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Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.



VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of FTAPS
e. V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbriicken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

> European Association for Theoretical Computer Science (EATCS)
> European Association for Programming Languages and Systems (EAPLS)
> European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

INSTITUTE OF CYBERNETICS AT TUT; TALLINN UNIVERSITY OF TECH-
NOLOGY (TUT); ESTONIAN CENTRE OF EXCELLENCE IN COMPUTER
SciENCE (EXCS) FUNDED BY THE EUROPEAN REGIONAL DEVELOP-
MENT FUND (ERDF); ESTONIAN CONVENTION BUREAU; and MI-
CROSOFT RESEARCH.

The organising team comprised:
General Chair: Tarmo Uustalu
Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Ziirich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbriicken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbriicken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara Konig (Duisburg), Juan de Lara (Madrid), Gerald Liittgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),
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Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Déniel Varr6 (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair



Preface

This volume contains the papers accepted for FASE 2012, the 15th International
Conference on Fundamental Approaches to Software Engineering, which was
held in Tallinn, Estonia, in March 2012 as part of the annual European Joint
Conference on Theory and Practice of Software (ETAPS). FASE is concerned
with the foundations on which software engineering is built. It focusses on novel
techniques and the way in which they contribute to make software engineering
a more mature and soundly based discipline.

This year we solicited two kinds of contributions: research papers and tool
demonstration papers. We received 134 submissions from 39 countries around
the world, of which 5 were tool demonstrations. After a rigorous selection pro-
cess, the Programme Committee accepted 33 submissions (2 of which were tool
demonstrations), corresponding to an acceptance rate of approximately 24.6%.
Each paper received at least three reviews, and four in some cases. The accep-
tance decisions were made after exhaustive and careful online discussions by the
members of the Programme Committee.

The accepted papers cover several aspects of software engineering, including
verification, slicing and refactoring, testing, model transformations, components,
software architecture, product lines, and empirical aspects of the development
process. We believe that the accepted papers made a scientifically strong and
exciting programme, which triggered interesting discussions and exchange of
ideas among the FASE participants.

This year, we were honoured to host an invited talk by Wil van der Aalst
from Eindhoven University of Technology (The Netherlands) and Queensland
University of Technology (Australia) entitled “Distributed Process Discovery and
Conformance Checking”. Professor van der Aalst is internationally recognised by
his pioneering work on workflow management, process mining, and Petri nets.
The presentation discussed the challenges for distributed process mining in the
context of both procedural and declarative process models.

We would like to thank all authors who submitted their work to FASE 2012.
Without their excellent contributions we would not have managed to prepare
a strong programme. We would also like to thank the Programme Committee
members and external reviewers for their high-quality reviews and the effort and
time they dedicated to the review and discussion processes. Finally, we wish to
express our sincere gratitude to the Organizing and Steering Committees for
their continuous support. The logistics of our job as Programme Chairs were
facilitated by the EasyChair system, and supported by Andrei Voronkov.

We sincerely hope that you will enjoy reading these proceedings.

January 2012 Juan de Lara
Andrea Zisman
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Distributed Process Discovery
and Conformance Checking

Wil M.P. van der Aalst!?

! Eindhoven University of Technology, Eindhoven, The Netherlands
2 Queensland University of Technology, Brisbane, Australia
www.vdaalst.com

Abstract. Process mining techniques have matured over the last decade
and more and more organization started to use this new technology. The
two most important types of process mining are process discovery (i.e.,
learning a process model from example behavior recorded in an event
log) and conformance checking (i.e., comparing modeled behavior with
observed behavior). Process mining is motivated by the availability of
event data. However, as event logs become larger (say terabytes), per-
formance becomes a concern. The only way to handle larger applications
while ensuring acceptable response times, is to distribute analysis over a
network of computers (e.g., multicore systems, grids, and clouds). This
paper provides an overview of the different ways in which process min-
ing problems can be distributed. We identify three types of distribution:
replication, a horizontal partitioning of the event log, and a vertical par-
titioning of the event log. These types are discussed in the context of
both procedural (e.g., Petri nets) and declarative process models. Most
challenging is the horizontal partitioning of event logs in the context of
procedural models. Therefore, a new approach to decompose Petri nets
and associated event logs is presented. This approach illustrates that
process mining problems can be distributed in various ways.

Keywords: process mining, distributed computing, grid computing,
process discovery, conformance checking, business process management.

1 Introduction

Digital data is everywhere — in every sector, in every economy, in every organi-
zation, and in every home — and will continue to grow exponentially [22]. Some
claim that all of the world’s music can be stored on a $600 disk drive. However,
despite Moore’s Law, storage space and computing power cannot keep up with
the growth of event data. Therefore, analysis techniques dealing with “big data”
[22] need to resort to distributed computing.

This paper focuses on process mining, i.e., the analysis of processes based on
event data [3]. Process mining techniques aim to discover, monitor, and improve
processes using event logs. Process mining is a relatively young research discipline
that sits between machine learning and data mining on the one hand, and process
analysis and formal methods on the other hand. The idea of process mining is

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 1-E5] 2012.
© Springer-Verlag Berlin Heidelberg 2012



2 W.M.P. van der Aalst

to discover, monitor and improve real processes (i.e., not assumed processes) by
extracting knowledge from event logs readily available in today’s (information)
systems. Process mining includes (automated) process discovery (i.e., extract-
ing process models from an event log), conformance checking (i.e., monitoring
deviations by comparing model and log), social network/organizational mining,
automated construction of simulation models, model extension, model repair,
case prediction, and history-based recommendations.

conformance
checking

acefgijkl
acddefhkjil
abdefjkgil

add extra
insurance

process
discovery

acdddefkhijl
acefgijkl
abefgjikl

skip extra
insurance

skip extra
insurance

change
booking

book car c1 add extra
insurance

in

check driver's c10
license

c3  initiate
check-in

confirm

supply out
car

charge credit
card

Fig. 1. Example illustrating two types of process mining: process discovery and con-
formance checking

Figure [l illustrates the two most important types of process mining: process
discovery and conformance checking. Starting point for process mining is an
event log. Each event in such a log refers to an activity (i.e., a well-defined step
in some process) and is related to a particular case (i.e., a process instance). The
events belonging to a case are ordered and can be seen as one “run” of the process.
For example, the first case in the event log shown in Fig. [l can be described by
the trace (a, ¢, e, f, g,1, j, k,1). This is the scenario where a car is booked (activity
a), extra insurance is added (activity c), the booking is confirmed (activity e),
the check-in process is initiated (activity f), more insurance is added (activity
g), a car is selected (activity i), the license is checked (activity j), the credit
card is charged (activity k), and the car is supplied (activity ). The second case
is described by the trace (a,c,d,d, e, f,h,k,j,4,1). In this scenario, the booking
was changed two times (activity d) and no extra insurance was taken at check-in
(activity h). It is important to note that an event log contains only example
behavior, i.e., we cannot assume that all possible runs have been observed. In
fact, an event log often contains only a fraction of the possible behavior [3].

Process discovery techniques automatically create a model based on the ex-
ample behavior seen in the event log. For example, based on the event log shown
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in Fig.[Il the corresponding Petri net is created. Note that the Petri net shown in
Fig.Mis indeed able to generate the behavior in the event log. The model allows
for more behavior, but this is often desirable as the model should generalize the
observed behavior.

Whereas process discovery constructs a model without any a priori informa-
tion (other than the event log), conformance checking uses a model and an event
log as input. The model may have been made by hand or discovered through
process discovery. For conformance checking, the modeled behavior and the ob-
served behavior (i.e., event log) are compared. There are various approaches to
diagnose and quantify conformance. For example, one can measure the fraction
of cases in the log that can be generated by the model. In Fig. [ all cases fit
the model perfectly. However, if there would have been a case following trace
(a,e, f,h,k, j,i,1), then conformance checking techniques would identify that in
this trace activity e (the confirmation) is missing.

Given a small event log, like the one shown in Fig. [II analysis is simple.
However, in reality, process models may have hundreds of different activities and
there may be millions of events and thousands of unique cases. In such cases,
process mining techniques may have problems to produce meaningful results in a
reasonable time. This is why we are interested in distributed process mining, i.e.,
decomposing challenging process discovery and conformance checking problems
into smaller problems that can be distributed over a network of computers.

Today, there are many different types of distributed systems, i.e., systems com-
posed of multiple autonomous computational entities communicating through a
network. Multicore computing, cluster computing, grid computing, cloud com-
puting, etc. all refer to systems where different resources are used concurrently
to improve performance and scalability. Most data mining techniques can be
distributed |16], e.g., there are various techniques for distributed classification,
distributed clustering, and distributed association rule mining [13]. However,
in the context of process mining only distributed genetic algorithms have been
examined in detail |15]. Yet, there is an obvious need for distributed process
mining. This paper explores the different ways in which process discovery and
conformance checking problems can be distributed. We will not focus on the tech-
nical aspects (e.g., the type of distributed system to use) nor on specific mining
algorithms. Instead, we systematically explore the different ways in which event
logs and models can be partitioned.

The remainder of this paper is organized as follows. First, in Section 2 we
discuss the different ways in which process mining techniques can be distributed.
Besides replication, we define two types of distribution: wvertical distribution and
horizontal distribution. In Section [B] we elaborate on the representation of event
logs and process models. Here, we also discuss the differences between procedural
models and declarative models. We use Petri nets as typical representatives of
conventional procedural models. To illustrate the use of declarative models in
the context of distributed process mining, we elaborate on the Declare language
[8]. Section @ discusses different ways of measuring conformance while zooming
in on the notion of fitness. The horizontal distribution of process mining tasks
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is promising, but also particularly challenging for procedural models. Therefore,
we elaborate on a particular technique to decompose event logs and processes
(Section [l). Here we use the notion of passages for Petri nets which enables us to
split event logs and process models horizontally. Section [6] concludes the paper.

2 Distributed Process Mining: An Overview

This section introduces some basic process mining concepts (Section [Z]) and
based on these concepts it is shown that event logs and process models can be
distributed in various ways (Section 2:2)).

2.1 Process Discovery and Conformance Checking

As explained in the introduction there are two basic types of process mining:
process discovery and conformance checkmg Figure 2l shows both types.

.-

abcd  acd o 1

1
acbd  acbd "&1.’-_‘:' |
abd abed —

process event log conformance
discovery checking 8

nén @/‘fgﬁj

: ~——

process model \/ diagnostics

Fig. 2. Positioning process mining techniques

Process discovery techniques take an event log and produce a process model
in some notation. Figure [I] already illustrated the basic idea of discovery: learn
a process model from example traces.

Conformance checking techniques take an event log and a process model and
compare the observed behavior with the modeled behavior. As Fig. [2] shows
the process model may be the result of process discovery or made by hand.
Basically, three types of conformance-related diagnostics can be generated. First
of all, there may be overall metrics describing the degree of conformance, e.g.,
80% of all cases can be replayed by the model from begin to end. Second, the
non-conforming behavior may be highlighted in the event log. Third, the non-
conforming behavior may be revealed by annotating the process model. Note that

1 As described in 13], process mining is not limited to process discovery and confor-
mance checking and also includes enhancement (e.g., extending or repairing models
based on event data) and operational support (on-the-fly conformance checking,
prediction, and recommendation). These are out-of-scope for this paper.
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conformance can be viewed from two angles: (a) the model does not capture the
real behavior (“the model is wrong”) and (b) reality deviates from the desired
model (“the event log is wrong”). The first viewpoint is taken when the model is
supposed to be descriptive, i.e., capture or predict reality. The second viewpoint
is taken when the model is normative, i.e., used to influence or control reality.

N
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abcdeg
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abdceg
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To further illustrate the notion of process discovery consider the example
shown in Fig. [l Based on the event log shown, a Petri net is learned. Note
that all traces in the event log start with activity a and end with activity g.
This is also the case in the Petri net (consider all full firing sequences starting
with a token in place in and ending with a token in out). After a, activity b
can be executed. Transition b in the Petri net is a so-called AND-split, i.e.,
after executing b, both ¢ and d can be executed concurrently. Transition e is
a so-called AND-join. After executing e a choice is made: either g occurs and
the case completes or f is executed and the state with a token in place cl is
revisited. Many process discovery algorithms have been proposed in literature
19,110,112, [17-19, 123, [28-30]. Most of these algorithms have no problems dealing
with this small example.

Figure [ illustrates conformance checking using the same example. Now the
event log contains some traces that are not possible according to the process
model shown in Fig. @ As discussed in the context of Fig. [2 there are three
types of diagnostics possible. First of all, we can use metrics to describe the
degree of conformance. For example, 10 of the 16 cases (i.e., 62.5 percent) in
Fig. @ are perfectly fitting. Second, we can split the log into two smaller event
logs: one consisting of conforming cases and one consisting of non-conforming
cases. These logs can be used for further analysis, e.g., discover commonalities
among non-conforming cases using process discovery. Third, we can highlight
problems in the model. As Fig. @ shows, there is a problem with activity b:
according to the model b should be executed before ¢ and d but in the event log
this is not always the case. There is also a problem with activity f: it should
only be executed after e, but in the log it also appears at other places.

Fig. 3. Example illustrating process discovery
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Fig. 4. Example illustrating conformance checking

Figures Bl and @l show the basic idea of process mining. Note that the example
is oversimplified. For example, most event logs contain much more information.
In the example log an event is fully described by an activity name. However,
often there is additional information about an event such as the resource (i.e.,
person or device) executing or initiating the activity, the timestamp of the event,
or data elements recorded with the event (e.g., the size of an order).

The process models shown thus far are all Petri nets (WF-nets [1, 6] to be
precise). Different process mining algorithms may use different representations.
Moreover, the notation used to visualize the result may be very different from the
representation used during the actual discovery process. All mainstream BPM
notations (Petri nets, EPCs, BPMN, YAWL, UML activity diagrams, etc.) can
be used to show discovered processes |3, [31]. In fact, later we will also elaborate
on so-called declarative process models. However, to explain the concept of dis-
tributed process mining, such differences are less relevant. Therefore, we defer a
discussion on the difference between procedural models and declarative models

to Section 3.4l
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2.2 Distributing Event Logs and Process Models

New computing paradigms such as cloud computing, grid computing, cluster
computing, etc. have emerged to perform resource-intensive IT tasks. Modern
computers (even lower-end laptops and high-end phones) have multiple proces-
sor cores. Therefore, the distribution of computing-intensive tasks, like process
mining on “big data”, is becoming more important.

At the same time, there is an exponentially growing torrent of event data.
MGI estimates that enterprises globally stored more than 7 exabytes of new
data on disk drives in 2010, while consumers stored more than 6 exabytes of
new data on devices such as PCs and notebooks [22]. A recent study in Science
suggests that the total global storage capacity increased from 2.6 exabytes in
1986 to 295 exabytes in 2007 [20]. These studies illustrate the growing potential
of process mining.

Given these observations, it is interesting to develop techniques for distributed
process mining. In recent years, distributed data mining techniques have been
developed and corresponding infrastructures have been realized [16]. These tech-
niques typically partition the input data over multiple computing nodes. Each
of the nodes computes a local model and these local models are aggregated into
an overall model.

In [15], we showed that it is fairly easy to distribute genetic process mining al-
gorithms. In this paper (i.e., [15]), we replicate the entire log such that each node
has a copy of all input data. Each node runs the same genetic algorithm, uses the
whole event log, but, due to randomization, works with different individuals (i.e.,
process models). Periodically, the best individuals are exchanged between nodes.
Tt is also possible to partition the input data (i.e., the event log) over all nodes.
Experimental results show that distributed genetic process mining significantly
speeds-up the discovery process. This makes sense because the fitness test is
most time-consuming. However, individual fitness tests are completely indepen-
dent. Although genetic process mining algorithms can be distributed easily, they
are not usable for large and complex data sets. Other process mining algorithms
tend to outperform genetic algorithms |3]. Therefore, we also need to consider
the distribution of other process mining techniques.

To discuss the different ways of distributing process mining techniques we
approach the problem from the viewpoint of the event log. We consider three
basic types of distribution:

— Replication. If the process mining algorithm is non-deterministic, then the
same task can be executed on all nodes and in the end the best result can
be taken. In this case, the event log can be simply replicated, i.e., all nodes
have a copy of the whole event log.

— Vertical partitioning. Event logs are composed of cases. There may be thou-
sands or even millions of cases. These can be distributed over the nodes in
the network, i.e., each case is assigned to one computing node. All nodes
work on a subset of the whole log and in the end the results need to be
merged.
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— Horizontal partitioning. Cases are composed of multiple events. Therefore,
we can also partition cases, i.e., part of a case is analyzed on one node whereas
another part of the same case is analyzed on another node. In principle, each
node needs to consider all cases. However, the attention of one computing
node is limited to a particular subset of events per case.

Of course it is possible to combine the three types of distribution.

Y
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Fig. 5. Partitioning the event log vertically: cases are distributed arbitrarily

Figure [Hl illustrates the vertical partitioning of an event log using our running
example. The original event log contained 16 cases. Assuming that there are two
computing nodes, we can partition the cases over these two nodes. Each case
resides in exactly one location, i.e., the nodes operate on disjoint sublogs. Each
node computes a process mining result for a sublog and in the end the results are
merged. Depending on the type of process mining result, merging may be simple
or complex. For example, it we are interested in the percentage of fitting cases it
is easy to compute the overall percentage. Suppose there are n nodes and each
node i € {1...n} reports on the number of fitting cases (z;) and non-fitting
cases (y;) in the sublog. The fraction of fitting cases can be computed easily:
(>, xi)/(>2; xi+ yi). When each node produces a process model, it is more
difficult to produce an overall result. However, by using lower-level output such
as the dependency matrices used by mining algorithms like the heuristic miner
and fuzzy miner [3], one can merge the results.

In Fig. Bl the cases are partitioned over the logs without considering particular
features, i.e., the first eight cases are assigned to the first node and the remain-
ing eight cases are assigned to the second node. As Fig. [6] shows, one can also
distribute cases based on a particular feature. In this case all cases of length 6
are moved to the first node, cases of length 11 are moved to the second node,
and cases of length 16 are moved to the third node. Various features can be used,
e.g., the type of customer (one node analyzes the process for gold customers, one
for silver customers, etc.), the flow time of the case, the start time of the case,
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Fig. 6. Partitioning the event log vertically: cases are distributed based on a particular
feature (in this case the length of the case)
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Fig. 7. Partitioning the event log horizontally

the monetary value of the case, etc. Such a vertical partitioning may provide
additional insights. An example is the use of the start time of cases when dis-
tributing the event log. Now it is interesting to see whether there are significant
differences between the results. The term concept drift refers to the situation
in which the process is changing while being analyzed [14]. For instance, in the
beginning of the event log two activities may be concurrent whereas later in
the log these activities become sequential. Processes may change due to peri-
odic/seasonal changes (e.g., “in December there is more demand” or “on Friday
afternoon there are fewer employees available”) or due to changing conditions
(e.g., “the market is getting more competitive”). A vertical partitioning based
on the start time of cases may reveal concept drift or the identification of periods
with severe conformance problems.
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Figure [1 illustrates the horizontal partitioning of event logs. The first sublog
contains all events that correspond to activities a, b, e, f, and g. The second
sublog contains all events that correspond to activities b, ¢, d, and e. Note that
each case appears in each of the sublogs. However, each sublog contains only a
selection of events per case. In other words, events are partitioned “horizontally”
instead of “vertically”. Each node computes results for a particular sublog. In the
end, all results are merged. Figure[§ shows an example of two process fragments
discovered by two different nodes. The process fragments are glued together
using the common events. In Section Bl we will further elaborate on this.

- /—\ -
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Fig. 8. Horizontally partitioned event logs are used to discover process fragments that
can be merged into a complete model.

3 Representation of Event Logs and Process Models

Thus far, we have only discussed things informally. In this section, we formalize
some of the notions introduced before. For example, we formalize the notion of
an event log and provide some Petri net basics. Moreover, we show an example
of a declarative language (Declare [8]) grounded in LTL.

3.1 Multisets

Multisets are used to represent the state of a Petri net and to describe event
logs where the same trace may appear multiple times.

B(A) is the set of all multisets over some set A. For some multiset b € B(A),
b(a) denotes the number of times element a € A appears in b. Some examples:
by = [ ]a by = [1’71'7y]7 by = [Sﬂ,y72], by = [1'71'7y,$,y72], bs = [1’37y272] are
multisets over A = {x,y, z}. by is the empty multiset, bo and bs both consist
of three elements, and by = bs, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x € by, boWbs =
by, bs \ by = b3, |bs| = 6, etc. {a € b} denotes the set with all elements a for
which b(a) > 1. [f(a) | a € b] denotes the multiset where element f(a) appears

Zzeb\f(m):f(a) b(x) times.
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3.2 Event Logs

As indicated earlier, event logs serve as the starting point for process mining. An
event log is a multiset of traces. Each trace describes the life-cycle of a particular
case (i.e., a process instance) in terms of the activities executed.

Definition 1 (Trace, Event Log). Let A be a set of activities. A trace o € A*
is a sequence of actiwities. L € B(A*) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having
the same trace. In this simple definition of an event log, an event refers to just
an activity. Often event logs may store additional information about events.
For example, many process mining techniques use extra information such as the
resource (i.e., person or device) executing or initiating the activity, the timestamp
of the event, or data elements recorded with the event. In this paper, we abstract
from such information. However, the results presented in this paper can easily
be extended to event logs with more information.

A'n exa’mple log ls Ll = [<a7 b’ C? d7 67 g>30’ <a7 b’ d’ C7 67 g>20’ <a7 b’ C7 d7 67 f7 b’ C7
d,e, 9)% (a,b,d,c e, f,b,c,d e, g)3 (a,b,c,d, e, f,b,d,c e, g)?. L1 contains infor-
mation about 60 cases, e.g., 30 cases followed trace (a,b, c,d, e, g).

Definition 2 (Projection). Let A be a set and X C A a subset.[x€ A* — X*
is a projection function and is defined recursively: (a) { )Ix= () and (b) for
o€ A* anda € A: (0;(a))Ix=o0lx ifa ¢ X and (0;(a))[x=0[x;(a) ifa € X.

The projection function is generalized to event logs, i.e., for some event log
L € B(A*) and set X C A: LIx= [o[x| 0 € L]. For event log Ly define earlier:

Ly {{a,f,g}: Kav g>507 <aa fa g>10]'

3.3 Procedural Models

A wide variety of process modeling languages are used in the context of process
mining, e.g., Petri nets, EPCs, C-nets, BPMN, YAWL, and UML activity dia-
grams |3, 31]. Most of these languages are procedural languages (also referred
to as imperative languages). In this paper, we use Petri nets as a typical rep-
resentative of such languages. However, the ideas can easily be adapted to fit
other languages. Later we will formalize selected distribution concepts in terms
of Petri nets. Therefore, we introduce some standard notations.

Definition 3 (Petri Net). A Petri net is tuple PN = (P,T, F) with P the set
of places, T the set of transitions, and F C (P x T)U (T x P) the flow relation.

Figure [@ shows an example Petri net. The state of a Petri net, called marking,
is a multiset of places indicating how many tokens each place contains. [in] is
the initial marking shown in Fig. [l Another potential marking is [c219,¢3°, ¢5%].
This is the state with ten tokens in ¢2, five tokens in ¢3, and five tokens in ¢5.

Definition 4 (Marking). Let PN = (P,T, F) be Petri net. A marking M is a
multiset of places, i.e., M € B(P).
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Fig.9. A Petri net PN = (P,T,F) with P = {in,cl,c2,¢3,c4,c5,c6,0ut}, T =
{a7 b’ C7 d7 67 f’ 9}7 and F = {(Zn7 a)7 (a7 C]')’ (Cl’b)7 ttt (97 Out)}

As usual we define the preset and postset of a node (place or transition) in the
Petri net graph. For any € PUT, ex = {y | (y,z) € F'} (input nodes) and
ze ={y| (z,y) € F} (output nodes).

A transition t € T is enabled in marking M, denoted as M|[t), if each of its
input places et contains at least one token. Consider the Petri net in Fig. [ with
M = [¢3,c4]: M[e) because both input places are marked.

An enabled transition ¢ may fire, i.e., one token is removed from each of
the input places ot and one token is produced for each of the output places
te. Formally: M’ = (M \ et) W te is the marking resulting from firing enabled
transition ¢ in marking M. M[t)M’ denotes that ¢ is enabled in M and firing ¢
results in marking M’. For example, [in][a)[cl] and [c1][b)[c2, ¢3] for the net in
Fig. @

Let 0 = (t1,t2,...,tn) € T be a sequence of transitions. M[o)M’ denotes
that there is a set of markings My, My, ..., M, such that My = M, M, = M’,
and M;[t;y1)M;p1 for 0 < i < n. A marking M’ is reachable from M if there
exists a o such that M[o)M’. For example, [in][o)[out] for o = (a,b,c,d, e, g).

Definition 5 (Labeled Petri Net). A labeled Petri net PN = (P, T,F,T,) is
a Petri net (P, T, F') with visible labels T, C T. Let o, = (t1,t2,...,tn) € T be a
sequence of visible transitions. M[o,>M’ if and only if there is a sequence o € T*
such that M[o)M' and the projection of o on T, yields o, (i.e., 0y, = olT, ).

If we assume T, = {a,e, f, g} for the Petri net in Fig. [@ then [in][o, > [out] for
oy = {aye, f,e, f,e,g) (ie., b, ¢, and d are invisible).

In the context of process mining, we always consider processes that start in
an initial state and end in a well-defined end state. For example, given the net
in Fig. @l we are interested in firing sequences starting in M; = [in] and ending
in M, = [out]. Therefore, we define the notion of a system net.

Definition 6 (System Net). A system net is a triplet SN = (PN, M;, M,)
where PN = (P, T, F,T,) is a Petri net with visible labels T,,, M; € B(P) is the
ingtial marking, and M, € B(P) is the final marking.

Given a system net, 7(SN) is the set of all possible visible full traces, i.e., firing
sequences starting in M; and ending in M, projected onto the set of visible
transitions.
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Definition 7 (Traces). Let SN = (PN, M;, M,) be a system net. 7(SN) =
{ov | M;[o,> My} is the set of visible traces starting in M, and ending in M,.

If we assume T, = {a,e, g} for the Petri net in Fig. [@ then 7(SN) = {{a,e,g),
(a,e,e,g),(a,e e e qg),...}.

The Petri net in Fig. @ has a designated source place (in), a designated source
place (out), and all nodes are on a path from in to out. Such nets are called

WEF-nets [1, 6].

Definition 8 (WF-net). WF = (PN,in,T;,out,T,) is a workflow net
(WF-net) if

— PN = (P, T, F,T,) is a labeled Petri net,

— in € P is a source place such that ein = () and ine = Tj,

— out € P is a sink place such that oute = () and eout =T,

— T, C T, is the set of initial transitions and oT; = {in},

- T, C T, is the set of final transitions and T,e = {out}, and

— all nodes are on some path from source place in to sink place out.

WPF-nets are often used in the context of business process modeling and process
mining. Compared to the standard definition of WF-nets |1, |6] we added the
requirement that the initial and final transitions need to be visible.

A WF-net WF = (PN, in, T;, out,T,) defines the system SN = (PN, M;, M,)
with M; = [in] and M, = [out]. Ideally WF-nets are also sound, i.e., free of
deadlocks, livelocks, and other anomalies [1, 6]. Formally, this means that it is
possible to reach M, from any state reachable from M;.

Process models discovered using existing process mining techniques may be
unsound. Therefore, we cannot assume/require all WF-nets to be sound.

3.4 Declarative Models

Procedural process models (like Petri nets) take an “inside-to-outside” approach,
i.e., all execution alternatives need to be specified explicitly and new alternatives
must be explicitly added to the model. Declarative models use an “outside-to-
inside” approach: anything is possible unless explicitly forbidden. Declarative
models are particularly useful for conformance checking. Therefore, we elaborate
on Declare. Declare is both a language (in fact a family of languages) and a fully
functional WEM system |[§, 124].

Declare uses a graphical notation and its semantics are based on LTL (Lin-
ear Temporal Logic) [8]. Figure [[0] shows a Declare specification consisting of
eight constraints. The construct connecting activities b and c is a so-called non-
coezistence constraint. In terms of LTL this constraint means “~((0b) A (Oc))”;
Ob and {c cannot both be true, i.e., it cannot be the case that both b and ¢
happen for the same case. There is also a non-coexistence constraint preventing
the execution of both g and h for the same case. There are three precedence con-
straints. The semantics of the precedence constraint connecting a to b can also
be expressed in terms of LTL: “(=b) W a”, i.e., b should not happen before a has
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Fig. 10. Example of a Declare model consisting of six activities and eight constraints

happened. Since the weak until (W) is used in “(—=b) W a”, traces without any
a and b events also satisfy the constraint. Similarly, g should not happen before
b has happened: “(—g) W b”. There are three response constraints. The LTL
formalization of the precedence constraint connecting b to e is “0(b = (Qe))”,
i.e., every occurrence of b should eventually be followed by e. Note that the be-
havior generated by the WF-net in Fig. [[] satisfies all constraints specified in the
Declare model, i.e., none of the eight constraints is violated by any of the traces.
However, the Declare model shown in Figure [I0l allows for all kinds of behaviors
not possible in Fig.[Il For example, trace (a,a, b, e, ¢, g, g) is allowed. Whereas in
a procedural model, everything is forbidden unless explicitly enabled, a declara-
tive model allows for anything unless explicitly forbidden. For processes with a
lot of flexibility, declarative models are more appropriate |8, [24].

In [5] it is described how Declare/LTL constraints can be checked for a given
log. This can also be extended to the on-the-fly conformance checking. Consider
some running case having a partial trace o, € A* listing the events that have
happened thus far. Each constraint c is in one of the following states for oy,:

— Satisfied: the LTL formula corresponding to ¢ evaluates to true for the partial
trace op.

— Temporarily violated: the LTL formula corresponding to ¢ evaluates to false
for o, however, there is a longer trace o, that has o}, as a prefix and for
which the LTL formula corresponding to ¢ evaluates to true.

— Permanently violated: the LTL formula corresponding to ¢ evaluates to false
for o, and all its extensions, i.e., there is no o, that has o, as a prefix and
for which the LTL formula evaluates to true.

These three notions can be lifted from the level of a single constraint to the
level of a complete Declare specification, e.g., a Declare specification is satis-
fied for a case if all of its constraints are satisfied. This way it is possible to
check conformance on-the-fly and generate warnings the moment constraints are
permanently /temporarily violated [3].
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Fig. 11. Conformance checking using a declarative model.
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Fig. 12. Discovering a declarative model

We use the smaller example shown in Fig. [l to illustrate conformance check-
ing in the context of Declare. The process model shows four constraints: the same
person cannot “curse” and “become holy” (non-coexistence constraint), after one
“curses” one should eventually “pray” (response constraint), one can only “be-
come holy” after having “prayed” at least once (precedence constraint), and ac-
tivity A (“become holy”) can be executed at most once (cardinality constraint).

Two of the four constraints are violated by the event log shown in Fig. [Tl
The first two traces/persons cursed and became holy at the same time. The third
trace/person became holy without having prayed before.

Conformance checking can be distributed easily for declarative models. One
can partition the log vertically and simply check per computing node all con-
straints on the corresponding sublog. One can also partition the set of con-
straints. Each node of the computer network is responsible for a subset of the
constraints and uses a log projected onto the relevant activities, i.e., the event
log is distributed horizontally. In both cases, it is easy to aggregate the results
into overall diagnostics.

Figure [[2 illustrates the discovery of Declare constraints from event logs [21].
A primitive discovery approach is to simply investigate a large collection of can-
didate constraints using conformance checking. This can be distributed vertically
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or horizontally as just described. It is also possible to use smarter approaches
using the “interestingness” of potential constraints. Here ideas from distributed
association rule mining [13] can be employed.

4 Measuring Conformance

Conformance checking techniques can be used to investigate how well an event
log L € B(A*) and the behavior allowed by a model fit together. Figure @] shows
an example where deviations between an event log and Petri net are diagnosed.
Figure[ITlshows a similar example but now using a Declare model. Both examples
focus on a particular conformance notion: fitness. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model from beginning to
end. This notion can be formalized as follows.

Definition 9 (Perfectly Fitting Log). Let L € B(A*) be an event log and
let SN = (PN, M;, M,) be a system net. L is perfectly fitting SN if and only if
{oc € L} C 7(SN).

The above definition assumes a Petri net as process model. However, the same
idea can be operationalized for Declare models [5], i.e., for each constraint and
every case the corresponding LTL formula should hold.

Consider two event logs L1 = [(a,c,d,g)%°, (a,d,c,9)*°, (a,c,d, f,c,d, g)°,
{a,d,c, f,c,d,g)3, (a,c,d, f,d,c,9)?] and Ly = [(a,c,d,g)% (a,c,g)% (a,c,f,
d, g)°] and the system net SN of the WF-net depicted in Fig.@with T, = {a, ¢, d,
f,g}. Clearly, Ly is perfectly fitting SN whereas Lo is not. There are various
ways to quantify fitness [3, 4, [L1, [19, [23, 25-27], typically on a scale from 0 to 1
where 1 means perfect fitness. To measure fitness, one needs to align traces in
the event log to traces of the process model. Some example alignments for Lo
and SN:

_acdg _ac>yg _ac fdyg _acx>fd>g
%_acdg VQ_acdg 73_ac>>dg 74_acdfdcg

The top row of each alignment corresponds to “moves in the log” and the bottom
row corresponds to “moves in the model”. If a move in the log cannot be mim-
icked by a move in the model, then a “>” (“no move”) appears in the bottom
row. For example, in 3 the model is unable to do f in-between ¢ and d. If a
move in the model cannot be mimicked by a move in the log, then a “>” (“no
move”) appears in the top row. For example, in 72 the log did not do a d move
whereas the model has to make this move to enable g and reach the end. Given
a trace in the event log, there may be many possible alignments. The goal is to
find the alignment with the least number of > elements, e.g., 73 seems better
than 4. Finding a optimal alignment can be viewed as an optimization problem
|4, [11]. After selecting an optimal alignment, the number of > elements can be
used to quantify fitness.
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Fitness is just one of the four basic conformance dimensions defined in [3].
Other quality dimensions for comparing model and log are simplicity, precision,
and generalization.

The simplest model that can explain the behavior seen in the log is the best
model. This principle is known as Occam’s Razor. There are various metrics to
quantify the complexity of a model (e.g., size, density, etc.).

The precision dimension is related to the desire to avoid “underfitting”. It is
very easy to construct an extremely simple Petri net (“flower model”) that is
able to replay all traces in an event log (but also any other event log referring to
the same set of activities). See [4, 25-27] for metrics quantifying this dimension.

The generalization dimension is related to the desire to avoid “overfitting”. In
general it is undesirable to have a model that only allows for the exact behavior
seen in the event log. Remember that the log contains only example behavior
and that many traces that are possible may not have been seen yet.

Conformance checking can be done for various reasons. First of all, it may be
used to audit processes to see whether reality conforms to some normative of
descriptive model [7]. Deviations may point to fraud, inefficiencies, and poorly
designed or outdated procedures. Second, conformance checking can be used
to evaluate the performance of a process discovery technique. In fact, genetic
process mining algorithms use conformance checking to select the candidate
models used to create the next generation of models [23].

5 Example: Horizontal Distribution Using Passages

The vertical distribution of process mining tasks is often fairly straightforward;
just partition the event log and run the usual algorithms on each sublog residing
at a particular node in the computer network. The horizontal partitioning of
event logs is more challenging, but potentially very attractive as the focus of
analysis can be limited to a few activities per node. Therefore, we describe a
generic distribution approach based on the notion of passages.

5.1 Passages in Graphs

A graph is a pair G = (N, E) comprising a set N of nodes and aset E C N x N
of edges. A Petri net (P,T,F) can be seen as a particular graph with nodes
N = PUT and edges E = F. Like for Petri nets, we define preset en = {n’ €
N | (n',n) € E} (direct predecessors) and postset ne = {n’ € N | (n,n’) € E}
(direct successors). This can be generalized to sets, ie., for X C N: X =
Unex on and Xe = U,cx ne.

To decompose process mining problems into smaller problems, we partition
process models using the notion passages. A passage is a pair of non-empty sets
of nodes (X,Y’) such that the set of direct successors of X is Y and the set of
direct predecessors of Y is X.

Definition 10 (Passage). Let G = (N, E) be a graph. P = (X,Y) is a passage
if and only if 0 # X CN, 0 £Y C N, Xe =Y, and X = &Y. pas(G) is the
set of all passages of G.
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Consider the sets X = {a,b,c,e, f,g} and Y = {¢,d, g, h,i} in the graph frag-
ment shown in Fig. (X,Y) is a passage. As indicated, there may be no edges
leaving from X to nodes outside Y and there may be no edges into Y from nodes
outside X.

Fig.13. (X,Y) is a passage because Xeo = {a,b,c,¢, f,g}e = {c,d,g,h,i} =Y and
X = {a7b’c7e7f’g} = .{C’d7g7h7i} = .Y

Definition 11 (Operations on Passages). Let P, = (X1,Y1) and P, =
(X2,Y3) be two passages.

— P < Pyifand only if X1 C Xo and Y1 C Y5,
— P < Py if and only if P1 < Py and P; # Ps,
- PUP=(X1UX3,Y1UYs),

— P\ P =(X1\ Xo2,Y1\ Vo).

The union of two passages P; U P, is again a passage. The difference of two
passages P; \ P, is a passage if P, < Pj. Since the union of two passages is again
a passage, it is interesting to consider minimal passages. A passage is minimal
if it does not “contain” a smaller passage.

Definition 12 (Minimal Passage). Let G = (N, E) be a graph with passages
pas(G). P € pas(G) is minimal if there is no P’ € pas(G) such that P’ < P.
PaS,in (G) is the set of minimal passages.

The passage in Figure [I3] is not minimal. It can be split into the passages
({a,b,c},{c,d}) and ({e, f,g},{g, h,i}). An edge uniquely determines one min-
imal passage.

Lemma 1. Let G = (N, E) be a graph and (x,y) € E. There is precisely one
minimal passage P,y = (X,Y) € pas,,;,(G) such that x € X andy €Y.

Passages define an equivalence relation on the edges in a graph: (z1,y1) ~
(w2,y2) if and only if P, ) = Pa,,y.). For any {(z,y),(2',y), (z,y')} C E:
Puy) = Py = Py, 1.6, Py is uniquely determined by x and P, ) is
also uniquely determined by y. Moreover, pas,,;,(G) = { P,y | (x,y) € E}.
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5.2 Distributed Conformance Checking Using Passages

Now we show that it is possible to decompose and distribute conformance check-
ing problems using the notion of passages. In order to do this we focus on the
visible transitions and create the so-called skeleton of the process model. To de-

. . B . .
fine skeletons, we introduce the notation x e o y which states that there is a

non-empty path ¢ from node x to node y where the set of intermediate nodes
visited by path ¢ does not include any nodes in Q.

Definition 13 (Path). Let G = (N, E) be a graph with z,y € N and Q C N.

:E . . . .
z TS y if and only if there is a sequence o = (ny,na,...nk) with k > 1 such

that © = ny, y = nk, for all 1 < i < k: (ng,ni11) € E, and for all 1 < i < k:
n; € Q. Derived notations:

-z E#Q y if and only if there exists a path o such that x o E#Q Y,
— nodes(z 57 y) = {n € 0 | Tpen- 2 7Yy}, and
— for X,Y C N: nodes(X "2% V) = Up, yexny nodes(z 22 y).

o

Definition 14 (Skeleton). Let PN = (P, T, F,T,) be a labeled Petri net. The
skeleton of PN is the graph skel(PN) = (N, E) with N =T, and E = {(z,y) €

T, xT, |z Pl y}.

Figure 4] shows the skeleton of the WF-net in Fig. [ assuming that
T, ={a,b,c,d,e, f,1}. The resulting graph has four minimal passages.

skip extra [N change
insurance | b » d | booking
/ >< Y
a > C > e » f > |
book car  add extra confirm initiate supply
insurance check-in car

Fig.14. The skeleton of the labeled Petri net in Fig. [l (assuming that T, =
{a,b,c,d,e, f,1}). There are four minimal passages: ({a},{b,c}), ({b,c,d},{d,e}),
({e}, {f}), and ({f}. {1}).

Note that only the visible transitions T, appear in the skeleton. For example,
if we assume that T, = {a, f,{} in Fig. [ then the skeleton is ({a, f,1},{(qa, f),
(f,1)}) with only two passages ({a}, {f}) and ({f}, {I}).

If there are multiple minimal passages in the skeleton, we can decompose con-
formance checking problems into smaller problems by partitioning the Petri net
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into net fragments and the event log into sublogs. Each passage (X,Y) defines one
net fragment PN (X5Y) and one sublog L|xyuy. We will show that conformance
can be checked per passage.

(a)
add extra
skip extra (d) insurance

insurance

book car c1 add extra skip extra
insurance insurance
(b) change

booking
skip extra
insurance

add extra
insurance

check driver's supply
license car

initiate
check-in

confirm
© O—14]
m c7 charge credit
card

confirm ¢3  initiate

check-in

Fig. 15. Four net fragments corresponding to the four passages of the skeleton in
Fig.[& (a) PN, = PN({“}‘{b‘C}), (b) PNy = PN({b,cvd},{dve})’ (c) PN3 = PN({E}’{f}>,
and (c) PNy = PNAH)  The invisible transitions, i.e., the transitions in 7'\ T}, are
shaded.

Consider event log L = [(a,b,e, f,1)%°, (a, c, e, f,1)1°, {a,b,d, e, f,1)°, {a,c,d, e,
.02, {a,b,d,d, e, f,1)%], the WF-net PN shown in Fig. [l with T, = {a, b, ¢c,d,e,
f,1}, and the skeleton shown in Fig.[[4l Based on the four passages, we define four
net fragments PN 1, PNy, PN3 and PN 4 as shown in Fig. Moreover, we define
four sublogs: L1 = [(a,b)?", (a,c)'8], Ly = [(b,e)?,(c,e)® (b,d,e)®, {(c,d,e)3,
(b,d,d,e)?], Lz = [{e, f)*?], and L4 = [(f,1)*5]. To check the conformance of the
overall event log on the overall model, we check the conformance of L; on PN
fori € {1,2,3,4}. Since L; is perfectly fitting PN; for all i, we can conclude that
L is perfectly fitting PN. This illustrates that conformance checking can indeed
be decomposed. To formalize this result, we define the notion of a net fragment
corresponding to a passage.

Definition 15 (Net Fragment). Let PN = (P,T,F,T,) be a labeled Petri
net. For any two sets of transitions X,Y C T,, we define the net fragment
PNXY) — (P T F'.T!) with:
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Z = nodes(X Al Y)\ (X UY) are the internal nodes of the fragment,

- P =PnZ,

T"=(TNZ)UXUY,

—~ F'=Fn (P xT)U(T' x P")), and
-T)=XUY.

A process model can be decomposed into net fragments corresponding to min-
imal passages and an event log can be decomposed by projecting the traces
on the activities in these minimal passages. The following theorem shows that
conformance checking can be done per passage.

Theorem 1 (Distributed Conformance Checking). Let L € B(A*) be an
event log and let WF = (PN, in,T;, out, T,) be a WF-net with PN = (P, T, F,T,).
L is perfectly fitting system net SN = (PN, [in], [out]) if and only if

— for any {a1,az,...ax) € L: a1 € T; and ay, € T, and
— for any (X,Y) € pas skel(PN)): Llxuy is perfectly fitting SNXY) =
(PN T, 1)).

min(

For a formal proof, we refer to |2]. Although the theorem only addresses the
notion of perfect fitness, other conformance notions can be decomposed in a
similar manner. Metrics can be computed per passage and then aggregated into
an overall metric.

Assuming a process model with many passages, the time needed for confor-
mance checking can be reduced significantly. There are two reasons for this.
First of all, as Theorem [I] shows, larger problems can be decomposed into a
set of independent smaller problems. Therefore, conformance checking can be
distributed over multiple computers. Second, due to the exponential nature of
most conformance checking techniques, the time needed to solve “many smaller
problems” is less than the time needed to solve “one big problem”. Existing
approaches use state-space analysis (e.g., in [27] the shortest path enabling a
transition is computed) or optimization over all possible alignments (e.g., in |11/
the A* algorithm is used to find the best alignment). These techniques do not
scale linearly in the number of activities. Therefore, decomposition is useful even
if the checks per passage are done on a single computer.

5.3 Distributed Process Discovery Using Passages

As explained before, conformance checking and process discovery are closely
related. Therefore, we can exploit the approach used in Theorem [] for process
discovery provided that some coarse causal structure (comparable to the skeleton
in Section [B.2)) is known. There are various techniques to extract such a causal
structure, see for example the dependency relations used by the heuristic miner
[29]. The causal structure defines a collection of passages and the detailed dis-
covery can be done per passage. Hence, the discovery process can be distributed.
The idea is illustrated in Fig.
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AN
N

abcdeg
abdcefbcdeg
abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg
abcdeg
abdceg
abdcefbdcefbdceg
abcdeg
abcdefbcdefbdceg
abcdefbdceg
abcdeg

abdceg
abdcefbcdeg
abcdeg

in

Fig.16. Distributed discovery based on four minimal passages: ({a,f},{b}),
({b},{c,d}), ({c,d},{e}), and ({e},{f,g}). A process fragment is discovered for each
passage. Subsequently, the fragments are merged into one overall process.

The approach is independent of the discovery algorithm used. The only as-
sumption is that the casual structure can be determined upfront. See |2] for more
details.

By decomposing the overall discovery problem into a collection of smaller
discovery problems, it is possible to do a more refined analysis and achieve sig-
nificant speed-ups. The discovery algorithm is applied to an event log consisting
of just the activities involved in the passage under investigation. Hence, process
discovery tasks can be distributed over a network of computers (assuming there
are multiple passages). Moreover, most discovery algorithms are exponential in
the number of activities. Therefore, the sequential discovery of all individual
passages is still faster than solving one big discovery problem.
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6 Conclusion

This paper provides an overview of the different mechanisms to distribute pro-
cess mining tasks over a set of computing nodes. Event logs can be decomposed
vertically and horizontally. In a vertically distributed event log, each case is an-
alyzed by a designated computing node in the network and each node considers
the whole process model (all activities). In a horizontally distributed event log,
the cases themselves are partitioned and each node considers only a part of the
overall process model. These distribution approaches are fairly independent of
the mining algorithm and apply to both procedural and declarative languages.
Most challenging is the horizontal distribution of event logs while using a proce-
dural language. However, as shown in this paper, it is still possible to horizontally
distribute process discovery and conformance checking tasks using the notion of
passages.
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Abstract. The current practice of software architecture modeling and analysis
would benefit of using different architectural languages, each specialized on a
particular view and each enabling specific analysis. Thus, it is fundamental to
pursue architectural language interoperability. An approach for enabling interop-
erability consists in defining a transformation from each single notation to a pivot
language, and vice versa. When the pivot assumes the form of a small and abstract
kernel, extension mechanisms are required to compensate the loss of information.
The aim of this paper is to enhance architectural languages interoperability by
means of hierarchies of pivot languages obtained by systematically extending a
root pivot language. Model-driven techniques are employed to support the cre-
ation and the management of such hierarchies and to realize the interoperability
by means of model transformations. Even though the approach is applied to the
software architecture domain, it is completely general.

1 Introduction

Architecture descriptions shall be developed to address multiple and evolving stake-
holders concerns [[1]. Being impractical to capture all concerns within a single, narrowly
focused Architectural Language (AL) [2], i.e., a form of expression used for architec-
ture description [1]], we must accept the co-existence of different domain specific ALs,
each one devoted to specific purposes. The use of various ALs requires interoperability
among them since bridging the different descriptions to be kept consistent and coherent
is of paramount relevance [3]]. The need of interoperability at the architecture level is
clearly demonstrated by international projects like Q-ImPrESS [4], and ATESST [5]
where correspondences among different languages have to be created and maintained.
An approach for enabling interoperability among various notations which is recently
getting consensus in different application domains (e.g., [6/7]) consists in organizing
them into a star topology with a pivot language in its center: in these cases infer-
operability is enabled by defining a transformation from each single notation to the
pivot language, and vice versa. Thus, the pivot language acts as a bridge between all
the considered notations and avoids point-to-point direct transformations among them.
While how to build a pivot language is still a craftsman activity, two different trends
can be noted: (i) building a (rich) pivot language that contains each element required

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 26-#2] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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by any AL, like in the Q-Impress project, and (ii) building a (small) kernel pivot lan-
guage containing a set of core elements common to most of the involved ALs, like in
KLAPER [8]. On one hand, the adoption of a rich pivot language tends to reduce the
loss of information in the pivot-based transformation process from one AL to another.
On the other hand, the use of a kernel pivot may give rise to loss of information, since
concepts in some of the ALs might be missing in the pivot language (due to the kernel
pivot language minimality).

The use of a rich pivot is ideal when ALs have to be related under a closed-world-
assumption, i.e., when the set of ALs to be used is a-priori defined. However, a rich
pivot difficultly scales when new ALs are introduced in the star topology: the rich pivot
has to be updated to cover newly introduced concepts. This is an error-prone task that
could easily introduce inconsistencies within the pivot. In such a scenario, while the
kernel pivot solution is more scalable (since the kernel pivot language is defined once
forever and is AL-independent), the addition of new ALs increases the loss of informa-
tion when new ALs introduce new concepts not included in the kernel pivot. When the
closed-world-assumption decays, a new solution is needed to support the interoperabil-
ity among various ALs while reducing as much as possible the loss of information. This
calls for kernel extensions, each extension defined for dealing with specific stakeholder
concerns. Moreover, the construction of kernels must be properly controlled to support
their coexistence and reuse. The information that can be lost consists of concepts that
potentially could be transformed from a source model and properly represented in a
target one, but for some reason are neglected by the transformation process.

In this paper we present a Model-Driven Engineering (MDE) approach to enhance
the interoperability among ALs by using extensible kernel pivots. The approach (i) en-
compasses a systematically defined extension process that, starting from a small kernel
pivot language permits the automated construction of a hierarchy of kernel pivots, and
(ii) provides mechanisms to transform from an AL to another by minimizing the loss of
information; this is realized by passing through the most informative pivot kernel in the
hierarchy for the considered ALs. The overall approach is general and, while applied to
the software architecture domain, may be adopted in different domains.

The remaining of the paper is organized as follows. Section 2 highlights limitations
and challenges of current pivot-based solutions. Section[3describes the proposed kernel
pivot extension mechanisms. Section[d] applies the approach to a case study in the auto-
motive domain. Section [3] compares our work with related works. Section [6] concludes
the paper and highlights future research directions.

2 Interoperability via Pivot Languages

It is becoming common practice to use different ALs to model or to analyze differ-
ent architectural aspects of the system under development. The Q-Impress project, for
example, enables interoperability through a rich pivot language that unifies common
aspects of the used ALs. The ATESST project provides means to integrate different
model-based tools to develop automotive embedded systems. In the domain of reliabil-
ity modeling and prediction, Klaper is a kernel language which can be used as the start-
ing point to carry out performance or reliability analysis. DUALLY [7] exploits model
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transformation techniques and any transformation among ALs is defined by passing
through Ag, a kernel pivot metamodel defined as general as possible.

All the projects and research efforts described above adopt a pivot solution for sup-
porting the interoperability among different description languages. Figure [Tl shows the
main difference between the use of a rich pivot language and a kernel one: filled circles
represent modeling concepts, solid lines denote correspondences among AL and pivot
language concepts, and finally dashed boxes and dashed lines represent added ALs and
correspondences, respectively. A rich pivot language is built with the aim of including
the highest number of concepts contemplated by all the interoperating ALs. As shown
in Figure [Ila, each concept in any AL finds its correspondence with a rich pivot lan-
guage element. Differently, a kernel language contains only a core set of concepts (as
shown in Figure[lb), and is kept as small as possible. Such a difference has positive and
negative impacts on the way interoperability is realized. In the following we provide a
summary of the main strengths and limitations of both solutions.

Interoperability Accuracy: the rich pivot is built with the intent to match any concept
coming from the interoperating ALs. Thus, in principle, as soon as a correspondence
exists among two ALs, it is caught by the pivot-based transformation. The kernel lan-
guage solution, being minimal, may instead discard some correspondence, thus limiting
the interoperability accuracy. For instance, see a1 and a2 in Figure[Ilb: while a corre-
spondence among them is found in the rich pivot, it is missing in the kernel-based
solution. Information loss is thus introduced. The kernel-based approach is particularly
limiting when domain-specific ALs are introduced in the star topology. Overall: the rich
pivot solution is more accurate;

Pivot Scalability: as soon as a new AL has to be considered, the rich pivot needs to be
revised in order to avoid information loss. As shown in Figure[Tla, the insertion of AL,
implies the addition of the link between AL, and the already existing element b1 in the
rich pivot, and the addition of b2. This may require a strong revision of the entire rich
pivot to solve possible conflicts and to avoid inconsistencies. When ALy is added to the
kernel language in Figure [Ilb, instead, only a new correspondence with b1 is created.
Overall: the kernel language approach scales better.

ALd ale In summary, the rich

ALl L22 . ALl |22 * .| pivot solution is more
* 49 ! g - .
'\ b | 35 . - accurate  in  terms
-~ 4 4 . qe
e N -
= \Q{Q‘Lﬂ:‘t A D See< of 1nter0perab111t.y corre
(r____./?/ S b S9N\~ spondences, but it is less
- ok ~:_h,'\ Gl uJ_,‘.‘ &) 1\'.\ | scalable and might re-
AR T Rich pivot— AL2 Kernelpivot ~ AL3 quire adjustments when
AL3 oL
a) b) a new notation 1S 1n-

cluded. Contrariwise, the
kernel solution shows
complementary strengths and limitations. A new solution is needed to support both
interoperability accuracy and pivot scalability.

An approach that is being used consists in making the kernel pivot extensible, thus
adaptable to new ALs. Language extensibility in the software architecture domain has

Fig. 1. Interoperability via a: a) rich pivot, b) kernel pivot



Model-Driven Techniques to Enhance Architectural Languages Interoperability 29

been adopted in the xADL [9] XML-based architecture description language (based on
XML extension mechanisms), in AADL [[10] (through its annexes), in UML (with its
profiles), and in our approach for ALs interoperability named DUALLY [7]. However,
DUALLY, which is at the best of our knowledge the most mature framework to sup-
port interoperability among various ALs, has shown a certain number of shortcomings.
Firstly, it is not clear how to manage the extension process when two (or more) ex-
tensions are required. Let us suppose that both real-time and behavior extensions are
needed. So far, three alternative solutions can be applied: i) extend the kernel with real-
time concepts first, then with behavior, ii) extend the kernel with behavior concepts first,
then with real-time ones, iii) extend the kernel with both concepts at the same time. The
three scenarios may produce different kernel pivots, and so far there is no guideline on
how to manage such a multiple extension. Secondly, current solutions tend to create
ad-hoc extensions, not engineered to be reusable. Even when applying scenarios i) or
ii) above, the intermediate kernels are typically lost and not stored for reuse. The ex-
tension itself is not considered as a first class element, but simply as an improvement
to the original pivot.

The approach we propose in this paper satisfies the requirements of i) a systematic
extension process, which provides clear guidelines on how and what to extend, ii) a
compositional and reuse-oriented approach, where kernels are re-used and extended,
iii) supporting both interoperability accuracy and pivot scalability.

3 The Extension Mechanisms

In this section we propose the mechanisms to extend an existing kernel A with a kernel
extension e. In our approach the extension e is a metamodel, that can be re-used for
extending different kernels. The proposed mechanisms rely on the adoption of weaving
models [11]] which relate a kernel A with an extension e. A weaving model wm contains
links between elements of a kernel A and elements of an extension e.

The generation of a kernel A,

- comp m which is an extension of A with
A, g R . .
P \trlwm, A.x) €, is performed by executing
tr{wmn 3 wx) ke ) . .
Comp | (‘nmp] i) a transformation ¢r. tr is de-
oy ﬁ — [(Por :J*‘;'{::’L » fined once forever and applies
[ comp |_comp 2 :;:p [?;’:p port | the extension e to A according
4 2:1 .
= ';‘ n';’l'r‘“ Y - to the extension operators used
o . ctrlwm, JAy)  in wm (see Section B.1). Fig-
Comp |
lem e ure 2] shows a small fragment
paiint of Ag consisting of the meta-
Lf‘“”- E‘;:’p classes Comp and Port that rep-
oI )
PEA, resent a generic component and
AnZA,
port, respectively (see [7] for a
Fig. 2. Example of extensions of Ag complete description of Ao).

Let us assume that y is a kernel
extension containing the metaclasses SoftComp and HardComp to model software and
hardware components, respectively. This extension can be applied to Ag by means of
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the transformation ¢r which takes as input the weaving model wm 4,,, the kernel Ag,
and the extension y, and generates the new kernel A,. The kernel A, is shown in Fig-
ure[2]and contains the generic component concept specialized in software and hardware
components. Let us assume also that x is another extension consisting of the perfor-
mance annotations pl and p2. This extension can be applied to Ag by means of the
transformation ¢r which takes as input another weaving model wm 4, ., the kernel Ay,
and the extension x. The obtained kernel called A, is shown in Figure 2and represents
an extension of Ay in which the p1 annotation is added to Comp and the p2 annotation
is added to Port.

As previously said, weaving models are used to apply given extensions to existing
kernels by specifying the metaclasses which are involved in the operation. Formally, a
weaving model can be defined as in Def. [l

Definition 1 (Weaving Model). Let A be the set of all the possible kernels, let It be
the set of all the possible extensions, and let W be the set of all the possible weaving
models. We denote with wm . €W a weaving model defined between the kernel A€ A
and the extension e€E. A weaving model wm g.={wl’y,, wi?,, ---, wly,} can be seen
as a set of weaving links each establishing a correspondence between elements of A and
elements of e. Each link is realized by means of extension operators.

Referring to Figure 2] the weaving model wm 4,, defined for Ay can be used also to
extend A,, since A, contains the metaclasses involved in wm 4. In fact, A, contains
the metaclasses Comp and Port which are considered in the weaving model wm 4, to
attach the annotation p1 to Comp, and p2 to Port. In the same way, wm 4,, can be used
to extend A, by applying the extension y to the metaclass Comp, and specializes it with
the metaclasses SoftComp and HardComp. These two independent extension journeys
converge in a kernel called A, or A,,. Focusing on the left-hand side of Figure[2] the
weaving model wm 4, . is another application of the extension x to the kernel A, to add
the annotation p2 to Port and the annotation pl to SoftComp. In this case we obtain
a kernel different from A,,. Specifically, this kernel permits to add p1 exclusively to
software components.

Extension hierarchies, like the one in Figure[2] contain three types of elements: ker-
nels, extensions, and weaving models that apply extensions to kernels. In order to reg-
ulate how kernels and extensions can be involved in specific weaving models, we make
use of a type system for kernels and extensions. In other words, a weaving model de-
fined for a kernel can be re-used also for applying extensions to other kernels, under
the assumption that these kernels have the metaclasses involved in the weaving model.
Def.[2ldefines our notion of model type substitutability, which is based on the following
notion of model typing: the type of a model is defined “as a set of MOF classes (and,
of course, the references that they contain)” [[12l]. We denote with T the set of all the
possible model types. In our context T can be partitioned in T and T™ which denote
the types of kernels and extensions, respectively.

Definition 2 (Model Type Substitutability). Ler TAcT* be the type of a given kernel
A, and let T,cTT be the type of an extension e, then a weaving model wm 4. can be
used by the model transformation tr to extend a kernel typed with either Ty or any of
its subtypes.
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In our context subtyping depends on a type’s hierarchy obtained by means of the ex-
tension mechanism that produces a kernel typed T by exclusively adding new ele-
ments to an existing one, typed T'4 (i.e., the deletion of elements from a kernel is not
allowed). It is worth mentioning that our extension mechanism ensures that all the el-
ements of an extension e are added to the kernel being extended. This type hierar-
chy introduces a strict partial order < among kernel types: T4 <T'p if Ts is obtained
by extending 7’4 and then TB can be substituted to T4. Figure [ is a generalization

~ of Figure[2land shows a sim-

( A )

triwm, L ALy) S A tr(wm,:. o PX) ple hierarchy of extensions

K . . .
trlwmg AL trlwm, LALY) involving a generic .ker-
( Alg Je=mmmm= {A) U Ak e >( A",v ) nel A, and two extensions
o T lwm, S Axy) T - called z and y. The ker-
triwmy ANy Y triwm, ALY) nel extensions are regulated
'\-.‘_fj";""_{‘_’j_,x‘ by four different weaving
where: models (wma, z, wMa,y,

Ta,<Ta,<Ta, , TA <Ta<Ta,, Ta <Ta<Ta, , Ta <Ta<Ta, wmAwQ" and wmAyz)’ thus
producing five different new

kernels. More specifically,
Az and A, are obtained ex-
tending Aj, with z and y and by means of the weaving models wm 4, , and wma,y,
respectively. The weaving model wm 4, . takes as input a kernel typed T4, and the ex-
tension x typed T’;. Similarly, the weaving model wm 4, ,, takes as input a kernel typed
T4, and the extension y typed T,.

Let us focus now on A, which is extended by applying the extension y in two differ-
ent ways. The first way considers the weaving model wm 4, used by ¢r to apply the
extension typed T}, to elements of a kernel typed T’ . This kernel contains the elements
of Ay and those of x added by using wm 4, .. The weaving model wm 4, can affect
all of them since it considers a kernel typed T4, . This is not the case of wm 4, », which
can only operate on elements of Ay. This justifies why the sequential compositions
tr(wma, y, tr(wma, z,Ak,), y) and tr(wma, z, tr(wma, 4, Ax,y), ) lead to the same
target metamodel A, i.e., there is a confluence in the extension journeys. The genera-
tion of the target metamodel A, is performed by using a new weaving model wm 4, zy
which is the union of wm 4, , and wm 4, . The execution of tr(wm 4, 2y, Ak,2y), Where
xy is a metamodel consisting of the union of the elements of = and y, produces A, .
Formally, the union of two weaving models is defined as in Def.[3

Fig. 3. A hierarchy of kernels

Definition 3 (Union of Weaving Models). Let wm 4, €W a weaving model defined

between the kernel A€A and the extension x€E, and wm a,={wll w3, -, wl’}, }.

Let wmay€W a weaving model defined between the kernel A€A and the extension

yelE, and wmAy—{wli,y,wl%y,o . wlAy} The weaving models union
2

WM A UWwm gy = {wle, wle, ~~,wle,wlAy,wlAy,~ Ay} is the set of all the

weaving links in wm A, and wm ay.

It is important to note that in general the confluence cannot be ensured since it depends
on how the extensions have been applied, i.e., on the involved weaving models. In the
following we explain why in our approach we have a confluence (see Section 3.1) and
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how to identify transformation paths from one AL to another by passing through the
kernels hierarchy (see Section[3.2).

3.1 Extension Operators

The extension operators used to create weaving models are Inherit, Reference, Expand,
and Match. These operators are defined by constraining the composition operators pre-
sented in [13] to exclusively enable extensions and avoid conflicts when structural fea-
tures of the kernel and the extension being applied overlap. They always extend a kernel
and then, in case of conflicts during the extension, the kernel element will be the one to
be considered. Each operator is always applied on two metaclasses (one belonging to
the kernel and one to the extension) that we refer to as source (s) and target (¢) in the re-
mainder of this section. The application of the operators consists of executing the trans-
formation ¢r that, as explained before, takes as input a weaving model, a kernel, and
an extension, and produces an extended kernel according to the applied operators. The
extension operators are:
Inherit: This operator specifies that the concept s will be a subtype of ¢ in the resulting
extended kernel. If its application results in a cycle in the inheritance tree, then it is not
executed and a warning is raised. The r metaclass must belong to the kernel metamodel.
Reference: In the extended kernel, s has a reference to ¢. The metaclasses s and 7 belong
to the kernel or to the extension.
Expand: all the attributes of s are copied into ¢. Attributes with the same name are
merged. The r metaclass must belong to the kernel metamodel.
Match: s and ¢ represent the same concept; they are merged into a single metaclass
which contains the union of all the structural features (i.e., both attributes and refer-
ences) of s and ¢. Their supertype and subtype references are merged as well. The ¢
metaclass must belong to the kernel metamodel.

The proposed extension operators have the following properties that underpin the
construction of the type hierarchy previously presented.

Property 1 (Monotonicity - kernel preservation). Each operator can only add elements
to the kernel being extended. The deletion of kernel elements is forbidden.

Property 2 (Extension integrity). All the elements of the extension metamodel
are added to the kernel metamodel according to the operator semantics. In other words,
it is not possible to use only a fragment of an extension. This is ensured by the default
behavior of the extension mechanism which copies all the extension elements that are
not considered by the used operators.

Property 3 (Parallel independence). An operator can be applied only if conflictd]
among the structural features of the involved metaclasses do not occur. For instance,
it is not possible to match a kernel metaclass A containing an attribute p : Int with
an extension metaclass B containing an attribute p : String because of the conflicting
types of the attribute p.

! According to the classification in [14], the conflicts that are considered in the parallel inde-
pendence property are the so-called syntactic conflicts.
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By referring to Figure 3 Properties [l 2] and [ ensure the confluence of the extension
mechanism (see Theorem [I}).

Theorem 1 (Confluence). Given two weaving models wm , . and wma,, between
the kernel Ay, and the extensions x and y, respectively, and wm s, U wm 4, does not
contain weaving links that refer to elements in x and y which are in conflict, then:

tr(wma, ey, Ar,2y)=tr(wma,z,tr(wma,y,Ar,y),z)=tr(wma, ytr(wma,«,Ar,z),y)

where WM 4, zy is the weaving between the kernel Ay, and the extension xy is given as
the union of wm 4, o and wm 4, .

The proof of the theorem is given in Appendix.

3.2 Identification of transformation paths

ALs can be bound to different kernels of the built hierarchy. To better explain both the

problematics of the transformation path identification and the provided solution, we use
the example presented before.

Figure Hl describes two

[ AL generic ALs, AL; and

I AL, bound to Aj, and

Ay, respectively. As de-
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Fig. 4. AL-to-AL transformation management tion p2 added to Port.
In this simple example the
performance annotation p2 is present both in A;x and in A,,; therefore, when trans-
forming from a model specified with AL; to a model conforming to A Lo, it is desirable
to maintain also the p2 annotation. In a transformation realized by passing through A,
we lose such an information. For this reason our approach automatically builds a work-
ing kernel, A;j’g;”“’C in Figure @] which contains also the p2 annotation. This working
kernel contains the metaclass Port with the annotation p2, while p1 is ignored since in
A;x pl is attached to SoftComp and in A, it is attached to Comp. Thus, p1 represents
information that cannot be automatically translated. Notice that once transforming from
ALj to ALs and back, the values of the p1 annotations possibly attached to Sof tComp
instances of AL, are preserved by means of the lost-in-translation mechanism
described in [7].
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Formally, let A; and A,,, be the kernels which AL, and AL5 are bound to, respec-
tively. Moreover, let T4, and T4, the types of A; and A,,, respectively. To identify the
transformation path between A; and A,, that minimizes the loss of information, we
look for the most “specialized” common ancestor A,,. of A; and A,,, such that:

((TAanC<TA1)/\(TA <TAm))/\(ﬂA/€A|(TA/ <TA1)/\(TA’ <TAm)/\(TA <TA/))

anc anc

To understand if we can build a kernel useful to reduce the loss of information, we
consider the extensions that have been applied from A, to A; and from A, to A,,.
The functions in Def. @ and Def. Bl are introduced to construct such a kernel.

Definition 4 (extensionApplications). extensionApplications: A x A — 2V isa
function that given as input the kernels A;€A and A;€A, such that Ta, < Ta, (i.e.,
Aj is an ancestor of A;) returns a set containing all the weaving models that have been
applied to A; for building the kernel A;.

Definition 5 (usedExtensions). usedExtensions: A x A — 2F is a function that
given as input the kernels A;€A and A;€A, such that Ta; < Ta, (i.e., A; is an ances-
tor of A;) returns a set containing all the extensions that have been used to extend A;
for building the kernel A;.

The transformation path that minimizes the loss of information between A; and A, is
calculated by means of the pathldentification algorithm shown in the left-hand side
of Figure[3l In particular, pathIdenti fication gets as input A; and A,, and calculates
the common ancestor Ay, (see line 1). Then the next step is to find a kernel that
while transforming can reduce the loss of information. To this purpose the algorithm
checks if there is an intersection between (i) the extensions that have been applied (i.e.,
weaving models) to A, to build A;, and (ii) those that have been applied to Ay
to build A,,. The extension applications are calculated in two steps. Firstly, the sets
of weaving models applied to A, for building the kernels A; and A,,, are calculated
(lines 2 and 3, respectively). Secondly, for each set, the union of all the weaving models
is calculated. More precisely wmy, and wm; are the weaving models that have been

Algorithm 1 pathldentification(A4;, A,,,)

Aane + caleulateCommonAncestor( Ay, Am)

I:
2: L + ertensionApplications( Ay, Aanc)
3: M « extensionApplications( A, Aane) :
4 wmp +— |J wm B
wmeL Aanc
5:wmap +— |J wm tr(...). tr(...)
i wme M L’/ 1 S
6: if (wmy, Mwmyr= ) then Q |
i return calculate Path(Ay, Ay.e, Ay > I'(me"'ik,Aanc,E) .
é ImI N
8: else U
9 wm™ — wmp Nwmay {7 works
10:  E + createWorkingExtension(wmie™, A m e ()
used Extensions( Ay, Aane), R4 \~\
used Extensions( Am, Aane)) -
11: AP — tr(wmp™, Agne, E)
12: return calculate Path(A;, ,-l,“,',',""". Am)
13: end if

Fig. 5. Working kernel generation
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obtained from the union of all the weaving models contained in L and M, respectively
(lines 4 and 5). To understand if we can refine the hierarchy by building a new kernel
that can reduce the loss of information, the intersection between wmy and wmy; is
calculated (line 6). If the intersection is empty, then all the information that is common
to A; and A,, is already contained into A,,,.; consequently, the path that minimizes the
loss of information between A; and A,, starts from A;, navigates the hierarchy up to
Agne, and then navigates the hierarchy down to A, (see line 7).

If the intersection is not empty, then we have to refine the hierarchy as shown in Fig-
ure[3in order to perform transformations (from AL; to AL» and vice versa) via a kernel
more specific than Ag,.. In other words, the idea is to extend A, with the informa-
tion shared between A; and A,, that is not contained in A,,.. The ad-hoc kernel is
called A}’;g’"k' and is automatically generated by using a working weaving model called
wmo™*. This wm*°™* is obtained from the intersection of wmy, and wmy; (line 9).
As shown in the right-hand side of Figure 3l the weaving model wmﬁfl’rk applies the
working extension E t0 Ag,. then generating A*°"* (line 11). E is obtained by suitably
merging the extensions that have been used to extend A, for building the kernel A;
and those that have been used to extend A, for building the kernel A,,, (line 10). The
merging of extensions is realized by means of the function createW orkingExtension
that considers only the portion of the extensions involved in at least one of the weaving
links in wm}“m"’"k . createW orking Extenston does not add new conflicts into A}"“m"’"k
since each weaving link added in A°"* belongs both to A; and A,,; indeed having a
conflict in A?°"* would imply to have a conflict in both 4; and A,,. This is not pos-
sible since Property [3] of the extension operators ensures that A; and A, do not have
conflicts (by construction).

It is worth noting that Aﬁ,‘jrk is a working kernel since it is exclusively used for
transformation purposes and we do not allow ALs to be bound to A¥°"*. Finally, as
shown in Figure [5 the path that minimizes the information loss between A; and A,,

starts from A;, directly passes through A}‘j,‘j”“ and ends to A,,.

4 Case Study and Discussion

In Section [£.J] we present a case study to show how two real ALs can interoperate by
means of the proposed approach. The scale of the considered case study does not allow
us to show all technical aspects of the approach. Thus, we show the most automated
parts, while more complex technicalities are better described by using small examples
as done in Section 3l Then, Section4.2] discusses issues related to the approach.

4.1 Putting the approach in practice

According to its business needs, an organization decided to draw and analyze the ar-
chitecture of a system in the vehicular domain by using AADL [10] (with its be-
havioral annex), complemented with SaveCCM [13] (helpful to support the develop-
ment of resource-efficient systems and to perform structural preventive analysis). The
case study starts from an already existing kernel hierarchy (see the uppermost part
of Figure [B) composed of three extensions of the root kernel Ag, namely Behaviour,
Embedded systems, and Real-time. Due to space limitations, we do not describe the
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concepts contained into the extension metamodels. We assume that two ALs are al-
ready bound to the hierarchy: Acme [16] is bound to Ay and Darwin/FSP to the
Behaviour kernel. In order to apply the proposed approach, we need to identify the
suitable kernel on which each AL can be profitably bound. Focusing on SaveCCM,

WMy praeon A RTHESB,

v s
RT+E+B
R v e ... d (Real-time +
Embedded systems tr{wm, g, RT+E,B)} Embedded
+ behaviour) Y __ systems)

AADL SaveCCM

Fig. 6. SaveCCM and AADL into the hierarchy

Ayaiesaiy jputay [epu|

it contains both real-time
and embedded systems con-
cepts. A satisfying kernel
does not exist but two ex-
isting kernels, namely the
Embedded systems and the
Real-time, can be suitably
used to obtain a new ker-
nel on which SaveCCM can
be bound. In this example
the kernel can be produced
by reusing both the existing
weaving models wma, g
and wma,rr. The ob-
tained kernel, named RT+E,
is shown in Figure [6l This
kernel metamodel is auto-

matically obtained, as explained in Sections[3.1l It is important to note that during this
extension a new weaving model, wm 4, rT+E, 1s automatically generated by compos-
ing wma, g and wm 4, rr. As explained in Section[3.1lthis weaving model is extremely
important to support further extensions of the kernel RT+E.

Process Instance Diagram : cruise_control:Hei_Process Model

CruiseActive
>
ClutchPedalPressed Data Port ,DrivingModeManager
L g P ClutchPedelPressed
BreakPedalPressed
C D BreakPedalPressed
EisaiDoin . > CancetruiseActive P

...... '.J.'.'.‘!F.’.c..?.'!.‘.?!?....g/

Cancel >4

3 OnNotOfi I—————fp OnNatOf

H Activate

Activate ¥

ncreaseSpeed

seSpeed

EventData
Port

P IncreaseSpeed

DecreaseSpeed
FefSpeed_Mph B H

& fg‘_ RefSpeed_Mph
InstrumentConsole : £
(utoSpeed_Mph H CruiseActive
AutoSpeed_Mph A R e i

RefSpeed_Mph
EngSpeed_Rpm

Fig.7. AADL model of the HCI process

Similarly to SaveCCM,
AADL contains both real-
time and embedded sys-
tems concepts; however,
AADL contains also be-
havioral concepts since we
are considering also its be-
havior annex. In this spe-
cific situation we look for
a candidate kernel with
real-time, embedded sys-
tems, and behavioral con-
cepts. Building on the
kernel RT+E and by con-
sidering also the extension
B, we can build a new
RT+E+B kernel by reusing
both the wma,p weaving
model already used to ex-
tend Ay with B and the
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generated weaving model wm 4, rr+E. Once the extension metamodel RT+E+B has
been generated, AADL can be bound to the hierarchy. RT+E+B contains real-time, em-
bedded systems, and behavioral concepts. Finally, suitable model transformations are
generated from each weaving model as described in Sections Now that the kernel
hierarchy is ready to be used, we can proceed by modeling the system of interest. It is
a cruise control system, i.e., a system that automatically controls the speed of a vehicle
according to the driver settings [18]]. In this paper we focus on the Human Control Inter-
face (HCI) subsystem, which is the front-end to the driver. Figure[Z] shows the HCI pro-
cess modeled in AADL. This process is composed of four threads managing the driving
mode (DrivingModeManager), the reference speed (ReferenceSpeedManager), the
buttons panel (DriverConsole), and a console (InstrumentConsole) for special
settings of the system.

In order to transform the AADL model to the corresponding SaveCCM model, the
transformation chain is calculated as described in Sections In this case the calcu-
lated path passes through the kernel RT+E that is the most specific common ancestor
of RT+E and RT+E+B. By means of this transformation chain we ensure that both
real-time and embedded system concepts are accurately translated. Therefore, the infor-
mation that is lost while transforming is limited to behavioral concepts or to concepts
specific to AADL; they cannot be translated to SaveCCM even by using an ad-hoc trans-
formation. However, without a systematically defined extension process SaveCCM and
AADL could have been bound to two extensions of Ay with potential but unexpressed
similarities. This may lead to the loss of real-time and embedded system concepts.

Figure [§ shows the model
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CruiseActivi < <Composite>> .
u i mangModeManagel matlcally generated for
utchPedalPressed” Models: .
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and threads and then, as can
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Fig. 8. SaveCCM model of the HCI component RT+E+B. and the SaveCCM

component metaclass is linked to the component metaclass of the kernel RT+E. We
clearly have a loss of information when transforming from AADL to SaveCCM. How-
ever, the generated transformations are instrumented to maintain the information which
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is lost so to recover it when transforming back from SaveCCM to AADL. Data, Event,
and EventData ports are linked to the corresponding concepts in RT+E+B, which are
linked in turn with Data, Trigger, and Combined ports of SaveCCM, respectively.
Therefore, the semantics of the modeled ports is maintained when transforming from
AADL to SaveCCM. This is obtained thanks to the kernel hierarchy. Without such a
hierarchy, i.e., by passing directly through Ag, we loose the specific information related
to ports since Ag has only the concept of generic port.

4.2 Discussion

In this section we discuss the following aspects: (i) generalization of the approach, (ii)
its scalability, and (iii) overhead added by the kernel hierarchy to the transformation.

Generalization: the overall approach is applied to the software architecture domain
and specifically to ALs. However, the kernel hierarchy and transformation management
can be easily applied to different domains by simply substituting Ay with a different
root kernel metamodel. The definition of the root kernel metamodel is strategic and re-
quires particular attention. Please refer to the discussion section in [[19] for more details
about the process we followed for defining Ag. Finally, we believe that the proposed ap-
proach could be used as a new “profiling” mechanism able to support the extensibility
mechanisms envisioned by Jacobson and Cook in the UML of the future [20].

