

Lecture Notes in Computer Science 7212
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Juan de Lara Andrea Zisman (Eds.)

FundamentalApproaches
to Software Engineering

15th International Conference, FASE 2012
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012
Tallinn, Estonia, March 24 – April 1, 2012
Proceedings

13

Volume Editors

Juan de Lara
Universidad Autónoma de Madrid
School of Computer Science
Campus Cantoblanco
28049 Madrid, Spain
E-mail: juan.delara@uam.es

Andrea Zisman
City University
School of Informatics
Northampton Square
London EC1V 0HB, UK
E-mail: a.zisman@soi.city.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28871-5 e-ISBN 978-3-642-28872-2
DOI 10.1007/978-3-642-28872-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932857

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, C.2, H.4, C.2.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.

VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of ETAPS
e.V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbrücken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

Institute of Cybernetics at TUT; Tallinn University of Tech-

nology (TUT); Estonian Centre of Excellence in Computer

Science (EXCS) funded by the European Regional Develop-

ment Fund (ERDF); Estonian Convention Bureau; and Mi-

crosoft Research.

The organising team comprised:

General Chair: Tarmo Uustalu

Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Zürich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbrücken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbrücken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara König (Duisburg), Juan de Lara (Madrid), Gerald Lüttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),

Foreword VII

Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Dániel Varró (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair

Preface

This volume contains the papers accepted for FASE 2012, the 15th International
Conference on Fundamental Approaches to Software Engineering, which was
held in Tallinn, Estonia, in March 2012 as part of the annual European Joint
Conference on Theory and Practice of Software (ETAPS). FASE is concerned
with the foundations on which software engineering is built. It focusses on novel
techniques and the way in which they contribute to make software engineering
a more mature and soundly based discipline.

This year we solicited two kinds of contributions: research papers and tool
demonstration papers. We received 134 submissions from 39 countries around
the world, of which 5 were tool demonstrations. After a rigorous selection pro-
cess, the Programme Committee accepted 33 submissions (2 of which were tool
demonstrations), corresponding to an acceptance rate of approximately 24.6%.
Each paper received at least three reviews, and four in some cases. The accep-
tance decisions were made after exhaustive and careful online discussions by the
members of the Programme Committee.

The accepted papers cover several aspects of software engineering, including
verification, slicing and refactoring, testing, model transformations, components,
software architecture, product lines, and empirical aspects of the development
process. We believe that the accepted papers made a scientifically strong and
exciting programme, which triggered interesting discussions and exchange of
ideas among the FASE participants.

This year, we were honoured to host an invited talk by Wil van der Aalst
from Eindhoven University of Technology (The Netherlands) and Queensland
University of Technology (Australia) entitled“Distributed Process Discovery and
Conformance Checking”. Professor van der Aalst is internationally recognised by
his pioneering work on workflow management, process mining, and Petri nets.
The presentation discussed the challenges for distributed process mining in the
context of both procedural and declarative process models.

We would like to thank all authors who submitted their work to FASE 2012.
Without their excellent contributions we would not have managed to prepare
a strong programme. We would also like to thank the Programme Committee
members and external reviewers for their high-quality reviews and the effort and
time they dedicated to the review and discussion processes. Finally, we wish to
express our sincere gratitude to the Organizing and Steering Committees for
their continuous support. The logistics of our job as Programme Chairs were
facilitated by the EasyChair system, and supported by Andrei Voronkov.

We sincerely hope that you will enjoy reading these proceedings.

January 2012 Juan de Lara
Andrea Zisman

Organization

Programme Committee

Luciano Baresi Politecnico di Milano, Italy
Don Batory University of Texas at Austin, USA
Artur Boronat University of Leicester, UK
Paolo Bottoni University of Rome, Italy
Marsha Chechik University of Toronto, Canada
Shing-Chi Cheung Hong Kong University of Science and

Technology, Hong Kong, SAR China
Luca De Alfaro University of California, Santa Cruz, USA
Jurgen Dingel Queen’s University, Canada
Gregor Engels University of Paderborn, Germany
Claudia Ermel Technische Universität Berlin, Germany
Dimitra Giannakopoulou Carnegie Mellon University/NASA Ames, USA
Holger Giese Hasso Plattner Institute, Germany
Esther Guerra Universidad Autónoma de Madrid, Spain
Reiko Heckel University of Leicester, UK
John Hosking University of Auckland, New Zealand
Christos Kloukinas City University London, UK
Alexander Knapp University of Augsburg, Germany
Jeff Kramer Imperial College London, UK
Luis Lamb Federal University of Rio Grande do Sul, Brazil
Yngve Lamo Bergen University College, Norway
Tiziana Margaria University of Potsdam, Germany
Fernando Orejas Universidad Politécnica Catalunya, Spain
Richard Paige The University of York, UK
Alfonso Pierantonio Università degli Studi dell’Aquila, Italy
Andy Schürr Technische Universität Darmstadt, Germany
George Spanoudakis City University London, UK
Jesús Sánchez Cuadrado Universidad Autónoma de Madrid, Spain
Gabriele Taentzer Philipps-Universität Marburg, Germany
Daniel Varro Budapest University of Technology and

Economics, Hungary

Additional Reviewers

Albarghouthi, Aws Anjorin, Anthony Apel, Sven
Ardagna, Danilo Arendt, Thorsten Arifulina, Svetlana
Bals, Jan-Christopher Bapodra, Mayur Becker, Basil
Berger, Thorsten Bergmann, Gábor Bianculli, Domenico

XII Organization

Biermann, Enrico Bisztray, Denes Bordihn, Henning
Borges, Rafael Braatz, Benjamin Brooke, Phil
Bruch, Marcel Bucchiarone, Antonio Christ, Fabian
Cicchetti, Antonio Cichos, Harald Cota, Erika
Di Ruscio, Davide Diaz, Oscar Doedt, Markus
Duarte, Lucio Mauro Ehrig, Hartmut Fazal-Baqaie, Masud
Foster, Howard Franch, Xavier Gabriel, Karsten
Gabrysiak, Gregor Galloway, Andy Garcez, Artur
Geisen, Silke Gerth, Christian Golas, Ulrike
Guinea, Sam Gurfinkel, Arie Gönczy, László
Güldali, Baris Haneberg, Dominik Hebig, Regina
Hegedüs, Ábel Hermann, Frank Hildebrandt, Stephan
Horváth, Ákos Huang, Jeff Khan, Tamim A.
Kincaid, Zachary Kocsis, Imre Kovi, Andras
Krause, Christian Lambers, Leen Lauder, Marius
Liebig, Jörg Liu, Yepang Luckey, Markus
Machado, Rodrigo Mahbub, Khaled Mantz, Florian
Matragkas, Nikos Mezei, Gergely Monga, Mattia
Morasca, Sandro Moreira, Alvaro Mühlberger, Heribert
Naeem, Muhammad Nagel, Benjamin Nejati, Shiva
Neumann, Stefan Ortega, Alfonso Oster, Sebastian
Patzina, Lars Patzina, Sven Pelliccione, Patrizio
Polack, Fiona Posse, Ernesto Qayum, Fawad
Radjenovic, Alek Rakamaric, Zvonimir Raman, Vishwanath
Rose, Louis Rossi, Matteo Rubin, Julia
Rungta, Neha Rutle, Adrian Ráth, István
Rüthing, Oliver Sabetzadeh, Mehrdad Salay, Rick
Saller, Karsten Schaefer, Ina Soltenborn, Christian
Spijkerman, Michael Steffen, Bernhard Tavakoli Kolagari, Ramin
Thomas, Stephen Tkachuk, Oksana Varro, Gergely
Vazquez-Salceda, Javier Vogel, Thomas Waez, Md Tawhid Bin
Wagner, Christian Wahl, Thomas Wang, Xiaoliang
Wang, Xinming Wieber, Martin Williams, James
Wimmer, Manuel Wonisch, Daniel Wätzoldt, Sebastian
Ye, Chunyang Zhang, Zhenyu Zurowska, Karolina

Table of Contents

Invited Talk

Distributed Process Discovery and Conformance Checking 1
Wil M.P. van der Aalst

Software Architecture and Components

Model-Driven Techniques to Enhance Architectural Languages
Interoperability . 26

Davide Di Ruscio, Ivano Malavolta, Henry Muccini,
Patrizio Pelliccione, and Alfonso Pierantonio

Moving from Specifications to Contracts in Component-Based Design . . . 43
Sebastian S. Bauer, Alexandre David, Rolf Hennicker,
Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and
Andrzej W ↪asowski

The SynchAADL2Maude Tool . 59
Kyungmin Bae, Peter Csaba Ölveczky, José Meseguer, and
Abdullah Al-Nayeem

Services

Consistency of Service Composition . 63
José Luiz Fiadeiro and Antónia Lopes

Stable Availability under Denial of Service Attacks through Formal
Patterns . 78

Jonas Eckhardt, Tobias Mühlbauer, Musab AlTurki,
José Meseguer, and Martin Wirsing

Loose Programming with PROPHETS . 94
Stefan Naujokat, Anna-Lena Lamprecht, and Bernhard Steffen

Verification and Monitoring

Schedule Insensitivity Reduction . 99
Vineet Kahlon

Adaptive Task Automata: A Framework for Verifying Adaptive
Embedded Systems . 115

Leo Hatvani, Paul Pettersson, and Cristina Seceleanu

XIV Table of Contents

Verified Resource Guarantees for Heap Manipulating Programs 130
Elvira Albert, Richard Bubel, Samir Genaim, Reiner Hähnle, and
Guillermo Román-Dı́ez

An Operational Decision Support Framework for Monitoring Business
Constraints . 146

Fabrizio Maria Maggi, Marco Montali, and Wil M.P. van der Aalst

Intermodelling and Model Transformations

Intermodeling, Queries, and Kleisli Categories . 163
Zinovy Diskin, Tom Maibaum, and Krzysztof Czarnecki

Concurrent Model Synchronization with Conflict Resolution Based on
Triple Graph Grammars . 178

Frank Hermann, Hartmut Ehrig, Claudia Ermel, and
Fernando Orejas

Recursive Checkonly QVT-R Transformations with General when and
where Clauses via the Modal Mu Calculus . 194

Julian Bradfield and Perdita Stevens

Graph Transforming Java Data . 209
Maarten de Mol, Arend Rensink, and James J. Hunt

Modelling and Adaptation

Language Independent Refinement Using Partial Modeling 224
Rick Salay, Michalis Famelis, and Marsha Chechik

A Conceptual Framework for Adaptation . 240
Roberto Bruni, Andrea Corradini, Fabio Gadducci,
Alberto Lluch Lafuente, and Andrea Vandin

Product Lines and Feature-Oriented Programming

Applying Design by Contract to Feature-Oriented Programming 255
Thomas Thüm, Ina Schaefer, Martin Kuhlemann, Sven Apel, and
Gunter Saake

Integration Testing of Software Product Lines Using Compositional
Symbolic Execution . 270

Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer

Combining Related Products into Product Lines . 285
Julia Rubin and Marsha Chechik

Table of Contents XV

Development Process

Tracing Your Maintenance Work – A Cross-Project Validation of an
Automated Classification Dictionary for Commit Messages 301

Andreas Mauczka, Markus Huber, Christian Schanes,
Wolfgang Schramm, Mario Bernhart, and Thomas Grechenig

Cohesive and Isolated Development with Branches 316
Earl T. Barr, Christian Bird, Peter C. Rigby, Abram Hindle,
Daniel M. German, and Premkumar Devanbu

Making Software Integration Really Continuous . 332
Mário Lúıs Guimarães and António Rito Silva

Extracting Widget Descriptions from GUIs . 347
Giovanni Becce, Leonardo Mariani, Oliviero Riganelli, and
Mauro Santoro

Verification and Synthesis

Language-Theoretic Abstraction Refinement . 362
Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer

Learning from Vacuously Satisfiable Scenario-Based Specifications 377
Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastian Uchitel

Explanations for Regular Expressions . 394
Martin Erwig and Rahul Gopinath

Testing and Maintenance

On the Danger of Coverage Directed Test Case Generation 409
Matt Staats, Gregory Gay, Michael Whalen, and Mats Heimdahl

Reduction of Test Suites Using Mutation . 425
Macario Polo Usaola, Pedro Reales Mateo, and
Beatriz Pérez Lamancha

Model-Based Filtering of Combinatorial Test Suites 439
Taha Triki, Yves Ledru, Lydie du Bousquet, Frédéric Dadeau, and
Julien Botella

A New Design Defects Classification: Marrying Detection and
Correction . 455

Rim Mahouachi, Marouane Kessentini, and Khaled Ghedira

XVI Table of Contents

Slicing and Refactoring

Fine Slicing: Theory and Applications for Computation Extraction 471
Aharon Abadi, Ran Ettinger, and Yishai A. Feldman

System Dependence Graphs in Sequential Erlang . 486
Josep Silva, Salvador Tamarit, and César Tomás

A Domain-Specific Language for Scripting Refactorings in Erlang 501
Huiqing Li and Simon Thompson

Author Index . 517

Distributed Process Discovery

and Conformance Checking

Wil M.P. van der Aalst1,2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Queensland University of Technology, Brisbane, Australia

www.vdaalst.com

Abstract. Process mining techniques have matured over the last decade
and more and more organization started to use this new technology. The
two most important types of process mining are process discovery (i.e.,
learning a process model from example behavior recorded in an event
log) and conformance checking (i.e., comparing modeled behavior with
observed behavior). Process mining is motivated by the availability of
event data. However, as event logs become larger (say terabytes), per-
formance becomes a concern. The only way to handle larger applications
while ensuring acceptable response times, is to distribute analysis over a
network of computers (e.g., multicore systems, grids, and clouds). This
paper provides an overview of the different ways in which process min-
ing problems can be distributed. We identify three types of distribution:
replication, a horizontal partitioning of the event log, and a vertical par-
titioning of the event log. These types are discussed in the context of
both procedural (e.g., Petri nets) and declarative process models. Most
challenging is the horizontal partitioning of event logs in the context of
procedural models. Therefore, a new approach to decompose Petri nets
and associated event logs is presented. This approach illustrates that
process mining problems can be distributed in various ways.

Keywords: process mining, distributed computing, grid computing,
process discovery, conformance checking, business process management.

1 Introduction

Digital data is everywhere – in every sector, in every economy, in every organi-
zation, and in every home – and will continue to grow exponentially [22]. Some
claim that all of the world’s music can be stored on a $600 disk drive. However,
despite Moore’s Law, storage space and computing power cannot keep up with
the growth of event data. Therefore, analysis techniques dealing with “big data”
[22] need to resort to distributed computing.

This paper focuses on process mining, i.e., the analysis of processes based on
event data [3]. Process mining techniques aim to discover, monitor, and improve
processes using event logs. Process mining is a relatively young research discipline
that sits between machine learning and data mining on the one hand, and process
analysis and formal methods on the other hand. The idea of process mining is

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 1–25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 W.M.P. van der Aalst

to discover, monitor and improve real processes (i.e., not assumed processes) by
extracting knowledge from event logs readily available in today’s (information)
systems. Process mining includes (automated) process discovery (i.e., extract-
ing process models from an event log), conformance checking (i.e., monitoring
deviations by comparing model and log), social network/organizational mining,
automated construction of simulation models, model extension, model repair,
case prediction, and history-based recommendations.

book car

c

add extra
insurance

d change
booking

e

confirm initiate
check-in

j

check driver’s
license

k

charge credit
card

i

select car

g

supply
car

in

a

b

skip extra
insurance

f

h

add extra
insurance

skip extra
insurance

l

out

c1 c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

acefgijkl
acddefhkjil
abdefjkgil

acdddefkhijl
acefgijkl
abefgjikl

...

process
discovery

conformance
checking

Fig. 1. Example illustrating two types of process mining: process discovery and con-
formance checking

Figure 1 illustrates the two most important types of process mining: process
discovery and conformance checking. Starting point for process mining is an
event log. Each event in such a log refers to an activity (i.e., a well-defined step
in some process) and is related to a particular case (i.e., a process instance). The
events belonging to a case are ordered and can be seen as one “run” of the process.
For example, the first case in the event log shown in Fig. 1 can be described by
the trace 〈a, c, e, f, g, i, j, k, l〉. This is the scenario where a car is booked (activity
a), extra insurance is added (activity c), the booking is confirmed (activity e),
the check-in process is initiated (activity f), more insurance is added (activity
g), a car is selected (activity i), the license is checked (activity j), the credit
card is charged (activity k), and the car is supplied (activity l). The second case
is described by the trace 〈a, c, d, d, e, f, h, k, j, i, l〉. In this scenario, the booking
was changed two times (activity d) and no extra insurance was taken at check-in
(activity h). It is important to note that an event log contains only example
behavior, i.e., we cannot assume that all possible runs have been observed. In
fact, an event log often contains only a fraction of the possible behavior [3].

Process discovery techniques automatically create a model based on the ex-
ample behavior seen in the event log. For example, based on the event log shown

Distributed Process Discovery and Conformance Checking 3

in Fig. 1 the corresponding Petri net is created. Note that the Petri net shown in
Fig. 1 is indeed able to generate the behavior in the event log. The model allows
for more behavior, but this is often desirable as the model should generalize the
observed behavior.

Whereas process discovery constructs a model without any a priori informa-
tion (other than the event log), conformance checking uses a model and an event
log as input. The model may have been made by hand or discovered through
process discovery. For conformance checking, the modeled behavior and the ob-
served behavior (i.e., event log) are compared. There are various approaches to
diagnose and quantify conformance. For example, one can measure the fraction
of cases in the log that can be generated by the model. In Fig. 1, all cases fit
the model perfectly. However, if there would have been a case following trace
〈a, c, f, h, k, j, i, l〉, then conformance checking techniques would identify that in
this trace activity e (the confirmation) is missing.

Given a small event log, like the one shown in Fig. 1, analysis is simple.
However, in reality, process models may have hundreds of different activities and
there may be millions of events and thousands of unique cases. In such cases,
process mining techniques may have problems to produce meaningful results in a
reasonable time. This is why we are interested in distributed process mining, i.e.,
decomposing challenging process discovery and conformance checking problems
into smaller problems that can be distributed over a network of computers.

Today, there are many different types of distributed systems, i.e., systems com-
posed of multiple autonomous computational entities communicating through a
network. Multicore computing, cluster computing, grid computing, cloud com-
puting, etc. all refer to systems where different resources are used concurrently
to improve performance and scalability. Most data mining techniques can be
distributed [16], e.g., there are various techniques for distributed classification,
distributed clustering, and distributed association rule mining [13]. However,
in the context of process mining only distributed genetic algorithms have been
examined in detail [15]. Yet, there is an obvious need for distributed process
mining. This paper explores the different ways in which process discovery and
conformance checking problems can be distributed. We will not focus on the tech-
nical aspects (e.g., the type of distributed system to use) nor on specific mining
algorithms. Instead, we systematically explore the different ways in which event
logs and models can be partitioned.

The remainder of this paper is organized as follows. First, in Section 2, we
discuss the different ways in which process mining techniques can be distributed.
Besides replication, we define two types of distribution: vertical distribution and
horizontal distribution. In Section 3 we elaborate on the representation of event
logs and process models. Here, we also discuss the differences between procedural
models and declarative models. We use Petri nets as typical representatives of
conventional procedural models. To illustrate the use of declarative models in
the context of distributed process mining, we elaborate on the Declare language
[8]. Section 4 discusses different ways of measuring conformance while zooming
in on the notion of fitness. The horizontal distribution of process mining tasks

4 W.M.P. van der Aalst

is promising, but also particularly challenging for procedural models. Therefore,
we elaborate on a particular technique to decompose event logs and processes
(Section 5). Here we use the notion of passages for Petri nets which enables us to
split event logs and process models horizontally. Section 6 concludes the paper.

2 Distributed Process Mining: An Overview

This section introduces some basic process mining concepts (Section 2.1) and
based on these concepts it is shown that event logs and process models can be
distributed in various ways (Section 2.2).

2.1 Process Discovery and Conformance Checking

As explained in the introduction there are two basic types of process mining:
process discovery and conformance checking.1 Figure 2 shows both types.

abcd
acbd
abd

process
discovery

conformance
checking

acd
acbd
abcd

event log

process model diagnostics

a

b

c

d

Fig. 2. Positioning process mining techniques

Process discovery techniques take an event log and produce a process model
in some notation. Figure 1 already illustrated the basic idea of discovery: learn
a process model from example traces.

Conformance checking techniques take an event log and a process model and
compare the observed behavior with the modeled behavior. As Fig. 2 shows
the process model may be the result of process discovery or made by hand.
Basically, three types of conformance-related diagnostics can be generated. First
of all, there may be overall metrics describing the degree of conformance, e.g.,
80% of all cases can be replayed by the model from begin to end. Second, the
non-conforming behavior may be highlighted in the event log. Third, the non-
conforming behavior may be revealed by annotating the process model. Note that

1 As described in [3], process mining is not limited to process discovery and confor-
mance checking and also includes enhancement (e.g., extending or repairing models
based on event data) and operational support (on-the-fly conformance checking,
prediction, and recommendation). These are out-of-scope for this paper.

Distributed Process Discovery and Conformance Checking 5

conformance can be viewed from two angles: (a) the model does not capture the
real behavior (“the model is wrong”) and (b) reality deviates from the desired
model (“the event log is wrong”). The first viewpoint is taken when the model is
supposed to be descriptive, i.e., capture or predict reality. The second viewpoint
is taken when the model is normative, i.e., used to influence or control reality.

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

Fig. 3. Example illustrating process discovery

To further illustrate the notion of process discovery consider the example
shown in Fig. 3. Based on the event log shown, a Petri net is learned. Note
that all traces in the event log start with activity a and end with activity g.
This is also the case in the Petri net (consider all full firing sequences starting
with a token in place in and ending with a token in out). After a, activity b
can be executed. Transition b in the Petri net is a so-called AND-split, i.e.,
after executing b, both c and d can be executed concurrently. Transition e is
a so-called AND-join. After executing e a choice is made: either g occurs and
the case completes or f is executed and the state with a token in place c1 is
revisited. Many process discovery algorithms have been proposed in literature
[9, 10, 12, 17–19, 23, 28–30]. Most of these algorithms have no problems dealing
with this small example.

Figure 4 illustrates conformance checking using the same example. Now the
event log contains some traces that are not possible according to the process
model shown in Fig. 4. As discussed in the context of Fig. 2, there are three
types of diagnostics possible. First of all, we can use metrics to describe the
degree of conformance. For example, 10 of the 16 cases (i.e., 62.5 percent) in
Fig. 4 are perfectly fitting. Second, we can split the log into two smaller event
logs: one consisting of conforming cases and one consisting of non-conforming
cases. These logs can be used for further analysis, e.g., discover commonalities
among non-conforming cases using process discovery. Third, we can highlight
problems in the model. As Fig. 4 shows, there is a problem with activity b:
according to the model b should be executed before c and d but in the event log
this is not always the case. There is also a problem with activity f : it should
only be executed after e, but in the log it also appears at other places.

6 W.M.P. van der Aalst

abcdeg
adcefbcfdeg

abdceg
abcdefbcdeg
abdfcefdceg
acdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

acdefg
adcfeg

abdcefcdfeg
abcdeg

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

abcdeg
abdceg

abcdefbcdeg
abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

adcefbcfdeg
abdfcefdceg
acdefbdceg

acdefg
adcfeg

abdcefcdfeg

b is often
skipped

f occurs
too often

Fig. 4. Example illustrating conformance checking

Figures 3 and 4 show the basic idea of process mining. Note that the example
is oversimplified. For example, most event logs contain much more information.
In the example log an event is fully described by an activity name. However,
often there is additional information about an event such as the resource (i.e.,
person or device) executing or initiating the activity, the timestamp of the event,
or data elements recorded with the event (e.g., the size of an order).

The process models shown thus far are all Petri nets (WF-nets [1, 6] to be
precise). Different process mining algorithms may use different representations.
Moreover, the notation used to visualize the result may be very different from the
representation used during the actual discovery process. All mainstream BPM
notations (Petri nets, EPCs, BPMN, YAWL, UML activity diagrams, etc.) can
be used to show discovered processes [3, 31]. In fact, later we will also elaborate
on so-called declarative process models. However, to explain the concept of dis-
tributed process mining, such differences are less relevant. Therefore, we defer a
discussion on the difference between procedural models and declarative models
to Section 3.4.

Distributed Process Discovery and Conformance Checking 7

2.2 Distributing Event Logs and Process Models

New computing paradigms such as cloud computing, grid computing, cluster
computing, etc. have emerged to perform resource-intensive IT tasks. Modern
computers (even lower-end laptops and high-end phones) have multiple proces-
sor cores. Therefore, the distribution of computing-intensive tasks, like process
mining on “big data”, is becoming more important.

At the same time, there is an exponentially growing torrent of event data.
MGI estimates that enterprises globally stored more than 7 exabytes of new
data on disk drives in 2010, while consumers stored more than 6 exabytes of
new data on devices such as PCs and notebooks [22]. A recent study in Science
suggests that the total global storage capacity increased from 2.6 exabytes in
1986 to 295 exabytes in 2007 [20]. These studies illustrate the growing potential
of process mining.

Given these observations, it is interesting to develop techniques for distributed
process mining. In recent years, distributed data mining techniques have been
developed and corresponding infrastructures have been realized [16]. These tech-
niques typically partition the input data over multiple computing nodes. Each
of the nodes computes a local model and these local models are aggregated into
an overall model.

In [15], we showed that it is fairly easy to distribute genetic process mining al-
gorithms. In this paper (i.e., [15]), we replicate the entire log such that each node
has a copy of all input data. Each node runs the same genetic algorithm, uses the
whole event log, but, due to randomization, works with different individuals (i.e.,
process models). Periodically, the best individuals are exchanged between nodes.
It is also possible to partition the input data (i.e., the event log) over all nodes.
Experimental results show that distributed genetic process mining significantly
speeds-up the discovery process. This makes sense because the fitness test is
most time-consuming. However, individual fitness tests are completely indepen-
dent. Although genetic process mining algorithms can be distributed easily, they
are not usable for large and complex data sets. Other process mining algorithms
tend to outperform genetic algorithms [3]. Therefore, we also need to consider
the distribution of other process mining techniques.

To discuss the different ways of distributing process mining techniques we
approach the problem from the viewpoint of the event log. We consider three
basic types of distribution:

– Replication. If the process mining algorithm is non-deterministic, then the
same task can be executed on all nodes and in the end the best result can
be taken. In this case, the event log can be simply replicated, i.e., all nodes
have a copy of the whole event log.

– Vertical partitioning. Event logs are composed of cases. There may be thou-
sands or even millions of cases. These can be distributed over the nodes in
the network, i.e., each case is assigned to one computing node. All nodes
work on a subset of the whole log and in the end the results need to be
merged.

8 W.M.P. van der Aalst

– Horizontal partitioning. Cases are composed of multiple events. Therefore,
we can also partition cases, i.e., part of a case is analyzed on one node whereas
another part of the same case is analyzed on another node. In principle, each
node needs to consider all cases. However, the attention of one computing
node is limited to a particular subset of events per case.

Of course it is possible to combine the three types of distribution.

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

Fig. 5. Partitioning the event log vertically : cases are distributed arbitrarily

Figure 5 illustrates the vertical partitioning of an event log using our running
example. The original event log contained 16 cases. Assuming that there are two
computing nodes, we can partition the cases over these two nodes. Each case
resides in exactly one location, i.e., the nodes operate on disjoint sublogs. Each
node computes a process mining result for a sublog and in the end the results are
merged. Depending on the type of process mining result, merging may be simple
or complex. For example, it we are interested in the percentage of fitting cases it
is easy to compute the overall percentage. Suppose there are n nodes and each
node i ∈ {1 . . . n} reports on the number of fitting cases (xi) and non-fitting
cases (yi) in the sublog. The fraction of fitting cases can be computed easily:
(
∑

i xi)/(
∑

i xi + yi). When each node produces a process model, it is more
difficult to produce an overall result. However, by using lower-level output such
as the dependency matrices used by mining algorithms like the heuristic miner
and fuzzy miner [3], one can merge the results.

In Fig. 5 the cases are partitioned over the logs without considering particular
features, i.e., the first eight cases are assigned to the first node and the remain-
ing eight cases are assigned to the second node. As Fig. 6 shows, one can also
distribute cases based on a particular feature. In this case all cases of length 6
are moved to the first node, cases of length 11 are moved to the second node,
and cases of length 16 are moved to the third node. Various features can be used,
e.g., the type of customer (one node analyzes the process for gold customers, one
for silver customers, etc.), the flow time of the case, the start time of the case,

Distributed Process Discovery and Conformance Checking 9

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

abcdeg
abdceg
abcdeg
abdceg
abcdeg
abcdeg
abdceg
abcdeg

abdcefbcdeg
abcdefbcdeg
abdcefbdceg
abcdefbdceg
abcdefbdceg
abdcefbcdeg

abdcefbdcefbdceg
abcdefbcdefbdceg

Fig. 6. Partitioning the event log vertically: cases are distributed based on a particular
feature (in this case the length of the case)

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

abeg
abefbeg

abeg
abefbeg
abefbeg
abefbeg

abeg
abeg

abefbefbeg
abeg

abefbefbeg
abefbeg

abeg
abeg

abefbeg
abeg

bcde
bdcebcde

bdce
bcdebcde
bdcebdce
bcdebdce

bcde
bdce

bdcebdcebdce
bcde

bcdebcdebdce
bcdebdce

bcde
bdce

bdcebcde
bcde

Fig. 7. Partitioning the event log horizontally

the monetary value of the case, etc. Such a vertical partitioning may provide
additional insights. An example is the use of the start time of cases when dis-
tributing the event log. Now it is interesting to see whether there are significant
differences between the results. The term concept drift refers to the situation
in which the process is changing while being analyzed [14]. For instance, in the
beginning of the event log two activities may be concurrent whereas later in
the log these activities become sequential. Processes may change due to peri-
odic/seasonal changes (e.g., “in December there is more demand” or “on Friday
afternoon there are fewer employees available”) or due to changing conditions
(e.g., “the market is getting more competitive”). A vertical partitioning based
on the start time of cases may reveal concept drift or the identification of periods
with severe conformance problems.

10 W.M.P. van der Aalst

Figure 7 illustrates the horizontal partitioning of event logs. The first sublog
contains all events that correspond to activities a, b, e, f , and g. The second
sublog contains all events that correspond to activities b, c, d, and e. Note that
each case appears in each of the sublogs. However, each sublog contains only a
selection of events per case. In other words, events are partitioned “horizontally”
instead of “vertically”. Each node computes results for a particular sublog. In the
end, all results are merged. Figure 8 shows an example of two process fragments
discovered by two different nodes. The process fragments are glued together
using the common events. In Section 5 we will further elaborate on this.

abeg
abefbeg

abeg
abefbeg
abefbeg
abefbeg

abeg
abeg

abefbefbeg
abeg

abefbefbeg
abefbeg

abeg
abeg

abefbeg
abeg

bcde
bdcebcde

bdce
bcdebcde
bdcebdce
bcdebdce

bcde
bdce

bdcebdcebdce
bcde

bcdebcdebdce
bcdebdce

bcde
bdce

bdcebcde
bcde

a b e

c1in

g

outc6

f

b

c

d

ec2

c3

c4

c5

Fig. 8. Horizontally partitioned event logs are used to discover process fragments that
can be merged into a complete model.

3 Representation of Event Logs and Process Models

Thus far, we have only discussed things informally. In this section, we formalize
some of the notions introduced before. For example, we formalize the notion of
an event log and provide some Petri net basics. Moreover, we show an example
of a declarative language (Declare [8]) grounded in LTL.

3.1 Multisets

Multisets are used to represent the state of a Petri net and to describe event
logs where the same trace may appear multiple times.
B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A),

b(a) denotes the number of times element a ∈ A appears in b. Some examples:
b1 = [], b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], b5 = [x3, y2, z] are
multisets over A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist
of three elements, and b4 = b5, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ∈ b2, b2�b3 =
b4, b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for
which b(a) ≥ 1. [f(a) | a ∈ b] denotes the multiset where element f(a) appears∑

x∈b|f(x)=f(a) b(x) times.

Distributed Process Discovery and Conformance Checking 11

3.2 Event Logs

As indicated earlier, event logs serve as the starting point for process mining. An
event log is a multiset of traces. Each trace describes the life-cycle of a particular
case (i.e., a process instance) in terms of the activities executed.

Definition 1 (Trace, Event Log). Let A be a set of activities. A trace σ ∈ A∗

is a sequence of activities. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having
the same trace. In this simple definition of an event log, an event refers to just
an activity. Often event logs may store additional information about events.
For example, many process mining techniques use extra information such as the
resource (i.e., person or device) executing or initiating the activity, the timestamp
of the event, or data elements recorded with the event. In this paper, we abstract
from such information. However, the results presented in this paper can easily
be extended to event logs with more information.

An example log is L1 = [〈a, b, c, d, e, g〉30, 〈a, b, d, c, e, g〉20, 〈a, b, c, d, e, f, b, c,
d, e, g〉5, 〈a, b, d, c, e, f, b, c, d, e, g〉3, 〈a, b, c, d, e, f, b, d, c, e, g〉2]. L1 contains infor-
mation about 60 cases, e.g., 30 cases followed trace 〈a, b, c, d, e, g〉.

Definition 2 (Projection). Let A be a set and X ⊆ A a subset.�X∈ A∗ → X∗

is a projection function and is defined recursively: (a) 〈 〉�X= 〈 〉 and (b) for
σ ∈ A∗ and a ∈ A: (σ; 〈a〉)�X= σ�X if a 	∈ X and (σ; 〈a〉)�X= σ�X ; 〈a〉 if a ∈ X.

The projection function is generalized to event logs, i.e., for some event log
L ∈ B(A∗) and set X ⊆ A: L�X= [σ�X | σ ∈ L]. For event log L1 define earlier:
L1�{a,f,g}= [〈a, g〉50, 〈a, f, g〉10].

3.3 Procedural Models

A wide variety of process modeling languages are used in the context of process
mining, e.g., Petri nets, EPCs, C-nets, BPMN, YAWL, and UML activity dia-
grams [3, 31]. Most of these languages are procedural languages (also referred
to as imperative languages). In this paper, we use Petri nets as a typical rep-
resentative of such languages. However, the ideas can easily be adapted to fit
other languages. Later we will formalize selected distribution concepts in terms
of Petri nets. Therefore, we introduce some standard notations.

Definition 3 (Petri Net). A Petri net is tuple PN = (P, T, F) with P the set
of places, T the set of transitions, and F ⊆ (P × T)∪ (T × P) the flow relation.

Figure 9 shows an example Petri net. The state of a Petri net, called marking,
is a multiset of places indicating how many tokens each place contains. [in] is
the initial marking shown in Fig. 9. Another potential marking is [c210, c35, c55].
This is the state with ten tokens in c2, five tokens in c3, and five tokens in c5.

Definition 4 (Marking). Let PN = (P, T, F) be Petri net. A marking M is a
multiset of places, i.e., M ∈ B(P).

12 W.M.P. van der Aalst

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

Fig. 9. A Petri net PN = (P, T, F) with P = {in, c1, c2, c3, c4, c5, c6, out}, T =
{a, b, c, d, e, f, g}, and F = {(in, a), (a, c1), (c1, b), . . . , (g,out)}

As usual we define the preset and postset of a node (place or transition) in the
Petri net graph. For any x ∈ P ∪ T , •x = {y | (y, x) ∈ F} (input nodes) and
x• = {y | (x, y) ∈ F} (output nodes).

A transition t ∈ T is enabled in marking M , denoted as M [t〉, if each of its
input places •t contains at least one token. Consider the Petri net in Fig. 9 with
M = [c3, c4]: M [e〉 because both input places are marked.

An enabled transition t may fire, i.e., one token is removed from each of
the input places •t and one token is produced for each of the output places
t• . Formally: M ′ = (M \ •t) � t• is the marking resulting from firing enabled
transition t in marking M . M [t〉M ′ denotes that t is enabled in M and firing t
results in marking M ′. For example, [in][a〉[c1] and [c1][b〉[c2, c3] for the net in
Fig. 9.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. M [σ〉M ′ denotes
that there is a set of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′,
and Mi[ti+1〉Mi+1 for 0 ≤ i < n. A marking M ′ is reachable from M if there
exists a σ such that M [σ〉M ′. For example, [in][σ〉[out] for σ = 〈a, b, c, d, e, g〉.

Definition 5 (Labeled Petri Net). A labeled Petri net PN = (P, T, F, Tv) is
a Petri net (P, T, F) with visible labels Tv ⊆ T . Let σv = 〈t1, t2, . . . , tn〉 ∈ T ∗

v be a
sequence of visible transitions. M [σv�M ′ if and only if there is a sequence σ ∈ T ∗

such that M [σ〉M ′ and the projection of σ on Tv yields σv (i.e., σv = σ�Tv).

If we assume Tv = {a, e, f, g} for the Petri net in Fig. 9, then [in][σv � [out] for
σv = 〈a, e, f, e, f, e, g〉 (i.e., b, c, and d are invisible).

In the context of process mining, we always consider processes that start in
an initial state and end in a well-defined end state. For example, given the net
in Fig. 9 we are interested in firing sequences starting in Mi = [in] and ending
in Mo = [out]. Therefore, we define the notion of a system net.

Definition 6 (System Net). A system net is a triplet SN = (PN ,Mi,Mo)
where PN = (P, T, F, Tv) is a Petri net with visible labels Tv, Mi ∈ B(P) is the
initial marking, and Mo ∈ B(P) is the final marking.

Given a system net, τ(SN) is the set of all possible visible full traces, i.e., firing
sequences starting in Mi and ending in Mo projected onto the set of visible
transitions.

Distributed Process Discovery and Conformance Checking 13

Definition 7 (Traces). Let SN = (PN ,Mi,Mo) be a system net. τ(SN) =
{σv |Mi[σv�Mo} is the set of visible traces starting in Mi and ending in Mo.

If we assume Tv = {a, e, g} for the Petri net in Fig. 9, then τ(SN) = {〈a, e, g〉,
〈a, e, e, g〉, 〈a, e, e, e, g〉, . . .}.

The Petri net in Fig. 9 has a designated source place (in), a designated source
place (out), and all nodes are on a path from in to out . Such nets are called
WF-nets [1, 6].

Definition 8 (WF-net). WF = (PN , in , Ti, out , To) is a workflow net
(WF-net) if

– PN = (P, T, F, Tv) is a labeled Petri net,
– in ∈ P is a source place such that •in = ∅ and in• = Ti,
– out ∈ P is a sink place such that out• = ∅ and •out = To,
– Ti ⊆ Tv is the set of initial transitions and •Ti = {in},
– To ⊆ Tv is the set of final transitions and To• = {out}, and
– all nodes are on some path from source place in to sink place out.

WF-nets are often used in the context of business process modeling and process
mining. Compared to the standard definition of WF-nets [1, 6] we added the
requirement that the initial and final transitions need to be visible.

A WF-net WF = (PN , in, Ti, out , To) defines the system SN = (PN ,Mi,Mo)
with Mi = [in] and Mo = [out]. Ideally WF-nets are also sound, i.e., free of
deadlocks, livelocks, and other anomalies [1, 6]. Formally, this means that it is
possible to reach Mo from any state reachable from Mi.

Process models discovered using existing process mining techniques may be
unsound. Therefore, we cannot assume/require all WF-nets to be sound.

3.4 Declarative Models

Procedural process models (like Petri nets) take an “inside-to-outside” approach,
i.e., all execution alternatives need to be specified explicitly and new alternatives
must be explicitly added to the model. Declarative models use an “outside-to-
inside” approach: anything is possible unless explicitly forbidden. Declarative
models are particularly useful for conformance checking. Therefore, we elaborate
on Declare. Declare is both a language (in fact a family of languages) and a fully
functional WFM system [8, 24].

Declare uses a graphical notation and its semantics are based on LTL (Lin-
ear Temporal Logic) [8]. Figure 10 shows a Declare specification consisting of
eight constraints. The construct connecting activities b and c is a so-called non-
coexistence constraint. In terms of LTL this constraint means “¬((♦b) ∧ (♦c))”;
♦b and ♦c cannot both be true, i.e., it cannot be the case that both b and c
happen for the same case. There is also a non-coexistence constraint preventing
the execution of both g and h for the same case. There are three precedence con-
straints. The semantics of the precedence constraint connecting a to b can also
be expressed in terms of LTL: “(¬b) W a”, i.e., b should not happen before a has

14 W.M.P. van der Aalst

b

c

a e

non co-existence: activities
b and c cannot happen both

response: every occurrence of c
should be eventually followed by h

g

h
precedence: every occurrence
of c needs to be preceded by a

response

non co-existence

precedence
book car

add extra
insurance

confirm

skip extra
insurance

add extra
insurance

skip extra
insurance

Fig. 10. Example of a Declare model consisting of six activities and eight constraints

happened. Since the weak until (W) is used in “(¬b) W a”, traces without any
a and b events also satisfy the constraint. Similarly, g should not happen before
b has happened: “(¬g) W b”. There are three response constraints. The LTL
formalization of the precedence constraint connecting b to e is “�(b ⇒ (♦e))”,
i.e., every occurrence of b should eventually be followed by e. Note that the be-
havior generated by the WF-net in Fig. 1 satisfies all constraints specified in the
Declare model, i.e., none of the eight constraints is violated by any of the traces.
However, the Declare model shown in Figure 10 allows for all kinds of behaviors
not possible in Fig. 1. For example, trace 〈a, a, b, e, e, g, g〉 is allowed. Whereas in
a procedural model, everything is forbidden unless explicitly enabled, a declara-
tive model allows for anything unless explicitly forbidden. For processes with a
lot of flexibility, declarative models are more appropriate [8, 24].

In [5] it is described how Declare/LTL constraints can be checked for a given
log. This can also be extended to the on-the-fly conformance checking. Consider
some running case having a partial trace σp ∈ A∗ listing the events that have
happened thus far. Each constraint c is in one of the following states for σp:

– Satisfied : the LTL formula corresponding to c evaluates to true for the partial
trace σp.

– Temporarily violated : the LTL formula corresponding to c evaluates to false
for σp, however, there is a longer trace σ′

p that has σp as a prefix and for
which the LTL formula corresponding to c evaluates to true.

– Permanently violated : the LTL formula corresponding to c evaluates to false
for σp and all its extensions, i.e., there is no σ′

p that has σp as a prefix and
for which the LTL formula evaluates to true.

These three notions can be lifted from the level of a single constraint to the
level of a complete Declare specification, e.g., a Declare specification is satis-
fied for a case if all of its constraints are satisfied. This way it is possible to
check conformance on-the-fly and generate warnings the moment constraints are
permanently/temporarily violated [3].

Distributed Process Discovery and Conformance Checking 15

c

h

p

0..1

curse

pray

become holy

cpcpccpph
pppphcp

hpp
ppph
ppp

ccccp
...

non co-existence constraint is
violated by the first two cases

(cpcpccpph and pppphcp)

precedence constraint is
violated by the third case (hpp)

Fig. 11. Conformance checking using a declarative model.

c

h

p

0..1

curse

pray

become holy

cpcpccppp
pppph
pcccp
ppph
ppp

ccccp
...

Fig. 12. Discovering a declarative model

We use the smaller example shown in Fig. 11 to illustrate conformance check-
ing in the context of Declare. The process model shows four constraints: the same
person cannot “curse” and “become holy” (non-coexistence constraint), after one
“curses” one should eventually “pray” (response constraint), one can only “be-
come holy” after having “prayed” at least once (precedence constraint), and ac-
tivity h (“become holy”) can be executed at most once (cardinality constraint).

Two of the four constraints are violated by the event log shown in Fig. 11.
The first two traces/persons cursed and became holy at the same time. The third
trace/person became holy without having prayed before.

Conformance checking can be distributed easily for declarative models. One
can partition the log vertically and simply check per computing node all con-
straints on the corresponding sublog. One can also partition the set of con-
straints. Each node of the computer network is responsible for a subset of the
constraints and uses a log projected onto the relevant activities, i.e., the event
log is distributed horizontally. In both cases, it is easy to aggregate the results
into overall diagnostics.

Figure 12 illustrates the discovery of Declare constraints from event logs [21].
A primitive discovery approach is to simply investigate a large collection of can-
didate constraints using conformance checking. This can be distributed vertically

16 W.M.P. van der Aalst

or horizontally as just described. It is also possible to use smarter approaches
using the “interestingness” of potential constraints. Here ideas from distributed
association rule mining [13] can be employed.

4 Measuring Conformance

Conformance checking techniques can be used to investigate how well an event
log L ∈ B(A∗) and the behavior allowed by a model fit together. Figure 4 shows
an example where deviations between an event log and Petri net are diagnosed.
Figure 11 shows a similar example but now using a Declare model. Both examples
focus on a particular conformance notion: fitness. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model from beginning to
end. This notion can be formalized as follows.

Definition 9 (Perfectly Fitting Log). Let L ∈ B(A∗) be an event log and
let SN = (PN ,Mi,Mo) be a system net. L is perfectly fitting SN if and only if
{σ ∈ L} ⊆ τ(SN).

The above definition assumes a Petri net as process model. However, the same
idea can be operationalized for Declare models [5], i.e., for each constraint and
every case the corresponding LTL formula should hold.

Consider two event logs L1 = [〈a, c, d, g〉30, 〈a, d, c, g〉20, 〈a, c, d, f, c, d, g〉5,
〈a, d, c, f, c, d, g〉3, 〈a, c, d, f, d, c, g〉2] and L2 = [〈a, c, d, g〉8, 〈a, c, g〉6, 〈a, c, f,
d, g〉5] and the system net SN of the WF-net depicted in Fig. 9 with Tv = {a, c, d,
f, g}. Clearly, L1 is perfectly fitting SN whereas L2 is not. There are various
ways to quantify fitness [3, 4, 11, 19, 23, 25–27], typically on a scale from 0 to 1
where 1 means perfect fitness. To measure fitness, one needs to align traces in
the event log to traces of the process model. Some example alignments for L2

and SN :

γ1 =
a c d g
a c d g

γ2 =
a c� g
a c d g

γ3 =
a c f d g
a c� d g

γ4 =
a c� f d� g
a c d f d c g

The top row of each alignment corresponds to “moves in the log” and the bottom
row corresponds to “moves in the model”. If a move in the log cannot be mim-
icked by a move in the model, then a “�” (“no move”) appears in the bottom
row. For example, in γ3 the model is unable to do f in-between c and d. If a
move in the model cannot be mimicked by a move in the log, then a “�” (“no
move”) appears in the top row. For example, in γ2 the log did not do a d move
whereas the model has to make this move to enable g and reach the end. Given
a trace in the event log, there may be many possible alignments. The goal is to
find the alignment with the least number of � elements, e.g., γ3 seems better
than γ4. Finding a optimal alignment can be viewed as an optimization problem
[4, 11]. After selecting an optimal alignment, the number of � elements can be
used to quantify fitness.

Distributed Process Discovery and Conformance Checking 17

Fitness is just one of the four basic conformance dimensions defined in [3].
Other quality dimensions for comparing model and log are simplicity, precision,
and generalization.

The simplest model that can explain the behavior seen in the log is the best
model. This principle is known as Occam’s Razor. There are various metrics to
quantify the complexity of a model (e.g., size, density, etc.).

The precision dimension is related to the desire to avoid “underfitting”. It is
very easy to construct an extremely simple Petri net (“flower model”) that is
able to replay all traces in an event log (but also any other event log referring to
the same set of activities). See [4, 25–27] for metrics quantifying this dimension.

The generalization dimension is related to the desire to avoid “overfitting”. In
general it is undesirable to have a model that only allows for the exact behavior
seen in the event log. Remember that the log contains only example behavior
and that many traces that are possible may not have been seen yet.

Conformance checking can be done for various reasons. First of all, it may be
used to audit processes to see whether reality conforms to some normative of
descriptive model [7]. Deviations may point to fraud, inefficiencies, and poorly
designed or outdated procedures. Second, conformance checking can be used
to evaluate the performance of a process discovery technique. In fact, genetic
process mining algorithms use conformance checking to select the candidate
models used to create the next generation of models [23].

5 Example: Horizontal Distribution Using Passages

The vertical distribution of process mining tasks is often fairly straightforward;
just partition the event log and run the usual algorithms on each sublog residing
at a particular node in the computer network. The horizontal partitioning of
event logs is more challenging, but potentially very attractive as the focus of
analysis can be limited to a few activities per node. Therefore, we describe a
generic distribution approach based on the notion of passages.

5.1 Passages in Graphs

A graph is a pair G = (N,E) comprising a set N of nodes and a set E ⊆ N ×N
of edges. A Petri net (P, T, F) can be seen as a particular graph with nodes
N = P ∪ T and edges E = F . Like for Petri nets, we define preset •n = {n′ ∈
N | (n′, n) ∈ E} (direct predecessors) and postset n• = {n′ ∈ N | (n, n′) ∈ E}
(direct successors). This can be generalized to sets, i.e., for X ⊆ N : •X =
∪n∈X • n and X• = ∪n∈X n• .

To decompose process mining problems into smaller problems, we partition
process models using the notion passages. A passage is a pair of non-empty sets
of nodes (X,Y) such that the set of direct successors of X is Y and the set of
direct predecessors of Y is X .

Definition 10 (Passage). Let G = (N,E) be a graph. P = (X,Y) is a passage
if and only if ∅ 	= X ⊆ N , ∅ 	= Y ⊆ N , X• = Y , and X = •Y . pas(G) is the
set of all passages of G.

18 W.M.P. van der Aalst

Consider the sets X = {a, b, c, e, f, g} and Y = {c, d, g, h, i} in the graph frag-
ment shown in Fig. 13. (X,Y) is a passage. As indicated, there may be no edges
leaving from X to nodes outside Y and there may be no edges into Y from nodes
outside X .

a b

d

X

Y

fe

h

c g

i

Fig. 13. (X,Y) is a passage because X• = {a, b, c, e, f, g}• = {c, d, g, h, i} = Y and
X = {a, b, c, e, f, g} = •{c, d, g, h, i} = •Y

Definition 11 (Operations on Passages). Let P1 = (X1, Y1) and P2 =
(X2, Y2) be two passages.

– P1 ≤ P2 if and only if X1 ⊆ X2 and Y1 ⊆ Y2,
– P1 < P2 if and only if P1 ≤ P2 and P1 	= P2,
– P1 ∪ P2 = (X1 ∪X2, Y1 ∪ Y2),
– P1 \ P2 = (X1 \X2, Y1 \ Y2).

The union of two passages P1 ∪ P2 is again a passage. The difference of two
passages P1 \P2 is a passage if P2 < P1. Since the union of two passages is again
a passage, it is interesting to consider minimal passages. A passage is minimal
if it does not “contain” a smaller passage.

Definition 12 (Minimal Passage). Let G = (N,E) be a graph with passages
pas(G). P ∈ pas(G) is minimal if there is no P ′ ∈ pas(G) such that P ′ < P .
pasmin(G) is the set of minimal passages.

The passage in Figure 13 is not minimal. It can be split into the passages
({a, b, c}, {c, d}) and ({e, f, g}, {g, h, i}). An edge uniquely determines one min-
imal passage.

Lemma 1. Let G = (N,E) be a graph and (x, y) ∈ E. There is precisely one
minimal passage P(x,y) = (X,Y) ∈ pasmin(G) such that x ∈ X and y ∈ Y .

Passages define an equivalence relation on the edges in a graph: (x1, y1) ∼
(x2, y2) if and only if P(x1,y1) = P(x2,y2). For any {(x, y), (x′, y), (x, y′)} ⊆ E:
P(x,y) = P(x′,y) = P(x,y′), i.e., P(x,y) is uniquely determined by x and P(x,y) is
also uniquely determined by y. Moreover, pasmin(G) = {P(x,y) | (x, y) ∈ E}.

Distributed Process Discovery and Conformance Checking 19

5.2 Distributed Conformance Checking Using Passages

Now we show that it is possible to decompose and distribute conformance check-
ing problems using the notion of passages. In order to do this we focus on the
visible transitions and create the so-called skeleton of the process model. To de-

fine skeletons, we introduce the notation x
σ:E#Q� y which states that there is a

non-empty path σ from node x to node y where the set of intermediate nodes
visited by path σ does not include any nodes in Q.

Definition 13 (Path). Let G = (N,E) be a graph with x, y ∈ N and Q ⊆ N .

x
σ:E#Q� y if and only if there is a sequence σ = 〈n1, n2, . . . nk〉 with k > 1 such

that x = n1, y = nk, for all 1 ≤ i < k: (ni, ni+1) ∈ E, and for all 1 < i < k:
ni 	∈ Q. Derived notations:

– x
E#Q� y if and only if there exists a path σ such that x

σ:E#Q� y,

– nodes(x
E#Q� y) = {n ∈ σ | ∃σ∈N∗ x

σ:E#Q� y}, and
– for X,Y ⊆ N : nodes(X

E#Q� Y) = ∪(x,y)∈X×Y nodes(x
E#Q� y).

Definition 14 (Skeleton). Let PN = (P, T, F, Tv) be a labeled Petri net. The
skeleton of PN is the graph skel(PN) = (N,E) with N = Tv and E = {(x, y) ∈
Tv × Tv | x

F#Tv� y}.

Figure 14 shows the skeleton of the WF-net in Fig. 1 assuming that
Tv = {a, b, c, d, e, f, l}. The resulting graph has four minimal passages.

book car

c

add extra
insurance

d
change
booking

e

confirm initiate
check-in

supply
car

a

b
skip extra
insurance

f l

Fig. 14. The skeleton of the labeled Petri net in Fig. 1 (assuming that Tv =
{a, b, c, d, e, f, l}). There are four minimal passages: ({a}, {b, c}), ({b, c, d}, {d, e}),
({e}, {f}), and ({f}, {l}).

Note that only the visible transitions Tv appear in the skeleton. For example,
if we assume that Tv = {a, f, l} in Fig. 1, then the skeleton is ({a, f, l}, {(a, f),
(f, l)}) with only two passages ({a}, {f}) and ({f}, {l}).

If there are multiple minimal passages in the skeleton, we can decompose con-
formance checking problems into smaller problems by partitioning the Petri net

20 W.M.P. van der Aalst

into net fragments and the event log into sublogs. Each passage (X,Y) defines one

net fragment PN (X,Y) and one sublog L�X∪Y . We will show that conformance
can be checked per passage.

book car

c

add extra
insurance

a

b

skip extra
insurance

c1

c

add extra
insurance

d

change
booking

e

confirm

b

skip extra
insurance

c2

e

confirm initiate
check-in

f

c3

(a)

initiate
check-in

j

check driver’s
license

k

charge credit
card

i

select car

g

supply
car

f

h

add extra
insurance

skip extra
insurance

l

c4

c5

c6

c7

c8

c9

c10

c11

(b)

(c)

(d)

Fig. 15. Four net fragments corresponding to the four passages of the skeleton in
Fig. 14: (a) PN 1 = PN ({a},{b,c}), (b) PN 2 = PN ({b,c,d},{d,e}), (c) PN 3 = PN ({e},{f}),
and (c) PN 4 = PN ({f},{l}). The invisible transitions, i.e., the transitions in T \ Tv, are
shaded.

Consider event log L = [〈a, b, e, f, l〉20, 〈a, c, e, f, l〉15, 〈a, b, d, e, f, l〉5, 〈a, c, d, e,
f, l〉3, 〈a, b, d, d, e, f, l〉2], the WF-net PN shown in Fig. 1 with Tv = {a, b, c, d, e,
f, l}, and the skeleton shown in Fig. 14. Based on the four passages, we define four
net fragments PN 1, PN 2, PN 3 and PN 4 as shown in Fig. 15. Moreover, we define
four sublogs: L1 = [〈a, b〉27, 〈a, c〉18], L2 = [〈b, e〉20, 〈c, e〉15, 〈b, d, e〉5, 〈c, d, e〉3,
〈b, d, d, e〉2], L3 = [〈e, f〉45], and L4 = [〈f, l〉45]. To check the conformance of the
overall event log on the overall model, we check the conformance of Li on PN i

for i ∈ {1, 2, 3, 4}. Since Li is perfectly fitting PN i for all i, we can conclude that
L is perfectly fitting PN . This illustrates that conformance checking can indeed
be decomposed. To formalize this result, we define the notion of a net fragment
corresponding to a passage.

Definition 15 (Net Fragment). Let PN = (P, T, F, Tv) be a labeled Petri
net. For any two sets of transitions X,Y ⊆ Tv, we define the net fragment
PN (X,Y) = (P ′, T ′, F ′, T ′

v) with:

Distributed Process Discovery and Conformance Checking 21

– Z = nodes(X
F#Tv� Y) \ (X ∪ Y) are the internal nodes of the fragment,

– P ′ = P ∩ Z,
– T ′ = (T ∩ Z) ∪X ∪ Y ,
– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and
– T ′

v = X ∪ Y .

A process model can be decomposed into net fragments corresponding to min-
imal passages and an event log can be decomposed by projecting the traces
on the activities in these minimal passages. The following theorem shows that
conformance checking can be done per passage.

Theorem 1 (Distributed Conformance Checking). Let L ∈ B(A∗) be an
event log and let WF = (PN , in , Ti, out , To) be a WF-net with PN = (P, T, F, Tv).
L is perfectly fitting system net SN = (PN , [in], [out]) if and only if

– for any 〈a1, a2, . . . ak〉 ∈ L: a1 ∈ Ti and ak ∈ To, and

– for any (X,Y) ∈ pasmin(skel(PN)): L�X∪Y is perfectly fitting SN (X,Y) =

(PN (X,Y), [], []).

For a formal proof, we refer to [2]. Although the theorem only addresses the
notion of perfect fitness, other conformance notions can be decomposed in a
similar manner. Metrics can be computed per passage and then aggregated into
an overall metric.

Assuming a process model with many passages, the time needed for confor-
mance checking can be reduced significantly. There are two reasons for this.
First of all, as Theorem 1 shows, larger problems can be decomposed into a
set of independent smaller problems. Therefore, conformance checking can be
distributed over multiple computers. Second, due to the exponential nature of
most conformance checking techniques, the time needed to solve “many smaller
problems” is less than the time needed to solve “one big problem”. Existing
approaches use state-space analysis (e.g., in [27] the shortest path enabling a
transition is computed) or optimization over all possible alignments (e.g., in [11]
the A∗ algorithm is used to find the best alignment). These techniques do not
scale linearly in the number of activities. Therefore, decomposition is useful even
if the checks per passage are done on a single computer.

5.3 Distributed Process Discovery Using Passages

As explained before, conformance checking and process discovery are closely
related. Therefore, we can exploit the approach used in Theorem 1 for process
discovery provided that some coarse causal structure (comparable to the skeleton
in Section 5.2) is known. There are various techniques to extract such a causal
structure, see for example the dependency relations used by the heuristic miner
[29]. The causal structure defines a collection of passages and the detailed dis-
covery can be done per passage. Hence, the discovery process can be distributed.
The idea is illustrated in Fig. 16.

22 W.M.P. van der Aalst

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

a b

c

d

e g

f

ab
abfb
ab
...

bcd
bdcbcd

bdc
...

cde
dcecde

dce
...

eg
efeg
eg
...

a

in

g

out

b

f

a

b

c

d

c

d

e

f

e

g

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

Fig. 16. Distributed discovery based on four minimal passages: ({a, f}, {b}),
({b}, {c, d}), ({c, d}, {e}), and ({e}, {f, g}). A process fragment is discovered for each
passage. Subsequently, the fragments are merged into one overall process.

The approach is independent of the discovery algorithm used. The only as-
sumption is that the casual structure can be determined upfront. See [2] for more
details.

By decomposing the overall discovery problem into a collection of smaller
discovery problems, it is possible to do a more refined analysis and achieve sig-
nificant speed-ups. The discovery algorithm is applied to an event log consisting
of just the activities involved in the passage under investigation. Hence, process
discovery tasks can be distributed over a network of computers (assuming there
are multiple passages). Moreover, most discovery algorithms are exponential in
the number of activities. Therefore, the sequential discovery of all individual
passages is still faster than solving one big discovery problem.

Distributed Process Discovery and Conformance Checking 23

6 Conclusion

This paper provides an overview of the different mechanisms to distribute pro-
cess mining tasks over a set of computing nodes. Event logs can be decomposed
vertically and horizontally. In a vertically distributed event log, each case is an-
alyzed by a designated computing node in the network and each node considers
the whole process model (all activities). In a horizontally distributed event log,
the cases themselves are partitioned and each node considers only a part of the
overall process model. These distribution approaches are fairly independent of
the mining algorithm and apply to both procedural and declarative languages.
Most challenging is the horizontal distribution of event logs while using a proce-
dural language. However, as shown in this paper, it is still possible to horizontally
distribute process discovery and conformance checking tasks using the notion of
passages.

Acknowledgments. The author would like to thank all that contributed to
the ProM toolset. Many of their contributions are referred to in this paper.
Special thanks go to Boudewijn van Dongen and Eric Verbeek (for their work on
the ProM infrastructure), Carmen Bratosin (for her work on distributed genetic
mining), Arya Adriansyah and Anne Rozinat (for their work on conformance
checking), and Maja Pesic, Fabrizio Maggi, and Michael Westergaard (for their
work on Declare).

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages.
BPM Center Report BPM-11-19, BPMcenter.org (2011)

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. In: WIREs
Data Mining and Knowledge Discovery (2012)

5. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and
Verification of Properties: An Approach Based on Temporal Logic. In: Meersman,
R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3760, pp. 130–147.
Springer, Heidelberg (2005)

6. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification,
Decidability, and Analysis. Formal Aspects of Computing 23(3), 333–363 (2011)

7. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing
2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE Computer 43(3),
90–93 (2010)

8. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Bal-
ancing Between Flexibility and Support. Computer Science - Research and Devel-
opment 23(2), 99–113 (2009)

24 W.M.P. van der Aalst

9. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)

10. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

11. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking
using Cost-Based Fitness Analysis. In: Chi, C.H., Johnson, P. (eds.) IEEE Interna-
tional Enterprise Computing Conference (EDOC 2011), pp. 55–64. IEEE Computer
Society (2011)

12. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

13. Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions
on Knowledge and Data Engineering 8(6), 962–969 (1996)

14. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy,
M.: Handling Concept Drift in Process Mining. In: Mouratidis, H., Rolland, C.
(eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011)

15. Bratosin, C., Sidorova, N., van der Aalst, W.M.P.: Distributed Genetic Process
Mining. In: Ishibuchi, H. (ed.) IEEEWorld Congress on Computational Intelligence
(WCCI 2010), Barcelona, Spain, pp. 1951–1958. IEEE (July 2010)

16. Cannataro, M., Congiusta, A., Pugliese, A., Talia, D., Trunfio, P.: Distributed
Data Mining on Grids: Services, Tools, and Applications. IEEE Transactions on
Systems, Man, and Cybernetics, Part B 34(6), 2451–2465 (2004)

17. Carmona, J.A., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for
Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-
C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

18. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

19. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery
with Artificial Negative Events. Journal of Machine Learning Research 10, 1305–
1340 (2009)

20. Hilbert, M., Lopez, P.: TheWorld’s Technological Capacity to Store, Communicate,
and Compute Information. Science 332(60) (2011)

21. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declar-
ative Process Models. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE Sympo-
sium on Computational Intelligence and Data Mining (CIDM 2011), Paris, France,
pp. 192–199. IEEE (April 2011)

22. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.: Big Data: The Next Frontier for Innovation, Competition, and Productivity.
McKinsey Global Institute (2011)

23. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery 14(2), 245–304 (2007)

24. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on the Web 4(1), 1–62 (2010)

25. Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010)

Distributed Process Discovery and Conformance Checking 25

26. Muñoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Sta-
bility, Confidence and Severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris,
France. IEEE (April 2011)

27. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

28. Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010)

29. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineer-
ing 10(2), 151–162 (2003)

30. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess Discovery using Integer Linear Programming. Fundamenta Informaticae 94,
387–412 (2010)

31. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Berlin (2007)

Model-Driven Techniques to Enhance Architectural
Languages Interoperability

Davide Di Ruscio, Ivano Malavolta, Henry Muccini,
Patrizio Pelliccione, and Alfonso Pierantonio

University of L’Aquila, Dipartimento di Informatica
{davide.diruscio,ivano.malavolta,henry.muccini,

patrizio.pelliccione,alfonso.pierantonio}@univaq.it

Abstract. The current practice of software architecture modeling and analysis
would benefit of using different architectural languages, each specialized on a
particular view and each enabling specific analysis. Thus, it is fundamental to
pursue architectural language interoperability. An approach for enabling interop-
erability consists in defining a transformation from each single notation to a pivot
language, and vice versa. When the pivot assumes the form of a small and abstract
kernel, extension mechanisms are required to compensate the loss of information.
The aim of this paper is to enhance architectural languages interoperability by
means of hierarchies of pivot languages obtained by systematically extending a
root pivot language. Model-driven techniques are employed to support the cre-
ation and the management of such hierarchies and to realize the interoperability
by means of model transformations. Even though the approach is applied to the
software architecture domain, it is completely general.

1 Introduction

Architecture descriptions shall be developed to address multiple and evolving stake-
holders concerns [1]. Being impractical to capture all concerns within a single, narrowly
focused Architectural Language (AL) [2], i.e., a form of expression used for architec-
ture description [1], we must accept the co-existence of different domain specific ALs,
each one devoted to specific purposes. The use of various ALs requires interoperability
among them since bridging the different descriptions to be kept consistent and coherent
is of paramount relevance [3]. The need of interoperability at the architecture level is
clearly demonstrated by international projects like Q-ImPrESS [4], and ATESST [5]
where correspondences among different languages have to be created and maintained.

An approach for enabling interoperability among various notations which is recently
getting consensus in different application domains (e.g., [6,7]) consists in organizing
them into a star topology with a pivot language in its center: in these cases inter-
operability is enabled by defining a transformation from each single notation to the
pivot language, and vice versa. Thus, the pivot language acts as a bridge between all
the considered notations and avoids point-to-point direct transformations among them.
While how to build a pivot language is still a craftsman activity, two different trends
can be noted: (i) building a (rich) pivot language that contains each element required

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 26–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Driven Techniques to Enhance Architectural Languages Interoperability 27

by any AL, like in the Q-Impress project, and (ii) building a (small) kernel pivot lan-
guage containing a set of core elements common to most of the involved ALs, like in
KLAPER [8]. On one hand, the adoption of a rich pivot language tends to reduce the
loss of information in the pivot-based transformation process from one AL to another.
On the other hand, the use of a kernel pivot may give rise to loss of information, since
concepts in some of the ALs might be missing in the pivot language (due to the kernel
pivot language minimality).

The use of a rich pivot is ideal when ALs have to be related under a closed-world-
assumption, i.e., when the set of ALs to be used is a-priori defined. However, a rich
pivot difficultly scales when new ALs are introduced in the star topology: the rich pivot
has to be updated to cover newly introduced concepts. This is an error-prone task that
could easily introduce inconsistencies within the pivot. In such a scenario, while the
kernel pivot solution is more scalable (since the kernel pivot language is defined once
forever and is AL-independent), the addition of new ALs increases the loss of informa-
tion when new ALs introduce new concepts not included in the kernel pivot. When the
closed-world-assumption decays, a new solution is needed to support the interoperabil-
ity among various ALs while reducing as much as possible the loss of information. This
calls for kernel extensions, each extension defined for dealing with specific stakeholder
concerns. Moreover, the construction of kernels must be properly controlled to support
their coexistence and reuse. The information that can be lost consists of concepts that
potentially could be transformed from a source model and properly represented in a
target one, but for some reason are neglected by the transformation process.

In this paper we present a Model-Driven Engineering (MDE) approach to enhance
the interoperability among ALs by using extensible kernel pivots. The approach (i) en-
compasses a systematically defined extension process that, starting from a small kernel
pivot language permits the automated construction of a hierarchy of kernel pivots, and
(ii) provides mechanisms to transform from an AL to another by minimizing the loss of
information; this is realized by passing through the most informative pivot kernel in the
hierarchy for the considered ALs. The overall approach is general and, while applied to
the software architecture domain, may be adopted in different domains.

The remaining of the paper is organized as follows. Section 2 highlights limitations
and challenges of current pivot-based solutions. Section 3 describes the proposed kernel
pivot extension mechanisms. Section 4 applies the approach to a case study in the auto-
motive domain. Section 5 compares our work with related works. Section 6 concludes
the paper and highlights future research directions.

2 Interoperability via Pivot Languages

It is becoming common practice to use different ALs to model or to analyze differ-
ent architectural aspects of the system under development. The Q-Impress project, for
example, enables interoperability through a rich pivot language that unifies common
aspects of the used ALs. The ATESST project provides means to integrate different
model-based tools to develop automotive embedded systems. In the domain of reliabil-
ity modeling and prediction, Klaper is a kernel language which can be used as the start-
ing point to carry out performance or reliability analysis. DUALLY [7] exploits model

28 D. Di Ruscio et al.

transformation techniques and any transformation among ALs is defined by passing
through A0, a kernel pivot metamodel defined as general as possible.

All the projects and research efforts described above adopt a pivot solution for sup-
porting the interoperability among different description languages. Figure 1 shows the
main difference between the use of a rich pivot language and a kernel one: filled circles
represent modeling concepts, solid lines denote correspondences among AL and pivot
language concepts, and finally dashed boxes and dashed lines represent added ALs and
correspondences, respectively. A rich pivot language is built with the aim of including
the highest number of concepts contemplated by all the interoperating ALs. As shown
in Figure 1.a, each concept in any AL finds its correspondence with a rich pivot lan-
guage element. Differently, a kernel language contains only a core set of concepts (as
shown in Figure 1.b), and is kept as small as possible. Such a difference has positive and
negative impacts on the way interoperability is realized. In the following we provide a
summary of the main strengths and limitations of both solutions.

Interoperability Accuracy: the rich pivot is built with the intent to match any concept
coming from the interoperating ALs. Thus, in principle, as soon as a correspondence
exists among two ALs, it is caught by the pivot-based transformation. The kernel lan-
guage solution, being minimal, may instead discard some correspondence, thus limiting
the interoperability accuracy. For instance, see a1 and a2 in Figure 1.b: while a corre-
spondence among them is found in the rich pivot, it is missing in the kernel-based
solution. Information loss is thus introduced. The kernel-based approach is particularly
limiting when domain-specific ALs are introduced in the star topology. Overall: the rich
pivot solution is more accurate;

Pivot Scalability: as soon as a new AL has to be considered, the rich pivot needs to be
revised in order to avoid information loss. As shown in Figure 1.a, the insertion of AL4

implies the addition of the link between AL4 and the already existing element b1 in the
rich pivot, and the addition of b2. This may require a strong revision of the entire rich
pivot to solve possible conflicts and to avoid inconsistencies. When AL4 is added to the
kernel language in Figure 1.b, instead, only a new correspondence with b1 is created.
Overall: the kernel language approach scales better.

Fig. 1. Interoperability via a: a) rich pivot, b) kernel pivot

In summary, the rich
pivot solution is more
accurate in terms
of interoperability corre-
spondences, but it is less
scalable and might re-
quire adjustments when
a new notation is in-
cluded. Contrariwise, the
kernel solution shows

complementary strengths and limitations. A new solution is needed to support both
interoperability accuracy and pivot scalability.

An approach that is being used consists in making the kernel pivot extensible, thus
adaptable to new ALs. Language extensibility in the software architecture domain has

Model-Driven Techniques to Enhance Architectural Languages Interoperability 29

been adopted in the xADL [9] XML-based architecture description language (based on
XML extension mechanisms), in AADL [10] (through its annexes), in UML (with its
profiles), and in our approach for ALs interoperability named DUALLY [7]. However,
DUALLY, which is at the best of our knowledge the most mature framework to sup-
port interoperability among various ALs, has shown a certain number of shortcomings.
Firstly, it is not clear how to manage the extension process when two (or more) ex-
tensions are required. Let us suppose that both real-time and behavior extensions are
needed. So far, three alternative solutions can be applied: i) extend the kernel with real-
time concepts first, then with behavior, ii) extend the kernel with behavior concepts first,
then with real-time ones, iii) extend the kernel with both concepts at the same time. The
three scenarios may produce different kernel pivots, and so far there is no guideline on
how to manage such a multiple extension. Secondly, current solutions tend to create
ad-hoc extensions, not engineered to be reusable. Even when applying scenarios i) or
ii) above, the intermediate kernels are typically lost and not stored for reuse. The ex-
tension itself is not considered as a first class element, but simply as an improvement
to the original pivot.

The approach we propose in this paper satisfies the requirements of i) a systematic
extension process, which provides clear guidelines on how and what to extend, ii) a
compositional and reuse-oriented approach, where kernels are re-used and extended,
iii) supporting both interoperability accuracy and pivot scalability.

3 The Extension Mechanisms

In this section we propose the mechanisms to extend an existing kernel A with a kernel
extension e. In our approach the extension e is a metamodel, that can be re-used for
extending different kernels. The proposed mechanisms rely on the adoption of weaving
models [11] which relate a kernel A with an extension e. A weaving model wm contains
links between elements of a kernel A and elements of an extension e.

Fig. 2. Example of extensions of A0

The generation of a kernel Ae,
which is an extension of A with
e, is performed by executing
a transformation tr. tr is de-
fined once forever and applies
the extension e to A according
to the extension operators used
in wm (see Section 3.1). Fig-
ure 2 shows a small fragment
of A0 consisting of the meta-
classes Comp and Port that rep-
resent a generic component and
port, respectively (see [7] for a
complete description of A0).
Let us assume that y is a kernel

extension containing the metaclasses SoftComp and HardComp to model software and
hardware components, respectively. This extension can be applied to A0 by means of

30 D. Di Ruscio et al.

the transformation tr which takes as input the weaving model wmA0y , the kernel A0,
and the extension y, and generates the new kernel Ay . The kernel Ay is shown in Fig-
ure 2 and contains the generic component concept specialized in software and hardware
components. Let us assume also that x is another extension consisting of the perfor-
mance annotations p1 and p2. This extension can be applied to A0 by means of the
transformation tr which takes as input another weaving model wmA0x, the kernel A0,
and the extension x. The obtained kernel called Ax is shown in Figure 2 and represents
an extension of A0 in which the p1 annotation is added to Comp and the p2 annotation
is added to Port.

As previously said, weaving models are used to apply given extensions to existing
kernels by specifying the metaclasses which are involved in the operation. Formally, a
weaving model can be defined as in Def. 1.

Definition 1 (Weaving Model). Let A be the set of all the possible kernels, let E be
the set of all the possible extensions, and let W be the set of all the possible weaving
models. We denote with wmAe∈W a weaving model defined between the kernel A∈A
and the extension e∈E. A weaving model wmAe={wl1Ae, wl2Ae, · · · , wlnAe} can be seen
as a set of weaving links each establishing a correspondence between elements of A and
elements of e. Each link is realized by means of extension operators.

Referring to Figure 2, the weaving model wmA0x defined for A0 can be used also to
extend Ay , since Ay contains the metaclasses involved in wmA0x. In fact, Ay contains
the metaclasses Comp and Port which are considered in the weaving model wmA0x to
attach the annotation p1 to Comp, and p2 to Port. In the same way, wmA0y can be used
to extend Ax by applying the extension y to the metaclass Comp, and specializes it with
the metaclasses SoftComp and HardComp. These two independent extension journeys
converge in a kernel called Ayx or Axy . Focusing on the left-hand side of Figure 2, the
weaving model wmAyx is another application of the extension x to the kernel Ay to add
the annotation p2 to Port and the annotation p1 to SoftComp. In this case we obtain
a kernel different from Axy . Specifically, this kernel permits to add p1 exclusively to
software components.

Extension hierarchies, like the one in Figure 2, contain three types of elements: ker-
nels, extensions, and weaving models that apply extensions to kernels. In order to reg-
ulate how kernels and extensions can be involved in specific weaving models, we make
use of a type system for kernels and extensions. In other words, a weaving model de-
fined for a kernel can be re-used also for applying extensions to other kernels, under
the assumption that these kernels have the metaclasses involved in the weaving model.
Def. 2 defines our notion of model type substitutability, which is based on the following
notion of model typing: the type of a model is defined “as a set of MOF classes (and,
of course, the references that they contain)” [12]. We denote with T the set of all the
possible model types. In our context T can be partitioned in TA and TE which denote
the types of kernels and extensions, respectively.

Definition 2 (Model Type Substitutability). Let TA∈TA be the type of a given kernel
A, and let Te∈TE be the type of an extension e, then a weaving model wmAe can be
used by the model transformation tr to extend a kernel typed with either TA or any of
its subtypes.

Model-Driven Techniques to Enhance Architectural Languages Interoperability 31

In our context subtyping depends on a type’s hierarchy obtained by means of the ex-
tension mechanism that produces a kernel typed TB by exclusively adding new ele-
ments to an existing one, typed TA (i.e., the deletion of elements from a kernel is not
allowed). It is worth mentioning that our extension mechanism ensures that all the el-
ements of an extension e are added to the kernel being extended. This type hierar-
chy introduces a strict partial order < among kernel types: TA<TB if TB is obtained
by extending TA and then TB can be substituted to TA. Figure 3 is a generalization

Fig. 3. A hierarchy of kernels

of Figure 2 and shows a sim-
ple hierarchy of extensions
involving a generic ker-
nel Ak and two extensions
called x and y. The ker-
nel extensions are regulated
by four different weaving
models (wmAkx, wmAky ,
wmAxy, and wmAyx), thus
producing five different new
kernels. More specifically,
Ax and Ay are obtained ex-

tending Ak with x and y and by means of the weaving models wmAkx and wmAky ,
respectively. The weaving model wmAkx takes as input a kernel typed TAk

and the ex-
tension x typed Tx. Similarly, the weaving model wmAky takes as input a kernel typed
TAk

and the extension y typed Ty.
Let us focus now on Ax which is extended by applying the extension y in two differ-

ent ways. The first way considers the weaving model wmAxy used by tr to apply the
extension typed Ty to elements of a kernel typed TAx . This kernel contains the elements
of Ak and those of x added by using wmAkx. The weaving model wmAxy can affect
all of them since it considers a kernel typed TAx . This is not the case of wmAkx, which
can only operate on elements of Ak . This justifies why the sequential compositions
tr(wmAky , tr(wmAkx,Ak,x), y) and tr(wmAkx, tr(wmAky ,Ak,y), x) lead to the same
target metamodel Axy , i.e., there is a confluence in the extension journeys. The genera-
tion of the target metamodel Axy is performed by using a new weaving model wmAkxy

which is the union of wmAkx and wmAky . The execution of tr(wmAkxy,Ak,xy), where
xy is a metamodel consisting of the union of the elements of x and y, produces Axy .
Formally, the union of two weaving models is defined as in Def. 3.

Definition 3 (Union of Weaving Models). Let wmAx∈W a weaving model defined
between the kernel A∈A and the extension x∈E, and wmAx={wl1Ax,wl2Ax,· · · ,wlnAx}.
Let wmAy∈W a weaving model defined between the kernel A∈A and the extension
y∈E, and wmAy={wl1Ay ,wl2Ay ,· · · ,wlmAy}. The weaving models union
wmAx∪wmAy={wl1Ax, wl2Ax, · · · ,wlnAx,wl1Ay ,wl2Ay ,· · · ,wlmAy} is the set of all the
weaving links in wmAx and wmAy .

It is important to note that in general the confluence cannot be ensured since it depends
on how the extensions have been applied, i.e., on the involved weaving models. In the
following we explain why in our approach we have a confluence (see Section 3.1) and

32 D. Di Ruscio et al.

how to identify transformation paths from one AL to another by passing through the
kernels hierarchy (see Section 3.2).

3.1 Extension Operators

The extension operators used to create weaving models are Inherit, Reference, Expand,
and Match. These operators are defined by constraining the composition operators pre-
sented in [13] to exclusively enable extensions and avoid conflicts when structural fea-
tures of the kernel and the extension being applied overlap. They always extend a kernel
and then, in case of conflicts during the extension, the kernel element will be the one to
be considered. Each operator is always applied on two metaclasses (one belonging to
the kernel and one to the extension) that we refer to as source (s) and target (t) in the re-
mainder of this section. The application of the operators consists of executing the trans-
formation tr that, as explained before, takes as input a weaving model, a kernel, and
an extension, and produces an extended kernel according to the applied operators. The
extension operators are:
Inherit: This operator specifies that the concept s will be a subtype of t in the resulting
extended kernel. If its application results in a cycle in the inheritance tree, then it is not
executed and a warning is raised. The t metaclass must belong to the kernel metamodel.
Reference: In the extended kernel, s has a reference to t. The metaclasses s and t belong
to the kernel or to the extension.
Expand: all the attributes of s are copied into t. Attributes with the same name are
merged. The t metaclass must belong to the kernel metamodel.
Match: s and t represent the same concept; they are merged into a single metaclass
which contains the union of all the structural features (i.e., both attributes and refer-
ences) of s and t. Their supertype and subtype references are merged as well. The t
metaclass must belong to the kernel metamodel.

The proposed extension operators have the following properties that underpin the
construction of the type hierarchy previously presented.

Property 1 (Monotonicity - kernel preservation). Each operator can only add elements
to the kernel being extended. The deletion of kernel elements is forbidden.

Property 2 (Extension integrity). All the elements of the extension metamodel
are added to the kernel metamodel according to the operator semantics. In other words,
it is not possible to use only a fragment of an extension. This is ensured by the default
behavior of the extension mechanism which copies all the extension elements that are
not considered by the used operators.

Property 3 (Parallel independence). An operator can be applied only if conflicts1

among the structural features of the involved metaclasses do not occur. For instance,
it is not possible to match a kernel metaclass A containing an attribute p : Int with
an extension metaclass B containing an attribute p : String because of the conflicting
types of the attribute p.

1 According to the classification in [14], the conflicts that are considered in the parallel inde-
pendence property are the so-called syntactic conflicts.

Model-Driven Techniques to Enhance Architectural Languages Interoperability 33

By referring to Figure 3, Properties 1, 2, and 3 ensure the confluence of the extension
mechanism (see Theorem 1).

Theorem 1 (Confluence). Given two weaving models wmAkx and wmAky between
the kernel Ak and the extensions x and y, respectively, and wmAkx ∪ wmAky does not
contain weaving links that refer to elements in x and y which are in conflict, then:

tr(wmAkxy ,Ak,xy)=tr(wmAkx,tr(wmAky,Ak,y),x)=tr(wmAky,tr(wmAkx,Ak,x),y)

where wmAkxy is the weaving between the kernel Ak and the extension xy is given as
the union of wmAkx and wmAky .

The proof of the theorem is given in Appendix.

3.2 Identification of transformation paths

ALs can be bound to different kernels of the built hierarchy. To better explain both the
problematics of the transformation path identification and the provided solution, we use
the example presented before.

Fig. 4. AL-to-AL transformation management

Figure 4 describes two
generic ALs, AL1 and
AL2, bound to A′

yx and
Ayx, respectively. As de-
scribed before, A′

yx is an
extension of Ay that con-
tains the performance an-
notation p1 added to
SoftComp and the per-
formance annotation p2
added to Port. Whereas,
Ayx contains the perfor-
mance annotation p1
added to Component and
the performance annota-
tion p2 added to Port.
In this simple example the

performance annotation p2 is present both in A′
yx and in Ayx; therefore, when trans-

forming from a model specified with AL1 to a model conforming to AL2, it is desirable
to maintain also the p2 annotation. In a transformation realized by passing through Ay

we lose such an information. For this reason our approach automatically builds a work-
ing kernel, Awork

yx in Figure 4, which contains also the p2 annotation. This working
kernel contains the metaclass Port with the annotation p2, while p1 is ignored since in
A′

yx p1 is attached to SoftComp and in Ayx it is attached to Comp. Thus, p1 represents
information that cannot be automatically translated. Notice that once transforming from
AL1 to AL2 and back, the values of the p1 annotations possibly attached to SoftComp

instances of AL1 are preserved by means of the lost-in-translation mechanism
described in [7].

34 D. Di Ruscio et al.

Formally, let Al and Am be the kernels which AL1 and AL2 are bound to, respec-
tively. Moreover, let TAl

and TAm the types of Al and Am, respectively. To identify the
transformation path between Al and Am that minimizes the loss of information, we
look for the most “specialized” common ancestor Aanc of Al and Am such that:

((TAanc<TAl
)∧(TAanc<TAm))∧(�A′∈A|(TA′<TAl

)∧(TA′<TAm)∧(TAanc<TA′))

To understand if we can build a kernel useful to reduce the loss of information, we
consider the extensions that have been applied from Aanc to Al and from Aanc to Am.
The functions in Def. 4 and Def. 5 are introduced to construct such a kernel.

Definition 4 (extensionApplications). extensionApplications: A × A → 2W is a
function that given as input the kernels Ai∈A and Aj∈A, such that TAj < TAi (i.e.,
Aj is an ancestor of Ai) returns a set containing all the weaving models that have been
applied to Aj for building the kernel Ai.

Definition 5 (usedExtensions). usedExtensions: A × A → 2E is a function that
given as input the kernels Ai∈A and Aj∈A, such that TAj < TAi (i.e., Aj is an ances-
tor of Ai) returns a set containing all the extensions that have been used to extend Aj

for building the kernel Ai.

The transformation path that minimizes the loss of information between Al and Am is
calculated by means of the pathIdentification algorithm shown in the left-hand side
of Figure 5. In particular, pathIdentification gets as input Al and Am and calculates
the common ancestor Aanc (see line 1). Then the next step is to find a kernel that
while transforming can reduce the loss of information. To this purpose the algorithm
checks if there is an intersection between (i) the extensions that have been applied (i.e.,
weaving models) to Aanc to build Al, and (ii) those that have been applied to Aanc

to build Am. The extension applications are calculated in two steps. Firstly, the sets
of weaving models applied to Aanc for building the kernels Al and Am are calculated
(lines 2 and 3, respectively). Secondly, for each set, the union of all the weaving models
is calculated. More precisely wmL and wmM are the weaving models that have been

Aanc

Al

Awork

AL1

Al

AL AL2 AL

 lm

Am A

tr(…)

tr(…) tr(…)

tr(…)

tr(wmwork ,Aanc,E) lm

…

Awork
lm)) tttt

Fig. 5. Working kernel generation

Model-Driven Techniques to Enhance Architectural Languages Interoperability 35

obtained from the union of all the weaving models contained in L and M , respectively
(lines 4 and 5). To understand if we can refine the hierarchy by building a new kernel
that can reduce the loss of information, the intersection between wmL and wmM is
calculated (line 6). If the intersection is empty, then all the information that is common
to Al and Am is already contained into Aanc; consequently, the path that minimizes the
loss of information between Al and Am starts from Al, navigates the hierarchy up to
Aanc, and then navigates the hierarchy down to Am (see line 7).

If the intersection is not empty, then we have to refine the hierarchy as shown in Fig-
ure 5 in order to perform transformations (from AL1 to AL2 and vice versa) via a kernel
more specific than Aanc. In other words, the idea is to extend Aanc with the informa-
tion shared between Al and Am that is not contained in Aanc. The ad-hoc kernel is
called Awork

lm and is automatically generated by using a working weaving model called
wmwork

lm . This wmwork
lm is obtained from the intersection of wmL and wmM (line 9).

As shown in the right-hand side of Figure 5, the weaving model wmwork
lm applies the

working extension E to Aanc then generating Awork
lm (line 11). E is obtained by suitably

merging the extensions that have been used to extend Aanc for building the kernel Al

and those that have been used to extend Aanc for building the kernel Am (line 10). The
merging of extensions is realized by means of the function createWorkingExtension
that considers only the portion of the extensions involved in at least one of the weaving
links in wmwork

lm . createWorkingExtension does not add new conflicts into Awork
lm

since each weaving link added in Awork
lm belongs both to Al and Am; indeed having a

conflict in Awork
lm would imply to have a conflict in both Al and Am. This is not pos-

sible since Property 3 of the extension operators ensures that Al and Am do not have
conflicts (by construction).

It is worth noting that Awork
lm is a working kernel since it is exclusively used for

transformation purposes and we do not allow ALs to be bound to Awork
lm . Finally, as

shown in Figure 5, the path that minimizes the information loss between Al and Am

starts from Al, directly passes through Awork
lm and ends to Am.

4 Case Study and Discussion

In Section 4.1 we present a case study to show how two real ALs can interoperate by
means of the proposed approach. The scale of the considered case study does not allow
us to show all technical aspects of the approach. Thus, we show the most automated
parts, while more complex technicalities are better described by using small examples
as done in Section 3. Then, Section 4.2 discusses issues related to the approach.

4.1 Putting the approach in practice

According to its business needs, an organization decided to draw and analyze the ar-
chitecture of a system in the vehicular domain by using AADL [10] (with its be-
havioral annex), complemented with SaveCCM [15] (helpful to support the develop-
ment of resource-efficient systems and to perform structural preventive analysis). The
case study starts from an already existing kernel hierarchy (see the uppermost part
of Figure 6) composed of three extensions of the root kernel A0, namely Behaviour,
Embedded systems, and Real-time. Due to space limitations, we do not describe the

36 D. Di Ruscio et al.

concepts contained into the extension metamodels. We assume that two ALs are al-
ready bound to the hierarchy: Acme [16] is bound to A0 and Darwin/FSP [17] to the
Behaviour kernel. In order to apply the proposed approach, we need to identify the
suitable kernel on which each AL can be profitably bound. Focusing on SaveCCM,

Fig. 6. SaveCCM and AADL into the hierarchy

it contains both real-time
and embedded systems con-
cepts. A satisfying kernel
does not exist but two ex-
isting kernels, namely the
Embedded systems and the
Real-time, can be suitably
used to obtain a new ker-
nel on which SaveCCM can
be bound. In this example
the kernel can be produced
by reusing both the existing
weaving models wmA0E

and wmA0RT . The ob-
tained kernel, named RT+E,
is shown in Figure 6. This
kernel metamodel is auto-

matically obtained, as explained in Sections 3.1. It is important to note that during this
extension a new weaving model, wmA0RT+E , is automatically generated by compos-
ing wmA0E and wmA0RT . As explained in Section 3.1 this weaving model is extremely
important to support further extensions of the kernel RT+E.

Fig. 7. AADL model of the HCI process

Similarly to SaveCCM,
AADL contains both real-
time and embedded sys-
tems concepts; however,
AADL contains also be-
havioral concepts since we
are considering also its be-
havior annex. In this spe-
cific situation we look for
a candidate kernel with
real-time, embedded sys-
tems, and behavioral con-
cepts. Building on the
kernel RT+E and by con-
sidering also the extension
B, we can build a new
RT+E+B kernel by reusing
both the wmA0B weaving
model already used to ex-
tend A0 with B and the

Model-Driven Techniques to Enhance Architectural Languages Interoperability 37

generated weaving model wmA0RT+E . Once the extension metamodel RT+E+B has
been generated, AADL can be bound to the hierarchy. RT+E+B contains real-time, em-
bedded systems, and behavioral concepts. Finally, suitable model transformations are
generated from each weaving model as described in Sections 3.2. Now that the kernel
hierarchy is ready to be used, we can proceed by modeling the system of interest. It is
a cruise control system, i.e., a system that automatically controls the speed of a vehicle
according to the driver settings [18]. In this paper we focus on the Human Control Inter-
face (HCI) subsystem, which is the front-end to the driver. Figure 7 shows the HCI pro-
cess modeled in AADL. This process is composed of four threads managing the driving
mode (DrivingModeManager), the reference speed (ReferenceSpeedManager), the
buttons panel (DriverConsole), and a console (InstrumentConsole) for special
settings of the system.

In order to transform the AADL model to the corresponding SaveCCM model, the
transformation chain is calculated as described in Sections 3.2. In this case the calcu-
lated path passes through the kernel RT+E that is the most specific common ancestor
of RT+E and RT+E+B. By means of this transformation chain we ensure that both
real-time and embedded system concepts are accurately translated. Therefore, the infor-
mation that is lost while transforming is limited to behavioral concepts or to concepts
specific to AADL; they cannot be translated to SaveCCM even by using an ad-hoc trans-
formation. However, without a systematically defined extension process SaveCCM and
AADL could have been bound to two extensions of A0 with potential but unexpressed
similarities. This may lead to the loss of real-time and embedded system concepts.

Fig. 8. SaveCCM model of the HCI component

Figure 8 shows the model
of the HCI process auto-
matically generated for
SaveCCM. SaveCCM does
not provide specific model-
ing constructs for processes
and threads and then, as can
be seen in the figure, both
processes and threads be-
come components; in par-
ticular the HCI process be-
comes a Composite com-
ponent. This is because the
generic component meta-
class of AADL (which is
a superclass of thread,
process, memory, etc.) is
linked to the component
metaclass of the kernel
RT+E+B, and the SaveCCM

component metaclass is linked to the component metaclass of the kernel RT+E. We
clearly have a loss of information when transforming from AADL to SaveCCM. How-
ever, the generated transformations are instrumented to maintain the information which

38 D. Di Ruscio et al.

is lost so to recover it when transforming back from SaveCCM to AADL. Data, Event,
and EventData ports are linked to the corresponding concepts in RT+E+B, which are
linked in turn with Data, Trigger, and Combined ports of SaveCCM, respectively.
Therefore, the semantics of the modeled ports is maintained when transforming from
AADL to SaveCCM. This is obtained thanks to the kernel hierarchy. Without such a
hierarchy, i.e., by passing directly through A0, we loose the specific information related
to ports since A0 has only the concept of generic port.

4.2 Discussion

In this section we discuss the following aspects: (i) generalization of the approach, (ii)
its scalability, and (iii) overhead added by the kernel hierarchy to the transformation.

Generalization: the overall approach is applied to the software architecture domain
and specifically to ALs. However, the kernel hierarchy and transformation management
can be easily applied to different domains by simply substituting A0 with a different
root kernel metamodel. The definition of the root kernel metamodel is strategic and re-
quires particular attention. Please refer to the discussion section in [19] for more details
about the process we followed for defining A0. Finally, we believe that the proposed ap-
proach could be used as a new “profiling” mechanism able to support the extensibility
mechanisms envisioned by Jacobson and Cook in the UML of the future [20].

Approach Scalability: according to Section 3, a kernel can be extended in several
different ways depending on the specified weaving model. As described in Section 3.2,
some “working” metamodels need to be added to the hierarchy in order to properly
manage the transformations. Thus, from the scalability point of view it is important
to understand the order of magnitude of the hierarchy. As reported in [7] the number
of available architecture description languages is around 50 or 60. An estimation of
the possible extensions is more difficult to be performed but based on the number of
available ALs we are confident that this will not compromise the approach applicability.

Overhead: the kernel hierarchy adds some overhead to the transformations. In order
to quantify this overhead it is important to understand the operations that need to be
performed during the transformations and to identify the operations that are performed
once forever. In Section 3.2 we explained the need of having a working metamodel and
the procedure to build it. This metamodel and related weaving models are created once
forever. Therefore, this cannot be considered as overhead of the transformation from
one AL to another. The overhead that is added to each transformation from one AL to
another is related to the fact that the transformation is actually a chain of transformations
instead of a direct transformation from one AL to another. Assuming a constant time t
for each transformation, the overhead can be quantified as (t×x) − t, where x is the
number of transformations composing the considered chain. In the case study presented
in this work, we used an Intel Pentium D-3.2Ghz, with 4GB DDR-II of RAM, running

Model-Driven Techniques to Enhance Architectural Languages Interoperability 39

Windows 7 Professional. The generation of the transformation chain and its execution
took less than four seconds with a source AADL model consisting of 603 modeling
elements. The experience we had with the case study was encouraging from the point
of view of the efficiency of the overall approach.

5 Related work

State-of-the-art approaches on ALs interoperability have been discussed in Section 2
outlining what is missing and then motivating the proposed approach. In this section
we compare our work with existing work in the area of model-driven engineering.

Over the last years a number of work has been proposed to cope with the prob-
lem of tool integration and interoperability in MDE. Such works can be classified into
Transformation-based approaches and Metamodel integration approaches [21]. The
former approaches, like [22,6], propose the adoption of model transformations which
aim to serve as a bridge between the various tools that have to interoperate. In particular,
model transformations are used to transform data required by heterogeneous tools. Dif-
ferently to our work, such approaches rely on manually written transformations defined
with respect to the notations adopted by the considered tools. Metamodel integration
approaches, like [23], rely on the definition of a common metamodel to establish tool
interoperability. Even though such approaches are similar to our work, they do not pro-
vide mechanisms supporting the extension of the common metamodel.

The problem of interoperability has been tackled also in the context of model-to-
model transformation languages. In [24] the authors propose an approach based on a
Common Intermediate Language to support interoperability between different model
transformation languages. Differently from our approach the authors analyze a set of
well-known transformation languages and identify common characteristics which are
captured in a common metamodel which is not extensible.

In [25] the authors propose an approach based on consistency rules, and bidirec-
tional model transformations to automate the synchronizations of AUTOSAR (Auto-
motive Open System ARchitecture)and SysML (System Modeling Language) model-
sEven though the approach is general and can be applied on any couple of modeling
languages, it differs from our work since the used model transformations which under-
pin the synchronization mechanism are manually written and are not organized in an
extension hierarchy as proposed in this paper.

Going back to the nineties, a family of works have been proposed to exploit a single
formal kernel language to integrate specifications written in different languages. One of
the most prominent work in this family is the one by Jackson and Zave [26] in which Z
is used as a common semantic domain for the composition of partial specifications de-
fined in different languages. The resulting composed specification is then used to check
the consistency of the initial partial specifications. Our goal is quite different since we
consider the kernels hierarchy as an intermediate means for transforming models across
different languages, rather then a way to check their global consistency.

40 D. Di Ruscio et al.

6 Conclusion and Future Work

Approaches to support architectural interoperability typically choose to organize the
different notations in a star topology with an intermediate central pivot. In a context in
which the set of involved notations cannot be a-priori established, the pivot assumes
the form of a small kernel. Since the transformations are always performed through
the small kernel that can be very abstract, important information can be lost during the
transformation. This calls for kernel extensions. This paper proposes a model-driven
approach to (i) build the extensions and organize them in a hierarchy, (ii) realize the
interoperability (through the hierarchy) by means of model transformations, and (iii)
manage the overall hierarchy. The extension is performed through operators that have
properties that ensure the extension confluence.

We realized a prototype automatizing the overall approach: it is a plugin for Eclipse
that allowed us to perform experiments on some systems. As future work we plan to
release the tool as an open source project and to experiment it on industrial case studies.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. John Wiley & Sons (2009)

2. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE TSE 26(1) (2000)

3. Giese, H., Neumann, S., Niggemann, O., Schätz, B.: 2 Model-Based Integration. In:
Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS 2010. LNCS,
vol. 6100, pp. 17–54. Springer, Heidelberg (2010)

4. Q-ImPrESS consortium, http://www.q-impress.eu (last access, September 2011)
5. ATESST2 consortium, http://www.atesst.org/ (last access, September 2011)
6. Sun, Y., Demirezen, Z., Jouault, F., Tairas, R., Gray, J.: A Model Engineering Approach to

Tool Interoperability. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 178–187. Springer, Heidelberg (2009)

7. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing Architectural Lan-
guages and Tools Interoperability through Model Transformation Technologies. IEEE TSE
36(1) (2010)

8. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and performance/relia-
bility models of component-based systems: A model-driven approach. J. Syst. Softw. 80(4),
528–558 (2007)

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the develop-
ment of modular software architecture description languages. TOSEM 14(2) (2005)

10. Feiler, H.P., Lewis, B., Vestal, S.: The SAE Architecture Analysis and Design Language
(AADL) Standard. In: RTAS Workshop on Model-driven Embedded Systems, pp. 1–10
(2003)

11. Bézivin, J.: On the Unification Power of Models. Software and Systems Modeling 4(2),
171–188 (2005)

12. Steel, J., Jézéquel, J.M.: On model typing. Software and System Modeling 6(4), 401–413
(2007)

13. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next
generation ADLs through MDE techniques. ACM/IEEE ICSE 2010, 85–94 (2010)

http://www.q-impress.eu
http://www.atesst.org/

Model-Driven Techniques to Enhance Architectural Languages Interoperability 41

14. Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering 28(5), 449–462 (2002)

15. Kerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkansson, J., Möller, A., Pettersson,
P., Tivoli, M.: The SAVE approach to component-based development of vehicular systems.
Jour. Syst. Softw. 80(5), 655–667 (2007)

16. Garlan, D., Monroe, R., Wile, D.: Acme: An Architecture Description Interchange Language.
In: CASCON 1997, pp. 169–183 (1997)

17. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT Softw. Eng.
Notes 21(6) (1996)

18. Varona-Gomez, R., Villar, E.: Aads+: Aadl simulation including the behavioral annex. In:
Proceedings of the 2010 15th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2010, pp. 379–384. IEEE Computer Society, Washington, DC
(2010)

19. Eramo, R., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: A model-driven ap-
proach to automate the propagation of changes among Architecture Description Languages.
In: Software and Systems Modeling, SoSyM (2010)

20. Jacobson, I., Cook, S.: The Road Ahead for UML (2010),
http://www.drdobbs.com/architecture-and-design/224701702

21. Seifert, M., Wende, C., Assmann, U.: Anticipating unanticipated tool interoperability using
role models. In: Proc. of MDI 2010, pp. 52–60. ACM (2010)

22. Ehrig, K., Taentzer, G., Varró, D.: Tool Integration by Model Transformations based on the
Eclipse Modeling Framework. EASST Newsletter 12 (2006)

23. Baumgart, A.: A common meta-model for the interoperation of tools with heterogeneous
data models. In: Proc. of MDTPI 2010 (2010)

24. Jouault, F., Kurtev, I.: On the interoperability of model-to-model transformation languages.
Sci. Comput. Program. 68(3), 114–137 (2007)

25. Giese, H., Hildebrandt, S., Neumann, S.: Towards integrating sysml and autosar modeling
via bidirectional model synchronization. In: MBEES, pp. 155–164 (2009)

26. Zave, P., Jackson, M.: Conjunction as composition. ACM Trans. Softw. Eng. Methodol. 2,
379–411 (1993)

Appendix: Proof of Theorem 1

Let us assume (ad absurdum) that:

– tr(wmAkxy , Ak,xy) = A′,
– tr(wmAkx,tr(wmAky ,Ak,y),x) = A′′, and
– A′ �=A′′

(the symmetric, i.e., tr(wmAkxy ,Ak,xy) = A′, tr(wmAky , tr(wmAkx, Ak , x), y) =
A′′, and A′ �=A′′ will directly follow). This can happen in four cases:
1. a metaclass C exists in A′ and does not in A′′. This means that C exists in Ak, in x,
or in y. In case C exists in Ak, this implies that the application of wmAkx or wmAky

deletes it. This is absurd for Property 1. In case C exists in x or in y, this implies that
wmAkx or wmAky do not add it during the extension. This is absurd for Property 2.

2. a metaclass C exists in A′′ and does not in A′. In case C exists in Ak, this implies that
wm′ deletes it. This is absurd since the operators that we use in wm′ have to respect
Property 1. In case C exists in xy, this implies that wm′ does not add it during the

http://www.drdobbs.com/architecture-and-design/224701702

42 D. Di Ruscio et al.

extension. This is absurd since wm′ is basically the union of wmAkx and wmAky and
then it respects Property 2.

3. a metaclass C exists both in A′ and A′′ and these two versions differ on some struc-
tural features, i.e., attributes and references. This can be caused exclusively due to dele-
tion or conflicting additions performed by either wmAkx and wmAky or wm′. This is
absurd since Property 1 forbids the deletion and Property 3 prevents conflicts.

4. a metaclass C exists both in A′ and A′′ and these two versions differ on some parent.
This can be caused by different applications of the inherit operator. This leads to an
absurd since: i) a weaving model cannot delete a class parent for Property 1, ii) the
sequential application of wmAkx and wmAky cannot add class parents in a different
way from wm′ (wm′ is the union of wmAkx and wmAky and its existence ensures that
Property 3 is satisfied).

Moving from Specifications to Contracts
in Component-Based Design�

Sebastian S. Bauer1, Alexandre David2, Rolf Hennicker1,
Kim Guldstrand Larsen2, Axel Legay2,3,
Ulrik Nyman2, and Andrzej Wąsowski4

1 Ludwig-Maximilians-Universität München, Germany
2 Computer Science Department, Aalborg University, Denmark

3 INRIA/IRISA, Rennes Cedex, France
4 IT University of Copenhagen, Denmark

Abstract. We study the relation between specifications of component
behaviors and contracts providing means to specify assumptions on en-
vironments as well as component guarantees. We show how a contract
framework can be built in a generic way on top of any specification theory
which supports composition and specification refinement. Our contract
framework lifts refinement to the level of contracts and proposes a notion
of contract composition on the basis of dominating contracts. Contract
composition satisfies a universal property and can be constructively de-
fined if the underlying specification theory is complete, i.e. it offers op-
erators for quotienting and conjoining specifications. We illustrate our
generic construction of contracts by moving a specification theory for
modal transition systems to contracts and we show that a (previously
proposed) trace-based contract theory is an instance of our framework.

1 Introduction

Over the years we have seen a remarkable growth of complexity and size of
software systems. This growth has been possible due to rapid development in
hardware and software technology. Development of software today uses strong
abstraction and encapsulation principles, that allows componentizing systems
into comprehensible units.
This rapid growth of size and complexity of systems has inspired intensive

research into component-oriented design and analysis methods for software. In
the domain of safety critical concurrent software a number of interface theo-
ries have been proposed to this end, starting with the seminal work of Alfaro
and Henzinger [2] devoted to tracking communication errors in discrete systems,
followed by numerous extensions addressing other errors, or other forms of ab-
straction [1,16,17]. These include abstract specification of discrete finite-state
systems exploiting may/must modalities [18,20,21,23,26,33,34,36], specification

� Work partially supported by MT-LAB (a VKR Centre of Excellence), by an “Action
de Recherche Collaborative” ARC (TP)I, and by the EU project ASCENS, 257414.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 43–58, 2012.
� Springer-Verlag Berlin Heidelberg 2012

44 S.S. Bauer et al.

of systems manipulating complex data [4,8,35], specification of real-time embed-
ded systems and real-time communication protocols [3,11,14,24], specification
of randomized and probabilistic systems [12], and modeling of resource usage
[6,13]. This proliferation of results is both positive and negative. Positive since
it is a sign of fast progress in the field. Negative, because many works appear
similar, yet it is difficult to compare them.
We attempt to develop a synthesis of the existing work in a uniform com-

mon framework. Altogether these theories have led to a shared understanding
of what are the main ingredients of a mature specification theory for behav-
ioral components; namely notions of satisfaction and refinement, together with
composition operators such as conjunction, parallel compositions, and quotients.
Nevertheless, despite this agreement, and despite the algebraic similarity of many
specification theories, no uniform meta-theory exists that would formalize the
abstract structure to enable better comparability of work, and reuse of results,
channeling proliferation into higher quality and impact.
Independently, a number of contract theories, based on assume-guarantee

(AG) reasoning have been developed, with a similar aim of approaching the
compositional design. Contract theories differ from specification theories in that
they strictly follow the principle of separation of concerns. They separate the
specification of assumptions from specification of guarantees, a choice largely in-
spired by early ideas on manual proof methods of Misra, Chandy [30] and Jones
[22], along with the wide acceptance to pre-/post-condition style of specification
in programming [29]. Contract theories exist for discrete systems [10,25,31] and
probabilistic systems [15,37].
Even though the specification theory, and the contract theory research have

similar objectives, it is not clear so far what the two approaches offer with respect
to each other, and whether their development is making the others complemen-
tary, or superfluous. So our second goal is to understand not only the essential
structure of specification theories, but also their relation to contract theories. All
in all we set off to organize (somewhat) the field of compositional specification
for behavioral components.
We define contracts as pairs, (A,G), where A is a specification of assumptions,

and G is a specification of guarantees. This leads us to our hypothesis that most
specification theories should have enough structure to be used as a basis of an
associated contract theory with explicit assumptions and guarantees. Dually, we
observe that contract theories tend to degenerate to specification theories in the
following simple manner: a specification G is describing the same models as a
contract (tt, G) — so a contract without any assumption. Thus any reasonably
complete contract theory can be used as a specification theory.
We make this intuition formal by developing a meta-theory of specifications

and contracts. First, in Sect. 2, we propose a simple and general axiomatiza-
tion of specification theories, able to capture the algebraic structure of most of
the current specification theories (some frameworks require small adaptation,
because not all of them have been originally developed with a complete set of
operators in mind). Second, we demonstrate in Sect. 3 how a contract framework

Moving from Specifications to Contracts in Component-Based Design 45

can be derived from a specification theory, using our abstract constructions. As a
result we are able to instantiate “for free” a contract theory with good properties
of contracts from any specification theory fulfilling our axioms.
Any such derived contract theory is automatically equipped with:

– An implementation and an environment semantics reflecting the set of inter-
faces and environments that satisfy the guarantees and assumptions of the
contract, respectively.
– A refinement relation that allows to compare contracts in terms of sets of
implementations and legal environments.
– A structural composition, which encapsulates contracts for two communi-
cating components into one contract for the composition of the two.

These results follow automatically as soon as the specification theory is equipped
with parallel composition, conjunction, and a quotient of parallel composition.
A number of specification theories have been proposed recently that satisfy our
assumptions. In the course of this paper, we illustrate our general constructions
by moving two specification theories to two contract theories: a simple trace-
based specification theory, in which specifications are represented as sets of runs
or traces (inspired by Benveniste et al. [10]), and as a more detailed example,
we use modal specifications [32] in Sect. 4 to derive so-called modal contracts.
All proofs can be found in [5].
We would like to stress that there are many other specification theories that

fit into our framework, for instance, timed specifications [11], which allow us to
derive “for free” a contract theory for timed systems, which has not yet been
proposed in the literature.

2 Specification Theories

In our study the abstract concept of a specification theory defines rudimentary
properties that should be satisfied by any formal framework for component be-
havior specifications. Given a class S of specifications, a specification theory
includes a composition operator ⊗ to combine specifications to larger ones.1
Additionally, a specification theory must offer a refinement relation ≤ to relate
“concrete” and “abstract” specifications, i.e. S ≤ T means that S refines T . To
obtain a specification theory, refinement must be compositional in the sense that
it must be preserved by the composition operator.
Formally, a specification theory is a triple (S ,⊗,≤) consisting of a class S of

specifications, a parallel composition operator ⊗ : S ×S → S and a reflexive
and transitive refinement relation ≤ ⊆ S ×S , such that for all S, S′, T, T ′ ∈ S ,

whenever S′ ≤ S and T ′ ≤ T , then S′ ⊗ T ′ ≤ S ⊗ T . (A1)

1 The composition operator is, in general, partial since it is not always syntactically
meaningful to compose specifications, due to syntactic constraints. In this work,
however, to avoid a lot of technicalities, we will restrict ourselves to total composition
operators – though the theory is easily extendable to partial composition operators.

46 S.S. Bauer et al.

The refinement relation induces an equivalence relation= on specifications, by
S = T if and only if S ≤ T and T ≤ S. The composition operator is commutative
and associative with respect to this equivalence relation.
Obviously, in a top-down design, the requirements for a specification theory

support independent development of components. To a certain extent a specifi-
cation theory supports also bottom-up design, where existing components can
be reused as parts of a larger system architecture, as long as local refinements
are correct and local specifications fit into the context.
Specification theories sometimes come along with an operator /, called quo-

tient, which is dual to parallel composition and which allows to synthesize spec-
ifications: When given a requirement specification T of the overall system and a
smaller specification S, then the quotient T/S is the most general specification
such that S⊗(T/S) ≤ T . Formally, quotient is a partial operator / : S×S ↪→ S
that satisfies

T/S defined if and only if ∃X ∈ S : S ⊗X ≤ T. (A2)

If T/S defined, then S ⊗ (T/S) ≤ T . (A3)

If T/S defined, then ∀X ∈ S : S ⊗X ≤ T =⇒ X ≤ T/S. (A4)

When two separate teams independently develop specifications that are intended
to be realized by the same component, then it is useful to have a conjunc-
tion operator ∧ that computes the most general specification that realizes both
specifications (if this is possible). Formally, conjunction is a partial operator
∧ : S ×S ↪→ S such that

S ∧ T defined if and only if ∃X ∈ S : X ≤ S and X ≤ T. (A5)

If S ∧ T defined, then S ∧ T ≤ S and S ∧ T ≤ T . (A6)

If S ∧ T defined, then ∀X ∈ S : X ≤ S and X ≤ T =⇒ X ≤ S ∧ T . (A7)

When a specification theory supports quotient as well as conjunction, then we
call it a complete specification theory.

Example 1. As our running example we revisit the contract framework of Ben-
veniste et al. [10], for two reasons: first, it uses a simple trace-based language to
represent behavior of components, and specification operators boil down to sim-
ple set operations which we believe helps to understand the abstract requirements
of specification theories; second, we will show that in fact our general construc-
tions applied to this trace-based specification theory exactly results in the contract
framework (in a simplified version) described in [10].
In this simple theory, a global set P of ports is assumed over which components

can communicate by reading and writing port values. The class of specifications
consists of all (possibly empty) subsets of R(P) which is the set of all runs over
P where each run assigns a history of values to the ports in P. For example, a
run could be a function ρ : R≥0 → (P → V) from the time domain R≥0 to a
valuation P→ V of the ports, for some value set V.
In this setting, refinement is simply defined by set inclusion, composition and

conjunction is intersection (they are the same since we are dealing with a single

Moving from Specifications to Contracts in Component-Based Design 47

global signature). Note that conjunction is total, as the empty set is also a spec-
ification. For any two specifications T and S, the dual operation to composition,
quotient, is defined by T/S =def T ∪ ¬S, where ¬A =def R(P) \ A. Notice that
indeed quotient is the maximal specification X such that S composed with X
refines T , i.e. S ∩X ⊆ T .
In the following we will see that if we apply the general constructions of our

contract framework to the trace-based case we will obtain the contract framework
of Benveniste et al. [10].

3 Building a Contract Framework

For the development of our abstract contract framework, we assume to be given
a specification theory (S ,⊗,≤) as defined in the previous section.

3.1 Contracts and Their Semantics

On top of the specification theory we define a notion of a contract which explicitly
distinguishes between assumption and guarantee specifications.

Definition 1. A contract is a pair (A,G) where A,G ∈ S are two specifications.

In a contract (A,G), the specification A expresses the assumption on the environ-
ment of the component, whereas the specification G describes the guarantee of
any component implementation to the environment given that the environment
respects the assumption A. For the definition of implementation correctness,
we use a notion of relativized refinement which is derived from the refinement
relation of the underlying specification theory.

Definition 2. Relativized refinement is the ternary relation in S × S × S
defined as follows: for all S,E, T ∈ S ,

S ≤E T if and only if ∀E′ ∈ S : E′ ≤ E =⇒ S ⊗ E′ ≤ T ⊗ E′.

S ≤E T intuitively means that S refines T if both are put in any context E′

that refines E; in particular, S ⊗ E ≤ T ⊗ E. The following lemma summarizes
properties of relativized refinement that are easy consequences of the definition.

Lemma 1. Relativized refinement is a preorder, and for all S,E,E′, T ∈ S ,
whenever S ≤E T and E′ ≤ E then S ≤E′ T .

The implementation semantics of a contract (A,G) is given by the set of all
specifications that satisfy the contract guarantee G under the assumption A:

�C�impl = {I ∈ S | I ≤A G}.

This is a significant generalization of pure specification theories where it is usu-
ally assumed that implementations must literally satisfy the specification. The

48 S.S. Bauer et al.

environment semantics of the contract (A,G) consists of all (environment) spec-
ifications for (or users of) the component satisfying the assumption A of the
contract:

�C�env = {E ∈ S | E ≤ A}.
In summary, the semantics of a contract is given by both implementation se-
mantics and environment semantics. Two contracts are semantically equivalent,
if they have the same (implementation and environment) semantics.

Example 2. In our trace-based example the relativized refinement S ≤E T can
be easily shown to be equivalent to S∩E ⊆ T ; note that all specifications describe
sets of runs over the same global set of ports P.

Our first result is a direct consequence of the definition of a contract and contract
semantics: Whenever one has a correct environment and a correct implementa-
tion of a contract, then their composition is a refinement of the composition of
assumption and guarantee of the contract.

Theorem 1. Let C = (A,G) be a contract. For all E, I ∈ S , if E ∈ �C�env
and I ∈ �C�impl then E ⊗ I ≤ A⊗G.

The implementation semantics of a contract in general depends on both the
assumption A and the guarantee G. However, if the implementation semantics
of (A,G) is independent of the assumption A, we say that the contract (A,G)
is in normal form.

Definition 3. A contract C = (A,G) is in normal form if for all specifications
I ∈ S , I ≤A G if and only if I ≤ G.

It may be the case that a contract (A,G) can by transformed into a semanti-
cally equivalent contract (A,Gnf) in normal form by weakening of G to Gnf . In
the examples considered here the underlying specification theories are powerful
enough to allow such a weakening for any contract (A,G).

Example 3. For a contract (A,G) in our trace-based example, a semantically
equivalent contract in normal form (see [10]) is given by (A,G ∪ ¬A). It is
indeed in normal form according to our definition since for any specification I,
I ∩ A ⊆ G if and only if I ⊆ G ∪ ¬A.

3.2 Refinement of Contracts

Next, we turn to the question how contracts can be refined. We follow here
a standard approach inspired by notions of behavioral subtyping [28] that a
contract C′ refines another contract C if C′ admits less implementations than
C, but more legal environments than C.

Definition 4. Let C and C′ be two contracts. The contract C′ refines the con-
tract C (is stronger than C), written C′ � C, if �C′�impl ⊆ �C�impl and �C′�env ⊇�C�env.

Moving from Specifications to Contracts in Component-Based Design 49

The refinement relation between contracts is reflexive and transitive. Obviously,
two contracts C, C′ are semantically equivalent if and only if C′ � C and C � C′.
The following theorem characterizes contract refinement by contra-/covariant
(relativized) refinement of corresponding assumptions and guarantees.

Theorem 2. Let (A,G) and (A′, G′) be two contracts. Then (A′, G′) � (A,G)
if and only if A ≤ A′ and G′ ≤A G.

An immediate consequence is that whenever two contracts (A,G), (A′, G′) are
in normal form, then (A′, G′) � (A,G) if and only if A ≤ A′ and G′ ≤ G.

Example 4. Refinement of contracts (A,G) by (A′, G′) is called dominance in
[10] (not to be mixed up with our notion of dominance later on), and is defined
by A ⊆ A′ and G′ ⊆ G which matches our definition of contract refinement
if contracts are in normal form. For the other cases we have achieved a more
thorough (weaker) definition of refinement which we would suggest to use for the
trace-based approach as well.

3.3 Composition of Contracts

When implementations I1 and I2 of individual components are composed, their
composition is only semantically meaningful if the contracts, say C1, C2, of the
single components fit together. This mean that there exists a ‘larger’ contract
C which subsumes C1 and C2 such that (1) the composition I1 ⊗ I2 is a correct
implementation of C, and (2) each correct environment of C controls the single
implementations in such a way that they mutually satisfy the assumptions of
the single contracts. Inspired by [31] we call such a contract C a dominating
contract for C1 and C2.

Definition 5. Let C, C1, and C2 be contracts. C dominates C1 and C2 if the
following two conditions are satisfied:

1. Any composition of correct implementations of C1 and C2 results in a correct
implementation of the contract C:
– ∀I1 ∈ �C1�impl : ∀I2 ∈ �C2�impl : I1 ⊗ I2 ∈ �C�impl

2. For any correct environment of the contract C1, the composition with a cor-
rect implementation of the C1 (C2) results in a correct environment of C2

(C1). Formally, for all E ∈ �C�env,
– ∀I1 ∈ �C1�impl : E ⊗ I1 ∈ �C2�env,
– ∀I2 ∈ �C2�impl : E ⊗ I2 ∈ �C1�env.

We say that two contracts C1, C2 are dominatible if there exists a contract C
dominating C1, C2.

A composition of two contracts C1 and C2 is a strongest dominating contract
for C1 and C2.

Definition 6. A contract C is called contract composition of the contracts C1

and C2 if

1. C dominates C1 and C2,
2. for all contracts C′, if C′ dominates C1 and C2 then C � C′.

50 S.S. Bauer et al.

Contract compositions, if they exist, are unique up to semantic equivalence of
contracts. We will now turn to the questions (1) whether two contracts are
dominatible and (2) whether the composition of two contracts exists and, if so,
whether it can be constructively defined. For this purpose we generally assume in
the following that any contract has a normal form, i.e. for any C = (A,G) there
exists a semantically equivalent contract Cnf = (Anf , Gnf) which is in normal
form. Due to the definition of environment semantics, without loss of generality,
we can always assume in the following that Anf = A.
We consider first question (1), for which the following lemma is useful. It

follows directly from the definition of a dominating contract.

Lemma 2. Two contracts C1 and C2 are dominatible if and only if their normal
forms Cnf

1 and C
nf
2 are dominatible.

The next theorem provides a characterization of dominatability. The idea is
that there must be an environment under which implementations of the single
contracts can be adapted to meet each others assumptions.

Theorem 3. Let C1 = (A1, G1) and C2 = (A2, G2) be two contracts with nor-
mal forms Cnf

1 = (A1, G
nf
1) and Cnf

2 = (A2, G
nf
2) respectively. C1 and C2 are

dominatible if and only if ∃E ∈ S : Gnf
1 ⊗ E ≤ A2 and G

nf
2 ⊗ E ≤ A1.

We now turn to question (2) from above. For this we assume from now on a
complete specification theory (recall that such a theory has quotient and con-
junction) over which contracts are constructed.

Definition 7. Let C1 = (A1, G1) and C2 = (A2, G2) be two contracts with
normal forms Cnf

1 = (A1, G
nf
1) and Cnf

2 = (A2, G
nf
2) respectively. C1 � C2 is

defined if and only if C1 and C2 are dominatible and then

C1 � C2 =def ((A1/G
nf
2) ∧ (A2/G

nf
1), Gnf

1 ⊗Gnf
2).

Note that, by Lemma 2, C1 � C2 is semantically equivalent to C
nf
1 � Cnf

2 . The
next lemma shows that C1 � C2 is indeed well-defined.

Lemma 3. Let C1 and C2 be two contracts with normal forms as in Def. 7.
(A1/G

nf
2) ∧ (A2/G

nf
1) is defined if and only if ∃E ∈ S : Gnf

1 ⊗ E ≤ A2 and
Gnf

2 ⊗ E ≤ A1, if and only if C1 and C2 are dominatible.

The next theorem answers question (2) from above.

Theorem 4. If the contracts C1 and C2 are dominatible, then C1 � C2 is (up
to semantic equivalence) the composition of C1 and C2.

The next statements deal with the relationship between contract composition
and contract refinement. First, dominance is preserved under refinement of in-
dividual contracts.

Theorem 5. Let C1, C
′
1, C2, C

′
2, C be contracts such that C

′
1 � C1 and C′

2 � C2.
If C dominates C1 and C2, then C dominates also C′

1 and C
′
2.

Moving from Specifications to Contracts in Component-Based Design 51

Second, contract refinement is preserved under contract composition, thus our
contract framework satisfies itself the requirements of a specification theory of
Sect. 2 if we admit partial composition (which has been disregarded in Sect. 2
just for reasons of simplicity).

Theorem 6. Let C1, C2, D1, D2 be contracts such that C1 and C2 are dominat-
ible. If D1 � C1 and D2 � C2 then Dnf

1 �Dnf
2 � Cnf

1 � Cnf
2 .

Example 5. In [10], contract composition is defined by

(A1, G1)� (A2, G2) = ((A1 ∩ A2) ∪ ¬(G1 ∩G2), G1 ∩G2).

Note that the assumption can be reformulated to (A1∪¬G1∪¬G2)∩ (A2∪¬G1∪
¬G2), and since the contracts (A1, G1) and (A2, G2) are in normal form we have
A1 ∪ ¬G1 = A1 and A2 ∪ ¬G2 = A2. Hence we get (A1 ∪ ¬G2) ∩ (A2 ∪ ¬G1) as
assumption which, all in all, exactly matches our definition of � for contracts.

4 Modal Contracts

To illustrate our general constructions for moving from a specification theory
to contracts, we consider a well-established specification theory based on modal
transition systems that has gained considerable interest in recent years, as it
nicely supports loose specifications together with stepwise refinement. Modal
transition systems [27] are labeled transition systems with two types of transition
relations: may transitions model optional (allowed) behavior that need not be
implemented in a refinement, and must transitions model required behavior.
In [32] a complete specification theory for modal specifications (which correspond
to deterministic modal transition systems) has been defined, which allows us to
getmodal contracts for free. Modal contracts have been defined already in [19,31]
and we will comment on the differences in the next section.
We briefly sketch the specification theory for modal specifications, for a thor-

ough introduction see [32]. A modal specification (MS) is formally defined as
a tuple S = (St , s0, Σ, ��	,−→) where St is the set of states, s0 ∈ St is the
initial state, Σ is the set of actions, and ��	,−→ ⊆ St × Σ × St are the may
and must transition relation, respectively, such that −→ ⊆ ��	. Any MS is re-
quired to be deterministic: for all states s, s′, s′′ ∈ St and all actions α ∈ Σ, if
(s, α, s′), (s, α, s′′) ∈ ��	 then s′ = s′′. In the following, we usually write s

α��	 s′
for (s, α, s′) ∈ ��	, and similarly for must transitions.
We consider a simple component-based system consisting of two components:

component Server with contract (AServer , GServer) over the action set ΣServer =
{msg, secret msg, auth, send} (i.e. both AServer , GServer have the set of actions
ΣServer), and a component User with contract (AUser , GUser) over set of actions
ΣUser = {auth, send}. The two contracts can be seen in Fig. 1(a)–(d). May
transitions are drawn with dashed arrows, and must transitions with solid arrows.
May transitions underlying must transitions are not drawn for simplicity.
The contract (AServer , GServer) intuitively expresses the following protocol:

First, the environment can issue a message (msg) that is then sent by the server

52 S.S. Bauer et al.

to the user (send). Second, the environment can also issue a secret message
(secret msg), that is only sent to the user if the server receives an authentication
code from the user (auth). More precisely, the assumption AServer formulates
the following requirements on the environment:

– The authentication code may always be received.
– New messages (secret or not) are only allowed to be sent in the initial state.
– Once a message is received, the environment must be ready to accept the
sending of the server.
– Once a secret message is received, the authentication code must be received.

The contract (AUser , GUser) for the user component is simpler: The guarantee is
that the messages can always be received from the server, however, the sending
of the authentication code may not be possible. The assumption AUser always
allows the actions auth and send, without any specific order.

(a) AUser (b) GUser (c) AServer

(d) GServer (e) Gnf
Server

(f) ASystem (g) GSystem

Fig. 1. Modal contracts for a simple message system

Before we discuss how these two modal contracts are composed, we first have
to discuss the underlying specification theory, so refinement together with all
the specification operators for MS. Refinement of MS is defined as follows: an
MS S refines another MS T , written S ≤m T , if they have the same set of ac-
tions Σ and if there exists a relation R ⊆ StS×StT such that (s0, t0) ∈ R and for

Moving from Specifications to Contracts in Component-Based Design 53

all (s, t) ∈ R and all α ∈ Σ, whenever s
α��	 s′ then there exists t

α��	 t′ and
(s′, t′) ∈ R, and whenever t α−→ t′ then there exists s α−→ s′ and (s′, t′) ∈ R. For
instance, in Fig. 1, GUser is a refinement of AUser , i.e. GUser ≤m AUser .

⊗ s2
α−→ s′2 s2

α��	 s′2
s1

α−→ s′1 (s1, s2)
α−→ (s′1, s

′
2) (s1, s2)

α��	 (s′1, s′2)
s1

α��	 s′1 (s1, s2)
α��	 (s′1, s′2) (s1, s2)

α��	 (s′1, s′2)

/ s2
α−→ s′2 s2

α��	 s′2, s2 	
α−→ s2 	

α��	
s1

α−→ s′1 (s1, s2)
α−→ (s′1, s

′
2) (s1, s2) ∈ � (s1, s2) ∈ �

s1
α��	 s′1 (s1, s2)

α��	 (s′1, s′2) (s1, s2)
α��	 (s′1, s′2) (s1, s2)

α��	 u
s1 	

α��	 (s1, s2)
α��	 u

∧ s2
α−→ s′2 s2

α��	 s′2 s2 	
α��	

s1
α−→ s′1 (s1, s2)

α−→ (s′1, s′2) (s1, s2)
α−→ (s′1, s′2) (s1, s2) ∈ �

s1
α��	 s′1 (s1, s2)

α−→ (s′1, s
′
2) (s1, s2)

α��	 (s′1, s′2)
s1 	

α��	 (s1, s2) ∈ �

Fig. 2. Transition relations for the specification operators ⊗, /, ∧ on MS

The specification operators composition, quotient and conjunction are de-
scribed hereafter and we assume that the involved MS always have the same set
of actions. Composition of MS (⊗) is defined by synchronizing on shared actions.
The rules of ⊗ for MS can be seen in Fig. 2; note that only the synchronization
of two must transition yields a must transition, in all other cases it yields a may
transition.2

The two missing operators quotient and conjunction need some more involved
definition, because both are partial operators. During quotient as well as con-
junction, inconsistencies may arise, however, that does not mean that the whole
result is inconsistent; we instead apply a pruning operator ρ to remove all those
inconsistent states. More precisely, given an MS S with a set of inconsistent
states � ⊆ St , the pruned version ρ(S) gives the largest MS which refines S but
no state of ρ(S) is related (in the sense of refinement) to an inconsistent state
in �. The formal definition of pruning can be found in [32].
With pruning at hand, we can define quotient S1/S2 (as the dual operator to

composition) and conjunction S1 ∧ S2, as shown in Fig. 2. The set � models in
both cases the set of inconsistent states, and in the definition of quotient, the
state u is a new universal state in which, for every action, there is a looping may
transition to the same state u.

2 The notation s � α��� means that there does not exist s′ such that s α��� s′, and similar
for must transitions.

54 S.S. Bauer et al.

For writing down contracts based on MS, it is useful to be able to handle
dissimilar set of actions when applying specification operators, see [32]. Given
an MS S over the set of actions Σ, and a larger set of actions Σ′ ⊇ Σ,

– the strong extension of S, written S↑Σ′ , adds for each new action a ∈ Σ′ \Σ
a may and a must loop with that action to all states in S.
– Similar, the weak extension of S, written S⇑Σ′ , adds for each new action
(only) a may loop (for all new actions) to all states.

The specification operators are, for the general case, extended to MS with dis-
similar sets of actions as follows. If S and T are two MS with sets of actions ΣS

and ΣT , respectively, and Σ = ΣS ∪ ΣT , then S ⊗ T is defined by S↑Σ ⊗ T↑Σ ,
S ∧ T is defined by S⇑Σ ∧ T⇑Σ , and T/S is defined by T⇑Σ/S↑Σ.
Relativized refinement (see Def. 2), induced by modal refinement, can be

shown to be equivalent with the following direct definition: If S, T,E are MS
over the same set of actions Σ, then S ≤E T if and only if there exists a
relation R ⊆ StS × StE × StT such that (s0, e0, t0) ∈ R, and for all (s, e, t) ∈ R,
all α ∈ Σ,

1. if s
α��	 s′ and e α��	 e′ then there exists t α��	 t′ such that (s′, e′, t′) ∈ R,

2. if t α−→ t′ and e
α��	 e′ then there exists s α−→ s′ such that (s′, e′, t′) ∈ R.

Every modal contract can be transformed to an equivalent contract in normal
form, by weakening the guarantee by the assumption. It turns out that there is
a direct definition of a so-called weakening operator, that exactly does what we
are looking for: I ≤A G if and only if I ≤ A	G, where A	G is the weakening of
G by A. Formally, if A and G are two MS over the same set of actions Σ, then
A	G is defined to be the MS ((StA×StG)∪{u}, (a0, g0), Σ, ��	,−→) where u is
a fresh state (the universal state), and where the transition relations are defined
as shown in the table in Fig. 3.

	 g
α−→ g′ g

α��	 g′ g 	 α��	
a

α��	 a′ (a, g)
α−→ (a′, g′) (a, g)

α��	 (a′, g′)
a 	 α��	 (a, g)

α��	 u (a, g)
α��	 u (a, g)

α��	 u

Fig. 3. Rules for weakening (�)

Coming back to the example, the contract (AServer , GServer) is obviously not
in normal form, but with the weakening operator at hand, we can transform
the contract to the semantically equivalent contract (AServer , G

nf
Server) where

Gnf
Server =def AServer 	GServer , see Fig. 1(e). As one can see, the normalized con-
tract has lots of additional transitions, and it is often better to draw non-normal
form contracts which are usually considerably smaller. Note that (AUser , GUser)
is already in normal form.

Moving from Specifications to Contracts in Component-Based Design 55

We can finally compose our two contracts. As the watchful reader might have
already noticed, AServer is expecting the user to answer in any case with the
authentication code once a secret message is received. But GUser does not pro-
vide the authentication code because it may be the case that he/she is not
aware of the code. Thus we have an inconsistency arising here, and as a re-
sult of applying quotient and conjunction while building the new (weakest) as-
sumption ASystem = (AServer/GUser) ∧ (AUser/G

nf
Server), one can see in Fig. 1

that – as expected – the environment is not allowed to issue a secret message
anymore. The resulting guarantee GSystem of the composed contract has been
slightly simplified by leaving out some may transitions to a universal state (as
in GServer) but the overall contract (ASystem , GSystem) is obviously semantically
equivalent to (ASystem , Gnf

Server⊗GUser).3 Our theory in Sect. 3 now tells us that
(ASystem , GSystem) is indeed the strongest contract that dominates the contract
of the server and the user.

5 Conclusion, Related Work, and Future Work

This paper studies the relationship between specifications of component behav-
iors and contracts. The general framework for contracts is inspired by the work
of Benveniste et al. [10]. They have chosen a trace-based approach to represent
interfaces which (as we have shown) is a specification theory and an instance
of our proposed abstract contract framework. The idea to equip a specification
with implementation and environment semantics has been used by the authors
already in [7] where UML protocol state machines were considered as specifica-
tions of component interfaces.
Modal contracts have already been introduced and investigated in several

previous works, including [19,31]. Raclet and Goessler [19] propose an imple-
mentation semantics that is slightly different to ours. In their paper, an imple-
mentation I satisfies a contract (A,G) if A∧ I ≤m G whenever A∧ I is defined,
which is in fact equivalent to our definition of contract satisfaction, but only for
implementations (that are modal specifications where the must and may tran-
sition relations coincide). Our satisfaction relation is more powerful as it works
for arbitrary modal specifications. Refinement and composition is only syntac-
tically defined, without any semantic considerations as we do it in this paper,
hence they lack the universal property for contract compositions. In [31], Quin-
ton and Graf define an abstract framework of contracts which however tends to
be technically overloaded due to the integration of complex composition opera-
tors. Besides this difference, the satisfaction relation of contracts is the same as
in our work. Our notion of (semantic) dominance is inspired by their (syntacti-
cal) definition, but still their work lacks of a careful discussion about dominance
and the universal property of contract composition. In summary, in comparison

3 This “inverse” operation to normalizing contracts is in fact useful when drawing
larger specifications, and can be automatically applied to a (composed) contract to
reduce its number of states and transitions while remaining semantically equivalent.

56 S.S. Bauer et al.

to both works [19,31], we consider our work as “more semantical” as implemen-
tation and environment semantics of contracts are carefully taken into account
for the definition of contracts and contract operators.
There are various directions for future work. As an example, we have simplified

our setup in this work by ignoring compatibility and consistency issues between
interfaces, although we are convinced that they can be integrated without prob-
lems. Another major objective is to implement our modal contract theory in the
MIO Workbench [9].

References

1. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE, pp. 109–120. ACM
Press (2001)

3. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed Interfaces. In:
Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491,
pp. 108–122. Springer, Heidelberg (2002)

4. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable In-
terfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–105.
Springer, Heidelberg (2005)

5. Bauer, S.S., David, A., Hennicker, R., Larsen, K.G., Legay, A., Nyman, U., Wa-
sowski, A.: Moving from specifications to contracts in component-based design.
Tech. Rep. 1201, LMU Munich, Germany (January 2012)

6. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.:
Quantitative Refinement for Weighted Modal Transition Systems. In: Murlak, F.,
Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg
(2011)

7. Bauer, S.S., Hennicker, R.: Views on Behaviour Protocols and Their Semantic
Foundation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS,
vol. 5728, pp. 367–382. Springer, Heidelberg (2009)

8. Bauer, S.S., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: A Modal Spec-
ification Theory for Components with Data. In: FACS 2011. LNCS. Springer,
Heidelberg (2011)

9. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On Weak Modal Compati-
bility, Refinement, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.)
TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

10. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple Viewpoint Contract-Based Specification and Design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

11. Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.-B.: A Compositional Approach
on Modal Specifications for Timed Systems. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 679–697. Springer, Heidelberg (2009)

12. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

13. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

Moving from Specifications to Contracts in Component-Based Design 57

14. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: HSCC,
pp. 91–100. ACM (2010)

15. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional
reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects. Formal Methods in System Design 38(1), 1–32 (2011)

16. Doyen, L., Henzinger, T.A., Jobstman, B., Petrov, T.: Interface theories with com-
ponent reuse. In: EMSOFT, pp. 79–88. ACM Press (2008)

17. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-Guarantee Verification
for Interface Automata. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 116–131. Springer, Heidelberg (2008)

18. Godefroid, P., Jagadeesan, R.: On the Expressiveness of 3-Valued Models. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 206–222. Springer, Heidelberg (2002)

19. Goessler, G., Raclet, J.B.: Modal contracts for component-based design. In: SEFM,
pp. 295–303. IEEE Computer Society (2009)

20. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t Know in the μ-Calculus.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer,
Heidelberg (2005)

21. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal Transition Systems: A Founda-
tion for Three-Valued Program Analysis. In: Sands, D. (ed.) ESOP 2001. LNCS,
vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

22. Jones, C.B.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University Computing Laboratory (1981)

23. Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

24. Larsen, K.G., Legay, A., Traonouez, L.-M., Wąsowski, A.: Robust Specification of
Real Time Components. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011.
LNCS, vol. 6919, pp. 129–144. Springer, Heidelberg (2011)

25. Larsen, K.G., Nyman, U., Wąsowski, A.: Interface Input/Output Automata. In:
Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006)

26. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 64–79. Springer, Heidelberg (2007)

27. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS. IEEE Computer
Society (1988)

28. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

29. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)
30. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Software
Eng. 7(4), 417–426 (1981)

31. Quinton, S., Graf, S.: Contract-based verification of hierarchical systems of com-
ponents. In: SEFM, pp. 377–381. IEEE Computer Society (2008)

32. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundam. Inform. 108(1-2),
119–149 (2011)

33. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD, pp. 119–127. IEEE Computer
Society (2009)

58 S.S. Bauer et al.

34. Sassolas, M., Chechik, M., Uchitel, S.: Exploring inconsistencies between modal
transition systems. Software and System Modeling 10(1), 117–142 (2011)

35. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14 (2011)

36. Wei, O., Gurfinkel, A., Chechik, M.: Mixed Transition Systems Revisited. In: Jones,
N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 349–365. Springer,
Heidelberg (2009)

37. Xu, D.N., Gössler, G., Girault, A.: Probabilistic Contracts for Component-Based
Design. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 325–340. Springer, Heidelberg (2010)

The SynchAADL2Maude Tool

Kyungmin Bae1, Peter Csaba Ölveczky2,
José Meseguer1, and Abdullah Al-Nayeem1

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. SynchAADL2Maude is an Eclipse plug-in that uses Real-
Time Maude to simulate and model check Synchronous AADL mod-
els. Synchronous AADL is a variant of the industrial modeling standard
AADL that supports the modeling of synchronous embedded systems. In
particular, Synchronous AADL can be used to define in AADL the syn-
chronous models in the PALS methodology, in which the very hard tasks
of modeling and verifying an asynchronous distributed real-time system
that should be virtually synchronous can be reduced to the much simpler
tasks of modeling and verifying the underlying synchronous design.

1 Introduction

The Architecture Analysis & Design Language (AADL) [6] is an industrial mod-
eling standard used in avionics, aerospace, automotive, medical devices, and
robotics communities—including Honeywell, Rockwell-Collins, Lockheed Mar-
tin, General Dynamics, Airbus, the European Space Agency, Dassault, EADS,
Ford, and Toyota—to describe an embedded real-time system as an assembly of
software components mapped onto an execution platform.

A number of tools support the formal analysis of different aspects of models
in various fragments of AADL. However, since the components in AADL models
interact asynchronously, their model checking becomes unfeasible even for fairly
small models due to the state space explosion caused by the interleavings.

We therefore define in [1] a variant of AADL, called Synchronous AADL,
for modeling synchronous real-time systems in AADL. This effort was moti-
vated by the observation that many automotive and avionics systems should
be virtually synchronous—that is, conceptually, there is a logical period during
which all components perform a transition and send messages to each other—
that must be realized in a distributed environment with network delays, skewed
local clocks, etc. Together with colleagues at UIUC and Rockwell-Collins, we
have proposed the PALS transformation [3,4], whose key idea is that one can
model and verify the much simpler synchronous design, and PALS then provides
a correct-by-construction distributed asynchronous model. There are also other
transformations relating synchronous and asynchronous systems for distributed
real-time architectures, such as the time-triggered architecture (TTA) [2]. Syn-
chronous AADL makes it possible to define such synchronous models in AADL.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 59–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

60 K. Bae et al.

The SynchAADL2Maude OSATE1 plug-in is a recent simulation and linear
temporal logic (LTL) model checking tool for Synchronous AADL. The tool
automatically synthesizes a Real-Time Maude [5] model from a Synchronous
AADL model, provides support to conveniently define LTL properties of the
Synchronous AADL model, and performs the Real-Time Maude model checking
within OSATE. This enables a model-engineering process for important classes of
distributed real-time systems that combines the convenience of AADL modeling,
the complexity reduction of PALS and TTA, and formal verification in Real-Time
Maude. We illustrate the use of SynchAADL2Maude in Section 3 with a virtually
synchronous avionics system, whose distributed asynchronous version (even in
very simple settings) has millions of reachable states and cannot be feasibly
model checked, but where the Synchronous AADL model of the corresponding
synchronous PALS design can be verified by our tool in less than a second.

The tool, together with related papers and technical reports, is available at
http://www.cs.illinois.edu/~kbae4/SynchAADL/.

2 Background: Real-Time Maude and Synchronous AADL

Real-Time Maude [5] is a rewriting-logic-based formal specification language
and analysis tool for real-time systems. Real-Time Maude provides simulation
capabilities, as well as (unbounded and time-bounded) explicit-state reachability
analysis and LTL and timed CTL model checking.

The Synchronous AADL modeling language [1] supports the modeling of syn-
chronous designs in AADL, including both synchronous PALS designs and other
synchronous designs that can be mapped onto different distributed real-time ar-
chitectures. Synchronous AADL is an annotated sublanguage of AADL, identi-
fying a set of AADL models that can be considered as synchronous, and adding a
property set SynchAADL to declare Synchronous AADL-specific properties. Since
Synchronous AADL is intended to model synchronous designs, it disregards the
hardware and scheduling features of AADL and focuses on the behavioral and
structural subset of AADL, namely, hierarchical system, process, and thread
components, ports and connections, and thread behaviors defined in the behav-
ior annex standard. The formal Real-Time Maude semantics of Synchronous
AADL is defined in [1].

3 Using the SynchAADL2Maude Tool

We exemplify the use of the SynchAADL2Maude tool with an avionics system
developed by Steve Miller and Darren Cofer at Rockwell-Collins [4]. In integrated
modular avionics, there are multiple physically separated cabinets on the aircraft
so that physical damage does not take out the computer system. The active
standby system considers the case of two cabinets and focuses on the logic for
deciding which side is active. The architecture of the system is shown in Figure 1.

1 The OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

http://www.cs.illinois.edu/~kbae4/SynchAADL/

The SynchAADL2Maude Tool 61

ActiveStandbySystem.impl

sideOne:
Side1.impl

env: Environment.impl

sideTwo:
Side2.impl

side1ActiveSide

side2ActiveSide

manualSelection

side1Failed side2Failedside2FullyAvailside1FullyAvail

SynchAADL::Synchronous => true
SynchAADL::SynchPerod => 2ms

Fig. 1. The architecture of the active standby system

In SynchAADL2Maude, the properties to be verified are managed by an XML
file. One important property that the system should satisfy is that if a side is
failed, the other side should become active. Side i has failed if it has received the
value true in its sideiFailed port. Using the predefined proposition value of

port in component thread is v, the formula sideiFailed can be defined as follows:

<definition> <name> side1Failed</name>

<value>value of side1Failed in component MAIN -> sideOne-> sideProcess-> sideThread is true

</value>

</definition>

The formulas sideiActive are defined in the same way. The LTL property to be
verified is then declared by the command tag as follows (where ‘~’, ‘->’, ‘[]’, and
‘O’ denote, resp., negation, implication, and the “always” and “next” operators):

<command> <name>R4</name>

<value type = "ltl"> [] (((side1Failed /\ ~ side2Failed) -> O (~ side2Failed -> side2Active)) /\

((side2Failed /\ ~ side1Failed) -> O (~ side1Failed -> side1Active)))

</value>

</command>

Figure 2 shows the SynchAADL2Maude window for the active standby sys-
tem. The Constraints Check, Code Generation, and Perform Verification

buttons are used to, respectively, check whether a model is a valid Synchronous
AADL model, generate the corresponding Real-Time Maude model, and model
check the LTL properties given by the XML property file and shown in the
“AADL Property Requirement” table. The results of the model checking are
shown in the “Maude Console.” Counterexamples from the LTL model checking
are presented in a reasonably intuitive and concise way.

We have verified each requirement of the Synchronous AADL model of the
active standby system, which has 203 reachable states, in 0.6 seconds on an Intel
Xeon 2.93 GHz with 24GB RAM. As shown in [3], where we define directly in

62 K. Bae et al.

Fig. 2. SynchAADL2Maude window in OSATE

Real-Time Maude models of both the synchronous and the asynchronous design
of the active standby system, it is unfeasible to model check the corresponding
asynchronous design: the simplest possible asynchronous model—with no mes-
sage delays, no execution times, and perfect local clocks—has 3,047,832 reachable
states and its model checking takes 1,249 seconds. If the message delay can be
either 0 or 1 then no model checking terminates in reasonable time.

Acknowledgments. This work has been supported by Boeing Corporation
under grant C8088, by The Research Council of Norway, and by the “Pro-
grama de Apoyo a la Investigación y Desarrollo” (PAID-02-11) of the Universitat
Politécnica de València.

References

1. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and Its
Formal Analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011)

2. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1) (2003)
3. Meseguer, J., Ölveczky, P.C.: Formalization and Correctness of the PALS Archi-

tectural Pattern for Distributed Real-Time Systems. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 303–320. Springer, Heidelberg (2010)

4. Miller, S.P., Cofer, D.D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logical
synchrony in integrated modular avionics. In: Proc. DASC 2009. IEEE (2009)

5. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

6. SAE AADL Team: AADL homepage (2009), http://www.aadl.info/

http://www.aadl.info/

Consistency of Service Composition

José Luiz Fiadeiro1 and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@mcs.le.ac.uk
2 Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

mal@di.fc.ul.pt

Abstract. We address the problem of ensuring that, when an application execut-
ing a service binds to a service that matches required functional properties, both
the application and the service can work together, i.e., their composition is con-
sistent. Our approach is based on a component algebra for service-oriented com-
puting in which the configurations of applications and of services are modelled
as asynchronous relational nets typed with logical interfaces. The techniques that
we propose allow for the consistency of composition to be guaranteed based on
properties of service orchestrations (implementations) and interfaces that can be
checked at design time, which is essential for supporting the levels of dynamicity
required by run-time service binding.

1 Introduction

In recent years, several proposals have been made to characterise the fundamental struc-
tures that support service-oriented computing (SOC) independently of the specific lan-
guages or platforms that may be adopted to develop or deploy Web services. In this
paper, we contribute to this effort by investigating the problem of ensuring that, when
an application executing a service binds to a service that it requested, the result is con-
sistent, i.e., both the executing service and the service to which it binds can operate to-
gether in the sense that there is a trace that represents an execution of both. In particular,
we show how consistency can be checked based on properties of service orchestrations
(implementations) and interfaces that can be established at design time. Checking for
consistency at discovery time would not be credible because, in SOC, there is no time
for the traditional design-time integration and validation activities as the SOA middle-
ware brokers need to discover and bind services at run time.

In order to formulate a notion of consistency and the conditions under which it can be
ensured in a way that is as general as possible, i.e., independently of any particular or-
chestration model (automata, Petri-nets, and so on), we adopt a fairly generic model of
behaviour based on traces of observable actions as executed by implementations of ser-
vices in what are often called ‘global computers’ — computational infrastructures that
are available globally and support the distributed execution of business applications.
More precisely, we build on the asynchronous, message-oriented model of interaction
that we developed in [10] over which interfaces are defined as temporal logic spec-
ifications. That is, instead of a process-oriented notion of interface (which prevails in

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 63–77, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 J.L. Fiadeiro and A. Lopes

most approaches to service orchestration and choreography), we adopt a declarative one
that follows in the tradition of logic-oriented approaches to concurrent and distributed
system design (as also adopted in [8] for component-based design). One advantage of
this approach is that we are able to distinguish between what can be checked at design
time to ensure consistency of binding (based on implementations) and what needs to be
checked at discovery (run) time to ensure compatibility (based on interfaces).

Having this in mind, in Section 2, we introduce some basic definitions around trace-
based models of behaviour and revisit and reformulate, in a more general setting, the
notion of asynchronous relational net (ARN) proposed in [10]. In Section 3, we define
consistency and prove a sufficient condition for the composition of two consistent ARNs
to be consistent, which is based on the notion of safety property. Finally, in Section 4,
we discuss which logics support interfaces for ARNs that implement safety properties
and propose one such logic that is sufficiently expressive for SOC.

Related work. Most formal approaches that have been proposed for either service
choreography or orchestration are process-oriented, for example through automata, la-
belled transition systems or Petri-Nets. In this context, several notions of compatibility
have been studied aimed at ensuring that services are composable. Compatibility in this
context may have several different meanings. For example, [16] addresses the problem
of ensuring that, at service-discovery time, requirements placed by a requester service
are matched by the discovered services — the requirements of the requester are formu-
lated in terms of a graph-based model of a protocol that needs to be simulated by the
BPEL orchestration of any provided service that can be discovered. That is, compati-
bility is checked over implementations. However, one has to assume that the requester
has formulated its requirements in such a way that, once bound to a discovered service
that meets the requirements, its implementation will effectively work together with that
of the provided service in a consistent way — a problem not addressed in that paper.

A different approach is proposed in [6] where compatibility is tested over the in-
terfaces of services (not their implementations), which is simpler and more likely to
be effective because a good interface should hide (complex) information that is not
relevant for compatibility. A limitation of this approach is that it is based on a (syn-
chronous) method-invocation model of interaction: as argued in [13], web-service com-
position languages such BPEL (the Business Process Execution Language [20]) rely
on an (asynchronous) message-passing model, which is more adequate for interactions
that need to run in a loosely-coupled operating environment. An example of an asyn-
chronous framework is the class of automata-based models proposed in [5,7,11], which
is used for addressing a number of questions that arise in choreography, namely the
realisability of conversation protocols among a fixed number of peers in terms of the
local behaviour generated by implementations of the peers. Our interest is instead in
how dependencies on external services that need to be discovered can be reflected in
the interface of a peer and in determining properties of such interfaces that can guaran-
tee that the orchestration of the peer can bind to that of a discovered service in a way
that ensures consistency of the joint behaviour.

In this respect, the notions of interface that are proposed in [6] do not clearly sepa-
rate between interfaces for clients of the service and interfaces for providers of required
external services, i.e., the approach is not formulated in the context of run-time service

Consistency of Service Composition 65

discovery and binding. Furthermore, [6] does not propose a model of composition of
implementations (what is called a component algebra in [8]) so one has to assume that
implementations of services with compatible interfaces, when composed, are ‘consis-
tent’. The interface and component algebra that we proposed in [10] makes a clear dis-
tinction between interfaces for services provided and services requested. Our model,
which extends the framework proposed by de Alfaro and Henzinger for component-
based systems [8], is based on an asynchronous version of relational nets adapted to
SCA (the Service Component Architecture [17]) and defines a component algebra that
is is compositional in relation to the binding of required with provided service interfaces.
The purpose of this paper is precisely to formulate a notion of consistency at the level
of the component algebra through which one can ensure, at design time, that matching
required with provided services at the interface level leads to a consistent implementa-
tion of the composite service when binding the implementations of the requester and
the provider services.

