
Exploring the Color Histogram’s Dataspace for Content
Based Image Retrieval

by

Alex Coman

Technical Report TR 03-01
January 2003

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Exploring the Color Histogram’s Dataspace for Content Based Image

Retrieval

Alexandru Coman

Abstract

With the growth of available information in digital format, indexing has drawn much attention as
a viable solution to reduce retrieval time when searching large databases. There are many indexing
techniques available nowadays, but, as they were developed with general goals in mind, they do not
perform at their best in many cases.

In this report we explore the use of prior knowledge about the data to be indexed (e.g. its
spatial distribution) in order to enhance the performance of the indexing structure. Based on a
concrete example – the constraint existing in color histograms – we explore how such property induces
other data constraints. We design a specialized index structure to take advantage of the induced
data constraints. We also propose a new lower bound distance between data points and Minimum
Bounding Rectangles to be used when indexing histograms with existing indexing structures.

The proposed indexing technique is shown to be efficient and stable with respect to variations in
number of data objects, page size, feature vector dimensionality and variation in number of nearest
neighbors to be searched for.

1 Introduction

1.1 Motivation

In the last few years great effort has been put into analyzing and indexing the large number of images
that have become available with the boom of the Internet. Through digital photography and image
scanners, many personal photo albums have been transformed into private digital library collections.
Even before the expansion of digital technologies in private usage, large collections of images were
available for professionals in fields such as design, photography, astronomy, publishing and others.
Efficient browsing and retrieval are important issues for all these people, for private or professional use.

In contrast to standard database systems, similarity search is the main functionality required by
most multimedia applications. While textual information may be directly stored and queried, multime-
dia data is handled through feature transformations, where multimedia object’s properties are usually
transformed into a high-dimensional point, also called feature vector. The similarity of two multimedia
objects is then decided based on the similarity of their feature vectors. While the image processing
researcher is challenged by the feature extraction task, what makes this field interesting for the infor-
mation retrieval researcher is, among other factors, the complexity and dimensionality of the feature
vectors. Common information retrieval techniques, effective with other types of data, cannot be used
in this case, and neither are trivial adaptations of those techniques. One challenging task for image
information retrieval has proved to be handling the large dimensionality of the feature vectors.

In the case of image objects, these vectors are designed to capture the image content and therefore
the retrieval process is called Content Based Image Retrieval (CBIR). Typically, a CBIR system extracts
some visual features from a given query image which are then compared with the features of images
stored in the database. The similarity is based on the abstracted image content rather then on the

1

images themselves. Due to the exponential growth in the number of digital images available, human-
assisted annotation is not feasible. A feature that is easy and fast to extract and also captures reasonably
well the image content is color. It is common to use a Global Color Histogram (GCH) to represent
the distribution of colors within an image [8]. It has the desired characteristic of low complexity for
extraction and invariance to scaling and rotation. In Section3.1 we will introduce in more details
color models and image colors representations, as our work presented in this report uses Global Color
Histogram as the feature extracted from images. Some other features that have been used for image
representation and retrieval purposes are texture [33, 50], shape [28, 35], spatial relationships [9, 24]
and others. It is also common to use a combination of features to improve the quality of retrieval.

There are many CBIR systems available, some commercial, other for research purposes. Several
of them are: IBM’s QBIC [38, 43], Virage’s VIR Image Engine retrieval system [3, 54], Excalibur’s
RetrievalWare [17, 44], MIT’s Photobook [41, 42], Columbia University VisualSEEk [51, 55], University
of Alberta’s BSIm [14, 36] and IBM/NASA’s Satellite Image Retrieval System [34].

With the growth of available information in digital format, indexing has drawn much attention as
a viable solution to reduce retrieval time when searching large databases. While a sequential scan is
efficient for CBIR from small image collections, efficient high-dimensional indexing techniques need to
be explored for efficient CBIR from large collections. One of the main issues the indexing techniques
for Image Retrieval have to deal with is the large dimensionality of the feature vectors. The history of
multidimensional indexing techniques can be traced back to middle 1970’s when the quad-tree and k-d
tree were first introduced [47] for 2-dimensional data. Improved structures such as the R-tree [25] and
variants were introduced in the following years, but not even the best dynamic variant, the R*-tree [4],
performs well for more than 20 dimensions. Section3.2 presents a review of the most important research
work in the indexing of high dimensional data, from the R-tree to state-of-the-art techniques developed
recently. The proposed indexing techniques are very general with respect to data to be indexed and do
not always scale well to the high dimensionality of the feature vectors used in Image Retrieval. This is
due to a number of effects collectively referred to as “the curse of dimensionality”. For Global Color
Histograms, however, some of these effects do not occur due to the inherent constraint on the values
of a histogram; the sum over all values of the normalized histogram feature vector must be equal to
1. This constraint leads to other constraints on the data’s dimensional distribution, maximum distance
between two objects and others. The careful observation and understanding of these constraints allow
us to design a more specialized index structure for normalized histograms.

1.2 Our Contribution

In this report we will show how the efficiency of retrieval can be improved by taking advantage of
constraints inherently existing in image feature vectors at both index construction and search time.
Although we will use GCHs as our image feature of choice, similar constraints may exist in other
features used in CBIR or other fields. For example, histograms can also be used to represent and
compare the shapes of objects [2, 19].

Firstly, we refine the distance function that computes the minimum distance between the query point
and a potential point inside a Minimum Bounding Rectangle (MBR). Since the minimum distance is
used in pruning the search space, it is important to approximate it as accurately as possible. The
improved distance function will help reduce the number of Minimum Bounding Rectangles (MBRs)
searched during retrieval, as well as changing the MBRs search order, as we will present in Section4.5.
Thus, we improve the search efficiency. This function can be used to improve pruning in combination
with any existing indexing techniques that use Minimum Bounding Rectangles as bounding regions.

Secondly, based on our observations regarding the data constraints imposed by the use of Global
Color Histograms as feature vectors as well as the data distribution (synthetic and real data), we

2

propose a new split policy. To show its efficiency we will use it during bulkload construction of the
index structure. This basic index structure is an extreme case of the X-tree index for high dimensionality
[7]. We will also show that a strategy that proves efficient for uniformly distributed data is not as good
for real data. We show how the split policy can be adapted for real data collections in order to improve
the efficiency of our index structure.

2 Report Outline

The report is organized as follows. Section 3 contains an overview of the current research in information
indexing as well as several color models and color properties representations. Section 4 gives a description
of our observations regarding the existing data constraints induced by using normalized histograms. We
will also introduce a variant of an indexing technique that will take advantage of these constraints at
index creation time. We will describe an accurate distance that helps improve pruning the search space
at retrieval time. The evaluation of the improvements obtained by using the new proposed technique
over state-of-the-art index methods will be presented in Section 4. Finally, Section 5 concludes the
report and states some possible directions for future research.

3 Related Work

In the following sections, some information regarding color descriptors and possible similarity measures
is presented, as well as an overview of the most popular and efficient indexing methods applied to color
indexing over time.

3.1 Color Representation and Similarity Models

Color is an extensively used visual attribute in image retrieval that often simplifies object identification
and extraction [23]. This attribute is very convenient since it provides multiple measurements at a single
pixel level on the image, often enabling classification to be done without the need of complex spatial
decisions [49], like objects’ shape and positioning. Its extraction is very fast, making it the feature of
choice in large dynamic collections, when image features have to be extracted in real time. Traditionally,
color histograms have been used as color feature vectors. Some advantages are that they are robust to
image rotation and scaling and image similarity can be computed using simple metric distances (e.g:
Hamming or Euclidean distance). In the following paragraphs, color representation and some similarity
models will be presented in overview.

3.1.1 Color Spaces

The most commonly used color representation model is RGB, which is composed of three primary
colors: Red, Green and Blue. This model has both a physiological foundation and a hardware related
one. Results from neurophysiology [8] show the existence of three distinct types of cones in the human
retina used for capturing what humans define as color. The Red, Green and Blue colors correspond to
the location of the maximum of cone responses to a monochromatic stimulus. The RGB model is also
most frequently used to reproduce colors in optic devices such as TV monitors and computer screens.
These three colors are called primary colors and are additive. By varying their combinations, other
colors can be obtained [21]. This color model can be represented as a unit cube with black (0,0,0) and
white (1,1,1) as extremes of the scales, red (1,0,0), green (0,1,0) and blue (0,0,1) as primary colors and
cyan (0,1,1), magenta (1,0,1) and yellow (1,1,0) as secondary colors (Figure 1). A drawback of this

3

model is that it is not perceptually uniform; that is the calculated distance between two colors does not
truly correspond to the perceptual difference [32].

1

1

10

Red

Yellow

Black

White

CyanGreen

Blue

Magenta

R

G

B

Grey
sc

ale

Figure 1: The RGB color space

Another color model based on the same unit cube as RGB is CMY. It is based on the secondary
colors of the RGB space and it is mainly used for color printing [8]. The Cyan, Magenta and Yellow
are the complements of Red, Green and Blue. As compared with the RGB model, the CMY has the
limitation that none of these three colors is a pure color, and they are always adulterated by a certain
proportion of each other. It is impossible to create a pure black color using this model. In order to
overcome this problem, the CMY color model is extended to another model, referred as CMYK, which
uses black (K) as the fourth color [1].

A color model derived on how colors appear to a human observer is the HSB (Hue, Saturation,
Brightness) model. Hue describes the wavelength of the color percept. Saturation indicates the amount
of white light present in a color. Brightness represents the intensity of a color. The HSB model is
based on experiments analyzing human reactions to opponent primaries1 [8] and on the observation
that opponent hues (like Yellow and Blue) cancel each other when superimposed. This model can be
represented as a cylinder, but it is usually represented by a double hexagonal cone. Brightness (B)
represents the vertical axis, saturation (S) is represented on a side of the hexagonal cone and hue (H) is
an angle around the vertical axis. Another color coding scheme belonging to the same class as HSB is
HSV (Hue, Saturation, Value). The representation of the HSV space (Figure 2) is derived from the RGB
space cube, with the main diagonal of the RGB model, as the vertical axis in HSV [31]. As saturation
varies form 0.0 to 1.0, the colors vary from unsaturated (gray) to saturated (no white component). Hue
ranges from 0 to 360 degrees, with variation beginning with red, going through yellow, green, cyan, blue
and magenta and back to red. These color spaces are intuitively corresponding to the RGB model from
which they can be derived through linear or non-linear transformations [8].

Another uniform color space based on human perception is L*u*v*. It is device-independent, based
on the opponent color theory of human vision and highly approximates color difference as perceived
by humans [8]. It was recommended by CIE (Commision Internationale e l’Eclairage) for quantifying
differences in monitor displays. Lightness L* is perceptually based on brightness and u* and v* are

1lights of a single wavelength

4

H

S

V
yellowgreen

cyan red

blue magenta

black

white

Figure 2: The HSV color space

chromatic coordinates. In the L*u*v* color model, Red is the best represented color, Green is moderately
represented, while Blue is poorly represented.

The selection of a color space is very important for deriving useful image related color information.
Several researchers have evaluated various color models for the purpose of image retrieval under varying
sets of image conditions [22]. It has been shown that the RGB color model closely corresponds with the
physical sensors of the human eye, although the human perception is more accurately reflected using
the HSV color space. There is no clear proof in the specialized literature of one model being better than
the other in all aspects. In the Color Based Information Retrieval research, the RGB color model is
most frequently used, as it is easy to understand and extract. We use the RGB model in our research,
but the proposed techniques would equally apply well when using any other color model.

3.1.2 Color Properties Representation

Color histograms are the most common way of describing low-level color properties of images [8]. A
color histogram is represented by a set of bins, where each bin represents one color. It is obtained by
counting the number of pixels that fall into each bin based on their color. Since the typical computer
represents color images with up to 16,777,216 colors (RGB model, 256 Red levels x 256 Green levels
x 256 Blue levels), this process generally involves substantial quantization of the color space. Color
histograms could be generated either as three independent color distributions (one for each of the RGB
primary colors) or, more frequently, as a joint distribution of all three primary colors. Usually, the
obtained color histogram is normalized with total number of image pixels. In normalized histograms,
each bin represents the percentage of pixels of the bin corresponding color found in the image.