Approach Scalability: according to Section [3l a kernel can be extended in several
different ways depending on the specified weaving model. As described in Section[3.2]
some “working” metamodels need to be added to the hierarchy in order to properly
manage the transformations. Thus, from the scalability point of view it is important
to understand the order of magnitude of the hierarchy. As reported in [7]] the number
of available architecture description languages is around 50 or 60. An estimation of
the possible extensions is more difficult to be performed but based on the number of
available ALs we are confident that this will not compromise the approach applicability.

Overhead: the kernel hierarchy adds some overhead to the transformations. In order
to quantify this overhead it is important to understand the operations that need to be
performed during the transformations and to identify the operations that are performed
once forever. In Section[3.2] we explained the need of having a working metamodel and
the procedure to build it. This metamodel and related weaving models are created once
forever. Therefore, this cannot be considered as overhead of the transformation from
one AL to another. The overhead that is added to each transformation from one AL to
another is related to the fact that the transformation is actually a chain of transformations
instead of a direct transformation from one AL to another. Assuming a constant time ¢
for each transformation, the overhead can be quantified as (¢xx) — ¢, where x is the
number of transformations composing the considered chain. In the case study presented
in this work, we used an Intel Pentium D-3.2Ghz, with 4GB DDR-II of RAM, running
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Windows 7 Professional. The generation of the transformation chain and its execution
took less than four seconds with a source AADL model consisting of 603 modeling
elements. The experience we had with the case study was encouraging from the point
of view of the efficiency of the overall approach.

5 Related work

State-of-the-art approaches on ALs interoperability have been discussed in Section
outlining what is missing and then motivating the proposed approach. In this section
we compare our work with existing work in the area of model-driven engineering.

Over the last years a number of work has been proposed to cope with the prob-
lem of tool integration and interoperability in MDE. Such works can be classified into
Transformation-based approaches and Metamodel integration approaches [21]. The
former approaches, like [22/6], propose the adoption of model transformations which
aim to serve as a bridge between the various tools that have to interoperate. In particular,
model transformations are used to transform data required by heterogeneous tools. Dif-
ferently to our work, such approaches rely on manually written transformations defined
with respect to the notations adopted by the considered tools. Metamodel integration
approaches, like [23]], rely on the definition of a common metamodel to establish tool
interoperability. Even though such approaches are similar to our work, they do not pro-
vide mechanisms supporting the extension of the common metamodel.

The problem of interoperability has been tackled also in the context of model-to-
model transformation languages. In [24] the authors propose an approach based on a
Common Intermediate Language to support interoperability between different model
transformation languages. Differently from our approach the authors analyze a set of
well-known transformation languages and identify common characteristics which are
captured in a common metamodel which is not extensible.

In [25] the authors propose an approach based on consistency rules, and bidirec-
tional model transformations to automate the synchronizations of AUTOSAR (Auto-
motive Open System ARchitecture)and SysML (System Modeling Language) model-
sEven though the approach is general and can be applied on any couple of modeling
languages, it differs from our work since the used model transformations which under-
pin the synchronization mechanism are manually written and are not organized in an
extension hierarchy as proposed in this paper.

Going back to the nineties, a family of works have been proposed to exploit a single
formal kernel language to integrate specifications written in different languages. One of
the most prominent work in this family is the one by Jackson and Zave [26] in which Z
is used as a common semantic domain for the composition of partial specifications de-
fined in different languages. The resulting composed specification is then used to check
the consistency of the initial partial specifications. Our goal is quite different since we
consider the kernels hierarchy as an intermediate means for transforming models across
different languages, rather then a way to check their global consistency.
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6 Conclusion and Future Work

Approaches to support architectural interoperability typically choose to organize the
different notations in a star topology with an intermediate central pivot. In a context in
which the set of involved notations cannot be a-priori established, the pivot assumes
the form of a small kernel. Since the transformations are always performed through
the small kernel that can be very abstract, important information can be lost during the
transformation. This calls for kernel extensions. This paper proposes a model-driven
approach to (i) build the extensions and organize them in a hierarchy, (ii) realize the
interoperability (through the hierarchy) by means of model transformations, and (iii)
manage the overall hierarchy. The extension is performed through operators that have
properties that ensure the extension confluence.

We realized a prototype automatizing the overall approach: it is a plugin for Eclipse
that allowed us to perform experiments on some systems. As future work we plan to
release the tool as an open source project and to experiment it on industrial case studies.
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Appendix: Proof of Theorem 1

Let us assume (ad absurdum) that:

= tr(wma, oy, Arxy) = A,
= tr(wma, z,tr(wma, y,Ak.y),x) = A”, and
_ A'#A”

(the symmetric, i.e., tr(Wma, zy, Ak,xy) = A, tr(wma,y, tr(wma,, Ak, ), y) =
A", and A’#A"” will directly follow). This can happen in four cases:

1. a metaclass C exists in A’ and does not in A”. This means that C exists in Ay, in z,
or in y. In case C' exists in Ay, this implies that the application of wm 4, or wma,
deletes it. This is absurd for Property 1. In case C' exists in x or in y, this implies that
WM A,z OF WM 4,4 do not add it during the extension. This is absurd for Property 2.

2. ametaclass C exists in A’ and does notin A’. In case C exists in A, this implies that
wm’ deletes it. This is absurd since the operators that we use in wm’ have to respect
Property 1. In case C exists in zy, this implies that wm’ does not add it during the
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extension. This is absurd since wm' is basically the union of wm 4, , and wm4,, and
then it respects Property 2.

3. a metaclass C' exists both in A’ and A” and these two versions differ on some struc-
tural features, i.e., attributes and references. This can be caused exclusively due to dele-
tion or conflicting additions performed by either wm 4, , and wma,, or wm’. This is
absurd since Property 1 forbids the deletion and Property 3 prevents conflicts.

4. a metaclass C' exists both in A’ and A” and these two versions differ on some parent.
This can be caused by different applications of the inherit operator. This leads to an
absurd since: i) a weaving model cannot delete a class parent for Property 1, ii) the
sequential application of wm4,, and wma,, cannot add class parents in a different
way from wm’ (wm' is the union of wm 4, ,, and wm A,y and its existence ensures that
Property 3 is satisfied).
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Abstract. We study the relation between specifications of component
behaviors and contracts providing means to specify assumptions on en-
vironments as well as component guarantees. We show how a contract
framework can be built in a generic way on top of any specification theory
which supports composition and specification refinement. Our contract
framework lifts refinement to the level of contracts and proposes a notion
of contract composition on the basis of dominating contracts. Contract
composition satisfies a universal property and can be constructively de-
fined if the underlying specification theory is complete, i.e. it offers op-
erators for quotienting and conjoining specifications. We illustrate our
generic construction of contracts by moving a specification theory for
modal transition systems to contracts and we show that a (previously
proposed) trace-based contract theory is an instance of our framework.

1 Introduction

Over the years we have seen a remarkable growth of complexity and size of
software systems. This growth has been possible due to rapid development in
hardware and software technology. Development of software today uses strong
abstraction and encapsulation principles, that allows componentizing systems
into comprehensible units.

This rapid growth of size and complexity of systems has inspired intensive
research into component-oriented design and analysis methods for software. In
the domain of safety critical concurrent software a number of interface theo-
ries have been proposed to this end, starting with the seminal work of Alfaro
and Henzinger [2] devoted to tracking communication errors in discrete systems,
followed by numerous extensions addressing other errors, or other forms of ab-
straction [IJI6/T7]. These include abstract specification of discrete finite-state
systems exploiting may/must modalities [I820[2TI232613334I36], specification
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of systems manipulating complex data [4I8I35], specification of real-time embed-
ded systems and real-time communication protocols [BITIIT424], specification
of randomized and probabilistic systems [12], and modeling of resource usage
[613]. This proliferation of results is both positive and negative. Positive since
it is a sign of fast progress in the field. Negative, because many works appear
similar, yet it is difficult to compare them.

We attempt to develop a synthesis of the existing work in a uniform com-
mon framework. Altogether these theories have led to a shared understanding
of what are the main ingredients of a mature specification theory for behav-
ioral components; namely notions of satisfaction and refinement, together with
composition operators such as conjunction, parallel compositions, and quotients.
Nevertheless, despite this agreement, and despite the algebraic similarity of many
specification theories, no uniform meta-theory exists that would formalize the
abstract structure to enable better comparability of work, and reuse of results,
channeling proliferation into higher quality and impact.

Independently, a number of contract theories, based on assume-guarantee
(AG) reasoning have been developed, with a similar aim of approaching the
compositional design. Contract theories differ from specification theories in that
they strictly follow the principle of separation of concerns. They separate the
specification of assumptions from specification of guarantees, a choice largely in-
spired by early ideas on manual proof methods of Misra, Chandy [30] and Jones
[22], along with the wide acceptance to pre-/post-condition style of specification
in programming [29]. Contract theories exist for discrete systems [T0J25/31] and
probabilistic systems [I5137].

Even though the specification theory, and the contract theory research have
similar objectives, it is not clear so far what the two approaches offer with respect
to each other, and whether their development is making the others complemen-
tary, or superfluous. So our second goal is to understand not only the essential
structure of specification theories, but also their relation to contract theories. All
in all we set off to organize (somewhat) the field of compositional specification
for behavioral components.

We define contracts as pairs, (A, G), where A is a specification of assumptions,
and G is a specification of guarantees. This leads us to our hypothesis that most
specification theories should have enough structure to be used as a basis of an
associated contract theory with explicit assumptions and guarantees. Dually, we
observe that contract theories tend to degenerate to specification theories in the
following simple manner: a specification G is describing the same models as a
contract (tt, G) — so a contract without any assumption. Thus any reasonably
complete contract theory can be used as a specification theory.

We make this intuition formal by developing a meta-theory of specifications
and contracts. First, in Sect. 2l we propose a simple and general axiomatiza-
tion of specification theories, able to capture the algebraic structure of most of
the current specification theories (some frameworks require small adaptation,
because not all of them have been originally developed with a complete set of
operators in mind). Second, we demonstrate in Sect.[Bhow a contract framework
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can be derived from a specification theory, using our abstract constructions. As a
result we are able to instantiate “for free” a contract theory with good properties
of contracts from any specification theory fulfilling our axioms.

Any such derived contract theory is automatically equipped with:

— An implementation and an environment semantics reflecting the set of inter-
faces and environments that satisfy the guarantees and assumptions of the
contract, respectively.

— A refinement relation that allows to compare contracts in terms of sets of
implementations and legal environments.

— A structural composition, which encapsulates contracts for two communi-
cating components into one contract for the composition of the two.

These results follow automatically as soon as the specification theory is equipped
with parallel composition, conjunction, and a quotient of parallel composition.
A number of specification theories have been proposed recently that satisfy our
assumptions. In the course of this paper, we illustrate our general constructions
by moving two specification theories to two contract theories: a simple trace-
based specification theory, in which specifications are represented as sets of runs
or traces (inspired by Benveniste et al. [10]), and as a more detailed example,
we use modal specifications [32] in Sect. @l to derive so-called modal contracts.
All proofs can be found in [5].

We would like to stress that there are many other specification theories that
fit into our framework, for instance, timed specifications [I1], which allow us to
derive “for free” a contract theory for timed systems, which has not yet been
proposed in the literature.

2 Specification Theories

In our study the abstract concept of a specification theory defines rudimentary
properties that should be satisfied by any formal framework for component be-
havior specifications. Given a class . of specifications, a specification theor
includes a composition operator ® to combine specifications to larger ones
Additionally, a specification theory must offer a refinement relation < to relate
“concrete” and “abstract” specifications, i.e. S < T means that S refines T. To
obtain a specification theory, refinement must be compositional in the sense that
it must be preserved by the composition operator.

Formally, a specification theory is a triple (., ®, <) consisting of a class . of
specifications, a parallel composition operator ® : . x . — ¢ and a reflexive
and transitive refinement relation < C .¥ x ., such that for all 5, 5’,T,T' € .,

whenever S’ < Sand T/ < T, then ' @T' < S®T. (A1)

! The composition operator is, in general, partial since it is not always syntactically
meaningful to compose specifications, due to syntactic constraints. In this work,
however, to avoid a lot of technicalities, we will restrict ourselves to total composition
operators — though the theory is easily extendable to partial composition operators.
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The refinement relation induces an equivalence relation = on specifications, by
S =Tifand only if S < T and T < S. The composition operator is commutative
and associative with respect to this equivalence relation.

Obviously, in a top-down design, the requirements for a specification theory
support independent development of components. To a certain extent a specifi-
cation theory supports also bottom-up design, where existing components can
be reused as parts of a larger system architecture, as long as local refinements
are correct and local specifications fit into the context.

Specification theories sometimes come along with an operator /, called quo-
tient, which is dual to parallel composition and which allows to synthesize spec-
ifications: When given a requirement specification T' of the overall system and a
smaller specification S, then the quotient 7'/S is the most general specification
such that S®(T/S) < T. Formally, quotient is a partial operator / : ./ x.% < .%
that satisfies

T/S defined if and only if 3X € ¥ : S®@ X <T. (A2)
If T/S defined, then S® (T/S) < T. (A3)
If T/S defined, then VX € ¥ : S@ X <T — X <T/S. (A4)

When two separate teams independently develop specifications that are intended
to be realized by the same component, then it is useful to have a conjunc-
tion operator A that computes the most general specification that realizes both
specifications (if this is possible). Formally, conjunction is a partial operator
NS xS — & such that

S AT defined if and only if 3X € ¥ : X < Sand X <T. (A5)
If S AT defined, then SAT < Sand SAT <T. (A6)
If SAT defined, then VX € ¥ : X < Sand X <T = X < SAT. (A7)

When a specification theory supports quotient as well as conjunction, then we
call it a complete specification theory.

Example 1. As our running example we revisit the contract framework of Ben-
veniste et al. [10)], for two reasons: first, it uses a simple trace-based language to
represent behavior of components, and specification operators boil down to sim-
ple set operations which we believe helps to understand the abstract requirements
of specification theories; second, we will show that in fact our general construc-
tions applied to this trace-based specification theory exactly results in the contract
framework (in a simplified version) described in [10].

In this simple theory, a global set P of ports is assumed over which components
can communicate by reading and writing port values. The class of specifications
consists of all (possibly empty) subsets of R(P) which is the set of all runs over
P where each run assigns a history of values to the ports in P. For example, a
run could be a function p : R>g — (P — V) from the time domain R>¢ to a
valuation P — V of the ports, for some value set V.

In this setting, refinement is simply defined by set inclusion, composition and
conjunction is intersection (they are the same since we are dealing with a single
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global signature). Note that conjunction is total, as the empty set is also a spec-
ification. For any two specifications T and S, the dual operation to composition,
quotient, is defined by T/S =qep T U S, where = A =4¢; R(P) \ A. Notice that
indeed quotient is the maximal specification X such that S composed with X
refines T, i.e. SNX CT.

In the following we will see that if we apply the general constructions of our
contract framework to the trace-based case we will obtain the contract framework
of Benveniste et al. [10].

3 Building a Contract Framework

For the development of our abstract contract framework, we assume to be given
a specification theory (., ®, <) as defined in the previous section.

3.1 Contracts and Their Semantics

On top of the specification theory we define a notion of a contract which explicitly
distinguishes between assumption and guarantee specifications.

Definition 1. A contract is a pair (4, G) where A, G € .7 are two specifications.

In a contract (A, G), the specification A expresses the assumption on the environ-
ment of the component, whereas the specification G describes the guarantee of
any component implementation to the environment given that the environment
respects the assumption A. For the definition of implementation correctness,
we use a notion of relativized refinement which is derived from the refinement
relation of the underlying specification theory.

Definition 2. Relativized refinement is the ternary relation in &/ X &/ X &
defined as follows: for all S, E,T € .,

S<gpT ifandonlyif VE' ¢ ¥ :E <E — SQE <T®FE.

S <g T intuitively means that S refines T if both are put in any context E’
that refines F; in particular, S ® E < T ® E. The following lemma summarizes
properties of relativized refinement that are easy consequences of the definition.

Lemma 1. Relativized refinement is a preorder, and for all S,E,E'"\T € ¥,
whenever S <g T and E' < E then S <g: T.

The implementation semantics of a contract (A, G) is given by the set of all
specifications that satisfy the contract guarantee G under the assumption A:

[[C]]impl - {I S 5 | I SA G}

This is a significant generalization of pure specification theories where it is usu-
ally assumed that implementations must literally satisfy the specification. The
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environment semantics of the contract (A, G) consists of all (environment) spec-
ifications for (or users of) the component satisfying the assumption A of the
contract:

[Clewe = {E € 7 | E < A}.

In summary, the semantics of a contract is given by both implementation se-
mantics and environment semantics. Two contracts are semantically equivalent,
if they have the same (implementation and environment) semantics.

Example 2. In our trace-based example the relativized refinement S <g T can
be easily shown to be equivalent to SNE C T'; note that all specifications describe
sets of runs over the same global set of ports P.

Our first result is a direct consequence of the definition of a contract and contract
semantics: Whenever one has a correct environment and a correct implementa-
tion of a contract, then their composition is a refinement of the composition of
assumption and guarantee of the contract.

Theorem 1. Let C = (A,G) be a contract. For all E,I € ., if E € [Cleny
and I € [Climp then E®@I < A®G.

The implementation semantics of a contract in general depends on both the
assumption A and the guarantee G. However, if the implementation semantics
of (A, Q) is independent of the assumption A, we say that the contract (4, G)
is in normal form.

Definition 3. A contract C = (A, G) is in normal form if for all specifications
e, I<AaGifandonlyifl <G.

It may be the case that a contract (A,G) can by transformed into a semanti-
cally equivalent contract (4, G™) in normal form by weakening of G to G™. In
the examples considered here the underlying specification theories are powerful
enough to allow such a weakening for any contract (4, G).

Example 3. For a contract (A,G) in our trace-based example, a semantically
equivalent contract in normal form (see [10]) is given by (A,G U =A). It is
indeed in normal form according to our definition since for any specification I,
INACG ifand only if I C GU-A.

3.2 Refinement of Contracts

Next, we turn to the question how contracts can be refined. We follow here
a standard approach inspired by notions of behavioral subtyping [28] that a
contract C’ refines another contract C if C’ admits less implementations than
C, but more legal environments than C.

Definition 4. Let C and C’ be two contracts. The contract C' refines the con-
tract C (is stronger than C), written C" < C, if [C']imp1 € [Climp1 and [C'Jenv 2
[[C]]env-
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The refinement relation between contracts is reflexive and transitive. Obviously,
two contracts C, C’ are semantically equivalent if and only if ' < C and C < (.
The following theorem characterizes contract refinement by contra-/covariant
(relativized) refinement of corresponding assumptions and guarantees.

Theorem 2. Let (A,G) and (A',G") be two contracts. Then (A’',G') = (A, G)
if and only if A< A’ and G' <, G.

An immediate consequence is that whenever two contracts (4, G), (4’,G’) are
in normal form, then (A’,G’) < (4,G) if and only if A < A" and G’ < G.

Example 4. Refinement of contracts (A, G) by (A',G") is called dominance in
[10] (not to be mized up with our notion of dominance later on), and is defined
by A € A" and G' C G which matches our definition of contract refinement
if contracts are in normal form. For the other cases we have achieved a more
thorough (weaker) definition of refinement which we would suggest to use for the
trace-based approach as well.

3.3 Composition of Contracts

When implementations I; and I of individual components are composed, their
composition is only semantically meaningful if the contracts, say Cy, Cs, of the
single components fit together. This mean that there exists a ‘larger’ contract
C which subsumes C; and Cs such that (1) the composition I; ® I is a correct
implementation of C, and (2) each correct environment of C' controls the single
implementations in such a way that they mutually satisfy the assumptions of
the single contracts. Inspired by [31] we call such a contract C' a dominating
contract for C; and Cs.

Definition 5. Let C', Cy, and Cy be contracts. C dominates C7 and Cs if the
following two conditions are satisfied:

1. Any composition of correct implementations of Cy and Cq results in a correct
implementation of the contract C':
— VI € HCI]]impl Vs € [[CQ]]imp] L ®I e [[C]]impl
2. For any correct environment of the contract C1, the composition with a cor-
rect implementation of the Cy (C3) results in a correct environment of Co
(Cy ). Formally, for all E € [Cleny,
- VI € [[Cl]]impl E®I € [[CQ]]GHV7
- VIQ S HC2]]impl E® I2 S [[Cl]]env'

We say that two contracts C1, Cy are dominatible if there exists a contract C'
dominating Cq, Cs.

A composition of two contracts C; and Cs is a strongest dominating contract
for C7 and Cs,.

Definition 6. A contract C is called contract composition of the contracts C
and Cy if

1. C dominates C1 and Cs,
2. for all contracts C', if C' dominates C; and Co then C < C'.
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Contract compositions, if they exist, are unique up to semantic equivalence of
contracts. We will now turn to the questions (1) whether two contracts are
dominatible and (2) whether the composition of two contracts exists and, if so,
whether it can be constructively defined. For this purpose we generally assume in
the following that any contract has a normal form, i.e. for any C' = (A, G) there
exists a semantically equivalent contract C™ = (A™ G™) which is in normal
form. Due to the definition of environment semantics, without loss of generality,
we can always assume in the following that A™ = A.

We consider first question (1), for which the following lemma is useful. It
follows directly from the definition of a dominating contract.

Lemma 2. Two contracts Cy and Cy are dominatible if and only if their normal
forms C™ and CY¥ are dominatible.

The next theorem provides a characterization of dominatability. The idea is
that there must be an environment under which implementations of the single
contracts can be adapted to meet each others assumptions.

Theorem 3. Let Cy = (A1,G1) and Cy = (A, Ga) be two contracts with nor-
mal forms C’ff = (Al,GTf) and C;f = (AQ,G;lf) respectively. Cy and Co are
dominatible if and only if AF € .7 : G?f QR FE < Ay and G;Lf RF < A;y.

We now turn to question (2) from above. For this we assume from now on a
complete specification theory (recall that such a theory has quotient and con-
junction) over which contracts are constructed.

Definition 7. Let C1 = (A1,G1) and Cy = (Az,G2) be two contracts with
normal forms C1 = (Ay,GY) and CJ = (A, GY) respectively. Cy ) Cy is
defined if and only if C1 and Cs are dominatible and then

C1 R Cy =aer ((A1/GH) A (Ag)GT), GV @ G3T).

Note that, by Lemma Bl C; X C5 is semantically equivalent to Cff X C’gf. The
next lemma shows that C7 X Cs is indeed well-defined.

Lemma 3. Let Cy and Cy be two contracts with normal forms as in Def. []
(A1/GHY A (A3)GTY is defined if and only if 3E € . : G @ E < Ay and
G;Lf ® FE < Ay, if and only if C1 and Cy are dominatible.

The next theorem answers question (2) from above.

Theorem 4. If the contracts Cy1 and Cy are dominatible, then C; X Cy is (up
to semantic equivalence) the composition of C1 and Cs.

The next statements deal with the relationship between contract composition
and contract refinement. First, dominance is preserved under refinement of in-
dividual contracts.

Theorem 5. Let Cy,C4,Cy, Ch, C be contracts such that C; < Cy and Cy < Cs.
If C dominates Cy and Cs, then C dominates also C} and C}.
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Second, contract refinement is preserved under contract composition, thus our
contract framework satisfies itself the requirements of a specification theory of
Sect. 2 if we admit partial composition (which has been disregarded in Sect. 2
just for reasons of simplicity).

Theorem 6. Let Cy, Cy, D1, Dy be contracts such that Cy and Cy are dominat-
ible. If Dy = Cy and Dy < Cy then DI R DY < ¢ =7 .

Example 5. In [10], contract composition is defined by
(Al, Gl) X (AQ7 Gg) = ((Al n AQ) U —'(Gl N G2)7 GinN Gz)

Note that the assumption can be reformulated to (A1 U—-G1U—G2)N (A2 U-G1 U
—G3), and since the contracts (A1, G1) and (A2, G2) are in normal form we have
A1 U—-G1 = Ay and Ay U—~Ge = Ay. Hence we get (A1 U—G2) N (A2 U-G1) as
assumption which, all in all, exactly matches our definition of X for contracts.

4 Modal Contracts

To illustrate our general constructions for moving from a specification theory
to contracts, we consider a well-established specification theory based on modal
transition systems that has gained considerable interest in recent years, as it
nicely supports loose specifications together with stepwise refinement. Modal
transition systems [27] are labeled transition systems with two types of transition
relations: may transitions model optional (allowed) behavior that need not be
implemented in a refinement, and must transitions model required behavior.
In [32] a complete specification theory for modal specifications (which correspond
to deterministic modal transition systems) has been defined, which allows us to
get modal contracts for free. Modal contracts have been defined already in [T9/31]
and we will comment on the differences in the next section.

We briefly sketch the specification theory for modal specifications, for a thor-
ough introduction see [32]. A modal specification (MS) is formally defined as
a tuple S = (St,s0,X,--+,—) where St is the set of states, so € St is the
initial state, X' is the set of actions, and --+,— C St x X x St are the may
and must transition relation, respectively, such that — C --». Any MS is re-
quired to be deterministic: for all states s,s’,s” € St and all actions o € X, if
(s,a,8),(s,a,8") € --» then s’ = s”. In the following, we usually write s R
for (s,a, ") € --», and similarly for must transitions.

We consider a simple component-based system consisting of two components:
component Server with contract (Agerver, GServer) Over the action set Xgerper =
{msg, secret msg, auth, send} (i.e. both Agerver, Gserver have the set of actions
Yserver), and a component User with contract (Ayser, G user) over set of actions
Yuser = {auth, send}. The two contracts can be seen in Fig. [[a)—(d). May
transitions are drawn with dashed arrows, and must transitions with solid arrows.
May transitions underlying must transitions are not drawn for simplicity.

The contract (Aserver; Gserver) intuitively expresses the following protocol:
First, the environment can issue a message (msg) that is then sent by the server
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to the user (send). Second, the environment can also issue a secret message
(secret msg), that is only sent to the user if the server receives an authentication
code from the user (auth). More precisely, the assumption Ageryer formulates
the following requirements on the environment:

— The authentication code may always be received.

— New messages (secret or not) are only allowed to be sent in the initial state.

— Once a message is received, the environment must be ready to accept the
sending of the server.

— Once a secret message is received, the authentication code must be received.

The contract (A yser, G user) for the user component is simpler: The guarantee is
that the messages can always be received from the server, however, the sending
of the authentication code may not be possible. The assumption A yse, always
allows the actions auth and send, without any specific order.

,auth :\\auth |
LY -
- ! auth
- o
~ send send
N
secret_msg s,
(a) AUSCT (b) GUSCT (C) AServer
send
I h
send i send M
I "™,
; msg “ - ms
msg \/1—‘\ secret_msg = . =secgret .
5 £ -..‘J send
) N msg /r auth
au
secret_msg E aut secret_msg :ﬁf,fft—msf/
nf
(d) GServe'r (e) GServer
send send
e -
authl_d.."‘ls__‘-‘___)\@ § auth o msq o
(f) ASystcm (g) GSystem

Fig. 1. Modal contracts for a simple message system

Before we discuss how these two modal contracts are composed, we first have
to discuss the underlying specification theory, so refinement together with all
the specification operators for MS. Refinement of MS is defined as follows: an
MS S refines another MS T', written S <,, T, if they have the same set of ac-
tions X and if there exists a relation R C Stg x Sty such that (sg,t9) € R and for
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all (s,t) € R and all @ € X, whenever s --» &' then there exists ¢t --» ¢ and
(s',t') € R, and whenever t —~ ¢ then there exists s — s’ and (s',#') € R. For
instance, in Fig. [l G yser is a refinement of A yger, i.e. Guser <m Auvser-

® Sy — s Sy —2s sh
s1 -2 54 (s1,82) — (81, 5) (s1,82) ==+ (s}, 55)

51T 84 (s1,82) =2 (s, 5) (s1,82) =7 (55, 85)

/ 59— s Sy —2s sh, 59 £ S9 7/—a+
51 — sy (s1,82) LN (s, 85) (s1,82) € 4 (s1,82) € 4
« « « «
51 -+ 8 (s1,82) -= (51,53) (51,52) —=» (81, 85) (51,82) —=» u

s1 /L (s1,82) Y

A 59— s So N sh So 7/99
51— 51 (s1,82) — (8], 85) (s1,82) — (5], ) (s1,52) € 4
« (e}
51 - st (s1,82) = (s, 85) (s1,82) —=» (5], sh)
(67
51 /- (s1,82) € 4

Fig. 2. Transition relations for the specification operators ®, /, A on MS

The specification operators composition, quotient and conjunction are de-
scribed hereafter and we assume that the involved MS always have the same set
of actions. Composition of MS (®) is defined by synchronizing on shared actions.
The rules of ® for MS can be seen in Fig. 2 note that only the synchronization
of two must transition yields a must transition, in all other cases it yields a may
transitionE

The two missing operators quotient and conjunction need some more involved
definition, because both are partial operators. During quotient as well as con-
junction, inconsistencies may arise, however, that does not mean that the whole
result is inconsistent; we instead apply a pruning operator p to remove all those
inconsistent states. More precisely, given an MS S with a set of inconsistent
states 4 C St, the pruned version p(S) gives the largest MS which refines .S but
no state of p(9) is related (in the sense of refinement) to an inconsistent state
in 4. The formal definition of pruning can be found in [32].

With pruning at hand, we can define quotient S1/S2 (as the dual operator to
composition) and conjunction S; A So, as shown in Fig. 2l The set 4 models in
both cases the set of inconsistent states, and in the definition of quotient, the
state u is a new universal state in which, for every action, there is a looping may
transition to the same state u.

2 The notation s /—a-> means that there does not exist s’ such that s -—» s’, and similar
for must transitions.
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For writing down contracts based on MS, it is useful to be able to handle
dissimilar set of actions when applying specification operators, see [32]. Given
an MS S over the set of actions X, and a larger set of actions X’ D X,

— the strong extension of S, written Sy, adds for each new action a € X'\ X
a may and a must loop with that action to all states in S.

— Similar, the weak extension of S, written S5, adds for each new action
(only) a may loop (for all new actions) to all states.

The specification operators are, for the general case, extended to MS with dis-
similar sets of actions as follows. If S and T are two MS with sets of actions Xg
and X7, respectively, and X' = Yg U Xp, then S ® T is defined by S;» ® T4z,
S AT is defined by Spx ATyx, and T'/S is defined by Ty 5/Stx.

Relativized refinement (see Def. Bl), induced by modal refinement, can be
shown to be equivalent with the following direct definition: If S, T, E are MS
over the same set of actions X, then S <pg T if and only if there exists a
relation R C Stg x Sty x St such that (sg,eo,t0) € R, and for all (s,e,t) € R,
alla € X,

1. if s -2» s’ and e -%» ¢’ then there exists ¢ --» ¢/ such that (s',¢/,t") € R,

2. if t %5 ¢/ and e -=» ¢’ then there exists s — s’ such that (s',¢/,') € R.

Every modal contract can be transformed to an equivalent contract in normal
form, by weakening the guarantee by the assumption. It turns out that there is
a direct definition of a so-called weakening operator, that exactly does what we
are looking for: I <4 G if and only if I < A>G, where A>G is the weakening of
G by A. Formally, if A and G are two MS over the same set of actions X, then
Ar G is defined to be the MS ((St 4 x Stg)U{u}, (a0, g0), X, --+, —) where u is
a fresh state (the universal state), and where the transition relations are defined
as shown in the table in Fig. Bl

> g4 g- g g/
« «
a --» a, (a7g) i> (a/agl) (a7g) -2 (a/mgl)
(67 « « «
a /- (a,g) =+ u (a,9) —=»u  (a,g) --»u

Fig. 3. Rules for weakening (>>)

Coming back to the example, the contract (Agerver, Gserver) is obviously not
in normal form, but with the weakening operator at hand, we can transform
the contract to the semantically equivalent contract (AgemeT,Gg];mer) where

g’;mer =def Aserver>G Server, see Fig. As one can see, the normalized con-
tract has lots of additional transitions, and it is often better to draw non-normal
form contracts which are usually considerably smaller. Note that (A yser, G User)

is already in normal form.
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We can finally compose our two contracts. As the watchful reader might have
already noticed, Agerer 1S €xpecting the user to answer in any case with the
authentication code once a secret message is received. But G yse, does not pro-
vide the authentication code because it may be the case that he/she is not
aware of the code. Thus we have an inconsistency arising here, and as a re-
sult of applying quotient and conjunction while building the new (weakest) as-
sumption Agystem = (Aserver/G User) N (AUser/Gg’;mer), one can see in Fig. [
that — as expected — the environment is not allowed to issue a secret message
anymore. The resulting guarantee G gysiem of the composed contract has been
slightly simplified by leaving out some may transitions to a universal state (as
in Ggerver) but the overall contract (Agystem, Gsystem ) i obviously semantically
equivalent to (Asystem gfemer RG USET)E Our theory in Sect. Blnow tells us that
(Asystem s Gsystem ) is indeed the strongest contract that dominates the contract
of the server and the user.

5 Conclusion, Related Work, and Future Work

This paper studies the relationship between specifications of component behav-
iors and contracts. The general framework for contracts is inspired by the work
of Benveniste et al. [10]. They have chosen a trace-based approach to represent
interfaces which (as we have shown) is a specification theory and an instance
of our proposed abstract contract framework. The idea to equip a specification
with implementation and environment semantics has been used by the authors
already in [7] where UML protocol state machines were considered as specifica-
tions of component interfaces.

Modal contracts have already been introduced and investigated in several
previous works, including [IT9/31]. Raclet and Goessler [19] propose an imple-
mentation semantics that is slightly different to ours. In their paper, an imple-
mentation I satisfies a contract (A4, G) if AANT <,,, G whenever AAT is defined,
which is in fact equivalent to our definition of contract satisfaction, but only for
implementations (that are modal specifications where the must and may tran-
sition relations coincide). Our satisfaction relation is more powerful as it works
for arbitrary modal specifications. Refinement and composition is only syntac-
tically defined, without any semantic considerations as we do it in this paper,
hence they lack the universal property for contract compositions. In [31], Quin-
ton and Graf define an abstract framework of contracts which however tends to
be technically overloaded due to the integration of complex composition opera-
tors. Besides this difference, the satisfaction relation of contracts is the same as
in our work. Our notion of (semantic) dominance is inspired by their (syntacti-
cal) definition, but still their work lacks of a careful discussion about dominance
and the universal property of contract composition. In summary, in comparison

3 This “inverse” operation to normalizing contracts is in fact useful when drawing
larger specifications, and can be automatically applied to a (composed) contract to
reduce its number of states and transitions while remaining semantically equivalent.
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to both works [T931], we consider our work as “more semantical” as implemen-
tation and environment semantics of contracts are carefully taken into account
for the definition of contracts and contract operators.

There are various directions for future work. As an example, we have simplified

our setup in this work by ignoring compatibility and consistency issues between
interfaces, although we are convinced that they can be integrated without prob-
lems. Another major objective is to implement our modal contract theory in the
MIO Workbench [9].
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Abstract. SynchAADL2Maude is an Eclipse plug-in that uses Real-
Time Maude to simulate and model check Synchronous AADL mod-
els. Synchronous AADL is a variant of the industrial modeling standard
AADL that supports the modeling of synchronous embedded systems. In
particular, Synchronous AADL can be used to define in AADL the syn-
chronous models in the PALS methodology, in which the very hard tasks
of modeling and verifying an asynchronous distributed real-time system
that should be virtually synchronous can be reduced to the much simpler
tasks of modeling and verifying the underlying synchronous design.

1 Introduction

The Architecture Analysis & Design Language (AADL) [6] is an industrial mod-
eling standard used in avionics, aerospace, automotive, medical devices, and
robotics communities—including Honeywell, Rockwell-Collins, Lockheed Mar-
tin, General Dynamics, Airbus, the European Space Agency, Dassault, EADS,
Ford, and Toyota—to describe an embedded real-time system as an assembly of
software components mapped onto an execution platform.

A number of tools support the formal analysis of different aspects of models
in various fragments of AADL. However, since the components in AADL models
interact asynchronously, their model checking becomes unfeasible even for fairly
small models due to the state space explosion caused by the interleavings.

We therefore define in [I] a variant of AADL, called Synchronous AADL,
for modeling synchronous real-time systems in AADL. This effort was moti-
vated by the observation that many automotive and avionics systems should
be virtually synchronous—that is, conceptually, there is a logical period during
which all components perform a transition and send messages to each other—
that must be realized in a distributed environment with network delays, skewed
local clocks, etc. Together with colleagues at UIUC and Rockwell-Collins, we
have proposed the PALS transformation [3l4], whose key idea is that one can
model and verify the much simpler synchronous design, and PALS then provides
a correct-by-construction distributed asynchronous model. There are also other
transformations relating synchronous and asynchronous systems for distributed
real-time architectures, such as the time-triggered architecture (TTA) [2]. Syn-
chronous AADL makes it possible to define such synchronous models in AADL.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 59-F2] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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The SynchAADL2Maude OSATH]} plug-in is a recent simulation and linear
temporal logic (LTL) model checking tool for Synchronous AADL. The tool
automatically synthesizes a Real-Time Maude [5] model from a Synchronous
AADL model, provides support to conveniently define LTL properties of the
Synchronous AADL model, and performs the Real-Time Maude model checking
within OSATE. This enables a model-engineering process for important classes of
distributed real-time systems that combines the convenience of AADL modeling,
the complexity reduction of PALS and TTA, and formal verification in Real-Time
Maude. We illustrate the use of SynchAADL2Maude in Section 3 with a virtually
synchronous avionics system, whose distributed asynchronous version (even in
very simple settings) has millions of reachable states and cannot be feasibly
model checked, but where the Synchronous AADL model of the corresponding
synchronous PALS design can be verified by our tool in less than a second.

The tool, together with related papers and technical reports, is available at
http://www.cs.illinois.edu/~kbae4/SynchAADL/.

2 Background: Real-Time Maude and Synchronous AADL

Real-Time Maude [5] is a rewriting-logic-based formal specification language
and analysis tool for real-time systems. Real-Time Maude provides simulation
capabilities, as well as (unbounded and time-bounded) explicit-state reachability
analysis and LTL and timed CTL model checking.

The Synchronous AADL modeling language [I] supports the modeling of syn-
chronous designs in AADL, including both synchronous PALS designs and other
synchronous designs that can be mapped onto different distributed real-time ar-
chitectures. Synchronous AADL is an annotated sublanguage of AADL, identi-
fying a set of AADL models that can be considered as synchronous, and adding a
property set SynchAADL to declare Synchronous AADL-specific properties. Since
Synchronous AADL is intended to model synchronous designs, it disregards the
hardware and scheduling features of AADL and focuses on the behavioral and
structural subset of AADL, namely, hierarchical system, process, and thread
components, ports and connections, and thread behaviors defined in the behav-
ior annex standard. The formal Real-Time Maude semantics of Synchronous
AADL is defined in [I].

3 Using the SynchAADL2Maude Tool

We exemplify the use of the SynchAADL2Maude tool with an avionics system
developed by Steve Miller and Darren Cofer at Rockwell-Collins [4]. In integrated
modular avionics, there are multiple physically separated cabinets on the aircraft
so that physical damage does not take out the computer system. The active
standby system considers the case of two cabinets and focuses on the logic for
deciding which side is active. The architecture of the system is shown in Figure[ll

! The OSATE modeling environment provides a set of Eclipse plug-ins for AADL.
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(n . N
ActiveStandbySystem.impl SynchAADL::Synchronous => true
SynchAADL::SynchPerod =>2ms
( env: Environment.impl j
side1Failed side1FullyAvail side2FullyAvail side2Failed
) L,:},;
‘—f
sideOne: manualSelecion sideTwo:
Side1.impl m Side2.impl
LI
side1ActiveSide
H
side2ActiveSide

Fig. 1. The architecture of the active standby system

In SynchAADL2Maude, the properties to be verified are managed by an XML
file. One important property that the system should satisfy is that if a side is
failed, the other side should become active. Side i has failed if it has received the
value true in its sideiFailed port. Using the predefined proposition value of
port in component thread is v, the formula sideiFailed can be defined as follows:

<definition> <name> sidelFailed</name>
<value>value of sidelFailed in component MAIN->sideOne->sideProcess->sideThread is true
</value>

</definition>

The formulas sideiActive are defined in the same way. The LTL property to be
verified is then declared by the command tag as follows (where ‘~’, ‘=>’, ‘[1’, and
‘0’ denote, resp., negation, implication, and the “always” and “next” operators):

<command> <name>R4</name>
<value type="1t1"> [] (((sidelFailed /\ ~side2Failed) -> 0 ("~ side2Failed -> side2Active)) /\
((side2Failed /\ ~sidelFailed) -> 0 ("~ sidelFailed -> sidelActive)))
</value>
</command>

Figure [2] shows the SynchAADL2Maude window for the active standby sys-
tem. The Constraints Check, Code Generation, and Perform Verification
buttons are used to, respectively, check whether a model is a valid Synchronous
AADL model, generate the corresponding Real-Time Maude model, and model
check the LTL properties given by the XML property file and shown in the
“AADL Property Requirement” table. The results of the model checking are
shown in the “Maude Console.” Counterexamples from the LTL model checking
are presented in a reasonably intuitive and concise way.

We have verified each requirement of the Synchronous AADL model of the
active standby system, which has 203 reachable states, in 0.6 seconds on an Intel
Xeon 2.93 GHz with 24GB RAM. As shown in [3], where we define directly in
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Fig. 2. SynchAADL2Maude window in OSATE

Real-Time Maude models of both the synchronous and the asynchronous design
of the active standby system, it is unfeasible to model check the corresponding
asynchronous design: the simplest possible asynchronous model—with no mes-
sage delays, no execution times, and perfect local clocks—has 3,047,832 reachable
states and its model checking takes 1,249 seconds. If the message delay can be
either 0 or 1 then no model checking terminates in reasonable time.
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Abstract. We address the problem of ensuring that, when an application execut-
ing a service binds to a service that matches required functional properties, both
the application and the service can work together, i.e., their composition is con-
sistent. Our approach is based on a component algebra for service-oriented com-
puting in which the configurations of applications and of services are modelled
as asynchronous relational nets typed with logical interfaces. The techniques that
we propose allow for the consistency of composition to be guaranteed based on
properties of service orchestrations (implementations) and interfaces that can be
checked at design time, which is essential for supporting the levels of dynamicity
required by run-time service binding.

1 Introduction

Inrecent years, several proposals have been made to characterise the fundamental struc-
tures that support service-oriented computing (SOC) independently of the specific lan-
guages or platforms that may be adopted to develop or deploy Web services. In this
paper, we contribute to this effort by investigating the problem of ensuring that, when
an application executing a service binds to a service that it requested, the result is con-
sistent, i.e., both the executing service and the service to which it binds can operate to-
gether in the sense that there is a trace that represents an execution of both. In particular,
we show how consistency can be checked based on properties of service orchestrations
(implementations) and interfaces that can be established at design time. Checking for
consistency at discovery time would not be credible because, in SOC, there is no time
for the traditional design-time integration and validation activities as the SOA middle-
ware brokers need to discover and bind services at run time.

In order to formulate a notion of consistency and the conditions under which it can be
ensured in a way that is as general as possible, i.e., independently of any particular or-
chestration model (automata, Petri-nets, and so on), we adopt a fairly generic model of
behaviour based on traces of observable actions as executed by implementations of ser-
vices in what are often called ‘global computers’ — computational infrastructures that
are available globally and support the distributed execution of business applications.
More precisely, we build on the asynchronous, message-oriented model of interaction
that we developed in [[LO] over which interfaces are defined as temporal logic spec-
ifications. That is, instead of a process-oriented notion of interface (which prevails in

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 63— 2012.
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most approaches to service orchestration and choreography), we adopt a declarative one
that follows in the tradition of logic-oriented approaches to concurrent and distributed
system design (as also adopted in [§] for component-based design). One advantage of
this approach is that we are able to distinguish between what can be checked at design
time to ensure consistency of binding (based on implementations) and what needs to be
checked at discovery (run) time to ensure compatibility (based on interfaces).

Having this in mind, in Section 2] we introduce some basic definitions around trace-
based models of behaviour and revisit and reformulate, in a more general setting, the
notion of asynchronous relational net (ARN) proposed in [10]. In Section[3l we define
consistency and prove a sufficient condition for the composition of two consistent ARNs
to be consistent, which is based on the notion of safety property. Finally, in Section [4]
we discuss which logics support interfaces for ARNs that implement safety properties
and propose one such logic that is sufficiently expressive for SOC.

Related work. Most formal approaches that have been proposed for either service
choreography or orchestration are process-oriented, for example through automata, la-
belled transition systems or Petri-Nets. In this context, several notions of compatibility
have been studied aimed at ensuring that services are composable. Compatibility in this
context may have several different meanings. For example, [16] addresses the problem
of ensuring that, at service-discovery time, requirements placed by a requester service
are matched by the discovered services — the requirements of the requester are formu-
lated in terms of a graph-based model of a protocol that needs to be simulated by the
BPEL orchestration of any provided service that can be discovered. That is, compati-
bility is checked over implementations. However, one has to assume that the requester
has formulated its requirements in such a way that, once bound to a discovered service
that meets the requirements, its implementation will effectively work together with that
of the provided service in a consistent way — a problem not addressed in that paper.

A different approach is proposed in [6] where compatibility is tested over the in-
terfaces of services (not their implementations), which is simpler and more likely to
be effective because a good interface should hide (complex) information that is not
relevant for compatibility. A limitation of this approach is that it is based on a (syn-
chronous) method-invocation model of interaction: as argued in [13]], web-service com-
position languages such BPEL (the Business Process Execution Language [20]) rely
on an (asynchronous) message-passing model, which is more adequate for interactions
that need to run in a loosely-coupled operating environment. An example of an asyn-
chronous framework is the class of automata-based models proposed in [S{7!11], which
is used for addressing a number of questions that arise in choreography, namely the
realisability of conversation protocols among a fixed number of peers in terms of the
local behaviour generated by implementations of the peers. Our interest is instead in
how dependencies on external services that need to be discovered can be reflected in
the interface of a peer and in determining properties of such interfaces that can guaran-
tee that the orchestration of the peer can bind to that of a discovered service in a way
that ensures consistency of the joint behaviour.

In this respect, the notions of interface that are proposed in [6] do not clearly sepa-
rate between interfaces for clients of the service and interfaces for providers of required
external services, i.e., the approach is not formulated in the context of run-time service
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discovery and binding. Furthermore, [6] does not propose a model of composition of
implementations (what is called a component algebra in [8]) so one has to assume that
implementations of services with compatible interfaces, when composed, are ‘consis-
tent’. The interface and component algebra that we proposed in [L0] makes a clear dis-
tinction between interfaces for services provided and services requested. Our model,
which extends the framework proposed by de Alfaro and Henzinger for component-
based systems [8]], is based on an asynchronous version of relational nets adapted to
SCA (the Service Component Architecture [[17]]) and defines a component algebra that
is is compositional in relation to the binding of required with provided service interfaces.
The purpose of this paper is precisely to formulate a notion of consistency at the level
of the component algebra through which one can ensure, at design time, that matching
required with provided services at the interface level leads to a consistent implementa-
tion of the composite service when binding the implementations of the requester and
the provider services.

2 Asynchronous Relational Nets

2.1 Trace-Based Models of Behaviour

The processes that execute in SOC are typically reactive and interactive. Their be-
haviour can be observed in terms of the actions that they perform. For simplicity, we use
a linear model, i.e., we observe streams of actions (which we call segments). In order
not to constrain the environment in which processes execute and communicate, we take
traces that capture complete behaviours to be infinite and we allow several actions to
occur ‘simultaneously’, i.e. the granularity of observations may not be so fine that we
can always tell which of two actions occurred first. Observing an empty set of actions
in a trace reflects an execution step during which a process is idle, i.e., a step performed
by the environment without the involvement of the process.

More precisely, given a set A (of actions), a trace A over A is an element of (24)
i.e., an infinite sequence of sets of actions. We denote by A(7) the i-th element of A,
by \; the prefix of \ that ends at \(i), and by A\’ the suffix of X that starts at A(i). A
segment over A is an element of (2‘4)*, i.e., a finite sequence of sets of actions. We use
T to mean that the segment 7 is a prefix of A. Given A’C A, we denote by (7-A’) the
segment obtained by extending 7 with A’.

w
’

Definition 1 (Property and Closure). Let A be an alphabet.
— A property A over A is a subset of (24)”.
- Given AC(24)%, we define AT = {we(24)": IN€A(m<\)} — the set of prefixes
of traces in A, also called the downward closure of A.
— Given AC(24)”, we define A = {\&(24)": Va<\(r€Al)} — the set of traces
whose prefixes are in A, also called the closure of A.
— A property A is said to be closed iff A D A.

The closure operator is defined according to the Cantor topology on (24)“ used in
[1]] for characterising safety and liveness properties (see also [4]). In that topology, the
closed sets are the safety properties (and the dense ones are the liveness properties).
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Functions between sets of actions, which we call alphabet maps, are useful for defin-
ing relationships between individual processes and the networks in which they operate.
Alphabet maps induce translations that preserve and reflect closed properties:

Proposition and Definition 2 (Translation). Let 0: A—B be a function (alphabet map).

For every N €(2B)%, we define \N'|,€(24)“ pointwise as N |, (i)=c"1 (N (i)).
For every set AC(24)%, we define o(A) = |, " (A) = {Ne€(2B)* : N|,€A}.
For every closed property A over A, o(A) is a closed property over B.

For every closed property A" over B, A'|, is a closed property over A.

Notice that every alphabet map o defines a contravariant translation |, between traces
by taking the inverse image of the set of actions performed at each step.

2.2 Asynchronous Relational Nets

In this section, we revisit the component algebra proposed in [10] based on the notion
of asynchronous relational net (ARN). The main difference is that, where in [10] we
formalised ARNs in terms of logical specifications, we are now interested in behaviours
(model-theoretic properties) so that we can define and analyse consistency in logic-
independent terms. We revisit specifications in the context of interfaces in Sec. [l

In an asynchronous communication model, interactions are based on the exchange
of messages that are transmitted through channels. We organise messages in sets that
we call ports: a port is a finite set (of messages). Ports are communication abstractions
that are convenient for organising networks of processes as formalised below.

Every message belonging to a port has an associated polarity: — if it is an outgoing
message (published at the port) and T if it is incoming (delivered at the port). There-
fore, every port M has a partition M~ U M ™. The actions of sending (publishing) or
receiving (being delivered) a message m are denoted by m! and mj, respectively. In the
literature, one typically finds m? for the latter. In our model, we use m? for the action of
processing the message and my, for the action of discarding the message: as discussed
later, processes cannot refuse the delivery of messages but they should be able to discard
them, for example if they arrive outside the protocol expected by the process.

More specifically, if M is a port:

— Given meM ~, the set of actions associated with m is 4,,, = {m!}.
- Given meM™, A, = {mj,m?,my}
— The set of actions associated with M is Apr = J,,,cps Am-

A process consists of a finite set v of mutually disjoint ports — i.e., each message that
a process can exchange belongs to exactly one of its ports — and a non-empty property
Aover Ay = Uyc ., Anr defining the behaviour of the process.

Interactions in ARNs are established through channels. A channel consists of a set
M of messages and a non-empty property A over the alphabet Ay;={m!, m; :meM}.
Channels connect processes through their ports. Given ports M7 and M5 and a chan-
nel (M, A), a connection between M7 and M via (M, A) consists of a pair of injective
maps j1;: M — M; such that p; ' (M) = pjfl(Mj*), {i,7}={1,2} —i.e., aconnection

(3
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establishes a correspondence between the two ports such that any two messages that are
connected have opposite polarities. Each injection p; is called the attachment of M to
M;. We denote the connection by the triple (M #1 M 2 My, A).

Definition 3 (Asynchronous relational net). An asynchronous relational net (ARN) o
consists of:

— A simple finite graph (P, C') where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.
— A labelling function that assigns a process (v, Ap) to every node p and a connec-
tion (., A.) to every edge c such that:
o If c={p,q} then 7. is a pair of attachments (M, ¥* M. 4 M,) for some
My and Mgey,.
o If Yipqy=(Mp k2 My gy 4 M) and yp gy =(M;, 2 My gy Haf M) with
q # ', then My, # M,

We also define the following sets:

- A, = p. A, is the language associated with the node p.

- A, = Upe p Ap is the language associated with c.

— A.=(p. opp, q. opg)(Anr, ) is the language associated with ~v.:( My, #» M. "4 M,).
- Ao = {Ae(24): VpeP(\|,€4,) AVceC (M| .€A,)}

We often refer to the ARN through the quadruple (P, C,~y, A) where v returns the set
of ports of the processes that label the nodes and the pair of attachments of the connec-
tions that label the edges, and A returns the corresponding properties. The fact that the
graph is simple — undirected, without self-loops or multiple edges — means that all
interactions between two given processes are supported by a single channel and that no
process can interact with itself. The graph is undirected because, as already mentioned,
channels are bidirectional. Furthermore, different channels cannot share ports.

We take the set /A, to define the set of possible traces observed on oo — those traces
over the alphabet of the ARN that are projected to traces of all its processes and chan-
nels. The alphabet of A, is itself the union of the alphabets of the processes involved
translated by prefixing all actions with the node from which they originate.

Notice that nodes and edges denote instances of processes and channels, respectively.
Different nodes (resp. edges) can be labelled with the same process (resp. channel), i.e.,
processes and channels act as fypes. This is why it is essential that, in the ARN, it
is possible to trace actions to the instances of processes where they originate (all the
actions of channels are mapped to actions of processes through the attachments so it is
enough to label actions with nodes).

In general, not every port of every process (instance) of an ARN is necessarily con-
nected to a port of another process. Such ports provide the points through which the
ARN can interact with other ARNSs. An interaction-point of an ARN a = (P, C, v, A)
is a pair (p, M) such that p€ P, M €+, and there is no edge {p, ¢}€C labelled with a
connection that involves M. We denote by I, the collection of interaction-points of a.

Interaction-points are used in the notion of composition of ARNs [[10]]:
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Proposition and Definition 4 (Composition of ARNs). Let oy = (Py,Ci, 71, A1)
and oy = (P, CQ,’yQ,A2> be ARNs such that Py and P» are disjoint, and a fam-
ily wi = (Mi# M P2 MW (i = 1...n) of connections for interaction-points
(i, M) of an and (ph, M3) of oz such that pi # pi if i # j and ph # ph if i # j. The

composition
i=1l...n

o || o

pi, M), w (ph, Mj)

is the ARN whose graph is (Py U P,,C1 UCy U,_, ,,{pi,ps}) and whose labelling
function coincides with that of a1 and oo on the corresponding subgraphs, and assigns
to the new edges {p', ps} the label w*.

In order to illustrate the notions introduced in the paper, we consider a simplified bank
portal that mediates the interactions between clients and the bank in the context of dif-
ferent business operations such as the request of a credit. Fig. [l depicts an ARN with
two interconnected processes that implement this business operation. Process Clerk is
responsible for the interaction with the environment and for making decisions on credit
requests, for which it relies on an external process Risk Evaluator that is able to eval-
uate the risk of the transaction. The graph of this ARN consists of two nodes c:Clerk
and e:Risk Fvaluator and an edge {c, e}:w.. where:
— Clerk is a process with two ports: L. and R.. In port L., the process receives mes-
sages credit Req and accept and sends approved, denied and transferDate. Port
R, has outgoing message get Risk and incoming message riskV alue. The Clerk’s
behaviour is as follows: immediately after the delivery of the first credit Req mes-
sage on port L., it publishes get Risk on R.; then it waits five time units for the
delivery of riskV alue, upon which it either publishes denied or approved (we
abstract from the criteria that it uses for deciding on the credit); if riskV alue does
not arrive by the deadline, Clerk publishes denied on L.; after sending approved
(if ever), Clerk waits twenty time units for the delivery of accept, upon which it
sends transferDate; all other deliveries of creditReq and accept are discarded.
The property that corresponds to this behaviour is denoted by A, in Fig.[1l
— RiskEvaluator is a process with a single port (L.) with incoming message request
and outgoing message result. Its behaviour is quite simple: every time request is
delivered, it takes no more than three time units to publish result. The property
that corresponds to this behaviour is denoted by A, in Fig.[1l
— The port R. of Clerk is connected with the port L. of RiskEvaluator through
Wee:(Re #e {m,n} Hs L., Ay), with ue={m — getRisk,n — riskValue},
te={m — request,n — result}. The corresponding channel is reliable: it en-
sures to delivering get Risk, which RiskEvaluator receives as request, and it en-
sures to delivering result, which Clerk receives as riskV alue, both without any
delay. The property that corresponds to this behaviour is denoted by A,, in Fig.[Il

3 Consistency

An important property of ARNs, and the one that justifies this paper, is consistency:
Definition 5 (Consistent ARN). An ARN « is said to be consistent if A, is not empty.
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creditReq Clerk ] Re Le [ RiskEvaluator
approved [ : request © -
denied! ‘ (o1 QeRisK quest | é.}:‘
acoept | A, | P TTISKVaIUe fesu <! Aq
transferDate |
| AW l

Fig. 1. An example of an ARN with two processes connected through a channel

Consistency means that the processes, interconnected through the channels, can co-
operate and generate at least a joint trace. Naturally, one cannot expect every ARN to be
consistent as the interference established through the connections may make it impos-
sible for the processes involved to make progress together. Therefore, some important
questions, which this paper attempts to answer, are: How can one check that an ARN
« is consistent without calculating the set A,? How can one guarantee that the com-
position of two consistent ARNSs is consistent based on properties of the ARNs and the
interconnections that can be checked at design time?

In order to answer these questions, we are going to discuss a related property: the abil-
ity to make (finite) progress no matter the segment that the ARN has executed, which
we call progress-enabledness. We show that, for certain classes of ARNSs, progress-
enabledness implies consistency. We also provide sufficient conditions for the com-
position of two progress-enabled ARNs to be progress-enabled that can be checked at
design time.

3.1 Progress-Enabled ARNs

Consistency is about infinite behaviours, i.e., it concerns the ability of all processes and
channels to generate a full joint trace. However, it does not guarantee that, having en-
gaged in a joint partial trace (finite segment), the processes can proceed: it may happen
that a joint partial trace is not a prefix of a joint (full) trace, which would be undesir-
able as it is not possible for individual processes to anticipate what other processes will
do — as discussed in Sec.[d] interconnections in the context of SOC are established at
run time based on interfaces that capture what processes do, not how they do it. This
is why, in [10], we introduced another useful property of ARNSs: that, after any joint
partial trace, a joint step can be performed.

Definition 6 (Progress-Enabled ARN). For every ARN «, let
I, = {me24=": VpeP(n|,€AL) N VeeC (n|.€AL)}
We say that « is progress-enabled iff Vrell,. JACA, (- A)ell,.

The set I, consists of all the partial traces that the processes and channels can
jointly engage in. Notice that, as long as the processes and channels involved in « are
consistent, /1, is not empty: it contains at least the empty trace!

Therefore, by itself, being progress-enabled does not guarantee that an ARN is con-
sistent: moving from finite to infinite behaviours requires the analysis of what happens
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‘at the limit’. A progress-enabled but inconsistent ARN guarantees that all the processes
and channels will happily make joint progress but at least one will be prevented from
achieving a successful full trace at the limit. Therefore, it seems justifiable that we look
for a class of ARNSs for which being progress-enabled implies consistency, which we do
in the next subsection. However, in relation to the points that we raised at the beginning
of this section, we still need to show that, by investigating a stronger property (being
progress-enabled and consistent), we have not made the questions harder to answer.

In [10], we also identified properties of ARNs and channels that guarantee that the
composition of two progress-enabled ARNS is progress-enabled: that processes are able
to buffer incoming messages, i.e., to be ‘delivery-enabled’, and that channels are able
to buffer published messages, i.e., to be ‘publication-enabled’.

Definition 7 (Delivery-enabled). Let a=(P, C,~, A) be an ARN, (p, M )€1, one of its
interaction-points, and D, ypy={p.m: meM™}. We say that « is delivery-enabled in
relation to (p, M) if, for every (m-A)€ll, and BC Dy, pry, (m-B U (A\D p, ary)) €11 o

That is, being delivery-enabled at an interaction point requires that any joint prefix of
the ARN can be extended by any set of messages delivered at that interaction-point.
Note that this does not interfere with the decision of the process to publish messages:
BU(A\D;, rry)) retains all the publications present in A. Also notice that accepting
the delivery of a message does not mean that a process will act on it; this is why we
distinguish between executing a delivered message (m?) and discarding it (my,). For
example, the processes Clerk and RiskFvaluator informally described in Sec.
define, individually, atomic ARNS that are delivery-enabled: they put no restrictions on
the delivery of messages.

Definition 8 (Publication-enabled). Let h=(M A) be a channel and E;, = {m/! :
m € M}. We say that h is publication-enabled iff, for every (n-A)€Af and BCE},, we
have 7-(BU(A\E},))€At.

The requirement here is that any prefix can be extended by the publication of any set
of messages, i.e., the channel should not prevent processes from publishing messages.
Notice that this does not interfere with the decision of the channel to deliver messages:
(BU(A\ E},)) retains all the deliveries present in A. An example is the channel used in
Fig.[[l which we informally described in Sec.2.21

These two properties allow us to prove that the composition of two progress-enabled
ARNS is progress-enabled [10]:

i=1l...n

Theorem 9. Let o= (a3 | |< ag) be a composition of progress-enabled

p’ivj\/[i>1wi7<p;7M;> . .
ARNs where, for eachi = 1...n, w' = (M] 'Lf_zl M 'LLZ% M3, AV, If, for each i=1...n,
ay is delivery-enabled in relation to (p%,M?), ag is delivery-enabled in relation to
(ph,M3) and hi=(M?* A%) is publication-enabled, then « is progress-enabled.

3.2 Safe ARNs

The class of ARNs for which we can guarantee consistency are those that involve only
closed (safety) properties (cf. Def.[I). As discussed above, progress-enabledness guar-
antees that all the processes and channels can progress by making joint steps but does
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not guarantee that successful full traces will be obtained at the limit. Choosing to work
with safety properties essentially means that ‘success’ does not need to be measured at
the limit, i.e., checking the ability to make ‘good’ progress is enough.

From a methodological point of view, restricting ARNSs to safety properties is justi-
fied by the fact that, within SOC, we are interested in processes whose liveness prop-
erties are bounded (bounded liveness being itself a safety property). This is because,
in typical business applications, one is interested only in services that respond within a
fixed (probably negotiated) delay. In SOC, one does not offer as a service the kind of
systems that, like operating systems, are not meant to terminate

Definition 10 (Safe processes, channels and ARNS). A process (v, A) (resp. channel
(M, A)) is said to be safe if A is closed. A safe ARN is one that is labelled with safe
processes and channels.

Proposition 11. For every safe ARN «, A, is a closed (safety) property.

Proof. A, is the intersection of the images of the properties of the processes and chan-
nels associated with the nodes and edges of the graph. According to Prop. [2 those
images are safety properties. The result follows from the fact that an intersection of
closed sets in any topology is itself a closed set.

Theorem 12 (Consistency). Any safe progress-enabled ARN is consistent.

Proof. Given that the processes and channels in a safe ARN are consistent, I1,, (cf. Def.
[6)) is not empty (it contains at least the empty segment €). I1,, can be organised as a tree,
which is finitely branching because A, is finite. If the ARN is progress-enabled, the tree
is infinite. By Konigs lemma, it contains an infinite branch \.

We now prove that A€ A, i.e., N|,€A, for all p€ P and \|.€A. for all ceC. Let
pEP and w < A|p. We know that w is of the form 7’|, where 7' €I1,,. Therefore, WEA;:.
It follows that \|,€Ap,. Because A, is closed, we can conclude that \|,€Ap,. The same
reasoning applies to all channels.

Note that, in the case of non-safe ARNs, being progress-enabled is a necessary but
not sufficient condition to ensure consistency. For example, consider the following two
processes: P recurrently sends a given message m and () is able to receive a message n
but only a finite, though arbitrary, number of times. If these processes are interconnected
through a reliable channel that ensures to delivering n every time m is published, it is
easy to conclude that the resulting ARN is not consistent in spite of being progress-
enabled: after having engaged in any joint partial trace, both processes and the channel
can proceed (@ will let the channel deliver  once more if necessary); however, they are
not able to generate a full joint trace because P will want to send m an infinite number
of times and @ will not allow the channel to deliver n infinitely often.

Because the composition of safe ARNs through safe channels is safe, Theo.[Qlcan be
generalised to guarantee consistency of composition:

Corollary 13 (Consistency of composition). The composition of safe progress-
enabled ARNs is both safe and progress-enabled (and, hence, consistent) provided
that interconnections are made through safe publication-enabled channels and over
interaction-points in relation to which the ARNs are delivery-enabled.
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It remains to determine how ARNSs can be proved to be safe, progress-enabled, and
delivery-enabled in relation to interaction points, and channels to be safe and
publication-enabled. In this respect, another important result (see [[10] for details) is
that the composition of two ARNSs is delivery-enabled in relation to all the interaction-
points of the original ARNs that remain disconnected and in relation to which they
are delivery-enabled. Therefore, because every process defines an (atomic) progress-
enabled ARN (by virtue of being consistent), the proof that an ARN is progress-enabled
can be reduced to checking that individual processes are delivery-enabled in relation
to their ports and that the channels are publication-enabled. On the other hand, en-
suring that processes and channels are safe relates to the way they are specified and
implemented.

All these questions are addressed in the next section, where we also discuss how
service interfaces should be specified in the context of orchestrations that are safe and
progress-enabled. In particular, we show that all the properties that can guarantee con-
sistent composition can be checked at (process/channel) design time, not at (ARN) com-
position time (which, in SOC, is done at run time).

4 Interface Specifications for Safe ARNs

4.1 Interfaces and Orchestrations

Making the discovery and binding of services to be based on interfaces, not implemen-
tations, has the advantage of both simplifying those processes (as interfaces should offer
a more abstract view of the behaviour of the services) and decoupling the publication
of services in registries from their instantiation when needed. In [[L0] we proposed an
interface theory for ARNs based on linear temporal logic (LTL), which distinguishes
between provides- and requires-points:

— A provides-point r consists of a port M, together with a consistent set of sentences
@, over Ay, that express what the service offers to any of its clients.

— A requires-point r consists of a port M, and a consistent set of sentences ¢, over
Ajpy, that express what the service requires from an external service, together with
a consistent set of sentences ¥,. over {m!, mj: meM,} that express requirements
on the channel through which it expects to interact with the external service.

— Matching a requires-point of a service interface with a provides-point of another
service interface amounts to checking that the specification of the latter entails that
of the former.

In Fig. 2] we present an example of an interface for a credit service using a graphical
notation similar to that of SCA. On the left, we have a provides-point Customer and,
on the right, a requires-point IRiskEvaluator. The set of sentences @, in the logic
discussed in the next subsection, specifies the service offered at Customer:

- (creditReq; R (creditReq; D <C<io(approved! V denied!))) — either approved
or denied are published within ten time units of the first delivery of credit Regq.

- O(approved! D (accepti R<ao (accept; D O<atransferDate!))) — if accept
is received within twenty time units of the publication of approved, transferDate
will be published within 2 time units.
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The specification @, of IRiskEvaluator requires the external service to react to
the delivery of every request by publishing result in no more than four time units:
O(request; D O<qresult!).

The connection with the external service is required to ensure that messages are
transmitted immediately to the recipient.

‘ IBankCreditService

Customer creditReq | & | IRiskEvaluator
approved' ! i RiskID( X .
t fdeBietdi 3 getRisk| 2! C(getRisk!>Orequest;) 3; Hequleg
ransferDate riskValue | - < iresult
accepti i o O(result! >OriskValue) L D,
o, ¥

Fig.2. An example of a service interface

An ARN orchestrates a service-interface by assigning interaction-points to interface-
points in such a way that the behaviour of the ARN validates the specifications of the
provides-points on the assumption that it is interconnected to ARNs that validate the
specifications of the requires-points through channels that validate the corresponding
specifications. Notice that ensuring consistency is essential because an interconnec-
tion that leads to an inconsistent composition would vacuously satisfy any specification
(there would be no behaviours to check against the specification).

Therefore, in order to check that an ARN « orchestrates a service-interface I:

1. For every requires-point r of I, we consider an ARN «,. defined by a single process
(M,, A,y where A, is a safety property that validates @, and makes «,. delivery-
enabled in relation to r, which is representative of the safe and progress-enabled
ARN s that can be interconnected at r, i.e., that provides a ‘canonical’ orchestration
of a service that offers a provides-point that matches 7.

2. For every requires-point r of I, we consider a channel ¢,=(M,., A,.) where A, is a
safety property that validates ¥,. and makes the channel publication-enabled, which
represents the most general channel that can be used for interconnecting an orches-
tration with an external service. )

3. We consider the composition a* of o with all the «, via (M), <0—T M, iq M., )
where p, is the interaction-point of « that corresponds to the requires-point r
through the mapping 0,.: M P — M, (for every port M, we denote by M °P the port
defined by M°PT=M~ and M°P~=M™).

4. For « to orchestrate the interface I we require that Ags|a v, F @ for every
provides-point  of I. Notice that A,+|4,, is the projection of the traces of the
composed ARN on the alphabet of the provides-point  which, by Prop. 2] is a
safety property.

The question now is how to choose such canonical processes (M, A,) (and chan-
nels). Typically, in logic, the collection Ag, of all traces that validate @, (¥, in the
case of channels) would meet the requirement because any other ARN would give rise
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to fewer traces over Ay . However, if we want to restrict ourselves to processes and
channels that are safe, one has to choose interfaces in the class of specifications that
denote safety properties, i.e., for which Ag_ is closed. For example, not every specifi-
cation in LTL is in that class. The same applies to provides-points because, by Prop.[2l
Aax |4y, is a safety property. In this case, because the properties offered in a provides-
points derive from the ARN that orchestrates the interface, we would need to be able
to support the development of safe processes and channels from logical specifications.
Therefore, we need to discuss which logics support that class of specifications.

4.2 A Logic of Safety Properties

Several extensions of LTL (e.g., Metric Temporal Logic — MTL [14]) have been pro-
posed in which different forms of bounded liveness can be expressed through eventu-
ality properties of the form < ¢ where I is a time interval during which ¢ is required
to become true. Another logic of interest is PROMPT-LTL [[15] in which, instead of a
specific bound for the waiting time, one can simply express that a sentence ¢ will be-
come true within an unspecified bound — &p¢. Yet another logic is PLTL [3]] in which
one can use variables in addition to constants to express bounds on the waiting time and
reason about the existence of a bound (or of a minimal bound) for a response time.
The logic we propose to work with, which we call SAFE-LTL, is a ‘safety’ fragment
of LTL — positive formulas with ‘release’ and ‘next’ — which corresponds to the
fragment of PLTL where intervals are finite and bounded by constants. This logic can
also be seen as a restricted version of Safety MTL [18] (a fully decidable fragment of
MTL) where, instead of an explicit model of real-time, we adopt an implicit one in
which time is measured by the natural numbers (as in PLTL). From a methodological
point of view, the adoption of an implicit, discrete time model can be justified by the fact
that, in SOC, one deals with ‘business’ time where delays are measured in discrete time
units that are global (i.e., the time model is synchronous even if the interaction model
is asynchronous). This is somewhat different from time-critical systems, for which a
continuous time model (i.e., with no fixed minimal time unit) is more adequate.

Definition 14 (SAFE-LTL). Let A be an alphabet.
— The language of SAFE-LTL over A is defined by (where ac€ A):

¢ i=al-aloVe|ong | O | oRe
— Sentences are interpreted over Ne(24) as follows :
AE a iff aeX(0); A E —a iff agA(0)
AEQI NG iff AEprand NE ¢a; AE 91V 2 iff AE p1or AE @2
ANEQO¢ iff \LE@
NE ¢1 R ¢y iff for all j, either NN E ¢ or there exists k<j s.t. \* = ¢,

Notice that sentences are in positive form: negation is only available for atomic proposi-
tions (actions). This allows us to define (a D ¢) as an abbreviation for (—a V ¢) as used
in the interface specifications above. We also use (¢ as an abbreviation of (false R ¢).

The bounded operators used in the interface specifications given in Sec. [4.1] amount
to the following abbreviations where t€IN:
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- (p1 Rzt ¢2) = G2 A(A1VOP2) A== A1V Op1 V-V O o1 vV Olpa)
- (pr1Us<i ¢2) = G2V (Pr AOP2) V-V (d1 AOP1 A=+ AO L1 A O'p2)
- 0«9 = falseR<idp= dAOQPA--- ANl
- O = truel<i o = ¢V OPV---VOid

Theorem 15 (Safety). All the sentences of SAFE-LTL express safety properties, i.e.,
for every sentence ¢, the set of traces that satisfy it is closed.

Proof. See [l19] for a similar logic that uses ‘unless’ instead of ‘release’.

Corollary 16 (Safe specifications). It follows from the previous theorem that all speci-
fications over SAFE-LTL are safe, i.e., for all sets of sentences P, the set Ag of all traces
A such that (X E @) is a safety property.

Proof. The results follow from the fact that the intersection of any number of closed
properties is closed.

4.3 Ensuring Delivery/Publication-Enabledness

In addition to making sure that specifications generate safety properties, it is important
to guarantee that specifications associated with requires-points generate processes that
are delivery-enabled in relation to their port and channels that are publication-enabled.
Ensuring delivery/publication-enabledness is not the same as proving that an implemen-
tation satisfies a specification because those properties are not expressible as sentences
whose satisfaction can be checked over individual traces: they need to be checked over
the set of all traces that satisfy the specification.

Traces are observations of the behaviours of systems that implement processes. Typi-
cal examples of (models of) such systems that are used in association with a logic are fi-
nite automata of some kind such that, for every specification (A, @), there is a system Sg
over the alphabet A such that Ag,=A¢. The idea is then to check delivery/publication-
enabledness directly over Sg.

In the case of LTL, systems are non-deterministic Biicchi automata (NBAs) [21]]. An
NBA over an alphabet A is a tuple of the form (Q, 6, Qo, Q) Where @ is a finite set of
states, Qg C (@ is the subset of initial states, ., C @ is the set of accepting states, and
§:Q x A — 29 is the transition relation. The property defined by (Q, J, Qo, Qoo) is
the set of infinite sequences of elements of A that, starting on an initial state, generate
a run that visits at least one of the accepting states infinitely often.

In relation to safety properties, there is also a closure operator on NBAs [2]: the
closure of (@, 9, Qo, Qo) is (@, 0, Qo, @), i.e., the NBA obtained by making all states
accepting. A reduced NBA (i.e., one in which every state leads to an accepting state) de-
fines a safety property if and only if its closure defines the same property. Furthermore,
every NBA is equivalent to a reduced one.

Therefore, given that we are interested in working with safe specifications, we can
choose closed reduced NBAs as models of implementations of processes and channels.
In this case, it is easy to see that all that needs to be checked for processes (resp. chan-
nels) to be delivery (resp. publication) enabled is that, from every state of the automata
that implement them, the set of transitions from that state satisfies the corresponding
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property, i.e., for every set of deliveries (resp. publications), there is a transition that
delivers (resp. publishes) exactly those messages. As a result, the complexity of the
checking process is in the order of the product of the size of the automaton and of the
sub-language of deliveries/publications.

5 Concluding Remarks

In this paper, we discussed the problem of ensuring that the composition of orchestra-
tions of matching service interfaces is consistent, i.e., that the orchestrations of both
services can effectively work together when interconnected through the communica-
tion channels that bind them. Our findings led us to propose a refinement of the service
interface and component algebra presented in [[L0] in which services are orchestrated
by asynchronous relational nets that exhibit only safety properties (i.e., any ‘bad’ be-
haviour should be able to detected after a finite number of steps) and are progress-
enabled (i.e., always able to make progress, even if by remaining idle). The advantages
of working with safe progress-enabled ARNs are that they are consistent (Theo.[I2)) and
closed under composition provided that interconnections are made through channels
that are safe and publication-enabled and over interaction-points in relation to which
the ARNSs are delivery-enabled (Cor.[I3).

We also investigated the nature of the logics that should be used for specifying ser-
vice interfaces and describing the processes and channels through which services are
orchestrated. In particular, we exhibited a fragment of LTL in which only safety proper-
ties can be specified and argued that this fragment is expressive enough for the typical
properties through which service interfaces are specified. In this setting, binding ser-
vices, through the provides-points of their interfaces, to requires-points of the interfaces
of discovered services, leads to a consistent composition of the service orchestrations.

Finally, we showed that, by using a logic such as SAFE-LTL, closed reduced NBAs
can be used as models of implementations of safe processes and channels, and that
checking processes/channels for delivery/publication enabledness can be done over
those automata with a complexity that is in the order of the product of the size of
the automata and of the sub-languages of deliveries/publications. Equally importantly,
these checks can be made at design time, i.e., when implementations are chosen for or-
chestrating service interfaces. Therefore, there is no need for any additional checking to
be made at discovery/run time to guarantee consistency; the only checking that needs to
be made at run time is that the specifications of provides-points entail the specifications
of the corresponding requires-points.

One point that we intend to investigate further concerns the interplay between consis-
tency, safety, and the behavioural model. We intend to explore the use of sub-domains
of traces that are applicable to SOC and generalise the underlying time model (and as-
sociated logic) using the notion of ‘safety relative to a given condition’ developed in
[[12]]. Choosing a sub-domain can have an impact in the structure of the automata and
the complexity of checking that processes and channels satisfy delivery/publication en-
abledness (and that ARN’s orchestrate service interfaces), which are aspects that we did
not have space left in the paper to analyse and explain in full.
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Abstract. Availability is an important security property for Internet
services and a key ingredient of most service level agreements. It can
be compromised by distributed Denial of Service (DoS) attacks. In this
work we propose a formal pattern-based approach to study defense mech-
anisms against DoS attacks. We enhance pattern descriptions with for-
mal models that allow the designer to give guarantees on the behavior
of the proposed solution. The underlying executable specification for-
malism we use is the rewriting logic language Maude and its real-time
and probabilistic extensions. We introduce the notion of stable availabil-
ity, which means that with very high probability service quality remains
very close to a threshold, regardless of how bad the DoS attack can get.
Then we present two formal patterns which can serve as defenses against
DoS attacks: the Adaptive Selective Verification (ASV) pattern, which
enhances a communication protocol with a defense mechanism, and the
Server Replicator (SR) pattern, which provisions additional resources on
demand. However, ASV achieves availability without stability, and SR
cannot achieve stable availability at a reasonable cost. As a main re-
sult we show, by statistical model checking with the PVESTA tool, that
the composition of both patterns yields a new improved pattern which
guarantees stable availability at a reasonable cost.