2 Asynchronous Relational Nets

2.1 Trace-Based Models of Behaviour

The processes that execute in SOC are typically reactive and interactive. Their be-
haviour can be observed in terms of the actions that they perform. For simplicity, we use
a linear model, i.e., we observe streams of actions (which we call segments). In order
not to constrain the environment in which processes execute and communicate, we take
traces that capture complete behaviours to be infinite and we allow several actions to
occur ‘simultaneously’, i.e. the granularity of observations may not be so fine that we
can always tell which of two actions occurred first. Observing an empty set of actions
in a trace reflects an execution step during which a process is idle, i.e., a step performed
by the environment without the involvement of the process.

More precisely, given a set A (of actions), a trace λ over A is an element of (2A)
ω

,
i.e., an infinite sequence of sets of actions. We denote by λ(i) the i-th element of λ,
by λi the prefix of λ that ends at λ(i), and by λi the suffix of λ that starts at λ(i). A
segment over A is an element of (2A)

∗
, i.e., a finite sequence of sets of actions. We use

π≺λ to mean that the segment π is a prefix of λ. Given A′⊆A, we denote by (π·A′) the
segment obtained by extending π with A′.

Definition 1 (Property and Closure). Let A be an alphabet.

– A property Λ over A is a subset of (2A)
ω

.
– Given Λ⊆(2A)ω, we define Λf = {π∈(2A)∗: ∃λ∈Λ(π≺λ)} — the set of prefixes

of traces in Λ, also called the downward closure of Λ.
– Given Λ⊆(2A)ω, we define Λ̄ = {λ∈(2A)ω: ∀π≺λ(π∈Λf)} — the set of traces

whose prefixes are in Λ, also called the closure of Λ.
– A property Λ is said to be closed iff Λ ⊇ Λ̄.

The closure operator is defined according to the Cantor topology on (2A)
ω

used in
[1] for characterising safety and liveness properties (see also [4]). In that topology, the
closed sets are the safety properties (and the dense ones are the liveness properties).

66 J.L. Fiadeiro and A. Lopes

Functions between sets of actions, which we call alphabet maps, are useful for defin-
ing relationships between individual processes and the networks in which they operate.
Alphabet maps induce translations that preserve and reflect closed properties:

Proposition and Definition 2 (Translation). Letσ:A→B be a function (alphabet map).

– For every λ′∈(2B)ω, we define λ′|σ∈(2A)ω pointwise as λ′|σ(i)=σ−1(λ′(i)).
– For every set Λ⊆(2A)ω, we define σ(Λ) = |σ−1

(Λ) = {λ′∈(2B)ω : λ′|σ∈Λ}.
– For every closed property Λ over A, σ(Λ) is a closed property over B.
– For every closed property Λ′ over B, Λ′|σ is a closed property over A.

Notice that every alphabet map σ defines a contravariant translation |σ between traces
by taking the inverse image of the set of actions performed at each step.

2.2 Asynchronous Relational Nets

In this section, we revisit the component algebra proposed in [10] based on the notion
of asynchronous relational net (ARN). The main difference is that, where in [10] we
formalised ARNs in terms of logical specifications, we are now interested in behaviours
(model-theoretic properties) so that we can define and analyse consistency in logic-
independent terms. We revisit specifications in the context of interfaces in Sec. 4.

In an asynchronous communication model, interactions are based on the exchange
of messages that are transmitted through channels. We organise messages in sets that
we call ports: a port is a finite set (of messages). Ports are communication abstractions
that are convenient for organising networks of processes as formalised below.

Every message belonging to a port has an associated polarity: − if it is an outgoing
message (published at the port) and + if it is incoming (delivered at the port). There-
fore, every port M has a partition M− ∪M+. The actions of sending (publishing) or
receiving (being delivered) a message m are denoted by m! and m¡, respectively. In the
literature, one typically finds m? for the latter. In our model, we use m? for the action of
processing the message and m¿ for the action of discarding the message: as discussed
later, processes cannot refuse the delivery of messages but they should be able to discard
them, for example if they arrive outside the protocol expected by the process.

More specifically, if M is a port:

– Given m∈M−, the set of actions associated with m is Am = {m!}.
– Given m∈M+, Am = {m¡,m?,m¿}
– The set of actions associated with M is AM =

⋃
m∈M Am.

A process consists of a finite set γ of mutually disjoint ports — i.e., each message that
a process can exchange belongs to exactly one of its ports — and a non-empty property
Λ over Aγ =

⋃
M∈γ AM defining the behaviour of the process.

Interactions in ARNs are established through channels. A channel consists of a set
M of messages and a non-empty property Λ over the alphabet AM={m!,m¡ :m∈M}.
Channels connect processes through their ports. Given ports M1 and M2 and a chan-
nel 〈M,Λ〉, a connection between M1 and M2 via 〈M,Λ〉 consists of a pair of injective
maps μi:M→Mi such that μ−1

i (M+
i) = μ−1

j (M−
j), {i, j}={1, 2}— i.e., a connection

Consistency of Service Composition 67

establishes a correspondence between the two ports such that any two messages that are
connected have opposite polarities. Each injection μi is called the attachment of M to
Mi. We denote the connection by the triple 〈M1

μ1←−M μ2−→M2, Λ〉.

Definition 3 (Asynchronous relational net). An asynchronous relational net (ARN) α
consists of:

– A simple finite graph 〈P,C〉 where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process 〈γp, Λp〉 to every node p and a connec-
tion 〈γc, Λc〉 to every edge c such that:
• If c={p, q} then γc is a pair of attachments 〈Mp

μp←− Mc
μq−→ Mq〉 for some

Mp∈γp and Mq∈γq .

• If γ{p,q}=〈Mp
μp←−M{p,q} μq−→Mq〉 and γ{p,q′}=〈M ′

p
μ′
p←−M{p,q′} μ′

q′−→M ′
q′〉 with

q 	= q′, then Mp 	= M ′
p.

We also define the following sets:

– Ap = p.Aγp is the language associated with the node p.
– Aα =

⋃
p∈P Ap is the language associated with α.

– Ac=〈p. ◦μp, q. ◦μq〉(AMc) is the language associated with γc:〈Mp
μp←−Mc

μq−→Mq〉.
– Λα = {λ∈(2Aα)ω : ∀p∈P (λ|p∈Λp) ∧ ∀c∈C(λ|c∈Λc)}.

We often refer to the ARN through the quadruple 〈P,C, γ, Λ〉 where γ returns the set
of ports of the processes that label the nodes and the pair of attachments of the connec-
tions that label the edges, and Λ returns the corresponding properties. The fact that the
graph is simple — undirected, without self-loops or multiple edges — means that all
interactions between two given processes are supported by a single channel and that no
process can interact with itself. The graph is undirected because, as already mentioned,
channels are bidirectional. Furthermore, different channels cannot share ports.

We take the set Λα to define the set of possible traces observed on α — those traces
over the alphabet of the ARN that are projected to traces of all its processes and chan-
nels. The alphabet of Aα is itself the union of the alphabets of the processes involved
translated by prefixing all actions with the node from which they originate.

Notice that nodes and edges denote instances of processes and channels, respectively.
Different nodes (resp. edges) can be labelled with the same process (resp. channel), i.e.,
processes and channels act as types. This is why it is essential that, in the ARN, it
is possible to trace actions to the instances of processes where they originate (all the
actions of channels are mapped to actions of processes through the attachments so it is
enough to label actions with nodes).

In general, not every port of every process (instance) of an ARN is necessarily con-
nected to a port of another process. Such ports provide the points through which the
ARN can interact with other ARNs. An interaction-point of an ARN α = 〈P,C, γ, Λ〉
is a pair 〈p,M〉 such that p∈P , M∈γp and there is no edge {p, q}∈C labelled with a
connection that involves M . We denote by Iα the collection of interaction-points of α.

Interaction-points are used in the notion of composition of ARNs [10]:

68 J.L. Fiadeiro and A. Lopes

Proposition and Definition 4 (Composition of ARNs). Let α1 = 〈P1, C1, γ1, Λ1〉
and α2 = 〈P2, C2, γ2, Λ2〉 be ARNs such that P1 and P2 are disjoint, and a fam-

ily wi = 〈M i
1
μi
1←− M μi

2−→ M i
2, Ψ

i〉 (i = 1 . . . n) of connections for interaction-points
〈pi1,M i

1〉 of α1 and 〈pi2,M i
2〉 of α2 such that pi1 	= pj1 if i 	= j and pi2 	= pj2 if i 	= j. The

composition

α1

�i=1...n

〈pi
1,M

i
1〉,wi,〈pi

2,M
i
2〉

α2

is the ARN whose graph is 〈P1 ∪ P2, C1 ∪C2 ∪
⋃

i=1...n{pi1, pi2}〉 and whose labelling
function coincides with that of α1 and α2 on the corresponding subgraphs, and assigns
to the new edges {pi1, pi2} the label wi.

In order to illustrate the notions introduced in the paper, we consider a simplified bank
portal that mediates the interactions between clients and the bank in the context of dif-
ferent business operations such as the request of a credit. Fig. 1 depicts an ARN with
two interconnected processes that implement this business operation. Process Clerk is
responsible for the interaction with the environment and for making decisions on credit
requests, for which it relies on an external process RiskEvaluator that is able to eval-
uate the risk of the transaction. The graph of this ARN consists of two nodes c:Clerk
and e:RiskEvaluator and an edge {c, e}:wce where:

– Clerk is a process with two ports: Lc and Rc. In port Lc, the process receives mes-
sages creditReq and accept and sends approved, denied and transferDate . Port
Rc has outgoing message getRisk and incoming message riskV alue. The Clerk’s
behaviour is as follows: immediately after the delivery of the first creditReq mes-
sage on port Lc, it publishes getRisk on Rc; then it waits five time units for the
delivery of riskV alue, upon which it either publishes denied or approved (we
abstract from the criteria that it uses for deciding on the credit); if riskV alue does
not arrive by the deadline, Clerk publishes denied on Lc; after sending approved
(if ever), Clerk waits twenty time units for the delivery of accept, upon which it
sends transferDate; all other deliveries of creditReq and accept are discarded.
The property that corresponds to this behaviour is denoted by Λc in Fig. 1.

– RiskEvaluator is a process with a single port (Le) with incoming message request
and outgoing message result. Its behaviour is quite simple: every time request is
delivered, it takes no more than three time units to publish result. The property
that corresponds to this behaviour is denoted by Λe in Fig. 1.

– The port Rc of Clerk is connected with the port Le of RiskEvaluator through
wce:〈Rc

μe←− {m,n} μc−→ Le, Λw〉, with μc={m �→ getRisk, n �→ riskV alue},
μe={m �→ request, n �→ result}. The corresponding channel is reliable: it en-
sures to delivering getRisk, which RiskEvaluator receives as request, and it en-
sures to delivering result, which Clerk receives as riskV alue, both without any
delay. The property that corresponds to this behaviour is denoted by Λw in Fig. 1.

3 Consistency

An important property of ARNs, and the one that justifies this paper, is consistency:

Definition 5 (Consistent ARN). An ARN α is said to be consistent if Λα is not empty.

Consistency of Service Composition 69

ClerkcreditReq
approved
denied

transferDate

RiskEvaluator

request

result

getRisk

riskValueaccept

L

R L

Fig. 1. An example of an ARN with two processes connected through a channel

Consistency means that the processes, interconnected through the channels, can co-
operate and generate at least a joint trace. Naturally, one cannot expect every ARN to be
consistent as the interference established through the connections may make it impos-
sible for the processes involved to make progress together. Therefore, some important
questions, which this paper attempts to answer, are: How can one check that an ARN
α is consistent without calculating the set Λα? How can one guarantee that the com-
position of two consistent ARNs is consistent based on properties of the ARNs and the
interconnections that can be checked at design time?

In order to answer these questions, we are going to discuss a related property: the abil-
ity to make (finite) progress no matter the segment that the ARN has executed, which
we call progress-enabledness. We show that, for certain classes of ARNs, progress-
enabledness implies consistency. We also provide sufficient conditions for the com-
position of two progress-enabled ARNs to be progress-enabled that can be checked at
design time.

3.1 Progress-Enabled ARNs

Consistency is about infinite behaviours, i.e., it concerns the ability of all processes and
channels to generate a full joint trace. However, it does not guarantee that, having en-
gaged in a joint partial trace (finite segment), the processes can proceed: it may happen
that a joint partial trace is not a prefix of a joint (full) trace, which would be undesir-
able as it is not possible for individual processes to anticipate what other processes will
do — as discussed in Sec. 4, interconnections in the context of SOC are established at
run time based on interfaces that capture what processes do, not how they do it. This
is why, in [10], we introduced another useful property of ARNs: that, after any joint
partial trace, a joint step can be performed.

Definition 6 (Progress-Enabled ARN). For every ARN α, let

Πα = {π∈2Aα
∗
: ∀p∈P (π|p∈Λf

p) ∧ ∀c∈C(π|c∈Λf
c)}

We say that α is progress-enabled iff ∀π∈Πα.∃A⊆Aα(π·A)∈Πα.

The set Πα consists of all the partial traces that the processes and channels can
jointly engage in. Notice that, as long as the processes and channels involved in α are
consistent, Πα is not empty: it contains at least the empty trace!

Therefore, by itself, being progress-enabled does not guarantee that an ARN is con-
sistent: moving from finite to infinite behaviours requires the analysis of what happens

70 J.L. Fiadeiro and A. Lopes

‘at the limit’. A progress-enabled but inconsistent ARN guarantees that all the processes
and channels will happily make joint progress but at least one will be prevented from
achieving a successful full trace at the limit. Therefore, it seems justifiable that we look
for a class of ARNs for which being progress-enabled implies consistency, which we do
in the next subsection. However, in relation to the points that we raised at the beginning
of this section, we still need to show that, by investigating a stronger property (being
progress-enabled and consistent), we have not made the questions harder to answer.

In [10], we also identified properties of ARNs and channels that guarantee that the
composition of two progress-enabled ARNs is progress-enabled: that processes are able
to buffer incoming messages, i.e., to be ‘delivery-enabled’, and that channels are able
to buffer published messages, i.e., to be ‘publication-enabled’.

Definition 7 (Delivery-enabled). Let α=〈P,C, γ, Λ〉 be an ARN, 〈p,M〉∈Iα one of its
interaction-points, and D〈p,M〉={p.m¡:m∈M+}. We say that α is delivery-enabled in
relation to 〈p,M〉 if, for every (π·A)∈Πα and B⊆D〈p,M〉, (π·B ∪ (A\D〈p,M〉))∈Πα.

That is, being delivery-enabled at an interaction point requires that any joint prefix of
the ARN can be extended by any set of messages delivered at that interaction-point.
Note that this does not interfere with the decision of the process to publish messages:
B∪(A\D〈p,M〉)) retains all the publications present in A. Also notice that accepting
the delivery of a message does not mean that a process will act on it; this is why we
distinguish between executing a delivered message (m?) and discarding it (m¿). For
example, the processes Clerk and RiskEvaluator informally described in Sec. 2.2
define, individually, atomic ARNs that are delivery-enabled: they put no restrictions on
the delivery of messages.

Definition 8 (Publication-enabled). Let h=〈M,Λ〉 be a channel and Eh = {m! :
m ∈M}. We say that h is publication-enabled iff, for every (π·A)∈Λf and B⊆Eh, we
have π·(B∪(A\Eh))∈Λf .

The requirement here is that any prefix can be extended by the publication of any set
of messages, i.e., the channel should not prevent processes from publishing messages.
Notice that this does not interfere with the decision of the channel to deliver messages:
(B∪(A\Eh)) retains all the deliveries present in A. An example is the channel used in
Fig. 1, which we informally described in Sec. 2.2.

These two properties allow us to prove that the composition of two progress-enabled
ARNs is progress-enabled [10]:

Theorem 9. Let α=(α1

�i=1...n

〈pi
1,M

i
1〉,wi,〈pi

2,M
i
2〉

α2) be a composition of progress-enabled

ARNs where, for each i = 1 . . . n, wi = 〈M i
1
μi
1←− M μi

2−→ M i
2, Λ

i〉. If, for each i=1. . . n,
α1 is delivery-enabled in relation to 〈pi1,M i

1〉, α2 is delivery-enabled in relation to
〈pi2,M i

2〉 and hi=〈M i,Λi〉 is publication-enabled, then α is progress-enabled.

3.2 Safe ARNs

The class of ARNs for which we can guarantee consistency are those that involve only
closed (safety) properties (cf. Def. 1). As discussed above, progress-enabledness guar-
antees that all the processes and channels can progress by making joint steps but does

Consistency of Service Composition 71

not guarantee that successful full traces will be obtained at the limit. Choosing to work
with safety properties essentially means that ‘success’ does not need to be measured at
the limit, i.e., checking the ability to make ‘good’ progress is enough.

From a methodological point of view, restricting ARNs to safety properties is justi-
fied by the fact that, within SOC, we are interested in processes whose liveness prop-
erties are bounded (bounded liveness being itself a safety property). This is because,
in typical business applications, one is interested only in services that respond within a
fixed (probably negotiated) delay. In SOC, one does not offer as a service the kind of
systems that, like operating systems, are not meant to terminate

Definition 10 (Safe processes, channels and ARNs). A process 〈γ, Λ〉 (resp. channel
〈M,Λ〉) is said to be safe if Λ is closed. A safe ARN is one that is labelled with safe
processes and channels.

Proposition 11. For every safe ARN α, Λα is a closed (safety) property.

Proof. Λα is the intersection of the images of the properties of the processes and chan-
nels associated with the nodes and edges of the graph. According to Prop. 2, those
images are safety properties. The result follows from the fact that an intersection of
closed sets in any topology is itself a closed set.

Theorem 12 (Consistency). Any safe progress-enabled ARN is consistent.

Proof. Given that the processes and channels in a safe ARN are consistent, Πα (cf. Def.
6) is not empty (it contains at least the empty segment ε). Πα can be organised as a tree,
which is finitely branching because Aα is finite. If the ARN is progress-enabled, the tree
is infinite. By Kőnigs lemma, it contains an infinite branch λ.

We now prove that λ∈Λα, i.e., λ|p∈Λp for all p∈P and λ|c∈Λc for all c∈C. Let
p∈P and π ≺ λ|p. We know that π is of the form π′|p where π′∈Πα. Therefore, π∈Λf

p .
It follows that λ|p∈Λp. Because Λp is closed, we can conclude that λ|p∈Λp. The same
reasoning applies to all channels.

Note that, in the case of non-safe ARNs, being progress-enabled is a necessary but
not sufficient condition to ensure consistency. For example, consider the following two
processes: P recurrently sends a given message m and Q is able to receive a message n
but only a finite, though arbitrary, number of times. If these processes are interconnected
through a reliable channel that ensures to delivering n every time m is published, it is
easy to conclude that the resulting ARN is not consistent in spite of being progress-
enabled: after having engaged in any joint partial trace, both processes and the channel
can proceed (Q will let the channel deliver n once more if necessary); however, they are
not able to generate a full joint trace because P will want to send m an infinite number
of times and Q will not allow the channel to deliver n infinitely often.

Because the composition of safe ARNs through safe channels is safe, Theo. 9 can be
generalised to guarantee consistency of composition:

Corollary 13 (Consistency of composition). The composition of safe progress-
enabled ARNs is both safe and progress-enabled (and, hence, consistent) provided
that interconnections are made through safe publication-enabled channels and over
interaction-points in relation to which the ARNs are delivery-enabled.

72 J.L. Fiadeiro and A. Lopes

It remains to determine how ARNs can be proved to be safe, progress-enabled, and
delivery-enabled in relation to interaction points, and channels to be safe and
publication-enabled. In this respect, another important result (see [10] for details) is
that the composition of two ARNs is delivery-enabled in relation to all the interaction-
points of the original ARNs that remain disconnected and in relation to which they
are delivery-enabled. Therefore, because every process defines an (atomic) progress-
enabled ARN (by virtue of being consistent), the proof that an ARN is progress-enabled
can be reduced to checking that individual processes are delivery-enabled in relation
to their ports and that the channels are publication-enabled. On the other hand, en-
suring that processes and channels are safe relates to the way they are specified and
implemented.

All these questions are addressed in the next section, where we also discuss how
service interfaces should be specified in the context of orchestrations that are safe and
progress-enabled. In particular, we show that all the properties that can guarantee con-
sistent composition can be checked at (process/channel) design time, not at (ARN) com-
position time (which, in SOC, is done at run time).

4 Interface Specifications for Safe ARNs

4.1 Interfaces and Orchestrations

Making the discovery and binding of services to be based on interfaces, not implemen-
tations, has the advantage of both simplifying those processes (as interfaces should offer
a more abstract view of the behaviour of the services) and decoupling the publication
of services in registries from their instantiation when needed. In [10] we proposed an
interface theory for ARNs based on linear temporal logic (LTL), which distinguishes
between provides- and requires-points:

– A provides-point r consists of a port Mr together with a consistent set of sentences
Φr over AMr that express what the service offers to any of its clients.

– A requires-point r consists of a port Mr and a consistent set of sentences Φr over
AMr that express what the service requires from an external service, together with
a consistent set of sentences Ψr over {m!,m¡: m∈Mr} that express requirements
on the channel through which it expects to interact with the external service.

– Matching a requires-point of a service interface with a provides-point of another
service interface amounts to checking that the specification of the latter entails that
of the former.

In Fig. 2, we present an example of an interface for a credit service using a graphical
notation similar to that of SCA. On the left, we have a provides-point Customer and,
on the right, a requires-point IRiskEvaluator . The set of sentences Φc, in the logic
discussed in the next subsection, specifies the service offered at Customer:

– (creditReq¡R (creditReq¡ ⊃ �≤10(approved!∨denied!))) — either approved
or denied are published within ten time units of the first delivery of creditReq.

– �(approved! ⊃ (accept¡ R≤20 (accept¡ ⊃ �≤2transferDate!))) — if accept
is received within twenty time units of the publication of approved, transferDate
will be published within 2 time units.

Consistency of Service Composition 73

The specification Φr of IRiskEvaluator requires the external service to react to
the delivery of every request by publishing result in no more than four time units:
�(request¡ ⊃ �≤4result!).

The connection with the external service is required to ensure that messages are
transmitted immediately to the recipient.

IBankCreditService

creditReq
approved
denied

transferDate
request
result

getRisk
riskValue

accept

Customer IRiskEvaluator

⃞(getRisk! request¡)

⃞(result! riskValue¡)

Fig. 2. An example of a service interface

An ARN orchestrates a service-interface by assigning interaction-points to interface-
points in such a way that the behaviour of the ARN validates the specifications of the
provides-points on the assumption that it is interconnected to ARNs that validate the
specifications of the requires-points through channels that validate the corresponding
specifications. Notice that ensuring consistency is essential because an interconnec-
tion that leads to an inconsistent composition would vacuously satisfy any specification
(there would be no behaviours to check against the specification).

Therefore, in order to check that an ARN α orchestrates a service-interface I:

1. For every requires-point r of I , we consider an ARN αr defined by a single process
〈Mr, Λr〉 where Λr is a safety property that validates Φr and makes αr delivery-
enabled in relation to r, which is representative of the safe and progress-enabled
ARNs that can be interconnected at r, i.e., that provides a ‘canonical’ orchestration
of a service that offers a provides-point that matches r.

2. For every requires-point r of I , we consider a channel cr=〈Mr, Λr〉 where Λr is a
safety property that validates Ψr and makes the channel publication-enabled, which
represents the most general channel that can be used for interconnecting an orches-
tration with an external service.

3. We consider the composition α∗ of α with all the αr via 〈Mpr

θr←− Mr
id−→ Mr, 〉

where pr is the interaction-point of α that corresponds to the requires-point r
through the mapping θr:M

op
r →Mp (for every port M , we denote by Mop the port

defined by Mop+=M− and Mop−=M+).
4. For α to orchestrate the interface I we require that Λα∗ |AMr

 Φr for every
provides-point r of I . Notice that Λα∗ |AMr

is the projection of the traces of the
composed ARN on the alphabet of the provides-point r which, by Prop. 2, is a
safety property.

The question now is how to choose such canonical processes 〈Mr, Λr〉 (and chan-
nels). Typically, in logic, the collection ΛΦr of all traces that validate Φr (Ψr in the
case of channels) would meet the requirement because any other ARN would give rise

74 J.L. Fiadeiro and A. Lopes

to fewer traces over AMr . However, if we want to restrict ourselves to processes and
channels that are safe, one has to choose interfaces in the class of specifications that
denote safety properties, i.e., for which ΛΦr is closed. For example, not every specifi-
cation in LTL is in that class. The same applies to provides-points because, by Prop. 2,
Λα∗ |AMr

is a safety property. In this case, because the properties offered in a provides-
points derive from the ARN that orchestrates the interface, we would need to be able
to support the development of safe processes and channels from logical specifications.
Therefore, we need to discuss which logics support that class of specifications.

4.2 A Logic of Safety Properties

Several extensions of LTL (e.g., Metric Temporal Logic – MTL [14]) have been pro-
posed in which different forms of bounded liveness can be expressed through eventu-
ality properties of the form �Iφ where I is a time interval during which φ is required
to become true. Another logic of interest is PROMPT-LTL [15] in which, instead of a
specific bound for the waiting time, one can simply express that a sentence φ will be-
come true within an unspecified bound — �pφ. Yet another logic is PLTL [3] in which
one can use variables in addition to constants to express bounds on the waiting time and
reason about the existence of a bound (or of a minimal bound) for a response time.

The logic we propose to work with, which we call SAFE-LTL, is a ‘safety’ fragment
of LTL — positive formulas with ‘release’ and ‘next’ — which corresponds to the
fragment of PLTL where intervals are finite and bounded by constants. This logic can
also be seen as a restricted version of Safety MTL [18] (a fully decidable fragment of
MTL) where, instead of an explicit model of real-time, we adopt an implicit one in
which time is measured by the natural numbers (as in PLTL). From a methodological
point of view, the adoption of an implicit, discrete time model can be justified by the fact
that, in SOC, one deals with ‘business’ time where delays are measured in discrete time
units that are global (i.e., the time model is synchronous even if the interaction model
is asynchronous). This is somewhat different from time-critical systems, for which a
continuous time model (i.e., with no fixed minimal time unit) is more adequate.

Definition 14 (SAFE-LTL). Let A be an alphabet.

– The language of SAFE-LTL over A is defined by (where a∈A):

φ ::= a | ¬a | φ ∨ φ | φ ∧ φ | ©φ | φR φ

– Sentences are interpreted over λ∈(2A)ω as follows :
λ
 a iff a∈λ(0); λ
 ¬a iff a/∈λ(0)
λ
 φ1 ∧ φ2 iff λ
 φ1 and λ
 φ2; λ
 φ1 ∨ φ2 iff λ
 φ1 or λ
 φ2

λ
©φ iff λ1
 φ

λ
 φ1 R φ2 iff, for all j, either λj
 φ2 or there exists k<j s.t. λk
 φ1

Notice that sentences are in positive form: negation is only available for atomic proposi-
tions (actions). This allows us to define (a ⊃ φ) as an abbreviation for (¬a∨φ) as used
in the interface specifications above. We also use�φ as an abbreviation of (falseR φ).

The bounded operators used in the interface specifications given in Sec. 4.1 amount
to the following abbreviations where t∈N:

Consistency of Service Composition 75

– (φ1 R≤t φ2) ≡ φ2 ∧ (φ1 ∨©φ2) ∧ · · · ∧ (φ1 ∨©φ1 ∨ · · · ∨©t−1φ1 ∨©tφ2)
– (φ1 U≤t φ2) ≡ φ2 ∨ (φ1 ∧©φ2) ∨ · · · ∨ (φ1 ∧©φ1 ∧ · · · ∧©t−1φ1 ∧©tφ2)
– �≤tφ ≡ falseR≤t φ ≡ φ ∧©φ ∧ · · · ∧ ©tφ
– �≤tφ ≡ true U≤t φ ≡ φ ∨©φ ∨ · · · ∨ ©tφ

Theorem 15 (Safety). All the sentences of SAFE-LTL express safety properties, i.e.,
for every sentence φ, the set of traces that satisfy it is closed.

Proof. See [19] for a similar logic that uses ‘unless’ instead of ‘release’.

Corollary 16 (Safe specifications). It follows from the previous theorem that all speci-
fications over SAFE-LTL are safe, i.e., for all sets of sentences Φ, the set ΛΦ of all traces
λ such that (λ
 Φ) is a safety property.

Proof. The results follow from the fact that the intersection of any number of closed
properties is closed.

4.3 Ensuring Delivery/Publication-Enabledness

In addition to making sure that specifications generate safety properties, it is important
to guarantee that specifications associated with requires-points generate processes that
are delivery-enabled in relation to their port and channels that are publication-enabled.
Ensuring delivery/publication-enabledness is not the same as proving that an implemen-
tation satisfies a specification because those properties are not expressible as sentences
whose satisfaction can be checked over individual traces: they need to be checked over
the set of all traces that satisfy the specification.

Traces are observations of the behaviours of systems that implement processes. Typi-
cal examples of (models of) such systems that are used in association with a logic are fi-
nite automata of some kind such that, for every specification 〈A,Φ〉, there is a system SΦ

over the alphabet A such that ΛSΦ=ΛΦ. The idea is then to check delivery/publication-
enabledness directly over SΦ.

In the case of LTL, systems are non-deterministic Bücchi automata (NBAs) [21]. An
NBA over an alphabet A is a tuple of the form 〈Q, δ,Q0, Q∞〉 where Q is a finite set of
states, Q0 ⊆ Q is the subset of initial states, Q∞ ⊆ Q is the set of accepting states, and
δ : Q × A → 2Q is the transition relation. The property defined by 〈Q, δ,Q0, Q∞〉 is
the set of infinite sequences of elements of A that, starting on an initial state, generate
a run that visits at least one of the accepting states infinitely often.

In relation to safety properties, there is also a closure operator on NBAs [2]: the
closure of 〈Q, δ,Q0, Q∞〉 is 〈Q, δ,Q0, Q〉, i.e., the NBA obtained by making all states
accepting. A reduced NBA (i.e., one in which every state leads to an accepting state) de-
fines a safety property if and only if its closure defines the same property. Furthermore,
every NBA is equivalent to a reduced one.

Therefore, given that we are interested in working with safe specifications, we can
choose closed reduced NBAs as models of implementations of processes and channels.
In this case, it is easy to see that all that needs to be checked for processes (resp. chan-
nels) to be delivery (resp. publication) enabled is that, from every state of the automata
that implement them, the set of transitions from that state satisfies the corresponding

76 J.L. Fiadeiro and A. Lopes

property, i.e., for every set of deliveries (resp. publications), there is a transition that
delivers (resp. publishes) exactly those messages. As a result, the complexity of the
checking process is in the order of the product of the size of the automaton and of the
sub-language of deliveries/publications.

5 Concluding Remarks

In this paper, we discussed the problem of ensuring that the composition of orchestra-
tions of matching service interfaces is consistent, i.e., that the orchestrations of both
services can effectively work together when interconnected through the communica-
tion channels that bind them. Our findings led us to propose a refinement of the service
interface and component algebra presented in [10] in which services are orchestrated
by asynchronous relational nets that exhibit only safety properties (i.e., any ‘bad’ be-
haviour should be able to detected after a finite number of steps) and are progress-
enabled (i.e., always able to make progress, even if by remaining idle). The advantages
of working with safe progress-enabled ARNs are that they are consistent (Theo. 12) and
closed under composition provided that interconnections are made through channels
that are safe and publication-enabled and over interaction-points in relation to which
the ARNs are delivery-enabled (Cor. 13).

We also investigated the nature of the logics that should be used for specifying ser-
vice interfaces and describing the processes and channels through which services are
orchestrated. In particular, we exhibited a fragment of LTL in which only safety proper-
ties can be specified and argued that this fragment is expressive enough for the typical
properties through which service interfaces are specified. In this setting, binding ser-
vices, through the provides-points of their interfaces, to requires-points of the interfaces
of discovered services, leads to a consistent composition of the service orchestrations.

Finally, we showed that, by using a logic such as SAFE-LTL, closed reduced NBAs
can be used as models of implementations of safe processes and channels, and that
checking processes/channels for delivery/publication enabledness can be done over
those automata with a complexity that is in the order of the product of the size of
the automata and of the sub-languages of deliveries/publications. Equally importantly,
these checks can be made at design time, i.e., when implementations are chosen for or-
chestrating service interfaces. Therefore, there is no need for any additional checking to
be made at discovery/run time to guarantee consistency; the only checking that needs to
be made at run time is that the specifications of provides-points entail the specifications
of the corresponding requires-points.

One point that we intend to investigate further concerns the interplay between consis-
tency, safety, and the behavioural model. We intend to explore the use of sub-domains
of traces that are applicable to SOC and generalise the underlying time model (and as-
sociated logic) using the notion of ‘safety relative to a given condition’ developed in
[12]. Choosing a sub-domain can have an impact in the structure of the automata and
the complexity of checking that processes and channels satisfy delivery/publication en-
abledness (and that ARNs orchestrate service interfaces), which are aspects that we did
not have space left in the paper to analyse and explain in full.

Consistency of Service Composition 77

Acknowledgments. We would like to thank Nir Piterman for many helpful comments
and suggestions. This work was partially supported by FCT under contract (PTDC/EIA-
EIA/103103/2008) and by the Tracing Networks research programme funded by the
Leverhulme Trust.

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)
2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2(3),

117–126 (1987)
3. Alur, R., Etessami, K., Torre, S.L., Peled, D.: Parametric temporal logic for “model measur-

ing”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)
4. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)
5. Betin-Can, A., Bultan, T., Fu, X.: Design for verification for asynchronously communicating

web services. In: Ellis, Hagino (eds.) [9], pp. 750–759
6. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Ellis, Hagino (eds.)

[9], pp. 148–159
7. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and

analysis of e-service composition. In: WWW, pp. 403–410 (2003)
8. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design. In:

Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165.
Springer, Heidelberg (2001)

9. Ellis, A., Hagino, T. (eds.): Proceedings of the 14th International Conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14. ACM (2005)

10. Fiadeiro, J.L., Lopes, A.: An Interface Theory for Service-Oriented Design. In:
Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 18–33. Springer,
Heidelberg (2011)

11. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verifica-
tion of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37 (2004)

12. Henzinger, T.A.: Sooner is safer than later. Inf. Process. Lett. 43(3), 135–141 (1992)
13. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in web ser-

vice compositions. In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.)
WWW, pp. 267–276. ACM (2006)

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

15. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods in
System Design 34(2), 83–103 (2009)

16. Martens, A.: Process oriented discovery of business partners. In: Chen, C.-S., Filipe, J.,
Seruca, I., Cordeiro, J. (eds.) ICEIS (3), pp. 57–64 (2005)

17. OSOA. Service component architecture: Building systems using a service oriented architec-
ture (2005), White paper, http://www.osoa.org

18. Ouaknine, J., Worrell, J.: Safety Metric Temporal Logic Is Fully Decidable. In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg
(2006)

19. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Asp. Comput. 6(5),
495–512 (1994)

20. TC, O.W.: Web services business process execution language. Version 2.0. Technical report,
OASIS (2007)

21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37
(1994)

http://www.osoa.org

Stable Availability under Denial of Service

Attacks through Formal Patterns�

Jonas Eckhardt1,2,3, Tobias Mühlbauer1,2,3, Musab AlTurki4,
José Meseguer4, and Martin Wirsing1,5

1 Ludwig Maximilian University of Munich
2 Technical University of Munich

3 University of Augsburg
4 University of Illinois at Urbana-Champaign

5 IMDEA Software

Abstract. Availability is an important security property for Internet
services and a key ingredient of most service level agreements. It can
be compromised by distributed Denial of Service (DoS) attacks. In this
work we propose a formal pattern-based approach to study defense mech-
anisms against DoS attacks. We enhance pattern descriptions with for-
mal models that allow the designer to give guarantees on the behavior
of the proposed solution. The underlying executable specification for-
malism we use is the rewriting logic language Maude and its real-time
and probabilistic extensions. We introduce the notion of stable availabil-
ity, which means that with very high probability service quality remains
very close to a threshold, regardless of how bad the DoS attack can get.
Then we present two formal patterns which can serve as defenses against
DoS attacks: the Adaptive Selective Verification (ASV) pattern, which
enhances a communication protocol with a defense mechanism, and the
Server Replicator (SR) pattern, which provisions additional resources on
demand. However, ASV achieves availability without stability, and SR
cannot achieve stable availability at a reasonable cost. As a main re-
sult we show, by statistical model checking with the PVeStA tool, that
the composition of both patterns yields a new improved pattern which
guarantees stable availability at a reasonable cost.

Keywords: formal patterns, meta-object pattern, rewriting logic, avail-
ability, denial of service, statistical model checking, cloud computing.

1 Introduction

On December 8, 2010 at 07:53 AM EDT, MasterCard issued a statement that
“MasterCard is experiencing heavy traffic on its external corporate website [. . .].
There is no impact whatsoever on our cardholders ability to use their cards for
secure transactions” [19]. In fact, by that time, a distributed Denial of Service

� This work has been partially sponsored by the Software Engineering Elite Graduate
Program, the EU-funded projects FP7-257414 ASCENS and FP7-256980 NESSoS,
and AFOSR Grant FA8750-11-2-0084. The fourth author was also partially sup-
ported by the “Programa de Apoyo a la Investigación y Desarrollo” (PAID-02-11)
of the Universitat Politècnica de València.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 78–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stable Availability under Denial of Service Attacks through Formal Patterns 79

attack (DoS) brought the website down and made their web presence unavailable
for most customers for several hours. Availability is an important security prop-
erty for Internet services and a key ingredient of most service level agreements.

DoS defense mechanisms help maintaining availability; nevertheless even when
equipped with defense mechanisms, systems will typically show performance
degradation. Thus, one of the goals of security measures is to achieve stable
availability, which means that with very high probability service quality remains
very close to a constant quantity, which does not change over time, regardless of
how bad the DoS attack can get. Cloud Computing, by offering the possibility
of dynamic resource allocation, can be used to leverage stable availability when
combined with DoS defense mechanisms. Service-oriented systems such as the
MasterCard service are distributed systems operating in a dynamically changing
environment. They need to cope with changing numbers of user demands and
with hostile attacks. To be used/operated safely, services have to satisfy func-
tional as well as non-functional requirements and it is not a priori clear what is
the best realization of a service in each particular situation. Model-driven ap-
proaches to service development offer the possibility of tackling these issues at a
high level of abstraction during early stages of system analysis and design. In par-
ticular, design patterns have been successfully used for improving programming
solutions in several domains, including object-orientation [13], service-oriented
computing [17,12] and security [25]. Patterns are general, reusable solutions to
commonly occurring problems in software design; they clearly define the pro-
gramming context, the problem and the advantages and disadvantages of design
solutions (see e.g., [13,25]).

In this work, we introduce formal patterns which, in addition to “normal” pat-
terns, come with formal guarantees and enable automated pattern composition,
often resulting in semi-automatic construction of new models with improved
properties. We use this pattern-based approach to study defense mechanism
against DoS attacks in a model-based setting. We present two formal patterns
which can serve as defenses against DoS attacks: the Adaptive Selective Verifica-
tion (ASV) [15] pattern defending against DoS attacks, and the Server Replicator
(SR) pattern in a cloud setting. As underlying executable specification formalism
we use the rewriting logic language Maude and its real-time and probabilistic
extensions. The ASV protocol is a well-known defense against DoS attacks in the
typical situation that clients and attackers use a shared channel where neither
the attacker nor the client have full control over the communication channel [15].
The ASV protocol adapts to increasingly severe DoS attacks and provides im-
proved availability. However, it cannot provide stable availability. By replicating
servers one can dynamically provision more resources to adapt to high demand
situations and achieve stable availability; but the cost of provisioned servers
drastically increases in a DoS attack situation. These two patterns are modeled
in Maude and then formally composed to obtain the new improved ASV+SR
pattern. As a main result we show, by analyzing the quantitative properties of
ASV+SR with the statistical model checker PVeStA, that ASV+SR guarantees
stable availability at a reasonable cost.

80 J. Eckhardt et al.

Outline. The paper is structured as follows: Sect. 2 introduces the notion of
stable availability and gives a short account of the prerequisites on rewriting
logic, Maude, and the statistical model checking of quantitative properties with
the PVeStA tool in Maude. In Sect. 3 we present the concept of formal patterns
and give three examples: (i) the general meta-object pattern (Sect. 3.1), (ii) the
ASV pattern (Sect. 3.2), and (iii) the SR pattern (Sect. 3.3). In Sect. 4 we
present the ASV+SR composition pattern and validate the properties of the
composed system using the PVeStA tool. We conclude by discussing related
work, summarizing our results and sketching further work.

2 Prerequisites

2.1 Rewriting Logic and Maude

Rewriting logic [21] is a simple computational logic to specify concurrent and
object-oriented systems as rewrite theories, that is, as triples (Σ,E,R), where
(Σ,E) is an order-sorted equational theory with syntax and type structure spec-
ified by the signature Σ, and with (possibly conditional) Σ-equations E; and
where R is a set of (possibly conditional) rewrite rules of the form t→ t′ if cond ,
with t, t′ Σ-terms, and cond the rule’s condition.

The Maude system [9] executes rewrite theories, with a self-explanatory type-
writer syntax almost isomorphic to the mathematical syntax. The key concept
in Maude is that of a module. An object-oriented module defines a class named
K and attributes a1 . . . , an. An object o in a given state can be represented as
a term of the form 〈o : K | a1 : v1, . . . , an : vn〉 where v1 . . . , vn are the cor-
responding values stored in those attributes. A message addressed to object o
with contents d can be represented as a term (o ← d); and all messages in a
system are then terms of sort Message . The distributed systems we consider in
this paper are systems, made up of objects that communicate with each other
by asynchronous message passing. The distributed state of such a system is a
multiset or “soup” of objects and messages, called a configuration. Mathemati-
cally, this is specified by declaring a sort Configuration with subsort inclusions
Object ,Message < Configuration , and an associative and commutative multi-
set union operator with empty syntax: : Configuration Configuration −→
Configuration and with identity element null .

For example, a simple client class may have name Client ; a simple server class
may have name Server and an attribute bf for storing the received messages
in a buffer. In a simple request-response message exchange pattern (cf. [27])
a client c sends request packets (req(c)) to the server. In response, the server
sends response packets (ack) back to the client. The following term defines a
configuration containing one server object s with a request from c1 in the buffer,
two client objects and one message addressed to c1 .

〈s : Server | bf : req(c1)〉 〈c1 : Client |〉 〈c2 : Client |〉 (c1← ack)

The following rewrite rule defines the reaction of any server object s upon receipt
of a request (s← req(c)) from any client c.

Stable Availability under Denial of Service Attacks through Formal Patterns 81

rl (s← req(c)) 〈s : Server | bf : b〉 → 〈s : Server | bf : b req(c)〉 (c← ack) .

The server adds req(c) to the buffer and sends an acknowledgement (c ← ack)
back to the client c. Although not illustrated by the rule above, upon receiving
message an object can send several messages to other objects, and can create
new objects.

Rewriting logic can naturally model concurrent systems, which can be both
real-time and probabilistic. Real-Time systems are supported by rewrite theories
(Σ,E,R) whose underlying equational theory (Σ,E) includes among its types
an algebraic data type Time representing time instants (which may be either
discrete or continuous), and whose global states are pairs of the form (t, r),
with t a term representing a “discrete” state, and r a time value of sort Time
representing the global clock. The rewrite rules in R can then be either instan-
taneous rules, which do not change the global clock, or tick rules, which advance
the global time (see [24]). Probabilistic concurrent systems, which may also be
real-time systems, are modeled by probabilistic rewrite rules of the form

l : t(x)→ t′(x,y) if cond(x) with probability y := πl(x)

where the righthand side term t′ has new variables y disjoint from the variables
x appearing in t which make the application of the rule non-deterministic. The
probabilistic nature of the rule is expressed by the probability distribution πl(x)
with which values for the extra variables y are chosen; where πl(x) is in general
not fixed, but parametric on the righthand side variables x. In this paper, we
use the PMaude [4] notation for probabilistic rewrite rules.

A parameterized module M [X :: P] has a formal parameter X satisfying a
parameter theory P ; M can be instantiated by another module Q via a theory
interpretation V : P −→ Q, called a view, with the usual pushout semantics (see
[9]). We denote the resulting module by M [V] or shorter by M [Q] if V is clear
from the context.

2.2 Statistical Model Checking of Quantitative Properties

Temporal logic properties of a probabilistic system can be model checked either
by exact model checking algorithms or, in an approximate but more scalable way,
by statistical model checking (see, e.g., [26,29,4]). The idea of statistical model
checking is to verify the satisfaction of a temporal logic property by statistical
methods up to a user-specified level of statistical confidence. For this, a large
enough number of Monte-Carlo simulations of the system are performed, and
the formula is evaluated on each of the simulations.

Current statistical model checking algorithms assume that the system is purely
probabilistic, i.e., that there is no nondeterminism in the choice of transitions.
Using the methodology presented in [4] and further extended in this work to the
case of reflective “Russian dolls” architectures, a wide class of object-oriented
probabilistic real-time distributed systems can be expressed as purely probabilis-
tic systems. In particular, all the distributed systems considered in this paper
fall within this broad class.

82 J. Eckhardt et al.

To analyze the behavior of systems with respect to quantitative properties
related to performance and QoS, a quantitative temporal logic, where the result
of evaluating a formula is not a Boolean true/false value, but a real number,
can be used. For this purposes we use the QuaTEx quantitative temporal logic
[4], and the PVeStA [6] parallelization of its associated VeStA tool and model
checking algorithm [4]. In Sect. 4.2 we will present several QuaTEx expressions
formalizing crucial quantitative properties related to DoS protection and will
model check them in PVeStA. We refer the reader to [4] for a detailed descrip-
tion of QuaTEx expressions and their model checking algorithm. In this paper,
we will compute the expected value of a path expression based on definitions
of the form F (t) = if time() > t then EXP else © (F (t)), where © is the
next operator, time() is a state function returning the global time, and EXP is
a real-valued state function.

2.3 Stable Availability

Availability is a key security property by which a system remains available to its
users under some conditions. This property can be compromised by a DoS at-
tack, which may render a system unavailable in practice. What all DoS defense
mechanisms have in common is the goal of protecting a system’s availability
properties in the face of a DoS attack. But availability properties are quantita-
tive properties: some DoS defense mechanisms may provide better QoS proper-
ties and therefore better availability properties than others. In fact, even when
protected against DoS, performance degradation will typically be experienced
in some aspects of system behavior such as, for example, the average Time To
Service (TTS) experienced by clients, the success ratio with which clients man-
age to communicate with their server, or the average bandwidth (or some other
cost measure) that a client needs to spend to successfully communicate with its
server. Obviously, an ideal DoS protection scheme is one that renders the system
to a large extent impervious to the DoS attack, no matter how bad the attack
can get.1 That is, up to some acceptable and constant performance degradation,
the system behaves in a “business as usual” manner: as if no attack had taken
place, even when in fact the attack worsens over time. We call this property sta-
ble availability. As we shall show in Sect. 4, stable availability can be achieved in
some cases by using an appropriate meta-object architecture for DoS protection.

More precisely, the stable availability of a system assumes a shared channel
[14], where DoS attackers can at most monopolize a maximum percentage of the
overall bandwidth. Under these circumstances, stable availability is formulated as
a requirement parameterized by explicitly specified and quantifiable availability
properties such as, for example, TTS, success ratio, average bandwidth, and so
on. The system is then said to be stably available with respect to the specified

1 In the shared channel model of [14], attackers can have a potentially very large but
not absolute share of the overall bandwidth, so that honest users will still have some
bandwidth available. This is a realistic assumption in most situations, and a key
difference between DoS attackers and Dolev-Yao attackers, who, having full control
of the channel, can always destroy all honest user messages.

Stable Availability under Denial of Service Attacks through Formal Patterns 83

quantities if and only if, with very high probability, each such quantity q remains
very close (up to fixed bounds ε) to a threshold θ (| q − ε |< θ), which does not
change over time, regardless of how bad the DoS attack can get within the
bounds allowed by the shared channel assumption.

3 Formal Patterns

Pattern-based approaches have been successfully introduced to help develop-
ers choose appropriate design and programming solutions [13]. However, these
informal patterns typically offer limited help for assessing the required func-
tional and non-functional properties. This is particularly important in the case
of distributed systems, which are notoriously hard to build, test, and verify. To
ameliorate this problem we are proposing to enhance pattern descriptions with
executable specifications that can support the mathematical analysis of qualita-
tive and quantitative properties; thus allowing the designer to give guarantees
on the behavior of the proposed solution.

A formal pattern Pat is structured in the usual way (cf. e.g. [25,12]) in context,
problem, solution, advantages and shortcomings (and other features such as
forces, related patterns which we mostly omit here for simplicity); but instead of
using UML or Java we describe the solution formally as a parameterized module
M [S] in Maude (with parameter theory S) and draw many of the advantages and
shortcomings of a pattern from formal analyses. Moreover, the context typically
describes also the assumptions of the parameter theory S.

Pattern composition Pat + Pat ′ of two patterns Pat and Pat ′ formalized as
parameterized Maude modules P [S] and P ′[S′] can be achieved by an appropri-
ate “parameterized view” (see [9]) connecting both patterns. For example, we
may instantiate S′ to P [S], yielding the composed pattern P ′[P [S]]. The prob-
lem statement and context of Pat+Pat’ can then be systematically derived from
those of Pat and Pat′.

In the following we present several formal patterns which can be very useful
to make distributed systems adaptable to changing and potentially hostile envi-
ronments, and show how to design and analyze such systems in a modular and
predictable way.

3.1 The Meta-object Pattern

Concurrency is not the only challenge for distributed systems: adaptation is
just as challenging, since many distributed systems need to function in highly
unpredictable and potentially hostile environments such as the Internet, and
need to satisfy safety, real-time and Quality of Service (QoS) requirements which
are essential for their proper behavior. To meet these adaptation challenges and
the associated requirements, a modular approach based on meta-objects can be
extremely useful. A meta-object pattern MO is defined as follows:

Context. A concurrent and distributed object-based system.
Problem. How can the communication behavior of one or several objects be

dynamically mediated/adapted/controled for some specific purposes?

84 J. Eckhardt et al.

ASV WrapperASV Wrapper

REQ

REQn

REQ

ACK
Client Server

Fig. 1. Application of the ASV meta-object on a client-server request-response service

Solution. A meta-object is an object which dynamically mediates/adapts/con-
trols the communication behavior of one or several objects under it. In rewriting
logic, a meta-object can be specified as an object of the form 〈o : K | conf : c, a1 :
v1, . . . , an : vn〉, where c is a term of sort Configuration , and all other v1 . . . , vn
are not configuration terms. The configuration c contains the object or objects
that the meta-object o controls. Thus the parameterized module MO [X] intro-
duces the meta-object constructor; the parameterX specifies the sorts s1, . . . , sn
and attributes a1, . . . , an of the controlled system.

Advantages and Shortcomings. MO defines a general control and wrapper
architecture; but may add communication indirection and the requirement for
language specific object visibility.

There are many different MO patterns: If c contains a single object, the meta-
object o is sometimes called an onion-skin meta-object [2], because o itself could
be wrapped inside another meta-object, and so on, like the skin layers in an onion.
More generally, cmaynot only contain several objects o1 . . . , om inside: it may also
be the case that some of these oi are themselves meta-objects that contain other
objects, which may again be meta-objects, and so on. That is, the more general re-
flective meta-object architectures are so-called “Russian dolls” architectures [22],
because each meta-object can be viewed as a Russian doll which contains other
dolls inside, which again may contain other dolls, and so on.

In the following we will present meta-object patterns that illustrate both the
onion-skin case, and the general Russian dolls case.

3.2 The ASV DoS Protection Meta-object Pattern

The ASV protocol [15] is a cost-based, DoS-resistant protocol where bandwidth
is used as currency by a server to discriminate between good and malicious users;
that is, honest clients spend more bandwidth by replicating their messages.

Context. Client-server request-reply system under DoS attack, shared channel
attacker model [14].

Problem. How can the system be protected against DoS attacks?
Solution. Informally described, the server and the clients are wrapped by

meta-objects with the following key features: The client wrappers attempt to
adapt to the current level of attack by exponentially replicating the client re-
quests up to a fixed bound. The server wrapper adapts to the level of the attack
by dropping randomly packets, with a higher probability as the attack becomes
more severe. Only the remaining requests are processed by the server.

Stable Availability under Denial of Service Attacks through Formal Patterns 85

Fig. 1 illustrates the ASV meta-object pattern.
A first modularized formalization of the ASV protocol was given by AlTurki

in [5]. In this work we extend this specification by making its modularization
more explicit using parametrized modules. The modularized ASV meta-object
specification (ASV [S]) is parametric in the client-server system S. In particular,
we assume that S indicates the maximal load maxLoad per server. Clients have
a time-out window (which is set to the expected worst case round-trip delay
between the client and the server) and a replication threshold, i.e. the maximum
number of times a client tries to send requests to the server before it gives up.

We present only the behavior of the server wrapper in a little more detail.
The wrapper counts the incoming requests and places them in a buffer buf .
If the buffer length of the servers exceeds maxLoad , a coin is tossed to de-
cide whether an incoming message should be dropped or not, i.e., it is ran-
domly decided according to a Bernoulli distribution Ber with success probability
floor(maxLoad)/(cnt + 1.0). If the message is not dropped, a position of buf is
randomly chosen with uniform distribution Uni and the new message is stored
at this position (replacing another message).

crl (s← c) 〈s : asvServer | count : cnt , buf : L〉 →
if (y2) then 〈s : asvServer | count : cnt + 1.0, buf : L[y1] := c〉
else 〈s : asvServer | count : cnt + 1.0, buf : L〉 fi
if float(L.size) ≥ floor(maxLoad)

with probability y1 := Uni(L.size)

and y2 := Ber (floor (maxLoad) /(cnt + 1.0)).

In addition, the server wrapper periodically empties its buffer and sends the
contents to the wrapped server. Answers of the server are forwarded to the
client.

Advantages & Shortcomings. The ASV protocol has remarkably good proper-
ties, such as closely approximating omniscience [15]: although only local knowl-
edge is used by each protocol participant, ASV’s emergent behavior closely
approximates the behavior of an idealized DoS defense protocol in which all rel-
evant parameters describing the state of the attack are instantaneously known
to all participants. However, it cannot provide stable availability [11,23].

3.3 The Server Replicator Meta-object

In high-demand situations, Cloud-based services can benefit from the scalabil-
ity of the Cloud, i.e., from the dynamic allocation of resources. The Server
Replicator meta-object (SR) is a simple pattern that adapts to high-demand
situations by leveraging the scalability of the Cloud [11,23].

Context. Client-server request-reply system; possibility of provisioning addi-
tional resources.

Problem. How can the system adapt to an increasing amount of requests, e.g.,
caused by a DoS attack?

86 J. Eckhardt et al.

Solution. The SR wraps instances of servers that provide a service, dynami-
cally provisions new such instances to adapt to an increasing load, and distributes
incoming requests among them.

The meta-object SR (SR[S]) is parametric in the client-server system S, whose
servers (of class (Server)) it creates instances of. In order to be replicable, the
servers in S need to fulfill a theory which specifies how a server instance is created
(replicate) and initialized (init); and how many requests it can handle within
a specific timeframe (maxLoadPerServer). Additional parameters in S specify
a replication strategy which determines the overloading factor which must be
exceeded before a new server is provisioned.

SR performs the following tasks:

Provisioning New Instances of the Server. SR periodically evaluates its
replication strategy and, if necessary, spawns a new server instance. The behavior
of spawning a new server is described by the rewrite rule

crl (sr ← spawnServer) 〈sr : ServerReplicator | server -list : SL, config : NG C〉
→ 〈sr : ServerReplicator | server -list : (sa; SL),

config : (NG.next) C replicate(sa) init(sa)〉
if sa := NG.new .

Removing Instances of the Server. SR winds down the number of replicated
servers when the load decreases. We do not model this behavior. One solution
would be to synchronize the communication between SR and a server instance
by using a buffer. SR sets a server instance it wants to remove as inactive and no
longer forwards requests to it. When an inactive server has processed all requests
in its buffer, it removes itself from the configuration.

Distribution of Incoming Messages. SR randomly distributes incoming re-
quests among its servers in a uniform way using the rule

rl (sr ← CO) 〈sr : ServerReplicator | server -list : SL, config : C〉 →
〈sr : ServerReplicator | server -list : SL, config : (y1 ← CO) C〉
with probability y1 := Random(SL) .

where Random randomly chooses a server from a list of servers.

Forwarding Messages to the Outside. Additionally, SR specifies rules to
forward messages that address client objects located outside its boundary.

Advantages & Shortcomings. SR can provide stable availability. However, the
cost of provisioning servers drastically increases in high-demand situations.

4 Stable Availability under Denial of Service Attacks
through Formal Patterns

How can meta-object patterns be used to make a Cloud-based client-server
request-response service resilient to DoS attacks with minimum performance
degradation, that is, achieving in fact stable availability at reasonable cost?

Stable Availability under Denial of Service Attacks through Formal Patterns 87

Cloud

ASV Wrapper
ASV Wrapper

. . .

ASV Wrapper

Server Replicator Wrapper

REQn
REQ

ACK

REQ REQ

REQ

Client
Server1 ServerN

Fig. 2. Application of the ASV+SR meta-object composition on a Cloud-based client-
server request-response service

We propose to investigate this question by composing a client-server system
S with appropriate meta-object patterns.

4.1 ASV+SR Meta-object Composition Pattern

Combining the ASV and SR meta-object patterns into ASV+SR enables us to
overcome their respective shortcomings while keeping their advantages.

Context. Client-server request-reply system under DoS attack, shared channel
attacker model [14]; possibility of provisioning additional resources.

Problem. How can the system be protected against the DoS attack and provide
stable availability at reasonable cost?

Solution. The application of the meta-object composition on S, SR[ASV [S], ρ],
(where ρmaps the formal parameter (Server) to (asvServer) and (maxloadServer)
to (maxLoad)) protects the service against DoS attacks in two dimensions of adap-
tion: (i) the ASV mechanism; and (ii) the SR replication mechanism. Fig. 2 gives
an overview of the composition.

We define the factor k that proportionally adjusts the degree of ASV protec-
tion in the meta-object composition, i.e., k reflects how much the ASV mecha-
nism is used compared to the SR replication mechanism. An overloading factor
of k = 1 means that the ASV mechanism remains nearly unused, while an over-
loading factor of k =∞ means that the replication mechanism is unused. Thus,
we propose an overloading factor of 1 < k <∞.

The replication strategy for computing the number of server replicas γ is
defined as

γ(m, t) = max

(
1,

m

maxLoadPerServer (t) · k

)

where m denotes the number of messages that have been received by the SR up
to time t; and maxLoadPerServer(t) is defined as

maxLoadPerServer (t) =

⌊
t

T

⌋
·maxLoadS

where T is the ASV server timeout period and maxLoadS denotes the buffer size
of the ASV server.

88 J. Eckhardt et al.

Advantages & Shortcomings. We will show that the ASV+SR composition
provides stable availability under DoS attacks at the cost of provisioning a pre-
dictable amount of instantiated servers given by the overload factor.

4.2 Statistical Model Checking Analysis

We use the Maude-based specification of the ASV+SR meta-object pattern
with a client-server system to perform parallelized statistical quantitative model
checking on 20 to 40 cluster nodes using PVeStA. The expected values of the
following QuaTEx path expressions were computed with a 99% confidence in-
terval of size at most 0.01:

Client Success Ratio. The client success ratio defines the ratio of clients that
receive an acknowledgement from the server.

successRatio(t) = if time() > t then countSuccessful()/countClients()

else © (successRatio(t))

where countClients() and countSuccessful() respectively count the total number
of clients, and the number of clients with “connected” status.

Average TTS. The average TTS is the average time it takes for a successful
client to receive an acknowledgement from the server.

avgTTS (t) = if time() > t then sumTTS ()/countSuccessful()

else © (avgTTS (t))

where sumTTS () is the sum of the TTS values of all successful clients.

Number of Servers. The number of servers represents the number of ASV
servers that are spawned by the SR meta-object.

servers(t) = if time() > t then countServers()

else © (servers(t))

where countServers() is the number of replicated servers.
For statistical model checking purposes we set the parameters of the ASV and

SR meta-objects as follows:

ASV. The mean server processing rate is set to 600 packets per second, the
timeout window of the clients to 0.4 seconds, the retrial span of the clients to 7,
and the client arrival rate to 0.08.

SR. The check period is set to 0.01 seconds and we vary the overloading fac-
tor k (4, 8, 16, 32). Forward and replication delays are not considered in our
experiments.

The properties are checked for a varying number of attackers (1 to 200).
Each attacker issues 400 fake requests per second. It is of note that 1.5 attackers
already overwhelm a single server. The values of the ASV and attack parameters
correspond to the values chosen in [7,15]. Additionally, an initial generation delay
of 0.05 seconds is introduced and the duration of a simulation is set to 30 seconds.

Stable Availability under Denial of Service Attacks through Formal Patterns 89

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
C

lie
nt

 S
uc

es
s

R
at

io
 [%

]

Number of Attackers

ASV
ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(a) Client success ratio

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
A

ve
ra

ge
 T

T
S

 [m
s]

Number of Attackers

ASV
ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(b) Average TTS

Fig. 3. Performance of the ASV+SR protocol with a varying load factor k and no
resource bounds

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
N

um
be

r
of

 S
er

ve
rs

Number of Attackers

ASV+SR (k=4)
ASV+SR (k=8)

ASV+SR (k=16)
ASV+SR (k=32)

(a) Number of servers (unlimited)

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
N

um
be

r
of

 S
er

ve
rs

Number of Attackers

ASV+SR (k=4, m=∞)
ASV+SR (k=4, m=5)

ASV+SR (k=4, m=10)

(b) Number of servers (limited)

Fig. 4. Expected number of servers using the ASV+SR protocol

In the following, we will consider two general cases in which the SR can
provision: (i) an unlimited number of servers, and (ii) servers up to a limit m of
5 or 10 servers, because, due to economical and physical restrictions, resources
are limited. The results in (i) will indicate how many servers are needed to
provide stable service guarantees, while the results in (ii) will indicate what
service guarantees can still be given with limited resources.

Unlimited Resources. Fig. 3 shows the model checking results for a varying
overloading factor k with no resource limits. As indicated by Fig. 3(a), ASV+SR
can sustain the expected client success ratio at a certain percentage. Even for an
overloading factor of k = 32, a success ratio around 95% can be achieved. Com-
pared to an overloading factor of k = 4, a 7-fold decrease in provisioned servers is
observed (Fig. 4(a)), achieving a stable success ratio of only around 3% less. Fig.
3(b) shows that the same is true for the average TTS. ASV+SR outperforms the
ASV protocol, and furthermore achieves stable availability, for all performance in-
dicators. However, this comes at the cost of provisioning new servers. Fig. 4(a)
shows how many servers are provisioned. The results indicate that the factor k
defines a trade-off between the cost and the performance of stable availability.
SR by itself (k = 1) with unlimited resources (not shown in the figures) would

90 J. Eckhardt et al.

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
C

lie
nt

 S
uc

es
s

R
at

io
 [%

]

Number of Attackers

ASV
ASV+SR (k=4, m=∞)

ASV+SR (k=4, m=5)
ASV+SR (k=4, m=10)

(a) Client success ratio

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
A

ve
ra

ge
 T

T
S

 [m
s]

Number of Attackers

ASV
ASV+SR (k=4, m=∞)

ASV+SR (k=4, m=5)
ASV+SR (k=4, m=10)

(b) Average TTS

Fig. 5. Performance of the ASV+SR protocol with a load factor of k = 4 and limited
resources

provide stable availability at a level as if no attack has happened, but would pro-
vision 134 servers for 200 attackers. Note that fluctuations in the results, e.g., the
average TTS in case of 60 attackers being lower than the average TTS in case of
40 attackers, are due to the provisioning of a discrete number of servers.

Limited Resources. Fig. 5 shows the model checking results for an overloading
factor of k = 4 and a limitm of either 5 or 10 servers that the SR meta-object can
provision. As indicated by Fig. 5(a), the success ratio can still be kept at a high
level under the assumption of limited resources. In fact, the protocol behaves just
as in the case of unlimited resources up to the point where more servers than
the limit would be needed to keep the success ratio stable. After that point, the
protocol behaves like the original ASV protocol (but with the equivalent of a
more powerful server) and the success ratio decreases. Nevertheless, it decreases
more slowly since now 5, respectively 10, servers handle the incoming requests
compared to the single server in the ASV case. Fig. 5(b) shows that the average
TTS behaves in a way similar to that of the success ratio. We only checked these
properties for an overloading factor of k = 4; for higher values of k, the attack
level at which stable availability is lost is higher and the rate at which the quality
subsequently decreases differs by a constant factor.

5 Related Work and Concluding Remarks

Here we discuss related work on defenses against DoS attacks and their formal
analysis. Related work on modular meta-object architectures for distributed sys-
tems, and on statistical model checking and quantitative properties has been
respectively discussed in Sects. 2.1 and 2.2.

There exist several approaches to formal patterns (see e.g. [10]); ours is dif-
ferent by focusing on executable specifications, quantitative analysis, and the
combination of formal and informal aspects. The standard book on security pat-
terns [25] does not discuss DoS defenses, although some of its patterns (such as
reflection, replication and filtering) can be related to our patterns.

Stable Availability under Denial of Service Attacks through Formal Patterns 91

Defenses against DoS attacks use various mechanisms. An important class of
defenses use currency-based mechanisms, where a server under attack demands
payment from clients in some appropriate “currency” such as actual money,
CPU cycles (e.g., by solving a puzzle), or, as in the case of ASV, bandwidth. The
earliest bandwidth-based defense proposed was Selective Verification (SV) [14].
Adaptive bandwidth-based defenses include both ASV [15], and the auction-
based approach in [28].

Regarding formalizations and analyses of DoS resistance of protocols, a gen-
eral cost-based framework was proposed in [20]; an information flow charac-
terization of DoS-resistance was presented in the cost-based framework of [16];
and [1] used observation equivalence and a cost-based framework to analyze the
availability properties of the JFK protocol. Other works on formal analysis of
availability properties use branching-time logics [30,18]. Our own work is part
of a recent approach to the formal analysis of DoS resistance using statistical
model checking. The first paper in this direction used probabilistic rewrite the-
ories to analyze the DoS-resistance of the SV mechanism when applied to the
handshake steps of TCP [3]. ASV itself, applied to client-server systems, was
formally specified in rewriting logic and was analyzed this way in [7]. The for-
malization of ASV in rewriting logic as a meta-object was first presented in [5].
Likewise, cookies have been formalized in rewriting logic as a meta-object for
DoS defense in [8].

In this paper we have presented a formal pattern-based approach to the de-
sign and mathematical analysis of security mechanisms of Cloud services. We
have shown that formal patterns can help deal with security issues and that
formal analysis can help evaluate patterns in various contexts. In particular, we
have specified dynamic server replication (SR) and the ASV protocol as formal
patterns in the executable rewriting logic language Maude. By formally com-
posing the two patterns we have obtained the new pattern ASV+SR. We have
analyzed properties of the ASV+SR pattern using the statistical model checker
PVeStA, and were able to show as our main result that, unlike the two original
patterns, ASV+SR achieves stable availability in presence of a large number of
attackers at reasonable cost, which can be predictably controlled by the choice
of the overloading parameter.

Our current results rely on two simplifications: The client-server communica-
tion consists of a stateless request-reply interaction and the replication of servers
is only able to add but not to delete servers. As next steps, we plan to refine the
patterns to cope with the winding-down of resources at the end of a DoS attack
and with more complex client-server interactions where the server has to pre-
serve state. Moreover, in this paper we have only studied quantitative properties
of the patterns; it would be very interesting and useful to analyze also qualita-
tive properties. In [8] it is shown that adding cookies to a client-server system
preserves all safety properties. We conjecture that the same holds for the ASV
and ASV+SR protocols. Finally, we plan to continue with our pattern-based
approach and to build a collection of formal patterns for security mechanisms.

92 J. Eckhardt et al.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the Pi Calculus. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 340–354. Springer, Heidelberg
(2004)

2. Agha, G., Frolund, S., Panwar, R., Sturman, D.: A linguistic framework for dy-
namic composition of dependability protocols. IFIP, pp. 345–363 (1993)

3. Agha, G., Gunter, C., Greenwald, M., Khanna, S., Meseguer, J., Sen, K., Thati,
P.: Formal modeling and analysis of DoS using probabilistic rewrite theories. In:
FCS (2005)

4. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language for
probabilistic object systems. ENTCS 153(2), 213–239 (2006)

5. AlTurki, M.: Rewriting-based formal modeling, analysis and implementation of
real-time distributed services. PhD thesis, University of Illinois (2011)

6. AlTurki, M., Meseguer, J.: PVeStA: A Parallel Statistical Model Checking and
Quantitative Analysis Tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)

7. AlTurki, M., Meseguer, J., Gunter, C.: Probabilistic modeling and analysis of DoS
protection for the ASV protocol. ENTCS 234, 3–18 (2009)

8. Chadha, R., Gunter, C.A., Meseguer, J., Shankesi, R., Viswanathan, M.: Modular
Preservation of Safety Properties by Cookie-Based DoS-Protection Wrappers. In:
Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 39–58.
Springer, Heidelberg (2008)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

10. Dong, J., Alencar, P.S.C., Cowan, D.D., Yang, S.: Composing pattern-based com-
ponents and verifying correctness. JSS 80, 1755–1769 (2007)

11. Eckhardt, J.: A Formal Analysis of Security Properties in Cloud Computing. Mas-
ter’s thesis, LMU Munich (2011)

12. Erl, T.: SOA Design Patterns. Prentice Hall (2008)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

14. Gunter, C., Khanna, S., Tan, K., Venkatesh, S.: DoS Protection for Reliably Au-
thenticated Broadcast. In: NDSS (2004)

15. Khanna, S., Venkatesh, S., Fatemieh, O., Khan, F., Gunter, C.: Adaptive Selective
Verification. In: IEEE INFOCOM, pp. 529–537 (2008)

16. Lafrance, S., Mullins, J.: An Information Flow Method to Detect Denial of Service
Vulnerabilities. JUCS 9(11), 1350–1369 (2003)

17. Wirsing, M., et al.: Sensoria Patterns: Augmenting Service Engineering. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 170–190. Springer,
Heidelberg (2008)

18. Mahimkar, A., Shmatikov, V.: Game-based Analysis of Denial-of-Service Preven-
tion Protocols. In: IEEE CSFW, pp. 287–301 (2005)

19. MasterCard. MasterCard Statement (September 2011),
http://www.businesswire.com/news/home/20101208005866/en/

MasterCard-Statement

20. Meadows, C.: A Formal Framework and Evaluation Method for Network Denial of
Service. In: IEEE CSFW (1999)

http://www.businesswire.com/news/home/20101208005866/en/MasterCard-Statement
http://www.businesswire.com/news/home/20101208005866/en/MasterCard-Statement

Stable Availability under Denial of Service Attacks through Formal Patterns 93

21. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
TCS 96(1), 73–155 (1992)

22. Meseguer, J., Talcott, C.: Semantic Models for Distributed Object Reflection. In:
Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

23. Mühlbauer, T.: Formal Specification and Analysis of Cloud Computing Manage-
ment. Master’s thesis, LMU Munich (2011)

24. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
HOSC 20(1–2), 161–196 (2007)

25. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns. Wiley (2005)

26. Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic
Systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

27. W3C. Request-Response Message Exchange Pattern (September 2011),
http://www.w3.org/TR/2003/PR-soap12-part2-20030507/#singlereqrespmep

28. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D.R., Shenker, S.: DDoS
defense by offense. In: ACM SIGCOMM, pp. 303–314 (2006)

29. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. JIC 204(9), 1368–1409 (2006)

30. Yu, C.-F., Gligor, V.: A Specification and Verification Method for Preventing
Denial of Service. IEEE T-SE 16(6), 581–592 (1990)

http://www.w3.org/TR/2003/PR-soap12-part2-20030507/#singlereqrespmep

Loose Programming with PROPHETS

Stefan Naujokat, Anna-Lena Lamprecht, and Bernhard Steffen

Dortmund University of Technology, Chair for Programming Systems, Dortmund,
D-44227, Germany

{stefan.naujokat,anna-lena.lamprecht,bernhard.steffen}@cs.tu-dortmund.de

Abstract. Loose programming is an extension to graphical process
modeling that is tailored to automatically complete underspecified
(loose) models using a combination of data-flow analysis and LTL syn-
thesis. In this tool demonstration we present PROPHETS1, our current
implementation of the loose programming concept. The first part of the
demonstration focuses on the preparative domain modeling, where a do-
main expert annotates the available services with semantic (ontological)
information. The second part is then concerned with the actual loose
programming, where a process modeler orchestrates the services without
having to care about technical details like correct typing, interface com-
patibility, or platform-specific details. The orchestrated process skeletons
are treated as loose service orchestrations that are automatically com-
pleted to running applications.

1 Introduction

In service-oriented software development approaches, the specification of (busi-
ness) processes usually requires detailed knowledge of the available services, their
behavior and capabilities. Our concept of loose programming [1] aims at provid-
ing easy access to and experimentation with (often unmanageably large) libraries
of services. With loose specification, process designers are given the opportunity
to sketch their intents roughly, while the backing data-flow analysis and linear-
time synthesis handle the concretization automatically.

PROPHETS1 extends the graphical modeling framework jABC [2] by the
loose programming concepts. To enable loose specification and synthesis on
a given library of services, semantic information on the services, i.e., a do-
main model is needed. Therefore, there are two user roles defined to work with
PROPHETS: While the domain expert provides information on services and
data types, the process developer uses it to semi-automatically create workflows.

In the following, Section 2 explains the domain modeling concepts by means
of a simple example domain. Then, Section 3 presents how the domain model is
applied for the synthesis of loosely specified processes. Section 4 concludes with
a short discussion of related and future work.

1 PROPHETS is available for download at http://prophets.cs.tu-dortmund.de.
This site also provides technical documentation and further information on loose
programming.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 94–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://prophets.cs.tu-dortmund.de

Loose Programming with PROPHETS 95

Fig. 1. The workflows of the two user roles involved in loose programming

2 Modeling the Domain

The here presented domain literally corresponds to the ’Hello World’ example
common to all programming languages. Our domain consists of three services:
’SayHello’ sends a message, while ’Understand’ receives one, with the language
of both being configurable. Naturally, the latter service can only understand
the message if it is in its known language. Therefore, the third service, ’Trans-
late’, can convert a message from one language into another. Unfortunately, not
all language combinations are directly translatable. Only translations from one
country’s language to its direct neighbors’ languages are valid (here limited to
Western Europe). In our example scenario, the process developer wants to model
a process that sends a message in one language and receives it in another, but
he is not familiar with the geography of Europe. The domain expert has this
information and provides the semantic annotations to the three services as well
as (possibly) further constraints for the composition of services.
Setting up the domain model consists of three major steps (see Fig. 1):

1. At first, the domain expert has to create the service definition file. This
mainly requires the identification of symbolic names for types and services,
and the behavioral description of the services in terms of their input and
output types. Multiple possible type combinations for one service (as it is
the case here) simply lead to multiple entries in the service definition file.

2. Secondly, the domain expert may define taxonomies on the types and ser-
vices. Although this is not strictly required, it may be useful for further
structuring of the domain. Here, it might make sense to group all ’Translate’

96 S. Naujokat, A.-L. Lamprecht, and B. Steffen

service instances into one group, all ’SayHello’ service instances into another
etc.. The types (which are languages in this example) can, for example, be
grouped according to language families.

3. Finally, the domain expert may define general domain-specific knowledge
by global formulas that are used as constraints for every synthesis. In this
example it makes sense to prevent the synthesis from utilizing any of the
’SayHello’ services as part of the solution. This becomes necessary, because
the synthesis algorithm tries to solve the loose specification by satisfying the
input requirements of the target SIB. As the ’SayHello’ services have no input
requirements, they can be used anywhere to produce every language. The
solution problem would be solved formally, but nothing has been actually
translated. Such a solution would not be acceptable for the process developer.

3 Process Synthesis

Process design with the jABC (cf. Fig. 2) consists of taking SIBs2 from the SIB
library (A), placing them at the graph canvas (B) and connecting them with
directed labeled edges (branches) according to the flow of control. Configuration
(i.e. setting parameters) of SIB instances is done using the SIB inspector (C). A
model that is defined in this way can then directly be executed and debugged
with the integrated interpreter (D). In addition to this kind of complete speci-
fication, the PROPHETS plugin enables the process developer to mark one or

Fig. 2. Overview of jABC GUI elements

Loose Programming with PROPHETS 97

more branches as loosely specified. PROPHETS’ synthesis is then applied to each
of the loose branches to replace them by concrete realizations (see Fig. 3)

The plugin determines the start types for the synthesis automatically by per-
forming a data-flow analysis on the process model. The types that are available
at the source of the loosely specified branch are used as initial state for the syn-
thesis. As goal types the synthesis uses the input types of the loosely specified
branch’s target SIB.

Fig. 3. Loosely specified process and completed model after synthesis

In addition to the inferred start and goal types, the synthesis can be guided
by constraints in SLTL [3,4]. However, the expertise of a process designer in
the jABC usually covers rather knowledge on business processes than software
programming, and likewise we assume that specification of process requirements
with formulas in temporal logic is beyond his interests. Therefore, PROPHETS
incorporates a concept for template-based constraint specifications. The tem-
plates, which can easily be defined and extended by the domain expert, present
a description of the constraint in plain natural language to the process designer.
The description contains variable parts, which are translated into drop-down
boxes for the process designer to assign values.

A process designer can also profit from a specified domain without using the
synthesis feature. If a PROPHETS service definition exists, a jABC model can
be automatically verified. The plugin then checks if all SIBs have their required

2 A SIB (Service Independent Building Block) forms a wrapper for any kind of service
that is used in the jABC.

98 S. Naujokat, A.-L. Lamprecht, and B. Steffen

types (input types) available on execution, whatever execution path might lead
to this SIB. This is done by a combination of the previously mentioned data-flow
analysis and GEAR [5], the model-checking-plugin for the jABC.

4 Conclusion

The here presented example is kept very simple on purpose, so that despite the
limited space in this paper, we can elaborate on both of the two basic concepts
when working with loose programming. More complex domains, especially in the
context of bioinformatics analysis workflows, have shown the applicability of our
approach [6,7]. Furthermore, the flexible architecture allows one to change (and
even synthesize) the synthesis process itself in order to adapt to special needs of
the domain in question [8]. In fact, PROPHETS supports self-application: loosely
defined synthesis processes can be completed and executed. Subject of ongoing
research are the improvement of the synthesis performance with domain-specific
heuristics as well as further concepts for the automatic creation of the domain
model, e.g. by learning from service logs or exploiting structural information
about the service domain.

References

1. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proceedings of the 7th International Conference on the Quality
of Information and Communications Technology (QUATIC). (September 2010)

2. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Hardware and Software, Verification and Testing.
Volume 4383 of LNCS. Springer Berlin / Heidelberg (2007) 92–108

3. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Technical report, Universität Passau (1993)

4. Steffen, B., Margaria, T., von der Beeck, M.: Automatic synthesis of linear process
models from temporal constraints: An incremental approach. In ACM/SIGPLAN
Int. Workshop on Automated Analysis of Software (AAS’97) (1997)

5. Bakera, M., Margaria, T., Renner, C., Steffen, B.: Tool-supported enhancement of
diagnosis in model-driven verification. Innovations in Systems and Software Engi-
neering 5 (2009) 211–228

6. Lamprecht, A.L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-Guided Work-
flow Composition Based on the EDAM Ontology. In: Proc. of the Workshop on
Semantic Web Applications and Tools for Life Sciences. Volume 698., Berlin, CEUR
Workshop Proceedings (December 2010)

7. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based compo-
sition of EMBOSS services. Journal of Biomedical Semantics 2(Suppl 1) (2011)

8. Naujokat, S., Lamprecht, A.L., Steffen, B.: Tailoring Process Synthesis to Domain
Characteristics. In: Proceedings of the 16th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS). (2011)

Schedule Insensitivity Reduction

Vineet Kahlon

NEC Labs, Princeton, USA

Abstract. The key to making program analysis practical for large concurrent
programs is to isolate a small set of interleavings to be explored without los-
ing precision of the analysis at hand. The state-of-the-art in restricting the set
of interleavings while guaranteeing soundness is partial order reduction (POR).
The main idea behind POR is to partition all interleavings of the given program
into equivalence classes based on the partial orders they induce on shared ob-
jects. Then for each partial order at least one interleaving need be explored. POR
classifies two interleavings as non-equivalent if executing them leads to different
values of shared variables. However, some of the most common properties about
concurrent programs like detection of data races, deadlocks and atomicity as well
as assertion violations reduce to control state reachability. We exploit the key ob-
servation that even though different interleavings may lead to different values of
program variables, they may induce the same control behavior. Hence these in-
terleavings, which induce different partial orders, can in fact be treated as being
equivalent. Since in most concurrent programs threads are loosely coupled, i.e.,
the values of shared variables typically flow into a small number of conditional
statements of threads, we show that classifying interleavings based on the control
behaviors rather than the partial orders they induce, drastically reduces the num-
ber of interleavings that need be explored. In order to exploit this loose coupling
we leverage the use of dataflow analysis for concurrent programs, specifically
numerical domains. This, in turn, greatly enhances the scalability of concurrent
program analysis.

1 Introduction

Verification of concurrent programs is a hard problem. A key reason for this is the be-
havioral complexity resulting from the large number of interleavings of transitions of
different threads. While there is a substantial body of work devoted to addressing the
resulting state explosion problem, a weakness of existing techniques is that they do not
fully exploit structural patterns in real-life concurrent code. Indeed, in a typical con-
current program threads are loosely coupled in that there is limited interaction between
values of shared objects and control flow in threads. For instance, data values written
to or read from a shared file typically do not flow into conditional statements in the file
system code. What conditional statements may track, for instance, are values of status
bits for various files, e.g., whether a file is currently being accessed, etc. However, such
status bits affect control flow in very limited and simplistic ways.

One of the main reasons why programmers opt for limited interaction between shared
data and control in threads is the fundamental fact that concurrency is complex. A deep
interaction between shared data and control would greatly complicate the debugging
process. Secondly, the most common goal when creating concurrent programs is to
exploit parallelism. Allowing shared data values to flow into conditional statements

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 99–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

100 V. Kahlon

would require extensive use of synchronization primitives like locks to prevent errors
like data races thereby killing parallelism and adversely affecting program efficiency.

An important consequence of this loose coupling of threads is that even though dif-
ferent interleavings of threads may results in different values of shared variables, they
may not induce different program behaviors in that the control paths executed may
remain unchanged. Moreover, for commonly occurring correctness properties like ab-
sence of data races, deadlocks and atomicity violations, we are interested only in the
control behavior of concurrent programs. Indeed, data race detection in concurrent pro-
grams reduces to deciding the temporal property EF(c1 ∧ c2), where c1 and c2 are
control locations in two different threads where the same shared variable is accessed
and disjoint sets of locks are held. Similarly, checking an assertion violation involving
an expression expr over control locations as well as program variables, can be reduced
to control state reachability of a special location loc resulting via the introduction of a
program statement of the form if(expr) GOTO loc; . Thus structural patterns in
real-life programs as well as in commonly occurring properties are best exploited via
reduction techniques that preserve control behaviors of programs rather than the actual
behavior defined in terms of program states.

The state-of-the-art in state space reduction for concurrent program analysis is Par-
tial Order Reduction (POR) [3,8,9]. The main idea behind POR is to partition all inter-
leavings of the given program into equivalence classes based on the partial orders they
induce on shared objects. Then for each partial order at least one interleaving need be
explored. However, a key observation that we exploit is that because of loose coupling
of threads even if different interleavings result in different values of shared (and local)
variables, they may not induce different control behaviors. In order to capture how dif-
ferent interleavings may lead to different program behaviors, we introduce the notion of
schedule sensitive transitions. Intuitively, we say that dependent transitions t and t′ are
schedule sensitive if executing them in different relative orders affects the behavior of
the concurrent program, i.e., changes the valuation of some conditional statement that
is dependent on t and t′. POR would explore both relative orders of t and t′ irrespective
of whether they induce different control behaviors or not whereas our new technique
explores different relative orders of t and t′ only if they induce different control be-
haviors. In other words, POR classifies interleavings with respect to global states, i.e.,
control locations as well as the values of program variables, as opposed to just control
behavior. However, classifying computations based solely on control behaviors raises
the level of abstraction at which partial orders are defined which results in the collapse
of several different (state defined) partial orders, i.e., those inducing the same control
behavior. This can result in drastic state space reduction.

The key challenge in exploiting the above observations for state space reduction is
that deducing schedule insensitivity requires us to reason about program semantics, i.e.,
whether different interleavings could affect valuations of conditional statements. In or-
der to carry out these checks statically, precisely and in a tractable fashion we leverage
the use of dataflow flow analysis for concurrent programs. We show that schedule in-
sensitivity can be deduced in a scalable fashion via the use of numerical invariants like
ranges, octagons and polyhedra [7,2]. Then by exploiting the semantic notion of sched-
ule insensitivity we show that we can drastically reduce the set of interleavings that
need be explored over and above POR.

Schedule Insensitivity Reduction 101

2 Motivation

Consider a concurrent program P comprised of the two threads T1 and T2 shown in
fig 1(a) accessing shared variable sh. Suppose that we are interested in the reachability
of the global control state (a4, b4). Since all transitions write to the same shared vari-
able, i.e., sh, each of the transitions a1, a2 and a3 is dependent with each of b1, b2 and
b3 except for the pair (a3, b3) both of which are read operations. As a result, in apply-
ing POR we would need to explore all interleavings of the local transitions of the two
threads except a3 and b3. This results in the transition digram shown in fig. 1(b) where
a pair of the form (c1, c2) indicates that thread Ti is at location ci but hasn’t executed
the statement at ci. A downward arrow to the left (right) signifies a move by T1 (T2).

T1() {
a1: sh = sh + 1;
a2: sh = sh + 1;
a3: if (sh ≥ 2)
a4: ...
}

T2(){
b1: sh = sh + 2;
b2: sh = sh + 3;
b3: if (sh ≥ 6)
b4: ...
}

(a1, b2)

(a1, b3)

(a1, b4)

(a4, b4)

(a3, b4)

(a2, b2)

(a3, b2)

(a4, b2)

(a4, b1)

(a3, b1)

(a2, b1)

(a2, b3)

(a2, b4)(a3, b3)

(a4, b3)

(a1, b1)

(a1, b2)

(a1, b3)

(a1, b4)

(a4, b4)

(a3, b4)

(a2, b2)

(a3, b2)

(a4, b2)

(a4, b1)

(a3, b1)

(a2, b1)

(a2, b3)

(a2, b4)(a3, b3)

(a4, b3)

(a1, b1)

α3

β1α1

α2 β2

β3 β3

β2

β1α1

α2

α3

Fig. 1. (a) (b) (c)

However, if we track the values of the shared variable sh (assuming it was initialized
to 0), we see that at global states (a3, b1), (a3, b2), (a3, b3) and (a3, b4), sh ≥ 2 as
a result of which the if-condition at location a3 of T1 always evaluates to true. This
leads to the key observation that even though the statements ai and bj , where i 	= 3 and
j 	= 3, are dependent and executing them in different order results in different values of
sh, it does not affect the valuation of the conditional statement at a3. Thus with respect
to a3 we need not explore different interleavings of the operations of T1 and T2. In fact
it suffices to explore just one interleaving, i.e., a1, a2, a3, b1, b2 and b3. Consider now
the conditional statement sh ≥ 6 at b3. The guard evaluates to false in state (a1, b3) but
evaluates to true in each of the states (a2, b3) and (a3, b3). Starting from state (a1, b1),
we see that we can reach the global state (a2, b3) where sh ≥ 6 and the state (a1, b3)
where sh < 6. Thus at (a1, b1), we need to explore paths starting with the transition
(a1, b1) → (a2, b1) as well as those starting with (a1, b1) → (a1, b2). This is because
executing one of these transitions may result in the conditional statement b3 evaluating
to true and executing the other may result in it evaluating to false. Similarly, from state
(a1, b2) we need to explore paths starting via both its out-going transitions.

On reaching state (a2, b1), however, we see that all interleavings lead either to
(a2, b3) or to (a3, b3) and at both of these states sh ≥ 6, i.e., the conditional statement at
b3 evaluates to true. In other words, starting at state (a2, b1) the precise interleaving that
is executed does not matter with respect to the valuation of b3. We would therefore like
to explore just one of these interleavings leading to (a4, b4). Hence starting at global
state (a2, b1) we explore just one successor. We choose to explore the one resulting from
the transition fired by T1. Using a similar reasoning, we can see that it suffices to allow
only T1 to execute in each of the states (a2, b2) and (a3, b2). Furthermore, at the states

102 V. Kahlon

(a4, b1), (a4, b2) we have no choice but to execute T2. Similarly, at the states (a1, b4)
and (a2, b4) we have no choice but to execute T1. This leads to the transition graph
shown in fig. 1(c) clearly demonstrating the reduction (as compared to fig. 1(b)) in the
set of interleavings that need be explored.

In order to exploit the above observations, we need to determine for each state
(ai, bj) in the transaction graph and each conditional statement con reachable from
(ai, bj), whether con either evaluates to true along all interleavings starting at (ai, bj)
or evaluates to false along all such interleavings. In general, this is an undecidable prob-
lem. On the other hand, in order for our technique to be successful our method needs
to be scalable to real-life programs. Dataflow analysis is ideally suited for this purpose.
Indeed, in our example if we carry out range analysis, i.e., track the possible range
of values that sh can take, we can deduce that at the locations (a3, b1), (a3, b2) and
(a3, b3), sh lies in the ranges [2, 2], [4, 4] and [7, 7], respectively. From this it follows
easily that the conditional statement at a3 always evaluates to true. It has recently been
demonstrated that not only ranges but even more powerful numerical invariants like oc-
tagons [7] and polyhedra [2] can be computed efficiently for concurrent programs all of
which can be leveraged to deduce schedule insensitivity. A key point is that exploiting
numerical invariants to falsify or validate conditional statements offers a good trade-off
between precision and scalability. This allows us to filter out interleavings efficiently
which can, in turn, be leveraged to make model checking more tractable.

3 System Model

We consider concurrent systems comprised of a finite number of processes or threads
where each thread is a deterministic sequential program written in a language such as
C. Threads interact with each other using communication/synchronization objects like
shared variables, locks and semaphores.

Formally, we define a concurrent program CP as a tuple (T ,V ,R, s0), where T =
{T1, ..., Tn} denotes a finite set of threads, V = {v1, ..., vm} a finite set of shared
variables and synchronization objects with vi taking on values from the set Vi, R the
transition relation and s0 the initial state of CP . Each thread Ti is represented by
the control flow graph of the sequential program it executes, and is denoted by the
pair (Ci, Ri), where Ci denotes the set of control locations of Ti and Ri its transition
relation. A global state s of CP is a tuple (s[1], ..., s[n], v[1], ..., v[m]) ∈ S = C1× ...×
Cn × V1 × ...× Vm, where s[i] represents the current control location of thread Ti and
v[j] the current value of variable vj . The global state transition digram of CP is defined
to be the standard interleaved composition of the transition diagrams of the individual
threads. Thus each global transition of CP results by firing a local transition t of the
form (ai, g, u, bi), where ai and bi are control locations of some thread Ti = (Ci, Ri)
with (ai, bi) ∈ Ri; g is a guard which is a Boolean-valued expression on the values
of local variables of Ti and global variables in V ; and u is a set of operations on the
set of shared and local variables of Ti that encodes how the value of these variables
are modified. Formally, an operation op on variable v is a partial function of the form
IN×V → OUT ×V , where V is the set of possible values of v and IN and OUT are,
respectively, the set of possible input and output values of the operation. The notation
op(in, v1) → (out, v2) denotes execution of operation op of v with input value in
yielding output out while changing the value of v from v1 to v2. Given a transition
(ai, g, u, bi), the set of operations appearing in g and u are said to be used by t and are

Schedule Insensitivity Reduction 103

denoted by used(t). Also, for transition t : (ai, g, u, bi), we use pre(t) and post(t) to
denote control locations ai and bj , respectively. A transition t = (ai, g, u, bi) of thread
Ti is enabled in state s if s[i] = ai and guard g evaluates to true in s. If s[i] = ai but g

need not be true in s, then we simply say that t is scheduled in s. We write s
t−→ s′ to

mean that the execution of t leads from state s to s′. Given a transition t ∈ T , we use
proc(t) to denote the process executing t. Finally, we note that each concurrent program
CP with a global state space S defines the global transition system AG = (S, Δ, s0),
whereΔ ⊆ S×S is the transition relation defined by follows: for s, s′ ∈ Q, (s, s′) ∈ Δ

if ∃t ∈ T : s
t−→ s′; and s0 is the initial state of CP . For ease of exposition, in this

paper we consider concurrent programs with only two threads although our techniques
extend easily to programs with multiple threads.

4 Schedule Insensitivity Reduction

The state-of-the-art in state space reduction for concurrent program analysis is Partial
Order Reduction (POR) [3,8,9]. POR classifies computations based solely on the partial
orders they induce. These partial orders are defined with respect to global states, i.e.,
control locations as well as the values of program variables, as opposed to just control
behavior. However, classifying computations based solely on control behavior raises
the level of abstraction at which partial orders are defined which results in the collapse
of several different (state defined) partial orders, i.e., those inducing the same control
behavior. Whereas (ideally) POR would explore at least one computation per partial
order, the goal of our new reduction is to explore only one computation for all these
collapsed partial orders. This can result in drastic state space reduction.

Concurrent Def-Use Chains and Control Dependency. Control flow within a thread
is governed by valuations of conditional statements. However, executing thread transi-
tions accessing shared objects in different orders may result in different values of these
shared objects resulting in different valuations of conditional statements of threads and
hence different control paths being executed. Note that the valuation of a conditional
statement cond will be so affected only if the value of a shared variable flows into cond.
This dependency is captured using the standard notion of a def-use chain. A definition
of a variable v is taken to mean an assignment (either syntactic or semantic, e.g., via a
pointer) to v. A definition-use chain (def-use chain) consists of a definition of a variable
in a thread T and all the uses, i.e., read accesses, reachable from that definition in (a
possibly different) thread T ′ without any other intervening definitions. Note that due
to the presence of shared variables a def-use chain may, depending on the scheduling
of thread operations, span multiple threads. Thus different interleavings can affect the
valuation of a conditional statement cond only if there is a def-use chain starting from
an operation writing to a shared variable sh and leading to cond. This is formalized
using the notion of control dependency.

Definition. (Control Dependency). We say that a conditional statement cond at loca-
tion loc of thread T is control dependent on an assignment statement st of thread T ′
(possibly different from T) if there exists a computation x of the given concurrent pro-
gram leading to a global state with T at location loc such that there is a def-use chain
from st to cond along x.

104 V. Kahlon

Schedule Insensitivity. In order to capture how different interleavings may lead to dif-
ferent program behaviors, we introduce the notion of schedule sensitive (or equivalently
schedule insensitive) transitions. Intuitively, we say that transitions t and t′ of two dif-
ferent threads are schedule sensitive if executing them in different relative orders affects
the behavior of the concurrent program, i.e., changes the valuation of some conditional
statement that is control dependent on t and t′. Formally,

Definition (Schedule Sensitive Operations). Let OP be the set of operations on vari-
able var. Then Sen ⊆ OP × OP × S is a schedule sensitivity relation for var if for
s ∈ S and op1, op2 ∈ OP , the following holds: if v is the value of var in s then for all
possible inputs in1 and in2 we have

– (op1, op2, s) 	∈ Sen (op1 and op2 are schedule insensitive in s) implies that (op2,
op1, s) 	∈ Sen,

– if op1(in1, v) is defined and op1(in1, v) → (out1, v
′
1), then op2(in2, v) is defined

if and only if op2(in2, v
′
1) is defined; and

– if op1(in1, v) and op2(in2, v) are defined, then each conditional statement cond
that is control dependent on op1 or op2 and is scheduled in state t ∈ S either
evaluates to true along all paths of the given concurrent program leading from s to
t or it evaluates to false along all such paths.

Definition (Schedule Insensitive Transitions). Two transitions t1 and t2 are schedule
insensitive in state s if

– the threads executing t1 and t2 are different, and
– either t1 and t2 are independent in s, or for all op1 ∈ used(t1) and op2 ∈ used(t2),

if op1 and op2 are operations on the same shared object then op1 and op2 are
schedule insensitive in s, i.e., (op1, op2, s) 	∈ Sen.

In the above definition we use the standard notion of (in)dependence of transitions as
used in the theory of partial order reduction (see [3]). The motivation behind defining
schedule insensitive transitions is that if in a global state s, transitions t1 and t2 of
threads T1 and T2, respectively, are dependent then we need to consider interleavings
where t1 and t2 are executed in different relative orders only if there exists a conditional
statement cond such that cond is control dependent on both t1 and t2 and its valuation
is affected by executing t1 and t2 in different relative orders, i.e., t1 and t2 are schedule
sensitive in s.

We next define the notion of control equivalent computations which is the analogue
of Mazurkiewicz equivalent computations for schedule sensitive transitions.

Definition (Control Equivalent Computations). Two computations x and y are said
to be control equivalent if x can be obtained from y by repeatedly permuting adjacent
pairs of schedule insensitive transitions, and vice versa.

Note that control equivalence is a coarser notion of equivalence than Mazurkiewicz
equivalence in that Mazurkiewicz equivalence implies control equivalence but the re-
verse need not be true. That is precisely what we need for more effective state space
reduction than POR.

Schedule Insensitivity Reduction 105

5 Deducing Schedule Insensitivity

In order to exploit schedule insensitivity for state space reduction we need to provide an
effective, i.e., automatic and lightweight, procedure for deciding schedule insensitivity
of a pair of transitions. By definition, in order to infer whether t1 and t2 are schedule
sensitive, we have to check whether there exists a conditional statement cond satisfying
the following: (i) Control Dependence: of cond on t1 and t2, (ii) Reachability: cond
is enabled in a state t reachable from s, and (iii) Schedule Sensitivity: there exist
interleavings from s leading to states with different valuations of cond.

In order to carry out these checks statically, precisely and in a tractable fashion we
leverage the use of dataflow flow analysis for concurrent programs. As was shown in
the motivation section, by using range analysis, we were able to deduce schedule in-
sensitivity of the local states (ai, bj), where i ∈ [2..3] and j ∈ [1..3] which enabled us
to explore only one transition from each of them. We can, in fact, leverage even more
powerful numerical invariants like octagons [7] and polyhedra [2].

Transaction Graph. In order to deduce control dependence, reachability and schedule
sensitivity, we exploit the notion of a transaction graph which has previously been used
for dataflow analysis of concurrent programs (see [4]). The main motivation behind the
notion of a transaction graph is to capture thread interference, i.e., how threads could
affect dataflow facts at each others locations. This is because, in practice, concurrent
programs usually do not allow unrestricted interleavings of local operations of threads.
Typically, synchronization primitives like locks and Java-style wait/notifies, are used in
order to control accesses to shared data or introduce causality constraints. Additionally,
the values of shared variables may affect valuations of conditional statements which,
in turn, may restrict the allowed set of interleavings. The allowed set of interleavings
in a concurrent program are determined by control locations in threads where context
switches occur. In order to identify these locations the technique presented in [4] delin-
eates transactions. A transaction of a thread is a maximal atomically executable piece
of code, where a sequence of consecutive statements in a given thread T are atomically
executable if executing them without any context switch does not affect the outcome of
the dataflow analysis at hand. Once transactions have been delineated, the thread loca-
tions where context switches need to happen can be identified as the start and end points
of transactions. The transactions of a concurrent program are encoded in the form of a
transaction graph the definition of which is recalled below.

Definition (Transaction Graph) [4]. Let CP be a concurrent program comprised of
threads T1,..., Tn and let Ci and Ri be the set of control locations and transitions of
the CFG of Ti, respectively. A transaction graph ΠCP of CP is defined as ΠCP =
(CCP , RCP), where CCP ⊆ C1 × ... × Cn and RCP ⊆ (C1, ..., Cn) × (C1, ..., Cn).
Each edge of ΠCP represents the execution of a transaction by a thread Ti, say, and is
of the form (l1, . . . , li, . . . , ln) → (m1, . . . , mi, . . . , mn) where (a) starting at the
global state (l1, ..., ln), there is an atomically executable sequence of statements of Ti

from li to mi, and (b) for all j 	= i, lj = mj .

Note that this definition of transactions is quite general, and allows transactions to be
inter-procedural, i.e., begin and end in different procedures, or even begin and end inside
loops. Also, transactions are not only program but also analysis dependent.

Our use of transaction graphs for deducing schedule insensitivity, is motivated by
several reasons. First, transaction graphs allow us to carry out dataflow analysis for the

106 V. Kahlon

concurrent program at hand which is crucial in reasoning about schedule insensitivity.
Secondly, transaction graphs already encode reachability information obtained by ex-
ploiting scheduling constraints imposed by both synchronization primitives as well as
shared variables. Finally, the transaction graph encodes concurrent def-use chains which
we use in inferring control dependency. In other words, transaction graphs encodes all
the necessary information that allows us to readily decide schedule sensitivity.

Transaction Graph Construction. We now recall the transaction graph construction
[4] which is an iterative refinement procedure that goes hand-in-hand with the compu-
tation of numerical invariants (steps 1-9 of alg. 1). In other words, the transaction graph
construction and computation of numerical invariants are carried out simultaneously via
the same procedure.

First, an initial set of (coarse) transactions are identified by using scheduling con-
straints imposed by synchronization primitives like locks and wait/notify and ignoring
the effects of shared variables (step 3-7 of alg. 1). This step is essentially classical POR
carried out over the product of the control flow graphs of the given threads. This initial
synchronization-based transaction delineation acts as a bootstrapping step for the entire
transaction delineation process. These transactions are used to compute the initial set of
numerical (ranges/octagonal/polyhedral) invariants. Note that once a (possibly coarse)
transaction graph is generated dataflow analysis can be carried out exactly as for sequen-
tial programs. However, based on these sound invariants, it may be possible to falsify
conditional statements that enable us to prune away unreachable parts of the program
(Step 8) (see [4] for examples). We use this sliced program, to re-compute (via steps
3-7) transactions based on synchronization constraints which may yield larger transac-
tions. This, in turn, may lead to sharper invariants (step 8). The process of progressively
refining transactions by leveraging synchronization constraints and sound invariants in
a dovetailed fashion continues till we reach a fix-point.

Deducing Schedule Insensitivity. The transaction graph as constructed via the algo-
rithm described in [4] encodes transactions or context switch points as delineated via a
refinement loop that dovetails classical POR and slicing induced by numerical invari-
ants. In order to incorporate the effects of schedule insensitivity we refine this transac-
tion delineation procedure to avoid context switches induced by pairs of transitions of
different threads that are dependent yet schedule insensitive.

The procedure for schedule insensitive transaction graph construction is formalized
as alg. 1. Steps 1-9 of alg. 1 are from the original transaction delineation procedure
given in [4]. In order to collapse partial orders by exploiting schedule insensitivity,
we introduce the additional steps 10-32. We observe that given a state (l1, l2) of the
transaction graph, a context switch is required at location l1 of thread T1 if there exists
a global state (l1,m2) reachable from (l1, l2) such that l1 and m2 are schedule sensitive.
This is because executing l1 and m2 in different orders may lead to different program
behaviors. Since a precise computation of the schedule sensitivity relation is as hard
as the verification problem, in order to determine schedule insensitivity of (l1,m2), we
use a static over-approximation of the schedule sensitivity relation defined as follows:

Definition (Static Schedule Sensitivity). Transitions t1 and t2 scheduled at control
locations n1 and n2 of threads T1 and T2, respectively, are schedule insensitive at state
(n1, n2) of the transaction graph if for each conditional statement cond such that

Schedule Insensitivity Reduction 107

Algorithm 1. Construction of Schedule Insensitive Transaction Graph
1: repeat
2: Initialize W = {(in1, in2)}, where inj is the initial state of thread Tj .
3: repeat
4: Remove a state (l1, l2) from W and add it to Processed
5: Compute the set Succ of successors of (l1, l2) via POR by exploiting synchronization

constraints (Synchronization Constraints)
6: Add all states of Succ not in Processed to W .
7: until W is empty
8: Compute numerical invariants on the resulting synchronization skeleton to slice away un-

reachable parts of the program (Shared Variable Constraints)
9: until transactions cannot be refined further

10: repeat
11: for each state (l1, l2) of Π do
12: control oblivious = true
13: for each global state (l1,m2) where m2 and l1 are dependent do
14: for each conditional state cond scheduled at state (r1, r2), say, do
15: if (r1, r2) is reachable from (l1,m2) then
16: if cond is control dependent with l1 and m2 then
17: if inv(r1,r2) is the invariant at location (r1, r2) and ¬((inv(r1,r2) ⇒

cond) ∨ (inv(r1,r2) ∧ cond = false)) then
18: control oblivious = false
19: end if
20: end if
21: end if
22: end for
23: end for
24: if control oblivious then
25: for each predecessor (k1, l2) of (l1, l2) in Π do
26: for each successor (n1, l2) of (l1, l2) in Π do
27: remove (l1, l2) as a successor of (k1, l2) and add (n1, l2) as a successor.
28: end for
29: end for
30: end if
31: end for
32: until no more states can be sliced

– cond is reachable from (n1, n2) in the transaction graph (Reachability),
– there are concurrent def-use chains in the transaction graph from both n1 and n2

to cond (Control Dependence),
– cond either evaluates to true along all paths of the transaction graph from (n1, n2)

to cond or it evaluates to false along all such paths (Schedule Insensitivity).

Using dataflow analysis, these checks can be carried out in a scalable fashion.

Checking Reachability and Control Dependency. For our reduction to be precise it
is important that while inferring schedule insensitivity we only consider conditional
statements cond that are reachable from (l1,m2). As discussed before, reachability of
global states is governed both by synchronization primitives and shared variable values
and by using numerical invariants we can infer (un)reachability efficiently and with high
precision. Importantly, this reachability information is already encoded in the transition

108 V. Kahlon

relation of the transaction graph. In order to check control dependence of cond on l1 and
m2, we need to check whether there are def-use chains from a shared variable v written
to at locations l1 and m2 to a variable u accessed in the conditional statement cond at
location r1 or r2, where state (r1, r2) of the transaction graph is reachable from (l1, l2).
Note that all states that have been deduced as unreachable via the use of numerical
invariants and synchronization constraints have already been sliced away via step 8 of
alg. 1. Thus it suffices to track def-use chains along the remaining paths (step 14) in
the transaction graph starting at (l1, l2) (step 15). This can be accomplished in exactly
the same way as in sequential programs - the only difference being that we do it along
paths in the transaction graph so that def-use chains can span multiple threads.

Checking Schedule Insensitivity. Next, in order to deduce that a conditional statement
cond scheduled in state (r1, r2) either evaluates to true along all paths from (l1,m2)
to (r1, r2) or evaluates to false along all such paths, we leverage numerical invariants
computed in step 8 of alg. 1. Let inv(r1,r2) be the (range, octagonal, polyhedral) invari-
ant computed at (r1, r2). Then if cond is either falsified, i.e., cond∧inv(r1,r2) = false
or cond is validated, i.e., inv(r1,r2) ⇒ cond, the valuation of conditional statements
in (r1, r2) are independent of the path from (l1,m2) to (r1, r2) (step 17). In order to
check schedule-insensitivity of (l1,m2), we need to carry out the above check for every
conditional statement that is reachable from (l1,m2) and has a def-use chain from both
l1 and m2 to cond. If there exists no such conditional statement then we can avoid a
context switch at location l1 of thread T1 (steps 24-30) thereby collapsing partial orders
in the transaction graph.

Scalability Issues. A key concern in using transactions graphs for deducing schedule
insensitivity is the state explosion resulting from the product construction. However, in
practice, the transaction graph construction is very efficient due to three main reasons.
First, in building the transaction graph we take the product over control locations and
not local states of threads. Thus for k threads the size of the transaction graph is at
most nk, where n is the maximum number of lines of code in any thread. Secondly,
when computing numerical invariants we use the standard technique of variable clus-
tering wherein two variables u and v occur in a common cluster if there exists a def-use
chain along which both u and v occur. Then it suffices to build the transaction graph for
each cluster separately. Moreover, for clusters that contains only local thread variables
there is no need to build the transaction graph as such variables do not produce thread
dependencies. Thus cluster induced slicing can drastically cut down on the statements
that need to be considered for each cluster and, as a result, the transaction graph size.
Finally, since each cluster typically has few shared variables, POR (step 5) further en-
sures that the size of the transaction graph for each cluster is small. Finally, it is worth
keeping in mind that the end goal of schedule insensitivity reduction is to help model
checking scale better and in this context any transaction graph construction will likely
be orders of magnitude faster than model checking which remains the key bottleneck.

6 Enhancing Symbolic Model Checking via Schedule Insensitivity

We show how to exploit schedule insensitivity for scaling symbolic model checking.

Schedule Insensitivity versus Partial Order Reduction. In order to illustrate the ad-
vantage of schedule insensitivity reduction we start by briefly recalling monotonic par-
tial order reduction, a provably optimal symbolic partial order reduction technique. The

Schedule Insensitivity Reduction 109

technique is optimal in that it ensures that exactly one interleaving is explored for every
partial order induced by computations of the given program. Using schedule insensitiv-
ity we show how to enhance monotonic POR by further collapsing partial orders over
and above those obtained via MPOR.

The intuition behind MPOR is that if all transitions enabled at a global state are
independent then we need to explore just one interleaving. This interleaving is cho-
sen to be the one in which transitions are executed in increasing (monotonic) order of
their thread-ids. If, however, some of the transitions enabled at a global state are de-
pendent than we need to explore interleavings that exercise both relative orders of these
transitions which may violate the natural monotonic order. In that case, we allow an
out-of-order-execution, viz., a transition tr′ with larger thread-id than tr and dependent
with tr to execute before tr.

Example. Consider the example in fig. 1. If we ignore dependencies between local tran-
sitions of threads T1 and T2 then MPOR would explore only one interleaving namely
the one wherein all transitions of T1 are executed before all transitions of T2, i.e., the
interleaving α1α2α3β1β2β3 (see fig. 1(b)). Consider now the pair of dependent opera-
tions (a1, b1) accessing the same shared variable sh. We need to explore interleavings
wherein a1 is executed before b1, and vice versa, which causes, for example, the out-
of-order execution β1α1α2α3β2β3 where transition β1 of thread T2 is executed before
transition α1 of thread T1 even though the thread-id of β1 is greater than the thread-id
of α1. MPOR guarantees that exactly one interleaving is explored for each partial order
generated by dependent transitions.

When exploiting schedule insensitivity, starting at a global control state (c1, c2) an
out-of-order execution involving transitions tr1 and tr2 of thread T1 and T2, respec-
tively, is enforced only when (i) tr1 and tr2 are dependent, and (ii) tr1 and tr2 are
schedule dependent starting at (c1, c2). Note that the extra condition (ii) makes the cri-
terion for out-of-order execution stricter. This causes fewer out-of-order executions and
further restricts the set of partial orders that will be explored over and above MPOR.

Going back to our example, we see that starting at global control state (a2, b2), tran-
sitions a2 and b2 are dependent as they access the same shared variable. Thus MPOR
would explore interleavings wherein a2 is executed before b2 (α1β1α2α3β2β3) and
vice versa (α1β1β2α2α3β3). However as shown in sec. 2, a2 and b2 are schedule in-
sensitive and so executing a2 and b2 in different relative orders does not generate any
new behavior. Thus we only explore one of these orders, i.e., a2 executing before b2 as
thread-id(a2) = 1 < 2 =thread-id(b2). Thus after applying SIR, we see that starting at
(a2, b2) only one interleaving, i.e., α2α3β2β3, is explored.

Implementation Strategy. Our strategy for implementing SIR is as follows:
1. We start by reviewing the basics of SAT/SMT-based bounded model checking.
2. Next we review the MPOR implementation wherein the scheduler is constrained

so that it does not explore all enabled transitions as in the naive approach but only those
that lead to the exploration of new partial orders via a monotonic ordering strategy as
discussed above.

3. Finally we show how to implement SIR by further restricting the scheduler to
explore only those partial orders that are generated by schedule sensitive dependent
transitions. This is accomplished via the same strategy as in MPOR - the only differ-
ence being that we allow out-of-order executions between transitions that are not just
dependent but also schedule sensitive.

110 V. Kahlon

Bounded Model Checking (BMC). Given a multi-threaded program and a reachability
property, BMC can check the property on all execution paths of the program up to a
fixed depth K . For each step 0 ≤ k ≤ K , BMC builds a formula Ψ such that Ψ is
satisfiable iff there exists a length-k execution that violates the property. The formula
is denoted Ψ = Φ ∧ Φprop, where Φ represents all possible executions of the program
up to k steps and Φprop is the constraint indicating violation of the property (see [1]
for more details about Φprop). In the following, we focus on the formulation of Φ. Let
V = Vglobal ∪

⋃
Vi, where Vglobal are global variables and Vi are local variables in

Ti. For every local (global) program variable, we add a state variable to Vi (Vglobal).
We add a pci variable for each thread Ti to represent its current program counter. To
model nondeterminism in the scheduler, we add a variable sel whose domain is the set
of thread indices {1, 2, . . . , n}. A transition in Ti is executed only when sel = i.

At every time frame, we add a fresh copy of the set of state variables. Let vi ∈ V i

denote the copy of v ∈ V at the i-th time frame. To represent all possible length-
k interleavings, we first encode the transition relations of individual threads and the
scheduler, and unfold the composed system exactly k time frames.

Φ := I(V 0) ∧
k∧

i=0

(SCH(V i) ∧
n∧

j=1

TRj(V
i, V i+1))

where I(V 0) represents the set of initial states, SCH represents the constraint on the
scheduler, and TRj represents the transition relation of thread Tj . Without any reduc-
tion, SCH(V i) := true, which means that sel takes all possible values at every step.
This default SCH considers all possible interleavings. SIR can be implemented by
adding constraints to SCH to remove redundant interleavings.

MPOR Strategy. As discussed before, the broad intuition behind MPOR is to execute
location transitions of threads in increasing orders of their thread-ids unless dependen-
cies force an out-of-order execution. In order to characterize situations where we need
to force an out-of-order execution we use the notion of a dependency chain.

Definition (Dependency Chain) Let t and t′ be transitions such that t <x t′, i.e., t is
executed before t′ along computation x. A dependency chain along x starting at t is a
(sub-)sequence of transitions tri0 , ..., trik fired along x, where (a) i0 < i1 < ... < ik,
(b) for each j ∈ [0..k − 1], trij is dependent with trij+1 , and (c) there does not exist a
transition fired along x between trij and trij+1 that is dependent with trij .

For transitions t and t′ fired along x, we use t ⇒x t′ to denote the fact that there is a
dependency chain from t to t′ along x. Then the MPOR strategy is as follows:

MPOR Strategy. Explore only those computation x such that for each pair of tran-
sitions tr and tr′ such that tr′ <x tr we have tid(tr′) > tid(tr) only if either (i)
tr′ ⇒x tr, or (ii) there exists a transition tr′′ such that tid(tr′′) < tid(tr), tr′ ⇒x tr′′
and tr′ <x tr′′ <x tr.

Schedule Insensitivity Reduction. For implementing SIR, we only need to consider
partial orders induced by those pairs of conflicting transitions that are schedule sensi-
tive. This motivates the following definition.

Definition (Schedule-Dependency Chain) Let t and t′ be transitions fired along a
computation x such that t <x t′. A schedule-dependency chain along x starting at t is

Schedule Insensitivity Reduction 111

a (sub-)sequence of transitions tri0 , ..., trik fired along x, where (a) i0 < i1 < ... < ik,
(b) for each j ∈ [0..k − 1], trij is schedule-dependent with trij+1 , and (c) there does
not exist a transition fired along x between trij and trij+1 that is schedule-dependent
with trij .

For transitions t and t′ fired along x, we use t ⇒s
x t′ to denote that the fact that there

is a schedule-dependency chain from t to t′ along x. Note that the difference between
the above definition and that of a Dependency chain is that the above definition is more
restrictive as it only consider chains over dependent transitions only if they are schedule-
dependent. As a result is leads to exploration of fewer partial orders which in turn
enhances scalability of state space exploration. Then the SIR strategy is as follows:

SIR. Explore only those computations such that for each pair of transitions tr and tr′
such that tr′ <x tr we have tid(tr′) > tid(tr) only if either (i) tr′ ⇒s

x tr, or (ii) there
exists a transition tr′′ such that tid(tr′′) < tid(tr), tr′ ⇒s

x tr′′ and tr′ <x tr′′ <x tr.

Encoding SIR. In order to implement our technique, we need to track schedule depen-
dency chains in a space efficient manner. Our encoding to track schedule dependency
chains is similar to the one for tracking dependency chains in MPOR except that we
consider schedule sensitivity as opposed to dependency of transitions in building these
chains. In order to track schedule dependency chains, for each pair of threads Ti and
Tj , we introduce a new variable SDCij defined as follows.

Definition. SDCil(k) is 1 or −1 accordingly as there is a dependency chain or not,
respectively, from the last transition executed by Ti to the last transition executed by
Tl at or before time step k. If no transition has been executed by Ti up to time step k,
SDCil = 0.

Updating SDCij . If at time step k thread Ti is executing transition tr, then for each
thread Tl, we check whether the last transition executed by Tl is schedule sensitive with
tr. To track that we introduce the dependency variables DEPli defined below.

Definition. DEPli(k) is true or false accordingly as the transition being executed by
thread Ti at time step k is dependent with the last transition executed by Tl, or not. Note
that DEPii(k) = 1 always holds (due to control conflict).

For MPOR these dependency variables are enough to track dependency chains. How-
ever even if two transitions are dependent they might still be schedule insensitive. To
carry out this additional check, we introduce the schedule sensitivity variables

Definition. SSli(k) is true or false accordingly as the transition of thread Ti being
executed at time step k is schedule sensitive with the last transition executed by Tl, or
not. Note that SSii(k) always holds true.

We now show how the SDC variables are updated. If (DEPli(k) = 1) ∧ (SSli(k) =
true) and if SDCjl(k−1) = 1, i.e., there is a schedule dependency chain from the last
transition executed by Tj to the last transition executed by Tl, then this schedule depen-
dency chain can be extended to the last transition executed by Ti, i.e., tr. In that case,
we set DCji(k) = 1. Also, since we track schedule dependency chains only from the
last transition executed by each thread, the schedule dependency chain corresponding
to Ti needs to start afresh and so we set SDCij(k) = −1 for all j 	= i. To sum up, the
updates are as follows.

112 V. Kahlon

SDCii(k) = 1
SDCij(k) = −1 when j 	= i
SDCji(k) = 0 when j 	= i and SDCjj(k − 1) = 0
SDCji(k) =

∨n
l=1(SDCjl(k − 1) = 1
∧DEPli(k) ∧ SSli(k)) when j 	= i and SDCjj(k − 1) 	= 0

SDCpq(k) = SDCpq(k − 1) when p 	= i and q 	= i

Scheduling Constraint. Next we introduce the scheduling constraints variables Si,
where Si(k) is true or false based on whether thread Ti can be scheduled to execute or
not, respectively, at time step k in order to ensure quasi-monotonicity. Then we conjoin
the following constraint to SCH :

n∧
i=1

(selk = i⇒ Si(k))

We encode Si(k) (where 1 ≤ i ≤ n) as follows:
Si(0) = true and
for k > 0, Si(k) =

∧
j>i(SDCji(k) 	= −1 ∨

∨
l<i SDCjl(k − 1) = 1)

In the above formula, SDCji(k) 	= −1 encodes the condition that either a transition by
thread Tj , where j > i, hasn’t been executed up to time k, i.e., SDCji(k) = 0, or if it
has then there is a schedule-dependency chain from the last transition executed by Tj to
the transition of Ti enabled at time step k, i.e., SDCji(k) = 1. If these two cases don’t
hold and there exists a transition tr′ fired by Tj before the transition tr of Ti enabled at
time step k, then in order for quasi-monotonicity to hold, there must exist a transition
tr” fired by thread Tl, where l < i, after tr′ and before tr such that there is a schedule-
dependency chain from tr′ to tr′′ which is encoded as

∨
l<i SDCjl(k − 1) = 1.

All we need to show now is how to encode the DEP and SS variables. The depen-
dency variables are encoded exactly as in MPOR (see [5] for details). Thus as a final
step we show how to encode the SS variables.

Encoding SS. For encoding SS variables we use the schedule insensitive transaction
graph constructed in sec 5. In order to decide whether transitions ci → di and cj → dj
of threads Ti and Tj are schedule sensitive it suffices to check whether there exist paths
in the transaction graph wherein ci is executed before cj along one and vice versa along
the other. Note that since SIR allows context switching only at locations where shared
variables are accessed, we can restrict ourselves to locations ci and cj satisfying this
property. Moreover since we are interested only in the schedule (in)sensitivity of depen-
dent transitions we can further assume that the statements at ci and cj are dependent.

To encode SSij we first compute the set SS-Pairsij of all pairs (c1, c2) such that (i)
c1 and c2 belong to threads Ti and Tj , (ii) there exists a pair of dependent transitions of
the form tr1 : c1 → d1 and tr2 : c2 → d2, and (iii) there exist paths in the schedule
insensitive transaction graph wherein c1 is executed before c2 along one and vice versa
along the other. The sets SS-Pairsij can be enumerated via a single traversal of the
transaction graph. Then SSij =

∨
(c,d)∈SS−Pairsij

((pci = c) ∧ (pcj = d))

Schedule Insensitivity Reduction 113

Table 1. Model Checking Data Race Warnings (Timings are in seconds and memory in MBs)

Witness #
Shared Relevant Transaction MPOR SIR

Vars Sh. Vars Graph Time Mem Time Mem

jfs dmap : 1 6 1 0.01 0.02 59 0.01 12

ctrace : 1 19 12 10 2 62 1 43
ctrace : 2 19 12 14 10 hr 1.2G 3hr 0.5G
ctrace : 3 19 12 12 2303 733 1800 560

autofs : 1 7 2 0.05 1.14 60 0.5 30
autofs : 2 7 2 0.07 128 144 43 85

ptrace : 1 3 1 20 844 249 502 191

raid : 1 6 0 - 26.13 75 7.1 21
raid : 2 6 0 - 179 156 20 41
raid : 3 6 0 - 32.19 87 5 29
raid : 4 6 0 - 4.15 61 3 19
raid : 5 6 0 - 9.30 59 2 24
raid : 6 6 0 - 70 116 12 23

ipoib : 1 10 2 0.02 0.1 58 0.1 58
ipoib : 2 10 2 0.02 0.1 59 0.1 59
ipoib : 3 10 2 0.04 0.1 58 0.1 57
ipoib : 4 10 2 0.03 0.3 59 0.3 59

7 Implementation and Experimental Results

In previous work [6] we used static analysis to produce data race warnings for a suite
of Linux device drivers downloaded from the Linux Kernel Archives. Each warning
produced via static analysis is a pair (l1, l2) of control locations in different threads
where the same shared variable is accessed with at least one of the access being a write
operation and disjoint sets of locks are held. In order to decide whether (l1, l2) is a true
date race we have to decide whether there exists a reachable global state of the given
program with thread Ti at control location li.

We compare the time taken and memory used for MPOR [5] and SIR. For each of
the six drivers, the property checked is reachability of control locations correspond-
ing to data race warnings. Columns 1 and 2 report the total number and the number
of relevant shared variables, respectively. Here a shared variable is said to relevant is
there is a def-use chain starting at some write of v and leading to a conditional state-
ment of some thread. Clearly we need to consider conflicts only for the relevant shared
variables. Note that typically, the number of relevant shared variables is considerably
less than the total number of shared variables thereby pointing to the utility of SIR.
Column 3 gives the time taken for transaction graph construction using our new SIR
algorithm. Note that the overhead of this step is small. Also, for examples that contain
no relevant shared variables, e.g., raid, this step is unnecessary as we know a priori that
only one interleaving need be explored. The model checking statistics for MPOR and
SIR are shown in columns 4-5 and 6-7, respectively. Clearly, both the time taken and
memory used when applying SIR is significantly less than when MPOR is used. Our
experiments were conducted on a workstation with 2.8 GHz Xeon processor and 4GB
memory.

114 V. Kahlon

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

2. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a
program. In: ACM POPL, pp. 84–97 (January 1978)

3. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

4. Kahlon, V., Sankaranarayanan, S., Gupta, A.: Semantic Reduction of Thread Interleavings
in Concurrent Programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 124–138. Springer, Heidelberg (2009)

5. Kahlon, V., Wang, C., Gupta, A.: Monotonic Partial Order Reduction: An Optimal Symbolic
Partial Order Reduction Technique. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

6. Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast and Accurate Static Data-Race
Detection for Concurrent Programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 226–239. Springer, Heidelberg (2007)

7. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matrices. In:
Danvy, O., Filinski, A. (eds.) PADO-II. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg
(2001)

8. Peled, D.: Combining partial order reductions with on-the-fly model checking. In: Formal
Aspects of Computing, vol. 8, pp. 39–64 (1996)

9. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System Design 1(4)
(1992)

Adaptive Task Automata: A Framework
for Verifying Adaptive Embedded Systems

Leo Hatvani, Paul Pettersson, and Cristina Seceleanu

Mälardalen University, 721 23, Västerås, Sweden
{leo.hatvani,paul.pettersson,cristina.seceleanu}@mdh.se

Abstract. We present a framework for modeling and analysis of adap-
tive embedded systems, based on the model of timed automata with
tasks. The model is extended with primitives allowing modeling of adap-
tivity, by testing the potential schedulability of a given task, in the con-
text of the set of currently enqueued tasks. This makes it possible to
describe adaptive embedded systems, in which decisions to admit fur-
ther tasks or take other measures of adaptivity is based on available
CPU resources, external, or internal events. We show that this model
can be encoded in the framework of timed automata, and hence that
the problem is decidable. We also validate the framework, by using the
Uppaal tool.

1 Introduction

Adaptive embedded systems are embedded systems that must be capable of
dynamic reconfiguration, to adapt to e.g., changes in available resources, user-
or application-driven mode changes, or modified quality of service requirements.
The possibility to adapt provides flexibility that extends the area of operation of
embedded systems and potentially reduces resource consumption, but also poses
challenges in many aspects of systems development, including system modeling,
scheduling, and analysis.

In embedded systems, tasks are usually assumed to execute periodically
according to classical real-time scheduling methods, such as rate monotonic
scheduling, other fixed priorities, earliest deadline first, or first-in first-out [5].
For systems with non-periodic tasks or non-deterministic task behaviors fewer
general results exist. Automata models have been proposed to relax some of the
assumptions on the arrival patterns of tasks. In the model of task automata (or
timed automata with tasks) [8,10], the release patterns of tasks are modeled
using timed automata [1], such that a set of tasks with known parameters is
released at the time point an automaton location is reached. It has been shown
that the corresponding schedulability problem for this bigger class of possible
release patterns is decidable, i.e., the problem of checking if, for all possible
traces of a task automata, the tasks released are schedulable (or not), assuming
a given scheduling policy. It has also been shown how to generate code from task
automata, such that a modeled system can be realized on a hardware platform
running e.g., WxWorks [3,4]. The theory is implemented in the Times tool [2].

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 115–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

116 L. Hatvani, P. Pettersson, and C. Seceleanu

On the another hand, many results exist for formal verification of adaptive em-
bedded system models specified in high level languages such as UML Statecharts,
as enumerated by Schaefer [13]. Another set of results describes application of
formal verification of schedulability to: multiprocessor systems [14], satellite sys-
tems [11], or providing generalized frameworks for schedulability analysis [7]. All
of these studies have one thing in common: the non-schedulability of the system
can be determined only after a task misses its deadline, and thus the information
is not present soon enough, such that it can be used to avoid entering such state.

In this work, we propose a framework for modeling and analysis of adaptive
real-time embedded systems, based on the model of task automata, and assuming
a single CPU preemptive environment. We extend the model with primitives
allowing modeling of adaptivity based on the schedulability of the set of currently
released tasks (i.e., the ready queue), if further tasks are released. In particular,
we propose to add a schedulability predicate that can be used as a conjunct
of a timed automaton guard. The predicate evaluates to true at a given time
point, iff the current ready queue, extended with zero or more specified tasks,
is schedulable with a given scheduling policy. This allows for modeling of e.g.,
adaptive embedded systems in which decisions to admit further tasks are based
on available CPU resources, or systems in which tasks with high quality of service
can occasionally be replaced with alternative lower quality tasks, when the CPU
load is too high.

P T D C
t0 3 10 10 5
t1 2 15 6 4
t′1 1 – 6 1

t0

t1

t′1
0 5 10 20 2515 30

Fig. 1. A trace of a task set with adaptable task t1

As a small example of the proposed model, consider a system with two tasks t0,
t1, and t′1, where t′1 is a version of t1 with lower quality of service, which requires
less CPU time. The task parameters are given in Fig. 1: P is priority, T is period,
D is deadline, and C is computation time. Since P0>P1>P ′

1, task t0 will be exe-
cuted periodically without being preempted. We assume t1 will be admitted only
if it has a chance to complete before deadline, otherwise t′1 is released. The sys-
tem is schedulable, and will release t0 every 10 ms, and will try to release t1 every
15ms. If t1 cannot be released at that time point, due to interference from t0, task
t′1 will be released. Modeled in our extended task automata model, we can check
schedulability, verify how many times out of k task t′1 replaces t1, and interpret a
simulated trace as static cyclic scheduler for the system.

As our main result, we show that the schedulability problem and other reacha-
bility properties of the proposed model are decidable for fixed priority scheduling
policies. Our encoding of the problem is based on previous results of Fersman
et.al. [8,10], in which it is shown how given task automata can be encoded and

Adaptive Task Automata 117

analyzed as a network of timed automata. However, in comparison to the previ-
ous work, our type of adaptive systems cannot rely completely on encoding the
scheduler and explore the state space to check if the system is schedulable or
not. Instead, we need to check in advance if a system is schedulable, or will be
schedulable with the potential release of one or several additional tasks.

The rest of this paper is organized as follows: in the next section, we de-
scribe preliminaries, in Section 3 adaptive scheduling policies encompassed by
the model, and in Section 4 our main result, the encoding. In Section 5, we give
some examples, and conclude the paper in Section 6.

2 Preliminaries: Task Automata

Our model of adaptive task automata is based on the model of task automata (or
timed automata with tasks) [8,10,12], which extends the model of timed automata
with a notion of tasks. A timed automata [1] is simply a finite state automata
extended with a finite set of real-valued clocks. The edges of timed automata
are labeled with Boolean combinations of simple clock constraints, events, and a
reset set of clocks, specifying a subset of the clocks to be reset when the edge is
taken. In the model of task automata, the idea is to associate each location of a
timed automaton with a an executable program, called task, which is assumed to
be released when the location is reached. Each task is assumed to be associated
with given parameters such as execution time, hard deadline, priority, etc. It
is possible to interpret a task automaton as an abstract model of a running
system, in which the underlying timed automata describes the time points at
which possible events occur, and the location-associated tasks, triggered by the
occurring event.

Syntax. Let T ranged over by t0, . . . , tn denote a finite set of task types. Each
task type may have different instances over time, however, we will assume, with-
out lack of generality, that at each time point there is at most one instance of
each task type released. Each task type is associated with a a triple of natural
numbers ti(Ci, Di, Pi), where Ci is the task’s computation time, Di its relative
deadline (relative from the release time point), and Pi its priority. Further, let
Act ranged over by a, b etc, denote the set of action labels, and C ranged over
by x0, . . . , xn the finite set of real-valued clocks. We use B(C) ranged over by g
to denote the set of conjunctive formulas of constraints, called clock constraints,
of the form xi ∼ n and xi − xj ∼ m, where ∼∈ {≤, <, >,≥}, and n and m are
natural numbers.

Definition 1. [10] A task automaton overAct, C, andT is a tuple 〈L, l0, E, I, M〉,
where L is a set of location ranged over by l0, . . . ln, l0 ∈ L is the initial location,
E ⊆ L×B(C)×Act×2C ×L is the set of edges, I : L
→ B(C) is a function assign-
ing each location with a location invariant, and M : L ↪→ T is a partial function
assigning locations with tasks. ��

118 L. Hatvani, P. Pettersson, and C. Seceleanu

Semantics. Like in standard timed automata, a task automaton may perform
two types of actions. A delay transition corresponds to progression of time and
execution of the released task with the highest priority, and idling lower priority
tasks waiting to run. An action transitions corresponds to taking an enabled
edge (one whose guard evaluates to true given the current clock values), and
(possibly) releasing a task associated with the location reached.

A state of a task automaton is a triple 〈l, u, q〉, where l is the current con-
trol location, u : C
→ IR≥0 is a function mapping clocks to non-negative real
values, and q is the current ready queue of tasks. The task queue is formed as:
[ti(ci, di), . . . , tj(cj , dj)], where ti is the task type, ci is the remaining compu-
tation time, and di the relative deadline. A scheduling function, such as fixed
priority or earliest deadline first, is a function Sch sorting the task queue w.r.t.
the task parameters. For instance, [t1(1, 2), t2(2.5, 4)] is sorted according to fixed
priority, if P1 > P2. Note that a scheduling policy can be either preemptive or
non-preemptive, depending on whether the first queue position can be changed
(preemptive) or not (non-preemptive).

To define the semantics, we also need a function RunSch that takes a task
queue q and a non-negative real-number δ, and returns the result of executing
q for δ time units, with the given scheduling function Sch (e.g., RunFPS([t1(1, 2),
t2(2.5, 4)], 2) = [t2(1.5, 2)], for a fixed priority scheduling fuction RunFPS).

Definition 2. [10] Given a task automata 〈L, l0, E, I, M〉 with an initial state
〈l0, u0, q0〉, and a scheduling strategy Sch, the semantics is a transition system
defined as:

– 〈l, u, q〉 a−→Sch 〈l′, r(u), Sch(M(l′) :: q)〉 if l
g,a,r−→ l′ ∈ E and u |= g

– 〈l, u, q〉 δ−→Sch 〈l, u ⊕ δ, RunSch(q, δ)〉 if (u ⊕ δ) |= I(l)

where r(u) is 0 for all xi ∈ r and u(xi) otherwise, t :: q is the result of merging
t with q, and u ⊕ δ is the result of adding δ to all clock values in u. ��

Schedulability. Verification problems of the above model, with non-preemptive
and preemptive tasks, have been already investigated in [10,12]. Here we briefly
review the notions of reachability and schedulability. A state 〈l, u, q〉 is reachable
with a given scheduling policy Sch, if 〈l0, u0, q0〉 (−→Sch)∗〈l, u, q〉, where −→Sch

is a−→Sch or δ−→Sch. Further, a state 〈l, u, q〉 with q = [t0(c0, d0), . . . , tn(cn, dn)]
is defined as deadline-missed, if there is some 0 ≤ i ≤ n such that ci > 0 and
di ≤ 0. A task automaton A is defined to be non-schedulable with Sch iff a
deadline-missed state is reachable with Sch. Otherwise, A is considered to be
schedulable with Sch. In general, A is said to be schedulable if it is schedulable
with some scheduling strategy Sch. The problem of checking schedulability of
task automata with preemptive tasks is proven to be decidable in [10].

3 Adaptive Task Automata

In this section, we describe the model of adaptive task automata, which extends
the model of timed automata for adaptivity. Our aim is to enable modeling
of adaptivity based on the schedulability of the set of currently released tasks,

Adaptive Task Automata 119

and the effect of potentially releasing additional tasks for execution. In terms
of modeling, the extension consists of a set of predicates for schedulability test,
which can be used in conjunction with other guards on edges of task automata.
As a main result of this paper, we will also show how the resulting model can
be encoded as timed automata, and hence, that reachability and schedulability
checking are decidable.

Definition 3. Given a task automaton state 〈l, u, q〉, with q = [t0(c0, d0), . . . ,
tn(cn, dn)], and two distinct tasks, ti and tj, let P be the set of predicates
{inqueue/1, sched/1, sched/2} satisfied as follows:

〈l, u, q〉 |= inqueue(ti) if ti ∈ q

〈l, u, q〉 |= sched(ti) if (
∑i

j=0 cj) ≤ di ∧ inqueue(ti) ∨
〈l, u, Sch(ti ::q)〉 |= sched(ti) ∧ ¬inqueue(ti)

〈l, u, q〉 |= sched(ti, tj) if inqueue(ti) ∧ 〈l, u, Sch(tj ::q)〉 |= sched(ti)
��

We say that ti is active in state 〈l, u, q〉 if 〈l, u, q〉 |= inqueue(ti). In the rest of
the paper, we will omit 〈l, u, q〉 if the context is obvious. Intuitively, sched(ti) is
true in a state, if ti will meet its deadline, given that q is executed according to
Sch. We say that ti is schedulable if sched(ti). Similarly, sched(ti, tj) is true in a
state, if ti is schedulable even if tj is released (added to q).

We now define the model of adaptive task automata. Let B(P ∪ C) denote
the set of conjunctive formulas of clock constraints in B(C), and predicates in P .

Definition 4 (Adaptive Task Automata). An adaptive task automaton over
Act, C, and T is a tuple 〈L, l0, E

′, I, M〉, where L, l0, I, M are defined as in
task automata in Definition 1. The set of edges is defined as: E′ ⊆ L × B(P ∪
C) × Act × 2C × L. ��

Hence, the set of guards of the edges is extended to conjunctions of clock con-
straints and the predicates of Definition 3.

Example 1. The adaptive task automaton shown in Fig. 2 describes the release
pattern of the task t1 and corresponding backup task t′1 from Fig. 1. The au-
tomaton consists of a clock x, and three states: Start, Release t1, and Release
t′1. The edge from state Start to the states releasing tasks t1 or t′1 is immedi-
ate, given the invariant x ≤ 0 of state Start. The choice of the next state is
regulated by the evaluation of the respective guards on the edges, sched(t1) or
sched(t′1)∧¬sched(t1), respectively. Once one of the Release {t1, t′1} states is en-
tered, the corresponding task is released, and the automaton spends the rest of
the period in that state, before returning to start and resetting the clock x. Note
that a third edge from Start to an error location, taken in case when none of the
alternatives can be released, has been omitted from the figure for simplicity.

Derived predicates. The predicates defined above can be used to derive several
other useful predicates, including:

– sched_all = (
∧

i inqueue(ti) ⇒ sched(ti)),
– sched_all(ti) = (

∧
j inqueue(tj) ⇒ sched(tj , ti)).

120 L. Hatvani, P. Pettersson, and C. Seceleanu

Start
x ≤ 0

t1

t′1

Release t1
x ≤ 15

Release t′1
x ≤ 15

x ≥ 15
x = 0

sched(t1
)

sched(t′1) ∧ ¬sched(t1)

Fig. 2. Adaptive task automata for the task t1 from the Example 1

The predicate sched_all evaluates to true, in case all tasks in the queue are
schedulable, assuming scheduling policy Sch. The second predicate holds if all
the tasks in the queue are schedulable, if task ti is released. We will make use of
the above derived predicates in an example presented in Section 5.

4 Encoding of the Adaptive Task Automata

In this section, we present an encoding of the task release automata, the sched-
uler, and the task queue, as timed automata models. The encoding is presented
in terms of the variables that are used to model the execution of tasks. Based
on these variables, the predicate sched() is encoded, and finally, an encoding of
a fixed priority scheduler is presented.

Modeling a task set execution in timed automata requires tracking of several
values for each executed task instance. To establish if a task has executed in
time, we keep track of the amount of time that the task has been executing,
and the amount of time that has passed since the task has been released. By
using these values, and comparing them to the computation times and relative
deadlines of the tasks, we can establish if a task is able to complete successfully,
or not.

Our encoding is based on, and combines ideas introduced by Fersman et al.
[8,9]. The following variables are used for each task ti:

– ci - a clock that resets every time the predicate (∃tj | inqueue(tj)∧Pj ≥ Pi)
changes value from false to true, where Pi and Pj are priorities of tasks ti
and tj respectively;

– di - a clock reset when the task ti is released;
– ri - an integer variable (of bounded domain) that contains a sum of the

computation times Ci of all tasks of higher or equal priority to task ti,
which have been released since ci has been last reset.

The use of these variables will be exemplified on the scenario illustrated in Fig. 3.
Four task instances are released: t1 (at time point 4), t2 (at time point 1), and

Adaptive Task Automata 121

0 2 4 6 8 10
0

2

4

0

2

0

t3

t2

t1

ri - response time

ci - computation
time clock value

task release and
completition time

deadline of the task

Task P C D
t1 1 1 3
t2 2 2 5
t3 3 2 5

Fig. 3. Tracking of essential variables for each task

t3 (at time points 2 and 8). The task parameters and the values of variables ri,
and clocks ci, over time, are also given in the figure. Clocks di are left out for
clarity, but the point where they would become equal to the corresponding value
Di is marked with thick vertical bars.

The variables and clocks of all tasks are reset at the release of the first task t2,
at time point 1. As t2 is released, its computation time (2) is added to all the ri
of tasks with lower or equal priority to t2, i.e., r2 = r2+2 = 2 and r3 = r3+2 = 2.

A task completes its execution when ci = ri. In our case, this happens first
at time point 3, when r2 = c2. However, before this, task t3 is released at time
point 2, so r3 is increased by 2, the computation time of task t3. The only clock
reset at this time is d3, to start measuring time until its relative deadline.

At time point 4, task t1 is released, causing the reset of all its variables, and
those of task t2 (according to how ci is updated). Variables r1, r2, and r3 are
increased by 1 (the computation time of task t3), to 1, 1, and 5, respectively.

We now focus on task t3. Observe that the difference r3 − c3 for task t3
represents the time left until t3 completes its execution (assuming no higher
priority task is released). The time left to its deadline is given by D3 − d3.
Comparing the two values, we get the amount of time that the task can be
delayed without missing its deadline, and hence, as long as the inequality holds,
the task will meet its deadline. The values are illustrated in Fig. 4. In fact, at
time x, there is enough time to execute a higher priority task for 2 time units,
since r3− c3 +2 ≤ D3 −d3. When task t1 is later released, we already know that
task t3 can finish at time 6, i.e., 1 time unit before its deadline.

122 L. Hatvani, P. Pettersson, and C. Seceleanu

0 2 4 6
0

2

4

t3

8

r3 − c3 + C1 ≤ D3 − d3

r3 − c3 D3 − d3

C1

x

D3

deadline clock

D3 relative deadline of the task t3

Fig. 4. Visual explanation of the schedulability predicate encoding

4.1 Encoding the Predicate sched()

Given the variables introduced above, and given that there is a possible scheduler
model (introduced in the next section), we encode the predicate sched() as follows:

sched(ti) =

⎧⎨
⎩

ri − ci ≤ Di − di if inqueue(ti)
ri − ci + Ci ≤ Di − di if ¬inqueue(ti) ∧ Prun > Pi

Ci ≤ Di if ¬inqueue(ti) ∧ Prun < Pi

where trun refers to the currently executing task.
The first case has been explained in the previous section, note that it covers

all cases where ti = trun, since inqueue(trun) is invariantly true. In case the task
of interest (ti) has not been released yet, its computation time is not included in
the expression ri − ci ≤ Di − di, so this gives rise to the second case. In case the
task is not yet released, and it has higher priority than the currently running
task, it will execute immediately, and its schedulability is then only depending
on computation time being shorter than the deadline, hence the third case. This
case cannot be covered by the second case, since the clocks are considered inactive
at this point, and can only be reset and not read.

The implementation of the scheduler requires a strict ordering between the
tasks. We have introduced that ordering by assuming unique task priorities.
Together with the requirement of single task instance per task, this makes Pi =
Pj lead to an error state, and it is therefore not considered.

The derivation of the schedulability predicate that tests the schedulability of
task ti, based on the release of task tj , can be done from the second case above,
by replacing ci with a new computation time Cj . This provides the following
predicate that tests whether the task ti is schedulable, if task tj is released:

sched(ti, tj) =

⎧⎨
⎩

ri − ci + Cj ≤ Di − di if Pi < Pj ∧ inqueue(ti)
ri − ci ≤ Di − di if Pi > Pj ∧ inqueue(ti)
false if ¬inqueue(ti)

The second case of this predicate holds when the task that we want to release
will not influence the measured task.

Adaptive Task Automata 123

4.2 Encoding the Fixed Priority Scheduler

We have devised a model of a fixed priority scheduler, to support our approach
to the verification of adaptive embedded systems. This encoding enables us to
simulate the passage of time in the model, and simultaneously, keep track of
response times of tasks in the queue. This is required for an on-line analysis of
schedulability. Next, we give the scheduler’s encoding high-level description, yet
omitting some details due to lack of space.

High Level Description. The model consists of three locations with identi-
fied, different roles: Idle, Busy and Error, as shown in the overview Fig. 5. The
corresponding locations can also be found in the Fig. 6.

Idle Busy Error
Idle→ Busy

Task run done and q = ∅

Busy → Idle
First task release

Busy → Busy
Task run done and q = ∅

Variable bounding
High priority task release
Low priority task release

Busy → Error
Deadline miss
Multiple release

Fig. 5. A high level overview of the scheduler and queue encoding in timed automata

The scheduler and queue timed automaton model starts in the Idle location.
As soon as some task is released, the location changes to Busy, and if an error
occurs, the model switches to the Error location. Otherwise, the model loops in
the Busy location, for as long as there are tasks in the queue. The addition of
the Error location makes it possible to easily distinguish between an error in the
schedule, and a deadlock in the task release model.

The queue is implemented such that each task ti has attribute inqueuei. This
attribute indicates whether or not the task is present in the ready queue and is
therefore directly tied to the inqueue(ti) predicate.

The initial location of the model is Idle. The model can be in this location only
when there are no tasks in the queue, and no task is being executed. As soon as
one of the tasks is released (added to the queue), the model changes its location
to Busy, via the First task release edge. The consequence of taking this edge is
that all of the clocks and variables are reset, in order to initiate a new cycle of
execution. After that, the variables related to the release of the first task are
updated (detailed explanation of variable updates is presented in section 4.3).

When the automaton is in the Busy location, it means that a task instance
is being executed on the CPU. Since the model does not implement any task
blocking mechanism, the situation when there are tasks in the queue, but none
is executing, cannot occur.

The Busy location wraps in on itself in multiple edges. Many of these edges
are restricted to execute at the same time point. This is enforced by an invariant
on the Busy location (shown in dotted box in Fig. 6). The model uses variable

124 L. Hatvani, P. Pettersson, and C. Seceleanu

Idle

Busy

Error

crun ≤ rrun ∧
∀j∈{0,...,N−1}

Pj ≤ Prun ⇒ cj ≤ Cmax

reset(),
inqueuei := ,
run := i,
updateRs(i)

releasei?

First task release

crun = rrun ∧
drun ≤ Drun ∧
∀j∈{0,...,N−1}
(run = j ∨ ¬inqueuej)
inqueuerun := ⊥

Task run done and q = ∅

Pi > Prun ∧
¬inqueuei
releasei?

inqueuei := ,
resetBetween(i, run),
run := i,
updateRs(i)

High priority task release

Task run done and q 	= ∅
crun = rrun ∧
drun ≤ Drun ∧
i 	= run ∧
inqueuei ∧
∀j∈{0···N−1}
(j = run ∨
inqueuej = ⊥ ∨ Pi ≥ Pj)

inqueuerun := ⊥,
run := i

ci = Cmax ∧
Pi ≤ Prun

ci := 0,
ri := ri − Cmax

Variable bounding

Prun > Pi ∧
¬inqueuei
releasei?

di := 0,
inqueuei := ,
updateRs(i)

Low priority task release

inqueuei ∧
di > Di

inqueuei ∧
(i = run⇒ ci < ri)

releasei?

Deadline miss Multiple release

Fig. 6. The full model of scheduler and queue. The boxes represent transitions de-
scribed by (in order from top to bottom): name, guard predicate, synchronization
expression, and assignment. If one of the values is nil it is not shown.

i to represent classes of edges that are instantiated for every task in the task
set. For instance, if there are five task types in the task set, there will be five
Variable bounding edges, one for each task type. Below, we enumerate the classes
of edges looping in the Busy location:

Adaptive Task Automata 125

– Task run done and q �= ∅ - After the current task has completed its execution,
this current task, denoted by the value of the run variable, is removed from
the queue, and a next task is chosen for execution, out of those currently
in the queue. The choice of the next task is done by selecting the edge
corresponding to a task that has higher priority than all of the other tasks.

– High priority task release - It releases a new task into the queue, which pre-
empts the currently running task. The release changes the status of the
currently executing task, sets a new value of the variable run, and resets the
currently inactive variables that have lower or equal priority than the new
task.

– Low priority task release - If the new task is not of higher priority then the
currently running task, it is then just placed in the queue. Its variables are
already active, so only the deadline clock di is reset.

– Variable bounding - Due to the nature of timed automata, it is required that
the variables in the model have upper and lower bounds. This process is
explained in detail in section 4.3.

Last but not least, we need to consider the possibilities for the model to switch
to the Error location. In such a case, there are two classes of edges and, once
again, they are iterated over all tasks:

– Deadline miss edge is taken when a task misses its deadline, that is, the
deadline clock becomes greater then the value of the relative deadline.

– Multiple release edge is taken when a task is released, but it is already in the
queue.

Finally, the edge "Task run done and q = ∅" is taken when the last task in the
queue is completed, and there are no more tasks left. We remove the currently
running task from the queue and return to the Idle location.

4.3 Variable Bounding

To be able to verify timed automata models, all of the variables, including clocks,
have to be bound. To bound variables in this model, we have introduced a loop
on the Busy location, named Variable bounding. This loop is executed for each
individual task ti, whenever its total computation time reaches a certain value
Cmax. It reduces the total computation time ci to zero, and subtracts Cmax

from the corresponding response time variable ri, thus not influencing the delta
ri − ci. By doing this, we ensure that the total computation time is always
lower or equal to Cmax, and that the response time variable is kept bound to
Cmax +Dmax, within a working system. Cmax can be any value greater or equal
to the maximum of computation times in the current task set, and Dmax is the
maximum of deadlines in the task set. If the response time becomes greater than
Cmax + Dmax, we can guarantee that the task will breach its deadline, and the
model becomes unschedulable.

Theorem 1. The problem of checking the schedulability of the system, modeled
using adaptive task automata, is decidable.

126 L. Hatvani, P. Pettersson, and C. Seceleanu

Proof Sketch. Due to space limitation, we give only a proof sketch here. In this
section, we have presented a way of encoding adaptive task automata using
timed automata, featuring a fixed priority scheduler. Since all of the variables
in the model are bounded, and the problem of decidability of bounded timed
automata with subtraction has been already proved decidable [10], the problem
of decidability of checking schedulability in this particular case follows straight-
forwardly. ��

5 Examples

To further illustrate the benefits that the system designers could get from using
our model, we have analyzed two example systems, one synthetic, and one based
on real world ideas.

5.1 Admission Control - A Synthetic Example

This example demonstrates the usage of the sched_all(ti) predicate, for a given
task ti. We assume a system with two tasks, t1 and t2, where each has an
alternative version of itself, t′1 and t′2, respectively. The task parameters are
shown in Fig. 7; parameter J represents the task’s jitter value. For instance, the
task t1 will be released every 10 time units, but can be up to 2 time units late.

U

x ≤ J1
x ≥ 0

sched all(t1)

sched all(t′1)

Start
Branch

t1

t′1

Release t1

Release t′1

x ≤ T1

x ≥ T1

x = 0

x ≤ T1

Task P CD T J
t1 4 5 5 10 2
t′1 3 3 5 – 2
t2 2 3 7 10 5
t′2 1 2 7 – 5

Fig. 7. Task set and adaptive task automata model for the synthetic example

Fig. 7 shows the task automaton corresponding to t1; the one of t2 is similar,
hence we omit it. For the task t1, the task automaton checks whether all of the
other tasks in the system are schedulable if the task t1 is released. If the tasks
are not schedulable, it tries to release the alternative variant of the task: t′1. The
two task automata instances are modeled as timed automata, and communicate
with the scheduler via channels. The order between the preferred and alternative
variant of the tasks, respectively, is ensured by using channel priorities [6]. For
these models, we have proven that the system would never run into the Error
state of the scheduler, and that (all of) the variants of the tasks will be eventually
released. Proving that the system will never get into the Error state is the most
demanding on the Uppaal prover, and it required about 0.08 seconds CPU time,
and 42MB memory on a dual-core 3.0GHz CPU, equipped with 4GB of RAM.

