
U niversity o f A lberta

R e l a t io n a l D a t a b a s e S u p p o r t f o r S p a t io - T e m p o r a l D ata

by

D aniel Jam es M allett

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95814-0
Our file Notre reference
ISBN: 0-612-95814-0

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All truths are easy to understand once they are discovered;
the point is to discover them.
Galileo Galilei (1564 - 1642)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To M y P-girl & Schmoopy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

Research partially supported by CFI, iCORE Alberta, and NSERC Canada.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Problem S ta te m e n t... 2
1.2 Thesis Scope and Organization .. 4

2 R elated Work 6
2.1 Spatio-Temporal D a t a .. 11
2.2 Modeling Spatio-Temporal D a ta .. 18
2.3 Spatio-Temporal Q u erie s ... 21
2.4 Spatio-Temporal Access M e th o d s ... 22

3 R D B M S Support for Spatio-Tem poral D ata 28
3.1 Recasting the p ro b le m ... 29

3.1.1 Linear Referencing System (LRS) A p p ro a c h 29
3.1.2 Space-Filling Curve A p p ro ach .. 31

3.2 Loose C o u p lin g ... 37
3.3 Tight C o u p lin g ... 38

4 The Space-Partitioning w ith Indexes on Tim e Approach 39
4.1 Mapping SPIT into a R D B M S.. 41

4.1.1 Query P rocessing .. 43
4.2 SPIT’s Cost M o d e l ... 47

5 R D B M S Support Im plem entation W ith in Oracle 50
5.1 Space-Partitioning with Indexes on Time A p p ro a c h 50
5.2 The R-tree + Temporal B-tree A pproach 53
5.3 The Z-value + B-tree A p p ro ach .. 55
5.4 Other Approaches.. 58

6 Experim ental R esults 62
6.1 Cost Model E valua tion ... 66
6.2 Performance E v a lu a tio n ... 70

7 Conclusions and Future Work 76
7.1 Future W ork .. 77

Bibliography 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 B + tre e .. 7
2.2 Three-dimensional MBRs stored in a R-tree structure (from [45]) 8
2.3 Q u a d -tre e .. 9
2.4 Snapshots of a framework-based GSTD D a ta s e t 14
2.5 Snapshot of a Network-based Generator D a ta s e t 15
2.6 Snapshots of a G-TERD Dataset .. 16
2.7 Snapshot of an IBM City Simulator D a ta s e t 17
2.8 Modeling Spatio-Temporal Data as P o i n t s 18
2.9 Modeling Spatio-Temporal Data as T ra je c to rie s 19
2.10 Modeling Spatio-Temporal Data as Parametric Functions . . . 19
2.11 Modeling Spatio-Temporal Data as Step-Wise Interpolations . 20
2.12 Spatio-Temporal Range Q u e ry ... 22
2.13 The Problem with Indexing Lines W ith B o x e s 23
2.14 HR-tree (from [4 5]).. 25
2.15 TB R-tree (from [36])... 26
2.16 SETI (from [8]) .. 27

3.1 Example of a Spatio-Temporal Geometry Modeled using an
LRS-geometry (from [17]) 30

3.2 Indexing Spatio-Temporal Data using the LRS Approach (from
[1 7]) .. 30

3.3 Space-Filling Curves (from [2 4]).. 32
3.4 Spectral Curve (from [2 3]) ... 33
3.5 Recursive Construction of the Z-curve (from [2 4]) 34
3.6 Three-dimensional Space-Filling Curves (from [24]) 34
3.7 Bit Interleaving to Calculate Z-values.................................... 35
3.8 Z-Order Space-Filling Curve to Cell N u m b er....................... 36

4.1 SPIT Approach for a 4 x 4 spatial g r i d 40

6.1 Snapshots of the Gaussian D a t a s e t 64
6.2 Snapshots of the Skewed D a t a s e t .. 65
6.3 Disk Accesses and Query Processing Time - Gaussian Dataset 68
6.4 Disk Accesses and Query Processing Time - Skewed Dataset . 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Query Performance on the 6 million tuple dataset with the max
imum temporal interval (M AX.Tl) assumption and without the
assumption ... 71

6.6 Query Performance for different database and query sizes -
Gaussian D a ta s e t ... 73

6.7 Query Performance for different database and query sizes -
Skewed D a ta s e t .. 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Symbols Used and their M eanings.. 47

5.1 SPIT DDL and SQL s ta tem en ts ... 51
5.2 R-tree + Temporal B-tree Approach DDL and SQL statements 54
5.3 Z-value + B-tree Approach DDL and SQL sta tem en ts.... 55

6.1 N* and the corresponding Number of Grid Cells used in the
ST_SPIT table for given dataset sizes...................................... 67

6.2 Data Insertion and Index Creation Time in m irn se c 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

For decades, Relational Database Management Systems (RDBMSs) have pro

vided users with advanced data management capabilities. A RDBMS offers

a host of convenient and useful features to their users, e.g., a central reposi

tory for data storage, concurrency control, backup and recovery mechanisms,

support for multiple users and transactions, and tools to manage very large

datasets. The basic building blocks of a database remains relational tables

whose columns consist of simple data-types such as integers, floating point

numbers, and text strings. RDBMS developers have integrated within their

systems index support for these basic data-types, however the data-types and

index support is oftentimes insufficient for more complex application domains.

Inevitably, as the need to manage more complex data-types emerges, index

ing support for these advanced data types is integrated into the RDBMS. For

example, most off-the-shelf RDBMS systems have storage, indexing, and re

trieval support for geometric or spatial data used in Geographic Information

System (GIS) applications [3, 27, 35]. A specialized spatial object type and

m ulti-dim ensional index structure can dram atically enhance retrieval perfor

mance for large databases versus the alternative of having to map a spatial

object into the simple data-types and index structures that would normally be

available. Similarly, specialized index structures integrated within the RDBMS

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for temporal data [19, 30] have been proposed.

Given emerging application domains involving moving object data, there

now exists an urgent need to support spatio-temporal data inside a RDBMS.

Anything that changes position through time can be classified as spatio-temporal

data. A prolific number of GPS, wireless computing, and mobile phone de

vices are capable of accurately reporting their position [16], and ubiquitous

applications that can take advantage of this information are in high demand,

e.g., tracking and fleet management [20], traffic and re-routing applications [9],

spatio-temporal data-mining [40, 29], and location-aware services [16]. There

are an estimated 500 million users of mobile-phones worldwide [37], many of

which can be tracked. US law [10] has mandated that all wireless phones in

that country be traceable in order to provide enhanced location information to

911 dispatchers during emergencies. The overwhelming task of managing large

datasets of such data demands the convenience, reliability, and data storage

capabilities that a traditional RDBMS affords.

Although ample research on Spatio-Temporal Access Methods (STAMs)

has been performed (an overview can be found in [25]), very little work exists

on how to provide a STAM inside a RDBMS, [17] being a notable exception.

This work fills this crucial need by proposing a spatio-temporal access method

which can be fully integrated within any RDBMS.

1.1 Problem Statem ent

There are two main types of spatio-temporal databases [25], those tha t man

age historical inform ation and those that m anage current inform ation for cur

rent/predictive query purposes. This thesis focuses on the first category, i.e.,

we assume that the database stores the complete history of moving objects

through time and must answer queries about any time in the history of ob

jects. We assume that records about object’s movements are tracked and sent

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(possibly via regular updates) to the RDBMS. Each record has the attributes

(oid, x, y, ts, te) where:

• oid identifies an object,

• (x , y) are spatial coordinates, and

• (ts, t e) indicate the temporal interval during which an object remained

at position (x , y).

A typical domain where such a model fits is mobile device tracking [50], e.g.,

of GPS users, wireless computing devices, or cell phones. Unlike the tra

jectory model [39], where the movement of objects between data points is

interpolated, our data model does not assume anything about the movement

of objects between records. The model reflects real-world applications where

assuming an object follows a linear trajectory between data points may lead

to incorrect assumptions. For example, in security/monitoring applications, a

person could be mistakingly assumed to have entered a restricted area because

his/her movement was interpolated. The temporal interval implicitly performs

a form of data compression, when an object’s location does not change (either

because the object does not move or does not move beyond the accuracy of

the positioning device) only the temporal interval will grow and a single tuple

will be added to the database.

A spatio-temporal range query Q takes the form Q — (1 Z , T) where 7 Z is

a spatial region and T is a time range. Q returns the unique oid’s of records

where (1) (x, y) is inside 1Z and (2) (ts, t e) intersects with T . An example of

such a query would be “find all objects that were in the West Edmonton Mall

at some point between noon and 1 p.m. yesterday.

The problem we investigate in this thesis is to define a practical storage

and indexing model fully integrated inside a RDBMS that can store a very

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large database of the given records, handle regular inserts into the database

and efficiently answer spatio-temporal range queries.

1.2 Thesis Scope and Organization

This thesis provides:

• An efficient spatio-temporal indexing technique fully integrated within

a RDBMS,

• A cost model that fine tunes the proposed technique for optimal perfor

mance, and

• An experimental study demonstrating the reliability of the cost model

and both the efficiency and effectiveness of our proposed method.

This thesis is structured as follows: Chapter 2 reviews related work in

the spatio-temporal domain, including a discussion of spatio-temporal data

generation and modeling, the types of spatio-temporal queries that exist, and

an overview of several spatio-temporal access methods that have been pro

posed. Chapter 3 provides background on what options for RDBMS support

of spatio-temporal data exist. Therein we identify three general alternatives

for providing RDBMS support for spatio-temporal data:

1. Recasting the problem so as to employ existing RDBMS support for

spatial data,

2. Loosely coupling a STAM to the RDBMS, and

3. Tightly coupling a STAM inside the RDBMS via a relational mapping.

Our approach falls under the third alternative, i.e., we design a STAM that

leverages existing RDBMS functionality. The chief advantage thereof being

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that our method can be readily integrated into any relational database man

agement system. In Chapter 3, we also provide important background about

the other methods that we use for experimental comparison to our approach,

specifically a spatial index based approach and a space-filling curve approach.

Chapter 4 details our proposed approach, and the associated cost model. We

call our method the Space-Partitioning with Indexes on Time (SPIT) ap

proach. SPIT is a grid-based access method with a relational mapping. The

SPIT cost model provides a means to minimize the number of disk accesses

at query time with respect to grid size. In Chapter 5 we describe how our ap

proach can be implemented using a RDBMS, Oracle 9i in particular. Here we

also describe relevant implementation details of the approaches we will use for

experimental comparison to SPIT, namely, the spatial index based approach

and the space-filling curve approach. In Chapter 6 we confirm the reliability

of the cost model and compare our approach to the other methods for index

ing spatio-temporal data inside a RDBMS. We show that SPIT is extremely

efficient - outperforming all approaches for the dataset and queries we inves

tigated. Chapter 7 concludes the thesis and provides ideas for extending the

work to handle additional spatio-temporal data models and queries, and to

further enhance query performance.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

R elated Work

A RDBMS organizes data into tabular files (tables) that can be related to

each other by common fields. The columns of each table represent the data

fields and have a predetermined data-type, i.e., integer, floating point number,

or string. Table rows, often called tuples, store the actual data. In order to

enhance query performance a RDBMS provides means to index table columns.

An index speeds query processing by providing a separate data structure with

pointers to the rows, identified by unique row identifiers, of entries in the table

that satisfy query criteria.

The basic index structures provided inside a RDBMS are hash-based and

tree-based indexes. A hash-based index uses a function to map records to

pages on disk. To answer queries on a specific value efficiently, the hash

function on that value is applied which returns the page where any records

with that value are located. Assuming an effective hash function, it is often

the case that only one disk access is necessary to retrieve a matching tuple

at query time. Typically, the B+tree [4] is the tree-based index structure of

choice inside the RDBMS. Given a column of table data already in sorted

order, a B+tree is constructed by adding each entry along with a pointer (the

unique row identifier of that tuple) into nodes at the leaf-level of the index.

Each node corresponds to a page on disk. As shown in Figure 2.1, parent

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: B+tree

nodes are constructed so as to contain values which bound the minimum and

maximum range of values that their children nodes contain. The process is

repeated recursively to construct the upper levels of the tree. For every node

(except the root) a minimum m and maximum M number of entries per node is

specified so as to ensure that the tree has a balance structured. At query time,

the root node and internal level nodes direct the search. For a point query,

i.e., a query against a single value, a single path down the tree is followed. For

range queries as well, only a single path down the tree must be followed - once

the minimum value of the range is found, an index range scan can proceed by

following pointers between the leaf-level nodes. For 1-dimensional data, i.e.,

a column of characters in a database table, the B+tree index offers extremely

good performance and scalability. Even given millions of tuples (database

rows), the B+tree structure typically requires only three levels. Assuming

that root and intermediate level nodes are cached, only 1 disk access (I/O) is

necessary to answer a point query because leaf-level nodes contain the actual

column value stored in its associated table tuple.

Although the basic data modeling and index support provided in an off-

the-shelf RDBMS is sufficient for many real-world applications, it has long

been acknowledged that more complex data types require extensions to basic

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| A | E | F | ~ | | B [C [D | ~ |

Figure 2.2: Three-dimensional MBRs stored in a R-tree structure (from [45])

RDBMS support. Via object-relational extensions to the database, a column

can be made to store a complex object type. The challenge is to provide

built-in index support for these complex object types.

Support for spatial data types and indexes is provided in most RDBMS.

The R-tree [14] is the classic structure that most RDBMS vendors base their

spatial index support on. A R-tree builds a Minimum Bounding Rectangle

(MBR) approximation of every spatial object in the database and inserts each

MBR in the leaf level nodes of the R-tree. Figure 2.2 illustrates a three-

dimensional R-tree, boxes A -F represent the MBRs of the actual 3-dimensional

spatial objects on disk. The parents nodes, R1 and R2, represent the MBRs of

a group of object MBRs. At insertion time, a cost-based algorithm is used to

decide which node a new object should be inserted in based on the criterion of

limiting the amount of overlap between nodes and the amount of dead-space

in the tree. For example, in Figure 2.2, grouping objects A, E, and F together

into R1 creates a smaller MBR than if A, E, and C were grouped together

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instead. As with the B+tree, a minimum and maximum number of entries per

node is enforced so as to ensure that the tree remains balanced. At query time,

the tree is traversed, beginning at the root, by visiting each node wherein the

query window intersects a MBR. At the leaf-level, only those object MBRs

that intersect the query MBR need to be retrieved from disk. Recall that with

a B+tree, only a single path through the tree need be traversed. W ith the

R-tree, however, it may be necessary to follow several paths along the tree,

because the query window may intersect several MBRs in each node.