Keywords: formal patterns, meta-object pattern, rewriting logic, avail-
ability, denial of service, statistical model checking, cloud computing.

1 Introduction

On December 8, 2010 at 07:53 AM EDT, MasterCard issued a statement that
“MasterCard is experiencing heavy traffic on its external corporate website [...].
There is no impact whatsoever on our cardholders ability to use their cards for
secure transactions” [I9]. In fact, by that time, a distributed Denial of Service
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attack (DoS) brought the website down and made their web presence unavailable
for most customers for several hours. Availability is an important security prop-
erty for Internet services and a key ingredient of most service level agreements.

DoS defense mechanisms help maintaining availability; nevertheless even when
equipped with defense mechanisms, systems will typically show performance
degradation. Thus, one of the goals of security measures is to achieve stable
availability, which means that with very high probability service quality remains
very close to a constant quantity, which does not change over time, regardless of
how bad the DoS attack can get. Cloud Computing, by offering the possibility
of dynamic resource allocation, can be used to leverage stable availability when
combined with DoS defense mechanisms. Service-oriented systems such as the
MasterCard service are distributed systems operating in a dynamically changing
environment. They need to cope with changing numbers of user demands and
with hostile attacks. To be used/operated safely, services have to satisfy func-
tional as well as non-functional requirements and it is not a priori clear what is
the best realization of a service in each particular situation. Model-driven ap-
proaches to service development offer the possibility of tackling these issues at a
high level of abstraction during early stages of system analysis and design. In par-
ticular, design patterns have been successfully used for improving programming
solutions in several domains, including object-orientation [13], service-oriented
computing [I7/T2] and security [25]. Patterns are general, reusable solutions to
commonly occurring problems in software design; they clearly define the pro-
gramming context, the problem and the advantages and disadvantages of design
solutions (see e.g., [I325]).

In this work, we introduce formal patterns which, in addition to “normal” pat-
terns, come with formal guarantees and enable automated pattern composition,
often resulting in semi-automatic construction of new models with improved
properties. We use this pattern-based approach to study defense mechanism
against DoS attacks in a model-based setting. We present two formal patterns
which can serve as defenses against DoS attacks: the Adaptive Selective Verifica-
tion (ASV) [I5] pattern defending against DoS attacks, and the Server Replicator
(SR) pattern in a cloud setting. As underlying executable specification formalism
we use the rewriting logic language Maude and its real-time and probabilistic
extensions. The ASV protocol is a well-known defense against DoS attacks in the
typical situation that clients and attackers use a shared channel where neither
the attacker nor the client have full control over the communication channel [I5].
The ASV protocol adapts to increasingly severe DoS attacks and provides im-
proved availability. However, it cannot provide stable availability. By replicating
servers one can dynamically provision more resources to adapt to high demand
situations and achieve stable availability; but the cost of provisioned servers
drastically increases in a DoS attack situation. These two patterns are modeled
in Maude and then formally composed to obtain the new improved ASV*TSR
pattern. As a main result we show, by analyzing the quantitative properties of
ASV*SR with the statistical model checker PVESTA, that ASV+SR guarantees
stable availability at a reasonable cost.
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Outline. The paper is structured as follows: Sect. 2] introduces the notion of
stable availability and gives a short account of the prerequisites on rewriting
logic, Maude, and the statistical model checking of quantitative properties with
the PVESTA tool in Maude. In Sect. Blwe present the concept of formal patterns
and give three examples: (i) the general meta-object pattern (Sect. B, (ii) the
ASV pattern (Sect. B2)), and (iii) the SR pattern (Sect. B3). In Sect. Hl we
present the ASVTSR composition pattern and validate the properties of the
composed system using the PVESTA tool. We conclude by discussing related
work, summarizing our results and sketching further work.

2 Prerequisites

2.1 Rewriting Logic and Maude

Rewriting logic [2I] is a simple computational logic to specify concurrent and
object-oriented systems as rewrite theories, that is, as triples (X, E, R), where
(X, E) is an order-sorted equational theory with syntax and type structure spec-
ified by the signature ¥, and with (possibly conditional) Y-equations E; and
where R is a set of (possibly conditional) rewrite rules of the form t — t' if cond,
with ¢, Y-terms, and cond the rule’s condition.

The Maude system [9] executes rewrite theories, with a self-explanatory type-
writer syntax almost isomorphic to the mathematical syntax. The key concept
in Maude is that of a module. An object-oriented module defines a class named
K and attributes a; ..., a,. An object o in a given state can be represented as
a term of the form (0 : K | a1 : v1,...,a, : v,) where vy ...,v, are the cor-
responding values stored in those attributes. A message addressed to object o
with contents d can be represented as a term (0 + d); and all messages in a
system are then terms of sort Message. The distributed systems we consider in
this paper are systems, made up of objects that communicate with each other
by asynchronous message passing. The distributed state of such a system is a
multiset or “soup” of objects and messages, called a configuration. Mathemati-
cally, this is specified by declaring a sort Configuration with subsort inclusions
Object, Message < Configuration, and an associative and commutative multi-
set union operator with empty syntax: : Configuration Configuration —
Configuration and with identity element null.

For example, a simple client class may have name Client; a simple server class
may have name Server and an attribute bf for storing the received messages
in a buffer. In a simple request-response message exchange pattern (cf. [27])
a client ¢ sends request packets (reg(c)) to the server. In response, the server
sends response packets (ack) back to the client. The following term defines a
configuration containing one server object s with a request from c! in the buffer,
two client objects and one message addressed to c1.

(s: Server | bf : req(cl)) (cl : Client |) (c2 : Client |) (¢l + ack)

The following rewrite rule defines the reaction of any server object s upon receipt
of a request (s < req(c)) from any client c.
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rl (s < req(c)) (s: Server |bf : b) — (s: Server | bf : breg(c)) (c + ack) .

The server adds req(c) to the buffer and sends an acknowledgement (¢ < ack)
back to the client ¢. Although not illustrated by the rule above, upon receiving
message an object can send several messages to other objects, and can create
new objects.

Rewriting logic can naturally model concurrent systems, which can be both
real-time and probabilistic. Real-Time systems are supported by rewrite theories
(X, E, R) whose underlying equational theory (X, F) includes among its types
an algebraic data type Time representing time instants (which may be either
discrete or continuous), and whose global states are pairs of the form (¢,r),
with ¢ a term representing a “discrete” state, and r a time value of sort Time
representing the global clock. The rewrite rules in R can then be either instan-
taneous rules, which do not change the global clock, or tick rules, which advance
the global time (see [24]). Probabilistic concurrent systems, which may also be
real-time systems, are modeled by probabilistic rewrite rules of the form

l:t(x) = t'(x,y) if cond(x) with probability y := m/(x)

where the righthand side term ¢’ has new variables y disjoint from the variables
x appearing in t which make the application of the rule non-deterministic. The
probabilistic nature of the rule is expressed by the probability distribution m;(x)
with which values for the extra variables y are chosen; where m;(x) is in general
not fixed, but parametric on the righthand side variables x. In this paper, we
use the PMaude [4] notation for probabilistic rewrite rules.

A parameterized module M[X :: P] has a formal parameter X satisfying a
parameter theory P; M can be instantiated by another module @) via a theory
interpretation V : P — @, called a view, with the usual pushout semantics (see
[9]). We denote the resulting module by M[V] or shorter by M[Q] if V is clear
from the context.

2.2 Statistical Model Checking of Quantitative Properties

Temporal logic properties of a probabilistic system can be model checked either
by exact model checking algorithms or, in an approximate but more scalable way,
by statistical model checking (see, e.g., [26129/4]). The idea of statistical model
checking is to verify the satisfaction of a temporal logic property by statistical
methods up to a user-specified level of statistical confidence. For this, a large
enough number of Monte-Carlo simulations of the system are performed, and
the formula is evaluated on each of the simulations.

Current statistical model checking algorithms assume that the system is purely
probabilistic, i.e., that there is no nondeterminism in the choice of transitions.
Using the methodology presented in [4] and further extended in this work to the
case of reflective “Russian dolls” architectures, a wide class of object-oriented
probabilistic real-time distributed systems can be expressed as purely probabilis-
tic systems. In particular, all the distributed systems considered in this paper
fall within this broad class.
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To analyze the behavior of systems with respect to quantitative properties
related to performance and QoS, a quantitative temporal logic, where the result
of evaluating a formula is not a Boolean true/false value, but a real number,
can be used. For this purposes we use the QUATEX quantitative temporal logic
[4], and the PVESTA [6] parallelization of its associated VESTA tool and model
checking algorithm [4]. In Sect. we will present several QUATEX expressions
formalizing crucial quantitative properties related to DoS protection and will
model check them in PVESTA. We refer the reader to [4] for a detailed descrip-
tion of QUATEX expressions and their model checking algorithm. In this paper,
we will compute the expected value of a path expression based on definitions
of the form F(t) = if time() > t then EXP else O (F(t)), where O is the
next operator, time() is a state function returning the global time, and EXP is
a real-valued state function.

2.3 Stable Availability

Availability is a key security property by which a system remains available to its
users under some conditions. This property can be compromised by a DoS at-
tack, which may render a system unavailable in practice. What all DoS defense
mechanisms have in common is the goal of protecting a system’s availability
properties in the face of a DoS attack. But availability properties are quantita-
tive properties: some DoS defense mechanisms may provide better QoS proper-
ties and therefore better availability properties than others. In fact, even when
protected against DoS, performance degradation will typically be experienced
in some aspects of system behavior such as, for example, the average Time To
Service (TTS) experienced by clients, the success ratio with which clients man-
age to communicate with their server, or the average bandwidth (or some other
cost measure) that a client needs to spend to successfully communicate with its
server. Obviously, an ideal DoS protection scheme is one that renders the system
to a large extent impervious to the DoS attack, no matter how bad the attack
can getl] That is, up to some acceptable and constant performance degradation,
the system behaves in a “business as usual” manner: as if no attack had taken
place, even when in fact the attack worsens over time. We call this property sta-
ble availability. As we shall show in Sect. ] stable availability can be achieved in
some cases by using an appropriate meta-object architecture for DoS protection.

More precisely, the stable availability of a system assumes a shared channel
[14], where DoS attackers can at most monopolize a maximum percentage of the
overall bandwidth. Under these circumstances, stable availability is formulated as
a requirement parameterized by explicitly specified and quantifiable availability
properties such as, for example, TTS, success ratio, average bandwidth, and so
on. The system is then said to be stably available with respect to the specified

! In the shared channel model of [14], attackers can have a potentially very large but
not absolute share of the overall bandwidth, so that honest users will still have some
bandwidth available. This is a realistic assumption in most situations, and a key
difference between DoS attackers and Dolev-Yao attackers, who, having full control
of the channel, can always destroy all honest user messages.
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quantities if and only if, with very high probability, each such quantity ¢ remains
very close (up to fixed bounds ) to a threshold 0 (| ¢ — e |< 6), which does not
change over time, regardless of how bad the DoS attack can get within the
bounds allowed by the shared channel assumption.

3 Formal Patterns

Pattern-based approaches have been successfully introduced to help develop-
ers choose appropriate design and programming solutions [I3]. However, these
informal patterns typically offer limited help for assessing the required func-
tional and non-functional properties. This is particularly important in the case
of distributed systems, which are notoriously hard to build, test, and verify. To
ameliorate this problem we are proposing to enhance pattern descriptions with
executable specifications that can support the mathematical analysis of qualita-
tive and quantitative properties; thus allowing the designer to give guarantees
on the behavior of the proposed solution.

A formal pattern Pat is structured in the usual way (cf. e.g. [25/12]) in context,
problem, solution, advantages and shortcomings (and other features such as
forces, related patterns which we mostly omit here for simplicity); but instead of
using UML or Java we describe the solution formally as a parameterized module
M][S] in Maude (with parameter theory S) and draw many of the advantages and
shortcomings of a pattern from formal analyses. Moreover, the context typically
describes also the assumptions of the parameter theory S.

Pattern composition Pat + Pat’ of two patterns Pat and Pat’ formalized as
parameterized Maude modules P[S] and P’[S’] can be achieved by an appropri-
ate “parameterized view” (see [9]) connecting both patterns. For example, we
may instantiate S’ to P[S], yielding the composed pattern P'[P[S]]. The prob-
lem statement and context of Pat+ Pat’ can then be systematically derived from
those of Pat and Pat'.

In the following we present several formal patterns which can be very useful
to make distributed systems adaptable to changing and potentially hostile envi-
ronments, and show how to design and analyze such systems in a modular and
predictable way.

3.1 The Meta-object Pattern

Concurrency is not the only challenge for distributed systems: adaptation is
just as challenging, since many distributed systems need to function in highly
unpredictable and potentially hostile environments such as the Internet, and
need to satisfy safety, real-time and Quality of Service (QoS) requirements which
are essential for their proper behavior. To meet these adaptation challenges and
the associated requirements, a modular approach based on meta-objects can be
extremely useful. A meta-object pattern MO is defined as follows:

Context. A concurrent and distributed object-based system.

Problem. How can the communication behavior of one or several objects be
dynamically mediated/adapted/controled for some specific purposes?
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Fig. 1. Application of the ASV meta-object on a client-server request-response service

Solution. A meta-object is an object which dynamically mediates/adapts/con-
trols the communication behavior of one or several objects under it. In rewriting
logic, a meta-object can be specified as an object of the form (o : K | conf : ¢,ay :
Viy-.., Gy : Up), where ¢ is a term of sort Configuration, and all other vy ..., v,
are not configuration terms. The configuration ¢ contains the object or objects
that the meta-object o controls. Thus the parameterized module MO[X] intro-
duces the meta-object constructor; the parameter X specifies the sorts s, ..., sy
and attributes a1, ..., a, of the controlled system.

Advantages and Shortcomings. MO defines a general control and wrapper
architecture; but may add communication indirection and the requirement for
language specific object visibility.

There are many different MO patterns: If ¢ contains a single object, the meta-
object o is sometimes called an onion-skin meta-object [2], because o itself could
be wrapped inside another meta-object, and so on, like the skin layers in an onion.
More generally, ¢ may not only contain several objects o1 . . ., o, inside: it may also
be the case that some of these o; are themselves meta-objects that contain other
objects, which may again be meta-objects, and so on. That is, the more general re-
flective meta-object architectures are so-called “Russian dolls” architectures [22],
because each meta-object can be viewed as a Russian doll which contains other
dolls inside, which again may contain other dolls, and so on.

In the following we will present meta-object patterns that illustrate both the
onion-skin case, and the general Russian dolls case.

3.2 The ASV DoS Protection Meta-object Pattern

The ASV protocol [15] is a cost-based, DoS-resistant protocol where bandwidth
is used as currency by a server to discriminate between good and malicious users;
that is, honest clients spend more bandwidth by replicating their messages.

Context. Client-server request-reply system under DoS attack, shared channel
attacker model [I4].

Problem. How can the system be protected against DoS attacks?

Solution. Informally described, the server and the clients are wrapped by
meta-objects with the following key features: The client wrappers attempt to
adapt to the current level of attack by exponentially replicating the client re-
quests up to a fixed bound. The server wrapper adapts to the level of the attack
by dropping randomly packets, with a higher probability as the attack becomes
more severe. Only the remaining requests are processed by the server.
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Fig. Ml illustrates the ASV meta-object pattern.

A first modularized formalization of the ASV protocol was given by AlTurki
in [5]. In this work we extend this specification by making its modularization
more explicit using parametrized modules. The modularized ASV meta-object
specification (ASV[S]) is parametric in the client-server system S. In particular,
we assume that S indicates the maximal load mazLoad per server. Clients have
a time-out window (which is set to the expected worst case round-trip delay
between the client and the server) and a replication threshold, i.e. the maximum
number of times a client tries to send requests to the server before it gives up.

We present only the behavior of the server wrapper in a little more detail.
The wrapper counts the incoming requests and places them in a buffer buf.
If the buffer length of the servers exceeds maxLoad, a coin is tossed to de-
cide whether an incoming message should be dropped or not, i.e., it is ran-
domly decided according to a Bernoulli distribution Ber with success probability
floor(mazLoad)/(cnt 4+ 1.0). If the message is not dropped, a position of buf is
randomly chosen with uniform distribution Uni and the new message is stored
at this position (replacing another message).

crl (s « ¢) (s : asvServer | count : ent,buf : L) —

if (y2) then (s:asvServer | count : ent + 1.0, buf : L{y1] := ¢)
else (s : asvServer | count : ¢cnt + 1.0, buf : L) fi

if float(L.size) > floor(mazLoad)

with probability y; := Uni(L.size)

and y, := Ber(floor (mazLoad) /(cnt 4+ 1.0)).

In addition, the server wrapper periodically empties its buffer and sends the
contents to the wrapped server. Answers of the server are forwarded to the
client.

Advantages € Shortcomings. The ASV protocol has remarkably good proper-
ties, such as closely approximating omniscience [15]: although only local knowl-
edge is used by each protocol participant, ASV’s emergent behavior closely
approximates the behavior of an idealized DoS defense protocol in which all rel-
evant parameters describing the state of the attack are instantaneously known
to all participants. However, it cannot provide stable availability [TTJ23].

3.3 The Server Replicator Meta-object

In high-demand situations, Cloud-based services can benefit from the scalabil-
ity of the Cloud, i.e., from the dynamic allocation of resources. The Server
Replicator meta-object (SR) is a simple pattern that adapts to high-demand
situations by leveraging the scalability of the Cloud [11123].

Context. Client-server request-reply system; possibility of provisioning addi-
tional resources.

Problem. How can the system adapt to an increasing amount of requests, e.g.,
caused by a DoS attack?
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Solution. The SR wraps instances of servers that provide a service, dynami-
cally provisions new such instances to adapt to an increasing load, and distributes
incoming requests among them.

The meta-object SR (SR[S]) is parametric in the client-server system S, whose
servers (of class (Server)) it creates instances of. In order to be replicable, the
servers in S need to fulfill a theory which specifies how a server instance is created
(replicate) and initialized (init); and how many requests it can handle within
a specific timeframe (maxLoadPerServer). Additional parameters in S specify
a replication strategy which determines the overloading factor which must be
exceeded before a new server is provisioned.

SR performs the following tasks:

Provisioning New Instances of the Server. SR periodically evaluates its
replication strategy and, if necessary, spawns a new server instance. The behavior
of spawning a new server is described by the rewrite rule

crl (sr < spawnServer) (sr : ServerReplicator | server-list : SL, config : NG C)
— (sr : ServerReplicator | server-list : (sa; SL),
config : (NG.next) C replicate(sa) init(sa))
if sa := NG.new .

Removing Instances of the Server. SR winds down the number of replicated
servers when the load decreases. We do not model this behavior. One solution
would be to synchronize the communication between SR and a server instance
by using a buffer. SR sets a server instance it wants to remove as inactive and no
longer forwards requests to it. When an inactive server has processed all requests
in its buffer, it removes itself from the configuration.

Distribution of Incoming Messages. SR randomly distributes incoming re-
quests among its servers in a uniform way using the rule

rl (sr <= CO) (sr : ServerReplicator | server-list : SL, config : C) —

(sr : ServerReplicator | server-list : SL, config : (y1 < CO) C)

with probability y; := Random(SL) .

where Random randomly chooses a server from a list of servers.

Forwarding Messages to the Outside. Additionally, SR specifies rules to

forward messages that address client objects located outside its boundary.
Advantages € Shortcomings. SR can provide stable availability. However, the

cost of provisioning servers drastically increases in high-demand situations.

4 Stable Availability under Denial of Service Attacks
through Formal Patterns

How can meta-object patterns be used to make a Cloud-based client-server
request-response service resilient to DoS attacks with minimum performance
degradation, that is, achieving in fact stable availability at reasonable cost?
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Fig. 2. Application of the ASVTSR meta-object composition on a Cloud-based client-
server request-response service

We propose to investigate this question by composing a client-server system
S with appropriate meta-object patterns.

4.1 ASV7TSR Meta-object Composition Pattern

Combining the ASV and SR meta-object patterns into ASV*TSR enables us to
overcome their respective shortcomings while keeping their advantages.

Context. Client-server request-reply system under DoS attack, shared channel
attacker model [I4]; possibility of provisioning additional resources.

Problem. How can the system be protected against the DoS attack and provide
stable availability at reasonable cost?

Solution. The application of the meta-object composition on S, SR[ASV[S], pl,
(where p maps the formal parameter (Server) to (asvServer) and (mazloadServer)
to (maxLoad)) protects the service against DoS attacks in two dimensions of adap-
tion: (i) the ASV mechanism; and (ii) the SR replication mechanism. Fig. 2] gives
an overview of the composition.

We define the factor k that proportionally adjusts the degree of ASV protec-
tion in the meta-object composition, i.e., k reflects how much the ASV mecha-
nism is used compared to the SR replication mechanism. An overloading factor
of kK = 1 means that the ASV mechanism remains nearly unused, while an over-
loading factor of k = oo means that the replication mechanism is unused. Thus,
we propose an overloading factor of 1 < k < oo.

The replication strategy for computing the number of server replicas ~y is
defined as

m
mazLoadPerServer(t) - k‘)

where m denotes the number of messages that have been received by the SR up
to time ¢; and mazLoadPerServer(t) is defined as

v(m,t) = max (1,

t
mazLoadPerServer(t) = LTJ - mazLoad g

where T is the ASV server timeout period and mazLoadgs denotes the buffer size
of the ASV server.
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Advantages € Shortcomings. We will show that the ASVTSR composition
provides stable availability under DoS attacks at the cost of provisioning a pre-
dictable amount of instantiated servers given by the overload factor.

4.2 Statistical Model Checking Analysis

We use the Maude-based specification of the ASVTSR meta-object pattern
with a client-server system to perform parallelized statistical quantitative model
checking on 20 to 40 cluster nodes using PVESTA. The expected values of the
following QUATEX path expressions were computed with a 99% confidence in-
terval of size at most 0.01:

Client Success Ratio. The client success ratio defines the ratio of clients that
receive an acknowledgement from the server.

successRatio(t) = if time() > ¢ then countSuccessful()/countClients()
else O (successRatio(t))

where countClients() and countSuccessful() respectively count the total number
of clients, and the number of clients with “connected” status.

Average TTS. The average TTS is the average time it takes for a successful
client to receive an acknowledgement from the server.

avgTTS(t) = if time() > ¢ then sumTTS()/countSuccessful()
else O (avgTTS(t))

where sumTTS() is the sum of the TTS values of all successful clients.

Number of Servers. The number of servers represents the number of ASV
servers that are spawned by the SR meta-object.

servers(t) = if time() > t then countServers()
else O (servers(t))

where countServers() is the number of replicated servers.
For statistical model checking purposes we set the parameters of the ASV and
SR meta-objects as follows:

ASV. The mean server processing rate is set to 600 packets per second, the
timeout window of the clients to 0.4 seconds, the retrial span of the clients to 7,
and the client arrival rate to 0.08.

SR. The check period is set to 0.01 seconds and we vary the overloading fac-
tor k (4, 8, 16, 32). Forward and replication delays are not considered in our
experiments.

The properties are checked for a varying number of attackers (1 to 200).
Each attacker issues 400 fake requests per second. It is of note that 1.5 attackers
already overwhelm a single server. The values of the ASV and attack parameters
correspond to the values chosen in [7JI5]. Additionally, an initial generation delay
of 0.05 seconds is introduced and the duration of a simulation is set to 30 seconds.
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In the following, we will consider two general cases in which the SR can
provision: (i) an unlimited number of servers, and (ii) servers up to a limit m of
5 or 10 servers, because, due to economical and physical restrictions, resources
are limited. The results in (i) will indicate how many servers are needed to
provide stable service guarantees, while the results in (ii) will indicate what
service guarantees can still be given with limited resources.

Unlimited Resources. Fig. Bl shows the model checking results for a varying
overloading factor k with no resource limits. As indicated by Fig. ASV*TSR
can sustain the expected client success ratio at a certain percentage. Even for an
overloading factor of k = 32, a success ratio around 95% can be achieved. Com-
pared to an overloading factor of k = 4, a 7-fold decrease in provisioned servers is
observed (Fig. , achieving a stable success ratio of only around 3% less. Fig.
3(b)|shows that the same is true for the average TTS. ASV+SR outperforms the
ASV protocol, and furthermore achieves stable availability, for all performance in-
dicators. However, this comes at the cost of provisioning new servers. Fig.
shows how many servers are provisioned. The results indicate that the factor k
defines a trade-off between the cost and the performance of stable availability.
SR by itself (k = 1) with unlimited resources (not shown in the figures) would
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Fig. 5. Performance of the ASVTSR protocol with a load factor of & = 4 and limited
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provide stable availability at a level as if no attack has happened, but would pro-
vision 134 servers for 200 attackers. Note that fluctuations in the results, e.g., the
average T'TS in case of 60 attackers being lower than the average T'TS in case of
40 attackers, are due to the provisioning of a discrete number of servers.

Limited Resources. Fig.[Blshows the model checking results for an overloading
factor of £ = 4 and a limit m of either 5 or 10 servers that the SR meta-object can
provision. As indicated by Fig. the success ratio can still be kept at a high
level under the assumption of limited resources. In fact, the protocol behaves just
as in the case of unlimited resources up to the point where more servers than
the limit would be needed to keep the success ratio stable. After that point, the
protocol behaves like the original ASV protocol (but with the equivalent of a
more powerful server) and the success ratio decreases. Nevertheless, it decreases
more slowly since now 5, respectively 10, servers handle the incoming requests
compared to the single server in the ASV case. Fig. shows that the average
TTS behaves in a way similar to that of the success ratio. We only checked these
properties for an overloading factor of & = 4; for higher values of k, the attack
level at which stable availability is lost is higher and the rate at which the quality
subsequently decreases differs by a constant factor.

5 Related Work and Concluding Remarks

Here we discuss related work on defenses against DoS attacks and their formal
analysis. Related work on modular meta-object architectures for distributed sys-
tems, and on statistical model checking and quantitative properties has been
respectively discussed in Sects. [Z.1] and

There exist several approaches to formal patterns (see e.g. [I0]); ours is dif-
ferent by focusing on executable specifications, quantitative analysis, and the
combination of formal and informal aspects. The standard book on security pat-
terns [25] does not discuss DoS defenses, although some of its patterns (such as
reflection, replication and filtering) can be related to our patterns.
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Defenses against DoS attacks use various mechanisms. An important class of
defenses use currency-based mechanisms, where a server under attack demands
payment from clients in some appropriate “currency” such as actual money,
CPU cycles (e.g., by solving a puzzle), or, as in the case of ASV, bandwidth. The
earliest bandwidth-based defense proposed was Selective Verification (SV) [14].
Adaptive bandwidth-based defenses include both ASV [15], and the auction-
based approach in [2§].

Regarding formalizations and analyses of DoS resistance of protocols, a gen-
eral cost-based framework was proposed in [20]; an information flow charac-
terization of DoS-resistance was presented in the cost-based framework of [16];
and [I] used observation equivalence and a cost-based framework to analyze the
availability properties of the JFK protocol. Other works on formal analysis of
availability properties use branching-time logics [B0/I8]. Our own work is part
of a recent approach to the formal analysis of DoS resistance using statistical
model checking. The first paper in this direction used probabilistic rewrite the-
ories to analyze the DoS-resistance of the SV mechanism when applied to the
handshake steps of TCP [3]. ASV itself, applied to client-server systems, was
formally specified in rewriting logic and was analyzed this way in [7]. The for-
malization of ASV in rewriting logic as a meta-object was first presented in [5].
Likewise, cookies have been formalized in rewriting logic as a meta-object for
DoS defense in [§].

In this paper we have presented a formal pattern-based approach to the de-
sign and mathematical analysis of security mechanisms of Cloud services. We
have shown that formal patterns can help deal with security issues and that
formal analysis can help evaluate patterns in various contexts. In particular, we
have specified dynamic server replication (SR) and the ASV protocol as formal
patterns in the executable rewriting logic language Maude. By formally com-
posing the two patterns we have obtained the new pattern ASVTSR. We have
analyzed properties of the ASVTSR pattern using the statistical model checker
PVESTA, and were able to show as our main result that, unlike the two original
patterns, ASVTSR achieves stable availability in presence of a large number of
attackers at reasonable cost, which can be predictably controlled by the choice
of the overloading parameter.

Our current results rely on two simplifications: The client-server communica-
tion consists of a stateless request-reply interaction and the replication of servers
is only able to add but not to delete servers. As next steps, we plan to refine the
patterns to cope with the winding-down of resources at the end of a DoS attack
and with more complex client-server interactions where the server has to pre-
serve state. Moreover, in this paper we have only studied quantitative properties
of the patterns; it would be very interesting and useful to analyze also qualita-
tive properties. In [§] it is shown that adding cookies to a client-server system
preserves all safety properties. We conjecture that the same holds for the ASV
and ASVTSR protocols. Finally, we plan to continue with our pattern-based
approach and to build a collection of formal patterns for security mechanisms.
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Abstract. Loose programming is an extension to graphical process
modeling that is tailored to automatically complete underspecified
(loose) models using a combination of data-flow analysis and LTL syn-
thesis. In this tool demonstration we present PROPHETS!, our current
implementation of the loose programming concept. The first part of the
demonstration focuses on the preparative domain modeling, where a do-
main expert annotates the available services with semantic (ontological)
information. The second part is then concerned with the actual loose
programming, where a process modeler orchestrates the services without
having to care about technical details like correct typing, interface com-
patibility, or platform-specific details. The orchestrated process skeletons
are treated as loose service orchestrations that are automatically com-
pleted to running applications.

1 Introduction

In service-oriented software development approaches, the specification of (busi-
ness) processes usually requires detailed knowledge of the available services, their
behavior and capabilities. Our concept of loose programming [I] aims at provid-
ing easy access to and experimentation with (often unmanageably large) libraries
of services. With loose specification, process designers are given the opportunity
to sketch their intents roughly, while the backing data-flow analysis and linear-
time synthesis handle the concretization automatically.

PROPHETY] extends the graphical modeling framework jJABC [2] by the
loose programming concepts. To enable loose specification and synthesis on
a given library of services, semantic information on the services, i.e., a do-
main model is needed. Therefore, there are two user roles defined to work with
PROPHETS: While the domain ezxpert provides information on services and
data types, the process developer uses it to semi-automatically create workflows.

In the following, Section [ explains the domain modeling concepts by means
of a simple example domain. Then, Section [ presents how the domain model is
applied for the synthesis of loosely specified processes. Section [ concludes with
a short discussion of related and future work.

! PROPHETS is available for download at http://prophets.cs.tu-dortmund.del
This site also provides technical documentation and further information on loose
programming.

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 94-P8] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The workflows of the two user roles involved in loose programming

2 Modeling the Domain

The here presented domain literally corresponds to the 'Hello World’ example
common to all programming languages. Our domain consists of three services:
'SayHello’ sends a message, while 'Understand’ receives one, with the language
of both being configurable. Naturally, the latter service can only understand
the message if it is in its known language. Therefore, the third service, "Trans-
late’, can convert a message from one language into another. Unfortunately, not
all language combinations are directly translatable. Only translations from one
country’s language to its direct neighbors’ languages are valid (here limited to
Western Europe). In our example scenario, the process developer wants to model
a process that sends a message in one language and receives it in another, but
he is not familiar with the geography of Europe. The domain expert has this
information and provides the semantic annotations to the three services as well
as (possibly) further constraints for the composition of services.

Setting up the domain model consists of three major steps (see Fig. [I):

1. At first, the domain expert has to create the service definition file. This
mainly requires the identification of symbolic names for types and services,
and the behavioral description of the services in terms of their input and
output types. Multiple possible type combinations for one service (as it is
the case here) simply lead to multiple entries in the service definition file.

2. Secondly, the domain expert may define taxonomies on the types and ser-
vices. Although this is not strictly required, it may be useful for further
structuring of the domain. Here, it might make sense to group all "Translate’



96

3

S. Naujokat, A.-L. Lamprecht, and B. Steffen

service instances into one group, all ’SayHello’ service instances into another
etc.. The types (which are languages in this example) can, for example, be
grouped according to language families.

Finally, the domain expert may define general domain-specific knowledge
by global formulas that are used as constraints for every synthesis. In this
example it makes sense to prevent the synthesis from utilizing any of the
’SayHello’ services as part of the solution. This becomes necessary, because
the synthesis algorithm tries to solve the loose specification by satisfying the
input requirements of the target SIB. As the ’SayHello’ services have no input
requirements, they can be used anywhere to produce every language. The
solution problem would be solved formally, but nothing has been actually
translated. Such a solution would not be acceptable for the process developer.

Process Synthesis

Process design with the JABC (cf. Fig. ) consists of taking SIBS from the SIB
library (A), placing them at the graph canvas (B) and connecting them with
directed labeled edges (branches) according to the flow of control. Configuration
(i.e. setting parameters) of SIB instances is done using the SIB inspector (C). A
model that is defined in this way can then directly be executed and debugged
with the integrated interpreter (D). In addition to this kind of complete speci-
fication, the PROPHETS plugin enables the process developer to mark one or
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Fig. 2. Overview of jJABC GUI elements
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more branches as loosely specified. PROPHETS’ synthesis is then applied to each
of the loose branches to replace them by concrete realizations (see Fig. [3)

The plugin determines the start types for the synthesis automatically by per-
forming a data-flow analysis on the process model. The types that are available
at the source of the loosely specified branch are used as initial state for the syn-
thesis. As goal types the synthesis uses the input types of the loosely specified
branch’s target SIB.

Loosely Specified Model
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Fig. 3. Loosely specified process and completed model after synthesis

In addition to the inferred start and goal types, the synthesis can be guided
by constraints in SLTL [3/4]. However, the expertise of a process designer in
the JABC usually covers rather knowledge on business processes than software
programming, and likewise we assume that specification of process requirements
with formulas in temporal logic is beyond his interests. Therefore, PROPHETS
incorporates a concept for template-based constraint specifications. The tem-
plates, which can easily be defined and extended by the domain expert, present
a description of the constraint in plain natural language to the process designer.
The description contains variable parts, which are translated into drop-down
boxes for the process designer to assign values.

A process designer can also profit from a specified domain without using the
synthesis feature. If a PROPHETS service definition exists, a jABC model can
be automatically verified. The plugin then checks if all SIBs have their required

2 A SIB (Service Independent Building Block) forms a wrapper for any kind of service
that is used in the jJABC.
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types (input types) available on execution, whatever execution path might lead
to this SIB. This is done by a combination of the previously mentioned data-flow
analysis and GEAR [5], the model-checking-plugin for the jABC.

4 Conclusion

The here presented example is kept very simple on purpose, so that despite the
limited space in this paper, we can elaborate on both of the two basic concepts
when working with loose programming. More complex domains, especially in the
context of bioinformatics analysis workflows, have shown the applicability of our
approach [6l7]. Furthermore, the flexible architecture allows one to change (and
even synthesize) the synthesis process itself in order to adapt to special needs of
the domain in question [§]. In fact, PROPHETS supports self-application: loosely
defined synthesis processes can be completed and executed. Subject of ongoing
research are the improvement of the synthesis performance with domain-specific
heuristics as well as further concepts for the automatic creation of the domain
model, e.g. by learning from service logs or exploiting structural information
about the service domain.
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Abstract. The key to making program analysis practical for large concurrent
programs is to isolate a small set of interleavings to be explored without los-
ing precision of the analysis at hand. The state-of-the-art in restricting the set
of interleavings while guaranteeing soundness is partial order reduction (POR).
The main idea behind POR is to partition all interleavings of the given program
into equivalence classes based on the partial orders they induce on shared ob-
jects. Then for each partial order at least one interleaving need be explored. POR
classifies two interleavings as non-equivalent if executing them leads to different
values of shared variables. However, some of the most common properties about
concurrent programs like detection of data races, deadlocks and atomicity as well
as assertion violations reduce to control state reachability. We exploit the key ob-
servation that even though different interleavings may lead to different values of
program variables, they may induce the same control behavior. Hence these in-
terleavings, which induce different partial orders, can in fact be treated as being
equivalent. Since in most concurrent programs threads are loosely coupled, i.e.,
the values of shared variables typically flow into a small number of conditional
statements of threads, we show that classifying interleavings based on the control
behaviors rather than the partial orders they induce, drastically reduces the num-
ber of interleavings that need be explored. In order to exploit this loose coupling
we leverage the use of dataflow analysis for concurrent programs, specifically
numerical domains. This, in turn, greatly enhances the scalability of concurrent
program analysis.

1 Introduction

Verification of concurrent programs is a hard problem. A key reason for this is the be-
havioral complexity resulting from the large number of interleavings of transitions of
different threads. While there is a substantial body of work devoted to addressing the
resulting state explosion problem, a weakness of existing techniques is that they do not
fully exploit structural patterns in real-life concurrent code. Indeed, in a typical con-
current program threads are loosely coupled in that there is limited interaction between
values of shared objects and control flow in threads. For instance, data values written
to or read from a shared file typically do not flow into conditional statements in the file
system code. What conditional statements may track, for instance, are values of status
bits for various files, e.g., whether a file is currently being accessed, etc. However, such
status bits affect control flow in very limited and simplistic ways.

One of the main reasons why programmers opt for limited interaction between shared
data and control in threads is the fundamental fact that concurrency is complex. A deep
interaction between shared data and control would greatly complicate the debugging
process. Secondly, the most common goal when creating concurrent programs is to
exploit parallelism. Allowing shared data values to flow into conditional statements

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 99-[[14] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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would require extensive use of synchronization primitives like locks to prevent errors
like data races thereby killing parallelism and adversely affecting program efficiency.

An important consequence of this loose coupling of threads is that even though dif-
ferent interleavings of threads may results in different values of shared variables, they
may not induce different program behaviors in that the control paths executed may
remain unchanged. Moreover, for commonly occurring correctness properties like ab-
sence of data races, deadlocks and atomicity violations, we are interested only in the
control behavior of concurrent programs. Indeed, data race detection in concurrent pro-
grams reduces to deciding the temporal property EF(c; A ¢2), where ¢ and ¢y are
control locations in two different threads where the same shared variable is accessed
and disjoint sets of locks are held. Similarly, checking an assertion violation involving
an expression expr over control locations as well as program variables, can be reduced
to control state reachability of a special location loc resulting via the introduction of a
program statement of the form i f (expr) GOTO loc; . Thus structural patterns in
real-life programs as well as in commonly occurring properties are best exploited via
reduction techniques that preserve control behaviors of programs rather than the actual
behavior defined in terms of program states.

The state-of-the-art in state space reduction for concurrent program analysis is Par-
tial Order Reduction (POR) [38l9]. The main idea behind POR is to partition all inter-
leavings of the given program into equivalence classes based on the partial orders they
induce on shared objects. Then for each partial order at least one interleaving need be
explored. However, a key observation that we exploit is that because of loose coupling
of threads even if different interleavings result in different values of shared (and local)
variables, they may not induce different control behaviors. In order to capture how dif-
ferent interleavings may lead to different program behaviors, we introduce the notion of
schedule sensitive transitions. Intuitively, we say that dependent transitions ¢ and ¢’ are
schedule sensitive if executing them in different relative orders affects the behavior of
the concurrent program, i.e., changes the valuation of some conditional statement that
is dependent on ¢ and ¢’. POR would explore both relative orders of ¢ and ¢’ irrespective
of whether they induce different control behaviors or not whereas our new technique
explores different relative orders of ¢ and ¢’ only if they induce different control be-
haviors. In other words, POR classifies interleavings with respect to global states, i.e.,
control locations as well as the values of program variables, as opposed to just control
behavior. However, classifying computations based solely on control behaviors raises
the level of abstraction at which partial orders are defined which results in the collapse
of several different (state defined) partial orders, i.e., those inducing the same control
behavior. This can result in drastic state space reduction.

The key challenge in exploiting the above observations for state space reduction is
that deducing schedule insensitivity requires us to reason about program semantics, i.e.,
whether different interleavings could affect valuations of conditional statements. In or-
der to carry out these checks statically, precisely and in a tractable fashion we leverage
the use of dataflow flow analysis for concurrent programs. We show that schedule in-
sensitivity can be deduced in a scalable fashion via the use of numerical invariants like
ranges, octagons and polyhedra [7/2]. Then by exploiting the semantic notion of sched-
ule insensitivity we show that we can drastically reduce the set of interleavings that
need be explored over and above POR.
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2 Motivation

Consider a concurrent program P comprised of the two threads 77 and 75 shown in
fig[[la) accessing shared variable sh. Suppose that we are interested in the reachability
of the global control state (a4, b4). Since all transitions write to the same shared vari-
able, i.e., sh, each of the transitions a1, a2 and a3 is dependent with each of b1, bs and
bs except for the pair (as, bs) both of which are read operations. As a result, in apply-
ing POR we would need to explore all interleavings of the local transitions of the two
threads except a3 and bs. This results in the transition digram shown in fig. [[(b) where
a pair of the form (¢, ¢2) indicates that thread 7T; is at location ¢; but hasn’t executed
the statement at ¢;. A downward arrow to the left (right) signifies a move by 71 (7).

Ty0 { To04 o e " o 8w "
a1: sh=sh+1; b;: sh=sh+2; P (M]\~ (/T]\\.‘ bs) . / /\‘( bs)
az: sh=sh+1; by sh=sh+3; N\ /.\/\

asz: if (sh > 2) bs: if (sh > 6)

as: ba: ® (0.1, (as.bs) @ (azbi) ® (11,0) @ (a5.b;) @ (a2:01)
} } \0'({)‘» ® (1.b) \oﬁm ® (1.0
\‘. (asby) \ (a4,bs)
Fig. 1. (2) (b) ©

However, if we track the values of the shared variable sk (assuming it was initialized
to 0), we see that at global states (as,b1), (as,b2), (a3, bs) and (ag,bs), sh > 2 as
a result of which the if-condition at location a3 of 17 always evaluates to true. This
leads to the key observation that even though the statements a; and b;, where ¢ # 3 and
j # 3, are dependent and executing them in different order results in different values of
sh, it does not affect the valuation of the conditional statement at a3. Thus with respect
to a3 we need not explore different interleavings of the operations of 77 and 75. In fact
it suffices to explore just one interleaving, i.e., a1, as, as, b1, b2 and b3. Consider now
the conditional statement sh > 6 at bs. The guard evaluates to false in state (a1, b3) but
evaluates to frue in each of the states (a2, b3) and (ag, bs). Starting from state (a1, b1),
we see that we can reach the global state (aq, bs) where sh > 6 and the state (a1, b3)
where sh < 6. Thus at (a1, b1), we need to explore paths starting with the transition
(a1,b1) — (a2,b1) as well as those starting with (a1,b1) — (a1, b2). This is because
executing one of these transitions may result in the conditional statement b3 evaluating
to true and executing the other may result in it evaluating to false. Similarly, from state
(a1, b2) we need to explore paths starting via both its out-going transitions.

On reaching state (as,b1), however, we see that all interleavings lead either to
(ag, b3) orto (as, bs) and at both of these states sh > 6, i.e., the conditional statement at
bs evaluates to frue. In other words, starting at state (asg, b1 ) the precise interleaving that
is executed does not matter with respect to the valuation of bs. We would therefore like
to explore just one of these interleavings leading to (a4, bs). Hence starting at global
state (as, b1) we explore just one successor. We choose to explore the one resulting from
the transition fired by 7. Using a similar reasoning, we can see that it suffices to allow
only T} to execute in each of the states (a2, b2) and (as, b2). Furthermore, at the states
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(a4, b1), (a4,b2) we have no choice but to execute T». Similarly, at the states (a1, bs)
and (aq,bs) we have no choice but to execute 7. This leads to the transition graph
shown in fig.[Tlc) clearly demonstrating the reduction (as compared to fig. 1(b)) in the
set of interleavings that need be explored.

In order to exploit the above observations, we need to determine for each state
(@i, b;) in the transaction graph and each conditional statement con reachable from
(@i, b;), whether con either evaluates to frue along all interleavings starting at (a;, b;)
or evaluates to false along all such interleavings. In general, this is an undecidable prob-
lem. On the other hand, in order for our technique to be successful our method needs
to be scalable to real-life programs. Dataflow analysis is ideally suited for this purpose.
Indeed, in our example if we carry out range analysis, i.e., track the possible range
of values that sk can take, we can deduce that at the locations (a3, b1), (a3, b2) and
(as, b3), sh lies in the ranges [2, 2], [4,4] and [7, 7], respectively. From this it follows
easily that the conditional statement at a3 always evaluates to frue. It has recently been
demonstrated that not only ranges but even more powerful numerical invariants like oc-
tagons [[7]] and polyhedra [2] can be computed efficiently for concurrent programs all of
which can be leveraged to deduce schedule insensitivity. A key point is that exploiting
numerical invariants to falsify or validate conditional statements offers a good trade-off
between precision and scalability. This allows us to filter out interleavings efficiently
which can, in turn, be leveraged to make model checking more tractable.

3 System Model

We consider concurrent systems comprised of a finite number of processes or threads
where each thread is a deterministic sequential program written in a language such as
C. Threads interact with each other using communication/synchronization objects like
shared variables, locks and semaphores.

Formally, we define a concurrent program CP as a tuple (7,V, R, sg), where T =
{T1,...,T,,} denotes a finite set of threads, V = {v1,..., v} a finite set of shared
variables and synchronization objects with v; taking on values from the set V;, R the
transition relation and sg the initial state of CP. Each thread T; is represented by
the control flow graph of the sequential program it executes, and is denoted by the
pair (C;, R;), where C; denotes the set of control locations of T; and R; its transition
relation. A global state s of CP is a tuple (s[1], ..., s[n],v[1],...,v[m]) € S = C; x ... X
Cpn X Vi X ... X Vi, where s[i] represents the current control location of thread 7; and
v[4] the current value of variable v;. The global state transition digram of CP is defined
to be the standard interleaved composition of the transition diagrams of the individual
threads. Thus each global transition of CP results by firing a local transition ¢ of the
form (a;, g, u, b;), where a; and b; are control locations of some thread T; = (C;, R;)
with (a;,b;) € R;; g is a guard which is a Boolean-valued expression on the values
of local variables of T; and global variables in V; and w is a set of operations on the
set of shared and local variables of T; that encodes how the value of these variables
are modified. Formally, an operation op on variable v is a partial function of the form
IN xV — OUT xV, where V is the set of possible values of v and I N and OUT are,
respectively, the set of possible input and output values of the operation. The notation
op(in,v1) — (out,vs) denotes execution of operation op of v with input value in
yielding output out while changing the value of v from v; to vs. Given a transition
(ai, g,u, b;), the set of operations appearing in g and u are said to be used by t and are
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denoted by used(t). Also, for transition ¢ : (a;, g, u, b;), we use pre(t) and post(t) to
denote control locations a; and b;, respectively. A transition ¢t = (a;, g, u, b;) of thread
T; is enabled in state s if s[i] = a; and guard g evaluates to true in s. If s[i] = a; but g

need not be true in s, then we simply say that ¢ is scheduled in s. We write s s to
mean that the execution of ¢ leads from state s to s’. Given a transition ¢t € T, we use
proc(t) to denote the process executing ¢. Finally, we note that each concurrent program
CP with a global state space S defines the global transition system Ag = (S, 4, so),
where A C 8 xS is the transition relation defined by follows: for s, s’ € @, (s,s’) € A

ifIHeT: s s ; and s is the initial state of CP. For ease of exposition, in this
paper we consider concurrent programs with only two threads although our techniques
extend easily to programs with multiple threads.

4 Schedule Insensitivity Reduction

The state-of-the-art in state space reduction for concurrent program analysis is Partial
Order Reduction (POR) [389]]. POR classifies computations based solely on the partial
orders they induce. These partial orders are defined with respect to global states, i.e.,
control locations as well as the values of program variables, as opposed to just control
behavior. However, classifying computations based solely on control behavior raises
the level of abstraction at which partial orders are defined which results in the collapse
of several different (state defined) partial orders, i.e., those inducing the same control
behavior. Whereas (ideally) POR would explore at least one computation per partial
order, the goal of our new reduction is to explore only one computation for all these
collapsed partial orders. This can result in drastic state space reduction.

Concurrent Def-Use Chains and Control Dependency. Control flow within a thread
is governed by valuations of conditional statements. However, executing thread transi-
tions accessing shared objects in different orders may result in different values of these
shared objects resulting in different valuations of conditional statements of threads and
hence different control paths being executed. Note that the valuation of a conditional
statement cond will be so affected only if the value of a shared variable flows into cond.
This dependency is captured using the standard notion of a def-use chain. A definition
of a variable v is taken to mean an assignment (either syntactic or semantic, e.g., via a
pointer) to v. A definition-use chain (def-use chain) consists of a definition of a variable
in a thread 7" and all the uses, i.e., read accesses, reachable from that definition in (a
possibly different) thread 77 without any other intervening definitions. Note that due
to the presence of shared variables a def-use chain may, depending on the scheduling
of thread operations, span multiple threads. Thus different interleavings can affect the
valuation of a conditional statement cond only if there is a def-use chain starting from
an operation writing to a shared variable sh and leading to cond. This is formalized
using the notion of control dependency.

Definition. (Control Dependency). We say that a conditional statement cond at loca-
tion loc of thread T is control dependent on an assignment statement st of thread T'
(possibly different from T) if there exists a computation x of the given concurrent pro-
gram leading to a global state with 'T' at location loc such that there is a def-use chain
from st to cond along x.
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Schedule Insensitivity. In order to capture how different interleavings may lead to dif-
ferent program behaviors, we introduce the notion of schedule sensitive (or equivalently
schedule insensitive) transitions. Intuitively, we say that transitions ¢ and ¢’ of two dif-
ferent threads are schedule sensitive if executing them in different relative orders affects
the behavior of the concurrent program, i.e., changes the valuation of some conditional
statement that is control dependent on ¢ and ¢’. Formally,

Definition (Schedule Sensitive Operations). Let O P be the set of operations on vari-
able var. Then Sen C OP x OP x § is a schedule sensitivity relation for var if for
s € S and opy, opa € OP, the following holds: if v is the value of var in s then for all
possible inputs iny and ino we have

— (op1,0p2,s) & Sen (op1 and ops are schedule insensitive in s) implies that (opz,
op1, s) & Sen,

— if op1(ing,v) is defined and op1(inq1,v) — (outy,v}), then opa(ing,v) is defined
if and only if opa(ing, v]) is defined; and

— if op1(in1,v) and ops(ing,v) are defined, then each conditional statement cond
that is control dependent on opy or ops and is scheduled in state t € S either
evaluates to true along all paths of the given concurrent program leading from s to
t or it evaluates to false along all such paths.

Definition (Schedule Insensitive Transitions). Two transitions t1 and to are schedule
insensitive in state s if

— the threads executing t1 and to are different, and

— eitherty and to are independent in s, or for all op1 € used(t1) and ops € used(t2),
if op1 and ops are operations on the same shared object then opy and ops are
schedule insensitive in s, i.e., (op1, 0pa, s) & Sen.

In the above definition we use the standard notion of (in)dependence of transitions as
used in the theory of partial order reduction (see [3]). The motivation behind defining
schedule insensitive transitions is that if in a global state s, transitions ¢; and ¢ of
threads 7T and 75, respectively, are dependent then we need to consider interleavings
where 1 and ¢, are executed in different relative orders only if there exists a conditional
statement cond such that cond is control dependent on both ¢; and ¢, and its valuation
is affected by executing ¢; and ¢, in different relative orders, i.e., t; and ¢, are schedule
sensitive in s.

We next define the notion of control equivalent computations which is the analogue
of Mazurkiewicz equivalent computations for schedule sensitive transitions.

Definition (Control Equivalent Computations). Two computations x and y are said
to be control equivalent if © can be obtained from y by repeatedly permuting adjacent
pairs of schedule insensitive transitions, and vice versa.

Note that control equivalence is a coarser notion of equivalence than Mazurkiewicz
equivalence in that Mazurkiewicz equivalence implies control equivalence but the re-
verse need not be true. That is precisely what we need for more effective state space
reduction than POR.
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5 Deducing Schedule Insensitivity

In order to exploit schedule insensitivity for state space reduction we need to provide an
effective, i.e., automatic and lightweight, procedure for deciding schedule insensitivity
of a pair of transitions. By definition, in order to infer whether ¢; and to are schedule
sensitive, we have to check whether there exists a conditional statement cond satisfying
the following: (i) Control Dependence: of cond on t; and t9, (ii) Reachability: cond
is enabled in a state ¢ reachable from s, and (iii) Schedule Sensitivity: there exist
interleavings from s leading to states with different valuations of cond.

In order to carry out these checks statically, precisely and in a tractable fashion we
leverage the use of dataflow flow analysis for concurrent programs. As was shown in
the motivation section, by using range analysis, we were able to deduce schedule in-
sensitivity of the local states (a;, b;), where ¢ € [2..3] and j € [1..3] which enabled us
to explore only one transition from each of them. We can, in fact, leverage even more
powerful numerical invariants like octagons [7] and polyhedra [2].

Transaction Graph. In order to deduce control dependence, reachability and schedule
sensitivity, we exploit the notion of a transaction graph which has previously been used
for dataflow analysis of concurrent programs (see [4]). The main motivation behind the
notion of a transaction graph is to capture thread interference, i.e., how threads could
affect dataflow facts at each others locations. This is because, in practice, concurrent
programs usually do not allow unrestricted interleavings of local operations of threads.
Typically, synchronization primitives like locks and Java-style wait/notifies, are used in
order to control accesses to shared data or introduce causality constraints. Additionally,
the values of shared variables may affect valuations of conditional statements which,
in turn, may restrict the allowed set of interleavings. The allowed set of interleavings
in a concurrent program are determined by control locations in threads where context
switches occur. In order to identify these locations the technique presented in [4] delin-
eates transactions. A transaction of a thread is a maximal atomically executable piece
of code, where a sequence of consecutive statements in a given thread 7" are atomically
executable if executing them without any context switch does not affect the outcome of
the dataflow analysis at hand. Once transactions have been delineated, the thread loca-
tions where context switches need to happen can be identified as the start and end points
of transactions. The transactions of a concurrent program are encoded in the form of a
transaction graph the definition of which is recalled below.

Definition (Transaction Graph) [4]. Let CP be a concurrent program comprised of
threads T,..., T, and let C; and R; be the set of control locations and transitions of
the CFG of T;, respectively. A transaction graph Ilcp of CP is defined as Ilep =
(Cep, Rep), where Cep C Cp X ... X Cp and Rep C (Ch, ..., Cp) X (Ch, ..., Cy).
Each edge of Ilcp represents the execution of a transaction by a thread T;, say, and is
of the form (l1, ..., iy ..., l,) — (M1, ..., my, ..., my) where (a) starting at the
global state (11, ...,1,,), there is an atomically executable sequence of statements of T;
Sfrom 1 to my, and (b) for all j # 1, l; = m;.

Note that this definition of transactions is quite general, and allows transactions to be
inter-procedural, i.e., begin and end in different procedures, or even begin and end inside
loops. Also, transactions are not only program but also analysis dependent.

Our use of transaction graphs for deducing schedule insensitivity, is motivated by
several reasons. First, transaction graphs allow us to carry out dataflow analysis for the
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concurrent program at hand which is crucial in reasoning about schedule insensitivity.
Secondly, transaction graphs already encode reachability information obtained by ex-
ploiting scheduling constraints imposed by both synchronization primitives as well as
shared variables. Finally, the transaction graph encodes concurrent def-use chains which
we use in inferring control dependency. In other words, transaction graphs encodes all
the necessary information that allows us to readily decide schedule sensitivity.

Transaction Graph Construction. We now recall the transaction graph construction
[4] which is an iterative refinement procedure that goes hand-in-hand with the compu-
tation of numerical invariants (steps 1-9 of alg.[). In other words, the transaction graph
construction and computation of numerical invariants are carried out simultaneously via
the same procedure.

First, an initial set of (coarse) transactions are identified by using scheduling con-
straints imposed by synchronization primitives like locks and wait/notify and ignoring
the effects of shared variables (step 3-7 of alg.[I)). This step is essentially classical POR
carried out over the product of the control flow graphs of the given threads. This initial
synchronization-based transaction delineation acts as a bootstrapping step for the entire
transaction delineation process. These transactions are used to compute the initial set of
numerical (ranges/octagonal/polyhedral) invariants. Note that once a (possibly coarse)
transaction graph is generated dataflow analysis can be carried out exactly as for sequen-
tial programs. However, based on these sound invariants, it may be possible to falsify
conditional statements that enable us to prune away unreachable parts of the program
(Step 8) (see [4]] for examples). We use this sliced program, to re-compute (via steps
3-7) transactions based on synchronization constraints which may yield larger transac-
tions. This, in turn, may lead to sharper invariants (step 8). The process of progressively
refining transactions by leveraging synchronization constraints and sound invariants in
a dovetailed fashion continues till we reach a fix-point.

Deducing Schedule Insensitivity. The transaction graph as constructed via the algo-
rithm described in [4] encodes transactions or context switch points as delineated via a
refinement loop that dovetails classical POR and slicing induced by numerical invari-
ants. In order to incorporate the effects of schedule insensitivity we refine this transac-
tion delineation procedure to avoid context switches induced by pairs of transitions of
different threads that are dependent yet schedule insensitive.

The procedure for schedule insensitive transaction graph construction is formalized
as alg. [Il Steps 1-9 of alg. [[] are from the original transaction delineation procedure
given in [4]. In order to collapse partial orders by exploiting schedule insensitivity,
we introduce the additional steps 10-32. We observe that given a state (I1,l2) of the
transaction graph, a context switch is required at location /; of thread T} if there exists
a global state (I, ma) reachable from (I, [2) such that I; and ms, are schedule sensitive.
This is because executing /; and my in different orders may lead to different program
behaviors. Since a precise computation of the schedule sensitivity relation is as hard
as the verification problem, in order to determine schedule insensitivity of (I1,mz), we
use a static over-approximation of the schedule sensitivity relation defined as follows:

Definition (Static Schedule Sensitivity). Transitions t1 and to scheduled at control
locations ny and no of threads T and Ts, respectively, are schedule insensitive at state
(n1,ng2) of the transaction graph if for each conditional statement cond such that
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Algorithm 1. Construction of Schedule Insensitive Transaction Graph
1: repeat
2:  [Initialize W = {(in1, in2)}, where in; is the initial state of thread T};.
3: repeat
4 Remove a state (1, l2) from W and add it to Processed
5 Compute the set Succ of successors of (I1,l2) via POR by exploiting synchronization
constraints (Synchronization Constraints)

6: Add all states of Succ not in Processed to W.
7:  until W is empty
8:  Compute numerical invariants on the resulting synchronization skeleton to slice away un-

reachable parts of the program (Shared Variable Constraints)
9: until transactions cannot be refined further

10: repeat

11:  for each state (I1,12) of IT do

12: control oblivious = true

13: for each global state (I1,m2) where mo and [; are dependent do

14: for each conditional state cond scheduled at state (11, r2), say, do

15: if (r1,72) is reachable from (I1,m2) then

16: if cond is control dependent with [; and m2 then

17: if inv(., ) is the invariant at location (r1,72) and —((invey, ) =
cond) V (inv(, ry) A cond = false)) then

18: control oblivious = false

19: end if

20: end if

21: end if

22: end for

23: end for

24: if control oblivious then

25: for each predecessor (k1,l2) of (I1,12) in IT do

26: for each successor (n1,l2) of (I1,12) in IT do

27: remove (11, l2) as a successor of (k1,l2) and add (n1, l2) as a successor.

28: end for

29: end for

30: end if

31:  end for

32: until no more states can be sliced

— cond is reachable from (n1,n2) in the transaction graph (Reachability),

— there are concurrent def-use chains in the transaction graph from both ni and no
to cond (Control Dependence),

— cond either evaluates to true along all paths of the transaction graph from (ny,ns)
to cond or it evaluates to false along all such paths (Schedule Insensitivity).

Using dataflow analysis, these checks can be carried out in a scalable fashion.

Checking Reachability and Control Dependency. For our reduction to be precise it
is important that while inferring schedule insensitivity we only consider conditional
statements cond that are reachable from (1, m2). As discussed before, reachability of
global states is governed both by synchronization primitives and shared variable values
and by using numerical invariants we can infer (un)reachability efficiently and with high
precision. Importantly, this reachability information is already encoded in the transition
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relation of the transaction graph. In order to check control dependence of cond on [; and
ma, we need to check whether there are def-use chains from a shared variable v written
to at locations [y and msq to a variable u accessed in the conditional statement cond at
location r; or ro, where state (r1, r2) of the transaction graph is reachable from (11, l2).
Note that all states that have been deduced as unreachable via the use of numerical
invariants and synchronization constraints have already been sliced away via step 8 of
alg. [l Thus it suffices to track def-use chains along the remaining paths (step 14) in
the transaction graph starting at (I1,l2) (step 15). This can be accomplished in exactly
the same way as in sequential programs - the only difference being that we do it along
paths in the transaction graph so that def-use chains can span multiple threads.

Checking Schedule Insensitivity. Next, in order to deduce that a conditional statement
cond scheduled in state (r1,72) either evaluates to true along all paths from (I, m2)
to (r1,r2) or evaluates to false along all such paths, we leverage numerical invariants
computed in step 8 of alg.[Il Let inv(,, ,,) be the (range, octagonal, polyhedral) invari-
ant computed at (1, 72). Then if cond is either falsified, i.e., condNinv,., .,y = false
or cond is validated, i.e., NV(py ) = cond, the valuation of conditional statements
in (r1,r9) are independent of the path from (l1,ms) to (r1,7r2) (step 17). In order to
check schedule-insensitivity of (11, m2), we need to carry out the above check for every
conditional statement that is reachable from (1, m3) and has a def-use chain from both
{1 and mo to cond. If there exists no such conditional statement then we can avoid a
context switch at location [y of thread T} (steps 24-30) thereby collapsing partial orders
in the transaction graph.

Scalability Issues. A key concern in using transactions graphs for deducing schedule
insensitivity is the state explosion resulting from the product construction. However, in
practice, the transaction graph construction is very efficient due to three main reasons.
First, in building the transaction graph we take the product over control locations and
not local states of threads. Thus for k threads the size of the transaction graph is at
most n¥, where n is the maximum number of lines of code in any thread. Secondly,
when computing numerical invariants we use the standard technique of variable clus-
tering wherein two variables u and v occur in a common cluster if there exists a def-use
chain along which both u and v occur. Then it suffices to build the transaction graph for
each cluster separately. Moreover, for clusters that contains only local thread variables
there is no need to build the transaction graph as such variables do not produce thread
dependencies. Thus cluster induced slicing can drastically cut down on the statements
that need to be considered for each cluster and, as a result, the transaction graph size.
Finally, since each cluster typically has few shared variables, POR (step 5) further en-
sures that the size of the transaction graph for each cluster is small. Finally, it is worth
keeping in mind that the end goal of schedule insensitivity reduction is to help model
checking scale better and in this context any transaction graph construction will likely
be orders of magnitude faster than model checking which remains the key bottleneck.

6 Enhancing Symbolic Model Checking via Schedule Insensitivity

We show how to exploit schedule insensitivity for scaling symbolic model checking.

Schedule Insensitivity versus Partial Order Reduction. In order to illustrate the ad-
vantage of schedule insensitivity reduction we start by briefly recalling monotonic par-
tial order reduction, a provably optimal symbolic partial order reduction technique. The



Schedule Insensitivity Reduction 109

technique is optimal in that it ensures that exactly one interleaving is explored for every
partial order induced by computations of the given program. Using schedule insensitiv-
ity we show how to enhance monotonic POR by further collapsing partial orders over
and above those obtained via MPOR.

The intuition behind MPOR is that if all transitions enabled at a global state are
independent then we need to explore just one interleaving. This interleaving is cho-
sen to be the one in which transitions are executed in increasing (monotonic) order of
their thread-ids. If, however, some of the transitions enabled at a global state are de-
pendent than we need to explore interleavings that exercise both relative orders of these
transitions which may violate the natural monotonic order. In that case, we allow an
out-of-order-execution, viz., a transition ¢r’ with larger thread-id than ¢r and dependent
with ¢r to execute before 7.

Example. Consider the example in fig.[Il If we ignore dependencies between local tran-
sitions of threads 73 and 7> then MPOR would explore only one interleaving namely
the one wherein all transitions of T} are executed before all transitions of 15, i.e., the
interleaving ;a3 31 8283 (see fig. [I(b)). Consider now the pair of dependent opera-
tions (a1, b1) accessing the same shared variable sh. We need to explore interleavings
wherein a; is executed before by, and vice versa, which causes, for example, the out-
of-order execution (3 ;o vz 32 83 where transition 31 of thread T5 is executed before
transition «; of thread T} even though the thread-id of 3; is greater than the thread-id
of a;. MPOR guarantees that exactly one interleaving is explored for each partial order
generated by dependent transitions.

When exploiting schedule insensitivity, starting at a global control state (¢, c2) an
out-of-order execution involving transitions ¢ry and try of thread 7} and 7%, respec-
tively, is enforced only when (i) tr; and tro are dependent, and (ii) tr1 and tro are
schedule dependent starting at (¢, c2). Note that the extra condition (ii) makes the cri-
terion for out-of-order execution stricter. This causes fewer out-of-order executions and
further restricts the set of partial orders that will be explored over and above MPOR.

Going back to our example, we see that starting at global control state (ag, b2), tran-
sitions ao and by are dependent as they access the same shared variable. Thus MPOR
would explore interleavings wherein ao is executed before bs (o181 aa3B2/53) and
vice versa (a1 81 B2c2333). However as shown in sec. 2, ao and by are schedule in-
sensitive and so executing a, and by in different relative orders does not generate any
new behavior. Thus we only explore one of these orders, i.e., as executing before bo as
thread-id(az) = 1 < 2 =thread-id(bs). Thus after applying SIR, we see that starting at
(az, b2) only one interleaving, i.e., cacv 3233, is explored.

Implementation Strategy. Our strategy for implementing SIR is as follows:

1. We start by reviewing the basics of SAT/SMT-based bounded model checking.

2. Next we review the MPOR implementation wherein the scheduler is constrained
so that it does not explore all enabled transitions as in the naive approach but only those
that lead to the exploration of new partial orders via a monotonic ordering strategy as
discussed above.

3. Finally we show how to implement SIR by further restricting the scheduler to
explore only those partial orders that are generated by schedule sensitive dependent
transitions. This is accomplished via the same strategy as in MPOR - the only differ-
ence being that we allow out-of-order executions between transitions that are not just
dependent but also schedule sensitive.
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Bounded Model Checking (BMC). Given a multi-threaded program and a reachability
property, BMC can check the property on all execution paths of the program up to a
fixed depth K. For each step 0 < k < K, BMC builds a formula ¥ such that ¥ is
satisfiable iff there exists a length-k execution that violates the property. The formula
is denoted ¥ = & A P,,,.,p, where P represents all possible executions of the program
up to k steps and P, is the constraint indicating violation of the property (see [1]
for more details about @p,..,,). In the following, we focus on the formulation of @. Let
V' = Vgiobar U U Vi, where Viopq; are global variables and V; are local variables in
T;. For every local (global) program variable, we add a state variable to V; (Vyiopat).
We add a pc; variable for each thread T; to represent its current program counter. To
model nondeterminism in the scheduler, we add a variable sel whose domain is the set
of thread indices {1,2,...,n}. A transition in T; is executed only when sel = 1.

At every time frame, we add a fresh copy of the set of state variables. Let v* € V*
denote the copy of v € V at the i-th time frame. To represent all possible length-
k interleavings, we first encode the transition relations of individual threads and the
scheduler, and unfold the composed system exactly & time frames.

k n
@:= I(VO)A N(SCH(V) A /\ (VI VL)

i=0 j=1

where 1 (VU) represents the set of initial states, SC'H represents the constraint on the
scheduler, and T'R; represents the transition relation of thread 7. Without any reduc-
tion, SCH (V) := true, which means that sel takes all possible values at every step.
This default SCH considers all possible interleavings. SIR can be implemented by
adding constraints to SC' H to remove redundant interleavings.

MPOR Strategy. As discussed before, the broad intuition behind MPOR is to execute
location transitions of threads in increasing orders of their thread-ids unless dependen-
cies force an out-of-order execution. In order to characterize situations where we need
to force an out-of-order execution we use the notion of a dependency chain.

Definition (Dependency Chain) Let t and t' be transitions such thatt <, t/, i.e., t is
executed before t' along computation x. A dependency chain along x starting at t is a
(sub-)sequence of transitions tr;,, ..., tr;, fired along x, where (a) ig < 11 < ... < i,
(b) for each j € [0..k — 1], try; is dependent with tr;, ,, and (c) there does not exist a
transition fired along x between tr;; and tr;, , that is dependent with tr;.

For transitions ¢ and ¢’ fired along x, we use t =, t’ to denote the fact that there is a
dependency chain from ¢ to ¢’ along x. Then the MPOR strategy is as follows:

MPOR Strategy. Explore only those computation x such that for each pair of tran-
sitions tr and tr’ such that tr' <, tr we have tid(tr') > tid(tr) only if either (i)
tr’ = tr, or (ii) there exists a transition tr" such that tid(tr") < tid(tr), tr' =, tr"”
and tr' <, tr" <, tr.

Schedule Insensitivity Reduction. For implementing SIR, we only need to consider
partial orders induced by those pairs of conflicting transitions that are schedule sensi-
tive. This motivates the following definition.

Definition (Schedule-Dependency Chain) Let ¢t and t' be transitions fired along a
computation x such that t <, t'. A schedule-dependency chain along x starting at t is
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a (sub-)sequence of transitions tr;,, ..., tr;, fired along x, where (a) ip < 11 < ... < i,
(b) for each j € [0..k — 1], try, is schedule-dependent with tr;,  ,, and (c) there does
not exist a transition fired along x between tr;; and tr;, , that is schedule-dependent
with tr;,.

For transitions ¢ and ¢’ fired along z, we use ¢t =£ t’ to denote that the fact that there
is a schedule-dependency chain from ¢ to ¢’ along x. Note that the difference between
the above definition and that of a Dependency chain is that the above definition is more
restrictive as it only consider chains over dependent transitions only if they are schedule-
dependent. As a result is leads to exploration of fewer partial orders which in turn
enhances scalability of state space exploration. Then the SIR strategy is as follows:

SIR. Explore only those computations such that for each pair of transitions tr and tr'
such that tr' <, tr we have tid(tr’) > tid(tr) only if either (i) tr' =2 tr, or (ii) there
exists a transition tr” such that tid(tr") < tid(tr), tr' =5 tr'" and tr’ <, tr" <, tr.

Encoding SIR. In order to implement our technique, we need to track schedule depen-
dency chains in a space efficient manner. Our encoding to track schedule dependency
chains is similar to the one for tracking dependency chains in MPOR except that we
consider schedule sensitivity as opposed to dependency of transitions in building these
chains. In order to track schedule dependency chains, for each pair of threads 7;; and
T}, we introduce a new variable SDC}; defined as follows.

Definition. SDC;;(k) is 1 or —1 accordingly as there is a dependency chain or not,
respectively, from the last transition executed by T; to the last transition executed by
Ty at or before time step k. If no transition has been executed by T; up to time step k,
SDC; = 0.

Updating SDC};. If at time step k thread T; is executing transition ¢r, then for each
thread 77, we check whether the last transition executed by 77 is schedule sensitive with
tr. To track that we introduce the dependency variables D E P;; defined below.

Definition. DEPy; (k) is true or false accordingly as the transition being executed by
thread T} at time step k is dependent with the last transition executed by T}, or not. Note
that DEP;;(k) = 1 always holds (due to control conflict).

For MPOR these dependency variables are enough to track dependency chains. How-
ever even if two transitions are dependent they might still be schedule insensitive. To
carry out this additional check, we introduce the schedule sensitivity variables

Definition. SS;;(k) is true or false accordingly as the transition of thread T; being
executed at time step k is schedule sensitive with the last transition executed by T}, or
not. Note that SS;; (k) always holds true.

We now show how the SDC variables are updated. If (DEP,;(k) = 1) A (SSy(k) =
true) and if SDCj;(k—1) = 1, i.e., there is a schedule dependency chain from the last
transition executed by T} to the last transition executed by 7}, then this schedule depen-
dency chain can be extended to the last transition executed by 77, i.e., tr. In that case,
we set DC; (k) = 1. Also, since we track schedule dependency chains only from the
last transition executed by each thread, the schedule dependency chain corresponding
to T; needs to start afresh and so we set SDC;;(k) = —1 for all j # 4. To sum up, the
updates are as follows.



SDCyi(k) =1

SDCU(]C) =-1 whenj 7é )

SDCJZ(]C) =0 whenj 7é 7 and SDCM(]{) - 1) =0
SDCji(k) = /1, (SDCyy(k — 1) = 1

ADEP;(k) A SSii(k)) when j # iand SDCjj(k—1) #0
SDChq(k) = SDChpq(k — 1) whenp # i and g # ¢

Scheduling Constraint. Next we introduce the scheduling constraints variables S;,
where S; (k) is true or false based on whether thread T; can be scheduled to execute or
not, respectively, at time step k in order to ensure quasi-monotonicity. Then we conjoin
the following constraint to SC H:

n

/\ (sel* =i = Si(k))

i=1

We encode S; (k) (where 1 < i < n) as follows:
S;(0) = true and

for k > 0, Sz(k'> = /\ (SDCJZ(]C) # -1V \/l<i SDCJl(k‘ — 1) = 1)

j>i
In the above formula, SDC}; (k) # —1 encodes the condition that either a transition by
thread T, where j > 4, hasn’t been executed up to time &, i.e., SDC};(k) = 0, or if it
has then there is a schedule-dependency chain from the last transition executed by T} to
the transition of T; enabled at time step k, i.e., S DCjZ-(k) = 1. If these two cases don’t
hold and there exists a transition ¢r’ fired by T before the transition ¢r of T; enabled at
time step k, then in order for quasi-monotonicity to hold, there must exist a transition
tr” fired by thread T}, where [ < 4, after ¢r' and before ¢r such that there is a schedule-
dependency chain from ¢r’ to ¢r” which is encoded as \/,_, SDCj(k — 1) = 1.

All we need to show now is how to encode the DEP and SS variables. The depen-
dency variables are encoded exactly as in MPOR (see [5] for details). Thus as a final
step we show how to encode the SS variables.

Encoding SS. For encoding SS variables we use the schedule insensitive transaction
graph constructed in sec 5. In order to decide whether transitions ¢; — d; and ¢c; — d;
of threads T’; and T} are schedule sensitive it suffices to check whether there exist paths
in the transaction graph wherein c; is executed before ¢; along one and vice versa along
the other. Note that since SIR allows context switching only at locations where shared
variables are accessed, we can restrict ourselves to locations ¢; and c¢; satisfying this
property. Moreover since we are interested only in the schedule (in)sensitivity of depen-
dent transitions we can further assume that the statements at ¢; and ¢; are dependent.
To encode S.5;; we first compute the set SS-Pairs;; of all pairs (c1, ¢2) such that (i)
c1 and c3 belong to threads T; and T}, (ii) there exists a pair of dependent transitions of
the form ¢ry : ¢; — dy and try : co — da, and (iii) there exist paths in the schedule
insensitive transaction graph wherein c; is executed before ¢y along one and vice versa
along the other. The sets SS-Pairs;; can be enumerated via a single traversal of the
transaction graph. Then 5Si; = \/ (. yyess— pairs;, (PCi = ¢) A (pej = d))
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Table 1. Model Checking Data Race Warnings (Timings are in seconds and memory in MBs)

Witness # Shared Relevant Transaction ‘MPOR ‘ SIR
Vars Sh. Vars  Graph  Time Mem Time Mem
jfs dmap: 1 6 1 0.01 0.02 59 001 12
ctrace: 1 19 12 10 2 62 1 43
ctrace: 2 19 12 14 10hr 1.2G 3hr 0.5G
ctrace : 3 19 12 12 2303 733 1800 560
autofs: 1 7 2 0.05 1.14 60 0.5 30
autofs : 2 7 2 0.07 128 144 43 85
ptrace: 1 3 1 20 844 249 502 191
raid: 1 6 0 - 26.13 75 7.1 21
raid: 2 6 0 - 179 156 20 41
raid: 3 6 0 - 32.19 87 5 29
raid: 4 6 0 - 4.15 61 3 19
raid: 5 6 0 - 9.30 59 2 24
raid: 6 6 0 - 70 116 12 23
ipoib: 1 10 2 0.02 0.1 58 0.1 58
ipoib : 2 10 2 0.02 0.1 59 0.1 59
ipoib : 3 10 2 0.04 0.1 58 0.1 57
ipoib : 4 10 2 0.03 03 59 03 59

7 Implementation and Experimental Results

In previous work [6] we used static analysis to produce data race warnings for a suite
of Linux device drivers downloaded from the Linux Kernel Archives. Each warning
produced via static analysis is a pair (I1,l2) of control locations in different threads
where the same shared variable is accessed with at least one of the access being a write
operation and disjoint sets of locks are held. In order to decide whether (I1,l2) is a true
date race we have to decide whether there exists a reachable global state of the given
program with thread 7 at control location ;.

We compare the time taken and memory used for MPOR [5] and SIR. For each of
the six drivers, the property checked is reachability of control locations correspond-
ing to data race warnings. Columns 1 and 2 report the total number and the number
of relevant shared variables, respectively. Here a shared variable is said to relevant is
there is a def-use chain starting at some write of v and leading to a conditional state-
ment of some thread. Clearly we need to consider conflicts only for the relevant shared
variables. Note that typically, the number of relevant shared variables is considerably
less than the total number of shared variables thereby pointing to the utility of SIR.
Column 3 gives the time taken for transaction graph construction using our new SIR
algorithm. Note that the overhead of this step is small. Also, for examples that contain
no relevant shared variables, e.g., raid, this step is unnecessary as we know a priori that
only one interleaving need be explored. The model checking statistics for MPOR and
SIR are shown in columns 4-5 and 6-7, respectively. Clearly, both the time taken and
memory used when applying SIR is significantly less than when MPOR is used. Our
experiments were conducted on a workstation with 2.8 GHz Xeon processor and 4GB
memory.
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Abstract. We present a framework for modeling and analysis of adap-
tive embedded systems, based on the model of timed automata with
tasks. The model is extended with primitives allowing modeling of adap-
tivity, by testing the potential schedulability of a given task, in the con-
text of the set of currently enqueued tasks. This makes it possible to
describe adaptive embedded systems, in which decisions to admit fur-
ther tasks or take other measures of adaptivity is based on available
CPU resources, external, or internal events. We show that this model
can be encoded in the framework of timed automata, and hence that
the problem is decidable. We also validate the framework, by using the
UPPAAL tool.