Adaptive Task Automata 127

5.2 Smartphone Task Management Example

The second example has been adapted from an idealized smartphone operating
system. Modern smartphone devices support multitasking, yet have quite limited
resources available for realizing their functionality. We propose a scheduler-level
solution that enables a phone to adapt to the current situation fluently, by
dynamically restricting the quality of service provided to the user.

The basic assumption is that the software in the smart phone is being executed
in cycles. A series of short tasks that handle different applications are being
executed each cycle. The applications that we have chosen for this example
are: phone call, video call, and multimedia. The user can turn any of these
applications on, or off, at arbitrary moments. The switch status of the application
will not be immediately reflected in the active task set, but the task set will
change during the next cycle, instead.

Table 1. Set of tasks for the smartphone example

P T D C Description
tcl 5 10 10 4 Call
tvc 4 10 10 3 Video Chat
tmm 3 10 10 7 Multimedia: max quality
t′mm 2 – 10 4 Multimedia: medium quality
t′′mm 1 – 10 3 Multimedia: low quality

tmm

t′mm

t′′mm

Start
x <= 0

Release tmm

Release t′mm

Release t′′mm

x ≥ T
x = 0

sch
ed(

tmm
, tmm

)

sched(t′mm, t′mm)

sched(t ′′
mm , t ′′

mm)

x <= T

x <= T

x <= T

Fig. 8. Adaptive task automaton model for the smartphone example

We have modeled the smartphone as an adaptive task automaton, and then
implemented it as timed automata. The system model relies on a fixed priority
scheduler. Tasks tcl (phone call), and tvc (video call), are described by "periodic
release" automata, whereas task tmm (multimedia) is modeled using the adaptive

128 L. Hatvani, P. Pettersson, and C. Seceleanu

task release automaton presented in Fig. 8. The automaton has been modeled
using priorities [6], to remove nondeterminism from the execution.

Once the system has been modeled, a full verification of schedulability becomes
possible. As previously, verification of not reaching the Error state has been the
most demanding and, required about 0.03s and 34MB of RAM memory.

6 Conclusion

In this paper, we have proposed a framework for formal modeling and scheduling
of adaptive embedded systems, which relies on a task automata description of
the system (tasks and scheduler). In order to check at each task’s release time
point whether the system is schedulable, or will be with the potential release of
other additional tasks, we have introduced a set of schedulability predicates to
be used in the guards of the task automata model.

The encodings and on-line schedulability tests that we have devised can be
seen as model-level means of predicting, at release time-moments, the timeliness
behavior of real-time tasks with very general release patterns, which are stored
in the ready queue. Our liberal adaptive task automata model, enhanced with
predicates for schedulability test, lets one perform on-line adaptations that de-
cide to admit or not certain tasks, depending on their respective adherence to
the desired real-time requirements, that is, meeting their deadlines. The salient
result of our work is the decidability of reachability and schedulability of adap-
tive task automata, by showing that the resulting model can be encoded in the
timed automata framework.

The power of our approach resides exactly in the fact that the task selection
strategy is specified as a predicate on clocks and integers. As it stands now, that
is, assuming fixed priority schedulers, the model is compatible with any scheduler
that has fixed ordering between the tasks, once the tasks are released. As with
every formalized approach, there are some potentially useful-to-solve unexplored
issues, which need further attention. For instance, it would be interesting to
check on the consequences of allowing a task set to run, even if, based on our
schedulability tests, we decide that it misses its deadline at the current time
point. Another problem that deserves investigation is the possibility of releasing
more than one task at a time, and verify the resulting model.

We also consider to extend the method to cater also for other schedulers than
fixed-priority, for instance, Earliest-Deadline-First (EDF) schedulers. Neverthe-
less, although, as for now, our technique is restricted to fixed-priority schedulers,
it can already decide on task executions at run-time, but has also the potential of
manipulating the queue of released tasks, in the sense of switching ready tasks’
priorities, if the case, removing certain tasks from the queue, etc., all based on
possible further additions to the schedulability predicates.

The final avenue to explore would be along investigating the efficiency of our
approach, when handling real-world industrial case study.

Adaptive Task Automata 129

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times: A Tool for
Schedulability Analysis and Code Generation of Real-Time Systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

3. Amnell, T., Fersman, E., Pettersson, P., Sun, H., Yi, W.: Code synthesis for timed
automata. Nordic Journal of Computing 9(4), 269–300 (2002)

4. Åsberg, M., Nolte, T., Pettersson, P.: Prototyping and code synthesis of hierarchi-
cally scheduled systems using times. Journal of Convergence (Consumer Electron-
ics) 1(1), 77–86 (2010)

5. Buttazzo, G.C.: Hard Real-Time Computing Systems. Predictable Scheduling Al-
gorithms and Applications. Kulwer Academic Publishers (1997)

6. David, A., Håkansson, J., Larsen, K., Pettersson, P.: Model Checking Timed Au-
tomata with Priorities Using DBM Subtraction. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 128–142. Springer, Heidelberg (2006)

7. David, A., Illum, J., Larsen, K., Skou, A.: Model-Based Framework for Schedula-
bility Analysis Using UPPAAL 4.1. CRC Press (2011/12/27 (2009)

8. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

9. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of fixed-
priority systems using timed automata. Theor. Comput. Sci. 354, 301–317 (2006)

10. Fersman, E., Pettersson, P., Yi, W.: Timed Automata with Asynchronous Pro-
cesses: Schedulability and Decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002)

11. Mikučionis, M., Larsen, K., Rasmussen, J., Nielsen, B., Skou, A., Palm, S., Ped-
ersen, J., Hougaard, P.: Schedulability Analysis Using Uppaal: Herschel-Planck
Case Study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp.
175–190. Springer, Heidelberg (2010)

12. Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven
systems. In: Sixth International Conference on Real-Time Computing Systems and
Applications, RTCSA 1999, pp. 182–189 (1999)

13. Schaefer, I.: Integrating Formal Verification into the Model-Based Development
of Adaptive Embedded Systems. Ph.D. thesis, TU Kaiserslautern, Kaiserslautern,
Germany (October 2008) ISBN 978-3-89963-862-2

14. Yu, F., Li, G., Xiong, N.: Schedulability analysis of multi-processor real-time sys-
tems using uppaal. In: 2010 2nd International Conference on Information Science
and Engineering (ICISE), pp. 1–6 (December 2010)

Verified Resource Guarantees

for Heap Manipulating Programs

Elvira Albert2, Richard Bubel1, Samir Genaim2,
Reiner Hähnle1, and Guillermo Román-Dı́ez3

1 CSE, Chalmers University of Technology, Sweden
2 DSIC, Complutense University of Madrid (UCM), Spain
3 DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. Program properties that are automatically inferred by static
analysis tools are generally not considered to be completely trustwor-
thy, unless the tool implementation or the results are formally verified.
Here we focus on the formal verification of resource guarantees inferred
by automatic cost analysis. Resource guarantees ensure that programs
run within the indicated amount of resources which may refer to mem-
ory consumption, to number of instructions executed, etc. In previous
work we studied formal verification of inferred resource guarantees that
depend only on integer data. In realistic programs, however, resource
consumption is often bounded by the size of heap-allocated data struc-
tures. Bounding their size requires to perform a number of structural
heap analyses. The contributions of this paper are (i) to identify what
exactly needs to be verified to guarantee sound analysis of heap manipu-
lating programs, (ii) to provide a suitable extension of the program logic
used for verification to handle structural heap properties in the context of
resource guarantees, and (iii) to improve the underlying theorem prover
so that proof obligations can be automatically discharged.

1 Introduction

Formally proving the correctness of software can be crucial for many applica-
tions, e.g., in safety-critical systems. There are two possible approaches to cer-
tifying the correctness of software, (1) either perform full-blown verification of
the correctness of the system or (2) alternatively validate its results for every
execution. In the case of static analyzers, the first alternative is a daunting task,
among other things, because of the sophisticated algorithms used for the analy-
sis and their evolution over time. In this paper, we adopt the second alternative
based on constructing a validating tool [14] which, after every run of the an-
alyzer, formally (and automatically) confirms that the results are correct and,
optionally, generates correctness proofs. Such proofs can then be translated to
independently checkable certificates in the proof-carrying code style [6,13].

Resource usage analysis aims at (over-)approximating the amount of resources
(time, memory, etc.) required to run a program in terms of its input arguments.
costa [1,2] is a cost analyzer which allows the user to select a particular resource

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 130–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verified Resource Guarantees for Heap Manipulating Programs 131

(among those available in the system) and automatically generate resource us-
age upper bounds from Java bytecode (and hence Java) programs. Correctness of
the techniques that costa implements is proven at the theoretical level, but the
tool has not been formally verified. Thus, there is no guarantee that correctness
is realized by the implementation. In recent work [3], we have proposed a fully
automatic process of obtaining verified resource guarantees by using KeY [5], a
state-of-the-art theorem prover for Java programs, for verifying that the upper
bounds inferred by costa are correct. In essence, the costa and KeY systems
cooperate in such a way that KeY produces formal correctness proofs for the dif-
ferent intermediate results used to obtain the upper bounds. When the resource
guarantees depend only on data of integer type, this cooperation results in a
fully automatic tool for producing verified resource guarantees.

However, it is often the case that resource guarantees depend on the struc-
tural properties of dynamically allocated data, e.g., the resource consumption of
executing a loop that traverses a list is typically a function of the length of such
a list. Resource analysis needs to keep track of how the size of data structures
changes along the execution. For this purpose, costa integrates as an addi-
tional component the path-length analysis [17]. The path-length of a non-cyclic
data structure is the length of the maximal path starting from the root, i.e., its
depth. Inferring the path-length property also requires proving acyclicity of data
structures and keeping track of possible sharing between pointers.

The main achievement of this paper is the extension of [3] to handle heap
manipulating programs. In particular: (1) we identify the structural properties
inferred by costa which need to be verified and extend the Java Modeling Lan-
guage (JML) by suitable new constructs; (2) we extend the program logic used
during verification by additional theories for structural heap properties including
acyclicity or disjointness of heap regions. Extensive work with implementation
and improvement of the proof-search strategies for the newly introduced theories
was required to achieve a high degree of automation; (3) we formalize faithfully
the notion of maximal path-length of an acyclic data structure in KeY’s logic.
This theory is equipped with lemmas that match the requirements of the path-
length analysis performed in costa; and (4) realizing the cooperation between
costa and KeY has required a number of non-trivial extensions of both systems.

The paper is organized as follows: Sec. 2 recalls the framework of [3]; Sec. 3
presents the additional components that need to be verified for carrying out
the extension; Sec. 4 describes how the KeY logic has been extended to express
and verify structural heap properties and path-length assertions; experimental
results are presented in Sec. 5; and Sec. 6 concludes and discusses related work.

2 The Framework: Verification of Resource Guarantees

In this section we review the verification framework for upper bounds (UBs) as
proposed in [3] which does not take heap-allocated data structures into account.
Sec. 2.1 describes the components involved in a resource guarantees analysis
while Sec. 2.2 details the formal verification of these components with KeY.

132 E. Albert et al.

1 void scoreBoard(int[][] v) {

2 //@ ghost int v len =v.length
3 int i=0, j=0;

4 //@ assert (j=0 ∧ i=0 ∧ v.length=v len)
5 //@ ghost int i 1=i, j1=j, v len1=v.length
6 //@ ghost int i 2=i, j2=j, v len2=v.length
7 //@ decreases ((v. length − i) ≥ 0 ? (v.length − i) : 0)
8 //@ loop invariant (i 2=0 ∧ i2=i ∧ v len2≥0) ∨ (i2=0 ∧ i≥1 ∧ v len2≥i)
9 while (i < v.length) {

10 j=0;

11 //@ assert (v len 1>i ∧ i1=i ∧ j=0)
12 //@ ghost int i 3=i, j3=j, v len3=v.length
13 //@ ghost int i 4=i, j4=j, v len4=v.length
14 //@ decreases ((i − j) ≥ 0 ? (i − j) : 0)
15 //@ loop invariant (j 4=0 ∧ j4=j ∧ i4=i) ∨ (j4=0 ∧ j≥1 ∧ i4≥j ∧ i4=i)
16 while (j < i) {

17 v[i][j]=i + j;

18 j++;

19 //@ assert (j=j3+1 ∧ i3=i);
20 //@ set i 3=i, j3=j, v len3=v.length
21 }

22 i++;

23 //@ assert (v. length 1>i ∧ i=i1+1)
24 //@ set i 1=i, j1=j, v len1=v.length
25 }

26 }

Fig. 1. costa’s output for a simple example working on integer data

2.1 Inference of Resource Guarantees

Cost analyzers [1,2] usually infer UBs for each iterative and recursive construct
(loops) and then compose the results in order to obtain UBs for the methods of
interest. W.l.o.g., we focus on polynomial UBs which are the result of composing
simple loops, but the same components are used to infer UBs for programs with
logarithmic and exponential complexities. Intuitively, in order to infer an UB for
a single loop, we infer an UB A on the worst-case cost of a single execution of its
body and an UB I on the number of iterations that it can perform. Then, A ∗ I
is an UB for the loop. To infer A and I costa relies on the program analysis
components described below that provide the necessary information. The results
are provided by costa as JML annotations that KeY will attempt to verify.

Ranking functions. For each loop, costa infers as UB on the number of iterations
a linear function I from the loop variables to N which is strictly decreasing at each
iteration. Ranking functions are of the form nat(�), where nat(�) = max(0, �),
which can be translated to the JML annotation “//@ decreasing � > 0 ? � : 0”.

Verified Resource Guarantees for Heap Manipulating Programs 133

Example 1. Consider the method scoreBoard() given in Fig. 1, where two nested
loops are used to initialize some matrix values. For the inner loop costa infers at
line 14 the ranking function f(i, j) = nat(i− j) which safely bounds the number
of iterations. For the outer loop, the number of iterations is bounded by the
ranking function that appears in line 7 which involves the length of the array.

Loop invariants. Loop invariants, together with size relations, are needed to
compute the worst-case cost A of executing one loop iteration. For each loop in
the program, costa infers an invariant ϕ that involves the loop variables v̄ and
auxiliary variables w̄ such that each wi represents the initial value of vi. The
JML annotation for this invariant consists of one line defining all w̄ as ghost
variables (“//@ ghost int w1 = v1;. . .; int wn = vn”, lines 6, 13 in Fig. 1) and one
line for the loop invariant (“//@ loop invariant ϕ”, lines 8, 15 in Fig. 1).

Example 2. Consider the invariant for the outer loop at line 8. The left disjunct
corresponds to first visit to that program point, and the right disjunct to visit it
after executing the loop body at least once. Note that separating the invariant
into these two cases results in a more precise UB, and in addition helps KeY in
verifying the invariant. We declared as ghost variable in line 6 such that i2,j2
and v len2 correspond to the initial value of i, j and v.length when entering
the loop for the first time. The invariant states that i is always smaller than or
equal to the initial value of v.length (i ≤ v len2) This is essential to bound the
worst-case cost of the loop, since the cost of each iteration depends on i.

Size relations. Given a fragment of code (a scope), costa infers size relations
between the values of the variables at a certain program point of interest within
the scope and their initial values when entering the scope. This allows composing
the cost of the different code fragments. In particular, for each loop (or method
call), costa infers the relation ϕ between the values of variables before a loop
(or call) entry and the entry of its parent scope. Suppose that the loop (or call) is
at line Ll, its parent scope starts at line Lp, v̄ are the variables of interest at line
Ll, and w̄ represent their values at line Lp. Then we add the JML annotation
“//@ ghost int w1 = v1;. . .; int wn = vn;” immediately after line Lp to capture the
values of v̄ at line Lp, and the JML annotation “//@ assert ϕ” immediately before
line Ll to state that the relation ϕ must hold at the program point.

Example 3. Let us demonstrate the need for size relations: (1) during cost anal-
ysis, the cost of the outer loop is inferred first in terms of the values of i and
v.length before entering the loop, and later is transformed to be in terms of the
length of the input array. For this, costa uses the size relation at line 4 which
relates the values at that program point to those at line 2 using the correspond-
ing ghost variables; (2) similarly, the cost of the inner loop is first inferred in
terms of the values of i and j before entering the loop, and later is transformed
to be in terms of their values when entering the outer loop. Assuming that i1,
j1 and v len1 are respectively the value of i, j, and v.length, line 11 includes
the size relation required to do such transformation. Note that since these code

134 E. Albert et al.

fragments appear inside a loop, the values of i1, j1 and v len1 should be updated
in each iteration. This is done by defining and initializing them at line 5 (for
the first iteration) and modifying them in each iteration at the end of the loop
(line 24). The size relation at line 23 is used by costa to synthesize a ranking
function, this also helps KeY in proving that it is indeed a ranking function; and
(3) lines 12, 19 and 20 encode the size relation of the inner loop.

Upper Bounds. In the verification phase it suffices to prove the correctness of the
inferred ranking functions, loop invariants, and size relations: based on these, it
is straightforward to compute an UB for the method by applying parametric
integer programming (PIP) to obtain A and then just multiply I ∗A.

Example 4. We start from the innermost loop at line 16. Assuming that exe-
cuting the condition costs (at most) c1 instructions, and that the cost of each
iteration (i.e., the loop body) is c2 instructions, then it is clear that nat(i4 −
j4) ∗ (c1 + c2) + c1 is an UB on the cost of this loop. Next, we move to the
outer loop at line 9. Let us assume that the cost of the comparison is (at most)
c3 instructions, the code at line 10 costs c4 instructions, and the code at line
22 is c5 instructions. Then, the cost of each iteration of this loop is c3 + c4 +
nat(i4 − j4) ∗ (c1 + c2) + c1+ c5, where the highlighted subexpression is the cost
of the inner loop. Note that each iteration might have a different cost, since i4−j4
is not the same for all iterations. The solution is to find the worst-case cost A in
terms of v len2, i2, j2 such that A ≥ i4 − j4 in all iterations. Then, nat(v len2 −
i2)∗ [c3+c4+nat(A) ∗ (c1 + c2) + c1+c5]+c3 is an UB for the loop. To find such
A, costa solves the PIP problem of maximizing the objective function i4 − j4
w.r.t. the loop invariant (line 8) and the size relations (line 11) where v len2, i2, j2
are the parameters. This produces an expression in terms of v len2, i2, j2 which
is greater than or equal to i4 − j4 in all iterations of the loop. In our exam-
ple, it is A = v len2 − 1. We finally can compute the cost of the scoreBoard

method. Assume that the cost of line 3 is c6, then the cost of the method
is c6+nat(v len2 − i2) ∗ [c3 + c4 + nat(v len2 − 1) ∗ (c1 + c2) + c1 + c5] + c3. We
need to express this UB in terms of the input parameter v len. For this, costa
maximizes (using PIP) v len2− i2 and v len2−1 w.r.t. the size relation at line 4
and, respectively, obtains v len and v len− 1. Therefore, c6 + nat(v len) ∗ [c3 +
c4 + nat(v len− 1) ∗ (c1 + c2) + c1 + c5] + c3 is the UB for scoreBoard.

2.2 Verification by Symbolic Execution

The program logic used by KeY is JavaCard Dynamic Logic (JavaDL) [5], a first-
order dynamic logic with arithmetic. JavaDL extends sorted first-order logic by
a program modality 〈·〉·. Let p denote a sequence of executable Java statements
and φ an arbitrary JavaDL formula, then 〈p〉φ is a formula which states that
program p terminates and in its final state φ holds. A typical formula looks like

i
.
= i0 ∧ j

.
= j0 −> 〈

p︷ ︸︸ ︷
i=j-i;j=j-i;i=i+j;〉(i .

= j0 ∧ j
.
= i0)

Verified Resource Guarantees for Heap Manipulating Programs 135

where i, j are program variables represented as non-rigid constants. Non-rigid
constants and functions are state-dependent: their value can be changed by pro-
grams. The rigid constants i0, j0 are state-independent: their value cannot be
changed. The formula above says that if program p is executed in a state where
i and j have values i0, j0, then p terminates and in its final state the values of
the variables are swapped. To reason about JavaDL formulas, KeY employs a
sequent calculus whose rules perform symbolic execution of the programs in the
modalities. Here is a typical rule:

ifSplit
Γ, b =⇒ 〈{p}rest〉φ,Δ Γ,¬b =⇒ 〈{q}rest〉φ,Δ

Γ =⇒ 〈if (b) {p} else {q} rest〉φ,Δ
As values are symbolic, it is in general necessary to split the proof whenever an
implicit or explicit case distinction is executed. It is also necessary to represent
the symbolic values of variables throughout execution. This becomes apparent
when statements with side effects are executed, notably assignments. The as-
signment rule in JavaDL looks as follows:

assign
Γ =⇒ {x := val}〈rest〉φ,Δ
Γ =⇒ 〈x = val; rest〉φ,Δ

The expression in curly braces in the premise is called update and is used in KeY
to represent symbolic state changes. An elementary update loc := val is a pair
of a program variable and a value. The meaning of updates is the same as that of
an assignment, but updates can be composed in various ways to represent com-
plex state changes. Updates u1, u2 can be composed into parallel updates u1‖u2.
In case of clashes (updates u1, u2 assign different values to the same location) a
last-wins semantics resolves the conflict. This reflects left-to-right sequential ex-
ecution. Apart from that, parallel updates are applied simultaneously, i.e., they
do not depend on each other. Update application to a formula/term e is denoted
by {u}e and forms itself a formula/term.

Verifying Size Relations. JML annotations are proven to be valid by symbolic
execution. For example, in the method scoreBoard() one starts with execution of
the variable declarations. Ghost variable declarations and assignments to ghost
variables (//@ set var=val;) are treated like Java assignments. If a JML assertion
“assert ϕ;” is encountered during symbolic execution, the proof is split: the first
branch must prove that the assertion formula ϕ holds in the current symbolic
state; the second branch continues symbolic execution. In the scoreBoard exam-
ple, a proof split occurs before entering each loop. This verifies the size relations
among variables as derived by costa and encoded in terms of JML assertions.

Verifying Invariants and Ranking Functions. Verification of the loop invariants
and ranking functions obtained from costa is achieved with a tailored loop
invariant rule that has a variant term to ensure termination:

loopInv

(i) Γ =⇒ Inv ∧ dec ≥ 0, Δ
(ii) Γ, {UA}(b ∧ Inv ∧ dec

.
= d0) ⇒

{UA}〈body〉(Inv ∧ dec < d0 ∧ dec ≥ 0), Δ
(iii) Γ, {UA}(¬b ∧ Inv) =⇒ {UA}〈rest〉φ,Δ

Γ =⇒ 〈while (b) { body } rest〉φ,Δ

136 E. Albert et al.

Inv and dec are obtained, respectively, from the loop invariant and decreasing
JML annotations generated by costa. Premise (i) ensures that invariant Inv
is valid just before entering the loop and that the variant dec is non-negative.
Premise (ii) ensures that Inv is preserved by the loop body and that the variant
term decreases strictly monotonic while remaining non-negative. Premise (iii)
continues symbolic execution upon loop exit. The integer-typed variant term en-
sures loop termination as it has a lower bound (0) and is decreased by each loop
iteration. Using costa’s derived ranking function as variant term obviously ver-
ifies that the ranking function is correct. The update UA assigns to all locations
whose values are potentially changed by the loop a fixed, but unknown value.
This allows using the values of locations that are unchanged in the loop during
symbolic execution of the body.

Contracts. costa also infers contracts which specify pre- and post-conditions
on the input and output arguments of each method. Contracts are useful for
modular verification in KeY.

3 Upper Bounds for Heap Manipulating Programs

When input arguments of a method are of reference type, its UB is usually not
specified in terms of the concrete values within the data structures, but rather in
terms of some structural properties of the involved data structures. For example,
if the input is a list, then the UB would typically depend on the length of the
list instead of the concrete values in the list.

Example 5. Consider the program in Fig. 2 where class List implements a linked
list as usual. For method insert, costa infers the UB c1 ∗ nat(x) + c2 where
x refers to the length of x, and c1/c2 are constants representing the cost of the
instructions inside/before & after the loop. The UB depends on the length of x,
because the list is traversed at lines 16–19.

The example shows that cost analysis of heap manipulating programs requires
inferring information on how the size of data structures changes during the
execution, similar to the invariants and size-relations that are used to describe
how the values of integer variables change. To do so, we first need to fix the
meaning of “size of a data structure”. We use the path-length measure which
maps data structures to their depth, such that the depth of a cyclic data structure
is defined to be ∞. Recall that the depth of a data structure is the maximum
number of nodes (i.e. objects) on a path from the root to a leaf. Using this
size measure, costa infers invariants and size relations that involve both integer
and reference variables, where the reference variables refer to the depth of the
corresponding data structures. Once the invariants are inferred, synthesizing
the UBs follows the same pattern as in Sec. 2. In the following, we identify
the essential information of the path-length analysis (and related analyses) that
must be verified later by KeY.

Verified Resource Guarantees for Heap Manipulating Programs 137

1 //@ requires \acyclic(x)
2 //@ ensures \acyclic(\result)
3 //@ ensures \depth(\result) ≤ \depth(x) + 1
4 public static List insert(List x, int v) {

5 //@ ghost List x0 = x;
6 List p = null;

7 List c = x;

8 List n = new List(v, null);

9 //@ ghost List c0 = c
10 //@ assert \depth(n) = 1 ∧ \depth(c0) = \depth(x0)
11 //@ decreasing \depth(c)
12 //@ loop invariant \depth(c0) ≥ \depth(c)
13 //@ loop invariant \acyclic(n) ∧ \acyclic(p) ∧ \acyclic(x) ∧ \acyclic(c)
14 //@ loop invariant \disjoint({n, x})∧\disjoint({n, c})∧\disjoint({n, p})
15 //@ loop invariant !\reachPlus(p, x) ∧ !\reachPlus(n, x) ∧ !\reach(n, p)
16 while (c != null ∧ c.data < v) {

17 p = c;

18 c = c.next;

19 }

20 if (p == null) {

21 n.next = x;

22 x = n;

23 } else {

24 n.next = c;

25 p.next = n;

26 }

27 return x;

28 }

Fig. 2. The running example, with (partial) JML annotations

3.1 Path-Length Analysis

Path-length analysis is based on abstracting program states to linear constraints
that describe the corresponding path-length relations between the different data
structures. For example, the linear constraint x < y represents all program states
in which the depth of the data structure to which x points is smaller than the
depth of the data structure to which y points. Starting from an initial abstract
state that describes the path-length relations of the initial concrete state, the
analysis computes path-length invariants for each program point of interest. In
order to verify the path-length information with KeY, we have extended JML
with the new keyword \depth that gives the depth of a data structure to which
a reference variable points. In particular, for invariants, size-relations, and con-
tracts, if the corresponding constraints include a variable x, corresponding to a
reference variable x, we replace all occurrences of x by \depth(x).

Example 6. We explain the various path-length relations inferred by costa for
the method insert of Fig. 2, and how they are used to infer an UB. Due to space

138 E. Albert et al.

limitations, we only show the annotations of interest. For the loop at lines 16–19,
costa infers that the depth of the data structure to which c points decreases
in each iteration. Since the depth is bounded by 0, it concludes that nat(c) is a
ranking function for that loop. As a part of the loop invariant, costa infers that
c0 ≥ c where c0 refers to the depth of the data structure to which c points before
entering the loop and c to the depth of the data structure to which c points after
each iteration. Using this invariant, together with the knowledge that the depth
of c0 equals to the depth of x, we have that c1 ∗ nat(x) + c2 is an UB for insert
(since the maximum value of c is exactly x). Another essential relation inferred
by the path-length analysis (captured in the ensures clause in line 3) is that
the depth of the list returned by insert is smaller than or equal to the depth
of x plus one. This is crucial when analyzing a method that uses insert since
it allows tracking the size of the list after inserting an element.

Path-length relations are obtained by means of a fixpoint computation which
(symbolically) executes the program over abstract states. As a typical example,
executing x=y.f adds the constraint x′ < y to the abstract state if the variable
y points to an acyclic data structure, and x′ ≤ y otherwise. On the other hand,
executing x.f=y adds the constraints

∧
{z′ ≤ z + y | z might share with x} if

it is guaranteed that x does not become cyclic after executing this statement.
This is because, in the worst case, x might be a leaf of the corresponding data-
structure pointed to by z, and thus the length of its new paths can be longer
than the old ones at most by y. Obviously, to perform path-length analysis, we
require information on (a) whether a variables certainly points to an acyclic data
structure; and (b) which variables might share common regions in the heap.

3.2 Cyclicity Analysis

The cyclicity analysis of costa [9] infers information on which variables may
point to (a)cyclic data structures. This is essential for the path-length analysis.
The analysis abstracts program states to sets of elements of the form: (1) x�y

which indicates that starting from x one may reach (with at least one step) the
object to which y points; (2) �x which indicates that x might point to a cyclic
data structure; and (3) x$y which indicates that x might alias with y.

Starting from an abstract state that describes the initial reachability, alias-
ing and cyclicity information, the analysis computes invariants (on reachability,
aliasing and cyclicity) for each program point of interest by means of a fixpoint
computation which (symbolically) executes the program instructions over the
abstract states. For example, when executing y=x.f, then y inherits the cyclic-
ity and reachability properties of x; and when executing x.f=y, then x becomes
cyclic if before the instruction the abstract state included �y, y�x, or y$x.

On the verification side, to make use of the inferred cyclicity relations, we ex-
tend JML by the new keyword \acyclic which guarantees acyclicity. In contrast
to costa, JML and KeY use shape predicates with must -semantics. Acyclicity
information is then added in JML annotations at entry points of contracts and
loops where we specify all variables which are guaranteed to be acyclic. For loop

Verified Resource Guarantees for Heap Manipulating Programs 139

entry points as invariants (as in line 13) and for contracts as pre- and postcondi-
tions (as in lines 1, 2). To make use of the reachability relations we extend JML
by the new keyword \reachPlus(x, y), which indicates that y must be reachable
from x in at least one step, and use the standard keyword \reach(x, y) which
indicates that y must be reachable from x in zero or more steps (i.e., they might
alias). The may-information of costa about reachability and aliasing is then
added as must -predicates in JML (in loop entries and contracts) as follows: let
A be the set of judgments inferred by costa for a given program point, then we
add !\reachPlus(x, y) whenever x�y 	∈ A, and we add !\reach(x, y) whenever
x�y 	∈ A ∧ x$y 	∈ A (for example, in line 15).

3.3 Sharing Analysis

Knowledge on possible sharing is required by both path-length and cyclicity
analyses. The sharing analysis of costa is based on [15] where abstract states are
sets of pairs of the form x•y which indicate that x and y might share a common
region in the heap. The sharing invariants are propagated from an initial state by
means of a fixpoint computation to the program points of interest. For example,
when executing y=x.f, the variable y will only share with anything that shared
with x (including x itself); on the other hand, when executing x.f=y, the variable
x keeps its previous sharing relations, and in addition it might share with y and
anything that shared with y before.

Obviously, KeY needs to know about the sharing information inferred by
costa to verify acyclicity and path-length properties. To this end, we extended
JML by the new keyword \disjoint which states that its argument, a set of
variables, does not share any common region in the heap (for example, in line 14).

4 Verification of Path-Length Assertions

Structural heap properties, including acyclicity, reachability and disjointness,
are essential both for path-length analysis and for the verification of path-length
assertions. However, while the path-length analysis performed by costa main-
tains cyclicity and sharing, the complementary properties are used as primitives
on the verification side. The reason is that the symbolic execution machinery
of KeY starts with a completely unspecified heap structure that subsequently
is refined using the inferred information about acyclicity and disjointness. In
the following we explain how structural heap properties are formalized in the
dynamic logic (JavaCard DL) used in this paper and implemented in KeY [5].

4.1 Heap Representation

First we briefly explain the logical modeling of the heap in JavaCard DL.1 The
heap of a Java program is represented as an element of type Heap. The Heap

1 Note that this is not the heap model described in earlier publications on KeY such
as [5]. In the present paper we use an explicit heap model based on [18].

140 E. Albert et al.

data type is formalized using the theory of arrays and associates locations to
values. A location is a pair (o, f) of an object o and a field f . The select function
allows to access the value of a location in a heap h by select(h, o, f). The comple-
mentary update operation which establishes an association between a location
(o, f) and a value val is store(h, o, f, val). To improve readability, when the heap
h it is clear from the context, we use the familiar notation o.f and o.f := val
instead of select and store expressions. Based on this heap model, we define a
rule for symbolic execution of field assignments (cf. the assign rule in Sec. 2.2). It
simply updates the global heap program variable with the updated heap object:

assign
Γ =⇒ {heap := store(heap, o, f, v)}〈rest〉φ,Δ

Γ =⇒ 〈o.f = v; rest〉φ,Δ

4.2 Predicates for Structural Heap Properties

For the sake of readability, in Sec. 3, we gave simplified versions of the predicates
\depth, \acyclic, \reach, \reachPlus and \disjoint as compared to the ac-
tual implementation. In reality, these predicates have an extra argument that
restricts their domain to a given set of fields. For example, instead of \depth(x)
we might actually have \depth({x.next}, x) which refers to the depth of x con-
sidering only those paths that go through the field next. A syntactic analysis
infers automatically a safe approximation of these sets of fields by taking the
fields explicitly used in the corresponding code fragment.

Ultimately, the various structural heap properties are reduced to reachability
between objects which, therefore, must be expressible in the underlying program
logic. The counterpart of JML’s \reach predicate in JavaCard DL is

\reach : Heap× LocSet×Object×Object× int

and expresses bounded reachability (or n-reachability): an object e is n-reachable
from an object s with respect to a heap h and a set of locations l (of type LocSet)
if and only if there exists a sequence s = o1o2 · · · on = e where oi+1 = oi.fi and
(oi, fi) ∈ l for all 0 < i < n. The predicate \reach(h, l, s, e, n) is formally defined
as n ≥ 0∧ s 	= null∧ ((n

.
= 0∧ s

.
= e) ∨ ∃f.(o, f) ∈ l ∧ \reach(h, l, s.f, e, n− 1)).

As a consequence, from null nothing is reachable and also null cannot be reached.
Location sets in JavaCard DL are formalized in the data type LocSet which

provides constructors and the usual set operations (see [18] for a full account).
Here we need only three location set constructors: the constructor empty for the
empty set, the constructor singleton(o, f) which takes an object o and a field f
and constructs a location set with location (o, f) as its only member, and the
constructor allObjects(f) which stands for the location set {(o, f) | o ∈ Object}.

Example 7. \reach(h, allObjects(next), head, last, 5) is evaluated to true iff the
object last is reachable from object head in five steps by a chain of next fields.

Based on \reach we could directly axiomatize structural heap predicates such as
\acyclic(h, l, o) or \disjoint(h, l, o, u). Instead we prefer to reduce structural
heap predicates to \reachPlus(h, l, o, u) which is the counterpart of the JML

Verified Resource Guarantees for Heap Manipulating Programs 141

function of the same name in Sec. 3.2 and expresses reachability in at least one
step. This has several advantages over using \reach: (1) the definition of predi-
cates such as \acyclic does not use the step parameter of the \reach predicate
and one would use existential quantification to eliminate it which impedes au-
tomation; and (2) for \reachPlus(h, l, o, u) to hold one has to perform at least
one step using a location in l. This renders the definition of properties such as
\acyclic less cumbersome as the zero step case has been excluded.

The predicate \reachPlus can defined with the help of \reach and this def-
inition can be used if necessary, however, in the first place we use a separate
axiomatization of \reachPlus. This helps to avoid (or at least to delay as long
as possible) the reintroduction of the step parameter and, hence, an additional
level of quantification. For space reasons, we do not give the calculus rules for
the axioms and auxiliary lemmas of the structural heap predicates like \acyclic
and \disjoint (which are not too surprising). Instead, we describe in the fol-
lowing section one central difficulty that arises when reasoning about structural
heap properties and how we solved it to achieve higher automation.

4.3 Field Update Independence

When reasoning about structural heap predicates one often ends up in a situation
where one has to prove that a heap property is still valid after updating a location
on the heap, i.e, after executing one or several field assignments. For instance, we
might know that \acyclic(h, l, u) holds and have to prove that after executing
the assignment o.f=v; the formula \acyclic(store(h, o, f, v), l, u) holds.

A precise analysis of the effect of a field update is expensive and makes au-
tomation significantly harder. As it is common in this kind of situation, it helps
to optimize the common case. In the present context, this means to decide in
most cases efficiently that a field assignment does not effect a heap property at
all. This is sufficiently achieved by two simple checks:

1. The expression singleton(o, f) ⊆ l checks whether an updated location o.f
is in the location set l of the heap property to be preserved. This turns out to
be inexpensive for most (if not all) practically occurring cases. Whenever this
check fails, the resulting store can be removed from the argument of the heap
property. For instance, an assignment o.data=5 to the data field of a list does
not change the list structure which depends solely on the next field. In that
case we can rewrite \acyclic(store(h, o, data, 5), l, u) to \acyclic(h, l, u).

2. To check whether an object o whose field has been updated is reachable from
one of the other mentioned objects, is more expensive than the previous one,
but still cheaper than a full analysis. For example, we can check whether the
object o is reachable from object u in case of \acyclic(store(h, o, f, v), l, u).
If the answer is negative we can again discard the store expression.

4.4 Path-Length Axiomatization

In general, the JML assertions generated by costa refer to the path-length of a
data structure o as \depth(l, o) where l is the location set restricting the depth

142 E. Albert et al.

Table 1. Statistics for the Generation and Checking of Resource Guarantees

Bench
Certificate Generation Cert. Size Generation/Checking
Theap Tana Tjml Tver Nod Br Tgen Tcheck %

traverse 14 36 2 2300 1208 52 2338 1100 47.05

create 54 150 8 3100 1499 47 3258 1400 42.97

insert 282 374 16 40800 19252 636 41190 5800 14.08

indexOf 26 86 4 5900 2439 67 5990 1800 30.05

reverse 72 130 8 20900 14206 673 21038 3400 16.16

array2List 62 154 8 2600 1457 37 2762 1400 50.69

copy 76 132 10 22600 14147 673 22742 3100 13.63

searchtree 142 202 6 3700 2389 97 3908 1500 38.38

to certain locations. This JML function is mapped to the JavaCard DL function
\depth(h, l, o) which is evaluated to the maximal path-length of o in heap h using
only locations from l. Its axiomatization is based on the n-reachability predicate
\reach expressing that there exists an object u reachable in \depth(h, l, o) steps
and that there is no object z reachable from o in more than \depth(h, l, o) steps.
This definition is not used by default by the theorem prover, instead, automated
proof search relies mainly on a number of lemmas that state more useful higher-
level properties. For instance, given a term like \depth(store(h, o, f, v), l, u) there
is a lemma which checks that o is reachable from u and some acyclicity require-
ments. If that is positive then the lemma allows us to use the same approximation
for \depth in case of a heap update as detailed in Sec. 3.1.

5 Experimental Results

The implementation of our approach required the following non-trivial extensions
to costa and KeY: (1) generate and output in costa the JML annotations
\depth, \acyclic and \disjoint so that KeY can parse them; (2) synthesize
suitable proof obligations in JavaCard DL that ensure correctness of the resource
analysis; (3) axiomatize the JML \depth, \acyclic and \disjoint functions
in KeY as described in Sec. 4 and implement heuristics for automation; and (4)
implement heuristic checks in KeY that allow fast verification of the common
case as described in Sec. 4.4. The resulting extended versions of KeY and costa

are available for download from http://fase2012.hats-project.eu.
Table 1 shows first experiments using a set of representative programs that

perform common list operations as well as searching for an element in a binary
tree. The experiments were performed using an Intel Core2 Duo at 2.53GHz with
4Gb of RAM running Linux 2.6.32. Columns Theap, Tana and Tjml show, re-
spectively, the times (in milliseconds) taken by costa to perform the heap anal-
ysis (cyclicity, sharing and path-length), to execute the whole analysis (heap and
other analyses performed by costa), and to generate the JML annotations. Col-
umn Tver shows the time taken by KeY to verify the JML annotations generated
by costa. The size of the generated proofs is indicated by their number of nodes
Nod and branches Br. Column Tgen shows the total time taken to generate the

http://fase2012.hats-project.eu

Verified Resource Guarantees for Heap Manipulating Programs 143

proof (Tana+Tjml+Tver) and Tcheck shows the time taken by KeY to check the
validity of the proof. The last column (%) shows the ratio Tcheck/Tgen.

Our preliminary experiments show already that a proof-carrying code ap-
proach to resource guarantees can be realized using costa and KeY with both
certificate generation and checking being fully automatic. In our framework the
code originating from an untrusted producer should be bundled with the proof
generated by costa + KeY for a given resource consumption. Then the code
consumer can check locally and automatically with KeY whether the claimed
resource guarantees are verified. As expected, checking an existing proof with
KeY takes on average only around 30% of the time to produce it.

6 Conclusions and Related Work

This paper describes the combination of a state-of-the-art resource analyzer
(costa) and a formal verification tool (KeY) to automatically infer and verify
resource guarantees that depend on the size of heap-allocated data structures in
Java programs. The distribution of work among the two systems is as follows:
costa generates ranking functions, invariants, as well as size relations, and out-
puts them as extended JML annotations of the analyzed program; KeY then
verifies the resulting proof obligations in its program logic and produces proof
certificates that can be saved and reloaded.

Many software verification tools including KeY [5], Why [8], VeriFast [16], or
Dafny [12] rely on automatic theorem proving technology. While most of these
systems are expressive enough to model and prove heap properties of programs,
such proofs are far from being automatic. The main reason is that functional
verification of heap properties requires complex invariants that cannot be found
automatically. In addition, automated reasoning over heap-allocated symbolic
data is far less developed than reasoning over integers or arrays.

With this paper we show that the automation built into a state-of-the-art ver-
ification system is sufficient to reason successfully about resource-related heap
properties. The main reasons for this are: (a) the required invariants are inferred
automatically in the resource analysis stage; (b) a limited and carefully axioma-
tized signature for heap properties expressed in logic is used. This confirms the
findings of the SLAM project [4] that existing verification technology can be
highly automatic for realistic programs and a restricted class of properties.

There exist several other cost analyzers which automatically infer resource
guarantees for different programming languages [10,11]. However, none of them
formally proves the correctness of the upper bounds they infer. An exception
is [6], which verifies and certifies resource consumption (for a small program-
ming language and not for heap properties). For the particular case of memory
resources, [7] formally certifies the correctness of the static analyzer. We have
taken the alternative approach of certifying the correctness of the upper bounds
that the tool generates. This is not only much simpler, but has the additional
advantage that the generated proofs can act as resource certificates.

144 E. Albert et al.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620HATS project, the Spanish
Ministry of Science and Innovation (MICINN) under th TIN-2008-05624DOVES
project, the UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the
Madrid Regional Government under the S2009TIC-1465 PROMETIDOS-CM
project.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

3. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: Verified
Resource Guarantees using COSTA and KeY. In: Proc. of PEPM 2011, pp. 73–76.
ACM Press (2011)

4. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The Static Driver
Verifier Research Platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Crary, K., Weirich, S.: Resource Bound Certification. In: POPL 2005, pp. 184–198.
ACM Press (2000)

7. de Dios, J., Peña, R.: Certification of Safe Polynomial Memory Bounds. In: Butler,
M., Schulte,W. (eds.) FM 2011. LNCS, vol. 6664, pp. 184–199. Springer, Heidelberg
(2011)

8. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

9. Genaim, S., Zanardini, D.: The Acyclicity Inference of COSTA. In: Workshop on
Termination (WST 2010) (July 2010)

10. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static esti-
mation of program computational complexity. In: Proc. of POPL 2009, pp. 127–139.
ACM (2009)

11. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

12. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

13. Necula, G.: Proof-Carrying Code. In: POPL 1997, ACM Press (1997)
14. Pnueli, A., Siegel, M.D., Singerman, E.: Translation Validation. In: Steffen, B. (ed.)

TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)
15. Secci, S., Spoto, F.: Pair-Sharing Analysis of Object-Oriented Programs. In: Han-

kin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320–335. Springer,
Heidelberg (2005)

Verified Resource Guarantees for Heap Manipulating Programs 145

16. Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An Automatic Verifier for Java-
Like Programs Based on Dynamic Frames. In: Fiadeiro, J.L., Inverardi, P. (eds.)
FASE 2008. LNCS, vol. 4961, pp. 261–275. Springer, Heidelberg (2008)

17. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based
on path-length. ACM Trans. Program. Lang. Syst. 32(3) (2010)

18. Weiß, B.: Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, KIT (2011)

An Operational Decision Support Framework

for Monitoring Business Constraints

Fabrizio Maria Maggi1,�, Marco Montali2,��, and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands
{f.m.maggi,w.m.p.v.d.aalst}@tue.nl

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
montali@inf.unibz.it

Abstract. Only recently, process mining techniques emerged that can
be used for Operational decision Support (OS), i.e., knowledge extracted
from event logs is used to handle running process instances better. In the
process mining tool ProM, a generic OS service has been developed that
allows ProM to dynamically interact with an external information sys-
tem, receiving streams of events and returning meaningful insights on the
running process instances. In this paper, we present the implementation
of a novel business constraints monitoring framework on top of the ProM
OS service. We discuss the foundations of the monitoring framework con-
sidering two logic-based approaches, tailored to Linear Temporal Logic
on finite traces and the Event Calculus.

Keywords: Declare, process mining, monitoring, operational decision
support.

1 Introduction

Process mining has been traditionally applied on historical data that refers to
past, complete process instances. Recently, the exploitation of process mining
techniques has been extended to deal also with running process instances which
have not yet been completed. In this setting, process mining providesOperational
decision Support (OS), giving meaningful insights that do not only refer to the
past, but also to the present and the future [1]. In particular, OS techniques can
be used to: check the current state of affairs detecting deviations between the
actual and the expected behavior; recommend what to do next; predict what
will happen in the future evolution of the instance.

In order to enable the effective development of OS facilities, the widely known
process mining framework ProM 6 [2] incorporates a backbone for OS [3]. Here,

� This research has been carried out as a part of the Poseidon project at Thales under
the responsibilities of the Embedded Systems Institute (ESI). The project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

�� This research has been partially supported by the NWO “Visitor Travel Grant”
initiative, and by the EU Project FP7-ICT ACSI (257593).

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 146–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Operational Decision Support Framework 147

all the common functionalities needed for OS are implemented, such as manage-
ment of requests coming from external information systems, dynamic acquisition
and correlation of incoming partial execution traces (representing the evolution
of process instances), and interaction with different process instances at the
same time. The OS backbone relies on a client-server architecture. The client is
exploited by an external stakeholder to send a partial trace to ProM and ask
queries related to OS. On the server side, an OS service (running inside ProM)
takes care of coordinating the available OS functionalities in order to answer
such queries. Multiple OS providers that encapsulate specific OS functionalities
can be developed and dynamically registered to the OS service.

In this work, we present the implementation of a novel runtime compliance
verification framework on top of the ProM OS. The framework is called Mo-
bucon (Monitoring business constraints) and its focus is to dynamically check
the compliance of running process instances with business constraints, detecting
deviations and measuring the degree of adherence between the actual and the
expected behavior.

Given a business constraints reference model and a partial trace characterizing
the running execution of a process instance, Mobucon infers the status of each
business constraint. In particular, it produces a constantly updated snapshot
about the state of each business constraint, reporting whether it is currently
violated. Consequently, it determines whether the process instance is currently
complying with the reference model or not. Beside this, other meaningful insights
can be provided to end users, such as, for example, indicators and metrics related
to the “degree of compliance”, e.g., relating the number of violated constraints
with their total number.

The paper is organized as follows. Section 2 presents the Declare language
[4] and its extension to include metric temporal constraints and constraints on
event-related data. The language is declarative and graphical. Moreover, Declare
has been formalized using a variety of logic-based frameworks, such as Linear
Temporal Logic (LTL) with a finite-trace semantics1 [5,6] and the Event Calcu-
lus (EC) [7,8]. Section 3 describes the architecture of our proposed framework. In
Sect. 4 and 5, we describe the implementation of two different reasoning engines
as OS providers based on LTL and on the EC respectively. We are currently
applying our framework to various real-world case studies; in Sect. 6, we re-
port on the monitoring of Declare constraints in the context of maritime safety
and security. Finally, Sect. 7 includes a comparison of the two approaches and
discusses related work and conclusion.

2 Declare

Declare is a declarative, constraint-based process modeling language first pro-
posed in [5,4]. In a constraint-based approach, instead of explicitly specifying
all the acceptable sequences of activities in a process, the allowed behavior of

1 For compactness, in the following we will use the LTL acronym to denote LTL on
finite traces.

148 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

Under way
using engine

Under way
sailing

Moored

Constrained by
her draught

precedence

response

not coexistence

(a) Basic Declare model

Under way
using engine

Under way
sailing

Moored

Constrained by
her draught

VType

VType VType

VType

VType = passenger [0,360]

[0,2880]

VType = cargo

VType != cargo /\
Vtype != passenger

(b) Declare model augmented with data, data-aware
conditions and metric temporal constraints

Fig. 1. Two Declare models in the context of maritime safety and security

the process is implicitly specified by means of declarative constraints, i.e., rules
that must be respected during the execution. In comparison with procedural
approaches, that produce “closed” models, i.e., models where what is not explic-
itly supported is forbidden, declarative languages are “open” and tend to offer
more possibilities for execution. In particular, the modeler is not bound anymore
to explicitly enumerate the acceptable executions and models remain compact:
they specify the mandatory and undesired behaviors, leaving unconstrained all
the courses of interaction that are neither mandatory nor forbidden.

Declare is characterized by a user-friendly graphical front-end and is based
on a formal back-end. More specifically, the formal semantics of Declare can be
specified by using LTL [5,6], abductive logic programming with expectations [6],
or the EC [7,8]. These characteristics are crucial for two reasons. First, Declare
can be used in real scenarios being understandable for end-users and usable
by stakeholders with different backgrounds. Second, Declare’s formal semantics
enable verification and automated reasoning. This is a key aspect in the imple-
mentation of monitoring tools for Declare models.

Figure 1a shows a simple Declare model elicited in the context of a real case
study related to the monitoring of vessels behavior in the context of maritime
safety and security. We use this example to explain the main concepts. It involves
four events (depicted as rectangles, e.g., Under way using engine) and three
constraints (shown as arcs between the events, e.g., not coexistence). Events
characterize changes in the navigational status of each monitored vessel. Con-
straints highlight mandatory and forbidden behaviors, implicitly identifying the
acceptable execution traces that comply with (all of) them. In our case study,
a vessel can be either Under way using engine or Under way sailing but not
both, as indicated by the not coexistence between such two events. A vessel can
be Constrained by her draught, but only after being Under way sailing (a vessel
equipped with an engine cannot be constrained by draught and a sailing vessel
cannot be constrained before it is under way). This is indicated by the precedence
constraint. Finally, after being Moored each vessel must eventually be Under way
using engine, as specified by the response constraint.

In [7], an extension of this constraint-based language has been proposed; this
extension incorporates also non-atomic activities (i.e., activities whose execution

An Operational Decision Support Framework 149

ProM

OS ServiceProcess-Aware
Information

Systems

MoBuCon
Provider

TCP/IP

send
reference model

Sessionquery + partial trace

reference
model

partial
trace

reasoning
info

response

fluents
model

MoBuCon
Client

Fig. 2. Mobucon Architecture

is characterized by a life cycle that includes multiple events), event-related data
and data-aware conditions and metric temporal constraints (for specifying delays,
deadlines and latencies). This extended language is exploited in Fig. 1b to augment
the aforementioned constraints with conditions on time and data. More specifi-
cally, we assume that each event is equipped with two data: the identifier of the
vessel and its type. In particular, the response constraint is now differentiated on
the basis of the vessel type, introducing different timing requirements (which are
specified with the granularity of minute). The first response constraint indicates
that if the type of the vessel is Passenger ship and eventMoored occurs, then Un-
der way using engine must eventually occur within 6 hours at most. The second
one indicates that if the type of the vessel is Cargo ship and Moored occurs, then
Under way using engine must eventually occur within 48 hours. A last standard re-
sponse constraint is employed to capture the behavior of all other vessels, without
imposing any deadline. Finally, although not explicitly shown in the diagram, each
constraint is applied to events that are associated to the same vessel identifier. This
correlation mechanism makes it possible to properly monitor also a unique event
streams collecting the evolving behaviors of multiple vessels at the same time.

3 Mobucon Architecture

Figure 2 shows the overall architecture of Mobucon. Mobucon relies on the gen-
eral architecture of the OS backbone implemented inside ProM 6. Such backbone
has been introduced and formalized using colored Petri nets in [3]; in Sect. 3.1,
we will therefore sketch some relevant aspects of the general architecture. In
Sect. 3.2, we ground the discussion to the specific case of Mobucon, discussing
the skeleton of our compliance verification OS provider. The data exchanged
between the Mobucon client and provider is illustrated in Sect. 3.3. Finally, in
Sect. 3.4, we describe the implemented Mobucon clients. The two concrete in-
stantiations of the Mobucon skeleton in the LTL and EC settings are discussed
in Sect. 4 and 5.

3.1 General Architecture

The ProM OS architecture relies on the well-known client-server paradigm. More
specifically, the ProM OS service manages the interaction with running process

150 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

instances and acts as a mediator between them and the registered specific OS
providers.

Sessions are created and handled by the OS Service to maintain the state of
the interaction with each running client. To establish a stateful connection with
the OS Service, the client creates a session handle for each managed running
process instance, by providing host and port of the OS Service. When the client
sends a first query related to one of such running instances to the OS service,
it specifies information related to the initialization of the connection (such as
reference models, configuration parameters, etc.) and to the type of the queries
that will be asked during the execution. This latter information will be used by
the OS Service to select, among the registered active providers, the ones that
can answer the received query. The session handle takes care of the interaction
with the service from the client point of view, hiding the connection details and
managing the information passing in a lazy way. The interaction between the
handle and the service takes place over a TCP/IP connection.

3.2 Mobucon Skeleton

In Mobucon, the interaction between a client and the OS service mainly con-
sists of two aspects. First of all, before starting the runtime compliance verifi-
cation task, the client sends to the OS service the Declare reference model to
be used. This model is then placed inside the session by the OS service. The
reference model is an XML file that contains the information about events and
constraints mentioned in the model. This format is generated by the Declare
editor (www.win.tue.nl/declare/). The client can also set further information
and properties. For example, each constraint in the Declare reference model can
be associated to a specific weight, that can be then exploited to compute metrics
and indicators that measure the degree of adherence of the running instance to
the reference model.

Secondly, during the execution, the client sends queries about the current
monitoring status for one of the managed process instances. The session handle
augments these queries with the partial execution trace containing the evolution
that has taken place for the process instance after the last request. The OS
Service handles a query by first storing the events received from the client, and
then invoking the Mobucon provider.

The Mobucon provider recognizes whether it is being invoked for the first time
w.r.t. that process instance. If this is the case, it takes care of translating the
reference model onto the underlying formal representation. The provider then
returns a fresh result to the client, exploiting a reasoning component for the
actual result’s computation. The reasoning component, as well as the translation
algorithm, are dependent on the chosen logical framework (LTL or EC), while
the structure of the skeleton is the same for the two approaches. After each query,
the generated result is sent back to the OS service, which possibly combines it
with the results produced by other relevant providers, finally sending the global
response back to the client.

www.win.tue.nl/declare/

An Operational Decision Support Framework 151

FluentsModel

groupName

FluentsGroup

fluentName

Fluent

stateName

FluentState

startTime

MVI endTime

ClosedMVI

OpenMVI

Fig. 3. Fluent model used to store the evolution of constraints

3.3 Exchanged Data and Business Constraints States

We now discuss the data exchanged by the Mobucon client and provider. Note
that these data are common to both instantiations of the provider (Mobucon
LTL and Mobucon EC). The partial execution traces sent by the client to the
OS use the XES format (www.xes-standard.org/) for event data. XES is an
extensible XML-based standard recently adopted by the IEEE task force on
process mining.

The response produced by the Mobucon provider is composed of two parts.
The first part contains the temporal information related to the evolution of
each monitored business constraint from the beginning of the trace up to now.
At each time point, a constraint can be in one state, which models whether it
is currently: satisfied, i.e., the current execution trace complies with the con-
straint2; (permanently) violated, i.e., the process instance is not compliant with
the constraint; pending (or possibly violated), i.e., the current execution trace is
not compliant with the constraint, but it is possible to satisfy it by generating
some sequence of events. This state-based evolution is encapsulated in a fluent
model which obeys to the schema sketched in Fig. 3. A fluent model aggregates
fluents groups, containing sets of correlated fluents. Each fluent models a multi-
state property that changes over time. In our setting, fluent names refer to the
constraints of the reference model. The fact that the constraint was in a certain
state along a (maximal) time interval is modeled by associating a closed MVI
(Maximal Validity Interval) to that state. MVIs are characterized by their start-
ing and ending timestamps. Current states are associate to open MVIs, which
have an initial fixed timestamp but an end that will be bounded to a currently
unknown future value.

The Mobucon provider also computes the current value of a compliance in-
dicator of the running monitored instance. This number gives an immediate
feeling about the “degree of adherence” between the instance and the reference
model. A low degree of adherence can be interpreted differently depending on
the application domain. In general, it is used to classify a process instance as
“unhealthy”. However, it can also be used to show that a reference model is
obsolete and it must be improved to better reflect the reality. The compliance
indicator can be computed using different metrics, that can consider the cur-
rent state of constraints, as well as other information such as the weight of each
individual constraint. For example, the compliance indicator shown in Fig. 5a,
implemented in Mobucon LTL, is evaluated, at some time t, through the formula

1−
∑

i weighti#violi(t)

#events(t)
∑

i weighti
, and takes into account the number of violations of each

2 Mobucon LTL also differentiates between possibly and permanently satisfied.

www.xes-standard.org/

152 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

individual constraint of the reference model (#violi) and its weight (weighti).
On the other hand, the compliance indicator shown in Fig. 5b, implemented
in Mobucon EC, considers the number of violated (#viol) and satisfied (#sat)
instances. In particular, at some time t the compliance indicator corresponds to

1− #viol(t)
#viol(t)+#sat(t)

3.

3.4 Mobucon Clients

We have developed three Mobucon clients, in order to deal with different settings:
(a) manual insertion of the events, (b) replay of a process instance starting from a
complete event log, and (c) acquisition of events from an information system. The
first two clients are mainly used for testing and experimentation. The last client
requires a connection to some information system, e.g., a workflow management
system. The three clients differ on how the user is going to provide the stream of
events, but all of them include an interface with a graphical representation of the
obtained fluent model, showing the evolution of constraints and also reporting
the trend of the compliance indicator (Fig. 4).

4 Mobucon LTL

As discussed earlier, there are two Mobucon providers for monitoring business
constraints: one based on LTL and one based on the EC. We now describe the
LTL-based provider [9]. The basic idea is that a stream of events is monitored
w.r.t. a given Declare reference model. Each LTL constraint implied by the
Declare model is translated to a finite state automaton. Moreover, the conjunc-
tion of all LTL constraints is also translated to a finite state automaton. The
generated automata are used to monitor the behavior. Using the terminology
introduced in [9], we call the automaton corresponding to a single Declare con-
straint local automaton and the automaton corresponding to their conjunction
global automaton. Local automata are used to monitor each single constraint in
isolation, whereas the global automaton is used to monitor the entire system and
detect non-local violations originated by the interplay of multiple constraints.

4.1 Modeling and Implementation

When Mobucon LTL receives a request from a new process instance, it first
initializes the session for that instance. In particular, each single constraint of the
Declare model associated to the session by the client and their conjunction are
translated into finite state automata. For the translation, we use the algorithm
introduced for the first time in [10] and optimized in [11]. Local and global
automata are stored in the session. After that, the provider processes the event
(or a collection of events) received with the first request from the client. The
following requests will provide again single events or collections of events. The

3 If #viol(t) + #sat(t) = 0, then the compliance indicator is defined to be 1.

An Operational Decision Support Framework 153

Fig. 4. Screenshot of one of the Mobucon clients

events are processed one by one by using the automata every time retrieved
from the session. In this way, the state of each automaton is always preserved
from the last request. The set of fluents’ MVIs associated to each constraint is
recomputed accordingly and returned by the reasoner.

4.2 Approach

Both global and local automata are reduced so that, if a transition violates
the automaton from a certain state, this transition does not appear in the list
of the outgoing transitions from that state. More specifically, a transition can
be positive if it is associated to a single positive label (representing an event,
e.g., moored), or negative if it is associated to negative labels (e.g., ¬aground).
Positive labels indicate that we follow the transition when exactly the event cor-
responding to that label occurs, whereas negative labels indicate that we can
follow the transition for any event not mentioned. Hence, acceptable events cor-
respond to the label associated to a positive outgoing transition from the current
state or to no one of the labels associated to a negative outgoing transition.

The Mobucon LTL provider checks first whether the processed event is ac-
ceptable by the global automaton. If the event is allowed, the provider fires

154 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

the corresponding transition on the global automaton. In this case, to compute
the state of every single constraint in isolation as well, it also fires the transi-
tions corresponding to the processed event on the local automata (note that,
if the event is acceptable by the global automaton, it is also acceptable by all
local automata). If, after having fired the transition, a local automaton is in an
non-accepting state, the corresponding constraint is possibly violated. If a local
automaton is in an accepting state, the corresponding constraint is (possibly or
permanently) satisfied. To distinguish between possibly and permanently satis-
fied constraints, the provider checks whether all possible events correspond to a
self loop on the current state. If this is the case, the constraint is permanently
satisfied, otherwise it is possibly satisfied. If the processed event violates the
global automaton, from the point of view of the automata, the violating event
is ignored. However, the provider still informs the client that the event caused a
violation w.r.t. the reference model. Moreover, it also gives intuitive diagnostics
about the violation. Indeed, the global automaton allows the provider to pre-
cisely identify which events were permitted instead of the one that caused the
violation. This information is derived from the labels of the outgoing negative
and positive transitions from the current state in the global automaton.

In some cases, a violation in the global automaton can be directly reduced to
a violation of a local automaton. However, in other cases none of the individual
local automata is violated as the problem stems from the interplay of multiple
constraints [9]. In the latter case, the Mobucon LTL provider is able to identify
the conflicting sets of constraints, i.e., the minimal sets of constraints that cause
the violation.

5 Mobucon EC

Mobucon EC exploits a reactive EC-based reasoner to provide monitoring fa-
cilities. When a first query is received for some process instance, the provider
applies a translation algorithm which analyzes the reference model stored in the
corresponding session, producing a set of corresponding EC axioms. It then cre-
ates a new instance of the reasoner, initializing it with the EC theory obtained
from the translation procedure. The reasoner instance is then stored into the
session. Every time a new partial trace must be checked, the reasoner is ex-
tracted from the session and updated with the new events. This triggers a new
reasoning phase in which the previously stored fluents’ MVIs are revised and
extended. The set of all MVIs is then returned by the reasoner.

In the following, we first sketch how Declare constraints, possibly augmented
with data and metric temporal aspects, can be tackled by means of EC axioms.
We then discuss the implementation of the reasoner.

5.1 Modeling

A comprehensive description of how the EC can be used in the Declare setting
can be found in [8]. Here, we consider one of the constraints mentioned in Fig. 1b,

An Operational Decision Support Framework 155

namely the response constraint over a Cargo ship, to give an intuition about such
a translation, considering data and metric temporal constraints as well.

Broadly speaking, an EC theory is a logic program which employs special
predicates for modeling how fluents change over time, in response of the execu-
tion of certain events. For example, initiates(e, f, t) (terminates(e, f, t)) is used
to say that event e initiates (terminates) f , i.e., makes f true (false), at time
t; holds at(f, t) is used to run queries over the validity of fluents, in this case
verifying whether f is true at time t. For a comprehensive description of the EC,
we refer the reader to [12].

In the context ofDeclare, and differently from the LTL-based approach, the run-
time characterization of business constraints is not given over the constraints them-
selves, but is tailored to constraints’ instances. A constraint instance represents a
specific “grounding” of the constraint inside a specific context, i.e., with specific
data, specific instantiation time, and so on. According to this observation, in the
EC-based formalization of Declare fluents have the form state(i(ID, Params),
State), where ID is the identifier of the constraint, Params is a list of parame-
ters characterizing a specific instance of the constraints, and State is the current
state of the instance, i.e., one among sat, viol and pend (to respectively model
that the constraint instance is satisfied, violated or pending). In our example,
the response constraint over a Cargo ship will be identified by cr, and the params
characterizing each instance will be the identifier of the vessel (needed to prop-
erly correlate events) and the creation time (needed to properly check the metric
temporal constraints).

EC axioms are given over event types, which are then subject, during the
execution, to unification with each occurring concrete event. Event types have
the form exec(Name,Who,Data), where Name is the name of the event, Who
identifies the entity that originated the event, and Data is a list of further
data. The response over a Cargo ship is associated to the moored and (Under
way using) engine events, which can be represented by the two event types
exec(moored, Vid, [Vtype]) and exec(engine, Vid, [Vtype]). It is instantiated every
time a moored event happens for a cargo vessel; the instance is put in a pending
state, waiting for the occurrence of a corresponding engine event:

initiates(exec(moored, Vid, [cargo]), status(i(cr, [Vid, T]), pend), T)

A state transition from the pending to the satisfied state happens for an instance,
if the following conditions hold: (1) the instance is currently pending; (2) an
engine event occurs for a Cargo ship; (3) the event has the same vessel identifier
of the instance; (4) the timestamp of the event is after the creation time of the
instance, but before the actual deadline (which corresponds to the creation time
plus 2880 minutes). Such state transition is modeled by terminating the previous
state and initiating the new one, if all conditions are satisfied:

terminates(exec(engine, Vid, [cargo]), status(i(cr, [Vid, Tc]), pend), T) : −
holds at(status(i(cr, [Vid, Tc]), pend), T), T > Tc, T ≤ Tc + 2880.

initiates(exec(engine, Vid, [cargo]), status(i(cr, [Vid, Tc]), sat), T) : −
holds at(status(i(cr, [Vid, Tc]), pend), T), T > Tc, T ≤ Tc + 2880.

156 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

Contrariwise, if a (generic) event happens at a time which is greater than
the creation time of the instance plus 2880, and the constraint instance is still
pending, this attests that the deadline has expired, and that a transition from
the pending to the violated state must be triggered:

terminates(, status(i(cr, [Vid, Tc]), pend), T) : −
holds at(status(i(cr, [Vid, Tc]), pend), T), T > Tc + 2880.

initiates(, status(i(cr, [Vid, Tc]), viol), T) : −
holds at(status(i(cr, [Vid, Tc]), pend), T), T > Tc + 2880.

Finally, a further general rule is added to state that each pending instance
becomes violated when the process instance is completed.

The visualization depicted in Fig. 5b shows the status of the various con-
straints for a running trace and is based on the above axioms (together with the
ones modeling the other constraints in Fig. 1b).

5.2 Reasoner Implementation

To effectively compute the MVIs characterizing the evolution of each constraint
instance, Mobucon EC relies on a reactive EC reasoner and three translation
components. A first translator converts the XML representation of a Declare
reference model to a corresponding set of EC axioms. A second one converts a
XES (partial) trace to a set of logic programming facts, also applying a trans-
lation of timestamps using the chosen granularity; such facts are then matched
against the EC axioms that formalize the reference model. A last translator is
used to convert the outcome produced by the reasoner (a set of strings) to a
fluent model according to the schema of Fig. 3.

The reactive reasoner is inspired by the Cached EC (CEC) developed by
Chittaro and Montanari [13]. It uses a Prolog-based axiomatization of the EC
predicates following the CEC philosophy, i.e., already computed MVIs of fluents
are cashed and subsequently revised and extended as new events are received.

Different underlying Prolog engines can be plugged into the tool. In particular,
we experimented TuProlog (tuprolog.alice.unibo.it/) which is completely
implemented in JAVA and thus guarantees a seamless integration inside ProM,
and YAP (yap.sourceforge.net/), which is one of the highest-performance
Prolog engine available today.

6 Case Study

In this section, we present the application of the two Mobucon providers (LTL
and EC) as part of a case study conducted within the research project Poseidon
(www.esi.nl/poseidon/) and focused on the analysis of vessel behavior in the do-
main of maritime safety and security. The case study has been provided by Thales,
a global electronics company delivering mission-critical information systems and
services for the Aerospace, Defense, and Security markets. In our experiments,
we use logs collected by an on-board maritime Automatic Identification System

tuprolog.alice.unibo.it/
yap.sourceforge.net/
www.esi.nl/poseidon/

An Operational Decision Support Framework 157

(a) Mobucon LTL. (b) Mobucon EC.

Fig. 5. Examples of monitoring results in our case study

(AIS) [14], which acts as a transponder that logs and sends events to an AIS re-
ceiver. An event represents a change in the navigational status of a vessel (e.g.,
moored or Under way using engine). Each event has an associated vessel ID and
vessel type (e.g., Passenger ship or Cargo ship). The logs are excerpts of larger
logs and correspond to a period of one week. The standard behavior of the vessels
is described by domain expert using Declare, where constraints are used to check
the compliance of the behavior of vessels as recorded in the logs.

Let us first focus on the Mobucon LTL provider. Figure 1a shows the reference
model used to monitor vessels behavior. Each vessel corresponds to a process
instance in the log. Figure 5a shows a graphical representation of the constraints’
evolution for a specific instance. Events are displayed on the horizontal axis (for
the sake of readability, a more compact notation is used). The vertical axis shows
the constraints, reporting their evolution as events occur.

When event moored is executed the response constraint becomes possibly
violated. Indeed, the constraint is waiting for the occurrence of another event
(execution of (Under way using) engine) to become satisfied. After moored, (Un-
der way) sailing is executed, leading to a conflict caused by the interplay of the
not coexistence and the response constraints. The conflict is due to the fact that
the first constraint forbids whereas the other constraint requires the presence of
event engine. Note that, after a conflict or a (local) violation, constraints can

158 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

become non-violated. In fact, Mobucon LTL implements a recovery strategy
where the violating events are ignored (after having been reported). In this case,
for instance, when sailing occurs, the conflict is raised but the event is, in fact,
ignored. The next event is engine and response (that was possibly violated before
the conflict) becomes possibly satisfied. After that, when event sailing occurs,
not coexistence becomes permanently violated because engine and sailing can-
not coexist in the same trace (note that also in this case the violating event is
ignored after that the violation has been reported). The next event is moored
and response becomes possibly violated. When the case completes, the response
constraint becomes violated because it is not possible to satisfy it anymore.

Finally, note the trend of the compliance indicator in Fig. 5a. The indicator
decreases in correspondence of each (local) violation. This example also shows
clearly that a violation of the response constraint influences the indicator more
than a violation of the not coexistence constraint.

Let us now consider the Mobucon EC provider, which employs the reference
model shown in Fig. 1b. In order to show the potentiality of the approach,
we consider in this case the unique events stream generated by the AIS receiver;
correlation between events referring the same vessel is under the responsibility of
the framework itself, using the formalization discussed in Sec. 5. Figure 5b shows
a graphical representation of the constraints’ evolution. Events (with attached
data and timestamps) are displayed on the horizontal axis. The vertical axis
shows the constraints and their instances, reporting their evolution as time flows.

Every time event moored occurs, a new instance of the response constraint
(for the specific vessel type) is created. At first, the state of the instance is
pending because it is waiting for the occurrence of an (Under way using) engine
event referring to the same vessel ID, and within the deadline specific for the
corresponding vessel type. Event engine occurs for Passenger ship v1 less than
6 hours after moored. For v4 this takes more than 6 hours, thus resulting in a
violation. Similar to the example used for the Mobucon LTL provider, also in this
case, the occurrence of sailing for Sailing boat v2 generates a conflict between
the instance of the response constraint and the instance of the not coexistence
constraint corresponding to this vessel. They can never become both satisfied,
the first requiring and the other forbidding the presence of event engine for this
vessel. However, unlike the LTL-based provider, the Mobucon EC provider does
not point out any problem when the conflict arises. Only when, as the last event
of the trace, engine occurs for v2, the instance of the not coexistence constraint
for vessel v2 becomes violated. This example shows that, on the one hand,
the Mobucon EC provider is able to monitor constraints augmented with data
conditions and metric temporal constraints. On the other hand, the Mobucon
LTL provider supports the early detection of violations originating from a conflict
among two or more constraints.

As explained in Sect. 3.3, the compliance indicator is computed differently in
both providers. For both providers the indicator decreases after each violation.
However, in EC-based provider, the compliance indicator increases when new
satisfied instances are created.

An Operational Decision Support Framework 159

Table 1. Comparison between the Mobucon LTL and EC providers (I = imple-
mented, I* = partially implemented, + = supported by the formal framework, –
= not supported by the formal framework)

LTL EC LTL EC

1. single constraints monitoring I I 5. recovery and compensation + +

2. non-local violations I* – 6. metric temporal aspects – I

3. continuous support I I 7. data and data-aware conditions – I*

4. diagnostics I – 8. non-atomic activities – +

7 Discussion and Conclusion

This paper presents a new Operational decision Support (OS) framework for
monitoring business constraints. The framework implementation exploits the
functionalities provided by the OS service in ProM. Mobucon comes with a
general flexible architecture able to accommodate multiple reasoning engines. In
this paper, we demonstrate two such engines, one based on (finite-trace) Linear
Temporal Logic (LTL) and automata, and the other on the Event Calculus (EC)
and a Prolog-based reactive reasoner.

In the literature, most of the proposed approaches for compliance verification
either work on static models at design time [15,16] or on off-line a-posteriori con-
formance checking [17] using only historical data. The majority of approaches
for online business process monitoring focus on measuring numerical attributes,
such as Key Performance Indicators (KPIs). For example, in [18], a framework is
introduced for modeling and monitoring of KPIs in Semantic Business Process
Management. In particular, the authors integrate the KPI management into a
semantic business process lifecycle, creating an ontology that is used by busi-
ness analysts to define KPIs based on ontology concepts. In [19], an integrated
framework is presented for run-time monitoring and analysis of the performance
of WS-BPEL processes. In particular, this framework allows for dependency
analysis and machine learning with the ultimate goal of discovering the main
factors influencing process performance (KPI adherence).

An exception to this trend is the work by Ly et al. on semantic constraints
in business processes [20]. This work is more related the one presented here.
Both approaches recognize the importance of runtime compliance verification of
processes with rules and constraints. However, while Ly et al. aims to describe a
comprehensive framework for compliance of semantic constraints over the whole
process lifecycle, here we have proposed concrete ways for attacking this problem
during the execution of processes.

Table 1 provides a comparison of our two OS providers for monitoring busi-
ness constraints (LTL-based and EC based). Analysis of this table provides some
interesting insights. First of all, both approaches are able to manage the monitor-
ing of individual business constraints. Non-local violations refer to the situation
in which no single constraint is currently violated, but there is a conflicting set of
constraints. Whereas the LTL-based approach can discover non-local violations
thanks to the construction of the global automaton, the EC-based approach does

160 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

not support this. Note that the detection of non-local violations is currently only
partially supported by the Mobucon LTL provider: the non-local violations is
detected, but the minimal conflicting set is not yet computed efficiently. We are
currently working on extending the colored-automata based approach to more
efficiently identify minimal sets of conflicting constraints [21]. Both approaches
support continuous support, i.e., the monitoring framework is able to provide
support even after a violation takes place. While the Mobucon EC provider is
only able to detect that a violation has taken place, Mobucon LTL also provides
diagnostics about which events were expected (not) to occur. Although recovery
and compensation mechanisms have not yet been included in our implementa-
tion, both approaches can support them [9,22].

The last three rows in Tab. 1 refer to the extension of the Declare language.
Metric temporal aspects have been already incorporated into the Mobucon EC
provider [8]. Metric temporal logics and timed-automata will be investigated to
improve the LTL-based approach in this direction. Data and data-aware con-
ditions are not-expressible in LTL, while the EC-based tool is being extended
to accommodate them. Its ability to support data is attested by the formaliza-
tion example shown in Sec. 5 and Fig. 5b. Similarly, EC is also able to support
non-atomic activities.

Finally, let us briefly comment on the performance of the two approaches.
For the Mobucon LTL provider, a recent investigation has revealed that very
efficient algorithms can be devised for building local and global automata [11].
Once the automata are constructed, runtime monitoring can be supported in an
efficient manner. The state of an instance can be monitored in constant time, in-
dependent of the number of constraints and their complexity. According to [11],
the time to construct an automaton is 5-10 seconds for random models with
30-50 constraints. For models larger than this, automata can no longer routinely
be constructed due to lack of memory, even on machines with 4-8 GiB RAM.
For the Mobucon EC provider, some complexity results are inherited from the
seminal investigation by Chittaro and Montanari [13]. An initial investigation of
the performance of this approach (with YAP Prolog as underlying reasoner) can
be found in [8]. Differently from the LTL-based approach, whose most resource-
consuming task is the generation of the automaton, which is done before the
execution, the EC-based approach triggers a reasoning phase every time a new
event is acquired. Despite this, our investigation shows that, for randomly gener-
ated models and traces, the reasoner takes an average time of 300ms to process
the 1000th acquired event with a model containing 100 constraints.

References

1. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond Process Mining: From the
Past to Present and Future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051,
pp. 38–52. Springer, Heidelberg (2010)

2. Verbeek, E., Buijs, J., van Dongen, B., van der Aalst, W.: Prom 6: The process
mining toolkit. In: Demo at BPM 2010 (2010)

An Operational Decision Support Framework 161

3. Westergaard, M., Maggi, F.M.: Modeling and Verification of a Protocol for Opera-
tional Support Using Coloured Petri Nets. In: Kristensen, L.M., Petrucci, L. (eds.)
PETRI NETS 2011. LNCS, vol. 6709, pp. 169–188. Springer, Heidelberg (2011)

4. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full Support for
Loosely-Structured Processes. In: EDOC 2007, pp. 287–300 (2007)

5. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

6. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on the Web 4(1) (2010)

7. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010)

8. Montali, M., Maggi, F., Chesani, F., Mello, P., van der Aalst, W.: Monitoring
Business Constraints with the Event Calculus. Technical Report DEIS-LIA-002-
11, University of Bologna (Italy) (2011), LIA Series no. 97,
http://www.lia.deis.unibo.it/Research/TechReport/LIA-002-11.pdf

9. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

10. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal
Properties on Running Programs. In: ASE 2001, pp. 412–416 (2001)

11. Westergaard, M.: Better Algorithms for Analyzing and Enacting Declarative Work-
flow Languages Using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011)

12. Shanahan, M.: The Event Calculus Explained. In: Artificial Intelligence Today:
Recent Trends and Developments, pp. 409–430 (1999)

13. Chittaro, L., Montanari, A.: Efficient Temporal Reasoning in the Cached Event
Calculus. Computational Intelligence 12, 359–382 (1996)

14. International Telecommunications Union: Technical characteristics for a universal
shipborne Automatic Identification System using time division multiple access in
the VHF maritime mobile band. Recommendation ITU-R M.1371-1 (2001)

15. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance Checking Between Busi-
ness Processes and Business Contracts. In: EDOC 2006, pp. 221–232 (2006)

16. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

17. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and
Verification of Properties: An Approach Based on Temporal Logic. In: Meersman,
R., Tari, Z. (eds.) CoopIS/DOA/ODBASE 2005. LNCS, vol. 3760, pp. 130–147.
Springer, Heidelberg (2005)

18. Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance indicators
of semantic business processes. In: BIS 2008, pp. 227–238 (2008)

19. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.:
Monitoring and analyzing influential factors of business process performance. In:
EDOC 2009, pp. 141–150 (2009)

http://www.lia.deis.unibo.it/Research/TechReport/LIA-002-11.pdf

162 F.M. Maggi, M. Montali, and W.M.P. van der Aalst

20. Ly, L.T., Göser, K., Rinderle-Ma, S., Dadam, P.: Compliance of Semantic Con-
straints - A Requirements Analysis for Process Management Systems. In: GRCIS
2008 (2008)

21. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime Ver-
ification of LTL-Based Declarative Process Models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

22. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of Choreographies
During Execution Using the Reactive Event Calculus. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 55–72. Springer, Heidelberg (2009)

Intermodeling, Queries, and Kleisli Categories

Zinovy Diskin1,2, Tom Maibaum1, and Krzysztof Czarnecki2

1 Software Quality Research Lab,
McMaster University, Canada

2 Generative Software Development Lab,
University of Waterloo, Canada

{zdiskin,kczarnec}@gsd.uwaterloo.ca, tom@maibaum.org

Abstract. Specification and maintenance of relationships between mod-
els are vital for MDE. We show that a wide class of such relationships can
be specified in a compact and precise manner, if intermodel mappings
are allowed to link derived model elements computed by corresponding
queries. Composition of such mappings is not straightforward and re-
quires specialized algebraic machinery. We present a formal framework,
in which such machinery can be defined generically for a wide class of
metamodel definitions. This enables algebraic specification of practical
intermodeling scenarios, e.g., model merge.

1 Introduction

Model-driven engineering (MDE) is a prominent approach to software devel-
opment, in which models of the domain and the software system are primary
assets of the development process. Normally models are inter-related, perhaps
in a very complex way, and to keep them consistent and use them coherently,
relationships between models must be accurately specified and maintained. As
noted in [1], “development of well-founded techniques and tools for the creation
and maintenance of intermodel relations is at the core of MDE.”

Person
 tname: {Mr, Ms} x Str

Model M1

Actor
name: Str

Model M2

 Man
= Woman

?

A major problem for in-
termodel specifications is that
different models may struc-
ture the same information
differently. The inset figure
shows an example: model
(class diagram) M1 considers Persons and their names with titles (attribute
‘tname’), whereas M2 considers Actors and uses subclassing rather than titles.
Suppose that classes Person in model M1 and Actor in M2 refer to the same
class of entities but name them differently. We may encode this knowledge by
linking the two classes with an “equality” link. In contrast, specifying “same-
ness” of tnames and subclassing is not straightforward and seems to be a difficult
problem.

In the literature, such indirect relationships are usually specified by corre-
spondence rules [2] or expressions [3] attached to the respective links (think of

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 163–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 Z. Diskin, T. Maibaum, and K. Czarnecki

expressions replacing the question mark above). When such-annotated links are
composed, it is not clear how to compose the rules; hence, it is difficult to manage
scenarios that involve composition of intermodel mappings. The importance and
difficulty of the mapping composition problem is well recognized in the database
literature [3]; we think it will also become increasingly important in software
engineering with the advancement and maturation of MDE methods.

The main goal of the paper is to demonstrate that the mapping composition
problem can be solved by applying standard methods of categorical algebra,
namely, the Kleisli construction, but applied in a non-standard way. In more
detail, we present a specification framework, in which indirect links are replaced
by direct links between derived rather than basic model elements. Here “derived”
means that the element is computed by some operation over basic elements. We
call such operations queries, in analogy with databases; the reader may think
of some predefined query language that determines a class of legal operations
and the respective derived elements. We will call links and mappings involving
queries q-links and q-mappings.

As q-mappings are sequentially composable, the universe of models and q-
mappings between them can be seen as a category (in precise terms, the Kleisli
category of the monad modeling the query language). Hence, intermodeling sce-
narios become amenable to algebraic treatment developed in category theory.
We consider connection to categorical machinery to be fruitful not only theoret-
ically, but also practically as a source of useful design patterns. In particular,
we will show that q-mappings are instrumental for specifying and guiding model
merge.

The paper is structured as follows. Sections 2 and 3 introduce our running
example and show how q-links and q-mappings work for the problem of model
merge. Section 4 explains the main points of the formalization: models’ confor-
mance to metamodels, retyping, the query mechanism and q-mappings. Section
5 briefly describes related work and Section 6 concludes.

2 Running Example

To illustrate the issues we need to address, let us consider a simple example
of model integration in Fig. 1. Subfigure (a) presents four object models. The
expression o:Name declares an object o of class Name; the lower compartment
shows o’s attribute values, and ellipses in models P1, P2 refer to other attributes
not shown. In model A, class Woman extends class Actor. When we refer to
an element e (an object or an attribute) of model X , we write e@X . Arrows
between models denote intermodel relationships explained below.

Suppose that models P1 and P2 are developed by two different teams charged
with specifying different aspects of the same domain—different attributes of the
same person in our case. The bidirectional arrow between objects p1@P1 and
p2@P2 means that these objects are different representations of the same per-
son. Model P1 gives the first name; P2 provides the last name and the title of the
person (‘tname’). We thus have a complex relationship between the attributes,

Intermodeling, Queries, and Kleisli Categories 165

s:Student
name=Ann
age=22

Model S Model P1
p1:Person
name=Ann
bdate=01/01/90

 - - - -

p2:Person
tname=Ms.Lee
 - - - -

w: Woman Actor
name=Lee

Model P2 Model A

a2ps2p pp

(a) four models linked informally

S ≈≈≈≈≈
s2p

⇒ P1 ⇐∝∝∝∝∝∝∝∝∝∝∝∝∝∝∝
pp

⇒ P2 ⇐≈≈≈≈≈
a2p

A

[merge]

P
��

��

(b) schema of the system

Fig. 1. Running example: four models and their relationships, informally

shown by a dashed link (brown with a color display): both attributes talk about
names but are complementary. Together, the two links form an informal mapping
pp between the models.

We also assume that model P1 is supplied with a secondary model S, rep-
resenting a specific view of P1 to be used and maintained locally at its own
site (in the database jargon, S is a materialized view of P1). Mapping s2p, con-
sisting of three links, defines the view informally. Two solid-line links declare
“sameness” of the respective elements. The dash-dotted link shows relatedness
of the two attributes but says nothing more. Similarly, mapping a2p is assumed
to define model A as a view to model P2: the solid link declares “sameness” of
the two objects, and the dash-dotted link shows relatedness of their attributes
and types. Mappings s2p, pp and a2p bind all models together, so that a virtual
integrated (or merged) model, say P , should say that Ms. Ann Lee is a 22 year
old student and female actor born on Jan 1, 1990. Diagram Fig. 1(b) presents
the merge informally: horizontal fancy arrows denote intermodel mappings, and
dashed inclined arrows show mappings that embed the models into the merge.

Building model management tools capable of performing integration like above
for industrial models (normally containing thousands of elements) requires clear
and precise specifications of intermodel relationships. Hence, we need a frame-
work in which intermodel mappings could be specified formally; then, operations
on models and model mappings could be described in precise algebraic terms.
For example, merging would appear as an instance of a formal operation that
takes a diagram of models and mappings and produces an integrated model to-
gether with embeddings as shown in Fig. 1(b). We want such descriptions to be
generic and applicable to a wide class of scenarios over different metamodels.
Category theory does provide a suitable methodological framework (cf. [4,5,6]),
e.g., homogeneous merge can be defined as the colimit of the corresponding di-
agram [7,8], and heterogeneity can be treated as shown in [9]. However, the
basic prerequisite for applying categorical methods is that mappings and their

166 Z. Diskin, T. Maibaum, and K. Czarnecki

composition must be precisely defined. It is not straightforward even in our
simple example, and we will briefly review the problems to be resolved.

Thinking in terms of elements, a mapping should be a set of links between
models’ elements as shown by ovals in Fig. 1(a). We can consider a link formally
as a pair of elements, and it works for those links in Fig. 1(a), which are shown
with solid lines. Semantically, such a link means that two elements represent the
same entity in the real world. However, we cannot declare attributes ‘age’ in
model S (we write ‘age’@S) and ‘bdate’@P1 to be “the same” because, although
related, they are different. Even more complex is the relationship between at-
tribute ‘tname’ in base model P2 and the view model A: it involves attributes
and types (the Woman-Actor subclassing) and is shown informally by a two-to-
one dash-dotted link. Finally, the dashed link between elements ‘name’@P1 and
‘tname’@P2 encodes a great deal of semantic information described above.

As stated in the Introduction, managing indirect links via their annotation by
correspondence rules or expressions leads to difficult problems in mapping com-
position. In contrast, the Kleisli construction developed in categorical algebra
provides a clear and concise specification framework, in which indirect relation-
ships are modeled by q-mappings; the latter are associatively composable and
constitute a category. The next section explains the basic points of the approach.

3 Intermodeling and Kleisli Mappings

We consider our running example and incrementally introduce main features of
our specification framework.

3.1 From Informal to Formal Mappings

s:Student
name=Ann

p:Person
name=Ann

Model S0:S f0:m

Student
name:Str

m
Metamodel
 S

Person
name:Str

Metamodel
 P

Model P0:P

Type Discipline. Before matching models,
we need to match their metamodels. Suppose
that we need to match models S0 and P0 over
corresponding metamodels SSS andPPP , resp. (see
the inset figure on the right), linking objects
s@S0 and p@P0 as being “the same”. These
objects have different types (’Student’ and
’Person’, resp.), however, and, with a strict
type discipline, they cannot be matched. In-
deed, the two objects can only be “equated”
if we know that their types actually refer to
the same, or, at least, overlapping, classes
of real world objects. For simplicity, we assume that classes Student@SSS and
Person@PPP refer to the same class of real world entities but are named differ-
ently; and their attributes ‘name’ also mean the same. To make this knowledge
explicit, we match the metamodels SSS and PPP via mapping mmm as shown in the in-
set figure. After the metamodels are matched, we can match type-safely objects s

Intermodeling, Queries, and Kleisli Categories 167

and p, and their attributes as well. The notation f0:mmm means that each link in
mapping f0 is typed by a corresponding link in mapping mmm. Below we will often
omit metamodel postfixes next to models and model mappings if they are clear
from the context.

Student
name: Str
age: Int

Person
name: Str
bdate: Int3

 . . .

?

M-model S M-model, P1

Indirect Linking, Queries and Q-
mappings. As argued above, to specify rela-
tionships between models S and P1 in Fig. 1,
we first need to relate their metamodels (the
inset figure on the right). We cannot “equate”
attributes ‘age’ and ‘bdate’, however. The cor-
nerstone of our approach to intermodeling is
to specify indirect relationships by direct links
to derived elements computed with suitable
queries. For example, attribute ‘age’ can be derived from ‘bdate’ with an obvi-
ous query Q1:

/age = Q1(bdate) = 2012− bdate.byear,

Our notation follows UML by prefixing the names of derived elements by slash;
Q1 is the name of the query; 2012 − bdate.byear is its definition; and ’byear’
denotes the year-field of the bdate-records. Now the relation between metamod-
els SSS and PPP1 is specified by three directed links, i.e., pairs, (Student, Person),
(name, name) and (age, /age) as shown in the bottom of Fig. 2(a) (basic ele-
ments are shaded; the derived attribute ’/age’ is blank). The three links form a
direct mappingm1m1m1: SSS → PPP+

1 , where PPP+
1 denotes metamodel PPP1 augmented with

derived attribute /age. Since mapping m1m1m1 is total, it indeed defines metamodel
SSS as a view of PPP1. Query Q1 can be executed for any model over metamodel PPP1,
in particular, P1 (Fig. 2(a) top), which results in augmenting model P1 with the
corresponding derived element; we denote the augmented model by P+

1 . Now
model S can be directly mapped to model P+

1 as shown in Fig. 2(a), and each
link in mapping f1 is typed by a corresponding link in mapping m1m1m1.

The same idea works for specifying mapping a2p in Fig. 1. The only difference
is that now derived elements are computed by a more complex query (with
two select-from-where clauses, ‘title=Ms’ and ‘title=Mr’) as shown in Fig. 2(b):
mapping m2m2m2 provides a view definition, which is executed for model P2 and
results in view model A and traceability mapping f2. Thus, we formalize arrows
s2p, a2p in Fig. 1 as q-mappings, that is, mappings into models and metamodels
augmented with derived elements. Ordinary mappings can be seen as degenerate
q-mappings that do not use derived elements.

Links-with-New-Data via Spans. In Section 2, relationships between mod-
els P1 and P2 in Fig. 1 were explained informally. Fig. 3 gives a more pre-
cise description. We first introduce a new metamodel PPP12 (the shaded part
of metamodel PPP+

12), which specifies new concepts assumed by the semantics.
Then we relate these new concepts to the original ones via mappings rrr1, rrr2; the
latter one uses derived elements. Queries Q41,2 are projection operations, and
query Q3 is the pairing operation. In particular, mapping rrr2 says that attribute
‘fname’@PPP+

12 does not match any attribute in model PPP+
2 , ‘lname’@PPP+

12 is the

168 Z. Diskin, T. Maibaum, and K. Czarnecki

p1:Person
name=Ann
bdate=01/01/90
/age=2012-1990
 = 22
 . . .

s:Student
name=Ann
age=22

Model P1
+: P1

+ Model S:S f1:m1

Student
name: Str
age: Int

m1 Metamodel, P1
+ Metamodel S

Person
name: Str
bdate: Int3
/age=Q1(bdate)
 : Int
 . . .

 Person
tname: {Mr,Ms} x Str

Metamodel P2
+

w:Woman
name=Lee

 Actor
name: Str

Metamodel A

Woman

 Man

p2:Person
tname=Ms.Lee

/p2‘: MsPerson

/name=Lee

f2:m2

m2

/MsPerson
 /name: str

/MrPerson
 /name: str

Model P2
+:P2

+ Model A:A

(a) (b)

Fig. 2. Indirect matching via queries and direct mappings

Person
name: Str
bdate: Int3

 . . .

Metamodel P12
+ r1

Person
tname: {Ms,Mr} x Str
/title =Q41(tname):{Ms,Mr}
/name=Q42(tname):Str
 . . .

Metamodel P2
+ r2

Person
fname: Str
title: {Ms,Mr}
lname: Str
/tname = Q3(_, _):
 {Ms,Mr} x Str

Metamodel P1

p1:Person
name=Ann
bdate=01/01/90
 . . .

Model P12
+ e1

p2:Person
tname: Ms.Lee
/title = Ms
/name = Lee

e2
p:Person
fname=
title=
lname=
/tname=

Model P1 Model P2
+

Fig. 3. Matching via spans and queries

Intermodeling, Queries, and Kleisli Categories 169

same as ‘/name’@PPP+
2 (i.e., the second component of ‘tname’), and ‘tname’@PPP+

2

“equals” the pair of attributes (title, lname) in PPP+
12.

Person
name: Str
bdate: Int3

Metamod.P12
+

r11

Person
fname: Str
title: {Ms,Mr}
lname: Str
/tname: Str

Metamod.P1

Person
name: Str

Metamod. r1

r12

Fig. 4. Partial mappings via spans

On the level of models, we in-
troduce a new model P12 to de-
clare sameness of objects p1@P1

and p2@P2, and to relate their at-
tribute slots. The new attribute
slots are kept empty—they will
be filled-in with the correspond-
ing local values during the merge.

It is well-known that algebra of
totally defined functions is much
simpler than that of partially de-
fined ones. Neither of the map-
pings rrrk, ek (k = 1, 2) is total (re-
call that PPP2 and P2 may contain other attributes not shown in our diagrams). To
replace these partial mappings with total ones, we apply a standard categorical
construction called a span, as shown in Fig. 4 for mapping rrr1. We reify rrr1 as a
new model rrr1 equipped with two total projection mappings rrr11, rrr12.

Thus, we have specified all our data via models and functional q-mappings as
shown in the diagram below; arrows with hooked tails denote inclusions of models
into their augmentations with derived elements computed with queries Qi.

S Q1(P1) P1 P2 A

f1 f2
e1

P12

e2

Q4(P2)Q3(P12)
K��

K��

Q2(P2)

3.2 Model Merging: A Sample Multi-mapping Scenario

We want to integrate data specified by the diagram above. We focus first on
merging models P1, P2 and P12 without data loss and duplication. The type
discipline prescribes merging their metamodels first. To merge metamodels PPP+

1 ,
PPP+

2 , and PPP+
12 (see Fig. 3), we take their disjoint union (no loss), and then glue

together elements related by mappings rrr1,2 (to avoid duplication). The result is
shown in Fig. 5(a). There is a redundancy in the merge since attribute ‘tname’
and pair (title, lname) are mutually derivable. We need to choose either of them
as a basic structure, then the other will be derived (see Fig. 5(b1,b2)) and could
be omitted from the model. We call this process normalization. Thus, there
are two normalized merged metamodels. Amongst the three metamodels to be
merged, we favor metamodelPPP12 in which attribute ‘tname’ is considered derived
from ‘title’ and ‘lname’, and hence choose metamodel PPP+

n1 as the merge result
(below we omit the subindex).

170 Z. Diskin, T. Maibaum, and K. Czarnecki

(a)

Person
fname: Str
title: {Ms, Mr}
lname: Str
/tname = Q3(title,name):
 {Ms,Mr} x Str
bdate=01/01/90

Metamodel Pn1
+

Person
fname: Str
/title =Q41(tname): {Ms,Mr}
/name=Q42(tname): Str
tname:
 {Ms,Mr} x Str
bdate=01/01/90

Metamodel Pn2
+

(b1) (b2)

Person
fname: Str
title = Q41(tname):Str
name= Q42(tname):Str
tname=Q3(title,name):
 {Ms,Mr}xStr
bdate=01/01/90

Metamodel P

Fig. 5. Normalizing the merge

p:Person
fname=Ann
title=Ms
lname=Lee
/tname=Ms.Lee
bdate=01/01/90
 . . .
 . . .

p1:Person
name=Ann
bdate=01/01/90

 . . .

p2:Person
tname: Ms.Lee
/title = Ms
/name = Lee
 . . .

i1 i2
+

Model P1:P1
 Model P2

+:P2
+ Model P+:P+

Fig. 6. Result of the merge modulo match in Fig. 3

Now take the disjoint union of models P+
1 , P+

2 , P+
12 (Fig. 3), and glue together

elements linked by mappings e1,2. Note that we merge attribute slots rather than
values; naming conflicts are resolved in favor of names used in metamodel PPP+

12.
The merged model is in Fig. 6. Note how important is the interplay between
basic-derived elements in mapping e2 in Fig. 3: without these links, the merge
would contain redundancies. All three component models are embedded into the
merge by injective mappings i1,2,3 (mapping i3 is not shown).

Merge and Integration, Abstractly. The hexagon area in Fig. 7 presents the
merge described above, now in an abstract way. Nodes in the diagram denote
models; arrows are functional mappings, and hooked-tail arrows are inclusions.
Computed mappings are shown with dashed arrows (blue if colored), and com-
puted model P+ is not framed.

Building model P+ does not complete integration, however. Our system of
models also has two view models, S and A, and to complete integration, we
need to show how views S and A are mapped into the merge P . For this goal,
we need to translate queries Q1 and Q2 to, resp., models P1 and P2 from their
original models to the merge model P+ using mappings i1, i2. We achieve the
translation by replacing each element x@Pk occurring in the expression defining
query Qk (k = 1, 2) by the respective element ik(x)@P+. Then we execute the
queries and augment model P+ with the respective derived elements, as shown
by inclusion mappings η	k (k = 1, 2) within the lane (a-b) in the figure: we add
to model P+ derived attribute /age (on the left) and two derived subclasses,

Intermodeling, Queries, and Kleisli Categories 171

S

Q1(P1)

P1 P2

Q2(P2)

A

f1

P+
f2

e1

P12

e2

Q4(P2)Q3(P12)

Q2(P+)Q1(P+)

P++

i1
i2

+

i2

i1
#

i2
#

(a)

(b)

i3
+

iS iA

Fig. 7. The merge example, abstractly

/MrPerson and /MsPerson (on the right). Since model P+ is embedded into its
augmentations Qk(P

+) (k = 1, 2), and queries Qk preserve data embedding (are
monotonic in database jargon), the result of executing Qk against model Pk can
be embedded into the result of executing Qk against P+. So, we have mappings
i	k making squares [Pk P+ Qk(P

+) Qk(Pk)] (k = 1, 2) commutative.
Finally, we merge queries Q1 and Q2 to model P+ into query Q12, whose exe-

cution adds to model P+ both derived attribute /age and the derived subclasses.
We denote the resulting model by P++ and η12: P

+ ↪→ P++ is the corresponding
inclusion (see the lower diamond in Fig. 7). Now we can complete integration by
building mappings iS : S → P++ and iA: A→ P++ by sequential composition of
the respective components. These mappings say that Ms. Ann Lee is a student
and an actor—information that neither P+ nor P++ provide.

3.3 The Kleisli Construction

The diagram in Fig. 7 is precise but looks too detailed in comparison with the
informal diagram Fig. 1(b). We want to design a more compact yet still precise
notation for this diagram.

Note that the diagram uses frequently the following mapping pattern

X
f� Q(Y) �

η
⊃ Y,

where X,Y are, resp., the source and the target models; Q(Y) is augmentation
of Y with elements computed by a query Q to Y ; and η is the corresponding
inclusion. The key idea of the Kleisli construction developed in category theory
is to view this pattern as an arrow K : X ⇒ Y comprising two components: a
query QK to the target Y and a functional mapping fK : X → QK(Y) into the
corresponding augmentation of the target. Thus, the query becomes a part of
the mapping rather than of model Y , and we come to the notion of q-mapping
mentioned above. We will often denote q-mappings by double-body arrows to
recall that they encode both a query and a functional mapping. By a typical

172 Z. Diskin, T. Maibaum, and K. Czarnecki

abuse of notation, a q-mapping and its second component (the functional map-
ping) will be often denoted by the same letter; we write, say, f : X ⇒ Y and
f : X → Q(Y) using letter f for both. With this notation, the input data for
integration (framed nodes and solid arrows in diagram Fig. 7) are encoded by
the following diagram

S ===
f1
⇒ P1 ⇐=

e1
•=⇒ P12 ⇐=

e2
•=⇒ P2 ⇐===

f2
A

where spans e1, e2 from Fig. 7 are encoded by arrows with bullets in the middle.
Note a nice similarity between this and our original diagram Fig. 1(b)(its upper
row of arrows); however, in contrast to the latter, the arrows in the diagram
above have the precise meaning of q-mappings.

Finally, we want to formalize the integration procedure as an instance of the
colimit operation: as well-known, the latter is a quite general pattern for “putting
things together” [4]; see also [7,10,8] for concrete examples related to MDE. To
realize the merge-as-colimit idea, we need to organize the universe of models and
q-mappings into a category, that is, define identity q-mappings and composition
of q-mappings. The former task is easy: given a model X , its identity q-mapping
11X : X ⇒ X comprises the empty query Q∅, so that Q∅(X) = X , and the
mapping 1X : X → Q∅(X), which is the identity mapping of X to itself.

X Y Z

Qf (Y)

ηQf�

∩f

�

Qg(Z)

ηQg�

∩g

�

Qf (Qg(Z))

ηQf�

∩g #

�

Fig. 8. Q-mapping composition

Composition of q-mappings is, however,
non-trivial. Given two composable q-mappings
f : X ⇒ Y and g : Y ⇒ Z, defining their com-
position f ; g : X ⇒ Z is not straightforward, as
shown by the diagram in Fig. 8 (ignore the
two dashed arrows and their target for a mo-
ment): indeed, after unraveling, mappings f
and g are simply not composable. To man-
age the problem, we need to apply query Qf

to model Qg(Z) and correspondingly extend
mapping g as shown in the diagram. Compo-
sition of two queries is again a query, and thus
pair (f ; g#, Qf◦Qg) determines a new q-mapping from X to Z.

The passage from g to g#—the Kleisli extension operation—is crucial for the
construction. (Note that we have used this operation in Fig. 7 too). On the level
of metamodels and query definitions (syntax only), Kleisli extension is simple
and amounts to term substitution. However, queries are executed for models,
and an accurate formal definition of the Kleisli extension needs non-trivial work
to be done. We outline the main points in the next section.

4 A Sketch of the Formal Framework

Due to space limitations, we describe very briefly the main points of the formal
framework. All the details, including basic mathematical definitions we use, can
be found in the accompanying technical report [11] (the TR).

Intermodeling, Queries, and Kleisli Categories 173

4.1 Model Translation, Traceability and Fibrations

The Carrier Structure. We fix a category G with pullbacks, whose objects
are to be thought of as (directed) graphs, or many-sorted (colored) graphs, or
attributed graphs [12]. The key point is that they are definable by a metameta-
model itself being a graph with, perhaps, a set of equational constraints. In
precise categorical terms, we require G to be a presheaf topos [13], and hence
a G-object can be thought of as a system of sets and functions between them
(e.g., a graph consists of two sets, Nd and Arr, and two functions from Arr to
Nd—think of the source and the target of an arrow). It allows us to talk about
elements of G-objects, and ensures that G has limits, colimits, and other good
properties. We will call G-objects ‘graphs’ (and as a rule skip the quotes), and
write e ∈ G to say that e is an element of graph G.

For a graphM thought of as a metamodel, anM -model is a pair A = (DA, tA)
with DA a graph and tA: DA →M a mapping (arrow in category G) to be
thought of as typing. In a heterogeneous environment with models over different
metamodels, we may say that a model A is merely an arrow tA: DA →MA in G,
whose target MA is called the metamodel of A (or the type graph, and the source
DA is the data carrier (the data graph). In our examples, a typing mapping for
OIDs was set by colons: writing p:Person for a model A means that p ∈ DA,
Person ∈ MA and tA(p) = Person. For attributes, our notation covers even
more, e.g., writing ’name=Ann’ (nested in class Person) refers to some arrow
x: y → Ann in graphDA, which is mapped by tA to arrow value: name→ String
in graph MA, but names of elements x, y are not essential for us. Details can be
found in [10, Sect.3].

A model mapping f : A→ B is a pair of G-mappings, fmeta: MA →MB and
fdata: DA → DB, commuting with typing: fdata; tB = tA; fmeta. Below we will
also write fM for fmeta and fD for fdata. Thus, a model mapping is a commutative
diagram; we usually draw typing mappings vertically and mappings fM , fD
horizontally. We assume the latter to be monic (or injective) in G like in all our
examples. This defines category Mod of models and model mappings.

As each model A is assigned with its metamodelMA, and each model mapping
f : A→ B with its metamodel component fM : MA →MB, we have a projection
mapping ppp: Mod→MMod, where we write MMod for either entire category
G or for its special subcategory of ‘graphs’ that can serve as metamodels (e.g.,
all finite ‘graphs’). It is easy to see that ppp preserves mapping composition and
identities, and hence is a functor.

To take into account constraints, we need to consider metamodels as pairs
M = (GM , CM) with GM a carrier graph and CM a set of constraints. Then
not any typing tA: DA → GM is a model: a legal tA must also satisfy all con-
straints in CM . Correspondingly, a legal mapping f : M → N must be a ’graph’
mapping GM → GN compatible with constraints in a certain sense (see [10] or
[8] for details). We do not formalize constraints in this paper, but in our ab-
stract definitions below, objects of category MMod may be understood as pairs
M = (GM , CM) as above, and MMod-arrows as legal metamodel mappings.

174 Z. Diskin, T. Maibaum, and K. Czarnecki

D �vt
D�v

↗↗rtp

M

t
�
� v

N

t�v
�

Retyping. Any metamodel mapping v : M ← N generates
retyping of models over M into models over N as shown by
the diagram on the right. If an element e ∈ N is mapped to
v(e) ∈ M , then any element in ‘graph’ D typed by v(e), is
retyped by e. Graph D�v consists of such retyped elements of
D, and mapping vt traces their origin. Overall, we have an
operation that takes two arrows, v and t, and produces two arrows, vt and t�v,
together making a commutative square as shown above.

Formally, elements of D�v can be identified with pairs (e, d) ∈ N×D such
that v(e) = t(d), and mappings t�v and vt are the respective projections. The
operation just described is well-known in category theory by the name pullback
(PB) : typing arrow t�v: D�v → N is obtained by pulling back arrow t along arrow
v. If we want to emphasize the vertical dimension of the operation, we will say
that traceability arrow vt is obtained by lifting arrow v along t.

Abstract Formulation via Fibrations. Retyping can be specified as a spe-
cial property of functor ppp: Mod→MMod. That is: for an arrow v : M ← N in
MMod, and an object A over M (i.e., such that ppp(A) = M), there is an arrow
vA : A← A�v over v (i.e., a commutative diagram as above), which is maximal in
a certain sense amongst all arrows (commutative squares) over v. Such an arrow
is called the (weak) ppp-Cartesian lifting of arrow v, and is defined up to canonical
isomorphism. Functor ppp with a chosen Cartesian lifting for any arrow v, which is
compatible with arrow composition, is called a split fibration (see [14, Exercise
1.1.6]). Thus, existence of model retyping can be abstractly described by saying
that we have a split fibration ppp: Mod→MMod.

We will call such a fibration an (abstract) metamodeling framework.

4.2 Query Mechanism via Monads and Fibrations

Background. A monad (in the Kleisli form) over a category C is a triple
(Q, η, #) with Q: C0 → C0 a function on C-objects, η an operation that assigns
to any object X ∈ C0 a C-arrow ηX : X → Q(X), and # an operation that
assigns to any C-arrow f : X → Q(Y) its Kleisli extension f#: Q(X)→ Q(Y)

such that ηX ; f# = f . Two additional laws hold: η#X = 1Q(X) for all X , and

f#; g# = (f ; g#)# for all f : X → Q(Y), g: Y → Q(Z). In our context, if C-
objects are models and a monad over C is given by a query language, object
Q(X) is to be understood as model X augmented with all derived elements
computable by all possible queries. In other words, Q(X) is the object of queries
against model X . We will identify a monad by its first component.

Any monad Q generates its Kleisli category CQ. It has the same objects as
C, but a CQ-arrow f : X ⇒ Y is a C-arrow f : X → Q(Y). Thus, Kleilsi arrows
are a special “all-queries-together” version of our q-mappings. As we have seen
in Sect. 3.3, Fig. 8, composition of CQ-arrows, say, f : X ⇒ Y and g : Y ⇒ Z
is not immediate since f ’s target and g’s source do not match after unraveling
their definitions. The problem is resolved with the Kleisli extension operation
and, moreover, the laws ensure that C-objects and CQ-arrows form a category.

Intermodeling, Queries, and Kleisli Categories 175

A ⊂η
Qexe
A � Q(A) �

f
B

MA

tA
�

⊂η
Qdef
M� Q(M)

�
�v

MB

tB
�

A ⊂ ηQexe
A � Q(A) �

vQ(A)
Q(A)�v

qEx↗↗e r↗↗tp
M

tA
�

⊂ ηQdef
M� Q(M)

�
� v

N
�

A ⇐ vA
= = A�v

vEx↗↗e
M

tA
�
⇐======

v
N

tA�v
�

(a) (b1) (b2)

Fig. 9. Q-mappings (a) and view mechanism (b1,b2)

Lemma 1 ([15]). If category C has colimits of all diagrams from a certain class
D, then the Kleisli category CQ has D-colimits as well.

Query Monads and Their Kleisli Categories. In the TR, we carefully
motivate the following definition:

Definition 1 (main) A monotonic query language over an abstract metamod-
eling framework ppp: Mod→MMod is a pair of monads (Q,Qdef) over categories
Mod and MMod, resp., such that ppp is a monad morphism, and monad Q is
ppp-Cartesian, i.e., is compatible with the Cartesian structure of functor ppp.

In the context of this definition, the Kleisli construction has an immediate prac-
tical interpretation. Arrows in the Kleisli category ModQ are shown in Fig. 9(a).
They are, in fact, our q-mappings, and we will also denote category ModQ by
qMapQ(we thus switch attention from the objects of the category to its arrows).
It immediately allows us to state (based on Lemma 1) that if D-shaped config-
urations of models related by ordinary (not q-) model mappings are mergeable,
then D-shaped configurations of models and q-mappings are mergeable as well.
For example, merge in our running example can be specified as the colimit of
the diagram of Kleilsi mappings on p.10.

Metamodel-level components of q-mappings between models are arrows in
MModQdef

, and they are nothing but view definitions: they map elements of the
source metamodel to queries against the target one Fig. 9(a). Hence, we may
denote MModQdef

by viewDefQdef
. View definitions can be executed as shown

in Fig. 9(b1): first the query is executed, and then the result is retyped along
the mapping v (dashed arrows denote derived mappings).

The resulting operation of view execution is specified in Fig. 9(b2), where dou-
ble arrows denote Kleisli mappings. Properties of the view execution mechanism
are specified by Theorem 1 proved in the TR.

Theorem 1. Let (Q,Qdef) be a monotonic query language over an abstract
metamodeling framework ppp: Mod→MMod. It gives rise to a split fibration
pppQ: qMapQ → viewDefQdef

between the corresponding Kleisli categories.

Theorem 1 says that implementing view computation via querying followed by
retyping is compositional. More precisely, views implemented via querying fol-
lowed by retyping can be composed sequentially, and execution of the resulting
composite view amounts to sequential composition of executions of its compo-
nent views. Such compositionality is an evident requirement for any reasonable
implementation of views, and views implemented according to our framework
satisfy this requirement.

176 Z. Diskin, T. Maibaum, and K. Czarnecki

5 Related Work

Modeling inductively generated syntactic structures (term and formula algebras)
by monads and Kleisli categories is well known, e.g., [16,17]. Semantic structures
(algebras) then appear as Eilenberg-Moore algebras of the monad. In our ap-
proach, carriers of algebraic operations stay within the Kleilsi category. It only
works for monotonic query languages, but the latter form a large, practically in-
teresting class. (E.g, it is known that Select-Project-Join queries are monotonic.)
We are not aware of a similar treatment of query languages in the literature.

Our notion of metamodeling framework is close to specification frames in
institution theory [18]. Indeed, inverting the projection functor gives us a func-
tor ppp−1

Q : viewDefopQdef
→ Cat, which may be interpreted in institutional terms

as mapping theories into their categories of models, and theory mappings into
translation functors. The picture still lacks constraints, but adding them is not
too difficult and can be found in [19]. Conversely, there are attempts to add
query facilities to institutions via so called parchments [20]. Semantics in these
attempts is modeled in a far more complex way than in our approach.

In several papers, Guerra et al. developed a systematic approach to intermod-
eling based on TGG (Triple Graph Grammars), see [1] for references. The query
mechanism is somehow encoded in TGG-production rules, but precise relation-
ships between this and our approach remain to be elucidated.

Our paper [9] heavily uses view definitions and views in the context of defining
consistency for heterogeneous multimodels, and is actually based on constructs
similar to our metamodeling framework. However, the examples therein go one
step “down” in the MOF-metamodeling hierarchy in comparison with our exam-
ples here, and formalization is not provided. The combination of those structures
with structures in our paper makes a two-level metamodeling framework (a fi-
bration over a fibration); studying this structure is left for future work.

6 Conclusion

The central notion of the paper is that of a q-mapping, which maps elements in
the source model to queries applied to the target model. We have shown that
q-mappings provide a concise and clear specification framework for intermod-
eling scenarios, in particular, model merge. Composition of q-mappings is not
straightforward: it requires free term substitution on the level of query defini-
tion (syntax), and actual operation composition on the level of query execution
(semantics). To manage the problem, we model both syntax and semantics of a
monotonic query language by a Cartesian monad over the fibration of models
over their metamodels. Then q-mappings become Kleilsi mappings of the monad,
and can be composed. In this way the universe of models and q-mappings gives
rise to a category (the Kleisli category of the monad), providing manageable
algebraic foundations for specifying intermodeling scenarios.

Acknowledgement. We are grateful for anonymous referees for valuable com-
ments. Financial support was provided with the NECSIS project funded by
Automotive Partnership Canada.

Intermodeling, Queries, and Kleisli Categories 177

References

1. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From Theory
to Practice. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010.
LNCS, vol. 6394, pp. 376–391. Springer, Heidelberg (2010)

2. Romero, J., Jaen, J., Vallecillo, A.: Realizing correspondences in multi-viewpoint
specifications. In: EDOC, pp. 163–172. IEEE Computer Society (2009)

3. Bernstein, P.: Applying model management to classical metadata problems. In:
Proc. CIDR 2003, pp. 209–220 (2003)

4. Goguen, J.: A categorical manifesto. Mathematical Structures in Computer Sci-
ence 1(1), 49–67 (1991)

5. Fiadeiro, J.: Categories for Software Engineering. Springer, Heidelberg (2004)
6. Batory, D.S., Azanza, M., Saraiva, J.: The Objects and Arrows of Computa-

tional Design. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 1–20. Springer, Heidelberg (2008)

7. Sabetzadeh, M., Easterbrook, S.M.: View merging in the presence of incompleteness
and inconsistency. Requir. Eng. 11(3), 174–193 (2006)

8. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-
merge approach to version control in mde. J. Log. Algebr. Program. 79(7), 636–658
(2010)

9. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models
for Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

10. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 92–165. Springer, Heidelberg (2011)

11. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and Kleisli cate-
gories. Technical Report GSDLab-TR 2011-10-01, University of Waterloo (2011),
http://gsd.uwaterloo.ca/QMapTR

12. Ehrig, H., Ehrig, K., Prange, U., Taenzer, G.: Fundamentals of Algebraic Graph
Transformation (2006)

13. Barr, M., Wells, C.: Category theory for computing science. PrenticeHall (1995)
14. Jacobs, B.: Categorical logic and type theory. Elsevier Science Publishers (1999)
15. Manes, E.: Algebraic Theories. Springer, Heidelberg (1976)
16. Jüllig, R., Srinivas, Y.V., Liu, J.: Specware: An Advanced Evironment for the

Formal Development of Complex Software Systems. In: Nivat, M., Wirsing, M.
(eds.) AMAST 1996. LNCS, vol. 1101, pp. 551–554. Springer, Heidelberg (1996)

17. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

18. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of ACM 39(1), 95–146 (1992)

19. Diskin, Z.: Towards generic formal semantics for consistency of heterogeneous mul-
timodels. Technical Report GSDLAB 2011-02-01, University of Waterloo (2011)

20. Goguen, J., Burstall, R.: A Study in the Foundations of Programming Method-
ology: Specifications, Institutions, Charters and Parchments. In: Poigné, A.,
Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer
Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986)

http://gsd.uwaterloo.ca/QMapTR

Concurrent Model Synchronization
with Conflict Resolution

Based on Triple Graph Grammars

Frank Hermann1,2,�, Hartmut Ehrig1, Claudia Ermel1, and Fernando Orejas3

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{frank.hermann,hartmut.ehrig,claudia.ermel}@tu-berlin.de

2 Interdisciplinary Center for Security, Reliability and Trust, Université du Luxembourg
3 Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain

orejas@lsi.upc.edu

Abstract. Triple graph grammars (TGGs) have been used successfully to ana-
lyse correctness of bidirectional model transformations. Recently, also a corre-
sponding formal approach to model synchronization has been presented, where
updates on a given domain (either source or target) can be correctly (forward
or backward) propagated to the other model. However, a corresponding formal
approach of concurrent model synchronization, where a source and a target mod-
ification have to be synchronized simultaneously, has not yet been presented and
analysed. This paper closes this gap taking into account that the given and prop-
agated source or target model modifications are in conflict with each other. Our
conflict resolution strategy is semi-automatic, where a formal resolution strategy
– known from previous work – can be combined with a user-specific strategy.

As first result, we show correctness of concurrent model synchronization, that
is, each result of our nondeterministic concurrent update leads to a consistent
correspondence between source and target models, where consistency is defined
by the TGG. As second result, we show compatibility of concurrent with basic
model synchronization: concurrent model synchronization can realize both for-
ward and backward propagation. The results are illustrated by a running example
on updating organizational models.

Keywords: model synchronization, conflict resolution, model versioning, cor-
rectness, bidirectional model transformation, triple graph grammars.

1 Introduction

Bidirectional model transformations form a key concept for model generation and syn-
chronization within model driven engineering (MDE, see [22]). Triple graph grammars
(TGGs) have been successfully applied in several case studies for bidirectional model
transformation, model integration and synchronization [20,25,14] and for the imple-
mentation of QVT [15]. Based on the work of Schürr et al. [24,25], we developed a

� Supported by the National Research Fund, Luxembourg (AM2a).

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 178–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Concurrent Model Synchronization with Conflict Resolution 179

formal theory of TGGs [9,16], which allows handling correctness, completeness, ter-
mination and functional behaviour of model transformations. Inspired by existing syn-
chronization tools [14] and frameworks [4], we proposed an approach for basic model
synchronization in [17], showing its correctness. In that paper we studied the problem
of how updates on a given domain can be correctly propagated to another model.

The aim of this paper is to provide, on this basis, also a correct TGG framework
for concurrent model synchronization, where concurrent model updates in different do-
mains have to be merged to a consistent solution. In this case, we have the additional
problem of detecting and solving conflicts between given updates. Such conflicts may
be hard to detect, since they may be caused by concurrent updates on apparently unre-
lated elements of the given models. Furthermore, there may be apparently contradictory
updates on related elements of the given domains which may not be real conflicts.

The main idea and results of our approach are the following:

1. Model synchronization is performed by propagating the changes from one model
of one domain to a corresponding model in another domain using forward and
backward propagation operations. The propagated changes are compared with the
given local update. Possible conflicts are resolved in a semi-automated way.

2. The operations are realized by model transformations based on TGGs [17] and
tentative merge constructions solving conflicts [11]. The specified TGG also defines
consistency of source and target models.

3. In general, the operation of model synchronization is nondeterministic, since there
may be several conflict resolutions. The different possible solutions can be visual-
ized to the modelers, who then decide which modifications to accept or discard.

4. The main result shows that the concurrent TGG synchronization framework is cor-
rect and compatible with the basic synchronization framework, where only single
updates are considered at the same time.

Based on TGGs we present the general concurrent model synchronization framework in
Sec. 2, the basic model framework in Sec. 3, and conflict resolution in Sec. 4. In Sec. 5
we combine these operations with additional auxiliary ones and present the construc-
tion of the concurrent synchronization operation, for which we show its correctness
and its compatibility with the basic synchronization case in Sec. 6. All constructions
and results are motivated and explained by a small case study. Finally, Secs. 7 and 8
discuss related work, conclusions and future work. Full proofs and technical details on
efficiency issues and the case study are presented in a technical report [10].

2 Concurrent Model Synchronization Framework

Concurrent model synchronization aims to provide a consistent merging solution for
a pair of concurrent updates that are performed on two interrelated models. This sec-
tion provides a formal specification of the concurrent synchronization problem and the
corresponding notion of correctness. At first, we motivate the general problem with a
compact example.1

1 More complex case studies are also tractable by our approach, e.g. relating class diagrams to
data base models [9].

180 F. Hermann et al.

Fig. 1. Concurrent model synchronization: compact example

Example 2.1 (Concurrent model synchronization problem). Fig. 1 shows two models in
correspondence that cover different aspects about employees of a company. The source
model contains information about employees of the marketing department only, but
shows more detailed salary information. Two model updates have to be synchronized
concurrently: on the source side (model update dS

1), Bill Clinton’s node is deleted and
Melinda Gates’ family name changes due to her marriage; moreover, being married, her
bonus is raised from 1000 to 2000. On the target side (model update dT

1), Bill Clinton is
switching from the marketing to the technical department (in the visualization in Fig. 1
this is indicated by a different role icon for Bill Clinton). His department change is
combined with a salary raise from 5000 to 6000. After performing updates dS

2 and dT
2 , a

“consistently integrated model” (see below) is derived that reflects as many changes as
possible from the original updates in both domains and resolves inconsistencies, e.g. by
computing the new Salary of Melinda Gates in the target domain as sum of the updated
source attributes Base and Bonus. Note that Bill Clinton is not deleted in the target
domain by the concurrent synchronization because in this case, the changes required by
dT

1 could not have been realized. This conflict can be considered an apparent one. If a
person leaves the marketing department, but not the company, its node should remain
in the target model. Thus, a concurrent model synchronization technique has to include
an adequate conflict resolution strategy.

A general way of specifying consistency between interrelated models of a source
and a target domain is to provide a consistency relation that defines the consistent pairs
(MS ,MT) of source and target models. Triple graph grammars (TGGs) are a formal ap-
proach for the definition of a language of consistently integrated models [24,9]. TGGs
have been applied successfully for bidirectional model transformations [25,16] and ba-
sic model synchronization [14,17], where no concurrent model updates occur.

In the framework of TGGs, an integrated model is represented by a triple graph
consisting of three graphs GS , GC , and GT , called source, correspondence, and target
graphs, respectively, together with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . Further concepts like attribution and inheritance can be used ac-
cording to [9,8]. The two mappings in G specify a correspondence r : GS ↔ GT , which
relates the elements of GS with their corresponding elements of GT and vice versa.
However, it is usually sufficient to have explicit correspondences between nodes only.
For simplicity, we use double arrows (↔) as an equivalent shorter notation for triple
graphs, whenever the explicit correspondence graph can be omitted.

Concurrent Model Synchronization with Conflict Resolution 181

Fig. 2. Two triple rules of the TGG

(GS

mS ��

G GC
sG��

mC
��

tG �� GT)
mT ��

(HSH
m
��

HC
sH

��
tH

�� HT)

Triple graphs are related by triple graph mor-
phisms m : G → H consisting of three graph
morphisms that preserve the associated correspon-
dences (i.e., the diagrams on the right commute).
Our triple graphs are typed. This means that a type triple graph TG is given (playing
the role of a metamodel) and, moreover, every triple graph G is typed by a triple graph
morphism typeG : G → TG. It is required that morphisms between typed triple graphs
preserve the typing. For TG = (TGS ← TGC → TGT), we use VL(TG), VL(TGS), and
VL(TGT) to denote the classes of all graphs typed over TG, TGS , and TGT , respectively.

L
m ��

� � tr �� R
n��(PO)

G
� �

t
�� H

A triple rule tr = (trS , trC , trT) is an inclusion of triple graphs,
represented L ↪→ R. Notice that one or more of the rule components
trS , trC , and trT may be empty, i.e. some elements in one domain
may have no correspondence to elements in the other domain. In the
example, this is the case for employees of the technical department within the target
model. A triple rule is applied to a triple graph G by matching L to some subtriple
graph of G via a match morphism m : L→ G. The result of this application is the triple
graph H, where L is replaced by R in G. Technically, the result of the transformation
is defined by a pushout diagram, as depicted above. This triple graph transformation

(TGT) step is denoted by G =
tr,m
==⇒ H. Moreover, triple rules can be extended by negative

application conditions (NACs) for restricting their application to specific matches [16].

Example 2.2 (Triple Rules). Fig. 2 shows two triple rules of our running example using
short notation, i.e., left- and right-hand side of a rule are depicted in one triple graph and
the elements to be created have the label “++”. Rule Person2NextMarketingP requires an
existing marketing department. It creates a new person in the target component together
with its corresponding person in the source component and the explicit correspondence
structure. (The TGG contains a further rule (not depicted) for initially creating the mar-
keting department.) Rule FName2FName extends two corresponding persons by their
first names. There are further rules for handling the remaining attributes. In particular,
the rule for attribute birth is the empty rule on the source component.

A triple graph grammar TGG = (TG, S , TR) consists of a triple type graph TG, a triple
start graph S and a set TR of triple rules, and generates the triple graph language
VL(TGG) ⊆ VL(TG). A TGG is, simultaneously, the specification of the classes of con-
sistent source and target languages VLS = {GS | (GS ← GC → GT) ∈ VL(TGG)}
and VLT = {GT | (GS ← GC → GT) ∈ VL(TGG)} and also of the class C =

VL(TGG) ⊆ VL(TG) = Rel of consistent correspondences which define the consis-
tently integrated models. The possible model updates ΔS and ΔT are given by the sets
of all graph modifications for the source and target domains. In our context, a model
update d : G → G′ is specified as a graph modification d = (G ←i1−− I −i2−→ G′). The relating

182 F. Hermann et al.

Signature Laws

GS
1

dS
2
��

GS
0

dS
1�� �� r0 ��

:CSynch��

GT
0

dT
1 �� GT

1

dT
2

��
GS

2
��

r2
�� GT

2

∀ c ∈ C :
GS

1 �� ⇓:CSynch

GS1�� �� c �� GT 1 �� GT

1��

GS ��
c

�� GT

(a)

GS
1

dS
2 �� ⇓:CSynch

GS
0
��

r0 ��
dS

1�� GT
0

dT
1 �� GT

1

dT
2��

G2
S ��

r2 :C
�� G2

T

(b)

Fig. 3. Signature and laws for correct concurrent synchronization frameworks

morphisms i1 : I ↪→ G and i2 : I ↪→ G′ are inclusions and specify which elements are
deleted from G (all the elements in G \ I) and which elements are added by d (all the
elements in G′ \ I). While graph modifications can also be seen as triple graphs, it is
conceptually important to distinguish between correspondences and updates δ.

The concurrent synchronization problem is visualized in Fig. 3, where we use
solid lines for the inputs and dashed lines for the outputs. Given an integrated
model G0 = (GS

0 ↔ GT
0) and two model updates dS

1 = (GS
0 → GS

1) and dT
1 =

(GT
0 → GT

1), the required result consists of updates dS
2 = (GS

1 → GS
2) and

dT
2 = (GT

1 → GT
2) and a consistently integrated model G2 = (GS

2 ↔ GT
2). The

solution for this problem is a concurrent synchronization operation CSynch, which
is left total but in general non-deterministic, which we indicate by a wiggly ar-
row “�” in Thm. 2.3 below. The set of inputs is given by (Rel ⊗ ΔS ⊗ ΔT) =
{(r, dS , dT) ∈ Rel × ΔS × ΔT | r : GS

0 ↔ GT
0 , d

S : GS
0 → G2

S , dT : GT
0 → G2

T }, i.e., r co-
incides with dS on GS

0 and with dT on GT
0 .

Definition 2.3 (Concurrent Synchronization Problem and Framework). Given
TGG, the concurrent synchronization problem is to construct a left total and nonde-
terministic operation CSynch : (Rel ⊗ ΔS ⊗ ΔT) � (Rel × ΔS × ΔT) leading to the
signature diagram in Fig. 3, called concurrent synchronization tile with concurrent syn-
chronization operation CSynch. Given a pair (prem, sol) ∈ CSynch the triple prem =
(r0, dS

1 , d
T
1) ∈ Rel ⊗ ΔS ⊗ ΔT is called premise and sol = (r2, dS

2 , d
T
2) ∈ Rel × ΔS × ΔT is

called a solution of the synchronization problem, written sol ∈ CSynch(prem). The
operation CSynch is called correct with respect to consistency relation C, if laws
(a) and (b) in Fig. 3 are satisfied for all solutions. Given a concurrent synchroniza-
tion operation CSynch, the concurrent synchronization framework CSynch is given by
CSynch = (TGG,CSynch). It is called correct, if operation CSynch is correct.

Correctness of a concurrent synchronization operation CSynch ensures that any result-
ing integrated model G2 = (GS

2 ↔ GT
2) is consistent (law (b)) and, the synchronization

of an unchanged and already consistently integrated model always yields the identity of
the input as output (law (a)).

3 Basic Model Synchronization Framework

We now briefly describe the basic synchronization problem and its solution [17], which
is the basis for the solution for the concurrent synchronization problem in Sec. 5.

Concurrent Model Synchronization with Conflict Resolution 183

GS �� r ��

a
�� �:fPpg

GT

b��

G′S ��
r′

�� G′T

GS �� r ��

a
�� �:bPpg

GT

b��

G′S ��
r′

�� G′T

Fig. 4. Propagation operations

Given an integrated model GS ↔ GT

and an update on one domain, either GS or
GT , the basic synchronization problem is to
propagate the given changes to the other do-
main. This problem has been studied at a for-
mal level by several authors (see, for instance,
[12,19,26,3,28,18,5,6,17]). Many of these approaches [12,19,26,28] are state-based,
meaning that they consider that the synchronization operations take as parameter the
states of the models before and after the modification and yields new states of mod-
els. However, in [3,5] it is shown that state-based approaches are not adequate in gen-
eral for solving the problem. Instead a number of other approaches (see, for instance,
[3,18,6,17]) are δ-based, meaning that the synchronization operations take modifica-
tions as parameters and returns modifications as results. In particular, in [17], we de-
scribe a framework based on TGGs, where we include specific procedures for forward
and backward propagation of modifications, proving its correctness in terms of the sat-
isfaction of a number of laws. These results can be seen as an instantiation, in terms of
TGGs, of the abstract algebraic approach presented in [6].

To be precise, according to [17], a basic synchronization framework must provide
suitable left total and deterministic forward and backward propagation operations fPpg
and bPpg solving this problem for any input (see Fig. 4). The input for fPpg is an in-
tegrated model GS ↔ GT together with a source model update (graph modification)
a : GS → G′S , and the output is a target update b : GT → G′T together with a con-
sistently integrated model G′S ↔ G′T . The operation bPpg behaves symmetrically to
fPpg. It takes as input GS ↔ GT and a target modification b : GT → G′T and it returns a
source update a : GS → G′S together with a consistently integrated model G′S ↔ G′T .
Note that determinism of these operations means that their results are uniquely deter-
mined. Note also that we require that the resulting model after a propagation operation
must be consistent according to the given TGG.

We may notice that in a common tool environment, the inputs for these operations
are either available directly or can be obtained. For example, the graph modification of
a model update can be derived via standard difference computation.

The propagation operations are considered correct in [17], if they satisfy the four
laws depicted in Fig. 5. Law (a1) means that if the given update is the identity and
the given correspondence is consistent, then fPpg changes nothing. Law (a2) means
that fPpg always produces consistent correspondences from consistent updated source
models G′S , where the given correspondence r : GS ↔ GT is not required to be consis-
tent. Laws (b1) and (b2) are the dual versions concerning bPpg.

(a1) :

∀ c ∈ C :

GS �� c ��

1
�� �:fPpg

GT

1
��

GS ��
c

�� GT

(a2) :

∀ G′S ∈ VLS :

GS �� r ��

a
�� �:fPpg

GT

b
��

G′S ��
r′ :C

�� G′T

(b1) :

∀ c ∈ C :

GS �� c ��

1
���:bPpg

GT

1
��

GS ��
c

�� GT

(b2) :

∀G′T ∈ VLT :

GS �� r ��

a
�� �:bPpg

GT

b
��

G′S ��
r′ :C

�� G′T

Fig. 5. Laws for correct basic synchronization frameworks

184 F. Hermann et al.

In [17], we also present specific propagation operations: Given GS ↔ GT and the
modification a : GS → G′S , the forward propagation operation consists of three steps.
In the first step, we compute an integrated model G′S ↔ GT by deleting from the
correspondence graph all the elements that were related to the elements deleted by the
modification a. In the second step, we compute the largest consistently integrated model
GS

0 ↔ GT
0 that is included in G′S ↔ GT . Note that we do not build this model from

scratch, but mark the corresponding elements in G′S ↔ GT . Moreover, we delete from
GT all the unmarked elements. Finally, using the TGG, we build the missing part of the
target model that corresponds to G′S \ GS

0 yielding the consistently integrated model
G′S ↔ G′T . Backward propagation works dually.

Remark 3.1 (Correctness of Derived Basic TGG Synchronization Framework). Cor-
rectness of the derived propagation operations fPpg, bPpg is ensured if the given TGG
is equipped with deterministic sets of operational rules [17]. This essentially means that
the forward and backward translation rules ensure functional behaviour for consistent
inputs. For the technical details and automated analysis of this property using the tool
AGG [27] we refer to [17], where we have shown this property for the TGG of our
example and discussed the required conditions of a TGG in more detail. Note that the
concurrent synchronization procedure in Sec. 5 only requires correctness of the given
propagation operations and does not rely on the specific definition in [17].

4 Semi-automated Conflict Detection and Resolution

We now review the main constructions and results for conflict resolution in one domain
according to [11]. Note that we apply conflict resolution either to two conflicting target
model updates (one of them induced by a forward propagation operation fPpg) or to
two conflicting source model updates (one of them induced by backward propagation).
Hence, we here consider updates over standard graphs and not over triple graphs.

Two graph modifications (G ← Di → Hi), (i = 1, 2) are called conflict-free if they do
not interfere with each other, i.e., if one modification does not delete a graph element
the other one needs to perform its changes. Conflict-free graph modifications can be
merged to one graph modification (G ← D → H) that realizes both original graph
modifications simultaneously.

If two graph modifications are not conflict-free, then at least one conflict occurs
which can be of the following kinds: (1) delete-delete conflict: both modifications delete
the same graph element, or (2) delete-insert conflict: m1 deletes a node which shall be
source or target of a new edge inserted by m2 (or vice versa). Of course, several of
such conflicts may occur simultaneously. In [11], we propose a merge construction that
resolves conflicts by giving insertion priority over deletion in case of delete-insert con-
flicts. The result is a merged graph modification where the changes of both original
graph modifications are realized as far as possible2 We call this construction tentative
merge because usually the modeler is asked to finish the conflict resolution manually,
e.g. by opting for deletion instead of insertion of certain conflicting elements. The reso-
lution strategy to prioritize insertion over deletion preserves all model elements that are

2 Note that the conflict-free case is a special case of the tentative merge construction.

Concurrent Model Synchronization with Conflict Resolution 185

parts of conflicts and allows to highlight these elements to the user to support manual
conflict resolution. We summarize the main effects of the conflict resolution strategy by
Thm. 4.1 below (see also Thm. 3 in [11] for the construction).

Fact 4.1 (Conflict Resolution by Tentative Merge Construction). Given two con-

flicting graph modifications mi = G
Di
=⇒ Hi (i = 1, 2) (i.e., they are not conflict-free).

The tentative merge construction yields the merged graph modification m = (G ← D→
H) and resolves conflicts as follows:

1. If (m1,m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G, then x
is deleted by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge e2 created by m2 with x =
s(e2) or x = t(e2) preserved by m2, but deleted by m1. Then x is preserved by m
(and vice versa for (m2,m1) being in delete-insert conflict).

Note that attributed nodes which shall be deleted on the one hand and change their
values on the other hand would cause delete/insert-conflicts and therefore, would not be
deleted by the tentative merge construction. Attributes which are differently changed by
both modifications would lead (tentatively) to attributes with two values which would
cause conflicts to be solved by the modeller, since an attribute is not allowed to have
more than one value at a particular time. Throughout the paper, we

G0
m1 ��

m2 �� �:Res

G1

��
G2

�� H

depict conflict resolution based on the tentative merge construc-
tion and manual modifications as shown to the right, where m1 and
m2 are conflicting graph modifications, and H is their merge after
conflict resolution. The dashed lines correspond to derived graph
modifications (G1 ← D3 → H) and (G2 ← D4 → H) with interfaces D3 and D4.

Example 4.2 (Conflict resolution by tentative merge construction). Consider the con-
flict resolution square 3:Res in the upper right part of Fig. 8. The first modification
dT

1,F deletes the node for Bill Clinton and updates the attribute values for Surname and
Salary of Melinda French. The second modification dT

1 relinks Bill Clinton’s node from
the marketing department to the technical department and updates his Salary attribute.
The result of the tentative merge construction keeps the Bill Clinton node, due to the
policy that nodes that are needed as source or target for newly inserted edges or at-
tributes will be preserved. Technically, the attribute values are not preserved automat-
ically. This means that the tentative merge construction only yields the structure node
of “Bill Clinton” (and the updated attribute), and the modeller should confirm that the
remaining attribute values should be preserved (this is necessary for the attribute values
for FirstName, LastName and Birth of the “Bill Clinton” node).

Variant: As a slight variant to the above example, let us consider the case that modi-
fication dT

1 also modifies Melinda’s surname from “French” to “Smith”. Since the same
attribute is updated differently by both modifications, we now have two tentative at-
tribute values for this attribute (we would indicate this by <Gates|French> as attribute
value for Melinda’s Surname attribute). This can be solved by the modeller, as well,
who should select one attribute value.

186 F. Hermann et al.

5 Concurrent Model Synchronization with Conflict Resolution

The merge construction described in Sec. 4 cannot be applied directly to detect and
solve conflicts in concurrent model synchronization. The problem here is that source
and target updates occur in different graphs and not the same one. To solve this problem
we use forward and backward propagation operations (Sec. 3) allowing us to see the
effects of each source or target update on the other domain, so that we can apply the
merge construction. In addition, we use two further operations CCS and CCT to reduce
a given domain model to a maximal consistent submodel according to the TGG.

GS
1

�:CCS
dS

1,C ��

GS
0

dS
1��

dS
1,C◦dS

1��

GS
1,C

GT
0

�:CCTdT
1,C◦dT

1 ��

dT
1 �� GT

1

dT
1,C��GT

1,C

Fig. 6. Consistency creating operations

Given a source update dS
1 : GS

0 → GS
1 ,

the consistency creating operation CCS
(left part of Fig. 6) computes a maximal
consistent subgraph GS

1,C ∈ VLS of the
given source model GS

1 . The resulting up-
date from GS

0 to GS
1 is derived by update

composition dS
1,C ◦ dS

1 . The dual operation CCT (right part of Fig. 6) works analogously
on the target component.

Remark 5.1 (Execution of Consistency Creating Operation CCS). Given a source
model GS

1 , the consistency creating operation CCS is executed by computing termi-

nated forward sequences (H0 =
tr∗F
==⇒ Hn) with H0 = (GS

1 ← ∅ → ∅). If the sets of
operational rules of the TGG are deterministic (see Thm. 3.1), then backtracking is not
necessary. If GS

1 is already consistent, then GS
1,C = GS

1 , which can be checked via opera-
tion CCS. Otherwise, operation CCS is creating a maximal consistent subgraph GS

1,C of
GS

1 . GS
1,C is maximal in the sense that there is no larger consistent submodel HS of GS

1 ,
i.e. with GS

1,C ⊆ HS ⊆ GS
1 and HS ∈ VLS . From the practical point of view, operation

CCS is performed using forward translation rules [16], which mark in each step the
elements of a given source model that have been translated so far. This construction is

well defined due to the equivalence with the corresponding triple sequence (∅ =
tr∗
=⇒ Hn)

via the triple rules TR of the TGG (see App. B in [10]).

The concurrent model synchronization operation CSynch derived from the given
TGG is executed in five steps. Moreover, it combines operations fSynch and bSynch
depending on the order in which the steps are performed. The used propagation oper-
ations fPpg, bPpg are required to be correct and we can take the derived propagation
operations according to [17]. The steps of operation fSynch are depicted in Fig. 7 and
Thm. 5.2 describes the steps for both operations.

Construction 5.2 (Operation fSynch and CSynch). In the first step (operation CCS),
a maximal consistent subgraph GS

1,C ∈ VLS of GS
1 is computed (see Thm. 5.1). In step 2,

the update dS
1,CC is forward propagated to the target domain via operation fPpg. This

leads to the pair (r1,F , dT
1,F) and thus, to the pair (dT

1,F , d
T
1) of target updates, which may

show conflicts. Step 3 applies the conflict resolution operation Res including optional
manual modifications (see Sec. 4). In order to ensure consistency of the resulting tar-
get model GT

2,FC we apply the consistency creating operation CCT (see Thm. 5.1) for the

Concurrent Model Synchronization with Conflict Resolution 187

Signature
GS

1

dS
2 ��

GS
0

dS
1�� �� r0 ��

⇓:fSynch

GT
0

dT
1 �� GT

1

dT
2��

GS
2
��

r2
�� GT

2

Definition

of

Components

GS
1

�1:CCS

dS
F

��

dS
2,FCB ��

�

�
�
�
� � �

GS
0

dS
1�� ��

r0 ��

dS
1,CC�� �2:fPpg

GT
0

dT
1,F��

dT
1 ��

�3:Res

GT
1

dT
2,FC��

GS
1,C

�� r1,F ��

dS
2,CB �� �5:bPpg

GT
1,F d′T2,FC

��

dT
2,CC��

GT
2,FC

dT
B

��

�4:CCT

GS
2,FCB

��
r2,FCB

�� GT
2,FCB

dS
2,FCB = dS

2,CB ◦ dS
F , d

T
2,FCB = dT

B ◦ dT
2,FC , (r2, dS

2 , d
T
2) = (r2,FCB, dS

2,FCB, d
T
2,FCB)

Fig. 7. Concurrent model synchronization with conflict resolution (forward case: fSynch)

Fig. 8. Concurrent model synchronization with conflict resolution applied to organizational model

target domain and derive target model GT
2,FCB ∈ VLT in step 4. Finally, the derived tar-

get update dT
2,CC is backward propagated to the source domain via operation bPpg lead-

ing to the source model GS
2,FCB and source update dS

2,CB. Altogether, we have constructed
a nondeterministic solution (r2, dS

2 , d
T
2) of operation fSynch for the premise (r0, dS

1 , d
T
1)

with (r2, dS
2 , d

T
2) = (r2,FCB, dS

2,FCB, d
T
2,FCB) (see Fig. 7). The concurrent synchronization

operation bSynch is executed analogously via the dual constructions. Starting with
CCT in step 1, it continues via bPpg in step 2, Res in step 3, CCS in step 4, and finishes
with fPpg in step 5. The non-deterministic operation CSynch = (fSynch ∪ bSynch) is
obtained by joining the two concurrent synchronizations operations fSynch bSynch.

Example 5.3 (Concurrent Model Synchronization with Conflict Resolution). The steps
in Fig. 8 specify the execution of the concurrent synchronization in Thm. 2.1. Since the
given model GS

0 is consistent, step 1 (1:CCS) can be omitted, i.e. GS
1,C = GS

1 and dS
1,CC =

dS
1 . Step 2:fPpg propagates the source update to the target domain: Melinda Gates’

188 F. Hermann et al.

attributes are updated and the node representing Bill Clinton is deleted. The resolu-
tion 3:Res resolves the conflict between the target model update dT

1 and the propagated
source model update on the target side dT

1,F (see Thm. 4.2). We assume that the mod-
eler selected the old attribute value for Bill Clinton’s birthday. Step 4:CCT does not
change anything, since the model is consistent already. Finally, all elements that were
introduced during the conflict resolution and concern the source domain are propagated
to the source model via (5:bPpg). This concerns only the Bill Clinton node, which
now is assigned to the technical department. According to the TGG, such persons are
not reflected in the source model, such that the backward propagation does not change
anything in the source model. The result of the concurrent model synchronization with
conflict resolution is r2,FCB , where as many as possible of both proposed update changes
have been kept and insertion got priority over deletion.

Variant: Let us consider the case that both modifications dT
1 dT

1,F insert additionally
an edge of type married between the nodes of Melinda French and Bill Gates. The
conflict resolution operation 3:Res would yield two married edges between the two
nodes. But the subsequent consistency creating operation 4:CCT would detect that this
is an inconsistent state and would delete one of the two married edges.

Remark 5.4 (Execution and Termination of Concurrent Model Synchronization). Note
that the efficiency of the execution of the concurrent synchronization operations can
be significantly improved by reusing parts of previously computed transformation se-
quences as described in App. B in [10]. In [17], we provided sufficient static conditions
that ensure termination for the propagation operations and they can be applied similarly
for the consistency creating operations. Update cycles cannot occur, because the second
propagation step does not lead to a new conflict.

Note that operation CSynch is nondeterministic for several reasons: the choice between
fSynch and bSynch, the reduction of domain models to maximal consistent sub graphs,
and the semi automated conflict resolution strategy.

Definition 5.5 (Derived Concurrent TGG Synchronization Framework). Let fPpg
and bPpg be correct basic synchronization operations for a triple graph grammar TGG
and let operation CSynch be derived from fPpg and bPpg according to Thm. 5.2.
Then, the derived concurrent TGG synchronization framework is given by CSynch =
(TGG,CSynch).

6 Correctness and Compatibility

Our main results show correctness of the derived concurrent TGG synchronization
framework (Thm. 5.5) and its compatibility with the derived basic TGG synchroniza-
tion framework (Sec. 3). For the proofs and technical details see App. A and B in [10].
Correctness of a concurrent model synchronization framework requires that the non-
deterministic synchronization operation CSynch ensures laws (a) and (b) in Thm. 2.3.
In other words, CSynch guarantees consistency of the resulting integrated model and,
moreover, the synchronization of an unchanged and already consistently integrated
model always yields the identity of the input as output (law (a)).

Concurrent Model Synchronization with Conflict Resolution 189

GS
1 ∈ VLS ,

GS
0
��

r0 ��

dS �� �:fPpg

GT
0

dT��

GS
1
��

r1
�� G1

T
⇒

GS
1

id ��

GS
0

dS
�� ��

r0 ��

:CSynch��
GT

0
id �� GT

0

dT��

GS
1
��

r1
�� GT

1

Fig. 9. Compatibility with synchronization of single updates (forward case)

According to Thm. 6.2 below, correctness of given forward and backward propa-
gation operations ensures correctness of the concurrent model synchronization frame-
work.

Example 6.1 (Correctness and Compatibility). In [17], we presented a suitable realiza-
tion of a correct propagation operations derived from the given TGG (see Thm. 3.1).
This allows us to apply the following main results Thm. 6.2 and 6.4 to our case study
used as running example in Sec. 2-6.

Theorem 6.2 (Correctness of Concurrent Model Synchronization). Let fPpg and
bPpg be correct basic synchronization operations for a triple graph grammar
TGG. Then, the derived concurrent TGG synchronization framework CSynch =

(TGG,CSynch) (see Thm. 5.5) is correct (see Thm. 2.3).

The second main result (Thm. 6.4 below) shows that the concurrent TGG synchroniza-
tion framework is compatible with the basic synchronization framework. This means
that the propagation operations (fPpg, bPpg) (see Sec. 3) provide the same result as
the concurrent synchronization operation CSynch, if one update of one domain is the
identity. Fig. 9 visualizes the case for the forward propagation operation fPpg. Given
a forward propagation (depicted left) with solution (r1, dT), then a specific solution
of the corresponding concurrent synchronization problem (depicted right) is given by
sol = (r1, id, dT), i.e. the resulting integrated model and the resulting updates are the
same. Due to the symmetric definition of TGGs, we can show the same result concern-
ing the backward propagation operation leading to the general result of compatibility in
Thm. 6.4.

Definition 6.3 (Compatibility of Concurrent with Basic Model Synchronization).
Let fPpg, bPpg be basic TGG synchronization operations and let CSynch be a concur-
rent TGG synchronization operation for a given TGG. The non-deterministic synchro-
nization operation CSynch is compatible with the propagation operations fPpg and
bPpg, if the following condition holds for the forward case (see Fig. 9) and a similar
one for the backward case:

∀ (dS , r0) ∈ ΔS ⊗ Rel, with (dS : GS
0 → GS

1) ∧ (GS
1 ∈ VLS) :

(id, fPpg(dS , r0)) ∈ CSynch(dS , r0, id)

Theorem 6.4 (Compatibility of Concurrent with Basic Model Synchronization).
Let fPpg and bPpg be correct basic synchronization operations for a given TGG and
let operation CSynch be derived from fPpg and bPpg according to Thm. 5.2. Then, the
derived concurrent TGG synchronization operation CSynch is compatible with propa-
gation operations fPpg, bPpg.

190 F. Hermann et al.

7 Related Work

Triple graph grammars have been successfully applied in several case studies for bidi-
rectional model transformation, model integration and synchronization [20,25,14] and
for the implementation of QVT [15]. Several formal results are available concerning
correctness, completeness, termination, functional behavior [16,13] and optimization
wrt. the efficiency of their execution [16,21]. The presented approach to concurrent
model synchronization is based on these results and concerns model synchronization of
concurrent updates including the resolution of possible merging conflicts.

Egyed et. al [7] discuss challenges and opportunities for change propagation in multi-
ple view systems based on model transformations concerning consistency (correctness
and completeness), partiality, and the need for bidirectional change propagation and
user interaction. Our presented approach based on TGGs reflects these issues. In partic-
ular, TGGs automatically ensure consistency for those consistency constraints that can
be specified with a triple rule. This means that the effort for consistency checking with
respect to domain language constraints is substantially reduced.

Stevens developed an abstract state-based view on symmetric model synchroniza-
tion based on the concept of constraint maintainers [26], and Diskin described a more
general delta-based view within the tile algebra framework [4,6]. These tile operations
inspired the constructions for the basic synchronization operations [17], which are used
for the constructions in the present paper. Concurrent updates are a central challenge in
multi domain modeling as discussed in [28], where the general idea of combining prop-
agation operations with conflict resolution is used as well. However, the paper does not
focus on concrete propagation and resolution operations and requires that model up-
dates are computed as model differences. The latter can lead to unintended results by
hiding the insertion of new model elements that are similar to deleted ones.

Merging of model modifications usually means that non-conflicting parts are merged
automatically, while conflicts have to be resolved manually. A survey on model version-
ing approaches and on (semi-automatic) conflict resolution strategies is given in [1]. A
category-theoretical approach formalizing model versioning is given in [23]. Similar to
our approach, modifications are considered as spans of morphisms to describe a partial
mapping of models, and merging of model changes is based on pushout constructions.
In contrast to [23], we consider an automatic conflict resolution strategy according to
[11] that is formally defined.

