

Bottom-up Design-Evolution Concern Discovery and Analysis
Zhenchang Xing and Eleni Stroulia

Computing Science Department
University of Alberta

Edmonton AB, T6G 2H1, Canada
{xing,stroulia}@cs.ualberta.ca

Abstract

Software system grows in size and complexity as it evolves over
time. The fact that object-oriented software is increasingly devel-
oped using an evolutionary development process makes the situa-
tion even worse. The developers face increasing difficulties in
comprehending the system design and its rapid evolution, since the
amount of information is overwhelming. Traditional top-down
approach to software evolution understanding does not work very
well to precisely capture the changes and their underlying motiva-
tions. In this paper, we present our bottom-up design-evolution
analysis approach, implemented in the JDEvAn tool. The JDEvAn
tool has been equipped with a suite of longitudinal and data-
mining analysis methods and a set of change-pattern detection
queries to automatically recover the interesting core evolution
concerns, such as sets of co-evolving classes or instances of refac-
torings, by aggregating elementary design changes into composite
concerns. Given the key participants of an evolution concern, the
JDEvAn Viewer allows developers to interactively explore the
relevant elements, relations, and their changes over time so that
they can incrementally build up their knowledge about what has
been changed, how and why. We evaluate the effectiveness of
JDEvAn with two case studies on realistic open-source object-
oriented software, in the context of which we show how JDEvAn
help us capture the completely different rationale for two pairs of
seemingly similar evolution concerns.

1 Introduction
Capturing and maintaining the design rationale has been a long-
term goal of several different methods developed in support of
different activities in the software lifecycle [2,3,5,14,18,22]. These
methods aim at recording and maintaining information about why
developers have made the decisions they have, so that it can be
used to ease further development and improve the quality of future
decisions by increasing their consistency with past decisions.

Today, as much of software is developed using some evolu-
tionary lifecycle process, the software design rationale is embed-
ded in the “evolution decisions” of the developers, i.e., the changes
they have made to the system from its first version to its current
state. On one hand, this indicates that the objective of maintaining
software-design rationale becomes that of understanding what
sequence of changes the system has undergone to reach its current
state and why. On the other hand, rapid evolutionary development
of software system greatly increases software engineers’ difficul-
ties in comprehending the system design and its evolution, since
the amount of information about the system and its changes grows
overwhelmingly.

There has been a substantial amount of work [1,6,8,16] on un-
derstanding the overall system-level evolution history of software
systems from the information stored in software repositories. An-
other line of research [7,11,15,32] has focused on the visualization

of software-process statistics, source-code metrics, CVS-like del-
tas and their derivatives, etc. However, little work has been done
on design-level evolution concern discovery and analysis. Fur-
thermore, these existing approaches to software evolution under-
standing generally adopt a top-down method, which means they
usually start with an overview of the whole subject system and
hope their users to be able to drill down to the interesting parts of
the system evolution. They assume a substantial interpretation
effort on behalf of their users and they do not scale well for large
systems with numerous components.

Several approaches [19,23,33] are available to allow develop-
ers to associate code features that are scattered throughout the
program text into concerns or aspects and to support for bottom-up
exploration by incrementally building and refining concerns. How-
ever, these tools focus on helping developers locate and manage
scattered concern code. None of them have explored the product of
their tools in service of software evolution understanding.

In this paper, we present our bottom-up design-evolution
analysis approach, implemented in the JDEvAn tool [37]. In our
work on JDEvAn, we have adopted a design-level differencing
methodology to capturing and analyzing the design evolution of
object-oriented software. Our approach is based on the design-
level changes reported by the UMLDiff algorithm [31]. UMLDiff is
a domain-specific differencing algorithm that automatically detects
between the subsequent versions of a system: (a) additions, re-
movals, moves, renamings of subsystems, packages, classes, inter-
faces, fields and methods, (b) changes to their attributes, such data
type, visibility, and deprecation-status, and (c) changes of the con-
tainment, inheritance, and usage dependencies among these model
elements.

Based on the elementary design changes reported by UMLDiff,
we have developed a suite of longitudinal and data-mining analy-
sis methods [25,26,27] and a set of change-pattern detection que-
ries [30] in order to automatically recognize interesting evolution
concerns (e.g., evolution phases, styles and refactorings) in the
evolution history of individual system classes, clusters of classes
and the system as a. Given the key participant elements and rela-
tions of an evolution concern, JDEvAn provides software develop-
ers with an intuitive UML-style view – JDEvAn Viewer [38],
which supports developers to interactively create, explore and
maintain the recovered evolution concerns they are interested in.
JDEvAn supports bottom-up comprehension of design-evolution
concerns: with JDEvAn, the developers start with the bare mini-
mum amount of information about the automatically recovered
core evolution concerns and then selectively explore and refine the
relevant elements, relations, and their changes so that they can
incrementally build up their knowledge about what has been
changed, how and why.