When only one histogram is generated for the entire image, it is called Global Color Histogram

5

(GCH). Assuming a D-color space, a GCH is then an D-dimensional feature vector (h1, h2, ..., hD),
where hi represents the normalized percentage of pixels of color ci found in the target image. Formally,
each component ci can be defined as a unique combination of Red-Green-Blue values. The GCH by
itself does not capture any spatial information about the image, so that very different layouts may have
similar representations. For example, a large red object on blue background could have the same GCH
representation as many pixel-size blue objects on red background. When only GCH is used as feature
vector describing an image, the retrieval of similar images is based on similarity of their GCHs. Often,
the similarity metric used between two image GCHs is the Euclidean distance, that is defined as:

d(Q, I) =

√√√√ D∑
i=1

(hQ
i − hI

i)2 (1)

where Q represents the query image, I is one of the images in the dataset and hQ
i and hI

i represent
the histogram value for the same coordinate (color) i in Q, respectively I. A smaller distance reflects a
closer similarity match. In fact, the color histogram feature vectors are usually mapped onto points in
an D-dimensional metric space, and similar images would therefore appear close to each other, with a
smaller Euclidean distance between them.

Another popular distance function used to measure similarity between color histograms is the Ham-
ming distance, that is defined as:

d(Q, I) =
D∑

i=1

|hQ
i − hI

i | (2)

Hafner et al. propose in [26] a quadratic form distance function that they suggest it captures better
the similarity between color histograms. The new distance function is defined as:

d(Q, I) =
√

(Q − I)tA(Q − I) (3)

where A = [aij] is a weight matrix and aij represents the extent to which histogram’s bins (colors) i and
j are perceptually similar to each other. When compared with the Hamming or Euclidian distances,
the quadratic distance allows similarity matching between different colors.

In order to capture some spatial information through color histograms, local color histograms (LCH)
[52] can be used. An image is divided into regions and a color histogram is computed for each region.
Thus, an image divided into 16 regions will be represented by 16 LCHs, one for each region.

A different type of histogram that incorporates some spatial information about an image is proposed
in [40]. Each pixel is classified in a given color bin as either coherent or incoherent. A color’s coherence
is defined as the degree to which pixels of that color are members of a large similarly colored region.
A Color Coherence Vector (CCV) stores the number of coherent (αi) versus incoherent (βi) pixels for
each color i. αi + βi represents the total number of pixels of color i in the image, as represented in
GCHs. In CCV, the feature vector of an image is described as I= 〈(α1, β1), ..., (αD , βD)〉, with D being
the size of the color space. Using this notation, the Hamming distance between Q and I using Global
Color Histograms representation is:

dHist(Q, I) =
D∑

i=1

| (αQ
i + βQ

i) − (αI
i + βI

i) | (4)

When using CCV representation, the distance is defined as:

dCCV (Q, I) =
D∑

i=1

(| αQ
i − αI

i | + | βQ
i − βI

i |) (5)

6

It is shown that dHist(Q, I) ≤ dCCV (Q, I) [40] and therefore one can have a better distinction among
similar images for the case when the distance between GCHs would produce many similarity ties.
Experimental results show that Color Coherence Vectors can give superior results when compared to
Global Color Histograms.

In [36], a different approach is proposed that emphasizes less dominant colors, while still taking into
account major colors of an image. The approach is based on the discretization of colors into binary
bins which improves the retrieval performance and significantly saves storage space. After each image
is quantized into a fixed number of colors I = (c1,c2, ..., cD), each color element ci is further discretized
into T binary bins Bi = b1

i b
2
i ...b

T
i , where only one bit can take value 1. If the discretization function

assigns equal color value ranges to each bin, the arrangement is called Constant Bin Allocation (CBA),
while if it uses variable color ranges it is called a Variable Bin Allocation (VBA) approach. The VBA
method gives advantage to less dominant colors by discretizing the space with larger ranges assigned to
a bin for the lower values. A signature of an image will then be represented by the following bit-string:
S = b1

1b
2
1...b

T
1 b1

2b
2
2...b

T
2 ...b1

Db2
D...bT

D, where bj
i represents represents the jth bin of the ci color element.

Since each bin is represented by just one bit, the obtained signature is very compact. For example, by
using D = 64 colors, F = 4 bytes/float value and T = 10 bins, the image signature requires 80 bytes =
64 colors x 10 bits, while GCH would require 256 bytes = 64 colors x 4 bytes/float and CCV 512 bytes
= 64 colors x 2 histograms x 4 bytes/float. That is a saving of over 68% over GCH and 84% over CCV.
The distance between two images Q and I is defined as:

d(Q, I) =
D∑

i=1

| (pos(BQ
i) − pos(BI

i) | (6)

where pos(BR
i) gives the position of the set bit within the set of bits Bi of image R. Experimental

results show that VBA method can equal and sometimes outperform the use of GCHs. Beside the
advantage of great savings in storage space, signatures can be indexed efficiently using signature based
methods such as the S-tree [37].

In [53] the authors propose a method based on color moments. For each color channel (H, S and V
in their case), they extract the first three color moments: average, variance and skewness. Each image
is described by 9 features (3 channels x 3 moments). They also propose a similarity distance based on
these features, where each color moment has a different weight. They argue that the index is small and
the retrieval process is fast and effective. A drawback of this technique is that the choice of the weights
in the distance function is dependent on the data set and highly affects the retrieval results.

Jacobs at al. have suggested in [27] the use of quantized 2-dimensional wavelet decomposition
by applying the Haar wavelet transform to images. Similarity is determined by checking how many
significant wavelet coefficients on the query image and dataset image are close to each other. As wavelet
coefficients capture information of image content independent of original image resolution, the query
and dataset images may have different resolutions, without affecting the quality of retrieval.

In the VisualSEEk system [51], Smith and Chang use color sets to locate regions within a color
image. Color sets are binary vectors that correspond to a selection of colors. It is assumed that image
regions have only a few dominant colors. Similarity between two images is determined by verifying the
presence of a color set in an image region. For single region queries, the overall distance is computed
as the weighted sum of distances between color sets, spatial locations, areas and spatial extents. The
best match minimizes the overall distance.

A pyramidal multiresolution representation of color regions is used in the Picasso system [8, 10].
Region segmentation is performed by iteratively aggregating uniform color patches. Image segmenta-
tions obtained with this process are organized in a pyramidal schema. Each segmentation is represented

7

through a graph, where each node represents color uniform regions at a certain image resolution. Global
color vectors are used to quickly extract candidate images containing regions with the same colors as
the query. Then, candidate images are analyzed by inspecting their pyramidal representation from top
to bottom, to find the best matching region for each region in the query. A similarity score is computed
based on the matching score of each region.

3.2 Indexing Techniques

In order to increase the efficiency of retrieval, indexing techniques are used. Since we are generally
dealing with a large number of data objects, these objects are kept on secondary storage (disk). The
smallest unit a disk is logically partitioned into is called disk page (in the following referred as page).
We can only access whole multiples of pages. Since secondary storage operations are very time costly
compared with operations in main memory, the main concern is to minimize the number of disk pages
that have to be accessed during retrieval.

Before proceeding to the presentation of some indexing techniques, we will first introduce two com-
mon types of queries in image information retrieval. We assume a generic tree-like index structure (as
in Figure 3) where the leaf nodes keep the indexed objects and each internal node contains a bounding
region for all objects contained in its sub-tree.

Figure 3: Generic tree index structure

Firstly, there is the Range Query. In a range query, a radius is given together with the query object
(note that in the following the terms object and point will be used interchangeably since an object
is represented by a feature vector which is a point in the feature space). The expected result is the

(a) Range Query (b) Nearest Neighbor Query

query
radius

query

k = 8 neighbors

Figure 4: Query types in information retrieval

8

retrieval of all points closer than the given radius from the query object (Figure 4 (a)). The number of
returned objects depends on the radius and, for a fixed radius, on the objects distribution in space. It
could be null, if the radius is too small, or equal to the number of indexed objects, if the chosen radius
is too large. An advantage of this type of query is that a maximum query to object distance is known.
Therefore the search space can be pruned early without loosing any objects from the answer set. For a
pseudo-code version of the range query search algorithm, see Figure 5. Note that the Insert procedure
keeps the lists sorted, dist computes the distance between two data points and mindist computes the
distance between a point and the bounding region of a node.

Input : Query Object q, Radius r, ActiveNodeList anl = [root],
RangeList rl = [NULL]

Output: RangeList rl

while anl Not Empty do
Node N = anl.RemoveFirst;
if N Is LeafNode then

for each Object o in N do
if dist(q,o) ≤ r then

Insert o in rl;

else
/*Non-Leaf Node*/;
for each ChildNode c in N do

if mindist(q,c) ≤ r then
Insert c in anl;

Figure 5: Range Query Search Algorithm

Another type of frequently used query is the k-Nearest Neighbor Query. In this type of query, the
desired number of neighbors (k) is supplied with the query object. The expected result is a list of
k-nearest neighbors of the query object (Figure 4 (b)). In this case, the distance from the query object
to the furthest kth-neighbor object is unknown a priori. Therefore, pruning the search space has to
be done dynamically, based on the distance to the kth-nearest neighbor encountered in intermediate
steps of the search. Processing such a query requires a substantially different search algorithm than for
range query [5, 46]. It is also more costly than range query search for most indexes. For a pseudo-code
version of the basic k-Nearest Neighbor query search algorithm, see Figure 6. Note that the Insert
procedures keeps the lists sorted, the NNList keeps just k elements and knn.maxdist represents the
maximum nearest neighbor distance found.

An important issue that affects the performance of these search algorithms is the amount of overlap
existing among the tree nodes. Overlap is the percentage of the space volume that is covered by
more than one node sub-tree bounding region. This affects the query performance since during query
processing the overlap of bounding regions results in the necessity to follow multiple paths, covering
same regions of space more than once.

It is important to note that the more accurate the mindist distance, the better te prunning of sub-
trees during the tree traversal, i.e., the faster the query processing (this is discussed in more details in
Section4.5.

9

Input : Query Object q, Neighbors k, ActiveNodeList anl = [root],
NNList knn = [NULL]

Output: NNList knn

while anl Not Empty do
Node N = anl.RemoveFirst;
if N Is LeafNode then

for each Object o in N do
if dist(q,o) < knn.maxdist then

Insert o in knn;
Update knn.maxdist ;
Prune anl using knn.maxdist;

else
/* Non-Leaf Node */;
for each ChildNode c From N do

if mindist(q,c) < knn.maxdist then
Insert c in anl;

Figure 6: k-Nearest Neighbor Query Search Algorithm

3.2.1 Data Partitioning Indexes

The most popular techniques for indexing data try to group or organize the data objects based on their
distribution. The data space is partitioned into cells and a disk page is allocated to each cell. These cells
are organized into an index tree which is used to help prune the search space during query processing.
There are many such methods and some of the most commonly used will be presented in this section.
They are the R*-tree, TV-tree, SS-tree X-tree and SR-tree. We will also introduce bulkload index
construction, that helps improve the efficiency of these index structures when the dataset to be indexed
is known in advance.

R*-tree The R*-tree [4] is a multidimensional index structure designed for indexing D-dimensional
rectangular data based on their spatial location. It is one of the most successful versions of the R-tree
[25] index introduced in 1984 by Gutmann . The R-tree is a height-balanced tree corresponding to a
multilevel hierarchy of rectangles. Therefore it is only suitable for rectangular and point (which can be
considered as a degenerated rectangle) objects.

We will introduce first the basic R-tree structure (Figure 7), since the R*-tree and many other
indexing structures start from the same basic structure followed by enhancements or adaptations of it.
A leaf node (Figure 7, nodes A to I) contains entries of the form (ObjP, Rect) where ObjP represents
a pointer to the actual spatial object (or just a database record describing the object) and Rect is the
smallest enclosing rectangle of the indexed object. All leaves are on the same level. A non-leaf node
(Figure 7, nodes 1, 2, 3 and root) contains entries of the form (ChildP, MBR) where ChildP represents
a pointer to a child node in the tree hierarchy and MBR is the Minimum Bounding Rectangle of all
objects indexed in the subtree rooted at the child node. Therefore, a non-leaf node contains the MBR
of all rectangles of the objects contained in the leaves of subtree. The root node contains the MBR of
all the indexed objects. Each node corresponds to a disk page. If nodes have many entries, the tree is
very wide, and almost all the storage space is used for leaf nodes containing index records [25].