1 Introduction

Adaptive embedded systems are embedded systems that must be capable of
dynamic reconfiguration, to adapt to e.g., changes in available resources, user-
or application-driven mode changes, or modified quality of service requirements.
The possibility to adapt provides flexibility that extends the area of operation of
embedded systems and potentially reduces resource consumption, but also poses
challenges in many aspects of systems development, including system modeling,
scheduling, and analysis.

In embedded systems, tasks are usually assumed to execute periodically
according to classical real-time scheduling methods, such as rate monotonic
scheduling, other fixed priorities, earliest deadline first, or first-in first-out [5].
For systems with non-periodic tasks or non-deterministic task behaviors fewer
general results exist. Automata models have been proposed to relax some of the
assumptions on the arrival patterns of tasks. In the model of task automata (or
timed automata with tasks) [8II0], the release patterns of tasks are modeled
using timed automata [I], such that a set of tasks with known parameters is
released at the time point an automaton location is reached. It has been shown
that the corresponding schedulability problem for this bigger class of possible
release patterns is decidable, i.e., the problem of checking if, for all possible
traces of a task automata, the tasks released are schedulable (or not), assuming
a given scheduling policy. It has also been shown how to generate code from task
automata, such that a modeled system can be realized on a hardware platform
running e.g., WxWorks [3l4]. The theory is implemented in the TIMES tool [2].

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 115 2012.
© Springer-Verlag Berlin Heidelberg 2012
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On the another hand, many results exist for formal verification of adaptive em-
bedded system models specified in high level languages such as UML Statecharts,
as enumerated by Schaefer [I3]. Another set of results describes application of
formal verification of schedulability to: multiprocessor systems [14], satellite sys-
tems [I1], or providing generalized frameworks for schedulability analysis [7]. All
of these studies have one thing in common: the non-schedulability of the system
can be determined only after a task misses its deadline, and thus the information
is not present soon enough, such that it can be used to avoid entering such state.

In this work, we propose a framework for modeling and analysis of adaptive
real-time embedded systems, based on the model of task automata, and assuming
a single CPU preemptive environment. We extend the model with primitives
allowing modeling of adaptivity based on the schedulability of the set of currently
released tasks (i.e., the ready queue), if further tasks are released. In particular,
we propose to add a schedulability predicate that can be used as a conjunct
of a timed automaton guard. The predicate evaluates to true at a given time
point, iff the current ready queue, extended with zero or more specified tasks,
is schedulable with a given scheduling policy. This allows for modeling of e.g.,
adaptive embedded systems in which decisions to admit further tasks are based
on available CPU resources, or systems in which tasks with high quality of service
can occasionally be replaced with alternative lower quality tasks, when the CPU
load is too high.

f ) 3 ]

P[T[D]C
to|3[10[10[5 t f
t1[2[15]6 [4
T=l61 ft’l B
0 5 10 15 20 25 30

Fig. 1. A trace of a task set with adaptable task ¢1

As a small example of the proposed model, consider a system with two tasks ¢,
t1, and t], where ¢} is a version of ¢t; with lower quality of service, which requires
less CPU time. The task parameters are given in Fig.[Tk P is priority, T is period,
D is deadline, and C is computation time. Since Py>P; > PJ, task ¢y will be exe-
cuted periodically without being preempted. We assume ¢; will be admitted only
if it has a chance to complete before deadline, otherwise t] is released. The sys-
tem is schedulable, and will release ¢y every 10 ms, and will try to release t; every
15ms. If t; cannot be released at that time point, due to interference from ¢, task
t} will be released. Modeled in our extended task automata model, we can check
schedulability, verify how many times out of k task ¢} replaces t1, and interpret a
simulated trace as static cyclic scheduler for the system.

As our main result, we show that the schedulability problem and other reacha-
bility properties of the proposed model are decidable for fixed priority scheduling
policies. Our encoding of the problem is based on previous results of Fersman
et.al. [8J10], in which it is shown how given task automata can be encoded and
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analyzed as a network of timed automata. However, in comparison to the previ-
ous work, our type of adaptive systems cannot rely completely on encoding the
scheduler and explore the state space to check if the system is schedulable or
not. Instead, we need to check in advance if a system is schedulable, or will be
schedulable with the potential release of one or several additional tasks.

The rest of this paper is organized as follows: in the next section, we de-
scribe preliminaries, in Section [ adaptive scheduling policies encompassed by
the model, and in Section ] our main result, the encoding. In Section Bl we give
some examples, and conclude the paper in Section

2 Preliminaries: Task Automata

Our model of adaptive task automata is based on the model of task automata (or
timed automata with tasks) [SII0J12], which extends the model of timed automata
with a notion of tasks. A timed automata [I] is simply a finite state automata
extended with a finite set of real-valued clocks. The edges of timed automata
are labeled with Boolean combinations of simple clock constraints, events, and a
reset set of clocks, specifying a subset of the clocks to be reset when the edge is
taken. In the model of task automata, the idea is to associate each location of a
timed automaton with a an executable program, called task, which is assumed to
be released when the location is reached. Each task is assumed to be associated
with given parameters such as execution time, hard deadline, priority, etc. It
is possible to interpret a task automaton as an abstract model of a running
system, in which the underlying timed automata describes the time points at
which possible events occur, and the location-associated tasks, triggered by the
occurring event.

Syntax. Let T ranged over by tg,...,t, denote a finite set of task types. Each
task type may have different instances over time, however, we will assume, with-
out lack of generality, that at each time point there is at most one instance of
each task type released. Each task type is associated with a a triple of natural
numbers ¢;(C;, D;, P;), where C; is the task’s computation time, D; its relative
deadline (relative from the release time point), and P; its priority. Further, let
Act ranged over by a, b etc, denote the set of action labels, and C ranged over
by xo,...,Z, the finite set of real-valued clocks. We use B(C) ranged over by g
to denote the set of conjunctive formulas of constraints, called clock constraints,
of the form z; ~ n and z; — z; ~ m, where ~€ {<, <, >,>}, and n and m are
natural numbers.

Definition 1. [10] A task automaton over Act, C, and T is a tuple (L, ly, E, I, M),
where L is a set of location ranged over by ly, .. .l,, lo € L is the initial location,
E C L xB(C) x Act x 2¢ x L is the set of edges, I : L — B(C) is a function assign-
ing each location with a location invariant, and M : L — T is a partial function
assigning locations with tasks. O
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Semantics. Like in standard timed automata, a task automaton may perform
two types of actions. A delay transition corresponds to progression of time and
execution of the released task with the highest priority, and idling lower priority
tasks waiting to run. An action transitions corresponds to taking an enabled
edge (one whose guard evaluates to true given the current clock values), and
(possibly) releasing a task associated with the location reached.

A state of a task automaton is a triple (I, u,q), where [ is the current con-
trol location, u : C — Rx>( is a function mapping clocks to non-negative real
values, and ¢ is the current ready queue of tasks. The task queue is formed as:
[ti(ci,di), ..., tj(cs,d;)], where t; is the task type, ¢; is the remaining compu-
tation time, and d; the relative deadline. A scheduling function, such as fixed
priority or earliest deadline first, is a function Sch sorting the task queue w.r.t.
the task parameters. For instance, [t1(1,2),?2(2.5,4)] is sorted according to fixed
priority, if P, > P». Note that a scheduling policy can be either preemptive or
non-preemptive, depending on whether the first queue position can be changed
(preemptive) or not (non-preemptive).

To define the semantics, we also need a function Runsq, that takes a task
queue ¢ and a non-negative real-number J, and returns the result of executing
g for § time units, with the given scheduling function Sch (e.g., Rungps([t1(1, 2),
12(2.5,4)],2) = [t2(1.5,2)], for a fixed priority scheduling fuction Rungps).

Definition 2. [I0] Given a task automata (L,lo, E,I, M) with an initial state
(lo, w0, q0), and a scheduling strategy Sch, the semantics is a transition system
defined as:

— (l,u,q) —Ssen (I, 7(u),Sch(M 1) == q)) if 1221V e E andu =g
~ (L, q) ~osen (1, u ® 6, Runsen(q,0)) if (u @ 8) b= I(1)

where r(u) is 0 for all x; € r and u(x;) otherwise, t :: q is the result of merging
t with q, and u ® § is the result of adding 6 to all clock values in u. O

Schedulability. Verification problems of the above model, with non-preemptive
and preemptive tasks, have been already investigated in [I0/I2]. Here we briefly
review the notions of reachability and schedulability. A state (I, u, ¢) is reachable
with a given scheduling policy Sch, if (ly, uo, o) (—sen)*(l, u, ), where —scp
is —Ssgep Or i>5ch. Further, a state (I, u,q) with ¢ = [to(co,dp), - .., tn(cn,dn)]
is defined as deadline-missed, if there is some 0 < ¢ < n such that ¢; > 0 and
d; < 0. A task automaton A is defined to be non-schedulable with Sch iff a
deadline-missed state is reachable with Sch. Otherwise, A is considered to be
schedulable with Sch. In general, A is said to be schedulable if it is schedulable
with some scheduling strategy Sch. The problem of checking schedulability of
task automata with preemptive tasks is proven to be decidable in [I0].

3 Adaptive Task Automata

In this section, we describe the model of adaptive task automata, which extends
the model of timed automata for adaptivity. Our aim is to enable modeling
of adaptivity based on the schedulability of the set of currently released tasks,
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and the effect of potentially releasing additional tasks for execution. In terms
of modeling, the extension consists of a set of predicates for schedulability test,
which can be used in conjunction with other guards on edges of task automata.
As a main result of this paper, we will also show how the resulting model can
be encoded as timed automata, and hence, that reachability and schedulability
checking are decidable.

Definition 3. Given a task automaton state (l,u,q), with ¢ = [to(co,do), .- .,
tn(cn,dn)], and two distinct tasks, t; and t;, let P be the set of predicates
{inqueue/1, sched/1, sched/2} satisfied as follows:
(l,u,q) = inqueue(t;) if t; € q
(l,u,q) = sched(t;) if (35—, ¢;) < di A inqueue(t;) V
(I, u,Sch(t;::q)) |= sched(t;) A ~inqueue(t;)
(I, u,q) |= sched(t;, t;) if inqueue(t;) A (l,u,Sch(t;::q)) = sched(t;)

We say that t; is active in state (I, u,q) if {I,u,q) = inqueue(t;). In the rest of
the paper, we will omit (I, u, ¢) if the context is obvious. Intuitively, sched(t;) is
true in a state, if ¢; will meet its deadline, given that ¢ is executed according to
Sch. We say that ¢; is schedulable if sched(t;). Similarly, sched(t;,t;) is true in a
state, if ¢; is schedulable even if ¢; is released (added to g).

We now define the model of adaptive task automata. Let B(P U C) denote
the set of conjunctive formulas of clock constraints in B(C), and predicates in P.

Definition 4 (Adaptive Task Automata). An adaptive task automaton over
Act, C, and T is a tuple (L,lo, E', I, M), where L, lo, I, M are defined as in
task automata in Definitiondl. The set of edges is defined as: E' C L x B(P U
C) x Act x 2¢ x L. O

Hence, the set of guards of the edges is extended to conjunctions of clock con-
straints and the predicates of Definition [Bl

Ezxample 1. The adaptive task automaton shown in Fig. 2l describes the release
pattern of the task ¢; and corresponding backup task ¢} from Fig. [l The au-
tomaton consists of a clock x, and three states: Start, Release ¢;, and Release
t}. The edge from state Start to the states releasing tasks t; or ] is immedi-
ate, given the invariant x < 0 of state Start. The choice of the next state is
regulated by the evaluation of the respective guards on the edges, sched(t;) or
sched(t}) A —sched(ty), respectively. Once one of the Release {t1,¢]} states is en-
tered, the corresponding task is released, and the automaton spends the rest of
the period in that state, before returning to start and resetting the clock x. Note
that a third edge from Start to an error location, taken in case when none of the
alternatives can be released, has been omitted from the figure for simplicity.

Derived predicates. The predicates defined above can be used to derive several
other useful predicates, including:

— sched_all = (), inqueue(t;) = sched(t;)),
— sched_all(t;) = (/\; inqueue(t;) = sched(t;,;)).
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Release t;
r <15

Release t]
r <15

Fig. 2. Adaptive task automata for the task ¢; from the Example [l

The predicate sched all evaluates to true, in case all tasks in the queue are
schedulable, assuming scheduling policy Sch. The second predicate holds if all
the tasks in the queue are schedulable, if task ¢; is released. We will make use of
the above derived predicates in an example presented in Section [l

4 Encoding of the Adaptive Task Automata

In this section, we present an encoding of the task release automata, the sched-
uler, and the task queue, as timed automata models. The encoding is presented
in terms of the variables that are used to model the execution of tasks. Based
on these variables, the predicate sched() is encoded, and finally, an encoding of
a fixed priority scheduler is presented.

Modeling a task set execution in timed automata requires tracking of several
values for each executed task instance. To establish if a task has executed in
time, we keep track of the amount of time that the task has been executing,
and the amount of time that has passed since the task has been released. By
using these values, and comparing them to the computation times and relative
deadlines of the tasks, we can establish if a task is able to complete successfully,
or not.

Our encoding is based on, and combines ideas introduced by Fersman et al.
[89]. The following variables are used for each task ¢;:

— ¢; - a clock that resets every time the predicate (3¢; | inqueue(t;) A P; > P;)
changes value from false to true, where P; and P; are priorities of tasks ¢;
and t; respectively;

— d; - a clock reset when the task t; is released;

— r; - an integer variable (of bounded domain) that contains a sum of the
computation times C; of all tasks of higher or equal priority to task ¢,
which have been released since c¢; has been last reset.

The use of these variables will be exemplified on the scenario illustrated in Fig. Bl
Four task instances are released: t; (at time point 4), t5 (at time point 1), and
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Fig. 3. Tracking of essential variables for each task

ts (at time points 2 and 8). The task parameters and the values of variables r;,
and clocks ¢;, over time, are also given in the figure. Clocks d; are left out for
clarity, but the point where they would become equal to the corresponding value
D; is marked with thick vertical bars.

The variables and clocks of all tasks are reset at the release of the first task ts,
at time point 1. As t5 is released, its computation time (2) is added to all the r;
of tasks with lower or equal priority to to,i.e.,ro =ro+2=2and r3 =rz+2 = 2.

A task completes its execution when ¢; = r;. In our case, this happens first
at time point 3, when ro = co. However, before this, task t3 is released at time
point 2, so r3 is increased by 2, the computation time of task t3. The only clock
reset at this time is ds, to start measuring time until its relative deadline.

At time point 4, task t; is released, causing the reset of all its variables, and
those of task ¢2 (according to how ¢; is updated). Variables r1, ra, and r3 are
increased by 1 (the computation time of task t3), to 1, 1, and 5, respectively.

We now focus on task t3. Observe that the difference r3 — c3 for task t3
represents the time left until ¢3 completes its execution (assuming no higher
priority task is released). The time left to its deadline is given by D3 — ds.
Comparing the two values, we get the amount of time that the task can be
delayed without missing its deadline, and hence, as long as the inequality holds,
the task will meet its deadline. The values are illustrated in Fig. @ In fact, at
time x, there is enough time to execute a higher priority task for 2 time units,
since r3 —cg +2 < D3 —d3. When task t¢; is later released, we already know that
task t3 can finish at time 6, i.e., 1 time unit before its deadline.
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,,,,,,, deadline clock

D3 relative deadline of the task t3

Fig. 4. Visual explanation of the schedulability predicate encoding

4.1 Encoding the Predicate sched()

Given the variables introduced above, and given that there is a possible scheduler
model (introduced in the next section), we encode the predicate sched() as follows:

ri—c¢ <D;—d; if inqueue(t;)
sched(t;) = ri—c¢; +C; < D; —d; if minqueue(t;) A Pryn > P
C; <D, if minqueue(t;) A Pryn < P;

where t,.,,, refers to the currently executing task.

The first case has been explained in the previous section, note that it covers
all cases where t; = t,y, since inqueue(t, ) is invariantly true. In case the task
of interest (¢;) has not been released yet, its computation time is not included in
the expression r; — ¢; < D; —d;, so this gives rise to the second case. In case the
task is not yet released, and it has higher priority than the currently running
task, it will execute immediately, and its schedulability is then only depending
on computation time being shorter than the deadline, hence the third case. This
case cannot be covered by the second case, since the clocks are considered inactive
at this point, and can only be reset and not read.

The implementation of the scheduler requires a strict ordering between the
tasks. We have introduced that ordering by assuming unique task priorities.
Together with the requirement of single task instance per task, this makes P; =
Pj lead to an error state, and it is therefore not considered.

The derivation of the schedulability predicate that tests the schedulability of
task ¢;, based on the release of task ¢;, can be done from the second case above,
by replacing c¢; with a new computation time C;. This provides the following
predicate that tests whether the task ¢; is schedulable, if task ¢; is released:

r,—c+C; <D;—d;, if P, <PjAinqueue(t;)
sched(t;,t;) =< r; —¢; < D; —d; if P; > P; A inqueue(t;)
false if ~inqueue(t;)

The second case of this predicate holds when the task that we want to release
will not influence the measured task.
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4.2 Encoding the Fixed Priority Scheduler

We have devised a model of a fixed priority scheduler, to support our approach
to the verification of adaptive embedded systems. This encoding enables us to
simulate the passage of time in the model, and simultaneously, keep track of
response times of tasks in the queue. This is required for an on-line analysis of
schedulability. Next, we give the scheduler’s encoding high-level description, yet
omitting some details due to lack of space.

High Level Description. The model consists of three locations with identi-
fied, different roles: Idle, Busy and Error, as shown in the overview Fig. Bl The
corresponding locations can also be found in the Fig. [6l

Idle Error

Idle — Busy
Task run done and ¢ =

Busy — Error
Deadline miss
Multiple release

Busy — Idle

First task release
Busy — Busy

Task run done and ¢ = ()
Variable bounding
High priority task release
Low priority task release

Fig. 5. A high level overview of the scheduler and queue encoding in timed automata

The scheduler and queue timed automaton model starts in the ldle location.
As soon as some task is released, the location changes to Busy, and if an error
occurs, the model switches to the Error location. Otherwise, the model loops in
the Busy location, for as long as there are tasks in the queue. The addition of
the Error location makes it possible to easily distinguish between an error in the
schedule, and a deadlock in the task release model.

The queue is implemented such that each task ¢; has attribute inqueue;. This
attribute indicates whether or not the task is present in the ready queue and is
therefore directly tied to the inqueue(t;) predicate.

The initial location of the model is Idle. The model can be in this location only
when there are no tasks in the queue, and no task is being executed. As soon as
one of the tasks is released (added to the queue), the model changes its location
to Busy, via the First task release edge. The consequence of taking this edge is
that all of the clocks and variables are reset, in order to initiate a new cycle of
execution. After that, the variables related to the release of the first task are
updated (detailed explanation of variable updates is presented in section F3]).

When the automaton is in the Busy location, it means that a task instance
is being executed on the CPU. Since the model does not implement any task
blocking mechanism, the situation when there are tasks in the queue, but none
is executing, cannot occur.

The Busy location wraps in on itself in multiple edges. Many of these edges
are restricted to execute at the same time point. This is enforced by an invariant
on the Busy location (shown in dotted box in Fig. []). The model uses variable
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First task release Task run done and ¢ = ()
release;? Crun = Frun N
Idle
inqueue; := T, je{o"_"’].v\;l}.
run =i, (run = j V —inqueue;)
update Rs(7) inqueue,,,, := L
ﬂask run done and q # () Low priority task release \
Crun = Frun N\ Pryn > P; A
drun < Dryn A ~inqueue;
L # run A release;?
mqueue; N\
Vie(o-N-1} di = 0,
(j=runV inqueue; := T,
inqueue; = LV P; > Pj) updateRs(i)
jnqueuefun =1, Variable bounding
run =1 c = gmaz A
Pi é Prun
High priority task release ¢ =0,
P; > Prun A =1 — OO
—inqueue;
d t Crun, S Frun A\ .
release;? 'Vjeqo,. . N—1}
inqueue; := T, L FiS R 5 g < 0T
resetBe'tween(z, Tun), Busy
run =i,
updateRs (i)
Deadline miss Multiple release
inqueue; A inqueue; A
d; > D, (i=run=c¢; <r)
Error release;?

Fig. 6. The full model of scheduler and queue. The boxes represent transitions de-
scribed by (in order from top to bottom): name, guard predicate, synchronization
expression, and assignment. If one of the values is nil it is not shown.

i to represent classes of edges that are instantiated for every task in the task
set. For instance, if there are five task types in the task set, there will be five
Variable bounding edges, one for each task type. Below, we enumerate the classes
of edges looping in the Busy location:
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— Task run done and g # () - After the current task has completed its execution,
this current task, denoted by the value of the run variable, is removed from
the queue, and a next task is chosen for execution, out of those currently
in the queue. The choice of the next task is done by selecting the edge
corresponding to a task that has higher priority than all of the other tasks.

— High priority task release - It releases a new task into the queue, which pre-
empts the currently running task. The release changes the status of the
currently executing task, sets a new value of the variable run, and resets the
currently inactive variables that have lower or equal priority than the new
task.

— Low priority task release - If the new task is not of higher priority then the
currently running task, it is then just placed in the queue. Its variables are
already active, so only the deadline clock d; is reset.

— Variable bounding - Due to the nature of timed automata, it is required that
the variables in the model have upper and lower bounds. This process is
explained in detail in section

Last but not least, we need to consider the possibilities for the model to switch
to the Error location. In such a case, there are two classes of edges and, once
again, they are iterated over all tasks:

— Deadline miss edge is taken when a task misses its deadline, that is, the
deadline clock becomes greater then the value of the relative deadline.

— Multiple release edge is taken when a task is released, but it is already in the
queue.

Finally, the edge "Task run done and ¢ = ()" is taken when the last task in the
queue is completed, and there are no more tasks left. We remove the currently
running task from the queue and return to the Idle location.

4.3 Variable Bounding

To be able to verify timed automata models, all of the variables, including clocks,
have to be bound. To bound variables in this model, we have introduced a loop
on the Busy location, named Variable bounding. This loop is executed for each
individual task t;, whenever its total computation time reaches a certain value
C™e% Tt reduces the total computation time c¢; to zero, and subtracts C™*
from the corresponding response time variable r;, thus not influencing the delta
ri — ¢;. By doing this, we ensure that the total computation time is always
lower or equal to C™%* and that the response time variable is kept bound to
C™me* 4 D™ within a working system. C™%* can be any value greater or equal
to the maximum of computation times in the current task set, and D™%* is the
maximum of deadlines in the task set. If the response time becomes greater than
Cmer 4 D™MaTt we can guarantee that the task will breach its deadline, and the
model becomes unschedulable.

Theorem 1. The problem of checking the schedulability of the system, modeled
using adaptive task automata, is decidable.
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Proof Sketch. Due to space limitation, we give only a proof sketch here. In this
section, we have presented a way of encoding adaptive task automata using
timed automata, featuring a fixed priority scheduler. Since all of the variables
in the model are bounded, and the problem of decidability of bounded timed
automata with subtraction has been already proved decidable [10], the problem
of decidability of checking schedulability in this particular case follows straight-
forwardly. O

5 Examples

To further illustrate the benefits that the system designers could get from using
our model, we have analyzed two example systems, one synthetic, and one based
on real world ideas.

5.1 Admission Control - A Synthetic Example

This example demonstrates the usage of the sched all(t;) predicate, for a given
task t;. We assume a system with two tasks, ¢; and t;, where each has an
alternative version of itself, ¢} and tj, respectively. The task parameters are
shown in Fig. [ parameter J represents the task’s jitter value. For instance, the
task t; will be released every 10 time units, but can be up to 2 time units late.

Release t;
sched_all(t;) =T

Start
Task|P|C|D|T'|J r < Ji Branch
t1 [4]5]5[10[2 Release t)
t) 1313|512 x<T
to |2(3]7]10/5
th |112|7]- 15

Fig. 7. Task set and adaptive task automata model for the synthetic example

Fig. [ shows the task automaton corresponding to ¢1; the one of t5 is similar,
hence we omit it. For the task ¢1, the task automaton checks whether all of the
other tasks in the system are schedulable if the task ¢; is released. If the tasks
are not schedulable, it tries to release the alternative variant of the task: ¢}. The
two task automata instances are modeled as timed automata, and communicate
with the scheduler via channels. The order between the preferred and alternative
variant of the tasks, respectively, is ensured by using channel priorities [6]. For
these models, we have proven that the system would never run into the Error
state of the scheduler, and that (all of) the variants of the tasks will be eventually
released. Proving that the system will never get into the Error state is the most
demanding on the UPPAAL prover, and it required about 0.08 seconds CPU time,
and 42MB memory on a dual-core 3.0GHz CPU, equipped with 4GB of RAM.
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5.2 Smartphone Task Management Example

The second example has been adapted from an idealized smartphone operating
system. Modern smartphone devices support multitasking, yet have quite limited
resources available for realizing their functionality. We propose a scheduler-level
solution that enables a phone to adapt to the current situation fluently, by
dynamically restricting the quality of service provided to the user.

The basic assumption is that the software in the smart phone is being executed
in cycles. A series of short tasks that handle different applications are being
executed each cycle. The applications that we have chosen for this example
are: phone call, video call, and multimedia. The user can turn any of these
applications on, or off, at arbitrary moments. The switch status of the application
will not be immediately reflected in the active task set, but the task set will
change during the next cycle, instead.

Table 1. Set of tasks for the smartphone example

P T D C Description
te 51010 4 Call
tve 4 1010 3 Video Chat
tmm 3 10 10 7 Multimedia: max quality
trom 2 — 10 4 Multimedia: medium quality
thm 1 — 10 3 Multimedia: low quality

Release t,,,,
r<=T

Release t’

mm
sched (¢, th ) *tﬁ\

Sc,
]Jed(zt//
772772 > &
Lz,

Release ¢
r<=T

Fig. 8. Adaptive task automaton model for the smartphone example

We have modeled the smartphone as an adaptive task automaton, and then
implemented it as timed automata. The system model relies on a fixed priority
scheduler. Tasks ¢.; (phone call), and t,. (video call), are described by "periodic
release" automata, whereas task ¢,,,, (multimedia) is modeled using the adaptive
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task release automaton presented in Fig. 8l The automaton has been modeled
using priorities [6], to remove nondeterminism from the execution.

Once the system has been modeled, a full verification of schedulability becomes
possible. As previously, verification of not reaching the Error state has been the
most demanding and, required about 0.03s and 34MB of RAM memory.

6 Conclusion

In this paper, we have proposed a framework for formal modeling and scheduling
of adaptive embedded systems, which relies on a task automata description of
the system (tasks and scheduler). In order to check at each task’s release time
point whether the system is schedulable, or will be with the potential release of
other additional tasks, we have introduced a set of schedulability predicates to
be used in the guards of the task automata model.

The encodings and on-line schedulability tests that we have devised can be
seen as model-level means of predicting, at release time-moments, the timeliness
behavior of real-time tasks with very general release patterns, which are stored
in the ready queue. Our liberal adaptive task automata model, enhanced with
predicates for schedulability test, lets one perform on-line adaptations that de-
cide to admit or not certain tasks, depending on their respective adherence to
the desired real-time requirements, that is, meeting their deadlines. The salient
result of our work is the decidability of reachability and schedulability of adap-
tive task automata, by showing that the resulting model can be encoded in the
timed automata framework.

The power of our approach resides exactly in the fact that the task selection
strategy is specified as a predicate on clocks and integers. As it stands now, that
is, assuming fixed priority schedulers, the model is compatible with any scheduler
that has fixed ordering between the tasks, once the tasks are released. As with
every formalized approach, there are some potentially useful-to-solve unexplored
issues, which need further attention. For instance, it would be interesting to
check on the consequences of allowing a task set to run, even if, based on our
schedulability tests, we decide that it misses its deadline at the current time
point. Another problem that deserves investigation is the possibility of releasing
more than one task at a time, and verify the resulting model.

We also consider to extend the method to cater also for other schedulers than
fixed-priority, for instance, Earliest-Deadline-First (EDF) schedulers. Neverthe-
less, although, as for now, our technique is restricted to fixed-priority schedulers,
it can already decide on task executions at run-time, but has also the potential of
manipulating the queue of released tasks, in the sense of switching ready tasks’
priorities, if the case, removing certain tasks from the queue, etc., all based on
possible further additions to the schedulability predicates.

The final avenue to explore would be along investigating the efficiency of our
approach, when handling real-world industrial case study.
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Abstract. Program properties that are automatically inferred by static
analysis tools are generally not considered to be completely trustwor-
thy, unless the tool implementation or the results are formally verified.
Here we focus on the formal verification of resource guarantees inferred
by automatic cost analysis. Resource guarantees ensure that programs
run within the indicated amount of resources which may refer to mem-
ory consumption, to number of instructions executed, etc. In previous
work we studied formal verification of inferred resource guarantees that
depend only on integer data. In realistic programs, however, resource
consumption is often bounded by the size of heap-allocated data struc-
tures. Bounding their size requires to perform a number of structural
heap analyses. The contributions of this paper are (i) to identify what
exactly needs to be verified to guarantee sound analysis of heap manipu-
lating programs, (ii) to provide a suitable extension of the program logic
used for verification to handle structural heap properties in the context of
resource guarantees, and (iii) to improve the underlying theorem prover
so that proof obligations can be automatically discharged.

1 Introduction

Formally proving the correctness of software can be crucial for many applica-
tions, e.g., in safety-critical systems. There are two possible approaches to cer-
tifying the correctness of software, (1) either perform full-blown verification of
the correctness of the system or (2) alternatively validate its results for every
execution. In the case of static analyzers, the first alternative is a daunting task,
among other things, because of the sophisticated algorithms used for the analy-
sis and their evolution over time. In this paper, we adopt the second alternative
based on constructing a validating tool [I4] which, after every run of the an-
alyzer, formally (and automatically) confirms that the results are correct and,
optionally, generates correctness proofs. Such proofs can then be translated to
independently checkable certificates in the proof-carrying code style [6I13].
Resource usage analysis aims at (over-)approximating the amount of resources
(time, memory, etc.) required to run a program in terms of its input arguments.
cosTA [12] is a cost analyzer which allows the user to select a particular resource
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(among those available in the system) and automatically generate resource us-
age upper bounds from Java bytecode (and hence Java) programs. Correctness of
the techniques that COSTA implements is proven at the theoretical level, but the
tool has not been formally verified. Thus, there is no guarantee that correctness
is realized by the implementation. In recent work [3], we have proposed a fully
automatic process of obtaining verified resource guarantees by using KeY [5], a
state-of-the-art theorem prover for Java programs, for verifying that the upper
bounds inferred by COSTA are correct. In essence, the cOSTA and KeY systems
cooperate in such a way that KeY produces formal correctness proofs for the dif-
ferent intermediate results used to obtain the upper bounds. When the resource
guarantees depend only on data of integer type, this cooperation results in a
fully automatic tool for producing verified resource guarantees.

However, it is often the case that resource guarantees depend on the struc-
tural properties of dynamically allocated data, e.g., the resource consumption of
executing a loop that traverses a list is typically a function of the length of such
a list. Resource analysis needs to keep track of how the size of data structures
changes along the execution. For this purpose, COSTA integrates as an addi-
tional component the path-length analysis [I7]. The path-length of a non-cyclic
data structure is the length of the maximal path starting from the root, i.e., its
depth. Inferring the path-length property also requires proving acyclicity of data
structures and keeping track of possible sharing between pointers.

The main achievement of this paper is the extension of [3] to handle heap
manipulating programs. In particular: (1) we identify the structural properties
inferred by cosTA which need to be verified and extend the Java Modeling Lan-
guage (JML) by suitable new constructs; (2) we extend the program logic used
during verification by additional theories for structural heap properties including
acyclicity or disjointness of heap regions. Extensive work with implementation
and improvement of the proof-search strategies for the newly introduced theories
was required to achieve a high degree of automation; (3) we formalize faithfully
the notion of maximal path-length of an acyclic data structure in KeY’s logic.
This theory is equipped with lemmas that match the requirements of the path-
length analysis performed in cOSTA; and (4) realizing the cooperation between
cosTA and KeY has required a number of non-trivial extensions of both systems.

The paper is organized as follows: Sec. 2 recalls the framework of [3]; Sec. Bl
presents the additional components that need to be verified for carrying out
the extension; Sec. @ describes how the KeY logic has been extended to express
and verify structural heap properties and path-length assertions; experimental
results are presented in Sec. B} and Sec. [fl concludes and discusses related work.

2 The Framework: Verification of Resource Guarantees

In this section we review the verification framework for upper bounds (UBs) as
proposed in [3] which does not take heap-allocated data structures into account.
Sec. 2] describes the components involved in a resource guarantees analysis
while Sec. details the formal verification of these components with KeY.
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1 void scoreBoard(int[][] v) {

2 //@ ghost int v len =v.length

s int i=0, j=0;

4 //@ assert (j=0 N i=0 A v.length=v len)

5 //@ ghost int i1=i, j1 =j, v leny =v.length

6 //@ ghost int i2=i, j2=j, v leno=v.length

7 //@ decreases ( (v.length — i) > 0 ? (v.length — i) : 0)

s //@ loop invariant (i2=0 A i2=t A v lena>0) V (i2=0 N\ ©>1 N\ v leny>1)
9 while (i < v.length) {

10 j=0;

11 //@ assert (vleni>i A\ 1=t A j=0)

12 //@ ghost int i3=i, j3=j, v leng=v.length

13 //@ ghost int i4=1i, ja=j, v lena=v.length

14 //@ decreases ( (i —j) > 07?2 (i—j):0)

15 //@ loop invariant (j4a=0 A ja=j A i4=i) V (ja=0 N j>1 N isa>j N\ ia=1)
16 while (j < i) {

17 vIil[j1=1i + j;

18 j++;

19 //@ assert (j=js+1 N i3=1);

20 //@ set i3=i, js=j, v lens=v.length
21 }

22 it++;

23 //@ assert (v.length,1>i A i=i1+1)
24 //@ set i1=1, j1=j, v leni =v.length
25 }

26 }

Fig. 1. cosTA’s output for a simple example working on integer data

2.1 Inference of Resource Guarantees

Cost analyzers [Il2] usually infer UBs for each iterative and recursive construct
(loops) and then compose the results in order to obtain UBs for the methods of
interest. W.l.o.g., we focus on polynomial UBs which are the result of composing
simple loops, but the same components are used to infer UBs for programs with
logarithmic and exponential complexities. Intuitively, in order to infer an UB for
a single loop, we infer an UB A on the worst-case cost of a single execution of its
body and an UB I on the number of iterations that it can perform. Then, A * I
is an UB for the loop. To infer A and I COSTA relies on the program analysis
components described below that provide the necessary information. The results
are provided by cosTA as JML annotations that KeY will attempt to verify.

Ranking functions. For each loop, COSTA infers as UB on the number of iterations
a linear function I from the loop variables to N which is strictly decreasing at each
iteration. Ranking functions are of the form nat(¢), where nat(¢) = max(0, ¢),
which can be translated to the JML annotation “//@ decreasing £ >0 ? £:07.
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Ezample 1. Consider the method scoreBoard () given in Fig. [Tl where two nested
loops are used to initialize some matrix values. For the inner loop COSTA infers at
line 14 the ranking function f(i,j) = nat(i — j) which safely bounds the number
of iterations. For the outer loop, the number of iterations is bounded by the
ranking function that appears in line 7 which involves the length of the array.

Loop invariants. Loop invariants, together with size relations, are needed to
compute the worst-case cost A of executing one loop iteration. For each loop in
the program, COSTA infers an invariant ¢ that involves the loop variables © and
auxiliary variables w such that each w; represents the initial value of v;. The
JML annotation for this invariant consists of one line defining all w as ghost
variables (“//@ ghost int w1 = v1;...; int w, = v,”, lines 6,13 in Fig. [[l) and one
line for the loop invariant (“//@ loop invariant ¢”, lines 8,15 in Fig. [I]).

Example 2. Consider the invariant for the outer loop at line 8. The left disjunct
corresponds to first visit to that program point, and the right disjunct to visit it
after executing the loop body at least once. Note that separating the invariant
into these two cases results in a more precise UB, and in addition helps KeY in
verifying the invariant. We declared as ghost variable in line 6 such that is,72
and v leny correspond to the initial value of i, j and v.length when entering
the loop for the first time. The invariant states that i is always smaller than or
equal to the initial value of v.length (i < v leny) This is essential to bound the
worst-case cost of the loop, since the cost of each iteration depends on i.

Size relations. Given a fragment of code (a scope), COSTA infers size relations
between the values of the variables at a certain program point of interest within
the scope and their initial values when entering the scope. This allows composing
the cost of the different code fragments. In particular, for each loop (or method
call), cosTA infers the relation ¢ between the values of variables before a loop
(or call) entry and the entry of its parent scope. Suppose that the loop (or call) is
at line L;, its parent scope starts at line L,, ¥ are the variables of interest at line
L;, and w represent their values at line L,. Then we add the JML annotation
“//@ ghost int w1 = v1;...; int w, = vy;” immediately after line L, to capture the
values of v at line L, and the JML annotation “//@ assert ¢” immediately before
line L; to state that the relation ¢ must hold at the program point.

Ezample 3. Let us demonstrate the need for size relations: (1) during cost anal-
ysis, the cost of the outer loop is inferred first in terms of the values of i and
v.length before entering the loop, and later is transformed to be in terms of the
length of the input array. For this, COSTA uses the size relation at line 4 which
relates the values at that program point to those at line 2 using the correspond-
ing ghost variables; (2) similarly, the cost of the inner loop is first inferred in
terms of the values of i and j before entering the loop, and later is transformed
to be in terms of their values when entering the outer loop. Assuming that i1,
j1 and v len; are respectively the value of i, j, and v.length, line 11 includes
the size relation required to do such transformation. Note that since these code
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fragments appear inside a loop, the values of i1, j; and v len; should be updated
in each iteration. This is done by defining and initializing them at line 5 (for
the first iteration) and modifying them in each iteration at the end of the loop
(line 24). The size relation at line 23 is used by COSTA to synthesize a ranking
function, this also helps KeY in proving that it is indeed a ranking function; and
(3) lines 12, 19 and 20 encode the size relation of the inner loop.

Upper Bounds. In the verification phase it suffices to prove the correctness of the
inferred ranking functions, loop invariants, and size relations: based on these, it
is straightforward to compute an UB for the method by applying parametric
integer programming (PIP) to obtain A and then just multiply I * A.

Example 4. We start from the innermost loop at line 16. Assuming that exe-
cuting the condition costs (at most) ¢; instructions, and that the cost of each
iteration (i.e., the loop body) is co instructions, then it is clear that nat(iy —
Jja) * (c1 + c2) + ¢1 is an UB on the cost of this loop. Next, we move to the
outer loop at line 9. Let us assume that the cost of the comparison is (at most)
c3 instructions, the code at line 10 costs ¢4 instructions, and the code at line
22 is c5 instructions. Then, the cost of each iteration of this loop is ¢35 + ¢4 +
nat(iqy — ja) * (c1 + c2) + ¢1 + ¢5, where the highlighted subexpression is the cost
of the inner loop. Note that each iteration might have a different cost, since i4—j4
is not the same for all iterations. The solution is to find the worst-case cost A in
terms of v leng, is, jo such that A > iy — j4 in all iterations. Then, nat(v lens —
i9) % [c3+ca+nat(A) x (c1 + c2) + c1+¢5]+c3 is an UB for the loop. To find such
A, COSTA solves the PIP problem of maximizing the objective function iy — j4
w.r.t. the loop invariant (line 8) and the size relations (line 11) where v leng, iz, jo
are the parameters. This produces an expression in terms of v lens, i3, jo which
is greater than or equal to i4 — j4 in all iterations of the loop. In our exam-
ple, it is A = v lens — 1. We finally can compute the cost of the scoreBoard
method. Assume that the cost of line 3 is ¢g, then the cost of the method
is cg+nat(v leng —i2) * [c3 + c4 + nat(v lena — 1) * (c1 + ¢c2) + ¢1 + ¢5] + ¢3. We
need to express this UB in terms of the input parameter v len. For this, COSTA
maximizes (using PIP) v leng — iz and v leng — 1 w.r.t. the size relation at line 4
and, respectively, obtains v len and v len — 1. Therefore, ¢g + nat(v len)  [cs +
cq + nat(v len — 1) x (¢1 + ¢2) + ¢1 + ¢5] + ¢3 is the UB for scoreBoard.

2.2 Verification by Symbolic Execution

The program logic used by KeY is JavaCard Dynamic Logic (JavaDL) [5], a first-
order dynamic logic with arithmetic. JavaDL extends sorted first-order logic by
a program modality (-)-. Let p denote a sequence of executable Java statements
and ¢ an arbitrary JavaDL formula, then (p)¢ is a formula which states that

program p terminates and in its final state ¢ holds. A typical formula looks like

p
A~

=0 Aj = 50 —> (i=j-ij=j-ii=ii) (i = JO A j = i0)
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where i,j are program variables represented as mon-rigid constants. Non-rigid
constants and functions are state-dependent: their value can be changed by pro-
grams. The rigid constants 0, jO are state-independent: their value cannot be
changed. The formula above says that if program p is executed in a state where
i and j have values i0, j0, then p terminates and in its final state the values of
the variables are swapped. To reason about JavaDL formulas, KeY employs a
sequent calculus whose rules perform symbolic execution of the programs in the

modalities. Here is a typical rule:
I,b=> ({p}rest)p, A I',—b=> ({q}rest)¢, A

I' = (if (b) {p2 else {q} rest)¢, A

As values are symbolic, it is in general necessary to split the proof whenever an
implicit or explicit case distinction is executed. It is also necessary to represent
the symbolic values of variables throughout execution. This becomes apparent
when statements with side effects are executed, notably assignments. The as-
signment rule in JavaDL looks as follows:

I' = {x:=val}(rest)¢p, A

I' = (x = val; rest)¢p, A

The expression in curly braces in the premise is called update and is used in KeY
to represent symbolic state changes. An elementary update loc := val is a pair
of a program variable and a value. The meaning of updates is the same as that of
an assignment, but updates can be composed in various ways to represent com-
plex state changes. Updates u1,us can be composed into parallel updates uq||us.
In case of clashes (updates uq,ug assign different values to the same location) a
last-wins semantics resolves the conflict. This reflects left-to-right sequential ex-
ecution. Apart from that, parallel updates are applied simultaneously, i.e., they
do not depend on each other. Update application to a formula/term e is denoted
by {u}e and forms itself a formula/term.

ifSplit

assign

Verifying Size Relations. JML annotations are proven to be valid by symbolic
execution. For example, in the method scoreBoard() one starts with execution of
the variable declarations. Ghost variable declarations and assignments to ghost
variables (//@ set var=val;) are treated like Java assignments. If a JML assertion
“assert ¢;” is encountered during symbolic execution, the proof is split: the first
branch must prove that the assertion formula ¢ holds in the current symbolic
state; the second branch continues symbolic execution. In the scoreBoard exam-
ple, a proof split occurs before entering each loop. This verifies the size relations
among variables as derived by cOSTA and encoded in terms of JML assertions.

Verifying Invariants and Ranking Functions. Verification of the loop invariants
and ranking functions obtained from COSTA is achieved with a tailored loop
invariant rule that has a variant term to ensure termination:
(i) I'= InvAdec>0,A
(#1) I, {Ua}(b A Inv Adec=d0) =

{Ua}{body)(Inv A dec < dO A dec > 0), A
(731) I, {UA}(=b A Inv) = {Ua}(rest)p, A

I' = (while (b) { body } rest)¢, A

looplnv
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Inv and dec are obtained, respectively, from the loop invariant and decreasing
JML annotations generated by COSTA. Premise (i) ensures that invariant Inv
is valid just before entering the loop and that the variant dec is non-negative.
Premise (ii) ensures that Inv is preserved by the loop body and that the variant
term decreases strictly monotonic while remaining non-negative. Premise (iii)
continues symbolic execution upon loop exit. The integer-typed variant term en-
sures loop termination as it has a lower bound (0) and is decreased by each loop
iteration. Using COSTA’s derived ranking function as variant term obviously ver-
ifies that the ranking function is correct. The update U4 assigns to all locations
whose values are potentially changed by the loop a fixed, but unknown value.
This allows using the values of locations that are unchanged in the loop during
symbolic execution of the body.

Contracts. COSTA also infers contracts which specify pre- and post-conditions
on the input and output arguments of each method. Contracts are useful for
modular verification in KeY.

3 Upper Bounds for Heap Manipulating Programs

When input arguments of a method are of reference type, its UB is usually not
specified in terms of the concrete values within the data structures, but rather in
terms of some structural properties of the involved data structures. For example,
if the input is a list, then the UB would typically depend on the length of the
list instead of the concrete values in the list.

Ezxample 5. Consider the program in Fig. 2 where class List implements a linked
list as usual. For method insert, cOSTA infers the UB ¢; * nat(x) 4+ co where
x refers to the length of x, and ¢1/co are constants representing the cost of the
instructions inside/before & after the loop. The UB depends on the length of x,
because the list is traversed at lines [[T6HI9

The example shows that cost analysis of heap manipulating programs requires
inferring information on how the size of data structures changes during the
execution, similar to the invariants and size-relations that are used to describe
how the values of integer variables change. To do so, we first need to fix the
meaning of “size of a data structure”. We use the path-length measure which
maps data structures to their depth, such that the depth of a cyclic data structure
is defined to be oo. Recall that the depth of a data structure is the maximum
number of nodes (i.e. objects) on a path from the root to a leaf. Using this
size measure, COSTA infers invariants and size relations that involve both integer
and reference variables, where the reference variables refer to the depth of the
corresponding data structures. Once the invariants are inferred, synthesizing
the UBs follows the same pattern as in Sec. Bl In the following, we identify
the essential information of the path-length analysis (and related analyses) that
must be verified later by KeY.
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1 //@ requires \acyclic(z)

2 //@ ensures \acyclic(\result)

3 //@ ensures \depth(\result) < \depth(z) + 1

4 public static List insert(List x, int v) {

5 //@ ghost List xo = x;

6 List p = null;

7 List ¢ = x;

8 List n = new List(v, null);

9 //@ ghost List co = c

10 //@ assert \depth(n) = 1 A \depth(co) = \depth(zo)

11 //@ decreasing \depth(c)

12 //@ loop invariant \depth(co) > \depth(c)

13 //@ loop invariant \acyclic(n) A \acyclic(p) A \acyclic(z) A \acyclic(c)
14 //@ loop invariant \disjoint ({n,z})A\disjoint({n, c})A\disjoint({n,p})
15 //@ loop invariant !\reachPlus(p,z) A !\reachPlus(n,z) A \reach(n,p)
16 while ( ¢ != null A c.data < v) {

17 p =c;

18 c = c.next;
19 }

20 if ( p == null ) {
21 n.next = x;
22 X = n;

23 } else {

24 n.next = c;
25 p.next = n;
26 }

27 return Xx;

28 }

Fig. 2. The running example, with (partial) JML annotations

3.1 Path-Length Analysis

Path-length analysis is based on abstracting program states to linear constraints
that describe the corresponding path-length relations between the different data
structures. For example, the linear constraint x < y represents all program states
in which the depth of the data structure to which x points is smaller than the
depth of the data structure to which y points. Starting from an initial abstract
state that describes the path-length relations of the initial concrete state, the
analysis computes path-length invariants for each program point of interest. In
order to verify the path-length information with KeY, we have extended JML
with the new keyword \depth that gives the depth of a data structure to which
a reference variable points. In particular, for invariants, size-relations, and con-
tracts, if the corresponding constraints include a variable x, corresponding to a
reference variable x, we replace all occurrences of « by \depth(x).

Example 6. We explain the various path-length relations inferred by cosTa for
the method insert of Fig. Bl and how they are used to infer an UB. Due to space
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limitations, we only show the annotations of interest. For the loop at lines [T6HI9]
COSTA infers that the depth of the data structure to which ¢ points decreases
in each iteration. Since the depth is bounded by 0, it concludes that nat(c) is a
ranking function for that loop. As a part of the loop invariant, COSTA infers that
co > ¢ where ¢ refers to the depth of the data structure to which c¢ points before
entering the loop and c to the depth of the data structure to which ¢ points after
each iteration. Using this invariant, together with the knowledge that the depth
of ¢y equals to the depth of x, we have that ¢; * nat(z) + ¢z is an UB for insert
(since the maximum value of ¢ is exactly x). Another essential relation inferred
by the path-length analysis (captured in the ensures clause in line [3)) is that
the depth of the list returned by insert is smaller than or equal to the depth
of x plus one. This is crucial when analyzing a method that uses insert since
it allows tracking the size of the list after inserting an element.

Path-length relations are obtained by means of a fixpoint computation which
(symbolically) executes the program over abstract states. As a typical example,
executing x=y.f adds the constraint 2’ < y to the abstract state if the variable
y points to an acyclic data structure, and 2’ < y otherwise. On the other hand,
executing x.f=y adds the constraints A{z’ < z+y | z might share with x} if
it is guaranteed that x does not become cyclic after executing this statement.
This is because, in the worst case, x might be a leaf of the corresponding data-
structure pointed to by z, and thus the length of its new paths can be longer
than the old ones at most by y. Obviously, to perform path-length analysis, we
require information on (a) whether a variables certainly points to an acyclic data
structure; and (b) which variables might share common regions in the heap.

3.2 Cyclicity Analysis

The cyclicity analysis of cosTA [9] infers information on which variables may
point to (a)cyclic data structures. This is essential for the path-length analysis.
The analysis abstracts program states to sets of elements of the form: (1) x~y
which indicates that starting from x one may reach (with at least one step) the
object to which y points; (2) OX which indicates that x might point to a cyclic
data structure; and (3) xoy which indicates that x might alias with y.

Starting from an abstract state that describes the initial reachability, alias-
ing and cyclicity information, the analysis computes invariants (on reachability,
aliasing and cyclicity) for each program point of interest by means of a fixpoint
computation which (symbolically) executes the program instructions over the
abstract states. For example, when executing y=x.f, then y inherits the cyclic-
ity and reachability properties of x; and when executing x.f=y, then x becomes
cyclic if before the instruction the abstract state included Y, y~x, or yox.

On the verification side, to make use of the inferred cyclicity relations, we ex-
tend JML by the new keyword \acyclic which guarantees acyclicity. In contrast
to cosTA, JML and KeY use shape predicates with must-semantics. Acyclicity
information is then added in JML annotations at entry points of contracts and
loops where we specify all variables which are guaranteed to be acyclic. For loop
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entry points as invariants (as in line[[3)) and for contracts as pre- and postcondi-
tions (as in lines[I] [Z). To make use of the reachability relations we extend JML
by the new keyword \reachPlus(x,y), which indicates that y must be reachable
from x in at least one step, and use the standard keyword \reach(x,y) which
indicates that y must be reachable from x in zero or more steps (i.e., they might
alias). The may-information of COSTA about reachability and aliasing is then
added as must-predicates in JML (in loop entries and contracts) as follows: let
A be the set of judgments inferred by COSTA for a given program point, then we
add \reachPlus(x,y) whenever x~y ¢ A, and we add !\reach(x,y) whenever
xy € AANxoy ¢ A (for example, in line [TH).

3.3 Sharing Analysis

Knowledge on possible sharing is required by both path-length and cyclicity
analyses. The sharing analysis of COSTA is based on [I5] where abstract states are
sets of pairs of the form xey which indicate that x and y might share a common
region in the heap. The sharing invariants are propagated from an initial state by
means of a fixpoint computation to the program points of interest. For example,
when executing y=x.f, the variable y will only share with anything that shared
with x (including x itself); on the other hand, when executing x. £=y, the variable
x keeps its previous sharing relations, and in addition it might share with y and
anything that shared with y before.

Obviously, KeY needs to know about the sharing information inferred by
COSTA to verify acyclicity and path-length properties. To this end, we extended
JML by the new keyword \disjoint which states that its argument, a set of
variables, does not share any common region in the heap (for example, in line[Id]).

4 Verification of Path-Length Assertions

Structural heap properties, including acyclicity, reachability and disjointness,
are essential both for path-length analysis and for the verification of path-length
assertions. However, while the path-length analysis performed by COSTA main-
tains cyclicity and sharing, the complementary properties are used as primitives
on the verification side. The reason is that the symbolic execution machinery
of KeY starts with a completely unspecified heap structure that subsequently
is refined using the inferred information about acyclicity and disjointness. In
the following we explain how structural heap properties are formalized in the
dynamic logic (JavaCard DL) used in this paper and implemented in KeY [5].

4.1 Heap Representation

First we briefly explain the logical modeling of the heap in JavaCard DL[ The
heap of a Java program is represented as an element of type Heap. The Heap

! Note that this is not the heap model described in earlier publications on KeY such
as [5]. In the present paper we use an explicit heap model based on [18].
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data type is formalized using the theory of arrays and associates locations to
values. A location is a pair (o, f) of an object o and a field f. The select function
allows to access the value of a location in a heap h by select(h, o, f). The comple-
mentary update operation which establishes an association between a location
(0, f) and a value val is store(h, o, f,val). To improve readability, when the heap
h it is clear from the context, we use the familiar notation o.f and o.f := val
instead of select and store expressions. Based on this heap model, we define a
rule for symbolic execution of field assignments (cf. the assign rule in Sec.22). It
simply updates the global heap program variable with the updated heap object:

I' = {heap := store(heap, o,f,v) }(rest)p, A
I' = (o.f = v; rest)p, A

assign

4.2 Predicates for Structural Heap Properties

For the sake of readability, in Sec. 3], we gave simplified versions of the predicates
\depth, \acyclic, \reach, \reachPlus and \disjoint as compared to the ac-
tual implementation. In reality, these predicates have an extra argument that
restricts their domain to a given set of fields. For example, instead of \depth(z)
we might actually have \depth({z.next}, z) which refers to the depth of x con-
sidering only those paths that go through the field next. A syntactic analysis
infers automatically a safe approximation of these sets of fields by taking the
fields explicitly used in the corresponding code fragment.

Ultimately, the various structural heap properties are reduced to reachability
between objects which, therefore, must be expressible in the underlying program
logic. The counterpart of JML’s \reach predicate in JavaCard DL is

\reach: Heap x LocSet x Object x Object X int

and expresses bounded reachability (or n-reachability): an object e is n-reachable
from an object s with respect to a heap h and a set of locations [ (of type LocSet)
if and only if there exists a sequence s = 0109 - - - 0,, = e where 0;41 = 0;.f; and
(0i, fi) € L for all 0 < i < n. The predicate \reach(h,l, s, e, n) is formally defined
asn > 0As#null A((n=0As=¢)VIf.(o f) €lA\reach(h,l,s.f,e,n—1)).
As a consequence, from null nothing is reachable and also null cannot be reached.

Location sets in JavaCard DL are formalized in the data type LocSet which
provides constructors and the usual set operations (see [I8] for a full account).
Here we need only three location set constructors: the constructor empty for the
empty set, the constructor singleton(o, f) which takes an object o and a field f
and constructs a location set with location (o, f) as its only member, and the
constructor allObjects(f) which stands for the location set {(o, f) | 0 € Object}.

Ezample 7. \reach(h, allObjects(next), head, last,5) is evaluated to true iff the
object last is reachable from object head in five steps by a chain of next fields.

Based on \reach we could directly axiomatize structural heap predicates such as
\acyclic(h,l,0) or \disjoint(h,l, 0,u). Instead we prefer to reduce structural
heap predicates to \reachPlus(h,!l, o0, u) which is the counterpart of the JML



Verified Resource Guarantees for Heap Manipulating Programs 141

function of the same name in Sec. and expresses reachability in at least one
step. This has several advantages over using \reach: (1) the definition of predi-
cates such as \acyclic does not use the step parameter of the \reach predicate
and one would use existential quantification to eliminate it which impedes au-
tomation; and (2) for \reachPlus(h,l,0,u) to hold one has to perform at least
one step using a location in [. This renders the definition of properties such as
\acyclic less cumbersome as the zero step case has been excluded.

The predicate \reachPlus can defined with the help of \reach and this def-
inition can be used if necessary, however, in the first place we use a separate
axiomatization of \reachPlus. This helps to avoid (or at least to delay as long
as possible) the reintroduction of the step parameter and, hence, an additional
level of quantification. For space reasons, we do not give the calculus rules for
the axioms and auxiliary lemmas of the structural heap predicates like \acyclic
and \disjoint (which are not too surprising). Instead, we describe in the fol-
lowing section one central difficulty that arises when reasoning about structural
heap properties and how we solved it to achieve higher automation.

4.3 Field Update Independence

When reasoning about structural heap predicates one often ends up in a situation
where one has to prove that a heap property is still valid after updating a location
on the heap, i.e, after executing one or several field assignments. For instance, we
might know that \acyclic(h,l,u) holds and have to prove that after executing
the assignment o.f=v; the formula \acyclic(store(h,o, f,v),l,u) holds.

A precise analysis of the effect of a field update is expensive and makes au-
tomation significantly harder. As it is common in this kind of situation, it helps
to optimize the common case. In the present context, this means to decide in
most cases efficiently that a field assignment does not effect a heap property at
all. This is sufficiently achieved by two simple checks:

1. The expression singleton(o, f) C | checks whether an updated location o.f
is in the location set [ of the heap property to be preserved. This turns out to
be inexpensive for most (if not all) practically occurring cases. Whenever this
check fails, the resulting store can be removed from the argument of the heap
property. For instance, an assignment o.data=5 to the data field of a list does
not change the list structure which depends solely on the next field. In that
case we can rewrite \acyclic(store(h,o,data,5),l,u) to \acyclic(h,l,u).

2. To check whether an object o whose field has been updated is reachable from
one of the other mentioned objects, is more expensive than the previous one,
but still cheaper than a full analysis. For example, we can check whether the
object o is reachable from object u in case of \acyclic(store(h,o, f,v),l,u).
If the answer is negative we can again discard the store expression.

4.4 Path-Length Axiomatization

In general, the JML assertions generated by COSTA refer to the path-length of a
data structure o as \depth(l, 0) where [ is the location set restricting the depth
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Table 1. Statistics for the Generation and Checking of Resource Guarantees

Certificate Generation Cert. Size Generation/Checking

Bench Theap Tana ijl Tyer Nod Br Tgen Tcheck %
traverse 14 36 2 2300 1208 52 2338 1100 47.05
create 54 150 8 3100 1499 47 3258 1400 42.97
insert 282 374 16 40800 19252 636 41190 5800 14.08
index0f 26 86 4 5900 2439 67 5990 1800 30.05
reverse 72 130 8 20900 14206 673 21038 3400 16.16
array2List 62 154 8 2600 1457 37 2762 1400 50.69
copy 76 132 10 22600 14147 673 22742 3100 13.63
searchtree 142 202 6 3700 2389 97 3908 1500 38.38

to certain locations. This JML function is mapped to the JavaCard DL function
\depth(h, [, 0) which is evaluated to the maximal path-length of 0 in heap h using
only locations from [. Its axiomatization is based on the n-reachability predicate
\reach expressing that there exists an object u reachable in \depth(h, [, 0) steps
and that there is no object z reachable from o in more than \depth(h,, o) steps.
This definition is not used by default by the theorem prover, instead, automated
proof search relies mainly on a number of lemmas that state more useful higher-
level properties. For instance, given a term like \depth(store(h, o, f,v),l, u) there
is a lemma which checks that o is reachable from u and some acyclicity require-
ments. If that is positive then the lemma allows us to use the same approximation
for \depth in case of a heap update as detailed in Sec. Bl

5 Experimental Results

The implementation of our approach required the following non-trivial extensions
to cosTA and KeY: (1) generate and output in cosTA the JML annotations
\depth, \acyclic and \disjoint so that KeY can parse them; (2) synthesize
suitable proof obligations in JavaCard DL that ensure correctness of the resource
analysis; (3) axiomatize the JML \depth, \acyclic and \disjoint functions
in KeY as described in Sec. @l and implement heuristics for automation; and (4)
implement heuristic checks in KeY that allow fast verification of the common
case as described in Sec. .4l The resulting extended versions of KeY and cOSTA
are available for download from http://fase2012.hats-project.eu

Table [ shows first experiments using a set of representative programs that
perform common list operations as well as searching for an element in a binary
tree. The experiments were performed using an Intel Core2 Duo at 2.53GHz with
4Gb of RAM running Linux 2.6.32. Columns Theap, Tana and Ty, show, re-
spectively, the times (in milliseconds) taken by COSTA to perform the heap anal-
ysis (cyclicity, sharing and path-length), to execute the whole analysis (heap and
other analyses performed by cOSTA), and to generate the JML annotations. Col-
umn T, shows the time taken by KeY to verify the JML annotations generated
by COSTA. The size of the generated proofs is indicated by their number of nodes
Nod and branches Br. Column T, shows the total time taken to generate the
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proof (Tana+Tjmi+Tyer) and Tepecr, shows the time taken by KeY to check the
validity of the proof. The last column (%) shows the ratio Tepeck /T gen-

Our preliminary experiments show already that a proof-carrying code ap-
proach to resource guarantees can be realized using cosTA and KeY with both
certificate generation and checking being fully automatic. In our framework the
code originating from an untrusted producer should be bundled with the proof
generated by cosTA + KeY for a given resource consumption. Then the code
consumer can check locally and automatically with KeY whether the claimed
resource guarantees are verified. As expected, checking an existing proof with
KeY takes on average only around 30% of the time to produce it.

6 Conclusions and Related Work

This paper describes the combination of a state-of-the-art resource analyzer
(cosTA) and a formal verification tool (KeY) to automatically infer and verify
resource guarantees that depend on the size of heap-allocated data structures in
Java programs. The distribution of work among the two systems is as follows:
COSTA generates ranking functions, invariants, as well as size relations, and out-
puts them as extended JML annotations of the analyzed program; KeY then
verifies the resulting proof obligations in its program logic and produces proof
certificates that can be saved and reloaded.

Many software verification tools including KeY [5], Why [8], VeriFast [16], or
Dafny [12] rely on automatic theorem proving technology. While most of these
systems are expressive enough to model and prove heap properties of programs,
such proofs are far from being automatic. The main reason is that functional
verification of heap properties requires complex invariants that cannot be found
automatically. In addition, automated reasoning over heap-allocated symbolic
data is far less developed than reasoning over integers or arrays.

With this paper we show that the automation built into a state-of-the-art ver-
ification system is sufficient to reason successfully about resource-related heap
properties. The main reasons for this are: (a) the required invariants are inferred
automatically in the resource analysis stage; (b) a limited and carefully axioma-
tized signature for heap properties expressed in logic is used. This confirms the
findings of the SLAM project [4] that existing verification technology can be
highly automatic for realistic programs and a restricted class of properties.

There exist several other cost analyzers which automatically infer resource
guarantees for different programming languages [I0/IT]. However, none of them
formally proves the correctness of the upper bounds they infer. An exception
is [6], which verifies and certifies resource consumption (for a small program-
ming language and not for heap properties). For the particular case of memory
resources, [7] formally certifies the correctness of the static analyzer. We have
taken the alternative approach of certifying the correctness of the upper bounds
that the tool generates. This is not only much simpler, but has the additional
advantage that the generated proofs can act as resource certificates.
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Abstract. Only recently, process mining techniques emerged that can
be used for Operational decision Support (OS), i.e., knowledge extracted
from event logs is used to handle running process instances better. In the
process mining tool ProM, a generic OS service has been developed that
allows ProM to dynamically interact with an external information sys-
tem, receiving streams of events and returning meaningful insights on the
running process instances. In this paper, we present the implementation
of a novel business constraints monitoring framework on top of the ProM
OS service. We discuss the foundations of the monitoring framework con-
sidering two logic-based approaches, tailored to Linear Temporal Logic
on finite traces and the Event Calculus.

Keywords: Declare, process mining, monitoring, operational decision
support.

1 Introduction

Process mining has been traditionally applied on historical data that refers to
past, complete process instances. Recently, the exploitation of process mining
techniques has been extended to deal also with running process instances which
have not yet been completed. In this setting, process mining provides Operational
decision Support (OS), giving meaningful insights that do not only refer to the
past, but also to the present and the future [I]. In particular, OS techniques can
be used to: check the current state of affairs detecting deviations between the
actual and the expected behavior; recommend what to do next; predict what
will happen in the future evolution of the instance.

In order to enable the effective development of OS facilities, the widely known
process mining framework ProM 6 [2] incorporates a backbone for OS [3]. Here,
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all the common functionalities needed for OS are implemented, such as manage-
ment of requests coming from external information systems, dynamic acquisition
and correlation of incoming partial execution traces (representing the evolution
of process instances), and interaction with different process instances at the
same time. The OS backbone relies on a client-server architecture. The client is
exploited by an external stakeholder to send a partial trace to ProM and ask
queries related to OS. On the server side, an OS service (running inside ProM)
takes care of coordinating the available OS functionalities in order to answer
such queries. Multiple OS providers that encapsulate specific OS functionalities
can be developed and dynamically registered to the OS service.

In this work, we present the implementation of a novel runtime compliance
verification framework on top of the ProM OS. The framework is called Mo-
bucon (Monitoring business constraints) and its focus is to dynamically check
the compliance of running process instances with business constraints, detecting
deviations and measuring the degree of adherence between the actual and the
expected behavior.

Given a business constraints reference model and a partial trace characterizing
the running execution of a process instance, Mobucon infers the status of each
business constraint. In particular, it produces a constantly updated snapshot
about the state of each business constraint, reporting whether it is currently
violated. Consequently, it determines whether the process instance is currently
complying with the reference model or not. Beside this, other meaningful insights
can be provided to end users, such as, for example, indicators and metrics related
to the “degree of compliance”, e.g., relating the number of violated constraints
with their total number.

The paper is organized as follows. Section [ presents the Declare language
[4] and its extension to include metric temporal constraints and constraints on
event-related data. The language is declarative and graphical. Moreover, Declare
has been formalized using a variety of logic-based frameworks, such as Linear
Temporal Logic (LTL) with a finite-trace semanticd] [5/6] and the Event Calcu-
lus (EC) [718]. SectionBldescribes the architecture of our proposed framework. In
Sect. @ and Bl we describe the implementation of two different reasoning engines
as OS providers based on LTL and on the EC respectively. We are currently
applying our framework to various real-world case studies; in Sect. Bl we re-
port on the monitoring of Declare constraints in the context of maritime safety
and security. Finally, Sect. [ includes a comparison of the two approaches and
discusses related work and conclusion.

2 Declare

Declare is a declarative, constraint-based process modeling language first pro-
posed in [5/4]. In a constraint-based approach, instead of explicitly specifying
all the acceptable sequences of activities in a process, the allowed behavior of

! For compactness, in the following we will use the LTL acronym to denote LTL on
finite traces.
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Fig. 1. Two Declare models in the context of maritime safety and security

the process is implicitly specified by means of declarative constraints, i.e., rules
that must be respected during the execution. In comparison with procedural
approaches, that produce “closed” models, i.e., models where what is not explic-
itly supported is forbidden, declarative languages are “open” and tend to offer
more possibilities for execution. In particular, the modeler is not bound anymore
to explicitly enumerate the acceptable executions and models remain compact:
they specify the mandatory and undesired behaviors, leaving unconstrained all
the courses of interaction that are neither mandatory nor forbidden.

Declare is characterized by a user-friendly graphical front-end and is based
on a formal back-end. More specifically, the formal semantics of Declare can be
specified by using LTL [56], abductive logic programming with expectations [6],
or the EC [7I8]. These characteristics are crucial for two reasons. First, Declare
can be used in real scenarios being understandable for end-users and usable
by stakeholders with different backgrounds. Second, Declare’s formal semantics
enable verification and automated reasoning. This is a key aspect in the imple-
mentation of monitoring tools for Declare models.

Figure [[al shows a simple Declare model elicited in the context of a real case
study related to the monitoring of vessels behavior in the context of maritime
safety and security. We use this example to explain the main concepts. It involves
four events (depicted as rectangles, e.g., Under way using engine) and three
constraints (shown as arcs between the events, e.g., not coexistence). Events
characterize changes in the navigational status of each monitored vessel. Con-
straints highlight mandatory and forbidden behaviors, implicitly identifying the
acceptable execution traces that comply with (all of) them. In our case study,
a vessel can be either Under way using engine or Under way sailing but not
both, as indicated by the not coexistence between such two events. A vessel can
be Constrained by her draught, but only after being Under way sailing (a vessel
equipped with an engine cannot be constrained by draught and a sailing vessel
cannot be constrained before it is under way). This is indicated by the precedence
constraint. Finally, after being Moored each vessel must eventually be Under way
using engine, as specified by the response constraint.

In [7], an extension of this constraint-based language has been proposed; this
extension incorporates also non-atomic activities (i.e., activities whose execution



An Operational Decision Support Framework 149

send

reasoning
reference model i

info

Process-Aware
Information
Systems

partial

MoBuCon query + partial trace
trace

Client S
response <N -

reference
model

TCP/IP ients T

w \w model MoBuCon

Provider
Fig. 2. Mobucon Architecture

is characterized by a life cycle that includes multiple events), event-related data
and data-aware conditions and metric temporal constraints (for specifying delays,
deadlines and latencies). This extended language is exploited in Fig.[IHto augment
the aforementioned constraints with conditions on time and data. More specifi-
cally, we assume that each event is equipped with two data: the identifier of the
vessel and its type. In particular, the response constraint is now differentiated on
the basis of the vessel type, introducing different timing requirements (which are
specified with the granularity of minute). The first response constraint indicates
that if the type of the vessel is Passenger ship and event Moored occurs, then Un-
der way using engine must eventually occur within 6 hours at most. The second
one indicates that if the type of the vessel is Cargo ship and Moored occurs, then
Under way using engine must eventually occur within 48 hours. A last standard re-
sponse constraint is employed to capture the behavior of all other vessels, without
imposing any deadline. Finally, although not explicitly shown in the diagram, each
constraint is applied to events that are associated to the same vessel identifier. This
correlation mechanism makes it possible to properly monitor also a unique event
streams collecting the evolving behaviors of multiple vessels at the same time.

3 Mobucon Architecture

Figure 2l shows the overall architecture of Mobucon. Mobucon relies on the gen-
eral architecture of the OS backbone implemented inside ProM 6. Such backbone
has been introduced and formalized using colored Petri nets in [3]; in Sect. Bl
we will therefore sketch some relevant aspects of the general architecture. In
Sect. B2 we ground the discussion to the specific case of Mobucon, discussing
the skeleton of our compliance verification OS provider. The data exchanged
between the Mobucon client and provider is illustrated in Sect. Finally, in
Sect. [3.4] we describe the implemented Mobucon clients. The two concrete in-
stantiations of the Mobucon skeleton in the LTL and EC settings are discussed
in Sect. @ and

3.1 General Architecture

The ProM OS architecture relies on the well-known client-server paradigm. More
specifically, the ProM OS service manages the interaction with running process
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instances and acts as a mediator between them and the registered specific OS
providers.

Sessions are created and handled by the OS Service to maintain the state of
the interaction with each running client. To establish a stateful connection with
the OS Service, the client creates a session handle for each managed running
process instance, by providing host and port of the OS Service. When the client
sends a first query related to one of such running instances to the OS service,
it specifies information related to the initialization of the connection (such as
reference models, configuration parameters, etc.) and to the type of the queries
that will be asked during the execution. This latter information will be used by
the OS Service to select, among the registered active providers, the ones that
can answer the received query. The session handle takes care of the interaction
with the service from the client point of view, hiding the connection details and
managing the information passing in a lazy way. The interaction between the
handle and the service takes place over a TCP/IP connection.

3.2 Mobucon Skeleton

In Mobucon, the interaction between a client and the OS service mainly con-
sists of two aspects. First of all, before starting the runtime compliance verifi-
cation task, the client sends to the OS service the Declare reference model to
be used. This model is then placed inside the session by the OS service. The
reference model is an XML file that contains the information about events and
constraints mentioned in the model. This format is generated by the Declare
editor (www.win.tue.nl/declare/). The client can also set further information
and properties. For example, each constraint in the Declare reference model can
be associated to a specific weight, that can be then exploited to compute metrics
and indicators that measure the degree of adherence of the running instance to
the reference model.

Secondly, during the execution, the client sends queries about the current
monitoring status for one of the managed process instances. The session handle
augments these queries with the partial execution trace containing the evolution
that has taken place for the process instance after the last request. The OS
Service handles a query by first storing the events received from the client, and
then invoking the Mobucon provider.

The Mobucon provider recognizes whether it is being invoked for the first time
w.r.t. that process instance. If this is the case, it takes care of translating the
reference model onto the underlying formal representation. The provider then
returns a fresh result to the client, exploiting a reasoning component for the
actual result’s computation. The reasoning component, as well as the translation
algorithm, are dependent on the chosen logical framework (LTL or EC), while
the structure of the skeleton is the same for the two approaches. After each query,
the generated result is sent back to the OS service, which possibly combines it
with the results produced by other relevant providers, finally sending the global
response back to the client.
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Fig. 3. Fluent model used to store the evolution of constraints

3.3 Exchanged Data and Business Constraints States

We now discuss the data exchanged by the Mobucon client and provider. Note
that these data are common to both instantiations of the provider (Mobucon
LTL and Mobucon EC). The partial execution traces sent by the client to the
OS use the XES format (www.xes-standard.org/) for event data. XES is an
extensible XML-based standard recently adopted by the IEEE task force on
process mining.

The response produced by the Mobucon provider is composed of two parts.
The first part contains the temporal information related to the evolution of
each monitored business constraint from the beginning of the trace up to now.
At each time point, a constraint can be in one state, which models whether it
is currently: satisfied, i.e., the current execution trace complies with the con-
straintﬁ; (permanently) violated, i.e., the process instance is not compliant with
the constraint; pending (or possibly violated), i.e., the current execution trace is
not compliant with the constraint, but it is possible to satisfy it by generating
some sequence of events. This state-based evolution is encapsulated in a fluent
model which obeys to the schema sketched in Fig.[Bl A fluent model aggregates
fluents groups, containing sets of correlated fluents. Each fluent models a multi-
state property that changes over time. In our setting, fluent names refer to the
constraints of the reference model. The fact that the constraint was in a certain
state along a (maximal) time interval is modeled by associating a closed MVI
(Maximal Validity Interval) to that state. MVIs are characterized by their start-
ing and ending timestamps. Current states are associate to open MVIs, which
have an initial fixed timestamp but an end that will be bounded to a currently
unknown future value.

The Mobucon provider also computes the current value of a compliance in-
dicator of the running monitored instance. This number gives an immediate
feeling about the “degree of adherence” between the instance and the reference
model. A low degree of adherence can be interpreted differently depending on
the application domain. In general, it is used to classify a process instance as
“unhealthy”. However, it can also be used to show that a reference model is
obsolete and it must be improved to better reflect the reality. The compliance
indicator can be computed using different metrics, that can consider the cur-
rent state of constraints, as well as other information such as the weight of each
individual constraint. For example, the compliance indicator shown in Fig. Bal

implemented in Mobucon LTL, is evaluated, at some time ¢, through the formula
1-— #ze:ve:z?gt‘g U;Oeli‘ (2) ~, and takes into account the number of violations of each
i ght;

2 Mobucon LTL also differentiates between possibly and permanently satisfied.
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individual constraint of the reference model (#viol;) and its weight (weight;).
On the other hand, the compliance indicator shown in Fig. BB, implemented
in Mobucon EC, considers the number of violated (#wviol) and satisfied (#sat)

instances. In particular, at some time ¢ the compliance indicator corresponds to
1 F#viol(t) E
T #viol(t)+#sat ()

3.4 Mobucon Clients

We have developed three Mobucon clients, in order to deal with different settings:
(a) manual insertion of the events, (b) replay of a process instance starting from a
complete event log, and (c¢) acquisition of events from an information system. The
first two clients are mainly used for testing and experimentation. The last client
requires a connection to some information system, e.g., a workflow management
system. The three clients differ on how the user is going to provide the stream of
events, but all of them include an interface with a graphical representation of the
obtained fluent model, showing the evolution of constraints and also reporting
the trend of the compliance indicator (Fig. H).

4 Mobucon LTL

As discussed earlier, there are two Mobucon providers for monitoring business
constraints: one based on LTL and one based on the EC. We now describe the
LTL-based provider [9]. The basic idea is that a stream of events is monitored
w.r.t. a given Declare reference model. Each LTL constraint implied by the
Declare model is translated to a finite state automaton. Moreover, the conjunc-
tion of all LTL constraints is also translated to a finite state automaton. The
generated automata are used to monitor the behavior. Using the terminology
introduced in [9], we call the automaton corresponding to a single Declare con-
straint local automaton and the automaton corresponding to their conjunction
global automaton. Local automata are used to monitor each single constraint in
isolation, whereas the global automaton is used to monitor the entire system and
detect non-local violations originated by the interplay of multiple constraints.

4.1 Modeling and Implementation

When Mobucon LTL receives a request from a new process instance, it first
initializes the session for that instance. In particular, each single constraint of the
Declare model associated to the session by the client and their conjunction are
translated into finite state automata. For the translation, we use the algorithm
introduced for the first time in [I0] and optimized in [I1I]. Local and global
automata are stored in the session. After that, the provider processes the event
(or a collection of events) received with the first request from the client. The
following requests will provide again single events or collections of events. The

3 If #wviol(t) + #sat(t) = 0, then the compliance indicator is defined to be 1.
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Fig. 4. Screenshot of one of the Mobucon clients

events are processed one by one by using the automata every time retrieved
from the session. In this way, the state of each automaton is always preserved
from the last request. The set of fluents’ MVIs associated to each constraint is
recomputed accordingly and returned by the reasoner.