Our case studies demonstrate that our approach is applicable in
practice and can effectively focus the developers’ attention on the
relevant parts of the system evolution. In this paper, we report our

own experience using JDEvAn for examining several seemingly
similar evolution concerns and their participants to gain insight
into their completely different underlying software-quality motiva-
tions. We believe that the very process of recognizing and reflect-
ing upon concrete interesting instances of evolution concerns in
the evolutionary history of the software system can help develop-
ers better understand the system design and its evolution so that it
can be consistently evolved.

The remainder of this paper is structured as follows. Section 2
relates this work to previous research. Section 3 presents an over-
view of the JDEvAn tool. Section 4 discusses in detail the features
of the JDEvAn Viewer that enable developers to explore and
maintain the evolution concerns of their interest. Sections 5 evalu-
ate our approach through two case studies and argue for its useful-
ness in understanding the rationale behind the design evolution of
object-oriented software. Finally, concluding remarks are outlined.

2 Related research
There already exists a substantial body of literature on the general
“software-evolution understanding” topic. A large subset of work
in this area relies on the high-quality history data recorded by ver-
sion-management systems. In general, these related research ef-
forts are aimed at understanding the overall system-level evolution,
such as investigating laws of software evolution [16], calculating
code-decay indices to predict fault potential and change effort [6],
classifying evolution styles of software systems [1], and populat-
ing a release-history database by combining CVS data and bug
reports [8]. In contrast, our work focuses on design-level evolution
analysis. Furthermore, our approach removes the dependence on
such high-quality change data by basing on the automatically re-
covered design changes between snapshots of system’s class
model derived from source code.

Another line of related research has focused on the visualiza-
tion of software-process statistics, source code metrics, static de-
pendence graphs, CVS-like deltas and their derivatives, etc. Eick
et al. developed SeeSoft [7] for visualizing code-line deltas and
change data such as developer, size, effort, etc. Zimmermann et al.
[32] visualizes historical data stored in a CVS archive to help de-
velopers recognize the coupling between fine-grained program
entities like methods and fields. German and Hindle developed
softChange [11] that can be used to visualize information stored in
various forms to assist the programmers in understanding how
software has evolved to its current state. Lanza [15] describes how
to use a simple two-dimensional graph to convey the implicit in-
formation of software metrics. These visualization approaches are
limited in their applicability, however, due to two important rea-
sons: first, they assume a substantial interpretation effort on behalf
of their users and second, they do not scale well: they become
unreadable for large systems with numerous components. In con-
trast, our JDEvAn Viewer adopts a bottom-up method. Its users
start with a few key participants involved in a particular evolution
concern, which are automatically recovered by various JDEvAn
analyses, and they then interactively query, manipulate, and navi-
gate the relevant elements and their relations and changes in order
to understand the underlying rationale behind the evolution con-
cern.

There has been some work on reverse engineering interesting
evolution concerns by mining software repositories, such as cap-
turing co-evolution of design elements [10,22,32], detect refactor-
ings [4,12,13,20].These approaches are based on either examining
change documentation, comparatively analyzing code-line deltas
or source-code metrics, or investigating history data achieved in

repository. In contrast, JDEvAn’s design-evolution analysis relies
on the intuitive design-change facts reported UMLDiff [31], which
enables the identification of a richer set of elementary structural
changes and fairly complex evolution patterns, which provides a
solid base for us to study the design evolution of a large object-
oriented software project [21,26,29]

Several approaches [19,23,33] are available to help developers
locate and manage source code that are scattered throughout the
program text. Robillard and Murphy developed FEAT tool [19]
that supports defining, locating, and analyzing the code imple-
menting one or more concerns. Relo [23] monitors the developer’s
exploration of code within an IDE and builds automatically the
relevant elements and relations into a centralized view. Ac-
tiveAspect [33] produces interactive graphical models of program
structures affected by aspects in AspectJ. These approaches sup-
port bottom-up exploration of code concerns or aspects in the con-
text of program understanding. However, none of them have ex-
plored the product of their tools in service of software evolution
understanding. In contrast, our JDEvAn tool supports the bottom-
up evolution-concern discovery and analysis.

3 Design-evolution analysis with JDEvAn
JDEvAn – “Java Design Evolution and Analysis” – is a tool [37]
designed to offer developers comprehensive support for analyzing
and understanding the design-evolution history of the software
systems on which they work. In this section, we review briefly the
JDEvAn capabilities; interested readers are referred to
[25,26,27,30,31] for in-depth descriptions. JDEvAn supports:
• Design-level fact extraction: JDEvAn’s Java fact extractor

relies on the Eclipse Java DOM/AST model to recover facts
that conceptually belong in the logical UML model of the
subject system [17,31].

• Pair-wise version differencing: JDEvAn’s UMLDiff [31]
implementation is an Eclipse [34] plugin that compares the
extracted logical-design models of two system versions to
identify pairs of same-type elements from the two versions
that correspond to the “same” conceptual element that may
have been left unchanged, renamed, or moved to another part
of the system, or somehow modified.

