

Efficient Evaluation of Multistate Network Reliability

by

Guanghan Bai

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Engineering Management

Department of Mechanical Engineering

University of Alberta

© Guanghan Bai, 2016

ii

Abstract

In network reliability context, it is often assumed that both the components and the systems can

take two possible states, completely working or totally failed. However, in many real-world

network systems, the component states and the system state can take more than two values.

This multi-state phenomenon has to be addressed when specific performance measures such

as capacity are taken into consideration. The network must not just be connected but function at

a certain performance level. For a two-terminal multistate network with a source node, s, and a

sink node, t, the reliability is defined as the probability of successfully sending a required

amount of flow, d, from node s to node t, which is the probability that the flow throughput is not

less than d. The capacity (state) of each component can take discrete, non-negative integer

values from 0 to its maximum capacity, following a certain probability distribution.

The overall objective of multistate network reliability is to provide engineers and managers

useful tools to enhance their ability for design and maintenance of such networks. However,

despite the increasing complexity of modern networks, the size of the network that can be

analyzed by existing methods is still rather modest, given a modest number of states for each

component. This is expected since the network reliability analysis problem is NP-hard.

Consequently, research aimed at improving the efficiency of reliability evaluation is needed. In

addition, most reported works focus on one specific demand at a time. However, during the

design phase or operation phase, we are often interested in system reliability with respect to

multiple possible demand levels, in order to obtain a complete picture of the system capability.

Thus, an efficient and systematic method is desirable for network reliability evaluation with

respect to all possible d values.

iii

This thesis documents research contribution for efficient evaluation of multistate network

reliability using the indirect approaches based on minimal path vectors. A d-MP refers to a

minimal path vector with respect to demand level d.

 Firstly, an improved backtracking algorithm based on depth-first search is developed

for finding all minimal paths (MPs) for binary networks. These MPs are used as building

blocks for generating d-MPs for multistate networks.

 Secondly, given all the MPs, a recursive algorithm to search for all the d-MPs for all

possible d values is developed based on breadth-first search. These d-MPs are used

for reliability evaluation of multistate networks.

 Thirdly, given all d-MPs, ordering heuristics are proposed to improve the efficiency of

the Recursive Sum of Disjoint Product (RSDP) method for evaluating multistate

network reliability.

 Fourthly, given all d-MPs, an improved State Space Decomposition (SSD) algorithm is

developed for evaluating multistate network reliability. Thorough efficiency

investigations are conducted to compare the efficiency of the reported direct

approaches and indirect methods, including the proposed improved SSD method and

the RSDP method with ordering heuristics, for evaluating multistate network reliability.

With efficient reliability evaluation algorithms and methods, the research results out of this

thesis provide the reliability engineers and facility managers a more powerful tool for the design

and maintenance of more complex networks.

iv

Contents

1 Introduction .. 1

1.1 Background.. 1

1.2 Literature review .. 5

1.2.1 Early studies on multistate network reliability .. 5

1.2.2 The direct approaches .. 6

1.2.3 The indirect approaches ... 7

1.2.4 Approximating network reliability ...10

1.3 Research scope and objective ..12

1.4 Thesis organization ...16

2 Fundamentals of Multistate Network Reliability ...19

2.1 Basic concepts of multistate reliability ...22

2.1.1 State distribution for multistate network reliability ..22

2.1.2 Minimal path (cut) vector ...23

2.1.3 Structure function for multistate network reliability ...24

2.2 The computational complexity for multistate network reliability....................................25

2.2.1 Classes of computational complexity ...25

2.2.2 Algorithm complexity analysis ..27

2.3 Fundamentals for multistate network reliability evaluation ...27

2.3.1 Data structure of network ..28

2.3.2 Search algorithm ...29

2.3.3 General methods for reliability evaluation ..30

v

3 An Improved Algorithm for Finding All Minimal Paths in a Network32

3.1 Introduction ...32

3.2 Preliminaries ...35

3.2.1 Linked path structure indexed by nodes ..35

3.2.2 The distance between node pair ..38

3.2.3 Additional backtracking condition ..40

3.3 The proposed algorithm ..42

3.3.1 The algorithm ..42

3.3.2 An illustrative example ...45

3.3.3 Complexity analysis ...48

3.4 Efficiency investigation ..49

3.5 Extension to networks with multiple source/sink nodes ...52

3.5.1 Networks with one source and multiple sinks ..55

3.5.2 Networks with one sink and multiple sources ..57

3.5.3 Networks with multiple sources and sinks ..58

3.6 Summary ..61

4 Search for all d-MPs for all d levels in Multistate Networks ...62

4.1 Introduction ...63

4.2 Algorithm development ...66

4.2.1 The proposed algorithm ...67

4.2.2 An illustrative example ...68

4.2.3 Complexity analysis ...73

4.3 Pre-processing of MPs ..74

4.4 Efficiency investigation ..77

4.4.1 Example 1 ...78

vi

4.4.2 Example 2 ...81

4.5 Reliability bounding by searching for subsets of d-MPs ..83

4.6 Summary ..85

5 Ordering Heuristics for Reliability Evaluation of Multistate Networks Using Recursive

Sum of Disjoint Product Method ..88

5.1 Introduction ...89

5.2 Development of ordering heuristics ...92

5.2.1 The definition of length for d-MP ..92

5.2.2 Analysis of the RSDP method ...94

5.2.3 The ordering heuristic O1 ..96

5.2.4 The ordering heuristic O2 ..98

5.2.5 The ordering heuristic O3 ..99

5.2.6 The ordering heuristic O4 .. 101

5.3 Efficiency investigation of the four ordering heuristics ... 104

5.4 Ordering heuristic methods given minimal cut vectors .. 110

5.6 Summary .. 111

6 An Improved Algorithm for Reliability Evaluation of Multistate Networks Using State

Space Decomposition Method ... 112

6.1 Introduction ... 113

6.2 The development of the algorithm ... 115

6.2.1 Decomposition of d-MPs ... 115

6.2.2 An improved heuristic .. 117

6.2.3 The algorithm .. 118

6.2.4 An illustrative example ... 120

6.3 Efficiency investigation on hypothetical networks .. 122

vii

6.4 Efficiency investigation on real networks ... 127

6.4.1 Example 1 ... 128

6.4.2 Example 2 ... 130

6.4.3 Example 3 ... 133

6.5 The algorithm given all minimal cut vectors ... 135

6.6 Summary .. 137

7 Conclusion and Future Work ... 139

7.1 Conclusion .. 139

7.2 Future work ... 142

7.2.1 Approximation of multistate network reliability ... 142

7.2.2 Study of more complex multistate networks ... 143

7.2.3 Design and maintenance optimization of multistate networks 144

7.2.4 Study of continuum state network reliability ... 144

Bibliography .. 145

viii

List of Tables

2.1 State distribution, of the components in the example network ..22

3.1 The efficiency comparison for two-terminal grid networks ..51

3.2 The distances for 6 × 6 grid networks with one source node and multiple sink nodes56

3.3 The distances for 6 × 6 grid networks with one sink node and multiple source nodes58

3.4 The distance information for 6 × 6 multi-terminal grid networks ..59

3.5 The efficiency comparison for 6 × 6 multi-terminal grid networks60

4.1 Successor Matrix of the bridge network ..79

4.2 Successor Matrix of network in [34] ..82

4.3 Subset of d-MPs for bridge network ...84

4.4 LRBs with respect to different number of MPs used and several d values87

5.1 Ordering result based on O1 ..98

5.2 Ordering result based on O2 ..99

5.3 Ordering result based on O3 .. 100

5.4 Ordering result after step 2 of O4 ... 102

5.5 Ordering result after d-MP4 is chosen ... 103

5.6 Ordering result after d-MP3 is chosen ... 103

5.7 Final ordering result based on O4 .. 104

6.1 Efficiency comparison given different numbers of d-MPs ... 123

6.2 Efficiency comparison given different numbers of states .. 125

6.3 Efficiency comparison given different numbers of components .. 126

6.4 Efficiency comparison for a network in [42] .. 128

6.5 Efficiency comparison for bridge network ... 131

6.6 Efficiency comparison for network with 30 components.. 133

ix

List of Figures

1.1 Northeast blackout 2003 [2] .. 2

1.2 India blackout 2012 [4] .. 2

1.3 Outline of research topics ...13

2.1 A two-terminal bridge network ..19

2.2 Euler diagram for P, NP, NP-complete, and NP-hard set of problems [52]26

3.1 A network example: (a) the undirected form of the network; and (b) the directed form of the

network [31] ..36

3.2 An undirected network example indexed by node ..37

3.3 An directed network example indexed by node ..37

3.4 Implementation of Chen and Lin’s algorithm ...42

3.5 Flow chart of proposed algorithm ...44

3.6 The benchmark network ...50

3.7 A typical undirected grid network with 9 nodes ...51

3.8 Ratio of CPU time with respect to different sizes of grid networks52

3.9 An example of undirected network with a source node and two sink nodes........................54

3.10 An example of directed network with a source node and two sink nodes54

3.11 A 6 × 6 multi-terminal grid networks ...55

3.12 Ratio of CPU time for networks with one source node and multiple sink nodes56

3.13 Ratio of CPU time for networks with one sink node and multiple source nodes57

3.14 Ratio of CPU time for networks with multiple source/sink nodes59

4.1 A network example from [34] ..64

4.2 Flow chart of algorithm ...67

4.3 Implementation of algorithm ...72

x

4.4 Implementation of the proposed algorithm with pre-processed MPs77

4.5 Comparison with the approach A1 for the bridge network ..80

4.6 Comparison with the approach A2 for the bridge network ..80

4.7 Comparison with the approach A1 for the network in [34] ...82

4.8 Comparison with the approach A2 for the network in [34] ...83

5.1 Ratio of the mean computation times for 10 components. .. 105

5.2 Ratio of the mean number of terms for 10 components. ... 106

5.3 Ratio of the mean computation times for 20 components. .. 106

5.4 Ratio of the mean number of terms for 20 components. ... 107

5.5 Ratio of the mean computation times for 30 components. .. 107

5.6 Ratio of the mean number of terms for 30 components. ... 108

5.7 Ratio of the mean computation times for 40 components. .. 108

5.8 Ratio of the mean number of terms for 40 components. ... 109

6.1 Ratio with respect to different numbers of d-MPs ... 124

6.2 Ratio with respect to different numbers of states .. 125

6.3 Ratio with respect to different numbers of components .. 127

6.4 A moderate multistate network [42] .. 128

6.5 Ratio with respect to different demands for a network in [42] ... 130

6.6 A multistate bridge network .. 130

6.7 Ratio with respect to different demands for a bridge network ... 132

6.8 A large multistate network [19] ... 133

6.9 Ratio with respect to different demands for a network in [19] ... 134

xi

Acronyms

MP Minimal Path

MC Minimal Cut

d-MP d-Minimal Path

d-MC d-Minimal Cut

IE Inclusion Exclusion

SDP Sum of Disjoint Products

RSDP Recursive Sum of Disjoint Products

SSD State Space Decomposition

LRB Lower Reliability Bound

URB Upper Reliability Bound

DFS Depth First Search

WFS Width First Search

i.i.d. Independent and Identically Distributed

UGFM Universal Generating Function Method

MMDD Multistate Multivalued Decision Diagrams

1

Chapter 1

Introduction

1.1 Background

With development in science and technology, the complexity of networks has grown enormously

in the past few decades. As their complexity increases, it becomes more difficult to keep the

networks constantly reliable. A failure of a single component can lead to cascading failure of the

entire network. As well, failure to maintain the operation of such a complex network at its

satisfactory level can be devastating. Take the case of power transmission and distribution

networks. On August 14, 2003, the northeast blackout affected nearly 50 million people across

US and Canada, damaged over 400 transmission lines and 531 generating units at 261 power

plants [1] (see Figure 1.1). Shortly after the blackout of North America, another blackout took

place in Southern Sweden and Eastern Denmark on September 23, with a total of 1.6 million

people and 2.4 million people affected in Sweden and Denmark, respectively [1]. Only five days

later, a tree flashover caused a sequence of events, leading to a blackout in Italy, causing a

power shortage of 6400 MW [2]. More recently in 2012, a similar blackout took place in India

(see Figure 1.2). With 620 million people been affected, the Indian blackout is recorded as the

world’s largest power blackout to date.

In order to measure and predict the reliability of such networks, researchers make use of

system reliability analysis, where reliability is defined as the ability of a system to function

2

Figure 1.1: Northeast blackout 2003 [2]

Figure 1.2: India blackout 2012 [4]

on a satisfactory level under stated condition for a specified time period. A system is made up of

a set of components. A random variable is assigned to each component to indicate its reliability.

In analyses of network reliability, a network is viewed as a system, and its constituent parts - a

set of nodes and a group of links - are regarded as its components.

One important task of system reliability analysis is to find the relationship between

component reliabilities and system reliability. A structure function is used to achieve this goal by

mapping the states of the components into system states. We can define different structure

functions in terms of different system reliability measures. For instance, consider a network with

a set of nodes, �, and a node, � ∈ �, the �-terminal reliability measure evaluates the ability to

perform certain “task” from � to each node in �. One important special case is the two-terminal

reliability measure for which |�| = 2.

In traditional network reliability analysis, it is assumed that a system is a binary network, in

which both the components and system can take two possible states, completely working or

totally failed. The system operates if there exists at least one live connection from � to each

node in �. This class of reliability measure is also called the connectivity measure [5]. However,

in many practical network systems, the system states and component states can, in fact, take

3

values other than 0 and 1. This issue arises when certain physical features, such as capacity,

length and delay, are assigned to each link. Thus, the network must not just be connected but

must function at a certain performance level. We refer to this kind of reliability problem as

multistate network reliability.

In analyses of multistate network reliability, a network’s reliability is evaluated relative to a

certain performance criterion. They may, for instance, identify the length of the shortest path

required for traveling between a pair of nodes, or the maximum time duration required for one

node to reach another. In this study, we focus on the maximum flow problem, that is, the

maximum amount of flow can be sent from the source node to the sink node. Maximum flow

analyses are commonly applied to multistate networks ranging from oil/gas production and

transportation networks [6], power transmission and distribution networks [7], supply networks

[8], manufacturing networks [9], to computer networks [10]. In the case of a power transmission

and distribution network, each component is assumed to represent a power transmission line.

The source node represents the power plant and the sink nodes represent the power

consumers. Demand is the amount of power required by each consumer. A key variable in the

analysis is the capacity of each component, that is, the amount of power that can be sent over

the transmission line. The capacity has a limit, which is the maximum amount of power it can

send. For instance, the heating of conductors due to line losses sets a thermal limit. If too much

current is drawn, conductors may sag too close to the ground, or conductors and equipment

may be damaged by overheating. Due to long-term wear on the exposed component, different

maintenance strategies, and environmental effects, the capacity of each component can be in

more than two levels in practice.

This raises complex considerations for those undertaking the analysis. Theoretically, the

random variable associated with the capacity of each component can take any type of

distribution. It has been reported that finite discrete distribution is used for most cases [5]. In

such situations, the number of states and corresponding probabilities are estimated based on

4

historical data. In addition, we limit ourselves to a two-terminal case in this study. We can

transform a �–terminal problem to a two–terminal problem by adding an artificial component to

each sink node and connecting all these additional components to a single artificial sink node.

The capacity of each artificial component is the same as the demand of its corresponding sink

node with reliability equal to 1.

Consider such a two-terminal network with a source node ‘s’ and a sink node ‘t’. The

reliability is defined as the probability of sending required amount of flow d from ‘s’ to ‘t,’

successfully, i.e., the probability that the maximal flow is no less than d. The capacity of each

component can take discrete, non-negative integer values following a certain probability

distribution. Thus, the capacity of each component can be regarded as an independent, discrete

random variable taking values from 0 to its maximum capacity.

This has important implications for engineering design and management. For instance,

during the network design stage, one can come up with several feasible designs under a budget

limit and evaluate the reliability of each design based on historical data. Then the manager can

select the ‘optimal’ design by picking the one with the highest reliability. However, the increasing

level of network complexity implies that the problem of evaluating reliability itself is a challenge.

Theoretically, the evaluation of two-terminal multistate network reliability is an NP-hard problem

[5]. Thus, finding efficient methods for evaluating the reliability of such networks is important.

However, despite the increasing complexity of modern networks, the size of the network that

can be analyzed by existing studies is still rather modest, given a modest number of states for

each component. Consequently, research aimed at improving the efficiency of reliability

evaluation is needed. In addition, most previous studies have focused on one specific demand

at a time. An efficient and systematic method is desirable for reliability evaluation of multistate

network considering all possible d values.

5

1.2 Literature review

1.2.1 Early studies on multistate network reliability

Given its multi-disciplinary nature, the reliability evaluation of multistate network has gained the

attention of researchers from different fields, including system reliability, graph theory,

operations research, electric engineering, etc. We may summarize the early studies from these

fields as follows.

The earliest work concerning this problem appeared in the field of electric engineering in

1965 by Frank and Hakimi [11]. An evaluation method based on maximum flow theory [13] and

characteristic function was proposed. Frank and Hakimi [11] also pointed out that main difficulty

is the computation, particularly when the component state distribution is continuous.

In the field of operations research in 1972, Doulliez and Jamoulle [12] studied a

transportation network, in which the capacity of each component is assumed to be an

independent discrete random variable. Doulliez and Jamoulle [12] proposed an efficient

evaluation method based on the decomposition principle. This principle, formally known as the

State Space Decomposition (SSD) method, was later improved and used in many approaches

for reliability evaluation of multistate networks.

In 1975, from the perspective of graph theory, Evans [14] formally introduced the problem

of two-terminal stochastic flow networks and obtained their reliability in terms of K-Lattices that

are generated from each collection of minimal cuts (MCs) one by one. It requires all MCs as

prior information. The number of total collections grows exponentially with the number of MCs. It

further requires combining K-lattices to obtain disjoint lattices for simplifying the probability

evaluation.

In the field of reliability engineering, early studies on multistate networks were discussed in

a broader sense, in terms of multistate systems. In the 1970s, the primary concepts, including

6

structure function, minimal path/cut vectors, and coherency, were studied in El-Neweihi et al.

[15], Barlow & Wu [16], and Griffith [17]. As pointed out by Barlow & Wu [16], a stochastic flow

network can be regarded as a multistate system, where link capacities correspond to

component states. This built a bridge between multistate system and stochastic flow network.

Thus, the term multistate network reliability was formally introduced. Researchers began to

focus on developing efficient methods and algorithms. There are generally two types of

approaches among reported works, namely the direct approaches and the indirect approaches,

which will be reviewed extensively in the next two subsections.

1.2.2 The direct approaches

The direct approaches take network configuration and component state distribution as input,

and evaluate the reliability directly. They first apply a maximum flow algorithm, such as the

Ford-Fulkerson flow-augmenting method [13], to find a component state vector to demand level

d. This vector is used to decompose the state space into a set of accepted states, a set of

unaccepted states, and disjoint sets of unspecified states. Each set of unspecified states is

recursively decomposed using different component state vectors derived from the maximum

flow algorithm until no sets of unspecified states are left. Then the reliability is the sum of

probabilities of all the sets of accepted states.

As can be seen, the direct approaches are mainly based on decomposition principle, which

was first proposed by Doulliez and Jamoulle [12]. Alexopoulos [18] corrected some errors

contained in [12]. Jane and Laih [19] presented a correct method based on direct approaches

and verified that the proposed method is efficient in comparison with the complete enumeration

method.

The advantage of the SSD approach is that it is an integrated and direct method. It appears

to be effective when the demand is close to the largest maximum flow value [18]. However, it

still requires a lot of computational effort. Each implementation of the state space decomposition

7

requires an implementation of maximum flow algorithm and pivotal decomposition. It also

requires large storage space to maintain the list of undetermined sets. In addition, it can only

evaluate the reliability of a multistate network for a specific demand at a time.

With the expensive computational effort of this method, several studies suggested a two-

phase approach to approximate the result. Firstly, one can execute the SSD method recursively

until the efficiency is less than a specified level. Secondly, one can obtain the lower reliability

bounds using the acceptable states already decomposed and the upper reliability bounds by

using 1 minus the sum of the unacceptable states already decomposed [20]. Alternatively, one

can also obtain the approximated result by conducting a crude Monte Carlo simulation [21] or a

Monte Carlo simulation with advanced importance sampling plans [22] [23].