SWNW

SWNW

Figure 2.3: Quad-tree

Another type of spatial index structure supported in many RDBMSs is

the Quad-tree [42]. The Quad-tree is a partition-based index in tha t objects

are recursively divided into quadrants. A spatial object is represented by

the quadrant in which it belongs. Figure 2.3 illustrates a Quad-tree index

structure. The root node represents the entire data-space, the second level

represents the division of the data-space into quadrants, and subsequent levels

divide each of the quadrants into smaller sub-quadrants. Leaf nodes point

to the actual spatial objects within that quadrant. At query time, the tree

is navigated by following those nodes where the query window intersects a

quadrant until the leaf level pointers are reached. For general usage in spatial

applications, it is reported that the R-tree tends to be more efficient than the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Quad-tree [18]. This behavior is at least partially due to the R-tree’s ability

to adapt to the data it represents, i.e., the index is based on the actual spatial

objects in the database, not on a division of space. For certain applications,

especially in the domain of image-based applications [49], the Quad-tree offers

better performance because data exists throughout the space.

As with spatial data, there exists a need to incorporate support for tem

poral data-types and index structures within a RDBMS. A standard database

only supports a view of the data at a single point in time, i.e., can only an

swer queries of the form “what is employee X’s salary?”. In many domains,

however, it is important to store historical information or to have information

become valid at a future point in time. For example, queries such as “what

was employee X’s salary last year?” . It is of interest to support indexing in

such domains in order to efficiently answer temporal queries. One approach

is the Relational-Interval Tree (RI-Tree) [19], which integrates temporal index

into the RDBMS by modifying the R-tree so as to support efficient indexing

of 1-dimensional temporal intervals. The approach can be integrated into an

Oracle RDBMS using database extender technology, which provides a map

ping between the API of the index and query structure, and the underlying

database tables and index structures. A related technique for indexing tem

poral data inside a RDBMS is the MAP21 approach [30]. W ith MAP21, a

maximum temporal interval assumption is used so as to map the start and

end points of a temporal interval into a one dimensional value tha t can be

readily indexed using a B+tree.

The need to provide RDBMS support for spatio-temporal data is a natural

extension of the stance taken for purely spatial or purely temporal database

support. In the most general sense, spatio-temporal databases deal with ge

ometries changing over time [11]. The geometry represents a moving object

(whose geometry may or may not change over time), and the object is as-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sumed to move continuously. If only the position of an object in space is of

interest, for example when tracking vehicles, then the data is essentially that

of moving points. If the object geometries (spatial extents) are of importance,

for example when dealing with the movement of weather patterns, then the

data consists of a moving region that can shrink or grow over time. In the rest

of this chapter we discuss issues related to the acquisition and generation of

spatio-temporal data, the modeling of spatio-temporal data, spatio-temporal

query types, and existing methods, in particular STAMs, to support spatio-

temporal data and queries.

2.1 Spatio-Temporal Data

Spatio-temporal data comes from various sources, for example the movements

of people, animals, vehicles, airplanes, boats, extra-terrestrial objects, military

objects, weather (areas of high/low pressure, and storms), the changing bor

ders of countries or cities [11] - the list is endless because anything tha t changes

position through time can be classified as spatio-temporal data. An important

classification of moving objects is to define any constraints on movement that

may exist. In general, three movement scenarios exist - “unconstrained move

ment (vessels at sea), constrained movement (cars, pedestrians), or movement

in networks (trains and, in some cases, cars)” [37].

Important uses for spatio-temporal information include tracking inventory,

personal, shipments, fleet, spatio-temporal data-mining, e.g., finding patterns

in large datasets of changing data or grouping users based on similar behavior

patterns. Of enormous interest in cities with traffic congestion problems is

traffic and re-routing applications, e.g., directing users where to go, helping

a user when they are lost, or suggesting alternative routes when a road is

congested or closed [9].

Various technologies can be used to actually collect the data. If a device

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

includes a GPS (Global Positioning System) module, the user’s location can

be defined very accurately (within 2-20 meters) [16]. GPS-based devices do

not work well indoors, and require that the user device sends location updates

to the service provider on a regular basis. Besides advanced positioning and

mapping applications, GPS modules can be used to provide location-aware

services, fleet monitoring support, and for historical tracking purposes.

The location of a cell phone in the mobile network can be extrapolated

by telecommunication operators without the need for a GPS module. Based

on the cell in which the phone is in or by measuring the distance between

overlapping cells, it is possible to pinpoint the location of a cell phone within

a radius of 50 meters (in urban areas) and a few kilometers in rural settings

[15]. The advantage of such an approach is that existing mobile phone tech

nology can be used for the purposes of providing location-aware services or

tracking, without the need for extra technological infrastructure. US law [10]

has mandated that all wireless phones in that country be traceable in order to

provide enhanced location information to 911 dispatchers during emergencies,

and wireless carriers are beginning to take advantage of this capability to of

fer location-based services to users. Location-based services can be defined as

“services that are related as such or by their information contents to certain

places or locations” [16].

Wireless computing devices can also generate spatio-temporal data [16].

Depending on the density of the network, the accuracy of such an approach can

be extremely high (within 2 meters). Typically, the required wireless network

infrastructure means that data can only be generated within restricted areas

such as an office building or a university campus.

Not surprisingly, due to the private and proprietary nature of data gen

erated using any of the above technologies, it can be difficult to obtain real

datasets of spatio-temporal data for experimental purposes. Some animal

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tracking, hurricane, and public bus datasets are publicly available [31]; how

ever, the number of records (in the hundreds) is insufficient for large scale

database benchmarking. Due to the lack of readily available real datasets and

the need to generate data in a controlled fashion for experimental purposes,

synthetic spatio-temporal data generators have been developed. The most no

table synthetic generators include the Generate SpatioTemporal Data (GSTD)

Tool [46], the Network-based Generator of Moving Objects [7], a Generator

for Time-Evolving Regional Data (G-TERD) [48], and the City Simulator by

IBM.

The GSTD 1 [46] generates data according to prescribed statistical dis

tributions. Currently uniform, Gaussian, and Skewed distributions are sup

ported. Both point and moving region (rectangle) spatio-temporal data can

be generated. The cardinality of the dataset can be easily adjusted in order

to perform large scale experiments. For point data, GSTD requires an initial,

time, and center distribution. The initial distribution defines where objects be

gin within the unit space that GSTD assumes. The time distribution controls

the timestamps when object locations are updated. The center distribution

controls the movement of points in space. Advanced features supported by

the GSTD include support for a framework, i.e., obstacles that objects cannot

enter, support for multiple datasets with different properties, and an on-line

dataset visualizer. GSTD also supports three approaches for handling points

that leave the data-space - a radar approach where objects exiting the space

are allowed, an adjustment approach where objects are forced to remain in the

space and a toroid approaches where objects “wrap-around” so as to remain

in the space. Figure 2.4 shows three snapshots taken from the GSTD visu

alizer tool for a generated dataset consisting of points moving with a toroid

approach, i.e., wrap-around. A point represents an object and boxes represent

1http ://db .cs.ualberta .ca:8080/gstd /index.htm l

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://db.cs.ualberta.ca:8080/gstd/index.html

GSTD V ls u a l lz i r

0.9

0.4

0.3

0.0

0.5 0.6 0.7 0.9 0.9 1.00.0 0.1 0.2 0.3 0.4

GSTD V is u a l iz t r

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

GSTD V I s u a l iz t r

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 0.9 1.0

Figure 2.4: Snapshots of a framework-based GSTD Dataset

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the set of obstacles, a framework, that restrict an object’s movement.

Even with the use of a framework, the objects generated by the GSTD

can move anywhere and along any path within the unit space where obstacles

do not exist. On the other hand, the Network-based Generator of Moving

Objects [7] can generate a dataset where objects follow a given network, e.g.,

roads. In such a scenario the maximum allowable speed and capacity of a

network is important, as well as the interaction of moving objects. Objects

are assumed to have a starting location and a destination. A key advantage

of the Network-based generator is that synthetic data that follows the real

topology of a network, e.g., the roads of a city, can be generated. Objects can

also belong to a class, e.g., cars vs pedestrians, with different properties such

as maximum velocity. A representation of the data generated by the Network-

based Generator is shown in Figure 2.5. The dots represent different types of

moving objects and the lines the infrastructure that objects navigate.

Figure 2.5: Snapshot of a Network-based Generator Dataset

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“ T " r
1000

800

600

400

200

800 1000200 400

1000

800

600

400

200

800 1000200 400

200 400 600 800 1000

Figure 2.6: Snapshots of a G-TERD Dataset

G-TERD [48] generates a sequence of raster images rather than points

as with the GSTD. W ith G-TERD, objects have associated colors that can

change so as to represent additional properties (for example, temperature)

of an o b jec t beyond th e sp a tio -tem p o ra l. D a ta g en e ra tio n requ ires a large

number of parameters. G-TERD also supports frameworks, or obstacles to

movement. Three snapshots of a G-TERD dataset2 are shown in Figure 2.6.

The moving objects are the regions themselves.

2from http ://delab .csd .au th .gr/stdbs/g-terd .h tm l

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://delab.csd.auth.gr/stdbs/g-terd.html

Figure 2.7: Snapshot of an IBM City Simulator Dataset

IBM’s City Simulator3 is a Java based spatio-temporal data generator that

creates spatio-temporal data representing the movement of people in a fully 3-

dimensional virtual city. One can generate a dataset of up to 1 million people

moving through the infrastructure of a city, i.e., buildings, parks, roads, and

intersections. Most generators only allow for up to 2-dimensional movement

in the spatial plane; the city simulator is unique in that it allows movement

between the floors of buildings - elevation is taken into account. A snapshot

of a city simulator dataset is shown in Figure 2.7. The points represent people

in the city. The darker gray regions represent the road structure of the map,

with lighter gray sections corresponding to buildings in the city. In the top-left

corner one sees a park where several people have congregated.

3http ://alphaw orks.ibm .com /tech/citysim ulator

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://alphaworks.ibm.com/tech/citysimulator

2.2 M od elin g S patio-T em poral D a ta

As identified in [2], both real and synthetic spatio-temporal data can be mod

eled in various ways depending on the semantics of the application and the

types of queries that must be supported. The data can be modeled as 2 or 3

dimensional spatial objects with time as another dimension. For many appli

cations, the spatial extents of objects are not of interest, therefore the data

consists of points in a 3 or 4 dimensional space, for example as shown in Figure

2.8. Although the movement of objects through time is continuous, the data

typically consists of discrete sample points of the object position through time.

For example, a taxi cab might report its position to a central server every 10

minutes.

i i

t

X

Figure 2.8: Modeling Spatio-Temporal Data as Points

An abstraction that can be used on these points is that of the trajectory

model. In such a case a linear trajectory is assumed between data points. As

Figure 2.9 exemplifies, this model assumes that an object traveled in a straight

line at a constant velocity between actual recorded data points. The actual

data to be indexed consists of a set of polylines - one for each moving object.

The trajectory model can be an especially useful abstraction in domains where

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t

X

Figure 2.9: Modeling Spatio-Temporal Data as Trajectories

t

X

Figure 2.10: Modeling Spatio-Temporal Data as Parametric Functions

the position of objects is updated relatively infrequently and queries may fall

between time update intervals.

A third alternative for data modeling, used more often when the current

and future position of moving objects is of interest, is a parametric model

[43]. Instead of recording actual data points, the spatio-temporal database

stores a parameterized velocity function for each moving object in the system

as per Figure 2.10. Although this approach means reduced storage overhead,

the accuracy of the information is uncertain because the model assumes that

an object follows a projected path. When the parameters of the stored object

function changes beyond a set threshold, the function parameters (and any

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t

X

Figure 2.11: Modeling Spatio-Temporal Data as Step-Wise Interpolations

associated database indexes) must be updated. This can occur via polling (a

pull-model) or a push-model where the object itself is responsible to inform

the database of its changes. Under a parametric approach, the history of

object movement is generally discarded - only the current velocity vector is

of interest, however a separate mechanism could be used to store historical

information using this model.

Another alternative data model approach is to take advantage of an un

derlying network [9] or constraints in the space if they exist [37]. For instance,

data can be modeled as points along the 1-dimensional line of a road, or as a

relative position along a path in a constrained data space.

The model we use is slightly different than the above in that we assume

point geometries with a temporal interval, e.g., objects remain in a given

position for an interval of time as shown in Figure 2.11. A step-wise linear

interpolation between data points is assumed. The model is more realistic

for spatio-temporal data tracking, i.e., for surveillance purposes. In such a

domain one cannot assume anything about the movement of object’s between

data points.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 S p atio-T em poral Q ueries

The types of spatio-temporal queries depend on the spatio-temporal database

of interest - historical or current. Current/predictive queries look to answer

queries regarding the current or projected path of objects, for example, “which

taxi cabs will be near the hockey arena at 7 p.m.?” . Historical queries focus

on reporting information about the past movement of objects. Answering

both types of queries efficiently is very important for spatio-temporal based

applications.

Current/Predictive STAMs support queries that predict a moving object’s

location at a given time based on the current velocity of the object. Much of

the challenge of predictive queries is that the answer to a query is tentative

in that it is based on what is currently known about objects in the real world

- the motion vectors of objects can change at any time and thus (possibly)

change the query answer set. Continuous queries offer an alternative solution

to this problem, in the sense that they provide a query answer that is continu

ously updated as the state of the database changes, i.e., updates about object

velocities are received.