8 Conclusion and Future Work

This paper combines two main concepts and results recently studied in the literature.
On the one hand, basic model synchronization based on triple graph grammars (TGGs)
has been studied in [17], where source model modifications can be updated to target
model modifications and vice versa. On the other hand, a formal resolution strategy for
conflicting model modifications has been presented in [11]. The main new contribution
of this paper is the formal concept of concurrent model synchronization together with
a correct procedure to implement it, where source and target modifications have to be

Concurrent Model Synchronization with Conflict Resolution 191

synchronized simultaneously, which includes conflict resolution of different source or
target modifications. The main results concerning correctness and compatibility of basic
and concurrent model synchronization are based on the formalization of bidirectional
model transformations in the framework of TGGs [24,9,16] and the results in [17,11].

In future work, we plan to develop extended characterizations of the correctness and
maximality criteria of a concurrent synchronization procedure. In this paper, correct-
ness is defined explicitly in terms of the two laws formulated in Sec. 3 and, implicitly,
in terms of the properties of compatibility with basic model synchronization proven in
Thm. 6.4. We think that this can be strengthened by relating correctness of a synchro-
nization procedure with the total or partial realization of the given source and target
updates, for a suitable notion of realization. At a different level, we also believe that
studying in detail, both from theoretical and practical viewpoints, the combination of
fSynch and bSynch operations, discussed in Sec. 5, should also be a relevant matter.
Finally, we also consider the possibility of taking a quite different approach for defining
concurrent synchronization. In the current paper, our solution is based on implement-
ing synchronization in terms of conflict resolution and the operations of forward and
backward propagation. A completely different approach would be to obtain synchro-
nization by the application of transformation rules, derived from the given TGG, that
simultaneously implement changes associated to the source and target modifications.
In particular, it would be interesting to know if the two approaches would be equally
powerful, and which of them could give rise to a better implementation, on which we
are working on the basis of the EMF transformation tool Henshin [2].

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches.
IJWIS 5(3), 271–304 (2009)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)

3. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching lenses: align-
ment and view update. In: Proc. Int. Conf. on Functional Programming (ICFP 2010),
pp. 193–204. ACM (2010)

4. Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 92–165.
Springer, Heidelberg (2011)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model transfor-
mations: the asymmetric case. Journal of Object Technology 10, 6:1–6:25 (2011)

6. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From State- to Delta-
Based Bidirectional Model Transformations: The Symmetric Case. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–318. Springer, Heidelberg (2011)

7. Egyed, A., Demuth, A., Ghabi, A., Lopez-Herrejon, R., Mäder, P., Nöhrer, A., Reder, A.:
Fine-Tuning Model Transformation: Change Propagation in Context of Consistency, Com-
pleteness, and Human Guidance. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707,
pp. 1–14. Springer, Heidelberg (2011)

192 F. Hermann et al.

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theor. Comp. Science. Springer, Heidelberg (2006)

9. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidi-
rectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

10. Ehrig, H., Ermel, C., Hermann, F., Orejas, F.: Concurrent model synchronization with conflict
resolution based on triple graph grammars - extended version. Tech. Rep. TR 2011-14, TU
Berlin, Fak. IV (2011)

11. Ehrig, H., Ermel, C., Taentzer, G.: A Formal Resolution Strategy for Operation-Based Con-
flicts in Model Versioning Using Graph Modifications. In: Giannakopoulou, D., Orejas, F.
(eds.) FASE 2011. LNCS, vol. 6603, pp. 202–216. Springer, Heidelberg (2011)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29(3) (2007)

13. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal Seman-
tics and Implementation of Triple Graph Grammars. Tech. Rep. 37, Hasso Plattner Institute
at the University of Potsdam (2010)

14. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and Systems Modeling 8, 21–43 (2009)

15. Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: imple-
menting query/view/transformation with triple graph grammars. Software and Systems Mod-
eling (SoSyM) 9(1), 21–46 (2010)

16. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and
Complete Model Transformations Based on Triple Graph Grammars. In: Proc. Int. Workshop
on Model Driven Interoperability (MDI 2010), pp. 22–31. ACM (2010)

17. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model
Synchronization Based on Triple Graph Grammars. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)

18. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Proc. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2011), pp. 371–384.
ACM (2011)

19. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured documents
based on bidirectional transformations. Higher-Order and Symbolic Computation 21(1-2),
89–118 (2008)

20. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. Tech. Rep. TR-ri-07-284, Dept. of Comp. Science, Univ. Paderborn,
Germany (2007)

21. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient
and Compatible Graph Translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A.,
Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg
(2010)

22. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Version 1.0 formal/08-04-03, http://www.omg.org/spec/QVT/1.0/

23. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Category-Theoretical Approach to the For-
malisation of Version Control in MDE. In: Chechik, M., Wirsing, M. (eds.) FASE 2009.
LNCS, vol. 5503, pp. 64–78. Springer, Heidelberg (2009)

24. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg
(1995)

http://www.omg.org/spec/QVT/1.0/

Concurrent Model Synchronization with Conflict Resolution 193

25. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars Research Challenges, New Contri-
butions, Open Problems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

26. Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open questions.
Software and System Modeling 9(1), 7–20 (2010)

27. TFS-Group, TU Berlin: AGG (2011), http://tfs.cs.tu-berlin.de/agg
28. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates based

on bidirectional transformation. Software and Systems Modeling, 1–16 (2011)

http://tfs.cs.tu-berlin.de/agg

Recursive Checkonly QVT-R Transformations

with General when and where Clauses via
the Modal Mu Calculus

Julian Bradfield and Perdita Stevens

School of Informatics
University of Edinburgh

Abstract. In earlier work we gave a game-based semantics for check-
only QVT-R transformations. We restricted when and where clauses to
be conjunctions of relation invocations only, and like the OMG standard,
we did not consider cases in which a relation might (directly or indi-
rectly) invoke itself recursively. In this paper we show how to interpret
checkonly QVT-R – or any future model transformation language struc-
tured similarly – in the modal mu calculus and use its well-understood
model-checking game to lift these restrictions. The interpretation via
fixpoints gives a principled argument for assigning semantics to recur-
sive transformations. We demonstrate that a particular class of recursive
transformations must be ruled out due to monotonicity considerations.
We demonstrate and justify a corresponding extension to the rules of the
QVT-R game.

1 Introduction

QVT-R is the OMG standard bidirectional model transformation language[6].
It is bidirectional in the sense that, rather than simply permitting one model
to be built from others, it permits changes to be propagated in any direction,
something which seems to be essential in much real-world model-driven devel-
opment. The same transformation can be read as specifying the circumstances
under which no changes are required (checkonly mode) or as specifying exactly
how one model should be modified so as to restore consistency that has been lost
(enforce mode). This paper concerns checkonly mode, a thorough understanding
of which is prerequisite to understanding enforce mode, because of the require-
ment (hippocraticness) that running a transformation in enforce mode should
not modify models which are already consistent.

QVT-R has several interesting features. In particular, the fundamental way
in which a QVT-R transformation is structured, using a collection of so-called
relations connected by when and where clauses is attractive as it appears to
enable the transformation to be understood by the developer in a modular way.
This transformation structuring mechanism might reasonably be applied in fu-
ture bidirectional model transformation languages, so it is of interest even if
QVT-R itself is not ultimately successful.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 194–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Recursive Checkonly QVT-R Transformations 195

In earlier work [7] the second author provided a game-theoretical semantics
for its use in “checkonly” mode, that is, as a logic for defining predicates on
pairs of models. Given a QVT-R checkonly problem instance (a transformation,
together with a tuple of models to check in a given direction), we defined a formal
game between two players, Verifier and Refuter, such that Verifier had a winning
strategy for the game if and only if the transformation should return true on the
given tuple of models in the stated direction. We justified the correctness of the
semantics defined in this way, by referring both to [6] and to the behaviour of
the most faithful QVT-R tool, ModelMorf. In that work, we did not define which
player would win an infinite play of the game. Instead, we placed a restriction on
the permitted transformations such that all plays of the games in our semantics
would be finite; we justified this by pointing out that the OMG semantics [6]
implied nothing about what the semantics in the infinite play cases should be, but
we remarked that it should be possible to do better “by intriguing analogy with
the modal mu calculus”. Intuitively the analogy is that the interplay of when and
where clauses mixes induction with coinduction; the essential character of the
mu calculus is that it does the same. In this paper, we make the analogy concrete;
this allows us to give semantics to many recursive QVT-R transformations, and
allows us to explain why considerations of monotonicity force other recursive
transformations to remain forbidden. We also use mu calculus theory to prove
that extra levels of nesting of when and where clauses provide genuine extra
expressivity.

When defining the semantics of QVT-R via a translation to the mu calculus,
it is natural also to permit more general when and where clauses than previous
work has done. The translation is an aid to clear thought, only: having made
it, we extend our earlier QVT-R game so that all the transformations we can
translate can also be given semantics directly by this easy-to-understand game.

Both recursion and complex clauses are useful in practice, especially where
metamodels contain loops of associations; indeed, both are used in the example
in [6], even though it does not give semantics of recursion.

Related work Our earlier paper [7] discusses the field of previous work on se-
mantics for checkonly QVT-R in full. As discussed there, very few authors have
interested themselves in QVT-R as a bidirectional language. The majority ap-
proach is to study QVT-R transformations in enforce mode only, and furthermore
with the restriction that the transformation function does not take a version of
the target model, only source models. The target model produced depends only
on the source model and the transformation. Recursive relations typically give
rise to recursion (possibly with non-termination) in the target formalism, but
this does not contribute to understanding recursion in checkonly QVT-R.

More relevantly, in [3] the authors aim to generate invariants in OCL, not in
order to give a formal semantics for QVT-R but to support auxiliary
analysis to increase confidence in a transformation’s correctness. The paper
includes an example of a complex recursive QVT-R relation (in Fig 6(a), re-
lation ChClass-Table is given a where clause Attribute-Column(c1,t) and

ChClass-Table(c1,t)). Unfortunately, as discussed in [7], key details of the

196 J. Bradfield and P. Stevens

invariant generation are elided. Looking at the example, it appears that a re-
cursive QVT-R relation will lead to a recursive OCL constraint. The problem
is thereby moved into the OCL domain, where it is still problematic: [4] in fact
forbids infinite recursion. [3] does not discuss this issue, and in particular, does
not specify which QVT-R transformations can be translated without producing
OCL whose meaning on the relevant models is undefined.

None of the existing QVT-R tools have documented behaviour on recursive
checkonly QVT-R.

2 Background

2.1 QVT-R

A transformation T is defined over a finite set of (usually two)metamodels (types
for the input models) and, when executed in checkonly mode, can be thought of
as a function from tuples of models, each conforming to the appropriate meta-
model, to booleans. In any execution there is a direction, that is, a distinguished
model which is being checked. The argument models are also known as domains
and we will be discussing transformation execution in the direction of the kth
domain. That is, the kth argument model is being checked for consistency with
the others. See [7] for further discussion; here we assume some familiarity with
QVT-R.

Let us discuss preliminary matters of variables, values, typing, bindings and
expressions. In QVT-R these matters are prescribed, building on the MOF meta-
modelling discipline and OCL. The available types are the metaclasses from any
of the metamodels, together with a set of base types (defined in OCL) such as
booleans, strings and integers, and collections. Values are instances of these. The
expression language is an extension of OCL over the metamodels. QVT-R is a
typed language, with some type inference expected.

Our work will focus on the structural aspects of the transformation and will
turn out to be independent of QVT-R’s particular choices in these matters. We
assume given sets Var of typed variables, Val of values and Expr of typed ex-
pressions over variables. We write fv(e) for the set of free variables in e ∈ Expr.
Constraint is the subset of Expr consisting of expressions of type Boolean. A
(partial) set of bindings B for a set V ⊆ Var of variables will be a (partial)
function B : V ⇀ Val satisfying the typing discipline. We write B′ ' B when
dom(B′) ⊇ dom(B) and B′ and B agree on dom(B). We assume given an eval-
uation partial function eval : Expr×Binding ⇀ Val defined on any (e, b) where
fv(e) ⊆ dom(b). Like [6] we will assume all transformations we consider are
statically well-typed.

A transformation T is structured as a finite set of relations R1 . . . Rn, one or
more of which are designated as top relations. We will use the term relation since
it is that used in QVT-R, but readers should note that a QVT-R relation is not
(just) a mathematical relation. Instead, a relation consists of: a unique name;
for each domain a typed domain variable and a pattern; and optional when and
where clauses (to be discussed shortly). We write rel(T) for the set of names of

Recursive Checkonly QVT-R Transformations 197

relations in T and top(T) ⊆ rel(T) for the names of relations designated top.
A pattern is a set of typed variables together with a constraint (“domain-local
constraint”) over these variables and the domain variable. A variable may occur
in more than one pattern, provided that its type is the same in all.

The set of all variables used (in QVT-R declarations can be implicit) in a
relation R will be denoted vars(R). The subset of vars(R) mentioned in the when
clause of R is denoted whenvars(R). The subset mentioned in the domains other
than the kth domain is denoted nonkvars(R). The set containing the domain
variables is denoted domainvars(R). These subsets of vars(R) may overlap.

For purposes of this paper a when or where clause may contain a boolean
combination of relation invocations and boolean constraints (from Constraint).
Each relation invocation consists of the name of a relation together with an
ordered list of argument expressions. Evaluating these expressions yields values
for the domain variables of the invoked relation. The BNF (non-minimal, as it
will be convenient to have all of and, or and not) for where clauses is:

where(R) := S(e1, . . . en) where S ∈ rel(T), ei ∈ Expr and fv(ei) ⊆ vars(R)

| where(R) and where(R) | where(R) or where(R)

| not where(R) | (where(R))

| φ such that φ ∈ Constraint and fv(φ) ⊆ vars(R)

and the BNF for when is the same, substituting when for where, and whenvars
for vars. The use of whenvars in the definition of when(R) does not constrain
what can be written; v ∈ vars(R) is in whenvars(R) precisely if it is used in
the when clause. QVT-R itself uses semi-colon (in some contexts, and comma in
others) for “and”, but this seems unnecessarily confusing when we also want to
allow other boolean connectives.

Figure 1 reproduces the moves from the game theoretic semantics of QVT-R
checkonly. We refer the reader to [7] for full discussion and examples. The game
Gk is played in the direction of domain k; that is, model k is being checked with
respect to the other model(s).

Apart from the distinguished Initial position, positions in the game are all
of the form (P,R,B, i) where: P is a player (Verifier or Refuter), indicating
which player is to move from the position; R is the name of a relation from the
transformation, the one in which play is currently taking place; B is a set of
bindings whose domain will be specified; and i is either 1 or 2, tracking whether
only one or both players have moved in the current relation. Play proceeds by
the player whose turn it is to move choosing a legal move. If no legal move is
available to this player, play ends and the other player wins (“you win if your
opponent can’t go”). The transformation returns true if Verifier has a winning
strategy, that is, she can win however Refuter plays.

Informally, each play begins by Refuter picking a top relation to challenge
and bindings for variables from the domains other than the kth and for any
variables that occur in the when clause (Row 1). Verifier may respond by finding
matching bindings from model k (Row 2) or she may counter-challenge a when
invocation (Row 3), effectively claiming that Refuter’s request for her to find

198 J. Bradfield and P. Stevens

matching bindings is unreasonable because this top relation is not required to
hold at his chosen bindings. If she opts to provide matching bindings, Refuter will
attempt to challenge a where invocation (Row 4). Thus play proceeds through
the transformation until one player cannot move; e.g., if Verifier successfully
provides matching bindings and there is no where clause, it is Refuter’s turn but
he has no legal move, so Verifier wins the play.

Position Next position Notes

Initial (Verif., R,B, 1) R ∈ top(T) ; dom(B) = nonkvars(R) ∪ whenvars(R). B is
required to satisfy domain-local constraints on all domains
other than k.

(P,R,B, 1) (P,R,B′, 2) B′ � B and dom(B′) = vars(R). B′ is required to satisfy
domain-local constraints on all domains.

(P,R,B, 1) (P, S,C, 1) S(e1 . . . en) is any relation invocation from the when clause
of R; ∀vi ∈ domainvars(S).C : vi �→ eval(ei, B); dom(C) =
domainvars(S)∪nonkvars(S)∪whenvars(S). C is required
to satisfy domain-local constraints on all domains other
than k.

(P,R,B, 2) (P, S,D, 1) S(e1 . . . en) is any relation invocation from the where
clause of R; ∀vi ∈ domainvars(S).D : vi �→ eval(ei, B);
dom(D) = domainvars(S) ∪ nonkvars(S) ∪ whenvars(S).
D is required to satisfy domain-local constraints on all
domains other than k.

Fig. 1. Summary of the legal positions and moves of the game Gk over T : note that
the first element of the Position says who picks the next move, and that we write P
for the player other than P , i.e. Refuter = Verifier and vice versa. Recall that bindings
are always required to be well-typed.

2.2 Modal Mu Calculus

The modal mu calculus [5] is a long-established and well-understood logic for
specifying properties of systems, expressed as labelled transition systems. Besides
the usual boolean connectives, it provides

– modal operators: [a]φ is true of a state s if whenever s
a−→ t, φ is true of

state t, while 〈a〉φ is true of a state s if there exists s
a−→ t such that φ is

true of state t
– greatest and least fixpoints νZ.φ(Z) and μZ.φ(Z), which are formally co-

inductive and inductive definitions, but which are best understood as al-
lowing the specification of looping behaviour – infinite loops for greatest
fixpoints, and finite (but unbounded) loops for least fixpoints. The combi-
nation of both fixpoints with the modal operators allows the expression of
complex behaviours such as fairness.

Recursive Checkonly QVT-R Transformations 199

Its semantics is most easily explained as a game between two players, Verifier
and Refuter. A position, in the game to establish whether (i, A, S,−→) satisfies
φ, is (ψ, s) where ψ is a subformula of φ and s ∈ S. The initial position is (φ, i).
The top connective of ψ determines which player moves; Verifier moves if it is ∨
(she chooses a disjunct), 〈a〉 (she chooses an a-transition) or a maximal fixpoint
or its variable (she unwinds the definition). Dually, Refuter moves otherwise. A
player wins if it is their opponent’s turn and the opponent has no legal move, e.g.
Refuter wins if the position is (〈a〉ψ, s) and there is no a-transition out of state
s. In an infinite play, the winner is the owner of the outermost variable unwound
infinitely often (i.e. Verifier if that is a maximal fixpoint variable, otherwise
Refuter).

One may think of the difference between ν and μ in terms of defaulting to true
or false. In a (formal) sense, a μ formula is one where every positive claim has
to be demonstrated; whereas a ν formula holds unless there is a demonstrated
reason why not. See [1] for further explanation and background.

3 Connecting QVT-R and Modal Mu Calculus

We will translate a QVT-R checkonly transformation instance into a modal mu
calculus model-checking instance. That is, given a QVT-R transformation T , a
tuple of models (m1, . . .mn) and a direction k, we shall build a mu calculus for-
mula tr(T) and an LTS lts(T,m1, . . .mn, k) such that (m1, . . .mn) is consistent
in the direction of the kth domain according to T iff lts(T,m1, . . .mn, k) satisfies
tr(T). Note that the LTS depends on the transformation as well as the models;
this is because we choose to encode as much as possible in the LTS, leaving only
the essential recursive structure to be encoded in the mu calculus formula. In
particular, the LTS will capture the features of the model tuple that matter,
ignoring the features that are irrelevant to this particular transformation.

Having defined our translation, we prove that this result holds for the re-
stricted class of transformations covered by the QVT-R game. This validates
the translation on the set of problem instances where a formal semantics already
existed, which makes it prima facie reasonable to use the translation as the se-
mantics of QVT-R on the full domain where it makes sense (which, as we shall
see, includes many but not all transformations with recursive when and where
clauses). We then propose an extension to the QVT-R game, such that the game
semantics and the mu calculus translation semantics coincide everywhere. We
then discuss the implications of doing so; what semantics does it assign to trans-
formations with complex when and where clauses and/or recursive when/where
structure? We will point out one decision point where two choices are possible,
giving different semantics to the transformation language.

3.1 The Transition System

Apart from a distinguished initial node, nodes of the LTS we construct each
consist of a pair (R,B) where R ∈ rel(T) and B : vars(R) ⇀ Val is a set of

200 J. Bradfield and P. Stevens

(well-typed, as always) bindings. In order to be able to handle cases where the
same relation may be invoked more than once in the when or where clause of
another relation, we begin by labelling each relation invocation in the static
transformation text with a natural number, so that an invocation R(e1, . . . , en)
is replaced by Ri(e1, . . . , en) for an i unique within the transformation; invoking
the relation at invocation i will be modelled by a transition labelled invokei.
Figure 2 defines the LTS formally. Note that the direction parameter k affects
the meaning of nonkvars.

3.2 The Mu Calculus Formula

Mu calculus model checking is generally done on a version of the syntax that does
not include negation. The reason is that, if negation is permitted in the language,
the negation can be pushed inwards until it meets the fixpoint variables using the
duality rules such as ¬ [a]φ ≡ 〈a〉¬φ. A formula in the mu calculus with negation
is only semantically meaningful if doing this process results in all negations
vanishing (using the rule ¬¬X ≡ X); otherwise, the fixpoints are undefined.
(Technically, it is possible for a particular formula with non-vanishing negations
to be semantically meaningful, but this cannot in general be determined from
the syntax.)

As mentioned in Section 2.2, the semantics of a standard mu calculus formula
can be defined using a two-player model-checking game. If negation is left in
the language, it corresponds to the players swapping roles, just as happens in
the QVT-R game on a when invocation. Rather than define a version of the
mu calculus game involving such player swapping, we will translate a QVT-R
transformation into a mu calculus formula without negation. Our translation
function will carry a boolean argument to indicate whether roles have been
swapped an odd (false) or even (true) number of times.

The mu calculus formula does not represent the domain variables, the patterns
or the arguments to the relation invocations, so we ignore these in our translation
process: all that information is represented in the transition system, already
described, and the invokei transitions and modalities will connect the LTS and
formula appropriately. Figure 2 defines the translation process formally.

Note that tr2 is used to translate when and where clauses, building an envi-
ronment that maps relations to mu variables in the process. Relation invocations
are translated using the environment if the relation has been seen before, and
otherwise, using a new fixpoint.

It is easy to check that for any environment E and relation R

Lemma 1.
tr2E(R, false) = ¬tr2E(R, true)

�

3.3 Correctness of the Translation w.r.t. the Original QVT-R Game

Let Mk(T,m1, . . . ,mn) be the model-checking game played on tr(T) and
lts(T,m1, . . . ,mn, k). We need to establish that, if we start with a QVT-R

Recursive Checkonly QVT-R Transformations 201

Input: Transformation T defined over metamodels Mi, models mi : Mi, direction k.
Output: Labelled transition system lts(T,mi, k) = (Initial, A, S,−→)
Nodes:
S = {Initial} ∪ {(R,B) : R ∈ rel(T),B : vars(R) ⇀ Val}
Labels:
A = {challenge, response, ext1, ext2} ∪ {invokei : i ∈ N}
Transitions:
Initial

challenge−→ (R,B) if R ∈ top(T) and dom(B) = whenvars(R) ∪
nonkvars(R)

(R,B)
response−→ (R,B′) if dom(B) = whenvars(R)∪nonkvars(R) andB′ � B

and dom(B′) = vars(R)

(R,B)
ext1−→ (R,B′) if dom(B) = domainvars(R) and B′ � B

and dom(B′) = domainvars(R) ∪ whenvars(R) ∪
nonkvars(R)

(R,B)
ext2−→ (R,B′) if dom(B) = domainvars(R) ∪ whenvars(R) ∪

nonkvars(R) and B′ � B and dom(B′) = vars(R)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

where clause of R with arguments ei, dom(B) =
vars(R) and dom(B′) = domainvars(S) with ∀i ∈
domainvars(S).B′ : vi �→ eval(ei, B)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

when clause of R, with arguments ei, dom(B) ⊇
whenvars(R) and dom(B′) = domainvars(S) with
∀i ∈ domainvars(S).B′ : vi �→ eval(ei, B)

LTS definition

Input: Transformation T . Output: tr(T) given by:
tr(T) =

∧
Ri∈top(T) tr1(Ri)

tr1(Ri) = [challenge] (〈response〉(tr2∅(where(Ri), true)∨
tr2∅(when(Ri), false))

tr2E(φ, true) = φ
tr2E(φ, false) = ¬φ
tr2E(e and e′, true) = tr2E(e, true) ∧ tr2E(e

′, true)
tr2E(e and e′, false) = tr2E(e, false) ∨ tr2E(e

′, false)
tr2E(e or e′, true) = tr2E(e, true) ∨ tr2E(e

′, true)
tr2E(e or e′, false) = tr2E(e, false) ∧ tr2E(e

′, false)
tr2E(not e, b) = tr2E(e,¬b)
tr2E(R

i(e1 . . . en), true) = 〈invokei〉E[R] if R ∈ domE
tr2E(R

i(e1 . . . en), true) = 〈invokei〉νX. ([ext1]
(〈ext2〉tr2E[R �→X](where(R), true)∨
tr2E[R �→X](when(R), false))

otherwise

tr2E(R
i(e1 . . . en), false) = [invokei] (¬E[R]) if R ∈ domE

tr2E(R
i(e1 . . . en), false) = [invokei]μX. (〈ext1〉

([ext2] tr2E[R �→¬X](where(R), false)∧
tr2E[R �→¬X](when(R), true))

otherwise

Mu calculus formula definition

Fig. 2. Definition of the translation

202 J. Bradfield and P. Stevens

transformation that conforms to the constraints accepted in [7], we have indeed
achieved our aim of giving equivalent semantics. Therefore let T be a transfor-
mation in which the when–where graph is acyclic; no relation ever invokes itself,
either directly or transitively. Suppose also that all when and where clauses in
T consist of conjunctions of relation invocations only. We will call such a trans-
formation basic.

Notice that in this restricted case no fixpoint variable actually occurs inside
the body of the corresponding μ or ν, so that (a) there is no need for the trans-
lation to retain the environment (as it will never be used) and (b) all fixpoints
in the translation can be discarded. That is, we may replace νX. φ and μX. φ by
φ (which we can be sure does not contain X free) without changing the mean-
ing of the formula. Thus the translation tr yields a mu calculus formula which
is equivalent to a Hennessy–Milner Logic (HML) formula in which boxes and
diamonds correspond directly to challenges and responses. As required, all plays
are finite, and the only winning condition is “you win if it is your opponent’s
turn but they have no legal move”.

Theorem 1. If T is basic, then Verifier has a winning strategy for the model-
checking game Mk iff she has one on the QVT-R game Gk.

Proof. (Sketch) The game graphs are essentially isomorphic: every position where
a player of Gk has a choice corresponds to a position where the same player of
Mk has a choice, these are the only choices in Mk, and the available choices cor-
respond in turn. We only have to say “essentially” because several consecutive
positions in a play of Mk (beginning with one whose formula has an “invoke”
modality as the top connective) can correspond to just one position in Gk. Every
position in such a sequence, except the last, has exactly one legal move from it,
however, so this is unimportant. Since there are no infinite plays, every play ter-
minates when the player whose turn it is to move has no available legal moves;
the same player will win a play in Gk and the corresponding play in Mk. �

3.4 Top Relation Challenges

The translation we have given is faithful to [6,7] but readers may be wonder-
ing why we treated top relations so specially. Why is the initial challenge to a
top relation so different from the invocation of a relation in a when or where
clause, and why do we need two different pairs of labels in our transition system,
challenge and response, and ext1 and ext2? The reason is that [6] is unequiv-
ocal that in the initial challenge to a top relation, the non-k domain variables
(domainvars(R) ∩ nonkvars(R)) are bound (chosen) at the same semantic point
as the other variables in whenvars(R)∪nonkvars(R). By contrast when a relation
is invoked from a when or where clause, the values of all the domain variables of
the invoked relation are fixed (by the choices made for variables of the invoking
relation) before values are chosen for any other non-k variables of the invoked
relation. That is, in the initial challenge to a top relation, there never is a point
at which the domain variables, but no others, have been bound (unless there are
no others).

Recursive Checkonly QVT-R Transformations 203

An alternative semantics, and one which might be considered preferable for a
future language structured like QVT-R, would have Refuter challenge by picking
a top relation and bindings for domainvars(R) ∩ nonkvars(R) only, and would
then have Verifier respond by picking a binding for the kth domain variable.
Then play would proceed just as though from a relation invocation with those
bindings for the domain variables.

Our intuition that this might be preferable is based on the observation that
a consistent pair of models would have a simpler notion of matching than in
standard QVT-R. In this variant, if Verifier has a winning strategy, then given
bindings for the non-k domain variables of a top relation (that is, an initial
challenge by Refuter) there must be a binding for the kth domain variable (that
is, a Verifier response) that matches; Verifier’s choice at this initial stage must
not depend on Refuter’s choices of other bindings in the relation, so the matching
is simpler and, perhaps, easier for a human developer to comprehend.

That this would, indeed, give different semantics for the same QVT-R trans-
formation is demonstrated by the following relation:

top relation R

domain m1 v1:V1 {}

domain m2 v2:V2 {}

when { S(v1,v2) }

}

Suppose we use a transformation with this as its only top relation, on model
m1 in which there is some model element of type V1, and model m2 in which
there is no model element of type V2, in checkonly mode in direction m2. In
the QVT-R semantics, this will return true. The reason is that Refuter will
be unable to pick valid bindings for nonkvars(R) ∪ whenvars(R) since there is
no valid binding for v2 ∈ whenvars(R) (the top level “for all valid bindings...”
statement will be vacuously true). In the alternative semantics, it would return
false, since Refuter would initially challenge with any valid binding for v1 and
Verifier would be unable to match. It would be easy to modify everything in
this paper to support this alternative semantics, if desired; in fact this would
simplify the translation.

4 Extending the QVT-R Game

Since not everyone will enjoy using a formal semantics of QVT-R in terms of mu
calculus, we next extend the rules of the QVT-R game to match the translation.
The extension to permit recursive transformations modifies only the winning
conditions. To permit complex when and where clauses we need some new posi-
tions and moves.

4.1 Complex when and where Clauses

Lines 3 and 4 in Figure 1, showing the moves that involve challenging a when
or where clause, are removed and replaced by the moves shown in Figure 3.

204 J. Bradfield and P. Stevens

Source position Mover Target position Notes

(P,R,B, 1) P P to show
when(R) under
B

This simply indicates that player
P is challenging the when clause
of relation R, which is when(R),
in the presence of bindings B.

(P,R,B, 2) P P to show
where(R) under
B

This simply indicates that player
P is challenging the where clause
of relation R, which is where(R),
in the presence of bindings B.

P to show Ψ1 and Ψ2

under B
P P to show Ψi

under B
i = 1, 2 : the other player chooses
which conjunct P should show

P to show
Ψ1 or Ψ2 under B

P P to show Ψi

under B
i = 1, 2 : this player chooses which
disjunct to show

P to show
not Ψ under B

− P to show Ψ
under B

there is exactly one legal move, so
it does not matter which player
chooses

P to show S(e1 . . . en)
under B

P (P, S,C, 1) ∀vi ∈ domainvars(S).C :
vi �→ eval(ei, B); dom(C) =
domainvars(S) ∪ nonkvars(S) ∪
whenvars(S). C is required to
satisfy domain-local constraints
on all domains other than k.

P to show φ under B − − P wins the play immediately if
eval(φ,B) = true and loses the
play immediately otherwise.

Fig. 3. Extensions to the moves of Gk to permit complex when and where clauses

After a player (as before) chooses to challenge a clause, we enter a sub-play,
with a different form of position, to determine which relation, if any, we move to
and which way round the players will be then. The positions within the subplay
are of the form “P to show Ψ under B” where Ψ is a subformula of the when
or where clause (recall the BNF given earlier) and B (which remains unaltered
within the subplay, but is needed at the end of the subplay) is the set of bindings
in force at the point where the clause was challenged. Within the subplay, as is
usual in logic games, one player chooses between conjuncts, the other between
disjuncts, while negation corresponds to the players swapping roles. Notice that
in the simple case where when and where clauses were simply conjunctions of
relation invocations, all we have done is to split up what would have been a
single move according to Line 3 or 4 of Figure 1 into a sequence of moves – all
by the same player who would have chosen that single move – leading eventually
to the same position that was the target in the original game.

Recursive Checkonly QVT-R Transformations 205

4.2 Recursive Transformations

Our translation can be applied to QVT-R transformations in which a relation
does, directly or indirectly, invoke itself recursively. However, because the trans-
lation introduces negations, in certain cases it will result in an ill-formed mu
calculus formula, as remarked earlier. We need a criterion that can be applied
directly to the original QVT-R transformation which will ensure that the target
mu calculus formula is well-formed. Fortunately this is easy.

Definition 1. A recursion path in a QVT-R transformation is a finite sequence,
whose elements may be relation names, “when”, “where” or “not”, such that:

1. the first and last elements of the sequence are the same relation name
2. any subsequence R . . . S, where R and S are relation names and no interven-

ing element is a relation name, corresponds to S being invoked from a when
or where clause of R in the obvious way. That is, the intervening elements
can only be:
– “when” followed by some number i ≥ 0 of “not”s, if S is invoked in R’s

when clause and the invocation is under i negations; or
– “where” followed by some number i ≥ 0 of “not”s, if S is invoked in R’s

where clause and the invocation is under i negations.

Definition 2. A QVT-R transformation is recursion-well-formed if on every
recursion path the number of “not”s plus the number of “when”s is even.

Since every not, every when, and nothing else, causes the boolean flag in the
translation function to be flipped, the recursion-well-formed QVT-R transfor-
mations are precisely those that result in well-formed mu formulae.

Having decided which transformations that may lead to infinite plays to per-
mit, we need to specify which player will win which infinite plays. In an infinite
play, one or more relation names must occur infinitely often in positions of the
play, that is, as the second element of a 4-tuple like those in Figure 1. Of these,
let R be the one that occurs earliest in the play not counting the positions before
the first when/where invocation (because the initial challenge to a top relation is
different, as discussed in Section 3.4). Look at any 4-tuple involving R (after the
first invocation). If the first element is Verifier and the last is 1, or the first ele-
ment is Refuter and the last is 2 (i.e. the players are “the usual way round”), then
Verifier wins this play; otherwise Refuter wins. We will get a consistent answer
regardless of which position we examine, because otherwise the transformation
would not have been recursion-well-formed, i.e., would have been excluded on
monotonicity grounds.

Theorem 2. The QVT-R game as modified in this section is consistent with
the translation semantics.

Proof. (Sketch) Again, the games map one-to-one onto the standard model-
checking games for the mu-calculus formulae of the translation.

Remark: we could have assigned the infinite plays exactly oppositely; this would
correspond to swapping μ and ν in the translation. If we did both, we would still
get Theorems 1,2. This is a choice for the language designer.

206 J. Bradfield and P. Stevens

5 Examples and Consequences

Element

next

0..1

1

x:Element y:Element
next

next

Fig. 4. Metamodel M and model m for examples

Consider a transformation on models conforming to the metamodel shown in
Figure 4, having as its only relation the following:

top relation R {

domain m1 e1:Element {}

domain m2 e2:Element {}

where {(e1.next is not null and e2.next is not null)

and R(e1.next,e2.next)}

}

Let us play the extended game in the direction ofm2. Refuter picks an element to
bind to e1. Verifier must match by finding an element e2. Refuter will challenge
the where clause, so the new position is “Verifier to show (e1.next is not

null and e2.next is not null) and R(e1.next,e2.next) under B” where
B records the bindings to e1 and e2 that the players have just made. ((e1.next
is not null and e2.next is not null) ∈ Constraint, abbreviated φ.) Be-
cause the top level connective of the formula in the new position is and, Refuter
chooses a conjunct, giving new position either p =“Verifier to show φ under B”
or “Verifier to show R(e1.next,e2.next) under B”. In the first case, Verifier
wins the play unless, in fact, e1.next or e2.next was null. Thus in choosing
bindings for e1 and e2 we see that it is in Refuter’s interest to choose an e1

with no next if there is one – in that case he has a winning strategy – and in
Verifier’s interest to avoid such a choice for e2. In fact, Refuter can win by even-
tually driving play to position p (with some bindings B) iff either there is some
Element e in m1 with e.next == null (in which case, he may as well choose it
immediately) or there is no loop in the next graph of m2, i.e. every element e
eventually leads, by following next links, to some element e’ with e’.next ==

null. What should happen, however, if Refuter never has the chance to drive
play to a position p, because every element e from m1 has non-null next and
there is some loop in m2 that Verifier can use to match? (Or, indeed, if he could,
but does not choose to?) Refuter can repeatedly choose the “Verifier to show
R(e1.next,e2.next) under B” position, and play will continue for ever. We
consider it natural that Verifier should win such a play, and under our extended
rules this is what happens; e.g. position (Refuter, R,B, 2) recurs.

Recursive Checkonly QVT-R Transformations 207

(R, e1 �→ x)

(R, e1 �→ y)

(R, e1 �→ x, e2 �→ x′)

(R, e1 �→ x, e2 �→ y′)

(R, e1 �→ y, e2 �→ x′)

(R, e1 �→ y, e2 �→ y′)

invoke
invoke

challenge

challenge

response

response

response

response

ext1,ext2

ext1,ext2

ext1,ext2

ext1,ext2

Initial

Fig. 5. Labelled transition system for example

Next we demonstrate how this example works under the translation. The
translation of the transformation is

[challenge] 〈response〉(φ ∧ 〈invoke〉νX. [ext1] 〈ext2〉(φ ∧X))

whose formal semantics corresponds closely to the above description. Specifi-
cally, if models m1 and m2 are both taken to be copies of m from Figure 4
(distinguished by m2 having x′, y′), the LTS is that shown in Figure 5. Any play
of the model-checking game leads to one of the four right-hand LTS nodes, and
then as the fixed point is repeatedly unrolled, loops between that node and the
one connected to it by an invoke transition. Since our translation used a max-
imal fixpoint, unrolling the fixed point infinitely often is allowed and Verifier
wins any play, so she has a winning strategy and our semantics says that the
transformation returns true.

5.1 Expressiveness

In principle, a QVT-R transformation can have arbitrarily deep nesting of when
and where clauses. A natural question is whether this actually adds expressivity,
or whether every transformation could actually be re-expressed using at most n
nestings, for some n. The corresponding question for the modal mu calculus is
whether the alternation hierarchy is strict, which it is (see ([1] for details). That
is, in the modal mu calculus, allowing more (semantic) nesting always does allow
the expression of more properties. However, thus far we only have a translation
from QVT-R to mu calculus; it could be that the image of this translation was
a subset of mu calculus in which the alternation hierarchy collapsed. In fact,
constructing a suitable family of examples enables us to show (see proof in
Appendix of [2]):

Theorem 3. There is no n such that every QVT-R transformation is equivalent
to one with when and where clauses nested to a depth less than n.

208 J. Bradfield and P. Stevens

Clearly we inherit upper-bound complexity results also from the mu calculus;
however, the complexity of mu calculus model checking is a long-open problem.
It is known to be in the class NP ∩ co-NP but is not known to be in P. The
problem instance size is the size of the model checking game graph; the run-
ning time of well-understood algorithms involves an exponent which depends on
the alternation depth of the mu calculus formula. This is of mostly theoretical
interest, however, since in practice alternation depths are typically small.

6 Conclusion

We have given a semantics to recursive checkonly QVT-R transformations with
complex when and where clauses by first translating the checking problem into
a modal mu calculus model checking problem, and then using this to discover a
corresponding change to the rules of our earlier defined QVT-R game. Thus we
end up with a semantics which is simultaneously formal and intuitive, requiring
no formal training beyond the ability to follow the rules of a game. Our semantics
can be instantiated with any desired metamodelling and expression languages,
not just MOF and OCL.

Acknowledgements. We thank the referees for their constructive suggestions,
including some that could not be implemented in this version for space rea-
sons. The first author is partly supported by UK EPSRC grant EP/G012962/1
‘Solving Parity Games and Mu-Calculi’.

References

1. Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, vol. 3, pp. 721–756. Elsevier (2007)

2. Bradfield, J., Stevens, P.: Recursive checkonly QVT-R transformations with general
when and where clauses via the modal mu calculus. Technical Report EDI–INF–
RR–1410, University of Edinburgh, Includes Appendix (2012)

3. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

4. Object Management Group. Object constraint language, version 2.0, formal/2006-
05-01 (May 2006)

5. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27,
333–354 (1983)

6. OMG. MOF2.0 query/view/transformation (QVT) version 1.1. OMG document
formal/2009-12-05 (2009), www.omg.org

7. Stevens, P.: A simple game-theoretic approach to checkonly QVT Relations. Journal
of Software and Systems Modeling (SoSyM) (March 16, 2011), doi: 10.1007/s10270-
011-0198-8

www.omg.org

Graph Transforming Java Data�

Maarten de Mol1, Arend Rensink1, and James J. Hunt2

1 Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE, The Netherlands
{M.J.deMol,rensink}@cs.utwente.nl

2 aicas GmbH, Karlsruhe, Germany
jjh@aicas.com

Abstract. This paper introduces an approach for adding graph transformation-
based functionality to existing JAVA programs. The approach relies on a set of
annotations to identify the intended graph structure, as well as on user methods
to manipulate that structure, within the user’s own JAVA class declarations. Other
ingredients are a custom transformation language, called CHART, and a compiler
from CHART to JAVA. The generated JAVA code runs against the pre-existing,
annotated code.

The advantage of the approach is that it allows any JAVA program to be en-
hanced, non invasively, with declarative graph rules, improving clarity, concise-
ness and verifiability.

1 Introduction

Proponents of Graph Transformation (GT) as a modeling technique have always claimed
as strong points its general applicability and its declarative nature. Many structures can
naturally be regarded as graphs and their manipulation as a set of graph operations. For
these reasons, GT has been advocated in particular as a vehicle for model transformation
[5,14,16], a major component in the Model-Driven Engineering (MDE) paradigm. In
this paper we focus on JAVA as application domain, aiming to replace JAVA code that
manipulates object oriented data by declarative graph transformations.

Weak points of GT that are often quoted are its lack of efficiency and the need to
transform data between the application domain and the graph domain. Though effi-
ciency may to some degree be the price for general applicability, this does not appear
to be the dominant factor. Transforming application data structures into a well defined
graph format to facilitate sound transformations and then transforming the result back
to a form suitable for the application is a bigger problem. These two “transfers” are
themselves really model transformations in their own right, and seriously aggravate the
complexity of the technique in practice, to the point of making it completely impractical
for large graphs, e.g., graphs with hundreds of thousands of nodes.

One solution to the problem is to force an application to use the graph structure of
the tool as a basis for its data structures. This has serious drawbacks, as the tool graph

� This work was funded by the Artemis Joint Undertaking in the CHARTER project, grant-nr.
100039. See http://charterproject.ning.com/

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 209–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://charterproject.ning.com/

210 M. de Mol, A. Rensink, and J.J. Hunt

structure may not be rich enough for the application, and existing code that may already
be in place must be rewritten. This makes GT an invasive technique.

In this paper, we propose a radically different approach, aimed at JAVA, which does
not share the invasive nature yet preserves the advantages of GT, including its general
applicability and its declarative nature. There are three main parts of this approach.

– The graph structure (i.e., the type graph) is specified through JAVA annotations
added to existing user code classes. For instance, the framework provides annota-
tion types to specify that a given class represents a node or edge, along with edge
properties such as multiplicities and ordering. As no actual code needs to be mod-
ified, we consider our method non invasive. Effectively, the JAVA annotation types
constitute a type graph specification language.

– Graph manipulation, such as adding or deleting nodes or edges and updating at-
tributes, is achieved by invoking user-provided operations. Again, these operations
need to be annotated in order to express their effect in terms of the graph structure.

– Rules are written in a (textual) declarative language (called CHART), and subse-
quently compiled into JAVA code that runs against the aforementioned user classes,
invoking the annotated methods. This obviates the need for transferring data struc-
tures to and from the graph domain. Everything is modified in place, using pre-
existing code.

Our approach allows components of any existing JAVA program to be replaced with
declarative graph transformations, while only requiring non invasive additions to the
data structures of the program. The approach was developed in the CHARTER project
[4], where it is applied within three different tools that in turn make up a tool chain for
the development of code for safety critical systems; see Section 4.

1.1 Related Work

There is, of course, a wealth of approaches and tools for model transformation, some of
which are in fact based on graph transformation. To begin with, the OMG has published
the QVT standard for model transformation [13], which is a reference point for model
transformation, even though compliance with the standard is not claimed by many ac-
tual tools. A major tool effort is the ATL approach [9]; other successful tool suites are
VMTS [11], VIATRA2 [17], HENSHIN [1] and FUJABA [7].

However, none of the above share the aforementioned characteristics of the CHART

approach; in particular, all of them rely on their own data structures for the actual graph
representation and manipulation. Although an old implementation of ATL appears to
have supported the notion of a “driver” which could be tuned to a metamodelling frame-
work and hence imaginably to our annotations, this has been abandoned in newer ver-
sions (see http://wiki.eclipse.org/ATL/Developer_Guide#Regular_VM).

Another transformation framework for JAVA is SITRA [12], but in contrast to the
declarative rules of CHART it still requires individual rules to be written in JAVA directly.

1.2 Roadmap

In this paper we concentrate on the fundamentals of the CHART approach. In particular,
in Section 2 we introduce the formal graph model used, and show how the structure

http://wiki.eclipse.org/ATL/Developer_Guide#Regular_VM

Graph Transforming Java Data 211

and manipulation of graphs is specified through JAVA annotations. In Section 3, we
introduce the language concepts of CHART and indicate how the formal semantics of
the language is defined (details can be found in [6]). Section 4 gives an overview of the
use cases of the approach within the CHARTER project.

2 Graphs and Annotations

The basic idea of our approach is that the graph to be transformed is represented exter-
nally, in JAVA. In order to be able to transform this graph, its structure must be known,
and operations to manipulate it must be available. This information is obtained by an
automated analysis of a JAVA program. Not all necessary information can be obtained
from the source code alone, however. Therefore, we have defined a language of JAVA

annotations, which must be added to the code explicitly to fill the gaps.
In the following sections, we will explain how a graph structure is recognized in a

JAVA program. In Section 2.1, we first provide a formal description of the graphs and
type graphs that are allowed. In Sections 2.2, 2.3, 2.4 and 2.5, we describe how nodes,
edges, attributes and manipulation methods are defined, respectively. In Section 2.6, we
investigate the (non) invasiveness of our approach.

2.1 Graphs and Type Graphs

Our approach operates on simple graphs (nodes, binary directed edges, attributes) that
are extended with basic model transformation concepts (subtyping and abstractness for
nodes; multiplicity and orderedness for edges). This leads to the following formalization
of type graphs:

Definition 2.1.1: (types)
A type (set T) is either a node type, a set or list over a particular node type, or a basic
type. The supported basic types are boolean, character, integer, real and string.

Definition 2.1.2: (type graphs)
A type graph is a structure (Tn, T f , src, typef , abs, ≤t , min, max), in which:
◦ Tn and T f are the disjoint sets of node and field types, respectively;
◦ src : T f → Tn associates each field type with a source node type;
◦ typef : T f → T determines the value type of each field type;
◦ abs⊆ Tn is the subset of node types that are abstract;
◦ ≤t ⊆ Tn×Tn is the subtyping relation on nodes, which must be a partial order;
◦ min : T f →N and max : T f → N∪{many} are the multiplicity functions.

Attributes and edges are collectively called ‘fields’. If the maximum multiplicity of a
field is greater than one, a single field connects a single source node to multiple targets.
In that case, the targets are either stored in a set (unordered), or in a list (ordered).

A graph is straightforward instantiation of a type graph. However, we also require
each graph to be rooted:

212 M. de Mol, A. Rensink, and J.J. Hunt

Definition 2.1.3: (values)
A value (set V) is either a node, a basic value, or a set or list of nodes or values.

Definition 2.1.4: (graphs)
A graph (set G) is a structure (N,r,F), in which:
◦ N ⊆N is the set of nodes in the graph;
◦ r ∈ N is the designated root node of the graph;
◦ F : N×T f ↪→ V are the field values in the graph.

Our semantics ensures that a node that gets disconnected from the root becomes invisi-
ble for further graph operations.

2.2 Definition of Node Types

A node type must be defined by annotating a class or interface with the custom @Node
annotation. The name and supertypes (possible many) of the node type are determined
directly by the JAVA representation. The @Node annotation has an additional argument
to indicate whether the node type is abstract1or not.

Example 2.2.5: (node type example)
The following piece of code defines the abstract node type Book and the concrete
node type Comic on the left, and the concrete node types Author and Picture on the
right. Comic is defined to be a subtype of Book.

1 @Node(isAbstract = true)
2 public class Book { ...
3

4 @Node
5 public class Comic extends Book { ...

1 @Node
2 public class Author { ...
3

4 @Node
5 public class Picture { ...

In the JAVA code that will be produced for transformation rules, instance nodes will be
represented by objects of the associated JAVA class or interface.

2.3 Definition of Edge Types

An edge type must be defined by annotating an interface with the custom @Edge anno-
tation. Only the name of the edge type is determined directly by the JAVA representation.
The @Edge annotation has additional arguments to define its target and multiplicity,
and to indicate whether it is ordered or not.

The annotated interface does not yet define the source of the edge. Instead, it defines
an abstract edge, which can be instantiated with an arbitrary source. Each node type
(or more precisely, the JAVA representation of it) that implements the edge interface
provides a new source for the edge type.

1 We allow abstract classes to define concrete node types, and vice versa.

Graph Transforming Java Data 213

Example 2.3.6: (edge type example)
The following piece of code defines the edge types writtenBy, which connects a Book
to its Author, and contains, which connects a Comic to its Pictures. The multiplicity
indicates the number of targets that a single source may be connected to, which is ex-
actly one for writtenBy, and arbitrarily many for contains. Also, contains is ordered.

1 @Edge(target = Author.class, min = 1, max = 1)
2 public interface WrittenBy { ...
3

4 @Edge(target = Picture.class, min = 0, max = Multiplicity.MANY, ordered = true)
5 public interface Contains { ...

Note that to make these definitions complete, Book has to implement writtenBy, and
Comic has to implement contains.

In the JAVA code that will be produced for transformation rules, instance edges will not
be represented on their own, but are instead assumed to be stored by their source nodes.

2.4 Definition of Attributes

An attribute type must be defined by annotating a getter method with the custom @At-
tributeGet annotation. The name, source (the node class/interface in which the method
is declared) and type (the return type of the method) of the attribute are all determined
directly by the JAVA representation. Our framework does not yet support multiplicity or
orderedness of attributes.

Example 2.4.7: (attribute example)
The following piece of code defines the text attribute name for Authors on the left,
and the integer attribute price for Books on the right. Note that the attribute name is
obtained by removing the leading ‘get’ from the method name, and putting the first
character in lower case.

1 @Node
2 public class Author {
3 ...
4 @AttributeGet
5 public String getName();

1 @Node(isAbstract = true)
2 public class Book implements writtenBy {
3 ...
4 @AttributeGet
5 public int getPrice();

2.5 Definition of Manipulation Methods

The JAVA code for transformation rules needs to be able to modify the graph. Instead of
exposing the actual implementation, our framework defines a number of operations that
may be implemented by the JAVA code. Each operation has its own custom annotation,
and can only be attached to a method of a certain type and a certain behavior2.Our
framework makes the following operations available:

2 The type is enforced statically, but the behavior is not; instead, it is currently the responsibility
of the user to provide a method with the correct behavior.

214 M. de Mol, A. Rensink, and J.J. Hunt

– For nodes: creation, visiting all nodes of specific type.
– For all edges: visiting all target nodes.
– For edges (with maximum multiplicity 1): creation, getting the target node.
– For unordered edges: addition of a new target, removal of a given target, clearing

all targets at once, replacing a given target with another one, checking if a given
node occurs as a target, getting the number of connected targets.

– For ordered edges: insertion of a new target at a given index, removal of a given
index, getting the target at a given index, replacing the target at a given index,
clearing all targets at once, checking if a given node occurs as a target, getting the
number of connected targets.

– For attributes: getting, setting.

The user is free to implement as few or as many operations as desired, but if insuffi-
cient operations are available, JAVA code cannot be produced for certain rules any more.
Some operations are optimizations only, for instance computing the size of an edge is a
more efficient version of increasing a counter when visiting all the targets one by one.
If both are available, the efficient version will always be used.

Example 2.5.8: (operations example)
The following piece of code defines the manipulation methods for the contains edge
type. Insertion of an element at a given index (@EdgeAdd), removal of an element
at a given index (@EdgeRemove), getting an element at a given index (@EdgeGet),
and visiting all elements (@EdgeVisit) are declared. Visiting makes use of the pre-
defined class GraphVisitor, which basically wraps a method that can be applied to an
edge target into an interface.

1 @Edge(target = Picture.class, min = 0, max = Multiplicity.MANY, ordered = true)
2 public interface Contains {
3 @EdgeAdd
4 public void insertPicture(int index, Picture picture);
5

6 @EdgeRemove
7 public void removePicture(int index);
8

9 @EdgeGet
10 public Picture getPicture(int index);
11

12 @EdgeVisit
13 public GraphVisitor.CONTINUE visit(GraphVisitor<Picture> visitor)
14 throws GraphException;
15 }

2.6 Invasiveness

To apply graph transformation rules on an existing JAVA program with our approach,
the following modifications have to be made:

Graph Transforming Java Data 215

– A @Node annotation must be added to each intended node class and interface.
– For each edge type, a dedicated interface must be defined, and an @Edge annotation

must be added to it.
– For each required operation, a manipulation method must be made available. This

may either involve annotating an existing method with the appropriate annotation,
or defining a new method and then annotating it.

These modifications only enrich existing code with meta data, and can safely be applied
to any JAVA program. We therefore call our approach non invasive. This should not be
confused with non modifying, as annotations and edge interfaces still have to be added,
and additional manipulation methods need to be implemented as well.

3 Transformation Language

With our approach, we intend to make graph transformation available for JAVA pro-
grammers. For this purpose, we have defined a custom hybrid transformation language,
called CHART. On the one hand, CHART has a textual JAVA like syntax and a sequential
control structure. On the other hand, it has declarative matching and only allows graph
updating by means of simultaneous assignment.

In the following sections, we will introduce CHART and briefly go into its semantics.
In Section 3.1, we first present the rule based structure of CHART. In Sections 3.2, 3.3
and 3.4, we describe the main components of CHART, which are matching, updating and
sequencing, respectively. In Section 3.5, we shortly describe the semantics of CHART.

3.1 Rule Structure

A CHART transformation is composed of a number of transformation rules, and can be
started by invoking any one of them. Each rule has a signature, which declares its name,
its input and its output. Multiple (or no) inputs and outputs are allowed, and each can
be an arbitrary (typed) value (see Definition 2.1.3).

Example 3.1.1: (rule signature)
The following piece of code declares the rules findRich, addPicture and addPictures.
Set types are denotes by trailing ‘{}’, and list types by trailing ‘[]’. void denotes that
a rule has no return type.

1 rule Author{} findRich(int price) { ...
2 rule int addPicture(Comic comic, Picture picture) { ...
3 rule void addPictures(Comic comic, Picture[] pictures) { ...

The body of a rule consists of a match block, an update block, a sequence block and a
return block. The blocks are optional (and no more than one of each type can be used
in a rule), and can only appear in the order match-update-sequence-return.

216 M. de Mol, A. Rensink, and J.J. Hunt

3.2 Match Blocks

A match block searches for all the possible values of a given set of match variables such
that a given set of equations is satisfied. The equations are either boolean expressions,
or ‘foreach’ statements that lift equations to all elements of a collection. A match block
corresponds to the left-hand-side of a rewrite rule, represented textually.

Example 3.2.2: (match block)
The following match block finds all authors that have written a book with a price
higher than a certain threshold. Line 3 specifies that the block searches for a set of
Authors, which will be stored in the variable rich. Line 4 specifies that the equations
on lines 5-6 must hold for all3these authors. Lines 5-6 specify that for each author
there must exist a book (line 5) with a price higher than the threshold (line 6).

1 rule Author{} findRich(int price) {
2 Author{} rich;
3 match (rich) {
4 foreach (Author author : rich) {
5 Comic comic;
6 comic.price > price;
7 }
8 }
9 return rich;

10 }

A match block can either fail, if no valid values for the match variables can be found, or
succeed, with a single binding for the match variables. If multiple bindings are possible,
then one is chosen, and the other possibilities are thrown away. The semantics does not
prescribe which binding must be returned.

3.3 Update Blocks

An update block changes the instance graph, and it is the only place where this is pos-
sible. It consists of a list of create statements, which are evaluated sequentially, and a
list of update statements, which are evaluated simultaneously, but after the creations.
Each update statement may modify a single field in the graph, and there may not be
two update statements that change the same field. An update block corresponds to the
differences between the right- and left-hand-side of a rewrite rule.

Example 3.3.3: (update block)
The following update block creates a new comic (line 7), which is the same as an
existing one, but extended with one picture (line 9). The old comic is decreased in
price (line 12), and the old price of the old comic is returned (lines 13 and 15). The
match block ensures that the rule can only be applied to comics with a price greater
than 1. Note that the right-hand-side of line 13 is evaluated in the graph before the
update block, and therefore refers to the old price, instead of the new one.

3 In our approach, a foreach over a match variable always finds the largest possible set/list only.

Graph Transforming Java Data 217

1 rule int addPicture(Comic comic, Picture picture) {
2 int old price;
3 match () {
4 comic.price > 1;
5 }
6 update let {
7 Comic new comic = new Comic();
8 } in {
9 new comic.contains = comic.contains + [picture];

10 new comic.price = comic.price;
11 new comic.writtenBy = comic.writtenBy;
12 comic.price = comic.price − 1;
13 old price = comic.price;
14 }
15 return old price;
16 }

3.4 Sequence Blocks

A sequence block establishes flow of control, and is the only block in which other rules
can be invoked. It contains sequential, JAVA like statements, such as ‘if’ and ‘foreach’
(our notation for ‘for’), and custom statements for managing rule failure, such as ‘try’
and ‘repeat’ (see below).

Example 3.4.4: (sequence block)
The following sequence block repeatedly adds pictures to a comic by invoking add-
Picture (line 4). The ‘pictures[2:]’ that appears in line 3 is a range selection, which
selects all elements starting from index 2. The try statement in line 4 is used to catch
a possible failure of addPicture. Because of it, if addPicture fails, execution still
continues with the next iteration of the loop.

1 rule void addPictures(Comic comic, Picture[] pictures) {
2 sequence {
3 foreach (Picture picture : pictures[2:]) {
4 try { addPicture(comic, picture); }
5 }
6 }
7 }

Because a sequence block can contain rule calls, it can also succeed or fail. If a rule call
fails, one of the following things will happen:

– If the rule call is surrounded by a ‘try’ or ‘repeat’, then the failure is caught, and
the remainder of the sequence block is executed normally.

– If the failure is not caught, and the rule in which the sequence block appears has not
yet changed the graph, then the sequence block (and consequently the rule itself)
fails. This is the same kind of failure as in the match block.

218 M. de Mol, A. Rensink, and J.J. Hunt

– If the failure is not caught, and the graph has already been changed, then the failure
is erroneous, and the transformation as a whole stops with an exception. This is
because our approach does not support roll-back.

3.5 Semantics

A full operational semantics of CHART is available in [6]. Below, we will restrict our-
selves to a brief explanation of the top level functions of our semantics, which define
the meaning of match blocks, update blocks, sequence blocks, and rule systems.

Notation 3.5.5: (preliminaries)
In the following, let X denote the set of variables, �(B) denote the set of lists (i.e.
ordered sequences) over B, and Autom denote the universe of automata.

Match blocks. A match block consists of a list of match statements, which are assumed
to be defined by the MatchStat set. Its meaning is determined by the

match : ℘(X ↪→ V)× �(MatchStat)×G →℘(X ↪→ V)

function, which computes the set of all valid matches (=variable bindings) relative to a
given input graph. An implementation only has to return one of these matches, but the
semantics takes all of them into account. Later, we will enforce that all choices converge
to a single output graph.

The match function is initialized with a single match, which is the input variable
binding of the rule in which it appears. It then processes each match statement itera-
tively. If the statement is a match variable, then each input match is extended will all
possible values of that variable. If the statement is an equation (or ‘foreach’), then the
input matches are filtered, and only those that satisfy the equation are kept.

Update blocks. An update block consists of a list of create statements and a list of
update statements, which are assumed to be defined by the CreateStat and UpdateStat
sets, respectively. Its meaning is determined by the

update : (X ↪→ V)× �(CreateStat)× �(UpdateStat)×G → (X ↪→ V)×G

function, which modifies a variable binding and a graph. It first processes the create
statements sequentially. Then the update statements are merged into one atomic update
action, which is applied on the intermediate state in one go.

Sequence blocks. A sequence block consists of a list of sequence statements, which
are assumed to be defined by the SequenceStat set. Its meaning is determined by the

sequence : �(SequenceStat)→ Autom

function, which builds an automaton that statically models the sequence block. It uses
simplified sequence statements as alphabet, and a basic numbering for states only. The
purpose of the automaton is to distinguish between success with or without changing
the graph, and failure. For this purpose, it has three distinctive final states, and it models
the conditions under which these states are reached. The automaton does not model any
dynamic behavior, however, as its states do not include graphs or variable bindings.

Graph Transforming Java Data 219

Rule systems (1) A rule system consists of a set of rules, which are assumed to be
defined by the Rule set. The meaning of a rule system is determined by the

automs : ℘(Rule)×Rule×G → Autom×Autom

function, which computes two automata. The first is the applier automaton, which has
tuples of graphs and variable bindings as states, and all possible applications of all
available match and update blocks as (separate) transitions. The second is the control
automaton, which is basically the combination of the sequence automata of all rules.
The initial state of the applier automaton is the empty variable binding with the input
graph, and the initial state of the control automaton is the initial state of the start rule.

Rule systems (2) The final purpose of a rule system is to transform an input graph into
a single output graph. This is modeled by the semantic function:

�·� :℘(Rule)×Rule×G ↪→ G

First, the product automaton of the applier and control automata is built, which synchro-
nizes on the rule calls and adds local state to the control automaton. In our approach,
the final transformation has to terminate and be deterministic. If the product automaton
is not confluent, acyclic and finite, then the transformation is therefore considered to be
erroneous, and the semantic function does not yield a result. Otherwise, the semantics
is given by the graph in the unique final state of the product automaton.

4 Experience and Evaluation

A major part of the effort has gone into the CHART compiler that generates the corre-
sponding JAVA code. The compiler is called RDT, which stands for Rule Driven Trans-
former, and supports all features that have been described in this paper. We have used
the RDT successfully on several smaller test cases, and more importantly, it is currently
being used by three of our partners in the CHARTER project [4]. The tool will be made
publicly available by the final project deliverable planned for April 2012.

Concretely, the following transformations have been built with the RDT:

– For testing purposes, we have implemented an interpreter for finite state automata,
and an interpreter for a simplified lazy functional programming language. Some
metrics are collected in Table 1.

– A collection of CHART rules have been produced by ATEGO to replace the JAVA

code generator within ARTISAN STUDIO [2].
– A collection of CHART rules are being developed by AICAS for the purpose of

optimisations and machine code generation in the JAMAICAVM byte code compiler
[15]. This application is discussed in some more detail below.

– Part of the code simplification from JAVA to Static Single Assignment form within
the KEY tool [3] is scheduled to be replaced by CHART rules.

These examples show that the technology can already be applied in practice. In all
cases, the CHART rules are more concise than the JAVA code. The JAMAICAVM and
KEY examples also show that the RDT can successfully be connected to an existing
JAVA program. In the other examples, a custom JAVA program was built explicitly.

220 M. de Mol, A. Rensink, and J.J. Hunt

Table 1. metrics for the functional interpreter case

JAVA data (represent functional program) 21 classes, 11 interfaces, 1448 lines of code
added annotations 19 nodes, 11 edges, 49 methods, 3 auxiliary

CHART rules 53 rules, 1024 lines of code
produced JAVA code 53 classes, 7667 lines of code

analysis and compilation time approx. 4,5 seconds (2GHZ, 4GB laptop)
execution time (50 primes computed with sieve) approx. 1,5 seconds (2GHZ, 4GB laptop)

4.1 Using the RDT in JAMAICAVM

A complex application of the RDT is its application in the JAMAICAVM byte code com-
piler. This application demonstrates the strength of the synthesis of a strongly typed
object-oriented programming language with a domain specific graph transformation
language. The compiler implementation takes advantage of JAVA for implementing the
basic graph operations, and uses the RDT for deciding what transforms should be ap-
plied (match clause), when a transform should be applied (sequence clause), and what
change a transform should make (update clause).

The most general CHART rules are used in the optimization of the intermediate rep-
resentation. These rules implement standard compiler optimizations such as:

– unnecessary node removal,
– expression simplification,
– duplicate check removal,
– common subexpression elimination,
– method inlining,
– loop inversion, and
– loop expression hoisting.

There are not that many optimizations, but each optimization takes in general several
rules to implement it. Each rule has about 10 to 20 lines of RDT code. The generated
code is approximately ten times as long. Hand coding might bring a factor of two im-
provement, but that would still be five times large than the CHART code.

There are many more CHART rules for translating the intermediate representation to
the low-level representation: each intermediate instruction requires its own rule. These
rules are simpler, so they tend to be shorter than the optimization ones. Still there is a
similar ten fold expansion of code when these rules are compiled.

CHART rules are also used in the optimization of the low-level representation. These
rules tend to be more instruction dependent. Some of the simpler intermediate opti-
mizations are applicable on the low-level too, because they do not depend on the ac-
tual instructions and operate on an abstract representation of the graph. This works
because both graphs share a common parametrized subclass structure using JAVA

generics. Again, a ten fold expansion is typical.
Performance measurements have not yet been made, but there is no noticeable slow-

down for the couple of optimizations that have been converted to rules. In fact, the new
compiler is faster than the previous one. However, this is probably due to improvements
in the graph structure. Certainly, the performance is within acceptable bounds.

Graph Transforming Java Data 221

In general, CHART rules are easier to reason about than JAVA code for two reasons.
Firstly, the code is much shorter. Secondly, the language itself is declarative instead
of imperative. The next challenge will be to provide theory and methods for reasoning
about the correctness of rules written in CHART.

4.2 Evaluation

The cases reported above provide first evidence of the advantages and disadvantages of
the CHART approach. We can make the following observations:

– The approach is flexible enough to be applicable in several, quite different contexts:
model-to-text generation for ARTISAN, code compilation and optimisation for JA-
MAICAVM and text-to-text transformation in the case of KEY. The latter is done on
the basis of its JAVA syntax tree structure.

– The non invasive nature of the approach enables a partial or stepwise adoption of
CHART. Indeed, the fact that all data stay within the user domain was the reason to
adopt CHART for KEY, where it was initially not foreseen in the project proposal.

– CHART enhances productivity by a factor of ten, measured in lines of code. This
metric should be taken with a grain of salt as the generated code is less compact
than hand-written code for the same purpose would have been; however, as argued
in Section 4.1, even taking this into account the ratio in lines of code is a factor 5.

– The generated code been applied to very large graphs (in the order of 105 – 106

nodes) with a performance comparable to the replaced handwritten JAVA code.

All in all, we feel that these are very encouraging results.

4.3 Future Work

Although, as shown above, CHART has already proved its worth in practice, there is ob-
viously still a lot of work that can be done to strengthen both the formal underpinnings
and the practical usability.

– The formal semantics presented in this paper enables reasoning on the level of the
CHART rules. As a next step, we intend to develop this into a theory that allows
the CHART programmer to deduce confluence and termination of his rule system.
A more ambitious goal is to be able to prove semantic preservation of model trans-
formations in CHART (see, e.g., [8]).

– Based on the formal semantics, we plan to formally verify that the RDT actually pro-
duces correct code. Code correctness can be addressed on different levels: firstly,
by requiring it to run without errors; and secondly, to actually implement the trans-
formation specified in CHART. The second especially is a major effort, analogous
to the Verified Compiler research in, e.g., [10], and will be addressed in a separate
follow-up project.

– On the pragmatic side, the RDT needs further experimentation with an eye towards
efficiency. This is likely to lead to improvements in performance of the gener-
ated code.

– The CHART language can be extended with additional functionality, as well as
syntactic sugar for the existing features.

222 M. de Mol, A. Rensink, and J.J. Hunt

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010),
http://www.eclipse.org/modeling/emft/henshin/

2. Artisan studio (2011), http://www.atego.com/
3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.

LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007), http://www.key-project.org
4. Charter: Critical and hight assurance requirements transformed through engineering rigour

(2010), http://charterproject.ning.com/page/charter-project
5. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM

Systems Journal 45(3), 621–646 (2006)
6. de Mol, M., Rensink, A.: Formal semantics of the CHART transformation language. CTIT

technical report, University of Twente (2011),
http://www.cs.utwente.nl/˜rensink/papers/chart.pdf

7. The FUJABA Toolsuite (2006), http://www.fujaba.de
8. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: Show-

ing Full Semantics Preservation in Model Transformation - A Comparison of Techniques. In:
Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198. Springer, Heidelberg
(2010)

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-
put. Program. 72(1-2), 31–39 (2008)

10. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
11. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A systematic approach to metamodel-

ing environments and model transformation systems in VMTS. Electr. Notes Theor. Comput.
Sci. 127(1), 65–75 (2005), http://www.aut.bme.hu/Portal/Vmts.aspx?lang=en

12. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier, K.D.: SiTra:
Simple Transformations in Java. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 351–364. Springer, Heidelberg (2006)

13. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification (2011),
http://www.omg.org/spec/QVT/1.1/

14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1995)

15. Siebert, F.: Realtime garbage collection in the JamaicaVM 3.0. In: Bollella, G. (ed.) JTRES.
ACM International Conference Proceeding Series, pp. 94–103. ACM (2007),
http://www.aicas.com

16. Taentzer, G.: What algebraic graph transformations can do for model transformations. ECE-
ASST 30 (2010)

17. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming 68(3), 187–207 (2007),
http://www.eclipse.org/gmt/VIATRA2/

http://www.eclipse.org/modeling/emft/henshin/
http://www.atego.com/
http://www.key-project.org
http://charterproject.ning.com/page/charter-project
http://www.cs.utwente.nl/~rensink/papers/chart.pdf
http://www.fujaba.de
http://www.aut.bme.hu/Portal/Vmts.aspx?lang=en
http://www.omg.org/spec/QVT/1.1/
http://www.aicas.com
http://www.eclipse.org/gmt/VIATRA2/

Graph Transforming Java Data 223

1 /∗∗
2 ∗ ==
3 ∗ CLASS generated for RULE ’examples.comic.generated.addPicture’.
4 ∗ ==
5 ∗/
6 public class addPicture extends RDTRule.RDTRule1<Integer> {
7 ...
8 /∗∗ Finds a single match for the rule. ∗/
9 private boolean match() throws GraphException {

10 // check (V1 comic.price > (1));
11 if (!(V1 comic.getPrice() > 1)) {
12 return false;
13 }
14 // Report success.
15 return true;
16 }
17

18 /∗∗ Applies the update block of the rule on an earlier found match. ∗/
19 private void update() throws GraphException {
20 // Store for postponed graph updates.
21 final List<Closure> postponed = new ArrayList<Closure>(25);
22 // Comic V4 new comic = new Comic();
23 final Comic V4 new comic = Comic.createComic(this.context.getSupport());
24 // V4 new comic.contains = V1 comic.contains + [V2 picture];
25 final GraphVisitor<Picture> t1 = new GraphVisitor<Picture>() {
26 @Override
27 public CONTINUE apply(final Picture node) throws GraphException {
28 postponed.add(new Closure() {
29 @Override
30 public void apply() throws GraphException {
31 V4 new comic.insertPicture(−1, node);
32 }
33 });
34 return CONTINUE.YES;
35 }
36 };
37 ...
38 }
39 ...
40 }

Part of the generated code for the addPicture rule.

Language Independent Refinement
Using Partial Modeling

Rick Salay, Michalis Famelis, and Marsha Chechik

Department of Computer Science, University of Toronto, Toronto, Canada
{rsalay,famelis,chechik}@cs.toronto.edu

Abstract. Models express not only information about their intended
domain but also about the way in which the model is incomplete, or
“partial”. This partiality supports the modeling process because it per-
mits the expression of what is known without premature decisions about
what is still unknown, until later refinements can fill in this information.
A key observation of this paper is that a number of partiality types can
be defined in a modeling language-independent way, and we propose a
formal framework for doing so. In particular, we identify four types of
partiality and show how to extend a modeling language to support their
expression and refinement. This systematic approach provides a basis for
reasoning as well as a framework for generic tooling support. We illus-
trate the framework by enhancing the UML class diagram and sequence
diagram languages with partiality support and using Alloy to automate
reasoning tasks.

1 Introduction

Models are used for expressing two different yet complementary kinds of in-
formation. The first is about the intended domain for the modeling language.
For example, UML class diagrams are used to express information about system
structure. The second kind of information is used to express the degree of incom-
pleteness or partiality about the first kind. For example, class diagrams allow
the type of an attribute to be omitted at an early modeling stage even though
the type will ultimately be required for implementation. Being able to express
partiality within a model is essential because it permits a modeler to specify the
domain information she knows without prematurely committing to information
she is still uncertain about, until later refinements can add it.

The motivating observation of this work is that many types of model partiality
are actually domain independent and thus support for expressing partiality can be
handled in a generic and systematic way in any modeling language! Furthermore,
each type of partiality has its own usage scenarios and comes with its own
brand of refinement. Thus, we can define certain model refinements formally yet
independently of the language type and semantics. This may be one reason why
many practitioners of modeling resist the formalization of the domain semantics
for a model: it is possible to do some sound refinements without it!

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 224–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Language Independent Refinement Using Partial Modeling 225

Property

Class

ownedAttribute

super

type

Datatype

type

x:Property c:Class ownedAttribute(c,x)
x:Property (c:Class type(x,c)) ¬(d:Datatype type(x,d))
x:Property c1, c2:Class type(x,c1) type(x,c2) c1=c2
x:Property d1, d2:Datatype type(x,d1) type(x,d2) d1=d2
x:Property, c1,c2:Class ownedAttribute(c1,x) ownedAttribute(c2,x) c1=c2

Fig. 1. A simplified UML class diagram metamodel

Current modeling languages incorporate partiality information in ad-hoc ways
that do not clearly distinguish it from domain information and leave gaps in ex-
pressiveness. For example, with a state machine diagram, if the modeler uses
multiple transitions on the same event out of a state, it may not be clear (e.g.,
to another modeler) whether she is specifying a non-deterministic state machine
(domain information) or an under-specified deterministic state machine (par-
tiality information). Benefits of explicating partiality in a language-independent
manner include generic tool support for checking partiality-reducing refinements,
avoiding gaps in expressiveness by providing complete coverage of partiality
within a modeling language, and reusing a modeler’s knowledge by applying
partiality across different modeling languages consistently. Ad-hoc treatments of
partiality do not allow the above benefits to be effectively realized. Our approach
is to systematically add support for partiality information to any language in the
form of annotations with well-defined formal semantics and a refinement relation
for reducing partiality.

The use of partiality information has been studied for particular model types
(e.g., behavioural models [9,13]) but our position paper [3] was the first to discuss
language-independent partiality and its benefits for Model Driven Engineering.
In this paper, we build on this work and provide a framework for defining dif-
ferent types of language-independent partiality. Specifically, this paper makes
the following contributions: (1) we define the important (and novel) distinction
between domain and partiality information in a modeling language; (2) we de-
scribe a formal framework for adding support for partiality and its refinement
to any modeling language; (3) we use the framework to define four types of
language-independent partiality that correspond to typical pragmatic modeling
scenarios; (4) we implement the formalization for these using Alloy and show
some preliminary results.

The rest of this paper is organized as follows: We begin with a brief introduc-
tion to the concept of partiality in Section 2 and give an informal description of
four simple language-independent ways of adding partiality to a modeling lan-
guage. We describe the composition of these partiality types and illustrate them
through application to the UML class diagram and sequence diagram languages
in Section 3. In Section 4, we describe a formalization of these types of partiality.
In Section 5, we describe our tool support based on the use of Alloy [8]. After
discussing related work in Section 6, we conclude the paper in Section 7 with
the summary of the paper and suggestions for future work.

226 R. Salay, M. Famelis, and M. Chechik

2 Adding Partiality to Modeling Languages

When a model contains partiality information, we call it a partial model. Se-
mantically, it represents the set of different possible concrete (i.e., non-partial)
models that would resolve the uncertainty represented by the partiality. In this
paper, we focus on adding partiality information to existing modeling languages
in a language-independent way, and thus, we must work with arbitrary meta-
models. Figure 1 gives an example of a simple metamodel for class diagrams,
with boxes for element types and arrows for relations. The well-formedness con-
straints (on the right) express the fact that every Property must have one type
given by a Class or a Datatype and must be an ownedAttribute of one Class.
Models consist of a set of atoms - i.e., the elements and relation instances of
the types defined in its metamodel. In order to remain language-independent,
we assume that partiality information is added as annotations to a model.

Definition 1 (Partial model). A partial model P consists of a base model,
denoted bs(P), and a set of annotations. Let T be the metamodel of bs(P). Then,
[P] denotes the set of T models called the concretizations of P .

Partiality is used to express uncertainty about the model until it can be resolved
using partiality refinement. Refining a partial model means removing partiality
so that the set of concretizations shrinks until, ultimately, it represents a single
concrete model. In general, when a partial model P ′ refines another one P , there
is a mapping from bs(P ′) to bs(P) that expresses the relationship betwen them
and thus between their concretizations. We give examples of such mappings later
on in this section. In the special case that the base models are equivalent, P ′

refines P iff [P ′] ⊆ [P].
We now informally describe four possible partiality types, each adding support

for a different type of uncertainty in a model: May partiality – about existence
of its atoms; Abs partiality – about uniqueness of its atoms; Var partiality –
about distinctness of its atoms; and OW partiality – about its completeness.

May Partiality. Early in the development of a model, we may be unsure
whether a particular atom should exist in the model and defer the decision
until a later refinement. May partiality allows us to express the level of certainty
we have about the presence of a particular atom in a model, by annotating it.
The annotations come from the lattice M = 〈{e,m},�〉, where the values cor-
respond to “must exist” (e) and “may exist” (m), respectively, ≺ means “less
certain than”, and m ≺ e.

A May model is refined by changing m atoms to e or eliminating them al-
together. Thus, refinements result in submodels with more specific annotations.
The ground refinements of a May model P are those that have no m elements
and thus, correspond to its set of concretizations [P]. Figure 2(a) gives an exam-
ple of a May model (P), a refinement (P′) and a concretization (M). The models
are based on the metamodel in Figure 1. Atoms are given as name:type with
the above annotations, and mappings between models are shown using dashed
lines. Model (P) says “there is a class Car that may have a superclass Vehicle

Language Independent Refinement Using Partial Modeling 227

and may have a Length attribute which may be of type int”. The refinement
(P′) and concretization (M) resolve the uncertainty.

Abs Partiality. Early in the development of a model we may expect to have
collections of atoms representing certain kinds of information but not know
exactly what those atoms are. For example, in an early state machine diagram for
a text editor, we may know that we have InputingStates, ProcessingStates
and FormattingStates, and that InputingStates must transition to
ProcessingStates and then to FormattingStates. Later, we refine these to
sets of particular concrete states and transitions. Abs partiality allows a modeler
to express this kind of uncertainty by letting her annotate atoms as representing
a “particular”, or unique, element (p) or a “set” (s). The annotations come from
the lattice A = 〈{p, s},�〉, where � indicates “less unique than”, and s ≺ p.

A refinement of an Abs model elaborates the content of “set” atoms s by
replacing them with a set of s and p atoms. The ground refinements of an Abs
model P are those that have no s elements and thus, correspond to its set
of concretizations [P]. Figure 2(b) illustrates an Abs model, a refinement and
concretization. Only node mappings are shown to reduce visual clutter. Model
(P) says “class Car has a set SizeRelated of attributes with type int”. The
refinement (P′) refines SizeRelated into a particular attribute Length and the
set HeightRelated.

Var Partiality. Early in a modeling process, we may not be sure whether two
atoms are distinct or should be the same, i.e., we may be uncertain about atom
identity. For example, in constructing a class diagram, we may want to introduce
an attribute that is needed, without knowing which class it will ultimately be
in. To achieve well-formedness, it must be put into some class but we want to
avoid prematurely putting it in the wrong class. To solve this problem, we could
put it temporarily in a “variable” class - i.e., something that is treated like a
class but, in a refinement, can be equated (merged) with other variable classes
and eventually be assigned to a constant class. Var partiality allows a modeler
to express uncertainty about distinctness of individual atoms in the model by
annotating an atom to indicate whether it is a “constant” (c) or a “variable” (v).
The annotations come from the lattice V = 〈{c,v},�〉, where v ≺ c.

A refinement of a Var model involves reducing the set of variables by as-
signing them to constants or other variables. The ground refinements of a Var
model P are those that have no v elements and thus, correspond to its set of
concretizations [P].

Figure 2(c) illustrates a Var model, its refinement and concretization. Model
(P) says “class Car has superclass Vehicle and variable class SomeVehicle has
attribute Length with variable type SomeType”. Refinement (P′) resolves some
uncertainty by assigning SomeVehicle to Car.

OW Partiality. It is common, during model development, to make the as-
sumption that the model is still incomplete, i.e., that other elements are yet to
be added to it. This status typically changes to “complete” (if only temporar-
ily) once some milestone, such as the release of software based on the model,

228 R. Salay, M. Famelis, and M. Chechik

(a)

(E)
Car:Class

(M)
Vehicle:Class

(M)
super

(M)
Length:Property

(M)
ownedAttribute

(M)
int:Datatype

(M)
type

(E)
Car:Class

(E)
Vehicle:Class

(M)
super

Car:Class Vehicle:Classsuper

P

P’

M

(b)

(P)
Car:Class

(S)
SizeRelated:Property

(S)
ownedAttribute

(P)
int:Datatype

(S)
type

(P)
Car:Class

Car:Class

P

P’

M

(S)
type

(P)
Length:Property

(S)
HeightRelated:Property

(P)
int:Datatype

(P)
type

(S)
ownedAttribute

type

Length:Property

InteriorHeight:Property

int:Datatype type

ExteriorHeight:Property

type

ownedAttribute

ownedAttribute
ownedAttribute

(P)
ownedAttribute

(c)

(C)
Car:Class

(C)
Vehicle:Class

(C)
super

(C)
Length:Property

(V)
Sometype:Datatype

(V)
type

(C)
Car:Class

(C)
Vehicle:Class

(C)
super

Car:Class Vehicle:Classsuper

P

P’

M

(V)
SomeVehicle:Class

(V)
ownedAttribute

(V)
super

(C)
Length:Property

(V)
Sometype:Datatype

(V)
type

(C)
ownedAttribute

Length:Propertyint:Datatype type ownedAttribute

(d)

Car:Class Vehicle:Classsuper

Length:Property ownedAttributeint:Datatype type Car:Class Vehicle:Classsuper

Car:Class Vehicle:Classsuper

P

P’

MLength:Property ownedAttributeint:Datatype type

(inc)

(comp)

Fig. 2. Examples of different partiality types: (a) May ; (b) Abs; (c) Var ; (d) OW. In
each example, model M concretizes both P′ and P, and P′ refines P.

Language Independent Refinement Using Partial Modeling 229

is reached. In this paper, we view a model as a “database” consisting of a set
of syntactic facts (e.g., “a class C1 is a superclass of a class C2”, etc.). Thus,
incompleteness corresponds to an Open World assumption on this database (the
list of atoms is not closed), whereas completeness – to a Closed World. OW
partiality allows a modeler to explicitly state whether her model is incomplete
(i.e., can be extended) (inc) or not (comp). In contrast to the other types of
partiality discussed in this paper, here the annotation is at the level of the entire
model rather than at the level of individual atoms. The annotations come from
the lattice O = 〈{comp , inc },�〉, where inc ≺ comp .

A refinement of an OW model means making it “more complete”. The ground
refinements of an OW model P , corresponding to its set of concretizations [P],
are its “complete” extensions. Figure 2(d) illustrates an OW model, refinement
and concretization.

3 Combining and Applying Partiality Types

In this section, we show how to combine the four partiality types defined in
Section 2 and then apply them to UML class diagrams and sequence diagrams,
showing the language-independence of partiality-reducing refinements.

Combining Partiality Types. The four partiality types described above have
distinctly different pragmatic uses for expressing partiality and can be combined
within a single model to express more situations. We refer to the combination
as the MAVO partiality, which allows model atoms to be annotated with May,
Abs and Var partiality by using elements from the product lattice M×A× V
defined as MAV = 〈{e,m} × {p, s} × {c,v},�〉. For example, marking a class
as (m, s,c) means that it represents a set of classes that may be empty, while
marking it as (e, s,v) indicates that it is a non-empty set of classes but may
become a different set of classes in a refinement. OW partiality is also used, but
only at the model level, to indicate completeness.

MAVO refinement combines the refinement from the four types component-
wise. If MAVO model P1 is refined by model P2, then there is a mapping from the
atoms of P1 to those of P2, and the annotation in P2 has a value that is no less
than any of its corresponding atoms in P1. Thus, the class marked (m, s,c) can
be refined to a set of classes that have annotations such as (m, p,c) or (e, s,c)
but not (m, s,v). Examples of applying the MAVO partiality are given below.

Application: MAVO Class Diagrams. One of the benefits of the fact that
a partiality type extends the base language is that we can build on the existing
concrete syntax of the languages. For example, consider the MAVO partial class
diagram P1 shown in the top of Figure 3. We do not show ground annotations
(i.e., c for Var, p for Abs, etc.) and use the same symbols as in the abstract
syntax for non-ground annotations. While there may be more intuitive ways
to visualize some of these types of partiality (e.g., dashed outlines for “maybe”
elements), we consider this issue to be beyond the scope of this paper.

In P1, the modeler uses May partiality to express uncertainty about whether
a TimeMachine should be a Vehicle or not. May partiality is also used with

230 R. Salay, M. Famelis, and M. Chechik

-(S)sizeRelated : (SV)Types1
-numOfPassengers : Int
-(S)securityRelated : (SV)Types2

Vehicle

CarTimeMachine Boat

(M)Hovercraft

(MS)OtherVehicles

-numOfDoors : Int
(V)C1

(M) (M)

(M)
(M) (MS)

-numOfDoors : Int
CarTimeMachine Boat (MS)OtherVehicles

-(S)sizeRelated : Int, Real
-numOfPassengers : Int
-lastLegalEntry : Timestamp
-lastIDNumber : (V)Type2
-previousIDNumber : (V)Type2

Vehicle

Truck

(MS)

(SV)Types1

(SV)Types2

Real

(V)Type2

Int

Timestamp

Refines

P1:CD

P2:CD222

Int

Fig. 3. Example of MAVO class diagrams with refinement

Person Car (MV)Monitor

(S) driving actions

exit

lock

(S) prep actions

enter

unlock
(M) notify

(M) notify

Person Car

(S) driving actions

exit
lock

check mirrors

enter

unlock (M) notify

Refines

P3:SD (inc) P4:SD

check fuel

Fig. 4. Example sequence diagram with MAVO partiality

Hovercraft to express that the modeler is uncertain whether or not to in-
clude it and which class should be its superclass. Var partiality is used with
“variable” class C1 to introduce the attribute numOfDoors : Integer since the
modeler is uncertain about which class it belongs in. Abs and Var partiality
are used together to model sets of Vehicle attributes with unknown types with
sizeRelated : Types1 and securityRelated : Types2. Finally, May and Abs
partiality are used with OtherVehicles and super(OtherVehicles, Vehicle)
to indicate that the modeler thinks that there may be other, not yet known,
vehicle classes.

Language Independent Refinement Using Partial Modeling 231

Model P2, on the bottom of Figure 3, is a refinement of P1. Refinement map-
pings are shown as dashed lines and, to avoid visual clutter, we omit the identity
mappings between ground atoms. In P2, the modeler refines super(TimeMachine,
Vehicle) from “may exist” to “exists”; however, the decision on Hovercraft is to
omit it. The refinement puts attribute numOfDoors : Integer into Car by setting
C1 = Car. Also, the types of sizeRelated attributes are refined to Int or Real,
and the securityRelated attributes are refined as well; however, the types of
LastIDNumber and PreviousIDNumber are still unknown, although they are now
known to be the same SType2. Finally, OtherVehicles is refined to expose Truck
as one of these but still leaves the possibility for more Vehicle subclasses. The
omitted OW annotation indicates that the models are “complete”, and thus, new
elements can only be added by refining an Abs set such as OtherVehicles.

Application: MAVO Sequence Diagrams. The left model in Figure 4, P3,
shows a MAVO sequence diagram specifying how a Person interacts with a Car.
We follow the same concrete syntactic conventions for annotations as for the class
diagrams in Figure 4. While some interactions are known in P3, at this stage of
the design process, it is known only that there will be a set of prepActions and
drivingActions, and Abs partiality is used to express this. In addition, there
is a possibility of there being a monitoring function for security. May partiality
is used to indicate that this portion may be omitted in a refinement, and Var
partiality is used to indicate that it is not yet clear which object will perform the
Monitor role. Finally, P3 uses the OW partiality since we expect more objects
to be added in a refinement.

In the model P4, on the right of Figure 4, the modeler has refined prepActions
to a particular set of actions. In addition, she has assigned the Monitor role
to Car itself (i.e., Monitor=Car) and retained only the first Notify message.
Finally, she has decided that the model will not be extended further and it is
set as “complete”.

Discussion. While class diagrams and sequence diagrams are different syntac-
tically and in their domains of applicability (i.e., structure vs. behaviour), the
MAVO partiality provides the same capabilities for expressing and refining un-
certainty in both languages. In particular, it adds the ability to treat atoms as
removable (May), as sets (Abs), and as variables (Var), and to treat the entire
model as extensible (OW). Furthermore, we were able to use the same concrete
syntactic conventions in both languages — this is significant because modeler
knowledge can be reused across languages. Note that while our examples come
from UML, MAVO annotations are not UML-specific and can be applied to
any metamodel-based language, regardless of the degree of formality of the lan-
guage. The reason is that the semantics of partiality is expressed in terms of
sets of models (i.e., possible concretizations) and does not depend on the native
semantics of the underlying modeling language.

Most of the expressions of partiality in these examples required the added
partiality mechanisms. The exceptions, which could have been expressed na-
tively, are: (1) that types of attributes are unknown (as with the sizeRelated
attributes), in class diagram P1, and (2) the choice between the Monitor and

232 R. Salay, M. Famelis, and M. Chechik

its Notify messages (using an Alt operator, e.g., based on the STAIRS seman-
tics [6]), in sequence diagram P3. This suggests that language-independent par-
tiality types can add significant value to modeling languages.

4 Formalizing Partiality

In this section, we define an approach for formalizing the semantics of a partial
model and apply it to MAVO partiality. Specifically, given a partial model P ,
we specify the set of concretizations [P] using First Order Logic (FOL). Our
approach has the following benefits: (1) it provides a general methodology for
defining the semantics of a partial modeling language; (2) it provides a mech-
anism for defining refinement, even between partial models of different types;
(3) it provides the basis for tool support for reasoning with partial models using
off-the-shelf tools; and (4) it provides a sound way to compose partial modeling
languages.

We begin by noting that a metamodel represents a set of models and can be
expressed as an FOL theory.

Definition 2 (Metamodel). A metamodel is a First Order Logic (FOL) the-
ory T = 〈Σ, Φ〉, where Σ is th e signature and Φ is a set of sentences representing
the well-formedness constraints. Σ = 〈σ, ρ〉 consists of the set of sorts σ defin-
ing the element types and the set ρ of predicates defining the types of relations
between elements. The models that conform to T are the finite FO Σ-structures
that satisfy Φ according to the usual FO satisfaction relation. We denote the set
of models with metamodel T by Mod(T).

The class diagram metamodel in Figure 1 fits this definition if we interpret boxes
as sorts and edges as predicates.

Like a metamodel, a partial model also represents a set of models and thus
can also be expressed as an FOL theory. Specifically, for a partial model P ,
we construct a theory FO(P) s.t. Mod(FO(P)) = [P]. Furthermore, since P
represents a subset of T models, we require that Mod(FO(P)) ⊆ Mod(T). We
guarantee this by defining FO(P) to be an extension of T that adds constraints.

Let M = bs(P) be the base model of a partial model P and let PM be the
ground partial model which has M as its base model and its sole concretization –
i.e., bs(PM) = M and [PM] = {M}. We first describe the construction of
FO(PM) and then define FO(P) in terms of FO(PM). To construct FO(PM),
we extend T to include a unary predicate for each element in M and a binary
predicate for each relation instance between elements in M . Then, we add con-
straints to ensure that the only first order structure that satisfies the resulting
theory is M itself.

We illustrate the above construction using the class diagram M in Figure 2(a).
Interpreting it as a partial model PM, we have:

FO(PM) = 〈〈σCD, ρCD ∪ ρM〉, ΦCD ∪ ΦM〉

Language Independent Refinement Using Partial Modeling 233

(see Definition 2), where σCD, ρCD and ΦCD are the sorts, predicates and well-
formedness constraints, respectively, for class diagrams, as described in Figure 1.
ρM and ΦM are model M-specific predicates and constraints, defined in Figure 5.
Since FO(PM) extends CD, the FO structures that satisfy FO(PM) are the class
diagrams that satisfy the constraint set ΦM in Figure 5. Assume N is such a class
diagram. The constraint Complete ensures that N contains no more elements or
relation instances than M. Now consider the class Car in M. Exists says that N
contains at least one class called Car, Unique – that it contains no more than
one class called Car, and Distinct – that the class called Car is different from the
class called Vehicle. Similar sentences are given for class Vehicle and super
instance CsuperV. The constraint Type ensures that CsuperV has correctly typed
endpoints. These constraints ensure that FO(PM) has exactly one concretization
and thus N = M.

Relaxing the constraints ΦM allows additional concretizations and represents
a type of uncertainty. For example, if we are uncertain about whether M is com-
plete, we can express this by removing the Complete clause from ΦM and thereby
allow concretizations to be class diagrams that extend M. Note that keeping or
removing the Complete clause corresponds exactly to the semantics of the an-
notations comp and inc in OW partiality, as defined in Section 2. Similarly,
expressing each of May, Abs and Var partiality corresponds to relaxing ΦM by
removing Exists, Unique and Distinct clauses, respectively, for particular atoms.
For example, removing the Exists clause ∃x : Class · Car(x) is equivalent to
marking the class Car with m(i.e., Car may or may not exist), while removing
the Distinct clause ∀x : Class · Car(x) ⇒ ¬Vehicle(x) is equivalent to marking
the class Car with v(i.e., Car is a variable that can merge with Vehicle).

Figure 6 generalizes the construction in Figure 5 to an arbitrary ground theory
FO(PM). ρM contains a unary predicate E for each element E in M and a binary
predicate Rij for instance R(Ei, Ej) of relation R in M . Each of the atom-specific
clauses is indexed by an atom in model M to which it applies (e.g., ExistsE

applies to element E). For simplicity, we do not show the element types of the
quantified variables.

We now formalize our earlier observation about relaxing ΦM :

Observation 3 Given a ground partial model PM with FO(PM) = 〈〈σT , ρT ∪
ρM 〉, ΦT ∪ ΦM 〉 constructed as in Figure 5, any relaxation of the constraint ΦM

introduces additional concretizations into Mod(FO(PM)) and represents a case
of uncertainty about M.

This observation gives us a general and sound approach for defining the semantics
of a partial model. For partial model P with base model M , we define FO(P)
as FO(PM) with ΦM replaced by a sentence ΦP , where ΦM ⇒ ΦP .

Application to MAVO. Table 1 applies the general construction in Figure 6
to the individual MAVO partiality annotations by identifying which clauses to
remove from ΦM for each annotation. For example, the annotation (s)E corre-
sponds to removing the clause UniqueE. Note that nothing in the construction

234 R. Salay, M. Famelis, and M. Chechik

ρM contains the unary predicates Car(Class), Vehicle(Class) and the binary predicate
CsuperV(Class, Class).

ΦM contains the following sentences:
(Complete) (∀x : Class · Car(x) ∨ Vehicle(x))∧

(∀x, y : Class · super(x, y) ⇒ CsuperV(x, y)) ∧ ¬∃x · Datatype(x) ∧ . . .
Car:

(Exists) ∃x : Class · Car(x)
(Unique) ∀x, x′ : Class · Car(x) ∧ Car(x′) ⇒ x = x′

(Distinct) ∀x : Class · Car(x) ⇒ ¬Vehicle(x)
similarly for Vehicle

CsuperV:
(Type) ∀x, y : Class · CsuperV(x, y) ⇒ Car(x) ∧ Vehicle(y)
(Exists) ∀x, y : Class · Car(x) ∧ Vehicle(y) ⇒ CsuperV(x, y)
(Unique) ∀x, y, x′, y′ : Class · CsuperV(x, y) ∧ CsuperV(x′, y′) ⇒ x = x′ ∧ y′ = y

Fig. 5. Example constraints for class diagram M in Figure 2(a)

of FO(PM) or in Table 1 is dependent on any specific features of the metamodel
and hence the semantics of MAVO is language-independent.

The semantics for combined annotations is obtained by removing the clauses
for each annotation – e.g., the annotation (sv)E removes the clause UniqueE and
the clauses DistinctEE′ and DistinctEE′ for all elements E′.

The MAVO partiality types represent special cases of relaxing the ground
sentence ΦM by removing clauses but, as noted in Observation 3, any sentence
weaker than ΦM could be used to express partiality of Mas well. This suggests a
natural way to enrich MAVO to express more complex types: augment the basic
annotations with sentences that express additional constraints. We illustrate this
using examples based on model P1 in Figure 3. The statement “if TimeMachine is
a Vehicle, then Hovercraft must be one as well” imposes a further constraint
on the concretizations of P1. Using FO(P1), we can express this in terms of the
Exists constraints for individual atoms: ExistsTimeMachine ⇒ ExistsHovercraft ∧
ExistsHsuperV. Thus, propositional combinations of Exists sentences allow richer
forms of the May partiality to be expressed.

Richer forms of the Abs partiality can be expressed by putting additional
constraints on “s”-annotated atoms to further constrain the kinds of sets to
which they can be concretized. For example, we can express the multiplicity

Table 1. Semantics of MAVO Partiality Annotations

MAVO annotation Clause(s) to remove from ΦM

inc Complete

(m)E ExistsE

(s)E UniqueE

(v)E DistinctEE′ and DistinctE′E for all E′, E′ �= E
(m)Rij ExistsRij

(s)Rij UniqueRij

(v)Rij DistinctRijR
′
kl

and DistinctR′
kl

Rij
for all R′

kl, i �= k, j �= l

Language Independent Refinement Using Partial Modeling 235

Input: model M of type T = 〈〈σT , ρT 〉, ΦT 〉
Output: FO(PM)
FO(PM) = 〈〈σT , ρT ∪ ρM 〉, ΦT ∪ ΦM 〉
ρM = ρe ∪ ρr, where ρe = {E(·)|E is an element of M}

and ρr = {Rij(·, ·)|Rij is an instance of relation R ∈ ρT in M}
ΦM contains the following sentences:

(Complete) (∀x · ∨
E∈ρe

E(x)) ∧ (
∧

R∈ρT

∀x, y · R(x, y) ⇒ ∨
Rij∈ρr

Rij(x, y))

for each element E in M :
(ExistsE) ∃x · E(x)
(UniqueE) ∀x, y · E(x) ∧ E(y) ⇒ x = y∧
E′∈ρe,E′ �=E

(DistinctEE′) ∀x · E(x) ⇒ ¬E′(x)

for each relation instance Rij in M :
(TypeRij) ∀x, y · Rij(x, y) ⇒ Ei(x) ∧ Ej(y)
(ExistsRij) ∀x, y · Ei(x) ∧ Ej(y) ⇒ Rij(x, y)
(UniqueRij) ∀x, y, x′, y′ · Rij(x, y) ∧ Rij(x

′, y′) ⇒ x = x′ ∧ y = y′∧
R′

kl
∈ρr,i�=k,j �=l

(DistinctRijR
′
kl
) ∀x, y · Rij(x, y) ⇒ ¬R′

kl(x, y)

Fig. 6. Construction of FO(PM)

constraint that there can be at most two sizeRelated attributes by replacing
the constraint UniquesizeRelated with the following weaker one:

∀x, x′, x′′ · sizeRelated(x) ∧ sizeRelated(x′) ∧ sizeRelated(x′′)
⇒ (x = x′ ∨ x = x′′ ∨ x′ = x′′)

Of course, this can be easily expressed in a language with sets and counting, like
OCL. Similar enrichments of the Var and the OW partialities can be produced
by an appropriate relaxation of the Distinct and Complete constraints, respec-
tively. These enrichments of MAVO remain language-independent because they
do not make reference to the metamodel-specific features.

Refinement of MAVO Partiality. We have defined partial model semantics
in terms of relaxations to ΦM . Below, we define refinement in terms of these as
well. Specifically, assume we have relaxations ΦP ′ and ΦP for partial models P ′

and P , respectively. In the special case that their base models are equivalent,
we have P ′ refines P iff [P ′] ⊆ [P] and this holds iff ΦP ′ ⇒ ΦP . However,
when the base models are different, the sentences are incomparable because they
are based on different signatures. The classic solution to this kind of problem
(e.g., in algebraic specification) is to first translate them into the same signature
and then check whether the implication holds in this common language (e.g.,
see [5]). In our case, we can use a refinement mapping R between the base
models, such as the one in Figures 3 and 4, to define a function that translates
ΦP to a semantically equivalent sentence R(ΦP) over the signature ΣP ′ . Then,
P ′ refines P iff ΦP ′ ⇒ R(ΦP). We omit the details of this construction due to
space limitations; however, interested readers can look at the Alloy model for
Experiment 6 in Section 5 for an example of this construction.

236 R. Salay, M. Famelis, and M. Chechik

Table 2. Results of experiments using Alloy

Exp. # Question Answer Scope Time (ms)
1 Does the ground case for P1 have a single instance? Yes 7 453
2 Does the ground case for P2 have a single instance? Yes 6 366
3 Is P1 extended with Q1 consistent? Yes 4 63
4 Is P1 extended with Q1 and Q2 consistent? No 20 64677
5a Is P1 extended with Q1 and Q3 consistent? Yes 4 64
5b Is P1 extended with Q1 and ¬Q3 consistent? Yes 5 151
6 Is P2 a correct refinement of P1? Yes 10 9158

5 Tool Support and Preliminary Evaluation

In order to show the feasibility of using the formalization in Section 4 for auto-
mated reasoning, we developed an Alloy [8] implementation for MAVO partiality.
We used a Python script to generate the Alloy encoding of the clauses (as defined
in Figure 6) for the models P1 and P2, shown in Figure 3. The Alloy models are
available online at http://www.cs.toronto.edu/se-research/fase12.htm.
We then used this encoding for property checking. More specifically, we attempted
to address questions such as “does any concretization of P have the property Q?”
and “do all concretizations of P have the property Q?”, where Q is expressed in
FOL. The answer to the former is affirmative iff ΦP ∧ Q is satisfiable, and to
the latter iff ΦP ∧ ¬Q is not satisfiable. We also used the tooling to check cor-
rectness of refinement, cast as a special case of property checking. As discussed
in Section 4, P ′ refines P iff ΦP ′ ⇒ R(ΦP) where R translates ΦP according to
the refinement mapping. Thus, the refinement is correct iff ΦP ′ ∧¬R(ΦP) is not
satisfiable.

Table 2 lists the experiments we performed, using the following properties:

Q1 : Vehicle has at most two direct subclasses.
Q2 : Every class, except C1 is a direct subclass of C1.
Q3 : There is no multiple inheritance.

Experiments (1) and (2) verify our assumption that the encoding described in
Figure 6 admits only a single concretization. Although any pure MAVO model
is consistent by construction, Experiments (3) and (4) illustrate that this is
not necessarily the case when additional constraints are added. First, P1 is ex-
tended with Q1 and shown to be consistent. However, extending P1 with both
Q1 and Q2 leads to an inconsistency. This happens because Q2 forces (a) C1 to
be merged with Vehicle, and (b) TimeMachine to be its subclass, raising its
number of direct subclasses to 3. This contradicts Q1, and therefore, P1∧Q1∧Q2
is inconsistent. Note that Experiment (4) takes longer than the others because
showing inconsistency requires that the SAT solver enumerate all possible mod-
els within the scope bounds. In Experiment (5), we asked whether the version of
P1 extended with Q1 satisfies property Q3 and found that this is the case in some

Language Independent Refinement Using Partial Modeling 237

(Experiment 5a) but not all (Experiment 5b) concretizations. Finally, in Exper-
iment (6) we verified the refinement described in Figure 3, using the mapping in
the figure to construct a translation of ΦP1, as discussed in Section 4.

Our experiments have validated the feasibility of using our formalization for rea-
soning tasks. In our earlier work [4], we have done a scalability study for property
checking using a SAT solver for May partiality (with propositional extensions).
The study showed that, compared to explicitly handling the set of concretizations,
our approach offers significant speedups for large sets of concretizations.We intend
to do similar scalability studies for all MAVO partialities in the future.

6 Related Work

In this section, we briefly discuss other work related to the types of partiality
introduced in this paper.

A number of partial behavioural modeling formalisms have been studied in
the context of abstraction (e.g., for verification purposes) or for capturing early
design models [12]. The goal of the former is to represent property-preserving
abstractions of underlying concrete models, to facilitate model-checking. For ex-
ample, Modal Transition Systems (MTSs) [9] allow introduction of uncertainty
about transitions on a given event, whereas Disjunctive Modal Transition Sys-
tems (DMTSs) [10] add a constraint that at least one of the possible transitions
must be taken in the refinement. Concretizations of these models are Labelled
Transition Systems (LTSs). MTSs and DMTSs are results of a limited applica-
tion of May partiality. Yet, the MTS and DMTS refinement mechanism allows
resulting LTS models to have an arbitrary number of states which is differ-
ent from the treatment provided in this paper, where we concentrated only on
“structural” partiality and thus state duplication was not applicable.

In another direction, Herrmann [7] studied the value of being able to express
vagueness within design models. His modeling language SeeMe has notational
mechanisms similar to OW and May partiality; however, there is no formal
foundation for these mechanisms.

Since models are like databases capturing facts about the models’ domain,
work on representing incomplete databases is relevant. Var partiality is tradi-
tionally expressed in databases by using null values to represent missing infor-
mation. In fact, our ideas in this area are inspired by the work on data exchange
between databases (e.g., [2]) which explicitly uses the terminology of “variables”
for nulls and “constants” for known values. An approach to the OW partiality is
the use of the Local Closed World Assumption [1] to formally express the places
where a database is complete.

Finally, our heavy reliance on the use of FOL as the means to formalize meta-
models and partial models gives our work a strong algebraic specification flavor
and we benefit from this connection. In particular, partial model refinement is
a kind of specification refinement [11]. Although our application is different –
dealing with syntactical uncertainty in models rather than program semantics –
we hope to exploit this connection further in the future.

238 R. Salay, M. Famelis, and M. Chechik

7 Conclusion and Future Work

The key observation of our work is that many types of partiality information and
their corresponding types of refinement are actually language-independent and
thus can be added to any modeling language in a uniform way. In this paper, we
defined a formal approach for doing so in any metamodel-based language by using
model annotations with well-defined semantics. This allows us to incorporate
partiality across different languages in a consistent and complete way, as well
as to develop language-independent tools for expressing, reasoning with, and
refining partiality within a model. We then used this approach to define four
types of partiality, each addressing a distinctly different pragmatic situation
in which uncertainty needs to be expressed within a model. We combined all
four and illustrated their language independence by showing how they can be
applied to class diagrams and to sequence diagrams. Finally, we demonstrated
the feasibility of tool support for our partiality extensions by describing an Alloy-
based implementation of our formalism and various reasoning tasks using it.

The investigation in this paper suggests several interesting directions for fur-
ther research. First, since adding support for partiality lifts modeling languages
to partial modeling languages, it is natural to consider whether a similar ap-
proach could be used to lift model transformations to partial model transfor-
mations. This would allow partiality to propagate through a transformation
chain during model-driven development and provide a principled way of apply-
ing transformations to models earlier in the development process, when they
are incomplete or partial in other ways. Second, it would be natural to want
to interleave the partiality-reducing refinements we discussed in this paper with
other, language-specific, refinement mechanisms during a development process.
We need to investigate how these two types of refinements interact and how they
can be soundly combined. Third, since modelers often have uncertainty about
entire model fragments, it is natural to ask how to extend MAVO annotation to
this case. Applying May partiality to express a design alternative is straightfor-
ward – a fragment with annotation m may or may not be present; however, the
use of the other MAVO types is less obvious and deserves further exploration.
Finally, although we have suggested scenarios in which particular MAVO an-
notations would be useful, we recognize that the methodological principles for
applying (and refining) partial models require a more thorough treatment. We
are currently developing such a methodology.

References

1. Cortés-Calabuig, A., Denecker, M., Arieli, O.: On the Local Closed-World Assump-
tion of Data-Sources. J. Logic Programming (2005)

2. Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data Exchange: Semantics and Query
Answering. Theoretical Computer Science 336(1), 89–124 (2005)

3. Famelis, M., Ben-David, S., Chechik, M., Salay, R.: Partial Models: A Position
Paper. In: Proc. of MoDeVVa 2011, pp. 1–6 (2011)

Language Independent Refinement Using Partial Modeling 239

4. Famelis, M., Salay, R., Chechik, M.: Partial Models: Towards Modeling and Rea-
soning with Uncertainty (2011) (submitted)

5. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. Journal of the ACM (JACM) 39(1), 95–146 (1992)

6. Haugen, O., Husa, K.E., Runde, R.K., Stolen, K.: STAIRS: Towards Formal Design
with Sequence Diagrams. SoSyM 4(4), 355–357 (2005)

7. Herrmann, T.: Systems Design with the Socio-Technical Walkthrough. In: Hndbk
of Research on Socio-Technical Design and Social Networking Systems, pp. 336–351
(2009)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

9. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Proc. of LICS 1988,
pp. 203–210 (1988)

10. Larsen, P.: The Expressive Power of Implicit Specifications. In: Leach Albert, J.,
Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 204–216.
Springer, Heidelberg (1991)

11. Sannella, D., Tarlecki, A.: Essential Concepts of Algebraic Specification and Pro-
gram Development. Formal Aspects of Computing 9(3), 229–269 (1997)

12. Uchitel, S., Chechik, M.: Merging Partial Behavioural Models. In: FSE 2004,
pp. 43–52 (2004)

13. Wei, O., Gurfinkel, A., Chechik, M.: On the Consistency, Expressiveness, and Pre-
cision of Partial Modeling Formalisms. J. Inf. Comput. 209(1), 20–47 (2011)

A Conceptual Framework for Adaptation�

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1,
Alberto Lluch Lafuente2, and Andrea Vandin2

1 Dipartimento di Informatica, Università di Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. In this position paper we present a conceptual vision of adap-
tation, a key feature of autonomic systems. We put some stress on the role
of control data and argue how some of the programming paradigms and
models used for adaptive systems match with our conceptual framework.

Keywords: Adaptivity, autonomic systems, control data, MAPE-K con-
trol loop.

1 Introduction

Self-adaptive systems have been widely studied in several disciplines ranging from
Biology to Economy and Sociology. They have become a hot topic in Computer
Science in the last decade as a convenient solution to the problem of mastering the
complexity of modern software systems, networks and architectures.

According to a widely accepted black-box or behavioural definition, a software
system is called “self-adaptive” if it can modify its behaviour as a reaction to
a change in its context of execution, understood in the widest possible way,
including both the external environment and the internal state of the system
itself. Typically the changes of behaviour are aimed at improving the degree
of satisfaction of some either functional or non-functional requirements of the
system, and self-adaptivity is considered a fundamental feature of autonomic
systems, that can specialize to several other self-* properties (see e.g. [9]).

An interesting taxonomy is presented in [14], where the authors stress the highly
interdisciplinary nature of the studies of such systems. Indeed, just restricting to
the realm of Computer Science, active research on self-adaptive systems is carried
out in Software Engineering, Artificial Intelligence, Control Theory, and Network
and Distributed Computing, among others. However, as discussed in §3, only a
few contributions address the foundational aspects of such systems, including their
semantics and the use of formal methods for analysing them.

In this paper we propose an answer to very basic questions like “when is
a software system adaptive?” or “how can we identify the adaptation
logic in an adaptive system?”. We think that the limited effort placed in the
investigation of the foundations of (self-)adaptive software systems might be due
to the fact that it is not clear what are the characterizing features that distinguish

� Research supported by the European Integrated Project 257414 ASCENS.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 240–254, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Conceptual Framework for Adaptation 241

such systems from plain (“non-adaptive”) ones. In fact, almost any software
system can be considered self-adaptive, according to the black-box definition
recalled above, since any system of a reasonable size can modify its behaviour
(e.g., by executing different conditional branches) as a reaction to a change in
the context of execution (like the change of variables or parameters).

These considerations show that the above behavioural definition of adaptivity
is not useful in pinpointing adaptive systems, even if it allows to discard many
systems that certainly are not. We should rather take a white-box perspective
which allows us to inspect, to some extent, the internal structure of a system:
we aim to have a clear separation of concerns to distinguish the cases where the
changes of behaviour are part of the application logic from those where they
realize the adaptation logic, calling adaptive only systems capable of the latter.

Self-adaptivity is often obtained by enriching the software that implements
the standard application logic with a control loop that monitors the context
of execution, determines the changes to be enforced, and enacts them. Systems
featuring such an architectural pattern, often called MAPE-K [8,9,10], should
definitely be considered as adaptive. But as argued in [4] there are other, simpler
adaptive patterns, like the Internal Feedback Loop pattern, where the control
loop is not as neatly separated from the application logic as in MAPE-K, and
the Reactive Adaptation pattern, where the system just reacts to events from
the environment by changing its behaviour. Also systems realizing such patterns
should be captured by a convincing definition of adaptivity, and their adaptation
logic should be exposed and differentiated from their application logic.

Other software systems that can easily be categorized as (self-)adaptive are
those implemented with programming languages explicitely designed to express
adaptation features.Archetypal examples are languages belonging to the paradigm
of Context Oriented Programming, where the contexts of execution are first-class
citizens [15], or to that of Dynamic Aspect Oriented Programming. Nevertheless,
it is not the programming language what makes a program adaptive or not: truly
adaptive systems can be programmed in traditional languages, exactly like object-
oriented systems can, with some effort, in traditional imperative languages.

The goal of this position paper is to present a conceptual framework for adapta-
tion, proposing a simple structural criterion to portray adaptivity (§2).We discuss
how systems developed according to mainstream methodologies are shown to be
adaptive according to our definition (§3), and explain how to understand adaptiv-
ity in many computational formalisms (§4). We sketch a first formalization of our
concepts (§5). Finally, we discuss future developments of these ideas (§6).

2 When is a Software Component Adaptive?

Software systems are made of one or more processes, roughly programs in ex-
ecution, possibly interacting among themselves and with the environment in
arbitrarily complex ways. Sometimes an adaptive behaviour of such a complex
system may emerge from the interactions among its components, even if the
components in isolation are not adaptive. However, we do not discuss this kind

242 R. Bruni et al.

of adaptivity here: we focus instead on the adaptivity of simple components, for
which we introduce the following conceptual framework.

According to a traditional paradigm, a program governing the behaviour of
a component is made of control and data: these are two conceptual ingredients
that in presence of sufficient resources (like computing power, memory or sensors)
determine the behaviour of the component. In order to introduce adaptivity in
this framework, we require to make explicit the fact that the behaviour of a com-
ponent depends on some well identified control data. At this level of abstraction
we are not concerned with the way the behaviour of the component is influenced
by the control data, nor with the structure of such data.

Now, we define adaptation as the run-time modification of the con-
trol data. From this basic definition we derive several others. A component
is adaptable if it has a distinguished collection of control data that
can be modified at run-time. Thus if either the control data are not iden-
tified or they cannot be modified, then the system is not adaptable. Further, a
component is adaptive if it is adaptable and its control data are mod-
ified at run-time, at least in some of its executions. And a component is
self-adaptive if it is able to modify its own control data at run-time.

Given the intrinsic complexity of adaptive systems, this conceptual view of
adaptation might look like an oversimplification. Our goal is to show that instead
it enjoys most of the properties that one would require from such a definition.

Any definition of adaptivity should face the problem that the judgement
whether a system is adaptive or not is often subjective. Indeed, one can always
argue that whatever change in the behaviour the system is able to manifest is
part of the application logic, and thus should not be deemed as “adaptation”.
From our perspective, this is captured by the fact that the collection of control
data of a component can be defined, at least in principle, in an arbitrary way,
ranging from the empty set (“the system is not adaptable”) to the collection of
all the data of the program (“any data modification is an adaptation”).

As a concrete example, we may ask ourselves whether the execution of a sim-
ple branching statement, like if tooHeavy then askForHelp else push can be
interpreted as a form of adaptation. The answer is: it depends.

Suppose that the statement is part of the software controlling a robot, and
that the boolean variable tooHeavy is set according to the value returned by
a sensor. If tooHeavy is considered as a standard program variable, then the
change of behaviour caused by a change of its value is not considered “adapta-
tion”. If tooHeavy is instead considered as control data, then its change triggers
an adaptation. Summing up, our question can be answered only after a clear
identification of the control data.

Ideally, a sensible collection of control data should be chosen to enforce a
separation of concerns, allowing to distinguish neatly, if possible, the activities
relevant for adaptation (those that affect the control data) from those relevant
for the application logic only (that should not modify the control data). We will
come back to this methodological point along §3 and §4.

A Conceptual Framework for Adaptation 243

Of course, any computational model or programming language can be used to
implement an adaptive system, just by identifying the part of the data that gov-
erns the behaviour. Consequently, the nature of control data can vary considerably,
ranging from simple configuration parameters to a complete representation of the
program in execution that can be modified at run-time. This latter scenario is typi-
cal of computationalmodels that supportmeta-programmingor reflective features
even if, at least in principle, it is possible for any Turing-complete formalism. We
shall discuss in §4 how adaptivity, as defined above, can be obtained in systems im-
plemented according to several computational formalisms. Before that, as a proof
of concept, we discuss in the next section how several well accepted architectures
of adaptive systems can be cast in our framework.

3 Architectures, Patterns and Reference Models for
Adaptivity

Several contributions to the literature describe possible architectures or reference
models for adaptive systems (or for autonomic systems, for which self-adaptivity is
one of the main features). In this section we survey some of such proposals, stress-
ing for each of them how a reasonable notion of control data can be identified.

Fig. 1. Control data in MAPE-K

According to the MAPE-K architecture, a
widely accepted reference model introduced
in a seminal IBM paper [8], a self-adaptive
system is made of a component implementing
the application logic, equipped with a control
loop that monitors the execution through suit-
able sensors, analyses the collected data, plans
an adaptation strategy, and finally executes
the adaptation of the managed component
through some effectors; all the phases of the
control loop access a shared knowledge reposi-
tory. Adaptation according to this model nat-
urally fits in our framework with an obvious choice for the control data: these are
the data of the managed component which are either sensed by the monitor or
modified by the execute phase of the control loop. Thus the control data repre-
sent the interface exposed by the managed component through which the control
loop can operate, as shown in Fig. 1. The managed component is adaptable, and
the system made of both the component and the control loop is self-adaptive.

The construction can be iterated, as the control loop itself could be adaptable.
As an example think of a component which follows a plan to perform some tasks.
It can be adaptable, having a manager which devises new plans according to
changes in the context or in the component’s goals. In turn, this planning compo-
nent might itself be adaptable, with another component that controls and adapts
its planning strategy, for instance determining the new strategy on the basis of
a tradeoff between optimality of the plans and computational cost. In this case,
the planning component (that realizes the control loop of the base component)

244 R. Bruni et al.

Fig. 2. Tower of adaptation

Fig. 3. External (top) and internal (bottom) patterns

Fig. 4. Reactive pattern

exposes itself some control data (conceptually part of its knowledge), thus en-
abling a hierarchical composition that allows one to build towers of adaptive
components (Fig. 2).

Another general referencemodel has beenproposed in [1], where (computational)
reflection is promoted as a necessary criterion for any self-adaptive software
system. Reflection implies the presence, besides of base-level components and com-
putations, also of meta-level subsystems and meta-computations that act on a
meta-model. Meta-computations can inspect and modify the meta-model that is
causally connected to the base-level system, so that changes in one are reflected
in the other. The authors argue that most methodologies and frameworks pro-
posed for the design and development of self-adaptive systems rely on some form
of reflection, even if this is not always made explicit. Building on these consider-
ations, in [18] they introduce FORMS, a formal reference model that provides
basic modeling primitives and relationships among them, suitable for the design
of self-adaptive systems. Such primitives allow one to make explicit the presence
of reflective (meta-level) subsystems, computations and models.

The goals of [1] are not dissimilar from ours, as they try to capture the essence
of self-adaptive systems, identifying it in computational reflection; recall anyway
that with our notion of control data we aimed at capturing the essence of the sole
adaptability. We argue that in self-adaptive systems conforming to this model it
should be relatively easy to identify the relevant control data. It is pretty clear

A Conceptual Framework for Adaptation 245

that in reflective systems containing an explicit meta-model of the base-level sys-
tem (like those conforming to the architecture-based solution proposed in [12]),
suchmeta-model plays exactly the role of control data. Nevertheless, theFORMS

modeling primitives can be instantiated and composed in a variety of ways (one
for modeling MAPE-K and one for a specific application are discussed in [18]); in
general in any such reflective system the control data could be identified at the
boundaries between the meta-level and the base-level components.

In other frameworks for the design of adaptive systems (like [19]) the base-
level system has a fixed collection of possible behaviours (or behavioural models),
and adaptation consists of passing from one behaviour to another one, for exam-
ple for the sake of better performance, or to ensure, in case of partial failure, the
contractually agreed functionalities, even if in a degraded form. The approach
proposed in [19] emphasizes the use of formal methods to validate the devel-
opment of adaptive systems, for example by requiring the definition of global
invariants for the whole system and of local requirements for the “local” be-
haviours. Specifically, it represents the local behavioural models with coloured
Petri nets, and the adaptation change from one local model to another with
an additional Petri net transition (labeled adapt). Such adapt transitions de-
scribe how to transform a state (a set of tokens) in the source Petri net into a
state in the target model, thus providing a clean solution to the state transfer
problem common to these approaches. In this context, a good choice of control
data would be the Petri net that describes the current base-level computation,
which is replaced during an adaptation change by another local model. Instead,
the alternative and pretty natural choice of control data as the tokens that are
consumed by the adapt transition would be considered poor, as it would not
separate clearly the base-level from the meta-level computations.

In the architectural approach of [2], a system specification has a two-layered
architecture to enforce a separation between computation and coordination. The
first layer includes the basic computational components with well-identified inter-
faces, while the second one is made of connectors (called coordination contracts)
that link the components appropriately in order to ensure the required system’s
functionalities. Adaptation in this context is obtained by reconfiguration, which
can consist of removal/addition/replacement of both base components and con-
nectors among them. The possible reconfigurations of a system are described
declaratively with suitable rules, grouped in coordination contexts : such rules
can be either invoked explicitly, or triggered automatically by the verification of
certain conditions. In this approach, as adaptation is identified with reconfigu-
ration, the control data consist of the whole two-layered architecture, excluding
the internal state of the computational components.

More recently, a preliminary taxonomy of adaptive patterns has been pro-
posed [4]. Two of these capture typical control loop patterns such as the internal
and the external ones. Like MAPE-K, also these patterns can be cast easily in
our framework (see Fig. 3): in the internal control loop pattern, the manager
is a wrapper for the managed component and it is not adaptable, while in the
external control loop pattern the manager is an adaptable component that is

246 R. Bruni et al.

connected with the managed component. The third adaptive pattern describes
reactive components (see Fig. 4). Such components are capable to modify their
behavior in reaction to an external event, without any control loop. In our con-
ceptual framework, a reactive system of this kind is (self-)adaptive if we consider
as control data the variables that are modified by sensing the environment.

Let us conclude by considering two of the few contributions that propose a
formal semantics for adaptive systems. In [13] the author identifies suitable se-
mantical domains aimed at capturing the essence of adaptation. The behaviour
of a system is formalized in terms of a category of specification carrying programs
(also called contracts), i.e. triples made of a program, a specification and a satis-
faction relation among them; arrows between contracts are refinement relations.
Contracts are equipped with a functorial semantics, and their adaptive version is
obtained by indexing the semantics with respect to a set of stages of adaptation,
yielding a coalgebric presentation potentially useful for further generalizations.
At present it is not yet clear whether a notion of control data could fit in this
abstract semantical framework or not: this is a topic of current investigation.

Finally, [3] proposes a formal definition of when a system exposes an adaptive
behaviour with respect to a user. A system is modeled as a black-box component
that can interact with the user and with the environment through streams of data.
A system is assumed to be deterministic, thus if it reacts non-deterministically
to the input stream provided by the user, this is interpreted as an evidence of
the fact that the system adapted its behaviour after an interaction with the
environment. Different kinds of adaptation are considered, depending on how
much of the interaction between the environment and the system can be observed
by the user. Even if formally crisp, this definition of adaptivity is based on strong
assumptions (e.g. systems are deterministic, all adaptive systems are interactive)
that can restrict considerably its range of applicability. For example, it would
not classify as adaptive a system where a change of behaviour is triggered by an
interaction with the user.

4 Adaptivity in Various Computational Paradigms

As observed in §2 and §3, the nature of control data can vary considerably de-
pending both on the degree of adaptivity of the system and on the nature of
the computational formalisms used to implement it. Examples of control data
include configuration variables, rules (in rule-based programming), contexts (in
context-oriented programming), interactions (in connector-centered approaches),
policies (in policy-driven languages), aspects (in aspect-oriented languages), mon-
ads and effects (in functional languages), and even entire programs (in models
of computation exhibiting higher-order or reflective features).

We outline some rules of thumb for the choice of control data within a few
computational formalisms that are suited for implementing adaptive systems.

Context-Oriented Programming. Many programming languages have been
promoted as suitable for programming adaptive systems [7]. A recent exam-
ple is context-oriented programing which has been designed as a convenient

A Conceptual Framework for Adaptation 247

paradigm for programming autonomic systems in general [15]. The main idea
of this paradigm is that the execution of a program depends on the run-time
environment under which the program is running.

Many languages have been extended to adopt the context-oriented paradigm.
We mention among others Lisp, Python, Ruby, Smalltalk, Scheme, Java, and
Erlang. The notion of context varies from approach to approach and in general
it might refer to any computationally accessible information. A typical example
is the environmental data collected from sensors. In many cases the universe of
all possible contexts is discretised in order to have a manageable, abstract set of
fixed contexts. This is achieved, for instance, by means of functions mapping the
environmental data into the set of fixed contexts. Code fragments like methods
or functions can then be specialized for each possible context. Such chunks of
behaviours associated with contexts are called variations.

The context-oriented paradigm can be used to program autonomic systems
by activating or deactivating variations in reaction to context changes. The key
mechanism exploited here is the dynamic dispatching of variations. When a piece
of code is being executed, a sort of dispatcher examines the current context of
the execution in order to decide which variation to invoke. Contexts thus act as
some sort of possibly nested scopes. Indeed, very often a stack is used to store
the currently active contexts, and a variation can propagate the invocation to
the variation of the enclosing context.

The key idea to achieve adaptation along the lines of the MAPE-K framework
is for the manager to control the context stack (for example, to modify it in
correspondence with environmental changes) and for the managed component
to access it in a read-only manner. Those points of the code in which the managed
component queries the current context stack are called activation hooks.

Quite naturally, context-oriented programming falls into our framework by
considering the context stack as control data. With this view, the only difference
between the approach proposed in [15] and our ideas is that the former suggests
the control data to reside within the manager, while we locate the control data
in the interface of the managed component.

Declarative Programming. Logic programming and its variations are one of
the most successful declarative programming paradigms. In the simplest variant,
a logic program consists of a set of Horn clauses and, given a goal, a computation
proceeds by applying repeatedly SLD-resolution trying to reach the empty clause
in order to refuse the initial goal.

Most often logic programming interpreters support two extra-logical predi-
cates, assert and retract, whose evaluation has the effect of adding or removing
the specified Horn clause from the program in execution, respectively, causing
a change in its behaviour. This is a pretty natural form of adaptation that fits
perfectly in our framework by considering the same clauses of the program as
control data. More precisely, this is an example of self-adaptivity, because the
program itself can modify the control data.

248 R. Bruni et al.

Rule-based programming is another example of a very successful and widely
adopted declarative paradigm, thanks to the solid foundations offered by rule-
based machineries like term and graph rewriting. As many other programming
paradigms, several rule-based approaches have been adapted or directly applied
to adaptive systems (e.g. graph transformation [6]). Typical solutions include
dividing the set of rules into those that correspond to ordinary computations and
those that implement adaptation mechanisms, or introducing context-dependent
conditions in the rule applications (which essentially corresponds to the use
of standard configuration variables). The control data in such approaches are
identified by the above mentioned separation of rules, or by the identification
of the context-dependent conditions. Such identification is often not completely
satisfactory and does not offer a neat and clear separation of concerns.

The situation is different when we consider rule-based approaches which enjoy
higher-order or reflection mechanisms. A good example is logical reflection, a key
feature of frameworks like rewriting logic. At the ground level, a rewrite theory
R (e.g. software module) let us infer a computation step R (t→ t′ from a term
(e.g. program state) t into t′. A universal theory U let us infer the computation
at the meta-level, where theories and terms are meta-represented as terms: U (
(R, t)→ (R, t′). Since U itself is a rewrite theory, the reflection mechanism can
be iterated yielding what is called the tower of reflection. This mechanism is
efficiently supported by Maude [5] and has given rise to many interesting meta-
programming applications like analysis and transformation tools.

In particular, the reflection mechanism of rewriting logic has been exploited
in [11] to formalize a model for distributed object reflection, suitable for the spec-
ification of adaptive systems. Such model, suggestively called Reflective Russian
Dolls (RRD), has a structure of layered configurations of objects, where each
layer can control the execution of objects in the lower layer by accessing and
executing the rules in their theories, possibly after modifying them, e.g., by in-
jecting some specific adaptation logic in the wrapped components. Even at this
informal level, it is pretty clear that the RRD model falls within our conceptual
framework by identifying as “control data” for each layer the rules of its theory
that are possibly modified by the upper layer. Note that, while the tower of
reflection relies on a white-box adaptation, the russian dolls approach can deal
equally well with black-box components, because wrapped configurations can
be managed by message passing. The RRD model has been further exploited
for modeling policy-based coordination [16] and for the design of PAGODA, a
modular architecture for specifying autonomous systems [17].

Models of Concurrency. Languages and models emerged in the area of con-
currency theory are natural candidates for the specification and analysis of au-
tonomic systems. We inspect some (most) widely applied formalisms to see how
the conceptual framework can help us in the identification of the adaptation
logic within each model. Petri nets are without doubts the most popular model
of concurrency, based on a set of repositories, called places, and a set of activ-
ities, called transitions. The state of a Petri net is called a marking, that is a

A Conceptual Framework for Adaptation 249

distribution of resources, called tokens, among the places of the net. A transi-
tion is an atomic action that consumes several tokens and produces fresh ones,
possibly involving several repositories at once. Since the topology of the net is
static, there is little margin to see a Petri net as an adaptive component: the
only possibility is to identify a subset of tokens as control data. Since tokens
are typed by repositories, i.e. places, the control data of a Petri net must be a
subset CP of its “control” places. Tokens produced or removed from places in
CP can enable or inhibit certain activities, i.e. adapt the net. The set CP can
then be used to distinguish the adaptation logic from the application logic: if
a transition modifies the tokens in CP , then it is part of the adaptation logic,
otherwise it is part of the application logic. In particular, the transitions with
self-loops on places in CP are those exploiting directly the control data in the
application.

Mobile Petri nets allow the use of colored tokens carrying place names, so
that the output places of a transition can depend on the data in the tokens it
consumes. In this case, it is natural to include the set of places whose tokens are
used as output parameters from some transition in the set of control places.

Dynamic nets allow for the creation of new subnets when certain transitions
fire, so that the topology of the net can grow dynamically. Such “dynamic” tran-
sitions are natural candidates for the adaptation logic.

Classical process algebras (CCS, CSP, ACP) are certainly tailored to the mod-
eling of reactive systems and therefore their processes easily fall within the hat
of the interactive pattern of adaptation. Instead, characterizing the control data
and the adaptation logic is more difficult in this setting. Since process algebras
are based on message passing facilities over channels, an obvious attempt is to
identify suitable adaptation channels. Processes can then be distinguished on
the basis of their behavior on such channels, but in general this task is more
difficult with respect to Petri nets, because processes will likely mix adaptation,
interaction and computation.

The π-calculus, the join calculus and other nominal calculi, including higher-
order versions (e.g. the HO π-calculus) can send and receive channels names,
realizing some sort of reflexivity at the level of interaction: they have the ability
to communicate transmission media. The situation is then analogous to that of
dynamic nets, as new processes can be spawn in a way which is parametric with
respect to the content of the received messages. If again we follow the distinction
between adaptation channel names from ordinary channel names, then we inherit
all the difficulties described for process algebras and possibly need sophisticated
forms of type systems or flow analysis techniques to separate the adaptation
logic from the application logic.

Paradigms with Reflective, Meta-level or Higher-Order Features. The
same kind of adaptivity discussed for rewriting logic can be obtained in several
other computational paradigms that, offering reflective, meta-level or higher-order
features, allow one to represent programs as first-class citizens. In these cases
adaptivity emerges, according to our definitions, if the program in execution is

250 R. Bruni et al.

represented in the control data of the system, and it is modified during execution
causing changes of behaviour. Prominent examples of such formalisms, besides
rewriting logic, are process calculi with higher-order ormeta-level aspects (e.g. HO
π-calculus, MetaKlaim), higher-order variants of Petri nets andGraphGrammars,
Logic Programming, and programming languages like LISP, Java, C#, Perl and
several others. Systems implemented in these paradigms can realize adaptation
within themselves (self-adaptivity), but in general the program under execution
can be modified also by a different entity, like an autonomic control loop written
in a different language, or in the same language but running in a separate thread.

5 A Formal Model for our Framework

We propose a simple formal model inspired by our conceptual framework. Our
main purpose is to provide a proof-of-concept that validates the idea of develop-
ing formal models of adaptive systems where the key features of our approach (e.g.
control data) are first-class citizens. The model we propose is deliberately simple
and based on well-known computational artifacts, namely transition systems.

Overall Setting. We recall that a labelled transition system (LTS) is defined
as a triple L = (Q,A,→) such that Q is the set of states, A is the alphabet of

action labels and →⊆ Q × A × Q is the transition relation. We write q
a−→ q′

when (q, a, q′) ∈→ and we say that the system can evolve from q to q′ via action
a. Sometimes, a distinguished initial state q0 is also assumed.

The first ingredient is an LTS S that describes the behaviour of a software
component. It is often the case that S is not running in isolation, but within a
certain environment. The second ingredient is a LTS E that models the environ-
ment and that can constrain the computation of S, e.g. by forbidding certain
actions and allowing others. We exploit the following composition operator over
LTSs to define the behaviour of S within E as the LTS S||E.

Definition 1 (Composition). Given two LTSs L1 = (Q1, A1,→1) and L2 =
(Q2, A2,→2), we let L1||L2 denote the labelled transition system (Q1 ×Q2, A1 ∪
A2,→), where (q1, q2)

a−→ (q′1, q
′
2) iff either of the following holds: qi

a−→i q′i for

i = 1, 2 with a ∈ A1∩A2; qi
a−→i q

′
i and q′j = qj for {i, j} = {1, 2} with a ∈ Ai\Aj.

Note that in general it is not required that A1 = A2: the transitions are synchro-
nised on common actions and are asynchronous otherwise.

Since adaptation is usually performed for the sake of improving a component’s
ability to perform some task or fulfill some goal, we provide here a very abstract
but flexible notion of a component’s objective in form of logical formulae. In
particular, we let ψ be a formula (expressed in some suitable logic) characterizing
the component’s goal and we denote with the predicate L |= ψ the property of
the LTS L satisfying ψ. Note that it is not necessarily the case that L |= ψ gives
a yes/no result. For example, we may expect L |= ψ to indicate how well L fits
ψ, or the likelihood that L satisfies ψ. In the more general case, we can assume
that L |= ψ evaluates to a value in a suitable domain. We write L 	|= ψ when L
does not fit ψ, e.g. when the value returned is below a given threshold.

A Conceptual Framework for Adaptation 251

Adaptable vs non-adaptable Components. In a perfect but static world,
one would engineer the software component S by ensuring that S||E |= ψ and
live happily afterwards (if such an S can be found). This is not realistic: the
analyst has only a partial knowledge of E; S must be designed for running in
different environments; the environment may change in an unpredictable manner
by external causes while S is running; the goal ψ may be superseded by a more
urgent goal ψ′ to be accomplished. Roughly, we can expect frequent variations of
E and possible, but less frequent, variations of ψ. The component is adaptable
if it can cope with these changes in E and ψ by changes in its control data.

When S has no control data the component is not adaptable. The other ex-
treme is when the whole S is the control data. Indeed an LTS can be represented
and manipulated in several forms: as a list of transitions or as a transition matrix
when it is finite; as a set of derivation rules when it is finitely specified.

Most appealing is the case when S is obtained as the combination of some
statically fixed control FC and of some control data CD, i.e., S = FC||CD.
Then, adaptavity is achieved by plugging-in a different control data CD′ in
reaction to a change in the environment from E to E′ (with S||E′ 	|= ψ and
FC||CD′||E′ |= ψ), or to a change in the goal from ψ to ψ′ (with S||E 	|= ψ′

and FC||CD′||E |= ψ′), or to a change in both.
We assume here that the managed component FC is determined statically

such that it cannot be changed during execution and that each component may
run under a unique manager CD at any time. However, adaptable components
come equipped with a set of possible alternative managers CD1, ..., CDk that can
be determined statically or even derived dynamically during the computation.

Knowledge-Based Adaptation. Ideally, given FC, E and ψ it should be
possible for the manager to select or construct the best suited control data CDi

(among the available choices) such that FC||CDi||E |= ψ and install it over FC.
However, in real cases E may not be known entirely or may be so large that it is
not convenient to represent it exactly. Therefore, we allow the manager to have
a perfect knowledge of FC and of the goal ψ, but only a partial knowledge of
E, that we denote by O and call the observed environment, or context.

The context O is derived by sensing the component’s run-time environment.
In general we cannot expect O and E to coincide: first, because the manager has
limited sensing capabilities and second because the environment may be changed
dynamically by other components after it has been sensed. Thus, O models the
current perception of the environment from the viewpoint of the component.

The context O is expected to be updated frequently and to be used to adapt
the component. This means that CD is chosen on the basis of FC, O and ψ, and
that the manager can later discover that the real environment E differs from O
in such a way that FC||CD||E 	|= ψ even if FC||CD||O |= ψ. When this occurs,
on the basis of the discovered discrepancies between E and O, a new context O′

can be sensed to approximate E better than O, and O′ can be used to determine
some control data CD′ in such a way that FC||CD′||O′ |= ψ.

252 R. Bruni et al.

Self-adaptive Components. If the available control data strategies CD1, ...,
CDk are finitely many and statically fixed, then some precompilation can be
applied that facilitates the adaptation to the changing environment, as explained
below.

We assume that, given FC, ψ and any CDi we can synthesize the weakest
precondition φi on the environment such that O |= φi implies FC||CDi||O |= ψ.
Then, when the context changes from O to O′, the manager can just look for
some φj such that O′ |= φj and then update the control data to CDj .

Definition 2 (Self-adaptive Component). A self-adaptive component is a
tuple 〈FC, CD, ψ, αψ〉 where FC models the managed component; CD is a family
of control data; ψ is the component’s goal; and αψ : O×CD → CD is a function
that given a context O ∈ O and the current control data CD returns a control
data CD′ such that FC||CD′||O |= ψ.

Enforcing the analogy of LTS based control, a possible formalization of the
control manager of a self-adaptive component can be given as the composition
of two LTSs: a fixed manager FM and the control data MCD defined as follows.
The set of states of FM is CD, and its transitions are labelled by context/goal

pairs: for any CD,CD′, O, ψ we have a transition CD
O,ψ−−→ CD′ iff αψ(O,CD) =

CD′. The LTS MCD has a single state and one looping transition labelled with
the current context O and the current goal ψ. The composition FM ||MCD
constrains the manager to ignore all transitions with labels different from O,ψ.
The manager updates the control data of the managed component according to
its current state. If CD′ is the preferred strategy for O,ψ but CD is the current

strategy, then the manager will move to CD′ and then loop via CD′ O,ψ−−→ CD′.

Stacking Adaptive Components. Pushing our formal model further, by ex-
ploiting the control data of 〈FC, CD, ψ, α〉 we can add one more manager on top
of the self-adaptive component, along the tower of adaptation (§3).

This second-level control manager can change the structure of MCD. For
example, just by changing the label of its sole transition this (meta-)manager
can model changes in the context, in the current goal, or in both.

However, one could argue that also other elements of the self-adaptive com-
ponent could be considered as mutable. For example, one may want to change
at run-time the adaptation strategy αψ that resolves the nondeterminism when
there are several control data that can be successfully used to deal with the
same context O, or even the set of available control data CD, for example as
the result of a learning mechanism. This can be formalized easily by exposing a
larger portion of FM as control data.

Needless to say, also the above meta-manager can be designed as an adaptable
component, formalizing its logic via a suitable LTS that exposes some control
data to be managed by a upper level control manager, and so on.

A Conceptual Framework for Adaptation 253

6 Conclusion and Future Developments

We presented a conceptual framework for adaptation, where a central role is
played by the explicit identification of the control data that govern the adaptive
behavior of components. As a proof of concept we have discussed how systems
conforming to well-accepted adaptive architectures, including IBM’s MAPE-K
and several adaptive patterns, fit into our framework. We have also considered
several representative instances of our approach, focusing on foundational models
of computation and programming paradigms, and we proposed a simple formal-
ization of our concepts based on labelled transition systems.

We plan to exploit our conceptual framework by developing sound design
principles for architectural styles and patterns in order to ensure correctness-
by-design, and guidelines for the development of adaptive systems conforming
to such patterns. For instance, we might think about imposing restrictions on
the instances of our framework such as requiring an explicit separation of the
component implementing the application logic from the component modifying
the control data, in order to avoid self-adaptation within an atomic component
and to guarantee separation of concerns, and an appropriate level of modularity.

We also plan to develop analysis and verification techniques for adaptive sys-
tems grounded on the central role of control data. Data- and control-flow analysis
techniques could be used to separate, if possible, the adaptation logic from the
application logic. This could also reveal the limits of our approach in situations
where the adaptation and the application logics are too entangled.

Another current line of research aims at developing further the reflective, rule-
based approach (§4). Starting from [11] we plan to use the Maude framework
to develop prototype models of archetypal and newly emerging adaptive scenar-
ios. The main idea is to exploit Maude’s meta-programming facilities (based on
logical reflection) and its formal toolset in order to specify, execute and ana-
lyze those prototype models. A very interesting road within this line is to equip
Maude-programmed components with formal analysis capabilities like planning
or model checking based on Maude-programmed tools.

Even if we focused the present work on adaptation issues of individual com-
ponents, we also intend to develop a framework for adaptation of ensembles,
i.e., massively parallel and distributed autonomic systems which act as a sort of
swarm with emerging behavior. This could require to extend our local notion of
control data to a global notion, where the control data of the individual compo-
nents of an ensemble are treated as a whole, which will possibly require some
mechanisms to amalgamate them for the manager, and to project them back-
wards to the components. Also, some mechanisms will be needed to coordinate
the adaptation of individual components in order to obtain a meaningful adap-
tation of the whole system, in the spirit of the overlapping adaptation discussed
in [19].

Last but not least, we intend to further investigate the connection of our work
with the other approaches presented in the literature for adaptive, self-adaptive
and autonomic systems: due to space limitation we have considered here just a
few such instances.

254 R. Bruni et al.

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: SEAMS 2009, pp. 38–47. IEEE Computer Society (2009)

2. Andrade, L.F., Fiadeiro, J.L.: An architectural approach to auto-adaptive systems.
In: ICDCS Workshops 2002, pp. 439–444. IEEE Computer Society (2002)

3. Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., Winter, S.: Formalizing the no-
tion of adaptive system behavior. In: Shin, S.Y., Ossowski, S. (eds.) SAC 2009,
pp. 1029–1033. ACM (2009)

4. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: Smari, W.W.,
Fox, G.C. (eds.) CTS 2011, pp. 508–515. IEEE Computer Society (2011)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal Analysis
and Verification of Self-Healing Systems. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)

7. Ghezzi, C., Pradella, M., Salvaneschi, G.: An evaluation of the adaptation capa-
bilities in programming languages. In: Giese, H., Cheng, B.H. (eds.) SEAMS 2011,
pp. 50–59. ACM (2011)

8. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology (2001)

9. IBM Corporation: An Architectural Blueprint for Autonomic Computing (2006)
10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),

41–50 (2003)
11. Meseguer, J., Talcott, C.: Semantic Models for Distributed Object Reflection. In:

Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002)

12. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. Intelligent Systems and their Applications 14(3) (1999)

13. Pavlovic, D.: Towards Semantics of Self-Adaptive Software. In: Robertson, P.,
Shrobe, H.E., Laddaga, R. (eds.) IWSAS 2000. LNCS, vol. 1936, p. 50. Springer,
Heidelberg (2001)

14. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2) (2009)

15. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems. CoRR abs/1105 0069 (2011)

16. Talcott, C.L.: Coordination models based on a formal model of distributed object
reflection. In: Brim, L., Linden, I. (eds.) MTCoord 2005. ENTCS, vol. 150(1),
pp. 143–157. Elsevier (2006)

17. Talcott, C.L.: Policy-based coordination in PAGODA: A case study. In: Boella, G.,
Dastani, M., Omicini, A., van der Torre, L.W., Cerna, I., Linden, I. (eds.) CoOrg
2006 & MTCoord 2006. ENTCS, vol. 181, pp. 97–112. Elsevier (2007)

18. Weyns, D., Malek, S., Andersson, J.: FORMS: a formal reference model for self-
adaptation. In: Figueiredo, R., Kiciman, E. (eds.) ICAC 2010, pp. 205–214. ACM
(2010)

19. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) ICSE 2006, pp. 371–380.
ACM (2006)

Applying Design by Contract

to Feature-Oriented Programming

Thomas Thüm1, Ina Schaefer2, Martin Kuhlemann1,
Sven Apel3, and Gunter Saake1

1 University of Magdeburg, Germany
2 University of Braunschweig, Germany

3 University of Passau, Germany

Abstract. Feature-oriented programming (FOP) is an extension of ob-
ject-oriented programming to support software variability by refining
existing classes and methods. In order to increase the reliability of all
implemented program variants, we integrate design by contract (DbC)
with FOP. DbC is an approach to build reliable object-oriented soft-
ware by specifying methods with contracts. Contracts are annotations
that document and formally specify behavior, and can be used for for-
mal verification of correctness or as test oracles. We present and discuss
five approaches to define contracts of methods and their refinements
in FOP. Furthermore, we share our insights gained by performing five
case studies. This work is a foundation for research on the analysis of
feature-oriented programs (e.g., for verifying functional correctness or for
detecting feature interactions).

1 Introduction

Feature-oriented programming (FOP) [21,7] is a programming paradigm sup-
porting software variability by modularizing object-oriented programs along the
features they provide. A feature is an end-user-visible program behavior [15].
Code belonging to a feature is encapsulated in a feature module. A feature mod-
ule can introduce classes or modify existing classes by adding or refining fields
and methods. A program variant is generated by composing the feature modules
of the desired features. We use formal methods to increase the reliability of all
program variants that can be generated from a set of feature modules.

Design by contract (DbC) [20] has been proposed as a means to obtain reliable
object-oriented software. The key idea is to specify each method with a contract
consisting of a precondition and a postcondition. The precondition formulates
assumptions of the method that the caller of the method has to ensure. The post-
condition provides guarantees that the method gives such that the caller can rely
on it. Additionally, class invariants specify properties of objects that hold before
and must hold after a method call. DbC can be used for formal specification and
documentation of program behavior as well as for formal verification or testing
of functional correctness. We integrate DbC with FOP to increase the reliability
of FOP.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 255–269, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

256 T. Thüm et al.

class Array { Base
Item[] data; //@ invariant data != null;

Array(Item[] data) { this.data = data; }
/∗@ requires \nothing;
@ ensures (\forall int i; 0 < i && i < data.length;
@ data[i−1].key <= data[i].key); @∗/

void sort() { /∗ heap sort algorithm ∗/ }
}
class ArrayWithInverse extends Array { /∗ ... ∗/ }
class Item {

int key; Object value; //@ invariant value != null;
Item(key, value) { this.key = key; this.value = value; }

}

Fig. 1. Design by contract with Java and JML: method contracts and class invariants
are embedded in comments

FOP adds another dimension of modularization and code reuse to object-
oriented programs besides inheritance. While in class-based inheritance, sub-
classes must satisfy the behavioral subtyping principle [17], method refinement
(i.e., method overriding in FOP) is different in nature from code reuse by inher-
itance. A feature may change the behavior of an existing method arbitrarily to
meet feature-specific requirements. For example, a security feature may restrict
the allowed parameter values of a method by strengthening the precondition.
Thus, when integrating DbC with FOP, the question arises how method con-
tracts of refined methods should be defined.

We present and discuss five new approaches to specify contracts of methods
which we refine using FOP. We consider the strengths and weaknesses of each
approach with respect to strictness, expressiveness, complexity, and specification
clones. Furthermore, we discuss the refinement of class invariants and evaluate
the practical applicability of the presented approaches using five case studies.
This paper is the first to focus on the specification of feature-oriented programs
using DbC. Previous work focused on ensuring consistency of feature-oriented
programs using type checking [3,10] and model checking [5,6]. With our sys-
tematic analysis of the different approaches to specify feature-oriented programs
using DbC, we provide the foundation for future research on the formal analy-
sis of feature-oriented programs, including the formal verification of functional
correctness, feature interaction detection, and test case generation.

2 Background

Figure 1 shows our running example — a Java program that is annotated with
the Java Modeling Language (JML) [16] to specify its behavior using DbC. Class
Array is specified by an invariant (using the keyword invariant) that states
that field data should not be null. Invariants have to be established by the
class constructors, they can be assumed before every method call and have to be
reestablished afterwards. Method sort() of class Array is specified by a method
contract. The precondition of the contract is expressed in the requires clause

Applying Design by Contract to Feature-Oriented Programming 257

Array ArrayWithInverse Item Base

Array DescendingOrder

Array ArrayWithInverse Item Synchronization

Fig. 2. Feature-oriented class refinement (dashed arrows) and object-oriented inheri-
tance (solid arrows) are concepts for reuse that are orthogonal to each other

and has to be ensured by the caller of the method. Here, the precondition is
simply true. In JML, behavioral subtyping [17] for subclasses is achieved by
specification inheritance. This means that all subclasses inherit the invariants of
their superclasses and that overriding methods must also satisfy the contracts
of the overridden methods. The ensures clause expresses the postcondition of a
contract and has to be guaranteed by the method. In our example, the postcon-
dition states that the resulting array is sorted. Contracts can also be denoted by
Hoare triples [13]. Given a method m with precondition φ and postcondition ψ,
the contract of method m is denoted by {φ}m{ψ}.

Feature-oriented programming (FOP) is an extension of object-oriented pro-
gramming (OOP) aiming at better reuse capabilities across families of object-
oriented programs [21]. Classes are split into pieces distributed over feature mod-
ules; modules that implement end-user-visible features. A particular program can
be derived automatically by combining the feature modules of the required fea-
tures [2]. A feature module can introduce new classes, methods, and fields. If
a method with a particular name already exists in a previously composed fea-
ture module, the existing method is refined [2]. Method refinement is similar
to overriding with object-oriented inheritance, but the FOP keyword original

is used instead of super. The main difference is that original is bound at
the time the feature modules are composed. Figure 2 visualizes the FOP re-
finement of the classes of Figure 1 (Array, ArrayWithInverse, Item) with the
feature modules Base, DescendingOrder, and Synchronization. Base contains the
classes Array, ArrayWithInverse, and Item. DescendingOrder contains a class
refinement Array which refines class Array of Base to invert the sorting order
of implemented arrays. Synchronization contains refinements for all classes of
Base; as a result, these classes support multithreading.