4.2 Approach

Both global and local automata are reduced so that, if a transition violates
the automaton from a certain state, this transition does not appear in the list
of the outgoing transitions from that state. More specifically, a transition can
be positive if it is associated to a single positive label (representing an event,
e.g., moored), or negative if it is associated to negative labels (e.g., —aground).
Positive labels indicate that we follow the transition when exactly the event cor-
responding to that label occurs, whereas negative labels indicate that we can
follow the transition for any event not mentioned. Hence, acceptable events cor-
respond to the label associated to a positive outgoing transition from the current
state or to no one of the labels associated to a negative outgoing transition.
The Mobucon LTL provider checks first whether the processed event is ac-
ceptable by the global automaton. If the event is allowed, the provider fires
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the corresponding transition on the global automaton. In this case, to compute
the state of every single constraint in isolation as well, it also fires the transi-
tions corresponding to the processed event on the local automata (note that,
if the event is acceptable by the global automaton, it is also acceptable by all
local automata). If, after having fired the transition, a local automaton is in an
non-accepting state, the corresponding constraint is possibly violated. If a local
automaton is in an accepting state, the corresponding constraint is (possibly or
permanently) satisfied. To distinguish between possibly and permanently satis-
fied constraints, the provider checks whether all possible events correspond to a
self loop on the current state. If this is the case, the constraint is permanently
satisfied, otherwise it is possibly satisfied. If the processed event violates the
global automaton, from the point of view of the automata, the violating event
is ignored. However, the provider still informs the client that the event caused a
violation w.r.t. the reference model. Moreover, it also gives intuitive diagnostics
about the violation. Indeed, the global automaton allows the provider to pre-
cisely identify which events were permitted instead of the one that caused the
violation. This information is derived from the labels of the outgoing negative
and positive transitions from the current state in the global automaton.

In some cases, a violation in the global automaton can be directly reduced to
a violation of a local automaton. However, in other cases none of the individual
local automata is violated as the problem stems from the interplay of multiple
constraints [9]. In the latter case, the Mobucon LTL provider is able to identify
the conflicting sets of constraints, i.e., the minimal sets of constraints that cause
the violation.

5 Mobucon EC

Mobucon EC exploits a reactive EC-based reasoner to provide monitoring fa-
cilities. When a first query is received for some process instance, the provider
applies a translation algorithm which analyzes the reference model stored in the
corresponding session, producing a set of corresponding EC axioms. It then cre-
ates a new instance of the reasoner, initializing it with the EC theory obtained
from the translation procedure. The reasoner instance is then stored into the
session. Every time a new partial trace must be checked, the reasoner is ex-
tracted from the session and updated with the new events. This triggers a new
reasoning phase in which the previously stored fluents’ MVIs are revised and
extended. The set of all MVIs is then returned by the reasoner.

In the following, we first sketch how Declare constraints, possibly augmented
with data and metric temporal aspects, can be tackled by means of EC axioms.
We then discuss the implementation of the reasoner.

5.1 Modeling

A comprehensive description of how the EC can be used in the Declare setting
can be found in [§]. Here, we consider one of the constraints mentioned in Fig.[IEl
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namely the response constraint over a Cargo ship, to give an intuition about such
a translation, considering data and metric temporal constraints as well.

Broadly speaking, an EC theory is a logic program which employs special
predicates for modeling how fluents change over time, in response of the execu-
tion of certain events. For example, initiates(e, f,t) (terminates(e, f,t)) is used
to say that event e initiates (terminates) f, i.e., makes f true (false), at time
t; holds at(f,t) is used to run queries over the validity of fluents, in this case
verifying whether f is true at time ¢. For a comprehensive description of the EC,
we refer the reader to [12].

In the context of Declare, and differently from the LTL-based approach, the run-
time characterization of business constraints is not given over the constraints them-
selves, but is tailored to constraints’ instances. A constraint instance represents a
specific “grounding” of the constraint inside a specific context, i.e., with specific
data, specific instantiation time, and so on. According to this observation, in the
EC-based formalization of Declare fluents have the form state(i(ID, Params),
State), where ID is the identifier of the constraint, Params is a list of parame-
ters characterizing a specific instance of the constraints, and State is the current
state of the instance, i.e., one among sat, viol and pend (to respectively model
that the constraint instance is satisfied, violated or pending). In our example,
the response constraint over a Cargo ship will be identified by cr, and the params
characterizing each instance will be the identifier of the vessel (needed to prop-
erly correlate events) and the creation time (needed to properly check the metric
temporal constraints).

EC axioms are given over event types, which are then subject, during the
execution, to unification with each occurring concrete event. Event types have
the form exec(Name, Who, Data), where Name is the name of the event, Who
identifies the entity that originated the event, and Data is a list of further
data. The response over a Cargo ship is associated to the moored and (Under
way using) engine events, which can be represented by the two event types
exec(moored, Vig, [Viype]) and exec(engine, Viq, [Viype])- It is instantiated every
time a moored event happens for a cargo vessel; the instance is put in a pending
state, waiting for the occurrence of a corresponding engine event:

initiates(exec(moored, V4, [cargo)), status(i(cr, [Via, T)), pend), T)

A state transition from the pending to the satisfied state happens for an instance,
if the following conditions hold: (1) the instance is currently pending; (2) an
engine event occurs for a Cargo ship; (3) the event has the same vessel identifier
of the instance; (4) the timestamp of the event is after the creation time of the
instance, but before the actual deadline (which corresponds to the creation time
plus 2880 minutes). Such state transition is modeled by terminating the previous
state and initiating the new one, if all conditions are satisfied:

terminates(exec(engine, V;q, [cargo)), status(i(cr, [Via, Tc]), pend), T) : —
holds at(status(i(cr, [Via, Te]), pend), T), T > T.,T < T. + 2880.
initiates(exzec(engine, Viq, [cargol), status(i(cr, [Via, T¢]), sat), T): —
holds at(status(i(cr, [Via, T:]), pend), T),T > T., T < T, + 2880.
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Contrariwise, if a (generic) event happens at a time which is greater than
the creation time of the instance plus 2880, and the constraint instance is still
pending, this attests that the deadline has expired, and that a transition from
the pending to the violated state must be triggered:

terminates( , status(i(cr, [Via, Tc]), pend), T) : —

holds at(status(i(cr, [Via, Tc]), pend), T), T > T. + 2880.
initiates( , status(i(cr, [Via, Tc]), viol), T) : —

holds at(status(i(cr, [Via,Tc]), pend),T), T > T. + 2880.

Finally, a further general rule is added to state that each pending instance
becomes violated when the process instance is completed.

The visualization depicted in Fig. BBl shows the status of the various con-
straints for a running trace and is based on the above axioms (together with the
ones modeling the other constraints in Fig. [[D).

5.2 Reasoner Implementation

To effectively compute the MVIs characterizing the evolution of each constraint
instance, Mobucon EC relies on a reactive EC reasoner and three translation
components. A first translator converts the XML representation of a Declare
reference model to a corresponding set of EC axioms. A second one converts a
XES (partial) trace to a set of logic programming facts, also applying a trans-
lation of timestamps using the chosen granularity; such facts are then matched
against the EC axioms that formalize the reference model. A last translator is
used to convert the outcome produced by the reasoner (a set of strings) to a
fluent model according to the schema of Fig.

The reactive reasoner is inspired by the Cached EC (CEC) developed by
Chittaro and Montanari [I3]. It uses a Prolog-based axiomatization of the EC
predicates following the CEC philosophy, i.e., already computed MVIs of fluents
are cashed and subsequently revised and extended as new events are received.

Different underlying Prolog engines can be plugged into the tool. In particular,
we experimented TuProlog (tuprolog.alice.unibo.it/) which is completely
implemented in JAVA and thus guarantees a seamless integration inside ProM,
and YAP (yap.sourceforge.net/), which is one of the highest-performance
Prolog engine available today.

6 Case Study

In this section, we present the application of the two Mobucon providers (LTL
and EC) as part of a case study conducted within the research project Poseidon
(www.esi.nl/poseidon/) and focused on the analysis of vessel behavior in the do-
main of maritime safety and security. The case study has been provided by Thales,
a global electronics company delivering mission-critical information systems and
services for the Aerospace, Defense, and Security markets. In our experiments,
we use logs collected by an on-board maritime Automatic Identification System
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Fig. 5. Examples of monitoring results in our case study

(AIS) [14], which acts as a transponder that logs and sends events to an AIS re-
ceiver. An event represents a change in the navigational status of a vessel (e.g.,
moored or Under way using engine). Each event has an associated vessel ID and
vessel type (e.g., Passenger ship or Cargo ship). The logs are excerpts of larger
logs and correspond to a period of one week. The standard behavior of the vessels
is described by domain expert using Declare, where constraints are used to check
the compliance of the behavior of vessels as recorded in the logs.

Let us first focus on the Mobucon LTL provider. Figure [[al shows the reference
model used to monitor vessels behavior. Each vessel corresponds to a process
instance in the log. Figure Balshows a graphical representation of the constraints’
evolution for a specific instance. Events are displayed on the horizontal axis (for
the sake of readability, a more compact notation is used). The vertical axis shows
the constraints, reporting their evolution as events occur.

When event moored is executed the response constraint becomes possibly
violated. Indeed, the constraint is waiting for the occurrence of another event
(execution of (Under way using) engine) to become satisfied. After moored, (Un-
der way) sailing is executed, leading to a conflict caused by the interplay of the
not coexistence and the response constraints. The conflict is due to the fact that
the first constraint forbids whereas the other constraint requires the presence of
event engine. Note that, after a conflict or a (local) violation, constraints can
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become non-violated. In fact, Mobucon LTL implements a recovery strategy
where the violating events are ignored (after having been reported). In this case,
for instance, when sailing occurs, the conflict is raised but the event is, in fact,
ignored. The next event is engine and response (that was possibly violated before
the conflict) becomes possibly satisfied. After that, when event sailing occurs,
not coexistence becomes permanently violated because engine and sailing can-
not coexist in the same trace (note that also in this case the violating event is
ignored after that the violation has been reported). The next event is moored
and response becomes possibly violated. When the case completes, the response
constraint becomes violated because it is not possible to satisfy it anymore.

Finally, note the trend of the compliance indicator in Fig. [Bal The indicator
decreases in correspondence of each (local) violation. This example also shows
clearly that a violation of the response constraint influences the indicator more
than a violation of the not coexistence constraint.

Let us now consider the Mobucon EC provider, which employs the reference
model shown in Fig. Bl In order to show the potentiality of the approach,
we consider in this case the unique events stream generated by the AIS receiver;
correlation between events referring the same vessel is under the responsibility of
the framework itself, using the formalization discussed in Sec. [l Figure[5hlshows
a graphical representation of the constraints’ evolution. Events (with attached
data and timestamps) are displayed on the horizontal axis. The vertical axis
shows the constraints and their instances, reporting their evolution as time flows.

Every time event moored occurs, a new instance of the response constraint
(for the specific vessel type) is created. At first, the state of the instance is
pending because it is waiting for the occurrence of an (Under way using) engine
event referring to the same vessel ID, and within the deadline specific for the
corresponding vessel type. Event engine occurs for Passenger ship vl less than
6 hours after moored. For vj this takes more than 6 hours, thus resulting in a
violation. Similar to the example used for the Mobucon LTL provider, also in this
case, the occurrence of sailing for Sailing boat v2 generates a conflict between
the instance of the response constraint and the instance of the not coezistence
constraint corresponding to this vessel. They can never become both satisfied,
the first requiring and the other forbidding the presence of event engine for this
vessel. However, unlike the LTL-based provider, the Mobucon EC provider does
not point out any problem when the conflict arises. Only when, as the last event
of the trace, engine occurs for v2, the instance of the not coeristence constraint
for vessel v2 becomes violated. This example shows that, on the one hand,
the Mobucon EC provider is able to monitor constraints augmented with data
conditions and metric temporal constraints. On the other hand, the Mobucon
LTL provider supports the early detection of violations originating from a conflict
among two or more constraints.

As explained in Sect. B3] the compliance indicator is computed differently in
both providers. For both providers the indicator decreases after each violation.
However, in EC-based provider, the compliance indicator increases when new
satisfied instances are created.
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Table 1. Comparison between the Mobucon LTL and EC providers (I = imple-
mented, I¥ = partially implemented, + = supported by the formal framework, —
= not supported by the formal framework)

LTL EC LTL EC
1. single constraints monitoring I I 5. recovery and compensation + o+
2. non-local violations ) O 6. metric temporal aspects - I
3. continuous support 1 1 7. data and data-aware conditions — I*
4. diagnostics I 8. non-atomic activities +

7 Discussion and Conclusion

This paper presents a new Operational decision Support (OS) framework for
monitoring business constraints. The framework implementation exploits the
functionalities provided by the OS service in ProM. Mobucon comes with a
general flexible architecture able to accommodate multiple reasoning engines. In
this paper, we demonstrate two such engines, one based on (finite-trace) Linear
Temporal Logic (LTL) and automata, and the other on the Event Calculus (EC)
and a Prolog-based reactive reasoner.

In the literature, most of the proposed approaches for compliance verification
either work on static models at design time [I5/16] or on off-line a-posteriori con-
formance checking [I7] using only historical data. The majority of approaches
for online business process monitoring focus on measuring numerical attributes,
such as Key Performance Indicators (KPIs). For example, in [18], a framework is
introduced for modeling and monitoring of KPIs in Semantic Business Process
Management. In particular, the authors integrate the KPI management into a
semantic business process lifecycle, creating an ontology that is used by busi-
ness analysts to define KPIs based on ontology concepts. In [19], an integrated
framework is presented for run-time monitoring and analysis of the performance
of WS-BPEL processes. In particular, this framework allows for dependency
analysis and machine learning with the ultimate goal of discovering the main
factors influencing process performance (KPI adherence).

An exception to this trend is the work by Ly et al. on semantic constraints
in business processes [20]. This work is more related the one presented here.
Both approaches recognize the importance of runtime compliance verification of
processes with rules and constraints. However, while Ly et al. aims to describe a
comprehensive framework for compliance of semantic constraints over the whole
process lifecycle, here we have proposed concrete ways for attacking this problem
during the execution of processes.

Table [ provides a comparison of our two OS providers for monitoring busi-
ness constraints (LTL-based and EC based). Analysis of this table provides some
interesting insights. First of all, both approaches are able to manage the monitor-
ing of individual business constraints. Non-local violations refer to the situation
in which no single constraint is currently violated, but there is a conflicting set of
constraints. Whereas the LTL-based approach can discover non-local violations
thanks to the construction of the global automaton, the EC-based approach does
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not support this. Note that the detection of non-local violations is currently only
partially supported by the Mobucon LTL provider: the non-local violations is
detected, but the minimal conflicting set is not yet computed efficiently. We are
currently working on extending the colored-automata based approach to more
efficiently identify minimal sets of conflicting constraints [21]. Both approaches
support continuous support, i.e., the monitoring framework is able to provide
support even after a violation takes place. While the Mobucon EC provider is
only able to detect that a violation has taken place, Mobucon LTL also provides
diagnostics about which events were expected (not) to occur. Although recovery
and compensation mechanisms have not yet been included in our implementa-
tion, both approaches can support them [9/22].

The last three rows in Tab. [l refer to the extension of the Declare language.
Metric temporal aspects have been already incorporated into the Mobucon EC
provider [§]. Metric temporal logics and timed-automata will be investigated to
improve the LTL-based approach in this direction. Data and data-aware con-
ditions are not-expressible in LTL, while the EC-based tool is being extended
to accommodate them. Its ability to support data is attested by the formaliza-
tion example shown in Sec. [l and Fig. BB Similarly, EC is also able to support
non-atomic activities.

Finally, let us briefly comment on the performance of the two approaches.
For the Mobucon LTL provider, a recent investigation has revealed that very
efficient algorithms can be devised for building local and global automata [IT].
Once the automata are constructed, runtime monitoring can be supported in an
efficient manner. The state of an instance can be monitored in constant time, in-
dependent of the number of constraints and their complexity. According to [11],
the time to construct an automaton is 5-10 seconds for random models with
30-50 constraints. For models larger than this, automata can no longer routinely
be constructed due to lack of memory, even on machines with 4-8 GiB RAM.
For the Mobucon EC provider, some complexity results are inherited from the
seminal investigation by Chittaro and Montanari [13]. An initial investigation of
the performance of this approach (with YAP Prolog as underlying reasoner) can
be found in [§]. Differently from the LTL-based approach, whose most resource-
consuming task is the generation of the automaton, which is done before the
execution, the EC-based approach triggers a reasoning phase every time a new
event is acquired. Despite this, our investigation shows that, for randomly gener-
ated models and traces, the reasoner takes an average time of 300ms to process
the 1000th acquired event with a model containing 100 constraints.
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Abstract. Specification and maintenance of relationships between mod-
els are vital for MDE. We show that a wide class of such relationships can
be specified in a compact and precise manner, if intermodel mappings
are allowed to link derived model elements computed by corresponding
queries. Composition of such mappings is not straightforward and re-
quires specialized algebraic machinery. We present a formal framework,
in which such machinery can be defined generically for a wide class of
metamodel definitions. This enables algebraic specification of practical
intermodeling scenarios, e.g., model merge.

1 Introduction

Model-driven engineering (MDE) is a prominent approach to software devel-
opment, in which models of the domain and the software system are primary
assets of the development process. Normally models are inter-related, perhaps
in a very complex way, and to keep them consistent and use them coherently,
relationships between models must be accurately specified and maintained. As
noted in [I], “development of well-founded techniques and tools for the creation
and maintenance of intermodel relations is at the core of MDE.”

A major problem for in-
termodel specifications is that

. Model M1 Model M2
different models may struc- Person = hdor
ture the same information fhame: {Mr, Ms} x Str :'na_n_"l—e‘:_S_tr

- ? | =

differently. The inset figure
shows an example: model
(class diagram) M1 considers Persons and their names with titles (attribute
‘tname’), whereas M2 considers Actors and uses subclassing rather than titles.
Suppose that classes Person in model M1 and Actor in M2 refer to the same
class of entities but name them differently. We may encode this knowledge by
linking the two classes with an “equality” link. In contrast, specifying “same-
ness” of tnames and subclassing is not straightforward and seems to be a difficult
problem.

In the literature, such indirect relationships are usually specified by corre-
spondence rules [2] or expressions [3] attached to the respective links (think of

-
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expressions replacing the question mark above). When such-annotated links are
composed, it is not clear how to compose the rules; hence, it is difficult to manage
scenarios that involve composition of intermodel mappings. The importance and
difficulty of the mapping composition problem is well recognized in the database
literature [3]; we think it will also become increasingly important in software
engineering with the advancement and maturation of MDE methods.

The main goal of the paper is to demonstrate that the mapping composition
problem can be solved by applying standard methods of categorical algebra,
namely, the Kleisli construction, but applied in a non-standard way. In more
detail, we present a specification framework, in which indirect links are replaced
by direct links between derived rather than basic model elements. Here “derived”
means that the element is computed by some operation over basic elements. We
call such operations queries, in analogy with databases; the reader may think
of some predefined query language that determines a class of legal operations
and the respective derived elements. We will call links and mappings involving
queries ¢-links and ¢-mappings.

As g-mappings are sequentially composable, the universe of models and g-
mappings between them can be seen as a category (in precise terms, the Kleisli
category of the monad modeling the query language). Hence, intermodeling sce-
narios become amenable to algebraic treatment developed in category theory.
We consider connection to categorical machinery to be fruitful not only theoret-
ically, but also practically as a source of useful design patterns. In particular,
we will show that q-mappings are instrumental for specifying and guiding model
merge.

The paper is structured as follows. Sections 2 and 3 introduce our running
example and show how g-links and g-mappings work for the problem of model
merge. Section 4 explains the main points of the formalization: models’ confor-
mance to metamodels, retyping, the query mechanism and g-mappings. Section
5 briefly describes related work and Section 6 concludes.

2 Running Example

To illustrate the issues we need to address, let us consider a simple example
of model integration in Fig. [l Subfigure (a) presents four object models. The
expression o:Name declares an object o of class Name; the lower compartment
shows o’s attribute values, and ellipses in models P;, P, refer to other attributes
not shown. In model A, class Woman extends class Actor. When we refer to
an element e (an object or an attribute) of model X, we write e@X. Arrows
between models denote intermodel relationships explained below.

Suppose that models P; and P» are developed by two different teams charged
with specifying different aspects of the same domain—different attributes of the
same person in our case. The bidirectional arrow between objects p;@P; and
p2@QP, means that these objects are different representations of the same per-
son. Model P; gives the first name; P, provides the last name and the title of the
person (‘tname’). We thus have a complex relationship between the attributes,
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' Model s S2p Model P, PP [ Model P, azp Model A ;
{['s:Student ‘ \ p,:Person p,Person A w: Woman >Actor |
\ Py ‘

[
[name=Ann name=Ann . 1.______Cfame=MsLee /j /" Iname=Lee
|age=22—— "Bdate=01/01/90 Y o 7/

\

| age=22 ~

(a) four models linked informally

52p pp a2p
S AR P <oooocooooocoo0os P R A
[merge]
A A

(b) schema of the system

Fig. 1. Running example: four models and their relationships, informally

shown by a dashed link (brown with a color display): both attributes talk about
names but are complementary. Together, the two links form an informal mapping
pp between the models.

We also assume that model P; is supplied with a secondary model S, rep-
resenting a specific view of P; to be used and maintained locally at its own
site (in the database jargon, S is a materialized view of P;). Mapping s2p, con-
sisting of three links, defines the view informally. Two solid-line links declare
“sameness” of the respective elements. The dash-dotted link shows relatedness
of the two attributes but says nothing more. Similarly, mapping a2p is assumed
to define model A as a view to model Py: the solid link declares “sameness” of
the two objects, and the dash-dotted link shows relatedness of their attributes
and types. Mappings s2p, pp and a2p bind all models together, so that a virtual
integrated (or merged) model, say P, should say that Ms. Ann Lee is a 22 year
old student and female actor born on Jan 1, 1990. Diagram Fig. [{b) presents
the merge informally: horizontal fancy arrows denote intermodel mappings, and
dashed inclined arrows show mappings that embed the models into the merge.

Building model management tools capable of performing integration like above
for industrial models (normally containing thousands of elements) requires clear
and precise specifications of intermodel relationships. Hence, we need a frame-
work in which intermodel mappings could be specified formally; then, operations
on models and model mappings could be described in precise algebraic terms.
For example, merging would appear as an instance of a formal operation that
takes a diagram of models and mappings and produces an integrated model to-
gether with embeddings as shown in Fig. [[[(b). We want such descriptions to be
generic and applicable to a wide class of scenarios over different metamodels.
Category theory does provide a suitable methodological framework (cf. [4510]),
e.g., homogeneous merge can be defined as the colimit of the corresponding di-
agram [7I8], and heterogeneity can be treated as shown in [9]. However, the
basic prerequisite for applying categorical methods is that mappings and their
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composition must be precisely defined. It is not straightforward even in our
simple example, and we will briefly review the problems to be resolved.

Thinking in terms of elements, a mapping should be a set of links between
models’ elements as shown by ovals in Fig.[I{a). We can consider a link formally
as a pair of elements, and it works for those links in Fig. [l(a), which are shown
with solid lines. Semantically, such a link means that two elements represent the
same entity in the real world. However, we cannot declare attributes ‘age’ in
model S (we write ‘age’@S) and ‘bdate’@P; to be “the same” because, although
related, they are different. Even more complex is the relationship between at-
tribute ‘tname’ in base model P, and the view model A: it involves attributes
and types (the Woman-Actor subclassing) and is shown informally by a two-to-
one dash-dotted link. Finally, the dashed link between elements ‘name’@P; and
‘tname’@QP» encodes a great deal of semantic information described above.

As stated in the Introduction, managing indirect links via their annotation by
correspondence rules or expressions leads to difficult problems in mapping com-
position. In contrast, the Kleisli construction developed in categorical algebra
provides a clear and concise specification framework, in which indirect relation-
ships are modeled by g-mappings; the latter are associatively composable and
constitute a category. The next section explains the basic points of the approach.

3 Intermodeling and Kleisli Mappings

We consider our running example and incrementally introduce main features of
our specification framework.

3.1 From Informal to Formal Mappings

Type Discipline. Before matching models,

we need to match their metamodels. Suppose

that we need to match models Sy and Py over Model S,:8 Jom {VModel Py:P
corresponding metamodels S and P, resp. (see  {s:Student A p:Person
the inset figure on the right), linking objects  {name=Ann \V\l name=Ann
s@Sy and p@QPF, as being “the same”. These
objects have different types (’Student’ and | Metamodel Metamodel

S 1

"Person’, resp.), however, and, with a strict I{{l
type discipline, they cannot be matched. In- StUde%tt | Perso%t
deed, the two objects can only be “equated” name.str U rLname.otr

if we know that their types actually refer to

the same, or, at least, overlapping, classes

of real world objects. For simplicity, we assume that classes Student@S and
Person@P refer to the same class of real world entities but are named differ-
ently; and their attributes ‘name’ also mean the same. To make this knowledge
explicit, we match the metamodels S and P via mapping m as shown in the in-
set figure. After the metamodels are matched, we can match type-safely objects s
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and p, and their attributes as well. The notation fy:m means that each link in
mapping fy is typed by a corresponding link in mapping m. Below we will often
omit metamodel postfixes next to models and model mappings if they are clear
from the context.

Indirect Linking, Queries and Q-
mappings. As argued above, to specify rela-

tionships between models S and P; in Fig.[I] M-model 8 [M-model, P]
we first need to relate their metamodels (the  {[Student Person
inset figure on the right). We cannot “equate” name: Str{——- name: Str
attributes ‘age’ and ‘bdate’, however. The cor- age: Int " bdate: Int?
nerstone of our approach to intermodeling is

to specify indirect relationships by direct links
to derived elements computed with suitable
queries. For example, attribute ‘age’ can be derived from ‘bdate’ with an obvi-
ous query Q1:
/age = Q1(bdate) = 2012 — bdate.byear,

Our notation follows UML by prefixing the names of derived elements by slash;
@1 is the name of the query; 2012 — bdate.byear is its definition; and ’byear’
denotes the year-field of the bdate-records. Now the relation between metamod-
els § and Py is specified by three directed links, i.e., pairs, (Student, Person),
(name, name) and (age, /age) as shown in the bottom of Fig. 2l(a) (basic ele-
ments are shaded; the derived attribute ’/age’ is blank). The three links form a
direct mapping my: S — P7, where P| denotes metamodel P; augmented with
derived attribute /age. Since mapping m; is total, it indeed defines metamodel
S as a view of P1. Query Q1 can be executed for any model over metamodel P+,
in particular, P; (Fig.2(a) top), which results in augmenting model P; with the
corresponding derived element; we denote the augmented model by P;". Now
model S can be directly mapped to model P1+ as shown in Fig. [Z(a), and each
link in mapping f; is typed by a corresponding link in mapping m;.

The same idea works for specifying mapping a2p in Fig.[Il The only difference
is that now derived elements are computed by a more complex query (with
two select-from-where clauses, ‘title=Ms’ and ‘title=Mr’) as shown in Fig. (b):
mapping mg provides a view definition, which is executed for model P, and
results in view model A and traceability mapping fs. Thus, we formalize arrows
s2p, a2p in Fig. [l as ¢-mappings, that is, mappings into models and metamodels
augmented with derived elements. Ordinary mappings can be seen as degenerate
g-mappings that do not use derived elements.

Links-with-New-Data via Spans. In Section 2, relationships between mod-
els P; and P in Fig. [[l were explained informally. Fig. Bl gives a more pre-
cise description. We first introduce a new metamodel P15 (the shaded part
of metamodel P7,), which specifies new concepts assumed by the semantics.
Then we relate these new concepts to the original ones via mappings r1, r2; the
latter one uses derived elements. Queries ()4 2 are projection operations, and
query (D3 is the pairing operation. In particular, mapping ro says that attribute
‘fname’@P7, does not match any attribute in model P35, ‘Iname’@QP7, is the
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Model $:8 \/1:m1 Model P,*: P,
s:Student /} pPerson | oo oo prrseseenzezeecs ,
name=Ann name=Ann Mo_‘{f’ PyPy" | Model A:A |
age=22 \JUL bdate=01/01/90 R eeTes| | Jy™m2 fioman |
age=2012-1990 7~ ¢ NAMET2Ee i
=22 : 1/, Msperson ||
e | /name=lee
Metamodel $m;: Metamodel, P T M’éfd}ﬁc}a’é/’ﬁ; ”””” m, MetamodelA
Student Person Person — Actor | !
name: Str name: Str tname: {Mr,Ms} x Str name: Str
age: Int 4 bdate: Int3 mn ! o
f2ge=Q1 (bdate] Mrperson | 2 MsPerson | { Woman |
s Uname: str| "\, L/name st W ]
(a) (b)
Fig. 2. Indirect matching via queries and direct mappings
Model P, e, |Model P;," e, Model P,*
p1:Person (\\ p:Person A p2:Person
name=Ann 1 fname= / / tname: Ms.Lee
bdate=01/01/90 title= 7] ltle =Ms
Iname= /name = Lee
/thame= +—~H\ ”””””””””
Metamodel Py | .; | Metamodel P, r2 | Metamodel Py*
Person (\\ Person A»| Person
name: Str | fname: Str / / tname: {Ms,Mr} x Strv_
bdate: Int3 title: {Ms,Mr} +itle :Q41(tname):%/ls, r}
Iname: Str Iname=Q4,(tname):Str
/tname = Q3§W ) +%\ ”””””””””””
{Ms,Mr} x Str

Fig. 3. Matching via spans and queries
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same as ‘/name’@P7 (i.e., the second component of ‘tname’), and ‘tname’@P7
“equals” the pair of attributes (title, Iname) in PJ,.

On the level of models, we in-
troduce a new model Pjs to de-

clare sameness of objects p;@QP; Agetam‘)d' 1
and p2@P;,, and to relate their at- near:;;r? S
tribute slots. The new attribute ol 7 "2
slots are kept empty—they will Metamod.P, Metamod.P,y*
be filled-in with the correspond- Person Person
ing local values during the merge. name: Str | {Rfaem{el\:/lsStl\r/Ir}
. - Int3 - Ms,

It is well-known that algebra of bdate: Int N Iname: Str
totally defined functions is much /tname: Str
simpler than that of partially de-
fined ones. Neither of the map- Fig. 4. Partial mappings via spans

pings ri, e, (k= 1,2) is total (re-
call that Py and P> may contain other attributes not shown in our diagrams). To
replace these partial mappings with total ones, we apply a standard categorical
construction called a span, as shown in Fig. [ for mapping r1. We reify r1 as a
new model r1 equipped with two total projection mappings 711, 712.

Thus, we have specified all our data via models and functional g-mappings as
shown in the diagram below; arrows with hooked tails denote inclusions of models
into their augmentations with derived elements computed with queries Q1.

I

N2 /:
P Nt 0,0 [P 0P)<—[A]

f] M
[s|—ar)<>[P]

3.2 Model Merging: A Sample Multi-mapping Scenario

We want to integrate data specified by the diagram above. We focus first on
merging models Py, P, and P2 without data loss and duplication. The type
discipline prescribes merging their metamodels first. To merge metamodels 'Pf,
P35, and Py, (see Fig. B]), we take their disjoint union (no loss), and then glue
together elements related by mappings 1 2 (to avoid duplication). The result is
shown in Fig. Ba). There is a redundancy in the merge since attribute ‘tname’
and pair (title, Iname) are mutually derivable. We need to choose either of them
as a basic structure, then the other will be derived (see Fig. B(b1,b2)) and could
be omitted from the model. We call this process normalization. Thus, there
are two normalized merged metamodels. Amongst the three metamodels to be
merged, we favor metamodel P15 in which attribute ‘tname’ is considered derived
from ‘title’ and ‘Iname’, and hence choose metamodel P}, as the merge result
(below we omit the subindex).
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____________________________________________________________________________________

{ Metamodel P | | Metamodel P, ;* : i Metamodel P ;"
{[Person | |[Person | i[Person
i fname: Str i [fname: Sfr i i[fname: Str
i[title” =Q4,(tname):Str |: 1| title: {Ms, Mr} t o i[Title” =Q4; (tname): {Ms,Mr}|
i name= Q4,(tname):Str |: :|Iname: Str i i| /name=Q4,(tname): Str
| tname=Q3(title,name): |1 ![/iname = Q3(file,name):| ¢ iffname:” T ]
: {Ms,Mr}xStr ~ |: {MsMr}x Str |+ 1 {Ms,Mr} x Str
{|pdate=01/01/90 | i[bdate=0TOTA0 ] {[bdate=01/01/90

(a) (b1) (b2)

bdate=01/01/90
1 R A

‘Model P;:P, | ; ‘Model p*:P* | i1 Model Py*:Py* |
i[pT:Person /[ p:Person : + [p2:Person i
{[name=Ann L. »[fname=Ann  |i [ | ! [lname:Ms.Lee |
| bdate=01/01/90 | || title=Ms ——-ftle =Ms !
oo : | Iname=Lee  +—4——/name =Lee |
i tname=Ms.Lee i { { ++——

Fig. 6. Result of the merge modulo match in Fig. Bl

Now take the disjoint union of models Pfr , P; , Pfg (Fig. ), and glue together

elements linked by mappings e; 2. Note that we merge attribute slots rather than
values; naming conflicts are resolved in favor of names used in metamodel PJ,.
The merged model is in Fig. Bl Note how important is the interplay between
basic-derived elements in mapping es in Fig. [3} without these links, the merge
would contain redundancies. All three component models are embedded into the
merge by injective mappings i1 2 3 (mapping i3 is not shown).
Merge and Integration, Abstractly. The hexagon area in Fig.[[ presents the
merge described above, now in an abstract way. Nodes in the diagram denote
models; arrows are functional mappings, and hooked-tail arrows are inclusions.
Computed mappings are shown with dashed arrows (blue if colored), and com-
puted model P is not framed.

Building model P+ does not complete integration, however. Our system of
models also has two view models, S and A, and to complete integration, we
need to show how views S and A are mapped into the merge P. For this goal,
we need to translate queries @1 and @2 to, resp., models P; and P, from their
original models to the merge model Pt using mappings 41, i2. We achieve the
translation by replacing each element x@P;, occurring in the expression defining
query Q. (k = 1,2) by the respective element ix(z)@P*. Then we execute the
queries and augment model P with the respective derived elements, as shown
by inclusion mappings 77,& (k = 1,2) within the lane (a-b) in the figure: we add
to model Pt derived attribute /age (on the left) and two derived subclasses,
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Fig. 7. The merge example, abstractly

/MrPerson and /MsPerson (on the right). Since model P* is embedded into its
augmentations Qx(PT) (k = 1,2), and queries Q. preserve data embedding (are
monotonic in database jargon), the result of executing @, against model Py can
be embedded into the result of executing Q) against P*. So, we have mappings
it making squares [P, P* Qx(P*) Q1(Py)] (k = 1,2) commutative.

Finally, we merge queries Q1 and Q3 to model PT into query Q12, whose exe-
cution adds to model P+ both derived attribute /age and the derived subclasses.
We denote the resulting model by PTF and 115: PT < P*¥ is the corresponding
inclusion (see the lower diamond in Fig.[7). Now we can complete integration by
building mappings ig: S — PT* and i4: A — PTT by sequential composition of
the respective components. These mappings say that Ms. Ann Lee is a student
and an actor—information that neither P+ nor P+ provide.

3.3 The Kleisli Construction

The diagram in Fig. [{] is precise but looks too detailed in comparison with the
informal diagram Fig. [[(b). We want to design a more compact yet still precise
notation for this diagram.

Note that the diagram uses frequently the following mapping pattern

X Trow <"y

where X, Y are, resp., the source and the target models; Q(Y") is augmentation
of Y with elements computed by a query @ to Y; and 7 is the corresponding
inclusion. The key idea of the Kleisli construction developed in category theory
is to view this pattern as an arrow K: X = Y comprising two components: a
query Qg to the target Y and a functional mapping fx: X — Qk(Y) into the
corresponding augmentation of the target. Thus, the query becomes a part of
the mapping rather than of model Y, and we come to the notion of g-mapping
mentioned above. We will often denote g-mappings by double-body arrows to
recall that they encode both a query and a functional mapping. By a typical
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abuse of notation, a g-mapping and its second component (the functional map-
ping) will be often denoted by the same letter; we write, say, f: X = Y and
f: X = Q(Y) using letter f for both. With this notation, the input data for
integration (framed nodes and solid arrows in diagram Fig. []) are encoded by
the following diagram

/1 e1 €2 fa
S —— P, <—— Py . P A

where spans e1, es from Fig. [ are encoded by arrows with bullets in the middle.
Note a nice similarity between this and our original diagram Fig. [[[b)(its upper
row of arrows); however, in contrast to the latter, the arrows in the diagram
above have the precise meaning of g-mappings.

Finally, we want to formalize the integration procedure as an instance of the
colimit operation: as well-known, the latter is a quite general pattern for “putting
things together” [4]; see also [TUTOJ8] for concrete examples related to MDE. To
realize the merge-as-colimit idea, we need to organize the universe of models and
g-mappings into a category, that is, define identity g-mappings and composition
of g-mappings. The former task is easy: given a model X, its identity q-mapping
Nx: X = X comprises the empty query Qg, so that Qg (X) = X, and the
mapping 1x: X — Qz(X), which is the identity mapping of X to itself.

Composition of g-mappings is, however,

non-trivial. Given two composable g-mappings X Y Z

f: X=Y and g: Y = Z, defining their com- o " o a
position f; g: X = Z is not straightforward, as . van . van
shown by the diagram in Fig. B (ignore the Qs (Y) Qy(2)

. g

two dashed arrows and their target for a mo- ox N
ment): indeed, after unraveling, mappings f Mo,
and g are simply not composable. To man- 7

age the problem, we need to apply query Qf Qr(Qy(2))

to model Q4(Z) and correspondingly extend

mapping ¢ as shown in the diagram. Compo- Fig. 8. Q-mapping composition
sition of two queries is again a query, and thus

pair (f; g%, QoQ,) determines a new g-mapping from X to Z.

The passage from g to g#—the Kleisli extension operation—is crucial for the
construction. (Note that we have used this operation in Fig.[7 too). On the level
of metamodels and query definitions (syntax only), Kleisli extension is simple
and amounts to term substitution. However, queries are executed for models,
and an accurate formal definition of the Kleisli extension needs non-trivial work
to be done. We outline the main points in the next section.

4 A Sketch of the Formal Framework

Due to space limitations, we describe very briefly the main points of the formal
framework. All the details, including basic mathematical definitions we use, can
be found in the accompanying technical report [11] (the TR).
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4.1 Model Translation, Traceability and Fibrations

The Carrier Structure. We fix a category G with pullbacks, whose objects
are to be thought of as (directed) graphs, or many-sorted (colored) graphs, or
attributed graphs [I2]. The key point is that they are definable by a metameta-
model itself being a graph with, perhaps, a set of equational constraints. In
precise categorical terms, we require G to be a presheaf topos [13], and hence
a G-object can be thought of as a system of sets and functions between them
(e.g., a graph consists of two sets, Nd and Arr, and two functions from Arr to
Nd—think of the source and the target of an arrow). It allows us to talk about
elements of G-objects, and ensures that G has limits, colimits, and other good
properties. We will call G-objects ‘graphs’ (and as a rule skip the quotes), and
write e € G to say that e is an element of graph G.

For a graph M thought of as a metamodel, an M -model is a pair A = (D a,ta)
with D4 a graph and t4: D4 — M a mapping (arrow in category G) to be
thought of as typing. In a heterogeneous environment with models over different
metamodels, we may say that a model A is merely an arrow t4: Dy — M4 in G,
whose target M4 is called the metamodel of A (or the type graph, and the source
D, is the data carrier (the data graph). In our examples, a typing mapping for
OIDs was set by colons: writing p:Person for a model A means that p € Dy,
Person € My and ta(p) = Person. For attributes, our notation covers even
more, e.g., writing 'name=Ann’ (nested in class Person) refers to some arrow
x:y — Ann in graph D4, which is mapped by ¢ 4 to arrow value: name — String
in graph M4, but names of elements x, y are not essential for us. Details can be
found in [0} Sect.3].

A model mapping f: A — B is a pair of G-mappings, fmeta: Ma — Mp and
faata: Da — Dp, commuting with typing: fqata;tB = tAa; fmeta. Below we will
also write fys for fieta and fp for fqata. Thus, a model mapping is a commutative
diagram; we usually draw typing mappings vertically and mappings fur, fp
horizontally. We assume the latter to be monic (or injective) in G like in all our
examples. This defines category Mod of models and model mappings.

As each model A is assigned with its metamodel M 4, and each model mapping
f: A — B with its metamodel component fy;: Ma — Mp, we have a projection
mapping p: Mod — MMod, where we write MMod for either entire category
G or for its special subcategory of ‘graphs’ that can serve as metamodels (e.g.,
all finite ‘graphs’). It is easy to see that p preserves mapping composition and
identities, and hence is a functor.

To take into account constraints, we need to consider metamodels as pairs
M = (Gp,Ch) with Gy a carrier graph and Cps a set of constraints. Then
not any typing ta: Da — Gjs is a model: a legal ¢4 must also satisfy all con-
straints in C;. Correspondingly, a legal mapping f: M — N must be a ’graph’
mapping Gy — Gy compatible with constraints in a certain sense (see [10] or
[¥] for details). We do not formalize constraints in this paper, but in our ab-
stract definitions below, objects of category MMod may be understood as pairs
M = (Gy,Chr) as above, and MMod-arrows as legal metamodel mappings.
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Retyping. Any metamodel mapping v: M < N generates | D]
retyping of models over M into models over N as shown by

the diagram on the right. If an element e € N is mapped to ¢ Zrtp 1],
v(e) € M, then any element in ‘graph’ D typed by v(e), is ]\'4 v
retyped by e. Graph D], consists of such retyped elements of
D, and mapping v; traces their origin. Overall, we have an
operation that takes two arrows, v and ¢, and produces two arrows, v; and t],,
together making a commutative square as shown above.

Formally, elements of D], can be identified with pairs (e,d) € NxD such
that v(e) = ¢(d), and mappings t[, and v; are the respective projections. The
operation just described is well-known in category theory by the name pullback
(PB) : typing arrow t|,: D], — N is obtained by pulling back arrow t along arrow
v. If we want to emphasize the vertical dimension of the operation, we will say
that traceability arrow v; is obtained by [lifting arrow v along ¢.

Abstract Formulation via Fibrations. Retyping can be specified as a spe-
cial property of functor p: Mod — MMod. That is: for an arrow v: M < N in
MMod, and an object A over M (i.e., such that p(A) = M), there is an arrow
va: A<+ Al, overv (i.e., a commutative diagram as above), which is maximal in
a certain sense amongst all arrows (commutative squares) over v. Such an arrow
is called the (weak) p-Cartesian lifting of arrow v, and is defined up to canonical
isomorphism. Functor p with a chosen Cartesian lifting for any arrow v, which is
compatible with arrow composition, is called a split fibration (see [14, Exercise
1.1.6]). Thus, existence of model retyping can be abstractly described by saying
that we have a split fibration p: Mod — MMod.
We will call such a fibration an (abstract) metamodeling framework.

4.2 Query Mechanism via Monads and Fibrations

Background. A monad (in the Kleisli form) over a category C is a triple
(Q,n, #) with Q: Cy — Cp a function on C-objects,  an operation that assigns
to any object X € Cy a C-arrow nx: X — Q(X), and # an operation that
assigns to any C-arrow f: X — Q(Y) its Kleisli extension f#: Q(X) — Q(Y)
such that nx; f# = f. Two additional laws hold: nﬁ = lqx) for all X, and
f#ig? = (f;97)% for all f: X - Q(Y), ¢: Y — Q(Z). In our context, if C-
objects are models and a monad over C'is given by a query language, object
Q(X) is to be understood as model X augmented with all derived elements
computable by all possible queries. In other words, Q(X) is the object of queries
against model X. We will identify a monad by its first component.

Any monad Q generates its Kleisli category Cq. It has the same objects as
C, but a Cq-arrow f: X = Y is a C-arrow f: X — Q(Y'). Thus, Kleilsi arrows
are a special “all-queries-together” version of our g-mappings. As we have seen
in Sect. B3l Fig. Bl composition of Cq-arrows, say, f: X =Y and ¢: Y = Z
is not immediate since f’s target and g’s source do not match after unraveling
their definitions. The problem is resolved with the Kleisli extension operation
and, moreover, the laws ensure that C-objects and Cgq-arrows form a category.
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Fig. 9. Q-mappings (a) and view mechanism (b1,b2)

Lemma 1 ([15]). If category C has colimits of all diagrams from a certain class
D, then the Kleisli category Cq has D-colimits as well.

Query Monads and Their Kleisli Categories. In the TR, we carefully
motivate the following definition:

Definition 1 (main) A monotonic query language over an abstract metamod-
eling framework p: Mod — MMod is a pair of monads (Q, Qqet) over categories
Mod and MMod, resp., such that p is a monad morphism, and monad Q is
p-Cartesian, i.e., is compatible with the Cartesian structure of functor p.

In the context of this definition, the Kleisli construction has an immediate prac-
tical interpretation. Arrows in the Kleisli category Modq are shown in Fig.[@)(a).
They are, in fact, our g-mappings, and we will also denote category Modq by
gMapq(we thus switch attention from the objects of the category to its arrows).
It immediately allows us to state (based on Lemma 1) that if D-shaped config-
urations of models related by ordinary (not ¢-) model mappings are mergeable,
then D-shaped configurations of models and g-mappings are mergeable as well.
For example, merge in our running example can be specified as the colimit of
the diagram of Kleilsi mappings on p.10.

Metamodel-level components of g-mappings between models are arrows in
MModg,.,, and they are nothing but view definitions: they map elements of the
source metamodel to queries against the target one Fig. @fa). Hence, we may
denote MModq,, , by viewDefq . View definitions can be executed as shown
in Fig. @(b1): first the query is executed, and then the result is retyped along
the mapping v (dashed arrows denote derived mappings).

The resulting operation of view ezecution is specified in Fig.[B(b2), where dou-
ble arrows denote Kleisli mappings. Properties of the view execution mechanism
are specified by Theorem 1 proved in the TR.

Theorem 1. Let (Q,Qqet) be a monotonic query language over an abstract
metamodeling framework p: Mod — MMod. It gives rise to a split fibration
PqQ: ¢Mapq — viewDefq = between the corresponding Kleisli categories.

Theorem 1 says that implementing view computation via querying followed by
retyping is compositional. More precisely, views implemented via querying fol-
lowed by retyping can be composed sequentially, and execution of the resulting
composite view amounts to sequential composition of executions of its compo-
nent views. Such compositionality is an evident requirement for any reasonable
implementation of views, and views implemented according to our framework
satisfy this requirement.



176 Z. Diskin, T. Maibaum, and K. Czarnecki

5 Related Work

Modeling inductively generated syntactic structures (term and formula algebras)
by monads and Kleisli categories is well known, e.g., [LOJI7]. Semantic structures
(algebras) then appear as Eilenberg-Moore algebras of the monad. In our ap-
proach, carriers of algebraic operations stay within the Kleilsi category. It only
works for monotonic query languages, but the latter form a large, practically in-
teresting class. (E.g, it is known that Select-Project-Join queries are monotonic.)
We are not aware of a similar treatment of query languages in the literature.

Our notion of metamodeling framework is close to specification frames in
institution theory [18]. Indeed, inverting the projection functor gives us a func-
tor pq 1 viewDefZﬁ .. — Cat, which may be interpreted in institutional terms
as mapping theories into their categories of models, and theory mappings into
translation functors. The picture still lacks constraints, but adding them is not
too difficult and can be found in [19]. Conversely, there are attempts to add
query facilities to institutions via so called parchments [20]. Semantics in these
attempts is modeled in a far more complex way than in our approach.

In several papers, Guerra et al. developed a systematic approach to intermod-
eling based on TGG (Triple Graph Grammars), see [I] for references. The query
mechanism is somehow encoded in TGG-production rules, but precise relation-
ships between this and our approach remain to be elucidated.

Our paper [9] heavily uses view definitions and views in the context of defining
consistency for heterogeneous multimodels, and is actually based on constructs
similar to our metamodeling framework. However, the examples therein go one
step “down” in the MOF-metamodeling hierarchy in comparison with our exam-
ples here, and formalization is not provided. The combination of those structures
with structures in our paper makes a two-level metamodeling framework (a fi-
bration over a fibration); studying this structure is left for future work.

6 Conclusion

The central notion of the paper is that of a g-mapping, which maps elements in
the source model to queries applied to the target model. We have shown that
g-mappings provide a concise and clear specification framework for intermod-
eling scenarios, in particular, model merge. Composition of g-mappings is not
straightforward: it requires free term substitution on the level of query defini-
tion (syntax), and actual operation composition on the level of query execution
(semantics). To manage the problem, we model both syntax and semantics of a
monotonic query language by a Cartesian monad over the fibration of models
over their metamodels. Then g-mappings become Kleilsi mappings of the monad,
and can be composed. In this way the universe of models and g-mappings gives
rise to a category (the Kleisli category of the monad), providing manageable
algebraic foundations for specifying intermodeling scenarios.

Acknowledgement. We are grateful for anonymous referees for valuable com-
ments. Financial support was provided with the NECSIS project funded by
Automotive Partnership Canada.
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Abstract. Triple graph grammars (TGGs) have been used successfully to ana-
lyse correctness of bidirectional model transformations. Recently, also a corre-
sponding formal approach to model synchronization has been presented, where
updates on a given domain (either source or target) can be correctly (forward
or backward) propagated to the other model. However, a corresponding formal
approach of concurrent model synchronization, where a source and a target mod-
ification have to be synchronized simultaneously, has not yet been presented and
analysed. This paper closes this gap taking into account that the given and prop-
agated source or target model modifications are in conflict with each other. Our
conflict resolution strategy is semi-automatic, where a formal resolution strategy
— known from previous work — can be combined with a user-specific strategy.

As first result, we show correctness of concurrent model synchronization, that
is, each result of our nondeterministic concurrent update leads to a consistent
correspondence between source and target models, where consistency is defined
by the TGG. As second result, we show compatibility of concurrent with basic
model synchronization: concurrent model synchronization can realize both for-
ward and backward propagation. The results are illustrated by a running example
on updating organizational models.

Keywords: model synchronization, conflict resolution, model versioning, cor-
rectness, bidirectional model transformation, triple graph grammars.

1 Introduction

Bidirectional model transformations form a key concept for model generation and syn-
chronization within model driven engineering (MDE, see [22])). Triple graph grammars
(TGGs) have been successfully applied in several case studies for bidirectional model
transformation, model integration and synchronization [20J25014]] and for the imple-
mentation of QVT [15]]. Based on the work of Schiirr et al. [24125], we developed a
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formal theory of TGGs [9/16], which allows handling correctness, completeness, ter-
mination and functional behaviour of model transformations. Inspired by existing syn-
chronization tools [14] and frameworks [4], we proposed an approach for basic model
synchronization in [[17], showing its correctness. In that paper we studied the problem
of how updates on a given domain can be correctly propagated to another model.

The aim of this paper is to provide, on this basis, also a correct TGG framework
for concurrent model synchronization, where concurrent model updates in different do-
mains have to be merged to a consistent solution. In this case, we have the additional
problem of detecting and solving conflicts between given updates. Such conflicts may
be hard to detect, since they may be caused by concurrent updates on apparently unre-
lated elements of the given models. Furthermore, there may be apparently contradictory
updates on related elements of the given domains which may not be real conflicts.

The main idea and results of our approach are the following:

1. Model synchronization is performed by propagating the changes from one model
of one domain to a corresponding model in another domain using forward and
backward propagation operations. The propagated changes are compared with the
given local update. Possible conflicts are resolved in a semi-automated way.

2. The operations are realized by model transformations based on TGGs [17] and
tentative merge constructions solving conflicts [[L1]. The specified TGG also defines
consistency of source and target models.

3. In general, the operation of model synchronization is nondeterministic, since there
may be several conflict resolutions. The different possible solutions can be visual-
ized to the modelers, who then decide which modifications to accept or discard.

4. The main result shows that the concurrent TGG synchronization framework is cor-
rect and compatible with the basic synchronization framework, where only single
updates are considered at the same time.

Based on TGGs we present the general concurrent model synchronization framework in
the basic model framework in and conflict resolution in[Sec. 4] In
we combine these operations with additional auxiliary ones and present the construc-
tion of the concurrent synchronization operation, for which we show its correctness
and its compatibility with the basic synchronization case in All constructions
and results are motivated and explained by a small case study. Finally, Secs. [7] and [§]
discuss related work, conclusions and future work. Full proofs and technical details on
efficiency issues and the case study are presented in a technical report [[10].

2 Concurrent Model Synchronization Framework

Concurrent model synchronization aims to provide a consistent merging solution for
a pair of concurrent updates that are performed on two interrelated models. This sec-
tion provides a formal specification of the concurrent synchronization problem and the
corresponding notion of correctness. At first, we motivate the general problem with a
compact example

! More complex case studies are also tractable by our approach, e.g. relating class diagrams to
data base models [9].
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Fig. 1. Concurrent model synchronization: compact example

Example 2.1 (Concurrent model synchronization problem).[Fig. 1|shows two models in
correspondence that cover different aspects about employees of a company. The source
model contains information about employees of the marketing department only, but
shows more detailed salary information. Two model updates have to be synchronized
concurrently: on the source side (model update df ), Bill Clinton’s node is deleted and
Melinda Gates’ family name changes due to her marriage; moreover, being married, her
bonus is raised from 1000 to 2000. On the target side (model update le), Bill Clinton is
switching from the marketing to the technical department (in the visualization in
this is indicated by a different role icon for Bill Clinton). His department change is
combined with a salary raise from 5000 to 6000. After performing updates d‘; and dzT ,a
“consistently integrated model” (see below) is derived that reflects as many changes as
possible from the original updates in both domains and resolves inconsistencies, e.g. by
computing the new Salary of Melinda Gates in the target domain as sum of the updated
source attributes Base and Bonus. Note that Bill Clinton is not deleted in the target
domain by the concurrent synchronization because in this case, the changes required by
d] could not have been realized. This conflict can be considered an apparent one. If a
person leaves the marketing department, but not the company, its node should remain
in the target model. Thus, a concurrent model synchronization technique has to include
an adequate conflict resolution strategy.

A general way of specifying consistency between interrelated models of a source
and a target domain is to provide a consistency relation that defines the consistent pairs
(M3, M") of source and target models. Triple graph grammars (TGGs) are a formal ap-
proach for the definition of a language of consistently integrated models [24.9]. TGGs
have been applied successfully for bidirectional model transformations [25/16] and ba-
sic model synchronization [[14]17], where no concurrent model updates occur.

In the framework of TGGs, an integrated model is represented by a triple graph
consisting of three graphs G%, G€, and G7, called source, correspondence, and target
graphs, respectively, together with two mappings (graph morphisms) sg : G — G5
and t; : G¢ — GT. Further concepts like attribution and inheritance can be used ac-
cording to [9I8]]. The two mappings in G specify a correspondence r : G5 < G', which
relates the elements of G with their corresponding elements of G” and vice versa.
However, it is usually sufficient to have explicit correspondences between nodes only.
For simplicity, we use double arrows (<) as an equivalent shorter notation for triple
graphs, whenever the explicit correspondence graph can be omitted.
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Fig. 2. Two triple rules of the TGG

Triple graphs are related by triple graph mor-
phisms m : G — H consisting of three graph
morphisms that preserve the associated correspon-
dences (i.e., the diagrams on the right commute).
Our triple graphs are typed. This means that a type triple graph 7G is given (playing
the role of a metamodel) and, moreover, every triple graph G is typed by a triple graph
morphism typeg : G — TG. It is required that morphisms between typed triple graphs
preserve the typing. For 7G = (TGS « TG® — TG™), we use VL(TG), VL(TG®), and
VL(TG") to denote the classes of all graphs typed over TG, TG® , and TG” , respectively.
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A triple rule tr = (75,1, ") is an inclusion of triple graphs, LCTo R
represented L < R. Notice that one or more of the rule components FO) un
trS, trC, and #7 may be empty, i.e. some elements in one domain (V; ¢ o I\-/I

t

may have no correspondence to elements in the other domain. In the
example, this is the case for employees of the technical department within the target
model. A triple rule is applied to a triple graph G by matching L to some subtriple
graph of G via a match morphism m : L — G. The result of this application is the triple
graph H, where L is replaced by R in G. Technically, the result of the transformation
is defined by a pushout diagram, as depicted above. This triple graph transformation

(TGT) step is denoted by G 2™, H. Moreover, triple rules can be extended by negative
application conditions (NACs) for restricting their application to specific matches [16].

Example 2.2 (Triple Rules). shows two triple rules of our running example using
short notation, i.e., left- and right-hand side of a rule are depicted in one triple graph and
the elements to be created have the label “++”. Rule Person2NextMarketingP requires an
existing marketing department. It creates a new person in the target component together
with its corresponding person in the source component and the explicit correspondence
structure. (The TGG contains a further rule (not depicted) for initially creating the mar-
keting department.) Rule FName2FName extends two corresponding persons by their
first names. There are further rules for handling the remaining attributes. In particular,
the rule for attribute birth is the empty rule on the source component.

A triple graph grammar TGG = (TG, S, TR) consists of a triple type graph TG, a triple
start graph S and a set TR of triple rules, and generates the triple graph language
VL(TGG) € VL(TG). A TGG is, simultaneously, the specification of the classes of con-
sistent source and target languages VLs = {G° | (G° « G¢ — G") € VL(TGG)}
and VL = {GT | (G5 « G° — G") € VL(TGG)} and also of the class C =
VL(TGG) € VL(TG) = Rel of consistent correspondences which define the consis-
tently integrated models. The possible model updates 45 and 47 are given by the sets
of all graph modifications for the source and target domains. In our context, a model

update d : G — G’ is specified as a graph modificationd = (G &1 G). The relating
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Fig. 3. Signature and laws for correct concurrent synchronization frameworks

morphisms i; : / < G and i, : I — G’ are inclusions and specify which elements are
deleted from G (all the elements in G \ I) and which elements are added by d (all the
elements in G’ \ ). While graph modifications can also be seen as triple graphs, it is
conceptually important to distinguish between correspondences and updates ¢.

The concurrent synchronization problem is visualized in where we use
solid lines for the inputs and dashed lines for the outputs. Given an integrated
model Gy = (G‘g o Gg ) and two model updates d‘f = (G(S) - G‘lg ) and dlr =
(G§ — G]), the required result consists of updates d5 = (G} — G3) and
d} = (G' — GI) and a consistently integrated model G, = (G5 < GJ). The
solution for this problem is a concurrent synchronization operation CSynch, which
is left total but in general non-deterministic, which we indicate by a wiggly ar-
row “~” in below. The set of inputs is given by (Rel ® A5 ® Ar) =
{(r,d%,d") € Rel x A5 X A7 | r: Gy & Gb,d%: G — G,°,d": Gl — Gy}, i.e., r co-
incides with @* on G} and with d” on G.

Definition 2.3 (Concurrent Synchronization Problem and Framework). Given
TGG, the concurrent synchronization problem is to construct a left total and nonde-
terministic operation CSynch : (Rel ® 4s ® A7) ~ (Rel X As X Ar) leading to the
signature diagram in[Fig. 3| called concurrent synchronization tile with concurrent syn-
chronization operation CSynch. Given a pair (prem, sol) € CSynch the triple prem =
(ro, df,le) € Rel ® As ® A7 is called premise and sol = (r,, d‘;,dzT) € Rel X Ag X A7 is
called a solution of the synchronization problem, written sol € CSynch(prem). The
operation CSynch is called correct with respect to consistency relation C, if laws
(a) and (b) in [Fig. 3| are satisfied for all solutions. Given a concurrent synchroniza-
tion operation CSynch, the concurrent synchronization framework CSynch is given by
CSynch = (TGG, CSynch). It is called correct, if operation CSynch is correct.

Correctness of a concurrent synchronization operation CSynch ensures that any result-
ing integrated model G, = (Gg o G;{ ) is consistent (law (b)) and, the synchronization
of an unchanged and already consistently integrated model always yields the identity of
the input as output (law (a)).

3 Basic Model Synchronization Framework

We now briefly describe the basic synchronization problem and its solution [[17], which
is the basis for the solution for the concurrent synchronization problem in
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Given an integrated model G° & GT <"yt G5< " g

and an update on one domain, either G or o \fPpg _b a_ bPpg _b
G”, the basic synchronization problem is to G\’/S PN GV’T GV’S PR GV’T
propagate the given changes to the other do- v r
main. This problem has been studied at a for- Fig. 4. Propagation operations
mal level by several authors (see, for instance,
[12419126/3128/18I5L6l17]). Many of these approaches [12/19126/28] are state-based,
meaning that they consider that the synchronization operations take as parameter the
states of the models before and after the modification and yields new states of mod-
els. However, in [3l3] it is shown that state-based approaches are not adequate in gen-
eral for solving the problem. Instead a number of other approaches (see, for instance,
[3U18U6117]) are 5-based, meaning that the synchronization operations take modifica-
tions as parameters and returns modifications as results. In particular, in [17], we de-
scribe a framework based on TGGs, where we include specific procedures for forward
and backward propagation of modifications, proving its correctness in terms of the sat-
isfaction of a number of laws. These results can be seen as an instantiation, in terms of
TGGs, of the abstract algebraic approach presented in [6]].

To be precise, according to [[17], a basic synchronization framework must provide
suitable left total and deterministic forward and backward propagation operations fPpg
and bPpg solving this problem for any input (see [Fig. 4). The input for fPpg is an in-
tegrated model G5 < G7 together with a source model update (graph modification)
a: G5 — G'5, and the output is a target update b : GT — G’” together with a con-
sistently integrated model G’ <> G’T. The operation bPpg behaves symmetrically to
fPpg. It takes as input G° < G and a target modification b : G — G’" and it returns a
source update a : G5 — G’5 together with a consistently integrated model G’ & G'T.
Note that determinism of these operations means that their results are uniquely deter-
mined. Note also that we require that the resulting model after a propagation operation
must be consistent according to the given TGG.

We may notice that in a common tool environment, the inputs for these operations
are either available directly or can be obtained. For example, the graph modification of
a model update can be derived via standard difference computation.

The propagation operations are considered correct in [17], if they satisfy the four
laws depicted in Law (al) means that if the given update is the identity and
the given correspondence is consistent, then fPpg changes nothing. Law (a2) means
that fPpg always produces consistent correspondences from consistent updated source
models G’5, where the given correspondence r: G5 < G7 is not required to be consis-
tent. Laws (b1) and (b2) are the dual versions concerning bPpg.

YceC: VG*? e VL : YeceC: VG eVLr:
GS< “yGT Gs< " rgr GS<“»Gr GS< " rat

1): 2): bl): b2):
(a ) lv %:prgvl (a ) av \:fppg vb ( ) lv/:prgvl ( ) av /:prg vb
GS < c >GT G’S < e > G’T GS < . >GT G/S <,/.C N G/T

Fig. 5. Laws for correct basic synchronization frameworks



184 F. Hermann et al.

In [17]], we also present specific propagation operations: Given G5 < G7 and the
modification a : G5 — G’S, the forward propagation operation consists of three steps.
In the first step, we compute an integrated model G’* < G by deleting from the
correspondence graph all the elements that were related to the elements deleted by the
modification a. In the second step, we compute the largest consistently integrated model
G(S) - Gg that is included in G’* < GT. Note that we do not build this model from
scratch, but mark the corresponding elements in G5 & GT. Moreover, we delete from
G all the unmarked elements. Finally, using the TGG, we build the missing part of the
target model that corresponds to G’5 \ Gg yielding the consistently integrated model
G"S & G’'T. Backward propagation works dually.

Remark 3.1 (Correctness of Derived Basic TGG Synchronization Framework). Cor-
rectness of the derived propagation operations fPpg, bPpg is ensured if the given TGG
is equipped with deterministic sets of operational rules [17]. This essentially means that
the forward and backward translation rules ensure functional behaviour for consistent
inputs. For the technical details and automated analysis of this property using the tool
AGG [27] we refer to [17], where we have shown this property for the TGG of our
example and discussed the required conditions of a TGG in more detail. Note that the
concurrent synchronization procedure in only requires correctness of the given
propagation operations and does not rely on the specific definition in [[17].

4 Semi-automated Conflict Detection and Resolution

We now review the main constructions and results for conflict resolution in one domain
according to [[1L1]]. Note that we apply conflict resolution either to two conflicting target
model updates (one of them induced by a forward propagation operation fPpg) or to
two conflicting source model updates (one of them induced by backward propagation).
Hence, we here consider updates over standard graphs and not over triple graphs.

Two graph modifications (G « D; — H;), (i = 1,2) are called conflict-free if they do
not interfere with each other, i.e., if one modification does not delete a graph element
the other one needs to perform its changes. Conflict-free graph modifications can be
merged to one graph modification (G < D — H) that realizes both original graph
modifications simultaneously.

If two graph modifications are not conflict-free, then at least one conflict occurs
which can be of the following kinds: (1) delete-delete conflict: both modifications delete
the same graph element, or (2) delete-insert conflict: m; deletes a node which shall be
source or target of a new edge inserted by my (or vice versa). Of course, several of
such conflicts may occur simultaneously. In [[L1]], we propose a merge construction that
resolves conflicts by giving insertion priority over deletion in case of delete-insert con-
flicts. The result is a merged graph modification where the changes of both original
graph modifications are realized as far as possible@ We call this construction tentative
merge because usually the modeler is asked to finish the conflict resolution manually,
e.g. by opting for deletion instead of insertion of certain conflicting elements. The reso-
lution strategy to prioritize insertion over deletion preserves all model elements that are

2 Note that the conflict-free case is a special case of the tentative merge construction.
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parts of conflicts and allows to highlight these elements to the user to support manual
conflict resolution. We summarize the main effects of the conflict resolution strategy by
[Thm. 4.Tlbelow (see also Thm. 3 in [L1]] for the construction).

Fact 4.1 (Conflict Resolution by Tentative Merge Construction). Given two con-

D;
flicting graph modifications m; = G = H; (i = 1,2) (i.e., they are not conflict-free).
The tentative merge construction yields the merged graph modificationm = (G «— D —
H) and resolves conflicts as follows:

1. If (m|, my) are in delete-delete conflict, with both m; and m; deleting x € G, then x
is deleted by m.

2. If (m;, my) are in delete-insert conflict, there is an edge e, created by m, with x =
s(ey) or x = t(ey) preserved by my, but deleted by my. Then x is preserved by m
(and vice versa for (mp, my) being in delete-insert conflict).

Note that attributed nodes which shall be deleted on the one hand and change their
values on the other hand would cause delete/insert-conflicts and therefore, would not be
deleted by the tentative merge construction. Attributes which are differently changed by
both modifications would lead (tentatively) to attributes with two values which would
cause conflicts to be solved by the modeller, since an attribute is not allowed to have
more than one value at a particular time. Throughout the paper, we
depict conflict resolution based on the tentative merge construc-

m

. . . . G >G
tion and manual modifications as shown to the right, where m; and 0 !
.. . . . . my .y %:Res v
my are conflicting graph modifications, and H is their merge after G g
2

conflict resolution. The dashed lines correspond to derived graph
modifications (G; « D3 — H) and (G, « D4 — H) with interfaces D3 and D,.

Example 4.2 (Conflict resolution by tentative merge construction). Consider the con-
flict resolution square 3:Res in the upper right part of The first modification
le’  deletes the node for Bill Clinton and updates the attribute values for Surname and
Salary of Melinda French. The second modification le relinks Bill Clinton’s node from
the marketing department to the technical department and updates his Salary attribute.
The result of the tentative merge construction keeps the Bill Clinton node, due to the
policy that nodes that are needed as source or target for newly inserted edges or at-
tributes will be preserved. Technically, the attribute values are not preserved automat-
ically. This means that the tentative merge construction only yields the structure node
of “Bill Clinton” (and the updated attribute), and the modeller should confirm that the
remaining attribute values should be preserved (this is necessary for the attribute values
for FirstName, LastName and Birth of the “Bill Clinton” node).

Variant: As a slight variant to the above example, let us consider the case that modi-
fication d1T also modifies Melinda’s surname from “French” to “Smith”. Since the same
attribute is updated differently by both modifications, we now have two tentative at-
tribute values for this attribute (we would indicate this by <Gates|French> as attribute
value for Melinda’s Surname attribute). This can be solved by the modeller, as well,
who should select one attribute value.
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5 Concurrent Model Synchronization with Conflict Resolution

The merge construction described in cannot be applied directly to detect and
solve conflicts in concurrent model synchronization. The problem here is that source
and target updates occur in different graphs and not the same one. To solve this problem
we use forward and backward propagation operations allowing us to see the
effects of each source or target update on the other domain, so that we can apply the
merge construction. In addition, we use two further operations CCS and CCT to reduce
a given domain model to a maximal consistent submodel according to the TGG.

Given a source update d°: G5 — G?, s T
: ino operation CCS G5 < G GI 6T
the consistency creating operation CCS 1 o 0 1
(left part of computes a maximal NyCCs Aicod;  diced] 7 :cCT o
consistent subgraph G‘f ¢ € VLs of the e N Gf,c G1T,c ¢ 1e

given source model Gf . The resulting up-
date from G§ to G is derived by update
composition df, c® d‘f . The dual operation CCT (right part of works analogously
on the target component.

Fig. 6. Consistency creating operations

Remark 5.1 (Execution of Consistency Creating Operation CCS). Given a source
model Gf , the consistency creating operation CCS is executed by computing termi-

nated forward sequences (Hy ”=F> H,) with Hy = (Gf — @ — ). If the sets of
operational rules of the TGG are deterministic (see [Thm. 3.1)), then backtracking is not
necessary. If G is already consistent, then Gf, ¢ = G, which can be checked via opera-
tion CCS. Otherwise, operation CCS is creating a maximal consistent subgraph Gic of
G}. G} . is maximal in the sense that there is no larger consistent submodel H® of G},
i.e. with Gic CHS c Gf and HS € VLg. From the practical point of view, operation
CCS is performed using forward translation rules [[16]], which mark in each step the
elements of a given source model that have been translated so far. This construction is

well defined due to the equivalence with the corresponding triple sequence (& ;:, H,)
via the triple rules TR of the TGG (see App. B in [10]).

The concurrent model synchronization operation CSynch derived from the given
TGG is executed in five steps. Moreover, it combines operations fSynch and bSynch
depending on the order in which the steps are performed. The used propagation oper-
ations fPpg, bPpg are required to be correct and we can take the derived propagation
operations according to [[L7]. The steps of operation fSynch are depicted in and
[Thm. 3.2] describes the steps for both operations.

Construction 5.2 (Operation fSynch and CSynch). In the first step (operation CCS),
a maximal consistent subgraph Gic € VLs of G3 is computed (see[Thn._3.1). In step 2,
the update dicc is forward propagated to the target domain via operation fPpg. This
leads to the pair (1| F, d{F) and thus, to the pair (dIT’F, dIT) of target updates, which may
show conflicts. Step 3 applies the conflict resolution operation Res including optional

manual modifications (see[Sec_4)). In order to ensure consistency of the resulting tar-
get model G}, .. we apply the consistency creating operation CCT (see[lThm._3.1) for the



Concurrent Model Synchronization with Conflict Resolution

187

4 0 af
G‘f < Gg < > Gg > G]T
i S T
Signature &\ v
s .U.:fSynch T
2 r 2
S @ N o T a T
Gy < Gy < > G, > G,
S T T
Definition \ \‘ECCS vdl,CC \’2:pr9 vdl,F NSZHES vdZ,FC
S T T T
of Voo yGics e Gy dhe > Ghpe
N & / ) A / ]
N 208, 5:bPpg Lce 4:.CCT
Components a5 ~ s T
2FCB = +Gores< 0 *Carcny a
" B
S _ s S T — T o T S Ty _ S T
dZ,FCB = dz,CB odp,dy ey =dgody e, (n,dy.dy) = (rstCB’leCB’ d; rcp)

Fig.7. Concurrent model synchronization with conflict resolution (forward case: fSynch)
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Fig. 8. Concurrent model synchronization with conflict resolution applied to organizational model

target domain and derive target model Gg rep € VLt in step 4. Finally, the derived tar-
get update dzT cc I8 backward propagated to the source domain via operation bPpg lead-

ing to the source model Gg rep and source update dg cp- Altogether; we have constructed

a nondeterministic solution (r», dg s d2T ) of operation fSynch for the premise (ry, df s d]T)
with (rg,dg, dZT) = (rz,pcg,dg’FCB, dZT’FCB) (see[Fig. 7). The concurrent synchronization
operation bSynch is executed analogously via the dual constructions. Starting with
CCT in step 1, it continues via bPpg in step 2, Res in step 3, CCS in step 4, and finishes
with fPpg in step 5. The non-deterministic operation CSynch = (fSynch U bSynch) is
obtained by joining the two concurrent synchronizations operations fSynch bSynch.

Example 5.3 (Concurrent Model Synchronization with Conflict Resolution). The steps
in[Fig. 8| specify the execution of the concurrent synchronization in[Thm. 2.1} Since the
given model Gy is consistent, step 1 (1:CCS) can be omitted, i.e. G} . = G} and d; . =

df . Step 2:fPpg propagates the source update to the target domain: Melinda Gates’
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attributes are updated and the node representing Bill Clinton is deleted. The resolu-
tion 3:Res resolves the conflict between the target model update le and the propagated
source model update on the target side le’  (see Thm. 4.2). We assume that the mod-
eler selected the old attribute value for Bill Clinton’s birthday. Step 4:CCT does not
change anything, since the model is consistent already. Finally, all elements that were
introduced during the conflict resolution and concern the source domain are propagated
to the source model via (5:bPpg). This concerns only the Bill Clinton node, which
now is assigned to the technical department. According to the TGG, such persons are
not reflected in the source model, such that the backward propagation does not change
anything in the source model. The result of the concurrent model synchronization with
conflict resolution is r, pcp, Where as many as possible of both proposed update changes
have been kept and insertion got priority over deletion.

Variant: Let us consider the case that both modifications le le’  insert additionally
an edge of type married between the nodes of Melinda French and Bill Gates. The
conflict resolution operation 3:Res would yield two married edges between the two
nodes. But the subsequent consistency creating operation 4:CCT would detect that this
is an inconsistent state and would delete one of the two married edges.

Remark 5.4 (Execution and Termination of Concurrent Model Synchronization). Note
that the efficiency of the execution of the concurrent synchronization operations can
be significantly improved by reusing parts of previously computed transformation se-
quences as described in App. B in [10]. In [17]], we provided sufficient static conditions
that ensure termination for the propagation operations and they can be applied similarly
for the consistency creating operations. Update cycles cannot occur, because the second
propagation step does not lead to a new conflict.

Note that operation CSynch is nondeterministic for several reasons: the choice between
fSynch and bSynch, the reduction of domain models to maximal consistent sub graphs,
and the semi automated conflict resolution strategy.

Definition 5.5 (Derived Concurrent TGG Synchronization Framework). Ler fPpg
and bPpg be correct basic synchronization operations for a triple graph grammar TGG
and let operation CSynch be derived from fPpg and bPpg according to
Then, the derived concurrent TGG synchronization framework is given by CSynch =
(TGG, CSynch).

6 Correctness and Compatibility

Our main results show correctness of the derived concurrent TGG synchronization
framework and its compatibility with the derived basic TGG synchroniza-
tion framework (Sec. 3)). For the proofs and technical details see App. A and B in [10].
Correctness of a concurrent model synchronization framework requires that the non-
deterministic synchronization operation CSynch ensures laws (a) and (b) in[Thm. 2.3
In other words, CSynch guarantees consistency of the resulting integrated model and,
moreover, the synchronization of an unchanged and already consistently integrated
model always yields the identity of the input as output (law (a)).
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Fig. 9. Compatibility with synchronization of single updates (forward case)

According to [Thm. 6.2] below, correctness of given forward and backward propa-
gation operations ensures correctness of the concurrent model synchronization frame-
work.

Example 6.1 (Correctness and Compatibility). In [17], we presented a suitable realiza-
tion of a correct propagation operations derived from the given TGG (see [Thm. 3.1)).
This allows us to apply the following main results and [6.4] to our case study
used as running example in

Theorem 6.2 (Correctness of Concurrent Model Synchronization). Ler fPpg and
bPpg be correct basic synchronization operations for a triple graph grammar
TGG. Then, the derived concurrent TGG synchronization framework CSynch =
(TGG, CSynch) (see[Thm. 3.3) is correct (see[Thm. 2.3).

The second main result (Thm. 6.4 below) shows that the concurrent TGG synchroniza-
tion framework is compatible with the basic synchronization framework. This means
that the propagation operations (fPpg, bPpg) (see provide the same result as
the concurrent synchronization operation CSynch, if one update of one domain is the
identity. visualizes the case for the forward propagation operation fPpg. Given
a forward propagation (depicted left) with solution (7,d"), then a specific solution
of the corresponding concurrent synchronization problem (depicted right) is given by
sol = (ry,id,d"), i.e. the resulting integrated model and the resulting updates are the
same. Due to the symmetric definition of TGGs, we can show the same result concern-
ing the backward propagation operation leading to the general result of compatibility in

Thm. 6.4

Definition 6.3 (Compatibility of Concurrent with Basic Model Synchronization).
Let fPpg, bPpg be basic TGG synchronization operations and let CSynch be a concur-
rent TGG synchronization operation for a given TGG. The non-deterministic synchro-
nization operation CSynch is compatible with the propagation operations fPpg and
bPpg, if the following condition holds for the forward case (see and a similar
one for the backward case:

Y (d5, ry) € As ® Rel, with (d5 : G(S) - Gf) A (Gf € VLg):

(id, tPpg(dS , ry)) € CSynch(dS, ry, id)

Theorem 6.4 (Compatibility of Concurrent with Basic Model Synchronization).
Let fPpg and bPpg be correct basic synchronization operations for a given TGG and
let operation CSynch be derived from fPpg and bPpg according to[Thm. 3.2 Then, the
derived concurrent TGG synchronization operation CSynch is compatible with propa-
gation operations fPpg, bPpg.
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7 Related Work

Triple graph grammars have been successfully applied in several case studies for bidi-
rectional model transformation, model integration and synchronization [20/25/14] and
for the implementation of QVT [15]]. Several formal results are available concerning
correctness, completeness, termination, functional behavior [16/13]] and optimization
wrt. the efficiency of their execution [16l21]. The presented approach to concurrent
model synchronization is based on these results and concerns model synchronization of
concurrent updates including the resolution of possible merging conflicts.