Historical STAMs support queries that can be classified as coordinate-

based or trajectory-based [39]. Coordinate-based queries can come in many

forms, including range, nearest neighbor, /c-nearest neighbor, or reverse nearest

neighbor [9]. Range queries, which is exactly the case we are interested in, focus

on retrieving objects within a prescribed area at a given time period or time

slice. The cuboid in Figure 2.12 represents an example range query. Given the

coordinates of a moving object, a nearest neighbor query finds the the object

within the closest proximity at a given time. A A;-nearest neighbor (where k is

a user-specified constant) finds the k objects closest to the coordinates of the

query object’s coordinates. Reverse nearest neighbor queries return the objects

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.12: Spatio-Temporal Range Query

that have a query object as their closest object [6]. Trajectory-based queries

focus on topological or navigational information [36]. A topological query

asks whether trajectories enter, leave, cross, stay within, or bypass a given

spatio-temporal range [39]. A navigational query considers derived information

such as speed (e.g. top or average), heading, traveled distance, covered area,

etc. Combined queries (using both coordinated-based and trajectory-based

information), can also be considered.

2.4 Spatio-Temporal Access M ethods

Here we provide an overview of work on STAMs for current/predictive and

historical spatio-temporal support. Another comprehensive overview can be

found in [25].

C urrent/Future Position STAM s

T h e class of STA M s th a t answ er queries reg ard in g th e cu rren t position of

objects and predicted future position include many R-tree and Quad-tree based

variations.

The 2+3 Trajectory R-tree (2+3 TR-tree) [28] actually indexes both cur

rent and past information. Two separate R-trees are used, one for the current

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two-dimensional points of objects and one for the historical three-dimensional

trajectories (two spatial dimensions and one temporal dimension). At query

time, both trees may need to be scanned depending on the query time interval.

The 2-3 Trajectory R-tree (2-3 TR-tree) [1], a close cousin of the previous ap

proach, also uses two separate R-tree indexes for current and past information.

The 3-dimensional R-tree, however, is not trajectory-based.

t

x

Figure 2.13: The Problem with Indexing Lines W ith Boxes

One of the main problems with using R-tree based approaches for indexing

spatio-temporal data is the degradation of index performance due to over

lap and dead-space among moving objects, especially when using a trajec

tory model. As shown in Figure 2.13, using Minimum Bounding Rectangles

(MBRs) to approximate a trajectory leads to much wasted dead-space inside

the approximation that will be indexed by the R-tree, especially when one

considers the MBR of the complete trajectory polyline. The inaccurate ap

p ro x im atio n m ean s th a t th e query w indow w ill in te rsec t several MBRs in th e

R-tree, many of which being false positives in the sense that the query win

dow intersects the MBR but does not intersect the actual object trajectory.

Filtering out false positives will reduce query performance.

In [51], the authors offer a Quad-tree [42] based approach to help deal with

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this problem. A combined Quad-tree and R-tree, the Q+RTree, is suggested.

The basis of the Q+RTree is to distinguish between fast moving objects and

“quasi-static objects” , defined as objects that move slowly (if at all). The

authors argue that fast-moving objects are what lead to performance degra

dation in the R-tree. Quasi-static objects are indexed using an R*-tree (a

modified version of the R-tree, c.f. [5]) , and fast-moving objects are indexed

in a Quad-tree. At query time both indexes may need to be scanned; however

the performance of the R-tree over the quasi-static objects will (hopefully) be

good, and the fast-moving objects (of which the authors assume only a small

percentage are) will benefit from the Quad-tree’s use of a spatial partitioning.

The main STAM of interest for predictive queries is the TPR-tree [41], a

parametric spatial access method based heavily on the R*-tree tha t uses bound

ing boxes extended by the velocity vector of moving objects. The velocity of an

object is modeled as a parametric function that is updated whenever objects

deviate from their stored model. The TPR*-Tree, a version of the TPR-tree

with improved construction algorithms based on a performance model, has

recently been proposed [43].

In [9], the authors present a grid-based approach for current/future posi

tion support. In this model, space is only 1-dimensional because objects are

assumed to follow a road network. Of particular interest with this approach

is that moving objects impact the movement of other moving objects. For

example, when too many objects are located within the same grid cell, i.e.,

due to traffic congestion, the speed of objects decreases via a “ripple effect” .

H istorical STAM s

For historical STAMs (our focus), data is typically modeled in terms of trajec

tories as per Figure 2.9. Assuming a two-dimensional spatial region, time is

introduced as a third dimension and the movement of objects between actual

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

records is modeled in terms of line segments. Many historical STAMs have

been proposed [1, 8, 32, 39, 47] the majority of which are based on the R-tree

[14], [8] being a notable exception.

The 3-D R-Tree [47] is perhaps one of the simplest R-tree variants; it deals

with the temporal dimension simply by treating time as a regular “spatial”

dimension. Spatio-temporal data is indexed using a standard 3-dimensional

R-tree structure.

Figure 2.14: HR-tree (from [45])

The Historical R-tree (HR-tree) [32] is an example of an overlapping and

multi-version structure which also adapts the R-tree for historical spatio-

temporal data. The HR-tree extends the idea of multi-version B+-trees [21]

into the spatial-temporal domain. A “virtual” spatial R-tree for each time

stamp (sample point) in the dataset is created. As shown in Figure 2.14, to

avoid the storage overhead of storing a separate R-tree index at each time

stamp, the nodes pointing to nodes that do not change are linked back to the

original structure. For a time slice query, the approach is extremely efficient

because a R-tree at each time stamp “virtually” exists. For window queries,

however, the approach is not as effective. A similar approach using Quad-trees

is suggested in [49].

The Trajectory Bundle Tree (TB R-tree) [39] proposes a trajectory-oriented

access methods that can (under certain conditions) answer trajectory-oriented

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e12

CIO

cs| |^ c 7 jflBjctj |siig&2Jrst

Figure 2.15: TB R-tree (from [36])

queries faster than the R-tree. As shown in Figure 2.15, the TB R-tree calls

for a modified R-tree structure wherein leaf nodes that contain information

from the same trajectory are linked together. This can lead to reduced query

time when retrieving the complete trajectory of an object. In [37], the authors

suggest an R-tree based approach to handle on-line mobile objects with in

frastructure (lakes, etc.) which uses the TB R-tree as the underlying STAM.

In order to improve query performance, the authors propose a method to seg

ment spatio-temporal queries. The work of Pfoser in [38] is noteworthy in that

it deals with networked constrained historical data using the TB R-tree. A

technique to reduce the dimensionality of the dataset is employed in order to

take advantage of the underlying network.

In [8], the authors propose a grid based spatio-temporal indexing technique

w hich th e y call SETI. T h e idea of u sing a grid or p a r titio n in g schem e to index

data dates back to the work on grid files [12, 33], The Quad-tree [42, 49] in

essence is also a spatial partitioning approach. SETI partitions the spatial

dimension into static, non-overlapping partitions, and within each partition

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Updates
Insert Module

Front Line

Partitioning Module

Temporal
Indices

Data File

Figure 2.16: SETI (from [8])

uses a “sparse” temporal index - which the paper describes as a 1-dimensional

R-tree over the temporal interval of all the object records stored in a single

data page. An in-memory “front line” structure keeps track of the last position

of each moving object. Figure 2.16 provides a conceptual representation of

the SETI model. The in-memory front line structure aims to process inserts

and updates in an expeditious manner. The partitioning module manages a

separate temporal index and data file for each partition.

Our approach builds on the framework SETI uses, i.e., a temporal index

inside of spatial partitions, in addition, our work provides (1) a cost model

to analytically (instead of experimentally as SETI does) determine the opti

mal number of partitions to use with respect to minimizing disk access, (2)

a relational mapping of our proposed STAM to any RDBMS and (3) a com

prehensive experimental comparison of our proposed technique against several

other RDBMS-supported spatio-temporal indexing alternatives.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

RDBM S Support for
Spatio-Temporal D ata

There are several lines along which the problem of indexing spatio-temporal

data inside a RDBMS can be classified. In this chapter, we provide an

implementation-oriented classification in the sense that we focus on the var

ious options for integrating the internal mechanisms of support inside the

RDBMS. This chapter also provides necessary theoretical background on the

techniques that will be used for experimental comparison later in this the

sis. We distinguish three main alternatives for providing RDBMS support for

spatio-temporal data:

1. Recasting the problem in a way such that existing RDBMS facilities for

spatial data can be used.

2. Designing a new STAM, and loosely coupling it with a RDBMS via

wrapper functions that can be called from within SQL queries, and

3. Designing a new STAM, and tightly coupling it within the RDBMS us

ing native RDBMS facilities, i.e., relational tables and existing index

support.

Next we discuss each of these in turn.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Recasting the problem

Most RDBMSs, including DB2 [3], MySQL [27], and Oracle [35], provide sup

port for spatial data, e.g., R-tree and Quad-tree indexes. There are several

ways to recast the spatio-temporal data indexing problem to take advantage of

RDBMS-support for spatial data. Perhaps the most straightforward recourse

is to model time as an additional “spatial” dimension so that existing support

for spatial indexes can be re-used. By combining the 2-dimensional spatial

domain and the 1-dimensional temporal domain, a 3-dimensional R-tree (c.f.,

Figure 2.2) can be adapted to support spatio-temporal indexing using this

approach. Such an approach often results in several snags - performance is

poor because the spatial index is unaware of the distinctive nature of the tem

poral dimension. Typically, R-tree construction requires that each dimension

be bounded - a constraint that time does not observe. Also, certain spatio-

temporal data models, such as the parametric and the step-wise model we

employ, cannot be readily integrated into a 3-dimensional R-tree structure. It

should also be mentioned that typically, the spatial index structures provided

by the RDBMS are tuned to support 2-dimensional data [35]. For example, a

3-dimensional R-tree in Oracle supports only a small subset of the query func

tionality and optimization provided were the data 2-dimensional. Although

the strategy of treating time as a third dimension benefits from the ease of

re-using existing RDBMS spatial support, because of the discussed drawbacks

the approach is unsuitable to solve the spatio-temporal indexing problem.

3.1.1 Linear R eferencing System (LRS) Approach

To overcome some of the above limitations, in [17], the authors suggest the

use of Oracle’s Linear Referencing System (LRS) to index the third (temporal)

dimension of spatial-temporal objects. The advantage of using LRS is that the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LRS_Geometry

End

Time

Figure 3.1: Example of a Spatio-Temporal Geometry Modeled using an
LRS_geometry (from [17])

Spatial
Index

Temporal
Index

Temporal
Extract fn.

Spatio-Temporal
Column data

Figure 3.2: Indexing Spatio-Temporal Data using the LRS Approach (from
[17])

temporal dimension can be indexed separately from the spatial without having

to create a separate storage location (column) to store temporal information.

Figure 3.1 shows an “LRS_Geometry” object representing the trajectory of a

moving object. The point “(a,b,10)” represents an object at location “(a,b)” at

time “10” . The “Start” and “End” time of the trajectory can be extracted and

indexed using functions provided by the LRS package. The spatial component

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the trajectory is then indexed separately from the temporal using a standard

2-dimensional R-tree. Figure 3.2 visualizes the proposed LRS-based dual-index

model. The key advantage of using LRS to index spatio-temporal data is that

the spatio-temporal object can be stored as a single object in a table while still

allowing for the flexibility of indexing the spatial and temporal domains using

separate structures. In our experimental analysis, we will employ an indexing

approach based on LRS as a means of comparison to our proposed method.

3.1.2 Space-Filling Curve Approach

Another option (which we will also compare to our approach) by which to

index spatio-temporal data using built-in RDBMS spatial data support is to

employ space-filling curves. Given a data space that is partitioned into rect

angular cells, a space-filling curve can be thought of as a thread tha t visits

each cell in the grid once and only once, thus imposing a linear-order on the

multi-dimensional space [24], Because B+tree indexes are inherently linear

(one-dimensional), a space-filling curve can be used to map multi-dimensional

data into a 1-dimensional space that the B+tree can index. Objects can be

approximated by an integer representing the cell number defined by the curve

instead of using their exact spatial coordinates. Figure 3.3 illustrates various

space-filling curves that map a two-dimensional space into a one-dimensional

space, namely the Sweep, Z, and Hilbert curves. The mapping should be

locality-preserving in the sense that points close together in two-dimensional

space should still be close together in the one-dimensional space defined by

the curve. Each type of curve defines a different linear order on the space with

unique locality-preserving properties - a thorough analysis of the performance

behavior of the various curves can be found in [24]. Ideally we want two points

that are close together in Euclidean space to be close in the linear order de

fined by a space-filling curve. Also, cell numbers should be easy to compute

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sweep

: : : : : :
: : : : : :

T
: :

: : : : : :
\ \ x : S - - \

: : : : : :
: :

Z-Curve

Hilbert

Figure 3.3: Space-Filling Curves (from [24])

because data insertion, updates, and queries will require repeated cell number

calculations.

Typically, there is a trade-off between the quality of the locality-preservation

and the computational complexity of the curve. The sweep-curve, which we

will use with SPIT, does not preserve spatial proximity especially well but can

be computed with ease. The Z-curve, labeled such due to its side-ways “Z”

shape, can be calculated very efficiently using a bit interleaving process while

providing reasonable locality-preservation. The Hilbert curve can be shown

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4: Spectral Curve (from [23])

to provide a slightly better spatial clustering (locality-preservation) than the

Z-curve [26] but is more expensive to compute. Figure 3.4 shows a unique type

of space-filling curve named the spectral-curve. This curve can be shown to

provide the optimal locality-preservation given a fixed set of multi-dimensional

points [23]. Unfortunately, it is not practical for our purposes because it can

only be computed over a static dataset, e.g., the curve would require a com

plete re-calculation whenever an update to the database occurred. Another

important classification for space-filling curves is that of recursive versus non

recursive space-filling curves. As demonstrated in Figure 3.5, by starting with

a basic shape, i.e., a side-ways ‘Z” shape covering four cells, the Z-curve can be

defined recursively within each sub-quadrant by further expanding the same

“Z” shape. Likewise, the Hilbert curve can also be defined by following a re

cursive pattern. It should be noted that space-filling curves can be extended to

cover a multi-dimensional space. Figure 3.6 illustrates the shape of the various

space-filling curves discussed as they thread through a three-dimensional grid.