10

root

1 2 3

A B C D E F G H I

R*−treeObject Space

1

2

3

A

B

C

D

E

F

G

H

I

Figure 7: The R-tree structure

This indexing structure is dynamic, insertions and deletions can be intermixed with queries and
no periodic global reorganization is required [4]. One drawback of this structure is that it may have
highly overlapping directory rectangles (MBR). More overlap means more paths have to be searched
to find one (exact match) or more objects (for nearest neighbor and range queries) as the query point
will be either inside or close to many MBRs. In order to reduce overlapping, the original R-tree tries
to minimize the MBR enlargement area during insertions and minimize the total area of the new nodes
MBR during splits. The R*-tree improves the performance of the R-tree by introducing heuristics for
minimizing the area, margin and overlap of MBRs in the case of insertions and splits. It also introduces
the concept of Forced Reinsert, which in some cases avoids splits by reinserting the node overflow in
the structure and therefore reorganizing the structure dynamically. This strategy reduces the impact
of objects insertion order on structure organization. Another advantage of Forced Reinserts is that it
provides a better storage utilization than the original R-tree. Due to possible overlap of rectangles,
the search time depends not only on the tree height, but also on the amount of overlap. Although the
R-tree was originally designed for rectangular objects, the authors show in [4] that this structure is also
effective as a point access method.

The R*-tree is suitable for a small number of dimensions, but its performance decreases rapidly
with increasing dimensionality [7]. Since for each dimension two values are used to represent the spatial
extension of an MBR, only a few MBR can be kept on a disk page and therefore the fanout (or branching
factor, describing the maximum number of entries that a node can have) is too small for an efficient
search. Another disadvantage is that MBRs’ overlap increases rapidly with the dimensionality, highly
reducing the pruning capabilities.

TV-tree The first method proposed specifically for indexing high-dimensional data is the TV-tree
[30]. This structure tries to improve the performance of R*-tree for high-dimensional feature vectors
by employing a reduction in dimensionality with the use of a shift of active dimensions (Figure 8). An
active dimension is a dimension that can be used for discriminating the objects at a certain level in the
tree. All dimensions are initially ordered (based on their importance - defined by the user/specialist)
and shifted (activated) towards the root of the tree. This shift occurs when feature vectors in a subtree
have the same coordinate on the most important active dimensions. Then, those dimensions are made
inactive and less important dimensions are activated for indexing. The number of dimensions used for
indexing is adapted to the number of objects to be indexed and to the level of the tree. This way
the nodes closer to the root use only a few dimensions for indexing. Therefore, they can store more
child nodes and enjoy a high fanout even if the objects’ feature vectors have many dimensions. As the

11

D1

D2

D3

D4A

B

C

D

E

F

G

H

I

D1 D2 D3 D4

A B C D E F G H I

Figure 8: Example of a TV-tree with 1 active dimension

A

B

C

D

E

F

G

H

I

1

2

3

root

1 2 3

A D E F G ICB H

SS−treeObject Space

Figure 9: The SS-tree structure

indexing descends the tree, more and more dimensions are used for discriminating the indexed objects.
The performance comparisons presented in the literature show that the TV-tree is much more efficient
than the R*-tree.

The main drawback of this approach is that it is based on two assumptions [57]. The first assumption
is that an order based on importance can be found for the dimensions of the feature vectors. The second
assumption is that the feature vectors can be exactly matched based on some dimensions, especially
on the first few important dimensions. If the first assumption may hold by finding an appropriate
transformation of the feature vectors, the second one does not hold for real-valued feature vectors since
their coordinates generally have great diversity. This assumption is valid only if the feature vectors
take values in a (small) discrete set. For visual information retrieval, real-valued feature vectors are the
most common case and therefore the efficiency boost of the TV-tree is lost. In this case the TV-tree is
reduced to an index on only the first few dimensions. Thus, the effectiveness of this indexing structure
is dependent on the application.

SS-tree The SS-tree [57] is another indexing structure designed for high dimensional point data. Its
main goal is an efficient similarity indexing in order to facilitate efficient similarity queries on a dataset

12

of high dimensional feature vectors. The SS-tree is an improvement of the R*-tree, still sharing many
common characteristics with it. In order to enhance the performance of neighborhood queries, the
R*-tree is modified in two directions.

Firstly, the minimum bounding rectangles (MBR) used in the R*-tree for the region shape are
transformed into minimum bounding spheres (MBS) (Figure 9). One advantage of this approach is
that a data space region requires less storage space to be represented. For example, each dimension
requires two values, minimum and maximum extension on each dimension, for rectangles boundary
representation. If the feature vectors have D dimensions, D × 2 values are required to describe a MBR.
A sphere can be described by its center and its radius. Therefore, just D + 1 values are required to
represent it, saving almost half of the storage space. By using less storage space in the non-leaf nodes,
node fanout is increased and the tree height is decreased, improving the search efficiency. In the SS-tree,
the center of the sphere is the centroid of the underlying points. The feature vectors are divided into
neighborhoods by using centroids in the tree construction algorithm, the insertion and split algorithms.
For the case of insertions, the most suitable subtree to accommodate a new entry is simply chosen based
on the node whose centroid is closest to the new entry. When a node or leaf becomes full, the coordinate
variance on each dimension from the centroids of its children is computed, and the dimension with the
highest variance will be split.

Second, the concept of forced reinsertions introduced in the R*-tree is modified in order to enhance
the dynamic organization of the tree structure. In the case of the R*-tree, when a node or leaf is full,
the forced reinsert policy is used instead of the split strategy only if reinsertion has not been made at
the same tree level. In the SS-tree, as improved over the R*-tree, the reinsertion policy is used instead
of split policy only if reinsertions have not been made at the same node. This strategy allows more
reinsertions and leads to a better utilization of the disk page storage space and more independence from
the order of insertions.

In spite of these improvements, the SS-tree still suffers from a rapid degradation of its performance
in high dimensionality. One of the reasons is that the volume occupied by an MBS is generally much
larger than the volume of the corresponding MBR for the same undelying objects. The larger volume
induces more overlap at the non-leaf level and consequently less prunning during search.

X-tree In order to overcome the overlap problem of the bounding rectangles in the R*-tree which
increases with the growing dimensions, Berchtold et al. propose in [7] some improvements. The new
structure is called X-tree (eXtended node tree) and it is optimized for high-dimensional vector spaces.
In order to keep the directory as hierarchical as possible and avoid node splits that would result in high
overlap, the concept of supernode is introduced along with a new split algorithm that tries to minimize
and eliminate the MBRs overlap.

The X-tree starts from the observation that, for a large number of dimensions, the overlap introduced
by the R*-tree like structures is very high and the whole structure has to be searched. Therefore, a
linear organization of the directory is more efficient (takes less storage space and the pages can be
fetched faster from the disk). Depending on the dimensionality of the feature space, the X-tree uses
a hybrid approach trying to automatically organize the directory as hierarchically as possible without
introducing overlap. If during insertions there is no other possibility to avoid overlap, then supernodes
(Figure 10) are created. Supernodes are large tree nodes of variable size (multiples of a disk page size)
used to avoid splits in the directory nodes that would result in an inefficient tree structure. In the case of
the R*-tree, these splits would create a hierarchical structure with high overlap, and the split generated
nodes would have a high probability of being all searched when one of them is searched. However, this
would be inefficient compared with a linear scan of the supernode.

The number and size of supernodes increases with growing dimensions. Due to this increase, the

13

root

1 2

A B C D E F G H I

Object Space

1

2

A

B

C

D

E

F

G

H

I
3

X−tree

Normal Node

Supernode

3

Figure 10: The X-tree structure

height of the X-tree corresponding to the minimum number of page access necessary for point queries
is decreasing with increasing dimensionality of the feature space. The authors mention two possible
special cases of X-tree. The first is when none of the nodes is a supernode. In this case X-tree is
similar to R-tree. This may occur only for low dimensionality. The second case is that of the directory
consisting of only one large supernode (root). This case occurs for highly dimensional data. The X-
tree supports not only point data, but extended spatial data as well. Experimental performance shows
that, on high-dimensional data, the X-tree outperforms the R*-tree and TV-tree by up to two orders of
magnitude.

SR-tree The SR-tree [29] is an improvement over the SS-tree with the goal of enhancing the efficiency
of nearest neighbor search in point queries. The authors start from the observation that, although a
minimum bounding sphere (MBS were proposed in the SS-tree as bounding hyperobject) has a shorter
diameter than the diagonal of the corresponding minimum bounding rectangle for the same underlying
objects, its volume it is generally much larger. The higher the dimensionality of the feature space,
the larger the ratio of MBS volume over MBR volume. A larger volume in MBSs or MBRs induces
more overlap at the non-leaf level and therefore less pruning during search. A combination of both
these bounding hyperobjects would give the advantage of both smaller volume and shorter diameter for
bounding hyperobjects. The SR-tree (Spheres/Rectangles-tree) specifies a region of the vector space
by the intersection of a bounding sphere and a bounding rectangle (Figure 11). As compared with the
SS-tree, incorporating bounding rectangles allows neighborhoods to be partitioned into smaller regions,
improving the disjointness among regions.

The general structure of the SR-tree is based on the R-tree, sharing many attributes with R*-tree
and SS-tree, and it is represented by a nested hierarchy of bounding regions over the underlying objects.
What makes the SR-tree structure distinctive is that a region is specified both by its minimum bounding
sphere (MBS) and minimum bounding rectangle (MBR) of the underlying points (Figure 12). While
a leaf node has a similar structure with the SS-tree, a non-leaf node describes each child with four
components: a pointer to the child node, the number of points in the child node and the MBS and
MBR of the child node. Since a child node entry of the SR-tree has a three times larger size than in
the SS-tree and one-and-a-half than in the R-tree, the fanout of the SR-tree is one-third of the SS-tree
and two-thirds of the R-tree. As mentioned before, a small fanout requires more nodes to be read on
queries and may cause a reduction in query performance. Experiments have shown that although there
is an increase of non-leaf nodes reads as expected, the overall total number of disk reads of the SR-tree
is smaller than that of the SS-tree and R*-tree.

14

A

B

C

D

E

F

G

H

I

1

2

3

root

1 2 3

A D E F G ICB H

SR−treeObject Space

Figure 11: The SR-tree structure

(a) Leaf level (b) Node level

Figure 12: Bounding regions as specified by the intersection of a bounding sphere and a bounding
rectangle

15

Another difference from the SS-tree and R-tree is for nearest neighbor queries. Because a bounding
region in the SR-tree is represented by the intersection of a bounding rectangle and a bounding sphere,
the minimum distance from the search point to a region is defined by the longer distance between the
minimum distance to its bounding rectangle and the minimum distance to its bounding sphere. The
performance evaluations have shown that nearest neighbor queries are specially effective for the SR-tree
compared to other indexing structures for high-dimensional and non-uniform data sets which is the
general case for real data in image retrieval.

Index Building by Bulkload Technique Typically, small high dimensional databases do not require
an index structure since sequential scan search performs better than an index based search in this case.
Once the database reaches a certain size, the use of an index structure is, however, worthwhile. In
some fields, like Image Retrieval, it is usual to start with a large collection of data to which an index
structure has to be built in order to improve the search efficiency. In either cases, it is undesirable to
dynamically build an index since it has a high building time due to successive insertions and it will not
take advantage of a priori knowledge of data.

The solution is to bulk-load the index, that is to build the index structure statically. Once built, as
further data updates may be required in the future, the index structure has to allow dynamic operations
to be performed. Bulk-load is not an index structure, but an operation that is applied to build a desired
index structure. One can also take advantage of knowing a large amount of data items at building time.

G
2,000

1,000

1,000
K

J E
2,000

10,000 objects

dimension 0

di
m

en
si

on
 1

H
2,000

2,000
F

J K

E F G H

1

J K E F G H

A C D

BA

unsorted data

0 0

0

1

2,0002,000 2,000 2,000

4,0004,000

8,0002,000

1,0001,000

split
unsorted

split
partition B

Figure 13: A 2-dimensional bulk-load partitioning (adapted from [6])

Several bulkload techniques are proposed in the literature. We will focus on those proposed in [6, 13],
since it is the index building technique that we will also use in our experimental part. The proposed
bulk-loading technique is applicable to R-tree-like structures. The basic idea of the technique is to split
the dataset recursively in a binary split tree top-down fashion using hyperplanes as separators between
partitions. A hyperplane is defined by a split dimension and a split value on the split dimension. The
split value is chosen such that a certain ratio between the number of objects on the two sides of the
split plane is achieved. Although the generated space partitioning is unbalanced, the resulting index
structure is balanced, as the actual index is build in a bottom-up manner from the leaf nodes generated
by the partitioning algorithm. An arbitrary storage utilization can be chosen. Beside the advantage of
optimizing the shape of the bounding boxes, the proposed bulk-load algorithm creates an overlap-free
directory. For a better understanding, Figure 13 shows a 2-dimensional bulkload partitioning in three

16

ways: as spatial distribution of the partitions, as the top-down split tree and the evolution in time of
the partitioning process (all numerical values represent numbers of objects).

