1.0

0 

0.00 1.00 0.21 0.6

9 

1.31 0.79 41.06 

S_M3 1.06 0.41 0.82 14.91 0.75 1.29 0.78 41.11 0.8

2 

0.78 0.84 20.42 0.6

9 

1.10 0.82 34.21 

 

Effect of participant groups on model validation using the same parameters for all 

participants 

 Considering two different compression groups, we examined whether the compression 

group modulated the model performance. We conducted model validation for each group using 

the model parameters estimated in model fitting without considering the participant variable (see 

the parameters in Table 3.1). Tables S3.5-S3.8 show that model validation based on the 

parameters from the algorithm using home only still could not differentiate the three models in 
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either compression group. However, model validation based on the parameters from the 

algorithm using multiple locations showed different results of model comparison in the strong 

and the weak compression groups. Specifically, for the strong compression group, the bi-

component model (M3) was still the best model as indicated by the generalizability measures 

(RMSE, MaxLogL, and partialR2) in Table S3.5, RMSEs of individual folds in Table S3.6, the 

likelihood ratio in Table S3.7 and the results of Alpaydin’s F-test in Table S3.8. In contrast, for 

the weak compression group, all three models (M1-M3) even performed worse than the baseline 

model (M0) (e.g., partial R2 was negative in Table S3.5). Among the three models, the encoding-

error model (M1) appeared to be the best one.  

  

Table S3.5. Mean validation performance across 10 folds for the group with strong (upper) and 

weak (lower) compression patterns using multiple locations (left) or only home response locations 

(right). The RMSE, maximum log-likelihood, and partial r-squared are generalizability measures, 

which were calculated by applying the same parameters for all participants (i.e., the parameters 

in Table 1 from model fitting).  

 

 

 

Model 

Strong compression group 

Multiple response locations  Home response locations only 

RMSE MaxLogL Partial R2  RMSE MaxLogL Partial R2 

M0 3.384 -3768.8 0 3.043 -1191.6 0 

M1 3.223 -3691.3 0.094 2.765 -1143.2 0.176 

M2 3.152 -3651.6 0.133 2.767 -1143.2 0.174 

M3 3.114 -3632.7 0.154 2.767 -1143.5 0.174 
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Model 

Weak compression group 

Multiple response locations  Home response locations only 

RMSE MaxLogL Partial R2  RMSE MaxLogL Partial R2 

M0 2.816 -2168.7 0 2.375 -662.1 0 

M1 2.849 -2184.3 -0.024 2.400 -668.6 -0.023 

M2 2.903 -2205.2 -0.063 2.400 -668.7 -0.022 

M3 2.890 -2200.5 -0.054 2.402 -668.9 -0.024 

 

Table S3.6. RMSEs of individual folds in validation for strong and weak compression groups 

using two algorithms. 

Strong compression group 

 Multiple response locations  Home response locations only  

RMSE M1 M2 M3  M1 M2 M3 

1st round  2.951 2.889 2.842  2.598 2.598 2.603 

 3.473 3.405 3.360  2.928 2.929 2.931 

2nd round 3.031 2.955 2.923  2.630 2.620 2.635 

 3.427 3.355 3.321  2.912 2.916 2.923 

3rd round 2.957 2.890 2.836  2.559 2.567 2.559 

 3.494 3.428 3.392  2.982 2.980 2.982 

4th round 2.793 2.705 2.678  2.369 2.380 2.370 

 3.644 3.577 3.540  3.131 3.131 3.135 

5th round 3.350 3.299 3.252  2.888 2.892 2.886 
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 3.111 3.020 2.997  2.649 2.658 2.648 

Weak compression group 

 Multiple response locations  Home response locations only  

RMSE M1 M2 M3  M1 M2 M3 

1st round  2.791 2.845 2.824  2.420 2.414 2.422 

 2.915 2.968 2.955  2.394 2.393 2.399 

2nd round 2.778 2.818 2.817  2.253 2.248 2.254 

 2.921 2.982 2.961  2.532 2.539 2.536 

3rd round 2.897 2.948 2.926  2.317 2.312 2.316 

 2.813 2.870 2.876  2.485 2.488 2.487 

4th round 2.796 2.875 2.852  2.356 2.357 2.356 

 2.889 2.926 2.916  2.451 2.453 2.452 

5th round 2.713 2.772 2.747  2.267 2.277 2.272 

 2.978 3.029 3.030  2.526 2.520 2.525 

 

Table S3.7. Maximum likelihood ratio (LR) between models (row model over column model) in 

model validation for the strong (upper) and weak (lower) compression groups using multiple 

locations (left) or only home response locations (right). 