1.2.3 The indirect approaches

Before 1990s, the direct approaches were recognized as efficient methods for reliability

evaluation of multistate networks [5]. However, in 1993 and 1995, Jane et al. [15] [16] pointed

out that the reliability evaluation of such a network can, in fact, be carried out in terms of

minimal path vectors (d-MPs) or minimal cut vectors (d-MCs), which are lower boundary points

and upper boundary points of each level d. This idea was inspired by [14], which indicated that

the computational effort can be saved if all the lower and upper boundary points can be

obtained. Thus, given the network configuration and component state distribution, the problem

can be solved in two stages: (1) search for all the d-MPs or d-MCs; and (2) obtain the reliability

by calculating the union probability of the vectors for which the component state vector is

greater (smaller) than or equal to at least one of d-MP (d-MC). Given that d-MPs & d-MCs are

dual, we focus on reported works for searching d-MPs and evaluating union probability using d-

MPs. Readers are refer to [24] and [73] for methods using d-MCs. Yeh et al. [73] recently

proposed a new method to find d-MCs by incorporating additional properties to verify d-MC

candidates, which further improved the efficiency of finding all d-MCs.

8

Stage 1: Search for all minimal path vectors (d-MPs)

There are two approaches to search for all d-MPs for a specific d value reported in the

literature. The first approach requires all binary minimal paths (MPs) as prior information. Given

a two-terminal network with one source node and one sink node, a path is a sequence of links

or nodes that connect the source node to the sink node. A minimal path is a path without cycle.

There are three types of algorithms for searching for MPs in recent literature: symbolic

expression-based algorithms [26] [27], augmentation-based algorithms [28] [29], and direct

search-based algorithm [30] [31].

The symbolic expression-based algorithms represent the paths as symbolic forms and

generate MPs based on Boolean algebra and/or other algebraic operators. Rai and Aggarwal

[26] proposed a symbolic expression-based algorithm for finding all MPs using path polynomial

and Boolean functions. Based on Universal Generating Function Method (UGFM), Yeh [27]

defined a generalized composition operator to find all MPs.

The augmentation-based search algorithms are type of heuristic algorithms to search for

MPs. It starts with only all the nodes of the original network, and add the link one at a time. Each

time a link in included, new MPs are generated. All MPs can be found when all the links have

been included. The augmentation-based search algorithm was first proposed by Al-Ghanim [28].

Yeh [29] further improved Al-Ghanim’s algorithm by eliminating the chance of generating

duplicate MPs.

The direct search–based algorithm implements the depth-first search (DFS) mechanism to

find all the MPs, which is a simple and efficient search strategy. It also used simple data

structures such as connection matrix, and linked list to represent the network. Most of the

reported studies on finding MPs are within this category. Based on graph theory and dual

principle, Shen [69] proposed a DFS algorithm to search for all MPs using connection matrix.

9

Kobayashi and Yamamoto [70] further improved Shen’s algorithm by incorporating additional

processes base on the level set of nodes. Colbourn [30] reported an DFS algorithm which has a

time complexity of  O E  , where E denotes the number of links, and  denotes the total

number of MPs. Chen and Lin [31] reported another direct search-based algorithm to search for

all MPs based on the concept of backtracking. It has a better efficiency of  O   , where  is

the average number of links contained in a MP.

Given that all the MPs have been found, Lin et al. [25] proposed an MP-based formulation

with three constraints to obtain the d-MP candidates using implicit enumeration. Then each

generated d-MP candidate is verified through recursive comparison and all d-MPs are obtained

for a particular d level. Lin [32] further proved that the second constraint was redundant and

reduced the constraints proposed in [25] from 3 to 2. For cyclic networks, Yeh [33] further

suggested removing unsatisfied solutions from generated d-MP candidates by detecting cycles

if all cycles of the network were known.

There are also reported studies that generate d-MPs without using MPs. Instead of using

MPs as a formulation base, Yeh [34] proposed a component-based formulation with 3

constraints to obtain the d-MP candidates using implicit enumeration. Ramirez-Marquez et al.

[35] proposed another method using a so-called information sharing mechanism. It does not

require MPs as prior knowledge, and the information-sharing mechanism seems to reduce the

search space compared to implicit enumeration.

Stage 2: Evaluating union probability using d-MPs

Given that all the d-MPs for all the d values have been found, we can evaluate the reliability

by calculating the probability of the union of the d-MPs for each d value. Hudson and Kapur [36]

[37] proposed methods using the Inclusion-Exclusion (IE) principle and Sum of Disjoint Products

(SDP) principle to evaluate this union probability given all d-MPs. However, these methods are

not systematic and not efficient. Aven [38] proposed an algorithm based on SSD method, which

10

provided a systematic way of evaluating the union probability no matter how many d-MPs exist.

It has been proved to be much more efficient than the IE method, except in situations in which

the number of d-MPs is much smaller than the number of components, which exist in very few

real-world network systems. Zuo et al. [39] proposed a recursive method based on the SDP

principle, named the Recursive Sum of Disjoint Product (RSDP) method, for the union

probability evaluation given all d-MPs. It is found that RSDP [39] is more efficient than the

algorithm in [38] when the number of components of a network is not too small. Yeh [72]

proposed another method based on RSDP method, namely iSDP (improved Sum-of-Disjoint

Product) method. By incorporating additional simplification procedures to reduce the number of

multiplications and summations, It is claimed to be more efficient than RSDP method in [39].

Another method for reliability evaluation of multistate networks is the Decision Diagram

method [74] [75]. Shrestha et al. [71] proposed two approaches for implementing the Multistate

Multivalued Decision Diagrams (MMDD) for reliability evaluation of multistate networks. The first

approach is to generate the MMDD given all d-MPs and then evaluate the reliability. The second

approach is to generate the MMDD directly from the multistate network and then evaluate the

reliability. An efficient recursive algorithm was proposed in [71] to generate the MMDD based on

the multistate networks.

1.2.4 Approximating network reliability

As the size of the networks becomes large, it is still cumbersome to obtain the exact reliability.

Alternatively, the reliability bounds can provide approximate reliability values with less

computational effort. One can choose a proper tradeoff between the computational effort and

the evaluation precision. The multistate network reliability is calculated as the probability of the

union of events, with each event involving a d-MP. Thus, if only a subset of d-MPs is available,

the lower reliability bounds (LRB) can be obtained. The tradeoff between the computational

effort and the evaluation precision can be achieved in two stages. In the first stage, instead of

11

using reported algorithms to fins all the d-MPs, one can develop an algorithm to find a subset of

d-MPs. In the second stage, given that all the d-MPs have been found, one can use smaller

number of the found d-MPs to obtain the LRB.

For the first stage, Satitsatian and Kapur [39] developed an efficient algorithm to generate a

subset of d-MPs. The rationale behind the algorithm is to use a subset of binary minimal cuts

(MCs) to generate a subset of d-MPs. When using more MCs, more d-MPs can be generated,

resulting in improved LRB. All the d-MPs can be found without using all the MCs.

For the second stage, given that all the d-MPs have been found, Hudson and Kapur [41]

proposed a method of obtaining the LRBs using a subset of d-MPs for multistate systems. The

idea is that first LRB is computed using one d-MP. Then additional d-MPs are included one at a

time and the final LRB is the exact reliability when all are included. These bounds are always

between 0 and 1. In addition, these LRBs are always monotonically increasing. Hudson and

Kapur [41] also discovered that the computation time is highly dependent on the order of d-MPs

introduced and suggest lexicographic ordering and reversed lexicographic ordering for d-MPs.

In addition to bound evaluation, a Monte Carlo simulation offers another way of

approximation. Ramirez-Marquez et al. [42] proposed a standard Monte-Carlo simulation

method for estimating the reliability of multistate networks given all the d-MCs or d-MPs. Bulteau

and Khadiri [23] proposed a new importance sampling Monte Carlo method. It used SSD

method during the simulation process to transform the sampling in a given subset into the

sampling in a smaller set recursively until it is not possible to accomplish new decompositions.

They showed that their new sampling principle can offer substantial speedups and perform

much better when highly reliable networks are analyzed.

12

1.3 Research scope and objective

Despite the great amount of reported works devoted to the indirect approaches using d-MPs/d-

MCs, there are some limitations that need to be addressed.

Firstly, the size of the network that can be analyzed is still rather modest, given a modest

number of states for each component, for example, a 30-component network with each

component taking 3 possible states. Therefore, research aimed at developing more efficient

algorithms will be quite worthwhile. First, with more efficient algorithms, the size of the networks

being analyzed is extended. As a result, the reliability analysis of many practical complex

networks becomes viable. Second, recall that one objective of multistate network reliability is to

provide a useful tool to enhance the design of such networks. With more efficient algorithms, the

optimal design of multistate networks, which requires iterative reliability evaluations, will also be

more viable. Finally yet importantly, as more efficient algorithms are being developed, more

insight is gained on such NP-hard problem.

Secondly, all the previous studies have focused only on one specific demand at a time.

However, when we evaluate the reliability of multistate network systems during the design

phase or operation phase, we are often interested in the system reliability with respect to each

of the system performance levels, in order to obtain a complete picture of the system capability.

For the minimal path vectors approach, this requires all d-MPs for all d levels to be generated.

Thus, research aimed at developing an efficient and systematic algorithm to search for all d-

MPs for all d values is of vital importance.

Thirdly, there is a lack of thorough experimental investigations to compare the efficiency of

the reported direct approaches and indirect methods, including the proposed improved SSD

method and the RSDP method with ordering heuristics, for evaluating multistate network

reliability. There is no reported works conducting efficiency comparison between the direct

approaches and the indirect approaches. Because the efficiency of the indirect approaches has

13

been improved in this thesis, it is necessary to conduct a thorough efficiency investigation

between the reported direct approaches and the improved indirect approaches in this work. In

addition, it has been claimed that RSDP method is more efficient than SSD when the number of

components is not too small (greater than 15) [39]. However, the computational experiments in

[39] are only conducted using hypothetical networks. In these hypothetical networks, the

maximum number of d-MPs considered is 50. However, the number of d-MPs in many real

networks is much bigger than 50 [19] [20]. Because the efficiency of both methods have been

improved in this thesis, it is necessary to conduct a thorough efficiency investigation between

RSDP method with ordering heuristics and the improved SSD method using both hypothetical

networks and networks with known structures.

Based on the motivations discussed above, this thesis focuses on indirect approaches

using d-MPs. Several research topics are defined, in the sense that the efficiency of each step

will be improved, which are shown in Figure 1.3.

Figure 1.3: Outline of research topics

Search for all minimal
paths (MPs)

Search for all minimal
path vectors (d-MPs) for

all d levels

Evaluate the probability of
unions of events

1. Improved depth-first search Algorithm
with backtracking

2. Efficient width-first search Algorithm with
pre-processing of MPs

3. Improved RSDP
method with ordering

heuristics

4. Improved SSD method with
decomposition of d-MPs and

efficiency investigation

14

In the first stage, we aim at finding all the MPs. MPs play an important role in network

reliability evaluation for binary networks. Currently, a direct search-based algorithm by Chen

and Lin [31] is recognized as an efficient algorithm for finding all MPs. In [31], a linked path

structure indexed by links is used to represent the network and a depth-first search algorithm

with backtracking is proposed to find all MPs. However, we find that the algorithm can be

improved by using a linked path structure indexed by nodes, which accepts both directed and

undirected form of networks. Furthermore, based on the distance between each node and the

sink node, additional conditions for backtracking can be incorporated to improve the efficiency of

the algorithm. With the newly introduced linked path structure, and the additional backtracking

conditions, an improved backtracking algorithm for finding all MPs is developed. These MPs are

used as building blocks for generating d-MPs for multi-state networks in the next stage. This is

covered in Chapter 3.

In the second stage, we focus on searching for d-MPs given all the MPs. As discussed

earlier, existing studies on generating d-MPs are for a particular d value. However, if all d-MPs

for all possible integer d values are required, we need to apply such methods multiple times with

respect to all d values. A more efficient method is desirable to generate all d-MPs. We develop

a recursive algorithm based on breadth-first search to search for all the d-MPs for all possible d

values. Each d-MP candidate can be generated by a combination of one (d-1)-MP and the

vector form of one binary minimal path. Thus, we can use binary MPs as building blocks to

generate 2-MP candidates, and use 2-MPs and binary MPs as building blocks to generate 3-MP

candidates and so forth. When the d-MPs with respect to the maximum d value have been

found, all the d-MPs for all possible d values are obtained. A heuristic for pre-processing the

MPs is proposed to improve the efficiency of the proposed algorithm. In addition, given all MPs,

we compare the efficiency of the proposed algorithm with that of existing algorithm. We also

compare the efficiency of the proposed algorithm with that of existing algorithm without MPs as

prior information. This is described in Chapter 4.

15

In the third stage, we focus on obtaining the reliability of multistate networks by evaluating

the unions of all d-MPs. We first focus on the RSDP method. In existing RSDP approach, all d-

MPs are treated equally. However, we find that the importance of each d-MP is different, and

different orderings affect the efficiency of reliability evaluation. Based on the observations above,

we introduce the length definitions for d-MPs in a multistate two-terminal network, and develop

four ordering heuristics, called O1, O2, O3, and O4, to improve the efficiency of the RSDP

method for evaluating network reliability. This is discussed in Chapter 5.

In the fourth stage, we turn our attention to the SSD method. During each recursive call to

decomposition, the existing method selects qualified d-MPs by comparing all d-MPs with the

upper limiting point. However, we find that the set of d-MPs can also be decomposed

recursively, and only those qualified d-MPs from previous set of unspecified states are needed

to be compared with the current upper limiting point. Based on the observation above, we

propose an algorithm to improve the efficiency of SSD method. An improved heuristic rule is

also proposed for choosing a proper d-MP to decompose each set of unspecified states. Then,

thorough efficiency investigations are conducted to compare the efficiency of the reported direct

approaches and indirect approaches, including the proposed improved SSD method and the

RSDP method with ordering heuristics, for evaluating multistate network reliability. This is

covered in Chapter 6.

With all the algorithms and results in this thesis, it is expected that reliability engineers and

facility managers will have a more powerful tool for the design and maintenance of more

complex networks.

It is important to note that throughout this thesis, a number of fundamental assumptions are

made as follows.

Assumptions

1) The structure function of the multistate network is coherent, that is, an improvement in any

16

component’s state will not make the whole network’s state worse [50].

2) All the nodes except the source node and the sink node satisfy flow conservation law [13].

3) The capacity of each component is a non-negative integer-valued random variable, which

takes successive integer values from 0 to its maximum capacity according to the given

probability distribution.

4) Components are weakly homogeneous, i.e. the components can have different levels of

capacity, yet for the common levels, the capacities must be equal [35].

5) The network contains no parallel links. For networks with parallel links, a simple parallel

reduction technique reported in [5] can be used to replace such parallel links by one single

link. This parallel reduction is reliability preserving.

6) There are no self loops in the network [27].

7) There are no common-cause outages in the network [29].

8) All nodes of the networks are perfect. When both nodes and edge are failure prone, an

approach reported in [30] can be used to transform the network into one with all nodes

perfect.

1.4 Thesis organization

This paper-based thesis is prepared following the guidelines from the Faculty of Graduate

Studies and Research (FGSR) at the University of Alberta. This thesis is composed of 7

chapters.

 Following the introduction in Chapter 1, Chapter 2 presents the fundamental knowledge

of multistate network reliability, including state distribution, structure function,

computational complexity, algorithm complexity analysis, data structure, search

algorithm, and reliability evaluation methods.

17

 Chapter 3 reports an efficient recursive algorithm for finding all MPs. Some of the results

of this chapter have been accepted for publication in the journal Reliability Engineering

and System Safety [43], and presented at the 9th International Conference on

Mathematical Methods in Reliability (MMR) [44].

 Given all the MPs generated in Chapter 3, Chapter 4 introduces the relationships among

d-MPs for different d levels and proposes a recursive algorithm based on breadth-first

search to search for all the d-MPs for all possible d values. The major contributions of

this chapter have been published in the journal Reliability Engineering and System

Safety [45], and the conference proceedings of Reliability and Maintainability

Symposium (RAMS) [46].

 Chapter 5 evaluates the unions of all the d-MPs found in Chapter 4 to obtain the

reliability using RSDP method. Four heuristic ordering methods are developed to

improve the efficiency of the RSDP method. Results in this chapter have been published

in the journal Reliability, IEEE Transactions on [47], and presented at the 6th Asia-

Pacific International Symposium on Advanced Reliability and Maintenance Modelling

(APARM) [48].

 Chapter 6 evaluates the unions of all the d-MPs found in Chapter 5 to obtain the

reliability using SSD method. All d-MPs are incorporated into the decomposition

procedure and an improved heuristic for decomposition is proposed. In addition,

computational experiments are conducted to compare 1) the proposed algorithm with

exiting algorithm using SSD method; 2) the proposed algorithm with RSDP method

incorporating ordering heuristic O1; 3) the indirect approaches incorporating the

proposed algorithm with exiting direct approaches. The results of this chapter have been

documented in [49].

18

 Chapter 7 summarizes the conclusions with observations and discussions. Possible

directions for future works are also given.

19

Chapter 2

Fundamentals of Multistate Network Reliability

This chapter covers the fundamental knowledge of multistate network reliability, including state

distribution, structure function, computational complexity, algorithm complexity analysis, data

structure, search algorithm, and general reliability evaluation methods. Particularly, we discuss

the interpretation of state distribution for multistate network, the complexity classes of

recognition & optimization problems and their relationship to network reliability problem.

A typical directed two–terminal bridge network, shown in Figure 2.1, is used to illustrate

some of the concepts covered in this chapter. The network consists of 4 nodes and 6 links. The

nodes are perfectly reliable and the 6 links (components), represented by ��, ��, …, ��, can

work at different capacities. Node 1 is the source node and node 4 is the sink node.

Figure 2.1: A two-terminal bridge network

A list of symbols is given, which is applicable to all chapters from Chapter 2 to Chapter 6. In

the following chapters from Chapter 3 to Chapter 6, we only give list of symbols that are not

included here and/or used for different meanings.

20

Notation list

 ,G V E : the given network, where V is the set of all nodes, and E is the set of all links.

s : the source node.

t : the sink node.

d : the demand of flow from the source node to the sink node.

c : number of cycles in the network.

n : the number of components in the network.

L: the number of d-MPs in the network.

ia : the i th component in the network system, 1,2, ,i n  .

x : the component state vector,  1 2 nx , x , , xx  .

ix : a discrete random variable representing the state of the i th component, ix takes values

0,1,2,… ,� �, 1,2, ,i n  . where iM represents the maximum state of component i .

MaxX : maximum state vector,  1 2 , , , , ,i nM M M MMaxX  .

S : the state space of considered multistate network.

   : the system structure function of the network.

 : the number of binary MP in the network.

 : the average number of links for each MP.

 : the average number of nodes for each MP.

iz : the thi d-MP of the considered multistate network.

 PrU  : the recursive function of the RSDP algorithm.

iTM : the thi term in the SDP calculation.

 : the maximum operator,   i j i j
k kmax z ,z ,1 k nz z    .

21

 : the minimum operator,   i j i j
k kmin c ,c ,1 k nc c    .

i,jY : a vector generated by the  operator, i,j i j Y z z .

iz : the logically equivalent vector of iz .

ic : the thi d-MC of the considered multistate network.

kZH : the thk highest state vector.

ka : the number of elements that a d-MP has in common with kZH .

 F  : the score function.

i jz z : the relative difference of the two d-MPs, iz and jz .

� : the set of unspecified states.

��/�: the upper/lower limiting state point for the set of unspecified states.

�: the set of acceptable states.

�: the set of unacceptable states.

��/�: the associated critical value of corresponding set �/�.

�: the total number of unspecified sets generated.

�: the average number of qualified d-MPs.

�: the average number of d-MPs from the parental node of each unspecified set.

�: the index vector of qualified d-MPs for each set of unspecified states.