3.2.2 Space Partitioning Indexes

Another approach for indexing is based on grouping data objects based on their spatial positioning.
The data space is divided along predefined or predetermined lines. Well known representatives of
space partitioning indexes are quad-trees [20], k-d-b-trees [45] and grid-files [39]. Recent structures are
using such vector space partitions to approximate the spatial locations of the data objects in order to
accelerate the retrieval by creating a compact approximate feature search space. Such structures are
the VA-file and the A-tree which will be presented in the following.

VA-file With the increase in dimensionality, the data partitioning methods tend to lose efficiency,
requiring to search most of their nodes. In this case, a simple sequential scan can outperform most
indexing methods since a sequential reading of all data disk pages is faster than a random read of
more than 20% of data pages [56] (for many structures this happens already when the data space
dimensionality is larger than 10).

00

00

01

01 10

10

11

11

A

B

D

C

A

A

B

B

C

C

D

D

vector data

approximation

data space

0.2 0.8

0.3

0.4

0.3

0.8

0.4

0.6

00

01

10

11

11

00

01

10

Figure 14: A 2-dimensional VA-file data objects approximation example

The VA-file [11] (Vector Approximation file) is a simple flat array of vector approximations. The
data space is divided into cells and each of these cells is represented by a unique bit-string of length b
(user defined). Each data object is approximated by the bit-string of the cell in which it falls (Figure
14). This object approximation is equivalent to a quantization scheme. For nearest neighbor queries, all
these approximations are scanned and for each approximation a lower and upper bound is computed for
the distance between the object and query (Figure 15). These bounds are then used to eliminate some of
the vectors from the search, generating a candidate set sorted by their lower distance. These candidates
are then loaded from disk and the accurate distances between query and vectors are computed. If too
many candidate vectors remain, the performance gain due to compact representation of approximation
is lost. Since we already know the lower bound for each candidate, not all of them have to be visited.
Once the accurate kth neighbor distance is smaller than the lower bound of approximated distance, the
search stops.

17

li

ui

a i

− lower bound

− upper bound

− approximation cell

q − query point
li

u i
a i

q

Figure 15: Lower and upper bounds for query processing

Based on the number of points and data distribution the user has to decide a priori how many bits
(bi) to allocate for a certain dimension (di). Then dimension di is split into 2bi regions (2bi +1 partition
points are required). The partition points have to be chosen in such a way that the obtained regions
are equally full. Typically, bi is a small integer in the range 2-8. The length b of the approximation
bit-string is the sum of the approximation lengths bi over all dimensions. Each approximation cell is
represented by an unique bit-string of length b. Each data point is approximated by the bit-string of
the cell into which it falls. In Figure 14 this transformation is illustrated for four data points (bi = 2
for each dimension).

The partition points are dividing the vector space in 2b partitions. The total number of partitions
is very large. For example, for a 64 dimensional feature space and 1 bit per dimension (that is each
dimension is split in two partitions), we have 264 partitions. If the total number of objects is 106 – less
than 220 –, then most partitions will be empty in our space. As the number of partitions is very large
compared with the number of points, the probability that two or more objects will share the same cell,
respectively approximation, is very low. Consequently, rough approximations can be used without the
risk of collisions. The VA-file benefits from the spareness of a high-dimensional data space as opposed
to data partitioning methods.

The main disadvantage of this approach is the requirement of a priori decisions regarding the number
of bits per dimension (or total number of bits per approximation) and the partitioning points. If data
distribution is modified in time, new partition points are required in order to keep equally full partitions.
In order to precisely determine the partitioning points, the entire data set has to be analyzed, which
is too costly for the case of insertions, deletions and updates. A solution is to determine these points
stochastically by sampling. Another one is to keep these regions fixed during insertions, deletions and
updates but this solution is safe only if we know that data distribution does not fluctuate. The authors
show that for dimensionality larger than 10, the VA-file can outperform most other methods. Also, the
performance of this method improves with dimensionality increase.

A-tree An approach that combines both data and space partitioning techniques is the A-tree [48].
The basic idea of this structure is to combine both the pruning advantages of tree-like indexes and
the compact representation of position approximations as in the VA-file. The main contribution in
this respect is the introduction of the Virtual Bounding Rectangle (VBR), which is an approximate
representation of an MBR or data object (see Figure 16). A VBR is used to approximate children MBRs
relative to their parent MBR (which is the MBR of all children MBRs). A child’s VBR is represented
by its two endpoints relative to the parent’s MBR. The basic idea is to quantize the position of a child

18

MBR relative to its parent MBR, so that an approximate position of child MBR is known while saving
node space. Figure 16 shows a 2-dimensional example of parent MBR (pMBR), child MBR (cMBR) and
child VBR (cVBR). For the child VBR, 3 bits (23 = 8 regions) per dimension are used to quantize the
child MBR relative to its parent MBR. While 16 bytes (2 points x 2 dimensions/point x 4 bytes/float
= 16 bytes) would be required to represent the child ’s MBR, less than 2 bytes (2 points x 2 dimensions
x 3 bits/point = 12 bits < 2 bytes) are enough to represent the child’s VBR in 2-dimensional case.
Therefore, intermediate nodes have a large fanout, improving search efficiency.

(0.7,0.52)(0.3, 0.52)

(0.3, 0.2) (0.7, 0.2)

cVBR

pMBR

cMBR(0.38,0.31) (0.59,0.31)

(0.38,0.41) (0.59,0.41)

(001 101) (101 101)

(001 010) (101 010)

Figure 16: A 2-dimensional example of Virtual Bounding Rectangle

Compared to the VA-file, another advantage is that the quantization function dynamically adapts
to the data distribution. In the A-tree representation, an index node contains the exact representation
of the MBR of the node and the relative approximation of the MBRs of the node’s children. This way,
by reading just one A-tree node, we get partial information about the bounding regions of two levels. A
drawback of approximating MBRs is that approximation error may lead to reduced pruning in searching
if a query point falls outside the MBR but inside the approximation of the MBR.

The authors have used the SR-tree as a start point in the A-tree design. Since their experiments have
shown that the effect of the Minimum Bounding Spheres is reduced for high dimensionality, MBSs are
no longer stored in the A-tree nodes. In its structure, the A-tree is using four types of nodes. The data
nodes contain objects feature vectors and pointers to the actual objects. Each leaf node corresponds to
a data node and contains the MBR of the data node, a VBR approximating each feature vector and a
pointer to the data node. An intermediate node contains the MBR of its children MBRs and for each
child, its VBR, number of objects in child, child’s objects centroid and a pointer to child. The root
node is like an intermediate node, with the exception that it no longer contains the MBR bounding all
children since this MBR would be close to the whole data space which is known in advance.

In order to apply the nearest neighbor algorithm on the A-tree, two nearest neighbor lists are used.
One is the usual list found also in the other algorithms, containing candidate nearest neighbor points
based on the real distance. The other list contains the candidate nearest neighbors based on the distance
from the query point to the VBRs of data objects. With the help of the second list, data objects are

19

filtered and fewer data nodes are accessed. The reported results show that the A-tree is up to 75% more
efficient in page accesses than the SR-tree and VA-file for 64 dimensions.

4 Indexing with Constraints

4.1 Motivation

Nowadays, large collections of information from many fields need to be indexed for faster retrieval,
but sometimes, this information is too complex to be indexed directly. Often, features of the data
are extracted and these features, usually represented as vectors, are used further on for indexing and
retrieval. The generated feature space could have only a few dimensions or its dimensionality could be
very large. Much research have been focused on indexing techniques for feature vectors (see Section
3), but they are very general with respect to indexed data. This generality is good since it allows an
approach to be applied in many fields. On the other hand, a solution which is very particular to a certain
problem can provide a great efficiency boost over other methods, while losing its relative advantage by
being applicable only to a reduced set of problems.

This section will present our research with respect to image features indexing by taking into account
a priori knowledge about data constraints in the feature space, in particular its distribution. We will
show how simple yet powerful observations about the data distribution can help improve the efficiency of
the retrieval process. Although our research is focused on the use of Global Color Histograms for Image
Information Retrieval, the proposed solutions are applicable whenever the data can be represented as
normalized histograms or the feature vectors have similar constraints. In the context of multimedia data,
other applications include the representation of shapes of objects using different types of histograms.
For instance, in [2] different methods for decomposing the enclosing sphere of an objects into a number
of cells (e.g. concentric shells), corresponding to histogram bins, are proposed. The value of a bin in
these histograms is the percentage of the object that falls into the corresponding cell. Experiments have
shown this approach to work well, particularly when applied to 3-dimensional objects in the context
of molecular biology. Another means to represent shapes using distance histograms was proposed in
[19], and has been shown to provide effectiveness comparable to that obtained with more elaborate
approaches such as using Fourier coefficients.

4.2 Feature Representation

To start, we will introduce the data preprocessing phase required for the indexing process. The first
step is the feature extraction. As mentioned earlier, our data will consist of images and we decided
to use Global Color Histograms as image features of choice. GCHs provide the type of constraint we
want to study and take advantage of, while being easy to understand and extract. In addition, color
histograms are extensively used in the image indexing research (see Sections 1 and 3).

As presented in Section 3, Global Color Histogram is the color distribution obtained by discretizing
the color space used by an image and counting the number of pixels that fall into each bin. A color
image using the RGB color model has a very large number of colors and therefore we perform a color
reduction (discretization) to a lower dimensional color space before extracting the GCH. We chose 64
to be the number of colors to use in most experiments since this discretization captures reasonably
the color distribution within our image without extending too much the dimensionality of the feature
vectors. 64 also represents the maximum dimensionality used in many indexing techniques. It is
also one of the most frequently used color spaces for color histograms in image information retrieval
[15, 18, 36, 37, 40, 48]. In addition, it has been argued that a larger number of colors introduce noise
in the sense that the notion of dominant color may be lost, while a smaller number might not capture

20

accurately the color variation in an image. It is important to note that our work does not depend on
any particular dimensionality – in fact we aim at higher values. In order to reduce the RGB color space
to 64 colors, we approximate each color by the representative of the RGB space partition where it falls
into. That is, for reduction to 64 colors, the R, G and B color axis are divided into four partitions
each. This will generate 43 = 64 partitions in the RGB cube. Then, each color is approximated by
the representative color of the partition where it falls into. The Global Color Histogram is computed
by counting how many pixels belong to each color in the lower (64) dimensional space and normalizing
the obtained values. Therefore, each GCHs bin represents the percentage of pixels of the corresponding
color found in the target image.

4.3 Experimental Sets

The experimental evaluation consists of tests performed on real and synthetic data. Synthetic data
consists of 300,000 (300k) data points with either 16, 32 or 64 dimensions. As real data sets, we use
two image collections. The first data collection contains around 60,000 (60k) images from the Corel
Gallery [16]. The second real data collection consists of around 110,000 (110k) TV snapshot images.
The GCH is extracted for each image and used as feature vector. The generated data space has 16, 32
or 64 dimensions, depending on the level of quantization applied on the original images. Since the read
disk operations (in the following noted as page accesses or IOs) are several times more costly than CPU
and main memory operations such as computing the query-to-object and query-to-MBR distances, we
will use the number of disk operations (page accesses) as a measure of performance in our experiments.

4.4 Feature Constraints

Directly from the color space reduction and GCH normalization, three important observations follow.
Let us denote the D-dimensional GCH as:

H(I) = (c1, c2, ..., cD), (7)

where I represents an image in a D-dimensional color space and ci represents the normalized number
of pixels from image I corresponding to color i.

The first important observation is:

(∀i) 0 ≤ ci ≤ 1 , i = 1 : D (8)

In other words, the data space is enclosed in a D-dimensional hypercube with each dimension taking
values in the range 0 to 1. This is a trivial observation and all previous indexes using GCHs as feature
vectors take advantage of it in a way or another.