3 Contracts for Feature-Oriented Programming

We present five approaches for the integration of DbC into FOP and discuss
advantages and disadvantages of each approach.

Plain Contracting. The application of DbC to FOP should be as simple as
possible to facilitate creation and maintenance of contracts for programmers.

258 T. Thüm et al.

refines class Array { StableSort
/∗@ requires original;
@ ensures original && ...sorting is stable...; @∗/

void sort() { /∗ merge sort algorithm ∗/ }
}

Fig. 3. Explicit contract refinement : feature StableSort overrides method sort() with
an implementation of a stable sorting algorithm. Both, precondition and postcondition
maintain the refined contract indicated by the keyword original and refine it.

Plain contracting is the simplest possible approach allowing programmers to de-
fine contracts only for method introductions and not for method refinements. As
a consequence, method refinements may not change the behavior of the refined
method. Consider the example in Figure 1. Assume that an additional feature
Quicksort refines the class Array by overriding the body of method sort() with
a Quicksort implementation. The contract of method sort() does not have to be
changed, because the new implementation does not affect sorting. Given a set of
selected features and a total order on those features, a tool can decide for every
method whether it is a method introduction or a method refinement [3]. Then,
we can automatically check that no method refinement comes with a contract.

On the one hand, allowing programmers to introduce, but not to refine con-
tracts comes with advantages. First, we only need to specify a method once even
if it is refined by several other feature modules, and thus the effort for specifi-
cation (i.e., writing contracts) is minimal. Second, the source code is easier to
understand as the same contract holds in every possible combination of features.
This is beneficial since a programmer needs to know the contract for every called
method (e.g., to find out whether the precondition is fulfilled at every position
where the method is called). On the other hand, this approach might be too
restrictive. With plain contracting, we are not able to specify feature-oriented
programs, where the refinement of a method also requires the refinement of a
contract. For instance, if we replace an instable sorting algorithm with a stable
one, we may need to express that callers can rely on this property if the accord-
ing feature is present. In Section 6, we evaluate whether this restriction is an
actual problem in practice.

Explicit Contract Refinement. When refining a method, we may also need
to refine the corresponding contract if the method behavior is changed such that
it no longer satisfies the original contract. The refinement of contracts can be
supported by the same linguistic means as method refinement, which should raise
the acceptance of DbC in FOP. Explicit contract refinement allows programmers
to use the keyword original to refer the refined precondition and postcondition
in the contract refinement.

As an example for explicit contract refinement, in Figure 3, we assume that
feature Base is identical to the previous example and that a new feature Stable-
Sort replaces the sorting algorithm by a stable sorting algorithm; here, merge

Applying Design by Contract to Feature-Oriented Programming 259

sort. In order to provide a contract, which states that the result is sorted and
the algorithm is stable, we refer to the existing postcondition and conjoin it with
a definition of stability (which we left out for brevity). Keyword original may
appear anywhere in the precondition or postcondition (not necessarily at the
beginning) or it may not appear at all.

Explicit contract refinement is a flexible approach where contracts can be re-
fined by including the previous contract if appropriate; preconditions and
postconditions can be refined individually. However, the approach may lead to
complex and less understandable specifications, especially, when several refine-
ments for the same method contract exist and some, but not all refinements, refer
to the previous contract. It may be unclear what a method actually needs to en-
sure and what it can rely on, because this may depend on the feature selection. In
particular, contracts depend on the feature from which the method is called.

Consecutive Contract Refinement. Consecutive contract refinement is an
approach with which new contracts can be defined for method refinements but
contracts for refined methods may not be invalidated. The central idea of the
approach is to adapt contract subtyping to FOP. Contract subtyping is widely
used in OOP and ensures that contracts defined in a certain class must be fulfilled
in all subclasses, too. The main difference to contract subtyping in OOP is that
features may be present or not, and thus the feature selection influences the
resulting method contract.

Given an original method m with precondition φ and postcondition ψ, we
can refine m with a new method implementation m′ with precondition φ′ and
postcondition ψ′. Then, the refined method m′ needs to ensure the original
contract {φ}m′{ψ} and the new contract {φ′}m′{ψ′}. As a result, the method
can be used in all places where method m is called, and the caller can rely on the
contract of the refined method m. For example, re-consider the feature StableSort
in Figure 3. With consecutive contract refinement, the example would look the
same except for the replacement of ‘original’ with ’true’ in the precondition
and postcondition, because the contract of the refined method holds implicitly.

The main advantage of consecutive contract refinement compared to explicit
contract refinement is that existing contracts remain valid even if a method is
refined. This way, callers can rely on contracts defined in a particular feature
independent on the presence of other features, because refinements cannot in-
validate the contract. This advantage comes with a reduced applicability, since
we cannot encode cases in which a feature weakens an existing contract.

Contract Overriding. Contract overriding is a special case of explicit contract
refinement where the keyword original is never used. Contract overriding al-
lows programmers to replace the contract when refining a method, but does not
allow programmers to reference or reuse refined contracts. In contrast to consec-
utive contract refinement, contracts defined in previous features do not need to
be fulfilled. In previous work, we used contract overriding to verify SPL prod-
ucts by proof composition [23]. In this previous work, we additionally enforced
compatibility between contracts and their refinements. A contract refinement

260 T. Thüm et al.

is compatible to a previous contract, if every method that fulfills the refined
contract also satisfies the contract of the refined method.

The main problem with contract overriding are specification clones, because
there is no way to adapt original contracts. The CPA (copy, paste, adapt) princi-
ple is the only option to refine contracts, which may result in many specification
clones and, thus, a high specification effort. Another serious disadvantage is that
the meaning of a contract is unclear for callers, because it heavily depends on
the actual feature selection and on the composition ordering. Furthermore, if two
features refine the same method contract using contract overriding, we may get
undesired contracts if both features are selected (known as feature interaction
problem of FOP [2]). We could introduce derivative contracts (i.e., a contract
that is only included if two or more features are selected) but derivative contracts
can introduce further specification clones.

Pure-Method Refinement. Preconditions and postconditions in JML may
also contain calls to methods that are free of side-effect and are guaranteed to
terminate (known as pure method in JML [16]). If a pure method is used in a
contract, the contract depends on the result of this (pure) method call. Pure
methods called in contracts open a further possibility for contract refinement,
because pure methods can be refined as any other method in FOP – this allows
programmers to refine contracts as a spin-off. With pure-method refinement,
instead of actually refining a contract itself, a pure method used in a contract is
refined and, thus, indirectly contracts based on the feature selection are modified.

In Figure 4, the example of pure-method refinement is based on an publicly
available case study1, which we have decomposed into features. Class ExamData-
Base stores the results of student exams. Array students contains the students
and their points, whereas a null-value refers to a free position in the array. The
method consistent() checks whether all students have at least zero points. The
method validStudent() is used in the contract of method consistent() and is
refined by a class refinement of feature module BackOut ; this refinement allows
students to back out from an exam. Hence, the contract of method consistent()

is refined by changing the body of method validStudent().
Pure methods in contracts support fine-grained contract refinement. Even

parts of preconditions or postconditions can be refined, which would otherwise
require to clone contracts and modify them. Such specification clones may lead
to similar problems as code clones [14]. For example, when updating a contract,
we may forget to update clones of this contract and introduce inconsistencies.
Hence, specification clones should be avoided whenever possible requiring more
sophisticated specification approaches such as pure-method refinement.

Pure-method refinement is expressive, because method refinements do neither
depend on refined methods nor must relate to them in any way (e.g., weakening
or strengthening existing contracts).

1 http://verifythis.cost-ic0701.org/

post?pid=database-system-for-managing-exams

http://verifythis.cost-ic0701.org/post?pid=database-system-for-managing-exams
http://verifythis.cost-ic0701.org/post?pid=database-system-for-managing-exams

Applying Design by Contract to Feature-Oriented Programming 261

class ExamDataBase { Base
/∗@ ensures \result == (\forall int i; 0 <= i
@ && i < students.length && validStudent(students[i]);

@ students[i].points >= 0); @∗/
boolean consistent() {

for(int i=0; i<students.length; i++)
if (validStudent(students[i]) && students[i].points < 0)

return false;
return true;

}
/∗@ pure @∗/ boolean validStudent(Student student) {

return student != null;
}

}
class Student {

//@ invariant matrNr > 0 && firstname != null && surname != null;
int matrNr; String firstname, surname;

}

refines class ExamDataBase { BackOut
/∗@ pure @∗/ boolean validStudent(Student student) {

return original(student) && !student.backedOut;
}

}
refines class Student {

//@ invariant !backedOut | | backedOutDate != null;
Date backedOutDate = null; boolean backedOut = false;

}

Fig. 4. Pure-method refinement : the contract of method consistent() contains a
call to the pure method validStudent(). Feature BackOut refines the contract of
consistent() indirectly by refining method validStudent(). By refining one pure
method, we can refine several contracts indirectly at the same time.

A further advantage is that no new keywords and no linguistic concepts are
needed for contract refinement, because traditional FOP mechanisms can be
used. Hence, it is easy to understand the meaning of contracts, if the refinements
of all pure methods therein are clear. The main disadvantage of pure-method
refinement is that it strongly relies on the concept of pure methods being allowed
to be called in contracts. Furthermore, the flexibility for refining methods by
FOP may cause contracts which are hard to understand (e.g., if we have several
refinements of the same method, some strengthening, some weakening, and some
overriding).

4 Refinement of Invariants

DbC involves the specification of methods by contracts and classes by invariants
usually expressing invariant properties of the fields. In the following, we assume
that contract refinement is carried out with any of the previously discussed
approaches and discuss how programmers can refine invariants analogously.

If invariants can be introduced in features, an invariant only needs to be
established for the resulting program if the corresponding feature is selected (e.g.,
in Figure 4 feature BackOut introduces fields together with an invariant). Thus,

262 T. Thüm et al.

we can build variable specifications using invariant introductions. Similarly to
contracts, invariants can be refined explicitly or implicitly (i.e., with or without a
keyword referring to invariants defined in previously composed feature modules).
When using explicit invariant refinement, we can use the keyword original to
reference the previous definition of the invariant and combine it with the previous
invariants. Applying consecutive contract refinement means that features can
only add new invariants that need to hold as well. We can apply the concept
of pure-method refinement to invariants. If an invariant contains a pure method
call, the pure method can be refined using FOP method refinement. Finally,
contract overriding can also be applied to invariants, where existing invariants
can be overridden by features which we refer to as invariant overriding.

Allowing the refinement of invariants provides additional flexibility for the
specification of feature-oriented programs. Every feature module can change in-
variants provided by previously composed feature modules. Depending on the
approach chosen for refinement of contracts, we find it intuitive to refine in-
variants using the same means. However, the introduction and refinement of
invariants allows that particular invariants only need to be fulfilled if a certain
feature is present. As a result, it can be difficult to examine those combinations
of features for which a certain invariant is present. The refinement of invariants
has huge consequences as an invariant must hold for all methods of a class, and
a change influences many callers and callees at the same time. Furthermore, the
flexibility with invariant refinement can easily result in specifications that can-
not be satisfied by any implementation. In Section 6, we evaluate whether the
refinement of invariants is actually useful in practice.

5 Comparison

After presenting five alternative approaches of refining contracts, we now want
to compare them based on properties directly related to specifications and give
some intuition which approach is useful under which circumstances. We compare
the approaches according to four properties which are different perspectives on
the specification of programs: strictness, expressiveness, complexity, and specifi-
cation clones. While strictness and expressiveness may indicate that an approach
can not be applied to certain feature-oriented programs, the other criteria refer
to properties that are nice to have.

Strictness can be used to classify all presented approaches regarding allowed
and disallowed refinements from a logical point of view. Given a certain con-
tract C, a refined contract C′ may be strengthened with respect to method
calls (e.g., by adding a further postcondition) or weakened (e.g., by requiring a
further precondition). Strengthening means that every method fulfilling C′ also
fulfills C and weakening means that every method fulfilling C also fulfills C′.
Further possibilities are to refine the contract with an equivalent one (e.g., by
commuting preconditions or leaving the contract as-is) or to refine the contract
in arbitrary way. In Figure 5, we illustrate the strictness relation by a Venn
diagram. The intersection of weakened and strengthened contracts is the set of

Applying Design by Contract to Feature-Oriented Programming 263

Plain
Contracting

Consecutive
Contract

Refinement

Explicit Contract Refinement
Pure-Method Refinement

Contract Overriding

Equivalent

StrengtheningWeakening

Arbitrary Refinement

Fig. 5. Comparison of the presented approaches of contract refinement regarding strict-
ness. Approaches may allow or disallow weakening and strengthening of contracts re-
sulting in four categories. For example, disallowing both means to allow only contract
refinements if they are equivalent to the original contract.

equivalent contracts. As plain contracting disallows any refinement of contracts,
the contracts are equivalent for every method refinement. Consecutive contract
refinement allows only to strengthen the original contract. All other presented
approaches allow arbitrary refinements.

Expressiveness refers to whether we can specify all meaningful properties of
feature-oriented programs. Given a particular program, we need to know whether
we can express its specification with a certain approach or not. There is a connec-
tion to strictness: approaches allowing arbitrary refinements are more expressive
than approaches allowing only strengthened contracts and similarly, strengthen-
ing is more expressive than equivalent contracts. In Table 1, we give an overview
on the expressiveness of all presented approaches. The low expressiveness of
plain contracting and consecutive contract refinement is simply based on their
strictness. Contract overriding has a lower expressiveness compared to other ap-
proaches allowing arbitrary refinements, because derivative contracts may be
needed if two features refine the same contract (see Section 3).

Complexity indicates whether it is easy for a programmer to manually retrieve
the resulting contract of a certain method for a particular feature combination.
An approach, in which determining the contract has the lowest complexity, is
beneficial for programmers that need to create and maintain specifications be-
cause mistakes, such as wrong contracts or wrong implementations, can have
expensive outcomes (e.g., it is expensive to detect errors using verification or
testing). Thus, we expect contract specifications to have a low complexity. Con-
tract overriding has the highest complexity, as contracts can be arbitrarily refined
by each feature, and contracts can depend on the presence of every single feature.
Contracts created by explicit contract refinement have a lower complexity since
no derivative contracts are needed. Using pure-method refinement, contracts can

264 T. Thüm et al.

Table 1. Comparison of the presented approaches for the refinement of contracts.
+ + means that the approach is good with respect to the property (i.e., the approach
has high expressiveness, contracts have a low complexity, specification clones can be
avoided). Intuitively, – – refers to the worst and 0 to a neutral evaluation.

Plain Explicit Consecutive Pure Method Contract
Contracting Refinement Contract Ref. Refinement Overriding

Expressiveness – – + + 0 + + +

Complexity + + – – + 0 – –

Specification Clones + + 0 + + + – –

only be refined at predefined positions. Consecutive contract refinement only
allows a programmer to strengthen contracts meaning that if a certain feature
is selected, then all methods need to establish the contracts defined therein,
independent of other features. Clearly, the complexity is even lower if we do not
allow refinements at all using plain contracting, because a contract is either not
present or the same for all feature selections.

Specification clones are identical or very similar contracts. We expect that
specification clones lead to similar problems as code clones (see Section 3). Hence,
a specification approach should help to avoid specification clones. We consider
contract overriding as the worst approach regarding specification clones, as it
provides no ability to reuse contracts such that the only option is to copy and
adapt contracts. A better approach is the explicit refinement of contracts and
invariants because the keyword original can be used to reference preconditions
and postconditions of a previous contract. With consecutive contract refinement,
all contracts are implicitly reused such that we expect even less specification
clones. The best approaches in terms of avoiding clones are plain contracting
and pure-method refinement. Plain contracting completely disallows contract
refinements, and with pure-method refinement even parts of contracts can be
refined which allows to reuse existing contracts.

6 Evaluation

In order to evaluate the practicability of the five proposed specification ap-
proaches, we performed two case studies by creating feature-oriented programs
including their specifications from scratch and three case studies by decom-
posing already specified object-oriented programs into feature modules. All our
case studies are implemented and specified in feature-oriented extensions of Java
and JML, but we expect similar results for other object-oriented languages and
contract-based specification languages. The advantage of Java and JML is that
many tools as well as specified and verified sample programs exist. However, it
turned out that most existing examples are too small to be decomposed into
features (i.e., only three of them were suitable for decomposition).

Applying Design by Contract to Feature-Oriented Programming 265

Table 2. Results of case studies

ExamDB Paycard DiGraph BankAccount IntList

Classes, fields 4, 10 8, 42 8, 13 2, 7 2, 2
Methods (pure) 29 (8) 18 (5) 48 (22) 10 (0) 12 (0)

Features, variants 4, 8 4, 6 4, 8 6, 24 5, 16
Method refinements (pure) 2 (2) 3 (1) 0 (0) 4 (0) 4 (0)

Contracts (in core features) 25 (17) 10 (4) 43 (27) 8 (2) 7 (1)
Invariants (in core features) 5 (4) 6 (2) 12 (12) 4 (1) 3 (2)

Contract refinements 0 1 0 2 1
Contracts with method
calls (refined, multiple) 8 (7, 4) 2 (2, 0) 29 (0, 10) 0 (0, 0) 0 (0, 0)

Invariant refinements 0 0 0 0 0
Invariants with method
calls (refined, multiple) 0 (0, 0) 0 (0, 0) 5 (0, 0) 0 (0, 0) 0 (0, 0)

In Table 2, we present some statistics of our feature-oriented sample programs.
They have between two and eight classes consisting of two to 42 fields and ten to
48 methods. Some methods are declared as being pure. Our case studies have four
to six features where six to 24 combinations of features are considered valid and
can be used to generate different program variants. The programs are specified
by seven to 43 contracts and three to twelve invariants.

With respect to strictness and expressiveness of the approaches, we found
that four of five case studies could not be specified using plain contracting,
because contract refinement was required. Only, the DiGraph case study could be
specified with plain contracting; it does not contain a single method refinement as
it is a library and the features chosen for decomposition do not cross-cut method
implementations. But, method and contract refinement may be necessary when
extracting further features or extending DiGraph with a new features. Contract
strengthening is sufficient for three of five case studies. We specified the IntList
and the Paycard case studies using consecutive contract refinement. Thus, for
these case studies strengthening is sufficient. ExamDB and BankAccount rely on
contract weakening. While contract strengthening is commonly used for OOP,
it is not suited for any feature-oriented program. In larger programs, we expect
even more examples where contract weakening is needed.

Our results show that some, but not all feature-oriented method refinements
require contract refinements. For example, the BankAccount case study contains
four method refinements, but for only two of them the contract was refined. Con-
verse, pure-method refinement requires the refinement of methods per definition,
but some method refinements may be introduced only to refine contracts (i.e.,
the method refinement is not needed for implementation of features but only to
express their specification). For example, in the ExamDB case study, we newly
introduced two refinements of pure methods to actually refine seven contracts
each containing a call to the pure method.

266 T. Thüm et al.

The granularity of contract refinement can influence the suitability of the
individual approaches. The case study ExamDB requires fine-grained refinement
of contracts. In Figure 4, the contract of method consistent() is refined using
pure-method refinement. The contract quantifies over all valid students, and
feature BackOut can actually influence which students are valid (students that
are backed-out are considered as invalid). In this example, only a small part of a
contract needs to be refined, while most of it remains unchanged. Hence, we used
pure-method refinement for ExamDB to express these fine-granular refinements.
All other approaches would lead to specification clones. But, we also observed the
danger that pure-method refinement is applied accidentally. When decomposing
an existing system into features, the implementation may require the refinement
of certain methods. If one of such methods is declared as pure, it may also be used
in contracts. But then, we may accidentally refine contracts or invariants simply
by refining these methods. If we choose to disallow pure-method refinement, we
also need to make sure that either no pure method can be refined or that no
method referenced in contracts or invariants can be refined. The same holds if
we create a feature-oriented program from scratch.

In the case study Paycard, we used a combination of two approaches. We
used pure-method refinement to refine two contracts, because the refinement was
fine-grained. But, for another contract refinement, we used consecutive contract
refinement as the whole original contract should be established as-is and refined
by a further contract. The experience with our case studies showed that even
combinations of presented approaches may be useful.

Not a single case study required the refinement of invariants (see Figure 2).
Still, in all case studies except from DiGraph, invariants were introduced by
several, optional features resulting in invariants that only hold for products of
particular feature combinations. But, we found no case where a feature needed to
refine the invariant defined by another feature. However, we had to split invari-
ants into several smaller invariants when decomposing the ExamDB and Paycard
case studies into features. Splitting was possible as the invariant actually was a
conjunction, which can always be decomposed into several invariants. We cannot
conclude that the refinement of invariants can generally be avoided, but at least
in our case studies the introduction of invariants by features was sufficient. This
is a positive result according to the strong disadvantages of invariant refinement
discussed in Section 4.

In our case studies, we also analyzed whether a global specification that holds
for all program variants is sufficient as suggested by Liu et al. [18]. Their example
is that every pacemaker variant shall generate a pulse when no heartbeat is
detected. In Table 2, we observe that only between 14 and 68 percent of all
contracts and between 25 and 100 percent of invariants are given in core features.
A core feature is a feature that is included in every program variant [8]. The
core features together build-up the part that is common to all program variants.
From the above figures, we can conclude that in none of our case studies a global
specification is sufficient and specifications in form of contracts should be given
for every feature as we propose in this paper.

Applying Design by Contract to Feature-Oriented Programming 267

In summary, our evaluation showed that contract refinement is needed when
applying DbC to FOP. It is not always sufficient to only strengthen contracts (al-
ready in our small case studies) such that an approach for contract refinement
should also allow weakening. From our qualitative and quantitative analysis,
pure-method refinement is the most promising approach because contracts can
be strengthened or weakened and fine-grained refinements are supported as well.
Pure-method refinement may be combined with consecutive contract refinement
to better support coarse-grained refinements. In our experience, invariant intro-
ductions should be used instead of invariant refinements whenever possible.

7 Related Work

In previous work, we considered formal verification of feature-oriented programs
based on JML specifications. We proposed proof composition with the proof as-
sistant Coq for efficient deductive verification of all program variants and applied
a specification approach similar to contract overriding [23]. For the detection of
feature interactions, we composed specifications with implicit contract refine-
ment and analyzed program variants using ESC [22]. In each work, we proposed
one specification approach and focused on verification issues. Our experience
was that it is not clear what is the best way to specify feature-oriented programs
using DbC. In this work, we propose three further specification approaches and
compare all approaches regarding practicability by means of five case studies.

Specification using DbC has been considered for other program modulariza-
tion techniques than FOP. Bruns et al. [9] and Hähnle et al. [12] discuss DbC for
delta-oriented programming (DOP). DOP is an extension of FOP where feature
modules (known as delta modules) can also remove methods, fields, and classes.
A delta module can add or remove invariants and contracts. Since a feature mod-
ule only refines existing methods, it is not reasonable to consider the removal of
contracts or invariants for FOP.

DbC has been applied to aspect-oriented programming [24,19,1]. The aspect-
oriented around advice corresponds roughly to feature-oriented method refine-
ment and thus aspect-oriented programming can be seen as a superset of FOP [4].
Zhao and Rinard [24] proposed Pipa, a DbC specification language for AspectJ.
AspectJ programs with Pipa annotations are translated into Java programs with
JML annotations to allow programmers to reuse existing JML tools. Lorenz and
Skotiniotis [19] analyze advice contracts in terms of runtime assertions. They pro-
pose three advice categories with an according runtime assertion strategy each:
agnostic and obedient disallowing contract refinement (similar to contract over-
riding with equivalent contracts) and rebellious allowing contract strengthening
(similar to contract overriding with compatible contracts). Agostinho et al. [1]
discuss the interaction between classes and aspects while proposing agnostic
pieces of advice. All these approaches force programmers to create specification
clones, because they do not support contract weakening, which is needed in two
of our case studies. Furthermore, the absence of aspects is not considered, while
optional features in FOP are essential for software variability.

268 T. Thüm et al.

Most specification approaches for OOP assume behavioral subtyping [17] for
subclasses which are the means to reuse code. Dhara and Leavens [11] propose
specification inheritance to achieve behavioral subtyping which also is pursued
in Eiffel [20] and JML [16]. With consecutive implicit refinement, we transfered
the notion of behavioral subtyping to feature-oriented method refinement, but
two of five case studies cannot be specified using this approach, as it is too
restrictive.

8 Conclusion

In order to increase the reliability of feature-oriented programs, we discussed five
approaches to integrate DbC with FOP and evaluated them by means of five case
studies. We found that feature-oriented method refinement often requires the re-
finement of contracts such that the program specification depends on the actual
selection of features. In contrast, the refinement of invariants can be avoided in
our case studies. Furthermore, we identified the trade-off between expressive-
ness and complexity: while high expressiveness allows programmers to specify
arbitrary feature-oriented programs, the complexity of contracts increases.

Acknowledgment. We thank Fabian Benduhn and anonymous reviewers for
comments on earlier drafts of this paper. Apel’s work is supported by the German
Research Foundation (DFG – AP 206/2, AP 206/4, and LE 912/13). Saake’s
work is supported by the German Research Foundation (DFG – SA 465/34-1).

References

1. Agostinho, S., Moreira, A., Guerreiro, P.: Contracts for Aspect-Oriented Design.
In: Proc. Workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT). ACM (2008)

2. Apel, S., Kästner, C.: An Overview of Feature-Oriented Software Development. J.
Object Technology (JOT) 8(5), 49–84 (2009)

3. Apel, S., Kästner, C., Größlinger, A., Lengauer, C.: Type Safety for Feature-
Oriented Product Lines. Automated Software Engineering (ASE) 17(3), 251–300
(2010)

4. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Software
Engineering (TSE) 34(2), 162–180 (2008)

5. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting Dependences and Inter-
actions in Feature-Oriented Design. In: Proc. Int’l Symposium Software Reliability
Engineering (ISSRE), pp. 161–170. IEEE (2010)

6. Apel, S., Speidel, H., Wendler, P., von Rhein, A., Beyer, D.: Detection of Feature
Interactions using Feature-Aware Verification. In: Proc. Int’l Conf. Automated
Software Engineering (ASE), pp. 372–375. IEEE (2011)

7. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Engineering (TSE) 30(6), 355–371 (2004)

8. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models
20 Years Later: A Literature Review. Information Systems 35(6), 615–708 (2010)

Applying Design by Contract to Feature-Oriented Programming 269

9. Bruns, D., Klebanov, V., Schaefer, I.: Verification of Software Product Lines with
Delta-Oriented Slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

10. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Composi-
tion. In: Proc. Workshop Foundations of Aspect-Oriented Languages (FOAL), pp.
31–35. ACM (2009)

11. Dhara, K.K., Leavens, G.T.: Forcing Behavioral Subtyping through Specification
Inheritance. In: Proc. Int’l Conf. Software Engineering (ICSE), pp. 258–267. IEEE
(1996)

12. Hähnle, R., Schaefer, I.: A Liskov Principle for Delta-oriented Programming. In:
Proc. Int’l Conf. Formal Verification of Object-Oriented Software (FoVeOOS), pp.
190–207. Technical Report 2011-26, Department of Informatics, Karlsruhe Institute
of Technology (2011)

13. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Comm.
ACM 12(10), 576–580 (1969)

14. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do Code Clones Matter?
In: Proc. Int’l Conf. Software Engineering (ICSE), pp. 485–495. IEEE (2009)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute (1990)

16. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. Software Engineering Notes (SEN) 31(3),
1–38 (2006)

17. Liskov, B.H., Wing, J.M.: A Behavioral Notion of Subtyping. Trans. Programming
Languages and Systems (TOPLAS) 16(6), 1811–1841 (1994)

18. Liu, J., Basu, S., Lutz, R.: Compositional Model Checking of Software Prod-
uct Lines using Variation Point Obligations. Automated Software Engineering
(ASE) 18(1), 39–76 (2011)

19. Lorenz, D.H., Skotiniotis, T.: Extending Design by Contract for Aspect-Oriented
Programming. Computing Research Repository (CoRR), abs/cs/0501070 (2005)

20. Meyer, B.: Applying Design by Contract. Computer 25(10), 40–51 (1992)
21. Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Aksit,

M., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer,
Heidelberg (1997)

22. Scholz, W., Thüm, T., Apel, S., Lengauer, C.: Automatic Detection of Feature
Interactions using the Java Modeling Language: An Experience Report. In: Proc.
Int’l Workshop Feature-Oriented Software Development (FOSD), pp. 7:1–7:8. ACM
(2011)

23. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S.: Proof Composition for Deduc-
tive Verification of Software Product Lines. In: Proc. Int’l Workshop Variability-
intensive Systems Testing, Validation and Verification (VAST), pp. 270–277. IEEE
(2011)

24. Zhao, J., Rinard, M.: Pipa: A Behavioral Interface Specification Language for As-
pectJ. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 150–165. Springer,
Heidelberg (2003)

Integration Testing of Software Product Lines

Using Compositional Symbolic Execution

Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer

Department of Computer Science & Engineering, University of Nebraska-Lincoln,
Lincoln, Nebraska, USA

Abstract. Software product lines are families of products defined by
feature commonality and variability, with a well-managed asset base.
Recent work in testing of software product lines has exploited similar-
ities across development phases to reuse shared assets and reduce test
effort. The use of feature dependence graphs has also been employed to
reduce testing effort, but little work has focused on code level analysis
of dataflow between features. In this paper we present a compositional
symbolic execution technique that works in concert with a feature depen-
dence graph to extract the set of possible interaction trees in a product
family. It composes these to incrementally and symbolically analyze fea-
ture interactions. We experiment with two product lines and determine
that our technique can reduce the overall number of interactions that
must be considered during testing, and requires less time to run than a
traditional symbolic execution technique.

1 Introduction

Software product line (SPL) engineering is a methodology for developing families
of software programs through the managed reuse of a common and variable set
of assets [18]. Variability at the application level is expressed in terms of features
(functional units) that are included or excluded from the individual programs.
The result is a set of similar, but unique program instantiations; in a mobile
phone product line, features such as the display drivers, messaging capabilities,
network support and video can be combined in different ways on top of the
core features found in all phones (e.g. phone dial). While uniqueness arises from
the different combination of variable features in each program, similarity comes
from both the commonality found in all instantiations, as well as from matching
subsets of features (i.e. partial products) between programs.

Variability, and the ability to generate many products from a core set of fea-
tures, provides flexibility and enables reuse during development, but causes prob-
lems for validation. Although individual features may be validated and tested in
multiple programs within the product line, this does not guarantee that specific
combinations of features will work properly when composed. Research has shown
that some faults – termed interaction faults – only occur under specific combi-
nations of features [2,13] and several SPL testing techniques have attempted to
account for this. For instance, Bertolino et al. [1] and Geppert et al. [6] propose

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 270–284, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Integration Testing of SPLs Using Compositional Symbolic Execution 271

a specification based technique to concretize a parameterized use case (based on
variability), but this is an exhaustive approach that tests each product individ-
ually. This is a limitation, since the variability space grows exponentially with
the number of features. If there are 4 choices for each of 10 features, then more
than one million instantiations of the SPL would need to be tested to cover all
possible combinations.

Kim et al. [11] use a dependency analysis to determine which features are
relevant for each test within a test suite, reducing the number of products tested
per test case. This technique does not consider coverage of the entire feature
model, nor does it target the specific interactions; it only reduces the per-test
number products. A study by Reisner et al. [20] shows that in some configurable
systems – SPLs can be viewed as a type of configurable software system – analysis
of control flow can reduce the possible set of configuration options that should
be tested together. They do not consider other types of dependencies such as
data flow, nor do they apply their approach to product lines. And neither of
these studies targets specific interactions for test generation; they only reduce
the number of feature combinations that should not be tested together.

In our earlier research [3], we proposed a mapping between the variability
space of an SPL and a relational model in order to leverage ideas from combi-
natorial interaction testing (CIT), a model-based sampling technique that guar-
antees to test all pairs or t-way combinations of features within the product
line. Instead of testing all program instantiations in the example above, we can
test all pairs of features with approximately 24 SPL instances, or all triples of
features with around 130, using a common CIT generation tool [2]. Since em-
pirical evidence suggests that lower order interactions are responsible for most
interaction faults this provides some justification for CIT sampling [13].

While CIT provides a notion of coverage of the variability space, it also suffers
from limitations. First, there is an expectation that all possible programs in the
product line can be composed. But there may be features or groups of features
that are not developed until later phases of the SPL lifetime. Second, since CIT
operates at the feature combination level there is no guarantee that testing of
an instance will execute the interacting code; this will depend on the quality
of the test. Finally, CIT does not consider the direction of the interactions in
its model, yet at the code level, interactions may happen between features in
different directions. For instance, it is likely that data flows in both directions
between a multi-media messaging feature of a phone and its video feature. If we
have three features (f1, f2, f3), there are six directed 2-way possible interactions.

When testing a software product line to uncover interactions, we should test
from a perspective that avoids these limitations. Uncovering interactions during
integration testing – where features are composed as partial products – appears
to make sense from a combinatorial sense. We can test only the interactions
themselves and combine products in a way that avoids redundancy. Uzuncaova
et al. [24] use this idea by reusing a partial product’s integration test results
to generate a smaller test suite for a larger partial product. And Reis et al.
[19] apply integration testing over an SPL at the specification level to avoid

272 J. Shi, M.B. Cohen, and M.B. Dwyer

redundantly testing common partial products. Finally, Stricker et al. [23] present
the ScenTED-DF methodology which uses dataflow between products to drive
integration testing at the model level.

In this paper, we present a new method of analyzing software product lines for
test generation. It uses ideas from CIT to drive coverage of feature interaction
tuples, reduces the variability space through the use of a code-based dependency
analysis, and uses directed symbolic execution to analyze possible feature combi-
nations. The result is a method that generates constraints for all partial products
at a lower cost than a full symbolic execution of an SPL code base. We also find,
that by counting directed interactions, we have a more precise model of what
should be tested. Finally, if we consider the constraints arising from symbolic
execution, these can be used to inform a test generation technique to focus on
the parts of the system that may have faults. The contributions of this work are:
(1) a dataflow informed compositional symbolic integration testing method for
SPLs; (2) the first discussion of interaction testing that incorporates directions;
and (3) a feasibility study that shows we can reduce the number of interactions
to test, and that the compositional technique uses less time than traditional
symbolic execution.

2 Background

Software product lines are families of software systems designed for a specific
domain, with a managed set of assets and well defined variability model [18]. The
products all share some commonality, but are customized by variable elements
of the system. Product lines vary in when they are configured. Some may be
configured by the developer at build time, others allow changes through re-
compilation, while some use run-time constructs to change during execution.

A key artifact of a software product line is the feature (or variability) model.
This is one differentiator from a general configurable system. There are many
formalisms that have been developed to represent these. In this paper we use
the Orthogonal Variability Model (OVM) developed by Pohl et al. [18]. In OVM
Variation points (VP) are shown as triangles and variants (v) are shown as
rectangles. Variants will map directly to features in this paper. Dependencies
are shown as solid lines (mandatory) or dashed (optional). Alternative choices
are shown with arcs which are annotated with the the minimum and maximum
cardinality of that VP. When there is no annotation, exactly one variant can
be selected for the variation point. Additional constraints are allowed between
parts of the model in the form of excludes or requires.

2.1 Symbolic Execution

Symbolic execution [12] is a path-sensitive program analysis technique that com-
putes program output values as expressions over symbolic input values and con-
stants. Symbolic execution of the code fragment:

Integration Testing of SPLs Using Compositional Symbolic Execution 273

y = x;

if (y > 0) then y++;

return y;

would use a symbolic value X to denote the value of variable x on entry to the
fragment. Symbolic execution determines that there are two possible paths (1)
when X > 0 the value X + 1 is returned and (2) when !(X > 0) the value X is
returned. The analysis represents the behavior of the fragment as the pairs (X >
0,RETURN == X + 1) and (!(X > 0),RETURN == X). The first element of
a pair encodes the conjunction of constraints along an execution path – the path
condition. The second element defines the values of the locations that are written
along the path in terms of the symbolic input variables, e.g. RETURN == X
means that the original value for x is returned.

The state of a symbolic execution is a triple (l, pc, s) where l, the current
location, records the next statement to be executed, pc, the path condition, is
the conjunction of branch conditions encoded as constraints along the current
execution path, and s : M × expr is a map that records a symbolic expression
for each memory location, M , accessed along the path.

Computation statements, m1 = m2) m3, where the mi ∈ M and) is
some operator, when executed symbolically in state (l, pc, s) produce a new state
(l + 1, pc, s′) where ∀m ∈ M − {m1} : s′(m) = s(m) and s(m1) = s(m2))
s(m3). Branching statements, ifm1)m2 goto d, when executed symbolically in
state (l, pc, s) branch the symbolic execution to two new states (d, pc∧ (s(m1))
s(m2)), s) and (l+1, pc∧ ¬(s(m1)) s(m2)), s) corresponding to the “true” and
“false” evaluation of the branch condition, respectively.

An automated decision procedure is used to check the satisfiability of the
updated path conditions and, when a path condition is found to be unsatisfiable,
symbolic execution along that path halts. Decision procedures for a range of
theories used to express path conditions, such as, linear arithmetic, arrays, and
bit-vectors are available, e.g., Z3 [5].

2.2 Symbolic Method Summary

Several researchers [8, 17] have explored the use of method summarization in
symbolic execution. In [8] summarization is used as a mechanism for optimizing
the performance of symbolic execution whereas [17] explores the use of summa-
rization as a means of abstracting program behavior to avoid symbolic execution.
We adopt the definition of method summary in [17], but we forgo their use of
over-approximation.

The building block for a method summary is the representation of a single ex-
ecution path through method, m, encoded as the pair (pc, w). This pair provides
information about the externally visible state of the program that is relevant
to an execution of m at the point where m returns to its caller. As described
above, the pc encodes the path condition and w is the projection of s onto the
set of memory locations that are written along the executed path. We can view
w a conjunction of equality constraints between names of memory locations and
symbolic expressions or, equivalently, as a map from locations to expressions.

274 J. Shi, M.B. Cohen, and M.B. Dwyer

s() {
 …
 v();
 if (c) {
 …
 }
 w();
 …
}

f1(){

 …
}

f2(){

 …
}

f3()

f4()

V()()(

 C

W()

 ………

 CC

 …

)(WW()(

V()V(

• 
• 

Fig. 1. Conceptual Overview of Compositional SPL Analysis

Definition 1 (Symbolic Summary [17]). A symbolic summary, for a method
m, is a set pairs msum : P(PC × S) where

∀(pc, w) ∈ msum : ∀(pc′, w′) ∈ msum − {(pc, w)} : pc ∧ pc′is unsatisfiable.

Unfortunately, it is not always possible to calculate a summary that completely
accounts for the behavior of all methods. For example, methods that iterate over
input data structures that are unconstrained cannot be analyzed effectively – since
the length of paths are not known. We address this using the standard technique
of bounding the length of paths that are analyzed.

3 Dependence-Driven Compositional Analysis

Our technique exploits an SPL’s variability model and the inter-dependence of
feature implementations to reduce the cost of applying symbolic execution to
reason about feature interactions. Figure 1 provides a conceptual overview.

As explained in Section 1 an SPL is comprised of a source code base and
an OVM. The OVM and its constraints (e.g., the excludes between f2 and f3)
defines the set of features that may be present in an instance of the SPL.

Our technique begins (step are denoted by large bold italic numerals in the
figure) by applying standard control flow and dependence analyses on the code
base. The former results in a control flow graph (CFG) and the latter results in a
program dependence graph (PDG). In step 2, the PDG is analyzed to calculate a
feature dependence graph (FDG) which reflects inter-feature dependences. The
edges of the FDG are pruned to be consistent with the OVM, e.g., the edge from
f2 to f3 is not present.

Step 3 involves the calculation, from the FDG, of the hierarchy of all k-way
feature interaction trees. The structure of this hierarchy reflects how lower-order
interactions can be composed to create higher-order interactions. For instance,

Integration Testing of SPLs Using Compositional Symbolic Execution 275

how the interaction among f1, f2, and f4 can be constructed by combining f1
with an existing interaction for f2 and f4.

The interaction tree hierarchy is used to guide the calculation of symbolic
summaries for all interaction trees in a compositional fashion. This begins, in
Step 4, by applying symbolic execution to the source code of the individual fea-
tures in isolation. When composing two existing summaries, for example f1 and
f3, to create a 2-way interaction tree, a summary of the behavior of the com-
mon SPL code which leads between those summaries must be calculated. Step
5 achieves this by locating the calls to the features in the CFG and calculating
a chop [21] – shown as the shaded figure in the CFG – the edges of the chop are
used to guide a customized symbolic execution to produce an edge summary. In
step 6, a pair of existing lower-order interaction summaries and the edge sum-
mary are composed to produce a higher-order summary – such a summary is
illustrated at point 7 in the figure.

In step 8, summaries can be exploited to detect faults, via comparison to fault
oracles, or to generate tests by solving the constraints generated by symbolic
execution and composition. We describe the major elements next.

3.1 Relating SPL Models to Implementations

An SPL implementation can be partitioned into regions of code that implement
each feature; the remaining code implements the common functionality shared
by all SPL instances. There are many implementation mechanisms for realizing
variability in a code base [10]. Our methodology can target these by adapting the
summary computation for Step 4 and feature dependence graph construction for
Step 2, but for simplicity it suffices to view features as methods where common
code makes calls on those methods.

In the remainder of this section, we assume the existence of a mapping from
in the OVM to methods in a code base; we use the name of a feature to denote
the method when no confusion will arise. Features can be called from multiple
points in the common code, but to simplify the presentation of our technique,
we assume each feature is called from a single call site.

Given a pair of features, f1 and f2, where the call to f2 is reachable in the
CFG from the call to f1, their common region is the source code chop [21] arising
when the calls are used as the chop criterion. This chop is a single-entry single-
exit sub-graph of the program control flow graph (CFG) where the entry node is
the call to f1 and the exit node is the call to f2. The CFG paths within the chop
overapproximate the set of feasible program executions that can lead from the
return of f1 to the call to f2. These chops play an important role in accounting
for the composite behavior of features as mediated by common code.

3.2 Calculating Feature Interactions

We leverage the concept of program dependences, and the PDG [16], to deter-
mine inter-feature dependences. A PDG is a directed graph, (S,EPDG), whose
vertices are program statements, S, and (si, sj) ∈ EPDG if si defines the value

276 J. Shi, M.B. Cohen, and M.B. Dwyer

Algorithm 1. Computing k-way Interaction Trees
1: interactionTrees(k, (F,E))
2: T := ∅
3: for (fi, fj) ∈ E
4: T ∪ = tree(fi, fj)
5: for i = 3 to k + 1
6: for ti−1 ∈ T ∧ |ti−1| = i− 1
7: for v ∈ F − v(ti−1)
8: if (root(ti−1), v) ∈ E ∧ consistent(v(ti−1 ∪ v)) then
9: T ∪ = tree(ti−1, (root(ti−1), v))
10: else
11: for (v, v′) ∈ E ∧ v′ ∈ v(ti−1)
12: if consistent(v(ti−1 ∪ v) then T ∪ = tree(ti−1, (v, v′))
13: endif
14: return T
15: end interactionTrees()

of a location that is subsequently read at sj. A feature dependence graph (FDG)
is an abstraction of the PDG for an SPL implementation.

Definition 2 (Feature Dependence Graph). Given a PDG for an SPL,
(S,EPDG), the FDG, (F,EFDG), is a directed graph whose vertices are features,
F , and (fi, fj) ∈ EFDG iff ∃si, sj ∈ S : si ∈ S(fi)∧ sj ∈ S(fj)∧ (si, sj) ∈ EPDG

where S(f) is the set of statements in feature f .

We capture the interaction among features by defining a tree that is embedded in
the FDG. The intuition is that the root is the sink of a set of feature dependence
edges. The output values of that root feature reflect the final interaction effects,
and are defined in terms of the input values of the features that form the leaves
of the tree.

Definition 3 (Interaction Tree). Given an FDG, (F,EFDG), a k-way inter-
action tree is an acyclic, connected, simple subgraph, (F ′, E′), where F ′ ⊆ F ,
E′ ⊆ EFDG, |F ′| = k, and where ∃r ∈ F ′ : ∀v ∈ F ′ : r ∈ v.(E′)∗. We call the
common reachable vertex the root of the interaction tree.

The set of all k-way interaction trees for an SPL can be constructed as shown in
Algorithm 1. The algorithm uses a constructor tree() which, optionally, takes an
existing tree and adds edges to it expanding the set of vertices as appropriate.
For a tree, t, the set of vertices is v(t) and the root is root(t). Before adding a
tree, the set of features in the tree must be checked to ensure they are consistent
with the OVM; this is done using the predicate consistent().

The algorithm accepts k and an FDG and returns the set of k-way interactions.
It builds the set of interactions incrementally. For an i-way interaction, it extends
an i− 1-way interaction by adding a single additional vertex and an edge. While
other strategies for building interaction trees are possible, this approach has
the advantage of efficiency and simplicity. Based on our case studies, reported
in Section 4, this approach is sufficient to enable significant improvement over
more standard analyses of an SPL code base.

Interaction trees can be organized hierarchically based on their structure.

Integration Testing of SPLs Using Compositional Symbolic Execution 277

Definition 4 (Interaction Hierarchy). Given a k-way interaction tree, tk =
(F,E), where k > 1, we can define a pair of interaction trees ti = (Fi, Ei) and
tj = (Fj , Ej), such that Fi ∩ Fj = ∅, |Fi|+ |Fj | = k, and ∃(fi, fj) ∈ E. We say
that tk is the parent of ti and tj and, that ti and tj are the children of tk.

The base case of the hierarchy, where k = 1, is simply each feature in isolation.
There are many ways to construct such an interaction hierarchy, since for any
given k-way interaction tree cutting a single edge partitions the tree into two
children. As discussed below, the hierarchy resulting from Algorithm 1 enjoys
a structure that can be exploited in generating summaries of interaction pat-
tern behavior. The parent (child) relationships among interaction trees can be
recorded at the point where the tree() constructor calls are made in Algorithm 1.

3.3 Composing Feature Summaries

Our goal is to analyze program paths that span sets of features in an SPL to sup-
port fault detection and test generation. Our approach to feature summarization
involves two distinct phases: (1) the application of bounded symbolic execution
to feature implementations in isolation to produce feature summaries, and (2)
the matching and combination of feature summaries to produce summaries of
the behavior of interaction patterns.

Phase (1) is performed by applying traditional symbolic execution where the
length of the longest branch sequence is bounded to d – the depth. For each
feature, f , this results in a summary, fsum, as defined in Section 2.

When performing symbolic execution of f there are three possible outcomes:
(a) a complete execution of f which returns normally as analyzed within d
branches, (b) an exception, including assertion violations, is detected before d
branches are explored, and (c) the depth bound is reached. In our work, we only
accumulate the outcomes falling into (a) into fsum.

Case (b) is interesting, because it may indicate a fault in feature f . The iso-
lated symbolic execution of f allows for any possible state on entry to
the feature, however, it is possible that a detected exception is infeasible in the
context of a system execution. In future work, we will preserving results from
case (b) and attempt to determine their feasibility when composed in interaction
patterns with other features – this would reduce and, when interaction patterns
are sufficiently large, eliminate false reports of exceptions.

For phase (2) we exploit the structure of the interaction hierarchy resulting
from the application of Algorithm 1 to generate a summary for a k-way inter-
action. As discussed above, such an interaction has (potentially several) pairs of
children. It suffices to select any of those pairs.

Within each pair there is a k−1-way interaction, i, which we assume has a sum-
mary isum = (pci, wi), and single feature, f , summarized as fsum = (pcf , wf),
which is connected by a single edge connected to either root(i) or one of i’s
leaves, l. To compose isum and fsum we must characterize the behavior of the
FDG edge.

The existence of an edge (f, f ′) means that there is a common region beginning
at the return from f and ending at the call to f ′. Calculating the chop that

278 J. Shi, M.B. Cohen, and M.B. Dwyer

Algorithm 2. Edge Summary (left) and Composing Summaries (right)

1: eSum(E, l, e, pc, s, w, d)
2: if |pc| > 0
3: if branch(l)
4: lt := target(l, true)
5: if SAT (cond(l, s)) ∧ (l, lt) ∈ E
6: eSum(E, lt, e, pc ∧ cond(l, s), s, w, d− 1)
7: lf := target(l, false)
8: if SAT (¬cond(l, s)) ∧ (l, lf) ∈ E
9: eSum(E, lf , e, pc ∧ ¬cond(l, s), s, w, d− 1)
10: else
11: if l = e
12: sum ∪ = (pc, π(s, w))
13: else
14: s := update(s, l)
15: w ∪ = write(l)
16: eSum(E, succ(l), e, pc, s, w, d)
17: endif
18: endif
19: if pc = true return sum
20: end eSum()

1: cSum(s, s′)
2: sc := ∅
3: for (pc,w) ∈ s
4: for (pc′, w′) ∈ s′
5: eq := true
6: for l ∈ read(pc′)
7: if ∃l ∈ dom(w)
8: eq := eq ∧ input(s′, l) = w(l)
9: if SAT (pc ∧ eq ∧ pc′)
10: for l ∈ dom(w′)
11: if ∃l ∈ dom(w)
12: w := w − (l,)
13: endfor
14: sc ∪ = (pc ∧ eq ∧ pc′, w ∧ w′)
15: endif
16: endfor
17: end cSum()

circumscribes the CFG for this region allows us to label branch outcomes that
lie within the chop and to direct the symbolic execution along paths from f that
reach f ′.

Algorithm 2(left) defines this approach to calculating edge summaries. It con-
sists of a customized depth-bounded symbolic execution that only explores a
branch if that branch lies within the chop for the common region. The algorithm
makes use of several helper functions. Functions determine whether an instruc-
tion is a branch, branch(), the target of a branch, target(), and the symbolic
expression for a branch given a symbolic state, cond(). Functions to calculate the
successor of an instruction, succ(), the set of locations written by an instruction,
write(), and updating the symbolic state based on an instruction, update(), are
also used. The SAT () predicate determines whether a logical formula is satisfi-
able. Finally, the π() function projects a symbolic state onto a set of locations.

eSum(Echop, succ(f), f
′, true, ∅, ∅, d) returns the symbolic summary for edge

(f, f ′) where the parameters are as follows. Echop is the set of edges in the CFG
chop bounded by the return of f and the call to f ′, succ(f) is the location at
which initiate symbolic execution and f ′ is the call that terminates symbolic
execution. true is the initial path condition. The next two parameters are the
initial symbolic state and the set of locations written on the path – both are
initially empty. d is the bound on the length of the path condition that will be
explored in producing the summary.

To produce a symbolic summary for the k-way interaction, we now compose
isum, fsum, and the edge summary computed by eSum(). There are two cases
to consider. If the feature, f ′, is connected to root(i) with an edge, (root(i), f ′)
we compose summaries in the following order: isum, (root(i), f ′)sum, f ′

sum. If the
feature, f ′, is connected to a leaf of i, li, with an edge, (f ′, li) we compose
summaries in the following order: f ′

sum, (f ′, li)sum, isum.

Integration Testing of SPLs Using Compositional Symbolic Execution 279

Order matters in composing summaries because the set of written locations of
two summaries may overlap and simply conjoining the equality constraints on the
values at such locations will likely result in constraints that are unsatisfiable. We
keep only last write of locations in a composed summary to honor the sequencing
of writes and reads of locations that arise due to the order of composition.

Consider the composition of summary s with summary s′, in that order. Let
(pc, w) ∈ s and (pc′, w′) ∈ s′ be two elements of those summaries. The concern
is that dom(w) ∩ dom(w′) 	= ∅, where dom() extracts the set of locations used
to index into a map. Our goal is to eliminate the constraints in w on locations
in dom(w) ∩ dom(w′). In general, pc′ will read the value of at least one loca-
tion, l, and that location may have been written by the preceding summary.
In such a case, the input value referenced in pc′ should be equated to w(l).
Algorithm 2(right) composes two summaries taking care of these two issues.

In our approach, the generation of a symbolic summary produces “fresh”
symbolic variables to name the values of inputs. A map, input(), records the
relationship between input locations and those variables. We write input(s, l) to
denote a summary s and a location l to access the symbolic variable. For a given
path condition, pc, a call to read(pc) returns the set of locations referenced in
the constraint – it does this by mapping back from symbolic variables to the as-
sociated input locations. We rely on these utility functions in Algorithm 2(right).

The algorithm considers all pairs of summary elements and generates, through
the analysis of the locations that are written by the first summary and read by
the second summary, a set of equality constraints that encode the path condition
of the second summary element in terms of the inputs of the first. The pair of
path conditions along with these equality constraints are checked for satisfia-
bility. If they are satisfiable, then the cumulative write effects of the summary
composition are constructed. All of the writes of the later summary are enforced
and the writes in the first that are shadowed by the second are eliminated –
which eliminates the possibility of false inconsistency.

3.4 Complexity and Optimization of Summary Composition

From studying the Algorithm 2 it is apparent that the worst-case cost of con-
structing all summaries up to k-way summaries is exponential in k. This is due
to the quadratic nature of the composition algorithm.

In practice we see quite a different story, in large part because we have opti-
mized summary composition significantly. First, when we can determine that a
pair of elements from a summary that might potentially match we ensure that for
any shared features the summaries agree on the values for the elements of those
summaries; this can be achieved through a string comparison of the summary
constraints which is much less expensive than calling the SAT solver. Second,
we can efficiently scan for constraints in one summary that are not involved in
another summary and those can be eliminated since they were already found to
be satisfiable in previous summary analyses.

280 J. Shi, M.B. Cohen, and M.B. Dwyer

Audio
Effects
Audio
Effects

0:2

Chorus Contrast Volume Repeat

Trim Echo Reverse Fade Swap

Audio Device ModFM

ModDBPSK Volume RRV

0:2

Chorus

0:2

Contrasttt

SCARI
Core

SCARI
Core

Modulation Modulation

Demodulation Demodulation

DeModFM DeModDBPSK

1:1
odulation

1:1

GPL
Core
GPL
Core

Weight Weight

Exploration Exploration

Algorithm Algorithm

Base Weighted

g o

Search

g

DFS Connected Transpose Strong Con

Number Cycle MSTPrim MSTKrusk Shortest

DFS CooBFS

g rithm

ected Transp

t

nneno

(a) SCARI

(b) GPL

eModDModFM DBPSK DeMod

<excludes>
<excludes>

Fig. 2. Feature Models for (top) SCARI and (bottom) GPL

4 Case Study

We have designed a case study for evaluating the feasibility of our approach that
ask the following two research questions. (RQ1): What is the reduction from our
dependency analysis on the number of interactions that should be tested in an
SPL? (RQ2): What is the difference in time between using our compositional
symbolic technique versus a traditional directed technique?

4.1 Objects of Analysis

We selected two software product lines. The first SPL is based on the implemen-
tation of the Software Communication Architecture-Reference Implementation
(SCARI-Open v2.2) [4] and the second is a graph product line, GPL [11,14] used
in several other papers on SPL testing.

The first product line, SCARI, was constructed by us as follows. First we
began with the Java implementation of the framework. We removed the non-
essential part of the product line (e.g. logging, product installation and launch-
ing) and features that required CORBA Libraries to execute. We kept the core
mandatory feature, Audio Device, and transformed four features that were writ-
ten in C (ModFM, DemodFM, Chorus and Echo), into Java. We then added 9
other features which we translated from C to Java from the GNU Open Source
Radio [7] and the Sound Exchange (SoX), site [22]. Table 1 shows the origin of
each feature and the number of summaries for each. We used the example func-
tion for assembling features, to write a configuration program that composes the
features together into products. The feature model is shown in Figure 2(a).

The graph product line (GPL) [14] has been used for various studies on SPLs.
We start with the version found in the implementation site for [11]. To fit our
prototype tool, we re-factored some code so that every feature is contained in a
method. We removed several features because either we could not find a method
in the source code or because JPF would not run. We made the method Prog

Integration Testing of SPLs Using Compositional Symbolic Execution 281

Table 1. SCARI Size by Feature

Features Origin LOC No. Summaries

Chorus [4] 30 6

Contrast [22] 14 5

Volume [22] 47 5

Repeat [22] 12 3

Trim [22] 11 6

Echo [4] 31 5

Reverse [22] 14 4

Fade [22] 9 4

Swap [22] 27 4

AudioDevice [4] 13 3

ModFM [4] 19 4

ModDBPSK [7] 6 2

DemodFM [4] 18 4

DemodDBPSK [7] 6 3

Total 257 58

Table 2. GPL Size by Feature

Features LOC No. Summaries

Base 85 56

Weighted 32 148

Search 35 19

DFS 23 41

BFS 23 6

Connected 4 8

Transpose 27 3

StronglyConnected 19 9

Number 2 2

Cycle 40 19

MSTPrim 92 4

MSTKruskal 106 3

Shortest 102 3

Total 590 321

our main entry point for the program. We did not include any constraints for
simplicity. Figure 2(b) shows the resulting feature model and Table 2 shows the
number of lines of code and the number of summaries by feature.

4.2 Method and Metrics

Experiments are run on an AMD Linux computing cluster running CentOS 5.3
with 128GB memory per node. We use Java Pathfinder (JPF) [15] to perform SE
with the Choco solver for SCARI and CVC3BitVector for GPL. We adapt the
information flow analysis (IFA) package [9] in Soot [25] for our FDG. In SCARI
we use the configuration program for a starting point of analysis. In GPL we use
the Prog program, which is an under-approximation of the FDG.

For RQ1 we compute the number of possible interactions (directed and undi-
rected) at increasing values for k, obtained directly from the feature model.
We compare this with the number that we get from the interaction trees. For
RQ2, we compare the time that is required to execute the two symbolic tech-
niques on all of the trees for increasing values of k. We compare incremental SE
(IncComp) and a full direct SE (DirectSE). We set the depth for SE at 20
for IncComp and allow DirectSE k-times that depth since it works on the full
partial-product each time, while IncComp composes k summaries each computed
at depth 20. DirectSE does not use summaries, but in the SPLs we studied there
is no opportunity for summary reuse within the analysis of a partial product –
our technique reuses summaries across partial products.

4.3 Results

RQ1. Table 3 compares the number of interactions obtained from just the OVM
with the number of interaction trees obtained through our dependency analysis.
We present k from 2 to 5. The column labelled UI is the number of interactions
calculated from all k-way combinations of features. In SCARI there are only
three true points of variation given the model and constraints, therefore we see
the same number of interactions for k = 3 and 4. For k = 5, we have fewer
interactions since there are 5 unique 4-way feature combinations in a single
product with 5 features, but only a single 5-way combination. The DI column

282 J. Shi, M.B. Cohen, and M.B. Dwyer

Table 3. Reduction for Undirected (U) and Directed (D) Interactions (I)

Subject k UI DI Feasible UI Feasible DI UI Reduction DI Reduction

SCARI

2 188 376 85 85 54.8% 77.4%
3 532 3192 92 92 82.7% 97.1%
4 532 12768 162 162 69.5% 98.7%
5 164 19680 144 144 12.2% 99.3%

GPL

2 288 576 21 27 92.7% 95.3%
3 2024 12144 29 84 98.6% 99.3%
4 9680 232320 31 260 99.7% 99.9%
5 33264 3991680 20 525 99.9% 100.0%

represents the number of directed interactions or all permutations (k! × UI).
The next two columns are feasible interactions obtained from the interaction
trees. Feasible UI, removes direction, counting all trees with the same features
as equivalent. Feasible DI is the full tree count. The last two columns give the
percent reduction. For the undirected interactions we see a reduction of between
12.2% and 99.9% across subjects and values of k, and the reduction is more
dramatic in GPL (92.7%-99.9%). If we consider the directed interactions, which
would be needed for test generation, there is a reduction ranging from 77.4%
to 100%. In terms of absolute values we see a reduction in GPL from over 3
million directed interactions at k = 5, down to 525, an order 4 magnitude of
difference. DIs are useful to detect more behaviors. For example, given a one-
second-sound file, trim→repeat removes 1-second-sound and generates an empty
file; repeat→trim repeats the sound once and outputs a 1-second-sound file.

RQ2. Table 4 compares the performance of DirectSE and IncComp in terms
of time (in seconds). It lists the number of directed (D) and undirected (U)
interactions (I) for each k, that are feasible based on the interaction trees. Some
features in the feature models may have more than one method. In RQ1 based
on the OVM we reported interactions only at the feature level. However in this
table, we consider all methods within a feature and give a more precise count
of the interactions; we list all of the interactions (both directed and undirected)
between features. The next two columns present time. For Direct SE we re-start
the process for each k, but for the IncComp technique we use cumulative times
because we must first complete k − 1 to compute k. Although both techniques
use the same time for single feature summaries, they begin to diverge quickly.
DirectSE is 3 times slower for k = 5 on SCARI, and 4 times slower on GPL.
Within SCARI we see no more than a 3 second increase to compute k + 1 from
k (compared to 14-35 seconds for DirectSE) and in GPL we see at most 750 (12
mins). For DirectSE it requires as long as 3160 (about 1 hour).

The last column of this table shows how many feasible paths were sent to the
SAT solver (SAT). We saw (but don’t report) a similar number for DirectSE
which we attribute to our depth bounding heuristic. The number for SMT rep-
resents the total number of possible calls that were made to the SAT solver.
However, we did not send all possible calls, because our matching heuristic culled
out a number which we show as Avoided Calls.

Integration Testing of SPLs Using Compositional Symbolic Execution 283

Table 4. Time Comparisons for SCARI and GPL

Subject
k Feasible UI Feasible DI DirectSE IncComp

SCARI

Time (sec) Time (sec) SAT/SMT, Avoided Calls
1 14 14 6.75 6.75 58
2 85 85 14.48 9.63 430/1780, 0
3 92 92 17.67 10.06 844/2226, 1587
4 162 162 36.09 10.93 1505/2909, 3442
5 144 144 35.87 11.70 2075/3523, 5696

GPL

1 49 49 41.77 41.77 321
2 60 76 67.25 56.28 663/985, 0
3 81 310 184.76 82.00 1441/1901, 1809
4 82 1725 727.34 216.63 5814/7342, 5396
5 52 8135 3887.23 965.92 27444/34147, 19743

5 Conclusions and Future Work

In this paper we have presented a compositional symbolic execution technique
for integration testing of software product lines. Using interaction trees to guide
incremental summary composition we can efficiently account for all possible in-
teractions between features. We consider interactions as directed which gives us
a more precise notion of interaction than previous research. In a feasibility study
we have shown that we can (1) reduce the number of interactions to be tested by
a factor of between 12.2% and 99.9% over an uninformed model, and (2) reduce
the time taken to perform symbolic execution by as much as factor of 4 over a di-
rected symbolic execution technique. Another advantage of this technique is that
since our results and costs are cumulative, we can keep increasing k as time allows,
making our testing stronger, without any extraneous work along the way.

As future work we plan to exploit the information gained from our analysis to
perform directed test generation. By using the complete paths we can generate
test cases from the constraints that can be used with more refined oracles. For
paths which reach the depth bound, we plan to explore ways to characterize
these partial paths to guide other forms of testing, such as random testing, to
explore the behavior which is otherwise unknown.

Acknowledgements. This work is supported in part by the National Science
Foundation through awards CCF-0747009 and CCF-0915526, the Air Force Of-
fice of Scientific Research through awards FA9550-09-1-0129 and FA9550-10-
1-0406, and the National Aeronautics and Space Administration under grant
number NNX08AV20A.

References

1. Bertolino, A., Gnesi, S.: PLUTO: A Test Methodology for Product Families. In:
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 181–197. Springer,
Heidelberg (2004)

2. Cohen, M.B., Colbourn, C.J., Gibbons, P.B., Mugridge, W.B.: Constructing test
suites for interaction testing. In: Proc. of the Intl. Conf. on Soft. Eng., pp. 38–48
(May 2003)

3. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product
line testing. In: Proc. of the Workshop on the Role of Arch. for Test. and Anal.,
pp. 53–63 (July 2006)

284 J. Shi, M.B. Cohen, and M.B. Dwyer

4. Communication Research Center Canada, http://www.crc.gc.ca/en/html/crc/
home/research/satcom/rars/sdr/products/scari open/scari open

5. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Geppert, B., Li, J., Rößler, F., Weiss, D.M.: Towards Generating Acceptance Tests
for Product Lines. In: Dannenberg, R.B., Krueger, C. (eds.) ICSR 2004. LNCS,
vol. 3107, pp. 35–48. Springer, Heidelberg (2004)

7. GNU Radio, http://gnuradio.org/redmine/wiki/gnuradio
8. Godefroid, P.: Compositional dynamic test generation. In: Proc. of the ACM Sym-

posium on Principles of Programming Languages, pp. 47–54 (2007)
9. Halpert, R.L.: Static lock allocation. Master’s thesis, McGill University(April 2008)

10. Jaring, M., Bosch, J.: Expressing product diversification – categorizing and classi-
fying variability in software product family engineering. Intl. Journal of Soft. Eng.
and Knowledge Eng. 14(5), 449–470 (2004)

11. Kim, C.H.P., Batory, D., Khurshid, S.: Reducing combinatorics in testing product
lines. In: Asp. Orient. Soft. Dev., AOSD (2011)

12. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (1976)

13. Kuhn, D., Wallace, D.R., Gallo, A.M.: Software fault interactions and implications
for software testing. IEEE Trans. on Soft. Eng. 30(6), 418–421 (2004)

14. Lopez-Herrejon, R.E., Batory, D.: A Standard Problem for Evaluating Product-
Line Methodologies. In: Dannenberg, R.B. (ed.) GCSE 2001. LNCS, vol. 2186,
pp. 10–24. Springer, Heidelberg (2001)

15. NASA Ames. Java Pathfinder (2011), http://babelfish.arc.nasa.gov/trac/jpf
16. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software

development environment. In: Proc. of the Soft. Eng. Symp. on Practical Soft.
Develop. Envs., pp. 177–184 (1984)

17. Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic exe-
cution. In: Intl. Symp. on Foun. of Soft. Eng., pp. 226–237 (2008)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

19. Reis, S., Metzger, A., Pohl, K.: Integration Testing in Software Product Line Engi-
neering: A Model-Based Technique. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 321–335. Springer, Heidelberg (2007)

20. Reisner, E., Song, C., Ma, K.-K., Foster, J.S., Porter, A.: Using symbolic evaluation
to understand behavior in configurable software systems. In: Intl. Conf. on Soft.
Eng., pp. 445–454 (May 2010)

21. Reps, T., Rosay, G.: Precise interprocedural chopping. In: Proc. of the ACM Sym-
posium on Foundations of Soft. Eng., pp. 41–52 (1995)

22. Sox. Sound Exchange (2011), http://sox.sourceforge.net/
23. Stricker, V., Metzger, A., Pohl, K.: Avoiding Redundant Testing in Applica-

tion Engineering. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287,
pp. 226–240. Springer, Heidelberg (2010)

24. Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: Testing software product lines
using incremental test generation. In: Intl. Symp. on Soft. Reliab. Eng, pp. 249–258
(2008)

25. Vallée-Rai, R., Gagnon, E.M., Hendren, L., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

http://www.crc.gc.ca/en/html/crc/home/research/satcom/rars/sdr/products/scari_open/scari_open
http://www.crc.gc.ca/en/html/crc/home/research/satcom/rars/sdr/products/scari_open/scari_open
http://gnuradio.org/redmine/wiki/gnuradio
http://babelfish.arc.nasa.gov/trac/jpf
http://sox.sourceforge.net/

Combining Related Products into Product Lines

Julia Rubin1,2 and Marsha Chechik1

1 University of Toronto, Canada
2 IBM Research in Haifa, Israel

mjulia@il.ibm.com, chechik@cs.toronto.edu

Abstract. We address the problem of refactoring existing, closely related prod-
ucts into product line representations. Our approach is based on comparing and
matching artifacts of these existing products and merging those deemed simi-
lar while explicating those that vary. Our work focuses on formal specification
of a product line refactoring operator called merge-in that puts individual prod-
ucts together into product lines. We state sufficient conditions of model compare,
match and merge operators that allow application of merge-in. Based on these,
we formally prove correctness of the merge-in operator. We also demonstrate its
operation on a small but realistic example.

1 Introduction

Numerous companies develop and maintain families of related software products. These
products share a common, managed set of features that satisfy the specific needs of a
particular market segment and are referred to as software product lines (SPLs) [4]. SPLs
often emerge from experiences in successfully addressed markets with similar, yet not
identical needs. It is difficult to foresee these needs a priori and hence to structure and
manage the SPL development upfront [11]. As a result, SPLs are usually developed in
an ad-hoc manner, using available software engineering practices such as duplication
(the “clone-and-own” paradigm where artifacts are copied and modified to fit the new
purpose), inheritance, source control branching and more. However, these software en-
gineering practices do not scale well to product line development, resulting in massive
rework, increased time-to-market and lost opportunities.

Software Product Line Engineering (SPLE) is a software engineering discipline aim-
ing to provide methods for dealing with the complexity of SPL development [4,18,5].
SPLE practices promote systematic software reuse by identifying and managing com-
monalities – artifacts that are part of each product of the product line, and variabili-
ties – artifacts that are specific to one or more (but not all) individual products across
the whole product portfolio. Commonalities and variabilities are controlled by feature
models [7] (a.k.a. variability models) which specify program functionality units and re-
lationships between them. A product of the product line is identified by a unique and
legal combination of features, and vice versa.

SPLE approaches can be divided into two categories: compositional, which imple-
ment product features as distinct fragments and allow generating specific product by
composing a set of fragments, and annotative, which assume that there is one
“maximal” product in which annotations indicate the product feature that a particular

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 285–300, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

286 J. Rubin and M. Chechik

fragment realizes [8,3]. A specific product is obtained by removing fragments corre-
sponding to discarded features. We follow the annotative approach here.

A number of works, e.g., [18,5], promote the use of annotative SPLE practices for
model-driven development of complex systems. They are built upon the idea of ex-
plicating and parameterizing variable model elements by features. The parameterized
elements are included in a product only if their corresponding features are selected, al-
lowing coherent and uniform treatment of the product portfolio, a reduced number of
duplications across products, better understandability and reduced maintenance effort,
e.g., because modifications in the common parts can be performed only once.

Weighing

Unlocking WashingDrying

Locking
[<=5kg][>5kg] /displayError();

/dryer.sendSignal(SigStart);
SigDone()

/wash.sendSignal(SigStart);

SigDone()

(a) Controller A.

Weighing

Unlocking Washing

Locking

Waiting

[<=5kg][>5kg] /displayError();

/wash.wtrLevel=weight*0.5;
wash.sendSignal(SigStart);
SigDone()

/timer.sendSignal(SigStart);

SigDone()

(b) Controller B.

Weighing

Beeping Unlocking Washing

Locking
[<=6kg][>6kg] /displayError();

/wash.wtrLevel=weight*0.5;
wash.sendSignal(SigStart);

/beeper.sendSignal(SigStart); SigDone()

SigDone()

(c) Controller C.

Fig. 1. Washing Machine Controllers

Example. Consider three fragments of UML
statechart controllers depicted in Fig. 1.
These models were inspired by a real-life
SPL developed by a partner (since partner-
specific details are confidential, we move
the problem into a familiar domain of wash-
ing machines). Controller A in Fig. 1(a)
weighs the laundry and displays an error
message if the weight is more than 5 kg.
Otherwise, it locks the washing machine and
sends a signal to the wash engine, responsi-
ble for performing the washing cycle. When
washing is done, the Controller signals
the dryer to perform the drying cycle, after
which it proceeds to unlock the washing ma-
chine and finish. Controller B in Fig. 1(b)
differs from the one in Fig. 1(a) by using the
timer component to delay the wash cycle
and by setting the wtrLevel attribute of the
wash engine to the desired water level based
on the weight of the laundry. This model also
lacks the dryer capability. Similarly to the
one in Fig. 1(b), Controller C in Fig. 1(c)
uses the wtrLevel attribute to set the de-
sired water level of the wash engine based on
the laundry weight. However, it allows laun-
dry weights up to 6 kg. It also lacks both the
dryer and the timer capabilities but initiates
an acoustic notification at the end of the pro-
gram by invoking the beeper engine.

These controllers have a large degree of
similarity and can be refactored into SPLE
representations where duplications are elim-
inated and variabilities are explicated. An
example of a possible refactoring is given in Fig. 2(b), where the Drying, Waiting

Combining Related Products into Product Lines 287

Weighing

Unlocking Washing

Drying

Locking Waiting

[<=5kg]

[>5kg] /displayError();

/wash.wtrLevel=weight*0.5;
wash.sendSignal(SigStart);
SigDone()

/timer.sendSignal(SigStart);

SigDone()
/dryer.sendSignal(SigStart);
SigDone()

/wash.sendSignal(SigStart);

SigDone()

fA
alt

fB
fA States:

 Drying
Transitions:
 (Locking->Washing)
 (Washing->Drying)
 (Drying->Unlocking)

fB

States:
 Waiting
Transitions:
 (Locking->Waiting)
 (Waiting->Washing)
 (Washing->Unlocking)

(a) Controller A+B.

fA
alt fB
fC

Weighing

Beeping

Unlocking Washing

Drying

Locking Waiting

[<=5kg]
[<=6kg]

[>5kg] /displayError();

[>6kg] /displayError();

/wash.wtrLevel=weight*0.5;
wash.sendSignal(SigStart);

/beeper.sendSignal(SigStart);

/wash.wtrLevel=weight*0.5;
wash.sendSignal(SigStart);
SigDone()

/timer.sendSignal(SigStart);

SigDone()

/dryer.sendSignal(SigStart);
SigDone()

/wash.sendSignal(SigStart);

SigDone()

fA

States:
 Drying
Transitions:
 (Locking->Washing)
 (Washing->Drying)
 (Drying->Unlocking)
 (Unlocking->final)
Actions:
 (Locking->Washing) wash.sendSignal(SigStart);
Guards:
 (Weighing->Locking) <=5kg
 (Weighing->final) >5kg

fB

States:
 Waiting
Transitions:
 (Locking->Waiting)
 (Waiting->Washing)
 (Washing->Unlocking)
 (Unlocking->final)
Guards:
 (Weighing->Locking) <=5kg
 (Weighing->final) >5kg

fC

States:
 Beeping
Transitions:
 (Locking->Washing)
 (Washing->Unlocking)
 (Unlocking->Beeping)
 (Beeping->final)
Actions:
 (Locking->Washing) wash.wtrLevel=weight*0,5;
 wash.sendSignal(SigStart);
Guards:
 (Weighing->Locking) <=6kg
 (Weighing->final) >6kg

(b) Controller A+B+C.

Fig. 2. Possible Refactorings of the Washing Machine Controllers in Fig. 1

and Beeping states and their corresponding transitions are annotated by a set of fea-
tures depicted in the right upper part of the figure. The refactored product line in our
example encapsulates only the original input products, thus we have just three alter-
native features representing these products – fA, fB and fC . The set of annotations
specifies elements to be included given a particular feature selection. E.g., selecting fA
filters out all elements not annotated with that feature, which results in Controller A
in Fig. 1(a). Likewise, selecting feature fB (fC) results in ControllerB (Controller
C) in Fig. 1(b) (Fig. 1(c)).

288 J. Rubin and M. Chechik

The annotations themselves are shown in a table on the left-hand side of the fig-
ure (see “State” and “Transitions” entries in the table). While the transition between
Locking and Washing states exists in both Controller A and C (Fig. 1(a,c)), the
corresponding actions on the transition are different and thus are also annotated by
features in the combined version (see “Actions” entry in the table). Likewise, laundry
weight guards on the transitions exiting the Weighing state are annotated by the corre-
sponding features as well (see “Guards” entry in the table).

Product Line Refactoring Framework. Despite the benefits of applying SPLE prac-
tices which include improved time-to-market and quality, reduced portfolio size, engi-
neering costs and more [4], it is impractical to assume that existing (legacy) product
line systems can be abandoned altogether for creating new ones that take advantage
of the SPLE reuse techniques. Thus, a transition process which involves identification
and extraction of common and variable artifacts together with variability models that
control them, becomes a necessity [12,1].

In our work, we propose a generic framework for mining legacy product lines and au-
tomating their refactoring to contemporary feature-oriented SPLE approaches, initially
suggested in [19]. We consider those refactorings that just include the set of existing
products rather than allowing novel feature combinations (e.g., a product with both the
timer and the beeper capabilities). Our approach is based on comparing elements of the
input products to each other (by calculating a weighted similarity of their corresponding
sub-elements), matching those whose similarity is above a preset threshold and merging
these together.

Our refactoring framework is applicable to a variety of model types, such as UML,
EMF or Matlab/Simulink, and to different compare, match and merge operators. In this
paper, we develop a generic model representation and a generic and parameterizable
compare / match / merge infrastructure underlying the refactoring framework. Using
them, we prove that our refactoring approach is semantically correct, i.e., it can gen-
erate exactly the original products, regardless of a particular implementation used and
parameters chosen. The main contribution of this paper is thus the formal foundation
that underlays the parameterizable and configurable, yet semantically correct refactor-
ing framework.

There are multiple ways to merge-in input products into a product line, even if we
only consider those refactorings that maintain the original set of input products. The
resulting refactorings vary syntactically, depending on how elements are matched and
combined. For example, in Fig. 2(b), transitions from Locking to Washing states of
Controllers A and C (Fig. 1 (a,c)) are matched to each other and combined, while
their corresponding actions are annotated by features. Instead, these transitions do not
have to be matched, so that the generated result has two separate transitions, each an-
notated by the corresponding feature. Also, the Unlocking state of Controller A in
Fig. 1(a) could be matched and combined with the Beeping state of Controller C in
Fig. 1(c) because of their structural similarity – both transition to the final state of the
statechart.

In this work, we formally prove that all these syntactically different refactorings are
able to produce the set of original input products and thus are “correct”. Elsewhere [20],
we focus on techniques for distinguishing between multiple possible refactorings based

Combining Related Products into Product Lines 289

on their qualitative properties and choosing a desired one which satisfies the set of de-
fined objectives (e.g., one objective might be to decrease the size of the produced result,
while another – to keep a low number of annotated elements per diagram). In [20], we
also instantiate our approach on product lines defined in UML – a common specifica-
tion language in automotive, aerospace & defense, and consumer electronics domains,
and demonstrate its applicability on several large-scale examples.

The remainder of this paper is organized as follows. We introduce our data model
and give the necessary background on product lines representations in Sec. 2. We give
formal foundations of model merging in Sec. 3 and define our merging-based product
line refactoring technique in Sec. 4. We prove semantic correctness of the technique in
Sec. 5. We conclude the paper with a discussion of related work in Sec. 6, presenting a
summary and future research directions in Sec. 7.

2 Preliminaries

In this section, we describe our representation of models and model elements and fix
our notation for representing product line models annotated by features.

Model Representation. Following XMI principles [17], we define models to be trees of
typed elements. Each element has a unique id which identifies it within the model and
a role which defines the relationship between the element and its parent. For example,
in UML, an element of type Behavior can have an Entry action or Do activity roles
in a state. In addition, a single element can fulfill several roles in a model: a Behavior
can be a Do activity of a state and an Effect of a transition at the same time. To allow
reusing elements for different roles, we employ a cross-referencing mechanism where
an element of type Ref represents the referenced element by carrying its id. Cross-
referencing, combined with roles, allows representing labeled graphs using trees: an
element can be linked to multiple different elements, each time in a distinct role.

Element types, denoted by T, and roles, denoted by R, are defined by the domain
model. For UML, types include Class, State, OpaqueBehavior, etc. Roles include
PackagedElement, Subvertex, Effect, etc. If the types Ref and String are not
defined by the domain model, we add them to T as well.

We differ from [17] by representing all element attributes, as first-class model ele-
ments. That is, an element’s name is represented by a separate model element of role
Name and type String. The implication of our representation is that elements’ attributes
now have their own ids and thus, an element can have multiple attributes in the same
role, e.g., multiple names or Effects for a transition. These qualities are required for
defining the product line merge-in operator in Sec. 4. A formal representation of our
notations is given by Def. 1 below.

Definition 1. (Model Element) A model element m is a tuple 〈m|id,m|t,m|r, m|v, m|s〉,
where m|id is a numeric identifier of the element, m|t ∈ T is the element’s type, m|r ∈ R

is the element’s role, m|v is the element’s value – either String or an id of another element
(representing a reference), and m|s is a (nested) list of sub-elements.

290 J. Rubin and M. Chechik

id = 1
t = StateMachine
r = OwnedBehaviour

id = 2
t = Pseudostate
r = Subvertex
v = start

id = 3
t = State
r = Subvertex

id = 4
t = String
r = Name
v = Weighing

id = 15
t = Transition
r = Transition

id = 16
t = Reference
r = Source
v = 2

id = 17
t = Reference
r = Target
v = 3

id = 6
t = State
r = Subvertex

id = 7
t = String
r = Name
v = Locking

id = 8
t = State
r = Subvertex

id = 9
t = String
r = Name
v = Washing

id = 5
t = Pseudostate
r = Subvertex
v = choice

id = 14
t = FinalState
r = Subvertex

id = 21
t = Transition
r = Transition

id = 22
t = Reference
r = Source
v = 5

id = 23
t = Reference
r = Target
v = 6

id = 24
t = Constraint
r = OwnedRule
v = <=5kg

id = 25
t = Transition
r = Transition

id = 26
t = Reference
r = Source
v = 5

id = 27
t = Reference
r = Target
v = 14

id = 28
t = Constraint
r = OwnedRule
v = >5kg

id = 29
t = OpaqueBehav.
r = Effect
v = displayError();

id = 18
t = Transition
r = Transition

id = 19
t = Reference
r = Source
v = 3

id = 20
t = Reference
r = Target
v = 5...

...

id = 30
t = Transition
r = Transition

id = 31
t = Reference
r = Source
v = 6

id = 32
t = Reference
r = Target
v = 8

id = 33
t = OpaqueBehav.
r = Effect
v = wash.

 sendSignal
 (SigStart);

Fig. 3. Partial representation of the Statechart in Fig. 1(a)

Fig. 3 shows partial representation of the Controller A statechart in Fig. 1(a), where
states Drying and Unlocking, together with their incoming and outgoing transitions,
are omitted to save space. In this figure, sub-elements are represented as element’s chil-
dren in the tree.

We refer to types that have no owned properties, such as String or Ref, as atomic.
Other types, such as Class, State or Transition, are compound. Elements of atomic
and compound types are referred to as atomic and compound elements, respectively.
While atomic elements have values, values of compound elements are determined from
values of their sub-elements. Thus, two compound elements may be equal (i.e., have
the same type and role, like elements with ids 3 and 6 in Fig. 3) but not equivalent, as
they might have different sub-elements.

Definition 2. (Equivalence) Given a universe of model elements M, let M1,M2 ∈ 2M be
distinct sets of elements. m1 ∈M1, m2 ∈M2 are equal, denoted by m1

∼= m2, iff m1|t = m2|t,
m1|r = m2|r and m1|v = m2|v . Equal atomic elements are equivalent. Compound elements are
equivalent, denoted by m1 = m2, iff m1

∼= m2, and their corresponding trees of sub-elements
are isomorphic wrt. equality.

Definition 3. (Model and Model Equivalence) A set of elements M ∈ 2M is a model iff
all elements in M are connected in a tree structure by the sub-elements relationship, and each
m ∈ M has a unique id. Models M1 and M2 are equivalent, denoted by M1 = M2, iff their
corresponding root elements are equivalent.

Product Line Engineering. Next, we describe the formal semantics of the annotative
SPLE approach.

Definition 4. (Feature Model and Configuration – simplified version of [23]) Given a universe
of elements F that represent features, a feature model FM = 〈F , ϕ〉 is a set of features F ∈ 2F

and a propositional formula ϕ defined over the features from F . A feature configuration F̂M
of FM is a set of selected features from F that respect ϕ (i.e., ϕ evaluates to true when each
variable f of ϕ is substituted by true if f ∈ F̂M and by false otherwise.)

Combining Related Products into Product Lines 291

Definition 5. (Product Line – adapted from [2]) A product line PL = 〈FM,M,R〉 is a
triple, where FM is a feature model, M ∈ 2M is a domain model, and R ⊆ F ×M is a set of
relationships that annotate elements of M by features of F .

Fig. 2(a) presents a snippet of a domain model, whose elements are connected to fea-
tures from a feature model using annotation relationships. In this case, features fA and
fB are alternative to each other, i.e., the propositional formula ϕ which specifies their
relationship is (fA∨ fB)∧¬(fA ∧ fB). Thus, the only two valid feature configurations
are {fA} and {fB}.

A specific product derived from a product line under a particular configuration is a
set of elements annotated by features from this configuration. For example, the state-
chart in Fig. 1(a) can be derived from the product line in Fig. 2(a) under the configura-
tion {fA}.

In this work, we assume that common product line elements, i.e., elements that are
present in all products derived from a product line, are annotated by all features of F .
Variable elements are annotated by some, but not all, features of F . To avoid clutter,
we do not display annotation relationships for common product line elements in Fig. 2.

We denote by Δ the mapping between an element of the product line model and the
corresponding element of the product model. We denote by Δ−1 the inverse mapping.
For example, let m and m̂ refer to the transition between Locking and Washing states
in Fig. 1(a) and Fig. 2(a), respectively. Then, under the configuration {fA}, Δ(m) = m̂
and Δ−1(m̂) = m.

Definition 6. (Product Derivation – adapted from [2]) Let PL = 〈FM,M,R〉 be a product

line and let F̂M be its feature configuration. A set of model elements M̂ is derived from the
product line PL under the configuration F̂M, denoted by M̂ = Δ(PL, F̂M), iff the following
properties hold:

(a) An element belongs to the derived model if and only if this element is annotated by a fea-
ture of the feature configuration F̂M (under which the derivation was performed): ∀m ∈
M,Δ(m) ∈ M̂ ⇔ ∃f ∈ F̂M · (f,m) ∈ R.

(b) Only one element can be derived from a given domain model element:
∀m ∈M,∃!m̂ ∈ M̂ · m̂ = Δ(m).

(c) Only derived elements are present in the derived model: ∀m̂ ∈ M̂,∃!m ∈ M· m̂ = Δ(m).
(d) Each element of the derived model preserves the type/role/value of its corresponding domain

model element: m̂ = Δ(m)⇒ m̂ ∼= m.
(e) Each element of the derived model preserves those sub-elements of its corresponding domain

model element that were annotated by the features from F̂M: ∀m̂ ∈ M̂, m̂c ∈ m̂|s ⇔
Δ−1(m̂c) ∈ Δ−1(m̂)|s ∧ ∃f ∈ F̂M · (f,Δ−1(m̂c)) ∈ R).

It is easy to show that a feature model configuration uniquely identifies the derived
product model.

Lemma 1. (Uniqueness) Let PL = 〈FM,M,R〉 be a product line, F̂M be a feature config-

uration and M̂ = Δ(PL, F̂M). Then, for each M̂ ′ = Δ(PL, F̂M), M̂ ′ = M̂ .

292 J. Rubin and M. Chechik

Table 1. State Similarity Weights W Used by Compare for Fig. 1

Element Name Type Depth Actions Transitions
Weight 0.2 0.05 0.1 0.3 0.35

Proof. Assume to the contrary that M̂ ′ �= M̂ and assume without loss of generality that ∃m̂ ∈
M̂ such that m̂ �∈ M̂ ′. By Def. 6(c), m̂ ∈ M̂ implies that ∃m ∈ M · m̂ = Δ(m). By Def. 6(a),

this means that ∃f ∈ F̂M · (f,m) ∈ R. Since M̂ ′ was derived from PL under the same

configuration F̂M, Δ(m) ∈ M̂ ′ by Def. 6(a), which implies that ∃m̂′ ∈ M̂ ′ · m̂′ = Δ(m) by
Def. 6(b). Since m̂ = Δ(m) = m̂′, we conclude that m̂ ∈ M̂ ′ which creates a contradiction.

3 Model Merging

In this section, we formalize properties of model merging [22,16]. Model merging is an
operation which consists of (1) compare, which determines how similar model elements
are to each other, (2) match, which detects pairs of elements that should constitute a
match and (3) merge, which puts information contained in input models together while
keeping a single copy of matched elements. We specify the minimal set of properties
that these three model merging steps should satisfy in order to be used for combining
individual products into product lines.

Compare is a heuristic function that calculates the similarity degree, a number between
0 and 1, for each pair of input model elements. It receives models M1, M2 and a set of
empirically computed weights W = {wR | R ∈ R} which represent the contribution
of sub-elements in role R to the overall similarity of their owning elements.

For the example in Fig. 1, a similarity degree between two states is calculated as
a weighted sum of the similarity degrees of their names, entry and exit actions, do
activities, incoming and outgoing transitions, etc.1 Comparing Locking states from
Fig. 1(a,b) to each other yields a relatively high similarity degree of 0.85, as these ele-
ments have identical names and similar incoming transitions. However, their outgoing
transitions have different actions and lead to non-similar states; thus, the states are not
identical. Comparing Drying and Waiting states yields a lower number, as these states
have different names and different incoming and outgoing transitions.

Definition 7. (Compare) Let M1,M2 ∈ 2M be models. Compare(M1,M2, W) is a total func-
tion that produces a set of triples C ⊆ (M1 ×M2 × [0..1]) that satisfy the following properties:

(a) The similarity degree of equal elements is 1: (m1 = m2)⇒ (m1, m2, 1) ∈ C.
(b) The similarity degree of elements having different types or roles is 0:

(m1|t �= m2|t) ∨ (m1|r �= m2|r)⇒ (m1,m2, 0) ∈ C.
(c) While comparing, references are substituted by the elements they refer to:

m1|t = m2|t = Ref⇒ ((m1,m2, x) ∈ C ⇔ (M1[m1|v],M2[m2|v], x) ∈ C);
m1|t = Ref ∧m2|t �= Ref⇒ ((m1,m2, x) ∈ C ⇔ (M1[m1|v],m2, x) ∈ C);
m1|t �= Ref ∧m2|t = Ref⇒ ((m1,m2, x) ∈ C ⇔ (m1,M2[m2|v], x) ∈ C).

1 Some compare algorithms, e.g., [16], might perform several iterations until they stabilize and
calculate the final similarity degree between elements.

Combining Related Products into Product Lines 293

(d) compareT,R are domain-specific functions, used to calculate the similarity degree between
atomic elements of type T in role R (e.g., elements’ names): m1|t = m2|t = T , m1|r =
m2|r = R, T is atomic ⇒ ((m1, m2, x) ∈ C ⇔ x =compareT,R(m1,m2)).

(e) The similarity degree of compound elements is calculated as a weighted sum of their sub-
elements’ similarity: m1|t = m2|t = T , T is compound ⇒ ((m1,m2, x) ∈ C ⇔ x =∑

{R}
wR ∗ sR), where {R} is a set of possible roles for sub-elements of T , wR is the contri-

bution of sub-elements in role R to the overall similarity of T (
∑

{R}
wR = 1), and sR is the

calculated similarity between sub-elements of m1 and m2 in role R.

Modifying weights W can produce syntactically different matches. To obtain the model
in Fig. 2(b), we calculated state similarity using weights in Table 1, which were set em-
pirically. Decreasing the weight of the name similarity between states while increasing
the weight of the similarity of their corresponding incoming and outgoing transitions
could, for example, result in lowering the similarity degree between Washing states in
Fig. 1(a,c) from 0.8 to 0.7, as their incoming and outgoing transitions differ signifi-
cantly. This can subsequently lead to not matching these states and thus, unlike in the
model in Fig. 2(b), each would be present in the resulting refactoring.

Match is a heuristic function that receives pairs of model elements together with their
similarity degree and returns those pairs that are considered similar, using empirically
determined similarity thresholds S = {ST |T ∈ T}. Matched elements are combined
together by the merge function, while unmatched are copied to the result without mod-
ification.

Definition 8. (Match) Let M1,M2 ∈ 2M be models and let C be a set of triples produced
by compare(M1,M2,W). Then, match(M1,M2, C, S) is a function that produces a set of pairs
S ⊆ (M1 ×M2) that satisfy the following properties:

(a) Each element from M1 can be matched with only one element of M2, and vice versa:
(m1,m2) ∈ S ⇒ ∀(m′

1,m
′
2) ∈ S(m′

1|id = m1|id ⇔ m′
2|id = m2|id).

(b) Only identical atomic elements are matched:
m1|t = m2|t = T , T is atomic ⇒ (m1,m2) ∈ S ⇔ (m1, m2, 1) ∈ C.

(c) Compound elements are matched only if their similarity degree exceeds the threshold that is
set for their type:
m1|t = m2|t = T , T is compound ⇒ (m1, m2) ∈ S ⇔ (m1,m2, x) ∈ C ∧ x ≥ ST .

(d) If two elements are matched, their parent elements are matched as well (e.g., it is not possible
to match transition guards without matching the owning transitions): (m1,m2) ∈ S ⇒
(∃mp

1 ∈M1,m
p
2 ∈M2 ·m1 ∈ mp

1|s ∧m2 ∈ mp
2|s ⇒ (mp

1,m
p
2) ∈ S).

(e) Either root elements of M1 and M2 are matched with each other, or one of them has no
match at all: ¬∃mp

1 ∈ M1 · m1 ∈ mp
1|s ∧ ¬∃mp

2 ∈ M2 · m2 ∈ mp
2|s ⇒ ((m1,m2) ∈

S ∨ ¬∃m′
1 ∈M1 · (m′

1, m2) ∈ S ∨ ¬∃m′
2 ∈M2 · (m1,m

′
2) ∈ S).

Consider the above example where Washing states had the calculated similarity degree
of 0.8 and 0.7 for two different settings of compare weights W. Setting the state sim-
ilarity threshold to 0.75 results in matching the states to each other in the former case
and not matching in the latter. Likewise, the transitions between Locking and Washing
states in Fig. 1(a,c) can be matched, resulting in the refactoring in Fig. 2(b), where the
corresponding actions are parameterized by features, or not matched, resulting in two
separate parameterized transitions.

294 J. Rubin and M. Chechik

Merge is a function that receives two models together with pairs of their matched ele-
ments and returns a merged model that contains all elements of the input, while matched
elements are unified and appear in the resulting model only once.

We denote by σ the mapping from an element of an input model to its corresponding
element in the merged result, and say that σ transforms an input model element to its
corresponding element in the result. We denote by σ−1

1 and σ−1
2 the reverse mappings

from an element in the merged result to its origin in the first and second models, respec-
tively (or ∅ if such an element does not exist in one of them). For example, let m1, m2

and m denote the states Washing in the models in Fig. 1(a), 1(b) and 2(a), respectively.
Then, σ(m1) = σ(m2) = m, σ−1

1 (m) = m1 and σ−1
2 (m) = m2.

Definition 9. (Merge) Let M1,M2 ∈ 2M be models, C be a set of triples produced by compare(
M1,M2,W) and S be a set of pairs produced by match(M1,M2, C, S). Then, merge(M1,M2,
S) is a function that produces the merged model M̄ and satisfies the following properties:

(a) Matched elements are transformed to the same element in the output model M̄ :
(m1,m2) ∈ S ⇔ σ(m1) = σ(m2).

(b) Each input model element is transformed to exactly one element of M̄ :
∀m1 ∈M1,∃!m̄ ∈ M̄ · m̄ = σ(m1) and ∀m2 ∈M2,∃!m̄ ∈ M̄ · m̄ = σ(m2).

(c) Each element of M̄ is created from an element of M1 and/or an element of M2. Moreover,
no two distinct elements of an input model can be transformed to the same element in the
result: ∀m̄ ∈ M̄ · (∃!m1 ∈M1 ·m1 = σ−1

1 (m̄)) ∨ (∃!m2 ∈M2 ·m2 = σ−1
2 (m̄)).

(d) Each element of M̄ preserves the type, role and value of its corresponding original elements.
(By Def. 7(b) and 8(b), only elements with the same type, role and value can be matched:
atomic elements are matched only if identical, while compound elements do not have values.)
∀m ∈M1 ∪M2,∀m̄ ∈ M̄ , m̄ = σ(m)⇒ m̄ ∼= m.

(e) Each element of M̄ preserves sub-elements of its corresponding original elements:
∀m̄ ∈ M̄, m̄c ∈ m̄|s ⇔ (σ−1

1 (m̄c) ∈ σ−1
1 (m̄)|s) ∨ (σ−1

2 (m̄c) ∈ σ−1
2 (m̄)|s).

While the compare and match functions rely on heuristically set weights W and simi-
larity degrees S, merge is not heuristic: its output is uniquely defined by the input set of
matched elements. For this work, we rely on union-merge [22] realization of the merge
function. Union-merge unifies matched elements and copies unmatched elements “as
is” to the result. Since our data model in Sec. 2 represents attributes of model elements
as separate entities, an element in the merged result can have several attributes of the
same type fulfilling the same role (which, for example, is not allowed by UML for
effects on a transition or state do activities). We use this property of the data model
to capture annotative product line representations generated when merging individual
products into product lines.

4 Product Line Refactoring

In this section, we define the merge-in operator, which is used to put together input
products into a product line. It constructs a product line by adding input products one
by one and has two parameters: an (already constructed) product line and the next model
to add2. For the example in Fig 1, combining ControllerA and B in Fig. 1(a,b) results

2 The first product is implicitly converted into a “primitive” product line – a product line with
only one feature and a set of annotations that relate all model elements to that feature.

Combining Related Products into Product Lines 295

in a product line A+B depicted in Fig. 2(a), with features fA and fB. Selecting the first
one derives the original statechart of Controller A, while selecting the second – that
of Controller B. Subsequent merge-in of Controller C (Fig. 1(c)) into this product
line produces a representation depicted in Fig. 2(b), out of which all three original
statecharts can be derived.

Definition 10. (Merge-in Construction) PL′ = 〈FM′,M′,R′〉 is a product line constructed
by merging-in a product M into the product line PL (denoted by PL′ = PL ⊕W,S M), using
the rules below:

(a) A new feature fM , representing the merged-in product M , is added as an alternative to all
existing features: if FM = 〈F , ϕ〉 then FM′ = 〈F ′, ϕ′〉, F ′ = F ∪ {fM |fM ∈ F,
fM �∈ F}, and ϕ′ = (ϕ ∨ fM) ∧ ∧

f∈F
¬(fM ∧ f).

(b) The domain model is generated by merging the existing domain model with the newly added
model M : if C = compare(M, M,W) and S = match(M,M,C, S) thenM′ = merge(M,
M, S).

(c) The set of annotation relationships is enhanced by the relationships that annotate elements
that originated in M by fM : R′ = {(f, σ(m)) | f ∈ F , m ∈ M, (f,m) ∈ R} ∪
{(fM , σ(m)) |m ∈M}.

We refer to PL as the original product line and to PL′ as the constructed product line.

5 Correctness of Product Line Refactoring

In this section, we prove the correctness of the merge-in operator introduced in Sec. 4.
Specifically, we show that merge-in produces minimal behavior-preserving product line
refinements [2], that is, the input product models are the only ones which can be derived
from the refactored product line model (Theorem 1).

In what follows, let W be a set of weights used by the compare function and S be a
set of similarity thresholds used by the match functions. Let PL = 〈FM,M,R〉 be a
product line.

Merge-in Monotonicity. Lemma 2 below shows that any feature configuration that con-
tains only features from the original product linePL is also a valid feature configuration
for the constructed product line PL′, i.e., it complies to the constrains ϕ defined on the
features of PL′. For the example in Fig. 2, this means that a feature configuration of
the product line A+B in Fig. 2(a), e.g., {fA}, is also a valid feature configuration for
the “extended” product line A+B+C in Fig. 2(b).

Lemma 2. Let F̂M be a subset of FM. Then, F̂M is a feature configuration of FM if and
only if it is a feature configuration of FM′.

Proof. By construction of ϕ′ (Def. 10(a)), ϕ′ = (ϕ∨fM)∧ ∧

f∈F
¬(fM ∧f). Since fM �∈ F̂M,

¬(fM ∧ f) evaluates to true for every f , and ϕ′ = (ϕ ∨ false) = ϕ. Thus, F̂M respects ϕ if
and only if it respects ϕ′.

296 J. Rubin and M. Chechik

Lemma 3 shows that, under configurations used in Lemma 2, a model derived from
PL is equal to the one derived from PL′. That is, under the configuration {fA}, the
same model of ControllerA in Fig. 1(a) is derived from both product lines A+B and
A+B+C (Fig. 2(a) and (b), respectively).

Lemma 3. Let F̂M be a subset of FM. If F̂M is a feature configuration for FM, M̂ =

Δ(PL, F̂M) and M̂ ′ = Δ(PL′, F̂M), then M̂ = M̂ ′. That is, given a feature configuration
that contains only features from PL, a set of elements that is generated from PL is equivalent to
that generated from PL′, under the same configuration.

Proof. To prove the lemma, we show that f = Δ(σ(Δ−1(.))) is an isomorphism between the
elements of M̂ and the elements of M̂ ′ that respects ∼=. That is, we prove the following four
statements, showing that f is an edge-preserving bijection. The construction of the correspond-
ing elements in M̂ and M̂ ′ is schematically sketched in Fig. 4.

1. Any element of M̂ has the corresponding equal element in M̂ ′: ∀m̂ ∈ M̂,∃!m̂′ ∈ M̂ ′ ·
m̂′ = f(m̂) ∧ m̂′ ∼= m̂.
Let m̂ ∈ M̂ . By Def. 6(a), this means that there exists an element m ∈ M, and a feature
f ∈ FM, such that (f,m) ∈ R and m̂ = Δ(m). By Def. 9(b), m is transformed by merge
to an element m̄′ ∈ M′, such that m̄′ = σ(m). By Def. 10(c), this element is annotated by the
same feature as m: (f, σ(m)) ∈ R′. Thus, Δ(σ(m)) ∈ M̂ by Def. 6(a). Since m̂ is derived
from m, m = Δ−1(m̂). It follows that Δ(σ(Δ−1(m̂))) ∈ M̂ ′. Let’s denote that element by m̂′.
There exists only one such element by Def. 6(b,c) and 9(b). m̂′ ∼= m̂ by Def. 6(d) and 9(d).

2. Any element of M̂ ′ has the corresponding equal element in M̂ : ∀m̂′ ∈ M̂ ′,∃!m̂ ∈
M̂ · m̂′ = f(m̂) ∧ m̂′ ∼= m̂.
Let m̂′ ∈ M̂ ′. By Def. 6(a), this means that there exist an element m̄′ ∈ M′, and a feature
f ∈ FM, such that (f, m̄′) ∈ R′ and m̂′ = Δ(m̄′). By Def. 9(c), there are three possible
cases: (1) σ−1

1 (m̄′) ∈M, σ−1
2 (m̄′) = ∅; (2) σ−1

1 (m̄′) = ∅, σ−1
2 (m̄′) ∈M ; (3) σ−1

1 (m̄′) ∈M,
σ−1
2 (m̄′) ∈M .

For cases (1) and (3), (f, m̄′) ∈ R′ implies that (f, σ−1
1 (m̄′)) ∈ R by Def. 10(c), and thus,

Δ(σ−1
1 (m̄′)) ∈ M̂ by Def. 6(a). Let’s denote this element by m̂. It is easy to see that f(m̂) = m̂′

(that is Δ(σ(Δ−1(m̂))) = m̂′. There exists only one such element m̂ by Def. 6(b,c) and 9(c).
m̂′ ∼= m̂ by Def. 6(d) and 9(d). For case (2), σ−1

1 (m̄′) = ∅ implies by Def. 10(c), that m̄′ is

annotated by fM , and, since fM �∈ F̂M, Δ(m̄′) �∈ M̂ ′, which, together with m̂′ = Δ(m̄′),
creates a contradiction to m̂′ ∈ M̂ ′.

3. Any sub-element of m̂ has the corresponding sub-element in f(m̂): ∀m̂ ∈ M̂(m̂c ∈
m̂|s ⇒ f(m̂c) ∈ f(m̂)|s).
Since m̂c ∈ m̂|s, by Def. 6(a,e), there exist elements m,mc ∈ M, and features f, fc ∈ FM,
such that (f,m) ∈ R, (fc,mc) ∈ R, m̂ = Δ(m), m̂c = Δ(mc) and mc ∈ m|s (it is
also possible that f = fc). By Def. 9(b,e), σ(mc) ∈ σ(m)|s. By Def. 10(c), (f, σ(m)) ∈ R′

and (fc, σ(mc)) ∈ R′, which, by Def. 6(a,e), implies that Δ(σ(mc)) ∈ Δ(σ(m))|s. Since
mc = Δ−1(m̂c) and m = Δ−1(m̂), f(m̂c) ∈ f(m̂)|s), as desired.

4. Any sub-element of m̂′ has the corresponding sub-element in m̂: ∀m̂′ ∈ M̂ ′(m̂′c ∈
m̂′|s ⇒ ∃m̂, m̂c ∈ M̂ · m̂′ = f(m̂) ∧ m̂′c = f(m̂c) ∧ m̂c ∈ m̂|s.
Let m̂′c, m̂′ ∈ M̂ ′ be elements such that m̂′c ∈ m̂′|s. By Def. 6(a,e), there exist elements
m̄′, m̄′c ∈ M′, and features f, fc ∈ FM, such that (f, m̄′) ∈ R′, (fc, m̄′c) ∈ R′, m̂′ =
Δ(m̄′), m̂′c = Δ(m̄′c) and m̄′c ∈ m̄′|s (it is also possible that f = fc). Similarly to case 2,
σ−1
1 (m̄′) �= ∅ and σ−1

1 (m̄′c) �= ∅. By Def. 9(e), either σ−1
1 (m̄′c) ∈ σ−1

1 (m̄′)|s or there exist
m1,m2 ∈M , such that σ−1

1 (m̄′c) is matched with m1, σ−1
1 (m̄′) is matched with m2, and m1 ∈

m2|s. The later case is impossible by Def. 8(a,d,e) – we omit the details due to the space limita-
tions. For the former case, since (f, m̄′) ∈ R′, (fc, m̄′c) ∈ R′, by Def. 10(c), (f, σ−1

1 (m̄′)) ∈

Combining Related Products into Product Lines 297

R, (fc, σ−1
1 (m̄′c)) ∈ R and thus, by Def. 6(a,e), Δ(σ−1

1 (m̄′c))) ∈ Δ(σ−1
1 (m̄′)))|s. Let’s

denote these elements by m̂c and m̂, respectively. f(m̂c)) = Δ(m̄′c) = m̂′c and f(m̂)) =
Δ(m̄′) = m̂′, implies m̂c ∈ m̂|s, as desired.

Fig. 4. A sketch for the proof of Lemma 3

The above lemma implies that our
construction preserves the behavior
of the original product line model:
the set of models derived from PL
can still be derived from PL′, as
shown by the following corollary.

Corollary 1. Let *PL+ denote a set
of all models derived from a prod-
uct line PL. That is, *PL+ =

{Δ(PL, F̂M) | F̂M is a feature
configuration of FM}. Then, a set
of models derived from PL can be derived from PL′ as well: *PL+ ⊆ *PL′+.

Proof. For each M̂ ∈ �PL�, there exists a configuration F̂M, such that M̂ = Δ(PL, F̂M).

By Lemmas 2 and 3, M̂ = Δ(PL′, F̂M). Thus, M̂ ∈ �PL′�.

For the example in Fig. 2, the above corollary means that both Controller A and
Controller B that can be derived from the product line A+B in Fig. 2(a) can still be
derived from the constructed product line A+B+C in Fig. 2(b), after Controller C
was merged-in to it.

Merge-in Behavior Preservation. We now show that model M which we merge-in
into the original product line PL can be derived from the constructed product line PL′.
That is, when we merge-in Controller C in Fig. 1(c) into the product line A+B in
Fig. 2(a), we can derive it back from the constructed product line A+B+C in Fig. 2(b).

Since fM is the feature that annotates elements of the merged-in model (fC in our
example), we first show that {fM} is a valid feature configuration (Lemma 4). Then,
Lemma 5 shows that the original model M is derived from the constructed product line
PL′ under that configuration.

Lemma 4. {fM} is a feature configuration for PL′.

Proof. By construction of FM′ (Def. 10(a)), fM ∈ F ′. We now show that {fM}
respects ϕ′ = (ϕ∨ fM)∧

∧
f∈F

¬(fM ∧ f). Since f 	∈ {fM} for any f ∈ F , ¬(fM ∧ f)

evaluates to true for every f ∈ F . Since fM = true, ϕ ∨ fM also evaluated to true. It
follows that {fM} respects ϕ′ and is a feature configuration for PL′.

Lemma 5. Let {fM} be a feature configuration. Then, a model that is derived from PL′ under
that configuration is equivalent to M . That is, M = Δ(PL′, {fM}).

The proof of this lemma, similarly to the proof of Lemma 3, shows that f = σ(Δ(.)) is
an isomorphism between the elements of M and the elements of M̂ ′, and is omitted.

298 J. Rubin and M. Chechik

Finally, Theorem 1 shows that our merge-in operator is behavior preserving: the set
of product models that are derived from the constructed product line PL′ is equal to
the set of models that are derived from the original product line PL′, in addition to the
merged-in model M .

Theorem 1. �PL′� = �PL� ∪ {M}.

Proof. We first prove that �PL′� ⊆ �PL� ∪ {M}. Let M̂ ∈ �PL′� be a model derived from

PL′. Then there exists a feature configuration F̂M′
, such that M̂ = Δ(PL′, F̂M′

). Let fM be
in FM′ � FM.

1. If fM �∈ F̂M′
, then F̂M′ ⊆ FM. Thus, by Lemma 3, M̂ = Δ(PL, F̂M′

), which
implies that M̂ ∈ �PL�.

2. If fM ∈ F̂M′
, then, by construction of FM′ (Def. 10(a)), F̂M′

= {fM}. By Lemma 5,

M = Δ(PL′, F̂M′
). Thus, by Lemma 1, M̂ = M .

We now show that �PL� ∪ {M} ⊆ �PL′�. �PL� ⊆ �PL′� by Corollary 1. By the construction
of FM′ (Def. 10(a)), fM ∈ F ′. Thus, by Lemmas 4 and 5, {fM} is a valid feature configuration
for PL′ and M = Δ(PL′, {fM}), which implies that M ∈ �PL′�.

For the example in Fig. 2, where Controller C in Fig. 1(c) is merged-in into the
product line A+B containing Controller A and B, this means that Controller A,
B, and C, and only them, can be derived from the constructed product line A+B+C in
Fig. 2(b).

6 Related Work

A general theory of product line refinement was introduced in [2] where the authors
established product line properties supporting stepwise and compositional product line
development and evolution. Our approach instantiates this theory by providing a con-
crete refactoring technique for combining products into product lines. We prove that
our refactoring is the minimal behavior-preserving product line refinement, according
to the definition in [2].

Several works (e.g., [9,10]) capture guidelines and techniques for manually trans-
forming legacy product line artifacts into SPLE representations. Instead, our goal is to
introduce automation into the refactoring process by comparing, matching and merging
artifacts to each other. While no automated approach can replace a human product line
designer and produce a solution which is as good as a hand-crafted one, automation can
assist the designer and speed-up the refactoring process.

Similarly to us, Koschke et. al. [11] and Ryssel et. al. [21] introduce automatic ap-
proaches to re-organize product variants into annotative representations while identi-
fying variation points and their dependencies. The former work reasons about compo-
nents, interfaces and their grouping into subsystems. The latter works on Matlab mod-
els. Our work differs from both [11] and [21] by exploring product line commonalities
and variabilities for any type of model that can be represented as XMI and by providing
a formal proof of correctness of our approach.

Combining Related Products into Product Lines 299

Feature-oriented refactoring [13,15] focuses on identifying the code for a feature and
factoring the code out into a single module or aspect aiming at decomposing a program
into features. Since our aim is consolidation of variants into single-base product line
representations, these are out of the scope for our work. Similarly, UML model refac-
toring (e.g., [6,24]) and code refactoring techniques (e.g., [14]), while closely related
to our work, usually focus on improving the internal structure and design of a software
system rather than on identifying and restructuring the system’s common and variable
parts.

7 Conclusion and Future Work

Extracting product line representations from existing legacy product line systems can
support product line engineering adoption: reusing and leveraging knowledge accumu-
lated in the legacy systems during their development lifetime can be more efficient than
“starting from scratch”. In this work, we formally specified a simple data model and a
refactoring technique for transforming individual products into more compact product
line representations. Our data model, inspired by XMI principles, is powerful enough
to accommodate labeled-graph representations, in particular, UML. At the same time, it
is flexible enough to support product line notations where several alternative elements
can fulfill the same role, which is not allowed by UML itself.

Relying on the data model, we formally stated necessary and sufficient conditions
allowing us to use model compare, match and merge operators for combining individ-
ual products into product lines. We proved that once these conditions are satisfied, the
merge-in can be safely applied for combining products into product lines, as it produces
representations that encode precisely the set of initial products. This provides formal
foundation that underlays the parameterizable and configurable, yet semantically cor-
rect refactoring framework. The applicability of the framework to real-life examples, as
well as techniques for distinguishing between different possible refactorings, is studied
elsewhere [20].

There are several directions for continuing this work. First, we are interested in ex-
ploring more sophisticated refactoring techniques that are able to detect fine-grained
features in the combined products. This would allow us to create new products in the
product line by “mixing” features from different original products. We also plan to en-
hance model merging techniques with additional capabilities, such as using code-level
clone detection techniques for comparing statechart actions and activities. We are also
interested in devising alternative methods of calculating graph similarity, e.g., by count-
ing the number of identical or similar sub-graphs and more.

References

1. Beuche, D.: Transforming Legacy Systems into Software Product Lines. In: Proc. of SPLC
2011 Tutorial (2011)

2. Borba, P., Teixeira, L., Gheyi, R.: A Theory of Software Product Line Refinement. In:
Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS,
vol. 6255, pp. 15–43. Springer, Heidelberg (2010)

300 J. Rubin and M. Chechik

3. Boucher, Q., Classen, A., Heymans, P., Bourdoux, A., Demonceau, L.: Tag and Prune: a
Pragmatic Approach to Software Product Line Implementation. In: Proc. of ASE 2010 (2010)

4. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison-Wesley (2001)

5. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based
Software Architectures. Addison-Wesley (2004)

6. Hosseini, S., Azgomi, M.A.: UML Model Refactoring with Emphasis on Behavior Preserva-
tion. In: Proc. of TASE 2008, pp. 125–128 (2008)

7. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, CMU/SEI-90TR-21 (1990)

8. Kastner, C., Apel, S.: Integrating Compositional and Annotative Approaches for Product
Line Engineering. In: Proc. of GPCE Wrksp. on Modul., Comp. and Gen. Tech. for PLE
(GPLE 2008), pp. 35–40 (2008)

9. Kim, K., Kim, H., Kim, W.: Building Software Product Line from the Legacy Systems:
Experience in the Digital Audio and Video Domain. In: Proc. of SPLC 2007 (2007)

10. Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: Refactoring a Legacy Component for Reuse
in a Software Product Line: a Case Study: Practice Articles. J. of Software Maintenance and
Evolution 18(2), 109–132 (2006)

11. Koschke, R., Frenzel, P., Breu, A.P., Angstmann, K.: Extending the Reflection Method for
Consolidating Software Variants into Product Lines. Soft. Quality Control 17(4) (2009)

12. Krueger, C.W.: Easing the Transition to Software Mass Customization. In: van der Linden,
F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg (2002)

13. Liu, J., Batory, D., Lengauer, C.: Feature Oriented Refactoring of Legacy Applications. In:
Proc. of ICSE 2006, pp. 112–121 (2006)

14. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE TSE 30(2), 126–139 (2004)
15. Murphy, G.C., Lai, A., Walker, R.J., Robillard, M.P.: Separating Features in Source Code: an

Exploratory Study. In: Proc. of ICSE 2001, pp. 275–284 (2001)
16. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merging of

Statecharts Specifications. In: Proc. of ICSE 2007, pp. 54–64 (2007)
17. OMG, http://www.omg.org/spec/XMI/2.1.1/ (last Accessed: January 2011)
18. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,

Principles, and Techniques. Springer, Heidelberg (2005)
19. Rubin, J., Chechik, M.: From Products to Product Lines Using Model Matching and Refac-

toring. In: Proc. of SPLC Wrksp. (MAPLE 2010) (2010)
20. Rubin, J., Chechik, M.: Quality of Behavior-Preserving Product Line Refactorings (2011);

Under review
21. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of Feature Models from Formal Contexts.

In: Proc. of SPLC 2011, pp. 4:1–4:8 (2011)
22. Sabetzadeh, M., Easterbrook, S.: View Merging in the Presence of Incompleteness and In-

consistency. Requirement Engineering 11, 174–193 (2006)
23. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse Engineering Feature

Models. In: Proc. of ICSE 2011 (2011)
24. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML Models. In: Gogolla,

M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148. Springer, Heidelberg
(2001)

http://www.omg.org/spec/XMI/2.1.1/

Tracing Your Maintenance Work –

A Cross-Project Validation of an Automated
Classification Dictionary for Commit Messages

Andreas Mauczka, Markus Huber Christian Schanes, Wolfgang Schramm,
Mario Bernhart, and Thomas Grechenig

Research Group for Industrial Software, Vienna University of Technology
Vienna 1040, Austria

{andreas.mauczka,markus.huber,christian.schanes,wolfgang.schramm,
mario.bernhart,thomas.grechenig}@inso.tuwien.ac.at

http://www.inso.tuwien.ac.at/

Abstract. A commit message is a description of a change in a Version
Control System (VCS). Besides the actual description of the change,
it can also serve as an indicator for the purpose of the change, e.g. a
change to refactor code might be accompanied by a commit message in
the form of “Refactored class XY to improve readability”. We would
label the change in our example a perfective change, according to main-
tenance literature. This simplified example shows how it is possible to
classify a change by its commit message. However, commit messages are
unstructured, textual data and efforts to automatically label changes
into categories like perfective have only been applied to a small set of
projects within the same company or the same community. In this work,
we present a cross-project evaluated and valid mapping of changes to the
code base and their purpose that is usable without any customization on
any open-source project. We provide further the Eclipse Plug-In Subcat
which allows for a comfortable analysis of projects from within Eclipse.
By using Subcat, we are able to automatically assess if a commit to the
code was e.g. a bug fix or a refactoring. This information is very useful
for e.g. developer profiling or locating bad smells in modules.

1 Introduction

Software is constantly evolving. Leading and monitoring software development
projects is a difficult task and performance indicators become mandatory for
deciding on a course of action, e.g. is now the time to refactor some of my code
or do I need to intensify my quality assurance work, because my development
team spends a majority of their time troubleshooting and bug fixing. Managers
or project leads need to be well informed to enhance their decision making
process and to have an accurate view of the current state of the project. By
gathering the information that is actually available in the form of meta data in
the Version Control System (VCS), conclusions about the software development
and maintenance (e.g. which modules are error prone, which modules have not

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 301–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

302 A. Mauczka et al.

been refactored recently) can be drawn. Since our approach does not rely on
the code itself, it can be applied to any programming language and early in the
software life cycles, when code metrics might not be conclusive yet.

In the following paper we use meta data which can be mined from a VCS that
uses commit messages to accompany any change (a commit) to the code base.
From the textual information in these commit messages, we mine information
about the software maintenance and evolution process in open source projects.
We base our work on the assumption that commit messages hold information that
should give evidence of the purpose of the source code change (see Section 5).

We present in this paper two contributions to the analysis of meta data in
a VCS. First, we implemented the tool “Subcat” to classify commit messages
based on a set of keywords (we refer to the master set of all keywords as a
dictionary). Subcat is a generic analysis tool that can be configured to classify
any commit message into arbitrary categories based on a dictionary. It further
is possible to customize Subcat to fit any personal project vocabulary by adding
categories or keywords to the dictionary.

Subcat provides different kinds of reports (categorization per file or per mod-
ule) to visualize the results of this categorization. Subcat also generates statistics
on the authors of the commit messages or statistics on the words used in the
commit messages. We provide Subcat as an Eclipse plugin for integrated analysis
by developers or project managers during early software lifecycle stages in the
Eclipse IDE and as a standalone command line tool for the mining of large scale
software projects (see Section 2).

Second, we used the reports generated by Subcat to create an optimized and
cross-project valid dictionary that allowed us to automatically classify com-
mits into Swanson’s maintenance categories [10] for the open source domain.
To achieve this, we defined an algorithm to incrementally train and improve this
dictionary with certain keywords. After training the dictionary on a number of
projects, we evaluated this dictionary against a larger set of open source projects
(see Section 3 for the algorithm and Section 4 for the results of the evaluation).

Subcat can be used in two different contexts. Subcat can be used by prac-
titioners in the open-source domain to analyze modules based on maintenance
characteristics. E.g. when a module has a lot of corrective changes, but no per-
fective changes, some refactoring of the code might be in order (see Figure 1.
Furthermore, Subcat provides Maintenance Profiles of the development team.
This means that one can see at first glance, whether a developer is mainly fixing
bugs or keeping the code clean.

Subcat can also be used by researchers. By using Subcat’s corrective classifi-
cation mechanism, we are able to track bugs within the repository additionally
to a normal bug tracker. This allows for research on the difference of bug gran-
ularity in repositories and bug trackers like bugzilla (a bug fix in the repository
may not correspond to a bug report in the tracker). Additionally, we can use
Subcat to analyze how developer profiles change over time in a project (E.g.
a developer starts in a project to fix bugs that annoy him and ends up imple-
menting a whole new feature see Figure 2 for an example). Subcat provides this

Tracing Your Maintenance Work 303

Fig. 1. Visualization of the classified activities in two different software modules

information, which can be combined with mailing list analysis. This can provide
a whole new insight into how a developer changes over time in an open-source
project.

Fig. 2. Developer Profile in Subcat

2 Automated Classification Approach

A dictionary, as used in the context of this paper, is a set of categories. A cat-
egory is a group of keywords that share a common meaning and therefore are
indicators for this category, e.g. the word ”fix” is a keyword for the mainte-
nance category ”corrective”. In the context of this work, we apply Swanson’s
maintenance categories to group our keywords.

304 A. Mauczka et al.

We propose the following procedure to create a dictionary:

Pre-Processing the Meta Information. The meta information for our anal-
ysis was derived from the commit messages in the VCS. As these messages
are written in natural language, we have to normalize them to be able to
extract sensible information (e.g. we want to match “this fixes a re-ocurring
crash” and “I fixed an overflow” to its lemma “fix” - a head word un-
der which the word would be found in a dictionary). We use WordNet1 to
normalize the commit messages

Initializing the Dictionary. We generate an initial seed for a dictionary by
referring to prior work (Mockus and Votta in [9] and Hassan in [5]). This
initial seed only contains words that hold a high likelihood of indicating a
maintenance category

Training the Dictionary. To be able to categorize as many changes as pos-
sible with a high accuracy for a single project, we use a defined algorithm
to train the dictionary. We employ the algorithm to train the dictionary
on additional open source projects to further increase the accuracy of the
dictionary (see Section 3)

Evaluating the Dictionary. After the initial training, we use the dictionary
on another set of projects to evaluate cross-project validity. We do not further
change the dictionary during this step. Only blacklist items (keywords that
filter out administrative changes) are introduced (see Section 4)

2.1 Classification Rules

The research area of the identification and classification of maintenance tasks
in the software development process has evolved for decades. In [10], Swanson
defines a maintenance task as an activity that can be assigned to one of the
following three categories:

Corrective Software Maintenance. Activities that are necessary to fix pro-
cessing failures, performance failures or implementation failures

Adaptive Software Maintenance. Activities that focus on changes in the
data environment or changes in the processing environment

Perfective Software Maintenance. Activities that strive to decrease pro-
cessing inefficiency, enhance the performance or increase the maintainability

For the development of the automated classification in this work, Swanson’s orig-
inal definition of maintenance tasks is used and slightly extended. An additional
category, the “Blacklist” is introduced. We use the Blacklist to filter all commits,
which underlying modifications were not carried out by humans or which do not
actually include any source code modifications. For example commits generated
by the “cvs2svn” repository-converter2 or commits that just “tag” a version. In
addition we merged the implementation category, as presented by Hindle et al.[6]

1 http://wordnet.princeton.edu/
2 http://cvs2svn.tigris.org/

http://wordnet.princeton.edu/
http://cvs2svn.tigris.org/

Tracing Your Maintenance Work 305

with Swanson’s adaptive maintenance category. As a result we are able to map
every commit to exactly one category. Using Swanson’s original maintenance clas-
sification provides a categorization into a few, well defined categories and is there-
fore a suitable starting point to develop an automated classification algorithm.

As mentioned above, our algorithm relies on two sources of information to
carry out the classification, namely the commit message and the dictionary. The
commit message is attached to every commit and encapsulates the information
about the intention of the modification. The dictionary defines the knowledge
base for the classification including the categories. The different categories are
defined by a set of keywords that indicate that a commit message may belong
to this category. In addition, every word has an associated weight. The weight
value constitutes how strong the indication is. The same word can be contained
in multiple categories. See Figure 3 for a sample dictionary that is used to classify
a commit message.

Fig. 3. Example for Dictionary and Classification

To implement the blacklist feature, “absolute categories” have been intro-
duced. If a commit message contains a word (e.g. “cvs2svn”) that is included
in the listing of an absolute category, the commit is instantly assigned to this
category, ignoring the weighting mechanism and the normal categories.

2.2 Categorization Tool - Subcat

Subcat is a tool implemented to generically categorize commit messages based
on their content. It consists of two parts, the command line tool Sublex and the
Eclipse plugin, which we describe in detail in the following sections.

Sublex is the tool that implements all relevant functionality to classify com-
mits from a generic data source. Due to the modular design of the command line
tool different Versioning Systems are supported, if adapters for pre-processing
a logfile to the generic data source format are available. The adapter for Sub-
version is supplied together with Sublex and ships also as a part of the Eclipse
plugin.

306 A. Mauczka et al.

The results of the classification are reports in the CSV-format. Sublex offers
the following reports:

Categorization-Report. The categorization report contains all commits and
their corresponding classification results in detail. It is the base for the detail
reports that follow. It can be used by analysts to generate their own statistics
based on the report data. The displayed information per row are: commit
including the revision, the category it has been assigned to, the author, the
date of the change, the length of its commit message, the overall number of
added and deleted lines for the commit, the score of the commit for each
category from the dictionary, the affected modules, the affected files and the
revised commit message.

Author-Report. The author report shows the analysis of commits (including
the assigned maintenance categories) per author. Its purpose is to analyze the
profiles of developers in the project. For example if an author is responsible
for perfective maintenance or if perfective maintenance is distributed evenly
on the team.

Dictionary-Report. This report provides required information to create and
improve dictionaries by showing statistical information for every unique word
found in any of the parsed commit messages. The report provides the lemma
for the word, the average number of appearances of the word in the commit
messages it was found in, the total number of appearances in all the commit
messages, the total number of classified and unclassified commits the word
was found in

Lemma-Report. The lemma-report is the second required report for creating
and improving dictionaries. It includes an entry for every unique lemma,
together with the number of classified and unclassified commits the lemma
was found in

Modules-Report. This report shows categorization statistics about the mod-
ules of a project. Module structure to be analyzed can be parametrized. E.g.
the project has the structure of /util/login/security. We configure a module
depth of 2. There will be a row for /util/* and one row for util/login/* in
the report

Control-Report. This report was used to manually validate the analysis re-
sult during our research. It contains every original commit message and the
category it was assigned to

Eclipse Plugin. The Eclipse plugin has been implemented to integrate Subcat
into the Eclipse IDE to give analysts and developers, but also project managers,
a familiar environment for maintenance analysis. The integration into Eclipse al-
lows a comfortable comparison between our reports and any other metric suites
a user might employ. E.g. a project manager can view results for code metrics

Tracing Your Maintenance Work 307

next to the results of the categorization of the commits of a module and use
both of these views in his decision making process. Furthermore, the usability of
Subcat is improved by using the point and click paradigm to generate reports,
e.g. for authors and modules, as a user can navigate through the proper views
in the IDE (see Figure 2).

The Eclipse plugin uses the generic data source adapter for Subversion and the
classification functionality and the logic from the command line tool Sublex. Due
to its generic approach the classification functionality can be used without adap-
tations in a different context. The complete plugin project is split into three indi-
vidual plugins. The generic data source adapter and Sublex and the main plugin
which integrates the categorization functionality into the Eclipse workbench. This
corresponds to the MVC design pattern (see Buschmann et al. [2]).

3 Generation of a Cross-Project Valid Dictionary

To build a representative dictionary, a set of projects to provide initial keywords
and to train our dictionary are required. We further need another set of projects
to ensure cross-project validity of the dictionary.

3.1 Criteria and Selection of Open Source Projects

Eight open source projects were chosen to build, test and cross verify the dic-
tionary. The following criteria were used to select the projects:

Number of Commits. For our analysis we only considered projects with at
least 30,000 commits3

Number of Developers. To show the categorization of the developer role in
a project and also to increase the variance of different commit message style
only projects with at least 30 developers4 are considered.

Subversion Repository. Our approach is currently based on Subversion repos-
itories. Therefore only projects with access to their Subversion repositories
are included.

Table 1 shows the key figures of the selected projects.

3.2 Populating the Dictionary

As a starting point to create the dictionary we analyzed the log of the FreeBSD-
Project and used exemplary keywords from prior work (see [5] and [9]) for the
categorization. In the next step we ranked the keywords by occurrence. The top
three ranked keywords of each category are included in the first dictionary:

3 The number of commits is the number of commits in the log.
4 The number of developers represents the number of distinct author names in the
log.

308 A. Mauczka et al.

Table 1. Key figures of the analyzed open source projects

App. Name App. Type # Devs # Commits

Boost Prog. Library 294 63,616
Enlightenment Window Manager 187 51,884
Evolution E-Mail-Client 431 37,500
FreeBSD OS 536 150,595
Firebird RDBMS 43 51,509
GCC Compiler-Suite 426 102,672
Python Interpreter 216 83,100
Wireshark Packet Analyzer 43 34,067

Corrective: fix, bug, problem
Adaptive: new, change, patch
Perfective: style, move, removal

This first dictionary constituted the “seed” to create a more exhaustive dictio-
nary. This initial dictionary only categorized a low number of commits, leaving
a large number of commits uncategorized. Starting with this seed, we set up an
algorithm with the goal to increase the ratio of classified commits to 80% while
maintaining adequate values for a self-evaluated precision (0.8) and recall (0.8).
Values beyond these thresholds yield diminishing results - either less commits
will be classified, or precision and recall will suffer. An early attempt at the al-
gorithm had to be abandoned, because of a too conservative approach in adding
words to the dictionary (stagnation at about 65% of categorized commits). For
the final algorithm we used a more open and flexible approach so that more
words would qualify for the dictionary. We further introduced weighting of key-
words and rulesets for ambiguous, yet strongly indicative words. The following
list describes step wise our final algorithm to create the dictionary:

1. Classify the commit using the “seed” dictionary
2. If the total percentage of classified commits is greater than 80%, EXIT
3. Count the appearances of all words in the commit messages of the non-

classified commits and order them by frequency
4. Choose a set of words from the top of the list and add these as a test set to

the existing dictionary
5. Count the number of appearances of every word in the test set in each

category
6. If the number of appearances of a word in a category is at least 1.5 times

of the appearances of the same word in the other categories, add it to the
dictionary with a weight of 2 and remove it from the test set

7. If the number of appearances of a word in two classes is at least 1.5 times of
the appearances of the same word in the third class, add it to the dictionary
to both classes with a weight of 1 and remove it from the test set

8. If neither 6 or 7 are true, remove the word from the test set and do not add
it to the dictionary

9. Go to Step 2

Tracing Your Maintenance Work 309

This algorithm achieved a classification rate of 80.34 % after 21 iterations on the
FreeBSD project. The output is the following dictionary (weights of keywords
in brackets, default weight 1).

Corrective: active, against, already, bad, block, bug, build, call, case, catch,
cause(2), character, compile, correctly, create, different, dump, error(2), ex-
cept, exist, explicitly, fail, failure(2), fast, fix(2), format, good, hack, hard,
help, init, instead, introduce, issue, lock, log, logic, look, merge, miss(2),
null(2), oops(2), operation, operations, pass, previous, previously, probably,
problem, properly, random, recent, request, reset, review, run, safe, set, sim-
ilar, simplify, special, test, think, try, turn, valid, wait, warn(2), warning,
wrong(2)

Adaptive: active, add(2), additional(2), against, already, appropriate(2),
available(2), bad, behavior, block, build, call, case, catch, change(2), char-
acter, compatibility(2), compile, config(2), configuration(2), context(2), cor-
rectly, create, currently(2), default(2), different, documentation(2), dump,
easier(2), except, exist, explicitly, fail, fast, feature(2), format, future(2),
good, hack, hard, header, help, include, information(2), init, inline, install(2),
instead, internal(2), introduce, issue, lock, log, logic, look, merge, method(2),
necessary(2), new (2), old(2), operation, operations, pass, patch(2), previ-
ous, previously, probably, properly, protocol(2) provide(2), random, recent,
release(2), replace(2) ,request, require(2), reset, review, run, safe, security(2),
set, similar, simple(2), simplify, special, structure(2), switch(2), test, text(2),
think, trunk(2), try, turn, useful(2), user(2), valid, version(2), wait

Perfective: cleanup(2), consistent(2), declaration(2), definition(2), header, in-
clude, inline, move(2), prototype(2), removal(2), static(2), style(2), unused(2),
variable(2), warning, whitespace(2)

Blacklist: cvs2svn, cvs, svn

The analysis further showed that the word “documentation” was assigned to the
adaptive category by the algorithm. Since “documentation” is a perfective task
per definition, the word “documentation” was moved from adaptive back to
perfective. The implications warrant further research however.

This final dictionary was used to classify the FreeBSD-project again and pre-
cision and recall were measured based on modification records (MR) as shown
in Table 2.

Table 2. Recall and precision of the classification for the FreeBSD-project

Class MR % Recall Precision

Corrective 54,015 35.86% 0.92 0.85
Adaptive 56,046 37.21% 0.91 0.80
Perfective 8,484 5.63% 0.86 0.80

We then used the dictionary and the algorithm on the “Boost” project
(inital classification rate 74.94%), thereafter on “Enlightenment” project (ini-
tial classfication rate 72.80%) and altered the dictionary until it achieved 80%

310 A. Mauczka et al.

of classified changes. We decided to train the dictionary on two other projects
to achieve a greater classification ratio and to work out project-individual lan-
guage issues (e.g. ambiguously connotated lemmas). After this training phase,
the dictionary was used with the “Evolution”, “Firebird”, “GCC”, “Python”
and “Wireshark” projects and scored a classification rate of over 80% for each
project, without adaption.

Table 3. Recall and precision of the analysis for various open source projects

Project # MR Recall Precision

Enlightenment 51,884 0.90 0.80
Evolution 37,500 0.96 0.92
Firebird 51,509 0.95 0.90
GCC 102,672 0.92 0.83
Python 83,100 0.93 0.85
Wireshark 34,067 0.92 0.85
FreeBSD 150,595 0.90 0.82
Boost 63,616 0.94 0.88

4 Evaluation of the Dictionary

To evaluate our results, we did a survey with five professional Software Devel-
opers. The developers are working for different companies since between two to
five years (2,2,4,4 and 5). Our survey was structured as follows:

– Five questionnaires, each with the 21 changes in the code (7 of each cate-
gory).

– Five questionnaires, each with the same changes in the code, but with their
corresponding commit messages

4.1 Inter-rater Agreement

To measure inter-rater Agreement of the developers, we used Fleiss’ Kappa on
six commits that were identical in each questionnaire. Table 4 shows the agree-
ment amongst the developers for these six commits (two commits per category).
The resulting Fleiss’ Kappa for this matrix is K = 0.48 . This indicates a
moderate agreement according to Landis and Koch’s Benchmark [8] between
the developers themselves.

If a commit is assigned to two categories, its count is split between the
categories.

4.2 Conducting the Evaluation

We conducted the survey in two rounds. Table 5 and Table 6 show the agreement
between developers and the automated classification tool. If a developer chose
two categories, a point was split between these categories.

Tracing Your Maintenance Work 311

Table 4. Matrix showing the agreements amongst the developers for the six common
commits in evaluation round two

Commit/Category Adap. Corr. Perf.

Corr. 1 1.0 4.0 0.0
Corr. 2 0.5 4.5 0.0
Perf. 1 1.0 2.0 2.0
Perf. 2 0.0 0.0 5.0
Adap. 1 4.5 0.0 0.5
Adap. 2 4.0 0.0 1.0

Table 5. Agreements between developers and classification tool for the evaluation
round one

Automated Classification
Developers Adap. Corr. Perf.

Adaptive 11.0 4.5 0.5 16.0
Corrective 4.5 12.0 0.5 17.0
Perfective 7.5 8.5 24.0 40.0

23.0 25.0 25.0 47.0

Table 7 shows the summarized results of the evaluation rounds one and two.
The columns show the total number of agreements between the developers and
the automated classifications for each category and the Cohen’s Kappa-value.

4.3 Interpretation of the Evaluation

The following conclusions can be drawn from these results:

– Both the agreements in the adaptive category as well as the agreements in the
perfective category stayed constant for both rounds. In contrast, the num-
ber of agreements for the corrective category has significantly risen between
round one and two. From this fact we conclude that corrective maintenance
tasks are most difficult to spot just by looking at the source code and without
reading the commit message

– The number of agreements for the perfective category is almost perfect in
both rounds. We therefore conclude that our classification tool excels at
identifying perfective maintenance tasks (a finding similar to Mockus et al’s
inspection change finding in [9])

– The Kappa-value has risen from 0.46 to 0.61 from round one to round two.
This means that with the additional information of the commit message, the
developers have converged their decisions with the decisions of the automated
classification. Curiously this affected mainly corrective changes

– 0.46 and 0.61 both indicate a moderate agreement according to the El
Emam Benchmark - see “SPICE Software Process Assessment Kappa bench-
mark” as introduced in[3]

312 A. Mauczka et al.

Table 6. Agreements between developers and classification tool for the evaluation
round two

Automated Classification
Developers Adap. Corr. Perf.

Adaptive 12.0 1.5 0.0 13.5
Corrective 3.5 19.0 1.0 23.5
Perfective 8.5 4.5 24.0 37.0

24.0 25.0 25.0 55.0

Table 7. Comparison of evaluation rounds one and two

Agreement
Round Adap. Corr. Perf. Kappa

Round 1 11 12 24 0.46
Round 2 12 19 24 0.61

5 Related Work

In 2000 Mockus and Votta presented a study [9] that followed an approach sim-
ilar to this work. They propose the importance of a textual description to un-
derstand the reasons behind software changes. The evaluation performed in our
work strongly suggests the truth of that statement. They further state that other
factors might also influence the change classification. We aim to find new classifi-
cation rules to improve the classification algorithm. The classification algorithm
and the dictionary that we developed solely focus on the “textual description
field” but our implemented tool Subcat was built already keeping in mind an
extension of the classification algorithm also involving other aspects, such as size
of the commit, measured in changed lines of code, or interval.

In 2008 German and Hindle released a study about the taxonomy of large
commits [6]. They define large commits as commits that include a large number
of files. In their study, they manually classified large commits from nine open
source projects by their intentions. They started by extending Swanson’s cate-
gories by the categories “implementation” and “non functional”. During their
work they observed that these categories did not suffice for the categorization
of the intention of large commits and developed a new set of categories which
they call the “Categories of Large Commits”. In [7] , Kemerer and Slaughter
presented a set of methods and techniques to study software evolution. Bevan et
al. introduced a system called Kenyon [1]. They imply resource intensive logis-
tical constraints, e.g. the extraction of analysis specific facts, the storage of the
results of the extraction. These tasks have to be performed for each change or
configuration separately. Kenyon is designed to support these logistical tasks. It
provides support for different software configuration management systems and
retrieves consistent source code configurations. This issue is solved by imple-
menting different plugins for every software configuration management system.

Tracing Your Maintenance Work 313

The plugins themselves are very lightweight because they can all utilize the same
libraries, that hold the core functionalities.

A good overview and description of existing change metrics for commits and
their different subtypes is provided by German et al. in [4]. They also presented
a framework for the classification of change metrics. They present five differ-
ent groups of change metrics: entity change metrics, MR-scoped change metrics,
time-based change metrics, event-triggered change metrics and change metrics
that do not measure code. Additionally they divide the change metrics into
modification-unaware and modification-aware metrics. The classification pre-
sented in this paper can be the basis for the computation of related change
metrics. The software that we present, in a first step is only capable of classify-
ing changes using the classification algorithm. In the future the software can be
extended in a way that it automatically calculates some of the metrics presented
by [4].

6 Conclusion

The presented work provides a tool, Subcat, and a dictionary for cross-project
analysis of software evolution based on an automated classification. To achieve
these two goals, we completed the following tasks:

Classification Algorithm. We developed a classification algorithm which uses
a dictionary as its base of decision-making. The classification algorithm uses
a set of commits as its input and returns an assignment between the commits
and the categories that are defined in the dictionary. It is based on the
analysis of the natural language in the commit messages and follows a lexical
approach.

Dictionary. We presented a dictionary for our classification algorithm that
is capable of assigning commits to Swanson’s maintenance categories. The
cross project validity of the dictionary has been proven on five different open
source software projects. We instantly reached a percentage of successfully
classified commits of over 80% for each of the projects, without having to
adopt the dictionary.

Evaluation. We evaluated the dictionary and the automated classification by
using a two-step evaluation process. In a first step we evaluated the decisions
of the automated classification and the dictionary against our own manual
classification. We reached an average recall of 0.93 and an average precision
of 0.86. In the second evaluation step we evaluated the dictionary against the
opinion of five professional software developers. We have proven amoderate
agreement between the decisions of the automated classification and the
decisions of the developers. This result is similar to the result achieved by
Mockus et al. in [9] and proves that the approach presented is valid for
cross-project analysis in the open source project landscape.

Subcat. We developed a command line tool, which implements the classification
process. We defined a generic input format for the commits, to ensure the re-
usability for data, extracted from different VCS. The command line tool de-
livers the results of the classification as CSV-based reports. We presented an

314 A. Mauczka et al.

Eclipse plugin which integrates the automated classification directly into the
Eclipse workbench. It provides easy access to the classification functionality
and includes a rudimentary visualization of the results of the classification.

The successful evaluation of the lexical-approach on generic open source projects
has many implications. Researchers can use Subcat for a new definition of main-
tenance and software evolution metrics, not only in open-source projects, but
also in any project using non-obscure commit messages. Or fellow researchers
can use Subcat to comfortably analyze for example developer profiles over time
in open source projects, e.g. which developer does the bug fixing, who is imple-
menting the new features. Subcat can not only be used for profiling or software
evolution metrics though. Additionally, Subcat has been adapted to work with
GIT repositories recently.

Additionally to the main purpose, the categorization of changes into software
maintenance categories, Subcat can be easily adapted (by changing the dictio-
nary) for any other studies on commit messages in repositories. The author and
dictionary report and to some extent the lemma report are especially useful for
this purpose.

6.1 Discussion

There are many extensions to Swanson’s classification of maintenance tasks. In
our work, we adhere to Swanson’s original category set, because it is manageable
and well defined. During our research we studied a lot of commits and recognized
that often, one commit holds multiple, non-associated changes that would have
to be assigned to different categories. This indication warrants further research.
In the survey based evaluation we used Cohen’s Kappa as a measure. The def-
inition of a nominal scale implies that every item can be classified to exactly
one category. As indicated earlier, there are cases where a commit can not be
distinctly classified to one category but includes different activities that stretch
between two or even all of the three maintenance categories.

For detailed results per project, please contact the authors at the given mail
address.

6.2 Future Work

In this paper we use WordNet solely for matching words and lemmas. Word-
Net also possesses the possibility for cognitive matching which could be in-
cluded in the matching algorithm. Furthermore, Subcat is capable of measuring
further details of the commits (e.g. commit size, length of commit messages).
These parameters provide possibilities for further tuning of the categorization
mechanism.

References

1. Bevan, J., Whitehead Jr., E.J., Kim, S., Godfrey, M.: Facilitating software evolution
research with kenyon. In: Proceedings of the 10th European Software Engineering
Conference, pp. 177–186 (2005)

Tracing Your Maintenance Work 315

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, vol. 1. John Wiley and
Sons (1996)

3. Emam, K.E.: Benchmarking kappa for software process assessment reliability stud-
ies. Empirical Software Engineering 4, 113–133 (1999)

4. German, D.M., Hindle, A.: Measuring fine-grained change in software: Towards
modification-aware change metrics. In: Proceedings of the 11th IEEE International
Software Metrics Symposium, p. 28 (2005)

5. Hassan, A.E.: Automated classification of change messages in open source projects.
In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 837–841
(2008)

6. Hindle, A., German, D.M., Holt, R.: What do large commits tell us? a taxonomical
study of large commits. In: Proceedings of the International Working Conference
on Mining Software Repositories, pp. 99–108 (2008)

7. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolu-
tion. IEEE Transactions on Software Engineering 25 (1999)

8. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorial
data. Biometrics 33, 159–174 (1977)

9. Mockus, A., Votta, L.G.: Identifying reasons for software changes using historic
databases. In: Proceedings of the International Conference on Software Engineer-
ing, pp. 120–130 (2000)

10. Swanson, E.B.: The dimensions of maintenance. In: Proceedings of the 2nd Inter-
national Conference on Software Engineering, ICSE 1976, pp. 492–497 (1976)

Cohesive and Isolated Development with Branches

Earl T. Barr1, Christian Bird2, Peter C. Rigby3, Abram Hindle4,
Daniel M. German5, and Premkumar Devanbu1

1 UC Davis, Davis CA, USA
2 Microsoft, Redmond WA, USA

3 McGill University, Monteal QC, Canada
4 University of Alberta, Edmonton AB, Canada
5 University of Victoria, Victoria BC, Canada

Abstract. The adoption of distributed version control (DVC), such as Git and
Mercurial, in open-source software (OSS) projects has been explosive. Why is
this and how are projects using DVC? This new generation of version control
supports two important new features: distributed repositories and histories that
preserve branches and merges. Through interviews with lead developers in OSS
projects and a quantitative analysis of mined data from the histories of sixty
project, we find that the vast majority of the projects now using DVC continue
to use a centralized model of code sharing, while using branching much more
extensively than before their transition to DVC. We then examine the Linux his-
tory in depth in an effort to understand and evaluate how branches are used and
what benefits they provide. We find that they enable natural collaborative pro-
cesses: DVC branching allows developers to collaborate on tasks in highly cohe-
sive branches, while enjoying reduced interference from developers working on
other tasks, even if those tasks are strongly coupled to theirs.

1 Introduction

Version control (VC) is tool support for concurrent, collaborative software processes.
VC allows developers to create a branch, an isolated workspace, from a particular state
of the source code. They can share this branch and work on their tasks within it without
impacting the rest of the project and later merge (or integrate) their changes back into
the main line of development.

Intuitively, branches should be cohesive (i.e. collect related changes [26]) allowing a
team to work together on a focused task and isolated from the rest of the project so that
rapid and volatile development is not interrupted or impacted by external changes. The
rich history provided by recent VC and their adoption by a number of projects provide a
unique opportunity to address these intuitions and quantitatively measure how cohesive
and isolated branches are in practice.

The evolution of VCs is marked by increasing fidelity of the histories they record.
A commit is the write of a change into VC history. First generation VC, such as RCS,
record the history of individual file commits. This enabled rolling back changes to a
single file and reviewing file-specific changes. Second generation, or centralized VC

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 316–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cohesive and Isolated Development with Branches 317

(CVC), such as Subversion, stored sets of file changes committed together (i.e., a change-
set) in its history. This allows a related set of changes to be rolled back, and also enables
the conjoint history of a set of related files to be reconstructed.

Mainline

m
y-branch

Fig. 1. DVC history preserves branches and
merges

Recently, a new generation of VC,
distributed version control (DVC), has
transformed the use of VC and has
achieved widespread adoption. In DVC,
every copy of a project is a repository,
with its own history and the power to ex-
change source code changes with other
repositories. In contrast with CVC, DVC
is distributed in the sense that it allows
the change of changesets unmediated by
a central repository. DVC also preserves
the history of branches after their promotion into the mainline of development. Consider
Fig. 1 in which circles represent commits to the repository. Arcs denote the temporal
ordering of commits. “Mainline” denotes the main line of development from which re-
leases are made and to which features, like “my-branch”, are merged. The dashed edges
depict relationships that were untracked, and forgotten in CVC 1. In DVC, a commit al-
ways tracks its immediate predecessor commits, across both branches and merges; for
DVC, the dashed edges are indistinguishable from the edges along a branch. This branch
history allows us to augment developer studies with quantitative studies of branch co-
hesion and isolation. We can use this branch history to crosscheck qualitative results on
branch usage. We can also use these measures to shed light on whether differences in
how a project uses branches correlate with defect rates or schedules delays.

Open-source software (OSS) projects have rapidly adopted DVC. Our first research
question, RQ1, asks “Why did OSS projects rapidly adopt DVC?” We use interviews to
show that developers had previously wanted to make heavier use of branches but were
dissuaded by “merge pain”, the difficulty of resolving conflict that arises during branch
integration, and buttress this observation by showing that branch usage has markedly
increased in those projects that made the transition from CVC to DVC. We also note
that almost all projects making the switch have continued to use a centralized reposi-
tory, calling into question the conventional wisdom that DVC’s support for distributed
workflows has been the principal cause of the rapid transition to DVC.

Without branches, developers must share a single mainline and deal with the con-
flicts that sharing entails. In practice, projects developed workflows to avoid or mitigate
conflict, such as baton passing or the “commit bit”. We can demonstrate the benefit of
branching by simulating a lack of branching. We observe that branched history of a
DVC can be linearized onto a single “mainline” in which the conflicts and interruptions
that branching avoids become manifest. This linearized history overapproximates the
actual conflict and allows us to bound the cohesion and isolation that branches afford.

Ideally, when a task is identified, developers create a branch to work on the task
together. But does this occur in practice? Is work performed in a branch more cohesive

1 This limitation was addressed in Subversion 1.5.

318 E.T. Barr et al.

than all changes across the repository during the same time period? Thus, RQ2 is “How
cohesive are branches?” To investigate this question, we use directory distance of the
files modified in a branch to measure its cohesion. Then we compare actual branches in
the Linux history against the baseline, background cohesion of linearized sequences of
commits. If actual branches are no more cohesive than these commit sequences, then
branches are either unlikely to be cohesive or directory distance is a poor proxy for
branch cohesion. To form these commit sequences, we picked a random starting point
on the linearized branch history. In §4.2, we found that actual, observed branches are
significantly more cohesive than background commit sequences.

RQ3 asks “How successfully do DVC branches protect developers from interrup-
tion?” VC is good about flagging syntactic conflict; semantic conflict occurs when
mainline has changed in such a way as to invalidate assumptions made during the de-
velopment of a branch. Cross branch coupling causes semantic conflict. To merge a
feature branch into mainline is to promote that branch. When promoting a branch, pro-
grammers must review mainline to try to find semantic conflict. To measure semantic
conflict, we measure the number of commits in a branch being considered for promo-
tion that modified a file that has also been modified in mainline, since the branch forked
from mainline. Against a linearized DVC history, we measure and bound how often the
semantic conflict would interrupt a developer in the absence of branching or procedures
to ameliorate it.

We make three principal contributions in this paper: 1) We present compelling evi-
dence from study of sixty projects (RQ1) that branching and not distribution has driven
the rapid adoption of DVC; 2) We define two new measures: branch cohesion and dis-
tracted commits, a type of task interruption that occurs when integration work intrudes
into development; and 3) We apply these measures to the Linux history and (RQ2) quan-
tify the cohesiveness of branches and (RQ3) the effective isolation they provide against
the interruptions intrinsic to concurrent development.

2 Theory

In April, 2005, development simultaneously began on two open source DVC systems,
Git and Mercurial. Their popularity has exploded, and by 2011, a large portion of open
source projects have already migrated to a DVC. According to Debian (a Linux distribu-
tion), of the 55% of projects that report their VC (9,132 projects), 44% (3994 projects)
use DVC [33], indicating that it has achieved widespread acceptance and adoption2.
VC has a profound effect on workflow, and adoption of a new VC is not a trifling mat-
ter [12], as evidenced by the amount of discussion surrounding decisions to change, the
work required to move from one to another, and the change in project workflows, all of
which we have observed in OSS projects. For examples see GNOME’s move to Git [25],
Python’s move to mercurial [7], and the project that KDE created solely to evaluate and
eventually create tools for a migration to Git [13].

2 The data we report here comes from the repository that contains the Debian packaging scripts.
In practice, we observe that for the majority of projects, this repository is indistinguishable
from the upstream repository.