 H  : the score function for selecting proper d-MP for pivotal decomposition.

�: the stack for storing all the d-MPs.

��/�: the matrix for storing all the upper/lower limiting state points of the current sets of

unspecified states.

22

2.1 Basic concepts of multistate reliability

Unless otherwise stated, the materials in this section are based on [50] and [5].

2.1.1 State distribution for multistate network reliability

In a multistate network, both the components and the network can work at different capacities

(states). “State distribution” is used to describe the probabilities of a component or a network

operating at different states. Suppose a component or a network has a maximum capacity of � .

It has a total of � + 1 states. A vector � = (��,��,… ,��) is used to represent the state

distribution of the component or the network. For example, Table 2. lists the state distribution of

each component in the network (shown in Figure 2.1). Component �� can be in 4 states,

ranging from 0 to 3. The probabilities of component �� being in state 0, 1, 2, and 3 are 0.05, 0.1,

0.25, and 0.6, respectively. Component �� can be in 3 states, ranging from 0 to 2. The

probabilities of component �� being in state 0, 1, and 2 are 0.1, 0.3, and 0.6 respectively.

Table 2.1: State distribution, of the components in the example network

State 0 1 2 3

a1 0.05 0.10 0.25 0.60

a2 0.10 0.30 0.60 ——

a3 0.10 0.90 —— ——

a4 0.10 0.90 —— ——

a5 0.10 0.90 —— ——

a6 0.05 0.25 0.70 ——

For repairable systems, “Availability” is often used to describe the component or the

system’s probability of operation. As well, “Reliability” is used for non-repairable system.

Generally throughout this thesis, we use the term reliability to indicate the probability that a

component or system operates. Thus, two interpretations for state distribution can be used. If

23

the component and the system are not repairable, �� represents the probability of the

component or the system be in capacity �, or state � + 1 within specified time �. If the component

and the system are repairable, �� represents the probability of the component or the system be

in capacity � at time � as � approaches infinity.

2.1.2 Minimal path (cut) vector

A general way for reliability evaluation of binary networks is using the minimal path (cut) set. A

minimal path set is a smallest set of components that connect the source node to the sink node.

The network operates if all the components contained in a minimal path set are functioning. For

example, there are four MPs in the network (Figure 2.1), given as follows:

       1 1 2 2 5 6 3 1 3 6 4 2 4 5MP , ; MP , ;MP , , ; MP , , .a a a a a a a a a a   

A minimal cut set for a binary network is a smallest set of components such that if all the

components are simultaneously failed, the network is failed. For example, there are four MCs in

the network (Figure 2.1), given as follows:

       1 1 5 2 2 6 3 1 4 6 4 2 3 5MC , ; MC , ;MC , , ; MC , , .a a a a a a a a a a   

Correspondingly, the reliability evaluation of multistate networks can be carried using the

minimal path (cut) vectors. Let 1 2(, ,...,)nx x xx denotes the component state vector, where

component � is in state �� . A component state vector, x , is called a minimal path vector to

system state d, if   d x , and   d y for any y x , where    is the system structure

function and y x means i iy x for all i . Such a minimal path vector is also called a d-MP for

short. For example, there are three d-MPs in the network (Figure 2.1) for d equals to 3, given as

follows:

     1 2 33 MP 3,2,1,0,0,1 ;3 MP 2,2,0,0,1,1 ;3 MP 2,1,1,0,1,2 .     

24

A component state vector, x , is called a minimal cut vector to system state d, if   d x ,

and   d y for any y x , where y x means i iy x for all i and there exist at least one i

that i iy x . Such a minimal cut vector is also called a d-MC for short.

2.1.3 Structure function for multistate network reliability

Given the state distribution of each component, we are interested in finding the state distribution

of the network. “Structure function” is used to identify the relationship between the component

states and the system state. Let 1 2(, ,...,)nx x xx denotes the component state vector, where

component � is in state ��.   x denotes the system state as a function of the component states,

where    is the system structure function. The structure function of multistate networks can

be defined as follows. Let 1 2 q, , ... , MC MC MC be the sets of all minimal cut sets in a two-

terminal network, the system sate   x is given as [11]:

   1 2 qmin , , ... , MC MC MC x , (2.1)

where iMC is the summation of component states included in this minimal cut set. For example,

the structure function of the network (shown in Figure 2.1) is given as follows:

   1 5 2 6 1 4 6 2 3 5min , , ,a a a a a a a a a a       x .

Assume the states of component ��, ��, …, �� are 3, 2, 1, 0, 0, 1, respectively, the state the

of the network is given as follows:

   

 

 

1 5 2 6 1 4 6 2 3 5min , , ,

 = min 3 0, 2 1, 3 0 1, 2 1 0

 = min 3, 3, 4, 3 3.

a a a a a a a a a a       

     



x

With the structure function and demand d, the reliability of a multistate network is given as:

   1 2Pr Pr min , , ... , qd MC MC MC d         
x , (2.2)

25

which further leads to:

   1 2Pr Pr , , ... , qd MC d MC d MC d       x . (2.3)

The reliability of the multistate network (Figure 2.1) to demand level d is given as follows:

   1 5 2 6 1 4 6 2 3 5Pr Pr , , , d a a d a a d a a a d a a a d              x .

2.2 The computational complexity for multistate network reliability

In this section, we discuss several classes of complexity and give the class of complexity for

multistate network reliability evaluation. The complexity analysis is also covered to measure and

compare the efficiency of algorithms. Unless otherwise stated, the materials in this section are

based on [50], [5] and [51].

2.2.1 Classes of computational complexity

There are two criteria for analyzing the efficiency of algorithm, namely time complexity and

space complexity. Time complexity is often more important than space complexity. Time

complexity evaluates the computation time growth of algorithms as a function of problem size.

We introduce the following classes of problems depending on the time complexity of best

existing algorithm.

Class P: An algorithm is polynomial time algorithm if its growth rate in computation time is,

in the worst case, bounded by a polynomial function of problem size. We say a problem belongs

to class P if a polynomial algorithm exists.

Class NP: NP refers to nondeterministic polynomial time. We say a problem is in class NP

if a solution to the problem can be verified as “Yes” or “No” in polynomial time. The complexity

class P is contained in NP. An open problem is this field is P=NP.

Class NP-complete: NP-complete problems are the hardest problems contained in NP.

Every problem in NP is reducible to NP-complete problem in polynomial time. One important

26

property of NP-complete problem is that if a polynomial time algorithm exists for one NP-

complete problem, there exists a polynomial algorithm for every problem in NP.

All the classes of complexity discussed above are for recognition and optimization problems.

However, the problem of evaluating network reliability is essentially a counting problem. A class

of counting problem analogous to class NP is called #P, in which testing whether or not it

satisfies a property can be accomplished in polynomial time. As well, the counting version of

NP-complete is named #P-complete. We define the last class of problem that applied to

recognition, optimization, and counting problems as follows.

Class NP-hard: Any problem that is at least as hard as an NP-complete (#P-complete)

problem is NP-hard. Thus, NP-hard problems can be reduced to NP-complete (#P-complete)

problem through a polynomial time algorithm. NP-complete (#P-complete) problem is contained

in NP-Hard problem. The relationship among these sets of problems can be found in Figure 2.2.

Figure 2.2: Euler diagram for P, NP, NP-complete, and NP-hard set of problems [52]

It has been reported that the reliability evaluation of two-terminal binary network is a NP-

hard problem. This is because enumerating all the MPs/MCs for a two-terminal network is NP-

hard. Because multistate network is a generalization of binary network, the reliability evaluation

of multistate network is also an NP-hard problem. The indirect approaches for reliability

27

evaluation of multistate network consist of three sub-problems. Each sub-problem, searching for

all MP, searching for all d-MPs, and evaluating the probability of unions of events are all NP-

hard.

2.2.2 Algorithm complexity analysis

An intuitive method of measuring and comparing the efficiency of algorithms is to test their

performances on real examples, such as real networks with different sizes (number of

components) and structures. The following criteria are often used, including CPU time, number

of arithmetic operations, and number of recursive calls. While the results may be biased

depending on the examples, it remains to be a part of procedures when we analyze the

efficiency of algorithms.

Another method is to analyze the complexity of algorithms mathematically. We often use

time complexity and space complexity to measure the CPU time and the memory needed

respectively. Both complexities can be expressed as functions of one or several parameters of

the problem, such as the number of components, the number of states of each component, and

the number of MPs. Given the term time complexity and space complexity, we are interested in

the growth rate of these two complexities as the parameters of the problem increase. The

mathematical symbol � is used to represent the growth rate of the complexity of an algorithm.

The � notation describes the asymptotic upper bound on the growth rate of parameters of the

problem. For example, Colbourn [30] reported an algorithm with an efficiency of �(� ∙�), where

� is the number of components (links) of the network and � is the number of MPs.

2.3 Fundamentals for multistate network reliability evaluation

Algorithms are computerized procedures to solve problems. The main objective of algorithmic

research is to design such procedure that the problem can be solved using less computational

28

resources. In this section, we discuss some fundamentals of algorithms used for evaluating

multistate network reliability. Unless otherwise stated, the materials in this section are based on

[50], [53]-[54].

2.3.1 Data structure of network

Before we develop efficient computer algorithms for network reliability analysis, we need data

structures to represent the network configurations. In this thesis, the data structure of a network

is used to search for all MPs, the first step for evaluating multistate network reliability. It contains

the information of all the components and their neighboring components.

A network, � = (�,�) consists of a set of nodes, � together with a set of undirected edges

or directed arcs, �. In this thesis, we use the term “links” for both undirected edges and directed

arcs.

One data structure for representing a network is “adjacency matrix”. Adjacency matrix

describes the direct relationship between each pair of nodes. If there is no direct connection

from node � to node �, the entry at position (�,�) of the adjacency matrix is zero. Otherwise, the

entry is one. The adjacency matrix of the network in Figure 2.1 is given as follows.

Node 1 2 3 4

1 1 1 1 0

2 0 1 1 1

3 0 1 1 1

4 0 0 0 1

Another popular data structure for representing a network is “adjacency list”, or “linked list”.

A linked list is a structure in which objects refer to the same kind of object. For each element in

the list, it contains index to previous element in the list, index to next element in the list and data.

Consider the network in Figure 2.1.    0 1,2L  , indicating that the source node has two

outgoing links, �� and ��.    1 3,4L  , indicating that link 1 point to a node with two outgoing

29

links, �� and ��. We use -1 to represent the sink node. The corresponding linked path structure

for the undirected network is given as follows:

� = {(1,2),(3,4),(5,6),(5,6),(−1),(−1),(3,4)}.

Let |�| and |�| denote the number of nodes and links respectively. It requires �(|�|�) to

store the adjacency matrix and �(|�|) to store the linked list.

2.3.2 Search algorithm

Generally, searching for MPs and d-MPs can be regarded as constraint satisfaction problems,

which aim at finding results that satisfy several constraints. The constraints are often expressed

as mathematical equations and inequations.

Search tree algorithms are one class of algorithms to solve constraint satisfaction problem.

There are mainly two types of tree search strategies, namely depth-first search and width-first

search (or breadth-first search). The depth-first search (DFS) starts at the root node and

explores as deep as possible. The breadth-first search (BFS) starts at the root node and

explores all the neighboring nodes first, before moving to the next level neighbors. Let |�| and

|�| denote the number of nodes and links in the search tree respectively. It takes �(|�| + |�|)

time to traverse the entire tree for both depth-first search and width-first search.

There are various heuristics to enhance the two general search strategies. Backtracking is

used together with depth-first search for solving constraint satisfaction problems. It implements

a depth-first search mechanism that incrementally builds candidates to the solutions and

abandons each partial candidate as soon as it determines that the candidate cannot possibly be

completed to a valid solution.

30

2.3.3 General methods for reliability evaluation

A general method for the reliability evaluation of multistate networks is using minimal path (cut)

vectors, namely d-MPs (d-MCs). Given that all d-MPs (d-MCs) have been found, the issue

becomes how to evaluate the probability of the union of these vectors. For example, given all L

d-MPs, denoted by 1 2 Lz ,z ,? ,z , the reliability can be expressed as follows:

         1 2 LPr Prd        x x z x z x z , (2.4)

where x is the component state vector, and    is the system structure function. There are

many methods for the probability evaluation of the union of d-MPs (d-MCs). In this Chapter, we

introduce two classical methods that used for probability evaluation of the union of events,

namely inclusion-exclusion (IE) method and sum-of-disjoint-product (SDP) method. More

efficient methods for evaluating probability of the union of d-MPs (d-MCs), namely recursive

sum-of-disjoint-product (RSDP) method and state space decomposition (SSD) method will be

covered in Chapter 5 and Chapter 6 respectively.

Inclusion-exclusion method

IE method successively calculates upper and lower bounds of probability of the union of

events by Bonferroni inequalities. It keeps including and excluding terms and eventually

converges to the exact probability value. Let �� be the event that the component state vector is

greater than or equal to the d-MP, jz , i.e.  jx z . Let �� represents the sum of the probabilities

that the component state vector is greater than or equal to any � d-MPs. It can be expressed as

follows:

�� = ∑ Pr����
⋂ ���

⋂ ⋯ ⋂ ���
������⋯���� . (2.5)

Then, the reliability is given as follows:

    
L

k-1

k
k 1

Pr d 1 S


  x . (2.6)

31

For example, there are three d-MPs in the network (shown in Figure 2.1) for d equals to 3,

given as      1 2 33,2,1,0,0,1 ; 2,2,0,0,1,1 ; 2,1,1,0,1,2 .  z z z The reliability of this multistate

network to system demand level 3 can be calculated using IE method as follows:

         
     

     

 

1 2 3

1 2 3

1 2 1 3 2 3

1 2 3

Pr d Pr

 = Pr Pr Pr

 - Pr , Pr , Pr ,

 +Pr , , .

z z

x x x

       

    

         

  

x x z x x

x z x z x z

x z x z x z x z x z x z

z z z

Sum-of-disjoint-product method

SDP method applies addition law of probabilities to evaluate the probability of the union of

events. Let �� be the event that the component state vector is greater than or equal to the d-MP,

jz , i.e.  jx z . The reliability of multistate networks to system demand level d is given as

follows:

          1 1 2 1 L 11 2 3 LPr d Pr E Pr E E Pr E E E Pr E E E     x   . (2.7)

For example, the reliability of the multistate network (shown in Figure 2.1) to system

demand level 3 can be calculated using SDP method as follows:

         
     

1 2 3

1 1 2 1 2 3

Pr d Pr

 = Pr Pr , Pr , , .

       

       

x x z x z x z

x z x z x z x z x z x z

The signs of terms for IE method change between plus and minus. The minus signs are

due to double counting in the previous inclusion operations. On the other hand, all terms have

the plus signs in SDP method. Both methods need to evaluate 2� − 1 terms to obtain the

reliability in the worst-case scenario, where � is the number of d-MPs. The complexities of

evaluating the reliability of multistate networks grow exponentially with the number of d-MPs for

both IE method and SDP method.

32

Chapter 3

An Improved Algorithm for Finding All Minimal

Paths in a Network

Recall the overall framework of the topics in this thesis, as shown in Figure 1.3. In this chapter,

we focus on the first topic, which is finding all MPs. This is the first step of the indirect

approaches for reliability evaluation of multistate networks. An introduction of searching for

minimal paths is provided in Section 3.1. The linked path structure indexed by nodes is

introduced in Section 3.2. The definition of distance between each node and the sink node is

given, together with a simple algorithm for labeling the distance of each node. Based on the

definition of distance, a property is proposed for additional backtracking condition. Section 3.3

presents the improved algorithm to search for all MPs, together with an illustrative example. The

space and time complexity of the proposed algorithm is also analyzed. Section 3.4 compares

the efficiency of proposed algorithm with that of Chen and Lin’s algorithm [31] for two-terminal

networks. An extension of the proposed algorithm to search for all the MPs in networks

consisting of multiple source nodes and/or multiple sink nodes is discussed in Section 3.5.

Section 3.6 concludes the study. Some of the results of this chapter have been documented in

paper [43], and presented at the 9th International Conference on Mathematical Methods in

Reliability (MMR) [44].

3.1 Introduction

Chen and Lin’s algorithm [31] is currently recognized as an efficient DFS algorithm. Chen and

Lin’s algorithm used a linked path structure to represent the network and conduct the search

33

algorithm based on the concept of backtracking. It starts with picking one outgoing link from the

source node and visiting the node pointed by the link. Then it picks one outgoing link of that

visited node and visit the node pointed by that link, and so on. When the sink is reached, or a

cycle is detected, or no links can be found to proceed, it will backtrack to the previous node and

pick another outgoing link to restart the visit. Each time it reaches the sink, one MP is found. All

MPs can be found when all the links have been visited. The pseudo-code of Chen and Lin’s

algorithm can be found in Section 3 of their paper [31]. We focus on “Algorithm 2” in [31], which

searches for all MPs only.

However, the current version of Chen and Lin’s algorithm [31] contains two limitations. The

first limitation is the input data structure, which is shown in Step 1 of “Algorithm 2” in reference

[31]. The input data structure is the linked path structure indexed by links, which only accepts

directed networks. For undirected network, a transformation is required which adds one reverse

directed link for each link that does not connect to the source node. Each time a MP is found, it

needs to be transformed back to the undirected form, which is shown in Step 5 of “Algorithm 2”

[31]. These transformations not only consume additional computational effort themselves, but

also create additional links for the network, resulting in more computational consumption. A MP

can actually be represented either by a sequence of links or by a sequence of nodes. If we use

a linked path structure indexed by nodes, it can accept directed network, undirected network,

and mixed network. Thus, there is no need to create additional links and perform

transformations, which can save a lot of computational effort. In addition, MP represented by a

sequence of nodes contains both the nodes and the links (as pairs of ordered nodes), which

allows both nodes and links to be failure prone in the network.

Another limitation of Chen and Lin’s algorithm [31] is the lack of backtracking conditions.

There are three conditions when a backtrack is triggered in the current version of Chen and

Lin’s algorithm [31]: 1) a cycle is detected, as shown in Step 7 of “Algorithm 2” [31]; 2) the sink

node is reached, i.e. an MP is found, as shown in Step 5 of “Algorithm 2” [31]; 3) No nodes can

34

be found to proceed, as shown in Step 9 of “Algorithm 2” [31]. However, the three backtrack

conditions do not take the structure of the network into full consideration. When all nodes that

are adjacent to the sink have been visited already, it will keep visiting other nodes. It also keeps

visiting other nodes when all nodes that are closer to the sink have been visited already. As

pointed out in Kobayashi and Yamamoto [70], if all nodes with equal distance to the sink node

have been searched under current searching branch, searching nodes with larger distance is

useless. Thus, under those search branches, no MPs can be found. As the network size

becomes large, more and more search branches as such are in fact useless for the purpose of

searching for MPs. Thus, there is a need to introduce additional backtracking condition for Chen

and Lin’s algorithm to eliminate these search branches.

With the two observations above, we believe that Chen and Lin’s algorithm [31] can be

further improved. We first limit our discussions to two-terminal networks, and then extend to

networks consisting of multiple source nodes and/or multiple sink nodes.

Notation list

d : the distance between a pair of nodes.

c : the number of cycles visited by the proposed algorithm.

/u u : the current visiting node/ unpicked adjacent/outgoing node of the current node

/Ind Ind : the set containing cardinality of each current node/updated node.

P : the minimal path set.

 0 1 2, , , ,
E

W v v v v  : the linked path structure by links, where 0v represents outgoing links from

the source node, iv , 1,2,i E  represents the outgoing links from the node pointed by link i .

 0 1 2, , , ,
V

L u u u u  : the linked path structure indexed by nodes, where 0u represents adjacent

nodes and outgoing nodes from the source node, iu , 1,2,i V  represents the non-source

35

adjacent nodes of node i if the link connected to node i is undirected, and the outgoing nodes

of node i if the link connected to node i is directed.