The second observation is:
D∑

i=1

ci = 1 (9)

The vector coordinates of the feature space are not independent, i.e., their sum is always 1. This gives
us a different perspective of the data space. From the perspective of our space as a hypercube, now
we know that we have a skewed data distribution in the hypercube. Actually, our data space is just a
hyperplane intersecting the hypercube. Figure 17 shows these constraints for a 3-dimensional histogram
feature space. To our knowledge, this observation has never been taken advantage of.

A third observation is that the maximum Euclidian distance between two points in this space is
bounded and does not depend on the dimensionality of the space. Let p and q be two points in our

21

1

1

1
0

− data plane

− data cube

Figure 17: 3-dimensional GCHs feature space representation

constrained D-dimensional space, p = (p1, p2, ..., pD) and q = (q1, q2, ..., qD). Then,

dL2(p, q) =

√√√√ D∑
i=1

(pi − qi)2 ≤
√√√√ (

D∑
i=1

pi)2 + (
D∑

i=1

qi)2 ≤
√

2 (10)

While in a non-constrained D-dimensional unit-cube space the maximum distance between two points
is

√
D , the histogram’s constraint imposes a

√
2 maximum distance. Therefore, the distribution of

neighbor distances in our constrained space is different than in a general space. This observation affects
the performance of the nearest neighbor search algorithm, as we will see in the forthcoming sections.
As the maximum possible distance between two points is decreased, more points are likely to be found
in the same distance range from a query. As a result, the MBRs of many space regions have to be
searched to determine the accurate neighbors during index search.

Since it will be used in the following sections, let us define here also the Euclidian distance between
a point and a Minimum Bounding Rectangle (MBR) in a D-dimensional space. In general, when using a
tree-based access structure, for processing a nearest neighbor query, the tree is traversed in a top-down
manner. Sub-trees can be pruned if the objects contained in this sub-tree cannot be closer to the query
than a current nearest neighbor candidate found earlier in the search. Hence, a tight lower bound for
the distance between a query and the MBRs (enclosing the points and MBRs in lower levels of the
tree) is of fundamental importance for the query efficiency. Currently, such a lower bound is obtained
by computing the smallest possible distance between the query point and the boundary of the MBR.
Formally, let q = (q1, ..., qi, ..., qD) be a (query) point and B = (l1 → u1, ..., li → ui, ..., lD → uD)
an MBR of a data space region, where li (ui) represents the lower (upper) bound for dimension i and
li → ui is defined as MBR’s dimensional extension (referred simply as extension in the following). Then,

dMBR(q,B) =

√√√√ D∑
i=1

max (li − qi, 0, qi − ui)
2 (11)

This distance is 0 if the query point q is inside the MBR; otherwise it is the minimum distance between
q and any point on the face of the MBR, which is closest to q. Clearly, this lower bound measures

22

the minimum distance between the query point and the sides of the MBR, assuming that the bounded
points can be anywhere inside the MBR.

4.5 Improved Distance

4.5.1 Theoretical Analysis

Based on our second observation (Equation 9), we will show that the lower bound distance used for
pruning subtrees in indexing methods that use Minimum Bounding Rectangles as partitioning objects
can be computed more realistically. We can compute a tighter lower bound distance for pruning than
dMBR defined in Equation 11. Therefore, we can provide improved pruning efficiency for several indexing
methods (such as R*-tree, X-tree, SR-tree and others) when using normalized histograms as indexing
objects. We will denote the new distance as dC

MBR in the following.
Similar to the original dMBR, our new minimum distance dC

MBR is 0 if the query is inside the MBR.
Since a query point q which does not satisfy the constraint of the histogram is not meaningful, each
query point must be located on the data hyperplane. A tighter lower bound for the distance between
a query point q and an MBR than dMBR is the distance between q and the closest possible point
on the intersection of the data hyperplane with the boundary of the MBR that is closest to q. This
distance can be easily computed by first calculating the point on the face of the MBR that satisfies
the original distance. If this point p does not satisfy the constraint in Equation 9, p is not on the data
hyperplane, and a better minimum distance estimation can be found. The point can be computed by
a simple procedure that (iteratively if necessary) adjusts the coordinates of p equally toward the data
hyperplane, subject to the constraint that a coordinate cannot be adjusted beyond the limits of the
MBR.

− MBR

− data space in MBR

1

1

1
0

d q

dMBR

MBR

C

Figure 18: Original and improved query-to-MBR distances

To better understand our improved lower bound distance we will use again the 3-dimensional color
space example, since it is easier to visualize. In Figure 18, q represents the query point (contained
in the constrained data space), dMBR represents the original lower bound distance to the MBR of a
data space region as computed in MBR-based indexing methods, while dC

MBR represents the new lower
bound distance to a possible data point within the MBR. While usual indexing methods assume that

23

data points could exist anywhere inside an MBR, by acknowledging the constraints of our data space we
compute a better approximation of the lower bound distance to a possible data point inside the MBR.
In other words, dMBR represents the shortest distance between a query and an MBR, while dC

MBR is the
shortest distance between a query and a possible constrained data space point included in the MBR.
The relation

(∀ q) (∀ B) dMBR(q,B) ≤ dC
MBR(q,B) (12)

where B represents an MBR and q a query point, always holds.
Proof: Let assume that equation 12 is false. Then:

(∃ q) dC
MBR(q,B) < dMBR(q,B) (13)

Also, by definition of dC
MBR,

(∃p) p ∈ B dL2(q, p) = dC
MBR(q,B) (14)

From here, it follows that
(∃p) p ∈ B dL2(q, p) < dMBR(q,B) (15)

But, by definition, dMBR is the smallest distance from q to any point on the MBR B. Therefore, the
above equation is false and our assumption is also false. So, equation 12 must be true. •

1

2

data space

dq

dMBR
1

MBR

dMBR
2

B

B
C 2

Figure 19: Improved MBRs search order by using the improved distance

An important effect of the improved query-to-MBR distance is a changed order in which the MBRs
are considered in a nearest neighbor search. Figure 19 shows a 3-dimensional vector space example
where the search order is modified. B1 and B2 represent two bounding rectangles of regions from the
data space, q is the query object, d1

MBR is the original query-to-MBR distance for B1 (equal with the
improved dC1

MBR for MBR1), d2
MBR is the original query-to-MBR distance for B2 and dC2

MBR represents the
improved query-to-MBR distance for B2. The three distances satisfy the following equation (consistent
with Equation 12):

d1
MBR = d2

MBR < dC2
MBR (16)

Let us assume that B1 is searched first (note that this assumption always holds when using the
improved distance in our example). Since d1

MBR is the minimum query-to-MBR distance, the kth

24

neighbor distance after searching B1 cannot be smaller then d1
MBR. When using the original distance

function, d2
MBR is equal with d1

MBR and, therefore, B2 has to be searched as well. By using the improved
distance, B2 does not have to be searched if the kth neighbor (maybe found while searching B1) distance
is smaller then d2

MBR. Thus, by using the improved query-to-MBR distance derived based on the
constrains of the data, we can improve pruning during the index search.

As this example suggests, an even more important effect of the improved distance is that some
MBRs (sub-trees) may not be considered at all during search, where they had to be considered with the
original distance. Although we do not expect this effect to be extremely large, there is a potential for
consistently saving disk page accesses. In particular, with increasing dimension, the difference between
the usual distance and our new distance (dC

MBR − dMBR) will become smaller on average. An intuition
for this is the way the new distance is computed – using the closest possible point p = (p1, ..., pi, ..., pD)
to a query point q = (q1, ..., qi, ..., qD), where p is located on the surface of the MBR and has the original
distance to q. If p is not on the data hyperplane, then

∑D
i=1 qi−∑D

i=1 pi = ε > 0. A new point pc on the
intersection of the MBR and the data hyperplane is then computed by adjusting the coordinates of p
equally toward the data hyperplane without leaving the MBR boundary. As dimensionality D increases
and ε is tentatively equally divided among all dimensions, the distance between p and pc decreases.
Consequently the the difference between dC

MBR and dMBR decreases.

4.5.2 Experimental Evaluation

To test the effect of our improved distance on the number of page accesses, we performed tests with
an X-tree like index structure built using the bulkload technique explained in Section 3.2.1. Since the
improved distance can be used in combination with any indexing structure using MBRs as bounding
regions, we used a straightforward split policy for index building (the data partition is split into two
equal subsets at each step during index bulkload). For all experiments the average result over 1000 100-
nearest neighbor search queries is computed. The calculated measure is the number of page accesses
required to find the nearest neighbors when using the original and when using improved query-to-MBR
distances during index search. Also, we use 64 dimensional feature vectors unless otherwise noted. The
figures display the percentage of page accesses saved when using the improved distance. We also varied
the page size - that influence the MBRs sizes and number of pages - and the number of objects (points)
to see how these affect the percentage of saved page accesses. We used 4096 (4kb), 8192 (8kb) and
16384 (16kb) bytes as possible disk page sizes.

In the first set of tests we performed on all three datasets, we obtained around 5% improvement in the
number of page accesses required (Figures 20, 21 and 22). As the total number of pages increases (with
decrease in page size for the same dataset size), the distance improvements become more significant for
all datasets.

To test the effect of the number of nearest neighbors on the distance improvement, we used the Corel
data set with a fixed number of objects (60k), while varying the number of nearest neighbors searched
for. The percentage of saved page accesses slightly decreases with the number of nearest neighbor
objects searched for (Figure 23). As observed in the previous set of tests, smaller page sizes leads to
higher savings.

Figure 24 shows the effect of feature vector’s dimensionality on the distance improvements. As
the dimensionality increases, the gain obtained using the improved distance decreases. This result is
consistent with our conclusion from the previous section.

Overall, the improvement in the number of saved page accesses by using the proposed distance it
is not very high, but it is increasing with the number of objects in the data set and number of data
pages that have to be searched. Unfortunately, as data dimensionality increases, the advantage of the
improved distance over the original one decreases.

25

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

20 40 60 80 100 200 300

sa
ve

d
pa

ge
 a

cc
es

se
s(

%
)

Dataset size (x1000)

4kb
8kb

16kb

Figure 20: Distance improvements with dataset size - uniform dataset

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10 20 30 40 50

sa
ve

d
pa

ge
 a

cc
es

se
s(

%
)

Dataset size (x1000)

4kb
8kb

16kb

Figure 21: Distance improvements with dataset size - Corel dataset

4.6 Index Optimization

4.6.1 Theoretical Analysis

Before introducing our other observations and improvements regarding data indexing, let us present the
basic indexing method that we will as a starting point. As discussed in Section 3.2.1, it is inefficient
to build an index by dynamic insertions of a large number of data objects when all data is available a
priori. As this is a common case for Image Retrieval (creating an index for an already existing collection
of images), we assume that we have the data collection beforehand. We start from this assumption and
create our index by using bulkload as described in [6]. Bulkload is not an indexing structure by itself, but
a technique for efficiently building an index when an initial set of data exists. Once an index is built by
bulkload, all algorithms used by dynamic index structures such as insertions, deletions, range or nearest
neighbor searches and others can be directly applied on the resulting structure. The advantage of the
bulkload technique over dynamical index building is that one can easily take advantage of information
about the distribution of the data at building time. As shown in [6], the bulkload technique is efficient

26

2.5

3

3.5

4

4.5

5

5.5

30 50 70 90 110

sa
ve

d
pa

ge
s

ac
ce

ss
es

(%
)

Dataset size (x1000)

4kb
8kb

16kb

Figure 22: Distance improvements with dataset size - TV dataset

2.5

3

3.5

4

4.5

5

5.5

6

20 60 100 140 180

sa
ve

d
pa

ge
 a

cc
es

se
s(

%
)

No. of Nearest Neighbors

4kb
8kb

16kb

Figure 23: Distance improvements with no. of neighbors - Corel dataset

for both building and searching the index. Basically, the idea is to split the data space recursively in
a top-down fashion, using hyperplanes as separators between partitions. A hyperplane is defined by
a split dimension (the normal vector on the hyperplane) and a split value along that dimension (the
actual position of the hyperplane). The basic indexing structure we choose is the X-tree [7]. Combined
with bulkload construction, the X-tree index has the advantage of overlap-free partitions. The bulkload
technique allows also to target a desired storage utilization. Due to the large dimensionality of our
feature vectors, the X-tree is reduced to a list of leaf nodes and a large supernode (for a description of
the high dimensionality effects on the X-tree, see Section3.2.1 and [7]). Since we are only interested in
query performance and not in dynamic insertions, we use a near 100% node storage utilization.