In [13] the authors show how to support geo-spatial operations in a RDBMS

using Z-curves and B-tree indexes. This approach can be readily extended

into the spatio-temporal domain by approximating the spatial component of

records using cell numbers (as defined by a space-filling curve) and creating

a combined B-tree index over the cell numbers and temporal dimension of

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5: Recursive Construction of the Z-curve (from [24])

Sweep

t . -

*

Z-Curve

Hilbert

Figure 3.6: Three-dimensional Space-Filling Curves (from [24])

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1 Step 2 Step 3 Step 4

; 1 l i l
y (-3,.4) y " (») y C3k4)........ y

' ; 0 ; 0 ; I

•cw
0 x 1 0 x 1 0 1

0 1
0 1

0 1x * x
bit_string="0" bit_string="00" bit_string="001" bit_string="0011"

Figure 3.7: Bit Interleaving to Calculate Z-values

the records. A combined B-tree index is identical to a standard B-tree index,

except that the indexed keys are the concatenation of the two or more values,

i.e., cell number and temporal information. As in [13], we decided on the

Z-curve for this approach because it provides a reasonable trade-off between

computational overhead and locality-preservation. In order to compute the Z-

value for point data, one uses a fixed resolution of the space in all dimensions,

i.e., each cell has the came size. Each point is then approximated by one cell

using a recursive bit interleaving process. The process works by recursively

partitioning the data space into two halves and alternating between the x and

y dimensions in order to append values to a bit string as follows: if the point

lies in the left/bottom half of the partition append a “0” to the bit string,

if a point lies in the right/top partition append a “1” to the bit string. The

decimal value of the bit string is the Z-value of the point. For example, Figure

3.7 demonstrates computing the Z-value of the point (.3,.4) assuming a unit

space and a “4x4” grid. In the first step, because x = 0.3 is to the left of 0.5

(h a lf of th e space), a “0” is ap p en d ed to th e b it s trin g . In step 2, “0” is also

appended for the y dimension because y = 0.4 is below 0.5. Step 3 divides the

x dimension in half again, adding a 1 to the bit string because x — 0.3 is to

the right of x = 0.25. Alternating to the y dimension (Step 4) adds another 1

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 7 13 15

4 6 12 14

1
r -

3
. _u ■

9 11

;o
i'--

■
■ 2 ■

■v
8 10

query window

Figure 3.8: Z-Order Space-Filling Curve to Cell Number

to the bit string because y — 0.4 is above 0.25. The final bit string is “0011”

which upon conversion to decimal gives a Z-value of 3. Note that this process

can be readily extended to compute a three-dimensional Z-curve.

Using a Z-order with B-tree approach, the spatial component of records is

approximated by cells defined according to the linear Z-order and a combined

B-tree index over Z-values and time is created. At query time it is necessary to

map the spatial component of a query to the one-dimensional space. As shown

in Figure 3.8, a window query becomes a range query on the linear order, e.g.,

find all entries (Z-values) in the range [I, it] where I = smallest Z-value of the

window (bottom left corner) and u — largest Z-value of the window (top right

corner). The search over the combined index first narrows the search to those

tuples within the range of Z-values [l,u\ and then to those tuples within the

temporal range of the query window.

As mentioned, the Z-order with B-tree approach and the LRS-based R-tree

strategy we described, are example techniques for indexing spatio-temporal in

side the RDBMS by recasting the problem into a spatial data problem that

can be integrated using existing RDBMS technology. Because spatio-temporal

data has its own distinct properties, e.g., time is an unbounded dimension,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approaches that recast the problem as a spatial indexing problem tend not

to perform as well as specialized methods for spatio-temporal data. Our ap

proach (SPIT) is to develop a true-spatio-temporal access method and provide

a relational mapping thereof. We will use the Z-order with B-tree and LRS-

based approaches for experimental comparison against our approach in order

to understand the performance impact such design decisions have.

3.2 Loose Coupling

Many of the R-tree based structures previously discussed, e.g., [1, 32, 39,

47], could be used within a RDBMS using a loosely coupled approach, i.e.,

by taking an existing implementation of a STAM and wrapping it into an

Application Programming Interface (API) that the RDBMS can access. Some

RDBMSs support, for example, Java classes that can be loaded directly into

the database. A Java-based implementation of the STAM, which maintains

its own set of data structures, could be loaded into the RDBMS and used to

index spatio-temporal data. An example of such an approach in the spatial

domain is [34] wherein a separate extra-database file structure is used to store

spatial information and indexes.

We are not aware of any loosely coupled approaches proposed for the spatio-

temporal domain, in part due to the serious drawbacks such a strategy entails.

Because of the loose coupling, the STAM has limited ability to manage buffers,

deal with disk page layout, or access internal database structures. Further

more, the STAM designer is left with the daunting task of integrating standard

RDBMS features, such as concurrency control and crash recovery mechanisms,

into their access method. Our approach avoids these pitfalls because we map

the problem directly onto relational tables and existing index structures, thus

automatically inheriting the desirable properties that a RDBMS provides.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Tight Coupling

One of the key features of our proposal is that we employ a tight coupling be

tween our STAM and the database using (only) native RDBMS functionality,

i.e., relational tables and existing index support. Tightly coupling the STAM

within the RDBMS involves providing a relational mapping of the STAM. Ex

amples of such an approach in the temporal domain include the Relational

Interval tree (Rl-tree) [19] and the MAP21 technique [30]. As discussed, the

key to both these approaches is the translation of a logical temporal index

structure into an implementation relying on pre-existing RDBMS functional

ity. The Rl-tree takes advantage of database extender technology while the

MAP21 uses a data translation function to map the start and end points of

temporal interval to 1-dimensional values that can indexed using a B+tree.

Such an approach is also used in the spatial domain to map the Quad-tree

and R-tree into the RDBMS. For example, the R-tree in Oracle Spatial is

a purely logical structure whose underlying implementation is based on rela

tional tables and B+tree indexes [18]. Similarly, the mechanism underlying the

Quad-tree relies on Z-order tessellation, relational tables, and B+tree indexes

[18].

The main difficulty of integrating existing STAMs within a RDBMS is the

enormous gap between conceptual model and relational mapping. In general,

the mapping of a STAM inside the RDBMS is not obvious. Much of the

importance of our work is that we, to the best of our knowledge, are the first

to propose a STAM that can be tightly coupled inside a RDBMS using only

native RDBMS functionality. As we will discuss, this makes it possible for our

method to be smoothly integrated with any off-the-shelf RDBMS.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The Space-Partitioning w ith
Indexes on Tim e Approach

In what follows we present our proposal for spatio-temporal data management

integrated within a RDBMS - which we name the Space-Partitioning with

Indexes on Time (SPIT) approach. SPIT partitions the data according to its

spatial location and then creates temporal indexes over each partition. The

data is partitioned into a fixed number of cells, each cell corresponding to

a different partition in the RDBMS where the tuple is physically stored. As

shown in Figure 4.1, we use a static grid and number the cells using a horizontal

sweep space-filling curve in order to give each cell a unique identifier pid. The

pid of each cell is shown in the top right corner. The length I refers to the

size of a grid cell in each spatial dimension. Recall that a spatio-temporal

range query has a spatial component H and temporal interval T consisting of

the start time ts and end time te of the query window. To efficiently support

such queries, SPIT defines a local temporal index on (ts, t e) over the domain

of tuples within each partition. The key advantage of spatial partitioning is

that of partition elimination at query time. For example, given the query

window shown in Figure 4.1, only cells (0,1,4,5) need be examined to answer

the query window - cells that do not intersect the spatial component of the

query window can be eliminated from consideration. For spatio-temporal data

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
- e ------------------------ =»-

1.0

ts_tets_te ts_te

ts te ts tets_te ts te

Y

ts te ts_tetsjte ts. te

ts_te ts_tets_te ts_te

0.0
1.00.0

query

Figure 4.1: SPIT Approach for a 4 x 4 spatial grid

this works extremely well because we further apply a temporal filter within all

intersecting cells using the temporal indexes on {ts, t e) inside each partition.

The spatial discrimination is achieved at next to no cost and the local temporal

index benefits from having to manage only a (small) subset of the data. As

in [8], query processing proceeds according to four stages: (1) coarse spatial

filtering based on the grid location of tuples, (2) temporal filtering using the

per grid temporal indexes, (3) fine spatial refinement based on the actual

spatial location of tuples, and (4) duplicate elimination. Section 4.1 describes

how to map SPIT’s data and query processing model to a RDBMS. A critical

performance factor in SPIT is choosing the number of grid cells to use, i.e.,

setting the length I, therefore Section 4.2 provides a disk access based cost

model for choosing an optimal number of partitions to use.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 M apping SPIT into a RDBM S

A lgorithm 1 f i n d j p i d Q function
Input: (x , y)
Output: p id

1 X-gr id := _x x N*J
2 y - g r id := [y x IV* J
3 if x = 1.0 then
4 X-grid := X-grid — 1
5 end if
6 if y = 1.0 then
7 y - g r id := y - g r id — 1
8 end if
9 return X-grid + N* x y - g r id

Mapping SPIT to a RDBMS requires defining and assigning partitions,

creating partitioned temporal indexes, and providing a query mechanism. Al

gorithm 1 provides the pseudo-code of the findjpidQ function which returns

the pid of a record given its spatial coordinates (x, y). The algorithm assumes

that each cell is assigned its pid according to a horizontal sweep space-filling

curve (c.f., Figure 4.1). The algorithm uses (as a constant) the number of par

titions to use in one dimension, which we label N*, and assumes a unit space.

In Section 4.2, we provide a means to analytically determine N*. Lines 1-2 of

the find-pidQ function calculate X-grid and y-grid, which correspond to the

grid cell in the x and y dimensions where the (x, y) coordinate resides. Lines

3-8 deal with the special case of a £ (y) value lying on the rightmost (upper

most) boundary of the grid. Line 9 returns the pid, which using a horizontal

sweep curve consists of the grid number (x.grid) in the x dimension added

to the number of cells in one dimension N* multiplied by the grid number

(:y-grid) in the y dimension.

The pid attribute maps each tuple to a unique partition in the database

where the tuple is physically stored. Conceptually, a RDBMS with partition

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support treats a partitioned table as a collection of separate tables that can be

accessed as though they were a single table. Some RDBMSs provide built-in

support for table partitioning. If this feature is unavailable, partitioned table

support can be simulated by explicitly creating a set of tables (one for each

partition) managed via a partition meta-data lookup table.

Next we create local indexes over the temporal domain of each partition. A

combined B-tree index on (ts, t e) is used as the index of choice. Recall that a

combined B-tree is simply an index over the concatenation of the two columns

of data. Note that the options of creating a combined index on (te, ts) or two

separate B-trees on ts and te also exist. Using two separate indexes, however,

is unlikely to improve performance because for those tuples tha t satisfy te, the

start time t s must also be checked (and vice versa). There is also the option of

creating all (or some) of the above indexes and allowing the RDBMS’s query

optimizer to choose which (if any) of the indexes to use. This may provide

performance advantages in certain situations but has the drawback of extra

index creation, maintenance and space overhead.

We considered the use of a 1-dimensional R-tree to index the temporal di

mension. However, we abandoned the idea because in our data model, a large

degree of overlap among the temporal intervals of objects occurs - querying

almost any time interval will return nearly all oid’s. The problem is that the

selectivity in the temporal dimension is poor because most (if not all) objects

exist somewhere in the space at all times. In such a situation the performance

(and index creation times) of the 1-D R-tree approach is prohibitively expen

sive. Not only can the combined B-tree on (ts, t e) be readily supported in

any RDBMS, but the B-tree index also has a performance advantage of being

able to perform an index range scan. Assuming tuples are sorted by time, at

query time a sequential scan is performed on disk over the range where tuples

intersect the temporal query interval.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The order in which data is clustered on disk strongly impacts query per

formance. Because the temporal index within each partition requires a local

range scan of the data, query performance will be faster if the data on disk is

already sorted according to time. Therefore, before inserting data it is bene

ficial (though not necessary) to ensure that all tuples are ordered by (ts, t e).

This ensures that all those tuples satisfying the temporal component of a query

will be located close together on disk.

4.1.1 Query Processing

Since a spatio-temporal query Q consists of a spatial range 1Z and a temporal

interval T , query processing requires four steps:

1. spatial filtering,

2. temporal filtering,

3. spatial refinement, and

4. duplicate elimination.

Algorithm 2 provides the pseudo-code for the function st-query () which pro

cesses queries according to the four steps used by the SPIT model. Note that

lines 4-9 assume the existence of a SQL interface in order to retrieve matching

tuples from partitions in the RDBMS. A key advantage of SPIT is that filter

ing occurs in a pipelined fashion - at each step of query processing only those

tuples satisfying the previous step are further examined. In what follows the

details of the st-query() function are explained.

Spatial F iltering

Only those cells intersecting 1Z need to be scanned to answer Q. Algorithm 3

provides the pseudo-code for the function pJntersectQ which returns the list

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 2 st-query () function
Input: (71, T)
Output: list of oid’ s

1 pidJist := pJnter sect(7Z) / / (see Algorithm 3)
2 for all pid in pidJist do
3 oidJist := oidJist U
4 SELECT oid
5 FROM partition (pid)
6 WHERE ts < = T.tmax
7 AND te > - T.tmin
8 AND x between 7 Z . x rni n and 7Z . x m a x
9 AND y between 7Z.ymin and 7Z.ymax

10 end for
11 sort oidJist and remove duplicates
12 return oidJist

A lgorithm 3 pJntersectQ function
Input: 71
Output: list of pid’’s

1 P'i-drnm ■— f indjpid(R.Xmin, R-ymin)
2 pidmax •— findjpid(R.Xmax, R-Pmax)
3 numxrows
4 for i := pidmin to pidmax — numxrows x N* do
5 for j := 0 to numxrows do
6 pidJist := pidJist U (i + j x N*)
7 end for
8 end for
9 return pidJist

of pid’s of (only) those cells which intersect 7Z (assuming TZ is rectangular). For

example, using the sample query window shown in Figure 4.1, the return value

of pJntersectQ would be (0,1,4, 5). The pJntersectQ function first (lines 1-2)

sets the minimum and maximum pid of the bottom-left and top-right corners

of the query rectangle by calling the function find-.pidQ. Line 3 calculates

the number of rows of the grid that the query window extends over. The loop

from line 4-8 iterates over the columns that intersect the query window (line

4), and over the rows in each column (line 5), adding each intersecting cell

to the pidJist (line 6). Because grid cells are mapped to partitions, the list

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allows the query algorithm to take advantage of partition elimination. Line 2

of Algorithm 2 uses the pidJist to scan only those partitions corresponding to

cells intersecting TZ. No disk reads of other partitions occur.