 0 1 2, , , ,d V
L d d d d  : the distance between each node and the sink node, where 0d is the

distance between the sink node and the source node, and id is the distance between the sink

node and node i

 max0 1 2, , ,
d

Q q q q q  : the set containing number of nodes with the same distance, where iq ,

max0,1,2, ,i d  , is the number of nodes with distance d i , and max max()dd L .

 max0 1 2, , , ,
d

S s s s s  : the distance checking list, where 0is  , max0,1,2, ,i d  , is the number of

nodes with distance i that have been visited under the current search branch.

3.2 Preliminaries

In this section, we focus on two-terminal networks. The linked path structure indexed by nodes

is introduced. The definition of distance between each pair of nodes is given in terms of the

number of nodes, together with a simple recursive algorithm for labeling the distance. Based on

the distance between each node and the sink node, a property is proposed for additional

backtracking condition.

3.2.1 Linked path structure indexed by nodes

Chen and Lin [31] used linked path structure indexed by links,  0 1 2, , , ,
E

W v v v v  , to

represent a network. As an example, consider the following network example given by Chen

and Lin [31], as shown in Figure 3.1 (a).

36

Figure 3.1: A network example: (a) the undirected form of the network; and (b) the directed

form of the network [31]

Since it is an undirected network, in order to apply Chen and Lin’s algorithm [31], a

transformation is required to transform the current network into its directed form, as shown in

Figure 3.1 (b). The corresponding linked path structure indexed by links can be given as follows:

               
             

1,2 , 3,5 , 6,8,9 , 4,7,11,13 , 3,5 , 6,8,9 , 3,5 , 6,8,9 ,

4,7,11,13 , 10,12,14 , 6,8,9 , 10,12,14 , 4,7,11,13 , 1 , 1 ,

W 

 

where    0 1,2W  represents that the outgoing links from the source node are link 1 and link 2.

 W i , 1,2,i E  , represents the outgoing links from the node pointed by link i . -1 is used to

represent the sink node. When an MP is found, for example,  1,3,7,9,14P  , it needs to be

transformed back to the undirected form, denote as  1,4,5,6,9P  .

In this study, we use linked path structure indexed by nodes to represent a network. Let

 0 1 2, , , ,
V

L u u u u  represent the linked path structure indexed by nodes. The linked path

structure indexed by nodes can be used directly to represent the networks in their undirected,

directed, and mixed forms, respectively. For example, consider the undirected network shown in

Figure 1.1 (a), and for the convenience of presentation, we label the nodes by numbers, which

is shown in Figure 3.2.

37

Figure 3.2: An undirected network example indexed by node

Let    00 1,2L u  , indicating that the source node has two adjacent nodes, node 1 and

node 2. Let    11 2,3L u  , indicating that node 1 has two non-source adjacent nodes, node 2

and node 3. We use -1 to represent the sink node. Thus,    33 1,2,4, 1L u   , and

   44 2,3, 1L u   . The corresponding linked path structure for the undirected network, shown

in Figure 3.2, is given as follows:

          1,2 , 2,3 , 1,3,4 , 1,2,4, 1 , 2,3, 1 .L   

Unlike the linked path structure indexed by links, as used in [31], there is no need to

transform the undirected networks to its directed forms.

0 -1

4

3

2

1

Source Sink

Figure 3.3: An directed network example indexed by node

38

For directed network, consider the directed network shown in Figure 1.1 (b), and for the

convenience of presentation, we label the nodes by numbers, as shown in Figure 3.3. Let

   00 1,2L u  , indicating that the source node has two outgoing nodes, node 1 and node 2.

Let    11 2,3L u  , indicating that node 1 has two outgoing nodes, node 2 and node 3. Note

that the linked path structure is the same as the one for undirected form of this network.

Comparing to the linked path structure based on links with 15 elements, the linked path

structure based on nodes is much simpler, which contains only 5 elements. Thus, the linked

path structure indexed by nodes uses less storage space. In addition, for undirected and mixed

networks, the linked path structure indexed by nodes can save extra computational efforts since

it does not create additional links and no transformation is required when each MP is found.

3.2.2 The distance between node pair

The distance is defined as the minimal number of edges in some paths between any two

terminal nodes in [70], and there is no discussion on methods of labeling the distance in [70]. In

this work, we define the distance between a pair of nodes based on number of nodes and

provide a simple a simple recursive algorithm to label the distance.

First, we define the distance between any pair of nodes as follows.

Definition 1 The distance between a pair of nodes is the minimum number of nodes for one

node to reach the other node.

Consider the network in Figure 3.2. There are 5 nodes, namely, 0, 1, 2, 3, and 4, and one

sink node -1. We want to find the distance between the sink node and other nodes. Take node 1

as an example. It can reach node -1 via 1 node, which is node 3; or 2 nodes, which are node 2

and node 4; or 3 nodes, which are node 2, node 3 and node 4. The distance is the minimum

number of nodes required, which is 1. The distance between source 0, node 1, node 2, node 3,

node 4 and the sink node is 2, 1, 1, 0, and 0, respectively, in this example.

39

With Definition 1, one can apply the well-known Dijkstra’s Algorithm [56], which finds the

shortest path between one node and every other node in polynomial time  2
O V , where V is

the number of nodes. The length between each pair of adjacent nodes is 1 in our network. Then

the distance is the length of the shortest path. In this paper, given the linked path structure

indexed by node, we apply the main idea of Dijkstra’s Algorithm and give a simple recursive

algorithm, namely distance, for labeling all the distances between the sink node and other

nodes.

step 1 Input the linked path structure based on nodes of the network, L . Obtain the

number of elements inL, denote as S . Create a set,  1Ind   , to store the current node,

where it contains only the sink node -1 currently; another set, Ind  for updating Ind ,

and an array of size S to store the distances for elements in L, denote as dL , where

 0 1 2 2
, , , ,d V

L d d d d


  . Set 0id  , where 0,1,2, , 2i V  . Set the current distance,

0d  .

step 2 For each element in L, if it contains any node in Ind , label the distance of the

element as id d . Store the cardinality of the element to Ind  . Empty this element.

step 3 If all elements inL are empty, stop and the labeling process is finished.

Otherwise, let Ind Ind , 1d d  , and go to step 2.

We illustrate the algorithm distance using the network example in Figure 3.2.

1. Input the linked path structure as follows:

          1,2 , 2,3 , 1,3,4 , 1,2,4, 1 , 2,3, 1 .L   

There are 5 nodes, namely, 0, 1, 2, 3 and 4, and one sink node -1. Obtain the number of

elements, 5S  . Create the set  1Ind   , the set Ind  , and dL , where

 0 1 2 3 4, , , ,dL d d d d d . Set 0id  , where 0,1,2,3,4i  . Set the current distance, 0d  .

40

2. By checking each element of L,    3 1,2,4, 1L   and    4 2,3, 1L   contain -1. Label their

distances as 3 4 0d d d   , and store their cardinalities as  3, 4Ind  . Empty these

elements and L becomes:

          1,2 , 2,3 , 1,3,4 , , .L 

3. Since there are non-empty elements in L, let Ind Ind , 1 1d d   , and go to step 2.

4. By checking each element of L ,    1 2,3L  , and    2 1,3,4L  contain 3, and

   2 1,3,4L  contains 4. Label the distances as 1 2 0d d d   , and store the cardinalities

of these element to  1, 2Ind  . Empty these elements and L becomes:

          1,2 , , , , .L 

5. Since there is non-empty element in L, let Ind Ind , 1 2d d   , and go to step 2.

6. By checking each element,    1 1,2L  contains1 and 2 in Ind . Label the distance as 0 2d  ,

and store the cardinalities of these element to  0Ind  . Empty these elements and L

becomes:

          , , , , .L 

7. Since all elements in L are empty, the labeling process is finished. We have the distance

as follows:

 2,1,1,0,0 .dL 

3.2.3 Additional backtracking condition

Based on the distance between the sink node and other nodes, a property for additional

backtracking condition is given as follows.

41

Property 1 during the search process, if all the nodes with distance, k, have been visited,

and the current visiting node has distance larger than k, no MPs can be found under this search

branch.

When � = 0, all the nodes with distance 0 have been visited, i.e. all the nodes that are

adjacent to the sink node have been visited already. If the current visiting node has distance

larger than 0, it can only reach the sink node by first visiting at least one of nodes that are

adjacent to the sink node again. However, by visiting a node with distance 0 twice, a cycle is

formed which will trigger the backtracking process (backtrack to the previous node). Thus, it will

never reach the sink node and no MPs can be found under this search branch.

When � = 1, all the nodes with distance 1 have been visited. If the current visiting node has

distance larger than 1, it can only reach the sink node by first visiting at least one of nodes with

distance 1 and then visiting at least one of nodes that are adjacent to the sink node. However,

by visiting a node with distance 1 twice, a cycle is formed which will trigger the backtracking

process. Thus, it will never reach the sink node and no MPs can be found under this search

branch.

When � > 1, all the nodes with distance k have been visited. If the current visiting node has

distance larger than k, it can only reach the sink node by first visiting at least one of nodes with

distance k, then visiting at least one of nodes with distance � − 1,…, and finally visiting at least

one of nodes with distance 0. However, by visiting a node with distance k twice, a cycle is

formed which will trigger the backtracking process. Thus, it will never reach the sink node and

no MPs can be found under this search branch.

Consider the following example shown in Figure 3.4, which is the implementation of Chen

and Lin’s algorithm [31] on the network, shown in Figure 3.1 (b). One visiting path goes as

follows. (1,2)à(3,5)à(4,7,11,13)à(10,12,14). When it reaches (10,12,14), all nodes that are

adjacent to the sink node, (4,7,11,13) and (10,12,14) have been visited. Because all nodes

42

with distance 0 have been visited, visiting node with distance large than or equal to 0 is useless.

As can be seen, the search branch contained in the dashed frame has no MPs found, i.e.

cutting the outgoing branches 10 and 12 from (10,12,14) would not affect the MPs generated.

Figure 3.4: Implementation of Chen and Lin’s algorithm

3.3 The proposed algorithm

In this section, the improved algorithm to search for MPs is presented for two-terminal networks.

A simple example is given to illustrate the steps of the algorithm. At last, the space and time

complexity analysis is presented at the end of the section.

3.3.1 The algorithm

With Property 1 and Definition 1, we propose the following algorithm to search for all minimal

paths. The detailed procedure of the algorithm is given as follows.

step 1 Input the linked path structure indexed by nodes of the network, L. Implement

the algorithm distance to label the distance between each node and sink node, denoted

as dL . Obtain the numbers of nodes with the same distance,  max0 1 2, , ,
d

Q q q q q  . iq ,

max0,1,2, ,i d  , is the number of nodes with distance d i , and max max()dd L .

43

step 2 Initialize the current visiting node, 0u  , the set of minimal paths, P  , the

distance checking list,  max0 1 2, , , ,
d

S s s s s  , where 0is  , max0,1,2, ,i d  , is the

number of nodes with distance i that have been visited under the current search

branch. Go to step 3.

step 3 If all the adjacent/outgoing nodes of the current visiting node u have been picked,

check the following condition:

 If 0u  , stop the search; otherwise, backtrack to the previous node.

Otherwise, select one unpicked adjacent/outgoing node of the current node, ()u L u ,

and go to step 4.

step 4 Check the following conditions for the selected adjacent/outgoing node u ,

step 4.1 If 1u   , the adjacent/outgoing node is the sink node and an MP is found.

Output P and backtrack to the previous node. Go to step 3.

step 4.2 If u P , the adjacent/outgoing node has been visited under the current search

branch and a cycle is detected. Backtrack to the previous node. Go to step 3.

step 4.3 If k ks q and ()dL u k , all nodes with distance k have been visited and the

current adjacent/outgoing node has distance larger than or equal to k . Backtrack

to the previous node; Go to step 3.

step 4.4 If the adjacent/outgoing node doesn’t satisfy any of the conditions above, it is

included in the current MP set,  P u P  , and becomes the next visiting node,

u u . Update the distance checking list, 1i is s  , ()di L u . Go to step 3.

44

Figure 3.5: Flow chart of proposed algorithm

As can be seen, the proposed algorithm first employs the recursive algorithm in Section

3.2.2 to label the distance between each node and the sink. Then it starts to visit one of

adjacent/outgoing nodes of the source node, and proceeds to visit one of adjacent/outgoing

nodes of the visited node, and so on. It backtracks to the previous level and picks up another

adjacent/outgoing node of the visited node to restart the search when one of the following

conditions is met:

1) The sink node has been reached [31];

2) A cycle is detected [31];

45

3) All the nodes with distance, k, have been visited, and the current visiting node has distance

larger than k;

4) No nodes can be found to proceed [31].

Each time it reaches the sink, one MP is found. All MPs can be found when the whole

process is exhausted. Note that backtracking condition (3) is newly added comparing to Chen

and Lin’s algorithm [31]. The flow chart of the proposed algorithm is given in Figure 3.5.

3.3.2 An illustrative example

Consider the network example shown in Figure 3.2 in Section 3.2.

step 1 Input the linked path structure of the network as follows:

          1,2 , 2,3 , 1,3,4 , 1,2,4, 1 , 2,3, 1 .L   

Implement the algorithm distance to label the distance between each node and the sink node as

 2,1,1,0,0 .dL  Obtain the numbers of nodes with the same distance,  2,2,1Q  , where

  00 2Q q  represents that the number of nodes with distance 0 is 2. Obtain the maximum

distance between all the nodes and the sink node, which is,  max max 2dd L  .

step 2 Initialize the current visiting node, 0u  , the set of minimal paths, P  , the distance

checking ,  0 1 2, ,S s s s . Set 0is  , 0,1,2i  .

step 3 Since there exist unselected outgoing nodes for the current visiting node 0u  , select

one unpicked outgoing node of the current node, 1 (0)u L  , and go to step 4.

step 4 Since 1u   , v P and i is q for all 0,1,2i  , it is included in the current MP set,

   1P u P   , and becomes the next visiting node, 1u u  . Update the distance checking

list, 1 1i is s   , () 1di L u  ,  0,1,0S  . Go to step 3.

46

step 3 Since there exist unselected outgoing nodes for the current visiting node 1u  , select

one unpicked outgoing node of the current node, 2 (1)u L  , and go to step 4.

step 4 Since 1u   , v P and i is q for all 0,1,2i  , it is included in the current MP set,

   1,2P u P   , and becomes the next visiting node, 2u u  . Update the distance checking

list, 1 2i is s   , () 1di L u  ,and  0,2,0S  . Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 2u  , select

one unpicked outgoing node of the current node 1 (2)u L  , and go to step 4.

step 4 Since 1u P  , the outgoing node has been visited under the current search branch and

a cycle has been detected, backtrack to the previous node. Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 2u  , select

one unpicked outgoing node of the current node 3 (2)u L  , and go to step 4.

step4 Since 1u   , v P and   0 1dL u k   , for 1 1s q ,it is included in the current MP set,

   1,2,3P u P   , and becomes the next visiting node, 3u u  . Update the distance

checking list, 0 0 1 1s s   , () 0di L u  , and  1,2,0S  . Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 3u  , select

one unpicked outgoing node of the current node, 1 (3)u L  , and go to step 4.

step 4 Since 1u P  , the outgoing node has been visited under the current search branch and

a cycle has been detected, backtrack to the previous node 3. Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 3u  , select

one unpicked outgoing node of the current node 2 (3)u L  , and go to step 4.

step 4 Since 2u P  , the outgoing node has been visited under the current search branch and

a cycle has been detected, backtrack to the previous node. Go to step 3.

47

step 3 Since there exist unselected outgoing nodes for the current visiting node 3u  , select

one unpicked outgoing node of the current node 4 (3)u L  , and go to step 4.

step 4 Since 1u   , v P and   0 1dL u k   , for 1 1s q , it is included in the current MP set,

   1,2,3,4P u P   , and becomes the next visiting node, 4u u  . Update the distance

checking list, 0 0 1 2s s   , () 0di L u  , and  2,2,0S  . Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 4u  , select

one unpicked outgoing node of the current node 2 (4)u L  , and go to step 4.

step 4 Since 2u P  , the outgoing node has been visited under the current search branch and

a cycle is detected, backtrack to the previous node. Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 4u  , select

one unpicked outgoing node of the current node 3 (4)u L  , and go to step 4.

step 4 Since 3u P  , the outgoing node has been visited under the current search branch and

a cycle has been detected, backtrack to the previous node. Go to step 3.

step 3 Since there exist unselected outgoing nodes for the current visiting node 4u  , select

one unpicked outgoing node of the current node 1 (4)u L   , and go to step 4.

step 4 Since 1u   , the outgoing node is the sink node and an MP has been found, outputP ,

 1,2,3,4P  . Backtrack to the previous node and go to step 3.

step3 Since all outgoing nodes have been selected for the current node 4u  and 0u  ,

backtrack to the previous node, 3u  . After backtracking, the current MP is updated,  1,2,3P  ,

and the current distance checking list is updated, 0 0 1 1s s   , and  1,2,0S  .

step 3 Since there exist unselected outgoing nodes for the current visiting node 3u  , select

one unpicked outgoing node of the current node 1 (3)u L   , and go to step 4.

48

step 4 Since 1u   , the outgoing node is the sink node and an MP has been found, outputP ,

 1,2,3P  . Backtrack to the previous node and go to step 3.

step 3 Since all the outgoing nodes have been selected for the current node 3u  and 0u  ,

backtrack to the previous node, 2u  . After backtracking, the current MP is updated,  1,2P  ,

and the current distance checking list is updated, 0 0 1 0s s   , and  0,2,0S  . Note that after

backtracking, node 4 becomes unvisited under the new search branch.

Continue the procedure as illustrated above, as described in the flowchart in Fig. 4. In the end,

all the MPs are found as follows,

 0,1,2,3,4, 1 ,  0,1,2,3, 1 ,  0,1,2,4,3, 1 ,  0,1,2,4, 1 ,  0,1,3,2,4, 1 ,  0,1,3,4, 1 , 0,1,3, 1 ,

 0,2,1,3,4, 1 ,  0,2,3,4, 1 ,  0,2,4,3, 1 ,  0,2,4, 1 ,  0,2,3, 1 , and  0,2,1,3, 1 .

The result agrees with the result in Chen and Lin [31], which partially verifies the proposed

algorithm.

3.3.3 Complexity analysis

Let E denote the set of links, and V denote the set of nodes. The storage complexity of the

algorithm is   4 1O V  , with respect to one input list L (1V  in length), one path bufferP(L

in the worst case), one distance list Q (1V  in the worst case), and one distance checking list

S (1V  in the worst case). The storage complexity of Chen and Lin’s algorithm (algorithm 2)

[31] is   3 1O E V  , with respect to one input list W (1E  in length), one path buffer P

(W in the worst case), one working list (1E  in length), and one node path (V in the worst

case). It can be seen that the storage complexity of the proposed algorithm is less than Chen

49

and Lin’s algorithm, because 1V E  . For many real world networks and undirected networks,

V ≪ E .

Chen and Lin [31] claimed that the time complexity of their algorithm (algorithm 2), is

 O   , where  denotes the average number of links for each MP, and  denotes the total

number of MPs. Although Chen and Lin’s algorithm does not search for cycles, it still visits all

the cycles. Thus, the time complexity of Chen and Lin’s algorithm is still affected by number of

cycles and should be   O c   , where c denotes the total number of cycles contained in

the network. For the proposed algorithm, the time complexity of labeling the distance is bounded

by polynomial time  2
O V , where V is the number of nodes [56]. As the process of searching

for all MPs is NP-hard, the time complexity of labeling the distance is dominated. Let  denote

the average number of nodes in a MP, and c denote the number of cycles visited by proposed

algorithm, the time complexity of the algorithm is   O c   . With the newly added

backtracking condition. Many search branches that end in cycles are eliminated. It can be seen

that our proposed algorithm is more efficient because c ≪ c . In addition, for undirected network,

our improved algorithm can save extra computational efforts since it does not create additional

links and no transformation is required when each MP is found.

3.4 Efficiency investigation

In this section, we investigate the efficiency of the proposed algorithm for finding all MPs in two-

terminal networks. We compare the efficiency of the proposed algorithm with that of Chen and

Lin’s algorithm (algorithm 2) [31] for finding all the MPs in two-terminal networks. In terms of

efficiency of the two algorithms, we are interested in the required CPU time with respect to

different networks. Both algorithms are programmed in Matlab 2014a, and were implemented on

50

a personal computer with Intel Core i7 3.6GHz CPU, and 16 GB of RAM. We also record the

ratio, which is defined as the CPU time of Chen and Lin’s algorithm divided by the proposed

algorithm. The ratio indicates the advantage of the proposed algorithm over Chen and Lin’s

algorithm.