Several aspects of an index structure such as fanout, tree height, split policy, node size, node overlap
and node characteristics are important for query performance. Many of these aspects are dependent
on the index type. One of the most important factors influencing the query performance is the split
policy (determined by the split dimensions and the split values), which is independent of the target tree
structure. We will show that the range of the feature values, feature vector’s constraints and the object

27

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10 20 30 40 50

sa
ve

d
pa

ge
 a

cc
es

se
s(

%
)

Data size (x1000)

16D
32D
64D

Figure 24: Distance improvements with dimensionality - Corel dataset

value’s distribution allow the design of a new split policy for our constrained data space which improves
significantly the query performance.

An important observation regarding high-dimensional indexing [12] is that for uniformly distributed
features in a high dimensional unit hypercube we cannot have a split in all dimensions of the data space.
For example, in an uniform 32-dimensional data space, if there is only one split on each dimension, we
would require 232 = 4, 294, 967, 296 pages to hold each partition in a separate page. Therefore, the
D-dimensional data is usually split in D′ < D dimensions. The MBRs of the resulting partitions are
restricted in D′ dimensions while in D − D′ dimensions the MBRs are covering the whole range of
possible values in those dimensions. The number of split dimensions D′ can be determined from the
number N of objects in the dataset and the average number of data points per index page Ceff :

D′ = log2

(
N

Ceff

)
(17)

For instance, for N = 1, 000, 000 feature vectors and Ceff = 10 feature vectors per page, we need to
perform at least 17 splits to be able to fill index pages, and no more than 19 splits to have at least one
object per page/partition, since 220 > 106.

Another observation is about the extension of the nearest neighbor distance in an uniformly dis-
tributed high-dimensional unit hypercube data space. If we want to find the k-nearest neighbors in an
N point dataset in D-dimensional space, the side length l of the hypercube containing the neighbors is:

l = D

√
k

N
(18)

Proof: We assume an uniform D-dimensional unit hypercube space. Let k be the number of
neighbors, N be the total number of points in the dataset, Vk = lD be the volume occupied by the k
neighbor hypercube of side length l of and VD = 1D be the volume of the unit hypercube space. Then:

Vk =
k

N
× VD ⇒ lD =

k

N
× 1D ⇒ l = D

√
k

N
(19)

•

28

For a 32-dimensional uniform space with N = 1, 000, 000 points and k = 20-nearest neighbors
required, the nearest neighbor hypercube side length is l = 0.71, which is larger than half of the data
space extension for each dimension. To improve the query performance, it is essential to have as few
data MBRs as possible intersecting the k-nearest neighbor hypercube. Therefore, it is important to
have the MBRs extents restricted in as many dimensions as possible.

Let us first introduce an observation regarding the uniformity of the constrained data space. In an
unconstrained multi-dimensional space, data is uniformly distributed in the whole space when data is
uniformly distributed along each space dimension. Thus, one can generate uniform distributed data in an
unconstrained multi-dimensional space by generating uniform distributed values along each dimension.
In order to obtain an uniform distribution of data in the constrained space a naive approach would
be to generate uniformly distributed points in the unconstrained space and select those that fulfill the
constraint. However, the distribution function of the number of objects in the constrained space NCS

based on number of objects in the unconstrained space NUS is:

P (NUS) =
V olDCS

V olDUS

× NUS (20)

where V olDCS (V olDUS) represents the volume of the constrained (unconstrained) D-dimensional space.
Since the constrained space is a hyperplane in a hypercube, V olDCS = 0 in the D dimensional space (the
constrained space extends freely in only D − 1 dimensions) and therefore, P (NUS) = 0. Therefore, it is
not feasible to generate uniform distributed points in the constrained space by this approach.

Input : Dimensionality D, Constraint Value c = 1, Point p = (0, 0, ..., 0)
Output: Data Space Point p

while c
= 0 do
value = Random() * c;
Choose dimension dim such that p[dim]=0;
p[dim] = value;
c = c - value;

Figure 25: Uniform data generation in constrained space

To obtain uniformly distributed data in the constrained space, we use the algorithm presented in
Figure 25. Note that function Random() generates a random real value in the range 0 to 1. At each step
the algorithm generates a random number between 0 and the maximum value allowed such that the
constraint holds, taking into account the already assigned dimensional values. Note that although this
procedure will generate uniform distributed data points in our constrained space, the marginal value
distribution on each dimension taken individually is not uniform.

Since the sum of a feature vector values over all dimensions is constant (Equation 9), the values on
most dimensions have to be low. When this constant is 1 as in the GCHs case, the average value of
a dimension in a feature vector is 1/D in a D-dimensional vector space (Figure 26). For instance, for
data distributed uniformly in the constrained space and 64 dimensions, the average dimensional value is
0.016. Therefore, the marginal distribution of data point values is more dense in the lower value range
and this density is increasing with the feature space dimensionality increase (Figure 27 (a) and (b)).
As we shall see, this implies properties that can be further explored.

To understand the effect of constraints on the new MBRs created once a split is performed, we
reduce again the data space to the 3-dimensional case (Figure 28). Let our initial MBR be B = (lx →

29

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of dimensions

A
ve

ra
ge

 d
im

en
si

on
al

 v
al

ue

Figure 26: Average value of a dimension in a feature vector with increasing dimensionality

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

(b) 64 Dimensions(a) 8 Dimensions

nu
m

be
r

of
 o

bj
ec

ts

value value

Figure 27: Average marginal value distribution of 10,000 objects in an 8(a) and 64(b) dimensional
uniformly distributed constrained space

ux, ly → uy, lz → uz), where l (u) stands for the lower (upper) bounds. As our example starts with the
whole space, lx = ly = lz = 0 and ux = uy = uz = 1, but the effects presented in the following are not
related with these particular values.

Let us first choose to split dimension z at split value sz, where lz ≤ sz ≤ uz. The dataset is split
into two partitions (Figure 28 (a)). One partition, with B2 as bounding region, contains all data points
with dimensional value on the z axis between lz and sz. The other one, with B1 as bounding region,
contains all data points with dimensional value on the z axis between sz and uz. Although only one
dimension is explicitly reduced by the split, due to the data constraints, all dimensional bounds are
restricted for B1 = (lx → u′

x, ly → u′
y, sz → uz), where u′

x and u′
y represent the induced upper bounds.

On the other hand, for B2 = (lx → ux, ly → uy, lz → sz), only the bound on the dimension that is split
is affected.

Note that although this split generates overlap-free MBRs, the projections on some dimensions of
the two generated MBRs do overlap (further referred as dimensional overlap). The dimensional overlap
of the two generated MBRs is equal to the B1 extensions on dimensions x and y. Since the distance
between the query point and the MBRs resulting from the split is a sum of distances in each dimension,

30

− MBRs after split

− original MBR

− data plane

− induced MBR restrictions

.

1

1

1
0

x

y

z

B

B

B

(a)

(u’, u’, 1)

s

z 1

2

(1, 1, s)

x y

z

1

1

1
0

x

y (b)

B

B21

22

z

2 sx
B

1

1

1
0

x

(c)

B

B

B

222

221

22sy
z

y

Figure 28: Illustration of the effect yielded by induced splits (for the sake of clarity only the MBRs
being split are shown)

the more the MBRs differ in each dimension, the larger the difference in the distance between them and
the query point. This yields a higher degree of dissimilarity between them with respect to the query
and consequently a smaller probability that both would be searched during the nearest neighbors query
process. Hence, the importance in reducing the dimensional overlap when splitting an MBR.

If sz is close to uz, then B1 will be very restricted on all dimensions. Though only one dimension is
chosen to be split not only that facet of the MBR is affected, but indirectly others are too, hence inducing
an effect similar to multiple simultaneous splits. If sz is close to lz, the extent of the dimensional overlap
is higher as the extensions of B1 are larger. In this case, the nearest neighbor distance from a query
point inside B2 will have a higher probability to intersect B1 as the Euclidean distance from the query
to B1 will mostly depend on their distance on dimension z (see Equation 11). Therefore, it is better
to choose a split value closer to the upper bound of the chosen split dimension in order to affect the
extensions of all dimensions as much as possible.

This split induces MBR restrictions for B1, but B2 still extends on most dimensions as much as
the initial MBR B and dimensionally overlaps with B1 in all dimensions but z. In order to reduce the
dimensional overlap further on, the split policy should select other dimensions for splitting B2 than the
one already split.

31

If B2 is now split on dimension x, two new partitions are generated, with B21 and B22 as their
bounding rectangles (Figure 28 (b)). Again, the MBR bounding the partition created in the higher
value range from the split value (B21) is further restricted in other dimensions beside the split dimension
due to data constraints. Note that if sx would be closer to ux, the induced MBR restrictions would be
present on both y and z dimensions, and not just y as we have in the presented example.

Finally, consider B22 is further split on dimension y (Figure 28 (c)). The new bounding regions are
B221 and B222 for the higher, respectively lower, value range on the split dimension. In this split example,
the data constraints induce additional MBR restrictions to the MBR bounding the data points from
the lower value range. If the split value is chosen closer to the uy, then the induced MBR restrictions
will act on the MBR bounding the other partition.

It is hard to predict which MBRs will suffer the induced restrictions. In fact, the same sequence
of splits shown in Figure 28, could yield quite distinct MBRs, with the induced constraints acting
in different ways (and possibly MBRs), depending on the split values and dimensions chosen at each
split. Nevertheless, it is important to have the split value closer to the upper value bounds on the split
dimension in order to induce stronger MBR restrictions.

Based on the observation regarding the increased density values in the lower range of each dimension,
we can draw another strategy for the split policy. If the split policy would choose the split value close
to the lower bound of the split dimension, then the distance from many points on both sides of the split
to the split value on the split dimension will be very small. Recall that lower value range has a higher
density of objects (Figure 27). Therefore, it is better to choose the split value towards the higher bound
on the split dimension of an MBR. This observation is consistent with the previous one regarding the
MBRs split value in order to increase the induced constraints in non-split dimensions.

Even though we have concluded that the split value should be close to the upper bound of the split
dimension, an interesting question is how close that should be. If the newly created MBRs are too
“thin”, i.e., the split value is too close to the upper bound, the radius of the nearest neighborhood (as
suggested by Equation 18) would cause the query process to search through possibly many neighboring
MBRs, hence decreasing query performance. Therefore we have two competing splitting strategies. On
the one hand, we want the split value to be close to the split dimension upper bound, on the other hand
we do not want it to be “very” close, i.e., we do not want to create thin MBRs as mentioned above.
How to achieve a good balance is the question we try to answer in what follows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5000

10000

15000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500
x 10 4

3

2

1

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 o

bj
ec

ts

value value
(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

15000

10000

5000

value
(c)

1500

1000

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Figure 29: Average marginal value distribution of Corel dataset objects in 64 dimensions

For the real data sets, obtained from collections of images, the marginal distribution is different
than the uniform one. Most colors have a dimensional distribution close to the one of the uniform data
in the constrained space (Figure 29(a)), a few colors are in very small quantities or almost do not show
at all, a few appear more often (Figure 29(b)) and one color tends to have a distribution closer to the
uniform dimensional distribution (likely background color) (Figure 29(c)). Although the feature vector
values constraint is valid, this variation in the marginal (dimensional) value distribution makes the split

32

policy for uniform data inappropriate, as we will show later on in the experimental evaluation.

4.6.2 Unbalanced Split Policy

In order to improve the retrieval process, based on our observations with respect to data partitioning,
we define a recursive algorithm. The algorithm consists of a recursive procedure that takes a data
set and, based on the characteristics of its MBR, splits it into two smaller partitions with overlap-free
MBRs. The procedure is further applied on each of the generated MBRs until each partition fits into
an index page. In the splitting process, three procedures are used to determine the split policy. The
first one, choose split dimension(), selects the split dimension ds. Assuming the MBR extension on
dimension ds is l, find split ratio() finds the split ratio sr for the length of the resulting extents.
That is, one extent will cover the first sr × l of the original extent, and the other will cover (1− sr)× l.
This ratio could be a constant number or adaptive based on the current step of the algorithm. Finally,
find split position() computes the actual dimensional split value as close as possible to satisfy the
split ratio, and such that each partition results in a number of nearly full pages. A pseudo-code version
of the algorithm is presented in Figure 30.