• Longitudinal design-evolution analysis: The results of UM-
LDiff can be fed to third party tools to perform several types
of analyses – phasic, gamma and optimal sequence matching
analysis [26], and association-rule mining [27] – in order to
recognize interesting evolution phases and styles in the evolu-
tion history of individual system classes, clusters of classes
and the system as a whole.

• Query-based change-pattern detection: As both design facts
and design-change facts are stored in JDEvAn’s PostgreSQL
relational database, JDEvAn users can posit queries to detect
a variety of change patterns of interest to them or invoke the
refactoring-detection queries built in JDEvAn [30].

4 The JDEvAn Viewer
Through our experience with using JDEvAn’s analysis reports, we
recognize the need to provide software developers with an intui-
tive view of the evolution concerns of potentially large design
models and their evolution history. To that end, we have equipped
JDEvAn with a UML-style visualization component – the JDEvAn
Viewer [38]. The JDEvAn Viewer is implemented as an Eclipse
plugin and it relies on the Eclipse GEF (Graphical Editor Frame-
work) [34].

As presented in case studies, when JDEvAn users want to in-
vestigate in detail a particular design change, a so-called core evo-
lution concern, such as an instance of refactoring or a set of co-
evolving classes, they typically start with the design elements in-
volved in the change and their relationships. Then, they can itera-
tively augment the core evolution concern with the relevant model
elements, their relations, and their change status by querying de-
sign models and their evolution history and by determining which
model elements and relationships returned as part of the queries
contribute to the concerns of their interest. In this manner, they
incrementally build up their knowledge about what has been
changed, how and why. Figure 1 displays such a snapshot, at some
point in our investigation process, of two sets of co-evolving
classes, which will be discussed in detail in case study section.

Let us now discuss in detail the features of the JDEvAn Viewer,
which enable its users to create, manipulate and maintain the evo-
lution concerns.

4.1 Presenting design-evolution concern
As can be seen in Figure 1, JDEvAn Viewer divides the screen
into three areas: the main panel visualizes the UML diagram con-
sisting of the concern elements, relations, and their changes, the
bottom-left view outlines the same diagram in a tree view or
thumbnail display, and the bottom-right properties sheet displays
the detailed properties of the selected element or relation.

The Outline view can switch between tree mode and thumbnail
mode, whose main purpose is to facilitate the navigation of large
diagrams. The tree mode presents model elements and their
changes in a containment change tree [27]. The trees are easier to
layout and navigate than the diagrams, which makes it easier to
locate an element. The JDEvAn Viewer synchronizes its main
diagram display and its tree outline so that selecting an element in
the outline tree reveals and highlights the corresponding visual
part in the main display, and vice verse. The thumbnail outline
(not shown in Figure 1) shows the thumbnail display of the main
display area, in which the user can drag and move a shadow win-
dow to quickly reveal parts of the main diagram.

In JDEvAn Viewer, all the model elements and relations being
visualized are selectable from either the main display diagram or
the tree outline view. When an element/relation is selected, its
detailed model and change information can be inspected in the
Properties view with a [Property, Value] table. Different types of
elements and relations may have slightly different properties sheet.
In Figure 1, for example, the renamed class ColorBar is selected.
Its corresponding properties sheet lists its entity category, visibility,
name, UMLDiff status, ID in JDEvAn database, incoming and
outgoing relations from and to other elements, and its location and
size in the main display area. For those properties that have been
reported as changed by UMLDiff, the corresponding value col-
umns are shown in the form of “oldvalue → newvalue”. For ex-
ample, the ColorBar class was originally named as Horizon-
talColorBarAxis. Therefore, the value of its Name property
is “HorizontalColorBarAxis → ColorBar”. The row of properties
sheet is expandable by clicking the plus sign (if applicable) to the
left of a particular row. For instance, by expanding “As source”
row, the users can find out the relations originated from the se-
lected element and the related elements at the other end of the
relations.

The main diagram of the JDEvAn Viewer displays part of the
models UMLDiff compares and its comparison results in the form
of UML class diagram. In the evolution concerns shown in Figure
1, three packages are under investigation, each of which contains

one or more classes. The classes declare fields and meth-
ods/constructors, which are shown in attribute and operation com-
partments respectively. The model elements are decorated with the
standard Eclipse icons. The model elements may be related to each
other with generalization/abstraction relations and/or usage de-
pendencies. Different types of relations are visualized with differ-
ent line styles and arrow heads.

The UMLDiff status of model elements/relations is visualized
by coloring the name (identifier for method/constructor) of model
elements and their relations, which is defined as follows:

• Black: Matched model elements and relations
• Blue: Newly added model elements and relations
• Red: No longer existing model elements and relations
• Green: Renamed1 model elements
• Grey/Orange: Move-source and move-target elements re-

spectively
• Light grey: Matched usage dependency with decreasing

occurrence
• Dark grey: Matched usage dependency with increasing

occurrence
The names of removed elements are struck through. The origi-

nal name of renamed elements (identifier for method/constructor)
is shown with a strikeout line as well. Furthermore, the matched
parameters of methods/constructors are initially hidden with “…”
placeholder, which can be expanded and collapsed by clicking the
“+” or “–” handle of the placeholder. For field/method/parameter
type, they are shown in black font, following the corresponding
field/method/parameter. If the type changes, the old type is struck
through and is followed by the new type. Visibility and modifier(s)
are shown as adornments to the icon of the model elements, ac-
cording to the Eclipse Java model convention. If the visibility
and/or modifiers change, they are shown with the original element
icon being struck out followed by the new element icon.