Figure 3.6: The benchmark network

Firstly, we consider a benchmark network given by Luo and Trivedi [57], shown in Figure

3.6. The number of MPs found by the proposed algorithm is 780, which agrees the result in

Chen and Lin [31]. The CPU times for Chen and Lin’s algorithm and the proposed algorithm are

2.7367 seconds and 1.511 seconds, respectively. The ratio is about 1.8111, indicating the

proposed algorithm is 1.8 times faster than Chen and Lin’s algorithm in finding all the MPs of the

benchmark network.

51

Figure 3.7: A typical undirected grid network with 9 nodes

Table 3.1: The efficiency comparison for two-terminal grid networks

Networks

(Nodes)

��: CPU Time by

Chen and Lin’s algorithm

[31] (sec.)

��: CPU Time by

proposed algorithm

(sec.)

2 × 2 0.0264 0.0275

3 × 3 0.0307 0.0294

4 × 4 0.1743 0.1339

5 × 5 13.7148 6.8459

6 × 6 3717.3675 1153.7572

7 × 7 2714114.1393 610070.9546

Secondly, we adopt the two terminal grid networks used in Chen and Lin [31] for efficiency

investigation. Figure 3.7 shows atypical two terminal grid network with 9 nodes. Both the

proposed algorithm, and Chen and Lin’s algorithm [31] generate the same sets of MPs for all

the grid networks considered. As can be seen from Table 3.1, the CPU time of the proposed

algorithm is greater than that of Chen and Lin’s algorithm for the two terminal grid network with

4 nodes. However, as the network size grows, the CPU time of the proposed algorithm is less

52

than Chen and Lin’s algorithm for two terminal grid networks. In addition, as the network size

grows, the ratio increases, indicating that the efficiency of the proposed algorithm over Chen

and Lin’s algorithm becomes more advantageous. Figure 3.8 shows the trend of ratio as the

network size grows.

Figure 3.8: Ratio of CPU time with respect to different sizes of grid networks

3.5 Extension to networks with multiple source/sink nodes

The proposed algorithm in Section 3.3 is limited to two terminal networks, which consist of only

one source node and one sink node. However, there are many real-world networks which

consist of multiple source nodes and/or multiple sink nodes. For a binary network with one

source node and multiple sink nodes, the network is said to be operative if there exist operating

paths from the source node to each sink node [5]. For a network with multiple source nodes and

multiple sink nodes, the network is said to be operative if there exist operating paths for all

source-sink pairs, concurrently [31]. One way to evaluate the reliability of such networks is

based on all the minimal paths for each source-sink pair. Note that a minimal path for each

source-sink pair is not a MP for the network. Thus, given the source node, s , and the sink node,

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6 7

R
a
ti
o

Square root of number of nodes

Ratio = CPU time of Chen and Lin' algorithm
[4] / CPU time of theproposed algorithm

53

t , a minimal path for this source-sink pair is denoted by MPst. To find all MPst for each source-

sink node pair, we have to call the proposed algorithm in Section 3.3 multiple times because the

distance for each non-sink node may be different for different source-sink node pairs. To

address this limitation, we apply the classical network transformation technique in [5] to

transform the networks with multiple source nodes and/or sink nodes to two-terminal networks

and then apply the proposed algorithm to find all MPs for each source-sink pair. This is done as

follows.

step 1 Add two artificial nodes, with one acting as a source node and the other as a sink

node;

step 2 Add one artificial link between each source node and the artificial source node;

and add one artificial link between each sink node and the artificial sink node. Thus, the

network is converted to a two-terminal network.

step 3 Implement the proposed algorithm in Section 3.3 to find all MPs for the converted

two-terminal network.

step 4 Remove the artificial source node and sink node in the MPs obtained in step 3.

Obtain all the MPst for each source-sink pair by collecting those MPs with the specific

source node as the first node and the specific sink node as the last node.

Consider an undirected network shown on the left side of Figure 3.9. The corresponding

directed form of the network is given in Figure 3.10 on the left hand side. The network has one

source node and two sink nodes.

By adding an artificial sink node and 2 artificial links, the converted two-terminal network is

shown on the right side of Figure 3.9. The corresponding directed network is shown on the right

hand side of Figure 3.10. The corresponding linked path structure of the transformed network is

given as follows:

          1,2 , 2,4 , 1,3,4 , 2,4, 1 , 1,2,3, 1L    .

54

Figure 3.9: An example of undirected network with a source node and two sink nodes

Figure 3.10: An example of directed network with a source node and two sink nodes

Note that the converted two-terminal network is the same as the network in Figure 3.2 in

Section 3.2. Based on the numerical example in Section 3.3, all the MPs for the two-terminal

networks are given as follows.

 0,1,2,3,4, 1 ,  0,1,2,3, 1 ,  0,1,2,4,3, 1 ,  0,1,2,4, 1 ,  0,1,3,2,4, 1 ,  0,1,3,4, 1 , 0,1,3, 1 ,

 0,2,1,3,4, 1 ,  0,2,3,4, 1 ,  0,2,4,3, 1 ,  0,2,4, 1 ,  0,2,3, 1 , and  0,2,1,3, 1 .

By removing the artificial sink node, -1, we can obtain all the MPs for each source-sink pair.

All MPs from source node 0 to sink node 3 can be obtained by collecting MPs with node 3 as

the last node, as follows.

 0,1,2,3 ,  0,1,2,4,3 , 0,1,3 , 0,2,4,3 , 0,2,3 , and  0,2,1,3 .

All MPs from source node 0 to sink node 4 can be obtained by collecting MPs with node 4

as the last node, as follows.

 0,1,2,3,4 ,  0,1,2,4 ,  0,1,3,2,4 ,  0,1,3,4 , 0,2,1,3,4 ,  0,2,3,4 , and  0,2,4 .

55

Figure 3.11: A 6 × 6 multi-terminal grid networks

We compare the efficiency of the proposed algorithm in searching for all MPs for networks

with multiple source nodes and/or multiple sink nodes with that of Chen and Lin’s algorithm [31].

We adopt the 6 × 6 grid network for the efficiency investigation, which is shown in Figure 3.11.

3.5.1 Networks with one source and multiple sinks

First, we consider a network with one source node and multiple sink nodes. We fix the source

node s1, and add two sink nodes t1 and t2. We add sink node one at a time until we have 6 sink

nodes. We also consider the scenarios with 12 and 18 sinks nodes, respectively. Figure 3.12

shows the trend of ratio as the number of sink nodes grows. As can be seen from the results,

the CPU time of the proposed algorithm is less than that of Chen and Lin’s algorithm for all

scenarios. In addition, as the number of sink nodes increases, the ratio decreases.

56

Figure 3.12: Ratio of CPU time for networks with one source node and multiple sink nodes

Table 3.2: The distances for 6 × 6 grid networks with one source node and multiple sink nodes

Number of sources and sinks Number of nodes having same distance

1 sources & 2 sinks  2,4,6,6,6,6,5,2Q 

1 sources & 3 sinks  3,5,6,6,6,6,4,1Q 

1 sources & 4 sinks  4,6,6,6,6,6,3Q 

1 sources & 5 sinks  5,6,6,6,6,6,2Q 

1 sources & 6 sinks  6,6,6,6,6,6,1Q 

1 sources & 12 sinks  12,6,6,6,6,1Q 

1 sources & 18 sinks  18,6,6,6,1Q 

*  max0 1 2, , ,
d

Q q q q q  , where iq is the number of nodes with distance i

This can be explained as follows. Recall that one advantage of the proposed algorithm is

due to the inclusion of the additional backtracking condition based on Property 1 in Section

3.2.3. The maximum distance decreases as the number of terminals increases, as shown in

0

1

2

3

4

5

6

7

0 5 10 15 20

R
a
ti
o

Number of sink nodes

Ratio = CPU time of Chen and Lin' algorithm
/ CPU time of the proposed algorithm

57

Table 3.2. In addition, as the number of sinks increases, the number of nodes with shorter

distance increases, while the number of nodes with longer distance decreases. Thus, as the

number of sinks increases, the search branches reduced by additional backtracking condition

decrease. As a result, the advantage of proposed algorithm over Chen and Lin’s algorithm

decreases as more nodes become sink nodes. However, another advantage of proposed

algorithm, which uses linked path structure indexed by node to represent the network, is still in

effect. Thus, despite the number of sink nodes, the proposed algorithm is still more efficient than

Chen and Lin’s algorithm [31].

3.5.2 Networks with one sink and multiple sources

Second, we consider a network with one sink node and multiple source nodes. We fix the sink

node t1, and add two source nodes s1 and s2. We add source nodes one at a time until we have

6 source nodes. We also consider the scenarios with 12 and 18 source nodes respectively.

Figure 3.13 shows the trend of ratio as the number of sink nodes grows. As can be seen from

the results, the CPU time of proposed algorithm is less than that of Chen and Lin’s algorithm for

all scenarios. In addition, as the number of sink nodes increases, the ratio remains almost the

same.

Figure 3.13: Ratio of CPU time for networks with one sink node and multiple source nodes

0

1

2

3

4

5

6

7

0 5 10 15 20

R
a

ti
o

Number of source nodes

Ratio = CPU time of Chen and Lin' algorithm

58

This can be explained as follows. The distance between each node and the sink node is the

same for each scenario, as shown in Table 3.3. There is only a slight difference in scenarios

with 12 and 18 source nodes. As a result, the advantage of the proposed algorithm over Chen

and Lin’s algorithm is the almost the same for network with one sink node and multiple source

nodes.

Table 3.3: The distances for 6 × 6 grid networks with one sink node and multiple source nodes

Number of sources and sinks Number of nodes having same distance

2 sources & 1 sinks  1,3,5,6,6,6,6,3,1Q 

3 sources & 1 sinks  1,3,5,6,6,6,6,3,1Q 

4 sources & 1 sinks  1,3,5,6,6,6,6,3,1Q 

5 sources & 1 sinks  1,3,5,6,6,6,6,3,1Q 

6 sources & 1 sinks  1,3,5,6,6,6,6,3,1Q 

12 sources & 1 sinks  1,3,5,6,6,7,5,3,1Q 

18 sources & 1 sinks  1,3,5,6,7,6,5,3,1Q 

*  max0 1 2, , ,
d

Q q q q q  , where iq is the number of nodes with distance i

3.5.3 Networks with multiple sources and sinks

Finally, we consider a network with multiple source nodes and multiple sink nodes. We start

with 2 source nodes, s1 and s2, and 2 sink nodes, t1 and t2. Then we consider a network with

one additional source node and one additional sink node, s3 and t3. We keep adding one pair of

source node and sink node at a time until we have 6 source nodes and 6 sink nodes. Finally, we

consider a 6 × 6 grid network with 12 source nodes and 12 sink nodes, and a 6 × 6 grid network

with 18 source nodes and 18 sink nodes respectively. Figure 3.14 shows the trend of the ratio

as the number of nodes grows. As can be seen from the results, the CPU time of the proposed

59

algorithm is less than that of Chen and Lin’s algorithm for all scenarios. In addition, as the

number of sink nodes increases, the ratio decreases.

Figure 3.14: Ratio of CPU time for networks with multiple source/sink nodes

Table 3.4: The distance information for 6 × 6 multi-terminal grid networks

Number of sources and sinks Number of nodes having same distance

2 sources & 2 sinks  2,4,6,6,6,6,5,2Q 

3 sources & 3 sinks  3,5,6,6,6,6,4,1Q 

4 sources & 4 sinks  4,6,6,6,6,6,3Q 

5 sources & 5 sinks  5,6,6,6,6,6,2Q 

6 sources & 6 sinks  6,6,6,6,6,6,1Q 

12 sources & 12 sinks  12,6,6,6,7Q 

18 sources & 18 sinks  18,6,7,6Q 

*  max0 1 2, , ,
d

Q q q q q  , where iq is the number of nodes with distance i

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

R
a
ti
o

Number of source nodes and sink nodes

Ratio = CPU time of Chen and Lin' algorithm
/ CPU time of the proposed algorithm

60

The explanation is similar to networks with one source and multiple sinks. The maximum

distance decreases as the number of terminals increases, as shown in Table 3.4. In addition, as

the number of terminals increases, the number of nodes with shorter distance increases, while

the number of nodes with longer distance decreases. Thus, as the number of terminals

increases, the search branches reduced by additional backtracking condition decrease. As a

result, the advantage of the proposed algorithm over Chen and Lin’s algorithm decreases as

more nodes become terminals. However, another advantage of the proposed algorithm, which

uses linked path structure indexed by node to represent the network, is still in effect. Thus,

despite the number of terminals, the proposed algorithm is still more efficient than Chen and

Lin’s algorithm [31]. Table 3.5 provides the CPU time required for each case.

Table 3.5: The efficiency comparison for 6 × 6 multi-terminal grid networks

Number of sources

and sinks

��: CPU Time by

Chen and Lin’s

algorithm (sec.)

��: CPU Time

by proposed

algorithm (sec.)

2 sources & 2 sinks 9281.3671 2921.0970

3 sources & 3 sinks 15809.0553 5619.2184

4 sources & 4 sinks 23134.0536 8506.3059

5 sources & 5 sinks 30336.4158 11659.4397

6 sources & 6 sinks 40590.2462 15943.8487

12 sources & 12 sinks 93229.71638 38224.48994

18 sources & 18 sinks 145299.5843 61605.53568

61

3.6 Summary

In this chapter, we develop an improved algorithm for searching for all MPs based on

backtracking. By computational experiments, it is found that the proposed algorithm is more

efficient than existing algorithms in finding all MPs when the network size is not too small, and

the efficiency of the proposed algorithm over existing algorithms becomes more advantageous

when the size of the network grows. Minimal paths play an important role in reliability evaluation

for binary networks. The generated MPs in this chapter are used as building blocks for finding

all the d-MPs in Chapter 4.

62

Chapter 4

Search for all d-MPs for all d levels in Multistate

Networks

Recall the overall framework of the topics in this thesis, as shown in Figure 1.3. In this chapter,

we focus on the second topic, which is finding all d-MPs for all possible demand levels. This is

the second step of the indirect approaches for reliability evaluation of multistate networks. In

Chapter 3, we propose an algorithm to search for all MPs in a network. After all the MPs have

been found, we can use them as building blocks to generate all d-MPs. In Section 1.3, we point

out that existing algorithms on generating d-MPs are for a particular d value. However, if all d-

MPs for all possible integer � values are required, we need to call such methods multiple times

with respect to all � values. A more efficient method is desirable to generate all d-MPs for all �

levels.

In this chapter, we develop a recursive algorithm based on breadth-first search to search for

all the d-MPs for all possible � values. The relationships among d-MPs for different d levels are

revealed in Section 4.1. The proposed algorithm is given in Section 4.2, followed by its

complexity analysis and an illustrative example. A heuristic for pre-processing the MPs is

proposed in Section 4.3 to improve the efficiency of the algorithm. Section 4.4 investigates the

efficiency of the algorithm. Section 4.5 presents the extension of using the proposed algorithm

to search for subsets of d-MPs, which can be used for lower reliability bound evaluation. Section

4.6 summarizes the work. The materials in this chapter have been documented in paper [45]

and the conference proceedings of Reliability and Maintainability Symposium (RAMS) [46].

63

4.1 Introduction

Given all the MPs have been found, Lin et al. [25] proposed a mathematical formulation with 3

constraints to obtain the d-MP candidates. The constraints are: 1) the summation of the flows on

all the MPs equals to d; 2) the total flow on each MP is smaller than or equal to the maximum

capacity on that MP, which is the minimum value of all the maximum capacities of components

contained in that MP; 3) the total flow going through each component is less than or equal to its

maximum capacity. After the d-MP candidates are generated, each d-MP candidate is verified

through a recursive comparison and all d-MPs are obtained for a particular level �. Lin [32]

further proved that constraint 2 was redundant and reduced the constraints proposed in [25]

from 3 to 2. Another suggestion from Lin et al. [25] was that if the network is acyclic, each

generated d-MP candidate is a real d-MP without verification through a recursive comparison.

For cyclic networks, Yeh [33] further removed unsatisfied solutions from the generated d-MP

candidates by detecting cycles if all cycles of the network are known. The approach proposed

by Lin et al. [25] and modified by Lin [32] and Yeh [33] requires MPs as prior knowledge, and

enumeration is used to generate the d-MP candidates. Chen [58] proposed an enumeration

method to improve the efficiency of enumeration by rearranging the locations of constraints

during the enumeration process.

From the approach proposed by Lin et al. [25] and modified by Lin [32] and Yeh [33], it can

be observed that each d-MP candidate can be generated by a combination of MPs, given that

the capacity of each component takes successive integer values from 0 to its maximum capacity.

Consider the example in Figure 2.1. There are four MPs and their vector representations are

given as follows:

       

       
1 1 2 2 5 6

3 1 3 6 4 2 4 5

MP , 1,1,0,0,0,0 ; MP , 0,0,0,0,1,1

MP , , 1,0,1,0,0,1 ; MP , , 0,1,0,1,1,0 .

a a a a

a a a a a a

   

   

The maximum capacity for each component is given by the maximum state vector

64

 3,2,1,1,1,2MaxX , that is, the maximum states for component 1 to 6 are 3, 2, 1, 1, 1 and 2,

respectively. There is one cycle formed by component 3 and 4, denoted as  3 4,x xC .

Each 2-MP candidate can be generated by a combination of 2 MPs. For example,

     
1 2 2

1,1,0,0,0,0 0,0,0,0,1,1 1,1,0,0,1,1

MP MP MP candidate

 
  

Furthermore, each d-MP candidate can be generated by a combination of one (� − 1)-MP

and one MP. For example, a 4-MP can be generated by a combination of a 3-MP and a MP as

follows:

     
23 4

3,2,1,0,0,1 0,0,0,0,1,1 3,2,1,0,1,2

MP MP MP candidate 

 
  

Thus, instead of generating d-MP candidates for each d level by identifying combinations of

MPs using enumerations, we can use MPs as building blocks to generate 2-MP candidates, and

use 2-MPs and MPs as building blocks to generate 3-MP candidates, …, and so forth. During

the process, each newly generated candidate will be verified using constraints derived from [25],

[32], and [33] to obtain real d-MPs. Invalid candidates will be abandoned to avoid generating

more invalid candidates. When the d-MPs with respect to the maximum � value have been

found, all the d-MPs for all possible integer � are found as well.

Figure 4.1: A network example from [34]

Although each generated candidate that passes the constraints derived from [25], [32], and

65

[33] is a real d-MP, there may exist redundant d-MPs. Consider the following network as shown

in Figure 4.1, which is taken from [34].

When we build 2-MPs using 2 MPs, we will generate redundant solutions. For example,

consider the following 4 MPs:

       

       
1 1 3 5 8 2 2 6 9

3 2 5 7 9 4 1 3 6 9

MP , , , 1,0,1,0,1,0,0,1,0 ;MP , , 0,1,0,0,0,1,0,0,1 ;

MP , , , 0,1,0,0,1,0,1,0,1 ;MP , , , 1,0,1,0,0,1,0,0,1 .

a a a a a a a

a a a a a a a a

   

   

We can build one 2-MP using 1MP and 2MP , and another 2-MP using 3MP and 4MP as

follows:

     

     
1 2

3 4

MP MP 1,0,1,0,1,0,0,1,0 0,1,0,0,0,1,0,0,1 1,1,1,0,1,1,0,1,1

MP MP 0,1,0,0,1,0,0,1,0 1,0,1,0,0,1,0,0,1 1,1,1,0,1,1,0,1,1

   

   

As can be seen, different combinations of 2 MPs can result in the same 2-MP. Since

redundant solutions generated at lower d levels will lead to even more redundant solutions as d

increases, they need to be removed right away to avoid consuming additional computational

effort.