Algorithm: create partitions(BS)
Input : A set of feature vectors S, the MBR of S BS , the capacity of an index page psize
Output: An X-tree supernode with links to all leaf (data) index pages

if no of objects(BS) < psize then
create page (BS);
STOP ;

ds = choose split dimension (BS);
sr = find split ratio (ds, BS) ;
sp = find split position (sr, ds, BS);
(B1, B2) = split MBR (BS , sp, ds);
create partitions (B1);
create partitions (B2);

Figure 30: Bulkload index creation using Top-Down dataset partitioning

Beside the three split related procedures presented above, there are a few others like create page()
that takes the data set partition and fills a newly created page, computes the page’s MBR and adds it to
the directory super-page, and split MBR() that separates the data set partition according to the split
dimension and split value into two subpartitions. Therefore, that data set is partitioned in a top-down
tree like manner.

The two procedures that most affect the efficiency of the index structure are choose split dimension()
and find split ratio(). For the first one, our previous discussions suggest that choosing the split di-
mension based on the maximal extension is a straightforward choice allowing more freedom in selecting
the split value and allowing to impose a larger constraint in the other dimensions for the MBR bound-
ing the data points from the higher value range. Also the data density variation could be larger, thus
allowing a better split (for the same number of objects, a larger extension implies a lower density). For
find split ratio() there are several possibilities since, as argued above, this ratio is highly dependent
on the data and it should optimize competing criteria. One option is to find a constant ratio (e.g. that
is closer to the higher bound as mentioned before) that performs best on average. The other possibility
is that of an adaptive ratio based on the current step of the recursive partitioning.

33

According to our analysis, an efficient split should choose different split dimensions as often as pos-
sible and a split value closer to the upper bound of the MBR on the split dimension. The induced MBR
restrictions are then be maximized. Due to the marginal distribution (see Figure 27), the resulting
MBRs are be large enough so that they are not affected by the negative effect of large nearest neighbor
distance during retrieval process. For uniformly distributed data in our constrained space, the split pol-
icy is straightforward to implement. As split dimension we choose the one with the maximal extension.
As data has the same distribution in all dimensions, this strategy for selecting the split dimension will
therefore effectively alternate among all dimensions. As split value, the closest possible value to the
upper bound such that near 100% node utilization is obtained would be to make the split at one page
distance from the upper bound. In other words, the algorithm selects all dimensions for splitting in
round-robin fashion and, for each split phase, takes enough objects that have the marginal value on the
split dimension close to the upper bound in order to fill a new page. In the following we will refer to
this strategy as last page (LP) split.

Experimental evaluation shows that this split policy is efficient for uniform data in the constraint
space. However, it may not be optimal for real data due to differences in the marginal distributions
(Figure 29). In what follows we will show experimentally that, due to the complex and contradictory
conditions that have to be fulfilled for real data, a constant split ratio of 80% gives good results on
average. In the following we will refer to this strategy as ratio split.

4.6.3 Experimental Evaluation

To compare the proposed index optimizations with other indexing structures, we decided to use state-of-
the-art indexing structures: the SR-tree [29], one of the best data partitioning index techniques and the
A-tree [48], to our knowledge the best of space partitioning indexing techniques. We used the original
implementations of the SR-tree and A-tree as provided by their authors.

To show the performance of our proposed indexing technique, we have performed many tests on both
synthetic (uniform) and real data sets. Our tests have mainly focused on the real sets since we consider
the applicability of our solutions very important. To denote our technique, we are using the notation
X (since the created index is an extreme version of the X-tree index structure for high dimensional
data) followed by the split ratio or by LP for Last Page split (e.g., X-80% or X-LP). To show the
independence of the proposed index structure from the new distance, our structure will use the original
distance function. For the other two indexing structures we compare to, we use their own names (A-tree
and SR-tree). Unfortunately, the code provided by the authors of the A-tree index structure did not
work with datasets larger than 100,000 data points. Therefore, in some of the graphs presenting results
for various data sizes, the A-tree curve line stops prematurely.

As the code for the three indexing structures comes from different sources using different implemen-
tation choices, we will use only comparisons based on number of disk accesses during search. Unless
otherwise specified, we have use the average over 1000 100-nearest neighbor search queries. Also, we
use 64 dimensional feature vectors with the exception of the graphs where feature vectors size is varied.

In all tests, the query objects are randomly taken from the test datasets, in order to query the sets
with something representative to their content.

To investigate our intuition about the superiority of Last Page Split for uniform data, we have
performed several tests for three dataset sizes: 20000 (20k), 100000 (100k) and 300000 (300k), using
both LP Split and different ratio splits. Figure 31 shows the ratio between number of page accesses
required when using different split ratios over number of page accesses required when using the Last
Page Split policy. As the graph shows, a 95% split ratio returns results very close to the LP Split. As
explained in Section4.6.1, when using a split ratio we choose the actual split value as accurate as possible
to acquire the split ratio, with the constraint of obtaining a near 100% page utilization. For instance,

34

0

1

2

3

4

5

6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Split ratio(%)

20k Unif
100k Unif
300k Unif

pa
ge

 a
cc

es
se

s
us

in
g

LP
 s

pl
it

pa
ge

 a
cc

es
se

s
us

in
g

ra
tio

 s
pl

it

Figure 31: Number of page accesses using ratio split over LP split - uniform dataset

when using a 95% split ratio, we may not obtain enough points to (nearly) fill a page. At this moment,
we need to go below the (95%) split point in order to fill the page, i.e. the 95% split ratio behaves as
the LP split. Indeed, such behaviour can be seen in Figure 31. The LP Split policy proved to be the
best for 20k and 100k set, but there were better ratio splits than LP split for the 300k size uniform
dataset. As the dataset size increases, the objects’ density in the dimensional high end increases. Thus,
the MBRs created by the LP Split are too narrow and a query falling inside such an MBR will intersect
all other narrow MBRs in the vicinity of its MBR. Nevertheless, since for most uniform dataset sizes
we tested, the LP split policy performs better than ratio split policy, all test involving uniform sets will
use this policy.

10

100

1000

10000

20 40 60 80 100 200 300

lo
g(

pa
ge

 a
cc

es
se

s)

Dataset size (x1000)

X-LP
A-tree

SR-tree

Figure 32: Number of page accesses for varying data partition sizes - uniform dataset

Figure 32 shows the number of page accesses for the three indexing structures for several dataset
sizes on 64 dimensional uniform data. The page size is 4kb for all index structures. Our approach uses
the Last Page split strategy and it is consistently better than the A-tree and SR-tree. Unfortunately,
the A-tree did not allow us to extend our comparison to larger data sets. In average, the SR-tree
accessed 8.61 times more disk pages then our structure, while the A-tree required 2.29 times more disk

35

page reads. As the number of disk accesses for the SR-tree is considerably higher than for our approach
and the A-tree, we use a logarithmic scale for the y-axis not only here, but also whenever we compare
against the SR-tree.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Split ratio(%)

Corel
TV

pa
ge

 a
cc

es
se

s
us

in
g

LP
 s

pl
it

pa
ge

 a
cc

es
se

s
us

in
g

ra
tio

 s
pl

it

Figure 33: Number of page accesses using ratio split over LP split - real datasets

As mentioned during our theoretical analysis, we believe the Last Page split is not suitable for real
datasets due to a different dimensional distribution of data objects. In order to test this, we have
performed tests on the real sets using both the Last Page split and ratio based splits. As Figure 33
shows, the ratio based split is better for any split ratio for both real sets. For Corel collection and TV
snapshots we used all data objects available, 4kb page size and 64 dimensional feature vectors. The
improvements in page accesses of ratio split over the Last Page split is larger for the TV dataset (up
to 4 times less page accesses) than for Corel set (around 2 times less page accesses). This is due to the
larger size of the TV dataset - almost twice the number of objects in the Corel dataset, as well as a
different objects distribution.

To determine the best split ratio for real datasets, we have performed tests on various combinations
of data dimensionality and page sizes for Corel (see Figure 34) and TV (see Figure 35) datasets. Based
on these experimental observations, we determined that an 80% split ratio results in the lowest page
access requirements on most cases for both datasets. For the cases when the 80% split ratio is not
the best, the differences in page accesses between using 80% ratio and the best ratio is very small.
Therefore, in all following tests involving our approach on real data sets we will use an 80% split ratio.

Figures 36 and 37 show the number of page accesses for varying data subset sizes taken from Corel
and TV datasets. We used 64 dimensions and 4kb page size. Our approach performs better than
the A-tree and SR-tree. The improvements are increasing with increasing number of objects in the
dataset. While the improvements of our approach are smaller compared to the A-tree (up to 45% more
page accessed by the A-tree), they are substantial with respect to the SR-tree (up to 500% more pages
accessed by the SR-tree).

To study the scalability with respect to increasing dimensions of the three indexing structures, we
have extracted feature vectors of different dimensionality from the Corel collection. The disk page size
was again set to 4kb and we used all objects available in the dataset. As Figure 38 shows, the number
of page accesses increases with dimensionality increase, while the advantage of our method over the
two other indexing structures remains stable (around 30% (80%) less page accesses for X-80% than the
A-tree (SR-tree)).

When increasing the number of nearest neighbors, the improvement of our method is slowly de-

36

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

pa
ge

 a
cc

es
se

s

Split ratio(%)

4k,64D
8k,64D

16k,64D

60

80

100

120

140

160

180

200

220

240

260

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

pa
ge

 a
cc

es
se

s

Split ratio(%)

4k,32D
8k,32D

16k,32D

20

30

40

50

60

70

80

90

100

110

120

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

pa
ge

 a
cc

es
se

s

Split ratio(%)

4k,16D
8k,16D

16k,16D

Figure 34: Split ratio efficiency for several combinations of data dimensionality and page sizes - Corel
dataset

100

120

140

160

180

200

220

240

260

280

300

320

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

pa
ge

 a
cc

es
se

s

Split ratio(%)

4k,64D
8k,64D

16k,64D

40

60

80

100

120

140

160

180

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

pa
ge

 a
cc

es
se

s

Split ratio(%)

4k,32D
8k,32D

16k,32D

20

30

40

50

60

70

80

90

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

pa
ge

 a
cc

es
se

s

Split ratio(%)

4k,16D
8k,16D

16k,16D

Figure 35: Split ratio efficiency for several combinations of data dimensionality and page sizes - TV
dataset

37

100

1000

10000

10 20 30 40 50

lo
g(

pa
ge

 a
cc

es
se

s)

Dataset size (x1000)

X-80%
A-tree

SR-tree

Figure 36: Number of page accesses for varying data set sizes - Corel dataset

100

1000

10000

30 50 70 90 110

lo
g(

pa
ge

 a
cc

es
se

s)

Dataset size (x1000)

X-80%
A-tree

SR-tree

Figure 37: Number of page accesses for varying data set sizes - TV dataset

38

10

100

1000

10000

16 32 64

lo
g(

pa
ge

 a
cc

es
se

s)

dimensionality

X-80%
A-tree

SR-tree

Figure 38: Number of page accesses for varying number of dimensions - Corel dataset

100

1000

10000

20 60 100 140 180

lo
g(

pa
ge

 a
cc

es
se

s)

No. of Nearest Neighbors

X-80%
A-tree

SR-tree

Figure 39: Number of page accesses for varying number of neighbors - Corel dataset

39

creasing, while still being significantly better even for 180 nearest neighbor search. Although Image
Retrieval Web engines search for around 15 to 25 nearest neighbors for various reasons, in all previous
experiments we have used 100 nearest neighbor search, as we believe that 100 is a reasonable number
of nearest neighbor images that a user is willing to visually check. While our method proves to be the
best every time, its advantage over the other two indexing structures is even larger if we chose a smaller
number of neighbors in all experiments. For example, while for 100 neighbors search the X-80% accesses
31.79% less pages than the A-tree, for 20 neighbors the saving increases to 40.73% less page accesses.

Overall, our method consistently retrieved the nearest neighbors using the smallest number of page
accesses among all tested indexing techniques. For uniform data, our theoretical analysis about the
ideal split proved to be correct. For real data we determined experimentally that an 80% split is a
good choice for both real sets and different combinations of data dimensionality and disk page sizes. As
shown by all experimental results, the improvements shown by our method over the SR-tree and A-tree
index structure are consistently better and stable with respect to variation in dataset size, length of
feature vectors and total number of pages (determined by page size variation).