In Figure 1, the main diagram view shows three matched pack-
ages. The class HorizontalColorBarAxis is renamed to
ColorBar. It no longer implements the interface ColorBar-
Axis, which is removed, and no longer extends the class Hori-
zontalNumberAxis, which is removed as well. Instead, it
starts extending the matched class Object. The renamed class
ColorBar declares one new field axis and one new method
getAxis(). Its method doAutoRange() is removed. Its
method setMaximumAxisValue() and setMinimunAxis-
Value() are renamed to setMaximunValue() and set-
MinimunValue() respectively. However, their parameter lists
stay unchanged. The class ObjectTable is newly introduced. It
becomes the new declaring class of the moved field rows and the
moved method getRowCount(), which are originally declared
in its two subclasses PaintTable, StrokeTable and
ShapeTable respectively. The matched class NumberAxis is
no longer abstract. The data type of the renamed field Contour-
PlotDemo.zColorBar changes from the class NumberAxis
to ColorBar.

Finally, the JDEvAn Viewer provides additional information in
the form of tooltip pop-ups when the user browses the diagram. In
Figure 1, the cursor is pointing to a no longer existing super-call
relationship between the renamed method Color-

1 For method/constructor, the renaming may involve the identi-

fier change and/or parameter list change.

Bar.setMaximumValue(double) and the matched method
ValueAxis.setMaximumAxisValue(double).

4.2 Exploring the neighborhood of a concern
When an element is selected, the set of appropriate handles ap-
pears around the selected element, such as those around the se-
lected class ColorBar shown in Figure 1, including M – More
children, G – Generalization, S – Specialization, I – Incoming
usage, O – Outgoing usage, SN – Similar Name (based on regular
expression of the words in the element name), ET – Evolve To,
and EF – Evolve From. The handles allow the JDEvAn users to
query the relevant model elements, relations, and their changes
and to interactively include those that most likely contribute to the
evolution concerns of their interest. Thus, the model elements and
relations that are visualized in a particular diagram may be only a
very small subset of all the model elements and relations. For ex-
ample, in terms of the replace inheritance with delegation refac-
toring shown in Figure 1, the user would most likely be interested
in three generalization/abstraction relationships originating from
the renamed class ColorBar, a few newly added, removed, and
renamed field and methods of ColorBar, and the class Con-
tourPlotDemo in which the class ColorBar is used.

Left-clicking on a handle adds to the diagram all relevant ele-
ments and relations that the handle is concerned about; right-
clicking on a handle pops up a context menu (not shown in Figure
1), which allows the users to selectively add elements and/or rela-
tions to the current concern. To facilitate exploration, the entries of
the context menu are grouped by UMLDiff status and are annotated
with the proper icons that represent the UMLDiff status associated
with the corresponding elements/relations. The handles and con-
text menus keep the diagram as simple and clear as possible.

Since it is developed based on Eclipse GEF (Graphical Editor
Framework), the JDEvAn Viewer leverages the GEF facilities to
provide Undo/Redo and Zoom-in/Zoom-out. All the modifications
to the diagram, such as adding elements and relations into the dia-
gram, removing irrelevant ones, moving and/or resizing elements,
bending connections, etc., are undoable and redoable. This enables
the users to explore the evolution concerns freely.

4.3 Exploring the evolution trace of a concern
Two special handles – Evolve To (not applicable to removed ele-
ment) and Evolve From (not applicable to newly added element) –
are available to open a new JDEvAn Viewer and present the suc-
cessor (predecessor) elements and their UMLDiff status of the
selected element in a given following (previous) version. These
two handles enable developers to inspect the entire evolution trace
of an evolution concern under investigation, starting at a particular
version, such as how an element is introduced in the system, what
are their state before refactoring some elements/relations and how
do they evolve into these state, what benefits the refactoring brings
about, and so on.

4.4 Attaching user comments
The JDEvAn Viewer allows developers to attach one ore more
comment(s) to model elements and relations and their changes to
record the hard-earned evolution knowledge. For example, in Fig-
ure 1, a comment is attached to the generalization/abstraction
changes of the class ColorBar, its newly added field Color-
Bar.axis, and the field ContourPlotDemo.zColorBar
where the ColorBar is used in order to annotate that these
changes are to replace inheritance reuse with object composition.

A comment is also attached to the new superclass ObjectTable
to explain the intention of this extract superclass refactoring.