The next question is how to implement our incremental building and validating process for

finding all non-redundant d-MPs. There are mainly two search strategies reported in the

literature, namely depth-first search and breadth-first search. The depth-first search starts at

the root node and explores as deep as possible before backtracking. The breadth-first search

starts at the root node and explores all the neighboring nodes. Given those neighboring nodes,

it further explores their neighbor nodes and so on. Although both searching strategies can be

used to implement our incremental building and validating process for finding all the d-MPs,

breadth-first search is more efficient in dealing with redundant d-MPs. Because redundant d-

MPs for each d level can only be identified given all d-MPs for that d level are obtained. Based

on the observations and discussions above, we report a recursive breadth-first search algorithm

to search for all the d-MPs for all possible integer � values.

66

Notation list

MPi : the vector form of i th MP, 1,2, ,i   .
d

ijX : the j th d-MP candidate that is built by

MP ,MP ...,MPu v w , with maximum cardinality,  max , ,...,u v w equal to i for level d.

MP ,MP ...,MPu v w are all binary MPs with cardinality , ,...,u v w .

dL : denote the number of d-MPs for a particular d level.

 : the total number of d-MPs generated for all � level.

vC : the v th cycle in the network,  , , ,v i j kx x xC  , 1,2, ,v c  .

4.2 Algorithm development

In this section, we report the recursive search algorithm, based on the mechanism of breadth-

first search. Recall that the vector representation of a MP is indeed an 1-MP for a multistate

network. Given all vector forms of MPs, it picks the first MP and adds each MP one at a time to

build 2-MP candidates. If the generated 2-MP candidates pass the constraints derived from [25],

[32], and [33], they become real 2-MPs. It then picks the second MP, and adds each MP except

the first MP one at a time to build 2-MP candidates. If the generated 2-MP candidates pass the

constraints derived from [25], [32], and [33], they become real 2-MPs. It then picks the third MP,

and adds each MP except the first and second MP one at a time to build 2-MP candidates and

so on. This process is implemented recursively until it picks the last MP and adds the last MP to

build a 2-MP candidate. After removing the redundant 2-MPs, all the 2-MPs are found. It then

proceeds to the next d level. This process is implemented recursively until the maximum � level

has been reached.

67

4.2.1 The proposed algorithm

Figure 4.2: Flow chart of algorithm

Figure 4.2 shows a flow chart of the algorithm. The detailed procedure of algorithm is given in

the following steps.

Step 1 Input the vector forms of all the MPs, MPi , 1,2, ,i   ; the maximum state vector, MaxX

all the cycles, vC , 1,2, ,v c  . Set demand level d equal to 1.

Step 2 Let � = � + 1. Build d-MP candidates
d

ijX by adding MPs to each (� − 1)-MP

recursively as follows:

 For the (� − 1)-MPs built by 1MP , add each MP one at a time to build d-MP candidates;

 For the (� − 1)-MPs built by MP ,MP ...,MPu v w , with maximum cardinality,  max , ,...,u v w

equal to 2, add each MP except 2MP one at a time to build d-MP candidates;

68

 For the (� − 1)-MPs built by MP ,MP ...,MPu v w , with maximum cardinality,  max , ,...,u v w

equal to 3, add each MP except 1MP and 2MP one at a time to build d-MP candidates;

……

 For the (� − 1)-MPs built by MP ,MP ...,MPu v w , with maximum cardinality,  max , ,...,u v w

equal to  , add MP to build d-MP candidates.

Step 3 Find all feasible d-MP candidates
d

ijX satisfying the following constraints:

 The capacity of each component in
d

ijX is smaller than or equal to the maximum

capacity of its corresponding component [25], that is:

Let  1 2, , ,
d

ij nx x xX  ,
d

ij  MaxX X , where
d

ij  MaxX X means i
ix M , for 1,2, , .i n 

 For cyclic network,
d

ijX contains no cycles [33], i.e. there exist at least one component

for
d

ijX that has capacity equal to 0 for each cycle:

Let  1 2, , ,
d

ij nx x xX  ,    in , , ,min m 0,i j kv x x x C  for 1,2, ,v c  .

Step 4 If there is no d-MP candidate that can pass all the constraints, terminate the algorithm;

otherwise, for all d-MP candidates satisfying all the constraints, remove the redundant

ones and output them. They are all the real d-MPs for level �. Go to step 2 for the next �

level.

4.2.2 An illustrative example

Consider the earlier example in Section 4.1, shown in Figure 2.1, with the information on

MPs, Maximum state vector and cycles.

1. Input all the vector forms of MPs as follows:

       1 2 3 4MP 1,1,0,0,0,0 ;MP 0,0,0,0,1,1 ;MP 1,0,1,0,0,1 ;MP 0,1,0,1,1,0 .   

Input maximum state vector  3,2,1,1,1,2MaxX , and cycle  3 4,x xC . Set d = 1;

69

2. Let � = � + 1 = 2. Build 2-MP candidates by adding MPs to each MP (1-MP) recursively as

follows:

 For MP1 with maximum cardinality 1, add MP1, MP2, MP3 and MP4 one at a time and

obtain the following 2-MP candidates:

   

   

2 2

11 211 1 1 2

2 2

31 411 3 1 4

MP MP 2,2,0,0,0,0 ; MP MP 1,1,0,0,1,1 ;

MP MP 2,1,1,0,0,1 ; MP MP 1,2,0,1,1,0 .

     

     

X X

X X

2

11X is the 1st d-MP candidate built by MPs with the maximum cardinality 1 for level 2;

2

21X is the 1st d-MP candidate built by MPs with the maximum cardinality 2 for level 2;

2

31X is the 1st d-MP candidate built by MPs with the maximum cardinality 3 for level 2;

2

41X is the 1st d-MP candidate built by MPs with the maximum cardinality 4 for level 2.

 For MP2 with maximum cardinality 2, add MP2, MP3 and MP4 one at a time and obtain

the following 2-MP candidates:

   

 

22 32

42

2 2

2 2 2 3

2

2 4

MP MP 0,0,0,0,2,2 ; MP MP 1,0,1,0,1,2 ;

MP MP 0,1,0,1,2,1 .

     

  

X X

X

22

2
X is the 2nd d-MP candidate built by MPs with the maximum cardinality 2 for level 2;

32

2
X is the 2nd d-MP candidate built by MPs with the maximum cardinality 3 for level 2;

42

2
X is the 2nd d-MP candidate built by MPs with the maximum cardinality 4 for level 2.

 For MP3 with maximum cardinality 3, add MP3 and MP4 one at a time and obtain the

following 2-MP candidates.

   33 43

2 2

3 3 3 4MP MP 2,0,2,0,0,2 ; MP MP 1,1,1,1,1,1 .      X X

33

2
X is the 3rd d-MP candidate built by MPs with the maximum cardinality 3 for level 2;

43

2
X is the 3rd d-MP candidate built by MPs with the maximum cardinality 4 for level 2.

70

 For MP4 with maximum cardinality 4, add MP4 one at a time and obtain the following 2-

MP candidate.

 44

2

4 4MP MP 0,2,0,2,2,0 .   X

44

2
X is the 4th d-MP candidate built by MPs with the maximum cardinality 4 for level 2.

3. Find all feasible 2-MP candidates satisfying all the constraints as follows:

For
2

11X , since
2

11  MaxX X and    3 4min , m 0in 0,0x x   ,
2

11X is a 2-MP.

For
2

21X , since
2

21  MaxX X and    3 4min , m 0in 0,0x x   ,
2

21X is a 2-MP.

For
2

31X , since
2

31  MaxX X and    3 4min , m 0in 1,0x x   ,
2

31X is a 2-MP.

For
2

41X , since
2

41  MaxX X and    3 4min , m 0in 0,1x x   ,
2

41X is a 2-MP.

For 22

2
X , since 22

2
 MaxX X , 22

2
X is not a 2-MP.

For 32

2
X , since 32

2
 MaxX X and    3 4min , m 0in 1,0x x   , 32

2
X is a 2-MP.

For
42

2
X , since

42

2
 MaxX X ,

42

2
X is not a 2-MP.

For 33

2
X , since 33

2
 MaxX X , 33

2
X is not a 2-MP.

For 43

2
X , since    3 4min , m 1in 1,1x x   , 43

2
X is not a 2-MP.

For
44

2
X , since

44

2
 MaxX X ,

44

2
X is not a 2-MP.

4. There are 5 2-MP candidates satisfying the constraints, and there are no redundant

solutions. Output these 2-MPs as follows:

 
2

11 2,2,0,0,0,0X ,  
2

21 1,1,0,0,1,1X ,  
2

31 2,1,1,0,0,1X ,

 
2

41 1,2,0,1,1,0X ,  32

2
1,0,1,0,1,2X .

Go to step 2 for next d level.

71

5. Let � = � + 1 = 3. Build 3-MP candidates by adding MPs to each 2-MP recursively as

follows:

 For the 2-MP that is built by MPs with maximum cardinality 1,
2

11X , add MP1, MP2, MP3

and MP4 one at a time and obtain 4 3-MP candidates.

 For the 2-MP that is built by the MPs with maximum cardinality 2,
2

21X , add MP2, MP3,

and MP4 one at a time and obtain 4 3-MP candidates.

 For the 2-MPs that are built only by the MPs with maximum cardinality 3,
2

31X and 32

2
X ,

add MP3 and MP4 one at a time and obtain 4 3-MP candidates.

 For the 2-MP that is first built by the MPs with maximum cardinality 4,
2

41X , add MP4

one at a time and obtain one 3-MP candidate.

6. Find all feasible 3-MP candidates satisfying all the constraints. We obtain 3 non-redundant

3-MPs. Output these 3-MPs as follows:

 2,2,0,0,1,1 ,  3,2,1,0,0,1 ,  2,1,1,0,1,2 .

Go to step 2 for the next d level.

7. Let � = � + 1 = 4. Build 4-MP candidates by adding MPs to each 3-MP recursively. Find all

feasible 4-MP candidates satisfying the constraints. We obtain one 4-MP,  3,2,1,0,1,2 . Go

to step 2 for the next � level.

8. Let � = � + 1 = 5. Build 5-MP candidates by adding MPs to 4-MP recursively. Since there is

no feasible 5-MP candidate satisfying all the constraints, terminate the search and all d-MPs

for all � values have been found.

72

Figure 4.3: Implementation of algorithm

Figure 4.3 shows the whole procedure of the implementation for the illustrative example. In the

end, we obtain the following d-MPs:

MPs:  1,1,0,0,0,0 ,  0,0,0,0,1,1 ,  1,0,1,0,0,1 ,  0,1,0,1,1,0 ;

2-MPs:  2,2,0,0,0,0 ,  1,1,0,0,1,1 ,  2,1,1,0,0,1 ,  1,2,0,1,1,0 ,  1,0,1,0,1,2 ;

3-MPs:  2,2,0,0,1,1 ,  3,2,1,0,0,1 ,  2,1,1,0,1,2 ;

4-MPs:  3,2,1,0,1,2 .

By setting each component to its maximum capacity and implementing the maximum flow

algorithm, the maximum flow we obtain for this network example is indeed 4, which verifies the

proposed algorithm’s correctness on the highest level of �. The three 3-MPs found are the same

as those in Lin et al. [25]. By implementing the approach proposed by Lin et al. [25] for each

level � from 1 to 4, we obtain the same sets of d-MPs for all � level, which verifies the proposed

algorithm’s correctness on finding all the d-MPs for all � levels.

73

4.2.3 Complexity analysis

The complexity analysis is conducted as follows. Let dL denote the number of d-MPs for a

particular d level, and Mdenote a big number that is greater than the maximum dL among all �

levels. M is used to pre-allocate the space for storing d-MPs for one d level. Recall that n is the

number of components,  is the number of MPs, i.e. 1-MPs, and c is the number of cycles.

The storage complexity of the proposed algorithm is  1 MO c n       with respect to all 1-

MPs buffer (equal to n ), one maximum state vector MaxX (equal to n), all the cycles (equal to

c n in the worst case), and the number of d-MPs for one d level (equal to M n in the worst

case).

For the time complexity, recall that dL is the number of d-MPs for a particular � level and 

is the number of MPs, i.e., the number of 1-MPs. When we implement the proposed algorithm to

generate the 2-MPs, the first 1-MP is used  times to build d-MP candidates, the second 1-MP

is used 1  times to build d-MP candidates, …, and the last 1-MP is used 1 time to build d-MP

candidates. Then each d-MP candidate is verified once. Thus, it takes
 

1

1

2i

O i O
  



    
   

   


time to generate the d-MPs for level 2. When we implement the proposed algorithm to generate

the d-MPs for level d+1, the number of times each d-MP is used depends on which (d-1)-MP

and MP it was built from. Thus, by considering the worst case scenario, each d-MP in level d is

used at most  times to build d-MP candidates. Then each d-MP candidate is verified once.

Thus, it takes  dO L  time to generate the d-MPs for level d+1 in the worst case. By

aggregating the results, let  denote the total number of d-MPs generated for all � level, where

2d  . It requires
 1

2
O

 
 

   
  

 
 time for the proposed algorithm to generate all the d-MPs

for all � level.

74

4.3 Pre-processing of MPs

As can be seen from Section 4.2, the computational complexity of the propose algorithm is

affected by the number of d-MP candidates generated. Some d-MP candidates prove to be real

d-MPs after validation, and others fail to satisfy the constraints. Since our target is to find all real

d-MPs for all � levels, the efficiency could be improved if we can generate less number of d-MP

candidates that are not real d-MPs.

During the implementation of the algorithm, the MPs are given in an arbitrary order. It has

been suggested that by arranging minimal cuts in a certain order, we can improve the efficiency

of finding minimal cut vectors (d-MCs) [59]. Motivated by [59], we believe that different

sequences of MPs may influence the efficiency of the proposed algorithm. By analyzing the

algorithm, we obtain the following properties.

Firstly, we define the minimum state of a MP as follows. Given  1 2MP , , ,i na a a  and the

maximum state of components contained in MPi ,
1 2, , , nM M M , the minimum state of MPi is

1 2MS min(, , ,)ni M M M 

We also define the length of MP as the number of components contained in the MP.

Property 1 Adding MPs with lower minimum state are likely to produce non-real d-MPs.

During the process of the algorithm, many candidates fail to pass the constraint that the

capacity of each component is less or equal to its maximum capacity. Since the algorithm builds

candidates by incrementally adding MPs, it is more likely for MP with lower minimum state to fail

this constraint.

Property 2 For MPs with the same minimum state, adding MPs with higher number of

components are likely to produce non-real d-MPs.

75

For MPs with the same minimum state, it is more likely for MPs with higher number of

components to fail the constraint that the state of each component is less than or equal to its

maximum state.

Property 3 Ordering MPs that are more likely to produce non-real d-MPs in earlier positions

is more likely to reduce the total number of d-MP candidates generated.

Since the algorithm is based on a recursive searching mechanism and the number of MPs

is  , the number of d-MP candidates built for the 1st branch of the searching process is  , 1 

for the 2nd branch, …, k  for the (k+1)th branch, …, and 1 for the last branch, for each d level.

Thus, during the incremental building process of the proposed algorithm, for each d level, the

number of d-MP candidates generated in an earlier branch is larger than those generated in a

late branch. Having a failed d-MP candidate can terminate the searching branch earlier.

With the observation above, it can be seen that ordering MPs that are more likely to

produce failed d-MP candidates in earlier positions is more likely to generate failed d-MP

candidates in lower � levels, which avoid generating more failed d-MP candidates.

Based on the three properties, we propose the following pre-processing rules, called

ORDER, for MPs:

1. Obtain the minimum state, MSi , and the length for each MPi .

2. Order the MPs in ascending order according to their minimum state.

3. For MPs with the same minimum state, order them in descending order according to

their length.

During the process, any tie will be broken by random choice.

Consider the same illustrative example used in Sections 3 and 5. We have the MPs given in

the following arbitrary order:

76

Arbitrary order 1a 2a 3a 4a 5a 6a

1 1 1 0 0 0 0

2 0 0 0 0 1 1

3 0 1 0 1 1 0

4 1 0 1 0 0 1

We apply the pre-processing rule ORDER, and obtain the minimum state and length for

each MP as follows:

Current order 1a 2a 3a 4a 5a 6a MSi Length

1 1 1 0 0 0 0 2 2

2 0 0 0 0 1 1 1 2

3 0 1 0 1 1 0 1 3

4 1 0 1 0 0 1 1 3

Order the MPs in ascending order according to their minimum states as follows:

Current order 1a 2a 3a 4a 5a 6a MSi Length

1 0 0 0 0 1 1 1 2

2 0 1 0 1 1 0 1 3

3 1 0 1 0 0 1 1 3

4 1 1 0 0 0 0 2 2

For MPs with the same minimum state, order them in descending order according to their

length, and obtain the final order as follows:

Current order 1a 2a 3a 4a 5a 6a MSi Length

1 0 1 0 1 1 0 1 3

2 1 0 1 0 0 1 1 3

3 0 0 0 0 1 1 1 2

4 1 1 0 0 0 0 2 2

77

We apply the proposed algorithm in Section 4.2 to search for all the d-MPs, and the

implementation process is given below.

Figure 4.4: Implementation of the proposed algorithm with pre-processed MPs

As can be seen from Figure 4.4, we still generate the exactly same 9 real d-MPs, but

reduce the search space by only generating 20 candidates. The number of candidates

generated in the previous illustrative example is 31. Thus, the pre-processing rule for MPs,

ORDER, is incorporated as the first step into the algorithm.

4.4 Efficiency investigation

In this section, we investigate the efficiency of the proposed algorithm. Note that the proposed

algorithm may not be as efficient for searching d-MPs for one specific level �, comparing to the

existing methods dedicated to this purpose, due to its recursive nature. However, recall the

objective of this study is to search for d-MPs for all possible � levels, which is also significant. It

can be used when we are interested in the system reliability with respect to each of the system

performance levels, in order to obtain a complete picture of the system capability during the

78

design phase or operation phase. Thus, we compare the efficiency of our reported algorithm

with reported works for finding all d-MPs for all possible integers �.

There are two types of approaches for generating d-MPs for a particular level � in the

reported works. We compare the proposed algorithm with both of them. For approaches

requiring MPs as prior knowledge, we compare the efficiency of our algorithm with the approach

proposed by Lin et al. [25], modified by Lin [32] and Yeh [33]. We also incorporate the improved

enumeration method proposed by Chen [58]. We call the approach by [25], [32], [33], and [58],

A1 for short.

For approaches without requiring MPs as prior knowledge, given that the algorithm by

Ramirez-Marquez et al. [35] is recognized as an efficient algorithm, we compare the efficiency

of our reported algorithm with that by Ramirez-Marquez et al. [35] for finding all d-MPs for all

possible d levels. The algorithm by Ramirez-Marquez et al. [35] requires successor matrix and

cycles as prior information. The proposed algorithm requires all the MPs and cycles. Thus, we

need to generate MPs given the successor matrix, and we include this procedure when we

compare the efficiency. We adopt the method described in [31] to generate all MPs given the

successor matrix. We call the approach by [35] A2 for short.

All algorithms were coded in MATLAB 2011, and were implemented on a server with 2

AMD 2.3 GHz CPU (12% CPU was allocated for each user) and 16 GB of RAM. In general, the

maximum value of � increases with the maximum capacity of the component. We assume all

the component are i.i.d and we are interested in the required computation time for finding all d-

MPs for all � levels with respect to different maximum state of component.

4.4.1 Example 1

First, we consider the network used in the illustrative example in Section 4.2.2, as shown in

Figure 2.1. The successor matrix in this example is shown in Table 4.. Uij = 1 means that

79

component i is a successor of component j. The highest states of the components are the same.

We consider different scenarios, where the highest states of the components are equal to 1,

2, …, 20, respectively. We use ratios, which are defined as the CPU time consumed by A1 and

A2, divided by CPU time consumed by the proposed method, respectively. The ratios represent

the advantage of proposed algorithm over the reported works for finding all d-MPs for all d

levels.