Tem poral F iltering

Within each partition that needs to be scanned, we can further improve perfor

mance by filtering out those tuples that do not intersect the temporal interval

component of the query using the local temporal index (lines 6-7 of Algorithm

2).

When querying historical information aggregated over an extended period

of time, it is often the case that the time between updates of an object’s po

sition do not exceed a certain maximum. In fact, one can always maintain, as

meta-data, the length of the maximum stored temporal range. Query perfor

mance can be improved by assuming the largest temporal interval is known, as

in [30], by which we can further restrict the temporal interval that needs to be

scanned - we name this constant MAX.TI. For example, in fleet monitoring,

it can be safe to assume that vehicles do not remain stationary for more than

2 or 3 days. Moreover, the value of M A X .T I will become relatively smaller as

the database becomes “older” . Objects within the query temporal interval T

cannot have begun or ended their temporal before/after T ± MAX-TI. In our

experimental section we show that the maximum interval assumption speeds

up query performance. Note that in cases where a minority of objects may

occasionally exceed the MAX.TI, the offending records can be split into two

or more records that adhere to the assumption. Using the maximum time

interval assumption, lines 6-7 of Algorithm 2 are replaced with the following.

6: WHERE t s between M A X -T I and T . tmax
7: AND te between T .tmin and T . tmax+ M AX-TI

After the temporal filtering phase, only those tuples within each partition

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that intersect T are further scanned in the (next) spatial refinement step.

Spatial R efinem ent

The spatial coordinates of each tuple satisfying the above two checks are

scanned by retrieving the tuple from the table partition where it is stored

(lines 8-9 of Algorithm 2). If the (x,y) coordinates of tuple is inside TZ then

i t’s oid is in the answer set. This check is necessary because a tuple may

be inside of the partition but not inside of the query window. For exam

ple, using the query window from Figure 4.1, any tuples in grid cell 0,1,4 or

5 but not inside the query window would have to be removed from the an

swer set. Note that this could be improved by not scanning the disk when a

partition is completely contained by the spatial component of the query TZ,

i.e., by performing an index-only scan. Such a strategy, however, would re

quired a modified querying mechanism that could determine when complete

containment occurs in order to take advantage of this special case. As well,

because the actual answer set returns the oid of each object within the query

window, the oid column would need to be included as an additional indexed

column in the combined temporal index in order for the query mechanism to

remain index-only. Otherwise, even though the query would not have to read

from disk to perform the spatial refinement in this special containment case,

it would still need to go to disk to read the oid.

D uplicate Elim ination

Duplicates answers can occur because within a partition there may be several

tuples within the query answer set for the same object. Because our query

should return only the oid’s that satisfy Q, the final query phase is to eliminate

any duplicate oid'1 s in the answer set (line 11 of Algorithm 2). This can be

easily accomplished by the use of a unique clause in the SQL query.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 SP IT ’s Cost M odel

Symbol Meaning
N number of tuples in the database
D A number of disk I/O s to answer a query
GA average number of grid cell accesses
DAg number of data (disk) I/O s per grid cell accessed
IAg number of index (disk) I/O s per grid cell accessed
f fanout of a B-tree index
B S block size (the number of tuples that fit in one block on disk)
q size (fraction of the space) of query in one spatial dimension
Qt size (fraction of the space) of the temporal aspect of the query
l length of a grid cell in each dimension
l* optimal length of a grid cell in each dimension
*9 total number of cells in the grid = (I/O 2

optimal total number of cells in the grid = (1 /I*)2
n ; optimal number of partitions (grid cells) in one dimension

Table 4.1: Symbols Used and their Meanings

We propose the following cost model to choose an optimal grid size for use

with SPIT assuming a fixed regular grid. Table 4.1 lists the notation we will

use.

Assuming a unit space [0,1] in each dimension then the total number of

disk accesses to answer a query can be calculated by the average number of grid

cells (partitions) that need to be accessed and the number of I /O ’s performed

inside each accessed grid cell - which is the combination of reads to the data

and reads to the temporal index structure inside each grid cell. This can be

formalized as:

D A = G A x (DAg + I A g) (4.1)

In [44], the authors derive a formula for calculating the average number of

boxes that intersect a known size query window, assuming a unit space. The

average number of boxes that will be scanned is the total number of boxes

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiplied by the average space the spatial component of a query covers ex

tended by the average length of each box. The extended query covers the

case of a query intersecting a box only partially. Based on [44], we formalize

the average number of cells that will be scanned (G A) as the total number of

cells multiplied by the average space the spatial component of a query covers

extended by I:

GA = Ng(l + q)2 (4.2)

Assuming a uniform data distribution, there are on average N /N g tuples per

grid cell which take up blocks on disk to store. Because the index on

(ts, te) will point to the range of tuples in the query answer set, we only need

to scan those blocks that are within the temporal dimension of our query qt :

D A , = ^ X 4. (4.3)

Assuming a B-tree on the combined key of (t3, t e) and (as in the worst case)

that none of the index pages are located in buffer, the number of index accesses

can be described in terms of the fanout / and N using: I A g = logfN. We

simplify the index access cost to I A g = 3, which is typical for indexes with

/ « 100 and N in the millions of tuples [22],

Combining Equations 4.2 and 4.3, into Equation 4.1 yields:

DA = (! + q)*(£** + A) (4.4)

One immediate observation from Equation 4.4 is that the index performance

it more sensitive to the size of the spatial component than to the temporal

component. This is due to the fact that increasing the query’s area requires

traversing more partitions and the indexes within them. On the other hand,

increasing the query’s temporal range requires only a larger scan on the indexes

which can be done efficiently.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To find the grid size I* that will minimize disk accesses we take the first

derivative of (4.4) with respect to I and set it to 0, obtaining (after some

algebraic manipulation):

r <4-5)V 2N X qt v '

which can be shown to be a unique solution and can also be shown to be a

minimum according to the second derivative test with respect to I*. Finally,

the optimal number of grid cells (N*) can be represented in terms of I* using

N* = —— = (N * ..ft...)2/3 (4.6)
s (I*)2 3q x B S K J

Note that in the special case where the average query size in the spatial and

temporal dimensions is equal, i.e. q — qt , an optimum number of grid cells

regardless of query size can be determined. It is also interesting to note that

N* grows sub-linearly with N. This suggests that SPIT can be sensitive to

the database size; however, our experimental results will show that SPIT is

fairly resilient to the growth of N.

Recall that Algorithms 1 and 3 relied on a constant N* corresponding to

the number of partitions in each dimension. Based on equation (4.6), N* can

be (near) optimally set as:

k = r 1 (4 . 7)

In the next section we describe instantiating SPIT inside an Oracle database

using the query processing and cost model just outlined.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

RDBM S Support
Im plem entation W ithin Oracle

Here we describe how to instantiate SPIT inside an Oracle database. We

discuss the implementations of the R-tree and space-filling curve with B-tree

approaches that we use as comparisons to SPIT. For completeness, we also

describe other alternative methods that were considered during the course of

this research and the reasons these methods were abandoned.

5.1 Space-Partitioning w ith Indexes on Time
Approach

The SPIT grid is implemented using Oracle’s built-in table partitioning sup

port - a grid cell corresponds to a single Oracle table partition. The number

of partitions (N*) to use is calculated according to Equation 4.7. (Oracle al

lows a maximum of 216 — 1 — 65535 partitions per table.) The ST_SPIT table

(whose DDL for an example 2x2 grid is provided in Table 5.1) stores records

along with the additional pid attribute. Oracle range partitioning is used to

automatically map the spatial grid to unique table partitions on disk. Con

ceptually, Oracle treats the ST_SPIT table as a collection of separate tables -

one for each partition.

Within each partition, a local domain B-tree index is created over (ts, t e)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CREATE TABLE ST_SPIT
o id INTEGER,
x NUMBER,
y NUMBER,
t_s NUMBER,

T able
C reation
D D L

t_e NUMBER,
p id INTEGER

) PARTITION BY RANGE (p id) (
p a r t i t io n pOl v a lu e s l e s s than (1) ,
p a r t i t io n p02 v a lu e s l e s s than (2) ,
p a r t i t io n p03 v a lu e s l e s s than (3) ,
p a r t i t io n p04 v a lu es l e s s than

)
(MAXVALUE)

In d ex CREATE INDEX id x _ st_ sp it_ t
C reation ON ST_SPIT(t_s,t_e) LOCAL
D D L

1: SELECT unique o id
2: FROM ST_SPIT
3: WHERE p id in (0 ,1 ,4 ,5)

S am p le 4: AND t_s between 0 .5 - MAX_TI and 0 .6
SQL 5: AND t_e between 0 .6 and 0 .6 + MAX_TI
Q uery 6: AND x between 0 .1 and 0 .3

7: AND y between 0 .2 and 0 .4

Table 5.1: SPIT DDL and SQL statements

using the index creation DDL provided in Table 5.1. In Oracle, the only

difference between creating a local partitioned index versus a standard “global”

index is the keyword l o c a l as part of the index creation DDL. Before inserting

data into the ST_SPIT table we order all tuples by (ts, t e) through the use of

a tem porary table. For each tuple inserted into ST_SPIT the pid is calculated

using a PL/SQL implementation of Algorithm 1.

We considered and rejected the use of techniques for RDBMS-support of

temporal intervals to index the temporal dimension, e.g., the Relational Inter-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

val Tree (Rl-tree) [19]. Unfortunately, the Rl-tree implementation in Oracle

does not currently support partitioned indexes and its data insertion times

were prohibitively expensive for the datasets we used.

As mentioned earlier we do not consider the use of a 1-dimensional R-tree

index over the temporal dimension. Experiments over a dataset of 6 million

tuples showed that query performance for this approach was 5 times higher

than a B-tree index on (ts, t e). Furthermore, it took nearly 16 times longer

to create the 1-dimensional R-tree index as opposed to the B-tree index. The

1-dimensional R-tree is outperformed because of the high amount of overlap

among the time intervals of the tuples. Also the R-tree’s performance may

suffer because Oracle Spatial does not provide native support for 1-dimensional

objects - we were forced to “pad” the data with a second dimension in order

to successfully build the 1-dimensional R-tree.

Given the sample SQL query “find the objects that were within the area 0.1-

0.3 x and 0.2-0.4 y during during the interval 0.5 to 0.6”, Table 5.1 provides

the SQL query that would be issued against the ST_SPIT table. The query

assumes a 4x4 grid by which to calculate pid’s.

Line 3 of the sample query in Table 5.1 corresponds to the Spatial Filter

ing stage of SPIT’s query processing. The clause forces Oracle to scan only

table partitions corresponding to cells (0,1,4,5). The list is computed using

a PL/SQL implementation of Algorithm 3. Only 4 out of 16 partitions need

be scanned - a significant reduction in I/O cost achieved with only a small

computational overhead.

Lines 4-5 correspond to the Temporal Filtering stage of SPIT’s query pro

cessing. Within each partition, the combined B-tree index on (t s, t e) will be

taken advantage of as Oracle will perform a local index range scan of the data.

Because the index on (ts, t e) provides pointers to the actual physical location

on disk where the corresponding tuples are stored, the order in which data is

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clustered on disk will have an important impact on query performance. By

ordering the data according to (ts, t e) at insertion time, query processing will

be faster because those tuples with similar temporal intervals will be located

close together on disk.

Lines 6-7 correspond to the Spatial Refinement stage of SPIT’s query pro

cessing. All tuples whose spatial coordinates are not inside of the spatial query

range are removed from the query result. It is this step of query processing

that performs disk access because the spatial coordinates are not represented

in any index. By ensuring that the data is clustered according to (ts, t e), disk

access will be minimized because the tuples in the query answer set will be

located close together, i.e., within the same block on disk, thus reducing disk

seek time.

Finally, line 1 corresponds to the Duplicate Elimination stage of SPIT’s

query processing. The unique clause on oid removes duplicates from the query

result which may have occurred because several tuples for the same object

were in the answer set.

We implemented the necessary SPIT functions (Algorithms 1, 2 and 3)

using Oracle’s built-in procedural language PL/SQL. The implementation is

capable of generating SQL queries of the form provided in Table 5.1 given a

query spatial and temporal range. We choose to implement the algorithms

using PL/SQL because of the ease of integration between PL/SQL and SQL

queries; however, any language capable of interacting with the RDBMS could

be used.

5.2 The R-tree + Temporal B-tree Approach

As a method of comparison to SPIT, we adapt the LRS spatio-temporal in

dexing approach suggested by Oracle [17] to our data model by creating a

2-dimensional R-tree over point objects consisting of the (x, y) of records and

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T able
C rea tio n
DDL

CREATE TABLE ST_RTREE (
o id INTEGER,
p o s it io n MDSYS. SDCLGEOMETRY,
t_ s NUMBER,
t_e NUMBER

)

CREATE INDEX id x _ st_ rtree

TnH py
ON ST_RTREE(position)

lliUCA

C rea tio n
INDEX TYPE IS MDSYS. SPATIALJNDEX

DDL CREATE INDEX id x_st_rtree_ t ON ST_RTREE (t_ s ,t_ e)

1 SELECT unique o id
2 FROM ST_RTREE
3 WHERE sd o _ re la te (
4 p o in t ,
5 MDSYS. SDO-GEOMETRY(— s p a t ia l query window

S am p le
SQL
Q uery

2003, — 2-d im en sion a l polygon
NULL,NULL,
MDSYS. SD0_ELEM_INF0_ARRAY (1 ,1 0 0 3 ,3)
MDSYS. SD0_0RDINATE_ARRAY (0 . 1 , 0 . 2 , 0 . 3 , 0 . 4)

) ,
6 ’mask=ANYINTERACT querytype=window’

7
) = ’TRUE’

AND t_s between 0 .5 - MAX.TI and 0 .6
8 AND t_e between 0 .6 and 0 .6 + MAX_TI

Table 5.2: R-tree + Temporal B-tree Approach DDL and SQL statements

a B-tree index on t s and on te. We do not utilize a Quad-tree based approach

because Oracle reports that for most applications the R-tree is more efficient

[18] than the Quad-tree. The R-tree also has the advantage of requiring no

parameterization except the choice of dimensionality - with the Quad-tree a

tessellation level must be chosen. The “R-tree + Temporal B-tree” approach

uses the ST_RTREE table whose creation DDL is provided in Table 5.2. The syn

tax for creating both the spatial index and temporal indexes is also provided

in Table 5.2.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T able
C rea tio n
D D L

CREATE TABLE ST_Z0RDER (
o id INTEGER,
x NUMBER,
y NUMBER,
t_s NUMBER,
t_e NUMBER

)

In d ex

CREATE INDEX idx_st_zorder
ON ST_ZORDER(t_s,t_e,z_order(x,y))

C rea tio n
D D L

CREATE INDEX id x _ st.zo rd er
ON ST_ZORDER(z_order(x,y),t_s,t_e,)

S am p le
SQL
Q uery

1: SELECT unique o id
2: FROM ST_Z0RDER
3: WHERE z_ o rd er(x ,y) between 0 and 3
4: AND t_s between 0 .5 - MAX_TI and 0 .6
5: AND t_e between 0 .6 and 0 .6 + MAX_TI
6: AND x between 0 .1 and 0 .3
7: AND y between 0 .2 and 0 .4

Table 5.3: Z-value + B-tree Approach DDL and SQL statements

A sample query against the ST-RTREE table (using the same query range as

with the STJ3PIT table) is provided in Table 5.2. Queries on this approach em

ploy the Oracle Spatial [35] built-in spatial query predicate sdojrelateQ which

takes an Oracle geometry column object (line 4), a query window (line 5), and

a filtering predicate (line 6), and returns only those objects that intersect the

query window. The B-tree index is used to further filter tuples based on the

temporal aspect of the query (lines 7-8).