Egyed et. al [[7] discuss challenges and opportunities for change propagation in multi-
ple view systems based on model transformations concerning consistency (correctness
and completeness), partiality, and the need for bidirectional change propagation and
user interaction. Our presented approach based on TGGs reflects these issues. In partic-
ular, TGGs automatically ensure consistency for those consistency constraints that can
be specified with a triple rule. This means that the effort for consistency checking with
respect to domain language constraints is substantially reduced.

Stevens developed an abstract state-based view on symmetric model synchroniza-
tion based on the concept of constraint maintainers [26]], and Diskin described a more
general delta-based view within the tile algebra framework [446]. These tile operations
inspired the constructions for the basic synchronization operations [17], which are used
for the constructions in the present paper. Concurrent updates are a central challenge in
multi domain modeling as discussed in [28]], where the general idea of combining prop-
agation operations with conflict resolution is used as well. However, the paper does not
focus on concrete propagation and resolution operations and requires that model up-
dates are computed as model differences. The latter can lead to unintended results by
hiding the insertion of new model elements that are similar to deleted ones.

Merging of model modifications usually means that non-conflicting parts are merged
automatically, while conflicts have to be resolved manually. A survey on model version-
ing approaches and on (semi-automatic) conflict resolution strategies is given in [1]]. A
category-theoretical approach formalizing model versioning is given in [23]]. Similar to
our approach, modifications are considered as spans of morphisms to describe a partial
mapping of models, and merging of model changes is based on pushout constructions.
In contrast to [23]], we consider an automatic conflict resolution strategy according to
[[L1]] that is formally defined.

8 Conclusion and Future Work

This paper combines two main concepts and results recently studied in the literature.
On the one hand, basic model synchronization based on triple graph grammars (TGGs)
has been studied in [17], where source model modifications can be updated to target
model modifications and vice versa. On the other hand, a formal resolution strategy for
conflicting model modifications has been presented in [[11]. The main new contribution
of this paper is the formal concept of concurrent model synchronization together with
a correct procedure to implement it, where source and target modifications have to be
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synchronized simultaneously, which includes conflict resolution of different source or
target modifications. The main results concerning correctness and compatibility of basic
and concurrent model synchronization are based on the formalization of bidirectional
model transformations in the framework of TGGs [24/9/16] and the results in [17/11]].

In future work, we plan to develop extended characterizations of the correctness and
maximality criteria of a concurrent synchronization procedure. In this paper, correct-
ness is defined explicitly in terms of the two laws formulated in and, implicitly,
in terms of the properties of compatibility with basic model synchronization proven in
We think that this can be strengthened by relating correctness of a synchro-
nization procedure with the total or partial realization of the given source and target
updates, for a suitable notion of realization. At a different level, we also believe that
studying in detail, both from theoretical and practical viewpoints, the combination of
fSynch and bSynch operations, discussed in should also be a relevant matter.
Finally, we also consider the possibility of taking a quite different approach for defining
concurrent synchronization. In the current paper, our solution is based on implement-
ing synchronization in terms of conflict resolution and the operations of forward and
backward propagation. A completely different approach would be to obtain synchro-
nization by the application of transformation rules, derived from the given TGG, that
simultaneously implement changes associated to the source and target modifications.
In particular, it would be interesting to know if the two approaches would be equally
powerful, and which of them could give rise to a better implementation, on which we
are working on the basis of the EMF transformation tool Henshin [2].
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Abstract. In earlier work we gave a game-based semantics for check-
only QVT-R transformations. We restricted when and where clauses to
be conjunctions of relation invocations only, and like the OMG standard,
we did not consider cases in which a relation might (directly or indi-
rectly) invoke itself recursively. In this paper we show how to interpret
checkonly QVT-R — or any future model transformation language struc-
tured similarly — in the modal mu calculus and use its well-understood
model-checking game to lift these restrictions. The interpretation via
fixpoints gives a principled argument for assigning semantics to recur-
sive transformations. We demonstrate that a particular class of recursive
transformations must be ruled out due to monotonicity considerations.
We demonstrate and justify a corresponding extension to the rules of the
QVT-R game.

1 Introduction

QVT-R is the OMG standard bidirectional model transformation language[6].
It is bidirectional in the sense that, rather than simply permitting one model
to be built from others, it permits changes to be propagated in any direction,
something which seems to be essential in much real-world model-driven devel-
opment. The same transformation can be read as specifying the circumstances
under which no changes are required (checkonly mode) or as specifying exactly
how one model should be modified so as to restore consistency that has been lost
(enforce mode). This paper concerns checkonly mode, a thorough understanding
of which is prerequisite to understanding enforce mode, because of the require-
ment (hippocraticness) that running a transformation in enforce mode should
not modify models which are already consistent.

QVT-R has several interesting features. In particular, the fundamental way
in which a QVT-R transformation is structured, using a collection of so-called
relations connected by when and where clauses is attractive as it appears to
enable the transformation to be understood by the developer in a modular way.
This transformation structuring mechanism might reasonably be applied in fu-
ture bidirectional model transformation languages, so it is of interest even if
QVT-R itself is not ultimately successful.
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In earlier work [7] the second author provided a game-theoretical semantics
for its use in “checkonly” mode, that is, as a logic for defining predicates on
pairs of models. Given a QVT-R checkonly problem instance (a transformation,
together with a tuple of models to check in a given direction), we defined a formal
game between two players, Verifier and Refuter, such that Verifier had a winning
strategy for the game if and only if the transformation should return true on the
given tuple of models in the stated direction. We justified the correctness of the
semantics defined in this way, by referring both to [6] and to the behaviour of
the most faithful QVT-R tool, ModelMorf. In that work, we did not define which
player would win an infinite play of the game. Instead, we placed a restriction on
the permitted transformations such that all plays of the games in our semantics
would be finite; we justified this by pointing out that the OMG semantics [6]
implied nothing about what the semantics in the infinite play cases should be, but
we remarked that it should be possible to do better “by intriguing analogy with
the modal mu calculus”. Intuitively the analogy is that the interplay of when and
where clauses mixes induction with coinduction; the essential character of the
mu calculus is that it does the same. In this paper, we make the analogy concrete;
this allows us to give semantics to many recursive QVT-R transformations, and
allows us to explain why considerations of monotonicity force other recursive
transformations to remain forbidden. We also use mu calculus theory to prove
that extra levels of nesting of when and where clauses provide genuine extra
expressivity.

When defining the semantics of QVT-R via a translation to the mu calculus,
it is natural also to permit more general when and where clauses than previous
work has done. The translation is an aid to clear thought, only: having made
it, we extend our earlier QVT-R game so that all the transformations we can
translate can also be given semantics directly by this easy-to-understand game.

Both recursion and complex clauses are useful in practice, especially where
metamodels contain loops of associations; indeed, both are used in the example
in [6], even though it does not give semantics of recursion.

Related work Our earlier paper [7] discusses the field of previous work on se-
mantics for checkonly QVT-R in full. As discussed there, very few authors have
interested themselves in QVT-R as a bidirectional language. The majority ap-
proach is to study QVT-R transformations in enforce mode only, and furthermore
with the restriction that the transformation function does not take a version of
the target model, only source models. The target model produced depends only
on the source model and the transformation. Recursive relations typically give
rise to recursion (possibly with non-termination) in the target formalism, but
this does not contribute to understanding recursion in checkonly QVT-R.

More relevantly, in [3] the authors aim to generate invariants in OCL, not in
order to give a formal semantics for QVT-R but to support auxiliary
analysis to increase confidence in a transformation’s correctness. The paper
includes an example of a complex recursive QVT-R relation (in Fig 6(a), re-
lation ChClass-Table is given a where clause Attribute-Column(cl,t) and
ChClass-Table(cl,t)). Unfortunately, as discussed in [7], key details of the
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invariant generation are elided. Looking at the example, it appears that a re-
cursive QVT-R relation will lead to a recursive OCL constraint. The problem
is thereby moved into the OCL domain, where it is still problematic: [4] in fact
forbids infinite recursion. [3] does not discuss this issue, and in particular, does
not specify which QVT-R transformations can be translated without producing
OCL whose meaning on the relevant models is undefined.

None of the existing QVT-R tools have documented behaviour on recursive
checkonly QVT-R.

2 Background

2.1 QVT-R

A transformation T is defined over a finite set of (usually two) metamodels (types
for the input models) and, when executed in checkonly mode, can be thought of
as a function from tuples of models, each conforming to the appropriate meta-
model, to booleans. In any execution there is a direction, that is, a distinguished
model which is being checked. The argument models are also known as domains
and we will be discussing transformation execution in the direction of the kth
domain. That is, the kth argument model is being checked for consistency with
the others. See [7] for further discussion; here we assume some familiarity with
QVT-R.

Let us discuss preliminary matters of variables, values, typing, bindings and
expressions. In QVT-R these matters are prescribed, building on the MOF meta-
modelling discipline and OCL. The available types are the metaclasses from any
of the metamodels, together with a set of base types (defined in OCL) such as
booleans, strings and integers, and collections. Values are instances of these. The
expression language is an extension of OCL over the metamodels. QVT-R is a
typed language, with some type inference expected.

Our work will focus on the structural aspects of the transformation and will
turn out to be independent of QVT-R’s particular choices in these matters. We
assume given sets Var of typed variables, Val of values and Expr of typed ex-
pressions over variables. We write fu(e) for the set of free variables in e € Expr.
Constraint is the subset of Expr consisting of expressions of type Boolean. A
(partial) set of bindings B for a set V' C Var of variables will be a (partial)
function B : V — Val satisfying the typing discipline. We write B’ = B when
dom(B’) 2 dom(B) and B’ and B agree on dom(B). We assume given an eval-
uation partial function eval : Ezpr x Binding — Val defined on any (e, b) where
fu(e) € dom(b). Like [6] we will assume all transformations we consider are
statically well-typed.

A transformation T is structured as a finite set of relations Ry ... R,, one or
more of which are designated as top relations. We will use the term relation since
it is that used in QVT-R, but readers should note that a QVT-R relation is not
(just) a mathematical relation. Instead, a relation consists of: a unique name;
for each domain a typed domain variable and a pattern; and optional when and
where clauses (to be discussed shortly). We write rel(T") for the set of names of
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relations in T and top(T) C rel(T) for the names of relations designated top.
A pattern is a set of typed variables together with a constraint (“domain-local
constraint”) over these variables and the domain variable. A variable may occur
in more than one pattern, provided that its type is the same in all.

The set of all variables used (in QVT-R declarations can be implicit) in a
relation R will be denoted vars(R). The subset of vars(R) mentioned in the when
clause of R is denoted whenvars(R). The subset mentioned in the domains other
than the kth domain is denoted nonkvars(R). The set containing the domain
variables is denoted domainvars(R). These subsets of vars(R) may overlap.

For purposes of this paper a when or where clause may contain a boolean
combination of relation invocations and boolean constraints (from Constraint).
Each relation invocation consists of the name of a relation together with an
ordered list of argument expressions. Evaluating these expressions yields values
for the domain variables of the invoked relation. The BNF (non-minimal, as it
will be convenient to have all of and, or and not) for where clauses is:

where(R) := S(e1,...en) where S € rel(T), e; € Expr and fv(e;) C vars(R)
| where(R) and where(R) | where(R) or where(R)
| not where(R) | (where(R))
| ¢ such that ¢ € Constraint and fu(¢) C vars(R)

and the BNF for when is the same, substituting when for where, and whenvars
for vars. The use of whenvars in the definition of when(R) does not constrain
what can be written; v € vars(R) is in whenvars(R) precisely if it is used in
the when clause. QVT-R itself uses semi-colon (in some contexts, and comma in
others) for “and”, but this seems unnecessarily confusing when we also want to
allow other boolean connectives.

Figure [[l reproduces the moves from the game theoretic semantics of QVT-R
checkonly. We refer the reader to [7] for full discussion and examples. The game
Gt is played in the direction of domain k; that is, model & is being checked with
respect to the other model(s).

Apart from the distinguished Initial position, positions in the game are all
of the form (P, R, B,i) where: P is a player (Verifier or Refuter), indicating
which player is to move from the position; R is the name of a relation from the
transformation, the one in which play is currently taking place; B is a set of
bindings whose domain will be specified; and 7 is either 1 or 2, tracking whether
only one or both players have moved in the current relation. Play proceeds by
the player whose turn it is to move choosing a legal move. If no legal move is
available to this player, play ends and the other player wins (“you win if your
opponent can’t go”). The transformation returns true if Verifier has a winning
strategy, that is, she can win however Refuter plays.

Informally, each play begins by Refuter picking a top relation to challenge
and bindings for variables from the domains other than the kth and for any
variables that occur in the when clause (Row 1). Verifier may respond by finding
matching bindings from model k (Row 2) or she may counter-challenge a when
invocation (Row 3), effectively claiming that Refuter’s request for her to find
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matching bindings is unreasonable because this top relation is not required to
hold at his chosen bindings. If she opts to provide matching bindings, Refuter will
attempt to challenge a where invocation (Row 4). Thus play proceeds through
the transformation until one player cannot move; e.g., if Verifier successfully
provides matching bindings and there is no where clause, it is Refuter’s turn but
he has no legal move, so Verifier wins the play.

Position ~ Next position Notes

Initial (Verif,, R, B,1) R € top(T') ; dom(B) = nonkvars(R) U whenvars(R). B is
required to satisfy domain-local constraints on all domains
other than k.

(P,R,B,1) (P,R,B’,2) B’ = B and dom(B’) = vars(R). B is required to satisfy
domain-local constraints on all domains.

(P,R,B,1) (P, S,C,1) S(e1...en)is any relation invocation from the when clause
of R; Yv; € domainvars(S).C : v; — eval(e;, B); dom(C) =
domainvars(S)Unonkvars(S)Uwhenvars(S). C is required

to satisfy domain-local constraints on all domains other
than k.

(P,R,B,2) (P,S,D,1) S(e1...en) is any relation invocation from the where
clause of R; Yv; € domainvars(S).D : v; — eval(e;, B);
dom(D) = domainvars(S) U nonkvars(S) U whenvars(S).
D is required to satisfy domain-local constraints on all
domains other than k.

Fig. 1. Summary of the legal positions and moves of the game Gy over T note that
the first element of the Position says who picks the next move, and that we write P
for the player other than P, i.e. Refuter = Verifier and vice versa. Recall that bindings
are always required to be well-typed.

2.2 Modal Mu Calculus

The modal mu calculus [5] is a long-established and well-understood logic for
specifying properties of systems, expressed as labelled transition systems. Besides
the usual boolean connectives, it provides

— modal operators: [a] ¢ is true of a state s if whenever s — ¢, ¢ is true of
state ¢, while {a)¢ is true of a state s if there exists s — ¢ such that ¢ is
true of state ¢

— greatest and least fixpoints vZ.¢(Z) and pZ.¢(Z), which are formally co-
inductive and inductive definitions, but which are best understood as al-
lowing the specification of looping behaviour — infinite loops for greatest
fixpoints, and finite (but unbounded) loops for least fixpoints. The combi-
nation of both fixpoints with the modal operators allows the expression of
complex behaviours such as fairness.
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Its semantics is most easily explained as a game between two players, Verifier
and Refuter. A position, in the game to establish whether (i, A, S, —) satisfies
@, is (1, s) where ¢ is a subformula of ¢ and s € S. The initial position is (¢, ).
The top connective of 1 determines which player moves; Verifier moves if it is V
(she chooses a disjunct), (a) (she chooses an a-transition) or a maximal fixpoint
or its variable (she unwinds the definition). Dually, Refuter moves otherwise. A
player wins if it is their opponent’s turn and the opponent has no legal move, e.g.
Refuter wins if the position is ((a)®, s) and there is no a-transition out of state
s. In an infinite play, the winner is the owner of the outermost variable unwound
infinitely often (i.e. Verifier if that is a maximal fixpoint variable, otherwise
Refuter).

One may think of the difference between v and p in terms of defaulting to true
or false. In a (formal) sense, a p formula is one where every positive claim has
to be demonstrated; whereas a v formula holds unless there is a demonstrated
reason why not. See [I] for further explanation and background.

3 Connecting QVT-R and Modal Mu Calculus

We will translate a QVT-R checkonly transformation instance into a modal mu
calculus model-checking instance. That is, given a QVT-R transformation T’ a
tuple of models (mq,...m,) and a direction k, we shall build a mu calculus for-
mula ¢r(T) and an LTS lts(T,mq, ... my, k) such that (mq,...m,) is consistent
in the direction of the kth domain according to T iff lts(T, m1,...m,, k) satisfies
tr(T). Note that the LTS depends on the transformation as well as the models;
this is because we choose to encode as much as possible in the LTS, leaving only
the essential recursive structure to be encoded in the mu calculus formula. In
particular, the LTS will capture the features of the model tuple that matter,
ignoring the features that are irrelevant to this particular transformation.

Having defined our translation, we prove that this result holds for the re-
stricted class of transformations covered by the QVT-R game. This validates
the translation on the set of problem instances where a formal semantics already
existed, which makes it prima facie reasonable to use the translation as the se-
mantics of QVT-R on the full domain where it makes sense (which, as we shall
see, includes many but not all transformations with recursive when and where
clauses). We then propose an extension to the QVT-R game, such that the game
semantics and the mu calculus translation semantics coincide everywhere. We
then discuss the implications of doing so; what semantics does it assign to trans-
formations with complex when and where clauses and/or recursive when/where
structure? We will point out one decision point where two choices are possible,
giving different semantics to the transformation language.

3.1 The Transition System

Apart from a distinguished initial node, nodes of the LTS we construct each
consist of a pair (R, B) where R € rel(T) and B : vars(R) — Val is a set of
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(well-typed, as always) bindings. In order to be able to handle cases where the
same relation may be invoked more than once in the when or where clause of
another relation, we begin by labelling each relation invocation in the static
transformation text with a natural number, so that an invocation R(e1,...,e,)
is replaced by R'(ey, ..., e,) for an i unique within the transformation; invoking
the relation at invocation ¢ will be modelled by a transition labelled invoke;.
Figure [2] defines the LTS formally. Note that the direction parameter k affects
the meaning of nonkvars.

3.2 The Mu Calculus Formula

Mu calculus model checking is generally done on a version of the syntax that does
not include negation. The reason is that, if negation is permitted in the language,
the negation can be pushed inwards until it meets the fixpoint variables using the
duality rules such as = [a] ¢ = (a)—¢. A formula in the mu calculus with negation
is only semantically meaningful if doing this process results in all negations
vanishing (using the rule =——X = X); otherwise, the fixpoints are undefined.
(Technically, it is possible for a particular formula with non-vanishing negations
to be semantically meaningful, but this cannot in general be determined from
the syntax.)

As mentioned in Section 2], the semantics of a standard mu calculus formula
can be defined using a two-player model-checking game. If negation is left in
the language, it corresponds to the players swapping roles, just as happens in
the QVT-R game on a when invocation. Rather than define a version of the
mu calculus game involving such player swapping, we will translate a QVT-R
transformation into a mu calculus formula without negation. Our translation
function will carry a boolean argument to indicate whether roles have been
swapped an odd (false) or even (true) number of times.

The mu calculus formula does not represent the domain variables, the patterns
or the arguments to the relation invocations, so we ignore these in our translation
process: all that information is represented in the transition system, already
described, and the invoke; transitions and modalities will connect the LTS and
formula appropriately. Figure 2l defines the translation process formally.

Note that #r2 is used to translate when and where clauses, building an envi-
ronment that maps relations to mu variables in the process. Relation invocations
are translated using the environment if the relation has been seen before, and
otherwise, using a new fixpoint.

It is easy to check that for any environment F and relation R

Lemma 1.
tr2p (R, false) = —tr2g (R, true)

O

3.3 Correctness of the Translation w.r.t. the Original QVT-R Game

Let My(T,mq,...,my,) be the model-checking game played on ¢r(T) and
lts(T,mq,...,mp, k). We need to establish that, if we start with a QVT-R
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Input: Transformation 7" defined over metamodels M;, models m; : M;, direction k.
Output: Labelled transition system lts(T, m;, k) = (Initial, A, S, —)

Nodes:

S = {Initial} U{(R,B) : R € rel(T), B : vars(R) — Val}

Labels:

A = {challenge, response, ext1, ext2} U {invoke; : i € N}

Transitions:

Initial 3% (R, B) if R € top(T) and dom(B) = whenvars(R) U

nonkvars(R)
(R, B) 23 (R, B') if dom(B) = whenvars(R)Unonkvars(R) and B’ = B
and dom(B') = vars(R)

(R,B) =% (R,B')if dom(B) = domainvars(R) and B’ > B
and dom(B') = domainvars(R) U whenvars(R) U
nonkvars(R)

(R,B) =53 (R,B')if dom(B) = domainvars(R) U whenvars(R) U

nonkvars(R) and B’ = B and dom(B’) = vars(R)
invokej

(R,B) —" (S,B’) if S is invoked at the invocation labelled j in the
where clause of R with arguments e;, dom(B) =
vars(R) and dom(B’) = domainvars(S) with Vi €
domainvars(S).B' : v; — eval(e;, B)

invokej

(R,B) —’ (S,B’) if S is invoked at the invocation labelled j in the
when clause of R, with arguments e;, dom(B) 2
whenvars(R) and dom(B’) = domainvars(S) with
Vi € domainvars(S).B' : v; — eval(e;, B)

LTS definition

Input: Transformation 7. Output: ¢r(T) given by:

tT’(T) = /\Rietop(T) tr](R’b)

tr1(R;) = [challenge] ((response) (tr2y(where(R;), true)V
tr2y(when(R;), false))

tr2e (¢, true) =¢

tr2e(o, false) = -0

tr2g (e and €, true) = tr2g(e, true) A tr2g (€, true)

tr2g (e and €, false) = tr2g (e, false) V tr2g(e’, false)

tr2i (e or €, true) = tr2g (e, true) V tr2g (€', true)

tr2g (e or €, false) = tr2g(e, false) A tr2g(e’, false)

tr2p(not e, b) = tr2gp(e, —b)

tr2g(Ri(e1 ... en), true) = (invoke;)E[R] if R € domFE

tr2g(R'(e1 ... en), true) = (invoke;)vX. ([ext1] otherwise

((ext2)tr2p|p x) (where(R), true)V
tr2p(r— x) (when(R), false))
tr2e(R'(e1 .. .en), false) = [invoke;] (—E[R]) if R € domFE
tr2e(Ri(e1 .. . en), false) = [invoke;] uX. ({ext1) otherwise
([ext2] tr2p(r—-x)(where(R), false) A
tr2p r—-x)(when(R), true))

Mu calculus formula definition

Fig. 2. Definition of the translation
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transformation that conforms to the constraints accepted in [7], we have indeed
achieved our aim of giving equivalent semantics. Therefore let T be a transfor-
mation in which the when—where graph is acyclic; no relation ever invokes itself,
either directly or transitively. Suppose also that all when and where clauses in
T consist of conjunctions of relation invocations only. We will call such a trans-
formation basic.

Notice that in this restricted case no fixpoint variable actually occurs inside
the body of the corresponding u or v, so that (a) there is no need for the trans-
lation to retain the environment (as it will never be used) and (b) all fixpoints
in the translation can be discarded. That is, we may replace v.X. ¢ and puX. ¢ by
¢ (which we can be sure does not contain X free) without changing the mean-
ing of the formula. Thus the translation ¢r yields a mu calculus formula which
is equivalent to a Hennessy-Milner Logic (HML) formula in which boxes and
diamonds correspond directly to challenges and responses. As required, all plays
are finite, and the only winning condition is “you win if it is your opponent’s
turn but they have no legal move”.

Theorem 1. If T is basic, then Verifier has a winning strategy for the model-
checking game My, iff she has one on the QVT-R game Gj.

Proof. (Sketch) The game graphs are essentially isomorphic: every position where
a player of Gy, has a choice corresponds to a position where the same player of
My, has a choice, these are the only choices in My, and the available choices cor-
respond in turn. We only have to say “essentially” because several consecutive
positions in a play of M, (beginning with one whose formula has an “invoke”
modality as the top connective) can correspond to just one position in Gy. Every
position in such a sequence, except the last, has exactly one legal move from it,
however, so this is unimportant. Since there are no infinite plays, every play ter-
minates when the player whose turn it is to move has no available legal moves;
the same player will win a play in G and the corresponding play in M. O

3.4 Top Relation Challenges

The translation we have given is faithful to [6J7] but readers may be wonder-
ing why we treated top relations so specially. Why is the initial challenge to a
top relation so different from the invocation of a relation in a when or where
clause, and why do we need two different pairs of labels in our transition system,
challenge and response, and extl and ext2? The reason is that [6] is unequiv-
ocal that in the initial challenge to a top relation, the non-k domain variables
(domainvars(R) N nonkvars(R)) are bound (chosen) at the same semantic point
as the other variables in whenvars(R)Unonkvars(R). By contrast when a relation
is invoked from a when or where clause, the values of all the domain variables of
the invoked relation are fixed (by the choices made for variables of the invoking
relation) before values are chosen for any other non-k variables of the invoked
relation. That is, in the initial challenge to a top relation, there never is a point
at which the domain variables, but no others, have been bound (unless there are
no others).
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An alternative semantics, and one which might be considered preferable for a
future language structured like QVT-R, would have Refuter challenge by picking
a top relation and bindings for domainvars(R) N nonkvars(R) only, and would
then have Verifier respond by picking a binding for the kth domain variable.
Then play would proceed just as though from a relation invocation with those
bindings for the domain variables.

Our intuition that this might be preferable is based on the observation that
a consistent pair of models would have a simpler notion of matching than in
standard QVT-R. In this variant, if Verifier has a winning strategy, then given
bindings for the non-k domain variables of a top relation (that is, an initial
challenge by Refuter) there must be a binding for the kth domain variable (that
is, a Verifier response) that matches; Verifier’s choice at this initial stage must
not depend on Refuter’s choices of other bindings in the relation, so the matching
is simpler and, perhaps, easier for a human developer to comprehend.

That this would, indeed, give different semantics for the same QVT-R trans-
formation is demonstrated by the following relation:

top relation R
domain m1 v1:V1 {}
domain m2 v2:V2 {}
when { S(vi,v2) }

}

Suppose we use a transformation with this as its only top relation, on model
m1 in which there is some model element of type V1, and model m2 in which
there is no model element of type V2, in checkonly mode in direction m2. In
the QVT-R semantics, this will return true. The reason is that Refuter will
be unable to pick valid bindings for nonkvars(R) U whenvars(R) since there is
no valid binding for v2 € whenvars(R) (the top level “for all valid bindings...”
statement will be vacuously true). In the alternative semantics, it would return
false, since Refuter would initially challenge with any valid binding for v1 and
Verifier would be unable to match. It would be easy to modify everything in
this paper to support this alternative semantics, if desired; in fact this would
simplify the translation.

4 Extending the QVT-R Game

Since not everyone will enjoy using a formal semantics of QVT-R in terms of mu
calculus, we next extend the rules of the QVT-R game to match the translation.
The extension to permit recursive transformations modifies only the winning
conditions. To permit complex when and where clauses we need some new posi-
tions and moves.

4.1 Complex when and where Clauses

Lines 3 and 4 in Figure [[I showing the moves that involve challenging a when
or where clause, are removed and replaced by the moves shown in Figure B
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Source position Mover Target position Notes

(P,R,B,1) P P to show This simply indicates that player
when(R) under P is challenging the when clause
B of relation R, which is when(R),

in the presence of bindings B.

(P,R,B,2) P P to show This simply indicates that player
where(R) under P is challenging the where clause
B of relation R, which is where(R),

in the presence of bindings B.

P to show ¥; and ¥» P P to show ¥; i = 1,2 : the other player chooses

under B under B which conjunct P should show

P to show P P to show ¥; i = 1,2 : this player chooses which

Yy or ¥, under B under B disjunct to show

P to show - P to show ¥ there is exactly one legal move, so

not ¥ under B under B it does not matter which player
chooses

P to show S(ei...en) P (P,S,C,1) Yv; € domainvars(S).C :

under B v; — eval(e;, B); dom(C) =

domainvars(S) U nonkvars(S) U
whenvars(S). C is required to
satisfy domain-local constraints
on all domains other than k.

P to show ¢ under B - - P wins the play immediately if
eval(¢, B) = true and loses the
play immediately otherwise.

Fig. 3. Extensions to the moves of G to permit complex when and where clauses

After a player (as before) chooses to challenge a clause, we enter a sub-play,
with a different form of position, to determine which relation, if any, we move to
and which way round the players will be then. The positions within the subplay
are of the form “P to show ¥ under B” where ¥ is a subformula of the when
or where clause (recall the BNF given earlier) and B (which remains unaltered
within the subplay, but is needed at the end of the subplay) is the set of bindings
in force at the point where the clause was challenged. Within the subplay, as is
usual in logic games, one player chooses between conjuncts, the other between
disjuncts, while negation corresponds to the players swapping roles. Notice that
in the simple case where when and where clauses were simply conjunctions of
relation invocations, all we have done is to split up what would have been a
single move according to Line 3 or 4 of Figure [[l into a sequence of moves — all
by the same player who would have chosen that single move — leading eventually
to the same position that was the target in the original game.
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4.2 Recursive Transformations

Our translation can be applied to QVT-R transformations in which a relation
does, directly or indirectly, invoke itself recursively. However, because the trans-
lation introduces negations, in certain cases it will result in an ill-formed mu
calculus formula, as remarked earlier. We need a criterion that can be applied
directly to the original QVT-R transformation which will ensure that the target
mu calculus formula is well-formed. Fortunately this is easy.

Definition 1. A recursion path in a QVT-R transformation is a finite sequence,
whose elements may be relation names, “when”, “where” or “not”, such that:

1. the first and last elements of the sequence are the same relation name

2. any subsequence R...S, where R and S are relation names and no interven-
ing element is a relation name, corresponds to S being invoked from a when
or where clause of R in the obvious way. That is, the intervening elements

can only be:
— “when” followed by some number i > 0 of “not”s, if S is invoked in R’s
when clause and the invocation is under i negations; or
— “where” followed by some number i > 0 of “not”s, if S is invoked in R’s
where clause and the invocation is under i negations.

Definition 2. A QVT-R transformation is recursion-well-formed if on every
recursion path the number of “not”s plus the number of “when”s is even.

Since every not, every when, and nothing else, causes the boolean flag in the
translation function to be flipped, the recursion-well-formed QVT-R transfor-
mations are precisely those that result in well-formed mu formulae.

Having decided which transformations that may lead to infinite plays to per-
mit, we need to specify which player will win which infinite plays. In an infinite
play, one or more relation names must occur infinitely often in positions of the
play, that is, as the second element of a 4-tuple like those in Figure[l Of these,
let R be the one that occurs earliest in the play not counting the positions before
the first when/where invocation (because the initial challenge to a top relation is
different, as discussed in SectionB4l). Look at any 4-tuple involving R (after the
first invocation). If the first element is Verifier and the last is 1, or the first ele-
ment is Refuter and the last is 2 (i.e. the players are “the usual way round”), then
Verifier wins this play; otherwise Refuter wins. We will get a consistent answer
regardless of which position we examine, because otherwise the transformation
would not have been recursion-well-formed, i.e., would have been excluded on
monotonicity grounds.

Theorem 2. The QVT-R game as modified in this section is consistent with
the translation semantics.

Proof. (Sketch) Again, the games map one-to-one onto the standard model-
checking games for the mu-calculus formulae of the translation.

Remark: we could have assigned the infinite plays exactly oppositely; this would
correspond to swapping p and v in the translation. If we did both, we would still
get Theorems [[2l This is a choice for the language designer.
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5 Examples and Consequences

next

next
Element 0..1 x:Element y:Element

next

Fig. 4. Metamodel M and model m for examples

Consider a transformation on models conforming to the metamodel shown in
Figure [ having as its only relation the following:

top relation R {
domain m1 el:Element {}
domain m2 e2:Element {}
where {(el.next is not null and e2.next is not null)
and R(el.next,e2.next)}
}

Let us play the extended game in the direction of m2. Refuter picks an element to
bind to el. Verifier must match by finding an element e2. Refuter will challenge
the where clause, so the new position is “Verifier to show (el.next is not
null and e2.next is not null) and R(el.next,e2.next) under B” where
B records the bindings to el and e2 that the players have just made. ((el.next
is not null and e2.next is not null) € Constraint, abbreviated ¢.) Be-
cause the top level connective of the formula in the new position is and, Refuter
chooses a conjunct, giving new position either p =“Verifier to show ¢ under B”
or “Verifier to show R(el.next,e2.next) under B”. In the first case, Verifier
wins the play unless, in fact, el.next or e2.next was null. Thus in choosing
bindings for el and e2 we see that it is in Refuter’s interest to choose an el
with no next if there is one — in that case he has a winning strategy — and in
Verifier’s interest to avoid such a choice for e2. In fact, Refuter can win by even-
tually driving play to position p (with some bindings B) iff either there is some
Element e in m! with e.next == null (in which case, he may as well choose it
immediately) or there is no loop in the next graph of m2, i.e. every element e
eventually leads, by following next links, to some element e’ with e’ .next ==
null. What should happen, however, if Refuter never has the chance to drive
play to a position p, because every element e from m! has non-null next and
there is some loop in m2 that Verifier can use to match? (Or, indeed, if he could,
but does not choose to?) Refuter can repeatedly choose the “Verifier to show
R(el.next,e2.next) under B” position, and play will continue for ever. We
consider it natural that Verifier should win such a play, and under our extended
rules this is what happens; e.g. position (Refuter, R, B, 2) recurs.
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challenge

. response
Initial ————= (R, el — 1)

(R,el > z,e2+— 1')

respo extl,ext2
/
challenge Q(Ra el x,e2y) .
extl,ext2 vok invoke
response invoke

(Riel—sy) —= (R,el — y,e2 1)

Q ext1,ext2

(R,el — y,e2+— 1)

cht 1,ext2

Fig. 5. Labelled transition system for example

respon

Next we demonstrate how this example works under the translation. The
translation of the transformation is

[challenge] (response) (¢ A (invoke)vX. [extl] (ext2) (¢ A X))

whose formal semantics corresponds closely to the above description. Specifi-
cally, if models m! and m2 are both taken to be copies of m from Figure [
(distinguished by m2 having 2/, y’), the LTS is that shown in Figure[dl Any play
of the model-checking game leads to one of the four right-hand LTS nodes, and
then as the fixed point is repeatedly unrolled, loops between that node and the
one connected to it by an invoke transition. Since our translation used a max-
imal fixpoint, unrolling the fixed point infinitely often is allowed and Verifier
wins any play, so she has a winning strategy and our semantics says that the
transformation returns true.

5.1 Expressiveness

In principle, a QVT-R transformation can have arbitrarily deep nesting of when
and where clauses. A natural question is whether this actually adds expressivity,
or whether every transformation could actually be re-expressed using at most n
nestings, for some n. The corresponding question for the modal mu calculus is
whether the alternation hierarchy is strict, which it is (see ([1] for details). That
is, in the modal mu calculus, allowing more (semantic) nesting always does allow
the expression of more properties. However, thus far we only have a translation
from QVT-R to mu calculus; it could be that the image of this translation was
a subset of mu calculus in which the alternation hierarchy collapsed. In fact,
constructing a suitable family of examples enables us to show (see proof in
Appendix of [2)]):

Theorem 3. There is no n such that every QVT-R transformation is equivalent
to one with when and where clauses nested to a depth less than n.
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Clearly we inherit upper-bound complexity results also from the mu calculus;
however, the complexity of mu calculus model checking is a long-open problem.
It is known to be in the class NP N co-NP but is not known to be in P. The
problem instance size is the size of the model checking game graph; the run-
ning time of well-understood algorithms involves an exponent which depends on
the alternation depth of the mu calculus formula. This is of mostly theoretical
interest, however, since in practice alternation depths are typically small.

6 Conclusion

We have given a semantics to recursive checkonly QVT-R transformations with
complex when and where clauses by first translating the checking problem into
a modal mu calculus model checking problem, and then using this to discover a
corresponding change to the rules of our earlier defined QVT-R game. Thus we
end up with a semantics which is simultaneously formal and intuitive, requiring
no formal training beyond the ability to follow the rules of a game. Our semantics
can be instantiated with any desired metamodelling and expression languages,
not just MOF and OCL.
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Abstract. This paper introduces an approach for adding graph transformation-
based functionality to existing JAVA programs. The approach relies on a set of
annotations to identify the intended graph structure, as well as on user methods
to manipulate that structure, within the user’s own JAVA class declarations. Other
ingredients are a custom transformation language, called CHART, and a compiler
from CHART to JAVA. The generated JAVA code runs against the pre-existing,
annotated code.

The advantage of the approach is that it allows any JAVA program to be en-
hanced, non invasively, with declarative graph rules, improving clarity, concise-
ness and verifiability.

1 Introduction

Proponents of Graph Transformation (GT) as a modeling technique have always claimed
as strong points its general applicability and its declarative nature. Many structures can
naturally be regarded as graphs and their manipulation as a set of graph operations. For
these reasons, GT has been advocated in particular as a vehicle for model transformation
[5414416], a major component in the Model-Driven Engineering (MDE) paradigm. In
this paper we focus on JAVA as application domain, aiming to replace JAVA code that
manipulates object oriented data by declarative graph transformations.

Weak points of GT that are often quoted are its lack of efficiency and the need to
transform data between the application domain and the graph domain. Though effi-
ciency may to some degree be the price for general applicability, this does not appear
to be the dominant factor. Transforming application data structures into a well defined
graph format to facilitate sound transformations and then transforming the result back
to a form suitable for the application is a bigger problem. These two “transfers” are
themselves really model transformations in their own right, and seriously aggravate the
complexity of the technique in practice, to the point of making it completely impractical
for large graphs, e.g., graphs with hundreds of thousands of nodes.

One solution to the problem is to force an application to use the graph structure of
the tool as a basis for its data structures. This has serious drawbacks, as the tool graph

* This work was funded by the Artemis Joint Undertaking in the CHARTER project, grant-nr.
100039. See http://charterproject.ning.com/

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 209-p23] 2012.
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structure may not be rich enough for the application, and existing code that may already
be in place must be rewritten. This makes GT an invasive technique.

In this paper, we propose a radically different approach, aimed at JAVA, which does
not share the invasive nature yet preserves the advantages of GT, including its general
applicability and its declarative nature. There are three main parts of this approach.

— The graph structure (i.e., the type graph) is specified through JAVA annotations
added to existing user code classes. For instance, the framework provides annota-
tion types to specify that a given class represents a node or edge, along with edge
properties such as multiplicities and ordering. As no actual code needs to be mod-
ified, we consider our method non invasive. Effectively, the JAVA annotation types
constitute a type graph specification language.

— Graph manipulation, such as adding or deleting nodes or edges and updating at-
tributes, is achieved by invoking user-provided operations. Again, these operations
need to be annotated in order to express their effect in terms of the graph structure.

— Rules are written in a (textual) declarative language (called CHART), and subse-
quently compiled into JAVA code that runs against the aforementioned user classes,
invoking the annotated methods. This obviates the need for transferring data struc-
tures to and from the graph domain. Everything is modified in place, using pre-
existing code.

Our approach allows components of any existing JAVA program to be replaced with
declarative graph transformations, while only requiring non invasive additions to the
data structures of the program. The approach was developed in the CHARTER project
[4], where it is applied within three different tools that in turn make up a tool chain for
the development of code for safety critical systems; see Section[4]

1.1 Related Work

There is, of course, a wealth of approaches and tools for model transformation, some of
which are in fact based on graph transformation. To begin with, the OMG has published
the QVT standard for model transformation [[13]], which is a reference point for model
transformation, even though compliance with the standard is not claimed by many ac-
tual tools. A major tool effort is the ATL approach [9]]; other successful tool suites are
VMTS [[L1]], VIATRA?2 [[17], HENSHIN [1]] and FUJABA [7].

However, none of the above share the aforementioned characteristics of the CHART
approach; in particular, all of them rely on their own data structures for the actual graph
representation and manipulation. Although an old implementation of ATL appears to
have supported the notion of a “driver” which could be tuned to a metamodelling frame-
work and hence imaginably to our annotations, this has been abandoned in newer ver-
sions (see http://wiki.eclipse.org/ATL/Developer_Guide#Regular_VM).

Another transformation framework for JAVA is SITRA [12], but in contrast to the
declarative rules of CHART it still requires individual rules to be written in JAVA directly.

1.2 Roadmap

In this paper we concentrate on the fundamentals of the CHART approach. In particular,
in Section [2] we introduce the formal graph model used, and show how the structure
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and manipulation of graphs is specified through JAVA annotations. In Section 3 we
introduce the language concepts of CHART and indicate how the formal semantics of
the language is defined (details can be found in [6]). Sectiond] gives an overview of the
use cases of the approach within the CHARTER project.

2 Graphs and Annotations

The basic idea of our approach is that the graph to be transformed is represented exter-
nally, in JAVA. In order to be able to transform this graph, its structure must be known,
and operations to manipulate it must be available. This information is obtained by an
automated analysis of a JAVA program. Not all necessary information can be obtained
from the source code alone, however. Therefore, we have defined a language of JAVA
annotations, which must be added to the code explicitly to fill the gaps.

In the following sections, we will explain how a graph structure is recognized in a
JAVA program. In Section 2.1l we first provide a formal description of the graphs and
type graphs that are allowed. In Sections[2.2] 2.4 and 2.3l we describe how nodes,
edges, attributes and manipulation methods are defined, respectively. In Section 2.6 we
investigate the (non) invasiveness of our approach.

2.1 Graphs and Type Graphs

Our approach operates on simple graphs (nodes, binary directed edges, attributes) that
are extended with basic model transformation concepts (subtyping and abstractness for
nodes; multiplicity and orderedness for edges). This leads to the following formalization
of type graphs:

Definition 2.1.1: (types)
A type (set 7)) is either a node type, a set or list over a particular node type, or a basic
type. The supported basic types are boolean, character, integer, real and string.

Definition 2.1.2: (type graphs)
A type graph is a structure (7, Iy, src, typey, abs, <;, min, max), in which:
7, and Ty are the disjoint sets of node and field types, respectively;
src 1 Tr — T, associates each field type with a source node type;
typer : T — T determines the value type of each field type;
abs C I, is the subset of node types that are abstract;
<; € 7, x 7, is the subtyping relation on nodes, which must be a partial order;
min : Ty — N and max : Ty — NU {many} are the multiplicity functions.

O O O O O O

Attributes and edges are collectively called ‘fields’. If the maximum multiplicity of a
field is greater than one, a single field connects a single source node to multiple targets.
In that case, the targets are either stored in a set (unordered), or in a list (ordered).

A graph is straightforward instantiation of a type graph. However, we also require
each graph to be rooted:
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Definition 2.1.3: (values)
A value (set V) is either a node, a basic value, or a set or list of nodes or values.

Definition 2.1.4: (graphs)
A graph (set G) is a structure (N,r, F), in which:
o N C A is the set of nodes in the graph;
o r € N is the designated root node of the graph;
o F:N x Ty — ‘V are the field values in the graph.

Our semantics ensures that a node that gets disconnected from the root becomes invisi-
ble for further graph operations.

2.2 Definition of Node Types

A node type must be defined by annotating a class or interface with the custom @Node
annotation. The name and supertypes (possible many) of the node type are determined
directly by the JAVA representation. The @ Node annotation has an additional argument
to indicate whether the node type is abstrac{lor not.

Example[2.2.5; (node type example)
The following piece of code defines the abstract node type Book and the concrete
node type Comic on the left, and the concrete node types Author and Picture on the
right. Comic is defined to be a subtype of Book.

@Node(isAbstract = true)
public class Book { ...

@Node
public class Author { ...

@Node
public class Comic extends Book { ...

@Node
public class Picture { ...

L N

In the JAVA code that will be produced for transformation rules, instance nodes will be
represented by objects of the associated JAVA class or interface.

2.3 Definition of Edge Types

An edge type must be defined by annotating an interface with the custom @Edge anno-
tation. Only the name of the edge type is determined directly by the JAVA representation.
The @Edge annotation has additional arguments to define its target and multiplicity,
and to indicate whether it is ordered or not.

The annotated interface does not yet define the source of the edge. Instead, it defines
an abstract edge, which can be instantiated with an arbitrary source. Each node type
(or more precisely, the JAVA representation of it) that implements the edge interface
provides a new source for the edge type.

I We allow abstract classes to define concrete node types, and vice versa.



Graph Transforming Java Data 213

Example2.3.6} (edge type example)
The following piece of code defines the edge types writtenBy, which connects a Book
to its Author, and contains, which connects a Comic to its Pictures. The multiplicity
indicates the number of targets that a single source may be connected to, which is ex-
actly one for writtenBy, and arbitrarily many for contains. Also, contains is ordered.

1 @Edge(target = Author.class, min =1, max = 1)
> public interface WrittenBy { ...

4+ @Edge(target = Picture.class, min = 0, max = Multiplicity. MANY, ordered = true)
s public interface Contains { ...

Note that to make these definitions complete, Book has to implement writtenBy, and
Comic has to implement contains.

In the JAVA code that will be produced for transformation rules, instance edges will not
be represented on their own, but are instead assumed to be stored by their source nodes.

2.4 Definition of Attributes

An attribute type must be defined by annotating a getter method with the custom @ At-
tributeGet annotation. The name, source (the node class/interface in which the method
is declared) and type (the return type of the method) of the attribute are all determined
directly by the JAVA representation. Our framework does not yet support multiplicity or
orderedness of attributes.

Example2.4.7 (attribute example)
The following piece of code defines the text attribute name for Authors on the left,
and the integer attribute price for Books on the right. Note that the attribute name is
obtained by removing the leading ‘get’ from the method name, and putting the first
character in lower case.

1 @Node 1 @Node(isAbstract = true)

> public class Author { > public class Book implements writtenBy {
3 3

4 @ AttributeGet 4 @ AttributeGet

5 public String getName(); 5 public int getPrice();

2.5 Definition of Manipulation Methods

The JAVA code for transformation rules needs to be able to modify the graph. Instead of
exposing the actual implementation, our framework defines a number of operations that
may be implemented by the JAVA code. Each operation has its own custom annotation,
and can only be attached to a method of a certain type and a certain behaviofd.Our
framework makes the following operations available:

2 The type is enforced statically, but the behavior is not; instead, it is currently the responsibility
of the user to provide a method with the correct behavior.
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— For nodes: creation, visiting all nodes of specific type.

— For all edges: visiting all target nodes.

— For edges (with maximum multiplicity 1): creation, getting the target node.

— For unordered edges: addition of a new target, removal of a given target, clearing
all targets at once, replacing a given target with another one, checking if a given
node occurs as a target, getting the number of connected targets.

— For ordered edges: insertion of a new target at a given index, removal of a given

index, getting the target at a given index, replacing the target at a given index,

clearing all targets at once, checking if a given node occurs as a target, getting the
number of connected targets.

For attributes: getting, setting.

The user is free to implement as few or as many operations as desired, but if insuffi-
cient operations are available, JAVA code cannot be produced for certain rules any more.
Some operations are optimizations only, for instance computing the size of an edge is a
more efficient version of increasing a counter when visiting all the targets one by one.
If both are available, the efficient version will always be used.

Example2.5.8 (operations example)
The following piece of code defines the manipulation methods for the contains edge
type. Insertion of an element at a given index (@ EdgeAdd), removal of an element
at a given index (@ EdgeRemove), getting an element at a given index (@EdgeGet),
and visiting all elements (@ EdgeVisit) are declared. Visiting makes use of the pre-
defined class GraphVisitor, which basically wraps a method that can be applied to an
edge target into an interface.

1 @Edge(target = Picture.class, min = 0, max = Multiplicity.MANY, ordered = true)
> public interface Contains {
3 @EdgeAdd

4 public void insertPicture(int index, Picture picture);
5

6 @EdgeRemove

7 public void removePicture(int index);

9 @EdgeGet
10 public Picture getPicture(int index);

12 @EdgeVisit
13 public GraphVisitor. CONTINUE visit(GraphVisitor <Picture> visitor)
14 throws GraphException;

2.6 Invasiveness

To apply graph transformation rules on an existing JAVA program with our approach,
the following modifications have to be made:
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— A @Node annotation must be added to each intended node class and interface.

— For each edge type, a dedicated interface must be defined, and an @ Edge annotation
must be added to it.

— For each required operation, a manipulation method must be made available. This
may either involve annotating an existing method with the appropriate annotation,
or defining a new method and then annotating it.

These modifications only enrich existing code with meta data, and can safely be applied
to any JAVA program. We therefore call our approach non invasive. This should not be
confused with non modifying, as annotations and edge interfaces still have to be added,
and additional manipulation methods need to be implemented as well.

3 Transformation Language

With our approach, we intend to make graph transformation available for JAVA pro-
grammers. For this purpose, we have defined a custom hybrid transformation language,
called CHART. On the one hand, CHART has a textual JAVA like syntax and a sequential
control structure. On the other hand, it has declarative matching and only allows graph
updating by means of simultaneous assignment.

In the following sections, we will introduce CHART and briefly go into its semantics.
In Section[3.1] we first present the rule based structure of CHART. In Sections [3.2]
and[3.4] we describe the main components of CHART, which are matching, updating and
sequencing, respectively. In Section[3.3] we shortly describe the semantics of CHART.

3.1 Rule Structure

A CHART transformation is composed of a number of transformation rules, and can be
started by invoking any one of them. Each rule has a signature, which declares its name,
its input and its output. Multiple (or no) inputs and outputs are allowed, and each can
be an arbitrary (typed) value (see Definition 2.1.3).

ExampleB3.1.1k (rule signature)
The following piece of code declares the rules findRich, addPicture and addPictures.
Set types are denotes by trailing ‘{}’, and list types by trailing ‘[]’. void denotes that
a rule has no return type.

1 rule Author{} findRich(int price) { ...
2 rule int addPicture(Comic comic, Picture picture) { ...
3 rule void addPictures(Comic comic, Picturef] pictures) { ...

The body of a rule consists of a match block, an update block, a sequence block and a
return block. The blocks are optional (and no more than one of each type can be used
in a rule), and can only appear in the order match-update-sequence-return.
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3.2 Match Blocks

A match block searches for all the possible values of a given set of match variables such
that a given set of equations is satisfied. The equations are either boolean expressions,
or ‘foreach’ statements that lift equations to all elements of a collection. A match block
corresponds to the left-hand-side of a rewrite rule, represented textually.

Example[3.2.2k (match block)
The following match block finds all authors that have written a book with a price
higher than a certain threshold. Line 3 specifies that the block searches for a set of
Authors, which will be stored in the variable rich. Line 4 specifies that the equations
on lines 5-6 must hold for alPlthese authors. Lines 5-6 specify that for each author
there must exist a book (line 5) with a price higher than the threshold (line 6).

1 rule Author{} findRich(int price) {

2 Author{} rich;

3 match (rich) {

4 foreach (Author author : rich) {
5 Comic comic;

6 comic.price > price;

7 }

s}

9

return rich;

0}

A match block can either fail, if no valid values for the match variables can be found, or
succeed, with a single binding for the match variables. If multiple bindings are possible,
then one is chosen, and the other possibilities are thrown away. The semantics does not
prescribe which binding must be returned.

3.3 Update Blocks

An update block changes the instance graph, and it is the only place where this is pos-
sible. It consists of a list of create statements, which are evaluated sequentially, and a
list of update statements, which are evaluated simultaneously, but after the creations.
Each update statement may modify a single field in the graph, and there may not be
two update statements that change the same field. An update block corresponds to the
differences between the right- and left-hand-side of a rewrite rule.

Example[3.3.3k (update block)
The following update block creates a new comic (line 7), which is the same as an
existing one, but extended with one picture (line 9). The old comic is decreased in
price (line 12), and the old price of the old comic is returned (lines 13 and 15). The
match block ensures that the rule can only be applied to comics with a price greater
than 1. Note that the right-hand-side of line 13 is evaluated in the graph before the
update block, and therefore refers to the old price, instead of the new one.

3 In our approach, a foreach over a match variable always finds the largest possible set/list only.
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1 rule int addPicture(Comic comic, Picture picture) {

2 int old price;

3 match () {

4 comic.price > 1;

s}

6 update let {

7 Comic new comic = new Comic();

8 } in {

9 new comic.contains = comic.contains + [picture];
10 new comic.price = comic.price;

1 new comic.writtenBy = comic.writtenBy;
12 comic.price = comic.price — 1;

13 old price = comic.price;

14 }

15 return old price;

6}

3.4 Sequence Blocks

A sequence block establishes flow of control, and is the only block in which other rules
can be invoked. It contains sequential, JAVA like statements, such as ‘if’ and ‘foreach’
(our notation for ‘for’), and custom statements for managing rule failure, such as ‘try’
and ‘repeat’ (see below).

Example[3.4.4: (sequence block)
The following sequence block repeatedly adds pictures to a comic by invoking add-
Picture (line 4). The ‘pictures[2:]” that appears in line 3 is a range selection, which
selects all elements starting from index 2. The try statement in line 4 is used to catch
a possible failure of addPicture. Because of it, if addPicture fails, execution still
continues with the next iteration of the loop.

1 rule void addPictures(Comic comic, Picture[] pictures) {

2 sequence {

3 foreach (Picture picture : pictures[2:]) {
4 try { addPicture(comic, picture); }

5 }

s}

7}

Because a sequence block can contain rule calls, it can also succeed or fail. If a rule call
fails, one of the following things will happen:

— If the rule call is surrounded by a ‘try’ or ‘repeat’, then the failure is caught, and
the remainder of the sequence block is executed normally.

— If the failure is not caught, and the rule in which the sequence block appears has not
yet changed the graph, then the sequence block (and consequently the rule itself)
fails. This is the same kind of failure as in the match block.



218 M. de Mol, A. Rensink, and J.J. Hunt

— If the failure is not caught, and the graph has already been changed, then the failure
is erroneous, and the transformation as a whole stops with an exception. This is
because our approach does not support roll-back.

3.5 Semantics

A full operational semantics of CHART is available in [6]. Below, we will restrict our-
selves to a brief explanation of the top level functions of our semantics, which define
the meaning of match blocks, update blocks, sequence blocks, and rule systems.

Notation (preliminaries)
In the following, let X denote the set of variables, ¢(B) denote the set of lists (i.e.
ordered sequences) over B, and Autom denote the universe of automata.

Match blocks. A match block consists of a list of match statements, which are assumed
to be defined by the MatchStat set. Its meaning is determined by the

match : (X — V) x {(MatchStat) x G — (X — V)

function, which computes the set of all valid matches (=variable bindings) relative to a
given input graph. An implementation only has to return one of these matches, but the
semantics takes all of them into account. Later, we will enforce that all choices converge
to a single output graph.

The match function is initialized with a single match, which is the input variable
binding of the rule in which it appears. It then processes each match statement itera-
tively. If the statement is a match variable, then each input match is extended will all
possible values of that variable. If the statement is an equation (or ‘foreach’), then the
input matches are filtered, and only those that satisfy the equation are kept.

Update blocks. An update block consists of a list of create statements and a list of
update statements, which are assumed to be defined by the CreateStat and UpdateStat
sets, respectively. Its meaning is determined by the

update : (X — V) x £(CreateStat) x {(UpdateStat) x G — (X — V) x G

function, which modifies a variable binding and a graph. It first processes the create
statements sequentially. Then the update statements are merged into one atomic update
action, which is applied on the intermediate state in one go.

Sequence blocks. A sequence block consists of a list of sequence statements, which
are assumed to be defined by the SequenceStat set. Its meaning is determined by the

sequence : {(SequenceStat) — Autom

function, which builds an automaton that statically models the sequence block. It uses
simplified sequence statements as alphabet, and a basic numbering for states only. The
purpose of the automaton is to distinguish between success with or without changing
the graph, and failure. For this purpose, it has three distinctive final states, and it models
the conditions under which these states are reached. The automaton does not model any
dynamic behavior, however, as its states do not include graphs or variable bindings.
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Rule systems (1) A rule system consists of a set of rules, which are assumed to be
defined by the Rule set. The meaning of a rule system is determined by the

automs : §(Rule) X Rule x G — Autom X Autom

function, which computes two automata. The first is the applier automaton, which has
tuples of graphs and variable bindings as states, and all possible applications of all
available match and update blocks as (separate) transitions. The second is the control
automaton, which is basically the combination of the sequence automata of all rules.
The initial state of the applier automaton is the empty variable binding with the input
graph, and the initial state of the control automaton is the initial state of the start rule.

Rule systems (2) The final purpose of a rule system is to transform an input graph into
a single output graph. This is modeled by the semantic function:

[-]: $(Rule) x Rulex G — G

First, the product automaton of the applier and control automata is built, which synchro-
nizes on the rule calls and adds local state to the control automaton. In our approach,
the final transformation has to terminate and be deterministic. If the product automaton
is not confluent, acyclic and finite, then the transformation is therefore considered to be
erroneous, and the semantic function does not yield a result. Otherwise, the semantics
is given by the graph in the unique final state of the product automaton.

4 Experience and Evaluation

A major part of the effort has gone into the CHART compiler that generates the corre-
sponding JAVA code. The compiler is called RDT, which stands for Rule Driven Trans-
former, and supports all features that have been described in this paper. We have used
the RDT successfully on several smaller test cases, and more importantly, it is currently
being used by three of our partners in the CHARTER project [4]. The tool will be made
publicly available by the final project deliverable planned for April 2012.

Concretely, the following transformations have been built with the RDT:

— For testing purposes, we have implemented an interpreter for finite state automata,
and an interpreter for a simplified lazy functional programming language. Some
metrics are collected in Table[Il

— A collection of CHART rules have been produced by ATEGO to replace the JAVA
code generator within ARTISAN STUDIO [2].

— A collection of CHART rules are being developed by AICAS for the purpose of
optimisations and machine code generation in the JAMAICAVM byte code compiler
[L5]. This application is discussed in some more detail below.

— Part of the code simplification from JAVA to Static Single Assignment form within
the KEY tool [3] is scheduled to be replaced by CHART rules.

These examples show that the technology can already be applied in practice. In all
cases, the CHART rules are more concise than the JAVA code. The JAMAICAVM and
KEY examples also show that the RDT can successfully be connected to an existing
JAVA program. In the other examples, a custom JAVA program was built explicitly.
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Table 1. metrics for the functional interpreter case

JAVA data (represent functional program) 21 classes, 11 interfaces, 1448 lines of code
added annotations 19 nodes, 11 edges, 49 methods, 3 auxiliary
CHART rules 53 rules, 1024 lines of code
produced JAVA code 53 classes, 7667 lines of code
analysis and compilation time approx. 4,5 seconds (2GHZ, 4GB laptop)
execution time (50 primes computed with sieve) approx. 1,5 seconds (2GHZ, 4GB laptop)

4.1 Using the RDT in JAMAICAVM

A complex application of the RDT is its application in the JAMAICAVM byte code com-
piler. This application demonstrates the strength of the synthesis of a strongly typed
object-oriented programming language with a domain specific graph transformation
language. The compiler implementation takes advantage of JAVA for implementing the
basic graph operations, and uses the RDT for deciding what transforms should be ap-
plied (match clause), when a transform should be applied (sequence clause), and what
change a transform should make (update clause).

The most general CHART rules are used in the optimization of the intermediate rep-
resentation. These rules implement standard compiler optimizations such as:

— unnecessary node removal,

— expression simplification,

— duplicate check removal,

— common subexpression elimination,
— method inlining,

— loop inversion, and

— loop expression hoisting.

There are not that many optimizations, but each optimization takes in general several
rules to implement it. Each rule has about 10 to 20 lines of RDT code. The generated
code is approximately ten times as long. Hand coding might bring a factor of two im-
provement, but that would still be five times large than the CHART code.

There are many more CHART rules for translating the intermediate representation to
the low-level representation: each intermediate instruction requires its own rule. These
rules are simpler, so they tend to be shorter than the optimization ones. Still there is a
similar ten fold expansion of code when these rules are compiled.

CHART rules are also used in the optimization of the low-level representation. These
rules tend to be more instruction dependent. Some of the simpler intermediate opti-
mizations are applicable on the low-level too, because they do not depend on the ac-
tual instructions and operate on an abstract representation of the graph. This works
because both graphs share a common parametrized subclass structure using JAVA
generics. Again, a ten fold expansion is typical.

Performance measurements have not yet been made, but there is no noticeable slow-
down for the couple of optimizations that have been converted to rules. In fact, the new
compiler is faster than the previous one. However, this is probably due to improvements
in the graph structure. Certainly, the performance is within acceptable bounds.
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In general, CHART rules are easier to reason about than JAVA code for two reasons.
Firstly, the code is much shorter. Secondly, the language itself is declarative instead
of imperative. The next challenge will be to provide theory and methods for reasoning
about the correctness of rules written in CHART.

4.2 Evaluation

The cases reported above provide first evidence of the advantages and disadvantages of
the CHART approach. We can make the following observations:

— The approach is flexible enough to be applicable in several, quite different contexts:
model-to-text generation for ARTISAN, code compilation and optimisation for JA-
MAICAVM and text-to-text transformation in the case of KEY. The latter is done on
the basis of its JAVA syntax tree structure.

— The non invasive nature of the approach enables a partial or stepwise adoption of
CHART. Indeed, the fact that all data stay within the user domain was the reason to
adopt CHART for KEY, where it was initially not foreseen in the project proposal.

— CHART enhances productivity by a factor of ten, measured in lines of code. This
metric should be taken with a grain of salt as the generated code is less compact
than hand-written code for the same purpose would have been; however, as argued
in Section[4.1] even taking this into account the ratio in lines of code is a factor 5.

— The generated code been applied to very large graphs (in the order of 10° — 10°
nodes) with a performance comparable to the replaced handwritten JAVA code.

All in all, we feel that these are very encouraging results.

4.3 Future Work

Although, as shown above, CHART has already proved its worth in practice, there is ob-
viously still a lot of work that can be done to strengthen both the formal underpinnings
and the practical usability.

— The formal semantics presented in this paper enables reasoning on the level of the
CHART rules. As a next step, we intend to develop this into a theory that allows
the CHART programmer to deduce confluence and termination of his rule system.
A more ambitious goal is to be able to prove semantic preservation of model trans-
formations in CHART (see, e.g., [8]).

— Based on the formal semantics, we plan to formally verify that the RDT actually pro-
duces correct code. Code correctness can be addressed on different levels: firstly,
by requiring it to run without errors; and secondly, to actually implement the trans-
formation specified in CHART. The second especially is a major effort, analogous
to the Verified Compiler research in, e.g., [10], and will be addressed in a separate
follow-up project.

— On the pragmatic side, the RDT needs further experimentation with an eye towards
efficiency. This is likely to lead to improvements in performance of the gener-
ated code.

— The CHART language can be extended with additional functionality, as well as
syntactic sugar for the existing features.



222 M. de Mol, A. Rensink, and J.J. Hunt

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N., Haugen,
@. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121-135. Springer, Heidelberg (2010),
http://www.eclipse.org/modeling/emft/henshin/

2. Artisan studio (2011), http://www.atego.com/

3. Beckert, B., Héhnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007), http://www.key-project.org

4. Charter: Critical and hight assurance requirements transformed through engineering rigour
(2010), http://charterproject.ning.com/page/charter-project

5. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621-646 (2006)

6. de Mol, M., Rensink, A.: Formal semantics of the CHART transformation language. CTIT
technical report, University of Twente (2011),
http://www.cs.utwente.nl/~rensink/papers/chart.pdf

7. The FUJABA Toolsuite (2006), http://www.fujaba.de

8. Hiilsbusch, M., Konig, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: Show-
ing Full Semantics Preservation in Model Transformation - A Comparison of Techniques. In:
Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183-198. Springer, Heidelberg
(2010)

9. Jouault, E., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci. Com-
put. Program. 72(1-2), 31-39 (2008)

10. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-115 (2009)

11. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A systematic approach to metamodel-
ing environments and model transformation systems in VMTS. Electr. Notes Theor. Comput.
Sci. 127(1), 65-75 (2005), http://www.aut .bme.hu/Portal /Vmts.aspx?lang=en

12. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier, K.D.: SiTra:
Simple Transformations in Java. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 351-364. Springer, Heidelberg (2006)

13. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification (2011),
http://www.omg.org/spec/QVT/1.1/

14. Schiirr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151-163. Springer,
Heidelberg (1995)

15. Siebert, F.: Realtime garbage collection in the JamaicaVM 3.0. In: Bollella, G. (ed.) JTRES.
ACM International Conference Proceeding Series, pp. 94-103. ACM (2007),
http://www.alcas.com

16. Taentzer, G.: What algebraic graph transformations can do for model transformations. ECE-
ASST 30 (2010)

17. Varrd, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming 68(3), 187-207 (2007),
http://www.eclipse.org/gmt/VIATRA2/


http://www.eclipse.org/modeling/emft/henshin/
http://www.atego.com/
http://www.key-project.org
http://charterproject.ning.com/page/charter-project
http://www.cs.utwente.nl/~rensink/papers/chart.pdf
http://www.fujaba.de
http://www.aut.bme.hu/Portal/Vmts.aspx?lang=en
http://www.omg.org/spec/QVT/1.1/
http://www.aicas.com
http://www.eclipse.org/gmt/VIATRA2/

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

40

[E%

Graph Transforming Java Data

*

+* CLASS generated for RULE 'examples.comic.generated.addPicture’.

*

*/

public class addPicture extends RDTRule.RDTRule1<Integer> {

/x* Finds a single match for the rule. x/
private boolean match() throws GraphException {

}

// check (V1 comic.price > (1));

if ({(V1 comic.getPrice() > 1)) {
return false;

}

// Report success.
return true;

/«* Applies the update block of the rule on an earlier found match. x/
private void update() throws GraphException {

// Store for postponed graph updates.
final List<Closure> postponed = new ArrayList<Closure>(25);
// Comic V4 new comic = new Comic();
final Comic V4 new comic = Comic.createComic(this.context.getSupport());
// V4 new comic.contains = V1 comic.contains + [V2 picture];
final GraphVisitor<Picture> t1 = new GraphVisitor<Picture>() {
@Override
public CONTINUE apply(final Picture node) throws GraphException {
postponed.add(new Closure() {
@Override
public void apply() throws GraphException {
V4 new comic.insertPicture(—1, node);

}
b
return CONTINUE.YES;
}
¥

Part of the generated code for the addPicture rule.
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Abstract. Models express not only information about their intended
domain but also about the way in which the model is incomplete, or
“partial”. This partiality supports the modeling process because it per-
mits the expression of what is known without premature decisions about
what is still unknown, until later refinements can fill in this information.
A key observation of this paper is that a number of partiality types can
be defined in a modeling language-independent way, and we propose a
formal framework for doing so. In particular, we identify four types of
partiality and show how to extend a modeling language to support their
expression and refinement. This systematic approach provides a basis for
reasoning as well as a framework for generic tooling support. We illus-
trate the framework by enhancing the UML class diagram and sequence
diagram languages with partiality support and using Alloy to automate
reasoning tasks.

1 Introduction

Models are used for expressing two different yet complementary kinds of in-
formation. The first is about the intended domain for the modeling language.
For example, UML class diagrams are used to express information about system
structure. The second kind of information is used to express the degree of incom-
pleteness or partiality about the first kind. For example, class diagrams allow
the type of an attribute to be omitted at an early modeling stage even though
the type will ultimately be required for implementation. Being able to express
partiality within a model is essential because it permits a modeler to specify the
domain information she knows without prematurely committing to information
she is still uncertain about, until later refinements can add it.

The motivating observation of this work is that many types of model partiality
are actually domain independent and thus support for expressing partiality can be
handled in a generic and systematic way in any modeling language! Furthermore,
each type of partiality has its own usage scenarios and comes with its own
brand of refinement. Thus, we can define certain model refinements formally yet
independently of the language type and semantics. This may be one reason why
many practitioners of modeling resist the formalization of the domain semantics
for a model: it is possible to do some sound refinements without it!

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 224 2012.
© Springer-Verlag Berlin Heidelberg 2012
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superw
Vx:Property Jc:Class-ownedAttribute(c,x)
m Vx:Property-(3c:Class-type(x,c)) &-(3d:Datatype-type(x,d))
type type Vx:Property 3cl, c2:Class-type(x,cl )Atype(x,c2 )=cl=c2

ownedAttribute Vx:Property 3d1, d2:Datatype-type(x,d1 )Atype(x,d2 )=d1=d2
Vx:Property, c1,c2:Class-ownedAttribute(c1,x)AownedAttribute(c2,x)=c1=c2

Fig. 1. A simplified UML class diagram metamodel

Current modeling languages incorporate partiality information in ad-hoc ways
that do not clearly distinguish it from domain information and leave gaps in ex-
pressiveness. For example, with a state machine diagram, if the modeler uses
multiple transitions on the same event out of a state, it may not be clear (e.g.,
to another modeler) whether she is specifying a non-deterministic state machine
(domain information) or an under-specified deterministic state machine (par-
tiality information). Benefits of explicating partiality in a language-independent
manner include generic tool support for checking partiality-reducing refinements,
avoiding gaps in expressiveness by providing complete coverage of partiality
within a modeling language, and reusing a modeler’s knowledge by applying
partiality across different modeling languages consistently. Ad-hoc treatments of
partiality do not allow the above benefits to be effectively realized. Our approach
is to systematically add support for partiality information to any language in the
form of annotations with well-defined formal semantics and a refinement relation
for reducing partiality.

The use of partiality information has been studied for particular model types
(e.g., behavioural models [9I13]) but our position paper [3] was the first to discuss
language-independent partiality and its benefits for Model Driven Engineering.
In this paper, we build on this work and provide a framework for defining dif-
ferent types of language-independent partiality. Specifically, this paper makes
the following contributions: (1) we define the important (and novel) distinction
between domain and partiality information in a modeling language; (2) we de-
scribe a formal framework for adding support for partiality and its refinement
to any modeling language; (3) we use the framework to define four types of
language-independent partiality that correspond to typical pragmatic modeling
scenarios; (4) we implement the formalization for these using Alloy and show
some preliminary results.

The rest of this paper is organized as follows: We begin with a brief introduc-
tion to the concept of partiality in Section 2] and give an informal description of
four simple language-independent ways of adding partiality to a modeling lan-
guage. We describe the composition of these partiality types and illustrate them
through application to the UML class diagram and sequence diagram languages
in Section[3 In Section [l we describe a formalization of these types of partiality.
In Section [l we describe our tool support based on the use of Alloy [§]. After
discussing related work in Section [G] we conclude the paper in Section [ with
the summary of the paper and suggestions for future work.
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2 Adding Partiality to Modeling Languages

When a model contains partiality information, we call it a partial model. Se-
mantically, it represents the set of different possible concrete (i.e., non-partial)
models that would resolve the uncertainty represented by the partiality. In this
paper, we focus on adding partiality information to existing modeling languages
in a language-independent way, and thus, we must work with arbitrary meta-
models. Figure [I] gives an example of a simple metamodel for class diagrams,
with boxes for element types and arrows for relations. The well-formedness con-
straints (on the right) express the fact that every Property must have one type
given by a Class or a Datatype and must be an ownedAttribute of one Class.
Models consist of a set of atoms - i.e., the elements and relation instances of
the types defined in its metamodel. In order to remain language-independent,
we assume that partiality information is added as annotations to a model.

Definition 1 (Partial model). A partial model P consists of a base model,
denoted bs(P), and a set of annotations. Let T be the metamodel of bs(P). Then,
[P] denotes the set of T models called the concretizations of P.

Partiality is used to express uncertainty about the model until it can be resolved
using partiality refinement. Refining a partial model means removing partiality
so that the set of concretizations shrinks until, ultimately, it represents a single
concrete model. In general, when a partial model P’ refines another one P, there
is a mapping from bs(P’) to bs(P) that expresses the relationship betwen them
and thus between their concretizations. We give examples of such mappings later
on in this section. In the special case that the base models are equivalent, P’
refines P iff [P'] C [P].

We now informally describe four possible partiality types, each adding support
for a different type of uncertainty in a model: May partiality — about existence
of its atoms; Abs partiality — about uniqueness of its atoms; Var partiality —
about distinctness of its atoms; and OW partiality — about its completeness.

May Partiality. Early in the development of a model, we may be unsure
whether a particular atom should exist in the model and defer the decision
until a later refinement. May partiality allows us to express the level of certainty
we have about the presence of a particular atom in a model, by annotating it.
The annotations come from the lattice M = ({E, M}, <), where the values cor-
respond to “must exist” (E) and “may exist” (M), respectively, < means “less
certain than”, and M < E.

A May model is refined by changing M atoms to E or eliminating them al-
together. Thus, refinements result in submodels with more specific annotations.
The ground refinements of a May model P are those that have no M elements
and thus, correspond to its set of concretizations [P]. Figure2(a) gives an exam-
ple of a May model (P), a refinement (P’) and a concretization (M). The models
are based on the metamodel in Figure [l Atoms are given as name:type with
the above annotations, and mappings between models are shown using dashed
lines. Model (P) says “there is a class Car that may have a superclass Vehicle
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and may have a Length attribute which may be of type int”. The refinement
(P’) and concretization (M) resolve the uncertainty.

Abs Partiality. Early in the development of a model we may expect to have
collections of atoms representing certain kinds of information but not know
exactly what those atoms are. For example, in an early state machine diagram for
a text editor, we may know that we have InputingStates, ProcessingStates
and FormattingStates, and that InputingStates must transition to
ProcessingStates and then to FormattingStates. Later, we refine these to
sets of particular concrete states and transitions. Abs partiality allows a modeler
to express this kind of uncertainty by letting her annotate atoms as representing
a “particular”, or unique, element (P) or a “set” (S). The annotations come from
the lattice A = ({P, s}, <), where < indicates “less unique than”, and s < p.

A refinement of an Abs model elaborates the content of “set” atoms S by
replacing them with a set of S and P atoms. The ground refinements of an Abs
model P are those that have no S elements and thus, correspond to its set
of concretizations [P]. Figure [Z(b) illustrates an Abs model, a refinement and
concretization. Only node mappings are shown to reduce visual clutter. Model
(P) says “class Car has a set SizeRelated of attributes with type int”. The
refinement (P’) refines SizeRelated into a particular attribute Length and the
set HeightRelated.

Var Partiality. Early in a modeling process, we may not be sure whether two
atoms are distinct or should be the same, i.e., we may be uncertain about atom
identity. For example, in constructing a class diagram, we may want to introduce
an attribute that is needed, without knowing which class it will ultimately be
in. To achieve well-formedness, it must be put into some class but we want to
avoid prematurely putting it in the wrong class. To solve this problem, we could
put it temporarily in a “variable” class - i.e., something that is treated like a
class but, in a refinement, can be equated (merged) with other variable classes
and eventually be assigned to a constant class. Var partiality allows a modeler
to express uncertainty about distinctness of individual atoms in the model by
annotating an atom to indicate whether it is a “constant” (C) or a “variable” (V).
The annotations come from the lattice ¥V = ({c, v}, <), where v < C.

A refinement of a Var model involves reducing the set of variables by as-
signing them to constants or other variables. The ground refinements of a Var
model P are those that have no v elements and thus, correspond to its set of
concretizations [P].

Figure 2(c) illustrates a Var model, its refinement and concretization. Model
(P) says “class Car has superclass Vehicle and variable class SomeVehicle has
attribute Length with variable type SomeType”. Refinement (P’) resolves some
uncertainty by assigning SomeVehicle to Car.

OW Partiality. It is common, during model development, to make the as-
sumption that the model is still incomplete, i.e., that other elements are yet to
be added to it. This status typically changes to “complete” (if only temporar-
ily) once some milestone, such as the release of software based on the model,
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Fig. 2. Examples of different partiality types: (a) May; (b) Abs; (c) Var; (d) OW. In
each example, model M concretizes both P’ and P, and P’ refines P.
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is reached. In this paper, we view a model as a “database” consisting of a set
of syntactic facts (e.g., “a class Cy is a superclass of a class Cy”, etc.). Thus,
incompleteness corresponds to an Open World assumption on this database (the
list of atoms is not closed), whereas completeness — to a Closed World. OW
partiality allows a modeler to explicitly state whether her model is incomplete
(i.e., can be extended) (INC ) or not (COMP ). In contrast to the other types of
partiality discussed in this paper, here the annotation is at the level of the entire
model rather than at the level of individual atoms. The annotations come from
the lattice O = ({comP ,INC }, <), where INC < COMP .

A refinement of an OW model means making it “more complete”. The ground
refinements of an OW model P, corresponding to its set of concretizations [P],
are its “complete” extensions. Figure B{d) illustrates an OW model, refinement
and concretization.

3 Combining and Applying Partiality Types

In this section, we show how to combine the four partiality types defined in
Section [2] and then apply them to UML class diagrams and sequence diagrams,
showing the language-independence of partiality-reducing refinements.

Combining Partiality Types. The four partiality types described above have
distinctly different pragmatic uses for expressing partiality and can be combined
within a single model to express more situations. We refer to the combination
as the MAVO partiality, which allows model atoms to be annotated with May,
Abs and Var partiality by using elements from the product lattice M x A x V
defined as MAY = ({E,M} x {P,s} x {c, v}, X). For example, marking a class
as (M, s, C) means that it represents a set of classes that may be empty, while
marking it as (E,s, V) indicates that it is a non-empty set of classes but may
become a different set of classes in a refinement. OW partiality is also used, but
only at the model level, to indicate completeness.

MAVO refinement combines the refinement from the four types component-
wise. If MAVO model P, is refined by model P, then there is a mapping from the
atoms of P; to those of P, and the annotation in P, has a value that is no less
than any of its corresponding atoms in P;. Thus, the class marked (M, s, C) can
be refined to a set of classes that have annotations such as (M, P, C) or (E,s,C)
but not (M, s, V). Examples of applying the MAVO partiality are given below.