Table 4.1: Successor Matrix of the bridge network

Uij 1 2 3 4 5 6

1 0 1 1 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 1

4 0 1 0 0 0 0

5 0 0 0 1 0 1

6 0 0 0 0 0 0

Firstly, we compare the efficiency of our reported algorithm with the approach A1. As can

be seen from Figure 4.5, when the maximum state of component is less than 2, the proposed

approach is less efficient. This is because the number of calls to the reported approach is small

when the maximum state of component is small, i.e., the level of demand is small. However,

when the maximum state of component is more than 3, the proposed approach is more efficient.

As the maximum state increases, the ratio increases, indicating the advantage becomes more

significant. This can be explained as follows. As the maximum state of the component increases,

the number of levels of demand increases. This increases the number of calls to the reported

approach, which will consume lots of computational efforts. For the proposed method though,

the d-MPs are obtained recursively, i.e., those for level d are obtained based on the d-MPs

obtained for level d-1 and earlier, and the incremental computation efforts for level d alone is

much less comparing to the existing methods.

80

Figure 4.5: Comparison with the approach A1 for the bridge network

Figure 4.6: Comparison with the approach A2 for the bridge network

Secondly, we compare the efficiency of our proposed approach with A2 by Ramirez-

Marquez et al. [35]. As can be seen from Figure 4.6, all ratios for different maximum state are

greater than 1, indicating the proposed algorithm is more efficient than A2 in terms of searching

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
a

tio

Maximum state of component

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
a

ti
o

Maximum state of component

81

for all d-MPs for all d values given different maximum states of components. As the maximum

state increases, the advantage becomes more significant. Note that the ratio for the first

maximum state is relatively high. This is because the proposed algorithm uses the algorithm

reported in [31] to search for 1-MPs, which is more efficient than A2 to search for 1-MPs. When

the maximum state of each component is 1, the demand level d can only take 1 and 2 for the

testing network examples, i.e. there are only 1-MPs and 2-MPs generated. The computational

saving of generating 1-MPs makes the ratio of CPU time very high when the maximum state of

each component is 1. When the maximum state of each component is 2, the demand level d

can take 1, 2, 3 and 4 for the testing network examples, i.e., there are 1-MPs, 2-MPs, 3-MPs

and 4-MPs generated. The computational saving on generating all 1-MPs becomes relatively

small, which makes the ratio smaller. In addition, the average CPU time for the algorithm with

pre-processing of MPs, ORDER, is about 1.4 times faster than the average CPU time for the

algorithm without pre-processing of MPs for each d level.

4.4.2 Example 2

In this section, we consider the network shown in Figure 4.1. It has 9 components, and is more

complex than the network considered in the previous example. The successor matrix of this

example is shown in Table 4.2. We consider different scenarios, where the highest states of the

components are equal to 1, 2, …, 10, respectively. We use ratios, which are defined as the CPU

times consumed by the reported works divided by the CPU time consumed by the proposed

algorithm, respectively. The ratios represent the advantage of proposed algorithm over the

reported works for finding all d-MPs for all d levels.

82

Table 4.2: Successor Matrix of network in [34]

Uij 1 2 3 4 5 6 7 8 9

1 0 0 1 1 0 0 0 0 0

2 0 0 0 0 1 1 0 0 0

3 0 0 0 0 1 1 0 0 0

4 0 0 0 0 0 0 1 1 0

5 0 0 0 0 0 0 1 1 0

6 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

Similarly, we first compare the efficiency of our proposed algorithm with the approach A1.

As can be seen from Figure 4.7, when the maximum state of the component is less than 3, the

proposed approach is less efficient. However, when the maximum state of component is 4 or

more in this example, the proposed approach is more efficient. As the maximum state increases,

the advantage becomes more significant.

Figure 4.7: Comparison with the approach A1 for the network in [34]

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

R
a
ti
o

Maximum state of component

83

Figure 4.8: Comparison with the approach A2 for the network in [34]

Secondly, we compare the efficiency of our proposed approach with A2 by Ramirez-

Marquez et al. [35]. As can be seen from Figure 4.8, all ratios for different maximum state are

greater than 1, indicating the proposed algorithm is more efficient than A2 in terms of finding all

d-MPs for all d values given different maximum states of the components. As the maximum

state increases, the advantage becomes more significant. In addition, the average CPU time of

the algorithm with pre-processing of MPs, ORDER, is about 1.3 times faster than the average

CPU time of the algorithm without pre-processing of MPs for each d level.

4.5 Reliability bounding by searching for subsets of d-MPs

Given the need to find more efficient algorithm to search for all the d-MPs, it may still be

cumbersome when the size of the network and the number of component states are relatively

large. Since the multistate network reliability is calculated as the probability of the union of

events, with each event involving a d-MP, if only a subset of d-MPs is available, the lower

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11

R
a

ti
o

Maximum state of component

84

reliability bounds (LRB) can be obtained. LRB can provide approximate reliability values with

less computational effort.

As can be seen from the proposed algorithm, if only a subset of MPs is given, we can use

the proposed algorithm to search for a subset of d-MPs for each d value. Thus, we can generate

a subset of d-MPs for each d value as follows. The first subset of d-MPs for each d value is

obtained by using one MP. Then additional MPs are included one at a time, and all the d-MPs

for all d values are found when all MPs are included. By doing so, we only require a subset of

MPs and only generate a subset of d-MPs for each d value, which relaxes the computational

burden of the two NP-hard problems. Besides, the LRBs obtained using the generated subsets

of d-MPs are always between 0 and 1, and these LRBs are always strictly monotonically

increasing [41].

Consider Example 1 in Section 4.4.1. We have 4 MPs as follows:

       1 2 3 4MP 1,1,0,0,0,0 ;MP 0,0,0,0,1,1 ;MP 1,0,1,0,0,1 ;MP 0,1,0,1,1,0 .   

Table 4.3 shows the generated subset of d-MPs for each d value given subset of MPs.

Table 4.3: Subset of d-MPs for bridge network

MPs used MP1 MP1, MP2 MP1, MP2, MP3 MP1, MP2, MP3, MP4

2-MPs  2,2,0,0,0,0

 2,2,0,0,0,0

,

 1,1,0,0,1,1

 2,2,0,0,0,0 ,

 1,1,0,0,1,1 ,

 2,1,1,0,0,1 ,

 1,0,1,0,1,2

 2,2,0,0,0,0 ,  1,1,0,0,1,1 ,

 2,1,1,0,0,1 ,  1,0,1,0,1,2 ,

 1,2,0,1,1,0

3-MPs  2,2,0,0,1,1  2,2,0,0,1,1 ,

 3,2,1,0,0,1 ,

 2,1,1,0,1,2

 2,2,0,0,1,1 ,  3,2,1,0,0,1 ,

 2,1,1,0,1,2

4-MPs  3,2,1,0,1,2  3,2,1,0,1,2

85

Consider Example 2 in Section 4.4.2. It has 9 components and 8 MPs. Suppose each

component has 13 states, from 0 to 12, and the state distributions of all the components are

identical, denoted as

 0.05,0.1,0.05,0.05,0.05,0.15,0.05,0.15,0.05,0.1,0.05,0.1,0.05p  .

We first use the proposed algorithm to generate a subset of d-MPs for several d values

using one MP. Then additional MPs are included one at a time until all 8 MPs are included.

Given the current efficient method for reliability evaluation of multistate networks is the recursive

sum of disjoint product method, namely RSDP [39], we apply RSDP method to calculate the

LRB for each generated subset of d-MPs for these d values. We record the CPU time it takes to

obtain the subset of d-MPs using the proposed algorithm.

Table 4.4 shows the LRBs with respect to different numbers of MPs used. When only one

or two MPs are included, the LRBs with d equal to 20 and 24 are zero, indicating no d-MPs can

be found in these situations when using only the first two MPs. As more MPs are included,

subsets of d-MPs for each d value can be obtained and the LRBs are closer to the exact

reliability values. When all 8 MPs are given as input, the exact reliability for these d values can

be found. Besides, the CPU time increases as the number of MPs used increases. One can

choose a proper tradeoff between the computational effort and the evaluation precision. In this

example, when 6 MPs are used, the LRBs are almost the same as the exact reliability values,

but the required CPU time is much less comparing to the case when using all 8 MPs.

4.6 Summary

In this chapter, we develop a recursive algorithm based on breadth-first search to search for all

the d-MPs for all possible integer d values. A heuristic for pre-processing the MPs is proposed

to improve the efficiency of the algorithm. Through computational experiments, it is found that

the proposed algorithm is more efficient than existing algorithms for finding all d-MPs for all

86

possible integer d values. The generated d-MPs can be used for reliability evaluation and

system state distribution evaluation of multistate networks. In addition, we show that the

proposed algorithm can also be used to generate a subset of d-MPs for all d values given a

subset of MPs. The generated subset of d-MPs can be used for lower reliability bound

evaluation.

The generated d-MPs in this chapter will be used for RSDP type method in Chapter 5 and

SSD type method in Chapter 6 respectively for obtaining the reliability of multistate networks.

87

Table 4.4: LRBs with respect to different number of MPs used and several d values

Number

of MPs
1 2 3 4 5 6 7 8

d = 1 8.574E-01 9.410E-01 9.878E-01 9.898E-01 9.920E-01 9.941E-01 9.943E-01 9.943E-01

d = 5 3.430E-01 5.693E-01 7.614E-01 7.862E-01 8.118E-01 8.418E-01 8.483E-01 8.486E-01

d = 10 8.000E-03 7.660E-02 2.818E-01 3.185E-01 3.447E-01 3.968E-01 4.060E-01 4.063E-01

d = 20 0 0 3.436E-04 7.522E-04 8.273E-04 1.707E-03 1.723E-03 1.723E-03

d = 24 0 0 1.563E-08 1.280E-07 1.280E-07 8.117E-07 8.117E-07 8.117E-07

CPU

Time (s)
0.0074 0.0394 0.0424 0.2258 0.9256 9.472 98.9457 880.4098

88

Chapter 5

Ordering Heuristics for Reliability Evaluation of

Multistate Networks Using Recursive Sum of

Disjoint Product Method

Recall the overall framework of the topics in this thesis, as shown in Figure 1.3. In this chapter,

we focus on the third topic, which is evaluating the probability of union of all d-MPs. This is the

third step of the indirect approaches for reliability evaluation of multistate networks. In Chapter 4,

we propose an algorithm to search for all the d-MPs for all possible integer d values. Given all

the d-MPs, the reliability can be obtained by calculating the probability of the union of the d-MPs.

There are two popular methods in existing literature, namely RSDP method and SSD method. In

this chapter, we focus on RSDP method. The limitation of the RSDP method is introduced in

Section 5.1. In Section 5.2, the concept of length is generalized for d-MPs in multistate networks.

Two definitions of length are given, and four heuristic ordering methods, namely O1, O2, O3,

and O4, are developed to improve the efficiency of the RSDP method reported in [39], by

ordering the d-MPs before feeding them to the RSDP method. Section 5.3 investigates the

efficiency of the heuristics by comparing the original RSDP method with the RSDP method

incorporating heuristics O1, O2, O3, and O4 respectively. Section 5.4 extends the ordering

heuristic methods to the situations when d-MCs instead of d-MPs are given for evaluations of

the exact reliability. Section 5.5 summarizes the work. The materials in this chapter have been

89

documented in paper [47] and presented in the 6th Asia-Pacific International Symposium on

Advanced Reliability and Maintenance Modelling (APARM) [48].

5.1 Introduction

For the evaluation of the exact reliability of multistate networks, the Recursive Sum of Disjoint

Product (RSDP) method [39] is shown to be efficient. The basic idea of the RSDP method is

based on the Sum of Disjoint Products (SDP) principle, and a specially defined maximum

operator, denoted by  [39]. The probability of the union of L d-MPs can be evaluated via the

probabilities of several unions each involving L -1 vectors or less. The main reason for the

RSDP method to be efficient is that, even though in the starting minimal path (or minimal cut)

vectors each vector does not dominate one another, the vectors generated from operator  may

not have this property, in which the simplifying procedure can be applied by removing the

vectors that are greater than others.

However, the reported RSDP method does not consider the ordering of the given d-MPs.

Consider the example used in [39]. There are three 3-MPs given in the following order:

     1 2 33,2,1,0,0,1 , 2,2,0,0,1,1 , 2,1,1,0,1,2 .  z z z

Let i,j i j Y z z , where   i j i j
k kmax z ,z ,1 k n   z z . When implementing the RSDP

method, the reliability of the network with respect to a demand d = 3 can be calculated as

         
            

1 2 3

1 2 1,2 3 1,3 2,3

Pr 3 Pr

 =Pr Pr Pr Pr Pr ,

       

          

x x z x z x z

x z x z x Y x z x Y x Y

where

     1,2 1 2 1,3 1 3 2,3 2 33,2,1,0,1,1 , 3,2,1,0,1,2 , 2,2,1,0,1,2        Y z z Y z z Y z z .

Because 1,3 2,3Y Y , 1,3Y can be removed. Thus, we have

            1 2 1,2 3 2,3Pr 3 Pr Pr Pr Pr Pr           x x z x z x Y x z x Y .

90

The advantage of the RSDP method is shown in this step because the following simplifying

procedure has been implemented:

      1,3 2,3 2,3Pr Pr .    x Y x Y x Y

However, if the order of the same three 3-MPs is given as

     1 3 23,2,1,0,0,1 , 2,1,1,0,1,2 , 2,2,0,0,1,1 ,  z z z

then, we have

         
            

1 3 2

1 3 1,3 2 1,2 2,3

Pr 3 Pr

= Pr Pr Pr Pr Pr .

       

          

x x z x z x z

x z x z x Y x z x Y x Y

Because 1,2Y and 2,3Y cannot be merged using any simplifying procedure, the advantage of

the RSDP method cannot be realized. Based on the observation above, we believe that a

proper ordering of d-MPs is critical to the efficiency of the RSDP method.

In the literature, many reported works are dedicated to the SDP methods for evaluating the

reliability of networks with binary components. Traldi [60] classified these SDP algorithms for

binary systems into three stages. 1) Choose the order of the binary minimal paths. 2) Analyze

the sum of disjoint events. 3) Analyze each individual disjoint event as a sum of disjoint products.

In this paper, we focus on stage 1, which is the order of the d-MPs for the RSDP method to

evaluate the reliability of networks with multistate state components. In terms of efficiency, Yeh

[61] gave three criteria for the efficiency evaluation of SDP methods for the reliability evaluation

of binary systems: the size of the results, i.e. the number of terms in disjoint sums; the

computation time; and the form of the resulting formulae. Computation time is the direct

measure of computational efficiency, and thus the most important criterion in comparing the

efficiency of different reliability evaluation methods. Given that his first criterion was also used in

many other studies, we investigate both of these criteria, the number of terms in disjoint sums

and the computation time, for the RSDP method to evaluate the reliability of networks with

multistate components.

91

Abraham [62] suggested an ordering heuristic based on increasing length (cardinality),

where smaller minimal paths, that is, those with fewer components, should be ordered before

larger ones. Based on the ordering suggestion in [62], Locks [63] suggested lexicographic

ordering, where for a group of terms with the same length, the ordering is lexicographic,

following the order of the symbols of the alphabet. Based on the ordering suggestion in [62], [63],

Wilson [64] further suggested ordering based on hamming distance in such a way that two

terms, which have the largest number of variables in common, are normally placed next to each

other. A summary and comparison of different heuristic ordering methods for binary systems are

given in Soh and Rai [65], [66], which concluded that ordering based on cardinality (length) or its

combinations with lexicographic, or hamming distance-ordering, or both performs better than

lexicographic ordering, and hamming distance-ordering in terms of computation time. Balan and

Traldi [67] proposed another ordering strategy for binary MPs, claiming to be more efficient in

terms of the number of terms in disjoint sums. The idea behind Balan and Traldi [67] was to

allow violation of the increasing length by Abraham [62] on occasion. Based on the length of the

MP and the relative complements of two MPs (the number of components that are contained in

the first MP but not in the second MP), they used a score function given by a multiplication of a

factor and sum. The factor gives an advantage to the MP with a shorter length, and the sum

gives a weighted average of relative complements, favoring those, which come from shorter

already listed minimal paths.

Given all the reported ordering heuristics for binary systems, we intend to adopt these ideas

to order the d-MPs for our multistate network reliability evaluation for the RSDP method.

However, the concept of length for MP, used by [62] and [67], is not suitable for d-MP in a

multistate system. Thus, it is necessary to generalize the concept of length for d-MP in a

multistate system first, and then adopt the idea to order the d-MPs for the multistate network

reliability evaluation using the RSDP method.

92

5.2 Development of ordering heuristics

5.2.1 The definition of length for a d-MP

The length defined in binary systems is the number of components contained in each minimal

path. Given the vector representation of a minimal path defined by assigning 1 for the

components that are contained in the minimal path and 0 otherwise, the length of each minimal

path is given by counting the 1 entries. Because there are other integers that are higher than 1

contained in the d-MP, one way of defining the length for a d-MP is given as follows.

First, we define the highest state vector. Given all L d-MPs, denoted as 1 2 L, , ,z z z , we

have the highest state vector defined as

1 1 2 L, ,   ZH z z z ,

where  is the same maximum operator defined in [39]. For example, given the d-MPs

     1 2 33,2,1,0,0,1 , 2,2,0,0,1,1 , 2,1,1,0,1,2  z z z ,

we have  1 3,2,1,0,1,2ZH .This indicates that the highest state is 3 for component 1, 2 for

component 2, 1 for component 3, 0 for component 4, 1 for component 5, and 2 for component 6.

Given the definition of the highest state vector, we can also define the second highest state

vector, 2ZH , which contains the second largest state among all given d-MPs for each

component. For example, the second component contains states 2, 2, and 1 for 1z , 2z , and 3z

respectively. Given the highest state is 2, the second highest is then 1. If there is no such a

state for a component, we use 0 for convenience. For the same example, we have

 2 2,1,0,0,0,1ZH . We can also find the third highest state for each component, and so forth. If

there is no such a state for a component, we again use 0 for convenience. The process stops

when all the maximum values for the thk highest state for all the components are equal to 0.

Then the lowest state vector is k-1ZH .

93

Given the definition of the highest state vector, the second highest state vector, etc., we

give the following definition of the length for a d-MP.

Definition 1 Let ka denote the number of elements that a d-MP has in common with the thk

highest state vector kZH . ka is defined as the length of this d-MP with respect to the thk

highest state.

For example, given the following d-MPs

     1 2 33,2,1,0,0,1 , 2,2,0,0,1,1 , 2,1,1,0,1,2  z z z ,

the highest state vector, and the second highest state vector are respectively

 1 3,2,1,0,1,2ZH , and  2 2,1,0,0,0,1ZH .

There is no 3rd highest state vector because the third highest state for each component is 0.

Then the length of 1z , 2z , and 3z with respect to the highest state is 3, 2, and 3, respectively;

the length of 1z , 2z , and 3z with respect to the second highest state is 1, 2, and 2, respectively.

Note that if each component can only take two possible states, i.e. the binary case, this length

definition reduces to the length definition for a binary MP [62].

Length Definition 1 of the d-MP generates a sequence of lengths. An alternative way of

defining the length of d-MP is to give a single length, given in length Definition 2 in the

remainder of this subsection.

First, we obtain the logically equivalent vector for each d-MP by eliminating all state values

that appeared in no d-MPs. For all the state values of each component in the given d-MPs, the

lowest nonzero state value is replaced by 1 in the logically equivalent vector; the second lowest

nonzero state value is replaced by 2, and so forth. For example, given the d-MPs

 1 3,2,1,0,0,1z ,  2 2,2,0,0,1,1z , and  3 2,1,1,0,1,2z , the first component contains states 3,

2, and 2 for 1z , 2z , and 3z , respectively. Given that state 2 is the lowest nonzero state, state 2

is replaced by 1 in the logically equivalent vector. Similarly, state 3, which is the second lowest

94

nonzero state, is replaced by 2 in the corresponding logically equivalent vector. The logically

equivalent vectors for 1z , 2z , and 3z are given as follows:

     1 2 32,2,1,0,0,1 , 1,2,0,0,1,1 , 1,1,1,0,1,2  z z z .

Given the logically equivalent vector for each d-MP, we give the following length definition

for d-MP.

Definition 2 The length of a d-MP is the sum of the values in its logically equivalent vector.