5.3 The Z-value + B-tree Approach

For the Z-value B-tree approach, the table ST_Z0RDER, whose D D L is given

in Table 5.3, is used to store records. Algorithm 4 provides the pseudo-code for

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 4 Z-order function
Input: (x,y)
Output: zvaiue of the cell containing (x,y)

1: x-grid [x x N*\
2: y-grid := [y x N*\
3: if x — 1.0 then
4: X - g r i d X - g r i d — 1
5: end if
6: if y = 1.0 then
7: y - g r i d : = y ~ g r i d — 1
8: end if
9: nu m M ts log2 N*

10: s h i f t numJbits
11: for i 1 to numJbits do
12: mask :=
13: zvaiue := zVaiue + bitand(x-grid, mask) * 2shlft
14: s h i f t := s h i f t — 1
15: zvaiue := Z v a i u e + bitand{y-grid, mask) * 2shlft
16: end for
17: return zvaiue

the function z-order that calculates the Z-value of the cell where the spatial

coordinates (x, y) of a tuple reside in. Lines 1-8 of the z-order algorithm are

used to calculate the grid cell in the x and y dimensions where the point (x, y)

resides, and are identical to lines 1-8 of Algorithm 1, the find jp id function.

Line 9 of the z-order algorithm calculates the number of bits (numJbits) that

will be used to code the Z-value (zvaiue). Recall that Z-values can be efficiently

calculated based on the bit representation of the cell number in each dimension

of the point in the grid. The loop from lines 11-16 constructs the zvaiUe by

iteratively adding a bit from the bit-string representation of x-grid or y-grid.

The mask (line 12) is used to turn off all bits except for the bit from x-grid

or y-grid we require to add to the zvaiue. Line 13 adds to the z vaiue a bit from

x-grid, and then line 14 decrements the s h i f t value which represents the bit

position in the Z-value string that we are currently interested in. Line 15 adds

to the zvaiue a bit from the y-grid. The algorithm assumes the existence of

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b i t a n d operator which performs the logical a n d operation between two bit

strings. For each dataset, we calculate Z-values using the same number of cells

in each dimension (N*) that SPIT employs.

Because the Z-value of each tuple is only used for indexing purposes, it

does not need to be stored as a separate column in the ST-ZORDER table. In

stead, at index creation time, as shown in Table 5.3, a function-based index

is created over the calculated Z-value of each tuple. Using the function-based

index reduces table storage overhead which should help increase query per

formance because the number of tuples that can fit in one block on disk is

correspondingly increased. A function-based index acts just as a regular col

umn index, except the indexed value is the result of applying a function to

each row in the table. The z j o r d e r i) function is invoked at index creation

time for every tuple in the database. The two Z-value B-tree approaches we

consider for experimental comparison are called t_z i n d e x and Z-t i n d e x which

correspond to creating a combined B-tree index on (t_s, t . e , z - o r d e r (x , y)} and

(.z j o r d e r { x , y) , t s , f_e).

Query processing using the ST_Z0RDER table proceeds by first computing

the lower (/) and upper (u) Z-values of the spatial component of the query

range. The sample query in Table 5.3 scans the Z - v a l u e column over the range

(l , u) (line 3), along with the temporal (line 4-5) and spatial (line 6-7) range

components of the query. The Lz i n d e x and zJ, i n d e x approaches use the same

query; the difference between the approaches is whether the primary index

filter is temporal or spatial. With both strategies, the actual (x , y) of records

must be scanned after the index filtering stage to ensure that tuples actually

intersect the spatial query range.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Other Approaches

For completeness, this section describes other approaches which we also ex

plored during the course of this research. For each approach described below

we discuss why the technique was infeasible or would be unlikely to provide

efficient querying.

N aive Indexing Approaches

Perhaps the most naive spatio-temporal indexing approach would be the straight

forward use of built-in B-tree indexes. By storing the data in a table with a

similar schema as the ST-ZORDER table, various types of indexes on the spa

tial (x, y) and temporal (t s , t s) columns of the data can be created. For

example, a separate index on each of the four columns could be used, or a

set of combined indexes, perhaps on (x , y, t s) or (t s , x, y) could be created.

Such approaches will suffer performance-wise because they do not take ad

vantage of the semantics of the underlying spatio-temporal data model. The

spatial region is a 2-dimensional space, therefore 1-dimensional index struc

tures are characterized by poor locality-preservation and corresponding slow

performance at query time. For example, given two separate 1-dimensional

indexes on x and on y, an expensive intersection operation between the index

pointers for those tuples within the x range and y range of the query will need

to be performed. A 1-dimensional index on time, without any prior spatial

discrimination, will also suffer from poor performance due to the high amount

of overlap among the temporal intervals and the need to examine both the

start and end time of temporal intervals.

3D Z-curve curve Approach

By treating the temporal dimension as a third spatial dimension, a 3-dimensional

space-filling curve (for our purposes we considered the Z-curve) can be used for

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spatio-temporal indexing purposes. The code for calculating the 3-dimensional

z-curve is a modification of Algorithm 4 in order to take into account the ex

tra dimension. This approach was rejected for several reasons. Treating time

as a spatial dimension in order to create the 3-dimensional Z-curve ignores

the unique properties of the temporal dimension, i.e., time is monotonically

increasing. Furthermore, since time is unbounded and space-filling curves

can only be computed within a fixed spatial area, creating the 3-dimensional

curve necessitates the division of time into bounded intervals within which

the Z-curve can be calculated. Another issue was the feasibility of mapping a

3-dimensional Z-curve into both the temporal interval and the spatial dimen

sions of the data - only the start time (ts) of the data, and not the complete

temporal interval could be indexed using this approach.

Q uad-tree based Approaches

Oracle provides built-in support for Quad-tree spatial indexes. The creation of

a Quad-tree in Oracle is very similar to the R-tree. By default, when the user

creates a spatial index in Oracle the index type is the R-tree, by specifying

the tessellation level (SDCLLEVEL) to use in the index creation statement a

Quad-tree is created instead. We could easily substitute a Quad-tree for the

R-tree used in the “R-tree + Temporal B-tree Approach” by changing the

index creation DDL in Table 5.2 to:

c r ea te index id x _ st .q u a d tr ee
on s t .r t r e e (p o s i t i o n)
ind extype i s m dsys. s p a t ia l . in d e x
param eters(’SD0_LEVEL=8’)

We performed several initial experiments using such a Quad-tree index over the

spatial component of the data and a temporal B-tree index. The performance

in all cases was extremely poor. Indeed, as reported in [18], the R-tree in

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Oracle tends to outperform the Quad-tree index for the type of application

domain we are interested in.

3-D R -tree

Similarly to the 3D Z-curve approach, we experimented with the use of a 3-

dimensional R-tree to index the dataset by treating time as the third spatial

dimension. Note that the Quad-tree in Oracle does not support 3-dimensional

data. Unfortunately, such an approach is not compatible with the data model

we use because the temporal dimension of the data is actually in the form of

an interval.

P artitioned Spatial Indexes

Much like the partitioned local temporal indexes used with SPIT, Oracle al

lows the creation of partitioned spatial indexes. Given a partitioned table, the

creation of a partitioned spatial index is identical to the regular syntax for spa

tial index creation except the keyword lo c a l is appended. We experimented

with variations on this approach, such as creating separate R-tree or Quad

tree structures for each partition in SPIT, or for just the temporal interval in

SPIT. We also experimented with a partitioned spatial index as a stand-alone

indexing technique. Given the temporal interval component of the data model,

however, this approach did not provide adequate query performance because

only the spatial component of tuples could be indexed.

Z-curve P artitioning w ith Indexes on Tim e

We tested a variation of SPIT that uses a space-filling curve (again, the Z-

curve) as the means to partition the space instead of using a sweep space-filling

curve. Theoretically, this allows grid cells that are closer in space to be located

closer on disk, however the problem with this approach is the overhead of

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculating the intersecting cells at query time. With the current sweep-space

filling curve approach, the intersecting cells can be computed directly; with a

Z-curve approach however a range of cells is computed - which either requires

a further refinement phase or the scanning of cells that are outside the spatial

component of the query. In initial experiments, the extra overhead of such an

approach could not compete with the performance of the sweep space-filling

curve approach currently used by SPIT.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experim ental R esults

In this section we experimentally compare SPIT with other approaches for

spatio-temporal support in order to confirm the reliability of the SPIT cost

model and to better understand the performance characteristics of the SPIT

approach. Due to the need to generate data in a controlled manner for ex

perimental purposes, we used the GSTD [46] to produce several datasets for

testing purposes. Recall that GSTD allows for the generation of arbitrary sized

datasets using prescribed statistical distributions describing the initial loca

tion of objects, the frequency of movement (snapshots) of objects through time,

and the movement of objects through space. The datasets we experiment with

consist of 1.5 million, 3 million, and 6 million tuples corresponding to 15000,

30000, and 60000 objects with 100 snapshots (sampled positions) each. We

experiment with both a Gaussian and Skewed distribution of the data points,

both distributions reflecting possible real-world application scenarios. (The

specifics of which cannot be disclosed due to confidentiality reasons.) It is

important to stress however, that the objects do not follow a simple uniform

distribution in the data space. This is important because even though the

cost model derived in Section 4.2 assumes a uniform distribution of the data

points, our experiments will show that the optimum grid size suggested by the

model is still nearly optimal for a non-uniform distribution.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the Gaussian dataset, the initial location of objects is described by a

Gaussian distribution centered in the middle of the space after which point

objects movement through space is described by a uniform distribution. A

snapshot of the Gaussian dataset at three snapshots is shown in Figure 6.1.

With the Gaussian distribution, the density of points throughout the space is

roughly equal after the initial snapshot. A typical real-world scenario would be

to assume that certain areas of space have a higher density of objects, therefore

we also created and experimented with a Skewed distribution dataset where the

density of points through the space is non-uniform. The Skewed distribution

was defined such that more data points occur in the bottom-left and top-right

quadrants as compared to the bottom-right and top-left quadrants of the data

space. A snapshot of the Skewed dataset is shown in Figure 6.2. The initial

distribution is still Gaussian; however the skewness forces more points into the

top-right and bottom-left quadrants. All experiments are carried out on both

datasets.

We employ three sizes of spatio-temporal queries corresponding to 0.01%,

0.10% and 1.00% of the spatio-temporal space. Note that 1.00% of the spatio-

temporal space corresponds to a selectivity of approximately 21.6% on each

spatial and temporal dimension. To measure average time/query we issue

100 randomly generated queries and measure the total execution time using

Oracle’s built-in timing functionality (refer to Oracle’s tim ing command for

more details). Disk accesses are measured according to the average number

of “physical reads” reported by Oracle’s query trace statistics report (refer to

Oracle’s s e t au to t command for more details).

All experiments were carried out on a 4-processor IBM p690 system using

Oracle 9.2i Enterprise Edition. (More details about the system used can be

found on-line at http://www.cs.ualberta.ca/hiso.)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/hiso

1.0
0.9

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GSTD V is u a l lz a r

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GSTD V is u a llz a r

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 6.1: Snapshots of the Gaussian Dataset

GSTD V isu a liz a r

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

GSTD V l tu a l lz a r

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 .9 1.0

GSTD V lsu a liz * r

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 6.2: Snapshots of the Skewed Dataset

GSTD V ls u a l iz a r

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Cost M odel Evaluation

We experimentally confirm the reliability of our cost model by reporting the

performance of SPIT at grid sizes set below, at, and above the optimum grid

size determined by the cost model. We hypothesize that if the performance

of SPIT is best at the grid size analytically determined by the model to be

optimum then the model is reliable.

For sake of clarity, we repeat Equation 4.6

N * = (N X<lt)2/3
9 3q x B S

which calculates the optimal total number of cells in the grid given the size of

the dataset (N), the query size in the temporal dimension (qt), the query size

in the spatial dimension (q) and the block size (BS) representing the number

of tuples stored in a page on disk. The size of our datasets are known a priori.

The query extents in the spatial and temporal dimensions are equal; therefore

N* can be calculated irregardless of query size. In order to estimate the block

size we assume a page size on disk of 8192 bytes and a tuple size of 4 bytes per

column. The ST_SPIT table consists of 6 columns, one for the object identifier,

two for the spatial coordinates, two for the temporal interval, and one for the

partition number. The block size can thus be calculated as:

™ 8192 , ,
B S — - - ---- tuples/block.