Application: MAVO Class Diagrams. One of the benefits of the fact that
a partiality type extends the base language is that we can build on the existing
concrete syntax of the languages. For example, consider the MAVO partial class
diagram P1 shown in the top of Figure Bl We do not show ground annotations
(i.e., ¢ for Var, P for Abs, etc.) and use the same symbols as in the abstract
syntax for non-ground annotations. While there may be more intuitive ways
to visualize some of these types of partiality (e.g., dashed outlines for “maybe”
elements), we consider this issue to be beyond the scope of this paper.

In P1, the modeler uses May partiality to express uncertainty about whether
a TimeMachine should be a Vehicle or not. May partiality is also used with
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Hovercraft to express that the modeler is uncertain whether or not to in-
clude it and which class should be its superclass. Var partiality is used with
“variable” class C1 to introduce the attribute numOfDoors : Integer since the
modeler is uncertain about which class it belongs in. Abs and Var partiality
are used together to model sets of Vehicle attributes with unknown types with
sizeRelated: Typesl and securityRelated: Types2. Finally, May and Abs
partiality are used with OtherVehicles and super(OtherVehicles, Vehicle)
to indicate that the modeler thinks that there may be other, not yet known,
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Model P2, on the bottom of Figure 3] is a refinement of P1. Refinement map-
pings are shown as dashed lines and, to avoid visual clutter, we omit the identity
mappings between ground atoms. In P2, the modeler refines super(TimeMachine,
Vehicle) from “may exist” to “exists”; however, the decision on Hovercraft is to
omit it. The refinement puts attribute num0fDoors : Integer into Car by setting
C1 = Car. Also, the types of sizeRelated attributes are refined to Int or Real,
and the securityRelated attributes are refined as well; however, the types of
LastIDNumber and PreviousIDNumber are still unknown, although they are now
known to be the same SType2. Finally, OtherVehicles is refined to expose Truck
as one of these but still leaves the possibility for more Vehicle subclasses. The
omitted OW annotation indicates that the models are “complete”, and thus, new
elements can only be added by refining an Abs set such as OtherVehicles.

Application: MAVO Sequence Diagrams. The left model in Figure @ P3,
shows a MAVO sequence diagram specifying how a Person interacts with a Car.
We follow the same concrete syntactic conventions for annotations as for the class
diagrams in Figure @ While some interactions are known in P3, at this stage of
the design process, it is known only that there will be a set of prepActions and
drivingActions, and Abs partiality is used to express this. In addition, there
is a possibility of there being a monitoring function for security. May partiality
is used to indicate that this portion may be omitted in a refinement, and Var
partiality is used to indicate that it is not yet clear which object will perform the
Monitor role. Finally, P3 uses the OW partiality since we expect more objects
to be added in a refinement.

In the model P4, on the right of Figuredl the modeler has refined prepActions
to a particular set of actions. In addition, she has assigned the Monitor role
to Car itself (i.e., Monitor=Car) and retained only the first Notify message.
Finally, she has decided that the model will not be extended further and it is
set as “complete”.

Discussion. While class diagrams and sequence diagrams are different syntac-
tically and in their domains of applicability (i.e., structure vs. behaviour), the
MAVO partiality provides the same capabilities for expressing and refining un-
certainty in both languages. In particular, it adds the ability to treat atoms as
removable (May), as sets (Abs), and as variables (Var), and to treat the entire
model as extensible (OW). Furthermore, we were able to use the same concrete
syntactic conventions in both languages — this is significant because modeler
knowledge can be reused across languages. Note that while our examples come
from UML, MAVO annotations are not UML-specific and can be applied to
any metamodel-based language, regardless of the degree of formality of the lan-
guage. The reason is that the semantics of partiality is expressed in terms of
sets of models (i.e., possible concretizations) and does not depend on the native
semantics of the underlying modeling language.

Most of the expressions of partiality in these examples required the added
partiality mechanisms. The exceptions, which could have been expressed na-
tively, are: (1) that types of attributes are unknown (as with the sizeRelated
attributes), in class diagram P1, and (2) the choice between the Monitor and
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its Notify messages (using an Alt operator, e.g., based on the STAIRS seman-
tics [6]), in sequence diagram P3. This suggests that language-independent par-
tiality types can add significant value to modeling languages.

4 Formalizing Partiality

In this section, we define an approach for formalizing the semantics of a partial
model and apply it to MAVO partiality. Specifically, given a partial model P,
we specify the set of concretizations [P] using First Order Logic (FOL). Our
approach has the following benefits: (1) it provides a general methodology for
defining the semantics of a partial modeling language; (2) it provides a mech-
anism for defining refinement, even between partial models of different types;
(3) it provides the basis for tool support for reasoning with partial models using
off-the-shelf tools; and (4) it provides a sound way to compose partial modeling
languages.

We begin by noting that a metamodel represents a set of models and can be
expressed as an FOL theory.

Definition 2 (Metamodel). A metamodel is a First Order Logic (FOL) the-
ory T = (X, ®), where X is th e signature and P is a set of sentences representing
the well-formedness constraints. X = (o, p) consists of the set of sorts o defin-
ing the element types and the set p of predicates defining the types of relations
between elements. The models that conform to T are the finite FO X-structures
that satisfy @ according to the usual FO satisfaction relation. We denote the set
of models with metamodel T by Mod(T).

The class diagram metamodel in Figure[Ilfits this definition if we interpret boxes
as sorts and edges as predicates.

Like a metamodel, a partial model also represents a set of models and thus
can also be expressed as an FOL theory. Specifically, for a partial model P,
we construct a theory FO(P) s.t. Mod(FO(P)) = [P]. Furthermore, since P
represents a subset of 7' models, we require that Mod(FO(P)) C Mod(T). We
guarantee this by defining FO(P) to be an extension of T that adds constraints.

Let M = bs(P) be the base model of a partial model P and let Pys be the
ground partial model which has M as its base model and its sole concretization —
ie., bs(Py) = M and [Py] = {M}. We first describe the construction of
FO(Py) and then define FO(P) in terms of FO(Pyr). To construct FO(Py),
we extend T to include a unary predicate for each element in M and a binary
predicate for each relation instance between elements in M. Then, we add con-
straints to ensure that the only first order structure that satisfies the resulting
theory is M itself.

We illustrate the above construction using the class diagram M in Figure 2{(a).
Interpreting it as a partial model Py, we have:

FO(Py) = ({(ocp; pep U pu), Pep U Du)
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(see Definition ), where ocp, pep and Pep are the sorts, predicates and well-
formedness constraints, respectively, for class diagrams, as described in Figure[Il
pu and Py are model M-specific predicates and constraints, defined in Figure
Since FO(Py) extends CD, the FO structures that satisfy FO(Py) are the class
diagrams that satisfy the constraint set @y in Figure[Bl Assume N is such a class
diagram. The constraint Complete ensures that N contains no more elements or
relation instances than M. Now consider the class Car in M. Ezists says that IV
contains at least one class called Car, Unique — that it contains no more than
one class called Car, and Distinct — that the class called Car is different from the
class called Vehicle. Similar sentences are given for class Vehicle and super
instance CsuperV. The constraint Type ensures that CsuperV has correctly typed
endpoints. These constraints ensure that FO(PFy) has exactly one concretization
and thus N =M.

Relaxing the constraints @y allows additional concretizations and represents
a type of uncertainty. For example, if we are uncertain about whether M is com-
plete, we can express this by removing the Complete clause from @y and thereby
allow concretizations to be class diagrams that extend M. Note that keeping or
removing the Complete clause corresponds exactly to the semantics of the an-
notations COMP and INC in OW partiality, as defined in Section Bl Similarly,
expressing each of May, Abs and Var partiality corresponds to relaxing @y by
removing Exists, Unique and Distinct clauses, respectively, for particular atoms.
For example, removing the FErists clause Jx : Class - Car(z) is equivalent to
marking the class Car with M(i.e., Car may or may not exist), while removing
the Distinct clause Vz : Class - Car(z) = —Vehicle(z) is equivalent to marking
the class Car with v(i.e., Car is a variable that can merge with Vehicle).

Figure[@l generalizes the construction in Figure[lto an arbitrary ground theory
FO(Pyr). pu contains a unary predicate E for each element F in M and a binary
predicate Rj for instance R(E;, E;) of relation R in M. Each of the atom-specific
clauses is indexed by an atom in model M to which it applies (e.g., Existsg
applies to element E). For simplicity, we do not show the element types of the
quantified variables.

We now formalize our earlier observation about relaxing @,;:

Observation 3 Given a ground partial model Pyy with FO(Py) = (o7, pr U
o), T UPp) constructed as in Figure[d, any relaxzation of the constraint @y
introduces additional concretizations into Mod(FO(Pyr)) and represents a case
of uncertainty about M.

This observation gives us a general and sound approach for defining the semantics
of a partial model. For partial model P with base model M, we define FO(P)
as FO(Pyr) with @) replaced by a sentence @p, where &y = Pp.

Application to MAVQ. Table [ applies the general construction in Figure
to the individual MAVO partiality annotations by identifying which clauses to
remove from @), for each annotation. For example, the annotation (S)E corre-
sponds to removing the clause Uniqueg. Note that nothing in the construction
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pu contains the unary predicates Car(Class), Vehicle(Class) and the binary predicate
CsuperV(Class, Class).
@y contains the following sentences:
(Complete) (Vx : Class - Car(z) V Vehicle(z))A
(Vx,y : Class - super(z,y) = CsuperV(z,y)) A =3z - Datatype(z) A ...
Car:
(Exists) Jx :Class - Car(z)
(Unique) Vz,x’ : Class - Car(x) A Car(z') = z =1’
(Distinct) Vz : Class - Car(z) = —Vehicle(x)
similarly for Vehicle
CsuperV:
(Type)  Vz,y:Class - CsuperV(z,y) = Car(z) A Vehicle(y)
(Ezists) Vx,y :Class - Car(z) A Vehicle(y) = CsuperV(z,y)
(Unique) Vz,y,z’,y" : Class - CsuperV(z,y) A CsuperV(z',y) =z =2 Ay =y

Fig. 5. Example constraints for class diagram M in Figure 2(a)

of FO(Pyr) or in Table[ is dependent on any specific features of the metamodel
and hence the semantics of MAVO is language-independent.

The semantics for combined annotations is obtained by removing the clauses
for each annotation — e.g., the annotation (sv)E removes the clause Uniqueg and
the clauses Distinctegr and Distinctgg for all elements E’.

The MAVO partiality types represent special cases of relaxing the ground
sentence @), by removing clauses but, as noted in Observation [3, any sentence
weaker than @), could be used to express partiality of Mas well. This suggests a
natural way to enrich MAVO to express more complex types: augment the basic
annotations with sentences that express additional constraints. We illustrate this
using examples based on model P1 in Figure[3l The statement “if TimeMachine is
a Vehicle, then Hovercraft must be one as well” imposes a further constraint
on the concretizations of P1. Using FO(P1), we can express this in terms of the
FExists constraints for individual atoms: E2iStStimeMachine = FX1StSHovercrast /\
Existsusuperv. Thus, propositional combinations of Ezists sentences allow richer
forms of the May partiality to be expressed.

Richer forms of the Abs partiality can be expressed by putting additional
constraints on “s”-annotated atoms to further constrain the kinds of sets to
which they can be concretized. For example, we can express the multiplicity

Table 1. Semantics of MAVO Partiality Annotations

MAVO annotation Clause(s) to remove from @y
INC Complete
(Mm)E Existsg
(s)E Uniqueg
(V)E Distinctggr and Distincteg for all E', E' £ E
(M)Rij El‘iSlfSRU
()R Uniquer,
(V)Rj Distinctg, g, and Distinctgy g, for all Ry, i#k,j#1
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Input: model M of type T = ((or, pr), P1)
Output: FO(Pur)
FO(Pun) = ((or, pr U pumr), P17 U Do)
pyv = p® U p", where p® = {E(-)|E is an element of M}
and p" = {Rj(+,-)|Rjj is an instance of relation R € pr in M}
@) contains the following sentences:
(Complete) (Vo \/ E@)A( A Yoy Ry) = V Ry(r.y)
e

Repr Rijep™
for each element E in M:
(Existsg) Jz - E(x)
(Uniquek) Vz,y-E(z) AE(y) =z =y
(Distinctegr ) Vo - E(x) = —E'(x)
E’cpe E/£E
for each relation instance Ry in M:
(Typer;) v,y - Ri(z,y) = Ei(x) AEj(y)
(Existsg;)  Va,y-Ei(z) AE(y) = Ry(z,y)
(Uniquer;) — Vx,y,2',y" - Ri(z,y) ARj(z',y) =z =a" Ay =1y
(DiStinCtRinﬁl) \V/il,‘, Y- Rij(l‘, y) = _‘RLI(xf y)
R E€pT ik, jA]

Fig. 6. Construction of FO(Pxr)

constraint that there can be at most two sizeRelated attributes by replacing
the constraint Uniques;izereratea With the following weaker one:

Vrz,2',z" - sizeRelated(x) A sizeRelated(z’) A sizeRelated(z”)
=@=z'Vz=z"Vva' =2")
Of course, this can be easily expressed in a language with sets and counting, like
OCL. Similar enrichments of the Var and the OW partialities can be produced
by an appropriate relaxation of the Distinct and Complete constraints, respec-
tively. These enrichments of MAVO remain language-independent because they
do not make reference to the metamodel-specific features.

Refinement of MAVO Partiality. We have defined partial model semantics
in terms of relaxations to @,;. Below, we define refinement in terms of these as
well. Specifically, assume we have relaxations ®p and @p for partial models P’
and P, respectively. In the special case that their base models are equivalent,
we have P’ refines P iff [P'] C [P] and this holds iff #pr = Pp. However,
when the base models are different, the sentences are incomparable because they
are based on different signatures. The classic solution to this kind of problem
(e.g., in algebraic specification) is to first translate them into the same signature
and then check whether the implication holds in this common language (e.g.,
see [5]). In our case, we can use a refinement mapping R between the base
models, such as the one in Figures Bl and @ to define a function that translates
dp to a semantically equivalent sentence R(®p) over the signature X'p,. Then,
P’ refines P iff &p = R(Pp). We omit the details of this construction due to
space limitations; however, interested readers can look at the Alloy model for
Experiment 6 in Section [l for an example of this construction.
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Table 2. Results of experiments using Alloy

Exp. # Question Answer Scope Time (ms)
1 Does the ground case for P1 have a single instance? Yes 7 453
2 Does the ground case for P2 have a single instance? Yes 6 366
3 Is P1 extended with Q1 consistent? Yes 4 63
4 Is P1 extended with Q1 and Q2 consistent? No 20 64677
5a Is P1 extended with Q1 and Q3 consistent? Yes 4 64
5b  Is P1 extended with Q1 and —Q3 consistent? Yes 5 151
6  Is P2 a correct refinement of P17 Yes 10 9158

5 Tool Support and Preliminary Evaluation

In order to show the feasibility of using the formalization in Section €l for auto-
mated reasoning, we developed an Alloy [§] implementation for MAVO partiality.
We used a Python script to generate the Alloy encoding of the clauses (as defined
in Figure[@]) for the models P1 and P2, shown in Figure Bl The Alloy models are
available online at http://www.cs.toronto.edu/se-research/fasel2.htm.
We then used this encoding for property checking. More specifically, we attempted
to address questions such as “does any concretization of P have the property Q7”
and “do all concretizations of P have the property Q7”, where @ is expressed in
FOL. The answer to the former is affirmative iff ®p A @Q is satisfiable, and to
the latter iff @p A =@ is not satisfiable. We also used the tooling to check cor-
rectness of refinement, cast as a special case of property checking. As discussed
in Section M P’ refines P iff ®p. = R(Pp) where R translates @p according to
the refinement mapping. Thus, the refinement is correct iff ®p: A =R(Pp) is not
satisfiable.
Table 2] lists the experiments we performed, using the following properties:

Q1 : Vehicle has at most two direct subclasses.
Q2 : Every class, except C1 is a direct subclass of C1.
Q3 : There is no multiple inheritance.

Experiments (1) and (2) verify our assumption that the encoding described in
Figure [l admits only a single concretization. Although any pure MAVO model
is consistent by construction, Experiments (3) and (4) illustrate that this is
not necessarily the case when additional constraints are added. First, P1 is ex-
tended with Q1 and shown to be consistent. However, extending P1 with both
Q1 and Q2 leads to an inconsistency. This happens because Q2 forces (a) C1 to
be merged with Vehicle, and (b) TimeMachine to be its subclass, raising its
number of direct subclasses to 3. This contradicts Q1, and therefore, P1 AQ1 AQ2
is inconsistent. Note that Experiment (4) takes longer than the others because
showing inconsistency requires that the SAT solver enumerate all possible mod-
els within the scope bounds. In Experiment (5), we asked whether the version of
P1 extended with Q1 satisfies property Q3 and found that this is the case in some
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(Experiment 5a) but not all (Experiment 5b) concretizations. Finally, in Exper-
iment (6) we verified the refinement described in Figure B using the mapping in
the figure to construct a translation of @p;, as discussed in Section [l

Our experiments have validated the feasibility of using our formalization for rea-
soning tasks. In our earlier work [4], we have done a scalability study for property
checking using a SAT solver for May partiality (with propositional extensions).
The study showed that, compared to explicitly handling the set of concretizations,
our approach offers significant speedups for large sets of concretizations. We intend
to do similar scalability studies for all MAVO partialities in the future.

6 Related Work

In this section, we briefly discuss other work related to the types of partiality
introduced in this paper.

A number of partial behavioural modeling formalisms have been studied in
the context of abstraction (e.g., for verification purposes) or for capturing early
design models [I2]. The goal of the former is to represent property-preserving
abstractions of underlying concrete models, to facilitate model-checking. For ex-
ample, Modal Transition Systems (MTSs) [9] allow introduction of uncertainty
about transitions on a given event, whereas Disjunctive Modal Transition Sys-
tems (DMTSs) [10] add a constraint that at least one of the possible transitions
must be taken in the refinement. Concretizations of these models are Labelled
Transition Systems (LTSs). MTSs and DMTSs are results of a limited applica-
tion of May partiality. Yet, the MTS and DMTS refinement mechanism allows
resulting LTS models to have an arbitrary number of states which is differ-
ent from the treatment provided in this paper, where we concentrated only on
“structural” partiality and thus state duplication was not applicable.

In another direction, Herrmann [7] studied the value of being able to express
vagueness within design models. His modeling language SeeMe has notational
mechanisms similar to OW and May partiality; however, there is no formal
foundation for these mechanisms.

Since models are like databases capturing facts about the models’ domain,
work on representing incomplete databases is relevant. Var partiality is tradi-
tionally expressed in databases by using null values to represent missing infor-
mation. In fact, our ideas in this area are inspired by the work on data exchange
between databases (e.g., [2]) which explicitly uses the terminology of “variables”
for nulls and “constants” for known values. An approach to the OW partiality is
the use of the Local Closed World Assumption [I] to formally express the places
where a database is complete.

Finally, our heavy reliance on the use of FOL as the means to formalize meta-
models and partial models gives our work a strong algebraic specification flavor
and we benefit from this connection. In particular, partial model refinement is
a kind of specification refinement [I1]. Although our application is different —
dealing with syntactical uncertainty in models rather than program semantics —
we hope to exploit this connection further in the future.
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7 Conclusion and Future Work

The key observation of our work is that many types of partiality information and
their corresponding types of refinement are actually language-independent and
thus can be added to any modeling language in a uniform way. In this paper, we
defined a formal approach for doing so in any metamodel-based language by using
model annotations with well-defined semantics. This allows us to incorporate
partiality across different languages in a consistent and complete way, as well
as to develop language-independent tools for expressing, reasoning with, and
refining partiality within a model. We then used this approach to define four
types of partiality, each addressing a distinctly different pragmatic situation
in which uncertainty needs to be expressed within a model. We combined all
four and illustrated their language independence by showing how they can be
applied to class diagrams and to sequence diagrams. Finally, we demonstrated
the feasibility of tool support for our partiality extensions by describing an Alloy-
based implementation of our formalism and various reasoning tasks using it.

The investigation in this paper suggests several interesting directions for fur-
ther research. First, since adding support for partiality lifts modeling languages
to partial modeling languages, it is natural to consider whether a similar ap-
proach could be used to lift model transformations to partial model transfor-
mations. This would allow partiality to propagate through a transformation
chain during model-driven development and provide a principled way of apply-
ing transformations to models earlier in the development process, when they
are incomplete or partial in other ways. Second, it would be natural to want
to interleave the partiality-reducing refinements we discussed in this paper with
other, language-specific, refinement mechanisms during a development process.
We need to investigate how these two types of refinements interact and how they
can be soundly combined. Third, since modelers often have uncertainty about
entire model fragments, it is natural to ask how to extend MAVO annotation to
this case. Applying May partiality to express a design alternative is straightfor-
ward — a fragment with annotation M may or may not be present; however, the
use of the other MAVO types is less obvious and deserves further exploration.
Finally, although we have suggested scenarios in which particular MAVO an-
notations would be useful, we recognize that the methodological principles for
applying (and refining) partial models require a more thorough treatment. We
are currently developing such a methodology.
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1 Introduction

Self-adaptive systems have been widely studied in several disciplines ranging from
Biology to Economy and Sociology. They have become a hot topic in Computer
Science in the last decade as a convenient solution to the problem of mastering the
complexity of modern software systems, networks and architectures.

According to a widely accepted black-box or behavioural definition, a software
system 1is called “self-adaptive” if it can modify its behaviour as a reaction to
a change in its context of execution, understood in the widest possible way,
including both the external environment and the internal state of the system
itself. Typically the changes of behaviour are aimed at improving the degree
of satisfaction of some either functional or non-functional requirements of the
system, and self-adaptivity is considered a fundamental feature of autonomic
systems, that can specialize to several other self-* properties (see e.g. [9]).

An interesting taxonomy is presented in [14], where the authors stress the highly
interdisciplinary nature of the studies of such systems. Indeed, just restricting to
the realm of Computer Science, active research on self-adaptive systems is carried
out in Software Engineering, Artificial Intelligence, Control Theory, and Network
and Distributed Computing, among others. However, as discussed in §3] only a
few contributions address the foundational aspects of such systems, including their
semantics and the use of formal methods for analysing them.

In this paper we propose an answer to very basic questions like “when is
a software system adaptive?” or “how can we identify the adaptation
logic in an adaptive system?”. We think that the limited effort placed in the
investigation of the foundations of (self-)adaptive software systems might be due
to the fact that it is not clear what are the characterizing features that distinguish
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such systems from plain (“non-adaptive”) ones. In fact, almost any software
system can be considered self-adaptive, according to the black-box definition
recalled above, since any system of a reasonable size can modify its behaviour
(e.g., by executing different conditional branches) as a reaction to a change in
the context of execution (like the change of variables or parameters).

These considerations show that the above behavioural definition of adaptivity
is not useful in pinpointing adaptive systems, even if it allows to discard many
systems that certainly are not. We should rather take a white-bor perspective
which allows us to inspect, to some extent, the internal structure of a system:
we aim to have a clear separation of concerns to distinguish the cases where the
changes of behaviour are part of the application logic from those where they
realize the adaptation logic, calling adaptive only systems capable of the latter.

Self-adaptivity is often obtained by enriching the software that implements
the standard application logic with a control loop that monitors the context
of execution, determines the changes to be enforced, and enacts them. Systems
featuring such an architectural pattern, often called MAPE-K [8[9/10], should
definitely be considered as adaptive. But as argued in [4] there are other, simpler
adaptive patterns, like the Internal Feedback Loop pattern, where the control
loop is not as neatly separated from the application logic as in MAPE-K, and
the Reactive Adaptation pattern, where the system just reacts to events from
the environment by changing its behaviour. Also systems realizing such patterns
should be captured by a convincing definition of adaptivity, and their adaptation
logic should be exposed and differentiated from their application logic.

Other software systems that can easily be categorized as (self-)adaptive are
those implemented with programming languages explicitely designed to express
adaptation features. Archetypal examples are languages belonging to the paradigm
of Context Oriented Programming, where the contexts of execution are first-class
citizens [I5], or to that of Dynamic Aspect Oriented Programming. Nevertheless,
it is not the programming language what makes a program adaptive or not: truly
adaptive systems can be programmed in traditional languages, exactly like object-
oriented systems can, with some effort, in traditional imperative languages.

The goal of this position paper is to present a conceptual framework for adapta-
tion, proposing a simple structural criterion to portray adaptivity (§2]). We discuss
how systems developed according to mainstream methodologies are shown to be
adaptive according to our definition (§3]), and explain how to understand adaptiv-
ity in many computational formalisms (§]). We sketch a first formalization of our
concepts (§0]). Finally, we discuss future developments of these ideas (§0l).

2 When is a Software Component Adaptive?

Software systems are made of one or more processes, roughly programs in ex-
ecution, possibly interacting among themselves and with the environment in
arbitrarily complex ways. Sometimes an adaptive behaviour of such a complex
system may emerge from the interactions among its components, even if the
components in isolation are not adaptive. However, we do not discuss this kind
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of adaptivity here: we focus instead on the adaptivity of simple components, for
which we introduce the following conceptual framework.

According to a traditional paradigm, a program governing the behaviour of
a component is made of control and data: these are two conceptual ingredients
that in presence of sufficient resources (like computing power, memory or sensors)
determine the behaviour of the component. In order to introduce adaptivity in
this framework, we require to make explicit the fact that the behaviour of a com-
ponent depends on some well identified control data. At this level of abstraction
we are not concerned with the way the behaviour of the component is influenced
by the control data, nor with the structure of such data.

Now, we define adaptation as the run-time modification of the con-
trol data. From this basic definition we derive several others. A component
is adaptable if it has a distinguished collection of control data that
can be modified at run-time. Thus if either the control data are not iden-
tified or they cannot be modified, then the system is not adaptable. Further, a
component is adaptive if it is adaptable and its control data are mod-
ified at run-time, at least in some of its executions. And a component is
self-adaptive if it is able to modify its own control data at run-time.

Given the intrinsic complexity of adaptive systems, this conceptual view of
adaptation might look like an oversimplification. Our goal is to show that instead
it enjoys most of the properties that one would require from such a definition.

Any definition of adaptivity should face the problem that the judgement
whether a system is adaptive or not is often subjective. Indeed, one can always
argue that whatever change in the behaviour the system is able to manifest is
part of the application logic, and thus should not be deemed as “adaptation”.
From our perspective, this is captured by the fact that the collection of control
data of a component can be defined, at least in principle, in an arbitrary way,
ranging from the empty set (“the system is not adaptable”) to the collection of
all the data of the program (“any data modification is an adaptation”).

As a concrete example, we may ask ourselves whether the execution of a sim-
ple branching statement, like if tooHeavy then askForHelp else push can be
interpreted as a form of adaptation. The answer is: it depends.

Suppose that the statement is part of the software controlling a robot, and
that the boolean variable tooHeavy is set according to the value returned by
a sensor. If tooHeavy is considered as a standard program wvariable, then the
change of behaviour caused by a change of its value is not considered “adapta-
tion”. If tooHeavy is instead considered as control data, then its change triggers
an adaptation. Summing up, our question can be answered only after a clear
identification of the control data.

Ideally, a sensible collection of control data should be chosen to enforce a
separation of concerns, allowing to distinguish neatly, if possible, the activities
relevant for adaptation (those that affect the control data) from those relevant
for the application logic only (that should not modify the control data). We will
come back to this methodological point along §3] and §4
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Of course, any computational model or programming language can be used to
implement an adaptive system, just by identifying the part of the data that gov-
erns the behaviour. Consequently, the nature of control data can vary considerably,
ranging from simple configuration parameters to a complete representation of the
program in execution that can be modified at run-time. This latter scenario is typi-
cal of computational models that support meta-programming or reflective features
even if; at least in principle, it is possible for any Turing-complete formalism. We
shall discuss in §lhow adaptivity, as defined above, can be obtained in systems im-
plemented according to several computational formalisms. Before that, as a proof
of concept, we discuss in the next section how several well accepted architectures
of adaptive systems can be cast in our framework.

3 Architectures, Patterns and Reference Models for
Adaptivity

Several contributions to the literature describe possible architectures or reference
models for adaptive systems (or for autonomic systems, for which self-adaptivity is
one of the main features). In this section we survey some of such proposals, stress-
ing for each of them how a reasonable notion of control data can be identified.
According to the MAPE-K architecture, a

widely accepted reference model introduced | autonoMIC MANAGER

in a seminal IBM paper [§], a self-adaptive w

Plan
system is made of a component implementing /
the application logic, equipped with a control ' :
loop that monitors the execution through suit- Monitor f  Knowledge X Evecute
able sensors, analyses the collected data, plans _
an adaptation strategy, and finally executes /‘T-‘
the adaptation of the managed component ==

MANAGED COMPONENT

Control

through some effectors; all the phases of the
control loop access a shared knowledge reposi-
tory. Adaptation according to this model nat-
urally fits in our framework with an obvious choice for the control data: these are
the data of the managed component which are either sensed by the monitor or
modified by the execute phase of the control loop. Thus the control data repre-
sent the interface exposed by the managed component through which the control
loop can operate, as shown in Fig.[Il The managed component is adaptable, and
the system made of both the component and the control loop is self-adaptive.
The construction can be iterated, as the control loop itself could be adaptable.
As an example think of a component which follows a plan to perform some tasks.
It can be adaptable, having a manager which devises new plans according to
changes in the context or in the component’s goals. In turn, this planning compo-
nent might itself be adaptable, with another component that controls and adapts
its planning strategy, for instance determining the new strategy on the basis of
a tradeoff between optimality of the plans and computational cost. In this case,
the planning component (that realizes the control loop of the base component)

Fig. 1. Control data in MAPE-K
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exposes itself some control data (conceptually part of its knowledge), thus en-
abling a hierarchical composition that allows one to build towers of adaptive
components (Fig. [2).

Another general reference model has been proposed in [I], where (computational)
reflection is promoted as a mecessary criterion for any self-adaptive software
system. Reflection implies the presence, besides of base-level components and com-
putations, also of meta-level subsystems and meta-computations that act on a
meta-model. Meta-computations can inspect and modify the meta-model that is
causally connected to the base-level system, so that changes in one are reflected
in the other. The authors argue that most methodologies and frameworks pro-
posed for the design and development of self-adaptive systems rely on some form
of reflection, even if this is not always made explicit. Building on these consider-
ations, in [I8] they introduce FORMS, a formal reference model that provides
basic modeling primitives and relationships among them, suitable for the design
of self-adaptive systems. Such primitives allow one to make explicit the presence
of reflective (meta-level) subsystems, computations and models.

The goals of [I] are not dissimilar from ours, as they try to capture the essence
of self-adaptive systems, identifying it in computational reflection; recall anyway
that with our notion of control data we aimed at capturing the essence of the sole
adaptability. We argue that in self-adaptive systems conforming to this model it
should be relatively easy to identify the relevant control data. It is pretty clear
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that in reflective systems containing an explicit meta-model of the base-level sys-
tem (like those conforming to the architecture-based solution proposed in [12]),
such meta-model plays exactly the role of control data. Nevertheless, the FORMS
modeling primitives can be instantiated and composed in a variety of ways (one
for modeling MAPE-K and one for a specific application are discussed in [18]); in
general in any such reflective system the control data could be identified at the
boundaries between the meta-level and the base-level components.

In other frameworks for the design of adaptive systems (like [I9]) the base-
level system has a fixed collection of possible behaviours (or behavioural models),
and adaptation consists of passing from one behaviour to another one, for exam-
ple for the sake of better performance, or to ensure, in case of partial failure, the
contractually agreed functionalities, even if in a degraded form. The approach
proposed in [I9] emphasizes the use of formal methods to validate the devel-
opment of adaptive systems, for example by requiring the definition of global
invariants for the whole system and of local requirements for the “local” be-
haviours. Specifically, it represents the local behavioural models with coloured
Petri nets, and the adaptation change from one local model to another with
an additional Petri net transition (labeled adapt). Such adapt transitions de-
scribe how to transform a state (a set of tokens) in the source Petri net into a
state in the target model, thus providing a clean solution to the state transfer
problem common to these approaches. In this context, a good choice of control
data would be the Petri net that describes the current base-level computation,
which is replaced during an adaptation change by another local model. Instead,
the alternative and pretty natural choice of control data as the tokens that are
consumed by the adapt transition would be considered poor, as it would not
separate clearly the base-level from the meta-level computations.

In the architectural approach of [2], a system specification has a two-layered
architecture to enforce a separation between computation and coordination. The
first layer includes the basic computational components with well-identified inter-
faces, while the second one is made of connectors (called coordination contracts)
that link the components appropriately in order to ensure the required system’s
functionalities. Adaptation in this context is obtained by reconfiguration, which
can consist of removal/addition/replacement of both base components and con-
nectors among them. The possible reconfigurations of a system are described
declaratively with suitable rules, grouped in coordination contexts: such rules
can be either invoked explicitly, or triggered automatically by the verification of
certain conditions. In this approach, as adaptation is identified with reconfigu-
ration, the control data consist of the whole two-layered architecture, excluding
the internal state of the computational components.

More recently, a preliminary taxonomy of adaptive patterns has been pro-
posed [4]. Two of these capture typical control loop patterns such as the internal
and the external ones. Like MAPE-K, also these patterns can be cast easily in
our framework (see Fig. [B): in the internal control loop pattern, the manager
is a wrapper for the managed component and it is not adaptable, while in the
external control loop pattern the manager is an adaptable component that is
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connected with the managed component. The third adaptive pattern describes
reactive components (see Fig. H]). Such components are capable to modify their
behavior in reaction to an external event, without any control loop. In our con-
ceptual framework, a reactive system of this kind is (self-)adaptive if we consider
as control data the variables that are modified by sensing the environment.

Let us conclude by considering two of the few contributions that propose a
formal semantics for adaptive systems. In [I3] the author identifies suitable se-
mantical domains aimed at capturing the essence of adaptation. The behaviour
of a system is formalized in terms of a category of specification carrying programs
(also called contracts), i.e. triples made of a program, a specification and a satis-
faction relation among them; arrows between contracts are refinement relations.
Contracts are equipped with a functorial semantics, and their adaptive version is
obtained by indexing the semantics with respect to a set of stages of adaptation,
yielding a coalgebric presentation potentially useful for further generalizations.
At present it is not yet clear whether a notion of control data could fit in this
abstract semantical framework or not: this is a topic of current investigation.

Finally, [3] proposes a formal definition of when a system exposes an adaptive
behaviour with respect to a user. A system is modeled as a black-box component
that can interact with the user and with the environment through streams of data.
A system is assumed to be deterministic, thus if it reacts non-deterministically
to the input stream provided by the user, this is interpreted as an evidence of
the fact that the system adapted its behaviour after an interaction with the
environment. Different kinds of adaptation are considered, depending on how
much of the interaction between the environment and the system can be observed
by the user. Even if formally crisp, this definition of adaptivity is based on strong
assumptions (e.g. systems are deterministic, all adaptive systems are interactive)
that can restrict considerably its range of applicability. For example, it would
not classify as adaptive a system where a change of behaviour is triggered by an
interaction with the user.

4 Adaptivity in Various Computational Paradigms

As observed in §2] and §3] the nature of control data can vary considerably de-
pending both on the degree of adaptivity of the system and on the nature of
the computational formalisms used to implement it. Examples of control data
include configuration variables, rules (in rule-based programming), contexts (in
context-oriented programming), interactions (in connector-centered approaches),
policies (in policy-driven languages), aspects (in aspect-oriented languages), mon-
ads and effects (in functional languages), and even entire programs (in models
of computation exhibiting higher-order or reflective features).

We outline some rules of thumb for the choice of control data within a few
computational formalisms that are suited for implementing adaptive systems.

Context-Oriented Programming. Many programming languages have been
promoted as suitable for programming adaptive systems [7]. A recent exam-
ple is context-oriented programing which has been designed as a convenient
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paradigm for programming autonomic systems in general [I5]. The main idea
of this paradigm is that the execution of a program depends on the run-time
environment under which the program is running.

Many languages have been extended to adopt the context-oriented paradigm.
We mention among others Lisp, Python, Ruby, Smalltalk, Scheme, Java, and
Erlang. The notion of context varies from approach to approach and in general
it might refer to any computationally accessible information. A typical example
is the environmental data collected from sensors. In many cases the universe of
all possible contexts is discretised in order to have a manageable, abstract set of
fixed contexts. This is achieved, for instance, by means of functions mapping the
environmental data into the set of fixed contexts. Code fragments like methods
or functions can then be specialized for each possible context. Such chunks of
behaviours associated with contexts are called wvariations.

The context-oriented paradigm can be used to program autonomic systems
by activating or deactivating variations in reaction to context changes. The key
mechanism exploited here is the dynamic dispatching of variations. When a piece
of code is being executed, a sort of dispatcher examines the current context of
the execution in order to decide which variation to invoke. Contexts thus act as
some sort of possibly nested scopes. Indeed, very often a stack is used to store
the currently active contexts, and a variation can propagate the invocation to
the variation of the enclosing context.

The key idea to achieve adaptation along the lines of the MAPE-K framework
is for the manager to control the context stack (for example, to modify it in
correspondence with environmental changes) and for the managed component
to access it in a read-only manner. Those points of the code in which the managed
component queries the current context stack are called activation hooks.

Quite naturally, context-oriented programming falls into our framework by
considering the context stack as control data. With this view, the only difference
between the approach proposed in [I5] and our ideas is that the former suggests
the control data to reside within the manager, while we locate the control data
in the interface of the managed component.

Declarative Programming. Logic programming and its variations are one of
the most successful declarative programming paradigms. In the simplest variant,
a logic program consists of a set of Horn clauses and, given a goal, a computation
proceeds by applying repeatedly SLD-resolution trying to reach the empty clause
in order to refuse the initial goal.

Most often logic programming interpreters support two extra-logical predi-
cates, assert and retract, whose evaluation has the effect of adding or removing
the specified Horn clause from the program in execution, respectively, causing
a change in its behaviour. This is a pretty natural form of adaptation that fits
perfectly in our framework by considering the same clauses of the program as
control data. More precisely, this is an example of self-adaptivity, because the
program itself can modify the control data.
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Rule-based programming is another example of a very successful and widely
adopted declarative paradigm, thanks to the solid foundations offered by rule-
based machineries like term and graph rewriting. As many other programming
paradigms, several rule-based approaches have been adapted or directly applied
to adaptive systems (e.g. graph transformation [6]). Typical solutions include
dividing the set of rules into those that correspond to ordinary computations and
those that implement adaptation mechanisms, or introducing context-dependent
conditions in the rule applications (which essentially corresponds to the use
of standard configuration variables). The control data in such approaches are
identified by the above mentioned separation of rules, or by the identification
of the context-dependent conditions. Such identification is often not completely
satisfactory and does not offer a neat and clear separation of concerns.

The situation is different when we consider rule-based approaches which enjoy
higher-order or reflection mechanisms. A good example is logical reflection, a key
feature of frameworks like rewriting logic. At the ground level, a rewrite theory
R (e.g. software module) let us infer a computation step R -t — ¢’ from a term
(e.g. program state) ¢ into ¢’. A universal theory U let us infer the computation
at the meta-level, where theories and terms are meta-represented as terms: U +
(R,t) — (R,t'). Since U itself is a rewrite theory, the reflection mechanism can
be iterated yielding what is called the tower of reflection. This mechanism is
efficiently supported by Maude [5] and has given rise to many interesting meta-
programming applications like analysis and transformation tools.

In particular, the reflection mechanism of rewriting logic has been exploited
in [I1]) to formalize a model for distributed object reflection, suitable for the spec-
ification of adaptive systems. Such model, suggestively called Reflective Russian
Dolls (RRD), has a structure of layered configurations of objects, where each
layer can control the execution of objects in the lower layer by accessing and
executing the rules in their theories, possibly after modifying them, e.g., by in-
jecting some specific adaptation logic in the wrapped components. Even at this
informal level, it is pretty clear that the RRD model falls within our conceptual
framework by identifying as “control data” for each layer the rules of its theory
that are possibly modified by the upper layer. Note that, while the tower of
reflection relies on a white-box adaptation, the russian dolls approach can deal
equally well with black-box components, because wrapped configurations can
be managed by message passing. The RRD model has been further exploited
for modeling policy-based coordination [I6] and for the design of PAGODA, a
modular architecture for specifying autonomous systems [17].

Models of Concurrency. Languages and models emerged in the area of con-
currency theory are natural candidates for the specification and analysis of au-
tonomic systems. We inspect some (most) widely applied formalisms to see how
the conceptual framework can help us in the identification of the adaptation
logic within each model. Petri nets are without doubts the most popular model
of concurrency, based on a set of repositories, called places, and a set of activ-
ities, called transitions. The state of a Petri net is called a marking, that is a
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distribution of resources, called tokens, among the places of the net. A transi-
tion is an atomic action that consumes several tokens and produces fresh ones,
possibly involving several repositories at once. Since the topology of the net is
static, there is little margin to see a Petri net as an adaptive component: the
only possibility is to identify a subset of tokens as control data. Since tokens
are typed by repositories, i.e. places, the control data of a Petri net must be a
subset C'P of its “control” places. Tokens produced or removed from places in
CP can enable or inhibit certain activities, i.e. adapt the net. The set C'P can
then be used to distinguish the adaptation logic from the application logic: if
a transition modifies the tokens in C'P, then it is part of the adaptation logic,
otherwise it is part of the application logic. In particular, the transitions with
self-loops on places in C'P are those exploiting directly the control data in the
application.

Mobile Petri nets allow the use of colored tokens carrying place names, so
that the output places of a transition can depend on the data in the tokens it
consumes. In this case, it is natural to include the set of places whose tokens are
used as output parameters from some transition in the set of control places.

Dynamic nets allow for the creation of new subnets when certain transitions
fire, so that the topology of the net can grow dynamically. Such “dynamic” tran-
sitions are natural candidates for the adaptation logic.

Classical process algebras (CCS, CSP, ACP) are certainly tailored to the mod-
eling of reactive systems and therefore their processes easily fall within the hat
of the interactive pattern of adaptation. Instead, characterizing the control data
and the adaptation logic is more difficult in this setting. Since process algebras
are based on message passing facilities over channels, an obvious attempt is to
identify suitable adaptation channels. Processes can then be distinguished on
the basis of their behavior on such channels, but in general this task is more
difficult with respect to Petri nets, because processes will likely mix adaptation,
interaction and computation.

The m-calculus, the join calculus and other nominal calculi, including higher-
order versions (e.g. the HO m-calculus) can send and receive channels names,
realizing some sort of reflexivity at the level of interaction: they have the ability
to communicate transmission media. The situation is then analogous to that of
dynamic nets, as new processes can be spawn in a way which is parametric with
respect to the content of the received messages. If again we follow the distinction
between adaptation channel names from ordinary channel names, then we inherit
all the difficulties described for process algebras and possibly need sophisticated
forms of type systems or flow analysis techniques to separate the adaptation
logic from the application logic.

Paradigms with Reflective, Meta-level or Higher-Order Features. The
same kind of adaptivity discussed for rewriting logic can be obtained in several
other computational paradigms that, offering reflective, meta-level or higher-order
features, allow one to represent programs as first-class citizens. In these cases
adaptivity emerges, according to our definitions, if the program in execution is
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represented in the control data of the system, and it is modified during execution
causing changes of behaviour. Prominent examples of such formalisms, besides
rewriting logic, are process calculi with higher-order or meta-level aspects (e.g. HO
m-calculus, MetaKlaim), higher-order variants of Petri nets and Graph Grammars,
Logic Programming, and programming languages like LISP, Java, C#, Perl and
several others. Systems implemented in these paradigms can realize adaptation
within themselves (self-adaptivity), but in general the program under execution
can be modified also by a different entity, like an autonomic control loop written
in a different language, or in the same language but running in a separate thread.

5 A Formal Model for our Framework

We propose a simple formal model inspired by our conceptual framework. Our
main purpose is to provide a proof-of-concept that validates the idea of develop-
ing formal models of adaptive systems where the key features of our approach (e.g.
control data) are first-class citizens. The model we propose is deliberately simple
and based on well-known computational artifacts, namely transition systems.

Overall Setting. We recall that a labelled transition system (LTS) is defined
as a triple L = (@, A, —) such that Q is the set of states, A is the alphabet of
action labels and —C @ x A x Q is the transition relation. We write ¢ = ¢
when (g, a,q’) €= and we say that the system can evolve from ¢ to ¢’ via action
a. Sometimes, a distinguished initial state qg is also assumed.

The first ingredient is an LTS S that describes the behaviour of a software
component. It is often the case that S is not running in isolation, but within a
certain environment. The second ingredient is a LTS E that models the environ-
ment and that can constrain the computation of S, e.g. by forbidding certain
actions and allowing others. We exploit the following composition operator over
LTSs to define the behaviour of S within E as the LTS S||E.

Definition 1 (Composition). Given two LTSs L1 = (Q1,A1,—1) and Ly =
(Q2, A2, —2), we let L1||La denote the labelled transition system (Q1 X Q2, A1 U
Ag,—), where (q1,q2) = (¢}, qb) iff either of the following holds: q;i ~; q. for
i=1,2 witha € A;NAs; ¢; i ¢} and q; = q; for {i,j} = {1,2} witha € A;\ A;.

Note that in general it is not required that A; = As: the transitions are synchro-
nised on common actions and are asynchronous otherwise.

Since adaptation is usually performed for the sake of improving a component’s
ability to perform some task or fulfill some goal, we provide here a very abstract
but flexible notion of a component’s objective in form of logical formulae. In
particular, we let ¥ be a formula (expressed in some suitable logic) characterizing
the component’s goal and we denote with the predicate L |= 1 the property of
the LTS L satisfying v. Note that it is not necessarily the case that L = 1 gives
a yes/no result. For example, we may expect L |= ¢ to indicate how well L fits
1), or the likelihood that L satisfies ¥. In the more general case, we can assume
that L = 1 evaluates to a value in a suitable domain. We write L F~ ¢ when L
does not fit ¥, e.g. when the value returned is below a given threshold.
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Adaptable vs non-adaptable Components. In a perfect but static world,
one would engineer the software component S by ensuring that S||E = ¢ and
live happily afterwards (if such an S can be found). This is not realistic: the
analyst has only a partial knowledge of E; S must be designed for running in
different environments; the environment may change in an unpredictable manner
by external causes while S is running; the goal ¢ may be superseded by a more
urgent goal 1)’ to be accomplished. Roughly, we can expect frequent variations of
FE and possible, but less frequent, variations of . The component is adaptable
if it can cope with these changes in E and v by changes in its control data.

When S has no control data the component is not adaptable. The other ex-
treme is when the whole S is the control data. Indeed an LTS can be represented
and manipulated in several forms: as a list of transitions or as a transition matrix
when it is finite; as a set of derivation rules when it is finitely specified.

Most appealing is the case when S is obtained as the combination of some
statically fixed control F'C' and of some control data CD, ie., S = FC||CD.
Then, adaptavity is achieved by plugging-in a different control data C'D’ in
reaction to a change in the environment from E to E’ (with S||E’ [~ ¢ and
FC||CD'||E" = ), or to a change in the goal from ¢ to ¢’ (with S||E & ¢/
and FC||CD'||E = ¢'), or to a change in both.

We assume here that the managed component F'C' is determined statically
such that it cannot be changed during execution and that each component may
run under a unique manager C'D at any time. However, adaptable components
come equipped with a set of possible alternative managers C' Dy, ..., C Dy that can
be determined statically or even derived dynamically during the computation.

Knowledge-Based Adaptation. Ideally, given FC, F and 1 it should be
possible for the manager to select or construct the best suited control data C'D;
(among the available choices) such that FC||CD;||E = + and install it over F'C.
However, in real cases E may not be known entirely or may be so large that it is
not convenient to represent it exactly. Therefore, we allow the manager to have
a perfect knowledge of F'C' and of the goal 1, but only a partial knowledge of
E, that we denote by O and call the observed environment, or context.

The context O is derived by sensing the component’s run-time environment.
In general we cannot expect O and FE to coincide: first, because the manager has
limited sensing capabilities and second because the environment may be changed
dynamically by other components after it has been sensed. Thus, O models the
current perception of the environment from the viewpoint of the component.

The context O is expected to be updated frequently and to be used to adapt
the component. This means that C'D is chosen on the basis of F'C, O and v, and
that the manager can later discover that the real environment E differs from O
in such a way that FC||CDI||E } ¢ even if FC||CD||O k= 1. When this occurs,
on the basis of the discovered discrepancies between E and O, a new context O’
can be sensed to approximate F better than O, and O’ can be used to determine
some control data C'D’ in such a way that FC||CD'||O" = .
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Self-adaptive Components. If the available control data strategies C'Dy, ...,
CDy, are finitely many and statically fixed, then some precompilation can be
applied that facilitates the adaptation to the changing environment, as explained
below.

We assume that, given F'C, ¢ and any CD; we can synthesize the weakest
precondition ¢; on the environment such that O |= ¢; implies FC||CD;||O k= 9.
Then, when the context changes from O to O’, the manager can just look for
some ¢; such that O’ = ¢; and then update the control data to CD,.

Definition 2 (Self-adaptive Component). A self-adaptive component is a
tuple (FC,CD, v, ay) where FC models the managed component; CD is a family
of control data; v is the component’s goal; and oy : O X CD — CD is a function
that given a context O € O and the current control data CD returns a control
data CD’ such that FC||CD'||O = 4.

Enforcing the analogy of LTS based control, a possible formalization of the
control manager of a self-adaptive component can be given as the composition
of two LTSs: a fixed manager F'M and the control data M CD defined as follows.
The set of states of F'M is CD, and its transitions are labelled by context/goal

pairs: for any C D, CD’, O, we have a transition C'D 9Y, oD it ay(0,CD) =
CD’. The LTS MCD has a single state and one looping transition labelled with
the current context O and the current goal 1. The composition FM|MCD
constrains the manager to ignore all transitions with labels different from O, .
The manager updates the control data of the managed component according to
its current state. If C'D’ is the preferred strategy for O, but CD is the current

strategy, then the manager will move to C D’ and then loop via CD’ 9¥, opr.

Stacking Adaptive Components. Pushing our formal model further, by ex-
ploiting the control data of (FC,CD, v, a) we can add one more manager on top
of the self-adaptive component, along the tower of adaptation (§3)).

This second-level control manager can change the structure of MCD. For
example, just by changing the label of its sole transition this (meta-)manager
can model changes in the context, in the current goal, or in both.

However, one could argue that also other elements of the self-adaptive com-
ponent could be considered as mutable. For example, one may want to change
at run-time the adaptation strategy o, that resolves the nondeterminism when
there are several control data that can be successfully used to deal with the
same context O, or even the set of available control data CD, for example as
the result of a learning mechanism. This can be formalized easily by exposing a
larger portion of F'M as control data.

Needless to say, also the above meta-manager can be designed as an adaptable
component, formalizing its logic via a suitable LTS that exposes some control
data to be managed by a upper level control manager, and so on.
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6 Conclusion and Future Developments

We presented a conceptual framework for adaptation, where a central role is
played by the explicit identification of the control data that govern the adaptive
behavior of components. As a proof of concept we have discussed how systems
conforming to well-accepted adaptive architectures, including IBM’s MAPE-K
and several adaptive patterns, fit into our framework. We have also considered
several representative instances of our approach, focusing on foundational models
of computation and programming paradigms, and we proposed a simple formal-
ization of our concepts based on labelled transition systems.

We plan to exploit our conceptual framework by developing sound design
principles for architectural styles and patterns in order to ensure correctness-
by-design, and guidelines for the development of adaptive systems conforming
to such patterns. For instance, we might think about imposing restrictions on
the instances of our framework such as requiring an explicit separation of the
component implementing the application logic from the component modifying
the control data, in order to avoid self-adaptation within an atomic component
and to guarantee separation of concerns, and an appropriate level of modularity.

We also plan to develop analysis and verification techniques for adaptive sys-
tems grounded on the central role of control data. Data- and control-flow analysis
techniques could be used to separate, if possible, the adaptation logic from the
application logic. This could also reveal the limits of our approach in situations
where the adaptation and the application logics are too entangled.

Another current line of research aims at developing further the reflective, rule-
based approach (). Starting from [I1I] we plan to use the Maude framework
to develop prototype models of archetypal and newly emerging adaptive scenar-
ios. The main idea is to exploit Maude’s meta-programming facilities (based on
logical reflection) and its formal toolset in order to specify, execute and ana-
lyze those prototype models. A very interesting road within this line is to equip
Maude-programmed components with formal analysis capabilities like planning
or model checking based on Maude-programmed tools.

Even if we focused the present work on adaptation issues of individual com-
ponents, we also intend to develop a framework for adaptation of ensembles,
i.e., massively parallel and distributed autonomic systems which act as a sort of
swarm with emerging behavior. This could require to extend our local notion of
control data to a global notion, where the control data of the individual compo-
nents of an ensemble are treated as a whole, which will possibly require some
mechanisms to amalgamate them for the manager, and to project them back-
wards to the components. Also, some mechanisms will be needed to coordinate
the adaptation of individual components in order to obtain a meaningful adap-
tation of the whole system, in the spirit of the overlapping adaptation discussed
in [I9].

Last but not least, we intend to further investigate the connection of our work
with the other approaches presented in the literature for adaptive, self-adaptive
and autonomic systems: due to space limitation we have considered here just a
few such instances.
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Abstract. Feature-oriented programming (FOP) is an extension of ob-
ject-oriented programming to support software variability by refining
existing classes and methods. In order to increase the reliability of all
implemented program variants, we integrate design by contract (DbC)
with FOP. DbC is an approach to build reliable object-oriented soft-
ware by specifying methods with contracts. Contracts are annotations
that document and formally specify behavior, and can be used for for-
mal verification of correctness or as test oracles. We present and discuss
five approaches to define contracts of methods and their refinements
in FOP. Furthermore, we share our insights gained by performing five
case studies. This work is a foundation for research on the analysis of
feature-oriented programs (e.g., for verifying functional correctness or for
detecting feature interactions).

1 Introduction

Feature-oriented programming (FOP) [21I7] is a programming paradigm sup-
porting software variability by modularizing object-oriented programs along the
features they provide. A feature is an end-user-visible program behavior [15].
Code belonging to a feature is encapsulated in a feature module. A feature mod-
ule can introduce classes or modify existing classes by adding or refining fields
and methods. A program variant is generated by composing the feature modules
of the desired features. We use formal methods to increase the reliability of all
program variants that can be generated from a set of feature modules.

Design by contract (DbC) [20] has been proposed as a means to obtain reliable
object-oriented software. The key idea is to specify each method with a contract
consisting of a precondition and a postcondition. The precondition formulates
assumptions of the method that the caller of the method has to ensure. The post-
condition provides guarantees that the method gives such that the caller can rely
on it. Additionally, class invariants specify properties of objects that hold before
and must hold after a method call. DbC can be used for formal specification and
documentation of program behavior as well as for formal verification or testing
of functional correctness. We integrate DbC with FOP to increase the reliability
of FOP.
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class Array { Base
Item[] data; //@ invariant data != null;
Array(Item[] data) { this.data = data; }
/+#@ requires \nothing;
@ ensures (\forall int i; 0 < i && 1 < data.length;
@ data[i—1].key <= datali].key); @x/
void sort() { /* heap sort algorithm */ }

}

class ArrayWithInverse extemnds Array { /* ... %/ }

class Item {
int key; Object value; //@ invariant value != null;
Item(key, value) { this.key = key; this.value = value; }

Fig. 1. Design by contract with Java and JML: method contracts and class invariants
are embedded in comments

FOP adds another dimension of modularization and code reuse to object-
oriented programs besides inheritance. While in class-based inheritance, sub-
classes must satisfy the behavioral subtyping principle [17], method refinement
(i.e., method overriding in FOP) is different in nature from code reuse by inher-
itance. A feature may change the behavior of an existing method arbitrarily to
meet feature-specific requirements. For example, a security feature may restrict
the allowed parameter values of a method by strengthening the precondition.
Thus, when integrating DbC with FOP, the question arises how method con-
tracts of refined methods should be defined.

We present and discuss five new approaches to specify contracts of methods
which we refine using FOP. We consider the strengths and weaknesses of each
approach with respect to strictness, expressiveness, complexity, and specification
clones. Furthermore, we discuss the refinement of class invariants and evaluate
the practical applicability of the presented approaches using five case studies.
This paper is the first to focus on the specification of feature-oriented programs
using DbC. Previous work focused on ensuring consistency of feature-oriented
programs using type checking [3/10] and model checking [BI6]. With our sys-
tematic analysis of the different approaches to specify feature-oriented programs
using DbC, we provide the foundation for future research on the formal analy-
sis of feature-oriented programs, including the formal verification of functional
correctness, feature interaction detection, and test case generation.

2 Background

Figure [[l shows our running example — a Java program that is annotated with
the Java Modeling Language (JML) [16] to specify its behavior using DbC. Class
Array is specified by an invariant (using the keyword invariant) that states
that field data should not be null. Invariants have to be established by the
class constructors, they can be assumed before every method call and have to be
reestablished afterwards. Method sort () of class Array is specified by a method
contract. The precondition of the contract is expressed in the requires clause
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Array % ArrayWithInverse Item Base
N N PN

Ar‘ray : : DescendingOrder
N | |

Ar‘ray ArrayWit‘hInverse It‘em Synchronization

Fig. 2. Feature-oriented class refinement (dashed arrows) and object-oriented inheri-
tance (solid arrows) are concepts for reuse that are orthogonal to each other

and has to be ensured by the caller of the method. Here, the precondition is
simply true. In JML, behavioral subtyping [17] for subclasses is achieved by
specification inheritance. This means that all subclasses inherit the invariants of
their superclasses and that overriding methods must also satisfy the contracts
of the overridden methods. The ensures clause expresses the postcondition of a
contract and has to be guaranteed by the method. In our example, the postcon-
dition states that the resulting array is sorted. Contracts can also be denoted by
Hoare triples [I3]. Given a method m with precondition ¢ and postcondition ,
the contract of method m is denoted by {¢}m{v}.

Feature-oriented programming (FOP) is an extension of object-oriented pro-
gramming (OOP) aiming at better reuse capabilities across families of object-
oriented programs [21]. Classes are split into pieces distributed over feature mod-
ules; modules that implement end-user-visible features. A particular program can
be derived automatically by combining the feature modules of the required fea-
tures [2]. A feature module can introduce new classes, methods, and fields. If
a method with a particular name already exists in a previously composed fea-
ture module, the existing method is refined [2]. Method refinement is similar
to overriding with object-oriented inheritance, but the FOP keyword original
is used instead of super. The main difference is that original is bound at
the time the feature modules are composed. Figure 2] visualizes the FOP re-
finement of the classes of Figure [[l (Array, ArrayWithInverse, Item) with the
feature modules Base, DescendingOrder, and Synchronization. Base contains the
classes Array, ArrayWithInverse, and Item. DescendingOrder contains a class
refinement Array which refines class Array of Base to invert the sorting order
of implemented arrays. Synchronization contains refinements for all classes of
Base; as a result, these classes support multithreading.

3 Contracts for Feature-Oriented Programming

We present five approaches for the integration of DbC into FOP and discuss
advantages and disadvantages of each approach.

Plain Contracting. The application of DbC to FOP should be as simple as
possible to facilitate creation and maintenance of contracts for programmers.
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refines class Array { StableSort
/+*@ requires original;
@ ensures original && ...sorting is stable...; @x/
void sort() { /* merge sort algorithm */ }
}

Fig. 3. Ezplicit contract refinement: feature StableSort overrides method sort () with
an implementation of a stable sorting algorithm. Both, precondition and postcondition
maintain the refined contract indicated by the keyword original and refine it.

Plain contracting is the simplest possible approach allowing programmers to de-
fine contracts only for method introductions and not for method refinements. As
a consequence, method refinements may not change the behavior of the refined
method. Consider the example in Figure [[I Assume that an additional feature
Quicksort refines the class Array by overriding the body of method sort () with
a Quicksort implementation. The contract of method sort () does not have to be
changed, because the new implementation does not affect sorting. Given a set of
selected features and a total order on those features, a tool can decide for every
method whether it is a method introduction or a method refinement [3]. Then,
we can automatically check that no method refinement comes with a contract.

On the one hand, allowing programmers to introduce, but not to refine con-
tracts comes with advantages. First, we only need to specify a method once even
if it is refined by several other feature modules, and thus the effort for specifi-
cation (i.e., writing contracts) is minimal. Second, the source code is easier to
understand as the same contract holds in every possible combination of features.
This is beneficial since a programmer needs to know the contract for every called
method (e.g., to find out whether the precondition is fulfilled at every position
where the method is called). On the other hand, this approach might be too
restrictive. With plain contracting, we are not able to specify feature-oriented
programs, where the refinement of a method also requires the refinement of a
contract. For instance, if we replace an instable sorting algorithm with a stable
one, we may need to express that callers can rely on this property if the accord-
ing feature is present. In Section [6l we evaluate whether this restriction is an
actual problem in practice.

Explicit Contract Refinement. When refining a method, we may also need
to refine the corresponding contract if the method behavior is changed such that
it no longer satisfies the original contract. The refinement of contracts can be
supported by the same linguistic means as method refinement, which should raise
the acceptance of DbC in FOP. Explicit contract refinement allows programmers
to use the keyword original to refer the refined precondition and postcondition
in the contract refinement.

As an example for explicit contract refinement, in Figure Bl we assume that
feature Base is identical to the previous example and that a new feature Stable-
Sort replaces the sorting algorithm by a stable sorting algorithm; here, merge
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sort. In order to provide a contract, which states that the result is sorted and
the algorithm is stable, we refer to the existing postcondition and conjoin it with
a definition of stability (which we left out for brevity). Keyword original may
appear anywhere in the precondition or postcondition (not necessarily at the
beginning) or it may not appear at all.

Explicit contract refinement is a flexible approach where contracts can be re-
fined by including the previous contract if appropriate; preconditions and
postconditions can be refined individually. However, the approach may lead to
complex and less understandable specifications, especially, when several refine-
ments for the same method contract exist and some, but not all refinements, refer
to the previous contract. It may be unclear what a method actually needs to en-
sure and what it can rely on, because this may depend on the feature selection. In
particular, contracts depend on the feature from which the method is called.

Consecutive Contract Refinement. Consecutive contract refinement is an
approach with which new contracts can be defined for method refinements but
contracts for refined methods may not be invalidated. The central idea of the
approach is to adapt contract subtyping to FOP. Contract subtyping is widely
used in OOP and ensures that contracts defined in a certain class must be fulfilled
in all subclasses, too. The main difference to contract subtyping in OOP is that
features may be present or not, and thus the feature selection influences the
resulting method contract.

Given an original method m with precondition ¢ and postcondition v, we
can refine m with a new method implementation m’ with precondition ¢’ and
postcondition v’. Then, the refined method m’ needs to ensure the original
contract {¢}m/{t} and the new contract {¢'}m/{¢’}. As a result, the method
can be used in all places where method m is called, and the caller can rely on the
contract of the refined method m. For example, re-consider the feature StableSort
in Figure [l With consecutive contract refinement, the example would look the
same except for the replacement of ‘original’ with ’true’ in the precondition
and postcondition, because the contract of the refined method holds implicitly.

The main advantage of consecutive contract refinement compared to explicit
contract refinement is that existing contracts remain valid even if a method is
refined. This way, callers can rely on contracts defined in a particular feature
independent on the presence of other features, because refinements cannot in-
validate the contract. This advantage comes with a reduced applicability, since
we cannot encode cases in which a feature weakens an existing contract.

Contract Overriding. Contract overriding is a special case of explicit contract
refinement where the keyword original is never used. Contract overriding al-
lows programmers to replace the contract when refining a method, but does not
allow programmers to reference or reuse refined contracts. In contrast to consec-
utive contract refinement, contracts defined in previous features do not need to
be fulfilled. In previous work, we used contract overriding to verify SPL prod-
ucts by proof composition [23]. In this previous work, we additionally enforced
compatibility between contracts and their refinements. A contract refinement
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is compatible to a previous contract, if every method that fulfills the refined
contract also satisfies the contract of the refined method.

The main problem with contract overriding are specification clones, because
there is no way to adapt original contracts. The CPA (copy, paste, adapt) princi-
ple is the only option to refine contracts, which may result in many specification
clones and, thus, a high specification effort. Another serious disadvantage is that
the meaning of a contract is unclear for callers, because it heavily depends on
the actual feature selection and on the composition ordering. Furthermore, if two
features refine the same method contract using contract overriding, we may get
undesired contracts if both features are selected (known as feature interaction
problem of FOP [2]). We could introduce derivative contracts (i.e., a contract
that is only included if two or more features are selected) but derivative contracts
can introduce further specification clones.

Pure-Method Refinement. Preconditions and postconditions in JML may
also contain calls to methods that are free of side-effect and are guaranteed to
terminate (known as pure method in JML [I6]). If a pure method is used in a
contract, the contract depends on the result of this (pure) method call. Pure
methods called in contracts open a further possibility for contract refinement,
because pure methods can be refined as any other method in FOP — this allows
programmers to refine contracts as a spin-off. With pure-method refinement,
instead of actually refining a contract itself, a pure method used in a contract is
refined and, thus, indirectly contracts based on the feature selection are modified.

In Figure @ the example of pure-method refinement is based on an publicly
available case stud, which we have decomposed into features. Class ExamData-
Base stores the results of student exams. Array students contains the students
and their points, whereas a null-value refers to a free position in the array. The
method consistent () checks whether all students have at least zero points. The
method validStudent () is used in the contract of method consistent () and is
refined by a class refinement of feature module BackOut; this refinement allows
students to back out from an exam. Hence, the contract of method consistent ()
is refined by changing the body of method validStudent ().

Pure methods in contracts support fine-grained contract refinement. Even
parts of preconditions or postconditions can be refined, which would otherwise
require to clone contracts and modify them. Such specification clones may lead
to similar problems as code clones [14]. For example, when updating a contract,
we may forget to update clones of this contract and introduce inconsistencies.
Hence, specification clones should be avoided whenever possible requiring more
sophisticated specification approaches such as pure-method refinement.

Pure-method refinement is expressive, because method refinements do neither
depend on refined methods nor must relate to them in any way (e.g., weakening
or strengthening existing contracts).

!http://verifythis.cost-ic0701.org/
post?pid=database-system-for-managing-exams
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class ExamDataBase { Base
/+#@ ensures \result == (\forall int i; 0 <= 1
@ && 1 < students.length && validStudent (students([i]);
@ students[i].points >= 0); @x/
boolean consistent() {

for (int i=0; i<students.length; i++)
if (validStudent (students[i]) && students[i].points < 0)
return false;
return true;

}
/%@ pure @/ boolean validStudent (Student student) {
return student != null;
¥
¥
class Student {
//@ invariant matrNr > 0 && firstname != null && surname != null;
int matrNr; String firstname, surname;
}
refines class ExamDataBase { BackOut
/%@ pure @/ boolean validStudent (Student student) {
return original (student) && !student.backedOut;
¥
¥
refines class Student {
//@ invariant !backedOut || backedOutDate != null;

Date backedOutDate = null; boolean backedOut = false;

Fig. 4. Pure-method refinement: the contract of method consistent() contains a
call to the pure method validStudent(). Feature BackOut refines the contract of
consistent() indirectly by refining method validStudent(). By refining one pure
method, we can refine several contracts indirectly at the same time.

A further advantage is that no new keywords and no linguistic concepts are
needed for contract refinement, because traditional FOP mechanisms can be
used. Hence, it is easy to understand the meaning of contracts, if the refinements
of all pure methods therein are clear. The main disadvantage of pure-method
refinement is that it strongly relies on the concept of pure methods being allowed
to be called in contracts. Furthermore, the flexibility for refining methods by
FOP may cause contracts which are hard to understand (e.g., if we have several
refinements of the same method, some strengthening, some weakening, and some
overriding).

4 Refinement of Invariants

DbC involves the specification of methods by contracts and classes by invariants
usually expressing invariant properties of the fields. In the following, we assume
that contract refinement is carried out with any of the previously discussed
approaches and discuss how programmers can refine invariants analogously.

If invariants can be introduced in features, an invariant only needs to be
established for the resulting program if the corresponding feature is selected (e.g.,
in Figure [ feature BackOut introduces fields together with an invariant). Thus,
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we can build variable specifications using invariant introductions. Similarly to
contracts, invariants can be refined explicitly or implicitly (i.e., with or without a
keyword referring to invariants defined in previously composed feature modules).
When using explicit invariant refinement, we can use the keyword original to
reference the previous definition of the invariant and combine it with the previous
invariants. Applying consecutive contract refinement means that features can
only add new invariants that need to hold as well. We can apply the concept
of pure-method refinement to invariants. If an invariant contains a pure method
call, the pure method can be refined using FOP method refinement. Finally,
contract overriding can also be applied to invariants, where existing invariants
can be overridden by features which we refer to as invariant overriding.

Allowing the refinement of invariants provides additional flexibility for the
specification of feature-oriented programs. Every feature module can change in-
variants provided by previously composed feature modules. Depending on the
approach chosen for refinement of contracts, we find it intuitive to refine in-
variants using the same means. However, the introduction and refinement of
invariants allows that particular invariants only need to be fulfilled if a certain
feature is present. As a result, it can be difficult to examine those combinations
of features for which a certain invariant is present. The refinement of invariants
has huge consequences as an invariant must hold for all methods of a class, and
a change influences many callers and callees at the same time. Furthermore, the
flexibility with invariant refinement can easily result in specifications that can-
not be satisfied by any implementation. In Section [l we evaluate whether the
refinement of invariants is actually useful in practice.

5 Comparison

After presenting five alternative approaches of refining contracts, we now want
to compare them based on properties directly related to specifications and give
some intuition which approach is useful under which circumstances. We compare
the approaches according to four properties which are different perspectives on
the specification of programs: strictness, expressiveness, complexity, and specifi-
cation clones. While strictness and expressiveness may indicate that an approach
can not be applied to certain feature-oriented programs, the other criteria refer
to properties that are nice to have.

Strictness can be used to classify all presented approaches regarding allowed
and disallowed refinements from a logical point of view. Given a certain con-
tract C, a refined contract C’ may be strengthened with respect to method
calls (e.g., by adding a further postcondition) or weakened (e.g., by requiring a
further precondition). Strengthening means that every method fulfilling C’ also
fulfills C' and weakening means that every method fulfilling C also fulfills C".
Further possibilities are to refine the contract with an equivalent one (e.g., by
commuting preconditions or leaving the contract as-is) or to refine the contract
in arbitrary way. In Figure Bl we illustrate the strictness relation by a Venn
diagram. The intersection of weakened and strengthened contracts is the set of



Applying Design by Contract to Feature-Oriented Programming 263

ARBITRARY REFINEMENT

WEAKENING STRENGTHENING

EQUIVALENT

. Consecutive
Plain
Contracting G
Refinement

Explicit Contract Refinement
Pure-Method Refinement
Contract Overriding

Fig. 5. Comparison of the presented approaches of contract refinement regarding strict-
ness. Approaches may allow or disallow weakening and strengthening of contracts re-
sulting in four categories. For example, disallowing both means to allow only contract
refinements if they are equivalent to the original contract.

equivalent contracts. As plain contracting disallows any refinement of contracts,
the contracts are equivalent for every method refinement. Consecutive contract
refinement allows only to strengthen the original contract. All other presented
approaches allow arbitrary refinements.

Expressiveness refers to whether we can specify all meaningful properties of
feature-oriented programs. Given a particular program, we need to know whether
we can express its specification with a certain approach or not. There is a connec-
tion to strictness: approaches allowing arbitrary refinements are more expressive
than approaches allowing only strengthened contracts and similarly, strengthen-
ing is more expressive than equivalent contracts. In Table[Il we give an overview
on the expressiveness of all presented approaches. The low expressiveness of
plain contracting and consecutive contract refinement is simply based on their
strictness. Contract overriding has a lower expressiveness compared to other ap-
proaches allowing arbitrary refinements, because derivative contracts may be
needed if two features refine the same contract (see Section [).

Complexity indicates whether it is easy for a programmer to manually retrieve
the resulting contract of a certain method for a particular feature combination.
An approach, in which determining the contract has the lowest complexity, is
beneficial for programmers that need to create and maintain specifications be-
cause mistakes, such as wrong contracts or wrong implementations, can have
expensive outcomes (e.g., it is expensive to detect errors using verification or
testing). Thus, we expect contract specifications to have a low complexity. Con-
tract overriding has the highest complexity, as contracts can be arbitrarily refined
by each feature, and contracts can depend on the presence of every single feature.
Contracts created by explicit contract refinement have a lower complexity since
no derivative contracts are needed. Using pure-method refinement, contracts can
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Table 1. Comparison of the presented approaches for the refinement of contracts.
+ + means that the approach is good with respect to the property (i.e., the approach
has high expressiveness, contracts have a low complexity, specification clones can be

avoided). Intuitively, — — refers to the worst and 0 to a neutral evaluation.
Plain Explicit  Consecutive Pure Method Contract
Contracting Refinement Contract Ref. Refinement Overriding
Expressiveness - — + + 0 + + +
Complexity + + - — + 0 - -
Specification Clones + + 0 + + + - -

only be refined at predefined positions. Consecutive contract refinement only
allows a programmer to strengthen contracts meaning that if a certain feature
is selected, then all methods need to establish the contracts defined therein,
independent of other features. Clearly, the complexity is even lower if we do not
allow refinements at all using plain contracting, because a contract is either not
present or the same for all feature selections.

Specification clones are identical or very similar contracts. We expect that
specification clones lead to similar problems as code clones (see Section[3]). Hence,
a specification approach should help to avoid specification clones. We consider
contract overriding as the worst approach regarding specification clones, as it
provides no ability to reuse contracts such that the only option is to copy and
adapt contracts. A better approach is the explicit refinement of contracts and
invariants because the keyword original can be used to reference preconditions
and postconditions of a previous contract. With consecutive contract refinement,
all contracts are implicitly reused such that we expect even less specification
clones. The best approaches in terms of avoiding clones are plain contracting
and pure-method refinement. Plain contracting completely disallows contract
refinements, and with pure-method refinement even parts of contracts can be
refined which allows to reuse existing contracts.

6 Evaluation

In order to evaluate the practicability of the five proposed specification ap-
proaches, we performed two case studies by creating feature-oriented programs
including their specifications from scratch and three case studies by decom-
posing already specified object-oriented programs into feature modules. All our
case studies are implemented and specified in feature-oriented extensions of Java
and JML, but we expect similar results for other object-oriented languages and
contract-based specification languages. The advantage of Java and JML is that
many tools as well as specified and verified sample programs exist. However, it
turned out that most existing examples are too small to be decomposed into
features (i.e., only three of them were suitable for decomposition).
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Table 2. Results of case studies

ExamDB Paycard DiGraph BankAccount IntList

Classes, fields 4, 10 8, 42 8, 13 2,7 2,2

Methods (pure) 29 (8) 18 (5) 48 (22) 10 (0) 12 (0)

Features, variants 4, 8 4,6 4,8 6, 24 5, 16

Method refinements (pure) 2 (2) 3(1) 0 (0) 4 (0) 4 (0)

Contracts (in core features) 25 (17) 10 (4) 43 (27) 8 (2) 7(1)

Invariants (in core features) 5 (4) 6(2) 12(12) 4 (1) 3(2)
Contract refinements 0 1 0 2 1

Contracts with method
calls (refined, multiple) 8 (7,4) 2(2,0) 29 (0,10) 0(0,0) 0 (0, 0)
Invariant refinements 0 0 0 0 0

Invariants with method
calls (refined, multiple) 0 (0, 0) 0 (0,0) 5 (0, 0) 0 (0, 0) 0 (0, 0)

In Table[2] we present some statistics of our feature-oriented sample programs.
They have between two and eight classes consisting of two to 42 fields and ten to
48 methods. Some methods are declared as being pure. Our case studies have four
to six features where six to 24 combinations of features are considered valid and
can be used to generate different program variants. The programs are specified
by seven to 43 contracts and three to twelve invariants.

With respect to strictness and expressiveness of the approaches, we found
that four of five case studies could not be specified using plain contracting,
because contract refinement was required. Only, the DiGraph case study could be
specified with plain contracting; it does not contain a single method refinement as
it is a library and the features chosen for decomposition do not cross-cut method
implementations. But, method and contract refinement may be necessary when
extracting further features or extending DiGraph with a new features. Contract
strengthening is sufficient for three of five case studies. We specified the IntList
and the Paycard case studies using consecutive contract refinement. Thus, for
these case studies strengthening is sufficient. ExamDB and BankAccount rely on
contract weakening. While contract strengthening is commonly used for OOP,
it is not suited for any feature-oriented program. In larger programs, we expect
even more examples where contract weakening is needed.

Our results show that some, but not all feature-oriented method refinements
require contract refinements. For example, the BankAccount case study contains
four method refinements, but for only two of them the contract was refined. Con-
verse, pure-method refinement requires the refinement of methods per definition,
but some method refinements may be introduced only to refine contracts (i.e.,
the method refinement is not needed for implementation of features but only to
express their specification). For example, in the ExamDB case study, we newly
introduced two refinements of pure methods to actually refine seven contracts
each containing a call to the pure method.
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The granularity of contract refinement can influence the suitability of the
individual approaches. The case study ExamDB requires fine-grained refinement
of contracts. In Figure @ the contract of method consistent () is refined using
pure-method refinement. The contract quantifies over all valid students, and
feature BackOut can actually influence which students are valid (students that
are backed-out are considered as invalid). In this example, only a small part of a
contract needs to be refined, while most of it remains unchanged. Hence, we used
pure-method refinement for ExamDB to express these fine-granular refinements.
All other approaches would lead to specification clones. But, we also observed the
danger that pure-method refinement is applied accidentally. When decomposing
an existing system into features, the implementation may require the refinement
of certain methods. If one of such methods is declared as pure, it may also be used
in contracts. But then, we may accidentally refine contracts or invariants simply
by refining these methods. If we choose to disallow pure-method refinement, we
also need to make sure that either no pure method can be refined or that no
method referenced in contracts or invariants can be refined. The same holds if
we create a feature-oriented program from scratch.

In the case study Paycard, we used a combination of two approaches. We
used pure-method refinement to refine two contracts, because the refinement was
fine-grained. But, for another contract refinement, we used consecutive contract
refinement as the whole original contract should be established as-is and refined
by a further contract. The experience with our case studies showed that even
combinations of presented approaches may be useful.