4.5 Requesting source code
As users investigate the evolution of software system at the design
level, JDEvAn maintains in parallel, a mapping between the de-
sign-level representation and the source code corresponding to
each model element, which can be requested at any time during the
investigation. The source code contains useful information such as
comments and intra-method structure, which may complement and
assist the understanding of the abstract representation. To access
the source code, the users simply double-click on a model element
being visualized. If the selected element is newly added or re-
moved, JDEvAn brings up the Eclipse Java Editor and highlights
the corresponding code fragment. If the model element is mapped
(matched, renamed, or moved), JDEvAn brings up the Eclipse
Compare Editor or Dialog to show the textual comparison results
of the source code of the double-clicked element.

4.6 Persisting design-evolution concern
Focusing on a specific evolution concern in the JDEvAn Viewer
and exploring its relevant elements and relations enables a com-
pact and local view of otherwise scattered model elements and
relations by collecting them together and by eliding irrelevant
(non-concern) elements, relations, and their changes. This localiza-
tion has been helpful in gaining insight into the evolution history
of the subject system. Furthermore, the JDEvAn Viewer enables
its users to persist the evolution concerns under investigation into
files, which can be reloaded and further examined. As illustrated in
the case study section, there are several advantages to document-
ing hard-earned knowledge about the evolution history of the
software system. First of all, the knowledge associated with an
evolution concern is much more descriptive than that in the change
logs or the release notes. Other users may be able to use the
knowledge without needing to perform all of the time-consuming
investigation, which might involve false turns and the examination
of unrelated elements and relations if they start from scratch. More
importantly, a developer performing similar changes, or encoun-
tering similar evolution “smells” later, can use the documentation
to help make the modification in a more systematic and robust
fashion.

5 Case studies
In this section, we use two case studies to demonstrate the effec-
tiveness of our approach for capturing the interesting evolution
concerns and understanding their underlying rationale. In particu-
lar, we demonstrate, through two pairs of design-evolution con-
cerns from our case studies, how JDEvAn and JDEvAn Viewer
facilitate the understanding of the system design and its evolution,
which we believe is crucial for maintaining and further evolving
the system in a consistent manner.

Using JDEvAn, we analyzed (a) HTMLUnit [36] – a small
unit-testing framework for web applications, and (b) JFreeChart
[35] – a medium size Java library for drawing charts. HTMLUnit
is a small-size open-source software system for unit testing. There
are 11 releases in its history from May 22, 2002 to August 23,
2005. JFreeChart has been under development for more than 4
years and there are 31 major releases between the first version
0.5.6, released on December 1 2000, and the last version 1.0.0,
released on November 29 2004. The subject systems are in differ-
ent domains and of different size. They all have been developed
for several years with multiple major releases. They all have un-
dergone a substantial number of changes. Their varied design-

evolution history makes them appropriate test beds for the evalua-
tion of our design-evolution analysis approach.

5.1 Different problems but same solution
First, let us discuss how the JDEvAn users, through the support of
JDEvAn Viewer, are able to infer the completely different motiva-
tions behind the two seemingly similar extract class refactorings.

The types of refactorings that JDEvAn is able to automatically
detect [30] constitute the basic building blocks for accomplishing
many other refactoring tasks, listed in Fowler’s refactoring catalog
[9]. Table 1 lists some of these refactorings (right column) and
their corresponding core refactorings (left column), which can be
automatically detected by JDEvAn refactoring queries. The right-
column refactorings do not differ substantially from their corre-
sponding core refactorings in terms of the effects they bring on the
software entities/relations. In fact, they may even be indistinguish-
able from one another in terms of UMLDiff change facts. The fun-
damental difference between them lies in their underlying motiva-
tion. Although, the motivation behind a particular refactoring can-
not be precisely inferred through automatic process, JDEvAn
Viewer can facilitate the analysis process.

Table 1. The motivations of core refactorings

Core
refactoring

Motivations

Extract
method

Replace temp with query
Introduce foreign method
Decompose conditional
Separate query from modifier
Parameterize method

Extract class Replace method with method object
Replace data value with object
Duplicate observed data
Replace type code with class
Replace type code with state/strategy
Introduce local extension

Extract
subclass

Replace type code with subclass
Replace conditional with polymorphism

The JDEvAn queries for detecting and classifying refactorings
return the concrete instances of a particular type of refactoring and
their participants (which parts of a system have changed and how
they have changed). JDEvAn users can then examine the refactor-
ing participants and the relevant model elements, relations, and
their changes in the JDEvAn Viewer and draw their own conclu-
sions regarding the motivation and rationale behind the given core
refactoring.

Let us examine two particular instances of extract class refac-
toring in the evolution of the HTMLUnit and JFreeChart system
from our case studies reported by JDEvAn. Their corresponding
participant elements and relations are shown in Figure 2 and Fig-
ure 3 respectively. In HTMLUnit, a member class ResponseEn-
try is extracted from the class FakeWebConnection, which is
used to holds the status and content information of the connection
that used to be defined in FakeWebConnection. In JFreeChart,
a final class AxisLocation is extracted, to which the definition
of the possible locations of axes is transferred from the interface
AxisConstants. From the viewpoint of extract class, there are
no substantial differences between the two instances. They both
involve introducing a new class and moving a few fields to it.
However, the underlying motivations are completely different,

which can be revealed by investigating the relevant model ele-
ments, relations, and their changes through JDEvAn Viewer.