Cohesive and Isolated Development with Branches 319

Research Question 1: Why did OSS projects rapidly adopt DVC?

In §4.1, we present compelling evidence that DVC support for branching drove the
transition to DVC. Our interviews show that the impetus is cohesion and isolation. But
how cohesive are branches and how well do they isolate developers?

Cohesion. If developers use branches to isolate tasks, we expect to find that branches
are cohesive and encapsulate related changes. Two reasons to expect developers to work
with cohesive branches is that their histories are easier to understand when faced with
maintenance tasks and they are easier to revert if the branch has a problem. On the
other hand, developers could be using branches merely to isolate their development
work, without separating that work into cohesive tasks.

Research Question 2: How cohesive are branches?

Coupling and Interruption. Developing a new feature often requires making changes
to modules that are coupled to other modules. If different features, under simultane-
ous construction by different developers, affect coupled modules, the tasks may require
coordination, as one developer’s work can cause other developers’ code to become un-
stable. Ideally, uninvolved developers should be isolated from these changes until the
feature has achieved some degree of stability. At the same time, a developer working
on a new feature should still have access to VC to commit incremental changes, and
rollback, as necessary. Berczuk [2] makes this point in his discussion of configuration
management patterns, where he argues that developers should checkpoint changes at
frequent intervals to a location separate from the “team version control,” and that only
tested and stable code should be integrated. When the feature is ready, its integration
must not be too difficult or the productivity gained from working on an isolated branch
is lost. Indeed, Perry et al. [24] claim that tool support for integration is important be-
cause “integration too often is painful and distracting” and because development lines
diverge when parallel development goes on too long.

When branches are not used, all changes occur on the mainline and a developer
may need to merge and integrate changes that are unstable and transitory or only tan-
gentially related to her work. The attendant interruptions can slow development. The
use of branches allows a developer to control and minimize the frequency of such
interruptions.

Integration interruptions are a form of task interruption. Prior literature has shown
that task interruptions seriously impact developer productivity. Recovering from inter-
ruptions can be difficult and time-consuming: developers must mentally juggle goals,
decisions, hypotheses, and interpretations related to their task, or risk inserting bugs. In
a study at Microsoft [16], 62% of developers said that recovering from interruptions
is a substantial problem. Van Solingen [28] found that interruptions are most problem-
atic when a developer is checking in changes or updating their working code base. De-
Marco observed that resuming after an interrupt often takes at least 15 minutes [10].

320 E.T. Barr et al.

Parnin et al. [22] instrumented Visual Studio and Eclipse to observe the time taken to
resume development tasks. While they found some strategies for mitigating the effects,
developers began editing within a minute of restarting a task only 10% of the time and
took over 30 minutes in 30% of the cases. While these papers consider the effect of in-
terruptions in broader terms, they do support the claim that task interruptions diminish
productivity.

Research Question 3: How successfully do DVC branches protect developers
from interruption?

3 Methodology

We used a mixed method research strategy [9] in our study of branches in DVC. We
began with interviews of developers (the qualitative phase) to help develop hypotheses
regarding the motivations for DVC adoption and then empirically evaluated these hy-
potheses by gathering data and performing statistical analyses (the quantitative phase).
For us, the advantage of a mixed method approach is that the qualitative investigation
allowed us to collect answers to fundamental questions related to the “how” and “why”
of DVC adoption. The answers then provided insight and added meaning to our quanti-
tative results that might otherwise have been missed in a purely quantitative study. This
increased our confidence in the findings and provided a richer context that can aid in
understanding whether our results generalize.

In an effort to understand what has motivated the rapid transition to DVC from an op-
erational point of view, we observed the development activities in projects that switched
to DVC and interviewed a number of lead developers from these projects regarding their
switch. We sent personalized requests for fifteen minute interviews to the three most ac-
tive developers in a number of large and mature projects that had used CVC for multiple
years and had recently moved or decided to move to DVC. Following these interviews,
we gathered data from the development history of these projects and quantitatively eval-
uated hypotheses based on their responses.

Interviewing project leaders was critical in understanding why people switched to
DVC, the perceived benefits and drawbacks of the switch, and (in cases where the
projects have used DVC for some time) how it has affected the policy and develop-
ment process of the projects. The data mining of the VC history and developer mailing
lists allowed us to provide quantitative evidence of the effects of DVC. We interleave
quotations from interviews and numerical findings from data mining to triangulate and
provide a balanced perspective.

We conducted semi-structured interviews of four projects and six people. Semi-
structured interviews make use of an interview guide that contains general group-
ings of topics and questions rather than a pre-determined exact set and order
of questions [17]. Semi-structured interviews are often used in an exploratory
context when there are clear research questions [17,31]. The responses from
these interviews help develop hypotheses and focus quantitative analysis. We

Cohesive and Isolated Development with Branches 321

1 3

5

2 4

M

Branch 1

Branch 1

1 3 52 4
Linearized

History

Branched
History

D

Fig. 2. Branches projected onto D, a single timeline by date. The merge change M that joins the
two branches falls out since the work to merge each change occurs, piecemeal, as each change is
recorded.

extracted themes from the interviews using a modified version of Creswell’s
guidelines [9] for coding. The interview guide that we used can be found at
http://www.cabird.com/public/vcinterviewquestions.pdf3. We minimally
copy-edited the quotes for readability. We eliminated false starts and superfluous crutch
words; we used standard notation, delimiting clarifying comments with brackets and
marking the suppression of unnecessary phrases with an ellipsis [17].

For the quantitative mined data, we developed measures and modified existing ones
to best examine the impact of DVC in the context of our dimensions. The data used,
the definition of the measure, and attendant threats to validity are discussed in §4. We
chose to examine 60 projects that had transitioned to DVC. These projects were drawn
from lists of projects using DVC on Wikipedia and GitWiki and include such notable
projects as Wine, Samba, Perl, Ruby on Rails, and the Glasgow Haskell Compiler.
These projects vary in age from 21 years (in the case of Perl) to 6 months (pthreads-
stubs in X.Org) with a median of 4.5 years. The number of contributors as recorded
by the repositories ranges from 1462 (Wine) to 1 (dri2proto in X.Org). The commits
to these projects number from 139,187 (Samba) to just 6 (pthread-stubs in X.Org). As
such, our selection of projects for analysis spans a broad spectrum of OSS projects in
terms of size, age, and development activity. All projects have used DVC for at least 5
months at the time of this study; the majority of them for over one year.

We use Linux to evaluate hypotheses and questions regarding advanced DVC usage
because the Linux kernel project has never used a CVC and its developers are generally
very experienced with history-preserving branching. Linux started using Git in 2005;
we have 3.5 years of Linux VC data and the corresponding data from Linux kernel
Mailing List (LKML). Over this period, there were 4K developers, 118K commits, and
443K mail messages for Linux.

4 Evaluation

In this section, we answer each of our research questions. To begin, we introduce
our branch linearization technique on which much of our analysis rests. To linearize

3 At the request of the participants, the interviews in their entirety are confidential.

http://www.cabird.com/public/vcinterviewquestions.pdf

322 E.T. Barr et al.

a branched DVC history, we project the concurrent sequence of changes in a DVC his-
tory onto the single timeline D, as shown in Fig. 2. The commits along this timeline
represent concurrent work that actually occurred across branches. Conflict or interrup-
tion, that occurs along this timeline, bounds the work needed to avoid conflict or re-
cover from interruption. This work was previously largely unobservable (apart from
mutterings in mailing lists/interviews/change-log messages), handled by policies and
procedures such as baton passing and patch rework on a project’s mailing list [32]. To
measure the cohesion (§4.2) and isolation (§4.3) of branches, we compare the cohesion
and isolation of their within branch changes against that of across branch changes, in
the form of simulated branches drawn from D.

4.1 Rapid DVC Adoption

Pundits claim that support for distributed (changeset flows unmediated by a central
repository), as opposed to centralized, development is the root cause of this rapid transi-
tion [23,8]. We have observed something different. The vast majority of these projects
do not appear to be making use of distribution. Of the sixty projects whose VC use we
examined, all but Linux continue to use a centralized model organized around a single
public repository, except the xemacs and gnome projects which publish two reposito-
ries. Although these projects continue to use a centralized style of development, we
have observed a dramatic shift in their use of branches.

Lead developers from prominent open source projects (§3) indicated that, prior to
using DVC, branches were “painful and difficult” to integrate:

“ The biggest complaint associated with Subversion is associated with branch-
ing and merging. The one feature that Git has that our users would really like
is a really fast and simple merge. ”

Richards, CEO WANdisco [14]

In some cases, two branches would grow so far apart, they had to abandon one of them
altogether. Prior to DVC, branches were typically created only for releases and not
new features. For instance, Koziarski from Ruby on Rails states: “We had branches
for versions [releases]. Feature branches were very rare for us”[20]. A preliminary
empirical investigation showed that few branches were created pre-DVC. Of the ex-
amined 60 projects that switched to DVC, 1.54 branches were created on average
per month per project before using DVC; after switching to DVC, the average rose
to 3.67. A Wilcoxon rank sum test shows that the two populations are statistically
different4(p, 0.01)

Without easy branch and merging facilities, our interviewees reported that develop-
ers would “pass around large patch sets” or “brain dump” a mega-patch that was almost
impossible to review. These large patch sets contained multiple, sometimes unrelated
changes, and it was impossible to “consider each on their own merits without having to
swallow the whole thing” (Turnbull, XEmacs [27]). This problem was compounded for

4 A Wilcoxon test was used rather than the standard t test due to the heavily skewed distribution
of branches.

Cohesive and Isolated Development with Branches 323

3 commits

2 commits

4 commits

4

3
2 D

3 42}
Observed Project DVC Projection of Branch

Lengths onto D
Multi-Set of Branch Lengths

D
342

Fig. 3. Depiction of the selection of branches for the Monte Carlo simulation

●

●

●

●
●

●

●●
●

●●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●●●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●●
●
●
●●

●

●●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●●

●

●

●

●●
●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●●●

●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

2
5

10
20

50
10

0
50

0

B
ra

nc
h

Le
ng

th
s

(lo
g)

(a) Distribution of branch lengths in the Linux
kernel.

5 10 15 20 25 30 35

3.
0

3.
5

4.
0

4.
5

Branch Length

M
ea

n
D

ire
ct

or
y

D
is

ta
nc

e

●

Linux Mean: p < 0.05
Simulation Mean
Linux Mean: p >= 0.05

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Observed branches compared to simulated
branches over D from 1,000 simulations.

Fig. 4. Linux branch lengths: observed and simulated

new developers who did not have commit access and so could not work and commit in-
cremental work in the course of making large changes. Under CVC, developers without
commit privileges, as well as core developers who refused to use “painful” (Sperber,
XEmacs [21]) feature branches were effectively reduced to working in a time before
version control.

“ Because we’d have these large changes that would go in all at once, it would
be really difficult to find the source of problems. For example, if you wanted
to find a change that was responsible for certain problems, you would often
go back [in history] . . . and pretty soon you’d find one of these ‘mega’ patches
. . . that would essentially change every file in the system and would lump to-
gether sets of unrelated changes ... [these mega changes made it] really, really
difficult to track down what change was responsible for a given problem, it
makes software maintenance really difficult. ”

Sperber, XEmacs [21]

324 E.T. Barr et al.

In summary, projects continue to use a centralized repository and project maintainers
have stated that the DVC branch and merging facilities was a principal motivation, so
we find that the answer to RQ1 is branching, not distribution.

4.2 Cohesion

Large systems, like the Linux kernel, structure their files in a modular manner. Files
that perform similar or related functions are close in the directory hierarchy [5], thus the
directory structure loosely mirrors the system architecture. To determine how “cohesive”
a set of changes is, we measure how far source files are from each other in the directory
tree. Two files in the same directory have a distance of zero (i.e. the highest level of
cohesion), while the distance for files in different directories is the number of directories
between the two files in the hierarchy. We only include ‘.c’ source files as Bowman [5]
found that header files for the entire system often are located in one directory.

Let d : F×F → N0 denote the directory distance of two files. Each commit defines a
set of modified files, or changeset. When F is the set of files in a source code repository
and C is the set of commits, fm : C → (2F − ∅) returns the changeset of a commit;
fm cannot return the empty set because a changeset cannot be empty. The cohesion
of a single commit is the multiset of directory distances formed from the files in its
changeset. A branch is a “straight line” sequence of commits, B = c1, · · · , cn, where
c1 is not a merge commit and cn is either a leaf (i.e. HEAD) or the parent of a merge
commit. Thus, one branch includes and continues through a branch commit, while each
child of a merge commit starts a new branch, rather than continuing one of the merged
branches. For the branch B, let Bd be the multiset of directory distances formed over
the union of all its changesets:

Bd = {d(f, f ′) : f, f ′ ∈
⋃
c∈B

fm(c)}, for f 	= f ′. (1)

Definition 4.1 (Branch Cohesion). The branch cohesion of B is the average of the
directory distances in Bd:

Bc =
∑
d∈Bd

d

|Bd|
.

To determine if developers use branches to isolate cohesive changes, we need a baseline
to compare the cohesion of branches because we have no a priori notion of what the
range of good and branch cohesion values may be. Thus, we need to establish the back-
ground distribution of cohesion, as a baseline for comparison. To do so, we measure the
cohesion of branches over D, the linearized history of a project (Fig. 2), which captures
concurrency work as a free-for-all on a single, shared mainline. Specifically, we com-
pare the cohesion of observed branches in the history of the Linux kernel against the
cohesion of simulated branches of equivalent length over the linearized history,D, using
Monte Carlo simulation. Fig. 3 depicts this simulation. We first measure the length of
each branch in the observed Linux kernel history (Fig. 3 left) and extract their multiset
of branch lengths (Fig. 3 middle). We then randomly tile these branch lengths (which

Cohesive and Isolated Development with Branches 325

do not contain merge commits and sum to precisely the length of D) onto D to form
simulated branches (Fig. 3 right). Thus, the distribution of branch lengths is exactly the
same as the observed distribution of branch lengths in the Linux kernel history; specif-
ically, this is the distribution shown in Fig. 4(a). We then compute the branch cohesion
for each simulated branch. If developers generally work together on cohesive sets of
files in branches then the branch cohesion for branches of length n in the observed
DVC history will be higher than the cohesion for sequences of commits with length n
in D. We generated 1000 tilings in our simulation.

Fig. 4(a) is a boxplot of the lengths of observed branches in the history of the Linux
kernel. As Fig. 4(a) makes evident, the distribution is positively-skewed. Since 90% of
the Linux kernel branches have length less than 35 commits, we truncated Fig. 4(b) at
35. Branches longer than 35 commits had fewer than 25 instances, giving too small a
sample to produce meaningful results. Fig. 4(b) plots the mean branch cohesion of ob-
served Linux kernel branches (black diamonds) against the mean of the means of the
cohesion of the simulated branches (black circles). We report the mean of the means at
each branch length for the 1000 tilings and provide a 95% confidence interval (the ver-
tical lines). With the exception of branch length 34, which is not statistically significant
(red square), the observed branches are more cohesive than the simulated branches at
each length with p < 0.05.

Examining the magnitude of the differences in cohesion, we see that at branch length
two (the minimum), pairs of files committed on observed branches are 0.12 directories
closer together on average than pairs of files along D, the linearized history, while the
difference is 1.5 directories at branch length 32 (the maximum). These differences may
appear small, but note that a difference of 1 means that for each pair of files the distance
between them is at least one directory further apart in the code base on a simulated
branch than on the observed branch. This effect looms larger when one recognizes that
most branches modify tens to hundreds of files.

This point is further underscored by correlating this difference to the branch length.
As can be seen from Fig. 4(b), as branches become longer, the observed branches be-
come increasingly more cohesive relative to the simulated branches (Spearman correla-
tion: r = .69, p , .001). It is clear that developers group related changes on branches
and that this grouping increases with the number of changes.

Our interviews are consonant with this result: branches are not created only for re-
leases. In projects that have moved to DVC, branches comprise non-trivial, cohesive
changes such as features or localized bug fixes and maintenance efforts. Three of our
interviewees indicated that previously, such non-trivial changes would either have been
avoided or created “off-line” and then committed to the VC in a single, disruptive mega-
commit. Thus, we find that the answer to RQ2 is that branches are highly cohesive.

4.3 Coupling and Interruptions

Using data mined from the Linux kernel, we construct its linearized history D, as de-
fined in Fig. 2, and quantitatively establish an upperbound on the number of integration
interruptions that a developer avoids through the use of branching. By analogy to nu-
meric intervals, D(x, y) denotes the subsequence of commits between x and y in D.
For the commit c, let a denote its most recent non-merge ancestor.

326 E.T. Barr et al.

Fi ∩ fm(c)

Fi

a c

fm(c)Fi ∩ fm(c)}

fm(c)
D(a, c)

D

Fig. 5. Depiction of the formalisms described: The straight line indicates D, the linearized se-
quence of commits (ovals). The stacked colored rectangles above a commit represent its change-
set. Here, c is a commit whose nearest, non-merge ancestor in DVC is a. D(a, c) are the commits
made by other developers in the intervening time. Fm(c) is the set of files modified in c and Fi

is the set of files modified in the commits in D(a, c). The ratio of files in the intersection to files
changed in c is the index of similarity δ that we vary in our definition of distraction.

Consider a developer working on a new feature on a branch. When she promotes
a feature branch to master, she must not only resolve any syntactic conflict that arise,
but, more generally, look for potential semantic conflicts, conflicts that occur when
mainline changes in a way that violates the assumptions on which a feature branch
rests. For instance, her branch may rely on a global variable whose range of allowed
values has changed in master, because her branch is coupled to other branches promoted
since her branch began. Such verification can be subtle and time-consuming. This work
is inherent to concurrent development, but previously handled out-of-band by policy
and procedure. To upperbound this work, we consider the work to search for semantic
conflict that would occur along D where the distraction of integration work potentially
intrudes into feature development work at each commit. This measures how often the
integration work, ideally deferred to merge time, would instead intrude into feature
development in the absence of an isolation mechanism, such as that provided by DVC.

Fig. 5 illustrates the formalisms we introduce to measure the integration interruptions
that occur along D. The line at the left represents D, the linearized history. Ovals on D
represent commits. Each commit c defines a changeset, a set of files that it modifies. In
the figure, these modified files are the rectangles stacked above each commit. Specifi-
cally, c is a commit whose nearest, non-merge ancestor in the original DVC history is a,
and D(a, c) represents the commits, not including a or c, that developers made to other
branches in that history in the intervening time. Definition 4.2 formalizes the set of files
changed in a sequence of commits.

Definition 4.2 (Intervening Files). The files modified in D(a, c) “intervene” between
c and a, its nearest, non-merge ancestor in D. These files therefore change the state of
the project into which c is written. The set of intervening files is

Fi =
⋃

w∈D(a,c)

fm(w).

Cohesive and Isolated Development with Branches 327

If c modifies f ∈ Fi, a syntactic or semantic conflict could occur. Semantic conflicts
can be more distracting than syntactic conflicts as c’s author must review each file in
fm(c) ∩ Fi to ensure their absence, since VC catches syntactic conflicts. For instance,
one of the commits in D(x, c) could have changed the semantics of a function used
in c. Intuitively, the commit c is distracted if commits fall between it and its nearest,
non-merge branch ancestor on D and one of those intervening commits changed a file
that c also modified. In Fig. 2, all the commits except commits 1 and 5 are potentially
distracted, depending on the set of files each commit changes. Definition 4.3 captures
this intuition.

Definition 4.3 (Distraction). The commit c ∈ D is distracted if

|Fi ∩ fm(c)|
|fm(c)| > δ, for δ ∈ [0..1].

We cannot know how often files changed in both c and D(a, c) will actually cause a
conflict or require the developer committing c to understand a change that occurred in
D(a, c). We capture this uncertainty in the threshold δ, an index of similarity, or fraction
of the size of the intersection of c’s changeset and the changesets in D(a, c) over the
size of c’s changeset. Each setting of δ represents a different assumption about how
likely concurrent changes are to generate integration work in order to write the current
changeset and form the commit c. At the right of Fig. 5, the fraction of the number of
files in the intersection divided by the number of files in c pictorially depicts this index
of similarity that we use to measure integration interruptions.

●

●
●

●

●

● ●
● ● ● ●

index of similarity

pe
rc

en
ta

ge
 o

f d
is

tr
ac

te
d

co
m

m
its

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

30
31

Fig. 6. Commits that require integration work as δ varies when
the Linux kernel history is linearized

In Fig. 6, we plot the
proportion of commits in
the linearized history of
the Linux kernel that are
distracted as δ varies. At
zero, we print the percent-
age of the time there are in-
tervening files (Fi 	= ∅),
regardless of whether they
intersect with c’s change-
set. Even at δ = 1, i.e.
when we require fm(c) ⊆
Fi, 2.8% commits are dis-
tracted, i.e. may encounter
conflict or require review
to ensure that no seman-
tic assumption have been
violated. After calculating
the 95% confidence inter-
vals, we find that a commit
c modifies a file that intervenes between c and its ancestor a on D with a confidence
interval of 4.47% to 4.69% of the time. This corresponds to the point in Fig. 6 with an

328 E.T. Barr et al.

index of similarity of 0.1. All of the files in the changeset of a commit c are distracted
(index of similarity 1.0) with a confidence interval of 2.47% to 2.93%. Thus, a non-
empty overlap occurs approximately once every 22 commits and a complete overlap
every 35 commits.

Clearly, using a branch reduces distractions by delaying the need to resolve conflicts
until merging the branch back into its parent. But how often does the use of branching
actually avoid potential distractions in practice? Quantifying exactly how much distrac-
tion is avoided depends on how likely it is for concurrent changes to a single file to
generate integration work. First, there is the rate, reported above, of non-empty inter-
section. That is, how often concurrent edits on different branches touch the same file.
Second, there is the cardinality of that intersection; how many files are edited concur-
rently by different branches. Finally, there is the probability that the concurrent changes
to a file in different branches actually generate integration work, at the very least in
the form of confirming the changes made to the file are semantically noninterfering.
We have established that on average, non-empty intersections occur once in every 22
commits. To be conservative, we assume that these intersections contain only a single
file and that 90% of the time the programmer must examine the out-of-branch change
made to it. To answer RQ3, we therefore conclude that working on branches protects a
programmer from unexpected, unwanted semantic conflicts once in every 24.4̄ commits
on average, across all branches that a developer works on.

4.4 Threats to Validity

The main threat to the external validity of our cohesion and distractions results is their
dependence on Linux Git history, which may not be representative. Further, Git history
can be perfected via “rebasing”, an operation that allows the history to be rewritten to
merge, split or reorder commits [3]. Repositories hosted locally by developers are also
not observable until branches are merged elsewhere.

Many projects we surveyed did not have a long enough DVC history (i.e. sample-
size) to produce statistically significant results in all of our measures. Developers are
still adjusting to DVC and may not have adopted history-preserving branching to break
apart larger commits. As well, many contributions, even to DVC-using projects, are
still submitted as large patches to the mailing-list, diluting, at least in the short term, the
impact of DVC adoption.

D, the linearization of a DVC history that projects all branches onto a single, shared
mainline overapproximates the integration interruptions faced by a developer, but we do
not know by how much. Our use of directory distance as a cohesion measure does not
capture the cohesion of a cross-cutting change; however, the fact that we found a sig-
nificant difference in spite of understating the history-preserving nature of lightweight
branching strengthens our result. Our analysis assumes that all integration interruptions
waste time, which may not always be the case.

5 Related Work

Version control systems have a long and storied past. In this paper, our concern is pri-
marily the introduction of history-preserving branching and merging, and the resulting

Cohesive and Isolated Development with Branches 329

rich histories. The importance of preserving histories, including branches, has been well
recognized [11]. The usefulness of detailed histories for comprehension [1] and for au-
tomated debugging [34] are by now well accepted. Some have even advocated very fine-
grained version histories [18] for improved understanding and maintenance. Automating
the acquisition of information, such as static relationships or why some code was com-
mited, from accurate and rich VC history might improve developer productivity [15].

Branching in VCs have received a fair bit of attention [11]. Some have recommended
“patterns” of workflows for disciplined use of branching [29]. Others advocate ways of
branching and merging approaches [6] that mitigate the difficulties experienced with the
branch and merge operations of earlier version control systems. Merging is a complex
and difficult problem [19], which, if anything, will become more acute as a result of the
transition to DVC and the corresponding surge in the use of branching we have shown.
Bird et al. [4] developed a theory of the relationship between the goals embodied by the
work going on in branches and the “virtual” teams that work on such branches.

Perry et al. [24] study parallel changes during large-scale software development.
They find surprising parallelism and conclude “current tool, process and project man-
agement support for this level of parallelism is inadequate”. Their conclusion antici-
pates the rapid transition to DVC that we chronicle in this paper.

The influential work of Viégas et al [30] uses a visualization methodology to study
the historical record of edits in Wikipedia, and report interesting patterns of work (such
as “edit wars”). To our knowledge, our paper is the first detailed study of the impact
of DVC and its history-preserving branching and merging operations on the practice of
large-scale, collaborative software engineering.

6 Conclusion and Future Work

Contrary to conventional wisdom, branching, not distribution, has driven the adoption
of DVC: most projects still use a centralized repository, while branching has exploded
(RQ1). These branches are used to undertake cohesive development tasks (RQ2) and are
strongly coupled (RQ3). In the course of investigating these questions, we have defined
two new measures: branch cohesion and distracted commits, a type of task interruption
that occurs when integration work intrudes into development.

We intend to investigate how projects select branches to merge. The isolation that
branches afford carries the risk that the work done on that branch may be wasted if the
upstream branch evolves too quickly. We intend to investigate the impact of history-
preserving branching on the use of named stable bases [2].

References

1. Atkins, D.L.: Version Sensitive Editing: Change History as a Programming Tool. In:
Deng, T. (ed.) ECOOP 1998 and SCM 1998. LNCS, vol. 1439, pp. 146–157. Springer, Hei-
delberg (1998)

2. Berczuk, S.: Configuration Management Patterns. In: Third Annual Conference on Pattern
Languages of Programs (1996)

330 E.T. Barr et al.

3. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.: The promises
and perils of mining git. In: Proc. 6th MSR (2009)

4. Bird, C., Zimmermann, T., Teterev, A.: A Theory of Branches as Goals and Virtual Teams. In:
Proceedings of the International Workshop on Cooperative and Human Aspects of Software
Engineering (2011)

5. Bowman, I.T., Holt, R.C., Brewster, N.V.: Linux as a case study: Its extracted software archi-
tecture. In: Proc. ICSE 1999 (1999)

6. Buffenbarger, J., Gruell, K.: A Branching/Merging Strategy for Parallel Software Develop-
ment. System Config. Management (1999)

7. Cannon, B.: PEP 374: Choosing a distributed VCS for the Python project (2009),
http://www.python.org/dev/peps/pep-0374

8. Clatworthy, I.: Distributed version control — why and how. In: Open Source Developers
Conference, OSDC 2007 (2007)

9. Creswell, J.: Research design: Qualitative, quantitative, and mixed methods approaches, 3rd
edn. Sage Publications, Inc. (2009)

10. DeMarco, T., Lister, T.: Peopleware: productive projects and teams. Dorset House Publishing
Co., Inc., New York (1987)

11. Estublier, J.: Software configuration management: a roadmap. In: Proc. of the Conf. on The
future of Software Engineering. ACM (2000)

12. Jacky, J.-M.F., Estublier, J., Sanlaville, R.: Tool adoption issues in a very large software
company. In: Proc. of 3rd Int. Workshop on Adoption-Centric Software Engineering (2003)

13. KDE. Projects/MoveToGit - KDE TechBase (November 2009),
http://techbase.kde.org/Projects/MovetoGit

14. Kerner, S.M.: Subversion 1.7 released with some git-esque merging. developer.com (2011)
15. Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software development

teams. In: Proc. of the 29th ICSE. IEEE (2007)
16. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of developer

work habits. In: Proc. of the 28th ICSE. ACM (2006)
17. Lindlof, T., Taylor, B.: Qualitative communication research methods. Sage (2002)
18. Magnusson, B., Asklund, U.: Fine grained version control of configurations in COOP/Orm.

Software Configuration Management, 31–48 (1996)
19. Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software

Engineering 28(5), 449–462 (2002)
20. Koziarski, M.: Personal interview, April 5 (2009), rubyonrails.org
21. Sperber, M.: Personal Interview, April 3 (2009), xemacs.org
22. Parnin, C., Rugaber, S.: Resumption strategies for interrupted programming tasks. In: Proc.

of 17th ICPC 2009. IEEE (2009)
23. Paul, R.: DVCS adoption is soaring among open source projects. ars technica, January 7

(2009)
24. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel changes in large-scale software development: an

observational case study. ACM Trans. Softw. Eng. Methodol. 10(3), 308–337 (2001)
25. Rocha, L.: GNOME to migrate to git (March 2009),

http://mail.gnome.org/archives/devel-announce-list/2009-March/

msg00005.html

26. Sarma, A., Noroozi, Z., Van der Hoek, A.: Palantír: raising awareness among configuration
management workspaces. In: Proc. of 25th ICSE (2003)

27. Turnbull, S.: Personal Interview, April 7 (2009), xemacs.org
28. van Solingen, R., Berghout, E., van Latum, F.: Interrupts: just a minute never is. IEEE Soft-

ware 15(5), 97–103 (1998)

http://www.python.org/dev/peps/pep-0374
http://techbase.kde.org/Projects/MovetoGit
rubyonrails.org
xemacs.org
http://mail.gnome.org/archives/devel-announce-list/2009-March/msg00005.html
http://mail.gnome.org/archives/devel-announce-list/2009-March/msg00005.html
xemacs.org

Cohesive and Isolated Development with Branches 331

29. Vance, S.: Advanced SCM branching strategies (1998),
http://www.vance.com/steve/perforce/Branching_Strategies.html

30. Viégas, F., Wattenberg, M., Dave, K.: Studying cooperation and conflict between authors
with history flow visualizations. In: Proc. of the SIGCHI Conf. on Human Factors in Com-
puting Systems. ACM (2004)

31. Weiss, R.S.: Learning From Strangers: The Art and Method of Qualitative Interview Studies.
Free Press (November 1995)

32. Weißgerber, P., Neu, D., Diehl, S.: Small patches get in! In: Proc. of the 2008 Int. W. Conf.
on Mining Software Repositories. ACM (2008)

33. Zacchiroli, S.: (declared) VCS usage for Debian source pacakges (February 2011),
http://upsilon.cc/~zack/stuff/vcs-usage

34. Zeller, A.: Yesterday, My Program Worked. Today, It Does Not. Why? In: Wang, J., Lemoine,
M. (eds.) ESEC/FSE 1999. LNCS, vol. 1687, pp. 253–267. Springer, Heidelberg (1999)

http://www.vance.com/steve/perforce/Branching_Strategies.html
http://upsilon.cc/~zack/stuff/vcs-usage

Making Software Integration Really Continuous

Mário Luís Guimarães and António Rito Silva

Department of Computer Science and Engineering
IST, Technical University of Lisbon, Lisbon, Portugal

{mario.guimaraes,rito.silva}@ist.utl.pt

Abstract. The earlier merge conflicts are detected the easier it is to
resolve them. A recommended practice is for developers to frequently in-
tegrate so that they detect conflicts earlier. However, manual integrations
are cumbersome and disrupt programming flow, so developers commonly
defer them; besides, manual integrations do not help to detect conflicts
with uncommitted code of co-workers. Consequently, conflicts grow over
time thus making resolution harder at late stages.

We present a solution that continuously integrates in the background
uncommitted and committed changes to support automatic detection of
conflicts emerging during programming. To do so, we designed a novel
merge algorithm that is O(N) complex, and implemented it inside an
IDE, thus promoting a metaphor of continuous merging, similar to con-
tinuous compilation. Evidence from controlled experiments shows that
our solution helps developers to become aware of and resolve conflicts
earlier than when they use a mainstream version control system.

Keywords: software merging, version control, continuous integration,
conflict detection, continuous merging.

1 Introduction

Programming inside teams of multiple developers generally results in merge con-
flicts between concurrent changes. Conflicts can be difficult to detect in object-
oriented programs without adequate tool support, and result in software defects
as developers work more in parallel [14].

The problem with conflicts is that the later they are detected the costlier they
are to resolve [1,8]. This is especially true as time passes without developers
integrating their changes with those of co-workers. Not only conflicts can grow
too much such that more code needs to be reworked later, but changes become
less fresh in developers’ minds making it more difficult to remember what was
done and where to start resolution.

Recognizing this problem, good practice recommends developers to frequently
integrate concurrent work to enable early detection of conflicts [1,8]. However,
there are several limitations with manual integrations. First, they are disruptive
because they require developers to pause their tasks, thus breaking the flow of
programming. Second, they only detect conflicts with changes already committed

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 332–346, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Making Software Integration Really Continuous 333

in the Version Control System (VCS),1 but they do not detect conflicts with
uncommitted changes in the developers’ working copies of the software system,
so conflicts may grow as time passes thus making their resolution harder at late
stages. Besides, mainstream VCSes only detect conflicts between overlapping
textual regions in two versions of the same file (direct conflicts), but not between
concurrent changes to different files (indirect conflicts). Third, when integration
builds fail, developers still have to spend time understanding what happened
and tracing failures back to the responsible changes and their authors.

This paper contributes a solution to report structural and semantic conflicts
inside the IDEs of affected developers as conflicts emerge during programming. It
is supported by a novel merge algorithm that continuously integrates in the back-
ground (in real-time) both uncommitted and committed changes in a team. The
result is a metaphor of continuous merging, much like to continuous compilation
inside the IDE, that alleviates developers from the burden of manual integrations
for the sake of conflict detection, thus keeping them focused on programming.
In contrast to our initial paper [10], this presents our background merging algo-
rithm, and evaluates our solution using controlled experiments, showing evidence
of its usefulness compared to only using a VCS.

The following sections are summarized: Section 2 describes the problem of not
detecting conflicts early, and shows the limitations of current VCSes and manual
integrations. Section 3 presents our solution to early conflict detection and its
background merging process. Section 4 presents an empirical evaluation that
sustains our solution. Section 5 lists the related work, and Section 6 concludes.

2 Problem

Imagine three developers checking out the same working copy of an applica-
tion from a VCS, and then making concurrent changes. Mike ❶ changes class
Mammal to extend Animal, and checks in. Anne ❷ creates class Primate by
extending Mammal, adds a feature to move primates to an absolute position,
merges Mike’s changes from the head of the development line in the VCS, and
checks in. Meanwhile, Bob ❸ changes class Animal to move animals by some
distance from where they are, merges Mike’s and Anne’s changes, and checks
in. Note that all changes were done to different files, so the merges were clean,
that is, the VCS reported no conflicts. The final code in the development line is
shown in Fig. 1. The problem with the final code is that an unexpected override
conflict affecting the “move(int, int)” methods was not caught by the VCS, and
now, it is causing this bug: if “Animal.move(int dx, int dy)” is called on a pri-
mate, this will move to position “(dx,dy)” instead of moving distance “(dx,dy)”
from its current position, as expected for animals.

Using the VCS, the earliest the conflict could be found was when Bob merged
Mike’s and Anne’s changes. Nevertheless, the VCS told him “Go ahead, the
merge is clean!”, so Bob has no reason to suspect Mike’s and Anne’s files. Even
though he had written a test for “Animal.move(int dx, int dy)", this would not
1 E.g., Subversion (http://subversion.apache.org) and Git (http://git-scm.com).

http://subversion.apache.org
http://git-scm.com

334 M.L. Guimarães and A. Rito Silva

Animal

-px: int
-py: int

+move(int dx, int dy)

Mammal

Primate

-x: int
-y: int

+move(int x, int y)

1
2 3

Fig. 1. The final merge at the head

check primates because Bob did not know about them when he wrote the test,
so testing would not help much in this case.

The practice of frequent manual integrations has some limitations too. If Bob
attempts to frequently integrate the code of his colleagues, he will probably bring
code tangential to his work [1], and interrupt him too much. Because manual
integration does not detect conflicts with uncommitted code in working copies,
the best chance to detect the conflict is if Mike and Anne checked in often.
However, they may prefer to defer check-ins until when they are finished with
their tasks, thus delaying the detection of the conflict. On the other hand, this
practice requires developers to check-in partial changes just for the sake of con-
flict detection, thus causing distraction and polluting the VCS with insignificant
check-ins.

Eventually, a few days later a user approaches Bob: “Do you remember that
animal move feature I asked?”, “Yes!?”, “It does not work for gorillas!”, “How’s
that?”, “Well, you coded it, go figure out!”. Unfortunately, time passed and
changes are no longer fresh in Bob’s head, so he will have to work harder to
investigate and resolve the bug. He will have to remember what he did before,
determine the impact of the bug on other parts of the code, approach his col-
leagues if they are available, and decide what to do. At least he will have to
remove one of the duplicated points, rename one of the “move” methods, and
change where in the code there are dependencies on the removed point and the
renamed method. All this requires more time and effort than if the conflict was
detected earlier. This example is simple but shows that conflicts can be difficult
to detect and are costly to resolve when found late.

Wouldn’t it be helpful a tool that did continuous (real-time) integration in
the background to automatically detect the above conflict as it emerged during
programming, and reported it inside the IDE, thus exempting developers from
manual integrations and from all that rework? This is what our solution does.

3 Solution

Our solution assumes that a software project comprises one or more teams of
developers, each team working along a development line (or branch) [1] supported
by a mainstream VCS, as shown in Fig. 2.

Making Software Integration Really Continuous 335

Outside collaborators

Development
LineAnne Bob

Background
Merging

Conflict
Detection

Fig. 2. The information flow inside a team

Team members follow the typical “copy-modify-merge” process: they check
out working copies of the system from the development line, modify the working
copies, merge other members’ and outsiders’ changes into the working copies,
directly or via the line, and check in their working copies into the line.

Simultaneously, changes to the code are captured when files are saved in
working copies or checked in into the development line, and transmitted to back-
ground merging in order to continuously update a background system, called the
team’s merged system. This system is then post-processed to automatically de-
tect conflicts as they emerge inside the team. In addition, when members leave
the team the effect of their changes is removed from the merged system.

Changes in working copies are sent to background merging automatically, or
manually if the developer wants to take control — for example, a developer may
decide to transmit only when changes are reasonably stable. Anyway, changes
can only be sent if the working copy compiles successfully, to avoid syntactically
invalid code entering the merged system. On the other hand, changes at the head
of the development line are always automatically processed, so developers should
guarantee that check-ins do not carry compilation errors into the development
line, which is a good practice and an easy one to ensure using today’s IDEs and
VCSes (e.g., via pre-commit hooks).

Conflicts are reported in detail to affected members inside a view in the IDE,
much like compilation errors are reported today, thus promoting a metaphor of
continuous merging.

3.1 Tracking Changes

The working copies, the check-ins along the development line, and the merged
system are abstractly modeled as trees of labeled, typed, and attributed nodes
representing the physical folders, files, and program elements. The labels allow to
match nodes in different trees for computing changes between consecutive trees,
and the types and attributes define how source code is stored in trees. Labels,
types, and attributes are specific to the language domain.

We implemented our solution for Java programming, and chose the labels as
the names of folders, files, fields, and the signatures of methods. In some cases,

336 M.L. Guimarães and A. Rito Silva

to disambiguate program elements in the same scope, like classes and interfaces,
the labels are the concatenation of name and type. Only folder nodes do not
require attributes.

Fig. 3 exemplifies how changes inside the team are tracked and merged in the
background (this figure will guide us throughout Section 3). In Fig. 3a, Anne
and Bob made several concurrent changes to base file F.java, which were merged
in the background into the file in the merged system (background merging is
described in Section 3.2). In Fig. 3b, the content of some nodes in the base file
is shown as an example of how source code is mapped to nodes and attributes.

Fig. 3c shows the trees of the base file and those of Anne’s and Bob’s working
copies of that file.2 As developers change the code, the working copy tree evolves
from the base tree as follows: unchanged nodes are shared by the two trees (e.g.,
Bob did not change node “e”); added nodes only exist in the working copy tree
(e.g., Anne added node “a”); deleted nodes only exist in the base tree (e.g., Anne
deleted node “e”); and changed nodes appear as new nodes in the working copy
tree (e.g., Anne’s and Bob’s node “pi”). In addition, added, changed, and deleted
nodes cause a change of their parent nodes (change propagation), as it happened
with file node “F.java”. The arrows represent the succession relationships be-
tween the nodes in consecutive trees (the successor points to the predecessor).
Likewise, the evolution of nodes between the trees of consecutive check-ins in
the development line follows the same rules.

The Evolution Tree. The evolution of the software as it changes is tracked in
the evolution tree, shown in Fig. 3d for F.java. The entries in this tree are called
evolution graphs, and they capture the succession relationships of the nodes
in the same labeled position in the working copies and the check-ins along the
development line, as shown by the arrows. In a graph, the dark circles represent
added or changed nodes in a tree, and the white circles, called null nodes,
represent deleted nodes in a tree. In the figure, the labels “b”, “A”, and “B”,
indicate from which trees in our example the nodes come from (e.g., graph “e”
shows a node deleted by Anne that is shared between the base and Bob). A node
is older than another if it precedes the other on the transitive closure of the
succession relationships (e.g., Bob’s node “e” is older than Anne’s null node “e”).

In a graph, the nodes that are not succeeded are called forefront nodes
because they contain the most recent edits to the attributes. A graph is n-way
if its number of forefront nodes is n (> 0). A graph is consistent if all forefront
nodes, except null nodes, have the same type (in this case we say that the graph
is “a consistent <type>” or is “of type <type>”); otherwise, it is inconsistent
— this is the bizarre case of one developer adding a file while another developer
adds a folder with the same name. For Java, inconsistent nodes only occur at
folder and file level. A graph is a null graph if it has only null nodes at the
forefront.

The evolution tree is used to update the merged system during background
merging and to identify members affected by conflicts.

2 We omit parent folders for clearness, but the discussion applies to folders too.

Making Software Integration Really Continuous 337

class F {
float e = 2.7f;
public float pi;
int q = 1;
int m(){
return 1;
}
}

F.java (base)

final class F {
float e = 2.7f;
public float pi =3.14 ;
int a = 1;

int q = 2 ;
int m(){
return q ;

}
}

F.java (Anne)

public class F {

float e = 2.7f;
public float pi;
int b = 2;

int q = 3 ;
int m(){
return 1;
}
}

F.java (Bob)

public final class F {
float pi=3.14;
int a = 1;
int b = 2;
int q = 0 ;
int m (){
return q;
}
}

F.java (merged system)

(a) Anne’s and Bob’s changes to F.java (indicated
by the rectangles and the strikes), and the resulting
file in the merged system.

F.java:File

package=””

F:Class
visibility=””
final=false
extends=””

pi:Field

visibility=”public”
type=”float”
initval=””

m():Method

visibility=””
type=”int”
body=”{. . . }”

(b) Some nodes in
F.java (base).

(b)
F.java

F

m()

q pi

e

(A)
F.java

F

a

q
pi

m()

(B)
F.java

F

q
pi

b

(c) The trees of (b)ase, (A)nne, and (B)ob.

b
A

B

F.java

b
A

B

F

b
A

B

pi

b
A

B

q

A

a

B

b

b
B

A

e

b
A

B

m()

(d) The evolution tree.

Fig. 3. Tracking changes inside the team

338 M.L. Guimarães and A. Rito Silva

3.2 Background Merging

Background merging uses the evolution tree to do automatic and incremental
n-way structural merging of the most recent changes to the software. It is:

– automatic because all structural conflicts are temporarily resolved in the
merged system using default resolutions to not stall background merging.
One example is the deletions rule, which ignores forefront null nodes when
other forefront nodes exist, in order to favor changes over deletions;3

– incremental because it has to “remerge” only the folders and files that have
been modified in the working copies or in the check-ins since the last call to
background merging;

– and n-way because it merges the forefront nodes in each graph in one pass.

Initialization. The merged system is initialized with the tree at the develop-
ment line’s head, i.e., MS = H . Then, for each call i, MS is updated as follows:

Folder Merging. Visit bottom-up the subtree comprising the graphs in the
evolution tree corresponding to the folders and files that were modified after call
i − 1,4 and follow these rules at each visited graph:

– If the graph is inconsistent, delete the corresponding node in MS.
– If the graph is a consistent file, proceed to “File Merging” (see below).
– If the graph is a consistent folder, create that folder in MS if it does not

exist already there (e.g., it exists before call i, or it was created during call
i because some child was created).

– If the graph is null and the corresponding node in MS is a file, or a folder
having no children, delete that node in MS.

File Merging. Run these ordered steps at each visited graph G (top-down),
starting with the evolution graph corresponding to the file:

1. Identify the graph G′ to be merged. Let G′ = G, then modify G′ following
the order of these steps:
(a) Ignore all null nodes at the forefront whose parent nodes are null and

were ignored in the preceding visited graph. This step is explained with
an example. When a developer deletes a class and another developer
changes one of its methods, MS should include the entire class with the
method change to avoid programming language inconsistencies (e.g, the
change may use fields and methods that were deleted with the class).
Therefore, this step ignores all null nodes corresponding to the class and
its descendents that were deleted, so the class is not incomplete in MS.

3 We have tested this decision with twenty-one graduate students by exposing them
to a “change & deletion” situation, and they all decided to preserve the change.

4 Bottom-up traversal supports files checked out from different points in the develop-
ment line, and checkouts of partial trees.

Making Software Integration Really Continuous 339

(b) For the remaining nodes, let N = {all null nodes at the forefront} and
N = {all non-null nodes at the forefront}. Then, if N is not empty
(you may follow the example in the figure below in which the final G′

corresponds to the nodes linked by the strong arrows):
i. Ignore all nodes in N (deletions rule);
ii. Ignore all nodes succeeded by those in N that are not succeeded

by those in N (nodes only succeeded by ignored null nodes do not
contribute with attribute edits to the merge);

iii. Ignore all nodes succeeded by the oldest node that directly precedes
one in N (the oldest or its successors contribute to the values of all
attributes of the forefront nodes in G′, so we can cut the “tail”).

G :
5 6

1 2

7 8 9 10 11 12

13 14

3 4 Ignored at each step:

i. {1, 12, 14}
ii. {11}
iii. {5}

2. Now do the one that applies:
– If G′ is a null graph, delete the corresponding node in MS.
– If G′ has only one node at the forefront, copy that node’s tree to MS.
– If G′ has several nodes at the forefront:

(a) Copy the merge of G′ to MS as per “Merging a Graph” (see below).
(b) Repeat 1, now for each of the evolution graphs corresponding to the

children of the nodes at the forefront of G′.

Applying these steps to merge Anne’s and Bob’s modifications to base file F.java
will result in “F.java (merged system)” listed in Fig. 3a.

Merging a Graph. A consistent graph G of type T is merged as follows:

1. Set n ← a new node of type T .
2. For each na attribute of n do:

(a) Set E ← {the values of concurrent edits of attribute a in G}. For exam-
ple, given the values of the edits of a (the vis, and the vφs of null nodes)
in the next figure, E = {v1, v2, v4}:

G :
v1

vφ v3 vφ v4

v2

(b) If #E = 0: Set na ← the single value of a in all forefront nodes (because
there are no concurrent attribute edits we maintain the former value).

(c) If #E = 1: Set na ← the single value in E (either there is a single edit,
or all concurrent edits set the same value).

340 M.L. Guimarães and A. Rito Silva

(d) Otherwise (#E > 1): Set na ← the default value for a, to not stall
background merging.

3. Return the merge node n.

Complexity Analysis. Performance of background merging is assessed via a
cursory complexity analysis.

Time Complexity. File merging is O(Nelem ×Rmax ×Amax) where Nelem is the
number of elements visited in a file, Rmax is the maximum number of nodes in
any of those elements’ graphs, and Amax is the maximum number of attributes
in any of those elements’ types. Since Amax is bounded by the programming
language, file merging is O(Nelem ×Rmax). Background merging updates in the
worst case Nfiles and calls file merging for every file, so its time complexity is
O(Nfiles × Nelem × Rmax) ≈ O(N × Rmax), where N is the total number of
elements to “remerge”. In practice, Rmax is bounded by the maximum team size,
which is generally small for teams in a project to be manageable, so the overall
time complexity is O(N). In our implementation, we merged 16 file versions (484
LOC each on average) in 4.3ms.

Space Complexity. This is proportional to the memory needed to maintain the
evolution tree, so in the worst case it is O(Nsystem × Rmax), where Nsystem is
the total number of folders, files, and elements in the software system being
created by the team, and Rmax is the same as above. Like before, this can be
approximated by O(Nsystem) in practice. Besides, the evolution tree is computed
and stored in memory as needed.

3.3 Conflict Detection

Structural Conflicts. These are detected during background merging. They
are temporarily resolved in the merged system using default resolutions, defined
for the language domain. Default resolutions are necessary to not stall back-
ground merging, yet these conflicts persist in the affected working copies until
the team resolves them after being informed. The types of structural conflicts
are these:

– pseudo direct conflict : occurs when different attributes of a node are concur-
rently changed, or the same attribute is concurrently changed to the same
value. It is a warning that reminds of a possible semantic conflict at language
level (see below). In Fig. 3a, it happened with class “F” and field “pi”;

– attribute change & change conflict : occurs when the same attribute of a node
is concurrently changed to different values. The default resolution is to assign
a default value to the attribute in the merged system’s node according to
the attribute’s type. In Fig. 3a, this conflict was temporarily resolved (gray
color) for the “initval” attribute of field “q” by setting it to zero (the default
value of “int”);

Making Software Integration Really Continuous 341

– node change & deletion conflict : occurs when there are concurrent changes
and deletions to the same node, and the default resolution is to apply the
deletions rule. In Fig. 3a, it happened with method “m()”, so Anne’s change
prevails in the merged system;

– inconsistent graph conflict : occurs when an evolution graph becomes incon-
sistent, and the default resolution is to delete the corresponding node in the
merged system. This weird case should never happen, yet we handle it.

Note that developers are always alerted to structural conflicts, and once they
resolve them in their working copies the merged system is updated with their
resolution in the next iteration of background merging. This is why default
resolutions in the merged system are always temporary.

The remaining conflicts are detected by post-processing the merged system.

Language Conflicts. The merged system is immediately compiled after being
updated. As explained before, all changes only enter background merging if they
are syntactically valid, so compilation errors in the merged system can only
result from invalid combinations of concurrent changes with respect to the static
semantics of the programming language.

As such, post-processing listens the compilation output, processes the errors,
and reports them as language conflicts back to the IDEs of affected members.
This is a very effective solution because it avoids to re-implement complex pro-
gramming language rules. One case is the undefined constructor conflict, which
occurs when one developer adds a constructor with one argument to a class
having no constructors, while another developer creates a subclass of that class.

Behavior Conflicts. These represent undesired behavior because of unex-
pected interactions between merged changes. They are detected by searching
for conflict patterns, that is, logical conjunctions of facts regarding the program
elements and their semantic dependencies in the merged system that identify
potentially unwanted behavior.

The more specialized patterns are the more interesting ones because the con-
flicts they represent are hard for developers to find without tool support. This is
the case of the unexpected override conflict in Section 2, which is found using the
pattern ∃A, B, m1, m2 ∈ G : extends∗(A, B)∧method(A, m1)∧method(B, m2)∧
equalSignature(m1, m2), where A is a super class of B and extends∗ is the tran-
sitive closure of the extends dependency.

Note that conflicts only occur if the instantiated facts correspond to nodes
changed by different members (we omitted this part in the example pattern to
avoid complicating it). An advantage of using conflict patterns is that they can
be easily added to support more behavior conflicts.

Test Conflicts. These are detected by running automated tests in the merged
system. A test conflict is one that fails and its execution flow has reached methods
changed by different members. Suppose that Anne adds a test to verify that
all species have a price defined by method “getPrice()”, and Bob adds class

342 M.L. Guimarães and A. Rito Silva

Chimpanzee without such method because he is not aware of Anne’s new feature.
As such, Anne’s test will fail in the merged system when retrieving the price of
Chimpanzee, like this execution flow shows:

zoo.testing.ZooTests.setUp()�
zoo.testing.ZooTests.testAnimalGetPrice()� (Anne)
...
zoo.animals.Animal.getPrice(Ljava/lang/Class;)�
zoo.animals.Chimpanzee.getPrice()� (Bob)

A test conflict is detected for “testAnimalGetPrice()” because its execution
reached Anne’s new method (the test) and tried to call “getPrice()” on Bob’s
new class via reflection. Post-processing places hooks in the reflection API (via
bytecode instrumentation), and checks if missing methods were deleted or never
existed, which was the case for Bob, thus detecting a missing method conflict.

3.4 Reporting Conflicts

A conflict is reported to the members that changed the nodes affected by it.
These are the nodes that were “remerged” (structural conflicts), the nodes in-
volved in a compilation error (language conflicts), the nodes that instantiate
the facts of a conflict pattern (behavior conflicts), and the nodes correspond-
ing to the methods in failed execution flows (test conflicts). Only the members
that modified these nodes will receive notifications for the conflicts affecting the
nodes. The evolution tree tracks who modified which nodes, so to find these
members we look for those nodes in this tree.

4 Evaluation

Our evaluation shows that developers using our solution become aware of and
resolve conflicts earlier than when they use only their VCS. It was done via
controlled user experiments, as described next.

The Tool. In order to evaluate, we implemented WECODE as an extension
to the Eclipse IDE (http://www.eclipse.org). The main screen of WECODE
is shown in Fig. 4. The Team view ❸ shows all members in the team and the
details of their changes down to program elements. It shows yellow and red
icons to respectively signal pseudo or more urgent structural conflicts on folders
and files. If they wish to control change transmission, developers can manually
transmit changes to background merging only at stable moments of their
tasks. Developers can also update their code with other members’ changes in
order to early resolve conflicts while changes are vivid in their minds (a chat
view, not shown, facilitates the discussion of changes and resolutions). The Team
Merge view ❹ reports semantic conflicts: notifications have detailed messages

http://www.eclipse.org

Making Software Integration Really Continuous 343

❶

❷
❸

❹

Fig. 4. Continuous merging inside the IDE

describing the conflict, the affected program elements, the affected members, and
how elements were changed. This fosters conflict resolution. In addition, conflicts
are signaled at affected files ❶ and program elements ❷.

Controlled Experiments. Does our tool help developers become aware of and
resolve conflicts earlier than when they use a mainstream VCS? To answer this,
we organized two groups of 7 graduate software engineering students: the WE-
CODE and the VCS groups. Each subject teamed with a confederate, who in-
serted the same conflicts (those in the Team Merge view ❹) at equivalent times
for all subjects, before half of their tasks were done. The application (41 classes,
1143 LOC) and the tasks were designed by the authors, and the application was
sent to all subjects at least two days before their experiment. Before start, the
subjects watched a tutorial video of the tools to use (WECODE and Subversion).
At the end, they were asked to check in and resolve any remaining conflict.

Results. WECODE subjects became aware of all 28 conflicts (7 subjects × 4
conflicts) as they emerged during their tasks before check in, whereas VCS sub-
jects detected no conflict before check in (these are statistically significant results
by Fisher’s or Pearson χ2’s tests of the corresponding 2x2 contingency table).
At check in, VCS subjects only detected the language conflicts because of the
compilation errors (they forgot to run the tests so they missed the test conflict).
Since there were no direct conflicts VCS subjects did not pay attention to the
files changed by the confederate. Only one VCS subject was observed to fre-
quently integrate with the VCS after each task, but there was no direct conflicts
so he said “there is no problem here”.

344 M.L. Guimarães and A. Rito Silva

Regarding the WECODE group, subjects resolved conflicts early and generally
between their tasks. The average delay to start resolving each conflict type was
(we removed other conflicts’ resolution time from delays): language conf. (4m22s,
sd=5m1s); behavior conf. (2m10s, sd=2m44), and test conf. (3m1s, sd=3m55).
This was also the order that conflicts emerged, and even though the sample was
small, it is interesting to observe that the delay slightly decreased as subjects
got more used with the tool.

Both groups were asked to score (from 1 to 10) if they (liked / would like) to be
informed about conflicts during programming, instead of only at check-in. WE-
CODE subjects scored 9.3 (sd=0.70) and VCS subjects scored 8.00 (sd=1.85),
thus showing a high desire for such feature. Asked why, they said:

VCS: “I would not have to read many conflicts at the end when I probably
had forgotten the changes I made” and “It would make development more
interactive, and I would anticipate when a colleague is breaking our code”
MERGE: “Because it informs me in useful time, thus sparing me time looking
for errors later. All time wasted tracing error messages in the build would
be spent doing useful things”

About our tool, the subjects said “I liked the icon in the editor informing me
about the conflict and with whom” and “I liked most its simplicity of use”.

Threats to Validity. Subjects did not knew they would be evaluating our tool
to not influence their behavior and responses. They were randomly selected
into the groups, and all had experience with the VCS. Using Subversion or
another mainstream VCS would not change the results: all they do is textual
merging. The code to type in every task was given to them thus eliminating the
effect of different programming skills. Regarding external validity, our conflicts
might be threatened regarding their occurrence in practice. Studies are needed
to understand the nature of conflicts, however it is reasonable to assume that
conflicts in real projects are at least as difficult to detect as those we chose. Our
results indicate that continuous merging can be beneficial, still we believe that
experimenting with real projects will provide further insight into our work.

5 Related Work

Our work relates to others in the areas of software merging and awareness.

Software Merging. Textual merging (Unix’s diff3, and all mainstream VCSes)
blocks when textual conflicts occur, like when different attributes are changed
on the same line of text, and fails to match changes when the program elements
are reordered inside concurrent files. Consequently, background textual merg-
ing, like done in [4], has these limitations. In contrast, our background struc-
tural merging never blocks, handles changes to different nodes and attributes
transparently, and supports reorderings, so it detects more important conflicts
(semantic) earlier. Flexible structural merging [13] merges two versions of a file

Making Software Integration Really Continuous 345

using two-dimensional matrices that decide how merging is done at node level
(manual or automatic). Flexibility is achieved by configuring matrices for dif-
ferent collaboration scenarios. This solution does not scale for more than two
versions of a file, because matrices need to be reconfigured each time the num-
ber of versions varies, which is unfeasible in practice. Semantics-based merg-
ing [3] has been mostly theoretical achievements using very limited languages.
Operation-based merging [12] serializes two concurrent sequences of operations.
Tools must capture all changes as operations, but the editors developers use are
not operation-based. Sequences may grow too much, and redundant operations
must be eliminated to avoid false conflicts. In contrast, our solution adapts to
the tools developers use.

Awareness. Solutions based on awareness [7] report which files, types, and pro-
gram elements are being changed at the moment by co-workers, which may help
to detect conflicts early. These solutions may overload developers with notifica-
tions that are irrelevant to what they are doing [5,9,11], and require developers
to investigate the notifications to determine if they bear any conflict. This can
be difficult because of the complex semantic dependencies between program el-
ements (e.g., polymorphism and late binding). Besides, this steals time from
programming. For example, some solutions report direct conflicts even when
changes are done to independent program elements in a file [2,15]. A structure-
based solution like ours does not have this shortcoming. Others go beyond direct
conflicts, and notify when two files, types, or program elements, connected by a
path of semantic dependencies, have been concurrently changed by the developer
and a co-worker [6,16,17]. Nevertheless, in these solutions, developers still have
to investigate the notifications to identify where real conflicts exist.

6 Conclusion and Future Work

Early detection of conflicts is important to facilitate resolution. The recom-
mended practice is to frequently manually integrate others’ changes, but this is
too much burden and disrupts the flow of programming. In contrast, we pre-
sented a solution that does really continuous integration in the background in
order to automatically detect conflicts as they emerge during programming, and
reports them in detail inside the IDE. An empirical evaluation demonstrated
that our solution makes developers aware of conflicts that are difficult for them
to find using current tools, and fosters early resolution while changes are still
fresh. This support clearly contrasts with the tools developers use today.

Our research will proceed in several directions. We want to support refactor-
ings and domains beyond programming, like collaborative model-driven
engineering. We want to evaluate our solution via a longitudinal study with
professional programmers in order to adjust it to real projects, and to under-
stand how continuous merging influences their software process, for example, if
new collaboration patterns emerge. In the long term, we want to measure the
overall effect of continuous merging on software quality.

346 M.L. Guimarães and A. Rito Silva

References

1. Berczuk, S., Appleton, B.: Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Addison-Wesley, Boston (2002)

2. Biehl, J., et al.: FASTDash: A Visual Dashboard for Fostering Awareness in Soft-
ware Teams. In: ACM SIGCHI Conf. on Human Factors in Computing Systems,
CHI 2007, pp. 1313–1322. ACM Press, New York (2007)

3. Binkley, D., et al.: Program Integration for Languages with Procedure Calls. ACM
Trans. Softw. Eng. Methodol. 4(1), 3–35 (1995)

4. Brun, Y., et al.: Proactive Detection of Collaboration Conflicts. In: 8th Joint Meet.
of the Euro. Softw. Eng. Conf. and ACM SIGSOFT Symp. on the Foundations of
Softw. Eng., ESEC/FSE 2011, pp. 168–178. ACM, New York (2011)

5. Damian, D., et al.: Awareness in the Wild: Why Communication Breakdowns Oc-
cur. In: Inter. Conf. on Global Softw. Eng., ICGSE 2007, pp. 81–90. IEEE Com-
puter Society, Washington, DC (2007)

6. Dewan, P., Hegde, R.: Semi-Synchronous Conflict Detection and Resolution in
Asynchronous Software Development. In: Bannon, L., Wagner, I., Gutwin, C.,
Harper, R., Schmidt, K. (eds.) ECSCW 2007, pp. 159–178. Springer, London (2007)

7. Dourish, P., Bellotti, V.: Awareness and Coordination in Shared Workspaces. In:
ACM Conf. on Computer Supported Cooperative Work, CSCW 1992, pp. 107–114.
ACM, New York (1992)

8. Fowler, M.: http://martinfowler.com/articles/continuousIntegration.html
9. Fussell, S., et al.: Coordination, Overload and Team Performance: Effects of Team

Communication Strategies. In: ACM Conf. on Computer Supported Cooperative
Work, CSCW 1998, pp. 275–284. ACM, New York (1998)

10. Guimarães, M., Rito-Silva, A.: Towards Real-Time Integration. In: 3rd Inter. Work-
shop on Cooperative and Human Aspects of Softw. Eng., CHASE 2010, pp. 56–63.
ACM, New York (2010)

11. Kim, M.: An Exploratory Study of Awareness Interests about Software Modifica-
tions. In: 4th Inter. Workshop on Cooperative and Human Aspects of Softw. Eng.,
CHASE 2011, pp. 80–83. ACM, New York (2011)

12. Lippe, E., van Oosterom, N.: Operation-based Merging. In: 5th ACM SIGSOFT
Symp. on Softw. Dev. Environ., SDE 5, pp. 78–87. ACM, New York (1992)

13. Munson, J., Dewan, P.: A Flexible Object Merging Framework. In: ACM Conf. on
Computer Supported Cooperative Work, CSCW 1994, pp. 231–242. ACM, New
York (1994)

14. Perry, D., et al.: Parallel Changes in Large-Scale Software Development: An Ob-
servational Case Study. ACM Trans. Softw. Eng. Methodol. 10(3), 308–337 (2001)

15. Sarma, A., et al.: Palantír: Raising Awareness among Configuration Management
Workspaces. In: 25th Inter. Conf. on Softw. Eng., ICSE 2003, pp. 444–454. IEEE
Computer Society, Washington, DC (2003)

16. Sarma, A., et al.: Towards Supporting Awareness of Indirect Conflicts Across Soft-
ware Configuration Management Workspaces. In: 22nd IEEE/ACM Inter. Conf.
on Aut. Softw. Eng., ASE 2007, pp. 94–103. ACM, New York (2007)

17. Schümmer, T., Haake, J.: Supporting Distributed Software Development by Modes
of Collaboration. In: 7th Euro. Conf. on Computer Supported Cooperative Work.,
ECSCW 2001, pp. 79–98. Kluwer Academic Publishers, Norwell (2001)

http://martinfowler.com/articles/continuousIntegration.html

Extracting Widget Descriptions from GUIs

Giovanni Becce, Leonardo Mariani, Oliviero Riganelli, and Mauro Santoro

Department of Informatics, Systems and Communications
University of Milano Bicocca

Milano, Italy
{becce,mariani,riganelli,santoro}@disco.unimib.it

Abstract. Graphical User Interfaces (GUIs) are typically designed to
simplify data entering, data processing and visualization of results. How-
ever, GUIs can also be exploited for other purposes. For instance, auto-
matic tools can analyze GUIs to retrieve information about the data that
can be processed by an application. This information can serve many pur-
poses such as ease application integration, augment test case generation,
and support reverse engineering techniques.

In the last years, the scientific community provided an increasing at-
tention to the automatic extraction of information from interfaces. For
instance, in the domain of Web applications, learning techniques have
been used to extract information from Web forms. The knowledge about
the data that can be processed by an application is not only relevant for
the Web, but it is also extremely useful to support the same techniques
when applied to desktop applications.

In this paper we present a technique for the automatic extraction of
descriptive information about the data that can be handled by widgets in
GUI-based desktop applications. The technique is grounded on mature
standards and best practices about the design of GUIs, and exploits
the presence of textual descriptions in the GUIs to automatically obtain
descriptive data for data widgets. The early empirical results with three
desktop applications show that the presented algorithm can extract data
with high precision and recall, and can be used to improve generation of
GUI test cases.

Keywords: program analysis, graphical user interface, testing GUI
applications.

1 Introduction

A Graphical User Interface (GUI) can be a valuable source of information for
understanding the features implemented by an application. For instance, a GUI
typically includes a number of descriptive labels that specify the kind of data that
an application processes; a GUI includes menus and buttons that are related to
the features an application can execute; a GUI visualizes and processes data, such
as descriptions of facts, names of places, and names of people. Unfortunately,
the knowledge represented by the content of descriptive labels, menu and data
is embedded into the widgets and it is hardly accessible by automatic systems.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 347–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 G. Becce et al.

In the last years, the scientific community provided an increasing attention to
the extraction of information from interfaces with the objective of understanding
the data and the features offered by an application under analysis. In particular,
techniques for extracting data from Web interfaces, such as [13,19,10], early
studied this problem limitably to Web forms with the objective of easing data
integration of online databases.

Extracting information from interfaces is not only relevant when applied to
Web applications, but also when applied to desktop applications. For example,
a relevant limitation of automatic test case generation techniques for GUI-based
desktop applications is the lack of mechanisms for the identification and gener-
ation of data values useful to produce interesting executions in the application
under test [20]. Identifying the right data that can be entered in a GUI would
overcome this limitation, increasing the effectiveness of test case generation.
Similarly, the automatic extraction of the data and features available in a desk-
top application would enable the possibility to automatically check conformance
with respect to requirements [17]. Many other areas could also benefit from the
extraction of information from GUIs, for example reverse engineering, and tool
integration.

In this paper, we present a technique for the automatic identification of de-
scriptive information about the data that can be entered in data widgets of GUI-
based desktop applications. The technique relies on well grounded and widely
adopted standards and best practices about the design of GUIs, and exploits
the presence of widgets that include textual descriptions to discover the right
descriptors of data widgets. The early empirical results with three applications
show that the presented algorithm is effective and has the potential of enabling
the previously described researches. We also report early empirical results that
show how generation of GUI test cases can benefit from our algorithm.

The paper is organized as follows. Section 2 describes the principles underlying
the design of our technique. Section 3 presents the algorithm that we use to
extract descriptors of data widgets. Section 4 presents early empirical results.
Section 5 discusses related work. Finally, Section 6 provides concluding remarks.

2 Design Principles of GUIs

How to design easy-to-use and user-friendly interfaces has been a subject of
studies from many years. Nowadays there are a number of mature standards,
guidelines and practices that help developers designing good GUIs. Among the
many standards, we recall the Java look and feel design guidelines [3], the ISO
guidance and specifications [6], and the the laws of the Gestalt about the per-
ception of the space [14]. Our technique exploits these standards and principles
to correctly identify relations between widgets.

According to the taxonomy presented in [11], widgets can be classified in
three groups: action widgets, static widgets, and data widgets. Action widgets
are widgets that give access to program functions. A typical example of an action
widget is a button. Static widgets are widgets used to increase the understand-
ability and usability of a GUI, but not for direct interaction. A typical example

Extracting Widget Descriptions from GUIs 349

of a static widget is a label. Data widgets are widgets that display or accept
data. A typical example of a data widget is a textarea.

In this work, we focus on static and data widgets. We further distinguish
static widgets in descriptive widgets and container widgets. Descriptive widgets
are static widgets that display textual information that help users understanding
how to use action and data widgets (e.g., labels). Container widgets are static
widgets used to group related widgets (e.g., panels and frames).

The key idea exploited in this paper is retrieving descriptions of data widgets
by looking in the descriptive widgets. Thus, we designed an algorithm that can
identify the descriptive widget associated with a data widget according to three
basic principles about the design of GUIs: proximity, homogeneity, and closure
(from the laws of the Gestalt). In the following, we describe how these principle
affect the algorithm.

Proximity. The law of proximity is based on the fact that people tend to
logically group together objects that are displayed close each other. This principle
is almost applied to the design of every GUI. For instance, the expected content
of a data widget (e.g., a person name) is normally specified with a label (e.g., with
the text “name”) that is placed close to the data widget. In this work we focus
on the left-to-right writing convention, we thus consider that labels, and more in
general descriptive widgets, are placed at the left/top of the documented widget.
The algorithm presented here can be easily adapted to other writing conventions.

Fig. 1. Search space for data widgets

Our algorithm takes advantage of this convention by restricting the search
space that it considers when looking for a descriptive widget associated with
a data widget. In particular, when searching a descriptive widget that appro-
priately describes the content of a data widget the algorithm looks into the
rectangular area delimited as follows: the bottom-right corner of the area coin-
cides with the center of the data widget under consideration, and the top-left
corner of the area coincides with the top-left corner of the current window. Any
descriptive widget which is entirely or partially displayed in that area is consid-
ered as a candidate for being associated with the data widget under analysis.

350 G. Becce et al.

More formally, if (x, y) are the cartesian coordinates of the center of a data
widget of interest dw, and (x∗, y∗) are the cartesian coordinates of the upper
left corner of a descriptive widget, only the descriptive widgets that satisfy the
following relation are candidates for being associated with dw: x ≥ x∗ ∧ y ≥ y∗.

Figure 1 shows an example. Any descriptive widget that intersects the dotted
area is a candidate descriptor for the textarea.

Homogeneity. The principle of homogeneity says that widgets should be dis-
tributed with regular patterns and possibly grouped according to their semantic.
The regular distribution of descriptive and data widgets often implies that wid-
gets are aligned horizontally and vertically (see for example the GUI in Figure 2).
When widgets are dense the likelihood of associating a wrong descriptive widget
to a data widget is quite high.

Fig. 2. Aligned widgets

We took this issue into account when defining how to compute the distance
between widgets, as illustrated in Figure 3. Each widget is associated with a
representative point. The distance between two widgets is defined as the distance
between their representative points. We choose representative points with the
purpose to favor descriptive widgets that are aligned horizontally with the data
widget under consideration, compared to widgets at different vertical positions.
In particular, the representative point of the data widget is always its top-left
corner. The representative point of any widget placed below or at the same level
of the data widget is its top-right corner (the position of a widget is the position
of its center). The representative point of any widget above the data widget is
its bottom-left corner. Thus, if there are descriptive widgets placed both above
the data widget and aligned with the data widget, the aligned widget is favored
because its representative point is closer to the data widget (nevertheless it is
still possible to associate a widget placed above the data widget with the data
widget, if the aligned widget is far enough). This strategy is able to well handle
the many situations where many widgets in a same window are aligned, like the
case shown in Figure 2.

Extracting Widget Descriptions from GUIs 351

DATA WIDGET

DESCRIPTIVE WIDGET 1

DESCRIPTIVE WIDGET 2
W
id
ge
ts
ab
ov
e

th
e
da
ta

w
id
ge
t

W
id
ge
ts
be

lo
w

th
e
da
ta

w
id
ge
t

d1

d2

Fig. 3. Distance between widgets

Closure. The principle of closure says that persons tend to see complete figures
even when part of the information is missing. This principle is typically exploited
in the design of windows that contain many widgets. In fact, it is common prac-
tice to use container widgets for separating into multiple groups the widgets in a
same window. Groups include semantically correlated widgets. For instance, two
containers can separate the widgets designed for entering personal information
from the widgets designed for entering credit card data, in a window dedicated
to the handling of a payment process.

Our algorithm takes into account this practice implementing the possibility
to limit the search space of a data widget to the widgets included in its same
container.

3 Extraction of Widget Descriptions

In this section we present the algorithm for guessing associations between de-
scriptive widgets and data widgets. The behavior of the algorithm is influenced
by multiple parameters, which are empirically investigated in Section 4.

The types of widgets supported by the algorithm are specified in Table 1
column Widgets. Note that the column includes not only data widgets, but
also container widgets. Container widgets are included because the label used
to describe a container can be often used to describe the data widgets in the
container as well.

The widgets listed in column Widgets cover the majority of data widgets that
are used in practice. Each type of widget, specified in column Widget Type, can
be associated with a different set of descriptors. Column Descriptor Widgets

indicate the descriptors that the algorithm considers for each type of widget.
For instance, our algorithm uses Labels, CheckBoxes and RadioButtons as pos-
sible descriptors for TextField; while it uses only Labels as descriptors for Com-
boBoxes. These associations are defined according to common practices in design
of GUIs1.
1 note that for widgets like checkboxes the items that can be checked are reported
at the right of small rectangles, but the items that should be checked are anyway
described with a label placed in the area at the top-left of the checkboxes.

352 G. Becce et al.

Table 1. Association between widgets and their descriptors

Widget Type Widgets Descriptor Widgets

Text
TextField, FormattedTextField, PasswordField, Label, CheckBox,

TextArea, EditorPane, TextPane RadioButton
Multichoice CheckBox, RadioButton, ToggleButton, ComboBox, List Label
Container Panel, ScrollPane, TabbedPane, SplitPane Label

Associations can be discovered statically (i.e., by analyzing the source code)
or dynamically (i.e., by analyzing the windows of the application at run-time).
Since static analysis techniques can only be applied if specific development strate-
gies are adopted, such as the use of Rapid Application Development environ-
ments [15], our algorithm discovers associations dynamically. In particular, it
extracts the data necessary for the analysis from the widgets displayed by the
application at run-time.

Algorithm 1 reports the pseudocode of the main algorithm, while Algorithm 2
reports the pseudocode of the isCandidate() auxiliary function. The pseu-
docode is a simplified version of the implemented algorithm that does not con-
sider performance optimizations.

Algorithm 1 takes as input a data widget, the set of widgets in the same
window and four parameters, and returns the descriptor widget that passes the
selection criteria implemented by the algorithm and is closest to the input data
widget. Algorithm 2 implements all the checks that a widget has to pass to
be considered as candidate descriptor for another widget. These checks include
the ones inherited from the Proximity principle (see lines 6-8 in Algorithm 2);
the Homogeneity principle (see computation of the distance at line 16 in Algo-
rithm 1); the Closure principle, which is mapped into the local search strategy
described afterward; and associations in Table 1, which are exploited for the
check at line 2 in Algorithm 2. Table 2 specifies the values that can be assigned
to parameters taken as input by Algorithm 1. We now describe in detail the role
of the parameters.

Since a GUI can include noisy descriptor widgets, that is descriptor wid-
gets with no information that are incorrectly used to layout the widgets in a
window (e.g., empty labels invisible to users), the algorithm includes a noise
reduction step. Noise reduction can be done at two different times: before start-
ing the analysis of a window (optnoise =Begin), or while analyzing a window
(optnoise =Incremental). When optnoise =Begin, the algorithm removes every
useless descriptor widget from the set considered by the analysis and then
proceeds normally with the updated set (see lines 6-8 in Algorithm 1). When
optnoise =Incremental, the algorithm removes useless descriptor widgets incre-
mentally while considering them (see lines 10-12 in Algorithm 2).

The algorithm can look for descriptor widgets globally in the current window
(optsearch =Global) or within the current container only, following the closure
principle (optsearch =Local). If optsearch =Local, Algorithm 2 discards every
widget that is not in the same container than in the data widget under consider-
ation (see lines 14-16 in Algorithm 2). If optsearch =Local, when no descriptor is

Extracting Widget Descriptions from GUIs 353

Algorithm 1. guessDescription()

Require: dw = (x, y, width, height) a data-widget with upper left corner at (x, y),
width width and height height

Require: W = {w1, . . . , wn} a window with n widgets, where dw ∈ W
Require: optnoise, optsearch, optvisible, opthierarchical
Ensure: returns either w ∈W descriptive widget associated with dw or ∅
1:
2: posdw = (x+width

2
, y+height

2
)

3: min = MAXINT
4: bestWidget = ∅

5:
6: if optnoise = Begin then
7: W = removeNoisyWidgets(W)
8: end if
9:
10: for each i=1 to |W| do
11: if not isCandidate(dw, W, wi, optnoise, optsearch, optvisible) then
12: continue //skip to next widget
13: end if
14:
15: //select the closest descriptive widget
16: dist = computeDistance(wi, dw)
17: if dist < min then
18: min = dist
19: bestWidget = wi

20: end if
21: end for
22:
23: if min=MAXINT then
24: if optsearch = Local and opthierarchical then
25: return guessDescription(container(dw), W, optnoise, optsearch, optvisible,

opthierarchical)
26: else
27: return ∅

28: end if
29: else
30: return bestWidget
31: end if

found for a data widget in a container, the algorithm can associate the descrip-
tor of the container to the data widget (opthierarchical =Yes), instead of using
no descriptor (opthierarchical =No). This case is covered by the recursive call at
line 25 in Algorithm 1. If optsearch =Global, the algorithm can be further tuned
to ignore widgets that are not visible to users (optvisible =VisibleOnly) or to also
consider widgets invisible to users (optvisible =All). The check is implemented
from line 18 to line 20 in Algorithm 2. A typical case influenced by this param-
eter is the analysis of a window with a ScrollPane that includes many elements,
but only some of them are visualized at time.

354 G. Becce et al.

Algorithm 2. isCandidate()

Require: dw = (x, y, width, height) a data-widget with upper left corner at (x, y),
width width and height height

Require: W = {w1, . . . , wn} a window with n widgets, where dw ∈ W
Require: wi = (xi, yi, widthi, heighti) ∈W
Require: optnoise, optsearch, optvisible
Ensure: returns True if w is a candidate descriptor for dw, False otherwise
1:
2: if not compatible(type(w), type(dw)) then
3: return False //skip widgets that cannot be associated with dw according to

Table 1
4: end if
5:
6: if x < xi or y < yi then
7: return False //skip widgets that are outside the interesting area of dw
8: end if
9:
10: if optnoise = Incremental and noisy(wi) then
11: return False //incrementally ignore noisy widgets
12: end if
13:
14: if optsearch = Local and container(dw) �= container(wi) then
15: return False //ignore descriptive widgets in other containers
16: end if
17:
18: if optsearch = Global and optvisible = V isibleOnly and not visible(wi) then
19: return False //skip widgets that are not visible
20: end if
21: return True

4 Empirical Evaluation

The empirical evaluation presented in this section investigates the quality of the
results produced by the algorithm presented in this paper, with particular em-
phasis on the tradeoffs between the different configurations. We also analyze the
performance of the algorithm, and we report early results about the benefits intro-
duced in the AutoBlackTest GUI testing technique by the presented algorithm.

Case Studies. In order to evaluate the technique presented in this paper we
looked for applications from different domains with GUIs of increasing size and
structure. Table 3 summarizes the applications we selected from Sourceforge.

JPass [4] is a personal password manager. PDFSaM [5] is an application for
splitting and merging PDF files. jAOLT [2] is a desktop client for eBay. Column
Windows Number indicates the number of analyzed windows. We measured the
size of the analyzed windows reporting the average and maximum number of
widgets per window (columns Widgets avg and max respectively). We counted

Extracting Widget Descriptions from GUIs 355

Table 2. Parameters

Parameters Values
optnoise Begin Incremental
optsearch Global Local
Global Search Parameters Values
optvisible All VisibleOnly
Local Search Parameters Values
opthierarchical Yes No

Table 3. Case Studies

Application
Windows Widgets Containers
Number avg max avg max

JPass 4 20.75 32 1.5 4
PDFSaM 7 23.63 32 3.13 5
jAOLT 12 52.58 169 4.42 12

both visible and invisible widgets. To approximatively derive a measure of the
structure of the GUI of an application, we measured the average and maximum
number of container classes per window (columns Containers avg and max re-
spectively), assuming that more containers per window intuitively suggests that
developers provided greater effort into suitably grouping widgets according to
their semantics.

Table 4. Configurations

Configuration Name optsearch optvisible opthierarchical optnoise

GLOBAL(All) + Incremental Global All - Incremental
GLOBAL(All) + Begin Global All - Begin
GLOBAL(VisibleOnly) + Incremental Global VisibleOnly - Incremental
LOCAL(No) + Incremental Local - No Incremental
LOCAL(Yes) + Incremental Local - Yes Incremental

Empirical Process. In the validation, we studied the configurations reported
in Table 4. Note that the option optnoise = Begin is studied only for the Global
search strategy. We made this choice because it was clear already from the
initial experiments that in the practice the Begin and Incremental strategies
produce results with the same quality, but Incremental is faster. We thus kept
optnoise = Incremental for the rest of the experiments.

We measure the quality of the results produced by the algorithm using the
standard metrics of precision, recall and F-measure. Precision indicates the frac-
tion of correct associations extracted by the algorithm with respect to the overall
number of extracted associations. Recall indicates the fraction of correct associ-
ations extracted by the algorithm with respect to the overall number of associa-
tions that could be extracted from the applications. F-measure is an index that
combines and balances precision and recall. Formally,

precision =
CA

WA+ CA
, recall =

CA

TA
,F-measure =

2 ∗ precision ∗ recall
precision + recall

(1)

356 G. Becce et al.

Fig. 4. Recall

where CA is the number of correct associations extracted by the algorithm, WA
is the number of wrong associations extracted by the algorithm and TA is the
total number of correct associations that the algorithm should have retrieved.
The value of CA, WA and TA are measured by checking one by one each as-
sociation retrieved by the algorithm and every widget in every window of the
case studies. To mitigate the risk of computing imprecise data we repeated the
counting multiple times.

We evaluated the performance of the technique by measuring the total time
required for analyzing the GUI of the applications.

We finally integrated the algorithm in the AutoBlackTest test case genera-
tion technique [12]. AutoBlackTest generates GUI test cases randomly choosing
concrete input values from a pre-defined set of values. The integration of the
algorithm presented in this paper augmented AutoBlackTest with the capability
of selecting test inputs according to the kind of data widgets that must be filled
in. We measure the benefit of the augmented approach measuring code coverage.

Effectiveness. Figure 4 shows the results about recall. We can notice that every
configuration based on a Global search performed similarly. The restriction of
the search to visible widgets only causes a small reduction of recall, which means
that the option causes the lost of some relevant associations. The local search
with opthierarchical =No surprisingly behaves worst than any global search. On
the contrary, when opthierarchical =Yes the recall raises to values between 90%
and 100%. These results suggest that in the practice the labels associated with
containers are frequently used to also describe the data expected by data widgets.

Figure 5 shows data about precision. We can notice that every configura-
tion worked well, which means that regardless the selected configuration the
algorithm seldom extract wrong associations. We can also notice that the lo-
cal search worked slightly better than the global search. Intuitively this confirms

Extracting Widget Descriptions from GUIs 357

Fig. 5. Precision

that the closure principle is applied in the practice, it is thus better to restrict
the search within containers, otherwise the risk of extracting wrong associations
increases.

Figure 6 shows data about F-measure. We can notice that global search and
local search with opthierarchical =No perform similarly. On the contrary the last
configuration outperformed the others producing the best compromise in terms
of precision and recall (note that F-measure varies between 89% and 99%). It
is interesting to notice that local search with opthierarchical =No is worse than
global search, while the local search with opthierarchical =Yes is better than
global search, regardless the amount of containers and structure in the interface.
Considering the presence of containers is thus important only if considering also
the labels associated with containers, even for interfaces with little structure.

Performance. To evaluate the performance of the configurations we mea-
sured the amount of time required to complete the analysis of the windows
implemented in the three case studies that we selected. Figure 7 visualizes the
performance of each configuration.

We can notice that the configuration that generated the best performance is
also the slowest one, while the other configurations have similar performance.
Since the time difference is small both in absolute and relative terms, unless
performance is of crucial importance, the LOCAL(Yes) + Incremental is the
configuration that should be selected. On the contrary, if performance is a crucial
aspect, the fastest configuration that still provides good results is GLOBAL(All)
+ Incremental.

Augmenting AutoBlackTest. The technique presented in this paper can be
used to augment the capabilities of many techniques in many domains. Here we

358 G. Becce et al.

Fig. 6. F-measure

report early empirical data about the improvement that this technique produced
in AutoBlackTest [12]. The study focuses on two applications that we already
tested with AutoBlackTest and that we now tested gain with the augmented
version of AutoBlackTest: PDFSam [5] and Buddi [1].

AutoBlackTest automatically generates GUI test cases that contain simple
concrete values selected from a predefined data pool with many generic strings
and numbers. This clearly limits the testing capability of AutoBlackTest. We
extended AutoBlackTest with both the capability of associating descriptions to
data widgets, according to the algorithm presented in this paper, and with the
capability of using a datapool with concrete values organized according their
kind. For instance, the datapool distinguishes dates, quantities, person names,
and city names. The datapool is manually populated with concrete values fol-
lowing the boundary testing principle, that is it includes legal values, boundary
values, illegal values and special values. As a result, the augmented AutoBlack-
Test can generate test cases that make a better use of data widgets by selecting
proper concrete values from the datapool, exploiting the semantic information
associated with the widgets.

The non-extended version of AutoBlackTest generated GUI test cases that
cover 64% and 59% of the code in PDFSam and Buddi, respectively. The ex-
tended version of AutoBlackTest increased code coverage to 70%(+6%) and
64%(+5%), respectively. Considering that the computations implemented by
these applications make a limited use of the data entered in data widgets (they
mostly store and retrieve values from a database), the obtained increment is en-
couraging. In the future, we will study stronger ways of integrating this algorithm
with test case generation techniques.

Extracting Widget Descriptions from GUIs 359

Fig. 7. Performance

5 Related Work

Research specifically targeting the extraction of information from GUIs appeared
in [13,19,10]. All these works addressed the integration of Web data sources. The
contribution most relevant to our work is the one by Nguyen et al. [13], which
uses Naive Bayes and Decision Trees classifiers for automatically associating la-
bels with data widgets in Web forms. Our contribution complements this work
according to multiple aspects. First, the work by Nguyen et al. targets Web
applications while we target desktop applications, which are designed partially
following different principles. Second, the technique by Nguyen et al. learns how
to retrieve associations from a training set. Unfortunately, training sets are no-
tably hard to retrieve, especially for desktop applications. In addition, learning
from a training set works properly only if it is large enough and well represents
the GUIs that need to be analyzed. On the contrary, our approach does not rely
on any training set, but it is defined according to standards and best practices
about the design of GUIs. Thus, even if the effectiveness of our solution is in prin-
ciple correlated to the quality of the interface under analysis, our algorithm is
always applicable, and even with imperfect interfaces like the ones we analyzed,
it provided high quality results.

Test data generation is an area that is gaining increasing attention and can be
well targeted by our algorithm. The generation of test data for GUI test cases is
a particularly hard problem where little automation is available. Nowadays the
generation of test data for GUI test cases is a difficult and laborious process,
in which test designers have to manually produce the inputs for data widgets.
Automated GUI testing techniques either ignore generation of test data [16]
or rely on fixed datapools of values [12,20]. As a consequence many behaviors
cannot be automatically tested.

360 G. Becce et al.

In this paper we early investigated the use of our algorithm to improve gener-
ation of test data for GUI test cases. We integrated the algorithm in AutoBlack-
Test, but the algorithm can be potentially integrated in any other GUI test case
generation technique. To the best of our knowledge the work presented in [9] is
the only one that infers the values that can be entered in data widgets with the
objective of using this information in the scope of testing, even if with a different
purpose. In fact they used this mapping to assure that GUI test scripts could
be reused after GUI modifications.

Other people addressed generation of test data for GUI test cases from specifi-
cations, such as augmented use case descriptions [8,7] and enriched UML Activity
Diagrams [18], but these descriptions are seldom available in the practice.

6 Conclusions

The GUI is a useful source of information that software analysis techniques
should better exploit to increase their effectiveness.

In this paper we addressed the issue of automatically extracting the associ-
ations between descriptive and data widgets. We presented an algorithm that
bases the extraction strategy on standards and common principles in the design
of GUIs. Early empirical data collected with three case studies suggest that the
algorithm can extract associations with high precision and recall.

The algorithm can be useful in many domains. In this paper we investigated
the integration of the algorithm in the AutoBlackTest technique. Early results
show that AutoBlackTest augmented with this algorithm produces GUI test
cases that achieve greater coverage than the non-augmented version.

References

1. Buddi, http://buddi.digitalcave.ca/
2. jAOLT, http://code.google.com/p/jaolt/
3. Java look and feel design guidelines,

http://java.sun.com/products/jlf/ed2/book/

4. JPass, http://metis.freebase.hu/jpass.html
5. PDFSAM, http://sourceforge.net/projects/pdfsam/
6. ISO 9241-12:1998 Ergonomic requirements for office work with visual display ter-

minals (VDTs) - Part 12: Presentation of information (1998)
7. Bertolino, A., Gnesi, S.: Use case-based testing of product lines. SIGSOFT Softw.

Eng. Notes 28, 355–358 (2003)
8. Fröhlich, P., Link, J.: Automated Test Case Generation from Dynamic Models. In:

Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 472–491. Springer, Heidelberg
(2000)

9. Fu, C., Grechanik, M., Xie, Q.: Inferring types of references to gui objects in
test scripts. In: Proceedings of the International Conference on Software Testing
Verification and Validation (2009)

10. He, B., Chang, K.C.-C.: Statistical schema matching across web query interfaces.
In: Proceedings of the International Conference on Management of Data (2003)

http://buddi.digitalcave.ca/
http://code.google.com/p/jaolt/
http://java.sun.com/products/jlf/ed2/ book/
http://metis.freebase.hu/jpass.html
http://sourceforge.net/projects/pdfsam/

Extracting Widget Descriptions from GUIs 361

11. Lo, R., Webby, R., Jeffery, R.: Sizing and estimating the coding and unit testing
effort for gui systems. In: Proceedings of the 3rd International Symposium on
Software Metrics: From Measurement to Empirical Results (1996)

12. Mariani, L., Pezzè, M., Riganelli, O., Santoro, M.: Autoblacktest: a tool for auto-
matic black-box testing. In: Proceeding of the International Conference on Software
Engineering (2011)

13. Nguyen, H., Nguyen, T., Freire, J.: Learning to extract form labels. In: Proceedings
of the VLDB Endowment, 1 (August 2008)

14. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T.: Human-
Computer Interaction. Addison Wesley (1994)

15. Sánchez Ramón, O., Sánchez Cuadrado, J., Garćıa Molina, J.: Model-driven reverse
engineering of legacy graphical user interfaces. In: Proceedings of the International
Conference on Automated Software Engineering (2010)

16. Shehady, R.K., Siewiorek, D.P.: A method to automate user interface testing using
variable finite state machines. In: Proceedings of the International Symposium on
Fault-Tolerant Computing (1997)

17. Tichy, W.F., Koerner, S.J.: Text to software: developing tools to close the gaps
in software engineering. In: Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research (2010)

18. Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., Kazmeier, J.: Automation of
gui testing using a model-driven approach. In: Proceedings of the 2006 International
Workshop on Automation of Software Test (2006)

19. Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach
to integrating source query interfaces on the deep Web. In: Proceedings of the
International Conference on Management of Data (2004)

20. Yuan, X., Memon, A.M.: Generating event sequence-based test cases using GUI
run-time state feedback. IEEE Transactions on Software Engineering 36(1), 81–95
(2010)

Language-Theoretic Abstraction Refinement

Zhenyue Long1,2,3,�, Georgel Calin4, Rupak Majumdar1, and Roland Meyer4

1 Max Planck Institute for Software Systems, Germany
2 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences
3 Graduate University, Chinese Academy of Sciences

4 Department of Computer Science, University of Kaiserslautern

Abstract. We give a language-theoretic counterexample-guided abstrac-
tion refinement (CEGAR) algorithm for the safety verification of re-
cursive multi-threaded programs. First, we reduce safety verification to
the (undecidable) language emptiness problem for the intersection of
context-free languages. Initially, our CEGAR procedure overapproxi-
mates the intersection by a context-free language. If the overapproxi-
mation is empty, we declare the system safe. Otherwise, we compute a
bounded language from the overapproximation and check emptiness for
the intersection of the context free languages and the bounded language
(which is decidable). If the intersection is non-empty, we report a bug. If
empty, we refine the overapproximation by removing the bounded lan-
guage and try again. The key idea of the CEGAR loop is the language-
theoretic view: different strategies to get regular overapproximations and
bounded approximations of the intersection give different implementa-
tions. We give concrete algorithms to approximate context-free languages
using regular languages and to generate bounded languages representing
a family of counterexamples. We have implemented our algorithms and
provide an experimental comparison on various choices for the regular
overapproximation and the bounded underapproximation.

1 Introduction

Counterexample-guided abstraction refinement (CEGAR) has become a widely
applied paradigm for automated verification of systems [2, 5, 14]. While CEGAR
has had a lot of successes in the analysis of single-threaded programs (most
notably, device drivers), its application to recursive multi-threaded programs has
been relatively unexplored.

We present a uniform language-theoretic view of abstraction refinement for
the safety verification of recursive multi-threaded programs. First, with known
encodings [3, 8], we reduce the safety verification problem to checking if the
intersection of a set of context-free languages (CFLs) is empty. This is a well-
known undecidable problem (and equivalent to safety verification of recursive

� This work is supported by the National Natural Science Foundation of China (Grant
No.60833001) and by a fellowship at the Max-Planck Institute for Software Systems.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 362–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Language-Theoretic Abstraction Refinement 363

multi-threaded programs, which is also undecidable [26]). Then we give a purely
language-theoretic abstraction refinement algorithm for checking emptiness of
such an intersection.

To illustrate the idea of our CEGAR loop, consider CFLs L1 and L2 for which
we would like to check whether L1∩L2 = ∅. In our algorithm, we have to specify
the following steps: (a) how to abstract the intersection of two CFLs and check
that the abstraction is empty? (b) in case the abstraction is not empty, how to
refine it by eliminating spurios counterexamples?

Abstraction and Checking. To abstract the context-free intersection L1∩L2

we rely on regular overapproximations of the component languages. Once we
have approximated one of the languages, say L1, by a regular language R1

such that L1 ⊆ R1, we can check emptiness of R1 ∩ L2. Because of the
overapproximation, R1 ∩ L2 = ∅ entails L1 ∩ L2 = ∅.

Counterexample Analysis and Refinement. Suppose A = R1 ∩L2 	= ∅. In
the analysis and refinement step, we check if the counterexample to emptiness
is genuine, and try to eliminate any string in the intersection A that is not
in L1 ∩ L2. A naive approach takes an arbitrary word in A (a potential
counterexample) and checks if it is in L1 ∩ L2. We generalize this heuristic
to produce candidate counterexamples B such that we can effectively check
if L1 ∩ L2 ∩ B = ∅. The advantage is that we consider (and rule out) the
potentially infinite set B in one step. Refinement simply removes B from A.

Our abstraction refinement algorithm runs these two steps in a loop with one of
the following outcomes. Either the abstract intersection is eventually found to
be empty (the system is safe), or the counterexample analysis finds a bug (the
system is unsafe), or (because the problem is undecidable) the algorithm loops
forever. Unlike other abstraction-refinement algorithms [2, 5, 14], it is not the
case that the abstraction always overapproximates the original program. The
proof of soundness shows that refinement steps never remove buggy behaviors
from the abstraction.

We give concrete constructions for the abstraction and counterexample anal-
ysis steps. To find a regular overapproximation to a context-free language, we
adapt the construction of a downward closure of a CFL [28] and combine it with
a graph-theoretic heuristic from [7]. We show that our construction produces
regular approximations that lie between the original CFL and its downward
closure (and is tighter w.r.t. set inclusion than the construction in [7]).

For the counterexample analysis, we use bounded languages [10] to represent
an infinite set of counterexamples. Bounded languages are regular sets of the
form w∗

1w
∗
2 . . . w

∗
k, for words w1, . . . , wk. Given a bounded language B, checking

L1 ∩ L2 ∩ B = ∅ is known to be decidable and NP-complete[8, 10]. What is an
appropriate bounded language? We experimented with two algorithms. First,
using a construction from [9, 20], we constructed, from a CFL L, a bounded
language B such that L ∩ B has the same Parikh image as L. Unfortunately,
this construction did not scale well in the implementation. Instead, we relied on
a simple heuristic based on pumping derivation trees.

364 Z. Long et al.

We have implemented our algorithm, and we have tried our implementation
for the safety verification of several recursive multi-threaded programs. Our first
class of examples models variants of a bluetooth driver [18] (also studied in
[22, 25, 27]). Our second class contains example programs written in Erlang [1].
Erlang programs communicate via message passing, and are naturally written
in a functional, recursive style. (In our experiments, we assume a rendezvous
communication rather than asynchronous communication.) Most of the correct-
ness properties we considered could be proved using the regular approximation.
When there was a bug, the bounded language based procedure could find it.

Related Work. Analysis techniques for recursive multi-threaded programs can
be categorized in four main classes. First, context-bounded reachability techniques
[19, 23], and their generalizations using reachabilitymodulo bounded languages [8,
9], provide a systematic way to underapproximate the reachable state space, and
have proved useful in finding bugs. Second, for specific structural restrictions on
the communication, one can get decidability results [4, 16, 17, 22, 25]. Third, there
are some techniques to abstract the behaviors of these programs. For example,
[3] explores language-based approximations by abstracting queue contents with
their Parikh images. Finally, although abstraction-refinement has been studied
for non-recursive multi-threaded programs before [6, 11–13], its systematic study
for recursive multi-threaded programs has been little investigated.

Our constructions for regular overapproximations for context-free languages
are inspired by language-theoretic constructions for the downward closure of
context-free languages [28], together with approximation techniques originating
in speech processing [7, 21]. We use bounded languages to represent families of
counterexamples using ideas from [8, 9].

2 From Safety Verification to Language Emptiness

We recall the reduction from the safety verification of recursive multi-threaded
programs to the emptiness problem for the intersection of context free languages.

2.1 Preliminaries

We assume familiarity with language theory (see, e.g. [15]) and only briefly recall
the basic notions on regular and context free languages that we shall need in
our development. A context free grammar (CFG) is a tuple 〈N,Σ,P , S〉 where
N is a finite and non-empty set of non-terminals, Σ is an alphabet of terminals,
P ⊆ N × (N ∪ Σ)∗ is the set of production rules, and S ∈ N is the start non-
terminal. We typically write X → w to denote a production (X,w) ∈ P and use
X → w1| . . . |wk for {(X,wi) | 1 ≤ i ≤ k} ⊆ P .

Given two strings u, v ∈ (N ∪ Σ)∗, we write u ⇒ v for the fact that v is
derived from u by an application of a production rule. Technically, u ⇒ v if
there are a non-terminal X ∈ N , a production rule X → w in P , and strings
y, z ∈ (N ∪ Σ)∗ so that u = yXz and v = ywz. The reflexive and transitive
closure of ⇒ is written ⇒∗.

Language-Theoretic Abstraction Refinement 365

The language L(G) of a grammar G is the set of terminal words that can be
derived from the start symbol: L(G) = {w ∈ Σ∗ | S ⇒∗ w}. A language L ⊆ Σ∗

is context-free if there is a context-free grammar G such that L = L(G). We
denote the class of all context-free languages by CFL. A context-free grammar
is regular if all its productions are in N × (Σ∗N ∪ {ε}). A language is regular if
L = L(G) for some regular grammar. The class of all regular languages is REG.

Example 1. Consider the grammars G1 = 〈{S1}, {a, b}, {S1 → abS1b | ε}, S1〉
and G2 = 〈{S2}, {a, b}, {S2 → aS2b | baS2b | ε}, S2〉 that define the languages
L(G1) = {(ab)nbn |n ∈ N} and L(G2) = {(a+ ba)nbn |n ∈ N}. Both languages
are context free, and it can be shown that they are not regular.

The following results are well-known (see, e.g., [15]).

Theorem 1. Let L, L′ be context-free languages and R a regular language.

1. It is undecidable whether L ∩ L′ = ∅.
2. It is decidable whether L ∩R = ∅.

2.2 From Programs to Context Free Languages

We encode the behaviour of recursive multi-threaded programs by an intersec-
tion of context-free languages. We consider both asynchronous communication
via a shared memory and synchronous communication via rendezvous-style mes-
sage exchange. The shared memory is modelled by a finite set of shared variables
that range over finite data domains. This covers programs with finite data ab-
stractions. For rendevous-style communication, we use actions m! to let a thread
broadcast a message m taken from a finite set M . To receive the message, all
other threads have to execute a corresponding receive action m? in lock step.

Encoding Programs. We illustrate the encoding of shared memory concurrency
by means of an example, rendevous synchronisation immediately translates into
language intersection.

Algorithm 1. Shared Memory “Toy” Program

initially x = 0 and y = 0
T1:

x := ¬y
if (∗) then

call T1
x := ¬y

T2:

y := ¬x
if (∗) then

call T2
y := ¬x

assert “x = 0 ∨ y = 0”

366 Z. Long et al.

Table 1. Context-free grammars GT1 encoding routine T1 (left) and GX encoding
variable x (right). GT2 and GY are similar. AX is described in the text below.

ST1→ T1.(r, x, 1)

T1 → AX.IF

IF→ T1.FI |FI
FI→ AX

X=0 → (r, x, 0).X=0 | (w, x, 1).X=1

| (w, x, 0).X=0 | LX.X=0 | ε
X=1 → (r, x, 1).X=1 | (w, x, 0).X=0

| (w, x, 1).X=1 | LX.X=1 | ε

The program given by Algorithm 1 above consists of two threads that exe-
cute the procedures T1 and T2, respectively. They communicate through shared
Boolean variables x, y that take values in {0, 1}. The first thread assigns the
negation of y to x. Based on a non-deterministic choice, it then calls itself recur-
sively and finally repeats the assignment. Thread T2 is symmetric, substituting
y for x. We assume that each statement is executed atomically and concurrency
is represented by interleaving. We are interested in the safety property that the
assertion x = 0 ∨ y = 0 holds upon termination.

We model the program’s behaviour by an intersection of four context-free
languages as defined by the grammars in Table 1. We explain the behaviour
of GT1. From its start location ST1 (say the main routine) the thread calls
procedure T1. In T1 it first assigns ¬y to x. This is encoded by the non-terminal
AX that we discuss below in more detail. When the assignment has been executed,
the thread proceeds with the if statement. If the non-determinism decides to call
T1 again, the thread proceeds with symbol T1 and pushes the endif location onto
the stack, indicated by T1.FI. Otherwise, a second AX statement terminates this
T1 call. When the overall execution terminates, the thread runs a final (r, x, 1)
action which checks the assertion violation. We discuss it below.

Since we model the variables x and y by separate grammars, we split the
assignment x := ¬y into two actions, each modifying a single variable. First, a
read (r, y, 0) or (r, y, 1) determines the value of y. A following write (w, x, 1) or
(w, x, 0) finishes the assignment. This yields

AX → LT1.(r, y, 0).(w, x, 1).LT1 | LT1.(r, y, 1).(w, x, 0).LT1
LT1 → (r, x, 0).LT1 | (r, x, 1).LT1 | (w, y, 0).LT1 | (w, y, 1).LT1 | ε.

Here, LT1 lets the first thread loop on the actions of the second. Similarly for
GX , writes and reads of y are synchronized via LX.

From Safety to Emptiness. The safety verification problem takes as input a
multi-threaded program, a tuple of locations (one for each thread), and an as-
sertion, and asks if the assertion holds when the threads are simultaneously at
these locations. With the above encoding, there is an execution of the program
reaching the locations specified in the safety verification problem so that the
assertion fails iff there is a word common to the languages of all context-free
grammars [26].

Language-Theoretic Abstraction Refinement 367

In the above example, the assertion is violated if both threads finished their
execution and the variables had values x = y = 1. Note that the latter condition
matches the execution of the reads (r, x, 1) and (r, y, 1) in the grammars GT1

and GT2. Indeed, program safety is confirmed by

L(GT1) ∩ L(GT2) ∩ L(GX) ∩ L(GY) = ∅.

To check it note that L(GT1) = {L(AX)
n.L(AX)

n.(r, x, 1) |n ∈ N}. The simple
intuition to why the assertion holds is as follows. The first assignment changes
the variables’ valuation from x = y = 0 to either x = 1, y = 0 or x = 0, y = 1.
This valuation is never altered throughout the rest of the execution.

3 The Abstraction-Refinement Procedure

We now give an abstraction-refinement algorithm to check whether the intersec-
tion L1 ∩ L2 of two CFLs L1 and L2 is empty.

Algorithm 2. LCegar: test emptiness of context free language intersection

Input: Context-free languages L1 and L2

Output: “empty” or “non-empty”
1: A1 := mkreg(L1) ∩ L2, A2 := mkreg(L2) ∩ L1, B1 := ∅; B2 := ∅
2: loop
3: Invariant: w ∈ B1 ∪B2 ⇒ w �∈ L1 ∩ L2

4: if A1 = ∅ or A2 = ∅ then
5: return “empty”
6: else
7: B1 := gencx(A1) and B2 := gencx(A2)
8: if L1 ∩ L2 ∩B1 �= ∅ or L1 ∩ L2 ∩B2 �= ∅ then
9: return “non-empty”
10: else
11: A1 := A1 \ (B1 ∪B2), A2 := A2 \ (B1 ∪B2)

3.1 CEGAR Loop

The abstraction refinement procedure we present in Algorithm 2 takes as input
two CFLs L1 and L2 and correctly returns “empty” or “non-empty” upon termi-
nation, reflecting whether the intersection L1∩L2 is empty or not. Termination,
however, is not guaranteed due to the undecidability of the problem.

The key idea in our approach is to abstract and refine the intersection L1∩L2.
The algorithm takes two parameters that define this approximation. For the
initial abstraction, mkreg : CFL → REG computes regular overapproximations
of the context-free languages of interest, i.e., we require L ⊆ mkreg(L) for any
CFL L. Function gencx : CFL → REG serves in the refinement step. It isolates
a regular language gencx(L) from the current overapproximation L of L1 ∩ L2.
Intuitively, gencx(L) contains candidate words that may lie in the intersection.

368 Z. Long et al.

To check whether the candidates are spurious, the problem L1∩L2∩gencx(L) = ∅
is required to be decidable for all CFLs L,L1, L2.

We now explain the algorithm in detail. Initially (Line 1), it overapproximates
L1 ∩ L2 by A1 = mkreg(L1) ∩ L2 and A2 = L1 ∩ mkreg(L2) using the regular
overapproximationsmkreg(Li). It should be noted that the Ai are CFLs. If either
approximation is empty, the algorithm stops and returns “empty”. Otherwise,
it computes (regular) approximations Bi = gencx(Ai) from the (non-empty)
overapproximations (Line 7). If the intersection L1 ∩ L2 can be proved non-
empty with words in B1 or B2 (Line 8), the algorithm returns “non-empty”.
Otherwise, we refine the approximations Ai by removing the Bi and run the
loop again. By the assumptions on mkreg and gencx, each step of the algorithm
is effective.

The choice of mkreg determines the granularity of the initial abstraction, and
thus how quickly one can prove emptiness (in case the intersection is empty).
The choice of gencx influences how fast counterexamples are found (and whether
they are found at all).

Theorem 2 (Soundness). If on input L1, L2 Algorithm 2 outputs “empty”
then L1 ∩ L2 = ∅, and if it outputs “non-empty” then L1 ∩ L2 	= ∅.

Proof. The key to the proof is the invariant on Line 3. It states that only words
outside the intersection L1∩L2 are removed from the Ai. Therefore Ai ⊇ L1∩L2

always holds. For the first iteration, the invariant is trivial. For an arbitrary
iteration, B1 ∪ B2 is removed from (e.g.) A1 only when L1 ∩ L2 ∩ Bi = ∅ for
i = 1, 2. Thus any strings removed from A1 do not belong to L1 ∩ L2 and the
invariant holds.

If, e.g., A1 = ∅ we conclude that L1 ∩ L2 = ∅ since A1 is throughout the
program an overapproximation of the intersection. Thus the “empty” output is
sound. On the other hand, any strings in L1 ∩ L2 ∩Bi are also in L1 ∩ L2, thus
the check on Line 8 ensures the “non-empty” output is sound. -.

Example 2. Consider languages L(G1) and L(G2) from Example 1. Suppose we
approximate them by regular sets (ab)∗b∗ and (a + ba)∗b∗, respectively. The
intersections (ab)∗b∗ ∩ L(G2) and L(G1) ∩ (a + ba)∗b∗ are both non-empty.
Suppose gencx returns (ab)∗b∗ for the first intersection. We can compute that
L(G1) ∩ L(G2) ∩ (ab)∗b∗ = ∅. In the next iteration, the new approximation
A1 = {(ab)nbn|n ∈ N} \ (ab)∗b∗ = ∅, and we conclude that L(G1) ∩ L(G2) = ∅.

Since checking emptiness of the intersection is undecidable, the algorithm can
run forever. But what happens if L1∩L2 	= ∅ holds? In this case the algorithm is
guaranteed to terminate and return “non-empty” if gencx satisfies the following
additional enumeration property.

Definition 1 (Enumerator). A sequence (Li)i∈N of languages enumerates a
language L if for every w ∈ L there is an index i ∈ N so that w ∈ Li.

Let (L1,i)i∈N, (L2,i)i∈N be the sequences of languages generated by gencx(A1)
and gencx(A2) when running Algorithm 1 on the input languages L1 and L2.

Language-Theoretic Abstraction Refinement 369

Proposition 1 (Semidecider). If (L1,i∪L2,i)i∈N enumerates L1∩L2 	= ∅ then
Algorithm 2 terminates with output “non-empty” on input L1, L2.

3.2 The Regular Approximator mkreg

We now describe our implementation of mkreg, the regular overapproximation
of a context-free language.

Step I: Intuition: Downward Closures. Given strings u, v ∈ Σ∗, we define u � v
if u is a (not necessarily contiguous) substring of v. For example, abd � aabccd.
For a language L, we define the downward closure of L, denoted by L↓, as
L↓ = {u ∈ Σ∗ | ∃v ∈ L.u � v}. It is known that L↓ is effectively regular for a
CFL L [28], and clearly L ⊆ L↓. Thus, the downward closure −↓ is an immediate
candidate for mkreg.

Step II: A Modification to the Downward Closure. Unfortunately, the downward
closure is usually too coarse and leads to many spurious counterexamples. The
problem occurs already when the original language is regular; for example, the
downward closure of (ab)∗ is (a+ b)∗. Further, since our downward closure con-
struction is doubly exponential in the worst case, the obtained approximation
can get too big to apply further operations in non-trivial examples. We encoun-
tered both these shortcomings in our experiments.

As a first modification, we “tightened” the downward closure algorithm to
provide a regular approximation that lies (w.r.t. set inclusion) between the CFL
and its downward closure. We observe that for t ∈ Σ, the downward closure
L(t)↓ = {t, ε} can drop the t. In the inductive construction of the downward clo-
sure, this introduces too many new (sub)words. We show how to avoid dropping
some letters in the downward closure computation.

Our modification, called pseudo-downward closure (PDC), constructs a finer
regular overapproximation L⇓ of a CFL L. The idea is to preserve contiguous
subwords. We proceed by iterating over all the grammar non-terminals. More
precisely, we set L(t)⇓ = {t} for a letter t ∈ Σ. To ease the definition, let −⇓
distribute over concatenation (L(u.v)⇓ = L(u)⇓.L(v)⇓) and set

L(X)⇓ =

⎧⎪⎨
⎪⎩
Σ(X)∗ if X ⇒∗ uXvXw

(
⋃
L(u)⇓)∗.(

⋃
X⇒M,X�M L(M)⇓).(

⋃
L(v)⇓)∗ if X ⇒∗ uXv⋃

X⇒M,X�M L(M)⇓ otherwise.

Σ(X) ⊆ Σ denotes the set of all letters that appear in some word derived from
X . The unions

⋃
L(u)⇓ and

⋃
L(v)⇓ range over the shortest words so that X re-

produces itself via a derivation X ⇒∗ uXv. X � M means there is no derivation
M ⇒∗ uXv. Finally, we require the first case to have precedence over the second.

Proposition 2 below states that −⇓ is also a candidate for mkreg, and a better
approximation than −↓. Its proof is a induction on the structure of the grammar.

Proposition 2. Given a CFG G = (N,Σ,P , S), L(G) ⊆ L(G)⇓ ⊆ L(G)↓.

370 Z. Long et al.

Step III: Refinement by Cycle Breaking. We can further tighten our PDC con-
struction as follows. Consider the grammar G defined by

A→ aAbAc | t (1)

where lower-case letters denote terminals. Each word in the language L(G) is
either t, or starts with an a, has a b in the middle, and ends with a c. However,
L(G)⇓ = (a+ b+ c+ t)∗, and the PDC construction loses the order of the letters
in the original language.

We augment the PDC construction with the following insight [7]. Given a CFG
G in Chomsky normal form, we can construct a regular over-approximation of
L(G) by replacing each rule A→ BC with a rule A→ RBC, where RB generates
a regular over-approximation of L(B). After the replacement, the grammar will
be right regular and the new language will over-approximate L(G). If there is
no production B ⇒∗ uAv, we can inductively compute an over-approximation
RB of B. In the case when B ⇒∗ uAv we use the PDC construction to compute
an overapproximation of B.

The intuition behind the construction is similar to the cycle-breaking heuristic
to approximate CFLs by regular languages used in speech processing [7]. Our
construction below computes a regular approximation that is guaranteed to be
as tight as the construction in [7].

To clarify the intuition, we construct a directed graph from the CFG as follows.
The nodes of the graph are the non-terminals of the grammar. For each rule
A → BC in the grammar, we have an edge in the graph from A to B labeled
l (for left) and an edge from A to C labeled r (for right). A simple cycle in
this graph is called mono-chromatic if it only contains edges marked l or r, and
duo-chromatic otherwise. Our construction “breaks” every duo-chromatic cycle
in the graph as follows. It picks an l-edge (A,B) in the cycle, and replaces the
rule A→ BC from which the (A,B) edge was constructed with A→ RBC. The
language of the new nonterminal RB is L(B)⇓. We denote this approximation
by L(G)�. To give an example, if we turn the grammar in Equation (1) into
Chomsky normal form, we obtain L(A)� = t+a(a+ b+ c+ t)∗b(a+ b+ c+ t)∗c.

Proposition 3. Given a CFG G, we have L(G) ⊆ L(G)� ⊆ L(G)⇓.

The proof is again a direct application of structural induction.

3.3 The Counterexample Generator gencx

We now give an algorithm to generate families of counterexamples in case A1

and A2 are non-empty. A naive idea is to lexicographically enumerate words
in A1 and A2 and to check if one of them is in L1 ∩ L2. Since the length of a
path leading to the unsafe location is finite, this approach guarantees termination
(the sequence is clearly an enumerator for L1∩L2). However, enumeration-based
approaches do not scale, even if the language is finite. For example, depending
on the choice of the wi’s, a language of the following type has upto 2k words:

(w1 + ε) · (w2 + ε) · · · (wk + ε) (2)

Language-Theoretic Abstraction Refinement 371

Instead, we use elementary bounded languages (EBLs) [10] to represent fam-
ilies of counterexamples. EBLs are regular languages of the form w∗

1w
∗
2 · · ·w∗

k

for some fixed words w1, · · · , wk ∈ Σ∗. For CFLs L1 and L2 and an EBL B,
checking if L1 ∩ L2 ∩ B = ∅ is NP-complete [8]. In case of Language (2), the
bounded language w∗

1 . . . w
∗
k contains all the words in (2) (and more). In general,

an EBL captures an infinite number of potential counterexamples.
Which EBL should one choose? We first implemented an algorithm from [9]

which computes, given a CFL L, an EBL B such that for every word w ∈ L,
there is a permutation of w in L ∩ B. (That is, the commutative images of
L ∩ B and L coincide. Recall that the commutative image of a word w is an
integer vector that represents the number of times each alphabet letter occurs in
w.) Intuitively, the EBL B captures “many” behaviors of L. Unfortunately, our
experiments indicated that this construction does not scale well. Therefore, our
implementation makes use of a simple heuristic. The idea is to pump derivation
trees as follows.

Starting with a CFG G = 〈N,Σ,P , S〉 for L, we first construct an initialized
partial derivation tree up to a fixed depth. A partial derivation tree is a tree
whose nodes are labeled with symbols from N ∪Σ with the following property.
Each leaf is labeled with a symbol from N ∪ Σ. Each internal node is labeled
with a non-terminal from N , and if an internal node is labeled with T ∈ N
and has k children labeled with A1, . . . , Ak ∈ N ∪ Σ, then T → A1 . . . Ak is a
production in P . The partial derivation tree is initialized if its root is labeled
with S. A partial derivation tree corresponds to a (partial) derivation of the
grammar G, and conversely, each (partial) derivation of the grammar defines
a partial derivation tree. The yield of a partial derivation tree is the word of
symbols at the leaf nodes. More formally, for a leaf l labeled by σ ∈ N ∪ Σ we
set yield(l) = σ. For an internal node n with k children n1, . . . , nk, we define
yield(n) = yield(n1) · yield(n2) · . . . · yield(nk).

A partial derivation tree t is pumpable if its root is labeled by a non-terminal
A and some (not necessarily immediate) child of t again carries label A. For the
sake of clarity, we denote the (not necessarily unique) descendant node labeled
by A by tA. Words x, z are then called pump-words for the pumpable tree t
with descendant tA if the derivation corresponding to t can be written as A⇒∗

xAz ⇒∗ xyz for some y ∈ (N ∪Σ)∗. Here, the non-terminal A in the derivation
labels node tA.

The EBL is computed in two steps. We first construct an initialized partial
derivation tree up to some fixed depth, and then traverse this tree with a depth-
first search. The corresponding procedure traverse in Algorithm 3 is called with
the root of the initialized partial derivation tree, an empty list of words, and an
empty initial word ε. It returns a (possibly empty) word w and a list of words
[w1, . . . , wk]. From these words, we construct the required elementary bounded
language h(w1)

∗ . . . h(wk)
∗h(w)∗ using the following homomorphism h. Since the

words are defined over N ∪Σ but we look for a language over Σ, homomorphism
h replaces non-terminals A ∈ N by words wA ∈ Σ∗ that can be derived from A.
Terminals are left unchanged, h(σ) = σ for σ ∈ Σ.

372 Z. Long et al.

Algorithm 3. traverse

Input: partial derivation tree t, word list l, current word w
Output: pair of word w ∈ (N ∪Σ)∗ and list of words l′

1: match t with
2: | leaf labeled with σ ∈ N ∪Σ : return 〈w · σ, l〉
3: | internal node labeled with A :
4: if t is pumpable with descendant tA and pump words x, z
5: then let 〈wt, lt〉 = traverse(tA, [], ε)
6: return 〈ε, l@[w, x]@lt@[wt, z]〉
7: otherwise for the children t1, . . . , tk of t,
8: let 〈w1, l1〉 = traverse(t1, l, w)
9: . . .
10: let 〈wk, lk〉 = traverse(tk, lk−1, wk−1)
11: return 〈wk, lk〉

S

a1 B b2

a2 A b1

x A z

f

Fig. 1. Traverse Sample

The procedure recursively traverses the partial
derivation tree, collecting the yield of the tree in the
word w. However, when it sees a “cycle” in the deriva-
tion tree (i.e., a subtree that can be pumped), it pumps
its pump-words. Pumping moves the partial yield w
constructed so far to the list of words (Line 6). There-
fore, a word w that is returned actually gives the par-
tial yield of the nodes visited after the last pumping
situation. This explains why h(w)∗ is added to the end
of the EBL and why wt is placed behind lt in Line 6.
As a special case, if the partial derivation tree consists
of a single node containing only the start symbol, the
algorithm returns w∗ for some word w in the language.

As clarification, applied to the partial derivation
tree depicted in Figure 1, the algorithm returns 〈b1 · b2, [a1 · a2, x, f, z]〉 with x
and z being pump words for the given derivation tree and a1a2 as well as b1b2
being partial yields w.

4 Experiments

We have implemented the language-theoretic CEGAR algorithm and tested our
implementation on the shared memory example in Section 2, a set of Erlang
examples from [1], and the bluetooth driver examples from [22, 25, 27]. We
manually convert programs to the input format of our tool (a description of
context free grammars). We compare the results of the PDC and cycle-breaking
algorithms for mkreg and we use the simplified EBL generation algorithm for
gencx. To check emptiness of L1 ∩ L2 ∩ B (for CFLs L1 and L2 and EBL B),
we use the algorithm of [8] and reduce the check to a satisfiability problem in
Presburger arithmetic. We use Yices to check satisfiability of this formula.

Language-Theoretic Abstraction Refinement 373

All experiments were carried on an Intel Core2 Q9400 PC with 8GB memory,
running 64-bit Linux (Ubuntu 11.10 x86 64). Tables 2 and 3 describe our results.

4.1 Recursive Multi-threaded Programs

We applied our algorithm to a set of recursive multi-threaded programs: the
shared memory program in Section 2 and some selected Erlang programs. We
chose these examples since they provide a good test suite for checking both our
method’s bug finding and proving capabilities. For each test we used both the
pseudo downward closure (PDC) and cycle breaking (CB) overapproximations.

Toy Example (from Section 2). For the shared memory program in Section 2
we produced 4 CFLs, for T1, T2, x and y, with a total of 118 production rules.
It took our implementation about 16 seconds to report the system’s safety by
adopting the PDC approach and about 26 seconds by the CB approach. Note
that this example does not fall into the subclass considered in [4].

Peterson Mutual Exclusion Protocol (from [29], made recursive). In this example,
two processes try to acquire a lock. The one which receives it can enter the critical
section to perform operations on shared variables, then frees the lock. The code
is written in functional style with tail-recursive calls in each component. The
checked property is that at any time, at most one process is in the critical section.
The model comprised 4 CFLs with 242 production rules. LCegar reported the
system’s safety in 6.8 seconds by adopting the PDC closure, and in 0.2 seconds
by using the CB closure.

Resource Allocator (from [1], pp. 81, 111). A resource allocator (RA) manages a
number of resources and handles “alloc” and “free” messages sent from clients.
When it receives an “alloc” message, the RA checks if there is a free resources
in the system. If yes, it replies to the client with the resource id, and also marks
that the resource has been allocated; otherwise it replies that no free resources
are available. When it receives a “free” message with a resource id from a client,
the RA checks if the resource is actually held by the client. If yes, the resource is
freed, otherwise an error is reported to the client. The safety property checked
was that the server would not allocate more resources to clients than the current
free resources in the system. We produced 2 CFLs for the server and resource
with a total of 100 production rules from the original program. Though simple,
LCegar did not terminate by adopting the PDC over-approximation. It took
LCegar 0.5 seconds to report the system’s safety by using the CB approach.

In the modified version of the resource allocator (MoRA), the situation that
a client can exit normally or abnormally is handled. When allocating a re-
source id to a client, MoRA makes a link between server and client, and traps
the exit signal of the client. Once the client leaves without freeing the resource,
the MoRA will detect the event, free the resource on server side, and unlink the
client. The property to verify was identical to the one for the RA. This more
complicated example needed 5 CFLs with 239 production rules. It took LCegar
31 seconds to report safety by using the CB closure and PDC did not terminate.

374 Z. Long et al.

Table 2. Experimental results for recursive multi-threaded (Erlang) programs

SharedMem Mutex RA Modified RA TNA
PDC CB PDC CB PDC CB PDC CB PDC CB

CFL 4 4 2 5 3

Terminal 8 16 20 22 17

Non-Ter 22 27 22 32 23

Rule 118 242 100 239 93

Time 15.7s 26.0s 6.8s 0.2s N/A 0.5s N/A 31.2s 0.8s 0.3s

Table 3. Experimental results for Bluetooth drivers

Version 1 Version 2 Version 3 (2A1S) Version 3 (1A2S)
PDC CB PDC CB PDC CB PDC CB

w/o Heuri CFL 7 9 9 8
Terminal 17 26 25 22
Non-Ter 29 47 47 39
Rule 362 839 846 585
Time 19s 18s 109m57s 96m48s 81m7s 77m21s 3m50s 3m55s

w/ Heuri CFL 7 9 x 8
Terminal 17 26 x 22
Non-Ter 29 47 x 39
Rule 285 591 x 408
Time unknown 56s 50s x x 7s 7s

Telephone Number Analyzer (from [1], p. 109). The telephone number analyzer
(TNA) running on the server side handles “lookup” or “add number” requests
from the telephone ends. When it receives a request, it performs the correspond-
ing action in a try-catch block. The example tries to show that the try-catch
block can guard against the inadvertent programming errors. However, it also
mentions that a malicious program can crash the server by sending an incorrect
process id. The reason is that TNA does not check if the id in the message con-
tent is the same as its sender’s. We modeled the program with 3 CFLs and a
total of 93 production rules to spot the same bug in 0.8s (PDC) and 0.3s (CB).

4.2 Bluetooth Drivers

We considered the bluetooth driver [18] and its variations studied before through
various methods [4, 24, 27]. Once LCegar terminates, it reports safety or a path
leading to the buggy location of the system. Note that in contrast to bounded
context-switch approaches, LCegar looks for error traces without an a priori
context-switching bound, and thus can prove correctness of the protocol as
well. However, our language-theoretic computations take much more time than
bounded context-switching.

Table 3 shows the experimental results for the bluetooth drivers. For each
program, we use the two kinds of overapproximations discussed.

Language-Theoretic Abstraction Refinement 375

The 2nd version and the erroneous 3rd version (1A2S) prove to be the most
difficult to handle for our full fledged method. For this reason we considered an
unsound heuristic restricting context switches at basic block boundaries. This
heuristic sped up the tool and found the bugs. However, in the first version, our
method reported “unknown” since the heuristic method is an underapproxima-
tion, and therefore, cannot report the system’s correctness when no bug is found.
If the method does not find a bug, we therefore run the original (sound) version
of the algorithm. For example, we used the non-optimized algorithm for the 3rd
version of the driver with 2 adders and 1 stopper (2A1S) which is safe. In this
case, it took LCegar 77 minutes and 21 seconds (CB) to verify correctness.

4.3 Conclusion

While the run times of our implementation are somewhat disappointing, we
believe our implementation demonstrates the potential of language-based tech-
niques in the verification of recursive multi-threaded programs.

Also, although the run times could probably be improved by providing better
symbolic implementations of the language-theoretic operations used, considering
more succinct encodings of programs is a must.

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice Hall (1996)

2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL 2002: Principles of Programming Languages, pp. 1–3. ACM
(2002)

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. International Journal on Foundations of
Computer Science 14(4), 551–582 (2003)

4. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying Concurrent Message-
Passing C Programs with Recursive Calls. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. Clarke, E.M., Talupur, M., Veith, H.: Proving Ptolemy Right: The Environment
Abstraction Framework for Model Checking Concurrent Systems. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer,
Heidelberg (2008)

7. Eğecioğlu, Ö.: Strongly Regular Grammars and Regular Approximation of
Context-Free Languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS,
vol. 5583, pp. 207–220. Springer, Heidelberg (2009)

8. Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded
programs. In: POPL 2011: Principles of Programming Languages, pp. 499–510.
ACM (2011)

9. Ganty, P., Majumdar, R., Monmege, B.: Bounded Underapproximations. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 600–614. Springer,
Heidelberg (2010)

376 Z. Long et al.

10. Ginsburg, S., Spanier, E.H.: Bounded Algol-like languages. Transactions of the
American Mathematical Society 113(2), 333–368 (1964)

11. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL 2011: Principles of Programming
Languages, pp. 331–344. ACM (2011)

12. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI 2004: Programming Language Design and Implementation, pp. 1–13. ACM
(2004)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread-Modular Ab-
straction Refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 262–274. Springer, Heidelberg (2003)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002: Principles of Programming Languages, pp. 58–70. ACM (2002)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

16. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decid-
ability of pairwise CFL-reachability for threads communicating via locks. In: LICS
2009: Logic in Computer Science, pp. 27–36. IEEE Computer Society (2009)

17. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: POPL
2003: Principles of Programming Languages, pp. 303–314. ACM (2007)

18. Kidd, N.: Bluetooth protocol, http://pages.cs.wisc.edu/~kidd/bluetooth/
19. Lal, A., Reps, T.: Reducing Concurrent Analysis Under a Context Bound to Se-

quential Analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
37–51. Springer, Heidelberg (2008)

20. Latteux, M., Leguy, J.: Une propriété de la famille GRE. In: FCT 1979, pp. 255–
261. Akademie-Verlag (1979)

21. Mohri, M., Nederhof, M.-J.: Regular approximation of context-free grammars
through transformation. In: Robustness in Language and Speech Technology, vol. 9,
pp. 251–261. Kluwer Academic Publishers (2000)

22. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of Multithreaded Dynamic
and Recursive Programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 254–257. Springer, Heidelberg (2007)

23. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

24. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI 2004: Program-
ming Language Design and Implementation, pp. 14–24. ACM (2004)

25. Ben Rajeb, N., Nasraoui, B., Robbana, R., Touili, T.: Verifying multithreaded
recursive programs with integer variables. Electr. Notes Theor. Comput. Sci. 239,
143–154 (2009)

26. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM TOPLAS 22(2), 416–430 (2000)

27. Suwimonteerabuth, D., Esparza, J., Schwoon, S.: Symbolic Context-Bounded Anal-
ysis of Multithreaded Java Programs. In: Havelund, K., Majumdar, R. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 270–287. Springer, Heidelberg (2008)

28. van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids.
Discrete Mathematics 21(3), 237–252 (1978)

29. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process.
Lett. 3(12), 115–116 (1981)

http://pages.cs.wisc.edu/~kidd/bluetooth/

Learning from Vacuously Satisfiable

Scenario-Based Specifications�

Dalal Alrajeh1, Jeff Kramer1, Alessandra Russo1, and Sebastian Uchitel1,2

1 Department of Computing, Imperial College London, UK
2 Departamento de Computaciòn, FCEyN, UBA

Abstract. Scenarios and use cases are popular means for supporting re-
quirements elicitation and elaboration. They provide examples of how the
system-to-be and its environment can interact. However, such descrip-
tions, when large, are cumbersome to reason about, particularly when
they include conditional features such as scenario triggers and use case
preconditions. One problem is that they are susceptible to being satisfied
vacuously: a system that does not exhibit a scenario’s trigger or a use
case’s precondition, need not provide the behaviour described by the sce-
nario or use case. Vacuously satisfiable scenarios often indicate that the
specification is partial and provide an opportunity for further elicitation.
They may also indicate conflicting boundary conditions. In this paper we
propose a systematic, semi-automated approach for detecting vacuously
satisfiable scenarios (using model checking) and computing the scenarios
needed to avoid vacuity (using machine learning).

1 Introduction

Scenarios, use cases and story boards are popular means for supporting require-
ments engineering activities. They illustrate examples of how the software-to-be
and its environment should and should not interact. They are commonly used as
an intuitive, semi-formal language for describing behaviour at a functional level.

A common form for providing examples of behaviour is through conditional
statements. Use cases [1] support existential conditional statements such as “once
an appropriate user ID and passwords has been obtained, a homeowner can ac-
cess the surveillance cameras placed throughout the house from any remote
location via the internet” [21]. Live Sequence Charts [14] support universal con-
ditional statements such as “the controller should probe the thermometer for a
temperature value every 100 milliseconds, and if the result is more that 60 de-
grees, it should deactivate the heater and send a warning to the console”. Some
languages support both existential and universal conditional scenarios [24].

Conditional scenarioswith differentmodalities are useful. They provide support
for “what-if” elaboration of requirements specifications [1], and the progressive
shift from existential statements, in the form of examples and use-cases, to uni-
versal statements in the form of declarative properties. Each conditional scenario

� We acknowledge financial support for this work from ERC project PBM - FIMBSE
(No. 204853).

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 377–393, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

378 D. Alrajeh et al.

constitutes only a partial description of the system’s intended behaviour. Hence,
typicallymany of themare used in conjunction alongwith other behaviour descrip-
tions such as system goals [10]. The emergent behaviour of such rich descriptions
can be complex to reason about, hindering validation, and resulting frequently in
specifications that are incomplete or contradictory.

One particular issue that conditional scenarios have is that they are liable to
being satisfied vacuously; a system can be constructed so that it satisfies the
conditional scenarios by never satisfying the condition. For instance, a system
in which the homeowner is never given a user password vacuously satisfies the
use case described above. This problem, commonly referred to as antecedent fail-
ure [8] in temporal specifications, is often an indication that the specification
is partial and hence provides an opportunity for elicitation; it is clear that the
stakeholder’s intention is that “the system should provide the user with an id
and password”, and if it does, then the user can access the installed surveillance
cameras. In addition, vacuously satisfiable specifications can have pernicious
effects, concealing conflicting behaviour which is important to explore. For ex-
ample, consider two scenarios extracted from the mine pump example in [16]:
“once the methane sensors detect that the methane level is critical, then the
pump controller must send a signal to the pump to be switched off” and “once
the water sensors detect that the water level is above the high-threshold, then
the pump controller must send a signal to the pump to be switched on”. These
scenarios are consistent as a system in which water sensors never detect high
water and methane levels vacuously satisfies both scenarios. However, if these
two levels were to occur, then the scenarios provide contradictory information
of what the controller must do.

In this paper we describe an approach that not only detects vacuously satisfi-
able conditional scenarios but also provides automated support for learning new
scenarios that ensure the conditions, i.e. triggers, are satisfied. More specifically,
the approach takes as input a set of scenarios formalised as triggered existential
and universal scenarios [24] and consists of two main phases. The first involves
(i) synthesising a Modal Transition System from the scenarios, representing all
possible implementations that satisfy them and (ii) performing a vacuity check,
using a model checker, against a scenario’s trigger. If the vacuity check is posi-
tive, the model checker produces examples of how the system-to-be could satisfy
the trigger, i.e. non-vacuity witnesses [13]. In the second phase, (iii) an engineer
classifies the examples as either positive or negative, i.e. ones that should be ac-
cepted or not in the final implementation, and then (iv), together with the given
scenarios, inputs them into an inductive logic programming learning tool to com-
pute new triggered scenarios which, if added to the existing scenarios, guarantee
that they are no longer vacuously satisfiable. This process is repeated for each
given triggered scenario, producing in the end a scenario-based specification that
is not vacuously satisfiable. Figure 1 outlines the proposed framework.

Although the integrated use of model checking and ILP has been previ-
ously applied to other software engineering tasks, such as goal operationalisa-
tion [2] and zeno behaviour elimination [3], the current application introduces a

Learning from Vacuously Satisfiable Scenario-Based Specifications 379

Behaviour Model
Synthesis

Vacuity Check

Triggered

scenarios +

fluent definitions
(1)

Witness traces to non-vacuity

(2)
Triggered scenarios

+ve & -ve non-vacuity
(3)

New triggered
scenarios

(4)
Learning

Fig. 1. Overview of the proposed framework

number of new technical challenges not present previously: the need to model
and reason about partial behaviour, branching time and alphabet scoping of
learned expressions. We elaborate further on these issues in Section 6.

The rest of this paper is organised as follows. We describe a motivating exam-
ple in Section 2 and the necessary background in Section 3. Section 4 presents
the main approach. Section 5 illustrates the results obtained by applying the
approach to two case studies. We discuss related work in Section 6 and conclude
in Section 7.

2 Motivating Example

Consider a simplified version of the mobile phone system described in [17]. The
system is composed of six participants: a user, cover, display screen, speaker,
chip and the environment. A phone user can open and close the phone cover,
switch the phone on and off, answer and end calls and talk. The chip can detect
incoming calls from the environment and the cover opening and closing. It can
also initialise the phone settings and send requests to display the caller ID on
the screen and to the speaker to start and stop ringing.

Suppose the engineer elicits the two scenarios shown in Figure 2 using a
universal and existential triggered scenario notation, respectively. The univer-
sal scenario Receive informally states that “once an incoming call is detected
(incomeCall), the phone rings (startRing) and the caller id is displayed on the
screen (displayCaller and setDisplay) subsequently”. The existential scenario
Phone specifies the requirement “once an incoming call is detected (income-
Call) and the user opens the cover (open followed by coverOpened), the user
may talk (talk)”. Both scenarios are composed of two parts; a trigger (shown
in a hexagon) and a triggered sequence (shown in a box; solid in universal and
dashed in existential).

One problem with the specified scenarios is that although they describe what
the system must or can do when the system exhibits the triggers, they do not
state what it is required to do otherwise. For instance, they do not say when the
system can exhibit an incoming call nor what the system can do between the
occurrence of an incoming call and the user opening the phone cover. Because
this specification is only partial, any implementation of the system in which an

380 D. Alrajeh et al.

incoming call is never allowed to occur is a valid implementation of the Receive
scenario (See Figure 2.a). We refer to triggered scenarios which may result in a
system that never exhibits the trigger as vacuously satisfiable scenarios.

SpeakerEnv Chip Display

¬Ringing¬Ringing

incomeCall

startRing

displayCaller

setDisplay

(a) CoverEnv User Chip

incomeCall

open

coverOpened

talk

(b)

close

Fig. 2. Mobile phone system scenarios for (a) Receive and (b) Phone

0 1 2 0 1 2 3 4

5

(b)

incomeCall startRing displayCaller setDisplay

stopRing

talk

endCall

(a)

answer talk

endCall

Fig. 3. Implementation that (a) vacuously satisfies Receive and Phone scenarios, and
(b) satisfies the Receive scenario non-vacuously but Phone vacuously

Feedback about vacuously satisfiable scenarios may help engineers in recog-
nising further behaviour which should be required or proscribed by any derived
implementation. By informing an engineer about possible implementations in
which an incoming call never occurs, the engineer could provide further exam-
ples of what the system behaviour may, must or cannot include. For instance, an
engineer could provide a trace showing that incoming calls occurs after the phone
is switched on and initialised, i.e. switchOn, initialise, incomeCall, or a negative
trace where an incoming call occurs after the phone starts ringing, i.e. startRing,
incomeCall. From such traces, it can be inferred that an incoming call may be
triggered when the phone is initialised, or not ringing as shown in Figure 4.

SpeakerEnv Chip Env Chip

¬Ringing¬Ringing
initialise

incomeCall incomeCall

Fig. 4. New triggered scenarios to avoid vacuously satisfying the Receive scenario

Learning from Vacuously Satisfiable Scenario-Based Specifications 381

In this paper, we show how model checking and inductive logic programming
provide automated support for detecting vacuously satisfiable scenarios and the
computing new scenarios that avoids vacuity, such as those shown in Figure 4.

3 Background

3.1 Triggered Scenarios

Triggered scenarios are sequence charts that represent interactions between the
system’s agents. Graphically, a triggered scenario comprises several vertical lines
labelled by names representing agents’ lifeline. Time is assumed to flow down-
ward. Annotated arrows between these lines correspond to synchronous messages
which represent instantaneous events on which both objects synchronise.

A triggered scenario consists of three parts; a trigger that is surrounded by a
dashed hexagon, a main chart that is surrounded by a rectangular frame and a
scope. The trigger is the condition that activates the main chart. It can include
event messages as well as properties (depicted in rounded boxes). A property
may be associated with one or more agent instances. It is a boolean combination
of propositional atoms and their negations, expressed in Fluents Linear Temporal
Logic (discussed later), that are expected to be true or false at that point in the
system. A main chart can only contain messages. Event messages and properties
are associated with ordered locations along the agents’ lifelines. A universal
Triggered Scenario (uTS) forces the occurrence of the main chart (depicted in
a solid rectangular frame) after every occurrence of the trigger. An existential
Triggered Scenario (eTS) asserts that it is possible to perform the main chart
after every occurrence of the trigger but not necessarily, i.e. alternative behaviour
after the trigger is allowed. The purpose of the scope is to restrict the occurrence
of certain messages. Events appearing in a triggered scenario are by default
within its scope. Further events can be included in the scope by adding them
to the restricts set depicted in a dotted frame below the scenario’s main chart.
We refer to events in the scope as observed events. Any non-observed event can
occur interleaved without restriction.

Triggered scenarios are interpreted over execution trees. An uTS (resp. eTS)
is satisfied in an execution tree if at any node of the tree where the trigger is
satisfied, every (resp. at least one) outgoing branch satisfies the main chart.

3.2 Fluent Linear Temporal Logic

Fluent Linear Temporal Logic (FLTL) is a linear temporal logic of fluents [12].
A fluent is a propositional atom defined by a set If of initiating events, a set
Tf of terminating events and an initial truth value either true (tt) or false (ff).
Given a set of event labels Act, we write f = 〈If , Tf , Init〉 as a shorthand for a
fluent definition, where If ⊆ Act, Tf ⊆ Act, If ∩ Tf = ∅ and Init∈ {tt,ff}. We
use ȧ as a shorthand for a fluent defined as 〈a,Act\{a},ff〉.

Returning to our running example, the fluents Opened, Ringing and Calling,
meaning the cover is open, the phone is ringing and there is an incoming call,
can be respectively defined in FLTL as follows.

382 D. Alrajeh et al.

Opened =<coverOpened, coverClosed, ff>
Ringing =<startRing, stopRing, ff>
Calling =<incomeCall, endCall, ff>

Given a set of fluents F , FLTL formulae are constructed using standard boolean
connectives and temporal operators X (next), U (strong until), F (eventually) and
G (always). The satisfaction of FLTL formulae is defined with respect to traces,
i.e. sequences of events over a given alphabet Act. Given a trace σ = a1, a2, ...
over Act and fluent definitions D, a fluent is said to be true in σ at position i
with respect to D if and only if,

– f is defined initially true and ∀j ∈ N . ((0 < j ≤ i)→ aj 	∈ Tf);
– (∃j ∈ N . (j ≤ i) ∧ (aj ∈ If)) ∧ (∀k ∈ N .((j < k ≤ i)→ ak 	∈ Tf)).

In other words, a fluent f holds if and only if it is initially true or an initiating
event for f has occurred and no terminating event has occurred since.

3.3 Modal Transition Systems

A Modal Transition System (MTS) is used to formalise a partial model of
the system’s behaviour [19]. It extends Labelled Transition Systems (LTSs), a
widely used formalism for describing and reasoning about system behaviour, by
distinguishing between transitions that are required, proscribed and unknown,
i.e. transitions for which it is not possible, based on current available knowledge,
to guarantee that they will be admissible or prohibited.

Definition 1 (MTS and LTS). A Modal Transition System is a tuple M =
(Q,Act, Δr, Δp, q0) where Q is a finite set of states, Act is a set of event labels,
called the alphabet, Δr ⊆ Q × Act × Q is a required transition relation and
Δp ⊆ Q × Act × Q is a possible transition relation where Δr ⊆ Δp and q0 is
the initial state. A transition that is possible but not required is called a maybe
transition. An MTS where all possible transitions are required is called a Labelled
Transition System, written (Q,Act, Δ, q0).

An MTS M is said to have a required transition on a, denoted q
a−→r q′, if

(q, a, q′) ∈ Δr. Similarly, M is said to have a maybe transition on a, denoted

q
a−→m q′, if (q, a, q′) ∈ Δp−Δr. Figure 5 shows an example MTS for the mobile

phone system, with the alphabet Act= {open, close, incomeCall, coverOpened,
coverClosed, setDisplay, displayCaller, startRing, answer, talk}, where maybe
transitions are denoted with a question mark following the label. Figure 3 shows
two LTSs for the same system. Note that the numbered nodes are used for
reference and do not designate a particular state.

A trace σ = a1, a2, ..., where ai ∈ Act, is said to be required in an MTS
M if there exists in M a sequence of states such that q0

a1−→r q1
a2−→r q2....

It is said to be possible if there exists in M a sequence of states such that
q0

a1−→p q1
a2−→p q2..., with at least one transition relation that is in Δp −Δr .

Learning from Vacuously Satisfiable Scenario-Based Specifications 383

0

1 4

2 3

w0

stopRing?

startRing?

w1

incomeCall?

w2

startRing

d
isp

la
y
C
a
ller

w3

setDisplay

w4

w0: open? setDisplay? incomeCall? displayCaller?

stopRing? answer? coverOpened? close? talk?

w1: open? setDisplay? incomeCall? displayCaller?

answer? startRing?, coverOpened? close? talk?

w2: open? incomeCall? displayCaller? coverOpened?

answer? close? talk?

w3: open? incomeCall? coverOpened? close? talk?

answer?

w4: open? incomeCall? coverOpened? close? talk?

Fig. 5. An MTS synthesised from Receive scenario

Given two MTSs N and M , N is said to refine M if N preserves all of the
required and proscribed transitions of M [19]. An LTS that refines an MTS M ,
i.e. an implementation, is a complete description of the system up to the alphabet
ofM . For example, the LTS shown in Figure 3.b is an implementation of the MTS
given in Figure 5. Merging MTSs is the process of combining what is known from
each MTS. In other words, it is the construction of a new MTS that includes all
the required behaviour from each MTS but none of the prohibited ones. An MTS
can be synthesised automatically from a safety property φ expressed in FLTL [25]
and triggered scenarios TS [24] that characterises all implementations satisfying
φ under a 3-valued interpretation on FLTL and TS, respectively.

4 Approach

As illustrated in Figure 1, the approach comprises two main phases. The first
takes as input a set of fluent definitions and universal and existential triggered
scenarios and uses model checking to verify if any of the existing triggered sce-
narios are vacuously satisfiable by some system implementations. If this is the
case, the model checker provides non-vacuity witnesses. In the second phase,
after an engineer classifies the non-vacuity witnesses into positive and negative
examples, these are used to compute new triggered scenarios that ensure that
the existing scenario is satisfied non-vacuously.

4.1 Checking Vacuity of Triggered Scenarios

We first define the term vacuously satisfiable triggered scenario, and then discuss
the MTS construction, vacuity checks and witness generation.

Definition 2 (Vacuously Satisfiable Triggered Scenario). Let S be a trig-
gered scenario with trigger P , main chart C and scope Θ. Let M be an MTS
that characterises all LTSs that satisfy S. The scenario S is said to be vacuously
satisfiable in M , if there exists at least one LTS implementation I of M such
that for all traces in I, restricted to the scope Θ, the trigger P is never satisfied.

384 D. Alrajeh et al.

For instance, the triggered scenarioReceive, shown in Figure 2.a, is vacuously sat-
isfiable since there exists at least one implementation (e.g. the LTS in
Figure 3.a) of the MTS synthesised from the scenario (shown in Figure 5) where
the trigger is never satisfied.

The first step in detecting vacuity involves automatically synthesising an MTS
that characterises all LTSs that satisfy the given set of triggered scenarios. The
synthesis is done on a per triggered scenario basis, following the technique de-
scribed in [24]. Once constructed, the generated MTSs are then merged. If the
merge is successful, then the resulting MTS describes all implementations that
satisfy all triggered scenarios. If it is unsuccessful then this indicates that the
scenarios are inconsistent and hence do not have an implementation.

The second step comprises performing a vacuity check on the MTS resulting
from the merge against a property that informally says: it is always the case
that a scenario’s trigger does not hold. The property can be expressed formally
in FLTL and automatically constructed from the scenario’s trigger. We refer to
this property as the negated trigger property of a triggered scenario. For instance,
the negated trigger property for the uTS Receive in Figure 2 is

G¬(¬Ringing ∧ ˙incomeCall) (1)

Model checking an MTS against a property is akin to checking the property
against every LTS implementation that it describes. The result can be one of
three values: all, none, and some, or more formally, true, false or undefined.

When checking for vacuity, if the result of model checking an MTS against
a negated trigger property is true, then every trace in every implementation of
the MTS satisfies the property, i.e. the trigger of the scenario under analysis
never occurs. This entails that any implementation that satisfies the available
specification vacuously satisfies the triggered scenario. This is an undesirable
situation as it is not possible to extend the specification to avoid vacuity, and
hence it must be revised. If the verification returns false, every implementation
of the MTS has a trace that violates the property, i.e. in which the trigger occurs.
Hence the triggered scenario is not vacuously satisfiable, so the specification need
not be augmented for this particular scenario.

If the result of the verification is undefined, this means that there are some
implementations that satisfy the concerned scenario vacuously and others that
satisfy it non-vacuously. The purpose of the second phase of this approach is to
automatically learn triggered scenarios that will prune out all implementations
of the MTS that vacuously satisfy the concerned triggered scenario. However,
for such learning to occur, examples of how the system-to-be may trigger the
scenario under analysis are needed. In cases where the result is either false or
undefined, a counterexample is given. In the former case, the counterexample is
a trace that violates the property and can be exhibited by all LTS implementa-
tions. In the latter case, the counterexample is a trace that violates the property
and can be exhibited by at least one LTS implementation. Our interest lies in

Learning from Vacuously Satisfiable Scenario-Based Specifications 385

the latter case where the model checker provides an example of how some imple-
mentations can achieve the scenario’s trigger. This trace, leading to the trigger,
is taken as a non-vacuity witness for that triggered scenario.

Returning to our running example, verifying the MTS generated from the
scenario Receive and Phone against the property (1) using the MTSA model
checker [11] gives the following violation:

Trace to property violation in Never Trigger Receive:

incomeCall Calling

No. MobilePhone+ does not satisfy Never Trigger Receive

The trace produced by the MTSA is the shortest trace in an implementation
of the MTS that violates the negated trigger property. In particular, the above
means that there exists some implementations of the mobile phone system in
which the phone is not ringing and there is an incoming call, i.e. where the
trigger of scenario Receive is reachable (e.g. Figure 3.b).

Once the model checker detects a non-vacuity witness, this is shown to the
engineer for validation. The engineer might indicate that the trace is positive,
i.e. should be required in all implementations, or negative, i.e. should be pro-
scribed in all implementation. In the former case, the trace is given to the learn-
ing phase. In the latter case, the engineer is expected to produce at least one
positive non-vacuity witness which satisfies the trigger. Positive witnesses can
be automatically generated from the model checker.

4.2 Learning Triggered Scenarios

The input to this phase is a set of triggered scenarios, fluent definitions and
positive and negative non-vacuity witnesses. The output is a set of triggered
scenarios, called a required, that ensure that a trigger is required by at least one
positive witness trace in every implementation of the system.

Definition 3 (Required Scenarios). Let TS be a set of triggered scenario,
D a set of fluent definitions and Σ+ ∪ Σ− a set of positive and negative traces
consistent with TS. Then a set of triggered scenarios S is said to be required
of TS with respect to traces in Σ+ ∪ Σ− if the MTS synthesised from TS ∪ S
requires each trace in Σ+ but none of the traces in Σ−.

To compute new triggered scenarios, we use an Inductive Logic Programming
(ILP) approach described in [22]. ILP is a machine learning technique for com-
puting a new solution H that explains a given set E of examples with respect
to a given (partial) background knowledge B [20]. Within the context of our
problem, the background comprises the given set of triggered scenarios and flu-
ent definitions whereas the positive and negative traces constitute the exam-
ples. A solution is a set of required scenarios requiring the positive non-vacuity
witnesses, but none of the negative ones.

To perform the learning task, the input is encoded into Prolog.We have defined
a sound translation (based on an extension of that given in [4]) that maps trig-
gered scenarios and fluent definitions into an Event Calculus (EC) [15] program.

386 D. Alrajeh et al.

The program makes use of new predicates such as required, maybe, reachable,
trigger satisfied. The encoding of a triggered scenario TS results in a number of
Prolog rules, one for each event appearing in the main chart of TS. Each rule
defines the predicate trigger satisfied(e,T m, S), where e is the event appearing
in the main chart, T m is the time variable associated with the location m at
which the trigger is satisfied, and S is a trace variable1. The body of this rule
contains happens(e, T l, S) atoms for each event e at location l <m in TS, and
a conjunction of literals (not) holds at(fi, T l, S) for each fluent (¬)fi that ap-
pears in a property (¬)f1 ∧ . . . ∧ (¬)fn at location l <m in TS 2. The order of
the time variables in EC respects the location ordering in TS. Constraints over
the type of triggering rule, i.e. existential or universal, are also defined according
to the semantics in [24]. The scope of any scenario to be learned is constrained
to be a subset of the events appearing in the positive non-vacuity witness. The
main charts are encoded to ensure the soundness of the resulting program and
consistency of learned hypotheses.