The SPIT algorithms require the number of partitions in one dimension (N*)

as a parameter. The value of N* can be calculated in terms of N* using

Equation 4.7, which we repeat:

K = r s fN j l

The value of N* determines the optimal number of grid cells (partitions) used

when creating the ST.SPIT table for each dataset. These values are reported

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N n ; # of Grid Cells
1,000,000 10 100
3,000,000 16 256
6,000,000 20 400

Table 6.1: N* and the corresponding Number of Grid Cells used in the ST_SPIT
table for given dataset sizes.

in Table 6.1. The methodology behind the following experiments is to vary the

number of grid cells used by the ST.SPIT table and to measure average query

performance over 100 randomly generated queries. If the best performance

for each dataset occurs on the ST_SPIT table with the optimally determined

number of grid cells then the model is reliable.

Figure 6.3 plots the number of grid cells used by the SPIT model against

both the number of disk accesses and query time reported by Oracle for the

three query sizes over the Gaussian Dataset. The shape of the curve reflects

the trade-off between adding more partitions so as to benefit from partition

elimination and the extra per partition cost of performing a local index range

search of the data. The query performance times curves given in Figure 6.3 plot

the time per query against the number of grid cells. As the plot shows, a strong

correlation between time/query and disk accesses clearly exists. Although the

model is only guaranteed to find the number of grid cells such that disk accesses

are minimized, that point is also very likely to provide (near) optimum query

performance in terms of time. The time/query results show that number of

partitions can have a strong impact on real-time query performance.

For the 6 million tuple dataset, the empirical minimum number of disk

accesses at all query sizes occurs at 400 cells, which is precisely the number

of cells SPIT’s cost model suggests we use. The results for the 1.5 million

and 3 million tuple datasets are equally encouraging. For the 3 million tuple

dataset the fastest query performance time occurs using 256 cells, which is

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) 1.5 million tuples a) 1.5 million tuples
450

400

350

300

8 250

* 200
CO
2 150

1.0% Query
0.1% Query

0.01% Q u e jy

100

500 1000 1500 2000 25000
Number of Grid Cells

b) 3 million tuples

700
1.0% Query —
0.1% Query — >

0 .0 1 % Q u ery ^ -J
600

500isV)0>
I

400

300
O 200

100

500 1000 1500 2000 25000
Number of Grid Cells

c) 6 million tuples
1200

1.0% Query — h
0.1% Query — x-

0.01% Query1000

800
<A0)o

600

.52
400b

200

1000 1500 2000 25000 500

1.0% Query — h
0.1% Query — x- o.oi%Queot—*

s8
CO

^ 0.5o3 cr
(0
Qj
E
i-

500 1500 2000 25000 1000
Number of Grid Cells

b) 3 million tuples

1.0% Query
0.1 % Query aoisLouety'<0•oc

o8V)
S'<D3.CT 0.5Ei-

25000 500 1500 20001000
Number of Grid Cells

c) 6 million tuples
2.5

1.0% Query
0.1% Query

0.01% Query.
■oco

a>
3cr

P 0.5

500 2000 25000 1000 1500
Number of Grid Cells Number of Grid Cells

Figure 6.3: Disk Accesses and Query Processing Time - Gaussian Dataset

the number of cells the model recommended we use. For the 1.5 million tuple

dataset as well, the best query performance occurs at 100 grid cells - the grid

size analytically determined by the model to minimize disk accesses.

The experiments confirm the model’s ability to find the optimal number of

grid cells irregardless of query size in the situation where the query extents in

the temporal and spatial components are identical. The query size does not

strongly impact the optimum performance point. For all datasets, as the num

ber of partitions increases beyond the optimum, there is an increasing overhead

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) 1.5 million tuples a) 1.5 million tuples

1.0% Query 0.1% '
0.01% uiiftrv —

1000 1500 2000
Number of Grid Cells

b) 3 million tuples

2500

700 — i -------- 1—
1.0% Query —
0.1% Query — 0.01% Query-̂ -600

500is
CO
4)

I
COa

400

300

200
100

500 1000 1500 2000 25000
Number of Grid Cells

c) 6 million tuples

1400
1.0% Query — i—
0.1% Query — x—

0.01% Query
1200
1000$

s 800
I
* 600
C/I5

400

200

1000 1500 25000 500 2000

1.0% Query — 1~
0.1% Query — x -

0.01% Query — * -

0.5

0
1500 20000 500 1000 2500

Number of Grid Cells

b) 3 million tuples
,5

1.0% Query — '
0.1% Query — > O.Oimery-^

1

0.5

0 20000 1000 1500 2500500
Number of Grid Cells

c) 6 million tuples
2.5 1.0% Querv̂ u-

).01% Q uery •••*---2
1.5

0.5

00 1500 2000 2500500 1000
Number of Grid Cells Number of Grid Cells

Figure 6.4: Disk Accesses and Query Processing Time - Skewed Dataset

due to the cost of accessing more partitions. This is even more pronounced

for larger query sizes, which cover a larger number of partitions. When the

number of partitions is smaller than the optimum then the overhead is due

to reading more data per partition than it would be necessary in the optimal

case. As we hypothesized, the model is reliable because the analytical number

of grid cells corresponds with the empirically reported best performance point.

The experimental results using the Skewed dataset are shown in Figure

6.4. The results confirm that the cost model is still reliable at determining an

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal number of grid cells to use given that the assumption of uniform data

density does not hold. The ideal grid size for the Skewed data is slightly higher

than what the model predicts because queries in areas of high data density

benefit from the finer grid present when the number of grid cells is larger than

the optimum. The cost model slightly underestimates the ideal grid size given

the Skewed data distribution.

Recall that N* is determined for a given set of parameters, including N.

As the lifespan of the database increases N is bound to increase, therefore the

optimal value N* should grow (sub-linearly with N) as well. Therefore a value

of N* determined for a given N is bound to be sub-optimal at some point in

time. Fortunately, the experiments show that SPIT is fairly resilient to the

growth of N especially for smaller query sizes. For instance, the index perfor

mance for a database of 6 million tuples using a value of N* determined for 3

million tuples instead, is not too far from the optimal performance. Neverthe

less, for a very large increase of N , performance can deteriorate, suggesting

that IV* should be periodically recomputed and, if necessary, the index rebuilt.

Note that related work suggesting the use of a grid for spatio-temporal in

dexing, i.e., SETI [8], does not provide any means of tuning the number of grid

cells beyond experimental trial and error. As our experiments have shown, the

number of grid cells is a crucial parameter in determining the performance of

a grid-based indexing approach. The ability to reliably determine the optimal

number of partitions in an analytical manner is a major contribution of this

work and is very important in making SPIT a practical solution for RDBMS

spatio-temporal support.

6.2 Performance Evaluation

Next we compare the performance of SPIT against the other approaches for

RDBMS-based spatio-temporal support described in Sections 5.2 and 5.3, de-

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

CO■ocoo
CD
CO

CDDo
0)
E

30

25

20

15

10

R-tree
R-tree MAX_TI Q ~

t_z index --

t_z index MAX_TI ----- O -

z_t index -----

z_t index MAX_TI — - A -

Full Scan
Full Scan MAX Tl

----- Y - '

SPIT

SPIT MAX Tl

B -

 O '

E

....... A -

0.01 0.1
Query Size (% of Spatiotemporal Space)

1.0

Figure 6.5: Query Performance on the 6 million tuple dataset with the maxi
mum temporal interval (MAX. 77) assumption and without the assumption

noted as the R-tree, t.z index, and zJ, index approaches, respectively. The

implementation of SPIT uses the optimal grid size set according to Table 6.1.

In all experiments we use as a baseline a Full Scan of the data, i.e., no index

support. Indeed, in many cases all approaches perform worse than a full scan

of the data; SPIT, on the other hand, never did.

We first establish the benefit of using the maximum temporal interval as

sumption at query time. Figure 6.5 shows query performance of all approaches

both with the maximum interval assumption and without the assumption for

the 6 million tuple dataset. As expected, the assumption benefits all ap

proaches because the temporal filter takes advantage of the tighter bound. Fig

ure 6.5 establishes that the SPIT approach outperforms all other approaches

both with and without the maximum interval assumption. For all further

experiments, we report query performance using the maximum interval as

sumption and assume that the value of M A X FTI is known at query time.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Index Tim e Gaussian D ataset Skewed D ataset
1.5 M 3 M 6 M 1.5 M 3 M 6 M

ST-ZORDER insert: 0:14 0:24 0:35 0:14 0:23 0:41
index index: 1:07 2:18 4:39 1:04 2:50 4:30

total: 1:13 2:42 5:14 1:18 3:13 5:11
ST-ZORDER Z-t insert: 0:14 0:24 0:35 0:14 0:23 0:41

index index: 1:07 2:16 4:37 1:07 3:02 4:30
total: 1:21 2:40 5:12 1:21 3:25 5:11

ST-RTREE R-tree insert: 0:15 0:26 0:53 0:52 1:23 2:00
index: 4:41 10:21 25:01 4:38 19:39 44:01
total: 4:56 10:47 25:54 5:30 22:02 46:01

ST-SPIT B-tree insert: 1:05 2:24 4:04 1:08 2:23 5:18
index: 0:17 0:29 1:32 0:22 0:46 1:40
total: 1:23 2:53 5:36 1:30 3:09 6:58

Table 6.2: Data Insertion and Index Creation Time in min:sec

Table 6.2 reports the time needed to insert and index the datasets for the

four approaches used for comparison, assuming that the data is already sorted

by (ts, t e). The insert time for the ST_SPIT table is higher than that for the

ST-RTREE because of the overhead involved in calculating the pid of each tuple

and for Oracle to lookup and write the tuple to the appropriate partition.

However, the index creation time for the R-tree approach is prohibitively ex

pensive. The indexing time for the ST-ZORDER is high because the Z-value

calculation must be performed at index time. As the results show, creating

the local partitioned indexes for SPIT does not incur a major overhead. In

fact, SPIT’s data insertion and index creation time is 5 times faster than the

R-tree approach. Table 6.2 also provides the insertion and indexing times for

the Skewed Dataset. Typically, insertion and index times tend to take longer

for the Skewed dataset as compared to the Gaussian; however the relative

order between the approaches is the same.

We now report the performance results of all approaches over the 100 ran

domly generated queries. The left-hand side of Figure 6.6 plots the perfor

mance of all approaches as the database scales between 1.5 million to 6 million

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) Query Size = 0.01 % a) 1.5 million tuples

£r
00
Q0
E

£•
03g
0E

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0

I
R-tree

1

-€3.....
i

t z index -
z t index - . -a . . .
Full Scan -—v —

SPIT ■
-

.-■0
___ _ A -

r:“ 'V.TT
1.5m 3m

Number of Tuples

b) Query Size = 0.10%
12

10

8
6

4

2

0

t
0Dg
0
EP

35

30

25

20
15

10

5

0

1,5m 3m
Number of Tuples

c) Query Size = 1.00%

1.5m 3m
Number of Tuples

6m

i I —........ .m ■

R-tree&

t_z index
z_t index . . . A —

Full Scan
SPIT

— v—

.......Ef'*
„ o -

.......
□..........

...............A -

"t......
6m

1
R-tree -

1
......

1

t z index - -©*•“
z t index -- -A —

Full Scan -
SPIT -

............0 “* -
_□.... ___

— ♦?
6m

£•Q>
3P
<r>£P

R-tree a ...
t_z index
z_t index — —
Full Scan —▼—

SPIT

0.01 0.1 1.0
Query Size (% of Spatiotemporal Space)

b) 3 million tuples

03QO
£

o
<n

e?
0dg
0
E

12

10

8

6

4

2

0

35

30

25

20
15

10

5

0

i 1
R-trees

t_z index - - o — o '
z_t index / '
Full Scan — v— s'"

SPIT o s'
....0 ’” /

........ y'
,tS_-0-^---------------------- T7-----

____■ ■ 0
f r - 1

0.01 0.1 1.0
Query Size (% of Spatiotemporal Space)

c) 6 million tuples
 1—

R-tree a ...
t_z index
z_t index -a ---
Full Scan

SPIT — ■»—

V-9
0.01 0.1 1.0

Query Size (% of Spatiotemporal Space)

Figure 6.6: Query Performance for different database and query sizes - Gaus
sian Dataset

tuples using a fixed query size. The right-hand side plots, on the other hand,

show the results in terms of varying query size with a fixed database size. The

R-tree approach has consistently poor performance and is outperformed by a

sequential scan of the data in all cases. The t.z index approach also performs

poorly, for nearly every test it too is outperformed by a sequential scan. The

problem with a primary index on time is that there is an enormous amount

of overlap among the temporal intervals of tuples because data about every

moving object in the system is being continuously reported. As expected, the

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance of the full scan of the data remains relatively constant through

out. Part of the reason that a full table scan can be difficult to outperform,

especially as the query size increases, is that a full scan of the table requires

very few seek operations on disk - data is scanned and filtered in continuous

blocks. The z-t index approach, because of its efficient spatial discrimination,

performs relatively well in all cases, although it is outperformed by the full ta

ble scan for the largest query size (1%). On average, SPIT outperforms the Z-t

index by a factor of three. SPIT is the only option to consistently outperform

all other approaches (including a full table scan) in all tests.

The SPIT approach scales extremely well. In the worst case, i.e., the largest

test query and database size, SPIT’s query performance was still under 2

seconds. The Lz index approach, in the worst case, took 21.6 seconds to answer

a query. For the zJ, index approach worst case performance was 4.8 seconds.

The R-tree approach, in the worst case, took 30.2 seconds to answer a query.

The key advantage of SPIT lies in the performance advantage of partition

elimination. Only those partitions that intersect the spatial component of

the query window are scanned. The local temporal index on each partition

reduces the number of tuples read from disk. The ability to optimize the

number of partitions further enhances performance. The R-tree, a general

purpose spatial data structure, can not approach the performance advantage

received from partition elimination. For the 3 million dataset and 0.1% query

size, the R-tree approach takes 5 seconds whereas SPIT takes on average 0.3

seconds to answer a query - a speedup of 16 times.

Figure 6.7 show the performance of all approaches as database and query

size varies on the Skewed dataset. On average, queries on the Skewed dataset

take longer for all approaches as opposed to the Gaussian dataset. This can

be partially attributed to the larger query answer set size for the Skewed

dataset (queries in areas of high density return more tuples). For SPIT, query

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) Query Size = 0.01%

1

E
F

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0

I
R-treea

i

t z index _

z t index — £ , . . .