In the case of HTMLUnit, the methods that used to modify the
moved fields are either removed, such as set-
Status(code:int, message:String), or no longer
modify the relevant field directly, such as setCon-
tent(content:String). Instead, the setCon-
tent(content:String) starts delegating to the newly added
method setDefaultResponse(), which receives the content
and status information of the connection as parameters and uses
them to instantiate the ResponseEntry object, which in
turn set the values of the corresponding fields. The intention of all
these changes is to replace data value with object.

On the other hand, in JFreeChart case, the data type of the
moved static final fields change from int to the newly added
class AxisLocation. The constructor of the new class Axis-
Location is private, which means that the AxisLocation
cannot be instantiated, except for the predefined instances BOT-
TOM, TOP, LEFT, RIGHT. The users of the moved fields, such as
Plot.getOppositeAxisLocation(), still use them as
before, but their corresponding return and/or parameter type
changes accordingly. The underlying motivation of this extract
class is to replace type code with class.

5.2 Same problem but different solutions
As software systems evolve over a long time, non-trivial and often
unintended relationships among system classes arise. A most in-
teresting such relationship is class co-evolution: because of im-
plicit design dependencies clusters of classes change in “parallel”
ways and recognizing such co-evolution is crucial in effectively
extending and maintaining the system.

 Applying Apriori association-rule mining to class evolution
profiles [28] discovers co-evolution patterns among two or more
classes, such as the set of classes {HorizontalColorBar-
Axis, HorizontalLogarithmicColorBarAxis, Ver-
ticalColorBarAxis, VerticalLogarithmicColor-
BarAxis} and the set of classes of {PaintTable,
StrokeTable, ShapeTable} in JFreeChart case study.
Figure 4 and Figure 5 show the similar changes made to the two
sets of classes in a particular version of JFreeChart, when we in-
spect their evolution traces in JDEvAn Viewer. It seems that these
classes suffered from the simultaneous development of “parallel
inheritance hierarchies”. The set of co-evolving classes essentially
focuses the developer’s attention to specific examples where the
refactoring should be applicable, according to textbook [9], which
advises informally specific types of refactorings in response to
detecting various “smells”. But the question then becomes: what is
the appropriate refactoring in the given context of a particular
“smell”?

In the case of four ?ColorBarAxis classes, JDEvAn reports
that they underwent a refactoring of replace inheritance with dele-
gation when the system evolved from the version 0.9.8 to 0.9.9.
The bottom-right part of the main diagram area in Figure 1 shows
the relevant refactoring participants. The class Horizontal-
ColorBarAxis was renamed to ColorBar. It stopped ex-
tending HorizontalNumberAxis and it started extending
java.lang.Object. In addition, it started declaring a field axis of
type ValueAxis, the abstract ancestor of all ?NumberAxis
classes. These changes imply that the ColorBar was no longer
axis, but it can work with any axis objects, conforming to the inter-

faces defined by the ValueAxis abstract class. However, in the
case of ?Table classes, the JFreeChart developers applied ex-
tract superclass and form template method refactorings to address
the co-evolution smell and reduce the duplicated code. The rele-
vant refactoring participants are shown in the top-left part of Fig-
ure 1: a new superclass ObjectTable was introduced to hold
the common features that were pulled up from the existing ?Ta-
ble classes; ?Table classes were modified to extend Ob-
jectTable, overriding the default behavior when necessary.

The choice is essentially between inheritance and composition.
Inheritance is a powerful object-oriented design primitive that
enables code and design reuse when two or more classes have
similar features and capabilities. However, developers often do not
notice the commonalities until they have already created some
classes, in which case they have to impose the inheritance hierar-
chy post facto. In version 0.9.9 the JFreeChart developers were
faced with the need to introduce six more similar ?Table classes,
such as FontTable, BooleanTable, NumberTable
shown in Figure 1. At this point, however, they must have noticed
the commonalities between them and the three existing ?Table
classes. Thus, instead of duplicating the existing code, they ex-
tracted the ObjectTable superclass and made all ?Table
classes extend it, overriding the default behavior when necessary.

In addition to white-box reuse through class inheritance, ob-
ject-oriented software engineering also enables black-box reuse
through object composition, which allows classes to reuse objects
in terms of their well-defined interfaces, with limited implementa-
tion coupling and increased flexibility. However, sometimes, de-
velopers make the “stronger” commitment to white-box reuse
when they only need black-box reuse. The introduction of the
four ?ColorBarAxis illustrates a poor choice of class inheri-
tance vs. object composition. Whenever it comes time to change
what these classes do, all of them have to be modified in a very
similar way to accommodate the change. Furthermore, the inheri-
tance-based reuse also limits the flexibility to draw color bar in
other types (may not even exist at the time the ?ColorBarAxis
was introduced) of axes, which may potentially result in the explo-
sion of the class hierarchy and a substantial code duplication if the
developers want to deliver the color bar in all possible combina-
tions of the axes. This design was subsequently amended with the
modification of the ColorBar class that marked the transition
from white-box to black-box reuse.