150

200

250

300

350

400

450

500

550

20 60 100 140 180

pa
ge

 a
cc

es
se

s

No. of Nearest Neighbors

Xid-80%
X-80%
A-tree

Figure 40: Overall number of page accesses for varying number of neighbors - Corel dataset

Since in our research we have also proposed a new distance function, we decided to use it simul-
taneously with the proposed index to show the overall gain obtained. We know from Section4.5 that
the improvements brought by the new distance are consistent regardless the variation of different pa-
rameters (such as data dimensionality, page size, number of neighbors a.o.). Therefore, we will show
the overall results of combining the new distance and the new index for only one parameter, that is
the number of nearest neighbors. Figure 40 shows a comparison among the number of page accessed
using the A-tree index, our X-80% index and the X-80% index combined with the use of the improved
query-to-MBR distance (denoted as Xid-80%). We used the Corel dataset with 64 dimensions and a
4kb page size. Since we are not comparing to the SR-tree which was always much slower, this graph
does not use a logarithmic scale. As the number of nearest neighbors increases, the proposed distance
helps improve the number of page accesses obtained by X-80% algorithm, making the overall gain of our
proposed solution over the existing indexing structures even larger (Xid-80% accesses 36.5% less pages
than the A-tree as compared with the X-80% which accesses 33% less pages than the A-tree). Although
the improvement brought by the use of our proposed distance are low as also shown in Section 4.5, it
helps the proposed index structure improve even more over the existing structures.

40

5 Conclusions

5.1 Summary & Contributions

In our research we have explored the use of a priori knowledge about the data to be indexed in order to
enhance the performance of retrieval. Based on a concrete example – use of color histograms in Image
Information Retrieval, we have shown how constraints in normalized histogram data can be used at
both index building and retrieval time to improve the search efficiency.

The experimental results show that the proposed solution is efficient and improves over existing
state-of-the-art techniques. Experiments were performed on uniform distributed data as well as two
real image collections. For all tests, our proposed algorithm outperformed other indexing techniques in
the number of page accesses required during retrieval. We have also shown that a solution that proves
efficient for the uniform data set, it is not necessary the best for real collections. Therefore, a parameter
(the split ratio) has to be adapted for the type of collection the user is dealing with. For our technique,
we have shown that the split policy is capital for achieving good performances. While a Last Page split
is the best for uniform data, an 80% split proved to be the best choice for indexing of both real datasets.

We have also proposed a new definition of a distance function that proved to be is more accurate
than the usual one in approximating the distance between a query point and a possible data point
inside an MBR. Experiments showed that although the number of page accesses saved by using the
new distance is not very large, the distance can help improve an indexing technique based on Minimum
Bounding Rectangles.

Finally, the overall performance of our indexing technique is shown to be efficient and stable with
respect to variations in number of data objects, page size, feature vector dimensionality and variation
in number of nearest neighbors to be searched for. Thus, this technique should be valuable in practical
applications.

5.2 Future Research

The scope of this report was to explore how one can take advantage of constraints existing inherently
in a data collection in order to improve the efficiency for nearest neighbor queries. In the course of our
exploration we have touched several other related issues that could lead to promising and challenging
areas for future research. These would include:

• Determining an adaptive split ratio during index building. It may be based on the data distribution
in the current step of index construction or it may take into account what split choices have been
taken in the previous steps.

• In this report, we have taken advantage of the data constraints at bulkload building time. Since
the a priori knowledge that we used does not depend on the number of objects but on the object’s
characteristics, an index structure using dynamic objects insertion may be able to take advantage
of the existing constraints as well.

• While the proposed distance function has not improved very much our indexing technique, there
may be indexing techniques using other data organization policies where the distance may be more
helpful.

• It would be an interesting issue to investigate similar optimized split policies and the proposed
distance definition within index structures using quantization techniques, such as the A-tree.

41

References

[1] Adobe Systems, Inc., Color management systems - technical guide.
www.adobe.com/support/techguides/color/colormanagement/cmsdef.html.

[2] M. Ankerst, G. Kastenmullera, H.-P. Kriegel, and T. Seidl. 3d shape histograms for similarity
search and classification in spatial databases. In Proceedings of the International Symposium on
Advances in Spatial Databases, pages 207–226, 1999.

[3] J.R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, and C.F. Shu.
The Virage image search engine: An open framework for image management. In Proceedings of
SPIE Storage and Retrieval for Image and Video Databases, pages 76–87, 1996.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B.Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 322–331, 1990.

[5] S. Berchtold, C. Böhm, D.A. Keim, and H.-P. Kriegel. A cost model for nearest neighbor search in
high-dimensional data space. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 78–86, 1997.

[6] S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the query performance of high-dimensional
index structures by bulk load operations. In Proceedings of the International Conference on Ex-
tending Database Technology (EDBT), pages 216–230, 1998.

[7] S. Berchtold, D.A. Keim, and H.-P. Kriegel. The X-tree: An index structure for high-dimensional
data. In Proceedings of the International Conference on Very Large Databases, pages 28–39, 1996.

[8] A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, Inc., 1999.

[9] A. Del Bimbo, W.-X. He, and E. Vicario. Image Description and Retrieval, chapter Using weighted
spatial relationships in retrieval by visual content. Plenum Press Publishers, 1998.

[10] A. Del Bimbo, M. Mugnaini, P. Pala, and F.Turco. Visual querying by color perceptive regions.
Pattern Recognition, 31(9):1241–1253, 1998.

[11] S. Blott and R. Weber. A simple vector approximation file for similarity search in high-dimensional
vector spaces. Technical report, Esprit Project HERMES, 1997.

[12] C. Böhm. Efficiently Indexing High-Dimensional Data Spaces. PhD thesis, Department of Com-
puting Science, University of Munich, 1998.

[13] C. Böhm and H.-P. Kriegel. Efficient bulk loading of large high-dimensional indexes. In Proceedings
of the International Conference on Data Warehousing and Knowledge Discovery, pages 251–260,
1999.

[14] BSIm web page. http://db.cs.ualberta.ca/BSIm/.

[15] N.G. Colossi and M.A. Nascimento. Benchmarking access structures for high-dimensional multi-
media data. In Proceedings of the IEEE International Conference on Multimedia and Expo, pages
1215–1218, 2000.

[16] Corel Corp. Corel Gallery 1,000,000. http://www.corel.com.

42

[17] J. Dowe. Content-based retrieval in multimedia imaging. In Proceedings of SPIE Storage and
Retrieval for Image and Video Databases, pages 164–167, 1993.

[18] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz. Efficient
and effective querying by image content. Journal of Intelligent Information Systems, 3(3/4):231–
262, 1994.

[19] S. Fan. Indexing and retrieving shapes via distance histograms. Master’s thesis, Department of
Computing Science, University of Alberta, 2001.

[20] R. Finkel and J. Bentley. Quad-trees: A data structure for retrieval on composite keys. ACTA
Informatica, 4:1–9, 1974.

[21] J.D. Foley, A.V. Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and Practice
in C. Addison-Wesley Publishing Company, Inc., 1990.

[22] T. Gevers and W.M. Smeulders. A comparative study of several color models for color image
invariant retrieval. In Proceedings of the International Workshop od Image Database and Multimedia
Search, pages 17–23, 1996.

[23] R.C. Gonzalez and R.E. Wood. Digital Image Processing. Addison-Wesley Publishing Company,
Inc., 1993.

[24] V.N. Gudivada and V.V. Raghavan. Design and evaluation of algorithms for image retrieval by
spatial similarity. ACM Transactions on Information Systems, 13(2):115–144, 1995.

[25] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of ACM
SIGMOD International Conference on Management of Data, pages 47–57, 1984.

[26] J.L. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color histogram in-
dexing for quadratic form distance functions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(7):729–736, 1995.

[27] C.E. Jacobs, A. Finkelstein, and D.H. Salesin. Fast multiresolution image querying. Computer
Graphics, 29:277–286, 1995.

[28] H.V. Jagadish. A retrieval technique for similar shapes. In Proceedings of the ACM SIGMOD,
pages 208–217, 1991.

[29] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional nearest neighbor
queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 369–380, 1997.

[30] K.-I. Lin, H.V. Jagadish, and C. Faloutsos. The TV-tree: An index structure for high-dimensional
data. VLDB Journal: Very Large Data Bases, 3(4):517–542, 1994.

[31] S. Lin. An extensible hashing structure for image similarity searches. Master’s thesis, Department
of Computing Science, University of Alberta, 2000.

[32] G. Lu. Multimedia Database Management Systems. Artech House Publishers, Inc., 1999.

[33] B.S. Manjunath and W.Y. Ma. Image indexing using a texture dictionary. In Proceedings of SPIE
conference on Image Storage and Archiving System, pages 288–298, 1995.

43

[34] IBM/NASA’s Satellite Image Retrieval System web page. http://maya.ctr.columbia.edu:8080/.

[35] R. Mehrotra and J.E. Gary. Similar-shape retrieval in shape data management. IEEE Computer,
28(9):57–62, 1995.

[36] M.A. Nascimento and V. Chitkara. Content-based image retrieval using binary signatures. In
Proceedings of the ACM Symposium on Applied Computing, pages 687–692, 2002.

[37] M.A. Nascimento, E. Tousidou, V. Chitkara, and Y. Manolopoulos. Color based image retrieval
using signature trees. Technical report, Department of Computing Science, University of Alberta,
2001.

[38] W. Niblack, R. Barber, W. Equitza, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, and
C. Faloutsos. The QBIC project: Querying images by content using color, texture and shape.
In Proceedings of SPIE Storage and Retrieval for Image and Video Databases, pages 173–187,
1994.

[39] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: An adaptable symmetric multikey
file structure. ACM Transactions on Database Systems, 9(2):38–71, 1984.

[40] G. Pass, R. Zahib, and J. Miller. Comparing images using color coherence vectors. In Proceedings
of the ACM International Conference on Multimedia, pages 65–73, 1996.

[41] A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: Content-based manipulation of image
databases. International Journal of Computer Vision, 18(3):233–254, 1996.

[42] Photobook Image Search System web page. http://www−white.media.mit.edu/∼tpminka/photobook/.

[43] QBIC web page. http://wwwqbic.almaden.ibm.com/.

[44] RetrievalWare Image Search System web page. http://vrw.excalib.com/cgi-bin/sdk/cst/cst2.bat.

[45] J. Robinson. The k-d-b-tree: A search structure for large multidimensional dynamic indexes. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 10–18,
1981.

[46] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 71–79, 1995.

[47] Y. Rui, T. Huang, and S.F. Chang. Image retrieval: Past, present, and future. In International
Symposium on Multimedia Information Processing, volume 10, pages 1–23, 1997.

[48] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An index structure for high-
dimensional spaces using relative approximation. In Proceedings of the International Conference
on Very Large Data Bases, pages 516–526, 2000.

[49] L. Shapiro and G. Stockman. Computer Vision. Prentice Hall Publishing Company, Inc., 2001.

[50] J.R. Smith and S.-F. Chang. Automated binary texture feature sets for image retrieval. In Proceed-
ings of the International Conference on Acoustics, Speech, and Signal Processing, pages 2239–2242,
1996.

[51] J.R. Smith and S.-F. Chang. VisualSEEk: a fully automated content-based image query system.
In ACM Multimedia, pages 87–98, 1996.

44

[52] R.O. Stehling, M.A. Nascimento, and A.X. Falcao. On “shapes” of colors for content-based im-
age retrieval. In Proceedings of the International Workshop on Multimedia Information Retrieval
(MIR’2000), pages 171–174, 2000.

[53] M.A. Stricker and M. Orengo. Similarity of color images. In Proceedings of SPIE: Storage and
Retrieval for Image and Video Databases, pages 381–392, 1995.

[54] Virage’s VIR Image Engine system web page. http://www.virage.com/cgi-bin/query-e.

[55] VisualSEEk Image Search System web page. http://www.ee.columbia.edu/∼sfchang/demos.html/.

[56] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study for similarity-
search methods in high-dimensional spaces. In Proceedings of the International Conference on Very
Large Databases, pages 194–205, 1998.

[57] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceedings of the IEEE
International Conference on Data Engineering, pages 516–523, 1996.

45