The solution search space is governed by a language bias which defines the
syntactic structure of plausible solutions. To learn triggered scenarios, we define
a language bias to capture rules with triggers as conditions and triggered events
as its consequents. The language bias is also set to compute sequences of events
leading to the main chart of the given scenarios so that all computed scenarios are
consistent with the existing ones. For every positive example, the learning tries to
construct a solution H which explains why a certain sequence of events must be
required either existentially or universally, within a given scope. It then performs
a generalisation step in which it tries to weaken the conditions to cover required
occurrences of the triggered sequence in other traces. This generalisation can be
controlled by providing several positive and negative non-vacuity witnesses.

The learning succeeds in computing a solution if there is at least one event
occurrence in a positive non-vacuity witness that is not required by an existing
triggered scenario. If several possible required scenarios exists, these will be
given as output and it is the engineer’s task to select the appropriate ones from
those available. The number of triggered scenarios learned can be influenced by
a number of factors including the number of events in the scope of the scenario
to be learned, their occurrences in the example traces and the number of given
negative traces. All produced scenarios are guaranteed to be consistent with the
existing specification and the traces provided, as stated in Theorem 1 below.

Theorem 1. [Soundness of Learning] Let TS be a set of triggered scenarios,
D a set of fluent definitions and Σ+ ∪ Σ− a set of positive and negative traces
consistent with TS. Let Π = B∪E be the EC encoding of TS, D and Σ+∪Σ− into
background knowledge B and examples E. If H is a solution to E with respect
to B, then the set of learned triggered scenarios T , where T is the triggered
scenarios corresponding to H, are required of TS w.r.t. traces in Σ+ ∪Σ−.

1 In Prolog, variables (resp. constants) start with a capital (resp. lowercase) letter.
2 The notation (¬)φ is a shorthand for φ or ¬φ. A similar interpretation is used for
(not)φ.

Learning from Vacuously Satisfiable Scenario-Based Specifications 387

The proof is by contradiction. In brief, it assumes that a trace σ+ = e1, . . . , en
is not required in the MTS synthesised from TS∪T. Then it goes to show that
this results in a program Π that does not contain any rule that requires the
occurrence of some event ei in the trace σ+. Given that this leads to a con-
tradiction as H is a set of rules that requires the occurrence of each event in
σ+, then σ+ = e1, . . . , en is shown to be a required trace. The proof for σ− is
done in a similar fashion. As a corollary of the above theorem, when the traces
are examples of positive and negative non-vacuity traces to triggers in TS, the
learned triggered scenarios will guarantee that each positive non-vacuity trace is
required in every implementation but none of the negative non-vacuity traces.

The choice of which learned scenarios to include may have an impact on later
iterations. For instance, selecting a universal scenario over an existential one
might imply that an incoming call is the only observed event when there is
no incoming call detected and the phone is not ringing, for a given scope. It
is obvious that selecting such an interpretation would prevent the occurrence of
any behaviour other than that which is depicted in the main chart of the learned
scenario within that scope. Therefore, we found that it is often preferable to select
existential scenarios over universal at early stages of the elaboration process.

In our running example, the ILP tool computed two alternative required ex-
tensions as solutions; an existential and a universal. The learned existential trig-
gered scenario (shown in Figure 6) states that whenever the user is not engaged
in a call and the phone is not ringing then it is possible to accept an incoming
call. The scope is restricted to the event appearing in the scenario. The universal
contained the same trigger, main chart and scope.

SpeakerEnv Chip

¬Calling ∧ ¬Ringing¬Calling ∧ ¬Ringing

incomeCall

Fig. 6. A learned existential triggered scenario IncomingCalls

Once the engineer has made a selection, the learned scenario is added to
the initial set. Then the newly synthesised MTS (which is a refinement of the
original) is verified against the negated trigger property of another triggered
scenario. If the model checker returns false for all negated trigger properties of
the available scenario then this marks the end of the elaboration task with respect
to the concerned trigger. If however, the model checkers returns undefined, then
the process is repeated again with respect to the new non-vacuity witness trace.

388 D. Alrajeh et al.

Note that the encoding of the specification and the computation are hidden
from the engineer. In fact, the engineer only needs to provide the learning sys-
tem with the triggered scenarios, witnesses and fluent definitions and it will
automatically propose a set of required scenarios with respect to the witnesses.

5 Case Studies

We report on the results obtained from two case studies, the Philips television
set configuration from [23] and the air traffic control system in [9]. These were
chosen because they have been used as case studies in much of the literature for
which an elaborated scenario specification exists.

For the Philips configuration set, the specification contained existential trig-
gered scenario from [23]. For the air traffic control system, it included a set of
universal live sequence charts from [9]. All available scenarios were produced
by third parties. We extracted a subset of the scenarios that constituted the
main behaviour requirements provided, i.e. sunny day, normal behaviour. The
aim of the case studies was (i) to investigate the capability of the approach in
identifying the partiality of the given specification (ii) to verify that the learned
triggered scenarios resulted in implementations that non-vacuously satisfied the
given scenarios and finally (iii) to ensure that the learned scenarios were rele-
vant to the domain at hand. The latter was achieved by comparing the learned
scenarios with the available specification.

5.1 Philips Television Set Configuration

This case study is on a protocol used in a product family of Philips television
sets. It include multiple tuners and video output devices that can be configured
by a user. The protocol is concerned with controlling the signal path to avoid
visual artefacts appearing on video outputs when a tuner is changing frequency.

VideoTuner Switch VideoTuner Switch

Active t1 ∧ Tuning∧
(WaitingAck t1 ∨ Dropped t1)

Active t1 ∧ ¬Tuning

t1 tune

t1 newValue

t1 dropReq

s dropReq

s dropAck t1

t1 restore

s restore

(a)

Active t1 ∧ Tuning∧
(WaitingAck t1 ∨ Dropped t1)

t1 tune

t1 newValue

t1 dropReq, s dropReq, s dropAck t1,
t1 restore, s restore

(b)

Fig. 7. Triggered scenarios: (a) Tuning t1 Active t1 (b) NestedTuning t1 Active t1

We discuss here the results obtained by applying our approach to two exis-
tential triggered scenarios; Tuning t1 Active t1 and NestedTuning t1 Active t1
shown in Figure 7. The fluents appearing in the triggers are defined as follows.

Learning from Vacuously Satisfiable Scenario-Based Specifications 389

Active t1 =<set Active t1, set Active t2, tt>
Tuning t1 =<t1 tune, {s restore, set Active t1, set Active t2}, ff>
WaitingAck t1 =<t1 dropReq, s dropAck t1, ff>
Dropped t1=<s dropAck t1, t1 restore, ff>

A vacuity check was performed for the scenario Tuning t1 Active t1 first by
checking the system MTS resulting from the merge of the scenarios’ MTSs
against the following negated trigger property.

G¬((Active t1 ∧ ¬Tuning t1) ∧ (X ˙t1 tune)) (2)

The model checker produced the shortest non-vacuity witness, i.e. t1 tune. Based
on the description given in [23], we provided the system with a negative non-
vacuity trace where a t1 tune events occurs when tuner 2 is active instead.
From these traces, the learning produced two plausible triggered scenarios for
the event t1 tune, one existential and one universal, requiring t1 tune event to
happen when tuner 1 is active and not tuning. Choosing the universal scenario
implies that a t1 tune must be observed every time the trigger is satisfied. We
selected an existential interpretation to allow exploration of other behaviour (see
Figure 8.a). The approach was also used to check for the vacuous satisfiability
of NestedTuning t1 Active t1 (Figure 7.b). Our application resulted in a single
existential triggered scenario shown in Figure 8.b. The learned scenarios were
added to the initial specification. Verifying the new MTS against the negated
trigger properties showed that both triggered scenarios Tuning t1 Active t1 and
NestedTuning t1 Active t1 were non-vacuously satisfied in all implementations.

VideoTuner Switch Tuner Switch Video

(Active t1 ∧ ¬Tuning) (WaitingAck t1)(Active t1 ∧ ¬Tuning)

t1 tune

t1 dropReq, t1 newValue, s dropReq,
s dropAck t1,t1 restore, s restore

(a)

(WaitingAck t1)

t1 tune

t1 dropReq, t1 newValue, s dropReq,
s dropAck t1,t1 restore, s restore

(b)

Fig. 8. Learned existential triggered scenarios (a) TuneAllowed t1 Active NotTuning
(b) TuneAllowed WaitingAck t1

During the analysis phase, the approach also helped in detecting negative
non-vacuity witnesses. For example, the analysis showed that the specification
permitted behaviour in which the tuner sent a request to drop the signal without
the user requesting a tune signal, and another in which a nested tune occurred
outside the ‘storing regions’, i.e. when Waiting Ack t1 and Dropped t1 are both
false. With the identification of positive non-vacuity traces the learning ensured

390 D. Alrajeh et al.

that the learned scenarios did not require the occurrence of such events under
such conditions. The final set of scenarios produced using our proposed method
were validated against those generated by running the existing protocol in [23].

5.2 Air Traffic Control System

The Center-TRACON Automation System (CTAS) is a system for controlling
and managing air traffic flow at major terminal areas to reduce travel delays and
improve safety. The communication between the CTAS components is managed
by the Communication Manager (CM) component which stores all interactions
in a database and sends any required information to the requesting components.
Among the CTAS requirements is that every client using weather data should be
notified of any weather update. The scenarios in Figure 9 are universal triggered
scenarios reproduced from [9] regarding the successful and failed update of new
weather information.

ClientCM

¬Updating¬Updating

set upd

get new weather

yes 1

set postupd 1

set postupd

ClientCM

¬Updating¬Updating

set upd

get new weather

no 1

set prerevert 1

setprerevert

Fig. 9. Successful and failed update universal triggered scenarios

An application of our approach to this problem resulted in a total of six uni-
versal triggered scenarios and a single existential one. The set of uTSs computed
were in fact the same triggered scenarios given in [9]. An excerpt is shown in
Figure 10. Our approach also computed the existential scenario depicted in
Figure 10 for setting the weather cycle status to “pre-updating” which was not
present in the specification but is necessary to start the update process.

ClientCM CM Client ClientCM

¬PreUpd ∧ ¬Updating
set preupd

set upd

get new weather 1yes 1

set upd

get new weather 1

set preupd, set upd 1

¬PreUpd ∧ ¬Updating

set preupd

set upd, set upd 1

Fig. 10. CTAS learned universal and existential triggered scenarios

Learning from Vacuously Satisfiable Scenario-Based Specifications 391

6 Discussion and Related Work

Although this paper discusses learning from vacuously satisfiable scenarios, the
approach can be generalised for other forms of conditional scenarios (e.g. LSCs)
and conditional statements (e.g. goals and requirements [10]). The exact defini-
tion of the learning task could be customised to the specific problem at hand.

There has been much research on providing automated support for elaborating
scenario-based specifications [1,26]. However, much of the existing work is either
informal, deals with message sequence charts or does not address the problem
of vacuity introduced by conditional scenarios.

To the best of our knowledge, there is no prior work on applying learning algo-
rithms to compute triggered scenarios. However, using model checking to detect
vacuously satisfiable specifications has been the subject of several research efforts
e.g. [7,18,13]. The work in [13] for instance presents a technique for detecting
vacuity in temporal properties expressed in XCTL. They use a multi-valued
model checking algorithm to determine which subformulas in a given expression
are vacuously satisfied in a model. Our approach is similar in that we use model
checking algorithms to detect non-vacuity, and to produce a non-vacuity witness.
However, in addition to the type of specifications used, our work differs in that
it computes possible ways to avoid non-vacuity.

In our previous work, we combined the use of model checking and ILP to
provide automated support for different software engineering tasks. In [2], a
complete set of operational requirements in the form of preconditions and trigger
conditions are iteratively learned from goal models. In [3], model checking and
ILP are used to infer the missing conditions required to guarantee that a discrete
time goal-based specification only admits non-zeno behaviours. Although we use
here the same techniques, i.e. model checking and ILP, as in [2,3] to solve different
software engineering tasks, their application to the problem of detecting vacuity
and learning new triggered scenarios has posed three new main challenges: partial
behaviour models, branching time and scoping of learned expressions. These
points are elaborated below.

The problem addressed in this paper requires the ability to reason about uni-
versal and existential statements (both [2] and [3] deals only with universal
statements). This means that traditional 2-valued semantic domains for these
specifications are inadequate and a partial behaviour formalism such as MTS is
required. As a consequence, the logic programming language is extended with
new predicates (e.g. required and maybe). In addition, the use of triggered exis-
tential scenarios introduces statements that have a branching time semantics (in
both [2,3] learning is only defined over properties with linear time). For this, the
logic programming language has been extended to formalise hypothetical paths
that branch from particular positions in a trace. The scenario language used in
this paper supports scoping each scenario with an alphabet. (both [2,3] consider
statements to have the same scope). This entails that the learning procedure
must not only consider the scope of given scenarios (i.e. axioms for ensuring
that the satisfiability notion with respect to a given scope are required) but also
learned scenarios must include the scope for which they are intended. In [4] we

392 D. Alrajeh et al.

have presented preliminary work on the application of ILP in the context of
MTS models. The focus there is on learning safety properties to requires some
possible transitions from given traces. In this paper we build on the formalisa-
tion of MTSs in the logic programs and extend it to represent statements with
a branching semantics and scoping which are not considered in [4]. Finally, note
the work in [6] addresses the problem of learning operational requirements as in
[2,5] but without the use of model checking.

7 Conclusion and Future Work

This paper presents a novel tool-supported approach for the elaboration of par-
tial, conditional scenario-based specifications. In particular, we show how model
checking can be used for identifying vacuously satisfiable triggered scenarios and
how inductive logic programming can support the computation of new triggered
scenarios needed to avoid such vacuity.

As part of this work and future work, we intend to investigate alternative
methods for learning scopes of triggered scenarios. We also aim to extend the
approach to resolve inconsistencies in the specification by providing support
for detecting which parts of the specifications are the cause of inconsistency
(building upon results in [13]) and learning possible revisions to the triggered
scenarios necessary to resolve inconsistencies.

References

1. Alexander, I., Maiden, N.: Scenarios, stories, use cases: through the systems devel-
opment life-cycle. Wiley (2004)

2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: Proc. of 31st ICSE, pp. 265–275 (2009)

3. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Deriving non-zeno behaviour models
from goal models using ILP. J. of FAC 22(3-4), 217–241 (2010)

4. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: An inductive approach for modal
transition system refinement. In: Tech. Comm. of 27th ICLP, pp. 106–116 (2011)

5. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Extracting requirements from scenarios
with ILP. In: Proc. of 16th Intl. Conf. on ILP, pp. 63–77 (2006)

6. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Using abduction and induction for
operational requirements elaboration. J. of Applied Log. 7(3), 275–288 (2009)

7. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi,
M.Y.: Enhanced Vacuity Detection in Linear Temporal Logic. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg
(2003)

8. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation
methodology. In: Proc. of 31st DAC, pp. 596–602 (1994)

9. Bontemps, Y.: Relating Inter-Agent and Intra-Agent Specifications: The Case of
Live Sequence Charts. PhD thesis, Faculties Universitaires Notre-Dame de la Paix,
Namur Institut dInformatique, Belgium (2005)

10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Comp. Program. 20(1), 3–50 (1993)

Learning from Vacuously Satisfiable Scenario-Based Specifications 393

11. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The Modal Transi-
tion System Analyser. In: Proc. of 23rd Intl. Conf. on ASE, pp. 475–476 (2008)

12. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Proc. 11th ACM SIGSOFT FSE, pp. 257–266 (2003)

13. Gurfinkel, A., Chechik, M.: Extending Extended Vacuity. In: Hu, A.J., Martin,
A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg
(2004)

14. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer-Verlag New York, Inc. (2003)

15. Kowalski, R.A., Sergot, M.: A logic-based calculus of events. New Generation
Comp. 4(1), 67–95 (1986)

16. Kramer, J., Magee, J., Sloman, M.: Conic: An integrated approach to distributed
computer control systems. In: IEE Proc., Part E 130 (1983)

17. Kugler, H.-J., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal Logic for
Scenario-Based Specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 445–460. Springer, Heidelberg (2005)

18. Kupferman, O.: Sanity checks in formal verification. In: Conc. Theory, pp. 37–51
(2006)

19. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. of 3rd Annual
Symp. on Log. in Comp. Science, pp. 203 –210 (1988)

20. Muggleton, S.H.: Inverse Entailment and Progol. New Generation Comp., Special
Issue on ILP 13(3-4), 245–286 (1995)

21. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn.
McGraw-Hill Higher Education (2010)

22. Ray, O.: Nonmonotonic abductive inductive learning. J. of Applied Log. 7(3),
329–340 (2009)

23. Sibay, G.: The Philips television set case study,
http://sourceforge.net/projects/mtsa/files/mtsa/CaseStudies/

24. Sibay, G., Uchitel, S., Braberman, V.: Existential live sequence charts revisited.
In: Proc. of 30th ICSE, pp. 41–50 (2008)

25. Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties
and scenarios. In: Proc. of 29th Intl. Conf. on Softw. Eng., pp. 34–43 (2007)

26. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In:
Proc. of the 22nd ICSE, pp. 314–323 (2000)

http://sourceforge.net/projects/mtsa/files/mtsa/CaseStudies/

Explanations for Regular Expressions

Martin Erwig and Rahul Gopinath

School of EECS,
Oregon State University

Abstract. Regular expressions are widely used, but they are inherently hard to
understand and (re)use, which is primarily due to the lack of abstraction mecha-
nisms that causes regular expressions to grow large very quickly. The problems
with understandability and usability are further compounded by the viscosity, re-
dundancy, and terseness of the notation. As a consequence, many different regular
expressions for the same problem are floating around, many of them erroneous,
making it quite difficult to find and use the right regular expression for a particular
problem. Due to the ubiquitous use of regular expressions, the lack of understand-
ability and usability becomes a serious software engineering problem.

In this paper we present a range of independent, complementary representa-
tions that can serve as explanations of regular expressions. We provide methods
to compute those representations, and we describe how these methods and the
constructed explanations can be employed in a variety of usage scenarios. In ad-
dition to aiding understanding, some of the representations can also help identify
faults in regular expressions. Our evaluation shows that our methods are widely
applicable and can thus have a significant impact in improving the practice of
software engineering.

1 Introduction

Regular expressions offer a limited but powerful metalanguage to describe all kinds of
formats, protocols, and other small textual languages. Regular expressions arose in the
context of formal language theory, and a primary use has been as part of scanners in
compilers. However, nowadays their applications extend far beyond those areas. For
example, regular expressions have been used in editors for structured text modifica-
tion [19]. They are used in network protocol analysis [24] and for specifying events
in a distributed system [18]. Regular expressions are used for virus detection using
signature scanning [15], in mining the web [14], and as alternatives types for XML
data [13]. Moreover, there are many uses of regular expressions outside of computer sci-
ence, for example, in sociology (for characterizing events that led to placing of a child
in foster care) [21] or biology (for finding DNA sequences) [16]. In addition to spe-
cific applications, many generic types of information, such as phone numbers or dates,
are often presented and exchanged in specific formats that are described using regular
expressions.

Despite their popularity and simplicity of syntax, regular expressions are not without
problems. There are three major problems with regular expressions that can make their
use quite difficult.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 394–408, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Explanations for Regular Expressions 395

– Complexity. Regular expressions are often hard to understand because of their terse
syntax and their sheer size.

– Errors. Many regular expressions in repositories and on the web contain faults.
Moreover, these faults are often quite subtle and hard to detect.

– Version Proliferation. Because many different versions of regular expressions are
stored in repositories for one particular purpose, it is in practice quite difficult to
find or select the right one for a specific task.

A major source of these problems is the lack of abstraction in regular expressions, leav-
ing the users no mechanism for reuse of repeated subexpressions. By obscuring the
meaning, this also contributes to the explosion of regular expressions that are just vari-
ations of others, often with errors.

It is easy to see that lack of abstraction causes regular expressions that do anything
non-trivial to grow quite large. We have analyzed all the 2799 regular expressions in
the online regular expression repository at regexplib.com and found that 800 were at
least 100 characters long. Some complex expressions actually exceeded 4000 charac-
ters, and the most complex expressions had more than ten nested levels. It is very hard
for users to look through what essentially are long sequences of punctuation and under-
stand what such an expression does. That this is a real problem for programmers can be
seen, for example, from the fact that the popular website stackoverflow.com has over
2000 questions related to regular expressions. (Of those, 50 were asking for variations
of dates and 100 questions are about how to validate emails with regular expressions.)

As an example consider the following regular expression. It is far from obvious which
strings it is supposed to match. It is even more difficult to tell whether it does so correctly.

<\s*[aA]\s+[hH][rR][eE][fF]=f\s*>\s* <\s*[iI][mM][gG]\s+[sS][rR][cC]

=f\s*>[^<>]*<\s*/[iI][mM][gG]\s*>\s*<\s*/[aA]\s*>

This complexity makes it very hard to understand non-trivial regular expressions
and almost impossible to verify them. Moreover, even simple modifications become
extremely prone to errors.

To address these problems and offer help to users of regular expressions, we have
developed an ensemble of methods to explain regular expressions. These methods reveal
the structure of regular expressions, identify the differences between represented data
and format, and can provide a semantics-based annotation of intent.1 In addition to
aiding users in their understanding, our explanations can also be employed to search
repositories more effectively and to identify bugs in regular expressions.

The rest of the paper is structured as follows. In Section 2 we discuss shortcomings
of regular expressions to reveal the opportunities for an explanation notation. Specif-
ically, we illustrate the problems with complexity and understandability mentioned
above. Based on this analysis we then develop in Section 3 a set of simple, but effective
explanation structures for regular expressions and demonstrate how these can be com-
puted. We present an evaluation of our work in Section 4 with examples taken from a
public repository. Finally, we discuss related work in Section 5 and present conclusions
in Section 6.

1 A first explanation of the above example is given in Figure 1, and a more comprehensive
explanation follows later in Figure 2.

http:\\regexplib.com
http:\\stackoverflow.com

396 M. Erwig and R. Gopinath

2 Deficiencies of Regular Expressions

There are many different forms of regular expressions and many extensions to the basic
regular expressions as defined in [12]. Perl regular expressions provide the largest ex-
tension set to the above. However, the extensions offered by Perl go far beyond regular
languages and are very hard to reason about. Therefore, we have chosen the POSIX
regular expression extensions [20] as the basis of our work along with short forms for
character classes, which provide a good coverage of the commonly used regular expres-
sion syntax while still avoiding the complexity of Perl regular expression syntax.2

Some principal weaknesses of the regular expression notation have been described
by Blackwell in [1]. Using the cognitive dimensions framework [2] he identifies, for
example, ill-chosen symbols and terse notation as reasons for the low understandability
of regular expressions. Criticism from a practical perspective comes, for example, from
Jamie Zawinsky, co-founder of Netscape and a well-known, experienced programmer.
He is attributed with the quote “Some people, when confronted with a problem, think:
‘I know, I’ll use regular expressions.’ Now they have two problems.” [11].

In the following we point out some of the major shortcomings of regular expressions.
This will provide input for what explanations of regular expression should accomplish.

(1) Lack of Abstraction. A major deficiency of regular expressions is their lack of an
abstraction mechanism, which causes, in particular, the following problems.

– Scalability. Regular expressions grow quite large very quickly. The sheer size of
some expressions make them almost incomprehensible. The lack of a naming mech-
anism forces users to employ copy-paste to represent the same subexpression at
different places, which impacts the scalability of regular expressions severely.

– Lack of structure. Even verbatim repetitions of subexpressions cannot be factored
out through naming, but have to be copied. Such repetitions are very hard to detect,
but knowledge about such shared structure is an important part of the meaning of
a regular expression. Therefore, regular expressions fail to inform users on a high
level about what their commonalities and variabilities are.

– Redundancy. The repetition of subexpression does not only obscure the structure
and increase the size, it also creates redundancies in the representations, which can
lead to update anomalies when changing regular expressions. This is the source of
many faults in regular expressions and has a huge impact on their maintainability.

– Unclear intent. Both of the previously mentioned problems make it very hard to
infer the intended purpose of a regular expression from its raw syntax. Without
such knowledge it is impossible to judge a regular expression for correctness, which
also makes it hard to decide whether or not to use a particular regular expression.
Moreover, the difficulty of grasping a regular expression’s intent makes it extremely
hard to select among a variety of regular expressions in a repository and find the
right one for a particular purpose.

All these problems directly contribute to a lack of understandability of regular expres-
sions and thus underline the need for explanations. The problem of unclear intent also
points to another major shortcoming of regular expressions.

2 For simplicity we do not consider Unicode.

Explanations for Regular Expressions 397

(2) Inability to Exploit Domain Knowledge. Abstract conceptual domains are struc-
tured through metaphorical mappings from domains grounded directly in experience [3].
For example, the abstract domain of time gets its relational structure from the more con-
crete domain of space. Children learning arithmetic for the first time commonly rely
on mapping the abstract domain of numbers to their digits [7]. The abstract concepts
are easier to pick up if users are provided with a mapping to a less abstract or more
familiar domain. One of the difficulties with regular expressions is that it is a formal
notation without a close mapping [2] to the domain that the user wants to work with,
which makes it difficult for new users to pick up the notation [1]. Moreover, there is no
clear mental model for the behavior of the expression evaluator.

(3) Role Expressiveness. A role expressive notational system must provide distinctive
visual cues to its users as to the function of its components [2]. Plain regular expressions
have very few beacons to help the user identify the portions of regular expressions that
match the relevant sections of input string. The users typically work around this by using
subexpressions that correspond to major sections in the input, and by using indentation
to indicate roles of subexpressions visually.

(4) Error Proneness. Regular expressions are extremely prone to errors due to the fact
that there is no clear demarcation between the portions of regular expression that are
shared between the alternatives, and those portions that are not, and thus have a higher
contribution towards the variations that can be matched.

In the next section we will address the problems of scalability, unclear structure,
and redundancy through explanation representations that highlight their compositional
structure and can identify common formats.

3 Explanation Representations and Their Computation

The design of our explanation representations is based on the premise that in order to
understand any particular regular expression it is important to identify its structure and
the purpose of its components. Moreover, we exploit the structures of the domain that a
particular regular expression covers by providing semantics-based explanations that can
carry many syntactic constraints in a succinct, high-level manner. Two other explanation
structures that are obtained through a generalization process are briefly described in the
Appendix.

3.1 Structural Analysis and Decomposition

Large regular expressions are composed of smaller subexpressions, which are often very
similar to each other. By automatically identifying and abstracting common subexpres-
sions, we can create a representation that directly reveals commonalities. Our method is
a variation of a rather standard algorithm for factoring common subexpressions. We il-
lustrate it with the example given in the introduction. We begin by grouping maximally
contiguous sequences of characters that do not contain bracketed expressions such as

398 M. Erwig and R. Gopinath

(· · ·), [· · ·] or | into bracketed expressions. This step is not necessary if the expression
does not contain |. It preserves the meaning of the regular expression because brackets
by themselves do not change the meaning of a regular expression.

For example, here are the first several subsequences identified in that way for the
introductory example (each separated by white space).

<\s* [aA] \s+ [hH] [rR] [eE] [fF] =f\s*>\s*<\s* [iI] [mM] [gG]

\s+ [sS] [rR] [cC] =f\s*> [^<>]* . . .

This step essentially amounts to a tokenization of the regular expression character
stream.

The next step is to introduce names for sequences (not containing space specifica-
tions) that are recognized as common entities that appear more than once in the expres-
sion.

In the extraction of subexpressions we make use of a number of heuristics for gen-
erating names for the subexpressions since the choice of names has a big influence on
the understandability of the decomposed expression [4, 8]. For example, a plain name
represents the regular expression that matches the name, such as img = img. Since many
applications of regular expressions involve the description of keywords whose capital-
ization does not matter, we also use the convention that underlined names represent
regular expressions that match any capitalization of that name, such as a = [aA] or img
= [iI][mM][gG].

In the example, common expressions are expressions that represent upper- or lower-
case characters, such as [aA], which will therefore be replaced by their names. After
this replacement, the token sequence for our example looks as follows.

<\s* a \s+ h r e f =f\s*>\s*<\s* i m g \s+ s r c =f\s*> [^<>]* . . .

This grouping process can now be iterated until no more groups can be identified for
naming. In the example we identify several new names as follows.

<\s* a \s+ href =f\s*>\s*<\s* img \s+ src =f\s*> [^<>]* . . .

The advantage of the described naming conventions is that they provide an implicit nam-
ing mechanism that simplifies regular expressions without introducing any overhead.

Another naming strategy is to generate names from equivalent POSIX character class
names, such as alpha = [a-zA-Z], alphas = alpha*, digit = [0−9], and digits = digit*.
In the case of sequence of one or more matches, we capitalize the word, that is, Alphas=
alpha+ and Digits = digit+. We also replace sequences that are identified as matching
a continuous sequence of numbers with a range notation. For example, [0 .. 12] =
[0-9]|1[0-2] and [00 .. 99]= [0-9][0-9].

Finally, we also use the convention that a blank matches \s*, that is, a sequence of
zero or more spaces, and that a boxed space . matches \s+, that is, a sequence of one
or more spaces. Redundant brackets that do not enclose more than one group are also
removed in this step. Applying some of these simplifications, we finally obtain for our
example expression the decomposition shown in Figure 1.

Explanations for Regular Expressions 399

< a.href =f > < img.src=f >[^<>]*< /img > < /a >

Fig. 1. Decomposition for the embedded image regular expression

This representation makes it much clearer what the original regular expression does,
namely matching an image tag embedded in a link that matches the same file name f.
This is a common pattern frequently used in programs and scripts that scan web pages
for pictures and download the image files.

Our decomposition method can also identify parameterized names for subexpres-
sions that are variations of one another. Although, this technique can further reduce
redundancy, it also makes explanations more complex since it requires understanding
of parameterized names (which are basically functions) and their instantiation (or ap-
plication). Since it is not clear at this point whether the gained abstraction warrants the
costs in terms of complexity, we ignore this feature in this paper.

Although the overall structure of regular expressions is revealed through decomposi-
tion, the approach described so far is only partially satisfying. In particular, the different
functions of format and data expressions are not yet distinguished, and opportunities for
semantic grouping have not been exploited yet. We will address these two issues next.

3.2 Format Analysis

Most non-trivial regular expressions use punctuation and other symbols as separators
for different parts of the expression. For example, dates and phone numbers are often
presented using dashes, or parts of URLs are given by names separated by periods. We
call such a fixed (sub)sequence of characters that is part of any string described by a
regular expression a format. Since all strings contain the format, it does not add anything
to the represented information. Correspondingly, we call the variable part of a regular
expression its data part.

By definition the individual strings of a format must be maximal, that is, in the origi-
nal regular expression there will always be an occurrence of a (potentially empty) data
string between two format strings. The situation at the beginning and end of a format is
flexible, that is, a format might or might not start or end the regular expression.

A format can thus be represented as an alternating sequence of format strings inter-
spersed with a wildcard symbol “•” that stands for data strings. For example, possible
formats for dates are •-•-• and •/•/•, and the format for our embedded image tag ex-
pression is the pattern <•=f><•=f>•</•></•>. The wildcard symbol matches any num-
ber of characters so long as they are not part of the format. This notion of a format can
be slightly generalized to accommodate alternative punctuation styles, as in the case for
dates. Thus a regular expression can have, in general, a set of alternative formats. Note
that because there is no overlap between the format and data strings, identifying the
format also helps with the structuring of the data.

The computation of formats can be described using a simple recursive definition of a
function format, which computes for a given regular expression e a set of formats. The
function is defined by case analysis of the structure of e. A single constant c is itself

400 M. Erwig and R. Gopinath

a format, and the format for a concatenation of two expressions e · e′ is obtained by
concatenating the formats from both expressions (successive • symbols are merged into
one). We cannot derive a format in the above defined sense from a repetition expression
since it cannot yield, even in principle, a constant string.3 The formats of an alternation
e|e′ are obtained by merging the formats of both alternatives, which, if they are “similar
enough”, preserves both formats, or results in no identification of a format (that is, •)
otherwise.

format(c) = {c}
format(e · e′) = { f · f ′ | f ∈ format(e)∧ f ′ ∈ format(e′)}
format(e|e′) = ∪ f∈format(e), f ′∈format(e′)align(f , f ′)

format(e∗) = •

Two formats are similar when they can be aligned in a way so that the positions of
the wild-cards and the fixed strings align in both expressions. If this is the case, the
function align will return both formats as result, otherwise it will return a wildcard. For
example, the formats f = •-•-• and f ′ = •/•/• are similar in this sense, and we have
align(f , f ′) = {•/•/•,•-•-•}.

3.3 User-Directed Intent Analysis

Our analysis of repositories revealed that many regular expressions have subexpres-
sions in common. Sometimes they share exact copies of the same subexpression, while
sometimes the expressions are very similar.

This indicates that there is a huge need, and also an opportunity, for the reuse of
regular expressions. Specifically, the commonality can be exploited in two ways. First,
if someone wants to create a new regular expression for a specific application, it is
likely that some parts of that expression exist already as a subexpression in a repository.
The problem is how to find them. If the names used in the decompositions produced
as part of our explanations were descriptive enough, then these domain-specific names
could be used to search or browse repositories. This will work increasingly well over
the middle and long run, when explanations with descriptive names have found their
way into existing repositories.

The purpose of user-directed intent analysis is to provide explanations with more
descriptive names, which aids the understanding of the regular expression itself, but
can also be exploited for searching repositories as described. As an example, consider
the following regular expression for dates.

(((0[13578]|[13578]|1[02])/([1-9]|[1-2][0-9]|3[01]))|((0[469]|[469]|11)

/([1-9]|[1-2][0-9]|30))|((2|02)-([1-9]|[1-2][0-9])))/[0-9]{4}

3 Although we have considered the notion of repetition formats, we did not include them since
they would have complicated the format identification process considerably. On the other hand,
our analysis presented in Section 4 seems to indicate that the lack of repetition formats can
limit the applicability of format analysis.

Explanations for Regular Expressions 401

The fact that it describes dates is not inherent in the regular expression itself. How-
ever, once we are given this piece of information, we try to match its subexpres-
sions to annotated date (sub)expressions in the repository. In this case, we find that
0[13578]|[13578]|1[02] is used to describe months that have 31 days. At this point,
this is just a guess, which can be communicated to the user. Once the user confirms the
interpretation, this information can be exploited for an explanation.

Specifically, we can apply decomposition with a name that reflects this information.
Moreover, we can suggest potential improvements to the expression. For example, in
this case we can suggest to replace the first two alternatives 0[13578]|[13578] by an
optional prefix, that is, by 0?[13578]. If we continue the interpretation, we can identify
two other components, months with 30 days and February, the month with 29 days.
Accepting all suggested interpretations, decomposition will thus produce the following
explanation.

((month-with-31-days/31-days)| (month-with-30-days/30-days)| (february/29-days))/year
where

month-with-31-days = 0?[13578]|1[02]

month-with-30-days = 0?[469]|11

february = 2|02

31-days = [1 ... 31]

30-days = [1 ... 30]

29-days = [1 ... 29]

year = [0-9]{4}

From our analysis of online repositories and discussion sites of regular expressions we
found that the majority of regular expressions that are actively used and that users ask
about are taken from 30 or so categories, which shows that with limited annotation effort
one can have a big impact by providing improved regular expression decomposition
using intention analysis.

3.4 Combined Explanations

The different explanation representations explored so far serve different purposes and
each help explain a different aspect of a regular expression. Ultimately, all the different
representations should work together to provide maximal explanatory benefit. To some
degree this cooperation between the explanations is a question of GUI design, which is
beyond the scope of the current paper.

We therefore employ here the simple strategy of listing the different explanations
together with the regular expression to be explained. We add one additional represen-
tational feature, namely the color coding of identified subexpressions. This enhances
the explanation since it allows us to link subexpressions and their definitions to their
occurrence in the original regular expression. As an example, consider the explanation
of the embedded image regular expression shown in Figure 2.

For coloring nested definitions, we employ a simple visualization rule with prefer-
ence to the containing color. This leaves us with non-nested colors. This rule can be
seen in action in Figure 3 where the occurrence of the subexpression 29-days as part
of the expressions representing 30-days and 31-days is not color coded in the original
regular expression.

402 M. Erwig and R. Gopinath

�REGULAR EXPRESSION

<\s*[aA]\s+[hH][rR][eE][fF]=f\s*>\s*<\s*[iI][mM][gG]\s+[sS][rR][cC]=f\s*>

[^<>]*<\s*/[iI][mM][gG]\s*>\s*<\s*/[aA]\s*>

�STRUCTURE

< a.href=f > < img.src=f >[^<>]*< /img > < /a >

�FORMAT(S)

<•=f><•=f>•</•></•>

Fig. 2. Combined explanation for the embedded image regular expression

4 Evaluation

We have evaluated our proposed regular expression explanations in two different ways.
First, we analyzed the explanation notation using the cognitive dimensions framework
[2]. The results are presented in Section 4.1. Then in Section 4.2, we show the result of
analyzing the applicability of our approach using the regexplib.com repository.

4.1 Evaluating the Explanation Notation Using Cognitive Dimensions

Cognitive Dimensions [2] provide a common vocabulary and framework for evaluat-
ing notations and environments. The explanation notation was designed to avoid the
problems that the original regular expression notation causes in terms of usability and
understandability. The cognitive dimensions provide a systematic way of judging that
effort. Here we discuss a few of the cognitive dimensions that immediately affect the
explanation notation.

Viscosity. The concept of viscosity measures the resistance to change that often results
from redundancy in the notation. High viscosity means that the notation is not support-
ive of changes and maintenance.

While regular expressions score very high in terms of viscosity, our explanation
structures for regular expressions have low viscosity since the abstraction provided by
naming and decomposition allows redundancy to be safely eliminated. Moreover, the
automatic decomposition identifies and removes duplicates in regular expressions. For
example, consider an extension of the regular expression for dates, shown in Figure 3,
that uses either / or - as a separation character. Using raw regular expressions, we need
to duplicate the entire expression, and add it as an alternative at the top level. In con-
trast, the explanation representation can safely factor out the commonality and avoid
the redundancy.

http:\\regexplib.com

Explanations for Regular Expressions 403

�REGULAR EXPRESSION

((((0[13578]|[13578]|1[02])/([1-9]|[0-2][0-9]|3[01]))|((0[469]|[469]|11)/

([1-9]|[0-2][0-9]|30))|((2|02)/([1-9]|[0-2][0-9])))/[0-9]{4}

�STRUCTURE

((month-with-31-days/31-days)|(month-with-30-days/30-days)|(february/29-days))/year
where

month-with-31-days = 0?[13578]|1[02]

month-with-30-days = 0?[469]|11

february = 2|02

31-days = [1 .. 31]

30-days = [1 .. 30]

29-days = [1 .. 29]

year = [0-9]{4}

�FORMAT(S)

•/•/•

Fig. 3. Combined explanation for the date expression

Closeness of Mapping. Any notation talks about objects in some domain. How closely
the notation is aligned to the domain is measured in the dimension called closeness of
mapping. Usually, the closer the notation to the domain is, the better since the notation
then better reflects the objects and structures it talks about.

In principle, regular expressions are a notation for a rather abstract domain of strings,
so considering closeness of mapping might not seem very fruitful. However, since in
many cases regular expressions are employed to represent strings from a specific do-
main, the question actually does matter. Our notation achieves domain closeness in two
ways. First, intent analysis provides, in consultation with the user, names for subexpres-
sions that are taken from the domain and thus establish a close mapping that supports
the explanatory value of the regular expression’s decomposition. While this obviously
can be of help to other users of the expression, this might also benefit the user who
adds the names in the decomposition in gaining a better understanding by moving the
expression’s explanation closer to the domain. Second, explanations employ a specific
notation for numeric ranges that is widely used and can thus be assumed to be easily
understood. Again, Figure 3 provides an example where the ranges and their names
for 30 days, 31 days, and 29 days are closer to the intended list of numbers than the
corresponding original parts of the regular expressions.

Role Expressiveness. This dimension tries to measure how obvious the role of a com-
ponent is in the solution as a whole. In our explanation notation the formats produced by
format analysis separate the fixed strings from the data part, which directly points to the
roles of the format strings. The format also identifies more clearly a sequence of match-

404 M. Erwig and R. Gopinath

Table 1. Regular expression in different domains in the regexplib.com repository

Type Selected Type Selected
Email 38 URI 74
Numbers 107 Strings 91
Dates and Times 134 Address and Phone 104
Markup or code 63 Miscellaneous 173

ings, which supports a procedural view of the underlying expression. Moreover, roles
of subexpressions are exposed by structure analysis and decomposition techniques.

4.2 Applicability of Explanations

We have evaluated the potential reach and benefits of our methods through the following
research questions.

RQ1: Is the method of systematic hierarchical decomposition applicable to a signifi-
cant number of regular expressions?

RQ2: How effective is our method of computing formats?
RQ3: Can we accurately identify the intended meanings of subexpressions in a regular

expression given the context of the regular expression?
RQ4: How well does error detection work? In particular, can we identify inclusion

errors for the regular expressions in real-world expressions?

The fourth research question came up during our work on RQ3. We noticed subtle
differences in similar regular expressions and suspected that these were responsible for
inaccuracies. We have developed a method of regular expression generalization that
generates candidates of compatible regular expressions that can then be inspected for
inclusion/exclusion errors, that is, strings that are incorrectly accepted/rejected by a
regular expression.

Setup. The publicly available online regular expression repository at regexplib.com
was used for all our evaluations. This repository contains a total of 2799 user-supplied
regular expressions for a variety of matching tasks. For our evaluations we manually
eliminated eight syntactically invalid regular expressions as well as 18 expressions that
were longer than 1000 characters to simplify our inspection and manual annotation
work, leaving a total of 2773 regular expressions for analysis. Of these, 800 have been
assigned to different domains. The total numbers of regular expressions in each domain
are given in Table 1.

Test Results. For the evaluation of the first research question, we identified the subex-
pressions using our decomposition algorithm. For each expression we recorded the
number of its (non-trivial)4 subexpressions and averaged these numbers over regular
expressions of similar length. That is, average was taken over intervals of 100 charac-
ters each. These are given by the long bars in Figure 4 on the left. The short bars show
the averaged number of common subexpressions (that is, subexpression that occurred
at least twice).

4 A basic subexpressions was identified as the longest sequence of tokens that does not contain
another group or subexpression.

http:\\regexplib.com

Explanations for Regular Expressions 405

100 1 8

200 2 15

300 5 22

400 11 33

500 12 35

600 12 48

700 12 31

800 12 35

900 4 15

1000 7 25

(a) Frequency of subexpressions

100 1

200 1.7

300 4

400 3.5

500 6.2

(b) Degree of sharing

Fig. 4. Subexpression and Sharing Statistics. There was almost no sharing in expressions that are
longer than 500 characters.

Considering one category in more detail, of the 134 regular expressions in the date-
time category, 103 contained subexpressions. The maximum number of subexpressions
was 11, and on average each expression contained about 3.25 subexpressions. The max-
imum number of nesting levels was 10, and on average expressions had 4 levels of
nesting. The numbers in the other categories are very similar. We also determined the
degree of sharing, that is, the number of times each identified subexpression occurred in
the regular expression. The average degree of sharing, again averaged over expressions
within a certain length range, is shown in Figure 4 on the right.

The most repeated single subexpression occurred 21 times. The total number of re-
peated subexpressions per regular expression was on average 3.9, the regular expression
that contained the most repetitions had 42 repeated subexpressions. These numbers
show that (1) there is quite a variety in number and repetitions of subexpressions, and
(2) that decomposition has much structure to reveal and is widely applicable.

Table 2. Analysis Applicability

Property Found (Total)
Formats 55 (100)
Intentions 440 (1513)
Inclusion errors 39 (280)

Since the evaluations of the second, third, and fourth
research questions all required manual verification, we
had to limit the scope of the considered regular expres-
sions. For the second research question we used a ran-
domized sample of 100 regular expressions selected
from the complete repository. Format analysis was able
to identify formats for 55 of those. The results are also
shown in Table 2. We would have expected a larger number of formats. We suspect the
rather low number is due to our ignoring repetition formats. A follow-up study should
investigate how many more formats can be identified by using repetition formats.

For the evaluation of the third research question, we chose all of the 134 regular
expressions from the date-time category. We applied our algorithm to identify the intent
of each of the 1513 subexpressions that were contained in the 134 expressions. We
could identify 440 subexpressions as having a specific intent. These results are also
shown in Table 2. We believe that this number is quite encouraging and demonstrates
that intent analysis can be widely applicable.

With regard to the fourth research question, we chose a randomized sample of 100
regular expressions from the date-time category. These regular expressions contained

406 M. Erwig and R. Gopinath

280 subexpressions that we could identify from the context. We could detect 39 inclu-
sion errors in these samples, but no exclusion errors. These results are summarized in
Table 2. We believe that finding 39 (potential) faults in 134 regular expressions as a
by-product of an explanation is an interesting aspect. Some of these are false positives
since the intent provided by our analysis might be overly restrictive and not what the
creator of the regular expression under consideration had in mind. Still, warnings about
even only potential faults make users think carefully about what regular expression they
are looking for, and they can thus further the understanding of the domain and its regular
expressions.

4.3 Threats to Validity

The limited sample size may skew our results if the samples are not representative. An-
other threat to the validity is that the website regexplib.commay not be representative.
A different threat to our research findings could be in our estimation of effectiveness of
our techniques using cognitive dimensions framework rather than a user study.

5 Related Work

The problems of regular expressions have prompted a variety of responses, ranging from
tools to support the work with regular expressions to alternative language proposals.

Prominent among tools are debuggers, such as the Perl built-in regular expression
debugger and regex buddy (see regexbuddy.com). The Perl debugger creates a listing
of all actions that the Perl matching engine takes. However, this listing can become
quite large even for fairly small expressions. Regex buddy provides a visual tool that
highlights the current match. There are also many tools that show subexpressions in
a regular expression. The best known is rework [23], which shows the regular expres-
sion as a tree of subexpressions. However, it does not support naming or abstraction of
common subexpressions. Several tools, such as Graphrex [6] and RegExpert [5], allow
the visualization of regular expressions as a DF. All these approaches share the same
limitations with respect to providing high-level explanations. Specifically, while these
approaches help users understand why a particular string did or did not match, they do
not provide any explanations for what the general structure of the regular expression is
and what kind of strings the regular expression will match in general.

In the following we discuss a few alternatives that have been proposed to regular
expressions.

Topes provides a system that allows a user to specify a format graphically without
learning an arcane notation such as regular expressions [22]. The system internally con-
verts specifications to augmented context-free grammars, and a parser provides a graded
response to the validity of any string with respect to an expected format. The system
also allows programmers to define “soft” constraints, which are often, but not necessar-
ily always true. These constraints help in generating graded responses to possibly valid
data that do not conform to the format.

Blackwell proposes a visual language to enter regular expressions [1]. It also pro-
vides a facility to learn regular expressions from given data (programming by example).

http:\\regexbuddy.com

Explanations for Regular Expressions 407

The system does provide multiple graphical notations for representing regular expres-
sions. However, it is not clear how well this notation will scale when used for more
complex regular expressions.

Lightweight structured text processing is an approach toward specifying the struc-
ture of text documents by providing a pattern language for text constraints. Used in-
teractively, the structure of text is defined using multiple relationships [17]. The text
constraint language uses a novel representation of selected text as collections of rect-
angles or region intervals. It uses an algebra over sets of regions where operators take
region sets as arguments and generate region sets as result.

While most of these (and other) approaches arguably provide significant improve-
ments over regular expressions, the fact that regular expressions are a de facto standard
means that these tools will be used in only specific cases and that they do not obviate
the need for a general explanation mechanism.

We have previously investigated the notion of explainability as a design criterion
for languages in [9]. This was based on a visual language for expressing strategies
in game theory. A major guiding principle for the design of the visual notation was
the traceabilty of results. A different, but related form of tracing was also used in the
explanation language for probabilistic reasoning problems [10].

Since regular expressions already exist, we have to design our explanation structures
as extensions to the existing notation. This is what we have done in this paper. In par-
ticular, we have focused on structures that help to overcome the most serious problems
of regular expressions—the lack of abstraction and structuring mechanisms. In future
work we will investigate how the notion of traceability in the context of string matching
can be integrated into our set of explanation structures.

6 Conclusions

We have identified several representations that can serve as explanations for regular
expressions together with algorithms to automatically (or semi-automatically in the case
of intention analysis) produce these representations for given regular expressions.

By comparing raw regular expressions with the annotated versions that contain de-
composition structures, formats, and intentional interpretations, it is obvious—even
without a user study—that our methods improve the understanding of regular expres-
sions. The use of the developed explanation structures is not limited to explain in-
dividual regular expression. They can also help with finding regular expressions in
repositories and identifying errors in regular expressions. This demonstrates that expla-
nation structures are not simply “comments” that one might look at if needed (although
even that alone would be a worthwhile use), but that they can play an active role in sev-
eral different ways to support the work with regular expressions. Our evaluation shows
that the methods are widely applicable in practice.

The limitations of regular expressions have prompted several designs for improved
languages. However, it does not seem that they will be replaced with a new representa-
tion anytime soon. Therefore, since regular expressions are here to stay, any support that
can help with their use and maintenance should be welcome. The explanation structures
and algorithms developed in this paper are a contribution to this end.

408 M. Erwig and R. Gopinath

References

1. Blackwell, A.F.: See What You Need: Helping End-users to Build Abstractions. J. Visual
Languages and Computing 12(5), 475–499 (2001)

2. Blackwell, A.F., Green, T.R.: Notational Systems - The Cognitive Dimensions of Notations
Framework. In: HCI Models, Theories, and Frameworks: Toward and Interdisciplinary Sci-
ence, pp. 103–133 (2003)

3. Boroditsky, L.: Metaphoric structuring: understanding time through spatial metaphors. Cog-
nition 75(1), 1–28 (2000)

4. Bransford, J.D., Johnson, M.K.: Contextual prerequisites for understanding: Some investiga-
tions of comprehension and recall. J. Verbal Learning and Verbal Behavior 11(6), 717–726
(1972)

5. Budiselic, I., Srbljic, S., Popovic, M.: RegExpert: A Tool for Visualization of Regular Ex-
pressions. In: EUROCON 2007. The Computer as a Tool, pp. 2387–2389 (2007)

6. Graphrex, http://crotonresearch.com/graphrex/
7. Curcio, F., Robbins, O., Ela, S.S.: The Role of Body Parts and Readiness in Acquisition of

Number Conservation. Child Development 42, 1641–1646 (1971)
8. Derek, M.J.: The New C Standard: An Economic and Cultural Commentary. Addison-Wesley

Professional (2003)
9. Erwig, M., Walkingshaw, E.: A Visual Language for Representing and Explaining Strategies

in Game Theory. In: IEEE Int. Symp. on Visual Languages and Human-Centric Computing.
pp. 101–108 (2008)

10. Erwig, M., Walkingshaw, E.: Visual Explanations of Probabilistic Reasoning. In: IEEE Int.
Symp. on Visual Languages and Human-Centric Computing, pp. 23–27 (2009)

11. Friedl, J.: Now you have two problems, http://regex.info/blog/2006-09-15/247
12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc. (2006)
13. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. In: Proc. of the

International Conf. on Functional Programming (ICFP), pp. 11–22 (2000)
14. Hur, J., Schuyler, A.D., States, D.J., Feldman, E.L.: SciMiner: web-based literature min-

ing tool for target identification and functional enrichment analysis. Bioinformatics (Oxford,
England) 25(6), 838–840 (2009)

15. Lockwood, J.W., Moscola, J., Kulig, M., Reddick, D., Brooks, T.: Internet Worm and
Virus Protection in Dynamically Reconfigurable Hardware. In: Military and Aerospace Pro-
grammable Logic Device (MAPLD), p. 10 (2003)

16. Mahalingam, K., Bagasra, O.: Bioinformatics Tools: Searching for Markers in DNA/RNA
Sequences. In: BIOCOMP, pp. 612–615 (2008)

17. Miller, R.C., Myers, B.A.: Lightweight Structured Text Processing. In: USENIX Annual
Technical Conf., pp. 131–144 (1999)

18. Nakata, A., Higashino, T., Taniguchi, K.: Protocol synthesis from context-free processes
using event structures. In: Int. Conf. on Real-Time Computing Systems and Applications,
pp. 173–180 (1998)

19. Pike, R.: Structural Regular Expressions. In: EUUG Spring Conf., pp. 21–28 (1987)
20. Regular Expressions, http://en.wikipedia.org/wiki/Regular_expression
21. Sanfilippo, L., Voorhis, J.V.: Categorizing Event Sequences Using Regular Expressions. IAS-

SIST Quarterly 21(3), 36–41 (1997)
22. Scaffidi, C., Myers, B., Shaw, M.: Topes: reusable abstractions for validating data. In: Int.

Conf. on Software Engineering, pp. 1–10 (2008)
23. Steele, O.: http://osteele.com/tools/rework/
24. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E.: Automatic Network Protocol Anal-

ysis. In: Annual Network and Distributed System Security Symp., NDSS 2008 (2008)

http://crotonresearch.com/graphrex/
http://regex.info/blog/2006-09-15/247
http://en.wikipedia.org/wiki/Regular_expression
http://osteele.com/tools/rework/

On the Danger of Coverage Directed

Test Case Generation

Matt Staats1, Gregory Gay2, Michael Whalen2, and Mats Heimdahl2

1 Korea Advanced Institute of Science & Technology, Daejeon, Republic of Korea
2 University of Minnesota, Minneapolis MN, USA

staatsm@kaist.ac.kr, greg@greggay.com, {whalen,heimdahl}@cs.umn.edu

Abstract. In the avionics domain, the use of structural coverage criteria
is legally required in determining test suite adequacy. With the success
of automated test generation tools, it is tempting to use these criteria as
the basis for test generation. To more firmly establish the effectiveness of
such approaches, we have generated and evaluated test suites to satisfy
two coverage criteria using counterexample-based test generation and
a random generation approach, contrasted against purely random test
suites of equal size.

Our results yield two key conclusions. First, coverage criteria satisfac-
tion alone is a poor indication of test suite effectiveness. Second, the use
of structural coverage as a supplement—not a target—for test genera-
tion can have a positive impact. These observations points to the dangers
inherent in the increase in test automation in critical systems and the
need for more research in how coverage criteria, generation approach,
and system structure jointly influence test effectiveness.

1 Introduction

In software testing, the need to determine the adequacy of test suites has mo-
tivated the development of several test coverage criteria [1]. One such class of
criteria are structural coverage criteria, which measure test suite adequacy in
terms of coverage over the structural elements of the system under test. In the
domain of critical systems—particularly in avionics—demonstrating structural
coverage is required for certification [2]. In recent years, there has been rapid
progress in the creation of tools for automatic directed test generation for struc-
tural coverage criteria [3–5]; tools promising to improve coverage and reduce the
cost associated with test creation.

In principle, this represents a success for software engineering research: a
mandatory—and potentially arduous—engineering task has been automated.
However, while there is some evidence that using structural coverage to guide
random test generation provides better tests than purely random tests, the ef-
fectiveness of test suites automatically generated to satisfy various structural
coverage criteria has not been firmly established. In pilot studies, we found that
test inputs generated specifically to satisfy three structural coverage criteria via
counterexample-based test generation were less effective than random test in-
puts [6]. Further, we found that reducing larger test suites providing a certain

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 409–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

410 M. Staats et al.

coverage—in our case MC/DC—while maintaining coverage reduced their fault
finding significantly, hinting that it is not always wise to build test suites solely
to satisfy a coverage criterion [7].

These results are concerning. Given the strong incentives and the ability to
automate test generation, it is essential to ask: “Are test suites generated using
automated test generation techniques effective?” In earlier studies, we used a
single system to explore this question. In this paper, we report the results of a
study conducted using four production avionics systems from Rockwell Collins
Inc. and one example system from NASA. Our study measures the fault find-
ing effectiveness of automatically generated test suites satisfying two structural
coverage criteria, branch coverage and Modified Condition Decision Coverage
(MC/DC coverage) as compared to randomly generated test suites of the same
size. We generate tests using both counterexample-based test generation and
a random generation approach. In our study we use mutation analysis [8] to
compare the effectiveness of the generated test suites as compared to purely
randomly generated test suites of equal size.

Our results show that for both coverage criteria, in our industrial systems,
the automatically generated test suites perform significantly worse than ran-
dom test suites of equal size when coupled with an output-only oracle (5.2% to
58.8% fewer faults found). On the other hand, for the NASA example—which
was selected specifically because its structure is significantly different from the
Rockwell Collins systems—test suites generated to satisfy structural coverage
perform dramatically better, finding 16 times as many faults as random test
suites of equal size. Furthermore, we found that for most combinations of cov-
erage criteria and case examples, randomly generated test suites reduced while
maintaining structural coverage find more faults than pure randomly generated
test suites of equal size, finding up to 7% more faults.

We draw two key conclusions from these results. First, automatic test genera-
tion to satisfy branch or MC/DC coverage does not, for the systems investigated,
yield effective tests relative to their size. This in turn indicates that satisfying
even a highly rigorous coverage criterion such as MC/DC is a poor indication of
test suite effectiveness. Second, the use of branch or MC/DC as a supplement—
not a target—for test generation (as Chilensky and Miller recommend in their
seminal work on MC/DC [9]) does appear effective.

These results in this paper highlight the need for more research in how the
coverage criterion, test generation approach, and the structure of the system
under test jointly influence the effectiveness of testing. The increasing availability
and use of advanced test-generation tools coupled with our lack of knowledge of
their effectiveness is worrisome and careful attention must be paid to their use
and acceptance.

2 Related Work

There exist a number of empirical studies comparing structural coverage criteria
with random testing, with mixed results. Juristo et al. provide a survey of much

On the Danger of Coverage Directed Test Case Generation 411

of the existing work [10]. With respect to branch coverage, they note that some
authors (such as Hutchins et al. [11]) find that it outperforms random testing,
while others (such as Frankl and Weiss [12]) discover the opposite. Namin and
Andrews have found coverage levels are positively correlated with fault finding
effectiveness [13]. Theoretical work comparing the effectiveness of partition test-
ing against random testing yields similarly mixed results. Weyuker and Jeng,
and Chen and Yu, indicated that partition testing is not necessarily more ef-
fective than random testing [14, 15]. Later theoretical work by Gutjahr [16],
however, provides a stronger case for partition testing. Arcuri et al. [17] re-
cently demonstrated that in many scenarios, random testing is more predictable
and cost-effective at reaching high levels of structural coverage than previously
thought. The authors have also demonstrated that, when cost is taken into ac-
count, random testing is often more effective at detecting failures than a popular
alternative—adaptive random testing [18].

Most studies concerning automatic test generation for structural coverage cri-
teria are focused on how to generate tests quickly and/or improve coverage [19, 3].
Comparisons of the fault-finding effectiveness of the resulting test suites against
other methods of test generation are few. Those that exist apart from our own
limited previous work are, to the best of our knowledge, studies in concolic exe-
cution [4, 5]. One concolic approach by Majumdar and Sen [20] has even merged
random testing with symbolic execution, though their evaluation only focused on
two case examples, and did not explore fault finding effectiveness.

Despite the importance of the MC/DC criterion [9, 2], studies of its effective-
ness are few. Yu and Lau study several structural coverage criteria, including
MC/DC, and find MC/DC is cost effective relative to other criteria [21]. Kandl
and Kirner evaluate MC/DC using an example from the automotive domain,
and note less than perfect fault finding [22]. Dupuy and Leveson evaluate the
MC/DC as a compliment to functional testing, finding that the use of MC/DC
improves the quality of tests [23]. None of these studies, however, compare the
effectiveness of MC/DC to that of random testing. They therefore do not indi-
cate if test suites satisfying MC/DC are truly effective, or if they are effective
merely because MC/DC test suites are generally quite large.

3 Study

Of interest in this paper are two broad classes of approaches: random test genera-
tion and directed test generation. In random test generation, tests are randomly
generated and then later reduced with respect to the coverage criterion. This
approach is useful as a gauge of value of a coverage criterion: if tests randomly
generated and reduced with respect to a coverage criterion are more effective
than pure randomly generated tests, we can safely conclude the use of the cov-
erage criterion led to the improvement. Unfortunately, evidence demonstrating
this is, at best, mixed for branch coverage [10], and non-existent for MC/DC
coverage.

412 M. Staats et al.

Directed test generation is specifically targeted at satisfying a coverage crite-
rion. Examples include heuristic search methods and approaches based on reach-
ability [19, 3, 4]. Such techniques have advanced to the point where they can be
effectively applied to real-world avionics systems. Such approaches are usually
slower than random testing, but offer the potential to improve the coverage of the
resulting test suites. We aim to determine if using existing directed generation
techniques with these criteria results in test suites more effective than randomly
generated test suites. Evidence addressing this is sparse and, for branch and
MC/DC coverage, absent from the critical systems domain.1

We expect that a test suite satisfying the coverage criterion to be, at a mini-
mum, at least as effective as randomly generated test suites of equal size. Given
the central—and mandated—role the coverage criteria play within certain do-
mains (e.g., DO-178B for airborne software [2]), and the resources required to
satisfy them, this area requires additional study. We thus seek answers to the
following research questions:

RQ1: Are random test suites reduced to satisfy branch and MC/DC coverage
more effective than purely randomly generated test suites of equal size?

RQ2: Are test suites directly generated to satisfy branch and MC/DC coverage
more effective than randomly generated test suites of equal size?

We explore two structural coverage criteria: branch coverage, and MC/DC cov-
erage [10, 9]. Branch coverage is commonly used in software testing research
and improving branch coverage is a common goal in automatic test generation.
MC/DC coverage is a more rigorous coverage criterion based on exercising com-
plex Boolean conditions (such as the ones present in many avionics systems),
and is required when testing critical avionics systems. Accordingly, we view it as
likely to be an effective criterion—particularly for the class of systems studied
in this report.

3.1 Experimental Setup Overview

In this study, we have used four industrial systems developed by Rockwell
Collins, and a fifth system created as a case example at NASA. The Rock-
well Collins systems were modeled using the Simulink notation and the NASA
system using Stateflow [25, 26], and were translated to the Lustre synchronous
programming language [27] to take advantage of existing automation. Two of
these systems, DWM 1 and DWM 2, represent portions of a Display Window
Manager for a commercial cockpit display system. The other two systems—
Vertmax Batch and Latctl Batch—represent the vertical and lateral mode logic

1 It has been suggested that structural coverage criteria should only be used to de-
termine if a test suite has failed to cover functionality in the source code [1, 13].
Nevertheless, test suite adequacy measurement can always be transformed into test
suite generation. In mandating that a coverage criterion be used for measurement,
it seems inevitable that some testers will opt to perform generation to speed the
testing process, and such tools already exist [24].

On the Danger of Coverage Directed Test Case Generation 413

for a Flight Guidance System (FGS). The NASA system, Docking Approach, de-
scribes the behavior of a space shuttle as it docks with the International Space
Station.

Information related to these systems is provided in Table 1. We list the number
of Simulink subsystems, which are analogous to functions, and the number of
blocks, which are analogous to operators. For the NASA example developed in
Stateflow, we list the number of states, transitions, and variables.

Table 1. Case Example Information

Simulink Subsystems # Blocks

DWM 1 3,109 11,439

DWM 2 128 429

Vertmax Batch 396 1,453

Latctl Batch 120 718

Stateflow States # Transitions # Vars

Docking Approach 64 104 51

For each case example, we performed the following steps: (1) mutant gen-
eration (described in Section 3.2), (2) random and structural test generation
(Section 3.3 and 3.4), and (3) computation of fault finding (Section 3.5).

3.2 Mutant Generation

We have created 250 mutants (faulty implementations) for each case example
by introducing a single fault into the correct implementation. Each fault was
seeded by either inserting a new operator into the system or by replacing an
existing operator or variable with a different operator or variable. The mutation
operators used in this study are fairly typical and are discussed at length in [28].
They are similar to the operators used by Andrews et al. where they conclude
that mutation testing is an adequate proxy for real faults [29].

One risk of mutation testing is functionally equivalent mutants—the scenario
in which faults exist, but these faults cannot cause a failure (an externally visible
deviation from correct behavior). This presents a problem when using oracles
that consider internal state: we may detect failures that can never propagate to
the output. For our study, we used NuSMV to detect and remove functionally
equivalent mutants for the four Rockwell Collins systems2. This is made possible
thanks to our use of synchronous reactive systems—each system is finite, and
thus determining equivalence is decidable3.

The complexity of determining non-equivalence for the Docking Approach sys-
tem is, unfortunately, prohibitive, and we only report results using the

2 The percentage of mutants removed is very small, 2.8% on average.
3 Equivalence checking is fairly routine in the hardware side of the synchronous reac-
tive system community; a good introduction can be found in [30].

414 M. Staats et al.

output-only oracle. Therefore, for every mutant reported as killed in our study,
there exists at least one trace that can lead to a user-visible failure, and all fault
finding measurements indeed measure faults detected.

3.3 Test Data Generation

We generated a single set of 1,000 random tests for each case example. The tests
in this set are between 2 and 10 steps (evenly distributed in the set). For each
test step, we randomly selected a valid value for all inputs. As all inputs are
scalar, this is trivial. We refer to this as a random test suite.

We have directly generated test suites satisfying the branch and MC/DC [10,
31] criteria. Several variations of MC/DC exist—for this study, we use Masking
MC/DC, as it is a common criterion within the avionics community [31].

For our directed test generation approach, we used counterexample-based test
generation to generate tests satisfying branch and MC/DC coverage [19, 3]. In
this approach each coverage obligation is encoded as a temporal logic formula and
the model checker can be used to detect a counterexample (test case) illustrating
how the coverage obligation can be covered. This approach guarantees that we
achieve the maximum possible coverage of the system under test. This guarantee
is why we have elected to use counterexample-based test generation, as other
directed approaches (such as concolic/SAT-based approaches) do not offer such
a straightforward guarantee. We have used the NuSMV model checker in our
experiments [32] because we have found that it is efficient and produces tests
that are both simple and short [6].

Note that as all of our case examples are modules of larger systems, the tests
generated are effectively unit tests.

3.4 Test Suite Reduction

Counterexample-based test generation results in a separate test for each coverage
obligation. This leads to a large amount of redundancy in the tests generated,
as each test likely covers several obligations. Consequently, the test suite gen-
erated for each coverage criterion is generally much larger than is required to
provide coverage. Given the correlation between test suite size and fault finding
effectiveness [13], this has the potential to yield misleading results—an unneces-
sarily large test suite may lead us to conclude that a coverage criterion has led
us to select effective tests, when in reality it is the size of the test suite that is
responsible for its effectiveness. To avoid this, we reduce each näıvely generated
test suite while maintaining the coverage achieved. To prevent us from selecting
a test suite that happens to be exceptionally good or exceptionally poor relative
to the possible reduced test suites, we produce 50 different test suites for each
case example using this process.

Per RQ1, we also create tests suites satisfying branch and MC/DC coverage
by reducing the random test suite with respect to the coverage criteria (that is,
the suite is reduced while maintaining the coverage level of the unreduced suite).
Again, we produce 50 tests suites satisfying each coverage criterion.

On the Danger of Coverage Directed Test Case Generation 415

For both counterexample-based test generation and random testing reduced
with respect to a criterion, reduction is done using a simple greedy algorithm.
We first determine the coverage obligations satisfied by each test generated, and
initialize an empty test set reduced. We then randomly select a test input from
the full set of tests; if it satisfies obligations not satisfied by any test input in
reduced, we add it to reduced. We continue until all tests have been removed
from the full set of tests.

For each of our existing reduced test suites, we also produce a purely random
test suite of equal size using the set of random test data. We measure suite size in
terms of the number of total test steps, rather than the number of tests, as ran-
dom tests are on average longer than tests generated using counterexample-based
test generation. These random suites are used as a baseline when evaluating the
effectiveness of test suites reduced with respect to coverage criteria. We also
generate random test suites of sizes varying from 1 to 1,000. These tests are not
part of our analysis, but provide context in our illustrations.

When generating tests suites to satisfy a structural coverage criterion, the
suite size can vary from the minimum required to satisfy the coverage criterion
(generally unknown) to infinity. Previous work has demonstrated that test suite
reduction can have a negative impact on test suite effectiveness [7]. Despite
this, we believe the test suite size most likely to be used in practice is one
designed to be small—reduced with respect to coverage—rather than large (every
test generated in the case of counterexample-based generation or, even more
arbitrarily, 1,000 random tests)4.

3.5 Computing Fault Finding

In our study, we use expected value oracles, which define concrete expected values
for each test input. We explore the use of two oracles: an output-only oracle
that defines expected values for all outputs, and a maximum oracle that defines
expected values for all outputs and all internal state variables. The output-only
oracle represents the oracle most likely to be used in practice. Both oracles have
been used in previous work, and thus we use both to allow for comparison. The
fault finding effectiveness of the test suite and oracle pair is computed as the
number of mutants detected (or “killed”).

4 Results and Analysis

We present the fault finding results in Tables 2 and 3, listing for each case
example, coverage criterion, test generation method, and oracle: the average
fault finding for test suites reduced to satisfy a coverage criterion, next to the

4 One could build a counterexample-based test suite generation tool that, upon gener-
ating a test, removes from consideration all newly covered obligations, and randomly
selects a new uncovered obligation to try to satisfy, repeating until finished. Such a
tool would produce test suites equivalent to our reduced test suites, and thus require
no reduction; alternatively, we could view such test suites as pre-reduced.

416 M. Staats et al.

Table 2. Average number of faults identified, branch coverage criterion. OO = Output-
Only, MX = Maximum

Counterexample Generation Random Generation

Case Example Oracle
Satisfying Random of %

p-val
Satisfying Random of %

p-val
Branch Same Size Change Branch Same Size Change

Latctl Batch
MX 217.0 215.8 0.6% 0.24 238.7 234.4 1.8%

< 0.01
OO 82.2 140.3 -41.4%

< 0.01

196.4 189.2 3.8%

Vertmax Batch
MX 211.2 175.3 20.5% 219.5 209.7 4.6%
OO 77.1 101.7 -24.2% 153.5 143.4 7.0%

DWM 1
MX 195.1 227.9 -14.4% 230.2 227.1 1.4%
OO 32.1 77.9 -58.8% 79.8 76.9 3.77% 0.04

DWM 2
MX 202.1 215.5 -6.2% 232.0 225.8 2.7%

< 0.01
OO 131.9 174.7 -24.5% 200.3 192.3 4.2%

Docking Approach OO 38.1 2.0 1805% 2.0 2.0 0.0% 1.0

Table 3. Average number of faults identified, MCDC criterion. OO = Output-Only,
MX = Maximum

Counterexample Generation Random Generation

Case Example Oracle
Satisfying Random of %

p-val
Satisfying Random of %

p-val
MCDC Same Size Change MCDC Same Size Change

Latctl Batch
MX 235.0 241.8 -2.8%

< 0.01

241.5 240.3 0.3%

< 0.01
OO 194.2 226.7 -14.4% 218.6 214.6 1.9%

Vertmax Batch
MX 248.0 239.3 3.6% 248.0 237.1 4.6%
OO 147.0 195.5 -24.8% 204.2 191.4 6.7%

DWM 1
MX 210.0 230.4 -12.8% 230.6 229.5 0.4% 0.048
OO 44.6 86.6 -48.5% 85.4 86.4 -1.2% 0.6

DWM 2
MX 233.7 232.2 0.7% 0.08 241.9 235.5 2.7%

< 0.01
OO 196.2 207.0 -5.2%

< 0.01
222.6 213.5 4.3%

Docking Approach OO 37.34 2.0 1750% 2.0 2.0 0.0% 1.0

Table 4. Coverage Achieved (of Maximum Coverage) by Randomly Generated Test
Suites Reduced to Satisfy Coverage Criteria

Branch Coverage MCDC Coverage

DWM 1 100.0% 100.0%

DWM 2 100.0% 97.76%

Vertmax Batch 100.0% 99.4%

Latctl Batch 100.0% 100.0%

Docking Approach 58.1% 37.76%

average fault finding for random test suites of equal size; the relative change in
average fault finding when using the test suite satisfying the coverage criteria
versus the random test suite of equal size; and the p-value for the statistical
analysis below. Note that negative values for % Change indicate the test suites
satisfying the coverage criterion are less effective on average than random test
suites of equal size.

The test suites generated using counterexample-based test generation are
guaranteed to achieve the maximum achievable coverage, but the randomly gen-
erated test suites reduced to satisfy structural coverage criteria are not. We
therefore present the coverage achieved by these test suites (with 100% repre-
senting the maximum achievable coverage) in Table 4.

On the Danger of Coverage Directed Test Case Generation 417

(a) DWM 1: MCDC (b) DWM 2: MCDC

(c) Vertmax Batch: MCDC (d) Latctl Batch: MCDC

Fig. 1. Faults identified compared to test suite size using NuSMV-generated test suites
(’+’), randomly generated test suites reduced to satisfy a coverage criterion (’o’), and
pure random test generation (line). Output-only oracles.

In Figure 1, we plot, for MC/DC coverage and four case examples, the test
suites size and fault finding effectiveness of every test suite generated when using
the output-only oracle.5 Test suites generated via counterexample-based test
generation are shown as pluses, random test suites reduced to satisfy structural
coverage criteria are shown as circles, and random test suites of increasing size
(including those paired with test suites satisfying coverage criteria) are shown
in the line. The line has been smoothed with LOESS smoothing (with a factor
of 0.3) to improve the readability of the figure. Note that, while 1,000 random
test inputs have been generated, we have only plotted random test suites (i.e.,
the line) of sizes slightly larger than the test suites satisfying coverage criteria
to maintain readability.

4.1 Statistical Analysis

For both RQ1 and RQ2, we are interested in determining if test suites satisfying
structural coverage criteria outperform purely random test suites of equal size.
We begin by formulating statistical hypotheses H1 and H2:

H1: A test suite generated using random test generation to provide structural
coverage will find more faults than a pure random test suite of similar size.

5 For reasons of space, plots for branch coverage and the maximum oracle are omitted.
Figures for the Docking Approach case example are not very illustrative.

418 M. Staats et al.

H2: A test suite generated using counterexample-based test generation to provide
structural coverage will find more faults than a random test suite of similar size.
We then formulate the appropriate null hypotheses:
H01: A test suite generated using random test generation to provide structural
coverage will find the same number of faults as a pure random test suite of sim-
ilar size.
H02: A test suite generated using counterexample-based test generation to pro-
vide structural coverage will find the same number of faults as a random test
suite of similar size.

Our observations are drawn from an unknown distribution; therefore, we can-
not fit our data to a theoretical probability distribution. To evaluate H01 and
H02 without any assumptions on the distribution of our data, we use the two-
tailed bootstrap paired permutation test (a non-parametric test with no distri-
bution assumptions [33]) with 250,000 samples. We pair each test suite reduced
to satisfy a coverage criteria with a purely random test suite of equal size. We
then apply this statistical test for each case example, structural coverage criteria,
and test oracle with α = 0.05.6

4.2 Evaluation of RQ1 and RQ2

Based on the p-values less than 0.05 in Tables 2 and 3, we reject H01 for nearly
all case examples and coverage criteria when using either oracle.7 For cases with
differences that are statistically significant, test suites reduced to satisfy coverage
criteria are more effective than purely randomly generated test suites of equal
size; for these combinations, we accept H1. Our results confirm that branch and
MC/DC coverage can be effective metrics for test suite adequacy within the
domain of critical avionics systems: reducing test suites generated via a non-
directed approach to satisfy structural coverage criteria is at least not harmful,
and in some instances improves test suite effectiveness relative to their size by
up to 7.0%. Thus, considering branch and MC/DC coverage when using random
test generation generally leads to a positive, albeit slight, improvement in test
suite effectiveness.

Based on the p-values less than 0.05 in Tables 2 and 3, we reject H02 for all
case examples and coverage criteria when using the output-only oracle. However,
for all but one case example, test suites generated via counterexample-based test
generation are less effective than pure random test suites by 5.2% to 58.8%; we
therefore conclude that our initial hypothesis H2 is false8. Nevertheless, the con-
verse of H2—randomly generated test suites are more effective that equally large

6 Note that we do not generalize across case examples, oracles or coverage criteria,
as the needed statistical assumption, random selection from the population of case
examples, oracles, or coverage criteria, is not met. The statistical tests are used only
demonstrate that observed differences are unlikely to have occurred by chance.

7 We do not reject H01 for the DWM 1 case example when using MC/DC coverage
and the output-only oracle, nor do we reject H01 for the Docking Approach case
example.

8 In our previous work we found the opposite effect [34].

On the Danger of Coverage Directed Test Case Generation 419

test suites generated via counterexample-based test generation—is also false, as
the Docking Approach example illustrates. For this case example, random test-
ing is effectively useless, finding a mere 2 faults, while tests generated using
counterexample-based test generation find 37-38 faults. We discuss the reasons
behind, and implications of, this strong dichotomy in Section 5.

When using the maximum oracle, we see that the test suites generated via
counterexample-based test generation fare better. In select instances, counter-
example-based test suites outperform random test suites of equal size (notably
Vertmax Batch), and otherwise close the gap, being less effective than pure ran-
dom test suites by at most 14.4%. Nevertheless, we note that for most case
examples and coverage criteria, random test suites of equal size are still more
effective.

5 Discussion

Our results indicate that for our systems (1) the use of branch and MC/DC
coverage as a supplement to random testing generally results in more effective
tests suites than random testing alone, and (2) the use of branch and MC/DC
coverage as a target for directed, automatic test case generation (specifically
counterexample-based test generation) results in less effective test suites than
random testing alone, with decreases of up to 58.8%. This indicates that branch
and MC/DC coverage are—by themselves—not good indicators of test suite
effectiveness. Given the role of structural coverage criteria in software validation
in our domain of interest, we find these results quite troublesome.

The lack of effectiveness for test suites generated via counterexample-based
test generation is a result of the formulation of these structural coverage criteria,
properties of the case examples, and the behavior of NuSMV. We have previously
shown that varying the structure of the program can significantly impact the
number of tests required to satisfy the MC/DC coverage criterion [35]. These
results were linked partly to masking present in the systems—some expressions
in the systems can easily be prevented from influencing the outputs. This can
reduce the effectiveness of a testing process based on structural coverage criteria,
as we can satisfy coverage obligations for internal expressions without allowing
resulting errors to propagate to the output.

This masking can be a problem; we have found that test inputs generated
using counterexample-based generation (including those in this study) tend to
be short, and manipulate only a handful of input values, leaving other inputs
at default values (false or 0) [6]. Such tests tend to exercise the program just
enough to satisfy the coverage obligations for which they were generated and do
not consider the propagation of values to the outputs. In contrast, random test
inputs can vary arbitrarily in length (up to 10 in this study) and vary all input
values; such test inputs may be more likely to overcome any masking present in
the system.

As highlighted by the Docking Approach example, however, tests generated
to satisfy structural coverage criteria can sometimes dramatically outperform

420 M. Staats et al.

random test generation. This example differs from the Rockwell Collins systems
chiefly in its structure: large portions of the system’s behavior are activated
only when very specific conditions are met. The state space is both deep and
contains bottlenecks; exploration of states requires relatively long tests with
specific combinations of input values. Thus, random testing is highly unlikely
to reach much of the state space. The impact of structure on the effectiveness
of random testing can be seen in the coverage of the Docking Approach (only
37.7% of obligations were covered) and is in contrast to the Rockwell Collins
systems which—while stateful—have a state space that is shallow and highly
interconnected and is, therefore, easier to cover with random testing.

We see two key implications in our results. First, per RQ1, using branch
and MC/DC coverage as an addition to another non-structure-based testing
method—in this case, random testing—can yield improvements (albeit small)
in the testing process. These results are similar to those of other authors, for
example, results indicating MC/DC is an effective coverage criterion when used
to check the adequacy of manual, requirement-driven test generation [23] and
results indicating that reducing randomly generated tests with respect to branch
coverage yields improvements over pure random test generation [13]. These re-
sults, in conjunction with the results for RQ2, reinforce the advice that coverage
criteria are best applied after test generation to find areas of the source code
that have not been tested. In the case of MC/DC this advice is explicitly stated
in regulatory requirements and by experts on the use of the criterion [2, 9].

Second, the dichotomy between the Docking Approach example and the Rock-
well Collins systems highlights that while the current methods of determining
test suite adequacy in avionics systems are themselves inadequate, some method
of determining testing adequacy is needed. While current practice stipulates that
coverage criteria should be applied after test generation, in practice, this relies on
the honesty of the tester (it is not required in the standard). Therefore, it seems
inevitable that at least some practitioners will use automatic test generation to
reduce the cost of achieving the required coverage.

Assuming our results generalize, we believe this represents a serious problem.
The tools are not at fault: we have asked these tools to produce test inputs
satisfying branch and MC/DC coverage, and they have done so admirably; for
example, satisfying MC/DC for the Docking Approach example, for which ran-
dom testing achieves a mere 37.7% of the possible coverage. The problem is that
the coverage criteria are simply too weak, which allows for the construction of
ineffective tests. We see two possible solutions. First, automatic test generation
tools could be improved to avoid pitfalls in using structural coverage criteria. For
example, such tools could be encouraged to generate longer test cases increasing
the chances that a corrupted internal state would propagate to an observable
output (or other monitored variable). Nevertheless, this is a somewhat ad-hoc
solution to weak coverage criteria and various tool vendors would provide di-
verse solutions rendering the coverage criteria themselves useless as certification
or quality control tools.

On the Danger of Coverage Directed Test Case Generation 421

Second, we could improve—or replace—existing structural coverage criteria.
Automatic test generation has improved greatly in the last decade, thanks to
improvements in search heuristics, SAT solving tools, etc. However, the targets of
such tools have not been updated to account for this increase in power. Instead,
we continue to use coverage criteria that were originally formulated when manual
test generation was the only practical method of ensuring 100% coverage. New
and improved coverage metrics are required in order to take full advantage of
the improvements in automatic test generation without allowing the generation
of inefficient test suites (such as some generated in our study).

6 Threats to Validity

External Validity: Our study has focused on a relatively small number of
systems but, nevertheless, we believe the systems are representative of the class
of systems in which we are interested, and our results are generalizable to other
systems in the avionics domain.

We have used two methods for test generation (random generation and
counterexample-based). There are many methods of generating tests and these
methods may yield different results. Nevertheless, we have selected methods that
we believe are likely to be used in our domain of interest.

For all coverage criteria, we have examined 50 test suites reduced using a
simple greedy algorithm. It is possible that larger sample sizes may yield different
results. However, in previous studies, smaller numbers of reduced test suites have
been seen to produce consistent results [35].

Construct Validity: In our study, we measure fault finding over seeded faults,
rather than real faults encountered during development. It is possible real faults
would lead to different results. However, Andrews et al. showed that seeded
faults leads to conclusions similar to those obtained using real faults [29].

We measure the cost of test suites in terms of the number of steps. Other
measurements exist, e.g., the time required to generate and/or execute tests [34].
We chose size to be favorable towards directed test generation. Thus, conclusions
concerning the inefficacy of directed test generation are reasonable.

Conclusion Validity: When using statistical analyses, we have attempted to
ensure the base assumptions beyond these analyses are met, and have favored
non-parametric methods. In cases in which the base assumptions are clearly
not met, we have avoided using statistical methods. (Notably, we have avoided
statistical inference across case examples.)

7 Conclusion and Future Work

The results presented in this paper indicate that coverage directed test gen-
eration may not be an effective means of creating tests within the domain of
avionics systems, even when using metrics which can improve random test gen-
eration. Simple random test generation can yield equivalently sized, but more

422 M. Staats et al.

effective test suites (up to twice as effective in our study). This indicates that
adequacy criteria are, for the domain explored, potentially unreliable, and thus,
unsuitable, for determining test suite adequacy.

The observations in this paper indicate a need for methods of determining test
adequacy that (1) provide a reliable measure of test quality and (2) are better
suited as targets for automated techniques. At a minimum, such coverage criteria
must, when satisfied, indicate that our test suites are better than simple random
test suites of equal size. Such criteria must address the problem holistically to
account for all factors influencing testing, including the program structure, the
nature of the state space of the system under test, the test oracle used, and the
method of test generation.

Acknowledgements. This work has been partially supported by NASA Ames
Research Center Cooperative Agreement NNA06CB21A, NASA IV&V Facil-
ity Contract NNG-05CB16C, NSF grants CCF-0916583, CNS-0931931, CNS-
1035715, and an NSF graduate research fellowship. Matt Staats was supported
by the WCU (World Class University) program under the National Research
Foundation of Korea and funded by the Ministry of Eduation, Science and Tech-
nology of Korea (Project No: R31-30007) We would also like to thank our col-
laborators at Rockwell Collins: Matthew Wilding, Steven Miller, and Darren
Cofer. Without their continuing support, this investigation would not have been
possible. Thank you!

References

1. Zhu, H., Hall, P.: Test data adequacy measurement. Software Engineering Jour-
nal 8(1), 21–29 (1993)

2. RTCA, DO-178B: Software Consideration. In: Airborne Systems and Equipment
Certification. RTCA (1992)

3. Rayadurgam, S., Heimdahl, M.P.: Coverage based test-case generation using model
checkers. In: Proc. of the 8th IEEE Int’l. Conf. and Workshop on the Engineering
of Computer Based Systems, pp. 83–91. IEEE Computer Society (April 2001)

4. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
Proc. of the 10th European Software Engineering Conf. / 13th ACM SIGSOFT
Int’l. Symp. on Foundations of Software Engineering. ACM, New York (2005)

5. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI 2005: Proc. of the 2005 ACM SIGPLAN Conf. on Programming Language
Design and Implementation (2005)

6. Heimdahl, M.P., Devaraj, G., Weber, R.J.: Specification test coverage adequacy
criteria = specification test generation inadequacy criteria? In: Proc. of the Eighth
IEEE Int’l Symp. on High Assurance Systems Engineering (HASE), Tampa,
Florida (March 2004)

7. Heimdahl, M.P., Devaraj, G.: Test-suite reduction for model based tests: Effects
on test quality and implications for testing. In: Proc. of the 19th IEEE Int’l Conf.
on Automated Software Engineering (ASE), Linz, Austria (September 2004)

8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering (99), 1 (2010)

On the Danger of Coverage Directed Test Case Generation 423

9. Chilenski, J.J., Miller, S.P.: Applicability of Modified Condition/Decision Coverage
to Software Testing. Software Engineering Journal, 193–200 (September 1994)

10. Juristo, N., Moreno, A., Vegas, S.: Reviewing 25 years of testing technique exper-
iments. Empirical Software Engineering 9(1), 7–44 (2004)

11. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments of the effectiveness
of dataflow-and controlflow-based test adequacy criteria. In: Proc. of the 16th Int’l
Conf. on Software Engineering. IEEE Computer Society Press, Los Alamitos (1994)

12. Frankl, P., Weiss, S.N.: An experimental comparison of the effectiveness of the
all-uses and all-edges adequacy criteria. In: Proc. of the Symposium on Testing,
Analysis, and Verification (1991)

13. Namin, A., Andrews, J.: The influence of size and coverage on test suite effective-
ness. In: Proc. of the 18th Int’l Symp. on Software Testing and Analysis. ACM
(2009)

14. Weyuker, E., Jeng, B.: Analyzing partition testing strategies. IEEE Trans. on Soft-
ware Engineering 17(7), 703–711 (1991)

15. Chen, T.Y., Yu, Y.T.: On the expected number of failures detected by subdomain
testing and random testing. IEEE Transactions on Software Engineering 22(2)
(1996)

16. Gutjahr, W.J.: Partition testing vs. random testing: The influence of uncertainty.
IEEE Transactions on Software Engineering 25(5), 661–674 (1999)

17. Arcuri, A., Iqbal, M.Z.Z., Briand, L.C.: Formal analysis of the effectiveness and
predictability of random testing. In: ISSTA 2010, pp. 219–230 (2010)

18. Arcuri, A., Briand, L.C.: Adaptive random testing: An illusion of effectiveness? In:
ISSTA (2011)

19. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. Software Engineering Notes 24(6), 146–162 (1999)

20. Majumdar, R., Sen, K.: Hybrid concolic testing. In: ICSE, pp. 416–426 (2007)
21. Yu, Y., Lau, M.: A comparison of MC/DC, MUMCUT and several other coverage

criteria for logical decisions. Journal of Systems and Software 79(5), 577–590 (2006)
22. Kandl, S., Kirner, R.: Error detection rate of MC/DC for a case study from the

automotive domain. In: Software Technologies for Embedded and Ubiquitous Sys-
tems, pp. 131–142 (2011)

23. Dupuy, A., Leveson, N.: An empirical evaluation of the MC/DC coverage crite-
rion on the hete-2 satellite software. In: Proc. of the Digital Aviation Systems
Conference (DASC), Philadelphia, USA (October 2000)

24. Reactive systems inc. Reactis Product Description,
http://www.reactive-systems.com/index.msp

25. Mathworks Inc. Simulink product web site,
http://www.mathworks.com/products/simulink

26. Mathworks Inc. Stateflow product web site, http://www.mathworks.com
27. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic

Press (1993)
28. Rajan, A., Whalen, M., Staats, M., Heimdahl, M.P.E.: Requirements Coverage

as an Adequacy Measure for Conformance Testing. In: Liu, S., Araki, K. (eds.)
ICFEM 2008. LNCS, vol. 5256, pp. 86–104. Springer, Heidelberg (2008)

29. Andrews, J., Briand, L., Labiche, Y.: Is mutation an appropriate tool for testing
experiments? In: Proc of the 27th Int’l Conf on Software Engineering (ICSE), pp.
402–411 (2005)

30. Van Eijk, C.: Sequential equivalence checking based on structural similarities. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems 19(7), 814–
819 (2002)

http://www.reactive-systems.com/index.msp
http://www.mathworks.com/products/simulink
http://www.mathworks.com

424 M. Staats et al.

31. Chilenski, J.: An investigation of three forms of the modified condition decision
coverage (MCDC) criterion. Office of Aviation Research, Washington, D.C., Tech.
Rep. DOT/FAA/AR-01/18 (April 2001)

32. The NuSMV Toolset (2005), http://nusmv.irst.itc.it/
33. Fisher, R.: The Design of Experiment. Hafner, New York (1935)
34. Devaraj, G., Heimdahl, M., Liang, D.: Coverage-directed test generation with

model checkers: Challenges and opportunities. In: Annual International Computer
Software and Applications Conference, vol. 1, pp. 455–462 (2005)

35. Rajan, A., Whalen, M., Heimdahl, M.: The effect of program and model struc-
ture on MC/DC test adequacy coverage. In: Proc. of the 30th Int’l Conference on
Software Engineering, pp. 161–170. ACM, New York (2008)

http://nusmv.irst.itc.it/

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 425–438, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Reduction of Test Suites Using Mutation

Macario Polo Usaola1, Pedro Reales Mateo1, and Beatriz Pérez Lamancha2

1 Department of Information Systems and Technologies, University of Castilla-La Mancha,
Paseo de la Universidad 4, 13071-Ciudad Real, Spain
{macario.polo,pedro.reales}@uclm.es

2 Software Testing Centre (CES), University of Republic
Lauro Müller 1989, Montevideo, Uruguay

bperez@fing.edu.uy

Abstract. This article proposes an algorithm for reducing the size of test suites,
using the mutation score as the criterion for selecting the test cases while
preserving the quality of the suite. Its utility is also checked with a set of
experiments, using benchmark programs and industrial software.

Keywords: Test suites, mutation, test suite reduction, criteria subsumption.

1 Introduction

Mutation is a testing technique, originally proposed in 1978 by DeMillo et al. [1],
which relies on the discovery of the artificial faults which are seeded in the system
under test (SUT). These faults are injected in the SUT by means of a set of mutation
operators, whose purpose is to imitate the faults that a common programmer may
commit. Thus, each mutant is a copy of the program under test, but with a small
change in its code, which is interpreted as a fault.

Mutants are usually generated by automated tools that apply a set of mutation
operators to the sentences of the original program, thus producing a high number of
mutants because, in general, each mutant contains only one fault. The fault in a
mutant is discovered when the execution of a given test case produces a different
output in the original program and in the mutant. When the fault is discovered, it is
said that the mutant has been “killed”; otherwise, the mutant is “alive”.

In order to obtain a good set of mutants, it is important that the seeded faults be
“good”, which depends on the quality of the mutation operators applied. This area has
been closely studied, with the proposal of operators for different kinds of languages
and environments, as for example in [2]. Faults introduced in the mutants must imitate
common errors by programmers since, by means of the “coupling effect”, a test suite
that detects all simple faults in a program is so sensitive that it also detects more
complex faults [3].

Figure 1 shows the source code of an original program (the SUT) and of some
mutants: three of them proceed from the substitution of an arithmetic operator,
whereas in the fourth a unary operator (++) has been added at the end of the sentence.
The bottom of the figure presents the results obtained from executing some test cases

426 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

on the different program versions. The test case corresponding to the test data (1, 1)
produces different outputs in the original program (whose output is correct) and in
Mutant 1: thus, this test case has found the fault introduced in the mutant, leaving the
mutant killed. On the other hand, since all test cases offer the same output in the
original program and in Mutant 4, it is said that Mutant 4 is alive. Moreover, this
mutant will never be killed by any test case, since variable b is incremented after
returning the result. Mutants like this one are called “functionally-equivalent mutants”
and may be considered as noise when results are analyzed: they have a syntactic
change (actually not a fault) with respect to the original source code that cannot be
found.

Original Mutant 1 Mutant 2 Mutant 3 Mutant 4

int sum(int a,int b)
{
 return a + b;
}

int sum(int a,int b)
{
 return a - b;
}

int sum(int a,int b)
{
 return a * b;
}

int sum(int a,int b)
{
 return a / b;
}

int sum(int a,int b)
{
 return a + b++;
}

 Test data (a,b)
(1, 1) (0, 0) (-1, 0) (-1, -1)

Orig. 2 0 -1 -2
Mut.1 0 0 -1 0
Mut.2 1 0 0 1
Mut.3 1 Error Error 1
Mut.4 2 0 -1 -2

Fig. 1. Code of some mutants and their results with some test data

The test suite quality is measured in terms of the Mutation Score [4] (Figure 2), a
number between 0 and 1 which takes into account the number of mutants killed, the
number of mutants generated and the number of functionally-equivalent mutants. A
test suite is mutation-adequate when it discovers all the faults injected in the mutants.

EM

K
TPMS

−
=),(,

being: P: program under test; T: test suite; K: # of killed mutants;
M: # of generated mutants; E: # of equivalent mutants

Fig. 2. Mutation score

Since that paper by DeMillo in 1978, many works have researched and developed
tools to improve the different steps of mutation testing: mutant generation, test case
execution and result analysis.

Regarding mutant generation, most works try to decrease the number of mutants
generated, with different studies existing for selecting the most meaningful operators
[5, 6], as well as techniques for generating the mutants more quickly [7]. Regarding
test execution, several authors have proposed the use weak mutation [8, 9],
prioritization of the functions of the program under test [10] or the use of n-order
mutants [11]. An n-order mutant has n faults instead of 1. Polo et al. [11] have shown
that the combination of 1-order mutants to produce a suite of 2-order mutants
significantly decreases the number of functionally equivalent mutants, whereas the
risk of leaving faults undiscovered remains low. This has a positive influence on the
result analysis step, whose main difficulty resides in the discovery of the functionally

 Reduction of Test Suites Using Mutation 427

equivalent mutants, which is required to calculate the Mutation Score (Figure 2).
Manual detection is very costly, although Offutt and Pan have demonstrated that is
possible to automatically detect almost 50% of functionally equivalent mutants if the
program under test is annotated with constraints [12].

Since many equivalent mutants are optimizations or de-optimizations of the
original program (for example, Mutant 4 in Figure 1 de-optimizes the original
program), Offutt and Craft have also investigated how compiler optimization
techniques may help in the detection of equivalent mutants [3].

In general, mutation testing has evolved over the years and, today, it is very
frequently used to validate the quality of different testing techniques [13]. Some
recent works related to mutation propose specific operators for specific programming
languages, such as Kim et al. [14], who propose mutation operators for Java and
Barbosa et al. [2], with operators for C.

These works, developed so many years after the proposal of mutation, evidence the
maturity of this testing technique. With the adequate operators, the mutation score can
be considered as a powerful coverage criterion [15].

This article proposes one algorithm (although another one, less efficient, is also
described) for reducing the size of a test suite, based on the mutation score: given a
test suite T, the goal is to obtain a new test suite T’, which obtains the same mutation
score as T, being |T’|≤T. Furthermore, the article discusses how the subsumption of
criteria may be preserved when the reduction algorithm is executed.

The article is organized as follows: the two parts of Section 2 briefly describe
strategies for test case generation (where the problem of redundant test cases is
presented) and some works solving the problem of test suite reduction. Section 3 then
presents the algorithm for test suite reduction based on mutation, completing its
description with an example taken from the literature. The validity of the algorithm is
analyzed in Section 4, both with some benchmark programs, widely used in testing
literature, and with a set of industrial programs. Finally, we draw our conclusions.

2 Related Work

The fact of having big test suites increases the cost of their writing, validation and
maintenance, taking into account the continuous evolution of software and the
corresponding regression testing [16]. Due to this, several researchers have proposed
different techniques to reduce the size of a test suite, while the coverage reached is
preserved. The problem of reducing a test suite to the minimum possible cardinal is
known as the “optimal test-suite reduction problem” and has been stated by Jones and
Harrold [17] as in Figure 3.

Given: Test Suite T, a set of test-case requirements r1, r2, ..., rn, that must be satisfied to
provide the desired test coverage of the program.

Problem: Find T’⊂T such that T’ satisfies all ri and (∀T’’⊂T, T’’ satisfies all r⇒ |T’|≤|T’’|)

Fig. 3. The optimal test suite reduction problem

Applied to the Triangle-type example, and starting from the results obtained by the
All combinations strategy, the problem consists of finding a minimal subset of test

428 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

cases that obtains the same coverage as the original test suite: i.e., to obtain a set of n
test cases that reach the same coverage as the original suite, being n≤216 and n being
the minimal. The optimal test-suite reduction problem is NP-hard [18] and, thus, its
solution has been approached by means of algorithms which provide near-optimal
solutions, usually with greedy strategies. The following subsections review some
relevant works.

The HGS Algorithm. Harrold et al. [19] give a greedy algorithm (usually referred to
as HGS) for reducing the suite of test cases into another, fulfilling the test
requirements reached by the original suite. The main steps in this algorithm are:

1) Initially, all the test requirements are unmarked.

2) Add to T’ those test cases that only exercise a test requirement. Mark the
requirements covered by the selected test cases.

3) Order the unmarked requirements according to the cardinality of the set of test
cases exercising one requirement. If several requirements are tied (since the sets
of test cases exercising them have the same cardinality), select the test case that
would mark the highest number of unmarked requirements tied for this
cardinality. If multiple such test cases are tied, break the tie in favor of the test
case that would mark the highest number of requirements with testing sets of
successively higher cardinalities; if the highest cardinality is reached and some
test cases are still tied, arbitrarily select a test case from among those tied. Mark
the requirements exercised by the selected test. Remove test cases that become
redundant as they no longer cover any of the unmarked requirements.

4) Repeat the above step until all testing requirements are marked.

Gupta Improvements. With different collaborators, Gupta has proposed several
improvements to this algorithm:

• With Jeffrey [20], Gupta adds “selective redundancy” to the algorithm.
“Selective redundancy” makes it possible to select test cases that, for any
given test requirement, provide the same coverage as another previously
selected test case, but that adds the coverage of a new, different test
requirement. Thus, maybe T’ reaches the All-branches criterion but not def-
uses; therefore, a new test case t can be added to T’ if it increases the
coverage of the def-uses requirement: now, T’ will not increase the All-
branches criterion, but it will do so with def-uses.

• With Tallam [21], test case selection is based on Concept Analysis techniques.
According to the authors, this version achieves same size or smaller size
reduced test suites than prior heuristics as well as a similar time performance.

Heimdahl and George Algorithm. Heimdahl and George [22] also propose a greedy
algorithm for reducing the test suite. Basically, they take a random test case, execute
it and check the coverage reached. If this one is greater than the highest coverage,
then they add it to the result. The algorithm is repeated five times to obtain five
different reduced sets of test cases. Since chance is an essential component of this
algorithm, the good quality of the results is not guaranteed.

 Reduction of Test Suites Using Mutation 429

McMaster and Memon Algorithm. McMaster and Memon [23] present another
greedy algorithm. The parameter taken into account to include test cases in the
reduced suite is based on the “unique call stacks” that test cases produce in the
program under test. As can be seen, the criterion for selecting test cases (the number
of unique call stacks) is not a “usual test requirement”.

In summary, since the optimal test-suite reduction problem is NP-hard, all the
approaches discussed propose a greedy algorithm to find a good solution with a
polynomial-time algorithm and, as the discussed algorithms show, test requirement
for test case selection can be anything: coverage of sentences, blocks, paths… or, as
it is proposed in this paper, number of mutants killed.

According to [24, 25], the degree of automation of testing tasks in the software
industry is very low. Often, testing is performed in an artisanal way, and the efforts
carried out in the last years to obtain test automation mostly consist of the application
of unit testing frameworks, such as JUnit or NUnit. As a matter of fact, the work by
Ng et al. [26] shows the best results on test automation: 79.5% of surveyed
organizations automate test execution and 75% regression testing. However, only 38
of the 65 organizations (58.5%) use test metrics, with defect count being the most
popular (31 organizations). Although the work does not present any data about the
testing tools used, these results suggest that most organizations are probably
automating their testing processes with X-Unit environments. In order to improve
these testing practices, software organizations require cost and time-effective
techniques to automate and to improve their testing process. Thus, the introduction of
software testing research results in industry is a must.

3 Test Suite Reduction Using Mutation

This section mainly describes a greedy algorithm to reduce the size of a test suite based
on the Mutation Score. This algorithm is inspired in the mutation cost reduction
algorithms briefly described in [27]. The number of mutants killed by each test case is
used as the criterion for the inclusion of a test case in the reduced set of selected test
cases.

Figure 4 shows reduceTestSuite, the main function of the algorithm. As inputs, it
receives the complete set of test cases, the class under test and the complete set of
mutants. In line 2, it executes all test cases against the class under test and against the
mutants, saving the results in testCaseResults.

Then, the algorithm is prepared for selecting, in several iterations, the test cases
that kill more mutants, what is done in the loop of lines 5-14.

The first time the algorithm enters this loop and arrives at line 7, the value of n
(which is used to stop the iterations) is |mutants|: in this special case, the algorithm
looks for a test case that kills all the mutants. If it finds it, the algorithm adds the test
case to requiredTC, updates the value of n to 0 and ends; otherwise, it decreases n in
line 16 and goes back into the loop.

430 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

Let us suppose that n is initially 100 (that is, there are 100 mutants of the class
under test), and let us suppose that the algorithm does not find test cases that kill n
mutants until n=30. With this value, the function getTestCasesThatKillN (called in
line 7) returns as many test cases as test cases kill n different mutants: i.e., if there are
two test cases (tc1 and tc2) that kill the same 30 mutants, getTestCasesThatKillN
returns only one test case (for example, tc1). If the intersection of the mutants killed
by tc1 and tc2 is not empty, then the algorithm returns a set composed of tc1 and tc2.

1. reduceTestSuite(completeTC : SetOfTestCases, cut :
CUT, mutants : SetOfMutants) : SetOfTestCases

2. testCaseResults = execute(completeTC, cut, mutants)
3. requiredTC = ∅
4. n=|mutants|
5. while (n>0)
6. mutantsNowKilled = ∅
7. testCasesThatKillN =

getTestCasesThatKillN(completeTC, n, mutants,
mutantsNowKilled, testCaseResults)

8. if |testCasesThatKillN>0| then
9. requiredTC = requiredTC ∪ testCasesThatKillN
10. n = |mutants|-|mutantsNowKilled|
11. else
12. n = n – 1
13. end if
14. end_while
15. return requiredTC
16.end

Fig. 4. Main function of the algorithm, which returns the reduced suite

When test cases killing the current n mutants are found, they are added to the
requiredTC variable (line 9) and n is updated to the current number of remaining
mutants.

In the actual implementation of the algorithm, the execution of the complete set of
test cases against the CUT and the mutants is made in a separate function (execute,
called in line 2), which returns a collection of TestCaseResult objects, which are
composed of the name of a test case and the list of the mutants they kill.

The function in charge of collecting the set of test cases that kill n mutants is called
in the 7th line in Figure 4 and is detailed in Figure 5. It goes through the elements in
testCaseResults and takes those test cases whose list of has n elements. Each time it
finds a suitable test case, the function removes the mutants it kills from the set of
mutants: in this way, the function guarantees that no two test cases killing the same
set of mutants will be included in the result.

 Reduction of Test Suites Using Mutation 431

1. getTestCasesThatKillN(completeTC:SetOfTestCases,
n:int, mutants:SetOfMutants, mutantsNowKilled :
SetOfMutants, testCaseResults: SetOfTestCaseResults)
: SetOfTestCaseResults

2. testCasesThatKillN = ∅
3. for i=1 to |testCaseResults|
4. testCaseResult = testCaseResults[i]
5. if |testCaseResult.killedMutants| == n and

testCaseResult.killedMutants ⊆ mutants then
6. testCasesThatKillN = testCasesThatKillN ∪

testCaseResult.testCaseName
7. mutantsNowKilled = mutantsNowKilled ∪

testCaseResult.killed.Mutants
8. mutants = mutants – mutantsNowKilled
9. end_if
10. next
11. return testCasesThatKillN
12.end

Fig. 5. Function to obtain the test cases that kill n mutants

3.1 Example

Let us suppose the killing matrix in Table 1, corresponding to a supposed program
with eight mutants (in the rows) and a test suite with seven test cases. Each column
may be understood as an instance of TestCaseResult: in fact, there are seven instances
of this type, each composed of the test case name and the list of mutants it kills: the
first test case result is composed of the tc1 test case and the mutant m2; the second, by
tc2 and m4, m5 and m6; the last one is composed of tc7 and an empty set of mutants,
since it kills none.

Table 1. First killing matrix for a supposed program

 tc1 tc2 tc3 tc4 tc5 tc6 tc7
m1 X X
m2 X X X
m3 X
m4 X X
m5 X
m6 X X
m7 X
m8 X

Initially, requiredTC is the empty set and n=7. In the first iteration of the 5th line loop
in Figure 4, the set mutantsNowKilled is ∅ because there are no test cases killing seven
mutants. n is decreased to 6, 5, 4 and 3. In this iteration, the function
getTestCasesThatKillN is called. This function (Figure 5) iterates from i=1 to 7. When
i=1, it rejects tc1 because it does not kill three mutants (the current value of n).
When i=2:

432 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

• Adds {tc2} to the testCasesThatKillN set.
• Adds {m4, m5, m6} to the mutantsNowKilled set.
• Leaves mutants with {m1, m2, m3, m7,m8}.

Henceforth, the killed mutants {m4, m5, m6} will not be considered in the following
iterations. Then, the killing matrix can be now seen such as in Table 2.

Table 2. Second killing matrix for a supposed program

 tc1 tc2 tc3 tc4 tc5 tc6 tc7
m1 X X
m2 X X
m3 X X
m7 X
m8 X

Still inside getTestCasesThatKillN, the i variable is increased to 3 and the

TestCaseResult corresponding to tc3 is processed. Now:

• testCasesThatKillN = {tc2, tc3}
• mutantsNowKilled = {m1, m2, m3, m4, m5, m6}
• mutants = {m7, m8}

Mutants {m1, m2, m3} will not be considered in next iterations, thus leaving the
killing matrix as in Table 3.

Table 3. Third killing matrix for a supposed program

 tc1 tc2 tc3 tc4 tc5 tc6 tc7
m7 X
m8 X

getTestCasesThatKillN continues increasing i to 7, the function exits and the

algorithm returns to line 8 of reduceTestSuite. Here, {tc2, tc3} are added to
requiredTC and n is decreased to 2, which is the initial number of mutants (8) minus
the number of mutants now killed (6). Now, the function executes its last iteration
calling getTestCasesThatKillN with n=2, and selects the tc4 test case and adds it to
requiredTC. The final value of this set is: {tc2, tc3, tc4}.

3.2 “A Motivational Example”

In their paper [20], Jeffrey and Gupta show, using the same title that leads this section, a
small program to exemplify their algorithm with selective redundancy, which has been
translated into the Java program shown in Figure 7. For this class, MuJava generates 48
traditional (15 of them are functionally-equivalent) and 6 class mutants for this program.

Using the values {-1.0, 0.0, +1.0} for the four parameters of function f, and
generating test cases with the All combinations algorithm, the testooj tool [16]
generates a test file with 3×3×3×3=81 test cases, that manage to kill 100% of the non-
equivalent mutants. Figure 6 shows a piece of the killing matrix for this example,
ordered according to the number of mutants killed by each test case (last column).

 Reduction of Test Suites Using Mutation 433

Of the three test cases killing 28 mutants, the algorithm picks testTS_0_78 and
adds it to the reduced suite, removing testTS_0_76 and testTS_0_77 since they kill the
same mutants. Moreover, these are removed from the set of mutants. Then, it
continues picking testTS_054 and proceeds in the same way. The reduced suite is
finally composed of 7 test cases, which is 8.6% of the original size: {testTS_0_78,
testTS_0_54, testTS_0_39, testTS_0_35, testTS_0_34, testTS_0_33, testTS_0_27}

As expected, if the reduced suite is executed against the class and its mutants, it is
seen that it also reaches the highest mutation score.

Fig. 6. A piece of the killing matrix for the original test suite, in the Jeffrey and Gupta example

4 Experiments

In order to check the results of the technique, two experiments were carried out:
The first experiment uses a set of programs which have been used in many research

papers on software testing (for example, references [8, 11, 28-30]) and, therefore, can
be considered as benchmarks. These programs are Bisect, Bub, Find, Fourballs, Mid
and TriTyp. They are implemented as isolated Java classes. For this experiment, all
the traditional mutation operators of the MuJava tool [31] were used to generate
mutants (thus, those operators which are specific for the object-oriented
characteristics of the Java language were excluded). Then, the All combinations
strategy was used to generate test cases to kill these mutants. All combinations
generates test cases by combining all test values of all the parameters [32].

For the second experiment, several classes were selected from a set of industrial
systems. A required characteristic of the systems for this experiment is the availability
of both its source code and test cases. In this case, the goal of the research is to
evaluate the goodness of the technique in “actual” software. The test cases used for
this experiment were those available with the corresponding project, and did not add
new test cases to the test suites. All these projects are composed of several classes
with different types of relationships among them. As with the first experiment, only
the traditional operators were applied.

434 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

public class JGExample {
 float returnValue;
 public float f(float a, float b, float c, float d) {
 float x=0, y=0;
 if (a>0) x=2;
 else x=5;
 if (b>0) y=1+x;
 if (c>0)
 if (d>0) returnValue=x;
 else returnValue=10;
 else returnValue=(1/(y-6));
 return returnValue;
 }

 public String toString() {
 return "" + returnValue;
 }
}

Fig. 7. The "motivational example" from Jeffrey and Gupta

4.1 Experiment 1: Benchmark Programs

Table 4 gives some quantitative information about the benchmark programs: number
of lines of code (LOC), number of non-equivalent mutants generated by the MuJava
tool (i.e., the equivalent mutants were manually removed), size of the original test
suite (automatically generated using the All combinations strategy with the testooj
tool) and size of the reduced suite. Of course, both the original and the reduced suite
kill 100% of non-equivalent mutants and, thus, all of them are mutation-adequate.

Table 4. Results for the benchmark programs

Program LOC # of mutants |Test suite| |Reduced test suite|
Bisect 31 44 25 2 (8%)
Bub 54 70 256 1 (0,04%)
Find 79 179 135 1 (0.07%)
Fourballs 47 168 96 5 (5,2%)
Mid 59 138 125 5 (4%)
TriTyp 61 239 216 17 (7,8%)

4.2 Experiment 2: Industrial Programs

For this experiment, a set of publicly available programs was downloaded (Table 5
shows some quantitative data, measured with the Eclipse Metrics plugin). One
important requirement for selecting these programs was the availability of test cases,
since now the goal was to check whether among these test cases, written by the
developers of the programs, there also exists any redundancy and that they can,
therefore, be reduced.

 Reduction of Test Suites Using Mutation 435

In this way, the three following systems were selected and downloaded:

1) jtopas, a system for analyzing and parsing HTML pages with CSS code
embedded. This system is included in the Software-artifact Infrastructure
Repository (SIR), a website with a set of publicly available software, left by
Do and others to facilitate benchmarking in testing experimentation [33].

2) jester, a testing tool for Java. This was developed by Ivan Moore and can be
downloaded from http://jester.sourceforge.net.

3) jfreechart, a free chart library for the Java platform. It was designed for use
in applications, applets, servlets and JSP.

Table 5. Quantitative data from the selected projects

Project # of packages # of classes WMC (total) LOC
jtopas 4 20 747 3,067
jester 7 67 588 3,225
jfreechart 69 877 20,584 124,664

Table 6 shows some quantitative data from the selected classes, all of them having
a corresponding testing class. Table 7 shows:

1) The number of mutants generated for the class by the MuJava tool. Note
that, in these projects, equivalent mutants have not been removed.

2) The number of available test cases for that class in the corresponding
project.

3) The percentage of mutants killed by the original test suite.
4) The number of test cases in the reduced suite, once the original suite has

been executed and the reduction algorithm has been applied.

Thus, for example, MuJava generates 94 mutants for PluginTokenizer from the jtopas
project, where there are 14 test cases available on its website. These test cases kill
31% of the mutants. The last column shows the results of applying the test suite
reduction algorithm, with the result that a single test case is sufficient for reaching the
same coverage as the original 14 test cases.

Table 6. Quantitative data from the selected classes

Project Program LOC WMC Methods
jtopas PluginTokenizer 157 27 16
jester IgnoreList 26 8 3

jfreechart

CompositeTitle 63 14 8
SimpleHistogramBin 117 32 11
RendererUtilities 137 29 3
XYPlot 2,470 591 194

436 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

Table 7. Test execution results

Program Mutants |Test suite| Mutants
killed

|Reduced test
suite|

PluginTokenizer 94 14 31% 1 (7%)
IgnoreList 27 6 85% 2 (33%)
CompositeTitle 9 4 77% 1 (25%)
SimpleHistogramBin 293 5 66% 4 (80%)
RendererUtilities 801 6 81% 6 (100%)
XYPlot 3,012 21 36% 14 (66%)

5 Conclusions and Future Work

This article has presented a greedy algorithm to reduce the size of a test suite with no
loss of quality, meaning that the new suite preserves the same coverage that the
original suite reaches in the system under test. The testing criterion used to select the
test cases is based on the percentage of mutants that each test case kills. The
algorithm has been formally verified.

Moreover, it has been applied to both benchmark programs commonly used in
testing research papers, as in industrial software, evidencing the utility of the
algorithm in almost all cases.

In conclusion, the authors consider that mutation testing has reached sufficient
maturity to be applied in the actual testing of real software. The research has now
arrived at such a point that the knowledge produced over all these years is ready to be
transferred to industrial testing tools.

As a future work, we plan to compare the presented reduction algorithm with the
other presented in the literature, in order to determine differences of effectiveness and
efficiency between them.

References

1. DeMillo, R., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for the
practicing programmer. IEEE Computer 11(4), 34–41 (1978)

2. Barbosa, E.F., Maldonado, J.C., Vincenzi, A.M.R.: Toward the determination of sufficient
mutant operators for C. Software Testing, Verification and Reliability 11(2), 113–136
(2001)

3. Offutt, A.J., Craft, W.: Using compiler optimization techniques to detect equivalent
mutants. Software Testing, Verification and Reliability 7, 165–192 (1996)

4. Hamlet, R.: Testing programs with the help of a compiler. IEEE Transactions on Software
Engineering 3(4), 279–290 (1977)

5. Mresa, E.S., Bottaci, L.: Efficiency of Mutation Operators and Selective Mutation
Strategies: An Empirical Study. Software Testing, Verification and Reliability 9, 205–232
(1999)

6. Wong, W.E., Mathur, A.P.: Reducing the Cost of Mutation Testing: An Empirical Study.
Journal of Systems and Software 31(3), 185–196 (1995)

 Reduction of Test Suites Using Mutation 437

7. Untch, R., Offutt, A., Harrold, M.: Mutation analysis using program schemata. In:
International Symposium on Software Testing, and Analysis, Cambridge, Massachusetts,
June 28-30, pp. 139–148 (1993)

8. Offutt, A.J., Lee, S.D.: An Empirical Evaluation of Weak Mutation. IEEE Transactions on
Software Engineering 20(5), 337–344 (1994)

9. Reales, P., Polo, M., Offutt, J.: Mutation at System and Functional Levels. In: Third
International Conference on Software Testing, Verification, and Validation Workshops,
Paris, France, pp. 110–119 (April 2010)

10. Hirayama, M., Yamamoto, T., Okayasu, J., Mizuno, O., Kikuno, T.: Elimination of Crucial
Faults by a New Selective Testing Method. In: International Symposium on Empirical
Software Engineering (ISESE 2002), Nara, Japan, October 3-4, pp. 183–191 (2002)

11. Polo, M., Piattini, M., García-Rodríguez, I.: Decreasing the cost of mutation testing with 2-
order mutants. Software Testing, Verification and Reliability 19(2), 111–131 (2008)

12. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible paths.
Software Testing, Verification and Reliability 7(3), 165–192 (1997)

13. Baudry, B., Fleurey, F., Jézéquel, J.-M., Traon, Y.L.: Automatic test case optimization: a
bacteriologic algorithm. IEEE Software 22(2), 76–82 (2005)

14. Kim, S.W., Clark, J.A., McDermid, J.A.: Investigating the effectiveness of object-oriented
testing strategies using the mutation method. Software Testing, Verification and
Reliability 11, 207–225 (2001)

15. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University Press
(2008)

16. Polo, M., Piattini, M., Tendero, S.: Integrating techniques and tools for testing automation.
Software Testing, Verification and Reliability 17(1), 3–39 (2007)

17. Jones, J.A., Harrold, M.J.: Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage. IEEE Transactions on Software Engineering 29(3), 195–209
(2003)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York
(1979)

19. Harrold, M., Gupta, R., Soffa, M.: A methodology for controlling the size of a test suite.
ACM Transactions on Software Engineering and Methodology 2(3), 270–285 (1993)

20. Jeffrey, D., Gupta, N.: Test suite reduction with selective redundancy. In: International
Conference on Software Maintenance, Budapest, Hungary, pp. 549–558 (2005)

21. Tallam, S., Gupta, N.: A concept analysis inspired greedy algorithm for test suite
minimization. In: 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pp. 35–42 (2005)

22. Heimdahl, M., George, D.: Test-Suite Reduction for Model Based Tests: Effects on Test
Quality and Implications for Testing. In: 19th IEEE International Conference on
Automated Software Engineering, pp. 176–185 (2004)

23. McMaster, S., Memon, A.: Call Stack Coverage for Test Suite Reduction. In: 21st IEEE
International Conference on Software Maintenance, Budapest, Hungary, pp. 539–548
(2005)

24. Runeson, P., Andersson, C., Höst, M.: Test processes in software product evolution -a
qualitative survey on the state of practice. Journal of Software Maintenance and Evolution:
Research and Practice 15(1), 41–59 (2003)

25. Geras, A.M., Smith, M.R., Miller, J.: A survey of software testing practices in Alberta.
Canadian Journal of Electrical and Computer Engineering 29(3), 183–191 (2004)

26. Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A Preliminary Survey on Software
Testing Practices in Australia, Melbourne, Australia, pp. 116–125 (2004)

438 M. Polo Usaola, P. Reales Mateo, and B. Pérez Lamancha

27. Polo, M., Reales, P.: Mutation Testing Cost Redution Techniques: A Survey. IEEE
Software 27(3), 80–86 (2010)

28. Offutt, A.J., Rothermel, G., Untch, R.H., Zapf, C.: An experimental determination of
sufficient mutant operators. ACM Transactions on Software Engineering and
Methodology 5(2), 99–118 (1996)

29. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-Data Generation Using Genetic Algorithms.
Software Testing, Verification and Reliability 9(4), 263–282 (1999)

30. Offut, A.J., Pan, J., Zhang, T., Terwary, K.: Experiments with data flow and mutation
testing. Report ISSE-TR-94-105 (1994)

31. Ma, Y.-S., Offutt, J., Kwon, Y.R.: MuJava: an automated class mutation system. Software
Testing, Verification and Reliability 15(2), 97–133 (2005)

32. Grindal, M., Offutt, A.J., Andler, S.F.: Combination testing strategies: a survey. Software
Testing, Verification and Reliability 15, 167–199 (2005)

33. H., D., Elbaum, S.G., Rothermel, G.: Supporting Controlled Experimentation with Testing
Techniques: An Infrastructure and its Potential Impact. Empirical Software Engineering:
An International Journal 10(4), 405–435 (2005)

Model-Based Filtering

of Combinatorial Test Suites

Taha Triki1, Yves Ledru1, Lydie du Bousquet1,
Frédéric Dadeau2, and Julien Botella3

1 UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble 2/CNRS,
LIG UMR 5217, F-38041, Grenoble, France

{Taha.Triki,Yves.Ledru,Lydie.du-Bousquet}@imag.fr
2 LIFC - INRIA CASSIS Project, 16 route de Gray, 25030 Besançon, France

frederic.dadeau@lifc.univ-fcomte.fr
3 Smartesting, Besançon, France
julien.botella@smartesting.com

Abstract. Tobias is a combinatorial test generation tool which can effi-
ciently generate a large number of test cases by unfolding a test pattern
and computing all combinations of parameters. In this paper, we first
propose a model-based testing approach where Tobias test cases are first
run on an executable UML/OCL specification. This animation of test
cases on a model allows to filter out invalid test sequences produced by
blind enumeration, typically the ones which violate the pre-conditions of
operations, and to provide an oracle for the valid ones. We then intro-
duce recent extensions of the Tobias tool which support an incremental
unfolding and filtering process, and its associated toolset. This allows to
address explosive test patterns featuring a large number of invalid test
cases, and only a small number of valid ones. For instance, these new
constructs could mandate test cases to satisfy a given predicate at some
point or to follow a given behavior. The early detection of invalid test
cases improves the calculation time of the whole generation and execu-
tion process, and helps fighting combinatorial explosion.

1 Introduction

Combinatorial testing is an efficient way to produce large test suites. In its basic
form, combinatorial testing identifies sets of relevant values for each parame-
ter of a function call, and the production of the test suite simply generates all
combinations of the values of the parameters to instantiate the function call.
JMLUnit [4] is a simple and efficient tool based on this technique, which uses
JML assertions as the test oracle. Extended forms of combinatorial testing al-
low to sequence sets of operations, each operation being associated to a set of
relevant parameters values. This produces more elaborate test cases, which are
appropriate to test systems with internal memory whose behaviour depends on
previous interactions. Tobias [19,17,18] is one of these combinatorial generators.
It was used successfully on several case studies [3,9,10] and has inspired recent

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 439–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

440 T. Triki et al.

combinatorial testing tools, such as the combinatorial facility of the Overture
toolset for VDM++[16] or jSynoPSys [8].

Tobias takes as input a test pattern and performs its combinatorial unfolding
into a possibly large set of test cases. Each test case usually corresponds to
a sequence of test inputs. An additional oracle technology is needed to decide
on successful or failed test executions. In the past, we have mainly used the
run-time evaluation of JML assertions as a test oracle [3]. But the tool can
be used in other contexts than Java/JML. In this paper, we adopt a model-
based testing approach where tests are first played on a UML/OCL specification
of the system under test. The animation of a sequence of operations on the
UML/OCL specification is performed by the Test Designer tool of Smartesting 1

and brings two kinds of answers. First, it reports whether the sequence is valid,
i.e. each of its calls satisfies the pre-condition of the corresponding operation
and is able to produce an output which verifies the post-condition. Then, it
provides the list of intermediate states and operation results after each operation
call. This information can be used as test oracle to compare with the actual
states and results of the system under test. It must be noted that the model is
deterministic, which forces all accepted implementations to produce the same
results and intermediate states (if observable). In summary, the model is used
(a) to discard invalid sequences, and (b) to provide an oracle for valid ones.

Combinatorial testing naturally leads to combinatorial explosion. This is ini-
tially perceived as a strength of such tools: large numbers of tests are produced
from a test pattern. This helps to systematically test a system by the exhaustive
exploration of all combinations of selected values. The latest version of Tobias
has been designed to generate up to 1 million abstract test cases. It is actually
only limited by the size of the file system where the generated tests are stored.
Unfortunately, the translation of these test cases into a target technology such
as JUnit, the compilation of the resulting file and its execution usually require
too much computing resources and, in practice, the size of the test suite must
be limited between 10 000 and 100 000 test cases.

Several techniques can be adopted to limit combinatorial explosion. The most
classical one is the use of pairwise testing techniques [5] which does not cover
all combinations of parameter values but simply covers all pairs of parameter
values. This technique is very efficient to reduce a large combinatorial test suite
to a much smaller number of test cases, but it relies on the hypothesis that
faults result from a combination of two parameters. Therefore it may miss faults
resulting from a combination of three or more parameters. The technique can be
generalized to cover all n-tuples of parameters but it may always miss combina-
tions of n + 1 parameters. Another approach is the use of test suite reduction
techniques [13] which select a subset of the test suite featuring the same code
coverage as the original test suite. This technique has several limitations. First,
it requires to play the full test suite in order to collect coverage information.
Also, empirical studies have shown that test suite reduction may compromise
fault detection [20].

1 http://smartesting.com

http://smartesting.com

Model-Based Filtering of Combinatorial Test Suites 441

In this paper, we consider the case where combinatorial test suites lead to a
large proportion of invalid test cases, i.e. test cases which will not be accepted
by the specification. These invalid test cases must be discarded from the test
suite because the specification is unable to provide an oracle for these tests.
Discarding these invalid test cases leads to a safe reduction of the test suite. We
present a tool which incrementally unfolds a test pattern and discards invalid
test cases. The tool is based on an evolution of the Tobias tool where several
new constructs have been added to the base language.

Section 2 introduces an illustrative case study. Then Section 3 presents the
basic constructs of Tobias, using the case study. Section 4 presents additional
constructs which help filter combinatorial test suites. Section 5 presents the
toolset which incrementally unfolds the test patterns and filters the resulting
test suite. Section 6 reports on several experiments carried with this tool set.
Section 7 gives an overview of the research literature related to our work. Finally,
Section 8 draws the conclusions of this work.

2 An Illustrative Case Study

We consider the example of a smart card application, representing an electronic
purse (e-purse). This purse manages the balance of money stored in the purse,
and two pin codes, one for the banker and one for the card holder. Similarly to
smart cards, the e-purse has a life cycle (Fig. 1), starting with a Personalization
phase, in which the values of the banker and holder pin codes are set. Then
a Use phase makes it possible to perform standard operations such as holder
authentication (by checking his pin), crediting, debiting, etc. When the holder
fails to authenticate three consecutive times, the card is invalidated. Unblock-
ing the card is done by a banker’s authentication. Three successive failures in
the bank authentication attempts make the card return to the Personalization
phase. Each sequence of operations is performed within sessions, which are ini-
tiated through different terminals. This example has originally been designed to
illustrate access control mechanisms, and it is used a basis for test generation

Perso

Use

Invalid

SetBPC,SetHPC

setBPC,SetHPC,
checkpin

checkPin, credit,
debit, getBalance

SetHPC,
authBank,
checkPin

checkpin

authBank

setHPC

Method signature Informal description

beginSession(int) Opening of session

endSession() Termination of session

setBpc(int) Sets the bank’s pin

setHpc(int) Sets the holder’s pin

checkPin(int) Identifies the holder

authBank(int) Identifies the bank

credit(int) credit of the purse

debit(int) debit of the purse

getBalance() value of the balance

Fig. 1. The main modes of the bank card and the main operations

442 T. Triki et al.

Pre-condition:

(self.isOpenSess_ = true and self.mode_ = Mode::USE and

self.terminal_ = Terminal::PDA and self.hptry_ > 0) = true

Post-condition:

if (pin = self.hpc_) then /**@AIM: HOLDER_AUTHENTICATED */

self.isHoldAuth_ = true and self.hptry_ = self.MAX_TRY

else /**@AIM: HOLDER_IS_NOT_AUTHENTICATED */

self.hptry_ = self.hptry_@pre - 1 and self.isHoldAuth_ = false and

if (self.hptry_ = 0) then /**@AIM: MAX_NUMBER_OF_TRIES_REACHED */

self.mode_ = Mode::INVALID

else /**@AIM: MAX_NUMBER_OF_TRIES_IS_NOT_REACHED */

true

endif

endif

Fig. 2. Pre and post-condition for checkPin(int) operation

for access control2. It was already used to illustrate test suite reduction with
Tobias [7]. The original example was specified in JML. We have translated this
specification into a UML/OCL model for the Smartesting Test Designer tool.

In Test Designer (TD), information about the behaviour of operations is cap-
tured in assertions associated to the operations. In the perspective of animation,
these assertions must characterize a deterministic behaviour. An example of
the pre- and post-conditions of the checkPin(int) operation is given Fig. 2.
Post-conditions represent the code to be animated by TD if the pre-condition is
verified. TD uses an imperative variant of OCL3, inspired by the B language [1].
The variables appearing in the right hand side of a = sign are implicitly taken
in their pre-state (usually denoted in OCL by @pre). In the model, the condi-
tional branches are tagged with special comments. For example if the pin code is
equal to the right one (self.hpc_), the tag @AIM:HOLDER_AUTHENTICATED will
be activated and saved by the animator. After animation of an operation call,
TD provides the list of all activated tags. The set of activated tags after an
execution represents a behaviour of an operation. For example, the set:
B1 = {@AIM:HOLDER_IS_NOT_AUTHENTICATED,@AIM:MAX_NUMBER_OF_TRIES_REACHED}
is a behaviour of the checkPin operation leading to INVALID mode.

3 Basic Tobias Test Patterns

To generate test cases, Tobias unfolds a test pattern (also called “test schema”).
The textual Tobias input language (TSLT) contains several types of constructs

2 the original code of the application (in B and Java/JML) is available at
http://membres-liglab.imag.fr/haddad/exemple_site/index.html

3 The example presented in this paper follows the standard OCL syntax.

http://membres-liglab.imag.fr/haddad/exemple_site/index.html

Model-Based Filtering of Combinatorial Test Suites 443

allowing the definition of complex system scenarios. The key concept in the
Tobias input language is the group concept which defines a set of values or
sequences of instructions. The group concept is subject to combinatorial unfold-
ing. Some other concepts can be applied to instructions like iteration or choice.
To illustrate these constructs, let us consider the following pattern:

group EPurseSchema1 [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder; @Transaction{1,3};}

group IUT [type=instruction] { EPurse ep = new EPurse(); }

group Personalize [type=instruction] {

ep.beginSession(Terminal.ADMIN); ep.setBpc(@BankPinValue);

ep.setHpc(@UserDebitValue); ep.endSession(); }

group AuthenticateHolder{

ep.beginSession(Terminal.PDA); ep.checkPin(@UserPinValue){1,4}; }

group Transaction [type=instruction] {

(ep.credit(@Amounts) | ep.debit(@Amounts)); }

group BankPinValue [type=value] {values = [12,45];}

group UserPinValue [type=value] {values = [56,89];}

group Amounts [type=value] { values = [-1,0,50]; }

EPurseSchema1 is a group of instructions (type = instruction), and the flag
us indicates whether the group will be unfolded (=true) or not. This group is a
sequence of 4 other groups: IUT, Personalize, AuthenticateHolder and Transac-
tion. This last group will be repeated one to three times in the sequence. The IUT
group defines a new instance of class EPurse. Then, the Personalize group opens
a new ADMIN session, sets the banker and the holder PIN codes, and finally
closes the session. The AuthenticateHolder group authenticates the holder, and
finally the Transaction group allows to do transactions. We use groups of values
in some operation calls. For instance, the parameter of the setBpc method has
2 possible values.

The iteration construct {m,n} repeats an instruction, or a sequence of instruc-
tions, from m to n times or exactly m times. For example, in group Authenti-
cateHolder, the checkPin operation is iterated 1 to 4 times (to check all possible
sequences of correct/incorrect user authentication.

The Transaction group illustrates the choice construct. It consists of an ex-
clusive choice between the two operation calls Debit or Credit. Each of them
can be instantiated by three different amounts.

The EPurseSchema1 pattern is unfolded into 30 960 test cases :
1 * (2*2) * (21+22+23+24) * ((3 ∗ 2)1+(3 ∗ 2)2+(3 ∗ 2)3). Only 2776 test cases
are valid ones (i.e. satisfy the pre-conditions). In Fig. 3, examples of test cases
unfolded from EPurseSchema1 are given, TC3 is valid, contrary to TC26835 (which
executes 4 consecutive calls to the checkPin operation with the wrong Pin code)
and TC30960 (which executes a debit operation but never credits).

If we put the maximum iteration bound of Transaction to 10, it would result
into 8 707 129 200 test cases and would cause combinatorial explosion. In the
next sections, we will see how the new Tobias constructs make it possible to take
such explosive test patterns into account.

444 T. Triki et al.

...

TC3: EPurse ep = new EPurse(); ep.beginSession(Terminal.ADMIN);

ep.setBpc(12); ep.setHpc(56); ep.endSession();

ep.beginSession(PDA); ep.checkPin(56); ep.credit(50)

...

TC26835: EPurse ep = new EPurse(); ep.beginSession(ADMIN);

ep.setBpc(45); ep.setHpc(89); ep.endSession();

ep.beginSession(PDA); ep.checkPin(56); ep.checkPin(56);

ep.checkPin(56); ep.checkPin(56); ep.credit(50)

...

TC30960: EPurse ep = new EPurse(); ep.beginSession(Terminal.ADMIN);

ep.setBpc(45); ep.setHpc(89); ep.endSession();

ep.beginSession(PDA); ep.checkPin(89); ep.checkPin(89);

ep.checkPin(89); ep.checkPin(89); ep.debit(50); ep.debit(50);

ep.debit(50)

Fig. 3. Examples of test cases unfolded from EPurseSchema1

4 New Tobias Constructs

Here, we introduce three new constructs for the Tobias input language. These
constructs support new techniques for filtering test cases. This allows to control
the size of the produced test suite, and incrementally pilot the combinatorial
unfolding process. These constructs are inspired by the jSynoPSys scenario lan-
guage [8] and are syntactically and semantically adjusted to meet our needs.

The State predicate construct inserts an OCL predicate in the test sequence.
The predicate expresses that a property is expected to hold at this stage of the
test sequence. Tests whose animations do not satisfy this OCL predicate should
be discarded from the test suite. It allows the tester to select a subset of the
unfolded test suite featuring a given property at execution time. For example,
not all AuthenticateHolder animations succeed. Therefore, we define a state
predicate to select the tests which succeed the authentication. The pattern is
defined as follows:

group EPurseSchema5 [us=true, type=instruction] { @IUT; @Personalize;

@AuthenticateHolder�({ep} , self.isHoldAuth_ = true); @Transaction; }

AuthenticateHolder performs checkPin one to four times. Then the pattern se-
lects those sequences which end up with a successful authentication. The TSLT
construct takes the form�(set of targets , OCL predicate), where the set
of targets identifies the objects which correspond to self in the OCL predicate.
Here the set of targets is the singleton including ep.

The behaviours construct is another way to filter tests. It applies to an operation
and keeps the tests whose animation covers a given behaviour, expressed as a
set of tags. For example, in the previous pattern (EPurseSchema5), instead of

Model-Based Filtering of Combinatorial Test Suites 445

using a state predicate to keep tests that succeed the holder authentication, we
select the authentication sequences whose last call to checkPin covers the tag

@AIM:HOLDER_AUTHENTICATED.
group EPurseSchema6 [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder2; @Transaction; }

group AuthenticateHolder2 {

ep.beginSession(Terminal.PDA); ep.checkPin(@UserPinValue){0,3};

ep.checkPin(@UserPinValue)/w{set(@AIM:HOLDER_AUTHENTICATED)}; }

After the last call to checkPin, we put the symbol /w and we define a set of tags
that must be activated after the operation execution. Here, when the pin code
is correct, the tag @AIM:HOLDER AUTHENTICATED is covered in the post-condition
of checkPin (see Sect. 2).

The Filtering key is called after an instruction. It allows to accept a set of
succeeded tests at some position and to discard the others. Then it will select
some of the succeeded tests. TSLT provides four filtering keys (ONE, ALL, n,
%n) to keep one, all, n or n% of the valid prologues. If we want to accept all of
them we use ALL, just one we use ONE and n (resp. %n) randomly selects
n (resp. n% of the) test cases amongst the valid ones. For example consider
EPurseSchema7. The prologue group leads the purse to a state where the holder
is authenticated. If the test engineer simply wants to keep one of these, he can
add keyword _ONE after the prologue :

group EPurseSchema7 [us=true, type=instruction] {

@Prologue_ONE; @Transactions; }

group Prologue [us=true, type=instruction] {

@IUT;@Personalize; @AuthenticateHolder2; }

5 The Incremental Unfolding and Filtering Process

5.1 Standard Unfolding and Filtering Process

Before introducing the mechanism of incremental unfolding, we begin by present-
ing the process of generation, animation and filtering of test cases by coupling
the Tobias and Test Designer tools (Fig. 4). The starting point is a schema file
including a test pattern written in TSLT. Three steps are automatically involved
to produce the test evaluation results:

1. The schema file is unfolded by the Tobias tool which generates one or several
test suite files written in the XML output language of the tool (outob file).
For each group marked in TSLT as us=true, Tobias produces an outob
file. This file contains all abstract test cases generated by the combinatorial
unfolding of the corresponding group.

446 T. Triki et al.

Fig. 4. The process of generation and filtering test cases (standard process)

2. The outob files are translated into JUnit test suites including all necessary
information to animate test cases. Each JUnit test case interacts with the
API of TD to animate the model. We take advantage of the JUnit framework
and the Java API of TD to animate the tests in a popular and familar tool
for engineers, and to benefit from the JUnit structure of test suites.

3. JUnit executes the test suites. Each test case is animated on the TD model
through the TD API. The animation process allows to identify and filter out
invalid test cases, i.e. the ones which:
– include some operation call that violates its precondition,
– include some operation call that violates its postcondition,
– do not fulfill some state predicate or
– include some operation call that fails to activate its associated behaviours.

The animation of test cases proceeds sequentially. If an instruction fails
because of one of these four reasons, the animation of the test stops and the
test case is declared as failed and discarded from the test suite. The valid
ones are saved to a repository.

5.2 Incremental Unfolding and Filtering Process

Algorithm The standard process requires to completely unfold the test patterns
and to animate each test case of each test suite. At this stage, we did not take
advantage of filtering keys (ONE, ALL, n, n%). These filtering keys can be
applied on the resulting test suite to select the relevant test cases. In this section,
we will see that the early application of filtering keys may lead to significant
optimisations of (a) the unfolding process and (b) the animation of the test
suite.

Model-Based Filtering of Combinatorial Test Suites 447

algorithm Incremental_Generation_And_Execution_Process (p):

while(p contains at least one filtering key)

Let (prefix _1stKey ; postfix) match p in

validPrefixes := apply_Standard_Process(prefix);

validPrefixesSubset := Select_Subset_Of_

Valid_Prefixes_According_To(1stKey);

p := (validPrefixesSubset ; postfix);

end while

result := apply_Standard_Process(p);

end

Fig. 5. The incremental unfolding algorithm

The incremental process is defined for the unfolding of a single pattern p. It
can be generalized to unfold multiple patterns. Its algorithm is given in Fig. 5
and performs the following steps:

– At each iteration, pattern p is divided into a prefix, located before the first
filtering key, and a postfix, located after it.

– The standard unfolding and filtering process of Sect. 5.1 is applied to the
prefix. It results into a group of valid unfolded prefixes.

– A subset of this group is selected according to the filtering key.
– This subset of valid unfolded prefixes is concatenated with the postfix to

form the new value of p.
– The process iterates until all filtering keys are processed in the pattern.
– A last unfolding is applied to the resulting pattern stored in p.

Example. To illustrate this incremental process, consider the following pattern:

group EPurseSchema9 [us=true, type=instruction] { @IUT; @Personalize;

@AuthenticateHolder�({ep} , self.isHoldAuth_ = true)_ONE; @Transactions;}

Before calling @Transactions, we would like to choose just one (_ONE) sequence
of operations that succeeds holder authentication.
The prefix of this pattern is:

group EPurseSchema9pre [us=true, type=instruction] { @IUT; @Personalize;

@AuthenticateHolder�({ep} , self.isHoldAuth_ = true); }

This prefix is then unfolded using the standard process. The three steps are
executed to generate, animate and filter test cases. It unfolds into 120 tests,
where only 56 are valid. A valid test is choosen randomly between them and
inserted as a prefix in the new pattern:

group EPurseSchema9b [us=true, type=instruction] {

(ep.beginSession(ADMIN) ; ep.setBpc(45) ; ep.setHpc(56) ;

ep.endSession() ; ep.beginSession(PDA) ; ep.checkPin(89) ;

ep.checkPin(56) ; ep.checkPin(56) ;); @Transactions; }

448 T. Triki et al.

Since there is no remaining filtering key, the whole pattern will be unfolded to
generate the final test cases. This unfolding leads to 6 test cases, where only 3
are valid. The final number of valid test cases may depend on the prefix that
will be chosen randomly. These test cases will be animated to discard the invalid
ones, and then produce the filtered test suite. This process is clearly optimized
since only 126 test cases were completely unfolded, instead of 720 in the standard
process. In the next section, we present experimental results on more complex
examples.

6 Some Experimental Results

Let us consider the following example:

group EPurseExample [us=true, type=instruction] {@IUT; @Personalize;

@AuthenticateHolder�({ep} , self.isHoldAuth_ = true);@Transactions{4};}

The EPurseExample is unfolded into 155 520 test cases. Our tools succeed to
achieve steps 1 and 2 (translation into TSLT and production of an outob file).
Unfortunately, the translation of the outob XML file into a JUnit file crashes due
to a lack of memory (we used up to 1.5Gb of RAM). If this had succeeded, we
presume that the compilation of the JUnit file would also crash. These technical
problems can be overcome by decomposing our files into smaller ones, but still the
whole process would take time and computing resources. Other group definitions
can rapidly reach over 1 million test cases which may require untractable time
and memory resources. We redefine the pattern by introducing filtering keys:

group EPurseExampleUsingKeys [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder�({ep} , self.isHoldAuth_ = true);

@Transactions_ALL; @Transactions_ALL; @Transactions_ALL; @Transactions; }

This pattern will produce the same valid test cases as the previous one, since
we used the _ALL key. Using the incremental process, we need four iterations
to remove the three filtering keys and unfold the resulting pattern. The pattern
is completely unfolded and animated in 175 seconds as given in Fig. 6. As a
result our 155 520 test cases only include 6496 valid ones. To identify these, our

Iteration Nb of tests unfolded Nb of tests accepted

1 720 168

2 1008 560

3 3360 1904

4 11424 6496

Fig. 6. Results of EPurseExampleUsingKeys unfolding

Model-Based Filtering of Combinatorial Test Suites 449

incremental process needs four iterations but only unfolds and plays 16512 test
cases. In this case, it performed the selection process using 10% of the resources
needed for the standard one, and kept the test suites small enough to avoid tool
crashes.

Support for a Brute Force Approach. Let us consider another explosive pattern,
based on Fig. 1. The aim of this pattern is to find test sequences where the purse
goes back to Personalisation mode, before being set in Use mode. The only way
to reach this goal is to start from Perso mode, go into Use and Invalid modes,
before getting back to Perso and finally to Use. These major steps are captured
in the state predicates of the following pattern:

group EPurseSchema18op [us=true, type=instruction] {

@IUT;

@ALLOps{4}�({ep}, self.mode_ = Mode::USE);

@ALLOps{5}�({ep}, self.mode_ = Mode::INVALID);

@ALLOps{5}�({ep}, self.mode_ = Mode::PERSO);

@ALLOps{4}�({ep}, self.mode_ = Mode::USE); }

In order to change states, we adopt a brute force approach where a single group
has been defined for all operations offered by the card. Group ALLOps can be
unfolded in 19 elements.

group ALLOps { ep.beginSession(@TerminalValue) | ep.endSession() |

ep.setBpc(@BankPinValue) | ep.setHpc(@UserDebitValue) |

ep.authBank(@BankPinValue) | ep.checkPin(@UserDebitValue) |

ep.credit(@Amounts) | ep.debit(@Amounts); }

EPurseSchema18op repeats all operations 4 times, until it reaches the Usemode.
Finding that it requires 4 iterations can result from a trial and error process, or
from a careful study of the specification. Since we adopt a brute force approach,
let us consider that the engineer has attempted to reach the Use mode in one
to three steps, without success, and finally found that four steps were sufficient
(session opening, setting the Holder and Bank codes, and session close). Sim-
ilarly he found that 5 steps are the minimum to reach state Invalid (session
opening, three unsuccessful attempts to checkPin and session close), and to then
reach state Perso (session opening, three unsuccessful attempts to authBank
and session close). As a result, to find a valid sequence reaching the Use mode
and returning to the same mode after visiting the other modes, we need to
call at least 18 operations (4+5+5+4). EPurseSchema18op represents 1918 test
cases (about 1023 test cases), and thus cannot be directly unfolded. Because of
the brute force approach, and because we inserted filtering predicates, a large
number of these test cases will be invalid. This enables us to call the incremental
process.

We redefine EPurseSchema18op using the filtering key ALL to keep all valid
prefixes.

450 T. Triki et al.

Iteration Nb of tests
unfolded

Nb of tests
accepted

1 19 3

2 57 7

3 133 29

4 551 24

5 456 40

6 760 104

7 1976 312

8 5928 1136

9 21584 56

Iteration Nb of tests
unfolded

Nb of tests
accepted

10 1064 72

11 1368 184

12 3496 376

13 7144 1160

14 22040 64

15 1216 80

16 1520 224

17 4256 624

18 11856 640

Fig. 7. Results of EPurseSchema18opWFilteringKey unfolding

group EPurseSchema18opWFilteringKey [us=true, type=instruction] {

@IUT;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps�({ep}, self.mode_ = Mode::USE)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps�({ep}, self.mode_ = Mode::INVALID)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps�({ep}, self.mode_ = Mode::PERSO)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps�({ep}, self.mode_ = Mode::USE); }

EPurseSchema18opWFilteringKey is unfolded incrementally in 18 iterations.
Fig. 7 shows the number of unfolded and accepted tests at each iteration. Steps
9 and 14 show how filtering predicates dramatically decrease the number of
accepted tests. Fig. 7 shows that the number of test cases animated at each
step remains small enough to be handled with reasonable time and computing
resources, and to avoid tool crashes. As a result, we unfolded and animated a
total of 85424 test cases for the 18 iterations in less than 17 minutes, instead
of 1918 in the standard process. We finally found all 640 valid test cases hidden
into this huge amount of potential test cases. This second example shows that
this incremental technique is efficient to find complex test cases hidden in a huge
search space. The key to success is to make sure that the use of filtering keys will
effectively reduce or limit the number of test cases at each iteration. Therefore,
one should prefer a specification and a test pattern which help identify invalid
test cases as soon as possible.

Improvements with Respect to Our Previous Work. In the past [17,18], we have
proposed two techniques to master combinatorial explosion with Tobias: test
filtering at execution time, and test selection at generation time. Filtering at
execution time is based on a simple idea: if the prefix of a test case fails, then
all test cases sharing the same prefix will fail. In [17], we have proposed an intel-
ligent test driver which remembers the failed prefixes, and avoids to execute a

Model-Based Filtering of Combinatorial Test Suites 451

test case starting with a prefix which previously failed. This idea is close to the
one presented in this paper. Still, there are significant advances in the new tech-
nique proposed here. First, the original technique required to produce the full
test suite. Every test was examined to check if it included a failing prefix. Our
new incremental process does not generate the full test suite, it incrementally
builds and filters the prefixes by alternating between unfolding and animation
activities. Because we avoid the full unfolding of the test suite, we are able to
consider test patterns corresponding to huge numbers of test cases (1918 in the
last example). Another contribution of this paper is the definition of new con-
structs for test patterns (state predicates, behaviours, filtering keys), which help
invalidate earlier the useless test cases in the unfolding process. Selection at gen-
eration time is another technique, where one selects a subset of the test suite
based on some criterion. This selection takes place during the unfolding process
and does not require to execute or animate test cases. In [18] we filtered the ele-
ments of the test suite whose text did not fulfill a given predicate. This predicate
is freely chosen by the test engineer and does not prevent to filter out useful test
cases. For example, one could filter out all test cases whose length was longer
than a given threshold. In [7,18], we investigated the use of random selection
techniques. These techniques are by essence unable to distinguish between valid
and invalid test cases, but they are able to reduce the number of test cases to
an arbitrary number whatever be the size of the initial test suite. Compared to
these selection techniques, our incremental process does not discard valid test
cases, but makes the assumption that the number of valid test cases is small
enough to remain tractable.

7 Related Work

In [15], authors propose to study test reduction in the context of bounded-
exhaustive testing, which could be described as a variation of combinatorial
testing. Three techniques are proposed to reduce test generation, execution time
and diagnosis. In particular, the Sparse Test Generation skips some tests at
the execution to reduce the time to the first failing test. Unlike ours, this ap-
proach does not rely on a model to perform test generation and reduction. Our
approach allows filtering large combinatorial test suites by animating them on
an UML/OCL model. It eliminates tests which don’t verify the pre and post
conditions of operations and/or given predicates or states. Generating tests or
simply checking their correctness, is a classical approach when a model is avail-
able (principle of the “model-based testing” approaches). For instance, in [12],
authors generate automatically a combinatorial test suite, that satisfies both
the specification and coverage criteria (among which pairwise coverage of pa-
rameter values). The generation engine is based on a constraint solver and the
specification is expressed in Spec#. In [2], authors also propose to automate
test case generation with a constraint solver, but the specification is expressed
as contracts extended with state machines. For both, the objective of the work
is to generate a test suite which fulfills a coverage criterion on a model. In our

452 T. Triki et al.

approach, the test schema gives a supplementary selection criterion for test gen-
eration. In [6], specification is expressed as IOLTS and generation is done with
respect to a test purpose, for conformance testing. In some way, our test schema
can be compared to a sort of test purpose, but contrary to this work where only
one test is generated for each test purpose, we aim at generating all the test
cases satisfying the test purpose.

The problem of test suite reduction is to provide a shorter test suite while
maintaining the fault detection power. The approach presented in [14] generates
test suites from a model and traps properties corresponding to structural cover-
age criteria. An algorithm is then executed on the resulting test suite to generate
a reduced test suite having the same coverage than the original one. The origi-
nal and the reduced test suites are animated on a faulty model to compare their
fault localization capabilities. In [11], authors propose an approach where test
cases created thanks to model-checker are transformed such that redundancy
within the test-suite is avoided, and the overall size is reduced. Our approach
differs from test suite reduction techniques in two points. First, we don’t need to
execute all tests of the original test suite to perform the reduction, and second,
we consider that all valid test cases are equivalent when performing reduction
with the filtering keys. YETI4 is a random test generation tool which generates
test cases from program bytecode. The number of generated test cases is limited
by the available time. The report shows in a real time GUI the bugs found sofar,
the coverage percentage according to a classical coverage criteria, the number
of system calls and the number of variables used in the system to carry out the
test generation and execution. Compared to our toolset, our approach performs
the generation of tests from a UML/OCL model and not from a program. The
choice of the methods under test, the length of the call sequences and the param-
eter values is not done randomly as in the YETI tool but according to a careful
test schema defined by the user. Contrary to our tool, the notion of filtering
against specific states or behaviors and the incremental unfolding do not exist
in the YETI tool whose purpose is to maximize bugs detection and structural
coverage.