Clearly, inheritance is the simpler choice for the classes
PaintTable, StrokeTable and ShapeTable, since they
share interface as well as behavior. In contrast, the color bar fea-
ture is better accommodated using composition since it is inde-
pendent of the other axis features.

We finally annotated these two evolution concerns, including
sets of co-evolving classes and the corresponding instances of
refactorings, with the above conclusion with JDEvAn Viewer’s
comment node as shown in Figure 1, and persisted all the relevant
diagrams as a useful asset in support of future maintenance and
evolution tasks. Such persistent evolution-concerns are much more
informative than the textual change logs and release notes. They
point out, not only the key elements of the evolution effort and the
detailed changes they undergo, but also the relevant elements,
relations, their changes, and the hard-earned evolution rationale
that motivates the changes. If such evolution concerns were
shipped with the new version of a framework or library, they
would most likely smooth the learning curve that the application
developers experience as they work to migrate their applications to

the new version of the framework API. Application developers
would be able to learn what has been changed and how exactly
based on the evolution concerns, without needing to rely on the
terse release notes or start their investigation from the source code.
The framework or library developers themselves may also benefit
from the documented concerns when performing similar changes
or encounter similar smells. For example, when they are faced
with co-evolution smells, the developers may compare the situa-
tion they have at hand with those documented, which may help
them make the choice between replace inheritance with delegation
and extract superclass and decide which one is more desirable.

6 Conclusions
In this paper, we present our approach to bottom-up design-
evolution concern discovery and analysis, implemented in the
JDEvAn tool. First, facts regarding design-level entities and their
relations in each individual version of the system are extracted
from the system’s code, assumed to be managed in a version-
control system. Next, the designs of subsequent system versions
are pair-wise compared to determine how the elements and rela-
tions have changed from one version to the next. Finally, several
longitudinal analysis methods and a suite of queries for detecting
change-patterns are applied to recover the interesting design evolu-
tion concerns, such as co-evolving classes and refactorings. These
automatic analyses aggregate the elementary design changes into
bigger concerns at higher-level of abstraction, which are then ex-
amined to learn which parts of a system have changed and how
exactly

The more important question is why they have changed, since
the overall objective of this work has been to reverse engineer the
rationale that has driven the evolution of the system to its current
state. Inferring the developers’ intent can never be accurate. How-
ever, as demonstrated in our case studies, our JDEvAn Viewer
allows developers to review and explore the detected evolution
concerns in the overall context of the system’s design and its evo-
lutionary history so that they can draw informed conclusions about
the potential intent for the changes. The hard-earned evolution
knowledge can then be annotated and persisted in support of con-
sistently evolving the subject system in the future.

References
1. E.J. Barry, C.F. Kemerer and S.A. Slaughter. On the uniform-

ity of software evolution patterns. Proceedings of the 25th In-
ternational Conference on Software Engineering, pp. 106-113,
2003.

2. I.D. Baxter and C.W. Pidgeon. Software change through de-
sign maintenance. Proceedings of International Conference
on Software Maintenance, 1997, pp250-259.

3. J.E. Burge and D.C. Brown. Design rationale for software
maintenance. Proceedings of the 16th International Confer-
ence on Automated Software Engineering, 2001, pp. 433.

4. S. Demeyer, S. Ducasse and O. Nierstrasz. Finding refactor-
ings via change metrics. ACM SIGPLAN notices, 35, 10
(2000), 166-177.

5. A. Dutoit and B. Paech. Rationale management in software
engineering. Handbook on Software Engineeering and
Knowledge Engineering, World Scientific, December 2001.

6. S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron and A.
Mockus. Does code decay? Assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 2001, 27(1):1–12.

7. S.G. Eick, J.L. Steffen and E.E. Sumner. SeeSoft—A tool for
visualizing line-oriented software statistics. IEEE Transac-
tions on Software Engineering, 1992, 18(11):957–968.

8. M. Fischer, M. Pinzger and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. Proceedings of the 19th International Conference on
Software Maintenance, pp. 23-32, September 2003.

9. M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

10. H. Gall, K. Hajek and M. Jazayeri. Detection of Logical Cou-
pling Based on Product Release History. Proceedings of the
14th International Conferences on Software Maintenance,
November 1998.

11. D.M. German and A. Hindle. Visualizing the evolution of
software using softChange. Proceedings of the 16th Interna-
tional Conference on Software Engineering and Knowledge
Engineering, pp. 336-341, 2004.