Full Scan — v
SPIT

-

______ _•©

r - : : £ r . r : t "
1.5m 3m

Number of Tuples
6m

a) 1.5 million tuples

R-tree n .;,v
t_z index ■
z_t index.y ?* —
Full Scarf —v—

..SPIT — ■*—

«■
0.01 0.1 1.0

Query Size (% of Spatiotemporal Space)

b) Query Size = 0.10%

g
©
E
F

14
R-tree

t_z index
z_t index
Full Scan''

..SPjP

12

10

8
6
4

2

0
3m1.5m 6m

Number of Tuples

14

12

10

8
6
4

2

0

b) 3 million tuples

. 0 " "

4

R-tree ...
t_z index - -o1' - -
z_t index--" * —
FullSgafi — t—

...SPIT — ■»- -

_____ ^
0.01 0.1 1.0

Query Size (% of Spatiotemporal Space)

c) Query Size = 1.00% c) 6 million tuples

<um.

fr
©3g
©
E

35

30

25

20
15

10

5

0

• i
R-tree

1
..Q-.V-:S

t_z index - "
z_t index.
Full Scarf ,jfV—

..SPIT/

....□" -

_□..................... —— ___ _~ -—■ __ .7- .7i-• ©-------
JrT.T.VTlTI............t

1.5m 3m
Number of Tuples

6m

35

30

25

20
15

10

5

0
-□....
4-^

1 --------------------------r
R-tree ...

t_z index
z_t index V - -
Full Scan —

SPIX.'---o—

-■&-
- 4 -

 O

0.01 0.1 1.0
Query Size (% of Spatiotemporal Space)

Figure 6.7: Query Performance for different database and query sizes - Skewed
Dataset

performance on the Skewed data degrades very little because queries in areas

of low density return a small answer set extremely quickly, and queries that fall

in areas of higher density are still serviced relatively quickly. Our experiments

have shown that the SPIT approach offers the best overall query response

time, scalability, and data loading performance on both the Gaussian and

Skewed datasets. The experiments confirm that SPIT is an efficient approach

for indexing spatio-temporal data inside the RDBMS.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

The need for built-in RDBMS support of complex data-types has long been

acknowledged in the database community. Support for purely spatial or purely

temporal data has been proposed, and a natural extension thereof is to develop

a true Spatio-Temporal Access Method (STAM) with a relational mapping.

The Space-Partitioning with Indexes on Time (SPIT) approach fills this cru

cial need by providing an efficient means to manage historical spatio-temporal

data inside a RDBMS. SPIT uses a pipelined query mechanism wherein an

initial coarse spatial partitioning based on a grid location is applied, followed

by temporal filtering, spatial refinement and duplicate elimination steps. Ex

cellent query performance is provided due to SPIT’s ability to efficiently prune

the search space so as to reduce the need to scan spatio-temporal records on

disk. SPIT leverages existing RDBMS technology and has been shown to out

perform other alternatives for spatio-temporal data management inside the

RDBMS.

We have developed a disk access based cost model that can optimally

choose the n u m b er of grid cells to use w ith SPIT. E m p irica l te s tin g confirm s

that the model is reliable and that the SPIT approach offers excellent query

performance as compared to other RDBMS-support alternatives. While the

use of spatial partitioning to index the spatial component of the data is a

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

well known method, applying this strategy in the spatio-temporal domain

while providing tightly integrated RDBMS support has not been done before.

Although a more traditional spatial index based approach, i.e., adapting an R-

tree to the problem at hand, does not require a fixed grid-based partitioning, as

we demonstrated experimentally our method dramatically outperforms the R-

tree based approach. The coarse spatial partitioning combined with accurate

temporal filter offer incomparable query performance to typical R-tree based

approaches.

In [45], the authors identify three main requirements for indexing in spatio-

temporal databases:

1. offer appropriate data types and query language support,

2. provide efficient indexing and retrieval methods, and

3. exploit cost models for query processing and optimization purposes.

Our method satisfies all three requirements. We provide a meaningful data

type for tracking spatio-temporal objects as well as a mechanism for query sup

port. Our indexing method, as shown experimentally, is very efficient largely

due to the cost model we developed that optimizes the grid size used by SPIT.

7.1 Future Work

SPIT could be expanded in the future by adapting the model to take into

account other types of spatio-temporal data models, i.e., the trajectory or

parametric models. One possible approach that could be taken up would be

to insert a data point into each cell where a trajectory (or the future parametric

path) of an object follows. Such an approach would require a more complex

insertion and query method, and would incur an extra storage expense. Given

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the already excellent performance of SPIT, however, we predict that such an

approach would still outperform alternative methods.

Another opportunity for future work would be optimizing SPIT through

the adaptation of a non-uniform spatial grid. Query performance could be

further enhanced by making SPIT aware of areas of higher and lower density

in the dataset. A denser data space may benefit from a finer grid, whereas

in areas of low data density a coarse grid may be adequate. This would help

make SPIT more scalable and adaptable to skewed data distributions.

As well, we are investigating manners in which SPIT’s partitioning could be

periodically re-adjusted as the database size increases. Even though the exper

imental results suggest that SPIT is resilient to modest increases in database

size, rebuilding the index is bound to be necessary after some point in time.

It would useful to investigate whether a self-adaptation scheme, where the

RDBMS would re-configure the partition by itself without having to rebuild

the whole index, can be developed. This would help make SPIT even more

scalable and adaptable for very large databases.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Mahdi Abdelguerfi, Julie Givaudan, Kevin Shaw, and Roy Ladner. The 2-

3TR-tree, a Trajectory-Oriented Index Structure for Fully Evolving Valid-

Time Spatio-Temporal Datasets. In Proc. of ACM GIS, pages 29-34,

2002 .

[2] Tamas Abraham and John F. Roddick. Survey of Spatio-Temporal

Databases. Geoinformatica, 3(1):61—99, 1999.

[3] David W. Adler. IBM DB2 Spatial Extender - Spatial Data within the

RDBMS. In Proc. of VLDB, pages 687-690, 2001.

[4] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance

of Large Ordered Indices. Acta Informatica, 1:173-189, 1972.

[5] N. Beckman, H.P. Krigel, R. Schneider, and B. Seeger. The R*-tree: An

Efficient and Robust Access Method for Points and Rectangles. In Proc.

of ACM SIGMOD, pages 332-331, 1990.

[6] R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis. Nearest Neighbor

and Reverse Nearest Neighbor Queries for Moving Objects. In IDEAS,

pages 44-53, 2002.

[7] Thomas Brinkhoff. A Framework for Generating Network-Based Moving

Objects. Geoinformatica, 6(2): 153-180, 2002.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[8] V. Prasad Chakka, Adam C. Everspaugh, and Jignesh M. Patel. Index

ing Large Trajectory Data Sets W ith SETI. In Proc. of CIDR [Online:

http://www-db.cs.wisc.edu/cidr/program/pl5.pdf], 2003.

[9] Hae Don Chon, Divyakant Agrawal, and Amr El Abbadi. Range and kNN

Query Processing for Moving Objects in Grid Model. Mobile Networks

and Applications, 8(4) :401—412, 2003.

[10] Federal Communications Commission. FCC: Enhanced 911. [Online:

http://www.fcc.gov/911/enhanced/], 2004.

[11] Martin Erwig, Ralf Hartmut Guting, Markus Schneider, and Michalis

Vazirgiannis. Spatio-Temporal Data Types: An Approach to Modeling

and Querying Moving Objects in Databases. Geoinformatica, 3(3):269-

296, 1999.

[12] Michael Freeston. The BANG File: A New Kind of Grid File. In Proc.

of ACM SIGMOD, pages 260-269, 1987.

[13] Johann Christoph Freytag, M. Flasza, and Michael Stillger. Implementing

Geospatial Operations in an Object-Relational Database System. In Proc.

of SSDBM, pages 209-219, 2000.

[14] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial

Searching. In Proc. of ACM SIGMOD, pages 47-57, 1984.

[15] Rittwik Jana, Theodore Johnson, S. Muthukrishnan, and Andrea Vi-

taletti. Location Based Services in a Wireless WAN Using Cellular Digital

Packet Data (CDPD). In Proc. of ACM MobiDE, pages 74-80, 2001.

[16] Eija Kaasinen. User Needs for Location-Aware Mobile Services. Personal

Ubiquitous Computing, 7(l):70-79, 2003.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-db.cs.wisc.edu/cidr/program/pl5.pdf
http://www.fcc.gov/911/enhanced/

[17] Ravi Kanth V Kothuri and Siva Ravada. Spatio-Temporal Indexing in

Oracle: Issues and Challenges. IEEE TCDE Bulletin, 25(2):56-60, 2002.

[18] Ravi Kanth V Kothuri, Siva Ravada, and Daniel Abugov. Quadtree and

R-tree Indexes in Oracle Spatial: A Comparison using GIS Data. In Proc.

of ACM SIGMOD, pages 546-557, 2002.

[19] Hans-Peter Kriegel, Marco Potke, and Thomas Seidl. Managing Intervals

Efficiently in Object-Relational Databases. In Proc. of VLDB, pages 407-

418, 2000.

[20] David Lagesse. They know where you are. U.S. News, pages 23-36, 38,

September 2003.

[21] Sitaram Lanka and Eric Mays. Fully Persistent B-f-trees. In Proc. of

ACM SIGMOD , pages 426-435, 1991.

[22] Philip M. Lewis, Arthur Berstein, and Michael Kifer. Database and Trans

action Processing. Addison-Wesley, 2002.

[23] Mohamed F. Mokbel and Walid G. Aref. On Query Processing and Opti

mality Using Spectral Locality-Preserving Mappings. In Proc. of SSTD,

pages 102-121, 2003.

[24] Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel. Performance

of Multi-Dimensional Space-Filling Curves. In Proc of ACM GIS, pages

149-154, 2002.

[25] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-

Temporal Access Methods. IEEE TCDE Bulletin, 26(2):40-49, 2003.

[26] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz.

Analysis of the Clustering Properties of the Hilbert Space-Filling Curve.

IEEE TKDE, 13(1): 124-141, 2001.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] MySQL AB. MySQL Manual — Spatial Extentions in MySQL [On

line: http://www.mysql.com/doc/en/SpatiaLextensions-in-MySQL.html],

2002 .

[28] Mario A. Nascimento nad Jefferson R. O. Silva and Y. Theodoridis. Eval

uation of Access Structures for Discretely Moving Points. In Proc. of

STDBM, pages 171-188, 1999.

[29] Mirco Nanni. Distances for Spatio-temporal clustering. In Proc. of SEBD,

pages 135-142, 2002.

[30] Mario A. Nascimento and M. Dunham. Indexing Valid Time Databases

via B+ -trees - the MAP21 Approach. IEEE TKDE, 11(6):1—19, 1999.

[31] Mario A. Nascimento, Dieter Profser, and Yannis Theodoridis. Synthetic

and Real Spatiotemporal Datasets. IEEE TCDE Bulletin, 26(1):26—32,

2003.

[32] Mario A. Nascimento and Jefferson R. O. Silva. Towards Historical R-

trees. In Proc. ACM SAC, pages 235-240, 1998.

[33] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The Grid File: An

Adaptable, Symmetric Multikey File Structure. ACM TODS, 9(1):38—71,

1984.

[34] Beng Chin Ooi, Ron Sacks-Davis, and Ken J. McDonell. Extending a

DBMS for Geographic Applications. In Proc. of IEEE ICDE, pages 590-

597, 1989.

[35] Oracle Corporation. Oracle Spatial User’s Guide and Reference, Release

9.2, 2002.

[36] Dieter Pfoser. Indexing the Trajectories of Moving Objects. IEEE TCDE

Bulletin, 25(2):3-9, 2002.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mysql.com/doc/en/SpatiaLextensions-in-MySQL.html

[37] Dieter Pfoser and Christian S. Jensen. Querying the Trajectories of On-

Line Mobile Objects. In Proc. of ACM MobiDE, pages 66-73, 2001.

[38] Dieter Pfoser and Christian S. Jensen. Indexing of Network Constrained

Moving Objects. In Proc. of ACM GIS, pages 25-32, 2003.

[39] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel Ap

proaches in Query Processing for Moving Object Trajectories. In Proc. of

VLDB, pages 395-406, 2000.

[40] J. Roddick and B. Lees. Geographic Data Mining and Knowledge Dis

covery, chapter Paradigms for Spatial and Spatio-Temporal Data Mining,

pages 33-50. Taylor and Francis, 2001.

[41] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A.

Lopez. Indexing the Positions of Continuously Moving Objects. In Proc.

of ACM SIGMOD, pages 331-342, 2000.

[42] Hanan Samet. The Quadtree and Related Hierarchical Data Structures.

ACM Comput. Surveys, 16(2):187—260, 1984.

[43] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The TPR*-Tree: An

Optimized Spatio-Temporal Access Method for Predictive Queries. In

Proc. of VLDB, pages 790-801, 2003.

[44] Yannis Theodoridis and Timos Sellis. A Model for the Prediction of R-tree

Performance. In Proc. of PODS, pages 161-171, 1996.

[45] Yannis Theodoridis, Timos K. Sellis, Apostolos Papadopoulos, and Yannis

Manolopoulos. Specifications for Efficient Indexing in Spatiotemporal

Databases. In Proc. of SSDBM, pages 123-132, 1998.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[46] Yannis Theodoridis, Jefferson R. 0 . Silva, and Mario A. Nascimento. On

the Generation of Spatiotemporal Datasets. In Proc. of SSD, pages 147-

164, 1999.

[47] Yannis Theodoridis, Michalis Vazirgiannis, and Timos K. Sellis. Spatio-

Temporal Indexing for Large Multimedia Applications. In Proc. of IEEE

ICMCS, pages 441-448, 1996.

[48] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. On the Gen

eration of Time-Evolving Regional Data. Geoinformatica, 6(3):207—231,

2 0 0 2 .

[49] Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis

Manolopoulos. Overlapping Linear Quadtrees: a Spatio-Temporal

Access Method. In Proc. of ACM GIS, pages 1-7, 1998.

[50] Ouri Wolfson, Bo Xu, and Sam Chamberlain. Location Prediction and

Queries for Tracking Moving Objects. In Proc. of ICDE, pages 687-688,

2000 .

[51] Yuni Xia and Sunil Prabhakar. Q+Rtree: Efficient Indexing for Moving

Object Databases. In Proc. of DASFAA, pages 175-182, 2003.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