8 Conclusion and Perspectives

In this paper, we address the problem of filtering a large combinatorial test
suite with respect to a UML/OCL Model. The whole approach relies on three
main steps. First the set of tests to generate has to be defined in terms of a
test pattern, expressed in a textual language called TSLT. Second, this schema
is unfolded to produce abstract test cases that are animated within Smartest-
ing Test Designer tool. This animation allows to identify and remove invalid
test cases. The process of unfolding and filtering can be done incrementally so
that potential combinatorial explosion can be mastered. Several examples have
been presented. They show that the incremental process is able to generate all
valid test cases scattered in a huge search space, provided that the number of

4 Tool website: http://www.yetitest.org/

http://www.yetitest.org/

Model-Based Filtering of Combinatorial Test Suites 453

valid test cases remains small enough. This paper has presented several new con-
structs which help the test engineer to express more precise test patterns and
to filter out invalid test cases at early stages of the unfolding process. From a
methodological point of view, this requires to augment the test pattern with state
predicates, behaviour selectors, and filtering keys, which keep the incremental
process within acceptable bounds. This approach has been defined in the context
of the ANR TASCCC Project. We intend to apply it soon to the Global Plat-
form case study provided by Gemalto, a last-generation smart card operating
system5. This model presents 3 billions of possible atomic instantiated operation
calls, due to combination of operations parameters values. A large proportion of
these latters represent erroneous situations that should not be considered.

Acknowledgment. This research is supported by the ANR TASCCC Project
under grant ANR-09-SEGI-014.

References

1. Abrial, J.-R.: The B Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press (August 1996)

2. Belhaouari, H., Peschanski, F.: A Constraint Logic Programming Approach to
Automated Testing. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 754–758. Springer, Heidelberg (2008)

3. du Bousquet, L., Ledru, Y., Maury, O., Oriat, C., Lanet, J.L.: Reusing a JML spec-
ification dedicated to verification for testing, and vice-versa: case studies. Journal
of Automated Reasoning 45(4) (2010)

4. Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Testing:
The JML and JUnit Way. In: Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374,
pp. 231–255. Springer, Heidelberg (2002)

5. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design
approach to automatic test generation. IEEE Softw. 13(5), 83–88 (1996)

6. Constant, C., Jeannet, B., Jéron, T.: Automatic Test Generation from Interpro-
cedural Specifications. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.
(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 41–57. Springer, Heidelberg
(2007)

7. Dadeau, F., Ledru, Y., Bousquet, L.D.: Directed random reduction of combinatorial
test suites. In: Random Testing 2007, pp. 18–25. ACM (2007)

8. Dadeau, F., Tissot, R.: jSynoPSys – a scenario-based testing tool based on the
symbolic animation of B machines. In: Finkbeiner, B., Gurevich, Y., Petrenko,
A.K. (eds.) MBT 2009 Proceedings. ENTCS, vol. 253-2, pp. 117–132 (2009)

9. Dupuy-Chessa, S., du Bousquet, L., Bouchet, J., Ledru, Y.: Test of the ICARE
Platform Fusion Mechanism. In: Gilroy, S.W., Harrison, M.D. (eds.) DSVIS 2005.
LNCS, vol. 3941, pp. 102–113. Springer, Heidelberg (2006)

10. Ferro, L., Pierre, L., Ledru, Y., du Bousquet, L.: Generation of test programs for
the assertion-based verification of TLM models. In: 3rd International Design and
Test Workshop, IDT 2008, pp. 237–242. IEEE (December 2008)

5 http://www.globalplatform.org/specifications.asp

http://www.globalplatform.org/specifications.asp

454 T. Triki et al.

11. Fraser, G., Wotawa, F.: Redundancy Based Test-Suite Reduction. In: Dwyer, M.B.,
Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 291–305. Springer, Heidelberg
(2007)

12. Grieskamp, W., Qu, X., Wei, X., Kicillof, N., Cohen, M.B.: Interaction Coverage
Meets Path Coverage by SMT Constraint Solving. In: Núñez, M., Baker, P., Mer-
ayo, M.G. (eds.) TESTCOM/FATES 2009. LNCS, vol. 5826, pp. 97–112. Springer,
Heidelberg (2009)

13. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. 2(3), 270–285 (1993)

14. Heimdahl, M., George, D.: On the effect of test-suite reduction on automatically
generated model-based tests. Automated Software Engineering 14, 37–57 (2007)

15. Jagannath, V., Lee, Y.Y., Daniel, B., Marinov, D.: Reducing the Costs of Bounded-
Exhaustive Testing. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 171–185. Springer, Heidelberg (2009)

16. Lausdahl, K., Lintrup, H.K.A., Larsen, P.G.: Connecting UML and VDM++
with Open Tool Support. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 563–578. Springer, Heidelberg (2009)

17. Ledru, Y., du Bousquet, L., Maury, O., Bontron, P.: Filtering TOBIAS Combi-
natorial Test Suites. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 281–294. Springer, Heidelberg (2004)

18. Ledru, Y., Dadeau, F., du Bousquet, L., Ville, S., Rose, E.: Mastering combina-
torial explosion with the Tobias-2 test generator. In: IEEE/ACM Int. Conf. on
Automated Software Engineering, pp. 535–536. ACM (2007); demonstration

19. Maury, O., Ledru, Y., Bontron, P., du Bousquet, L.: Using Tobias for the automatic
generation of VDM test cases. In: 3rd VDM Workshop (in Conjunction with FME
2002) (2002)

20. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In: Int.
Conf. on Software Maintenance, pp. 34–43. IEEE (1998)

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 455–470, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A New Design Defects Classification:
Marrying Detection and Correction

Rim Mahouachi1,*, Marouane Kessentini2, and Khaled Ghedira1

1 SOIE, University of Tunis, Tunisia
rim.mahouachi@gmail.com, khaled.ghedira@isg.rnu.tn

2 CS, Missouri University of Science and Technology, USA
marouanek@mst.edu

Abstract. Previous work classify design defects based on symptoms (long
methods, large classes, long parameter lists, etc.), and treat separately detection
and correction steps. This paper introduces a new classification of defects using
correction possibilities. Thus, correcting different code fragments appending to
specific defect category need, approximately, the same refactoring operations to
apply. To this end, we use genetic programming to generate new form of
classification rules combining detection and correction steps. We report the
results of our validation using different open-source systems. Our proposal
achieved high precision and recall correction scores.

Keywords: Software maintenance, refactoring, search-based software
engineering, genetic programming, design defects.

1 Introduction

Software systems are evolving by adding new functions and modifying existing
functionalities over time. Through this evolution process, software design becomes
more complex. Thus, the understandability and maintainability are difficult and
fastidious tasks. So, perfective maintenance [21], defined as software product
modification after delivery to improve its performance, is an important maintenance
activity. However, perfective maintenance is the most expensive activity in software
development [21]. This high cost could potentially be greatly reduced by providing
automatic or semi-automatic solutions to increase their understandability, adaptability
and extensibility to avoid bad-practices. As a result, these practices have been studied
by professionals and researchers alike with a special attention given to design-level
problems, also known in the literature as defects, antipatterns [9], smells [21], or
anomalies [15].

There has been much research devoted to the study these bad design practices [16,
3, 18, 7, 22]. Although bad practices are sometimes unavoidable, they should
otherwise be prevented by the development teams and removed from the code base as
early as possible in the design cycle. Refactoring is an effective technique to remove

* Corresponding author.

456 R. Mahouachi, M. Kessentini, and K. Ghedira

defects. It is defined as “the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal structure
[9].” In [9], several refactoring patterns are described. It is necessary to identify the
refactoring candidates that contain “bad-smells” in order to apply refactoring patterns.

There has been much work on different techniques and tools for detecting and
correcting defects, with over 300 publications [14]. However, there is no existing
works on using refactoring solutions to classify defects. The vast majority of these
works identify key symptoms that characterize a defect using combinations of mainly
quantitative, structural, and/or lexical information. Thus, the different defects are
classified based on their symptoms. Then, different possible standard refactoring
solutions, for each defect category, are proposed. Completely different refactoring
solutions can be used to correct the same defect type.

This paper presents a novel approach to classify defects using correction
possibilities. Thus, correcting different code fragments appending to specific defect
category need, approximately, the same refactoring operations to apply. Our approach
is based on the use of defect examples generally available in defect repositories of
software development companies. In fact, we translate regularities that can be found
in such defect examples into detection-correction rules. To this end, we use genetic
programming [5] to generate new form of classification rules combining detection and
correction steps.

The primary contributions of the paper can be summarised as follows:

1. We introduce a new defects classification approach based on correction
solutions. Our proposal does not require to define the different defect types,
but only to have some refactoring examples; it does not require an expert to
write detection or correction rules manually; it combines detection and
correction steps; and each defect category has, approximately, the same
refactoring operations to apply. However, different limitations are discussed in
the discussion section.

2. We report the results of an evaluation of our approach; we used classes from
six open source projects, as examples of badly-designed and corrected code.
We used a 6-fold cross validation procedure. For each fold, one open source
project is evaluated by using the remaining two systems as bases of examples.
Almost all the identified classes were found, with a precision more than 70%.

3. We report the comparison results of our new defects classification and an
existing work [16].We also report the results of a further comparison between
genetic programming (GP) and another heuristic search algorithm [8].

The rest of this paper is organised as follows. Section 2 is dedicated to the problem
statement, while Section 3 describes our approach details. Section 4 explains the
experimental method, the results of which are discussed in Section 5. Section 6
introduces related work, and the paper concludes with Section 7.

2 Problem Statement

In this section, we emphasize the specific problems that are addressed by our
approach.

 A New Design Defects Classification: Marrying Detection and Correction 457

Although there is a consensus that it is necessary to detect and fix design
anomalies, our experience with industrial partners showed that there are many open
issues that need to be addressed when defining a detection and correction tool. In the
following, we introduce some of these open issues. Later, in section 5, we discuss
these issues in more detail with respect to our approach.

In general, existing classification of defects are based on symptoms without taking
in consideration the correction step. The two detection and correction steps are treated
separately. Thus, each defect type could have different correction possibilities that are
completely different: how to choose the good correction strategy?

In addition, different issues are related to defects classification based on symptoms:

• Unlike software bugs, there is no general consensus on how to decide if a
particular design violates a quality heuristic. There is a difference between
detecting symptoms and asserting that the detected situation is an actual
defect.

• The goal of identifying the type of defects is to help the maintainer in the
correction step. However, with actual identification of defects based on
symptoms only, large number of correction strategies can be proposed for the
same defect type. Thus, the question is: how to choose the best refactoring
solution?

• In the majority of situations, code quality can be improved without fixing
maintainability defects. We need to identify if the code modification corrects
some specific defects or not. In addition, the code quality is estimated using
quality metrics but different problems are related to: how to determine the
useful metrics for a given system and how to combine in the best way
multiple metrics to detect or correct defects.

• The correction solutions should not be specific to only some defect types. In
fact, specifying manually a “standard” refactoring solution for each
maintainability defect can be a difficult task. In the majority of cases, these
“standard” solutions can remove all symptoms for each defect. However,
removing the symptoms does not mean that the defect is corrected.

In addition to these issues, the process of defining rules manually for detection or
correction is complex, time-consuming and error-prone. Indeed, the list of all possible
defect types or maintenance strategies can be very large [13] and each defect type
requires specific rules.

3 Defects Classification Using Genetic Programming

This section shows how the above mentioned issues can be addressed using our
proposal.

3.1 Overview

The general structure of our approach is introduced in Figure 1. The following two
subsections give more details about our proposals.

458 R. Mahouachi, M. Kessentini, and K. Ghedira

Fig. 1. Overview of the approach : general architecture

As described in Figure 1, knowledge from defect examples and their correction is
used to generate our classification rules. In fact, our approach takes as inputs a base
(i.e. a set) of defect examples (bad-designed code) with correction (refactorings to fix
this bad designed code), and takes as controlling parameters a set of quality metrics
(the expressions and the usefulness of these metrics were defined and discussed in the
literature [15]) and an exhaustive list of refactoring operations [20]. This step
generates a set of rules as output.

The rule generation process combines quality metrics (and their threshold values)
and refactoring operations within rule expressions. Consequently, a solution to the
defect detection and correction problem is a set of rules that best detect the defects of
the base of examples and fix them. For example, the following rule states that a class
having more than 10 attributes and 20 methods is fixed using different refactoring
operations (Move method and Encapsulate field):

R1: IF NOA≥10 AND NOM≥20 Then MoveMethod ≥6 AND EncapsulateField<18
In this example of a rule, the number of attributes (NOA) and the number of

methods (NOM) of a class correspond to two quality metrics that are used to detect a
defect. A class will be detected as a defect whenever both thresholds of 10 attributes
and 20 methods are exceeded. The second part of the rule fixes the corrected defect
by applying more than 6 move method operations and less than 18 encapsulate field.

The rule generation process is executed periodically over large periods of time
using the base of examples. The generated rules are used to detect and correct the
defects of any system that is required to be evaluated (in the sense of defect detection
and correction). The rule generation step needs to be re-executed only if the base of
examples is updated with new defect instances.

Our approach assigns a threshold value randomly to each metric and refactoring
operation, and combines these threshold values within logical expressions (union OR;
intersection AND) to create rules. The number m of possible threshold values is
usually very large. The rule generation process consists of finding the best
combination between n metrics and k refactorings. In this context, the number NR of
possible combinations that have to be explored is given by: NR = ((n+k)!)m

This value quickly becomes huge. Consequently, the rule generation process is a
combinatorial optimization problem. Due to the huge number of possible
combinations, a deterministic search is not practical, and the use of a heuristic search
is warranted. To explore the search space, we use a global heuristic search by means
of Genetic Programming [5]. This algorithm will be detailed in the next section.

 A New Design Defects Classification: Marrying Detection and Correction 459

3.2 Design Defects Classification Using Genetic Programming

This section describes how Genetic programming (GP) can be used to generate rules
to detect and correct design defects.

3.2.1 Genetic Programming Overview
Genetic programming is a powerful heuristic search optimization method inspired by
the Darwinian theory of evolution [1]. The basic idea is to explore the search space by
making a population of candidate solutions, also called individuals, evolve toward a
“good” solution of a specific problem.

In Genetic Programming, a solution is a (computer) program which is usually
represented as a tree, where the internal nodes are functions and the leaf nodes are
terminal symbols. Both the function set and the terminal set must contain symbols
that are appropriate for the target problem. For instance, the function set can contain
arithmetic operators, logic operators, mathematical functions, etc; whereas the
terminal set can contain the variables (attributes) of the target problem. Each
individual of the population is evaluated by a fitness function that determines a
quantitative measure of its ability to solve the target problem.

Exploration of the search space is achieved by evolution of candidate solutions
using selection and genetic operators, such as crossover and mutation. The selection
operator insures selection of individuals in the current population proportionally to
their fitness values, so that the fitter an individual is, the higher the probability that it
is allowed to transmit its features to new individuals by undergoing crossover and/or
mutation operators. The crossover operator insures generation of new children, or
offspring, based on parent individuals. The crossover operator allows transmission of
the features of the best fitted parent individuals to new individuals. This is usually
achieved by replacing a randomly selected sub tree of one parent individual with a
randomly chosen sub tree from another parent individual to obtain one child. A
second child is obtained by inverting parents. Finally, mutation operator is applied,
with a probability which is usually inversely proportional to its fitness value, to
modify some randomly selected nodes in a single individual.

This process is repeated iteratively, until a termination criterion is met. This criterion
usually corresponds to a fixed number of generations. The result of genetic programming
(the best solution found) is the fittest individual produced along all generations.

3.2.2 Genetic Programming Adaptation
A high level view of our Genetic Programming approach to the defect detection and
correction problem is introduced by Figure 2.

Lines 1–3 construct an initial GP population, which is a set of individuals that
stand for possible solutions representing classification rules. Lines 4–14 encode the
main GP loop, which explores the search space and constructs new individuals by
combining metrics and refactorings within rules. During each iteration, we evaluate
the quality of each individual in the population, and save the individual having the
best fitness (line 10). We generate a new population (p+1) of individuals (line 11) by
iteratively selecting pairs of parent individuals from population p and applying the
crossover operator to them; each pair of parent individuals produces two children
(new solutions). We include both the parent and child variants in the new population

460 R. Mahouachi, M. Kessentini, and K. Ghedira

p. Then we apply the mutation operator, with a probability score, for both parent and
child to ensure the solution diversity; this produces the population for the next
generation. The algorithm terminates when the termination criterion (maximum
iteration number) is met, and returns the best set of classification rules (best solution
found during all iterations). The following three subsections describe more precisely
our adaption of GP to the defect classification problem.

Input: Set of quality metrics

Input: Set of refactoring operations

Input: Set of examples (bad-designed code fragments and their appropriate correction)

Output: Classification rules

1: I:= rules(R)

2: P:= set_of(I)

3: initial_population(P, Max_size)

4: repeat

5: for all I ∈ P do

6: (detected_defects, proposed_refactorings) := execute_rules(R)

7: fitness(I) := compare(detected_defects, defect_examples) +

8: compare(proposed_refactorings, expected_refactorings)

9: end for

10: best_solution := best_fitness(I);

11: P := generate_new_population(P)

12: it:=it+1;

13: until it=max_it

14: return best_solution

Fig. 2. High-level pseudo-code for GP adaptation to our problem

3.2.2.1 Individual Representation. An individual is a set of IF – THEN rules. For
example, Figure 3 shows the rule interpretation of an individual (NOA=Number of
Attribute, and NOM=Number of Methods).

R1: IF (NOA ≥ 3 AND NOM ≤ 5) THEN (MoveField = 1 AND MoveClass = 1)
R2: IF (CBO≥ 1) THEN (MoveField = 1 AND ExtractClass = 1)

Fig. 3. Rule interpretation of an individual

Consequently, a detection rule has the following structure:

IF “Combination of metrics with their threshold values” THEN “Combination of
Refactorings to apply”

The IF clause describes the conditions or situations under which a defect category
is detected. These conditions correspond to logical expressions that combine some
metrics and their threshold values using logic operators (AND, OR). If some of these

 A New Design Defects Classification: Marrying Detection and Correction 461

conditions are satisfied by a class, then this class is detected as a defect.
Consequently, THEN clauses highlight the correction to apply in order to fix the
detected defect. We will have as many rules as types of defects to be detected. In our
case, mainly for illustrative reasons, and without loss of generality, we focus on the
detection and correction of two defect types (categories). Consequently, as it is shown
in Figure 4, we have two rules to detect and correct two categories of defects.

One of the most suitable computer representations of rules is based on the use of
trees [17]. In our case, the rule interpretation of an individual will be handled by a tree
representation which is composed of two types of nodes: terminals and functions. The
terminals (leaf nodes of a tree) correspond to different quality metrics or refactorings
with their threshold values. The functions that can be used between these metrics
correspond to logical operators, which are Union (OR) and Intersection (AND).

Consequently, the rule interpretation of the individual of Figure 3 has the following
tree representation of Figure 4.

Fig. 4. A tree representation of an individual

3.2.2.2 Generation of an Initial Population. To generate an initial population, we
start by defining the maximum tree length including the number of nodes and levels.
These parameters can be specified either by the user or randomly. Thus, the
individuals have different tree length (structure). Then, for each individual we
randomly assign: (1) one metric or refactoring, with its threshold value, to each leaf
node, and (2) a logic operator (AND, OR) to each function node.

The root (head) of the tree is unchanged. Since any metric combination is possible
and correct semantically, we do need to define some semantic conditions to verify
when generating an individual.

3.2.2.3 Operators

Selection
To select the individuals that will undergo the crossover and mutation operators, we
used the stochastic universal sampling (SUS) [1], in which the probability of selection

462 R. Mahouachi, M. Kessentini, and K. Ghedira

of an individual is directly proportional to its relative fitness in the population. For
each iteration, we use SUS to select (population_size/2) individuals from population p
for the new populationp+1. These (population_size/2) selected individuals will “give
birth” to another (population_size/2) new individuals using crossover operator.

Crossover
Two parent individuals are selected and a sub tree is picked on each one. Then
crossover swaps the nodes and their relative sub trees from one parent to the other.
Each child thus combines information from both parents.

Figure 5 shows an example of the crossover process. In fact, the rule R1 and a rule
from another individual (solution) are combined to generate two new rules.

Fig. 5. Crossover operator Fig. 6. Mutation operator

As result, after applying the cross operator the new rule R1 to detect blob will be:
R1: IF (NOA ≥ 13) THEN (MoveField = 1 AND MoveClass = 1)
Of course, the crossover can be applied to the second part of the rules

(refactorings).

Mutation
The mutation operator can be applied either to function or terminal nodes. This
operator can modify one or more nodes. Given a selected individual, the mutation
operator first randomly selects a node in the tree representation of the individual.
Then, if the selected node is a terminal (threshold value of a quality metric or
refactoring), it is replaced by another terminal. If the selected node is a function
(AND operator for example), it is replaced by a new function (i.e. AND becomes
OR). If a tree mutation is to be carried out, the node and its sub trees are replaced by a
new randomly generated sub tree.

To illustrate the mutation process, consider again the example that corresponds to a
candidate rule R1. Figure 6 illustrates the effect of a mutation that replaces node NOA
by node CBO with a new threshold value. Thus, after applying the mutation operator the
new rule R1 will be: R1: IF (CBO > 15) THEN (MoveField = 1 AND MoveClass = 1).

 A New Design Defects Classification: Marrying Detection and Correction 463

3.2.2.4 Decoding of an Individual. The quality of an individual is proportional to the
quality of the different rules composing it. In fact, the execution of these rules, on the
different projects extracted from the base of examples, detect and fix various classes.
Then, the quality of a solution (set of rules) is determined with respect to 1) the
number of detected defects in comparison with the expected ones in the base of
examples, and 2) the number of proposed refactorings with those in the base of
examples. In other words, the best set of rules is the one that detects and corrects the
maximum number of defects.

3.2.2.5 Evaluation of an Individual. The decoding of an individual should be
formalized as a mathematical function called “fitness function”. The fitness function
quantifies the quality of the generated rules. The goal is to define an efficient and
simple (in the sense not computationally expensive) fitness function in order to reduce
the complexity.

As discussed previously, the fitness function aims to maximize the number of
detected defects and proposed refactorings in comparison to the expected ones in the
base of examples. In this context, we define the fitness function of a solution,
normalized in the range [0, 1], as:

nbr

CQDQ

f

nbr

r
norm

∑
=

+

= 1 2 (3), where
2

11

dd

a

ed

a

DQ

dd

i
i

dd

i
i ∑∑

== +
= and

2

11

pr

b

er

b

CQ

pr

j
j

pr

j
j ∑∑

== +
=

nbr is the number of rules (defects categories) in the solution (individual), DQ
represents detection quality, CQ is correction quality, ed is the number of expected
defects in the base of examples, dd is the number of detected defects with defects, pr
is the number of proposed refactoring and er is the number of expected refactoring in
the base of examples.

ai has value 1 if the ith detected class exists in the base of examples, and value 0
otherwise. bj has value 1 if the jth proposed refactoring is used (exist in the base of
examples) to correct the defect example.

4 Validation

To evaluate the feasibility of our approach, we conducted an experiment with
different open-source projects. We start by presenting our research questions. Then,
we describe and discuss the obtained results.

4.1 Research Questions

Our study asks three research questions, which we define here, explaining how our
experiments are designed to address them. The goal of the study is to evaluate the
efficiency of our approach for the detection and correction of maintainability defects
from the perspective of a software maintainer conducting a quality audit. We present
the results of the experiment aimed at answering the following research questions:

464 R. Mahouachi, M. Kessentini, and K. Ghedira

RQ1: To what extent can the proposed approach detect maintainability defects?
RQ2: To what extent our new defects classification is different from an existing
 classification work?
RQ3: To what extent can the proposed approach correct detected defects?

To answer RQ1, we asked eighteen graduate students to evaluate the precision and
recall of our approach. To answer RQ2, we compared our results to those produced by
an existing work [16]. Furthermore, we calculate a classification deviation score
between the two algorithms. To answer RQ3, eighteen graduate students validated
manually if the proposed corrections are useful to fix detected defects.

4.2 Setting

We used six open-source Java projects to perform our experiments: GanttProject
(Gantt for short) v1.10.2, Quick UML v2001, AZUREUS v2.3.0.6, LOG4J v1.2.1,
ArgoUML v0.19.8, and Xerces-J v2.7.0. Table 1 provides some relevant information
about the programs. The base of examples contains more than 317 examples as
presented in Table 1.

Table 1. Program statistics

Systems Number of
classes

KLOC Number of Defects Number of applied
refactoring operations

GanttProject v1.10.2 245 31 41 34

Xerces-J v2.7.0 991 240 66 41

ArgoUML v0.19.8 1230 1160 89 82

Quick UML v2001 142 19 11 29

LOG4J v1.2.1 189 21 17 102
AZUREUS v2.3.0.6 1449 42 93 38

We used a 6-fold cross validation procedure. For each fold, one open source
project is evaluated by using the remaining five systems as base of examples. For
example, Xerces-J is analyzed using detection-correction rules generated from the
base of examples containing ArgoUML, LOG4J, AZUREUS, Quick UML and Gantt.

The obtained detection results were compared to those of DECOR based on the
recall (number of true positives over the number of maintainability defects) and the
precision (ratio of true positives over the number detected). We also calculate a
deviation score (number of common detected classes over the number of detected
ones) between our new classification and DECOR classification (F.D.: Functional
Decomposition, S.C.: Spaghetti Code, and S.A.K.: Swiss Army Knife).

To validate the correction step, eighteen graduate students verified manually the
feasibility of the different proposed refactoring sequences for each system. We asked
students to apply the proposed refactorings using ECLIPSE. Some semantic errors
(programs behavior) were detected. When a semantic error is detected manually, we
consider the refactoring operations related to this change as a bad recommendation.
We calculate a correctness precision score (ratio of possible refactoring operations
over the number of proposed refactoring) as performance indicator of our algorithm.

 A New Design Defects Classification: Marrying Detection and Correction 465

Finally, we compared our genetic algorithm (GP) detection and correction results
with a local search algorithm, called simulated annealing (SA) [8].

4.3 Results

In this sub-section we present the answer to each research question in turn, indicating
how the results answer each.

Table 2 shows obtained detection precision and recall scores for each of the 6
folds. Furthermore, this table describes comparison results between our defects
classification and DECOR. For Gantt, our average detection precision was 89%.
DECOR, on the other hand, had a combined precision of 59% for the same expected
bad-classes. The precision for Quick UML was about 62%, more than the value of
53% obtained with DECOR. For Xerces-J, our precision average was 95%, while
DECOR had a precision of 68% for the same dataset. Finally, for ArgoUML,
AZUREUS and LOG4J our precision was more than 75. However, the recall score for
the different systems was less than that of DECOR. In fact, the rules defined in
DECOR are large and this is explained by the lower score in terms of precision.
Indeed, the hypothesis to have 100% of recall justifies low precision, sometimes, to
detect defects. The main reason that our approach finds better precision results is that
the threshold values are well-defined using our genetic algorithm. Indeed, with
DECOR the user should test different threshold values to find the best ones. Thus, it is
a fastidious task to find the best threshold combination for all metrics.

In the context of this experiment, we can conclude that our technique was able to
identify design anomalies, in average, more accurately than DECOR (answer to
research question RQ1 above).

Table 2. Detection results

Systems GP-
Detection
Precision

DECOR-
Detection
Precision

GP-Detection
Recall

DECOR-
Detection Recall

Number of Defect
types (categories)

GanttProject 89% (33|37) 59% (41|69) 81% (33|41) 100% 6
Xerces-J 95% (47|49) 68% (66|97) 72% (47|66) 100% 7

ArgoUML 77% (74|96) 63% (89|143) 83% (74|89) 100% 6
Quick UML 62% (8|13) 53% (11|21) 73% (8|11) 100% 8

LOG4J 79% (15|19) 60% (17|28) 89% (15|17) 100% 6
AZUREUS 82%(87|106) 67% (93|138) 93% (87|93) 100% 7

For RQ2, we calculate, based on execution of our rules on ArgoUML, a similarity
score between a well-known classification of defects [16] and our classification. This
similarity score represents the number of common detected classes between a defect
type i and our defect category j. In Table 3 we take the most similar category for each
defect type. We can mention that only category 4 can be classified as a specific defect
type which is the blob. Indeed, the explanation is that large classes has, in general, the
same refactoring operations to be corrected (move methods, extract classes, etc.).
Since our classification is based on correction criteria’s and not symptoms, table 3
confirms our findings that there is a dissimilarity comparing to DECOR classification.

466 R. Mahouachi, M. Kessentini, and K. Ghedira

Table 3. Classification variation

Defect types Most similar new category %

Blob 88 % (7|9, Category 4)

Functional Decomposition 36% (5|14, Category 1)

Spaghetti Code 54% (6|11, Category 6)

Swiss Army Knife 50% (8|16, Category 2)

Table 4. Correction results

Systems GP-Correction Precision GP-Correction Recall

GanttProject v1.10.2 84% (26|31) 76% (26|34)

Xerces-J v2.7.0 62% (29|47) 71% (29|41)

ArgoUML v0.19.8 75% (57|76) 67% (57|82)

Quick UML v2001 81% (21|26) 72% (21|29)

LOG4J v1.2.1 52% (63|123) 61% (63|102)
AZUREUS v2.3.0.6 74% (31|42) 81% (31|38)

We have also obtained very good results for the correction step. As showed in Table 4,
the majority of proposed refactoring are feasible and improve the code quality. For
example, for Gantt, 26 refactoring operations are feasible over the 31 proposed ones.
After applying by hand the feasible refactoring operations for all systems, we evaluated
manually that more than 75%, in average, of detected defects was fixed.

As described in Figure 7, we compared our genetic algorithm (GP) detection
results with another local search algorithm, simulated annealing (SA). The detection
and correction results for SA are also acceptable. Especially, with small systems the
precision is better using SA than GP. In fact, GP is a global search that gives good
results when the search space is large. For this reason, GP performs with large
systems. In addition, the solution representation used in GP (tree) is suitable for rule
generation. However, SA used a vector-based representation which is not suitable for
rules. Furthermore, SA takes a lot of time, comparing to GP, to converge to an
optimal solution (more than 1 hour).

Fig. 7. (a) Detection results comparison: GP and SA, and (b) Correction results comparison: GP
and SA

 A New Design Defects Classification: Marrying Detection and Correction 467

5 Discussions

An important consideration is the impact of the example base size on detection-
correction quality. In general, our approach does not needs a large number of
examples to obtain good detection results. The reliability of the proposed approach
requires an example set of bad code and his correction (refactoring operations). It can
be argued that constituting such a set might require more work than identifying,
specifying, and adapting rules. In our study, we showed that by using six open source
projects directly, without any adaptation, the technique can be used out of the box and
will produce good detection, correction results for the studied systems. However, we
agree that, sometimes, with specifying programming languages and contexts it is
difficult to find bad code fragments with the correction version.

The performance of detection was superior to that of DECOR. In an industrial
setting, we could expect a company to start with some few open source projects, and
gradually migrate its set of bad code examples to include context-specific data. This
might be essential if we consider that different languages and software infrastructures
have different best/worst practices.

Another issue is the rule generation process. The detection and correction results
might vary depending on the rules used, which are randomly generated, though
guided by a meta-heuristic. To ensure that our results are relatively stable, we
compared the results of multiple executions for rule generation. We consequently
believe that our technique is stable, since the precision and recall scores are
approximately the same for different executions. In addition, our classification
algorithm generates, approximately, the same defects categories as showed in Table .

Another important advantage in comparison to machine learning techniques is that
our GP algorithm does not need both positive (good code) and negative (bad code)
examples to generate rules like, for example, Inductive Logic Programming [4].

Finally, since we viewed the maintainability defects detection problem as a
combinatorial problem addressed with heuristic search, it is important to contrast the
results with the execution time. We executed our algorithm on a standard desktop
computer (i7 CPU running at 3 GHz with 4GB of RAM). The execution time for rule
generation with a number of iterations (stopping criteria) fixed to 10000 was less than
fifty minutes for both detection and correction. This indicates that our approach is
reasonably scalable from the performance standpoint. However, the execution time
depends on the number of used metrics, refactorings and the size of the base of
examples.

6 Related Work

There are several studies that have recently focused on detecting and fixing design
defects in software using different techniques. These techniques range from fully
automatic detection and correction to guided manual inspection. Nevertheless, few
works focused on combining detection and correction steps to classify defects based
on correction possibilties.

Marinescu [18] defined a list of rules relying on metrics to detect what he calls
design flaws of OO design at method, class and subsystem levels. Erni et al. [6] use

468 R. Mahouachi, M. Kessentini, and K. Ghedira

metrics to evaluate frameworks with the goal of improving them. They introduce the
concept of multi-metrics, n-tuples of metrics expressing a quality criterion (e.g.,
modularity). The main limitation of the two previous contributions is the difficulty to
manually define threshold values for metrics in the rules. To circumvent this problem,
Alikacem et al. [2] express defect detection as fuzzy rules, with fuzzy labels for
metrics, e.g., small, medium, large. When evaluating the rules, actual metric values
are mapped to truth values for the labels by means of membership functions.
Although no crisp thresholds need to be defined, still, it is not obvious to determine
the membership functions. Moha et al. [16], in their DECOR approach, they start by
describing defect symptoms using an abstract rule language. These descriptions
involve different notions, such as class roles and structures. The descriptions are later
mapped to detection algorithms. In addition to the threshold problem, this approach
uses heuristics to approximate some notions which results in an important rate of false
positives.The detection outputs are probabilities that a class is an occurrence of a
defect type. In our approach, the above-mentioned problems related to the use of rules
and metrics do not arise. Indeed, the symptoms are not explicitly used, which reduces
the manual adaptation/calibration effort.

The majority of existing approaches to automate refactoring activities are based on
rules that can be expressed as assertions (invariants, pre- and post condition), or graph
transformation. The use of invariants has been proposed to detect parts of program that
require refactoring by [22]. Opdyke [20] suggest the use of pre- and postcondition with
invariants to preserve the behavior of the software. All these conditions could be
expressed in the form of rules. [19] considers refactorings activities as graph production
rules (programs expressed as graphs). However, a full specification of refactorings would
require sometimes large number of rules. In addition, refactoring-rules sets have to be
complete, consistent, non redundant, and correct. Furthermore, we need to find the best
sequence of applying these refactoring rules. In such situations, search-based techniques
represent a good alternative. In [8], we have proposed another approach, based on search-
based techniques, for the automatic detection of potential design defects in code. The
detection is based on the notion that the more code deviates from good practices, the
more likely it is bad. The two approaches are completely different. We use in [7] a good
quality of examples in order to detect defects; however in this work we use defect
examples to generate rules. Both works do not need a formal definition of defects to
detect them. In another work [11], we generate detection rules defined as combinations of
metrics/thresholds that better conform to known instances of design defects (defect
examples). Then, the correction solutions, a combination of refactoring operations,
should minimize, as much as possible, the number of defects detected using the detection
rules. Our previous work treats the detection and correction as two different steps. In this
paper, we generate also new form of detection-correction rules that are completely
different from [11].

7 Conclusion

In this paper we introduced a new classification of defects based on correction
criteria’s. Existing work classify different types of common maintainability defects
based on symptoms to search for in order to locate the maintainability defects in a

 A New Design Defects Classification: Marrying Detection and Correction 469

system. In this work, we have shown that this knowledge is not necessary to perform
the detection and correction. Instead, we use examples of maintainability defects and
their corrections to generate detection-correction classification rules. Our results show
that our classification is able to achieve correction precision scores on different open-
source projects.

As part of future work, we plan to compare our results with some existing
approaches. In addition, we will modify our algorithm to generate sub-rules in order
to specify code elements name (fully-automate the correction step). Furthermore, we
need to extend our base of examples in order to improve precision scores.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

2. Alikacem, H., Sahraoui, H.: Détection d’anomalies utilisant un langage de description de
règle de qualité, in actes du 12e colloque LMO (2006)

3. Liu, H., Yang, L., Niu, Z., Ma, Z., Shao, W.: Facilitating software refactoring with
appropriate resolution order of bad smells. In: Proc. of the ESEC/FSE 2009, pp. 265–268
(2009)

4. Bratko, I., Muggleton, S.: Applications of inductive logic programming. Commun.
ACM 38(11), 65–70 (1995)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

6. Erni, K., Lewerentz, C.: Applying design metrics to object-oriented frameworks. In: Proc.
IEEE Symp. Software Metrics. IEEE Computer Society Press (1996)

7. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance from perfection is a better criterion
than closeness to evil when identifying risky code. In: Proc. of ASE 2010. IEEE (2010)

8. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing.
Sciences 220(4598), 671–680 (1983)

9. Fowler, M.: Refactoring – Improving the Design of Existing Code, 1st edn. Addison-
Wesley (June 1999)

10. Harman, M., Clark, J.A.: Metrics are fitness functions too. In: IEEE METRICS, pp. 58–69
(2004)

11. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design Defects
Detection and Correction by Example. In: Proc. ICPC 2011, pp. 81–90. IEEE (2011)

12. Mantyla, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical study of
bad smells in code. In: Proc. of ICSM 2003. IEEE Computer Society (2003)

13. O’Keeffe, M., Cinnéide, M.: Search-based refactoring: an empirical study. Journal of
Software Maintenance 20(5), 345–364 (2008)

14. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Softw. 30(2), 126–139
(2004)

15. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
International Thomson Computer Press, London (1997)

16. Moha, N., Guéhéneuc, Y.-G., Duchien, L., Meu, A.-F.L.: DECOR: A method for the
specification and detection of code and design smells. Transactions on Software
Engineering (TSE), 16 pages (2009)

470 R. Mahouachi, M. Kessentini, and K. Ghedira

17. Davis, R., Buchanan, B., Shortcliffe, E.H.: Production Rules as a Representation for a
Knowledge-base Consultation Program. Artificial Intelligence 8, 15–45 (1977)

18. Marinescu, R.: Detection strategies: Metrics-based rules for detecting design flaws. In:
Proc. of ICM 2004, pp. 350–359 (2004)

19. Heckel, R.: Algebraic graph transformations with application conditions. M.S. thesis, TU
Berlin (1995)

20. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks, Ph.D. thesis, University of Illinois at Urbana-Champaign (1992)

21. Brown, W.J., Malveau, R.C., Brown, W.H., McCormick III, H.W., Mowbray, T.J.: Anti
Patterns: Refactoring Software, Architectures, and Projects in Crisis, 1st edn. John Wiley
and Sons (March 1998)

22. Kataoka, Y., Ernst, M.D., Griswold, W.G., Notkin, D.: Automated support for program
refactoring using invariants. In: Proc. Int’l Conf. Software Maintenance, pp. 736–743.
IEEE Computer Society (2001)

Fine Slicing

Theory and Applications for Computation Extraction

Aharon Abadi�, Ran Ettinger, and Yishai A. Feldman

IBM Research – Haifa
{aharona,rane,yishai}@il.ibm.com

Abstract. Software evolution often requires the untangling of code.
Particularly challenging and error-prone is the task of separating com-
putations that are intertwined in a loop. The lack of automatic tools for
such transformations complicates maintenance and hinders reuse. We
present a theory and implementation of fine slicing, a method for com-
puting executable program slices that can be finely tuned, and can be
used to extract non-contiguous pieces of code and untangle loops. Unlike
previous solutions, it supports temporal abstraction of series of values
computed in a loop in the form of newly-created sequences. Fine slicing
has proved useful in capturing meaningful subprograms and has enabled
the creation of an advanced computation-extraction algorithm and its
implementation in a prototype refactoring tool for Cobol and Java.

1 Introduction

Automated refactoring support is becoming common in many development envi-
ronments. It improves programmer productivity by increasing both development
speed as well as reliability. This is true in spite of various limitations and errors
due to insufficiently detailed analysis. In a case study we performed [1], we recast
a manual transformation scenario1 as a series of 36 refactoring steps. We found
that only 13 steps out of these 36 could be performed automatically by mod-
ern IDEs. Many of the unsupported cases were versions of the Extract Method
refactoring, mostly involving non-contiguous code.

The example of Figure 1(a) shows the most difficult case we encountered. At
this point in the scenario, we want to untangle the code that outputs the selected
pictures to the HTML view (lines 1, 7, and 9) from the code that decides which
pictures to present. The subprogram that consists only of these three lines does
not even compile, because the variable picture is undefined. However, the more
serious defect is that it does not preserve the meaning of the original program,
since the loop is missing, and this program fragment seems to use only one
picture. To preserve the semantics, the extracted subprogram needs to receive
the picures to be shown in some collection, as shown in Figure 1(b). The rest
of the code needs to create the collection of pictures and pass it to the new

� Also at Blavatnik School of Computer Science, Tel Aviv University.
1 http://www.purpletech.com/articles/mvc/refactoring-to-mvc.html

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 471–485, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.purpletech.com/articles/mvc/refactoring-to-mvc.html

472 A. Abadi, R. Ettinger, and Y.A. Feldman

(a)

1 out.println("<table>");

2 int start = page * 20;

3 int end = start + 20;

4 end = Math.min(end, album.getPictures().size());

5 for (int i = start; i < end; i++) {

6 Picture picture = album.getPicture(i);

7 printPicture(out, picture);

8 }

9 out.println("</table>");

(b)

1 public void display(PrintStream out, int start,

2 int end, Queue<Picture> pictures) {

3 out.println("<table>");

4 for (int i = start; i < end; i++)

5 printPicture(out, pictures.remove());

6 out.println("</table>");

7 }

(c)

1 int start = page * 20;

2 int end = start + 20;

3 end = Math.min(end, album.getPictures().size());

4 Queue<Picture> pictures = new LinkedList<Picture>();

5 for (int i = start; i < end; i++) {

6 Picture picture = album.getPicture(i);

7 pictures.add(picture);

8 }

9 display(out, start, end, pictures);

Fig. 1. (a) A program that tangles the logic of fetching pictures to be shown with their
presentation. (b) Presentation extracted into a separate method. (c) Remaining code
calls the new method.

method, as in Figure 1(c). This transformation is crucial in the scenario, as it
forms the basis of the separation of layers. The code that deals with the HTML
presentation is now encapsulated in the display method, and can easily be
replaced by another type of presentation.

One possibility for specifying the subprogram to be extracted is just to select
a part of the program, which need not necessarily be contiguous. In fact, the
subprogram need not even contain complete statements; it is quite common to
extract a piece of code replacing some expression by a parameter [1, Fig. 2].
However, in most cases the subprogram to be extracted is not some arbitrary
piece of code, but has some inherent cohesiveness. In the example of Figure 1,
the user wanted to extract the computations that write to the out stream, but
without the computations of start, end, and picture.

This description is reminiscent of program slicing [17]. A (backward) slice of a
variable in a program is a subprogram that computes that variable’s value. The
smallest such subprogram is of course desirable, although it is not computable

Fine Slicing 473

in general. However, a full slice is often too large. In our example, the slice of
out at the end of the program in Figure 1(a) is the whole program, since all of
it contributes to the output that will be written to out. In general, a slice needs
to be closed under data and control dependences. Intuitively, one statement or
expression is data-dependent on another if the latter computes a value used by
the former. A statement is control-dependent on a test2 if the test determines
whether, or how many times, the statement will be executed.

In this paper we present the concept of fine slicing, a method that can produce
executable and extractable slices while restricting their scopes and sizes in a way
that enables fine control. This is done by allowing the user (or an application
that uses fine slicing) to specify which data and control dependences to ignore
when computing a slice. In particular, the subprogram we wanted to extract
from Figure 1(a) can be specified as a fine slice of the variable out at the end of
the program, ignoring data dependences on start, end, and picture.

Our fine-slicing algorithm will add to the slice control structures that are
needed to retain its semantics, even when these control structures embody de-
pendences that were specified to be ignored. For example, suppose that instead
of line 1 in Figure 1(a) the following conditional appeared:

if (album.pictureSize() == SMALL)

out.println("<table cellspacing=’10’>");

else

out.println("<table>");

The conditional will be added to the fine slice even if control dependences
on it were specified to be ignored, since the subprogram that does not contain
it will always execute both printing statements instead of exactly one of them.
However, the data that the test depends on will not be included in the fine slice
in that case. This part of the fine-slicing algorithm is called semantic restoration.

Fine slicing has many applications. For example, it can be used to make
an arbitrary subprogram executable by adding the minimum necessary control
structures. (This can be construed as a fine slice that starts from the given
subprogram and ignores all dependences it has on other code.) In this paper we
show in detail how fine slicing can be used in a generalization of Extract Method,
which we call Extract Computation, that can handle non-contiguous code and
other difficult transformations.

The contributions of this paper include:

– a theory of fine slicing, with an oracle-based semantics;
– an algorithm for fine slicing, including semantic restoration;
– a demonstration of the utility of fine slicing for the Extract Computation

refactoring; and
– a prototype implementation of fine slicing and Extract Computation for

Cobol and Java in Eclipse.

2 In this context, we use the word “test” to refer to any conditional branch in the
program’s flow of control.

474 A. Abadi, R. Ettinger, and Y.A. Feldman

1.1 Fine Slicing

Slicing algorithms typically use some representation of the program with pre-
computed data and control dependences. In order to compute a (backward) slice,
the algorithm starts from an initial slice containing the user-selected locations
(also called the slicing criteria). It then repeatedly adds to the slice any program
location on which some part of the current slice has a data or control dependence.
The final slice is available when the process converges. In the case of backward
slices, the result is executable. (Forward slices are usually not executable.)

A fine slice can be computed in the same way, except that those dependences
specified to be ignored are not followed. This, however, can result in a slice
that has compilation errors, is not executable, or does not preserve the original
semantics. This may be due to two types of problems: missing data, and missing
control. Missing data manifests itself as the use of a variable one or more of
whose sources (the assignments in the original program from which it receives
its value) are unavailable. We consider the variable to have missing sources when
it is disconnected from its sources in the original program, even if the subprogram
appears to supply other sources for it.

Missing control creates control paths in the subprogram that are different
from those in the original program, as in the case of the two table-header printing
statements that would appear to be executed sequentially without the surrouding
conditional.

We offer two different ways to deal with these problems. For missing data, we
provide an oracle-based semantics, where the oracle supplies the missing values.
In order to make the subprogram executable, the oracle can be simulated by
appropriate variables or sequences. For missing control, our semantic restoration
algorithm adds to the subprogram just those control structures that are necessary
to make it preserve its original semantics. However, the data for these control
structures is not added, being supplied by the oracle instead. These notions are
formalized in Section 2.

While fine slicing can be used directly by a user using a tool that displays slices
based on various criteria, we expect fine slicing to be used as a component by
other applications, such as Extract Computation. In particular, we do not expect
users to directly specify control dependences to be ignored. Data dependences
are much easier for users to understand, and our graphical user interface for
Extract Computation provides a convenient way to specify data dependences to
be ignored.

1.2 Extract Computation

The example of Figure 1 shows the two types of difficulties involved in untangling
computations. First, it is necessary to identify the relevant data sources as well as
the control structures the subprogram to be extracted needs in order to preserve
its semantics. This information can be used to generate the method encapsulating
the extracted subprogram: the control structures are included in the new method,
and the data sources are passed as parameters. This is achieved by the fine slicing
algorithm.

Fine Slicing 475

Second, it is necessary to modify the original code; among other things, it
needs to prepare any parameters and call the new method. As shown in the
example, some parts of the original code (such as the loop) need to be duplicated.
A co-slice, or complement slice [6], is the part of the program that should be
left behind once a slice has been extracted from it. As shown above, the co-slice
may contain some code that is also part of the extracted fine slice. It turns out
that a co-slice is a special case of a fine slice, which starts from all locations not
extracted and ignores data values to be returned. In the example, it is the slice
from lines 2–4 and 6 of Figure 1(a), ignoring the final value of out.

The Extract Computation refactoring extracts the selected code and replaces
it with an appropriate call. It computes the two fine slices and determines where
the call to the extracted code should be placed. Some of the parameters need
to aggregate values computed through a loop. The Extract Computation algo-
rithm determines which data values are multiple-valued, and creates the code to
generate the lists containing these values.

The Extract Computation refactoring is general enough to support all the
cases in our case study [1] that were not supported by existing implementations
of Extract Method. In particular, it can support the extraction of non-contiguous
code in several varieties. In addition to the example above, demonstrating the ex-
traction of part of a loop with the minimal required duplication of the loop, they
include: extracting multiple fragments of code; extracting a partial fragment,
where some expressions are not extracted but passed as parameters instead; and
extracting code that has conditional exits (caused by return statements in the
code to be extracted) [2]. A detailed description of the algorithm appears in
Section 3.

2 A Theory of Fine Slicing

We assume a standard representation of programs, which consists of a control-
flow graph (CFG), with (at least) the following relationships defined on it: dom-
ination and post-domination, data dependence and control dependence. We use
dflowP (d1, d2) to denote the fact that a variable definition d1 reaches the use d2
of the same variable in program P . We require that variable definitions include
assignments to the variable as well as any operation that can modify the object
it points to. In the example of Figure 1, any method applied to out can modify
the output stream, and needs to be considered a definition of out. We assume a
standard operational semantics, in which each state consists of a current location
in the CFG of the program, and an environment that provides values of some of
the program’s variables. We also assume some mechanism that makes states in
the same execution unique; for example, a counter of the number of times each
node was visited.

We extend this representation to open programs, in which some variable uses
can be marked as disconnected; these have no definitions reaching them. After
defining the notion of a subprogram, we extend the operational semantics with
oracles for disconnected variables, show how an oracle for an open subprogram is

476 A. Abadi, R. Ettinger, and Y.A. Feldman

induced from the corresponding execution of the original program, and formalize
fine slices as open subprograms that, given the induced oracle, compute the same
values for all variables of interest.

Definition 1 (subprogram). A (possibly open) program Q is a subprogram
of a program P if

1. all CFG nodes of Q belong to P ;
2. for every variable definition point d and variable use point u in Q that is not

disconnected, dflowQ(d, u) is true iff dflowP (d, u) is true; and
3. there is an edge from CFG node n1 ∈ Q to n2 ∈ Q iff there is a non-empty

path from n1 to n2 in P that does not pass through other nodes in Q, except
when n1 is the exit node of Q and n2 is the entry node of Q.

We define a state s of P and a state s′ of Q to be equivalent with respect to
the connected variables (denoted E(s, s′)) if their environments coincide on all
common variables, except possibly for those that are disconnected in the current
node. The initial states of Q will be restricted to those that are equivalent to
states of P that can be reached by executions of P without visiting any nodes
of Q before reaching those states.

An oracle O(s, u) for an open program Q is a partial function that provides
values for each disconnected variable u at each possible state s of the program. An
execution of an open program is defined by extending the operational semantics
of programs so that at any point where the value of a disconnected variable u is
required in an execution state s, the value used will be O(s, u). If this value is
undefined, the execution is deemed to have failed.

The execution of P provides the oracle that can be used to supply the missing
values in a corresponding execution of Q. Denote a single step in the operational
semantics of P by stepP (s), and the value of a variable use u in state s by
envP (s, u).

Definition 2 (induced oracle). The oracle induced by a program P on an
open subprogram Q of P from an initial state s0 of P is defined as follows:
if stepkP (s0) = s for some k ≥ 0, the current location in state s belongs to
Q, u is a disconnected variable use in the current location, and E(s, s′), then
oracleP,s0

Q (s′, u) = envP (s, u).

Under this definition, any open subprogram of P is executable with an oracle
and preserves the behavior of P .

Theorem 1 (correctness of execution with oracle). Let Q be an open sub-
program of P , s0 an initial state of P , and q0 the corresponding initial state of
Q (assuming one exists). If P halts3 (i.e., reaches its exit node) when started at

p0, then Q will also halt when started at q0 with the induced oracle, oracleP,s0
Q ,

and will compute the same values for all common variable occurrences.

3 It is possible to relax this condition to specify that P reaches a state from which it
cannot return to Q.

Fine Slicing 477

This theorem does not imply that an arbitrary sub-graph of the CFG of P
is similarly executable and semantics-preserving, since the theorem only applies
to subprograms (Def. 1), whose structure is constrained to preserve the data
and control flow of P . The semantic restoration algorithm can be applied to
any collection of CFG nodes, and will complete it into a subprogram by adding
the required tests, even when control dependences on them were specified to be
ignored. This is a crucial feature that makes fine slices executable and semantics-
preserving. However, the data on which this control is based may still be discon-
nected. Therefore, adding these tests will not require the addition of potentially
large parts of the program involved in the computation of the specific conditions
used in these tests.

There are different ways to specify the dependences to be ignored by a partic-
ular fine slice, but ultimately these must be cast in terms of a set D of variable
uses to be disconnected, and a set C of control dependences to be ignored (each
represented as a pair (t, n) where a node n depend on a test t). As usual, the
slice is started from a set of slicing criteria, which we represent as a set S of
nodes in the CFG of P .

Definition 3 (fine slice). Let P be a program, S a set of slicing criteria, D a
set of variable uses to be disconnected in P , and C a set of control dependences
from P to be ignored. A fine slice of P with respect to S, D, and C is an open
subprogram Q of P that contains all nodes in S, and in which every disconnected
variable use d satisfies at least one of the following conditions:

1. the variable use d was allowed to be disconnected: d ∈ D; or
2. d is variable use in a test node t on which all control dependences from

elements in the slice are to be ignored: if n ∈ Q is control-dependent on t
then (t, n) ∈ C.

We now present an algorithm that computes fine slices. The algorithm accepts
as inputs a program P , a set S of slicing criteria, a set D of input variable uses
that are allowed to remain disconnected in the fine slice, and a set C of control
dependences that may be ignored.

The algorithm consists of the following main steps:

1. Compute the core slice Q by following data and control dependence relations
backwards in P , starting from S. Traversal of data dependences does not
continue from variable uses in D, and traversal of control dependences does
not follow dependences that belong to C.

2. (Semantic Restoration) Add necessary tests to make the slice executable.
3. Connect each node n1 ∈ Q to a node n2 ∈ Q iff there is a path from n1 to

n2 in P that does not pass through any other node in Q.

As explained above, in order to turn the fine slice into a subprogram, it is
necessary to add some tests from the original program even though all their
control dependences have been removed. This is the purpose of the semantic-
restoration step, which comprises the following sub-steps:

478 A. Abadi, R. Ettinger, and Y.A. Feldman

if (q1())

if (q2())

x = g()x = f()

y = x + 1

Q
min

(2)

Q
min

(1)

Q
max

if (q1())

if (q2())

x = g()x = f()

skip

y = x + 1

Q
min

Q
max

Fig. 2. Semantic restoration: original program (left); after separation of merges (right)

2.1 Let Qmin be the lowest node in P that dominates all the nodes of Q. Add
Qmin to Q if it is not already there.

2.2 Let Qmax be the highest node in P that postdominates all the nodes of Q.
Add Qmax to Q if it is not already there.

2.3 Add to Q all tests t from P that are on a path from some q ∈ Q to q′ ∈ Q
where q′ is control-dependent on t, except when q = Qmax and q′ = Qmin.
Do not add any data these tests depend on.

2.4 Repeat steps 2.1–2.3, taking into account the new nodes added each time,
until there is no change.

In step 2.1, the “lowest” node is the one that is dominated by all other nodes
in P that dominate all the nodes in Q. Similarly, in step 2.2 the “highest” node
is the one that is postdominated by all other nodes in P that postdominate
all nodes in Q. The smallest control context surrounding the fine slice is given
by the part of the program between Qmin and Qmax, and this determines the
extraction context. This computation may need to be iterated for unstructured
programs (including unstructured constructs in so-called structured languages);
this is the purpose of step 2.4. When choosing Qmax, the algorithm may need to
add dummy nodes so as to separate merge points that are reachable from Q from
those that are not. This will ensure that the new value of Qmax will not move
Qmin to include unnecessary parts of the program. In the example of Figure 2,
Q consists of the two assignments to x (with emphasized borders). On the left
side of the figure, no separation of merges has been done. Initially, Qmin will be
the second conditional (marked Qmin(1)), and Qmax will be the assignment to y.
This will force Qmin to move to the first conditional (marked Qmin(2)), making Q
contain the whole program. With the optimization of separating merges, shown
on the right of the figure, Qmax is the new dummy node, and Qmin remains at
the second conditional, making the fine slice smaller.

Step 2.3 excludes paths from Qmax to Qmin, since these correspond to loops
that contain the whole fine slice, and should not be included in it. When the fine
slice is extracted, the call will appear inside any such loops.

Fine Slicing 479

Step 2.4 is only necessary for unstructured programs; with fully structured
code a single iteration is always sufficient.

Theorem 2. The fine slicing algorithm is well defined (i.e., nodes in steps 2.1
and 2.2 always exist), and produces a valid fine slice.

Because the result of the algorithm is an open subprogram of P , it will compute
the same values as P given the induced oracle (Theorem 1).

Theorem 3. The worst-case time complexity of the fine-slicing algorithm is lin-
ear in the size of the program-dependence graph (i.e., the size of the control and
data dependence relations).

3 Extract Computation

The Extract Computation refactoring starts with a (possibly open) subprogram
Q to be extracted from a program P . The subprogram can be a fine slice, chosen
by the user or by another application; it can also be the result of applying
semantic restoration to an arbitrary collection of statements. As a subprogram,
it preserves the original semantics given the appropriate values from the induced
oracle. Not all the code of Q can be removed from its original location, since
some of it may be used for other purposes in P , as in the case of the common loop
in Figure 1. The algorithm needs to compute the co-slice, replace the extracted
code with an appropriate call, and implement the data-flow to the extracted
code in the form of parameters and return values. Some of these values may be
sequences, and the algorithm determines which they are and how to compute
them.

The co-slice will contain all parts of the program that have not been extracted;
it must also contain all the control and data elements required to preserve its
semantics. However, any data it uses that is computed by the extracted program
need not be part of the co-slice; instead, it can be returned by the extracted
method. These values can therefore be disconnected, making the co-slice an
instance of a fine slice. Many modern languages do not allow a function or
method to return more than one value. When more than one value needs to
be returned to the co-slice in such languages, they can be packed into a single
object. Alternatively, it is possible to selectively disconnect only one such value,
making the others be recomputed by the co-slice. Another inhibitor for many
languages would be the necessity of passing sequences to the extracted code
and back to the co-slice. This can only be done in languages (or frameworks)
that support coroutines, since it requires intertwining of the computations of the
co-slice and the extracted code.

Consider a disconnected variable use u in Q. In order to determine whether
it requires a single value or a sequence, we need to know whether there is a loop
in P but not in Q that contains the original source of u in P and its use in
Q. If there is such a loop, a sequence is necessary. We define the source of u to
be the CFG node in P at which the value to be used in u is uniquely determined.

480 A. Abadi, R. Ettinger, and Y.A. Feldman

This can be a definition of the same variable, but it can also be a join in the flow
at which one of several definitions is chosen. For example, a variable x may be
set to different values in two sides of a conditional; in this case, the source of a
use of x following the conditional is the first node that joins the flow from both
assignments. Formally, we define the source of u to be the node n such that:
(1) n dominates the node of u; (2) the value of the variable does not change on
every path from n to the first occurrence of the node of u; and (3) n dominates
every other node that fulfills conditions (1) and (2). (This will put the source of
u at the same point in which a φ-function will be generated in the Static Single
Assignment form [5].)

Theorem 4. Given a variable use u in Q, let GQ be the smallest strongly-
connected component of Q that contains the node of u. Each edge in Q corre-
sponds to a set of paths in P ; let GP be the sub-graph of the CFG of P that
contains all the nodes and edges in P that correspond to the edges of Q. If the
source of u is not in GP , then u has a single value in the induced oracle for Q
in P .

In the example of Figure 1, the extracted code has a disconnected input picture
in the node for printPicture, which is contained in a single cycle. The source
of this input in the full program is the getPicture node, which is on the same
cycle. Theorem 4 does not apply, and therefore a sequence needs to be generated
for it. In contrast, the use of end in the predicate i < end is on the same cycle,
but its source is the node for Math.min, which is not on this cycle. Therefore the
theorem applies, and no sequence is necessary.

Sequences can be implemented in various ways. For simplicity of the exposition
we will consider a queue, but extensions to other data structures are trivial. For
those parameters that are sequences, the algorithm needs to decide where to put
the call that enqueues elements in the co-slice, and where to put the call that
dequeues the elements in the extracted code. This is done by locating the unique
place where the data passes into Q. This place is represented by a control edge
in P whose target is in Q but whose source is not, such that all control paths
from the source of u to the node of u itself pass through that edge. We call this
edge the injection point for u in Q.

Theorem 5. The injection point for every disconnected input of an open sub-
program always exists and is unique.

Consider now the variant P ′ of P in which an enqueue operation immediately
followed by a dequeue operation is inserted at the injection point for u. This
obviously does not change the behavior of P , since the queue is always empty
except between the two new operations. We now define Q′ to be the subprogram
of P ′ that, in addition to Q itself, contains the dequeue operation, and in which
the input of the dequeue operation is disconnected instead of u. When perform-
ing Extract Computation on P ′ and Q′, the enqueue operation will belong to
the co-slice, while the dequeue operation will be extracted. The behavior of the

Fine Slicing 481

resulting program will still be the same, since the same values are enqueued and
dequeued as in P ′; the only difference is that now all enqueue operations precede
all dequeue operations.

In order to select a location in the co-slice in which to place the call to the
extracted code, it is necessary to identify a control edge in the co-slice where the
call will be spliced. Such an edge is uniquely defined by its source node c, which
must satisfy the following conditions (in the context of P):

– c is contained in exactly the same control cycles as Qmax;
– c must be dominated by all sources of parameters to the extracted code;
– every path from c to any of the added enqueue operations must pass through

Qmin; and
– c dominates each node containing any input data port that is disconnected in

the co-slice (and therefore expects to get its value from the extracted code).

The first condition ensures that the call will be executed the same number of
times as the extracted code was in the original program. The next two conditions
ensure that all parameters will be ready before the call (since passing through
Qmin initiates a new pass through the extracted code). There may be more than
one legal place for the call, in which case any can be chosen; if there is no
legal place, the transformation fails (this can happen when sequences need to be
passed in both directions, as mentioned above). Note that the control successor
of Qmax satisfies the first three conditions, and the call can always be placed
there unless there are results to be returned from the extracted code to the
co-slice. In the example, the only valid c is the exit node.

Given a subprogram and a set of expected results, the Extract Computation
algorithm proceeds as follows: (1) extract the subprogram into a separate proce-
dure; (2) identify parameters and create sequences as necessary; (3) replace the
original code by the co-slice together with a call to the extracted procedure. The
Extract Computation transformation is provably correct under the assumption
that all potential data flow is represented by the data dependence relation. This
is relatively easy to achieve for languages such as Cobol, but may not be the case
in the presence of aliasing and sharing, as in Java. In all the cases we examined
as part of our evaluation (Section 4.2) this has not been an issue.

4 Discussion

4.1 Implementation

We have implemented the Extract Computation and fine-slicing algorithms on
top of our plan-based slicer [3]. They are therefore language-independent, and
we are using them for transformations in Cobol as well as Java in Eclipse. In
particular, the example of Figure 1 is supported by our tool for both languages.

For Extract Computation, our implementation uses an extension of the Eclipse
highlighting mechanism, allowing the selection of non-contiguous blocks of text.
Variables or expressions that are left unmarked indicate inputs to be discon-
nected. In addition, we disconnect all control dependences of marked code on

482 A. Abadi, R. Ettinger, and Y.A. Feldman

unmarked code. However, as mentioned above, semantic restoration will add
control structures as necessary to maintain the semantics of the extracted code.

We are investigating other applications of fine slicing. For example, clone
detectors identify similar pieces of code. The obvious next step is to extract
them all into one method, taking their differences into account [9]. In this case,
no user input is necessary, since the parameters of the fine-slicing algorithm, and
in particular, which dependences should be ignored, can be determined based on
the similarities between the clones in a way that will make the extracted part
identical.

Another application of fine slicing is described in the next section.

4.2 Evaluation

We conducted an initial evaluation of fine slicing in the context of a prototype
system that can automatically correct certain kinds of SQL injection security
vulnerabilities [4] by replacing Statement by PreparedStatement objects. A
vulnerable query is constructed as a string that contains user input, and should
be replaced with a query that contains question-mark placeholders for the inputs;
these are later inserted into the prepared statement via method calls that sanitize
the inputs if necessary. However, sometimes the query is also used elsewhere;
typically, it is written to a log file. The log file should contain the actual user
input; in such cases, the proposed solution is to extract the part of the code that
computes the query string into a separate method, which can be called once with
the actual inputs, to contstuct the log string, and again with question marks, to
construct the prepared statement.

In order to automate this process, we need to determine the precise part of the
code that computes the query string, with all relevant tests. The test conditions,
however, should not be extracted; they can be computed once and their values
passed as parameters to the two calls. This describes a fine slice that starts at the
string given to the query-execution method, and ignores all data dependences
on non-string values and all control dependences.

In a survey of 52 real-world projects used to test a commercial product that
discovers security vulnerabilities, we found over 300 examples of the construction
of SQL queries. Most of these consisted of trivial straight-line code, but 46 cases
involved non-trivial control flow. In these cases, we computed a full backward
slice, a fine slice according to the criteria stated above, and a data-only slice.
The fine slice was computed intra-procedurally, for soundness assuming that
called methods may change any field. We compared these results to the code
that should really be extracted, based on manual inspection of the code.

In 21 cases, the construction of the query contained conditional parts, where
the condition was the result of a method call. In all these cases, the fine slice
was the same as the full slice, except that it didn’t contain the method call in
the conditional. In terms of lines of code, the fine slice had the same size as the
full slice, although it always contained the minimal part of code that needed to
be extracted. In all these cases, the data slice was too small. In practical terms,
if the condition is simple and quick to compute, has no side effects, and does

Fine Slicing 483

not depend on any additional data, a developer may include it in the extracted
code. An automatic tool, such as the one we are developing, has no information
about computational complexity, and so should by default choose the minimal
code, which is the fine slice.

Twenty-five cases contained more interesting phenomena, where the fine slice
was strictly smaller than the full slice even in terms of lines of code. The size of
the full slice was between 5 and 23 lines, with an average of 13. The fine slices
were between 1 and 14 lines, with an average of 6, and always coincided with
the minimal part of the code that should be extracted. The data slices were
sometimes larger and sometimes smaller than the fine slices, but were correct
only in three cases.

As can be seen from these results, fine slicing has proved to be the correct tool
for this application. Many other applications seem to require this technology, and
we will continue this evaluation on other cases as well.

4.3 Related Work

Full slices are often too large to be useful in practice. The slicing literature in-
cludes a wide range of techniques that yield collections of program statements,
including forward slicing [7], chopping [8], barrier slicing [12], and thin slicing
[15]. These can be used for code exploration, program understanding, change im-
pact analysis, and bugs localization, but they are not intended to be executable,
and do not preserve the semantics of the selected fragment in the original pro-
gram. In particular, they do not add the required control structures. We believe
that all these techniques for finding interesting collections of statements could
benefit from the added meaning given by semantic restoration, not only for use
in program transformations, where executability with semantics preservation is
a must, but also in assisting program understanding and related programming
tasks such as debugging, testing, and verification.

Tucking [13] extracts the slice of an arbitrary selection of seed statements
by focusing on some single-entry-single-exit region of the control flow graph
that includes all the selected statements. They refer to this limited-scoped slice
as a wedge. A tuck transformation adds to the identified region a call to the
extracted wedge and removes from it statements that are not included in the
full slice starting from all statements outside the wedge. Our computation of
the co-slice by starting a fine slice from all nodes not in the extracted code is
similar in this respect.

Using block-based slicing, Maruyama [14] extracts a slice associated with a
single variable in the scope of a given block into a new method. The algorithm
disconnects all data dependences on the chosen variable; this could lead to in-
correct results in some cases. Tsantalis and Chatzigeorgiou [16] extended this
work in several ways, including rejecting the transformation in such problematic
cases. They still use the same framework of limiting the slice to a block. Fine
slicing provides much finer control over slice boundaries.

A procedure-extraction algorithm by Komondoor and Horwitz [10] considers
all permutations of selected and surrounding statements. Their following paper

484 A. Abadi, R. Ettinger, and Y.A. Feldman

[11] improves on that algorithm by reducing the complexity and allowing some
duplication of conditionals and jumps but not of assignments or loops. Instead
of backward slicing, this algorithm completes control structures but only some
of the data. If a statement in a loop is selected, all the loop is added.

Sliding [6] computes the slice of selected variables from the end of a selected
fragment of code, and composes the slice and its complement in a sequence.
The complement can be thought of as a fine slice of all non-selected variables,
ignoring all dependences of final uses of the selected variables. Our Extract
Computation refactoring is more general by possibly ignoring other dependences,
and by allowing more flexible placement of the slice. The concept of a final use of
a variable can also help choosing which dependences to ignore when extracting
a computation.

None of these approaches support passing sequences of values to what we call
an oracle variable.

4.4 Future Work

This work is part of a long-term research project focusing on advanced enterprise
refactoring tools, aiming to assist both in daily software development and in
legacy modernization. The Extract Computation refactoring is a crucial building
block in this endeavor. It will be used to enhance the automation for complex
code-motion refactorings in order to support enterprise transformations such as
the move to MVC [1,2]. As the prototype matures, it will be possible to evaluate
to what extent such enterprise transformations can be automated.

We intend to make a number of improvements to the underlying analysis.
Most important are interprocedural analysis and some form of pointer analysis.
These will also support interprocedural transformations. The semantic restora-
tion algorithm is useful on its own in order to make any subprogram executable.
Based on our preliminary investigation we believe that an interprocedural ex-
tension of this algorithm is straightforward. It only requires pointer analysis in
the presence of polymorphism, in order to compute the most accurate calling
chain to be restored.

Acknowledgments. We are grateful to Mati Shomrat for his help with the
implementation, and to Moti Nisenson for the name fine slicing.

References

1. Abadi, A., Ettinger, R., Feldman, Y.A.: Re-approaching the refactoring Rubicon.
In: Second Workshop on Refactoring Tools (October 2008)

2. Abadi, A., Ettinger, R., Feldman, Y.A.: Fine slicing for advanced method extrac-
tion. In: Proc. Third Workshop on Refactoring Tools (October 2009)

3. Abadi, A., Ettinger, R., Feldman, Y.A.: Improving slice accuracy by compression
of data and control flow paths. In: Proc. 7th Joint Mtg. European Software En-
gineering Conf. (ESEC) and ACM Symp. Foundations of Software Engineering
(FSE) (August 2009)

Fine Slicing 485

4. Abadi, A., Feldman, Y.A., Shomrat, M.: Code-motion for API migration: Fixing
SQL injection vulnerabilities in Java. In: Proc. Fourth Workshop on Refactoring
Tools (May 2011)

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Programming Languages and Systems 13(4), 451–490 (1991)

6. Ettinger, R.: Refactoring via Program Slicing and Sliding. Ph.D. thesis, University
of Oxford, Oxford, UK (2006)

7. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

8. Jackson, D., Rollins, E.J.: A new model of program dependences for reverse engi-
neering. In: Proc. 2nd ACM Symp. Foundations of Software Engineering (FSE),
pp. 2–10 (1994)

9. Komondoor, R.: Automated Duplicated-Code Detection and Procedure Extraction.
Ph.D. thesis, University of Wisconsin–Madison (2003)

10. Komondoor, R., Horwitz, S.: Semantics-preserving procedure extraction. In: Proc.
27th ACM Symp. on Principles of Programming Languages (POPL), pp. 155–169
(2000)

11. Komondoor, R., Horwitz, S.: Effective automatic procedure extraction. In: Proc.
11th Int’l Workshop on Program Comprehension (2003)

12. Krinke, J.: Barrier slicing and chopping. In: Proc. 3rd IEEE Int’l Workshop on
Source Code Analysis and Manipulation (SCAM) (September 2003)

13. Lakhotia, A., Deprez, J.C.: Restructuring programs by tucking statements into
functions. In: Harman, M., Gallagher, K. (eds.) Special Issue on Program Slicing,
Information and Software Technology, vol. 40, pp. 677–689. Elsevier (1998)

14. Maruyama, K.: Automated method-extraction refactoring by using block-based
slicing. In: Proc. Symp. Software Reusability, pp. 31–40 (2001)

15. Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: Proc. Conf. Programming
Lang. Design and Implementation (PLDI), pp. 112–122 (June 2007)

16. Tsantalis, N., Chatzigeorgiou, A.: Identification of Extract Method refactoring op-
portunities for the decomposition of methods. J. Systems and Software 84(10),
1757–1782 (2011)

17. Weiser, M.: Program slicing. IEEE Trans. Software Engineering SE-10(4) (1984)

System Dependence Graphs

in Sequential Erlang�

Josep Silva, Salvador Tamarit, and César Tomás

Universitat Politècnica de València,
Camino de Vera s/n, E-46022 Valencia, Spain
{jsilva,stamarit,ctomas}@dsic.upv.es

Abstract. The system dependence graph (SDG) is a data structure
used in the imperative paradigm for different static analysis, and par-
ticularly, for program slicing. Program slicing allows us to determine
the part of a program (called slice) that influences a given variable of
interest. Thanks to the SDG, we can produce precise slices for inter-
procedural programs. Unfortunately, the SDG cannot be used in the
functional paradigm due to important features that are not considered
in this formalism (e.g., pattern matching, higher-order, composite ex-
pressions, etc.). In this work we propose the first adaptation of the SDG
to a functional language facing these problems. We take Erlang as the
host language and we adapt the algorithms used to slice the SDG to
produce precise slices of Erlang interprocedural programs. As a proof-of-
concept, we have implemented a program slicer for Erlang based on our
SDGs.

1 Introduction

Program slicing is a general technique of program analysis and transformation
whose main aim is to extract the part of a program (the so-called slice) that
influences or is influenced by a given point of interest (called slicing criterion)
[18,15]. Program slicing can be dynamic (if we only consider one particular ex-
ecution of the program) or static (if we consider all possible executions). While
the dynamic version is based on a data structure representing the particular ex-
ecution (a trace) [7,1], the static version has been traditionally based on a data
structure called program dependence graph (PDG) [4] that represents all state-
ments in a program with nodes and their control and data dependencies with
edges. Once the PDG is computed, slicing is reduced to a graph reachability
problem, and slices can be computed in linear time.

Unfortunately, the PDG is imprecise when we use it to slice interprocedural
programs, and an improved version called system dependence graph (SDG) [6]

� This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana
under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by
the Spanish MICINN under FPI grant BES-2009-015019.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 486–500, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

System Dependence Graphs in Sequential Erlang 487

(1) main() ->
(2) Sum = 0,
(3) I = 1,
(4) {Result,_} = while(Sum,I,11),
(5) Result.

(6) while(Sum,I,Top) ->
(7) if
(8) I /= Top -> {NSum,NI} = a(Sum,I),
(9) while(NSum,NI,Top-1)
(10) I == Top -> {Sum,Top};
(11) end.

(12) a(X,Y) ->
(13) {add(X,Y),
(14) fun(Z)->add(Z,1) end(Y)}.

(15) add(A,0) -> A;
(16) add(A,B) -> A+B.

Fig. 1. Original Program

(1) main() ->
(2)
(3) I = 1,
(4) {_,_} = while(undef,I,11).
(5)

(6) while(_,I,Top) ->
(7) if
(8) I /= Top -> {_,NI} = a(undef,I),
(9) while(undef,NI,Top)
(10)
(11) end.

(12) a(_,Y)->
(13) {undef,
(14) fun(Z)->add(Z,1) end(Y)}.

(15)
(16) add(A,B) -> A+B.

Fig. 2. Sliced Program

has been defined. The SDG has the advantage that it records the calling context
of each function call and can distinguish between different calls. This allows us
to define algorithms that are more precise in the interprocedural case.

In this paper we adapt the SDG to the functional language Erlang. This
adaptation is interesting because it is the first adaptation of the SDG to a
functional language. Functional languages pose new difficulties in the SDG, and
in the definition of algorithms to produce precise slices. For instance, Erlang does
not contain loop commands such as while, repeat or for. All loops are made
through recursion. In Erlang, variables can only be assigned once, and pattern
matching is used to select one of the clauses of a given function. In addition,
we can use higher-order functions and other syntactical constructs not present
in imperative programs. All these features make the traditional SDG definition
useless for Erlang, and a non-trivial redefinition is needed.

Example 1. The interprocedural Erlang program1 of Figure 1 is an Erlang trans-
lation of an example in [6]. We take as the slicing criterion the expression
add(Z,1) in line (14). This means that we are interested in those parts of
the code that might affect the value produced by the expression add(Z,1). A
precise slice w.r.t. this slicing criterion would discard lines (2), (5), (10) and
(15), and also replace some parameters by anonymous variables (represented
by underscore), and some expressions by a representation of an undefined value
(atom undef). This is exactly the result computed by the slicing algorithm de-
scribed in this paper and shown in Figure 2. Note that the resulting program is
still executable.

1 We refer those readers non familiar with Erlang syntax to Section 3 where we provide
a brief introduction to Erlang.

488 J. Silva, S. Tamarit, and C. Tomás

The structure of the paper is as follows. Section 2 presents the related work.
Section 3 introduces some preliminaries. The Erlang Dependence Graph is
introduced in Section 4, and the slicing algorithm is presented in Section 5.
Finally, Section 6 presents some future work and concludes.

2 Related Work

Program slicing has been traditionally associated with the imperative paradigm.
Practically all slicing-based techniques have been defined in the context of im-
perative programs and very few works exist for functional languages (notable
exceptions are [5,13,12]). However, the SDG has been adapted to other paradigms
such as the object-oriented paradigm [8,9,17] or the aspect-oriented paradigm
[21].

There have been previous attempts to define a PDG-like data structure for
functional languages. The first attempt to adapt the PDG to the functional
paradigmwas [14] where they introduced the functional dependence graph (FDG).
Unfortunately, the FDGs are useful at a high abstraction level (i.e., they can
slice modules or functions), but they cannot slice expressions and thus they
are insufficient for Erlang. Another approach is based on the term dependence
graphs (TDG) [3]. However, these graphs only consider term rewriting systems
with function calls and data constructors (i.e., no complex structures such as if-
expressions, case-expressions, etc. are considered). Moreover, they are not able
to work with higher-order programs. Finally, another use of program slicing has
been done in [2] for Haskell. But in this case, no new data structure was defined
and the abstract syntax tree of Haskell was used with extra annotations about
data dependencies.

In [19,20] the authors propose a flow graph for the sequential component of
Erlang programs. This graph has been used for testing, because it allows us to
determine a set of different flow paths that test cases should cover. Unfortunately,
this graph is not based on the SDG and it does not contain the information
needed to perform precise program slicing. For instance, it does not contain
summary edges, and it does not decompose expressions, thus in some cases it
is not possible to select single variables as the slicing criterion. However, this
graph solve the problem of flow dependence and thus it is subsumed by our
graphs. Another related approach is based on the behavior dependency graphs
(BDG) [16] that has been also defined for Erlang. Even though the BDG is able
to handle pattern matching, composite expressions and all constructs present in
Erlang, it has the same problem as previous approaches: the lack of the summary
edges [6] used in the SDG implies a loss of precision.

All these works have been designed for intra-procedural slicing, but they lose
precision in the inter-procedural case. This problem can be solved with the use
of a SDG. From the best of our knowledge, this is the first adaptation of the
SDG to a functional language.

System Dependence Graphs in Sequential Erlang 489

3 Preliminaries

In this section we introduce some preliminary definitions used in the rest of the
paper. For the sake of concreteness, we will consider the following subset of the
Erlang language:

pr ::= fn (Program)

f ::= atom fcn (Function Definition)
fc ::= (pm)→ en | (pm) when go → en (Function Clause)
p ::= l | V | 〈pn〉 | [pn] | p1 = p2 (Pattern)
g ::= l | V | 〈gn〉 | [gn] | g1 op g2 | op g (Guard)
e ::= l | V | 〈en〉 | [en] | begin en end (Expression)

| e1 op e2 | op e | e(en) | p = e

| [e || gfn] | if icn end | case e of ccn end

| fun atom/number | fun fcn end

l ::= number | string | atom (Literal)
gf ::= p← e | e (Generator | Filter)
ic ::= gm → en (If Clause)
cc ::= p→ en | p when gm → en (Case Clause)
op ::= + | − | ∗ | / | div | rem | ++ | − − (Operation)

| not | and | or | xor | == | /=
| =< | < | >= | > | =:= | =/=

An Erlang program is a collection of function definitions. Note that we use
the notation fn to represent the sequence f1 . . . fn. Each function definition
is formed in turn by a sequence of n pairs atom fc where atom is the name
of the function with arity n and fc is a function clause. Function clauses are
formed by a sequence of patterns enclosed in parentheses followed optionally by
a sequence of guards, and then an arrow and a sequence of expressions (e.g.,
f(X, Y, Z) when X > 0;Y > 1;Y < 5 → X+Y, Z.). A pattern can be a literal
(a number, a string, or an atom), a variable, a compound pattern or a tuple or
list of other patterns. Guards are similar to patterns, but they must evaluate
to represent a boolean value, and they do not allow compound patterns. Ex-
pressions can be literals, variables, tuples, lists, blocks composed of sequences of
expressions, operations, applications, pattern matching, list comprehensions, if-
expressions and case-expressions, function identifiers and declarations of anony-
mous functions, which are formed by a sequence of function clauses as in function
definitions. In Erlang, when a call to a function is evaluated, the compiler tries
to do pattern matching with the first clause of the associated function definition
and it continues with the others until one succeeds. When pattern matching suc-
ceeds with a clause then its body is evaluated and the rest of clauses are ignored.
If no clause succeeds then an error is raised.

In the following we will assume that each syntactic construct of a program
(e.g., patterns, guards, expressions, etc.) can be identified with program posi-
tions. Program positions are used to uniquely identify each element of a program.

490 J. Silva, S. Tamarit, and C. Tomás

Fig. 3. Graph representation of Erlang programs

In particular, the program position of an element identifies the row and column
where it starts, and the row and column where it ends. We also assume the
existence of a function elem that returns the element associated to a given pro-
gram position. Additionally, we use the finite sets Vars, Literal , Ops and P that
respectively contain all variables, literals, operators and positions in a program.

4 Erlang Dependence Graphs

In this section we adapt the SDG to Erlang. We call this adaptation Erlang
dependence graph. Its definition is based on a graph representation of the com-
ponents of a program that is depicted in Figure 3.

Figure 3 is divided into four sections: function definitions, clauses, expressions
and patterns. Each graph in the figure represents a syntactical construct, and
they all can be composited to build complex syntactical definitions. The compo-
sition is done by replacing some nodes by a particular graph. In particular, nodes
labeled with c must be replaced by a clause graph. Nodes labeled with e must
be replaced by one of the graphs representing expressions or function definitions
(for anonymous functions). And nodes labeled with p must be replaced by one
of the graphs representing patterns. In order to replace one node by a graph,
we connect all input arcs of the node to the initial node of the graph that is
represented with a bold line; and we connect all output arcs of the node to the
final nodes of the graph that are the dark nodes. Note that in the case that a
final node is replaced by a graph, then the final nodes become recursively the
dark nodes of this graph. We explain each graph separately:

System Dependence Graphs in Sequential Erlang 491

Function Definition: The initial node includes information about the function
name and its arity. The value of fname is ⊥ for all anonymous functions.
Clauses are represented with c1 . . . cn and there must be at least one.

Clause: They are used by functions and by case- and if-expressions. In function
clauses each clause contains zero or more patterns (p1 . . . pm) that represent
the arguments of the function. In case-expressions each clause contains ex-
actly one pattern and in if-expressions no pattern exists. Node g represents
all the (zero or more) guards in the clause. If the clause does not have guards
it contains the empty list []. There is one graph for each expression (e1 . . . en)
in the body of the clause.

Variable/Literal: They can be used either as patterns or as expressions, and
they are represented by a single (both initial and final) node.

Function Identifier: It is used for higher order calls. It identifies a function
with its name and its arity and it is represented by a single (both initial and
final) node.

Pattern Matching/Compound Pattern: It can be used either as a pattern
or as an expression. The only difference is that if it is a pattern, then the
final nodes of both subpatterns are the final nodes. In contrast, if it is an
expression, then only the final nodes of the subexpression are the final nodes.

Block: It contains a number of expressions (e1 . . . en), being the final nodes the
last nodes of the last expression (en).

Tuple/List/Operation: Tuples and lists can be patterns or expressions. Op-
erations can only be expressions. The initial node is the tuple ({}), list ([])
or operator (+, ∗, etc.) and the final nodes are the final nodes of all partici-
pating expressions (e1 . . . en).

Case-Expression: The evaluated expression is represented by e, and the last
nodes of its clauses are its final nodes.

If-Expression: Similar to case-expressions but missing the evaluated expres-
sion.

Function Call: The function is represented by e, the arguments are e1 . . . en
and the final node is the return node that represents the output of the
function call.

List Comprehension: A list comprehension contains n generators formed by
an expression and a pattern; m filters (e1 . . . em) and the final expression (e).

Definition 1 (Graph Representation). The graph representation of an Er-
lang program is a labelled graph (N , C) where N are the nodes and C are the
edges. Additionally, the following functions are associated to the graph:

type : N → T
pos : N → P
function : N → (atom , number)
child : (N , number)→ N
children : N → {N}
lasts : N → {N}
rootLasts : N → {N}

492 J. Silva, S. Tamarit, and C. Tomás

call

return (function_in) _/1 (term)
Y

clause_in

(term)
Z (guards) []

(term)
Z

call

return (term)
add

(term)
1

Fig. 4. EDG associated to expression fun(Z)->add(Z,1) end(Y) of Example 1

For each function of the program there is a function definition graph that is
compositionally constructed according to the cases of Figure 3.

Total function type returns the type of a node. T is the set of node types:
function_in, clause_in, pm, guards, fid (function identifier), var, lit, block,
case, if, tuple, list, op, call, lc, and return. The total function pos returns
the program position associated to a node. Partial function function is defined for
nodes of types function_in, and it returns a tuple containing the function name
and its arity. Function child returns the child that is in the position specified by
the inputed number of a given node. Function children returns all the children
of a given node. Given a node in the EDG, function lasts returns the final nodes
associated to this node (observe that these nodes will always be leafs). Finally,
given a node in an EDG that is associated to one of the graphs in Figure 3,
function rootLast returns for each final node of this graph, (1) the initial node
of the graph that must replace this node (in the case the node is gray), or (2)
the node itself (in the case the node is white). This function is useful to collect
the initial nodes of all arguments of a function clause.

Example 2. The graph in Figure 4 has been automatically generated by our im-
plementation, and it illustrates the composition of some graphs associated to
the code in Example 1. This graph corresponds to the function call fun(Z)->
add(Z,1) end(Y). For the time being, the reader can ignore all dashed, dot-
ted and bold edges. In this graph, the final nodes of the call nodes are their

System Dependence Graphs in Sequential Erlang 493

respective return nodes. Also, the result produced by function rootLast taking
the clause in node as input is the call node that is its descendant.

4.1 Control Edges

The graph representation of a program implicitly defines the control dependence
between the components of the program.

Definition 2 (Control Dependence). Given the graph representation of an
Erlang program (N , C) and two nodes n, n′ ∈ N , we say that n′ is control de-
pendent on n if and only if (n→ n′) ∈ C.

In Figure 4, there are control edges, e.g., between nodes clausein and tuple.

4.2 Data Edges

The definition of data dependence in Erlang is more complicated than in the
imperative paradigm mainly due to pattern matching. Data dependence is used
in four cases: (i) to represent the flow dependence between the definition of a
variable and its later use (as in the imperative paradigm), (ii) to represent the
matches in pattern matching, (iii) to represent the implicit restrictions imposed
by patterns in clauses, and (iv) to relate the name of a function with the result
produced by this function in a function call. Let us explain and define each case
separately.

Dependence Produced by Flow Relations. In the imperative paradigm
data dependence relations are due to flow dependences. These relations also
happen in Erlang. As usual it is based on the sets Def (n) and Use(n) [15] that
in Erlang contain the (single) variable defined (respectively used) in node n ∈ N .

Given two nodes n, n′ ∈ N , we say that n′ is flow dependent on n if and only
if Def (n) = Use(n ′) and n′ is in the scope of n. We define the set Df as the
set containing all data dependencies of this kind, i.e., Df = {(n, n′) | n′ is flow
dependent on n}.

As an example, there is a data dependence of type Df between the pairs of
nodes containing variables Z in Figure 4, and between variables A in Figure 5.

Dependence Produced by Pattern Matching. In this section, when we
talk about pattern matching, we refer to the matching of an expression against
a pattern. For instance, the graph of {X,Y} matches the graph of {Z,42} with
three matching nodes: {} with {}, X with Z and Y with 42. Also, the graph of the
expression if X>1 -> true; _ -> false endmatches the graph of the pattern
Y with two matching nodes: Y with true and Y with false. Pattern matching is
used in three situations, namely, (i) in case-expressions to match the expression
against each of the patterns, (ii) in pattern-matching-expressions, and (iii) in
function calls to match each of the parameters to the arguments of the called
function. Here we only consider the first two items because the third one is rep-
resented with another kind of edge that will be discussed in Section 4.3. Given

494 J. Silva, S. Tamarit, and C. Tomás

clause_in

(term)
A

(term)
0 (guards) []

(term)
A

Fig. 5. EDG associated to clause add(A,0) -> A of Example 1

the initial node of a pattern (say np) and the initial node of an expression (say
ne) we can compute all matching pairs in the graph with function match that is
recursively defined as:

match(np, ne) =
{(ne, np) | type(ne) = var ∨

(type(np), type(ne) ∈ {lit, fid}
∧ elem(pos(np)) = elem(pos(ne)))} ∪

{(laste, np) | (type(np) = var ∨
(type(np) = lit ∧ type(ne) ∈ {op, call}) ∨
(type(np) = tuple ∧ type(ne) = call) ∨
(type(np) = list ∧ type(ne) ∈ {op, call, lc}))

∧ laste ∈ lasts(ne)} ∪
{edge | ((type(np) ∈ {lit, tuple, list} ∧ type(ne) ∈ {case, if, pm, block})

∧ edge ∈
⋃

n′
e∈rootLasts(ne)

match(np, n
′
e)) ∨

(type(np) = pm ∧ edge ∈
⋃

n′
p∈rootLasts(np)

match(n′
p, ne))} ∪

{edge | type(np) ∈ {tuple, list} ∧ type(ne) = type(np)
∧ |{n′ | (ne → n′) ∈ C}| = |{n′ | (np → n′) ∈ C}|
∧

∧
i∈1...|children(ne)|

match(child(np, i), child(ne, i)) 	= ∅

∧ edge ∈ ((ne, np) ∪ (
⋃

i∈1...|children(ne)|
match(child(np, i), child(ne, i)))}

The set of all pattern matching edges in a graph is denoted with Dpm.

Dependence Produced by Restrictions Imposed by Patterns. The pat-
terns that appear in clauses can impose restrictions to the possible values of the
expressions that can match these patterns. For instance, the patterns used in
the function definition foo(X,X,0,Y) -> Y impose two restrictions that must
be fulfilled in order to return the value Y: (1) The first two arguments must be
equal, and (2) the third argument must be 0.

System Dependence Graphs in Sequential Erlang 495

These restrictions can be represented with an arc from the pattern that im-
poses a restriction to the guards node of the clause; meaning that, in order to
reach the guards, the restrictions of the nodes that point to the guards must be
fulfilled. The set of all restrictions in a graph is denoted with Dr, and it can be
easily computed with function constraints that takes the initial node of a pattern
and the set of repeated variables in the parameters of the clause associated to
the pattern, and it returns all nodes in the pattern that impose restrictions.

constraints(n,RVars) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{n} type(n) = lit ∨
(type(n) = var ∧ elem(pos(n)) ∈ RVars)

{n} ∪
⋃

n′∈children(n)

constraints(n′,RVars) type(n) ∈ {list, tuple}⋃
n′∈children(n)

constraints(n′,RVars) type(n) = pm

∅ otherwise

As an example, there is a data dependence of type Dr between the term 0 and
the guard node in Figure 5.

Dependence Produced in Function Calls. The returned value of a function
call always depends on the function that has been called. In order to represent
this kind of dependence, we add an edge from any node that can represent the
name of the function that is being called to the return node of the function call.
Note that the name of the function is always represented by a node of type atom,
variable or fid. We represent the set containing all dependences of this kind
with Dfc.

As an example, there is a data dependence of type Dfc between the node
containing the literal add and the return node in Figure 4.

We are now in a position to define a notion of data dependence in Erlang.

Definition 3 (Data Dependence). Given the graph representation of an Er-
lang program (N , C) and two nodes n, n′ ∈ N , we say that n′ is data dependent
on n if and only if (n, n′) ∈ (Df ∪ Dpm ∪ Dr ∪ Dfc).

4.3 Input/Output Edges

Input and output edges represent the information flow in function calls. One of
the problems of functional languages such as Erlang is that higher-order calls
can hide the name of the function that is being called. And even if we know the
name of the function, it is not always possible to know the actual clause that
will match the function call.

Example 3. In the following program, it is impossible to statically know what
clause will match the function call g(X) and thus we need to connect the function
call to all possible clauses that could make pattern matching at execution time.

496 J. Silva, S. Tamarit, and C. Tomás

-export(f/1).

f(X) -> g(X).

g(1)-> a;

g(X)-> b.

Determining all possible clauses that can pattern match a call is an undecid-
able problem because a call can depend on the termination of a function call,
and proving termination is undecidable. Therefore, we are facing a fundamental
problem regarding the precision of the graphs. Conceptually, we can assume the
existence of a function clauses(call) that returns all clauses that match a given
call. In practice, some static analysis must be used to approximate the clauses.
In our implementation we use Typer [10] that uses the type inference system of
Dialyzer [11] producing a complete approximation.

Given a graph (N , C) we define the set I of input edges as a set of directed
edges. For each function call graph call, we make graph matching between each
parameter subgraph in the call to each argument subgraph in the clauses be-
longing to clauses(call). There is an edge in I for each pair of nodes matching.
Moreover, there is an edge from the return node of the call to the clausein node
of the clause. As an example, in Figure 4, there are input edges from node with
variable Y to node with variable Z and from the return node to the clause in

node.
Given a graph (N , C) we define the set O of output edges as a set of di-

rected edges. For each function call graph call and each clause belonging to
clauses(call). There is an edge in O for each final node of the clause graph to
the return node of the call. As an example, in Figure 4, there is an output edge
between the two return nodes.

4.4 Summary Edges

Summary edges are used to precisely capture inter-function dependences. Ba-
sically, they say what arguments of a function do influence the result of this
function (see [6] for a deep explanation about summary edges). Given a graph
(N , C), we define the set S of summary edges as a set of directed edges. As in
the imperative paradigm, they can be computed once all the other dependencies
have been computed. We have a summary edge between two nodes n, n′ of the
graph if n belongs to the graph representing (a part of) an argument of a func-
tion call, n′ is the return-node of the function call, and there is an input edge
starting at n. In Figure 4, the summary edges are all bold edges.

We are now in a position to formally introduce the Erlang Dependence Graphs.

Definition 4 (Erlang Dependence Graph). Given an Erlang program P,
its associated Erlang Dependence Graph (EDG) is the directed labelled graph
G = (N , E) where N are the nodes and E = (C,D, I,O,S) are the edges.

Example 4. The EDG corresponding to the expression fun(Z)-> add(Z,1)

end(Y) in line (14) of Figure 1 is shown in Figure 4.

System Dependence Graphs in Sequential Erlang 497

5 Slicing Erlang Specifications

The EDG is a powerful tool to perform different static analysis and it is partic-
ularly useful for program slicing.

In this section we show that our adaptation of the SDG to Erlang keeps the
most important property of the SDG: computing a slice from the EDG has a
cost linear with the size of the EDG. This means that we can compute slices
with a single traversal of the EDG. However, the algorithm used to traverse the
EDG is not the standard one. We only need to make one small modification that
allows us to improve precision.

One important advantage of the EDG with respect to the SDG is that it min-
imizes the granularity level. In the EDG all syntactical constructs are decom-
posed to the maximum (i.e, literals, variables, etc.). Contrarily, in the imperative
paradigm, each node represents a complete line in the source code. Therefore,
we can produce slices that allows us to know what parts of the program affect a
given (sub)expression at any point.

Definition 5. Given an EDG G = (N , E), a slicing criterion for G is a node
n ∈ N .

In practice, the EDG is hidden to the programmer, and the slicing criterion is
selected in the source code. In our implementation this is done by just high-
lighting an expression in the code. This action is automatically translated to a
position that in turn is the identifier of one node in the EDG. This node is the
input of Algorithm 1 that allows us to extract slices from an EDG. Essentially,
Algorithm 1 first collects all nodes that are reachable from the slicing criterion
following backwards all edges in C∪D∪I. And then it collects from these nodes,
all nodes that are reachable following backwards all edges in C ∪D ∪O. In both
phases, the nodes that are reachable following backwards edges in S are also col-
lected, but only if they are connected to a node that belongs to the slice through
an input edge.

The behavior of the algorithm is similar to the standard one except for the
treatment of summary edges. In the SDG, summary edges go from the input
parameters to the output parameters of the function and they are always tra-
versed. Moreover, each of the parameters cannot be decomposed. In contrast,
in Erlang, the arguments of a function can be composite data structures, and
thus, it is possible that only a part of this data structure influences the slicing
criterion. Therefore, in function calls, we only traverse the summary edges if
they come from nodes that are actually needed. The way to know that they are
actually needed is to observe their outgoing input edge and know if the node
pointed does belong to the slice. Of course this can only be known after having
analyzed the function that is called.

Once we have collected the nodes that belong to the slice, it is easy to map the
slice into the source code. For a programP , the exact collection of positions (lines
and columns) that belong to the slice is {pos(n) | n ∈ Slice(P)} where function
Slice implements Algorithm 1. In order to ensure that the final transformed

498 J. Silva, S. Tamarit, and C. Tomás

Algorithm 1. Slicing interprocedural programs

Input: An EDG G = (N , E = (C,D, I,O,S)) and a slicing criterion SC
Output: A collection of nodes Slice ∈ N
return traverse(traverse({SC}, I), O)

function traverse(Slice, X)
repeat

Slice = Slice ∪ {n′ | (n′ → n) ∈ (C ∪ D ∪X) with n ∈ Slice}
∪ {n2 | (n2 → n1) ∈ S ∧ (n2 → n3) ∈ I with n1, n3 ∈ Slice}

until a fix point is reached
return Slice

program is executable, we also have to replace those expressions that are not in
the slice by the (fresh) atom undef and those unused patterns by an anonymous
variable. The result of our algorithm with respect to the program in Figure 1 is
shown in Figure 2.

6 Conclusions and Future Work

This work adapts the SDG to be used with Erlang programs. Based on this
adaptation, we introduce a program slicing technique that precisely produces
slices of interprocedural Erlang programs. This is the first adaptation of the
SDG for a functional language. Even though we implemented it for Erlang, we
think that it can be easily adapted to other functional languages with slight
modifications.

The slices produced by our technique are executable. This means that other
analysis and tools could use our technique as a preprocessing transformation
stage simplifying the initial program and producing a more accurate and reduced
one that will predictably speed up the subsequent transformations. We have
implemented a slicer for Erlang that generates EDGs, this tool is called Slicerl

and it is publicly available at:

http://kaz.dsic.upv.es/slicerl

The current implementation of Slicerl accepts more syntactical constructs that
those described in this paper. It is able to produce slices of its own code. Even
though the use of summary edges together with the algorithm proposed provides
a solution to the interprocedural loss of precision, there is still a loss of precision
that is not faced by our solution. This loss of precision is produced by the
expansion and compression of data structures.

Example 5. Consider the Erlang program at the left and the slicing criterion Y

in line (4):

(1) main() ->
(2) X={1,2},
(3) {Y,Z}=X,
(4) Y.

(1) main() ->
(2) X={1,2},
(3) {Y,_}=X,
(4) Y.

(1) main() ->
(2) X={1,_},
(3) {Y,_}=X,
(4) Y.

http://kaz.dsic.upv.es/slicerl

System Dependence Graphs in Sequential Erlang 499

Our slicing algorithm produces the slice shown in the center. It is not able to
produce the more accurate slice shown at the right because it losses precision.

The loss of precision shown in Example 5 is due to the fact that the EDG
does not provide any mechanism to trace an expression when it is part of a
data structure that is collapsed into a variable and then expanded again. In the
example, there is a dependence between variable Y and variable X in line (3), This
dependence means “The value of Y depends on the value of X”. Unfortunately,
this is only partially true. The real meaning should be “The value of Y depends
on a part of the value of X”. We are currently defining a new dependence called
partial-dependence to solve this problem. A solution to this problem has already
been defined in [16]. Its implementation will be available soon in the webpage of
Slicerl.

References

1. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Programming Language
Design and Implementation (PLDI), pp. 246–256 (1990)

2. Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of
Computing, University of Kent, Canterbury, Kent, UK (2008)

3. Cheda, D., Silva, J., Vidal, G.: Static slicing of rewrite systems. Electron. Notes
Theor. Comput. Sci. 177, 123–136 (2007)

4. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and
Its Use in Optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

5. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1995, pp. 379–392. ACM, New York (1995)

6. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Transactions Programming Languages and Systems 12(1), 26–60 (1990)

7. Korel, B., Laski, J.: Dynamic Program Slicing. Information Processing Let-
ters 29(3), 155–163 (1988)

8. Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the
18th International Conference on Software Engineering, ICSE 1996, pp. 495–505.
IEEE Computer Society, Washington, DC (1996)

9. Liang, D., Harrold, M.J.: Slicing objects using system dependence graphs. In: Pro-
ceedings of the International Conference on Software Maintenance, ICSM 1998,
pp. 358–367. IEEE Computer Society, Washington, DC (1998)

10. Lindahl, T., Sagonas, K.F.: Typer: a type annotator of erlang code. In: Sagonas,
K.F., Armstrong, J. (eds.) Erlang Workshop, pp. 17–25. ACM (2005)

11. Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In:
Bossi, A., Maher, M.J. (eds.) PPDP, pp. 167–178. ACM (2006)

12. Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing based on redex trails. In: Proceed-
ings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM 2004, pp. 123–134. ACM, New York (2004)

13. Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In: Danvy,
O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110,
pp. 409–429. Springer, Heidelberg (1996)

500 J. Silva, S. Tamarit, and C. Tomás

14. Rodrigues, N.F., Barbosa, L.S.: Component identification through program slicing.
In: Proc. of Formal Aspects of Component Software (FACS 2005). Elsevier ENTCS,
pp. 291–304. Elsevier (2005)

15. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3(3), 121–189 (1995)

16. Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M., Kozsik, T.: Impact Analysis
of Erlang Programs Using Behaviour Dependency Graphs. In: Horváth, Z., Plas-
meijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 372–390. Springer,
Heidelberg (2010)

17. Walkinshaw, N., Roper, M., Wood, M., Roper, N.W.M.: The java system depen-
dence graph. In: Third IEEE International Workshop on Source Code Analysis and
Manipulation, p. 5 (2003)

18. Weiser, M.: Program Slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press (1981)

19. Widera, M.: Flow graphs for testing sequential erlang programs. In: Proceedings of
the 2004 ACM SIGPLAN Workshop on Erlang, ERLANG 2004, pp. 48–53. ACM,
New York (2004)

20. Widera, M., Informatik, F.: Concurrent erlang flow graphs. In: Proceedings of the
Erlang/OTP User Conference (2005)

21. Zhao, J.: Slicing aspect-oriented software. In: Proceedings of the 10th International
Workshop on Program Comprehension, IWPC 2002, pp. 251–260. IEEE Computer
Society, Washington, DC (2002)

A Domain-Specific Language

for Scripting Refactorings in Erlang

Huiqing Li and Simon Thompson

School of Computing, University of Kent, UK
{H.Li,S.J.Thompson}@kent.ac.uk

Abstract. Refactoring is the process of changing the design of a pro-
gram without changing its behaviour. Many refactoring tools have been
developed for various programming languages; however, their support
for composite refactorings – refactorings that are composed from a num-
ber of primitive refactorings – is limited. In particular, there is a lack of
powerful and easy-to-use frameworks that allow users to script their own
large-scale refactorings efficiently and effectively.

This paper introduces the domain-specific language framework of
Wrangler – a refactoring and code inspection tool for Erlang programs –
that allows users to script composite refactorings, test them and apply
them on the fly. The composite refactorings are fully integrated into
Wrangler and so can be previewed, applied and ‘undone’ interactively.

Keywords: analysis, API, DSL, Erlang, refactoring, transformation,
Wrangler.

1 Introduction

Refactoring [1] is the process of changing the design of a program without chang-
ing what it does. A variety of refactoring tools have been developed to provide
refactoring support for various programming languages, such as the Refactor-
ing Browser for Smalltalk [2], IntelliJ Idea [3] for Java, ReSharper [3] for C#,
VB.NET, Eclipse [4]’s refactoring support for C++, Java, and much more. For
functional programming languages there is, for example, the HaRe [5] system
for Haskell, and for Erlang the two systems Wrangler [6] and RefactorErl [7].

In their recent study on how programmers refactor in practice [8], Murphy-
Hill et. al. point out that “refactoring has been embraced by a large community
of users, many of whom include refactoring as a constant companion to the de-
velopment process”. However, following the observation that about forty percent
of refactorings performed using a tool occur in batches, they also claim that
existing tools could be improved to support batching refactorings together.

Indeed, it is a common refactoring practice for a set of primitive refactorings
to be applied in sequence in order to achieve a complex refactoring effect, or
for a single primitive refactoring to be applied multiple times across a project
to perform a large-scale refactoring. For example, a refactoring that extracts a
sequence of expressions into a new function might be followed by refactorings

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 501–515, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

502 H. Li and S. Thompson

that rename and re-order the parameters of the new function. This could be
followed by ‘folding’ all instances of the new function body into applications
of the new function, thus eliminating any clones of the original expression. As
another example, in order to turn all ‘camelCase’ names into ‘camel case’ format,
a renaming refactoring will have to be applied to each candidate.

Although composite refactorings are applied very often in practice, tool sup-
port for composite refactorings lags behind. While some refactoring tools, such as
the Eclipse LTK [9], expose an API for users to compose their own refactorings,
these APIs are usually too low-level to be useful to the working programmer.

In this paper, we present a simple, but powerful, Domain Specific Language
(DSL) based framework built into Wrangler, a user-extensible refactoring and
code inspection tool for Erlang programs. The framework allows users to:

– script reusable composite refactorings from the existing refactorings in a
declarative and program independent way;

– have fine control over the execution of each primitive refactoring step;
– control the propagation of failure during execution;
– generate refactoring commands in a lazy and dynamic way.

User-defined composite refactorings can be invoked from the Refactor menu in
the IDE, and so benefit from features such as result preview, undo, etc.

Using the DSL allows us to write refactorings – such as the change of naming
style discussed earlier – in a fraction of the time that would be required to do this
by hand; we therefore make the cost of learning the DSL negligible in comparison
to the benefits that accrue to the user. Moreover, once written these refactorings
can be reused by the author and others.

Not only does the DSL make descriptions more compact, it also allows us to
describe refactorings that are impossible to describe in advance. For example,
suppose that a program element is renamed at some point in the operation; in
the DSL we can refer to it by its old name rather than its new name, which may
only be known once it has been input interactively during the transformation.

While this work is described in the context of Erlang. the underlying ideas
and DSL design are equally applicable to other programming languages, and can
be implemented in a variety of ways (e.g. reflection, meta-programming).

The rest of the paper is organised as follows. Section 2 gives an overview of
Erlang, Wrangler and its template-based API. Section 3 formalises some con-
cepts that we use in describing our work. In Section 4 we explain the rationale
for our approach to designing the DSL, which we then describe in detail in Sec-
tion 5. Examples are given in Section 6, and the implementation is discussed in
Section 7. Sections 8 and 9 conclude after addressing related and future work.

The work reported here is supported by ProTest, EU FP7 project 215868.

2 Erlang, Wrangler and Its Template-Based API

Erlang is a strict, impure, dynamically typed functional programming language
with support for higher-order functions, pattern matching, concurrency, commu-
nication, distribution, fault-tolerance, and dynamic code loading.

A Domain-Specific Language for Scripting Refactorings in Erlang 503

-module (fact).

-export ([fac/1]).

fac(0) -> 1;

fac(N) when N > 0 ->

N * fac(N-1).

Fig. 1. Factorial in Erlang

Composite refactorings

Built-in
refactorings

Wrangler infrastructure

User-defined
refactorings DSL for

composite
refactoringsTemplate, rule-

based API

Fig. 2. The Wrangler Architecture

An Erlang program typically consists of a number of modules, each of which
defines a collection of functions. Only functions exported explicitly through the
export directive may be called from other modules; furthermore, a module may
only export functions that are defined in the module itself.

Calls to functions defined in other modules generally qualify the function
name with the module name: the function foo from the module bar is called as:
bar:foo(...). Figure 1 shows an Erlang module containing a definition of the
factorial function. In this example, fac/1 denotes the function fac with arity of
1. In Erlang, a function name can be defined with different arities, and the same
function name with different arities can represent entirely different functions
computationally.

Wrangler [6], downloadable from https://github.com/RefactoringTools, is
a tool that supports interactive refactoring and “code smell” inspection of Er-
lang programs, and is integrated with (X)Emacs and with Eclipse. Wrangler is
itself implemented in Erlang. Abstract Syntax Trees (ASTs) expressed as Erlang
data structures are used as the internal representation of Erlang programs. The
AST representation is structured in such a way that all the AST nodes have a
uniformed structure, and each node can be attached with various annotations,
such as location, source-code comments, static-semantic information, etc.

One of the problems faced by refactoring tool developers is the fact that the
number of refactorings that they are able to support through the tool is limited,
whereas the number of potential refactorings is unbounded. With Wrangler, this
problem is solved by providing a high-level template- and rule-based API, so
that users can write refactorings that meet their own needs in a concise and
intuitive way without having to understand the underlying AST representation
and other implementation details. A similar strategy is used to solve the problem
of describing composite refactorings, that is, a high-level DSL-based framework
is provided to allow users to script their own composite refactorings. Wrangler’s
architecture is shown in Figure 2.

Wrangler’s Template-based API [10] allows Erlang programmers to express pro-
gram analysis and transformation in concrete Erlang syntax. In Wrangler, a code
template is denoted by an Erlang macro ?T whose only argument is the string
representation of an Erlang code fragment that may contain meta-variables or

https://github.com/RefactoringTools

504 H. Li and S. Thompson

meta-atoms. A meta-variable is a placeholder for a syntax element in the pro-
gram, or a sequence of syntax elements of the same kind; and a meta-atom is a
place holder for a syntax element that can only be an atom, such as the function
name part of a function definition.

Syntactically a meta-variable/atom is an Erlang variable/atom, ending with
the character ‘@’. A meta-variable, or atom, ending with a single ‘@’ represents
a single language element, and matches a single subtree in the AST; a meta-
variable ending with ‘@@’ represents a list meta-variable that matches a sequence
of elements of the same sort. For instance, the template

?T("erlang:spawn(Arg@@)")

matches the application of spawn to an arbitrary number of arguments, and
Args@@ is a placeholder for the sequence of arguments; whereas the template

?T("erlang:spawn(Args@@, Arg1@)")

only matches the applications of spawn to one or more arguments, where Arg1@
is a placeholder for the last argument, and Args@@ is the placeholder for the
remaining leading arguments (if any).

Templates are matched at AST level, that is, the template’s AST is pattern
matched to the program’s AST using structural pattern matching techniques.
If the pattern matching succeeds, the meta-variables/atoms in the template are
bound to AST subtrees, and the context and static semantic information at-
tached to the AST subtrees matched can be retrieved through functions from
the API suite provided by Wrangler.

The Erlang macro ?COLLECT is defined to allow information collection from
nodes that match the template specified and satisfies certain conditions. Calls
to the macro ?COLLECT have the format:

?COLLECT(Template, Collector, Cond)

in which Template is a template representation of the kind of code fragments
of interest; Cond is an Erlang expression that evaluates to either true or false;
and Collector is an Erlang expression which retrieves information from the
current AST node. We call an application of the ?COLLECT macro as a collector.

Information collection is typically accomplished by a tree-walking algorithm.
In Wrangler, various AST traversal strategies have been defined, in the format
of macros, to allow the walking of ASTs in different orders and/or for different
purposes. A tree traversal strategy takes two arguments: the first is a list of
collectors or transformation rules, and the second specifies the scope to which
the analysis, or transformation, is applied to.

For example, the macro ?FULL TD TU encapsulates a tree-walking algorithm
that traverses the AST in a top-down order (TD), visits every node in the AST
(FULL), and returns information collected during the traversal (TU for ‘type uni-
fying’, as opposed to ‘type preserving’). The code in Figure 3 shows how to
collect all the application occurrences of function lists:append/2 in an Er-
lang file. For each application occurrence, its source location is collected. This@

is a predefined meta-variable representing the current node that matches the
template.

The template-based API can be used to retrieve information about a program
during the scripting of composite refactorings, as will be shown in Section 6.

A Domain-Specific Language for Scripting Refactorings in Erlang 505

?FULL_TD_TU([?COLLECT(?T("lists:append(L1@, L2@)"),

api_refac:start_end_loc(_This@), true)], [File])

Fig. 3. Collect the application instances of lists:append/2

As was explained above, more details about the API can be found in [10]; in
particular, it explains how the API can be used to define transformation rules
which are also applied to ASTs by means of a tree-walking algorithm (as above).

3 Terminology

This section introduces terminology that we use in discussing our DSL. Particu-
larly we explain what we mean by success and failure for a composite refactoring.

Definition 1. A precondition is a predicate, possibly with parameters, over a
program or a sub-program that returns either true or false.

Definition 2. A transformation rule maps one program into another.

Definition 3. A primitive refactoring is an elementary behaviour-preserving
source-to-source program transformation that consists of a set of preconditions
C, and a set of transformation rules T. When a primitive refactoring is applied
to a program, all the preconditions are checked before the program is actually
transformed by applying all the transformation rules. We say a primitive refac-
toring fails if the conjunction of the set of preconditions returns false; otherwise
we say the primitive refactoring succeeds.

Definition 4. Atomic composition Given a sequence of refactorings
R1, ..., Rn, n ≥ 1, the atomic composition of R1, ..., Rn, denoted as R1 ◦R2 ◦
· · · ◦ Rn, creates a new refactoring consisting of the sequential application of
refactorings from R1 to Rn.

If any of the applications of Ri, 1 ≤ i ≤ n fails, then the whole refactoring
fails and the original program is returned unchanged. The composite refactoring
succeeds if all the applications Ri for 1 ≤ i ≤ n succeeds, and the result program
is the program returned after applying Rn.

Definition 5. Non-atomic composition Given a sequence of refactorings
R1, ..., Rn, n ≥ 1, the non-atomic composition of R1, ..., Rn, denoted as R1 $
R2 $ · · · $ Rn, creates a new refactoring consisting of the sequential application
of refactorings from R1 to Rn.

If refactoring Ri fails, the execution of Ri+1 continues, on the last succeed-
ing application (or the original program if none has succeeded so far). A failed
refactoring does not change the status of the program. The program returned by
applying Rn is the final result of the application of the composite refactoring. As
a convention, we say that a non-atomic composite refactoring always succeeds.

506 H. Li and S. Thompson

Fig. 4. Execution of composite refactorings

Figure 4 illustrates some execution scenarios of both atomic and non-atomic
composite refactorings. As shown in c) and d), an atomic composite refactoring
can be part of a non-atomic composite refactoring, and vice versa; this feature
allows the tool to handle more complex refactoring scenarios.

In practice, the choice of atomic or non-atomic composition depends on the
nature of the refactoring to be performed. Atomic composition is necessary if
the failure of a constituent refactoring could lead to an inconsistent or incorrect
program, whereas a non-atomic composition can be used when the failure of a
constituent refactoring does not affect the consistency of the program, and the
final program returned is still acceptable from the user’s point of view.

For example, it is reasonable to make a non-atomic composition of a set of
renaming refactorings that turn ‘camelCase’ function names into ‘camel case’
format; even if one of these fails, perhaps because the new name is already used,
the program still works as before. Moreover, the user can manually make the
changes to the remaining ‘camel case’ identifiers; if 90% of the work has been
done by the script, 90% of user effort is correspondingly saved.

4 Rationale

Here we discuss the rationale for the design of the DSL. While it is possible to
describe composite refactorings manually; that approach is limited:

– When the number of primitive refactoring steps involved is large, enumerating
all the primitive refactoring commands could be tedious and error prone.

– The static composition of refactorings does not support generation of refactor-
ing commands that are program-dependent or refactoring scenario dependent,
or where a subsequent refactoring command is somehow dependent on the re-
sults of an earlier application.

– Some refactorings refer to program entities by source location instead of name,
as this information may be extracted from cursor position in an editor or IDE,
say. Tracking of locations is again tedious and error prone; furthermore, the

A Domain-Specific Language for Scripting Refactorings in Erlang 507

location of a program entity might be changed after a number of refactoring
steps, and in that case locations become untrackable.

– Even though some refactorings refer to program entities by name (rather than
location), the name of a program entity could also be changed after a number of
refactoring steps, which makes the tracking of entity names hard or sometimes
impossible, particularly when non-atomic composite refactorings are involved.

We resolve these problems in a number of ways:

– Each primitive refactoring has been extended with a refactoring command
generator that can be used to generate refactoring commands in batch mode.

– A command generator can generate commands lazily, i.e., a refactoring com-
mand is generated only as it is to be applied, so we can make sure that the
information gathered by the generator always reflects the latest status, includ-
ing source locations, of the program under refactoring.

– Wrangler always allows a program entity to be referenced using its original
name, as it performs name tracking behind the scenes.

– Finally, and most importantly, we provide a small domain-specific language
(DSL) to allow composition of refactorings in a compact and intuitive way.
The DSL allows users to have a fine control over the generation of refactoring
commands and the interaction between the user and the refactoring engine so
as to allow decision making during the execution of the composite refactoring.

Our work defines a small DSL, rather than a (fluent) API, since it supports a
variety of ways of combining refactorings, including arbitrary nesting of refac-
toring descriptions within others, rather than offering a variety of parameters on
a fixed set of API functions.

Existing approaches to composite refactoring tend to focus on the derivation
of a combined precondition for a composite refactoring, so that the entire pre-
condition of the composite refactoring can be checked on the initial program
before performing any transformation [11,12]. The ostensible rationale for this
is to give improved performance of the refactoring engine. However, given the
usual way in which refactoring tools are used in practice – where the time to
decide on the appropriate refactoring to apply will outweigh the execution time
– we do not see that the efficiency gains that this approach might give are of
primary importance to the user.

In contrast, our aim is to increase the usability and applicability of the refac-
toring tool, by expanding the way in which refactorings can be put together.
Our work does not try to carry out precondition derivation, instead each prim-
itive refactoring is executed in the same way as it is invoked individually, i.e.,
precondition checking followed by program transformation. While it may be less
efficient when an atomic composite refactoring fails during the execution, it does
have its advantages in expressibility.

5 A Framework for Scripting Composite Refactorings

In this section we give a detailed account of Wrangler’s support for composite
refactorings, treating each aspect of the DSL in turn.

508 H. Li and S. Thompson

5.1 Refactoring Command Generators

For each primitive refactoring we have introduced a corresponding command
generator of the same name. The interface of a command generator is enriched in
such a way that it accepts not only concrete values as a primitive refactoring does,
but also structures that specify the constraints that a parameter should meet
or structures that specify how the value for a parameter should be generated.
In general, generators will have different type signatures, corresponding to the
different signatures of their associated refactorings.

When applied to an Erlang program, a command generator searches the AST
representation of the program for refactoring candidates according to the con-
straints on arguments. A command generator can also be instructed to run lazily
or strictly; if applied strictly, it returns the complete list of primitive refactor-
ing commands that can be generated in one go; otherwise, it returns a single
refactoring command together with another command generator wrapped in a
function closure, or an empty list if no more commands can be generated. Lazy
refactoring command generation is especially useful when the primitive refac-
toring command refers some program entities by locations, or the effect of a
previous refactoring could affect the refactorings that follow; on the other hand,
strict refactoring command generation is useful for testing a command generator,
as it gives the user an overall idea of the refactoring commands to be generated.

Each primitive refactoring command generated is a tuple in the format:
{refactoring, RefacName, Args}, where RefacName is the name of the refac-
toring command, and Args is the list of the arguments for that refactoring
command. A refactoring command generator is also syntactically represented
as a three-element tuple, but with a different tag, in the format of {refac ,

RefacName, Args}, where RefacName is the name of the command generator,
and Args are the arguments that are specified by the user and supplied to the
command generator. Both refactoring and refac are Erlang atoms.

Taking the ‘rename function’ refactoring as an example, the type specification
of the refactoring command is shown in Figure 5 (a), which should be clear
enough to explain itself. The type specification of the command generator is
given in Figure 5 (b). As it shows, a command generator accepts not only actual
values, but also function closures that allow values to be generated by analysing
the code to be refactored .

– The first parameter of the generator accepts either a file name, or a condition
that a file (name) should satisfy to be refactored. In the latter case, Wrangler
searches the program for files that meet the condition specified, and only those
files are further analysed to generate values for the remaining parameters.

– The second parameter accepts either a function name tupled with its arity,
or a condition that a function should meet in order to be refactored. In the
latter case, every function in an Erlang file will be checked, and those functions
that do not meet the condition are filtered out, and a primitive refactoring
command is generated for each function that meets the condition.

– The third argument specifies how the new function name should be generated.
It could be a fixed function name, a generator function that generates the

A Domain-Specific Language for Scripting Refactorings in Erlang 509

-spec rename_fun(File::filename(), FunNameArity::{atom(), integer()},

NewName::atom()) -> ok | {error, Reason::string()}.

(a) type spec of the ‘rename function’ refactoring.

-spec rename_fun(File::filename() | fun((filename()) -> boolean()),

FunNameArity::{atom(), integer()}

| fun(({atom(),integer()}) -> boolean()),

NewName::atom()

|{generator, fun(({filename(), {atom(), integer()}})

-> atom())}

|{user_input,fun(({filename(), {atom(), integer()}})

-> string())},

Lazy :: boolean())

-> [{refactoring, rename_fun, Args::[term()]}] |

{{refactoring, rename_fun, Args::[term()]}, function()}.

(b) type spec of the ‘rename function’ command generator.

{refac_, rename_fun, [fun(_File)-> true end,

fun({FunName, _Arity}) -> is_camelCase(FunName) end,

{generator, fun({_File,{FunName,_Arity}}) ->

camelCase_to_camel_case(FunName)

end}, false]}

(c) An instance of the ‘rename function’ command generator.

Fig. 5. Primitive refactoring command vs. refactoring command generator

new function based on the previous parameter values, or a name that will be
supplied by the user before the execution of the refactoring, in which case the
function closure is used to generate the prompt string that will be shown to
the user when prompting for input.

– Finally, the last parameter allows the user to choose whether to generate the
commands lazily or not.

The example shown in Figure 5 (c) illustrates the script for generating refactoring
commands that rename all functions in a program whose name is in camelCase

format to camel case format. As the condition for the first parameter always
returns true, every file in the program should be checked. The second argument
checks if the function name is in camelCase format using the utility function
is camelCase, and a refactoring command is generated for each function whose
name is in camelCase format. The new function name is generated by applying
the utility function camelCase to camel case to the old function name. In this
example, we choose to generate the refactoring commands in a strict way.

For some command generators, it is also possible to specify the order in which
the functions in an Erlang file are visited. By default, functions are visited as
they occur in the file, but it is also possible for them to be visited according to
the function callgraph in either top-down or bottom-up order.

510 H. Li and S. Thompson

RefacName ::= rename fun | rename mod | rename var | new fun | gen fun | ...
PR ::= {refactoring, RefacName, Args}
CR ::= PR

| {interactive, Qualifier, [PRs]}
| {repeat interactive, Qualifier, [PRs]}
| {if then, fun()→ Cond end, CR}
| {while, fun()→ Cond end, Qualifier, CR}
| {Qualifier, [CRs]}

PRs ::= PR | PRs, PR

CRs ::= CR | CRs, CR

Qualifier ::= atomic | non atomic

Args ::= ...A list of Erlang terms...

Cond ::= ...An Erlang expression that evaluates to a boolean value...

Fig. 6. The DSL for scripting composite refactorings

5.2 The Domain-Specific Language

To allow fine control over the generation of refactoring commands and the way
a refactoring command to be run, we have defined a small language for script-
ing composite refactorings. The DSL, as shown in Figure 6, is defined in Erlang
syntax, using tuples and atoms. In the definition, PR denotes a primitive refac-
toring, and CR denotes a composite refactoring. We explain the definition of
CR in more detail now, and some examples are given in Section 6.

– A primitive refactoring is, by definition, an atomic composite refactoring.

– {interactive, Qualifier, [PRs]} represents a list of primitive refactorings
that to be executed in an interactive way, that is, before the execution of ev-
ery primitive refactoring, Wrangler asks the user for confirmation that he/she
really wants that refactoring to be applied. The confirmation question is gen-
erated automatically by Wrangler.

– {repeat interative, Qualifier, [PRs]} also represents a list of primitive refac-
torings to be executed in an interactive way, but different from the previous
one, it allows user to repeatedly apply one refactoring, with different param-
eters supplied, multiple times. The user-interaction is carried out before each
run of a primitive refactoring.

– {if then, fun() → Cond end, CR} represents the conditional application of
CR, i.e. CR is applied only if Cond, which is an Erlang expression, evaluates
to true. We wrap Cond in an Erlang function closure to delay its evaluation
until it is needed.

– {while, fun() → Cond end, Qualifier, CR} allows CR, which is gener-
ated dynamically, to be continually applied until Cond evaluates to false.
Qualifier specifies whether the refactoring is to be applied atomically or not.

A Domain-Specific Language for Scripting Refactorings in Erlang 511

– {Qualifier, [CRs]} represents the composition of a list of composite refac-
torings into a new composite refactoring, where the qualifier states whether
the resulting refactoring is applied atomically or not.

5.3 Tracking of Entity Names

In a composite refactoring, it is possible that a refactoring needs to refer to a
program entity that might have be renamed by previous refactoring steps. Track-
ing the change of names statically is problematic given the dynamic nature of a
refactoring process.Wrangler allows users to refer to a program entity through its
initial name, i.e. the name of the entity before the refactoring process is started.
For this purpose, we have defined a macro ?current. An entity name, tagged
with its category, wrapped in a ?current macro tells Wrangler that this en-
tity might have been renamed, therefore Wrangler needs to search its renaming
history, and replaces the macro application with the entity’s latest name. If no
renaming history can be found for that entity, its original name is used.

6 Examples

In this section, we demonstrate how the DSL, together withWrangler’s template-
based API, can be used to script large-scale refactorings in practice. The examples
are written in a deliberately verbose way for clarity. In practice, a collection of
pre-defined macros can be used to write the script more concisely.

Example 1. Batch clone elimination Wrangler’s similar code detection function-
ality [13] is able to detect code clones in an Erlang program, and help with the
clone elimination process. For each set of code fragments that are clones to each
other, Wrangler generates a function, named as new fun, which represents the
least general common abstraction of the set of clones; the application of this
function can be then used to replace those cloned code fragments, therefore to
eliminate code duplication. The general procedure to remove such a clone in
Wrangler is to copy and paste the function new fun into a module, then carry
out a sequence of refactoring steps as follows:

– Rename the function to some name that reflects its meaning.
– Rename the variables if necessary, especially those variable names in the for-

mat of NewVari , which are generated by the clone detector.
– Swap the order of parameters if necessary.
– Export this function if the cloned code fragments are from multiple modules.
– For each module that contains a cloned code fragment, apply the ‘fold ex-

pression against function definition’ refactoring to replace the cloned code
fragments in that module with the application of the new function.

The above clone elimination process can be scripted as a composite refactoring
as shown in Figure 7. The function takes four parameters as input:

– the name of the file to which the new function belongs,

512 H. Li and S. Thompson

1 batch_clone_removal(File, Fun, Arity, ModNames) ->

2 ModName = list_to_atom(filename:basename(File, ".erl")),

3 {atomic,

4 [{interactive, atomic,

5 {refac_, rename_fun, [File, {Fun, Arity},

7 {user_input, fun(_)->"New name:" end},

8 false]}},

9 {atomic, {refac_, rename_var,

10 [File, current_fa({ModName,Fun,Arity}),

11 fun(V) -> lists:prefix("NewVar", V) end,

12 {user_input,

13 fun({_, _MFA, V})->io_lib:format("Rename ~p to:", [V]) end},

14 true]}},

15 {repeat_interactive, atomic,

16 {refac_, swap_args, [File, current_fa({ModName, Fun, Arity}),

17 {user_input, fun(_, _)->"Index 1: " end},

18 {user_input, fun(_, _)->"Index 2: " end},

19 false]}},

20 {if_then, [ModName] /= ModNames,

21 {atomic, {refac_, add_to_export,

22 [File, current_fa({ModName, Fun, Arity}), false]}}},

23 {non_atomic, {refac, fold_expr,

24 [{file, fun(FileName)->M=filename:basename(FileName, ".erl"),

25 lists:member(M, ModNames)

26 end}, ?current({mfa, {ModName, Fun, Arity}}),1, false]}}

27]}.

29 current_fa({Mod, Fun, Arity}) ->

30 {M, F, A} = ?current({mfa, {Mod, Fun, Arity}), {F, A}.

Fig. 7. Batch Clone Elimination

– the name of the new function and its arity,
– and the name of the modules that contain one or more of cloned code frag-

ments, which is available from the clone report generated by the clone detector.

We explain the script in detail now.

– Lines 4-8. This lets the user decide whether to rename the function. The new
name is provided by the user if the function is to be renamed.

– Lines 9-14. This section generates a sequence of ‘rename variable’ refactor-
ings to form an atomic composite refactoring. Making this sequence of ‘rename
variable’ refactorings atomic means that we expect all the renamings to suc-
ceed, however, in this particular scenario, it is also acceptable to make it
non-atomic, which means that we allow a constituent renaming refactoring to
fail, and if that happens the user could redo the renaming of that variable
after the whole clone elimination process has been finished.
The second argument of the generator specifies the function to be searched. An
utility function current fa, as defined between lines 29-30, is used to ensure

A Domain-Specific Language for Scripting Refactorings in Erlang 513

tuple_args(Prog) ->

Pars = ?STOP_TD_TU(

[?COLLECT(?T("f@(As1@@, Line, Col, As2@@) when G@@ -> B@@."),

{api_refac:fun_def_info(f@),length(As1@@)+1}, true)], Prog),

{non_atomic, lists:append(

[{refactoring,tuple_args,[MFA,Index,Index+1]}||{MFA, Index}<-Pars])}.

Fig. 8. Batch tupling of function arguments

the latest name is referenced. The function on line 11 gives the searching
criterion for the variables to be renamed, and in this case it requires that
all the variables with a name starting with “NewVar” should be renamed.
New variable names are provided by the user as shown by the third argument.
Refactoring commands are generated lazily, as indicated by the last argument,
to ensure that the variables to be renamed are correctly identified.

– Lines 15-19. The code here allows re-ordering of function parameters. The
user can choose to re-order as many times as necessary, or not at all.

– Lines 20-22. This generates a refactoring that adds the new function to the
export of the module only if the clones are from multiple modules.

– Lines 23-26. Finally, this code generates a list of ‘fold expression against func-
tion definition’ refactoring commands, one for each module listed in ModNames.
We allow these refactorings to be composed in a non atomic way so that the
refactoring process will continue if a refactoring fails for some reason.

Example 2. Batch tupling of function arguments The example in Figure 8 shows
how Wrangler’s template-based API can help to create composite refactorings.
This example searches an Erlang program for single-clause function definitions
whose parameters include Line and Col next to each other, and generates a
‘tuple arguments’ refactoring command for each candidate found to put Line

and Col into a tuple. Prog specifies the scope of the project, i.e, the places to
search for Erlang files.

7 Implementation

Wrangler has been extended with another layer to support scripted composite
refactorings, and this includes a number of extensions as follows.

– An interpreter of the DSL language. The interpreter takes a composite refac-
toring script as input, and generates refactoring commands that to be executed
by the refactoring engine. Only one refactoring command is passed to the refac-
torer engine a time. Depending on the result returned and the context, the
interpreter could continue to generate another refactoring command or ask for
a rollback of the program to a particular point if an atomic refactoring fails.

– Support for rolling back a program to the starting point of an atomic composi-
tion when it fails. This is an extension of Wrangler’s original undo mechanism.

– A command generator for each primary refactoring as discussed in Section 5.1.

514 H. Li and S. Thompson

– A mechanism for recording each primitive refactoring command executed.
Wrangler records each primitive refactoring command executed and the result
returned during the execution of a composite refactoring. This information
provides valuable insights into the refactoring commands generated/executed,
as well as the reason of failure if some refactorings fail during the execution.

– A generic composite refactoring behaviour. A behaviour in Erlang is an appli-
cation framework that is parameterized by a callback module. The behaviour
solves the generic parts of the problem, while the callback module solves the
specific parts. In this spirit, a behaviour, named gen composite refac, has been
implemented especially for composite refactorings. Two callback functions are
specified by the behaviour. To implement a composite refactoring, the user
needs to create a callback module, implement and export the callback func-
tions. Once the callback module is compiled, the refactoring can be invoked
and tested from the IDE. The result can be previewed before being commit-
ted/aborted. A composite refactoring can also be undone.

8 Related Work

The idea of composite refactorings was proposed by Opdyke [14], and
investigated by Roberts [15]. This work focused on the derivation of a com-
posite refactoring’s preconditions from the pre- and postconditions of its con-
stituent refactorings.This is non-trivial because when performing refactorings
R1, R2,Rn sequentially, performing Ri may establish, or invalidate, the pre-
conditions of Rj , j > i. Ó Cinnéide [12] extends Roberts’ approach in vari-
ous ways including static manual derivation of pre- and postconditions for a
composite refactoring.

ContTraCT is an experimental refactoring editor for Java developed by G.
Kniesel, et. al. [11]. It allows composition of larger refactorings from existing
ones. The authors identify two basic composition operations: AND- and OR-
sequence, which correspond to the atomic and non-atomic composition described
in this paper. A formal model based on the notion of backward transformation
description is used to derive the preconditions of an AND-sequence.

While the above approaches could potentially detect a composition that is
deemed to fail earlier, they suffer the same limitations because of the static
nature of the composition. Apart from that, the derivation of preconditions and
postconditions requires preconditions to be atomic and canonical. In contrast,
our approach might be less efficient when a composite refactoring fails because
of the conflict of pre-conditions, but it allows dynamic and lazy generations
of refactoring commands, dynamic generation of parameter values, conditional
composition of refactorings, rich interaction between users and the refactoring
engine, etc. Our approach is also less restrictive on the design of underlying
refactoring engine.

The refactoring API – described in a companion paper [10] – uses the gen-
eral style of ‘strategic programming’ in the style of Stratego [16]. More detailed
references to related work in that area are to be found in [10].

A Domain-Specific Language for Scripting Refactorings in Erlang 515

9 Conclusions and Future Work

Support for scripting composite refactorings in a high-level way is one of those
features that are desired by users, but not supported by most serious refactoring
tools. In this paper, we present Wrangler’s DSL and API[10] based approach for
scripting composite refactorings. We believe that being able to allow users to
compose their own refactorings is the crucial step towards solving the imbalance
between the limited number of refactorings supported by a tool and the unlimited
possible refactorings in practice.

Our future work goes in a number of directions. First, we would like to carry
out case studies to see how the support for user-defined refactorings is perceived
by users, and whether this changes the way they refactor their code; second,
we will add more composite refactorings to Wrangler, but also make Wrangler
a hub for users to contribute and share their refactoring scripts; and finally, we
plan to explore the application of the approach to HaRe, which is a refactoring
tool developed by the authors for Haskell programs.

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

2. Roberts, D., Brant, J., Johnson, R.E.: A Refactoring Tool for Smalltalk. In: Theory
and Practice of Object Systems, pp. 253–263 (1997)

3. JetBrains: JetBrains, http://www.jetbrains.com
4. Eclipse:: an open development platform, http://www.eclipse.org/
5. Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer, HaRe, and its API.

Electr. Notes Theor. Comput. Sci. 141(4), 29–34 (2005)
6. Li, H., et al.: Refactoring with Wrangler, updated. In: ACM SIGPLAN Erlang

Workshop 2008, Victoria, British Columbia, Canada (2008)
7. Lövei, L., et al.: Introducing Records by Refactoring. In: Erlang 2007: Proceedings

of the 2007 SIGPLAN Workshop on Erlang Workshop. ACM (2007)
8. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.

IEEE Transactions on Software Engineering 99 (2011)
9. Frenzel, L.: The Language Toolkit: An API for Automated Refactorings in Eclipse-

based IDEs. Eclipse Magazine 5 (2006)
10. Li, H., Thompson, S.: A User-extensible Refactoring Tool for Erlang Programs.

Technical Report 4-11, School of Computing, Univ. of Kent, UK (2011)
11. Kniesel, G., Koch, H.: Static composition of refactorings. Sci. Comput. Program.

52 (August 2004)
12. Cinnéide, M.O.: Automated Application of Design Patterns: A Refactoring Ap-

proach. PhD thesis, University of Dublin, Trinity College (2000)
13. Li, H., Thompson, S.: Incremental Clone Detection and Elimination for Erlang

Programs. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603,
pp. 356–370. Springer, Heidelberg (2011)

14. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, Univ. of
Illinois (1992)

15. Roberts, D.B.: Practical Analysis for Refactoring. PhD thesis, Univ. of Illinois (1999)
16. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A

language and toolset for program transformation. Sci. Comput. Program. 72 (2008)

http://www.jetbrains.com
http://www.eclipse.org/

Author Index

Abadi, Aharon 471
Albert, Elvira 130
Al-Nayeem, Abdullah 59
Alrajeh, Dalal 377
AlTurki, Musab 78
Apel, Sven 255

Bae, Kyungmin 59
Barr, Earl T. 316
Bauer, Sebastian S. 43
Becce, Giovanni 347
Bernhart, Mario 301
Bird, Christian 316
Botella, Julien 439
Bradfield, Julian 194
Bruni, Roberto 240
Bubel, Richard 130

Calin, Georgel 362
Chechik, Marsha 224, 285
Cohen, Myra B. 270
Corradini, Andrea 240
Czarnecki, Krzysztof 163

Dadeau, Frédéric 439
David, Alexandre 43
de Mol, Maarten 209
Devanbu, Premkumar 316
Di Ruscio, Davide 26
Diskin, Zinovy 163
du Bousquet, Lydie 439
Dwyer, Matthew B. 270

Eckhardt, Jonas 78
Ehrig, Hartmut 178
Ermel, Claudia 178
Erwig, Martin 394
Ettinger, Ran 471

Famelis, Michalis 224
Feldman, Yishai A. 471
Fiadeiro, José Luiz 63

Gadducci, Fabio 240
Gay, Gregory 409

Genaim, Samir 130
German, Daniel M. 316
Ghedira, Khaled 455
Gopinath, Rahul 394
Grechenig, Thomas 301
Guimarães, Mário Lúıs 332
Guldstrand Larsen, Kim 43

Hähnle, Reiner 130
Hatvani, Leo 115
Heimdahl, Mats 409
Hennicker, Rolf 43
Hermann, Frank 178
Hindle, Abram 316
Huber, Markus 301
Hunt, James J. 209

Kahlon, Vineet 99
Kessentini, Marouane 455
Kramer, Jeff 377
Kuhlemann, Martin 255

Lamprecht, Anna-Lena 94
Ledru, Yves 439
Legay, Axel 43
Li, Huiqing 501
Lluch Lafuente, Alberto 240
Long, Zhenyue 362
Lopes, Antónia 63

Maggi, Fabrizio Maria 146
Mahouachi, Rim 455
Maibaum, Tom 163
Majumdar, Rupak 362
Malavolta, Ivano 26
Mariani, Leonardo 347
Mauczka, Andreas 301
Meseguer, José 59, 78
Meyer, Roland 362
Montali, Marco 146
Muccini, Henry 26
Mühlbauer, Tobias 78

Naujokat, Stefan 94
Nyman, Ulrik 43

518 Author Index

Ölveczky, Peter Csaba 59
Orejas, Fernando 178

Pelliccione, Patrizio 26
Pérez Lamancha, Beatriz 425
Pettersson, Paul 115
Pierantonio, Alfonso 26
Polo Usaola, Macario 425

Reales Mateo, Pedro 425
Rensink, Arend 209
Riganelli, Oliviero 347
Rigby, Peter C. 316
Rito Silva, António 332
Román-Dı́ez, Guillermo 130
Rubin, Julia 285
Russo, Alessandra 377

Saake, Gunter 255
Salay, Rick 224
Santoro, Mauro 347
Schaefer, Ina 255
Schanes, Christian 301

Schramm, Wolfgang 301
Seceleanu, Cristina 115
Shi, Jiangfan 270
Silva, Josep 486
Staats, Matt 409
Steffen, Bernhard 94
Stevens, Perdita 194

Tamarit, Salvador 486
Thompson, Simon 501
Thüm, Thomas 255
Tomás, César 486
Triki, Taha 439

Uchitel, Sebastian 377

van der Aalst, Wil M.P. 1, 146
Vandin, Andrea 240

W ↪asowski, Andrzej 43
Whalen, Michael 409
Wirsing, Martin 78

	Title

	Foreword
	Preface
	Organization
	Table of Contents
	Invited Talk
	Distributed Process Discovery
and Conformance Checking
	Introduction
	Distributed Process Mining: An Overview
	Process Discovery and Conformance Checking
	Distributing Event Logs and Process Models

	Representation of Event Logs and Process Models
	Multisets
	Event Logs
	Procedural Models
	Declarative Models

	Measuring Conformance
	Example: Horizontal Distribution Using Passages
	Passages in Graphs
	Distributed Conformance Checking Using Passages
	Distributed Process Discovery Using Passages

	Conclusion
	References

	Software Architecture and Components
	Model-Driven Techniques to Enhance Architectural
Languages Interoperability
	Introduction
	Interoperability via Pivot Languages
	The Extension Mechanisms
	Extension Operators
	Identification of transformation paths

	Case Study and Discussion
	Putting the approach in practice
	Discussion

	Related work
	Conclusion and Future Work
	References

	Moving from Specifications to Contracts
in Component-Based Design
	Introduction
	Specification Theories
	Building a Contract Framework
	Contracts and Their Semantics
	Refinement of Contracts
	Composition of Contracts

	Modal Contracts
	Conclusion, Related Work, and Future Work
	References

	The SynchAADL2Maude Tool

	Introduction
	Background: Real-Time Maude and Synchronous AADL
	Using the SynchAADL2Maude Tool
	References

	Services
	Consistency of Service Composition

	Introduction
	Asynchronous Relational Nets
	Trace-Based Models of Behaviour
	Asynchronous Relational Nets

	Consistency
	Progress-Enabled ARNs
	Safe ARNs

	Interface Specifications for Safe ARNs
	Interfaces and Orchestrations
	A Logic of Safety Properties
	Ensuring Delivery/Publication-Enabledness

	Concluding Remarks
	References

	Stable Availability under Denial of Service
Attacks through Formal Patterns
	Introduction
	Prerequisites
	Rewriting Logic and Maude
	Statistical Model Checking of Quantitative Properties
	Stable Availability

	Formal Patterns
	The Meta-object Pattern
	The ASV DoS Protection Meta-object Pattern
	The Server Replicator Meta-object

	Stable Availability under Denial of Service Attacks through Formal Patterns
	ASV+SR Meta-object Composition Pattern
	Statistical Model Checking Analysis

	Related Work and Concluding Remarks
	References

	Loose Programming with PROPHETS

	Introduction
	Modeling the Domain
	Process Synthesis
	Conclusion
	References

	Verification and Monitoring
	Schedule Insensitivity Reduction

	Introduction
	Motivation
	System Model
	Schedule Insensitivity Reduction
	Deducing Schedule Insensitivity
	Enhancing Symbolic Model Checking via Schedule Insensitivity
	Implementation and Experimental Results
	References

	Adaptive Task Automata: A Framework
for Verifying Adaptive Embedded Systems
	Introduction
	Preliminaries: Task Automata
	Adaptive Task Automata
	Encoding of the Adaptive Task Automata
	Encoding the Predicate sched()
	Encoding the Fixed Priority Scheduler
	Variable Bounding

	Examples
	Admission Control - A Synthetic Example
	Smartphone Task Management Example

	Conclusion
	References

	Verified Resource Guarantees
for Heap Manipulating Programs
	Introduction
	The Framework: Verification of Resource Guarantees
	Inference of Resource Guarantees
	Verification by Symbolic Execution

	Upper Bounds for Heap Manipulating Programs
	Path-Length Analysis
	Cyclicity Analysis
	Sharing Analysis

	Verification of Path-Length Assertions
	Heap Representation
	Predicates for Structural Heap Properties
	Field Update Independence
	Path-Length Axiomatization

	Experimental Results
	Conclusions and Related Work
	References

	An Operational Decision Support Framework
for Monitoring Business Constraints
	Introduction
	Declare
	Mobucon Architecture
	General Architecture
	Mobucon Skeleton
	Exchanged Data and Business Constraints States
	Mobucon Clients

	Mobucon LTL
	Modeling and Implementation
	Approach

	Mobucon EC
	Modeling
	Reasoner Implementation

	Case Study
	Discussion and Conclusion
	References

	Intermodelling and Model Transformations
	Intermodeling, Queries, and Kleisli Categories

	Introduction
	Running Example
	Intermodeling and Kleisli Mappings
	From Informal to Formal Mappings
	Model Merging: A Sample Multi-mapping Scenario
	The Kleisli Construction

	A Sketch of the Formal Framework
	Model Translation, Traceability and Fibrations
	Query Mechanism via Monads and Fibrations

	Related Work
	Conclusion
	References

	Concurrent Model Synchronization
with Conflict Resolution Based on Triple Graph Grammars
	Introduction
	Concurrent Model Synchronization Framework
	Basic Model Synchronization Framework
	Semi-automated Conflict Detection and Resolution
	Concurrent Model Synchronization with Conflict Resolution
	Correctness and Compatibility
	Related Work
	Conclusion and Future Work
	References

	Recursive Checkonly QVT-R Transformations
with General when and where Clauses via the Modal Mu Calculus
	Introduction
	Background
	QVT-R
	Modal Mu Calculus

	Connecting QVT-R and Modal Mu Calculus
	The Transition System
	The Mu Calculus Formula
	Correctness of the Translation w.r.t. the Original QVT-R Game
	Top Relation Challenges

	Extending the QVT-R Game
	Complex when and where Clauses
	Recursive Transformations

	Examples and Consequences
	Expressiveness

	Conclusion
	References

	Graph Transforming Java Data

	Introduction
	Related Work
	Roadmap

	Graphs and Annotations
	Graphs and Type Graphs
	Definition of Node Types
	Definition of Edge Types
	Definition of Attributes
	Definition of Manipulation Methods
	Invasiveness

	Transformation Language
	Rule Structure
	Match Blocks
	Update Blocks
	Sequence Blocks
	Semantics

	Experience and Evaluation
	Using the rdt in JamaicaVM
	Evaluation
	Future Work

	References

	Modelling and Adaptation
	Language Independent Refinement
Using Partial Modeling
	Introduction
	Adding Partiality to Modeling Languages
	Combining and Applying Partiality Types
	Formalizing Partiality
	Tool Support and Preliminary Evaluation
	Related Work
	Conclusion and Future Work
	References

	A Conceptual Framework for Adaptation

	Introduction
	When is a Software Component Adaptive?
	Architectures, Patterns and Reference Models for Adaptivity
	Adaptivity in Various Computational Paradigms
	A Formal Model for our Framework
	Conclusion and Future Developments
	References

	Product Lines and Feature-Oriented Programming
	Applying Design by Contract
to Feature-Oriented Programming
	Introduction
	Background
	Contracts for Feature-Oriented Programming
	Refinement of Invariants
	Comparison
	Evaluation
	Related Work
	Conclusion
	References

	Integration Testing of Software Product Lines
Using Compositional Symbolic Execution
	Introduction
	Background
	Symbolic Execution
	Symbolic Method Summary

	Dependence-Driven Compositional Analysis
	Relating SPL Models to Implementations
	Calculating Feature Interactions
	Composing Feature Summaries
	Complexity and Optimization of Summary Composition

	Case Study
	Objects of Analysis
	Method and Metrics
	Results

	Conclusions and Future Work
	References

	Combining Related Products into Product Lines

	Introduction
	Preliminaries
	Model Merging
	Product Line Refactoring
	Correctness of Product Line Refactoring
	Related Work
	Conclusion and Future Work
	References

	Development Process
	Tracing Your Maintenance Work –
A Cross-Project Validation of an Automated Classification Dictionary for Commit Messages
	Introduction
	Automated Classification Approach
	Classification Rules
	Categorization Tool - Subcat

	Generation of a Cross-Project Valid Dictionary
	Criteria and Selection of Open Source Projects
	Populating the Dictionary

	Evaluation of the Dictionary
	Inter-rater Agreement
	Conducting the Evaluation
	Interpretation of the Evaluation

	Related Work
	Conclusion
	Discussion
	Future Work

	References

	Cohesive and Isolated Development with Branches

	Introduction
	Theory
	Methodology
	Evaluation
	Rapid DVC Adoption
	Cohesion
	Coupling and Interruptions
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

	Making Software Integration Really Continuous

	Introduction
	Problem
	Solution
	Tracking Changes
	Background Merging
	Conflict Detection
	Reporting Conflicts

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Extracting Widget Descriptions from GUIs

	Introduction
	Design Principles of GUIs
	Extraction of Widget Descriptions
	Empirical Evaluation
	Related Work
	Conclusions
	References

	Verification and Synthesis
	Language-Theoretic Abstraction Refinement

	Introduction
	From Safety Verification to Language Emptiness
	Preliminaries
	From Programs to Context Free Languages

	The Abstraction-Refinement Procedure
	CEGAR Loop
	The Regular Approximator mkreg
	The Counterexample Generator gencx

	Experiments
	Recursive Multi-threaded Programs
	Bluetooth Drivers
	Conclusion

	References

	Learning from Vacuously Satisfiable
Scenario-Based Specifications
	Introduction
	Motivating Example
	Background
	Triggered Scenarios
	Fluent Linear Temporal Logic
	Modal Transition Systems

	Approach
	Checking Vacuity of Triggered Scenarios
	Learning Triggered Scenarios

	Case Studies
	Philips Television Set Configuration
	Air Traffic Control System

	Discussion and Related Work
	Conclusion and Future Work
	References

	Explanations for Regular Expressions

	Introduction
	Deficiencies of Regular Expressions
	Explanation Representations and Their Computation
	Structural Analysis and Decomposition
	Format Analysis
	User-Directed Intent Analysis
	Combined Explanations

	Evaluation
	Evaluating the Explanation Notation Using Cognitive Dimensions
	Applicability of Explanations
	Threats to Validity

	Related Work
	Conclusions
	References

	Testing and Maintenance
	On the Danger of Coverage Directed
Test Case Generation
	Introduction
	Related Work
	Study
	Experimental Setup Overview
	Mutant Generation
	Test Data Generation
	Test Suite Reduction
	Computing Fault Finding

	Results and Analysis
	Statistical Analysis
	Evaluation of RQ1 and RQ2

	Discussion
	Threats to Validity
	Conclusion and Future Work
	References

	Reduction of Test Suites Using Mutation

	Introduction
	Related Work
	Test Suite Reduction Using Mutation

	Example
	“A Motivational Example”

	Experiments
	Experiment 1: Benchmark Programs
	Experiment 2: Industrial Programs

	Conclusions and Future Work
	References

	Model-Based Filtering
of Combinatorial Test Suites
	Introduction
	An Illustrative Case Study
	Basic Tobias Test Patterns
	New Tobias Constructs
	The Incremental Unfolding and Filtering Process
	Standard Unfolding and Filtering Process
	Incremental Unfolding and Filtering Process

	Some Experimental Results
	Related Work
	Conclusion and Perspectives
	References

	A New Design Defects Classification:
Marrying Detection and Correction
	Introduction
	Problem Statement
	Defects Classification Using Genetic Programming
	Overview
	Design Defects Classification Using Genetic Programming

	Validation
	Research Questions
	Setting
	Results

	Discussions
	Related Work
	Conclusion
	References

	Slicing and Refactoring
	Fine Slicing

	Introduction
	Fine Slicing
	Extract Computation

	A Theory of Fine Slicing
	Extract Computation
	Discussion
	Implementation
	Evaluation
	Related Work
	Future Work

	References

	System Dependence Graphs
in Sequential Erlang
	Introduction
	Related Work
	Preliminaries
	Erlang Dependence Graphs
	Control Edges
	Data Edges
	Input/Output Edges
	Summary Edges

	Slicing Erlang Specifications
	Conclusions and Future Work
	References

	A Domain-Specific Language
for Scripting Refactorings in Erlang
	Introduction
	Erlang, Wrangler and Its Template-Based API
	Terminology
	Rationale
	A Framework for Scripting Composite Refactorings
	Refactoring Command Generators
	The Domain-Specific Language
	Tracking of Entity Names

	Examples
	Implementation
	Related Work
	Conclusions and Future Work
	References

	Author Index