 Strong compression group  

 Multiple response locations  Home response locations only 

LR M0 M1 M2 M3  M0 M1 M2 M3 

M1  1.93 × 1033**     1.06 × 1021**    

M2  3.40 × 1050** 1.76 × 1017**    1.01 × 1021** 0.95—   

M3  5.52 × 1058** 2.86 × 1025** 1.63 × 108**   8.16 × 1020** 0.77— 0.81—  
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 Weak compression group  

 Multiple response locations  Home response locations only 

LR M0 M1 M2 M3  M0 M1 M2 M3 

M1  1.63 × 10-7**     0.0014**    

M2  1.39 × 10-16** 8.56 × 10-10**    0.0013** 0.89—   

M3  1.60 × 10-14** 9.82 × 10-8** 114.94**   0.0011** 0.76— 0.86—  

Note: * indicates clear evidence, i.e., LR > 3 or LR <1/3, and ** indicates strong evidence, i.e., 

LR > 10 or LR <1/10. — indicates no evidence (Glover & Dixon, 2004).  

 

Table S3.8. Alpaydin’s F-test examining the differences in RMSE (dRMSE) between models (the 

row model minus the column model) for the strong (upper) and weak (lower) compression groups 

when using multiple locations (left) or only home response locations (right).  

Strong compression group 

 Multiple response locations  Home response locations only  

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 

M1   -.161∗∗∗     M1  -.278∗∗∗    

M2 -.187∗∗∗ -.071∗∗    M2  -.276∗∗∗ .002—   

M3  -.270∗∗ -.109∗∗∗ -.038∗∗   M3  -.275∗∗∗ .003— .000—  

Weak compression group 

 Multiple response locations  Home response locations only  

dRMSE M0 M1 M2 M3  dRMSE M0 M1 M2 M3 

M1 .033—     M1  .025—    

M2 .087∗ .054∗∗    M2  .025— -.000—   

M3 .074— .042∗ -.013—   M3  .027— .002— .002—  
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Cross-validation considering participant variable (model recovery using varied 

values of parameters) 

Model fitting for different groups. Table S3.9 summarizes the results of model fitting in 

two different compression groups using two algorithms. The difference in fitting performance 

(goodness-of-fit measures) between models is most distinct numerically in the strong 

compression group when multiple response locations were included, and the results suggest that 

the bi-component model (M3) was the best model. 

 

Table S3.9. Model fitting performance for the strong and weak compression groups. Parameters 

are estimated from model fitting for each corresponding group. The RMSE, maximum log-

likelihood, and partial r-squared are mean goodness-of-fit measures across 10 folds in model 

fitting.  

 Strong compression group 

Model 

Multiple response locations  

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.382 -3770.4 0 

M1 1.14 0.49 0.79 15.45 1 0 1 0 3.191 -3681.1 0.110 

M2 1 0 1 0 0.60 1.86 0.68 58.50 3.113 -3640.8 0.153 

M3 0.64 1.19 0.88 18.69 0.57 1.76 0.72 52.07 3.063 -3613.1 0.180 

 

Model 

Home response locations only  

Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 3.037 -1190.9 0 

M1 0.84 0.58 0.46 18.64 1 0 1 0 2.716 -1136.4 0.200 
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M2 1 0 1 0 0.44 2.42 0.50 81.24 2.725 -1137.7 0.195 

M3 2.88 0.84 0.43 12.46 0.72 0.86 1.51 12.50 2.713 -1135.9 0.202 

 Weak compression group  

 

Model 

Multiple response locations  

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 RMSE MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.817 -2169.2 0 

M1 0.86 0.46 0.80 21.2 1 0 1 0 2.787 -2158.9 0.021 

M2 1 0 1 0 0.85 0.46 1.00 2.96 2.807 -2166.7 0.007 

M3 0.81 0.56 0.80 21.9 0.92 0.17 1.04 -1.73 2.778 -2155.8 0.028 

 

Model 

Home response locations only  

 Parameters   5×2 Fitting  

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒   RMSE  MaxLogL Partial R2 

M0 1 0 1 0 1 0 1 0 2.379 -662.8 0 

M1 0.51 0.69 0.44 33.0 1 0 1 0 2.300 -653.0 0.067 

M2 1 0 1 0 0.44 1.43 0.44 84.44 2.304 -653.6 0.062 

M3 1.54 11.7 2.25 17.8 0.58 0.06 2.24 17.13 2.293 -652.2 0.071 

 

Model validation for different groups. Table S3.10 summarizes the validation 

performance of RMSEs in all ten folds for two different compression groups using two 

algorithms. 

 

Table S3.10. RMSEs of individual folds in validation for strong and weak compression groups 

using two algorithms. 