12. M. Godfrey and L. Zou. Using origin analysis to detect merg-
ing and splitting of source code entities. IEEE Transactions
on Software Engineering, 31, 2 (2005), 166-181.

13. C. Gorg and P. Weigerber. Detecting and visualizing refactor-
ings from software archives. Proceedings of the 13th Interna-
tional Workshop on Program Comprehension, 2005, pp.205-
214.

14. A. Jarczyk, P. Loeffler and I.F. Shipman. Design Rationale
for Software Engineering: A Survey. Proceedings of the 25th
Annual IEEE Computer Society Hawaii Conference on Sys-
tem Sciences, pp. 577-586, January 1992.

15. M. Lanza. The evolution matrix: Recovering software evolu-
tion using software visualization techniques. Proceedings of
the 4th International Workshop on Principles of Software
Evolution, pp. 37-42, 2001.

16. M.M. Lehman and L.A. Belady. Program evolution-processes
of software change. Academic Press, London, 1985, 538pps.

17. OMG Unified Modeling Language Specification, formal/03-
03-01, Version 1.5, (2003), http://www.omg.org.

18. F. Pea-Mora and S. Vadhavkar. Augmenting design patterns
with design rationale. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 11, Cambridge Univer-
sity Press, pp. 93-108, 1996.

19. M.P. Robillard and G.C. Murphy. Concern Graphs: Finding
and Describing Concerns Using Structural Program Depend-
encies. Proceedings of the 24th International Conference on
Software Engineering, pages 406-416, May 2002.

20. F.V. Rysselberghe and S. Demeyer. Reconstruction of suc-
cessful software evolution using clone detection. Proceedings
of International Workshop on Principles of software Evolu-
tion, pp. 126–130, September 2003.

21. C. Schofield, B. Tansey, Z. Xing and E. Stroulia. Digging the
development dust for refactorings. Proceedings of the 14th In-
ternational Conference on Program Comprehension, 2006.

22. J.S. Shirabad, T.C. Lethbridge and S. Matwin. Supporting
software maintenance by mining software update records.
Proceedings of the 17th International Conference on Software
Maintenance, 2001.

23. V. Sinha, D. Karger, R. Miller. Relo: Helping Users Manage
Context during Interactive Exploratory Visualization of Large
Codebases. Visual Languages and Human-Centric Comput-
ting (VL/HCC 2006). Sep. 4-8, 2006, Brighton, United King-
dom.

24. I. Sommerville. Software documentation. In Software Engi-
neering, vol 2: The supporting Processes. R.H. Thayer and
M.I. Christensen (eds), Willey-IEEE Press.

25. Z. Xing and E. Stroulia. Understanding class evolution in
object-oriented software. Proceedings of the 12th Interna-
tional Workshop on Program Comprehension, pp. 34-43,
June 2004.

26. Z. Xing and E. Stroulia. Analyzing the evolutionary history of
the logical design of object-oriented software. IEEE Transac-
tions on Software Engineering, 31(10):850-868, Oct. 2005.

27. Z. Xing and E. Stroulia. UMLDiff: An algorithm for object-
oriented design differencing. Proceedings of the 20th Interna-
tional Conference on Automated Software Engineering, pp.
54-65, 2005.

28. Z. Xing and E. Stroulia. Understanding the evolution and co-
evolution of classes in object-oriented systems. International
Journal of Software Engineering and Knowledge Engineering,
Vol. 16, No. 1, 23-52, February 2006.

29. Z. Xing and E. Stroulia. Refactoring Practice: How it is and
How it Should be Supported - An Eclipse Case Study. Pro-
ceedings. of the 22nd International Conference on Software
Maintenance, Philadelphia, Pennsylvania, September 24-27,
2006.

30. Z. Xing and E. Stroulia. Refactoring Detection based on
UMLDiff change-facts Queries. Proceedings of the 13th
Working Conference on Reverse Engineering, Benevento, It-
aly, October 23-27, 2006.

31. Z. Xing and E. Stroulia. Differencing logical UML models,
The special issue of Automated Software Engineering Journal
of selected papers from Automated Software Engineering
2005 conference (Accepted. To appear).

32. T. Zimmermann, S. Diehl, and A. Zeller. How History Justi-
fies System Architecture (or not). Proceedings of Interna-
tional Workshop on Principles of Software Evolution, Sep-
tember 2003.

33. ActiveAspect,
http://www.cs.ubc.ca/labs/spl/projects/activeaspect/

34. Eclipse, http://www.eclipse.org
35. JFreeChart: http://www.jfree.org/jfreechart/
36. HTMLUnit: http://htmlunit.sourceforge.net/
37. JDEvAn, http://www.cs.ualberta.ca/~xing/jdevan.html
38. JDEvAn Viewer,

http://www.cs.ualberta.ca/~xing/jdevanviewer.html

Figure 1. The JDEvAn Viewer

Figure 2. Replace data value with object

Figure 3. Replace type code with class

Figure 4. The co-evolution of ?ColorBarAxis classes

Figure 5. The co-evolution of ?Table classes