Not a single case study required the refinement of invariants (see Figure [2).
Still, in all case studies except from DiGraph, invariants were introduced by
several, optional features resulting in invariants that only hold for products of
particular feature combinations. But, we found no case where a feature needed to
refine the invariant defined by another feature. However, we had to split invari-
ants into several smaller invariants when decomposing the ExamDB and Paycard
case studies into features. Splitting was possible as the invariant actually was a
conjunction, which can always be decomposed into several invariants. We cannot
conclude that the refinement of invariants can generally be avoided, but at least
in our case studies the introduction of invariants by features was sufficient. This
is a positive result according to the strong disadvantages of invariant refinement
discussed in Section @l

In our case studies, we also analyzed whether a global specification that holds
for all program variants is sufficient as suggested by Liu et al. [18]. Their example
is that every pacemaker variant shall generate a pulse when no heartbeat is
detected. In Table 2] we observe that only between 14 and 68 percent of all
contracts and between 25 and 100 percent of invariants are given in core features.
A core feature is a feature that is included in every program variant [8]. The
core features together build-up the part that is common to all program variants.
From the above figures, we can conclude that in none of our case studies a global
specification is sufficient and specifications in form of contracts should be given
for every feature as we propose in this paper.



Applying Design by Contract to Feature-Oriented Programming 267

In summary, our evaluation showed that contract refinement is needed when
applying DbC to FOP. It is not always sufficient to only strengthen contracts (al-
ready in our small case studies) such that an approach for contract refinement
should also allow weakening. From our qualitative and quantitative analysis,
pure-method refinement is the most promising approach because contracts can
be strengthened or weakened and fine-grained refinements are supported as well.
Pure-method refinement may be combined with consecutive contract refinement
to better support coarse-grained refinements. In our experience, invariant intro-
ductions should be used instead of invariant refinements whenever possible.

7 Related Work

In previous work, we considered formal verification of feature-oriented programs
based on JML specifications. We proposed proof composition with the proof as-
sistant Coq for efficient deductive verification of all program variants and applied
a specification approach similar to contract overriding [23]. For the detection of
feature interactions, we composed specifications with implicit contract refine-
ment and analyzed program variants using ESC [22]. In each work, we proposed
one specification approach and focused on verification issues. Our experience
was that it is not clear what is the best way to specify feature-oriented programs
using DbC. In this work, we propose three further specification approaches and
compare all approaches regarding practicability by means of five case studies.

Specification using DbC has been considered for other program modulariza-
tion techniques than FOP. Bruns et al. [9] and H&hnle et al. [12] discuss DbC for
delta-oriented programming (DOP). DOP is an extension of FOP where feature
modules (known as delta modules) can also remove methods, fields, and classes.
A delta module can add or remove invariants and contracts. Since a feature mod-
ule only refines existing methods, it is not reasonable to consider the removal of
contracts or invariants for FOP.

DbC has been applied to aspect-oriented programming [24JT9[T]. The aspect-
oriented around advice corresponds roughly to feature-oriented method refine-
ment and thus aspect-oriented programming can be seen as a superset of FOP [4].
Zhao and Rinard [24] proposed Pipa, a DbC specification language for AspectJ.
AspectJ programs with Pipa annotations are translated into Java programs with
JML annotations to allow programmers to reuse existing JML tools. Lorenz and
Skotiniotis [19] analyze advice contracts in terms of runtime assertions. They pro-
pose three advice categories with an according runtime assertion strategy each:
agnostic and obedient disallowing contract refinement (similar to contract over-
riding with equivalent contracts) and rebellious allowing contract strengthening
(similar to contract overriding with compatible contracts). Agostinho et al. [I]
discuss the interaction between classes and aspects while proposing agnostic
pieces of advice. All these approaches force programmers to create specification
clones, because they do not support contract weakening, which is needed in two
of our case studies. Furthermore, the absence of aspects is not considered, while
optional features in FOP are essential for software variability.
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Most specification approaches for OOP assume behavioral subtyping [17] for
subclasses which are the means to reuse code. Dhara and Leavens [I1] propose
specification inheritance to achieve behavioral subtyping which also is pursued
in Eiffel [20] and JML [16]. With consecutive implicit refinement, we transfered
the notion of behavioral subtyping to feature-oriented method refinement, but
two of five case studies cannot be specified using this approach, as it is too
restrictive.

8 Conclusion

In order to increase the reliability of feature-oriented programs, we discussed five
approaches to integrate DbC with FOP and evaluated them by means of five case
studies. We found that feature-oriented method refinement often requires the re-
finement of contracts such that the program specification depends on the actual
selection of features. In contrast, the refinement of invariants can be avoided in
our case studies. Furthermore, we identified the trade-off between expressive-
ness and complexity: while high expressiveness allows programmers to specify
arbitrary feature-oriented programs, the complexity of contracts increases.
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Abstract. Software product lines are families of products defined by
feature commonality and variability, with a well-managed asset base.
Recent work in testing of software product lines has exploited similar-
ities across development phases to reuse shared assets and reduce test
effort. The use of feature dependence graphs has also been employed to
reduce testing effort, but little work has focused on code level analysis
of dataflow between features. In this paper we present a compositional
symbolic execution technique that works in concert with a feature depen-
dence graph to extract the set of possible interaction trees in a product
family. It composes these to incrementally and symbolically analyze fea-
ture interactions. We experiment with two product lines and determine
that our technique can reduce the overall number of interactions that
must be considered during testing, and requires less time to run than a
traditional symbolic execution technique.

1 Introduction

Software product line (SPL) engineering is a methodology for developing families
of software programs through the managed reuse of a common and variable set
of assets [I8]. Variability at the application level is expressed in terms of features
(functional units) that are included or excluded from the individual programs.
The result is a set of similar, but unique program instantiations; in a mobile
phone product line, features such as the display drivers, messaging capabilities,
network support and video can be combined in different ways on top of the
core features found in all phones (e.g. phone dial). While uniqueness arises from
the different combination of variable features in each program, similarity comes
from both the commonality found in all instantiations, as well as from matching
subsets of features (i.e. partial products) between programs.

Variability, and the ability to generate many products from a core set of fea-
tures, provides flexibility and enables reuse during development, but causes prob-
lems for validation. Although individual features may be validated and tested in
multiple programs within the product line, this does not guarantee that specific
combinations of features will work properly when composed. Research has shown
that some faults — termed interaction faults — only occur under specific combi-
nations of features [2[13] and several SPL testing techniques have attempted to
account for this. For instance, Bertolino et al. [I] and Geppert et al. [6] propose

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 270-E87] 2012.
© Springer-Verlag Berlin Heidelberg 2012



Integration Testing of SPLs Using Compositional Symbolic Execution 271

a specification based technique to concretize a parameterized use case (based on
variability), but this is an exhaustive approach that tests each product individ-
ually. This is a limitation, since the variability space grows exponentially with
the number of features. If there are 4 choices for each of 10 features, then more
than one million instantiations of the SPL would need to be tested to cover all
possible combinations.

Kim et al. [TI] use a dependency analysis to determine which features are
relevant for each test within a test suite, reducing the number of products tested
per test case. This technique does not consider coverage of the entire feature
model, nor does it target the specific interactions; it only reduces the per-test
number products. A study by Reisner et al. [20] shows that in some configurable
systems — SPLs can be viewed as a type of configurable software system — analysis
of control flow can reduce the possible set of configuration options that should
be tested together. They do not consider other types of dependencies such as
data flow, nor do they apply their approach to product lines. And neither of
these studies targets specific interactions for test generation; they only reduce
the number of feature combinations that should not be tested together.

In our earlier research [3], we proposed a mapping between the variability
space of an SPL and a relational model in order to leverage ideas from combi-
natorial interaction testing (CIT), a model-based sampling technique that guar-
antees to test all pairs or t-way combinations of features within the product
line. Instead of testing all program instantiations in the example above, we can
test all pairs of features with approximately 24 SPL instances, or all triples of
features with around 130, using a common CIT generation tool [2]. Since em-
pirical evidence suggests that lower order interactions are responsible for most
interaction faults this provides some justification for CIT sampling [13].

While CIT provides a notion of coverage of the variability space, it also suffers
from limitations. First, there is an expectation that all possible programs in the
product line can be composed. But there may be features or groups of features
that are not developed until later phases of the SPL lifetime. Second, since CIT
operates at the feature combination level there is no guarantee that testing of
an instance will execute the interacting code; this will depend on the quality
of the test. Finally, CIT does not consider the direction of the interactions in
its model, yet at the code level, interactions may happen between features in
different directions. For instance, it is likely that data flows in both directions
between a multi-media messaging feature of a phone and its video feature. If we
have three features (f1, f2, f3), there are six directed 2-way possible interactions.

When testing a software product line to uncover interactions, we should test
from a perspective that avoids these limitations. Uncovering interactions during
integration testing — where features are composed as partial products — appears
to make sense from a combinatorial sense. We can test only the interactions
themselves and combine products in a way that avoids redundancy. Uzuncaova
et al. [24] use this idea by reusing a partial product’s integration test results
to generate a smaller test suite for a larger partial product. And Reis et al.
[19] apply integration testing over an SPL at the specification level to avoid
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redundantly testing common partial products. Finally, Stricker et al. [23] present
the ScenTED-DF methodology which uses dataflow between products to drive
integration testing at the model level.

In this paper, we present a new method of analyzing software product lines for
test generation. It uses ideas from CIT to drive coverage of feature interaction
tuples, reduces the variability space through the use of a code-based dependency
analysis, and uses directed symbolic execution to analyze possible feature combi-
nations. The result is a method that generates constraints for all partial products
at a lower cost than a full symbolic execution of an SPL code base. We also find,
that by counting directed interactions, we have a more precise model of what
should be tested. Finally, if we consider the constraints arising from symbolic
execution, these can be used to inform a test generation technique to focus on
the parts of the system that may have faults. The contributions of this work are:
(1) a dataflow informed compositional symbolic integration testing method for
SPLs; (2) the first discussion of interaction testing that incorporates directions;
and (3) a feasibility study that shows we can reduce the number of interactions
to test, and that the compositional technique uses less time than traditional
symbolic execution.

2 Background

Software product lines are families of software systems designed for a specific
domain, with a managed set of assets and well defined variability model [18]. The
products all share some commonality, but are customized by variable elements
of the system. Product lines vary in when they are configured. Some may be
configured by the developer at build time, others allow changes through re-
compilation, while some use run-time constructs to change during execution.

A key artifact of a software product line is the feature (or variability) model.
This is one differentiator from a general configurable system. There are many
formalisms that have been developed to represent these. In this paper we use
the Orthogonal Variability Model (OVM) developed by Pohl et al. [I§]. In OVM
Variation points (VP) are shown as triangles and variants (v) are shown as
rectangles. Variants will map directly to features in this paper. Dependencies
are shown as solid lines (mandatory) or dashed (optional). Alternative choices
are shown with arcs which are annotated with the the minimum and maximum
cardinality of that VP. When there is no annotation, exactly one variant can
be selected for the variation point. Additional constraints are allowed between
parts of the model in the form of excludes or requires.

2.1 Symbolic Execution

Symbolic execution [I2] is a path-sensitive program analysis technique that com-
putes program output values as expressions over symbolic input values and con-
stants. Symbolic execution of the code fragment:
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y =%
if (y > 0) then y++;
return y,;

would use a symbolic value X to denote the value of variable x on entry to the
fragment. Symbolic execution determines that there are two possible paths (1)
when X > 0 the value X + 1 is returned and (2) when /(X > 0) the value X is
returned. The analysis represents the behavior of the fragment as the pairs (X >
0, RETURN == X + 1) and ((X > 0), RETURN == X). The first element of
a pair encodes the conjunction of constraints along an execution path — the path
condition. The second element defines the values of the locations that are written
along the path in terms of the symbolic input variables, e.g. RETURN ==
means that the original value for x is returned.

The state of a symbolic execution is a triple (I, pc, s) where [, the current
location, records the next statement to be executed, pc, the path condition, is
the conjunction of branch conditions encoded as constraints along the current
execution path, and s : M X expr is a map that records a symbolic expression
for each memory location, M, accessed along the path.

Computation statements, m; = mo ® mg, where the m; € M and © is
some operator, when executed symbolically in state (I, pe, s) produce a new state
(I + 1,pc,s’) where Vm € M — {my} : s'(m) = s(m) and s(m1) = s(mza) ©
s(mg). Branching statements, if mq ® ma goto d, when executed symbolically in
state (I, pc, s) branch the symbolic execution to two new states (d, pc A (s(m1)®
s(ma)), s) and (I +1,pc A =(s(m1) ® s(ma)), s) corresponding to the “true” and
“false” evaluation of the branch condition, respectively.

An automated decision procedure is used to check the satisfiability of the
updated path conditions and, when a path condition is found to be unsatisfiable,
symbolic execution along that path halts. Decision procedures for a range of
theories used to express path conditions, such as, linear arithmetic, arrays, and
bit-vectors are available, e.g., Z3 [5].

2.2 Symbolic Method Summary

Several researchers [8,[I7] have explored the use of method summarization in
symbolic execution. In [§] summarization is used as a mechanism for optimizing
the performance of symbolic execution whereas [I7] explores the use of summa-
rization as a means of abstracting program behavior to avoid symbolic execution.
We adopt the definition of method summary in [I7], but we forgo their use of
over-approximation.

The building block for a method summary is the representation of a single ex-
ecution path through method, m, encoded as the pair (pc, w). This pair provides
information about the externally visible state of the program that is relevant
to an execution of m at the point where m returns to its caller. As described
above, the pc encodes the path condition and w is the projection of s onto the
set of memory locations that are written along the executed path. We can view
w a conjunction of equality constraints between names of memory locations and
symbolic expressions or, equivalently, as a map from locations to expressions.
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Fig. 1. Conceptual Overview of Compositional SPL Analysis

Definition 1 (Symbolic Summary [17]). A symbolic summary, for a method
m, i a set pairs Msym : P(PC x S) where

V(pe, w) € Msym : V(pc',w'") € Mgym — {(pc,w)} : pc A pc’is unsatisfiable.

Unfortunately, it is not always possible to calculate a summary that completely
accounts for the behavior of all methods. For example, methods that iterate over
input data structures that are unconstrained cannot be analyzed effectively — since
the length of paths are not known. We address this using the standard technique
of bounding the length of paths that are analyzed.

3 Dependence-Driven Compositional Analysis

Our technique exploits an SPL’s variability model and the inter-dependence of
feature implementations to reduce the cost of applying symbolic execution to
reason about feature interactions. Figure [Tl provides a conceptual overview.

As explained in Section [l an SPL is comprised of a source code base and
an OVM. The OVM and its constraints (e.g., the excludes between fs and f3)
defines the set of features that may be present in an instance of the SPL.

Our technique begins (step are denoted by large bold italic numerals in the
figure) by applying standard control flow and dependence analyses on the code
base. The former results in a control flow graph (CFG) and the latter results in a
program dependence graph (PDQG). In step 2, the PDG is analyzed to calculate a
feature dependence graph (FDG) which reflects inter-feature dependences. The
edges of the FDG are pruned to be consistent with the OVM, e.g., the edge from
f2 to f3 is not present.

Step 3 involves the calculation, from the FDG, of the hierarchy of all k-way
feature interaction trees. The structure of this hierarchy reflects how lower-order
interactions can be composed to create higher-order interactions. For instance,
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how the interaction among f1, f2, and f4 can be constructed by combining f;
with an existing interaction for fo and fy.

The interaction tree hierarchy is used to guide the calculation of symbolic
summaries for all interaction trees in a compositional fashion. This begins, in
Step 4, by applying symbolic execution to the source code of the individual fea-
tures in isolation. When composing two existing summaries, for example f; and
f3, to create a 2-way interaction tree, a summary of the behavior of the com-
mon SPL code which leads between those summaries must be calculated. Step
5 achieves this by locating the calls to the features in the CFG and calculating
a chop [21] — shown as the shaded figure in the CFG — the edges of the chop are
used to guide a customized symbolic execution to produce an edge summary. In
step 6, a pair of existing lower-order interaction summaries and the edge sum-
mary are composed to produce a higher-order summary — such a summary is
illustrated at point 7 in the figure.

In step 8, summaries can be exploited to detect faults, via comparison to fault
oracles, or to generate tests by solving the constraints generated by symbolic
execution and composition. We describe the major elements next.

3.1 Relating SPL Models to Implementations

An SPL implementation can be partitioned into regions of code that implement
each feature; the remaining code implements the common functionality shared
by all SPL instances. There are many implementation mechanisms for realizing
variability in a code base [I0]. Our methodology can target these by adapting the
summary computation for Step 4 and feature dependence graph construction for
Step 2, but for simplicity it suffices to view features as methods where common
code makes calls on those methods.

In the remainder of this section, we assume the existence of a mapping from
in the OVM to methods in a code base; we use the name of a feature to denote
the method when no confusion will arise. Features can be called from multiple
points in the common code, but to simplify the presentation of our technique,
we assume each feature is called from a single call site.

Given a pair of features, fi; and fo, where the call to fs is reachable in the
CFG from the call to fi, their common region is the source code chop [2] arising
when the calls are used as the chop criterion. This chop is a single-entry single-
exit sub-graph of the program control flow graph (CFG) where the entry node is
the call to fi and the exit node is the call to fo. The CFG paths within the chop
overapproximate the set of feasible program executions that can lead from the
return of f; to the call to fo. These chops play an important role in accounting
for the composite behavior of features as mediated by common code.

3.2 Calculating Feature Interactions

We leverage the concept of program dependences, and the PDG [I6], to deter-
mine inter-feature dependences. A PDG is a directed graph, (S, Eppa), whose
vertices are program statements, S, and (s;,s;) € Eppg if s; defines the value
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Algorithm 1. Computing k-way Interaction Trees
1: interactionTrees(k, (F, E))

2 :
3 for (fi, f;) € E

4 T U = tree(f;, f;)

5 fori=3tok+1

6: forti_léT/\lti_llii—l

7 forve F —u(ti—1)

8 if (root(ti—1),v) € E A consistent(v(t;—1 Uv)) then
9: T U = tree(ti—1, (root(ti—1),v))
10: else

11: for (v,v') € EAV € v(ti—1)
12: if consistent(v(ti—1 Uv) then T U = tree(t;—1, (v,v’))
13: endif

14:  return T
15: end interactionTrees()

of a location that is subsequently read at s;. A feature dependence graph (FDG)
is an abstraction of the PDG for an SPL implementation.

Definition 2 (Feature Dependence Graph). Given a PDG for an SPL,
(S,Eppg), the FDG, (F, Erpg), is a directed graph whose vertices are features,
F, and (fi, fj) € Erpca iff 3si,8; € S i 5 € S(fi) Asj € S(f;) A(si,85) € Eppc
where S(f) is the set of statements in feature f.

We capture the interaction among features by defining a tree that is embedded in
the FDG. The intuition is that the root is the sink of a set of feature dependence
edges. The output values of that root feature reflect the final interaction effects,
and are defined in terms of the input values of the features that form the leaves
of the tree.

Definition 3 (Interaction Tree). Given an FDG, (F, Erpg), a k-way inter-
action tree is an acyclic, connected, simple subgraph, (F', E’), where F' C F,
E' C Erpg, |F'| =k, and where Ir € F' :Yv € F' : r € v.(E')*. We call the
common reachable vertex the root of the interaction tree.

The set of all k-way interaction trees for an SPL can be constructed as shown in
Algorithm [l The algorithm uses a constructor tree() which, optionally, takes an
existing tree and adds edges to it expanding the set of vertices as appropriate.
For a tree, t, the set of vertices is v(t) and the root is root(t). Before adding a
tree, the set of features in the tree must be checked to ensure they are consistent
with the OVM; this is done using the predicate consistent().

The algorithm accepts k£ and an FDG and returns the set of k-way interactions.
It builds the set of interactions incrementally. For an i-way interaction, it extends
an 7 — l-way interaction by adding a single additional vertex and an edge. While
other strategies for building interaction trees are possible, this approach has
the advantage of efficiency and simplicity. Based on our case studies, reported
in Section M, this approach is sufficient to enable significant improvement over
more standard analyses of an SPL code base.

Interaction trees can be organized hierarchically based on their structure.
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Definition 4 (Interaction Hierarchy). Given a k-way interaction tree, tj, =
(F,E), where k > 1, we can define a pair of interaction trees t; = (F;, E;) and
t; = (F}, Ej), such that F; N F; =0, |F;| + |Fj| =k, and 3(fi, f;) € E. We say
that ty is the parent of t; and t; and, that t; and t; are the children of ty.

The base case of the hierarchy, where k = 1, is simply each feature in isolation.
There are many ways to construct such an interaction hierarchy, since for any
given k-way interaction tree cutting a single edge partitions the tree into two
children. As discussed below, the hierarchy resulting from Algorithm [ enjoys
a structure that can be exploited in generating summaries of interaction pat-
tern behavior. The parent (child) relationships among interaction trees can be
recorded at the point where the tree() constructor calls are made in Algorithm/[I]

3.3 Composing Feature Summaries

Our goal is to analyze program paths that span sets of features in an SPL to sup-
port fault detection and test generation. Our approach to feature summarization
involves two distinct phases: (1) the application of bounded symbolic execution
to feature implementations in isolation to produce feature summaries, and (2)
the matching and combination of feature summaries to produce summaries of
the behavior of interaction patterns.

Phase (1) is performed by applying traditional symbolic execution where the
length of the longest branch sequence is bounded to d — the depth. For each
feature, f, this results in a summary, fsum, as defined in Section [2

When performing symbolic execution of f there are three possible outcomes:
(a) a complete execution of f which returns normally as analyzed within d
branches, (b) an exception, including assertion violations, is detected before d
branches are explored, and (c) the depth bound is reached. In our work, we only
accumulate the outcomes falling into (a) into fsum.

Case (b) is interesting, because it may indicate a fault in feature f. The iso-
lated symbolic execution of f allows for any possible state on entry to
the feature, however, it is possible that a detected exception is infeasible in the
context of a system execution. In future work, we will preserving results from
case (b) and attempt to determine their feasibility when composed in interaction
patterns with other features — this would reduce and, when interaction patterns
are sufficiently large, eliminate false reports of exceptions.

For phase (2) we exploit the structure of the interaction hierarchy resulting
from the application of Algorithm [I] to generate a summary for a k-way inter-
action. As discussed above, such an interaction has (potentially several) pairs of
children. It suffices to select any of those pairs.

Within each pair there is a k—1-way interaction, ¢, which we assume has a sum-
mary isum = (pci,w;), and single feature, f, summarized as fsum = (pcy, wy),
which is connected by a single edge connected to either root(i) or one of i’s
leaves, [. To compose igym and fsum wWe must characterize the behavior of the
FDG edge.

The existence of an edge (f, f') means that there is a common region beginning
at the return from f and ending at the call to f’. Calculating the chop that
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Algorithm 2. Edge Summary (left) and Composing Summaries (right)

1: eSum(E, 1, e, pc, s, w, d)
2: if |pc| > 0

. /
3 if branch(l) 5 cSumls &)
4 Iy := target(l, true) 3. f;f?pc w)€s
5 if SAT (cond(l,s)) A (L,1l:) € E 1 for (v w ,
6: eSum(E, i, e, pc A cond(l, s), s,w,d — 1) 5 or (p_c yw') € s
T ly :=target(l, false) 6: ?gr'?éﬁfad( &)
8 if SAT (=cond(l,s)) A (I,1f) € E 7. e domfw)
9 eSum(E,ly,e,pc A —cond(l,s),s,w,d — 1) 8 eq := eq A input(s’, 1) = w(l)
%(1) elisfe[ e 9 if SAT (pc A eq A pc')
19: mU = ( (s,w)) 10: for | € dom(w’)
13- Sum pe, mis, w 11: if 31 € dom(w)
: else 12: wi=w— El )
%g: § :S U‘pda#f(a’)l) 13: endfor 7
: w U = write : / ’
%?: eggLfm(E,succ(l),e,pc, s,w,d) %451 elslﬁli%: (pe A eg Apc',w A ')
: ndi
18- endliEf 16:  endfor

19: if pc = true return sum 17: end cSum()

20: end eSum()

circumscribes the CFG for this region allows us to label branch outcomes that
lie within the chop and to direct the symbolic execution along paths from f that
reach f’.

Algorithm f(left) defines this approach to calculating edge summaries. It con-
sists of a customized depth-bounded symbolic execution that only explores a
branch if that branch lies within the chop for the common region. The algorithm
makes use of several helper functions. Functions determine whether an instruc-
tion is a branch, branch(), the target of a branch, target(), and the symbolic
expression for a branch given a symbolic state, cond(). Functions to calculate the
successor of an instruction, succ(), the set of locations written by an instruction,
write(), and updating the symbolic state based on an instruction, update(), are
also used. The SAT() predicate determines whether a logical formula is satisfi-
able. Finally, the 7() function projects a symbolic state onto a set of locations.

eSum(Echop, succ(f), ', true, D, , d) returns the symbolic summary for edge
(f, f") where the parameters are as follows. Ecpop is the set of edges in the CFG
chop bounded by the return of f and the call to f’, succ(f) is the location at
which initiate symbolic execution and f’ is the call that terminates symbolic
execution. true is the initial path condition. The next two parameters are the
initial symbolic state and the set of locations written on the path — both are
initially empty. d is the bound on the length of the path condition that will be
explored in producing the summary.

To produce a symbolic summary for the k-way interaction, we now compose
isum, [sum, and the edge summary computed by eSum(). There are two cases
to consider. If the feature, f’, is connected to root(i) with an edge, (root(i), f')
we compose summaries in the following order: isym, (root(i), f')sum, fowm- 1 the
feature, f’, is connected to a leaf of 4, l;, with an edge, (f’,l;) we compose
summaries in the following order: f.. . (f', 1) sums tsum-
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Order matters in composing summaries because the set of written locations of
two summaries may overlap and simply conjoining the equality constraints on the
values at such locations will likely result in constraints that are unsatisfiable. We
keep only last write of locations in a composed summary to honor the sequencing
of writes and reads of locations that arise due to the order of composition.

Consider the composition of summary s with summary s, in that order. Let
(pe,w) € s and (pc’,w’) € ' be two elements of those summaries. The concern
is that dom(w) N dom(w’) # (), where dom() extracts the set of locations used
to index into a map. Our goal is to eliminate the constraints in w on locations
in dom(w) N dom(w'). In general, pc’ will read the value of at least one loca-
tion, [, and that location may have been written by the preceding summary.
In such a case, the input value referenced in pc’ should be equated to w(l).
Algorithm Plright) composes two summaries taking care of these two issues.

In our approach, the generation of a symbolic summary produces “fresh”
symbolic variables to name the values of inputs. A map, input(), records the
relationship between input locations and those variables. We write input(s, 1) to
denote a summary s and a location [ to access the symbolic variable. For a given
path condition, pe, a call to read(pc) returns the set of locations referenced in
the constraint — it does this by mapping back from symbolic variables to the as-
sociated input locations. We rely on these utility functions in Algorithm P(right).

The algorithm considers all pairs of summary elements and generates, through
the analysis of the locations that are written by the first summary and read by
the second summary, a set of equality constraints that encode the path condition
of the second summary element in terms of the inputs of the first. The pair of
path conditions along with these equality constraints are checked for satisfia-
bility. If they are satisfiable, then the cumulative write effects of the summary
composition are constructed. All of the writes of the later summary are enforced
and the writes in the first that are shadowed by the second are eliminated —
which eliminates the possibility of false inconsistency.

3.4 Complexity and Optimization of Summary Composition

From studying the Algorithm [2] it is apparent that the worst-case cost of con-
structing all summaries up to k-way summaries is exponential in k. This is due
to the quadratic nature of the composition algorithm.

In practice we see quite a different story, in large part because we have opti-
mized summary composition significantly. First, when we can determine that a
pair of elements from a summary that might potentially match we ensure that for
any shared features the summaries agree on the values for the elements of those
summaries; this can be achieved through a string comparison of the summary
constraints which is much less expensive than calling the SAT solver. Second,
we can efficiently scan for constraints in one summary that are not involved in
another summary and those can be eliminated since they were already found to
be satisfiable in previous summary analyses.
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Fig. 2. Feature Models for (top) SCARI and (bottom) GPL

4 Case Study

We have designed a case study for evaluating the feasibility of our approach that
ask the following two research questions. (RQ1): What is the reduction from our
dependency analysis on the number of interactions that should be tested in an
SPL? (RQ2): What is the difference in time between using our compositional
symbolic technique versus a traditional directed technique?

4.1 Objects of Analysis

We selected two software product lines. The first SPL is based on the implemen-
tation of the Software Communication Architecture-Reference Implementation
(SCARI-Open v2.2) [4] and the second is a graph product line, GPL [111[14] used
in several other papers on SPL testing.

The first product line, SCARI, was constructed by us as follows. First we
began with the Java implementation of the framework. We removed the non-
essential part of the product line (e.g. logging, product installation and launch-
ing) and features that required CORBA Libraries to execute. We kept the core
mandatory feature, Audio Device, and transformed four features that were writ-
ten in C (ModFM, DemodFM, Chorus and Echo), into Java. We then added 9
other features which we translated from C to Java from the GNU Open Source
Radio [7] and the Sound Exchange (SoX), site [22]. Table [1l shows the origin of
each feature and the number of summaries for each. We used the example func-
tion for assembling features, to write a configuration program that composes the
features together into products. The feature model is shown in Figure 2fa).

The graph product line (GPL) [14] has been used for various studies on SPLs.
We start with the version found in the implementation site for [I1]. To fit our
prototype tool, we re-factored some code so that every feature is contained in a
method. We removed several features because either we could not find a method
in the source code or because JPF would not run. We made the method Prog
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Table 1. SCARI Size by Feature Table 2. GPL Size by Feature
Features Origin LOC No. Summaries
g . Features LOC No. Summaries
Chorus @ 30 6 - -
o 22) 1 . Base 85 56
ontras Weighted 32 148
Volume 22 47 5
Search 35 19
Repeat 221 12 3 p
h DFS 23 41
Trim 221 11 6
BFS 23 6
Echo 1] 31 5
Connected 4 8
Reverse 221 14 4
Transpose 27 3
Fade 22 9 4
StronglyConnected 19 9
Swap 23] 27 4
. . Number 2 2
AudioDevice  [4] 13 3 ol 10 1o
ModFM @ 19 4 DA
MSTPrim 92 4
ModDBPSK  [7] 6 2
MSTKruskal 106 3
DemodFM @ 18 4 Shortost 102 5
DemodDBPSK [7] 6 3 rest
Total 21
Total 257 58 590 3

our main entry point for the program. We did not include any constraints for
simplicity. Figure 2(b) shows the resulting feature model and Table 2 shows the
number of lines of code and the number of summaries by feature.

4.2 Method and Metrics

Experiments are run on an AMD Linux computing cluster running CentOS 5.3
with 128GB memory per node. We use Java Pathfinder (JPF) [15] to perform SE
with the Choco solver for SCARI and CVC3BitVector for GPL. We adapt the
information flow analysis (IFA) package [9] in Soot [25] for our FDG. In SCARI
we use the configuration program for a starting point of analysis. In GPL we use
the Prog program, which is an under-approximation of the FDG.

For RQ1 we compute the number of possible interactions (directed and undi-
rected) at increasing values for k, obtained directly from the feature model.
We compare this with the number that we get from the interaction trees. For
RQ2, we compare the time that is required to execute the two symbolic tech-
niques on all of the trees for increasing values of k. We compare incremental SE
(IncComp) and a full direct SE (DirectSE). We set the depth for SE at 20
for IncComp and allow DirectSE k-times that depth since it works on the full
partial-product each time, while IncComp composes k summaries each computed
at depth 20. DirectSE does not use summaries, but in the SPLs we studied there
is no opportunity for summary reuse within the analysis of a partial product —
our technique reuses summaries across partial products.

4.3 Results

RQ1. TableBlcompares the number of interactions obtained from just the OVM
with the number of interaction trees obtained through our dependency analysis.
We present k from 2 to 5. The column labelled Ul is the number of interactions
calculated from all k-way combinations of features. In SCARI there are only
three true points of variation given the model and constraints, therefore we see
the same number of interactions for ¥ = 3 and 4. For k = 5, we have fewer
interactions since there are 5 unique 4-way feature combinations in a single
product with 5 features, but only a single 5-way combination. The DI column
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Table 3. Reduction for Undirected (U) and Directed (D) Interactions (I)

Subject k  UI DI Feasible UI Feasible DI UI Reduction DI Reduction

2 188 376 85 85 54.8% 77.4%
3 532 3192 92 92 82.7% 97.1%
SCARI 4 532 12768 162 162 69.5% 98.7%
5 164 19680 144 144 12.2% 99.3%
2 288 576 21 27 92.7% 95.3%
3 2024 12144 29 84 98.6% 99.3%
GPL 4 9680 232320 31 260 99.7% 99.9%
5 33264 3991680 20 525 99.9% 100.0%

represents the number of directed interactions or all permutations (k! x UT).
The next two columns are feasible interactions obtained from the interaction
trees. Feasible Ul, removes direction, counting all trees with the same features
as equivalent. Feasible DI is the full tree count. The last two columns give the
percent reduction. For the undirected interactions we see a reduction of between
12.2% and 99.9% across subjects and values of k, and the reduction is more
dramatic in GPL (92.7%-99.9%). If we consider the directed interactions, which
would be needed for test generation, there is a reduction ranging from 77.4%
to 100%. In terms of absolute values we see a reduction in GPL from over 3
million directed interactions at k& = 5, down to 525, an order 4 magnitude of
difference. DIs are useful to detect more behaviors. For example, given a one-
second-sound file, trim—repeat removes 1-second-sound and generates an empty
file; repeat—trim repeats the sound once and outputs a 1-second-sound file.

RQ2. Table [ compares the performance of DirectSE and IncComp in terms
of time (in seconds). It lists the number of directed (D) and undirected (U)
interactions (I) for each k, that are feasible based on the interaction trees. Some
features in the feature models may have more than one method. In RQ1 based
on the OVM we reported interactions only at the feature level. However in this
table, we consider all methods within a feature and give a more precise count
of the interactions; we list all of the interactions (both directed and undirected)
between features. The next two columns present time. For Direct SE we re-start
the process for each k, but for the IncComp technique we use cumulative times
because we must first complete £k — 1 to compute k. Although both techniques
use the same time for single feature summaries, they begin to diverge quickly.
DirectSE is 3 times slower for £ = 5 on SCARI, and 4 times slower on GPL.
Within SCARI we see no more than a 3 second increase to compute k + 1 from
k (compared to 14-35 seconds for DirectSE) and in GPL we see at most 750 (12
mins). For DirectSE it requires as long as 3160 (about 1 hour).

The last column of this table shows how many feasible paths were sent to the
SAT solver (SAT). We saw (but don’t report) a similar number for DirectSE
which we attribute to our depth bounding heuristic. The number for SMT rep-
resents the total number of possible calls that were made to the SAT solver.
However, we did not send all possible calls, because our matching heuristic culled
out a number which we show as Avoided Calls.
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Table 4. Time Comparisons for SCARI and GPL

Subject k Feasible Ul Feasible DI DirectSE IncComp
Time (sec) Time (sec) SAT/SMT, Avoided Calls
1 14 14 6.75 6.75 58
SCARI 2 85 85 14.48 9.63 430/1780, 0
3 92 92 17.67 10.06 844/2226, 1587
4 162 162 36.09 10.93 1505/2909, 3442
5 144 144 35.87 11.70 2075/3523, 5696
1 49 49 41.77 41.77 321
2 60 76 67.25 56.28 663/985, 0
GPL 3 81 310 184.76 82.00 1441/1901, 1809
4 82 1725 727.34 216.63 5814/7342, 5396
5 52 8135 3887.23 965.92 27444/34147, 19743

5 Conclusions and Future Work

In this paper we have presented a compositional symbolic execution technique
for integration testing of software product lines. Using interaction trees to guide
incremental summary composition we can efficiently account for all possible in-
teractions between features. We consider interactions as directed which gives us
a more precise notion of interaction than previous research. In a feasibility study
we have shown that we can (1) reduce the number of interactions to be tested by
a factor of between 12.2% and 99.9% over an uninformed model, and (2) reduce
the time taken to perform symbolic execution by as much as factor of 4 over a di-
rected symbolic execution technique. Another advantage of this technique is that
since our results and costs are cumulative, we can keep increasing k as time allows,
making our testing stronger, without any extraneous work along the way.

As future work we plan to exploit the information gained from our analysis to
perform directed test generation. By using the complete paths we can generate
test cases from the constraints that can be used with more refined oracles. For
paths which reach the depth bound, we plan to explore ways to characterize
these partial paths to guide other forms of testing, such as random testing, to
explore the behavior which is otherwise unknown.
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Abstract. We address the problem of refactoring existing, closely related prod-
ucts into product line representations. Our approach is based on comparing and
matching artifacts of these existing products and merging those deemed simi-
lar while explicating those that vary. Our work focuses on formal specification
of a product line refactoring operator called merge-in that puts individual prod-
ucts together into product lines. We state sufficient conditions of model compare,
match and merge operators that allow application of merge-in. Based on these,
we formally prove correctness of the merge-in operator. We also demonstrate its
operation on a small but realistic example.

1 Introduction

Numerous companies develop and maintain families of related software products. These
products share a common, managed set of features that satisfy the specific needs of a
particular market segment and are referred to as software product lines (SPLs) [4]]. SPLs
often emerge from experiences in successfully addressed markets with similar, yet not
identical needs. It is difficult to foresee these needs a priori and hence to structure and
manage the SPL development upfront [[11]]. As a result, SPLs are usually developed in
an ad-hoc manner, using available software engineering practices such as duplication
(the “clone-and-own” paradigm where artifacts are copied and modified to fit the new
purpose), inheritance, source control branching and more. However, these software en-
gineering practices do not scale well to product line development, resulting in massive
rework, increased time-to-market and lost opportunities.

Software Product Line Engineering (SPLE) is a software engineering discipline aim-
ing to provide methods for dealing with the complexity of SPL development [4/18l5]].
SPLE practices promote systematic software reuse by identifying and managing com-
monalities — artifacts that are part of each product of the product line, and variabili-
ties — artifacts that are specific to one or more (but not all) individual products across
the whole product portfolio. Commonalities and variabilities are controlled by feature
models (1] (a.k.a. variability models) which specify program functionality units and re-
lationships between them. A product of the product line is identified by a unique and
legal combination of features, and vice versa.

SPLE approaches can be divided into two categories: compositional, which imple-
ment product features as distinct fragments and allow generating specific product by
composing a set of fragments, and annotative, which assume that there is one
“maximal” product in which annotations indicate the product feature that a particular

J. de Lara and A. Zisman (Eds.): FASE 2012, LNCS 7212, pp. 285-B00] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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fragment realizes [8/3]. A specific product is obtained by removing fragments corre-
sponding to discarded features. We follow the annotative approach here.

A number of works, e.g., [18l5], promote the use of annotative SPLE practices for
model-driven development of complex systems. They are built upon the idea of ex-
plicating and parameterizing variable model elements by features. The parameterized
elements are included in a product only if their corresponding features are selected, al-
lowing coherent and uniform treatment of the product portfolio, a reduced number of
duplications across products, better understandability and reduced maintenance effort,
e.g., because modifications in the common parts can be performed only once.

Example. Consider three fragments of UML
statechart controllers depicted in Fig. [l
These models were inspired by a real-life
SPL developed by a partner (since partner- Dskg) displayerrory N\ [<oske) (™
specific details are confidential, we move -
the problem into a familiar domain of wash- Jwash.sendSignal(sigstart);
ing machines). Controller A in Fig.
weighs the laundry and displays an error ooy Washing
message if the weight is more than 5 kg. Lanversendsignalsgstart
Otherwise, it locks the washing machine and
sends a signal to the wash engine, responsi-
ble for performing the washing cycle. When
washing is done, the Controller signals

O [>5kg] /displayError(); [<=5kg] [ Locking )

the dryer to perform the drying cycle, after
/timer.sendSignal(SigStart);

which it proceeds to unlock the washing ma-
chine and finish. Controller B in Fig.[I(b)
differs from the one in Fig.[I(a) by using the
timer component to delay the wash cycle Sigoone() e er e

and by setting the wtrLevel attribute of the peshserdsgnalbigstart;

wash engine to the desired water level based

on the weight of the laundry. This model also
lacks the dryer capability. Similarly to the
one in Fig. Controller C in Fig.
uses the wtrLevel attribute to set the de-
sired water level of the wash engine based on
the laundry weight. However, it allows laun-
dry weights up to 6 kg. It also lacks both the
dryer and the timer capabilities but initiates
an acoustic notification at the end of the pro-

(a) Controller A.

Unlocking

(b) Controller B.

[>6kg] /displayError(); [<=6kg]

= Locking

/wash.wtrLevel=weight*0.5;
SigDone() wash.sendSignal(SigStart);

UnlockingH Washingj

/beeper.sendSignal(Sigstart);  SigDone()

Beeping

gram by invoking the beeper engine. (¢) Controller C.
These controllers have a large degree of . .
similarity and can be refactored into SPLE Fig. 1. Washing Machine Controllers

representations where duplications are elim-
inated and variabilities are explicated. An
example of a possible refactoring is given in Fig. where the Drying, Waiting
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2
alt
[>5kg] /displayError(); fB

(b) Controller A+B+C.

States: <=5k
fA Drying t X el . . .
Transitions: /timer.sendSignal(SigStart);
(Locking->Washing)
(Washing->Drying) Locking Waiting
(Drying->Unlocking) T
fB Sta\‘/tl?i?t:ing /wash.sendSignal(SigStart); | /wash.wtrLevel=weight*0.5;
Transitions: wash.sendSignal(SigStart);
(Locking->Waiting) SigDone()
(Waiting->Washing)
(Washing->Unlocking) . { —
Unlocking Washing
SlgDone() LJ
/dryer.sendSignal(SigStart);
SigDone() SigDone()
@
(a) Controller A+B.
f States:
A Drying fA
Transitions:
(Locking->Washing) alt f
(Washing->Drying) Weighing B
(Drying->Unlocking)
(Unlocking->final) f
Actions: kel /disol . C
(Locking->Washing) ~ wash.sendSignal(SigStart); >Q [>5kg] /displayError();
Guards: [>6kgl /displayError();
(Weighing->Locking) ~ <=5kg ISPayEIror [<=5kg]
5 (Weighing->final) >5kg [<=6keg]
tates:
fB Waiting /timer.sendSignal(SigStart);
Transitions:
(Locking->Waiting) (Locking .%‘ Waiting)
(Waiting->Washing)
(Washing->Unlocking) . . I
(Unlocking->final) /wash.sendSignal(SigStart); | /wash.wtrLevel=weight*0.5;
Guards: /wash.wtrlevel=weight*0.5; | wash.sendSignal(SigStart);
gWeighing»If_ock;ng) <=5kg wash.sendSignal(SigStart); |, SigDone()
Weighing->final >5kg
f States: Unlocking > Washing >
C Beeping
Transitions: ‘SigDone(). LJ
(Locking->Washing) Jbee
. > per.sendSignal(SigStart);
E\L/Jvnalztl}?iﬁﬁggé?kirg)) /dryer.sendSignal(SigStart);
(Beeping»gfinal) pine SigDone() SigDone()
Actions:
(Locking->Washing) ~ wash.wtrLevel=weight*0,5; ( Drying ‘
wash.sendSignal(SigStart);
Guards:
(Weighing->Locking) ~ <=6kg
(Weighing->final) >6kg

Fig. 2. Possible Refactorings of the Washing Machine Controllers in Fig.[I]

and Beeping states and their corresponding transitions are annotated by a set of fea-
tures depicted in the right upper part of the figure. The refactored product line in our
example encapsulates only the original input products, thus we have just three alter-
native features representing these products — f4, fp and fo. The set of annotations
specifies elements to be included given a particular feature selection. E.g., selecting f4
filters out all elements not annotated with that feature, which results in Controller A
in Fig.[I(a)] Likewise, selecting feature f5 (fc) results in Controller B (Controller

C) in Fig. [I(b)] (Fig. [T(c)).
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The annotations themselves are shown in a table on the left-hand side of the fig-
ure (see “State” and “Transitions” entries in the table). While the transition between
Locking and Washing states exists in both Controller A and C (Fig. [Ika,c)), the
corresponding actions on the transition are different and thus are also annotated by
features in the combined version (see “Actions” entry in the table). Likewise, laundry
weight guards on the transitions exiting the Weighing state are annotated by the corre-
sponding features as well (see “Guards” entry in the table).

Product Line Refactoring Framework. Despite the benefits of applying SPLE prac-
tices which include improved time-to-market and quality, reduced portfolio size, engi-
neering costs and more [4], it is impractical to assume that existing (legacy) product
line systems can be abandoned altogether for creating new ones that take advantage
of the SPLE reuse techniques. Thus, a transition process which involves identification
and extraction of common and variable artifacts together with variability models that
control them, becomes a necessity [[12J1].

In our work, we propose a generic framework for mining legacy product lines and au-
tomating their refactoring to contemporary feature-oriented SPLE approaches, initially
suggested in [[19]]. We consider those refactorings that just include the set of existing
products rather than allowing novel feature combinations (e.g., a product with both the
timer and the beeper capabilities). Our approach is based on comparing elements of the
input products to each other (by calculating a weighted similarity of their corresponding
sub-elements), matching those whose similarity is above a preset threshold and merging
these together.

Our refactoring framework is applicable to a variety of model types, such as UML,
EMF or Matlab/Simulink, and to different compare, match and merge operators. In this
paper, we develop a generic model representation and a generic and parameterizable
compare | match | merge infrastructure underlying the refactoring framework. Using
them, we prove that our refactoring approach is semantically correct, i.e., it can gen-
erate exactly the original products, regardless of a particular implementation used and
parameters chosen. The main contribution of this paper is thus the formal foundation
that underlays the parameterizable and configurable, yet semantically correct refactor-
ing framework.

There are multiple ways to merge-in input products into a product line, even if we
only consider those refactorings that maintain the original set of input products. The
resulting refactorings vary syntactically, depending on how elements are matched and
combined. For example, in Fig. 2(b)} transitions from Locking to Washing states of
Controllers A and C (Fig.[ (a,c)) are matched to each other and combined, while
their corresponding actions are annotated by features. Instead, these transitions do not
have to be matched, so that the generated result has two separate transitions, each an-
notated by the corresponding feature. Also, the Unlocking state of Controller A in
Fig.[I(2)] could be matched and combined with the Beeping state of Controller Cin
Fig. because of their structural similarity — both transition to the final state of the
statechart.

In this work, we formally prove that all these syntactically different refactorings are
able to produce the set of original input products and thus are “correct”. Elsewhere [20],
we focus on techniques for distinguishing between multiple possible refactorings based



Combining Related Products into Product Lines 289

on their qualitative properties and choosing a desired one which satisfies the set of de-
fined objectives (e.g., one objective might be to decrease the size of the produced result,
while another — to keep a low number of annotated elements per diagram). In [20], we
also instantiate our approach on product lines defined in UML — a common specifica-
tion language in automotive, aerospace & defense, and consumer electronics domains,
and demonstrate its applicability on several large-scale examples.

The remainder of this paper is organized as follows. We introduce our data model
and give the necessary background on product lines representations in Sec.[2l We give
formal foundations of model merging in Sec. [3]and define our merging-based product
line refactoring technique in Sec.dl We prove semantic correctness of the technique in
Sec.[3l We conclude the paper with a discussion of related work in Sec.[6] presenting a
summary and future research directions in Sec. [71

2 Preliminaries

In this section, we describe our representation of models and model elements and fix
our notation for representing product line models annotated by features.

Model Representation. Following XMI principles [[17], we define models to be trees of
typed elements. Each element has a unique id which identifies it within the model and
a role which defines the relationship between the element and its parent. For example,
in UML, an element of type Behavior can have an Entry action or Do activity roles
in a state. In addition, a single element can fulfill several roles in a model: a Behavior
can be a Do activity of a state and an Effect of a transition at the same time. To allow
reusing elements for different roles, we employ a cross-referencing mechanism where
an element of type Ref represents the referenced element by carrying its id. Cross-
referencing, combined with roles, allows representing labeled graphs using trees: an
element can be linked to multiple different elements, each time in a distinct role.

Element types, denoted by T, and roles, denoted by R, are defined by the domain
model. For UML, types include Class, State, OpaqueBehavior, etc. Roles include
PackagedElement, Subvertex, Effect, etc. If the types Ref and String are not
defined by the domain model, we add them to T as well.

We differ from [[L7] by representing all element attributes, as first-class model ele-
ments. That is, an element’s name is represented by a separate model element of role
Name and type String. The implication of our representation is that elements’ attributes
now have their own ids and thus, an element can have multiple attributes in the same
role, e.g., multiple names or Effects for a transition. These qualities are required for
defining the product line merge-in operator in Sec.[dl A formal representation of our
notations is given by Def. [Tl below.

Definition 1. (Model Element) A model element m is a tuple (m|;q, m|¢, m|r, m|v, m|s),
where m|;q is a numeric identifier of the element, m|s € T is the element’s type, m|, € R
is the element’s role, m|, is the element’s value — either String or an id of another element
(representing a reference), and m/|s is a (nested) list of sub-elements.
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id=1 id=15 id=18 id=21 id=25 id =30
t = StateMachine t =Transition t =Transition t =Transition t =Transition t = Transition
r = OwnedBehaviour r =Transition r =Transition r = Transition r = Transition r = Transition

0 - e id=16 id=19 id =22 id=26 id=31
R 2 i t =Reference t =Reference t =Reference ||t =Reference t = Reference
[ |t =Pseudostate t = Pseudostate t =State ¢ = Source ¢ =Source  =Source I =Source r =Source
r =Subvertex r =Subvertex r =Subvertex - - - - -
v =2 v =3 v =5 v =5 v =6
v = start v = choice .
id=9 - . - - B .
=3 =6 t =String id=17 id =20 id=23 id=27 id=32 L]
- - ¢ =Name t = Reference t =Reference t = Reference [t =Reference t = Reference
t =state t =state v ~Wahing ¢ =Target r =Target r =Target r =Target r = Target
r = Subvertex r =Subvertex V=3 v =5 V=6 v=14 v=8
- .ee
id=4 L id=7
- id=24 id=28 id =33
t = Striny t = String =
e o Name O et t = Constraint ||t =Constraint t = OpaqueBehav.
= - = Finalstate N , = ffect
; = OwnedRule r = OwnedRule r
= Weighi = Locki = r -
v = Weighing v = Locking v =Subvertex v - <oskg v =5k v =wash
sendSignal
(SigStart);
id =29
(|t =opagueBehav.
r = Effect
v =displayError();

Fig. 3. Partial representation of the Statechart in Fig.

Fig.[Blshows partial representation of the Controller A statechart in Fig. where
states Drying and Unlocking, together with their incoming and outgoing transitions,
are omitted to save space. In this figure, sub-elements are represented as element’s chil-
dren in the tree.

We refer to types that have no owned properties, such as String or Ref, as atomic.
Other types, such as Class, State or Transition, are compound. Elements of atomic
and compound types are referred to as atomic and compound elements, respectively.
While atomic elements have values, values of compound elements are determined from
values of their sub-elements. Thus, two compound elements may be equal (i.e., have
the same type and role, like elements with ids 3 and 6 in Fig.[3) but not equivalent, as
they might have different sub-elements.

Definition 2. (Equivalence) Given a universe of model elements M, let M1, M> € oM pe
distinct sets of elements. m1 € My, ma € Ma are equal, denoted by m1 = ma, iﬁ”m1|t = m2|t,
m1|r = ma|r and m1|y = ma|y. Equal atomic elements are equivalent. Compound elements are
equivalent, denoted by m1 = ma, iff m1 = me, and their corresponding trees of sub-elements
are isomorphic wrt. equality.

Definition 3. (Model and Model Equivalence) A set of elements M € 2™ is a model iff
all elements in M are connected in a tree structure by the sub-elements relationship, and each
m € M has a unique id. Models M, and Mo are equivalent, denoted by My = Mo, iff their
corresponding root elements are equivalent.

Product Line Engineering. Next, we describe the formal semantics of the annotative
SPLE approach.

Definition 4. (Feature Model and Configuration — simplified version of [231]) Given a universe
of elements T that represent features, a feature model FM = (F, ) is a set of features F € 2F
and a propositional formula  defined over the features from F. A feature configuration FM
of FM is a set of selected features from F that respect ¢ (i.e., p evaluates to true when each
variable f of @ is substituted by true if f € f/\? and by false otherwise.)
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Definition 5. (Product Line — adapted from [2]]) A product line PL = (FM,M,R) is a
triple, where F M is a feature model, M € M is a domain model, and R C F x M s a set of
relationships that annotate elements of M by features of F.

Fig. presents a snippet of a domain model, whose elements are connected to fea-
tures from a feature model using annotation relationships. In this case, features f4 and
fp are alternative to each other, i.e., the propositional formula ¢ which specifies their
relationshipis (fa V f5) A—=(fa A fB). Thus, the only two valid feature configurations
are {fa} and {fB}.

A specific product derived from a product line under a particular configuration is a
set of elements annotated by features from this configuration. For example, the state-
chart in Fig. can be derived from the product line in Fig. under the configura-
tion {fa}.

In this work, we assume that common product line elements, i.e., elements that are
present in all products derived from a product line, are annotated by all features of F.
Variable elements are annotated by some, but not all, features of F. To avoid clutter,
we do not display annotation relationships for common product line elements in Fig.2l

We denote by A the mapping between an element of the product line model and the
corresponding element of the product model. We denote by A~! the inverse mapping.
For example, let m and m refer to the transition between Locking and Washing states
in Fig.[I(a) and Fig. respectively. Then, under the configuration { f4 }, A(m) = m
and A~1(h) = m.

Definition 6. (Product Derivation — adapted from [2]]) Let PL = (FM, M, R) be a product
line and let F M be its feature configuration. A set of model elements M is derived from the

product line P L under the configuration FM, denoted by M = A(PL, FM ), iff the following
properties hold:

(a) An element belongs to the derived model if and only if this element is annotated by a fea-
ture of the feature configuration FM (under which the derivation was performed): Ym €
M, A(m) € M < 3f € FM - (f,m) € R.

(b) Only one element can be derived from a given domain model element:

Vm € M, 3l € M -1 = A(m).

(c) Only derived elements are present in the derived model: N, € M, Ilm e M-m = A(m).

(d) Each element of the derived model preserves the type/role/value of its corresponding domain
model element: 1h = A(m) = m = m.

(e) Each element of the derived model preserves those sub-elements of its corresponding domain
model element that were annotated by the features from f/\\/l Vi € M , M € s <

A7) € AN m)|s A3f € FM - (f, A7) € R).

It is easy to show that a feature model configuration uniquely identifies the derived
product model.

Lemma 1. (Uniqueness) Let PL = (FM, M, R) be a product line, FM be a feature config-
uration and M = A(PL, FM). Then, for each M' = A(PL, FM), M' = M.
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Table 1. State Similarity Weights W Used by Compare for Fig.[I]

Element Name Type Depth Actions Transitions
Weight 0.2 0.05 0.1 0.3 0.35

Pfoof. Assume to the contrary that M # M and assume without loss of generality that 3 €
M such that 7 & M’. By Def.[6lc), 7 € M implies that Im € M - 15 = A(m). By Def.[f(a),
this means that 3f € FM - (f,m) € R. Since M’ was derived from PL under the same
configuration FM, A(m) € M’ by Def.[6(a), which implies that 3’ € M’ -7 = A(m) by
Def.[6lb). Since m = A(m) = M, we conclude that 7o € M’ which creates a contradiction.

3 Model Merging

In this section, we formalize properties of model merging [22116]. Model merging is an
operation which consists of (1) compare, which determines how similar model elements
are to each other, (2) match, which detects pairs of elements that should constitute a
match and (3) merge, which puts information contained in input models together while
keeping a single copy of matched elements. We specify the minimal set of properties
that these three model merging steps should satisfy in order to be used for combining
individual products into product lines.

Compare is a heuristic function that calculates the similarity degree, a number between
0 and 1, for each pair of input model elements. It receives models M7, Ms and a set of
empirically computed weights W = {wg | R € R} which represent the contribution
of sub-elements in role R to the overall similarity of their owning elements.

For the example in Fig.[Il a similarity degree between two states is calculated as
a weighted sum of the similarity degrees of their names, entry and exit actions, do
activities, incoming and outgoing transitions, etcl Comparing Locking states from
Fig.[1(a,b) to each other yields a relatively high similarity degree of 0.85, as these ele-
ments have identical names and similar incoming transitions. However, their outgoing
transitions have different actions and lead to non-similar states; thus, the states are not
identical. Comparing Drying and Waiting states yields a lower number, as these states
have different names and different incoming and outgoing transitions.

Definition 7. (Compare) Let My, M2 € 2" be models. Compare(M1, M2, W) is a total func-
tion that produces a set of triples C C (M1 x M x [0..1]) that satisfy the following properties:

(a) The similarity degree of equal elements is 1: (m1 = m2) = (m1,mo,1) € C.
(b) The similarity degree of elements having different types or roles is 0:
(m1le # male) V (malr # malr) = (m1,m2,0) € C.
(c¢) While comparing, references are substituted by the elements they refer to:
mils = ma|e = Ref = ((m1,ma,z) € C & (Mi[mi|o], M2[ma2|s],z) € C);
m1|s = Ref Amal # Ref = ((m1, ma,z) € C & (Mi[milo], me,z) € C);
mi|; # Ref Ama|e = Ref = ((m1, m2,z) € C & (m1, Ma[ma|y],z) € C).

! Some compare algorithms, e.g., [16], might perform several iterations until they stabilize and
calculate the final similarity degree between elements.
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(d) comparer,r are domain-specific functions, used to calculate the similarity degree between
atomic elements of type T in role R (e.g., elements’ names): m1|y = maly = T, mi|, =
ma|r = R, T is atomic = ((m1, m2,x) € C < x =comparer,r(m1,m2)).

(e) The similarity degree of compound elements is calculated as a weighted sum of their sub-
elements’ similarity: m1|e = ma|e = T, T is compound = ((m1,mz,z) € C < x =
E wg * SR), where {R} is a set of possible roles for sub-elements of T', wr is the contri-
{R}
bution of sub-elements in role R to the overall similarity of T (Y, wr = 1), and sg is the

{R}
calculated similarity between sub-elements of m1 and ma in role R.

Modifying weights W can produce syntactically different matches. To obtain the model
in Fig. we calculated state similarity using weights in Table[Il which were set em-
pirically. Decreasing the weight of the name similarity between states while increasing
the weight of the similarity of their corresponding incoming and outgoing transitions
could, for example, result in lowering the similarity degree between Washing states in
Fig. [(a,c) from 0.8 to 0.7, as their incoming and outgoing transitions differ signifi-
cantly. This can subsequently lead to not matching these states and thus, unlike in the
model in Fig. each would be present in the resulting refactoring.

Match is a heuristic function that receives pairs of model elements together with their
similarity degree and returns those pairs that are considered similar, using empirically
determined similarity thresholds S = {St |T' € T}. Matched elements are combined
together by the merge function, while unmatched are copied to the result without mod-
ification.

Definition 8. (Match) Let My, My € 2™ be models and let C be a set of triples produced
by compare( My, M2, W). Then, match(M., M2, C,S) is a function that produces a set of pairs
S C (M1 X M>) that satisfy the following properties:

(a) Each element from Mi can be matched with only one element of Ma, and vice versa:
(m1,m2) €S = V(m'l,m'g) S S(m’1|zd = m1|id =4 m'2|zd = m2|id).

(b) Only identical atomic elements are matched:
mile = male = T, T is atomic = (m1,m2) € S & (m1,ma, 1) € C.

(¢) Compound elements are matched only if their similarity degree exceeds the threshold that is
set for their type:
male = male =T, T is compound = (m1, m2) € S < (mi,ma,x) € C ANz > St

(d) Iftwo elements are matched, their parent elements are matched as well (e.g., it is not possible
to match transition guards without matching the owning transitions): (m1,mz2) € S =
(FmL € My,mb € My -my € my|s Amae € mb|s = (mY,mb) € 9).

(e) Either root elements of My and My are matched with each other, or one of them has no
match at all: ~3mY € My - my1 € mi|s A =Imb € Mz - ma € mb|s = ((m1,m2) €
S V—3mi € My - (mi,mz2) €S V-Imh € Mz (m1,ms) €5).

Consider the above example where Washing states had the calculated similarity degree
of 0.8 and 0.7 for two different settings of compare weights W. Setting the state sim-
ilarity threshold to 0.75 results in matching the states to each other in the former case
and not matching in the latter. Likewise, the transitions between Locking and Washing
states in Fig.[Il(a,c) can be matched, resulting in the refactoring in Fig. where the
corresponding actions are parameterized by features, or not matched, resulting in two
separate parameterized transitions.
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Merge is a function that receives two models together with pairs of their matched ele-
ments and returns a merged model that contains all elements of the input, while matched
elements are unified and appear in the resulting model only once.

We denote by o the mapping from an element of an input model to its corresponding
element in the merged result, and say that o transforms an input model element to its
corresponding element in the result. We denote by o ! and oy ! the reverse mappings
from an element in the merged result to its origin in the first and second models, respec-
tively (or @ if such an element does not exist in one of them). For example, let m1, mo
and m denote the states Washing in the models in Fig. [I(a)} [T(b) and 2(a)} respectively.
Then, o(m1) = o(ma) = m, o7 *(m) = my and o5 ' (m) = ma.

Definition 9. (Merge) Let M, Mo € 2" be models, C be a set of triples produced by compare(
My, M2, W) and S be a set of pairs produced by match(M, Mz, C, S). Then, merge( M, Mo,
S) is a function that produces the merged model M and satisfies the following properties:

(a) Matched elements are transformed to the same element in the output model M :
(m1,m2) € S < o(m1) = o(ma2). B

(b) Each input model element is transformed to exactly one element of M :

Vmi € My, 3l € M - = o(m1) and Vmy € M, 3l € M -1 = o(ma).

(c¢) Each element of M is created from an element of M1 and/or an element of Ma. Moreover,
no two distinct elements of an input model can be transformed to the same element in the
result: Yim € M - (3mq € My -ma = o7 '(m)) V (Slma € Mz - ma = 03 ' ().

(d) Each element of M preserves the type, role and value of its corresponding original elements.
(By Def.[Ab) and[8(b), only elements with the same type, role and value can be matched:
atomic elements are matched only if identical, while compound elements do not have values.)
VYm € My U M, Vim € M,m = o(m) = m = m.

(e) Each element of M preserves sub-elements of its corresponding original elements:

Vm € M,m® € m|s & (o7 (m°) € o7 (M)]s) V (05 (M) € a5 ' (m)]s).

While the compare and match functions rely on heuristically set weights W and simi-
larity degrees S, merge is not heuristic: its output is uniquely defined by the input set of
matched elements. For this work, we rely on union-merge [22] realization of the merge
function. Union-merge unifies matched elements and copies unmatched elements “as
is” to the result. Since our data model in Sec. 2l represents attributes of model elements
as separate entities, an element in the merged result can have several attributes of the
same type fulfilling the same role (which, for example, is not allowed by UML for
effects on a transition or state do activities). We use this property of the data model
to capture annotative product line representations generated when merging individual
products into product lines.

4 Product Line Refactoring

In this section, we define the merge-in operator, which is used to put together input
products into a product line. It constructs a product line by adding input products one
by one and has two parameters: an (already constructed) product line and the next model
to addd. For the example in Fig[Il combining Controller A and B in Fig.[[(a,b) results

2 The first product is implicitly converted into a “primitive” product line — a product line with
only one feature and a set of annotations that relate all model elements to that feature.
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in a product line A+B depicted in Fig. with features f4 and fp. Selecting the first
one derives the original statechart of Controller A, while selecting the second — that
of Controller B. Subsequent merge-in of Controller C (Fig. into this product
line produces a representation depicted in Fig. out of which all three original
statecharts can be derived.

Definition 10. (Merge-in Construction) PL' = (FM', M',R’) is a product line constructed
by merging-in a product M into the product line PL (denoted by PL' = PL ®ws M), using
the rules below:

(a) A new feature fnr, representing the merged-in product M, is added as an alternative to all
existing features: if FM = (F,p) then FM' = (F ¢, F' = FU{fulfu € F,
fu & FYoand @' = (o V far) /\f/\ =(far A ).

eF

(b) The domain model is generated by merging the existing domain model with the newly added
model M: if C' = compare(M, M, W) and S = match(M, M, C,S) then M’ = merge(M,
M, S).

(c) The set of annotation relationships is enhanced by the relationships that annotate elements
that originated in M by far: R = {(f,o(m)) | f € F,m € M,(f,m) € R} U
{(far,a(m)) | m € M}.

We refer to PL as the original product line and to PL' as the constructed product line.

5 Correctness of Product Line Refactoring

In this section, we prove the correctness of the merge-in operator introduced in Sec. 4l
Specifically, we show that merge-in produces minimal behavior-preserving product line
refinements [2], that is, the input product models are the only ones which can be derived
from the refactored product line model (Theorem/[I)).

In what follows, let W be a set of weights used by the compare function and S be a
set of similarity thresholds used by the match functions. Let PL = (FM, M, R) be a
product line.

Merge-in Monotonicity. Lemma[lbelow shows that any feature configuration that con-
tains only features from the original product line P L is also a valid feature configuration
for the constructed product line PL ie., it complies to the constrains ¢ defined on the
features of PL’. For the example in Fig. Pl this means that a feature configuration of
the product line A+B in Fig. 2(a)] e.g., {fa}, is also a valid feature configuration for
the “extended” product line A+B+C in Fig.[2(b)]

Lemma 2. Let ]?/\\/l be a subset of F M. Then, ]?/\\/l is a feature configuration of F M if and
only if it is a feature configuration of FM'.

Proof. By construction of ¢’ (Def.[[0(a)), ¢’ = (oV fa)A N —(fm A f). Since fur & FM,
fer

=(fm A f) evaluates to true for every f, and ¢’ = (¢ V false) = ¢. Thus, FM respects ¢ if
and only if it respects .
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Lemma [3] shows that, under configurations used in Lemma 2, a model derived from
PL is equal to the one derived from PL’. That is, under the configuration {f4}, the
same model of ControllerA in Fig.[I(a)is derived from both product lines A+B and
A+B+C (Fig. and (b), respectively).

Lemma 3. Let FM be a subset of FM. If]-/'./a is a feature configuration for FM, M =
A(PL, ]'/'./W) and M' = A(PL/, f./\\/l) then M = M'. That is, given a feature configuration
that contains only features from PL, a set of elements that is generated from P L is equivalent to
that generated from PL', under the same configuration.

Proof. To prove the lemma, we show that f = A(c(A™!(.))) is an isomorphism between the
elements of M and the elements of M’ that respects 2. That is, we prove the following four
statements, showing that f is an edge-preserving bijection. The construction of the correspond-
ing elements in M and M’ is schematically sketched in Fig. [l

1. Any element of M has the corresponding equal element in M’: Vi € M, 3/ € M’ -
' = f(im) A’ 2 .
Let i € M. By Def. [fla), this means that there exists an element m € M, and a feature
f € FM, such that (f,m) € R and /i = A(m). By Def.[0(b), m is transformed by merge
to an element ' € M, such that m’ = o(m). By Def. [[0(c), this element is annotated by the
same feature as m: (f,o(m)) € R'. Thus, A(c(m)) € M by Def.[B(a). Since i is derived
from m, m = A~ (). It follows that A(o (A~ (rh))) € M. Let’s denote that element by 77’
There exists only one such element by Def. [6(b,c) and [0(b). 11’ = 7 by Def. [6(d) and B(d).

2. Any element of M’ has the corresponding equal element in M: v/ € M, 3m €
M -/ = f(n) A/ = .
Let 7/ € M'. By Def. [6(a), this means that there exist an element 7’ € M’, and a feature
f € FM, such that (f,m’) € R’ and m' = A(m'). By Def. Bic), there are three possible
cases: (1) o7 (7)) € M, o5 () = 0; Q) o7 ' () = 0,05 (M) € M; B) oy () € M,
oyt (m’) € M.
For cases (1) and (3), (f,m') € R’ implies that (f,o; ' (') € R by Def. [c), and thus,
A(o7(m')) € M by Def.[f(a). Let’s denote this element by 7i. It is easy to see that f (1) = 10/
(that is A(o(A™*(1m))) = /. There exists only one such element 772 by Def. B(b,c) and Blc).
' = 1n by Def. [Bld) and B(d). For case (2), o; ' (') = 0 implies by Def. [0(c), that /»’ is
annotated by fas, and, since far & FM, A(m') ¢ M, which, together with i/ = A(m),
creates a contradiction to 1/ € M.

3. Any sub-element of 77 has the corresponding sub-element in f(i): Vin € M (m¢ €
mls = f(m°) € f(m)]s).
Since M° € 1hls, by Def. [la,e), there exist elements m, m® € M, and features f, f¢ € FM,
such that (f,m) € R, (f°,m°) € R, m = A(m), m° = A(m°) and m® € m|s (it is
also possible that f = f€). By Def.Qlb,e), 0(m®) € o(m)|s. By Def.[[0c), (f,o0(m)) € R’
and (f¢,0(m®)) € R’', which, by Def. [6(a,e), implies that A(o(m®)) € A(o(m))|s. Since
me = A7 (1h) and m = A7 (1h), f(10°) € f(1)]s), as desired.

4. Any sub-element of 77’ has the corresponding sub-element in 1: V' € M'(m/c €
wm'|s = I, me € M -m' = f(in) A/¢ = f(1n°) AhS € mls.
Let 7',/ € M’ be elements such that 7'° € 1/|s. By Def. Bla,e), there exist elements
m',m'® € M, and features f, f¢ € FM, such that (f,7m') € R', (f*,m'°) € R',m' =
A(m'), m'¢ = A(m'®) and m/® € m/|s (it is also possible that f = f°). Similarly to case 2,
o7 (m) # 0 and o7t (') # 0. By Def.Bfe), either o ' (') € oy '(m)|s or there exist
mi, ma2 € M, such that o7 * (7'¢) is matched with m1, o7 () is matched with mz, and m; €
ma|s. The later case is impossible by Def.[B(a,d,e) — we omit the details due to the space limita-
tions. For the former case, since (f,m') € R, (f°,m'°) € R/, by Def.[[Mc), (f,o7" (")) €



Combining Related Products into Product Lines 297

R, (f¢, 07 (7'?)) € R and thus, by Def. Bae), A(o; ' (7 ))) Alo7t(m)))]s. Let’
denote these elements by 7¢ and 17, respectively. f(m°)) =
A(m') =/, implies m© € 1h,, as desired.

The abO\{e lemma implies that our L M PR
construction preserves the behavior = A (fR)=c ) S

of the original product line model: {\ | @ = .
the set of models derived from PL - - Bl
can still be derived from PL’, as
shown by the following corollary.
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Corollary 1. Let |PL] denote a set
of all models derived from a prod-
uct line PL. That is, |PL] =
{A(Pﬁ,m) | FM is a feature
configuration of F M}. Then, a set
of models derived from PL can be derived from PL" as well: |PL| C |PL'].

Fig. 4. A sketch for the proof of Lemma[3]

Proof. For each M € |PL], there exists a configuration FM, such that M = A(PL, }/'/W)
By LemmasPland[3l M = A(PL', FM). Thus, M € |PL'].

For the example in Fig. 2] the above corollary means that both Controller A and
Controller B that can be derived from the product line A+B in Fig. can still be
derived from the constructed product line A+B+C in Fig. after Controller C
was merged-in to it.

Merge-in Behavior Preservation. We now show that model M which we merge-in
into the original product line P L can be derived from the constructed product line PL’.
That is, when we merge-in Controller C in Fig. into the product line A+B in
Fig. we can derive it back from the constructed product line A+B+C in Fig.

Since f); is the feature that annotates elements of the merged-in model (fc in our
example), we first show that {3/} is a valid feature configuration (Lemma H). Then,
Lemmal3lshows that the original model M is derived from the constructed product line
P L' under that configuration.

Lemma 4. {f\} is a feature configuration for PL'.

Proof. By construction of FM' (Def. M0a)), for € F'. We now show that { fas}
respects @' = (@ V fa) A N\ —(fm A f).Since f € {fa} forany f € F, =(fam A f)
feF

evaluates to true for every f € F. Since fy; = true, o V fy also evaluated to true. It
follows that { fas } respects ¢’ and is a feature configuration for PL’.

Lemma 5. Let {fu} be a feature configuration. Then, a model that is derived from PL' under
that configuration is equivalent to M. That is, M = A(PL', {fm}).

The proof of this lemma, similarly to the proof of Lemmal[3 shows that f = o(A(.)) is
an isomorphism between the elements of M and the elements of M’, and is omitted.
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Finally, Theorem [l shows that our merge-in operator is behavior preserving: the set
of product models that are derived from the constructed product line PL’ is equal to
the set of models that are derived from the original product line P£’, in addition to the
merged-in model M.

Theorem 1. |PL'| = |PL|U{M}.

Proof. We first prove that |PL'| C |PL| U {M } Let M € |PL'] be a model derived from

PL’. Then there exists a feature configuration J-"/\/l such that M = A(PL, FM ) Let far be
in FM' ~ FM.

L If far & FM , then FM C FM. Thus, by Lemma Bl M = A(PL, FAM ), which
implies that M € |PL].

2. If fir € f/ﬁ/, then, by construction of Z M’ (Def.[I0(a)), FM = {fm}- By Lemma[3
M= A(PE’,m/). Thus, by Lemmalll M = M.

We now show that [PL|U{M} C |PL']. |PL]| C |PL'] by Corollary[ll By the construction
of FM' (Def.[T0a)), far € F'. Thus, by LemmasHland [ { fas} is a valid feature configuration
for PL and M = A(PL', {fa}), which implies that M € [PL'].

For the example in Fig. Pl where Controller C in Fig. is merged-in into the
product line A+B containing Controller A and B, this means that Controller A,
B, and C, and only them, can be derived from the constructed product line A+B+C in

Fig. (b}l

6 Related Work

A general theory of product line refinement was introduced in [2] where the authors
established product line properties supporting stepwise and compositional product line
development and evolution. Our approach instantiates this theory by providing a con-
crete refactoring technique for combining products into product lines. We prove that
our refactoring is the minimal behavior-preserving product line refinement, according
to the definition in [2].

Several works (e.g., [9/10]) capture guidelines and techniques for manually trans-
forming legacy product line artifacts into SPLE representations. Instead, our goal is to
introduce automation into the refactoring process by comparing, matching and merging
artifacts to each other. While no automated approach can replace a human product line
designer and produce a solution which is as good as a hand-crafted one, automation can
assist the designer and speed-up the refactoring process.

Similarly to us, Koschke et. al. [[11] and Ryssel et. al. [21] introduce automatic ap-
proaches to re-organize product variants into annotative representations while identi-
fying variation points and their dependencies. The former work reasons about compo-
nents, interfaces and their grouping into subsystems. The latter works on Matlab mod-
els. Our work differs from both [L1] and [21] by exploring product line commonalities
and variabilities for any type of model that can be represented as XMI and by providing
a formal proof of correctness of our approach.
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Feature-oriented refactoring [13l15] focuses on identifying the code for a feature and
factoring the code out into a single module or aspect aiming at decomposing a program
into features. Since our aim is consolidation of variants into single-base product line
representations, these are out of the scope for our work. Similarly, UML model refac-
toring (e.g., [6124]]) and code refactoring techniques (e.g., [[14]), while closely related
to our work, usually focus on improving the internal structure and design of a software
system rather than on identifying and restructuring the system’s common and variable
parts.

7 Conclusion and Future Work

Extracting product line representations from existing legacy product line systems can
support product line engineering adoption: reusing and leveraging knowledge accumu-
lated in the legacy systems during their development lifetime can be more efficient than
“starting from scratch”. In this work, we formally specified a simple data model and a
refactoring technique for transforming individual products into more compact product
line representations. Our data model, inspired by XMI principles, is powerful enough
to accommodate labeled-graph representations, in particular, UML. At the same time, it
is flexible enough to support product line notations where several alternative elements
can fulfill the same role, which is not allowed by UML itself.

Relying on the data model, we formally stated necessary and sufficient conditions
allowing us to use model compare, match and merge operators for combining individ-
ual products into product lines. We proved that once these conditions are satisfied, the
merge-in can be safely applied for combining products into product lines, as it produces
representations that encode precisely the set of initial products. This provides formal
foundation that underlays the parameterizable and configurable, yet semantically cor-
rect refactoring framework. The applicability of the framework to real-life examples, as
well as techniques for distinguishing between different possible refactorings, is studied
elsewhere [20]].

There are several directions for continuing this work. First, we are interested in ex-
ploring more sophisticated refactoring techniques that are able to detect fine-grained
features in the combined products. This would allow us to create new products in the
product line by “mixing” features from different original products. We also plan to en-
hance model merging techniques with additional capabilities, such as using code-level
clone detection techniques for comparing statechart actions and activities. We are also
interested in devising alternative methods of calculating graph similarity, e.g., by count-
ing the number of identical or similar sub-graphs and more.
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Abstract. A commit message is a description of a change in a Version
Control System (VCS). Besides the actual description of the change,
it can also serve as an indicator for the purpose of the change, e.g. a
change to refactor code might be accompanied by a commit message in
the form of “Refactored class XY to improve readability”. We would
label the change in our example a perfective change, according to main-
tenance literature. This simplified example shows how it is possible to
classify a change by its commit message. However, commit messages are
unstructured, textual data and efforts to automatically label changes
into categories like perfective have only been applied to a small set of
projects within the same company or the same community. In this work,
we present a cross-project evaluated and valid mapping of changes to the
code base and their purpose that is usable without any customization on
any open-source project. We provide further the Eclipse Plug-In Subcat
which allows for a comfortable analysis of projects from within Eclipse.
By using Subcat, we are able to automatically assess if a commit to the
code was e.g. a bug fix or a refactoring. This information is very useful
for e.g. developer profiling or locating bad smells in modules.

1 Introduction

Software is constantly evolving. Leading and monitoring software development
projects is a difficult task and performance indicators become mandatory for
deciding on a course of action,