Strong compression group 
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 Multiple response locations  Home response locations only  

RMSE M1 M2 M3  M1 M2 M3 

1st round  3.438 3.366 3.319  2.934 2.930 2.934 

 2.976 2.873 2.842  2.535 2.546 2.536 

2nd round 3.436 3.341 3.317  2.905 2.912 2.907 

 2.966 2.906 2.842  2.572 2.574 2.572 

3rd round 2.879 2.774 2.734  2.422 2.423 2.423 

 3.562 3.473 3.436  3.051 3.053 3.050 

4th round 3.350 3.272 3.234  2.920 2.931 2.926 

 3.119 2.990 2.956  2.576 2.595 2.604 

5th round 3.117 3.039 2.996  2.544 2.543 2.544 

 3.298 3.214 3.166  2.931 2.943 2.932 

Weak compression group 

 Multiple response locations  Home response locations only  

RMSE M1 M2 M3  M1 M2 M3 

1st round  2.788 2.803 2.777  2.334 2.330 2.333 

 2.842 2.819 2.836  2.322 2.314 2.319 

2nd round 2.681 2.695 2.672  2.360 2.370 2.364 

 2.925 2.934 2.927  2.281 2.278 2.284 

3rd round 2.790 2.737 2.785  2.390 2.397 2.329 

 2.907 2.890 2.915  2.329 2.328 2.329 

4th round 2.825 2.855 2.828  2.360 2.359 2.359 

 2.790 2.805 2.787  2.282 2.276 2.338 
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5th round 2.862 2.867 2.850  2.474 2.476 2.472 

 2.732 2.756 2.726  2.155 2.155 2.230 

 

The frequency of the pairwise likelihood ratio in different categories in model 

recovery. After producing 100 sets of simulated response locations using varied values of 

parameters, the frequency of different categories of evidence for the true model in model 

validation are represented in Figure S3.3. The results showed that the algorithm of using multiple 

response locations can successfully distinguish the true model from other models. Specifically, 

when the true model was M1, we got evidence favoring M1 over M2 and M3 with possibilities 

of 100% and 64% respectively. When the true model was M2, we got evidence favoring M2 over 

M1 and M3 with possibilities of 100% and 84% respectively. When the true model was M3, we 

got evidence favoring M3 over M1 and M2 with 100% for both. We never got evidence favoring 

the other two models over the true model. 

In contrast, the algorithm of using home response locations only cannot clearly 

distinguish the true model from other models. When the true model was M1, we got evidence 

favoring M1 over M2 and M3 with possibilities of 14% and 26% respectively. When the true 

model was M2, we got evidence favoring M2 over M1 and M3 with possibilities of 50% and 

38% respectively. When the true model was M3, we got evidence favoring M3 over M1 and M2 

with possibilities of 7% and 0%. In addition to the relatively low chances to recover the true 

models, we also got evidence favoring the wrong models over the true model. There was 

evidence favoring M2 and M3 over the true model M1 with a possibility of 42% and 27% 

respectively, evidence favoring M1 and M3 over the true model M2 with a possibility of 20% 
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and 10% respectively, and evidence favoring M1 and M2 over the true model M3 with 

possibilities of 5% and 13%. 

 

Figure S3.3. Frequency in each category of likelihood ratio in model validation using (A) 

multiple response locations or (B) home response locations only. These locations are simulated 

locations from different true models (M1, M2, or M3). Mi/Mj indicates the ratio of model Mi 

over model Mj. >10 indicates strong evidence supporting Mi, >3 indicates clear evidence 

supporting Mi, <10 indicates strong evidence supporting Mj, <3 indicates clear evidence 

supporting Mj. 

 

Values of parameters estimated from real and simulated response locations.  

Table S3.11 lists the values of parameters estimated for the three models using real data (i.e., true 

parameters in the upper table) and using the simulated data generated from different models. The 
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simulated data for each model were produced by varied values of model parameters considering 

the participants’ differences in compression patterns. 

 

Table S3. 11. The similarity between values of parameters based on real response locations (the 

upper panel) and simulated response locations from different models (the lower panel). S_M1, 

S_M2, and S_M3 denote the simulated response locations from the true models of M1, M2, and 

M3 respectively. 

 

 

 

True parameters based on real data 

M1                  M2                                   M3 

𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 𝜃𝐿_𝑠
𝑒𝑛𝑐 𝜃𝐿_𝑖

𝑒𝑛𝑐 𝜃𝐴_𝑠
𝑒𝑛𝑐 𝜃𝐴_𝑖

𝑒𝑛𝑐 𝜃𝐿_𝑠
𝑒𝑥𝑒 𝜃𝐿_𝑖

𝑒𝑥𝑒 𝜃𝐴_𝑠
𝑒𝑥𝑒 𝜃𝐴_𝑖

𝑒𝑥𝑒 

 1.04 0.48 0.79 18.38 0.70 1.29 0.78 41.11 0.8

2 

0.78 0.84 20.42 0.6

9 

1.10 0.82 34.21 

 Recovered parameters based on simulated data 

S_M1 1.07 0.48 0.80 17.78 1.07 0.21 0.85 23.60 1.0

6 

0.45 0.79 18.44 0.9

6 

0.06 0.97 4.76 

S_M2 1.25 -.30 0.93 1.73 0.59 1.20 0.79 40.61 0.9

8 

0.01 1.00 -.09 0.6

0 

1.21 0.79 40.83 

S_M3 1.04 0.29 0.81 16.66 0.67 1.04 0.74 45.00 0.9

6 

0.50 0.84 19.09 0.6

4 

0.93 0.81 34.86 
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