For example, given the d-MPs

     1 2 33,2,1,0,0,1 , 2,2,0,0,1,1 , 2,1,1,0,1,2  z z z ,,

and logically equivalent vectors

      1 2 32,2,1,0,0,1 , 1,2,0,0,1,1 , 1,1,1,0,1,2  z z z ,

the length of 1z , 2z , and 3z is 6, 5, and 6, respectively.

Note that, if each component can only take two possible states, i.e. the binary case, this

length definition reduces to the length definition for a binary MP [62].

5.2.2 Analysis of the RSDP method

We summarized the RSDP method as follows [39]. Given all L d-MPs, denoted as 1 2 L, , ,z z z ,

the reliability can be calculated via the following recursive function.

         
L

1 2 L i

i 1

Pr Pr Prd


 
          

 
x x z x z x z x z 

(5.1)

Following the SDP principle, the following recursive algorithm is used.

 
L

1 2 L
i

i 1

Pr , , , TMU


z z z , (5.2)

where iTM is the thi term in the SDP calculation [6] given by

 1
1TM Pr x z .

95

 

   

i 1
i i,j

i
j 1

i 1,i i-1,i

TM Pr Pr

 = Pr Pr , , , for i 2.U





 
    

 

  

x z x Y

x z Y Y



The simplifying procedure is used whenever in each function  PrU  there exists an input

vector iy satisfying  i j i j y y , in which case iy can be deleted from the set of input vectors.

The simplifying procedure is used during the process of comparing each pair of d-MPs.

Although the number of comparisons involved for each d-MP is the same among all the  PrU  ,

the number of occurrences in all the comparisons for each d-MP is different. The first heuristic is

given below.

Property 1 – During the process of the RSDP method, a d-MP that is ordered in a later position

is expected to have more occurrences in all the comparisons, when the total number of d-MPs

is greater than or equal to 3.

The comparison takes place in  1, 1,Pr , ,i i iU Y Y when 3i  , where the number of

comparisons is 1 for 3i  (1,3Y and 2,3Y). The number of comparisons increases to 3 when 4i 

(1,4Y and 2,4Y , 1,4Y and 3,4Y , and 2,4Y and 3,4Y), and increases to
1

2

L  
 
 

 when i L . Thus the

number of occurrences for each d-MP in all the comparisons is influenced by its order. That is,

1z has  
2

2

1

3 2 2
L

i

i L L




   occurrences in all comparisons because it will appear once in each

 1, 1,Pr , , , 2i i iU i Y Y ; 2z also has  2 3 2 2L L  occurrences in all comparisons, because it

also appears once in each  1, 1,Pr , , , 2i i iU i Y Y . For each j , 3j z , it will appear once in

each  1,i i 1,iPr , , ,U i j Y Y , which is
   

1

3
2

2

L j

i

L j L j
j i





   
   occurrences, and

1
2

2

j  
  
 

 occurrences in  1,i i 1,iPr , , ,U i j Y Y . Thus, 3z has a total of
 2 3 4

2
L L 

96

occurrences in all comparisons, and so on. Generally jz has a total of

   
1

3 2 2
2

j
L j L j

 
       

 
 occurrences in all comparisons, and Lz has a total of

1
2

2

L  
  
 

 occurrences in all comparisons. Except 1z and 2z , a d-MP ordered in a later position

has a larger number of occurrences in all the comparisons when the total number of d-MPs is

greater than or equal to 3. For example, given 4L  , for the third d-MP, there are 4

comparisons: 1,3Y and 2,3Y , 1,4Y and 2,4Y , 1,4Y and 3,4Y , and 2,4Y and 3,4Y . Thus, for 4L  , 1z

and 2z has 3 occurrences, 3z has 4 occurrences, and 4z has 6 occurrences.

Because a d-MP, when ordered in a later position, has a larger number of occurrences in all

the comparisons, the next question becomes which d-MPs should be put into later positions, i.e.,

which d-MP is more likely to evoke the simplifying procedure. For example, given the d-MPs

 1 3,2,1,0,0,1z ,  2 2,2,0,0,1,1z , and  3 2,1,1,0,1,2z , the length of 1z , 2z , and 3z with

respect to the highest state is 3, 2, and 3 respectively under Definition 1. The length of 1z , 2z ,

and 3z is 6, 5, and 6 respectively, under Definition 2. Then, given 1z , 2z , and 3z , we have

 1 3 3,2,1,0,1,2 z z ,  2 3 2,2,1,0,1,2 z z ,  1 2 3,2,1,0,1,1 z z ,

where 1 3 2 3  z z z z and 1 3 1 2  z z z z . Thus, placing either 1z or 3z to the last place in

order can evoke the simplifying procedure. Based on the observation above, we summarize the

second heuristic.

Property 2 – A d-MP with a longer length is expected to evoke more simplifying procedures,

and thus should be placed in a later position.

5.2.3 The ordering heuristic O1

Given the length for a d-MP under Definition 1 in Section 5.2.1, and the two properties for the

RSDP method in Section 5.2.2, we propose the following ordering heuristic O1.

97

1) Given all the d-MPs, obtain the highest state vector, the second highest state vector, …,

and the nth highest state vector.

2) For each d-MP, obtain the length with respect to the highest state, the second highest

state, …, and the nth highest state using Definition 1.

3) Order the d-MPs in ascending order according to their lengths with respect to the highest

state.

4) For those d-MPs with the same length with respect to the highest state, order those d-

MPs in ascending order according to their lengths with respect to the second highest

state.

5) For those d-MPs with the same length with respect to the second highest state, order

those d-MPs in ascending order according to their lengths with respect to the third

highest state.

This process continues in a similar manner up to the (n-1)th highest state. Whenever there is a

tie, the tie is broken arbitrarily.

As can be seen from the procedure above, the ordering heuristic O1 is a kind of

combination of cardinality ordering and lexicographic ordering, in which the cardinality refers to

the length for d-MP under Definition 1, and lexicographic refers to the level of state. We illustrate

the ordering heuristic O1 through the illustrative example used in [39]. There are five 2-MPs

given in an arbitrary order:

         1 2 3 4 51,2,0,1,1,0 , 2,2,0,0,0,0 , 1,0,1,0,1,2 , 1,1,0,0,1,1 , 2,1,1,0,0,1    z z z z z .

1) The highest state vector, and the second highest state vector are respectively

 1 2,2,1,1,1,2ZH , and  2 1,1,0,0,0,1ZH .

2) The length of each 2-MP under Definition 1 can be calculated.

3) Order the d-MPs in ascending order according to their lengths with respect to the highest

state.

98

4) For those d-MPs with the same length with respect to the highest state, order those d-

MPs in ascending order according to their lengths with respect to the second highest

state, and obtain the results in Table 5.1.

Table 5.1: Ordering result based on O1

Final

Order
d-MP

Component State

Vector

Length with

respect to 1ZH

Length with

respect to 2ZH

1 4z 1 1 0 0 1 1 1 3

2 2z 2 2 0 0 0 0 2 0

3 5z 2 1 1 0 0 1 2 2

4 1z 1 2 0 1 1 0 3 1

5 3z 1 0 1 0 1 2 3 1

Because there is no third highest state vector, we generate the final order. Note that if each

component can only take two possible states, i.e. the binary case, O1 reduces to the ordering

heuristic in [62].

5.2.4 The ordering heuristic O2

Given Definition 2 of the length for d-MP in Section 5.2.1, and the two properties for the RSDP

method in Section 5.2.2, we give the following ordering heuristic O2.

1) For each d-MP, obtain its logically equivalent vector.

2) Obtain the length of each d-MP using Definition 2.

3) Order the d-MPs in ascending order with respect to their lengths.

During the process, whenever there is a tie, the tie is broken arbitrarily.

We illustrate the ordering heuristic O2 through the same illustrative example used in [39].

There are five 2-MPs given in an arbitrary order:

         1 2 3 4 51,2,0,1,1,0 , 2,2,0,0,0,0 , 1,0,1,0,1,2 , 1,1,0,0,1,1 , 2,1,1,0,0,1    z z z z z .

1) Obtain the logically equivalent vectors as

99

         1 2 3 4 51,2,0,1,1,0 , 2,2,0,0,0,0 , 1,0,1,0,1,2 , 1,1,0,0,1,1 , 2,1,1,0,0,1    z z z z z .

2) The length of the 1z , 2z , 3z , 4z , and 5z are 5, 4, 5, 4, and 5 respectively under Definition 2.

3) Order the d-MPs in ascending order according to the length. After ordering, the final order

can be generated as in Table 5.2.

Table 5.2: Ordering result based on O2

Final

Order
d-MP

Component State

Vector

Length by

Definition 2

1 4z 1 1 0 0 1 1 4

2 2z 2 2 0 0 0 0 4

3 5z 2 1 1 0 0 1 5

4 1z 1 2 0 1 1 0 5

5 3z 1 0 1 0 1 2 5

Note that, if each component can only take two possible states, i.e. the binary case, then

O2 reduces to the ordering heuristic in [62].

5.2.5 The ordering heuristic O3

O1 provides an order heuristic based on Definition 1 for the length of a d-MP, by considering the

length with respect to different states one after another. Another way to utilize these length

values is to combine them into a single length measure by assigning weights to different states.

Motivated by this idea, based on length Definition 1, first we will define a score function.

Let 1 1, , , n
i i ia a a denote the length values with respect to the highest state, the second

highest state, and on to the nth highest state, respectively, for a d-MP, iz . The score function is

defined as:

   

1

2
n

n ki k
i

k

F a




 z . (5.3)

100

Given the length of a d-MP by Definition 1, and the score function, we give the ordering heuristic

 O3 as follows.

1) For d-MPs, , 1, ,i i Lz  , obtain their highest state vector, second highest state vector, …,

and the nth highest state vector.

2) For each d-MP , 1, ,i i Lz  , obtain its length with respect to the highest state, the second

highest state, …, and the nth highest state using Definition 1.

3) Obtain its score function value using equation (5.3).

4) Order the d-MPs in ascending order according to their score function values.

During the process, whenever there is a tie, the tie is broken arbitrarily.

We illustrate the ordering heuristic O3 through the illustrative example used before. There

are five 2-MPs given in an arbitrary order:

         1 2 3 4 51,2,0,1,1,0 , 2,2,0,0,0,0 , 1,0,1,0,1,2 , 1,1,0,0,1,1 , 2,1,1,0,0,1    z z z z z .

Table 5.3: Ordering result based on O3

Final

Order
d-MP Component State Vector

Length with

respect to

1ZH

Length with

respect to

2ZH

Score

1 2z 2 2 0 0 0 0 2 0 7

2 4z 1 1 0 0 1 1 1 3 4

3 5z 2 1 1 0 0 1 2 2 7

4 1z 1 2 0 1 1 0 3 1 5

5 3z 1 0 1 0 1 2 3 1 6

1) The highest state vector, and the second highest state vector are

 1 2,2,1,1,1,2ZH , and  2 1,1,0,0,0,1ZH .

2) The length of each 2-MP under Definition 1 can be calculated.

3) Given the length, obtain the score of each d-MP using the score function.

101

4) Order the d-MPs in ascending order according to their score function values. The final order

of all d-MPs is shown in Table 5.3.

5.2.6 The ordering heuristic O4

In this ordering heuristic O4, in addition to ordering d-MPs based on their lengths, the

relationships and similarities among different d-MPs are also considered. This consideration

makes similar d-MPs placed close to one another, and increases the likelihood of evoking more

simplifying procedures. The Ordering heuristic O4 is based on the concept of relative

complements between two binary MPs and the ordering method reported in [67]. By extending

the relative complements concept in [67] to multistate networks, we define the relative difference

for two d-MPs, iz and jz , as follows.

Given the logically equivalent vectors of iz and jz , and iz and jz respectively, the relative

difference for two d-MPs iz and jz is

 
n

1

x x | x xk k k k
i j i

i j
j

k

   z z , (5.4)

which is the summation of the differences between the values of each component for iz and jz

respectively, given the value of the component from iz is bigger than the value of the same

component from jz . Given the length of the d-MP under Definition 2, and the relative difference

for two d-MPs, we give the ordering heuristic O4 described as follows.

1) For each d-MP, obtain its logically equivalent vector and its length using Definition 2.

2) Order the d-MPs in ascending order according to their length.

3) Given Lz has been placed in order, the next -1Lz is chosen so that
-1L L

L

z z

z
 is the

largest, where Lz is the length of d-MPL according to Definition 2, and -1L Lz z is the

relative difference between the logically equivalent vectors of d-MPL-1 and d-MPL.

102

4) Given Lz and -1Lz have been placed in order, -2Lz is chosen so that
- - -

-

1

0

L j L k

L

j

k
k



z z

z
 is the

largest, where 2j  .

5) Given Lz , -1Lz , and -2Lz have been placed in order, -3Lz is chosen so that
- - -

-

1

0

L j L k

L

j

k
k



z z

z

is the largest, where 3j  .

This process continues until 2z is chosen. Whenever there is a tie, the tie is broken arbitrarily.

We illustrate the ordering heuristic O4 through the same illustrative example used in [39].

There are five 2-MPs given in an arbitrary order:

         1 2 3 4 51,2,0,1,1,0 , 2,2,0,0,0,0 , 1,0,1,0,1,2 , 1,1,0,0,1,1 , 2,1,1,0,0,1    z z z z z .

1) Their logically equivalent vectors are given as

         1 2 3 4 51,2,0,1,1,0 , 2,2,0,0,0,0 , 1,0,1,0,1,2 , 1,1,0,0,1,1 , 2,1,1,0,0,1    z z z z z .

The lengths of 1z , 2z , 3z , 4z , and 5z are 5, 4, 5, 4, and 5 respectively under Definition 2. 5L 

in this example.

2) Order the d-MPs in ascending order according to their length. After ordering, we obtain the

results in Table 5.4.

Table 5.4: Ordering result after step 2 of O4

Current

Order
d-MP

Component State

Vector

Length by

Definition 2

1 4z 1 1 0 0 1 1 4

2 2z 2 2 0 0 0 0 4

3 5z 2 1 1 0 0 1 5

4 1z 1 2 0 1 1 0 5

5 3z 1 0 1 0 1 2 5

103

3) Given that d-MP5 is 3z , d-MP4 is chosen so that
-1L L

L

z z

z
 is the largest, where Lz is 3z .

We obtain the values given in Table 5.5, and 1z is chosen as the vector d-MP4 before 3z .

Table 5.5: Ordering result after d-MP4 is chosen

Current

Order
d-MP

Component State

Vector

-1L L

L

z z

z

1 4z 1 1 0 0 1 1 1/5

2 2z 2 2 0 0 0 0 3/5

3 5z 2 1 1 0 0 1 2/5

4 1z 1 2 0 1 1 0 3/5

5 3z 1 0 1 0 1 2

4) Given d-MP5 and d-MP4, d-MP3 is chosen so that
- - -

-

1

0

L j L k

L

j

k
k



z z

z
 is the largest, where

2j  . We obtain the results in Table 5.6, and 5z is chosen as d-MP3 to be placed before 1z .

Table 5.6: Ordering result after d-MP3 is chosen

Current

Order
d-MP Component State Vector

- - -

-

1

0

L j L k

L

j

k
k



z z

z

1 4z 1 1 0 0 1 1 2/5

2 2z 2 2 0 0 0 0 4/5

3 5z 2 1 1 0 0 1 5/5

4 1z 1 2 0 1 1 0

5 3z 1 0 1 0 1 2

5) Given d-MP5, d-MP4, and d-MP3, d-MP2 is chosen so that
- - -

-

1

0

L j L k

L

j

k
k



z z

z
 is the largest,

where 3j  . The ordering heuristic is finished with the ordering in Table 5.7.

104

Table 5.7: Final ordering result based on O4

Final

Order
d-MP Component State Vector

- - -

-

1

0

L j L k

L

j

k
k



z z

z

1 4z 1 1 0 0 1 1 3/5

2 2z 2 2 0 0 0 0 5/5

3 5z 2 1 1 0 0 1

4 1z 1 2 0 1 1 0

5 3z 1 0 1 0 1 2

5.3 Efficiency investigation of the four ordering heuristics

In this section, we compare the efficiency of the RSDP method [39] with the approach of

applying the ordering heuristics O1, O2, O3, and O4 to the RSDP method. The programs were

developed using MATLAB 2011, and were implemented on a server with 2 AMD 2.3 GHz CPU

(12% CPU was allocated for each user), and 16 GB of RAM. In terms of efficiency, we are

interested in the required computation time, and the number of terms in disjoint sums [61], with

respect to the number of components n and the number of d-MPs. We adopt the same

efficiency investigation setting in [39]. We consider a hypothetical multistate network system

with n components. Each component has ten states, from 0 to 9; and the state distributions of

all the components are identical, denoted as

 0.05,0.15,0.1,0.05,0.15,0.05,0.15,0.1,0.05,0.15p  .

We randomly generate L vectors, and ensure that no vector is dominated. As a result, these

L vectors can be treated as L d-MPs of some hypothetical network. We investigate 10 groups,

with L randomly generated d-MPs in each group. Each group is processed with the original

RSDP method, and the RSDP method incorporating one of the four heuristics, namely, O1, O2,

105

O3, and O3, proposed in this paper. The CPU time needed to process each group and the

number of terms in the resulting disjoint sums for each method are recorded. Considering all 10

groups, we then calculate the average CPU time needed to process a group of such d-MPs

using the original RSDP method, the resulting average number of terms in the resulting disjoint

sums, and the average CPU time needed to process the same group of such d-MPs using the

RSDP method with O1, O2, O3, and O4 ordering heuristics, respectively, and the resulting

average number of terms in the resulting disjoint sums. A CPU time ratio is calculated by

dividing the average CPU time with the original RSDP method by the average CPU time with

the RSDP method incorporating one of the four heuristics. A ratio of the number of terms is

calculated by dividing the average number of terms obtained with the original RSDP method by

the average number of terms obtained with the updated RSDP method incorporating one of the

four heuristics. These ratios represent the advantage of these four ordering heuristics over the

original RSDP method which has arbitrary ordering of the L d-MPs.

Figure 5.1: Ratio of the mean computation times for 10 components.

First, we investigate multistate networks with 10 and 20 components. For each case, we

consider different scenarios with 10, 20, 30, 40, and 50 d-MPs. The mean CPU time ratio, and

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60

R
at

io
 =

 C
P

U
 T

im
e

b
y

R
SD

P
/(

C
P

U
 T

im
e

b
y

R
SD

P
 +

 O
rd

er
in

g
H

eu
ri

st
ic

s)

Number of d-MPs

O1

O2

O3

O4

106

the mean number of terms ratio for 10 components are shown in Figure 5.1 and Figure 5.2

respectively. The mean CPU time ratio, and the mean number of terms ratio for 20 components

are shown in Figure 5.3, and Figure 5.4 respectively.

Figure 5.2: Ratio of the mean number of terms for 10 components.

Figure 5.3: Ratio of the mean computation times for 20 components.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60

R
at

io
=N

u
m

b
er

 o
f

te
rm

s
b

y
R

SD
P

/
(N

u
m

b
er

o

f
te

rm
s

 b
y

R
SD

P
+O

rd
er

in
g

H
eu

ri
st

ic
s)

Number of d-MPs

O1

O2

O3

O4

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

R
at

io
=C

P
U

 T
im

e
b

y
R

SD
P

/(
C

P
U

 T
im

e
b

y
R

SD
P

+
O

rd
er

in
g

H
eu

ri
st

ic
s)

Number of d-MPs

O1

O2

O3

O4

107

Figure 5.4: Ratio of the mean number of terms for 20 components.

Figure 5.5: Ratio of the mean computation times for 30 components.

Next, we investigate multistate networks with 30 and 40 components. Because more CPU

time is consumed, and more terms in the disjoint sums are generated with a larger number of

components [39], for each case, we consider different scenarios with 10, 20, and 30 d-MPs. The

0

2

4

6

8

10

12

0 10 20 30 40 50 60

R
at

io
=N

u
m

b
er

 o
f

te
rm

s
b

y
R

SD
P

/(
N

u
m

b
er

 o
f

te
rm

s
 b

y
R

SD
P

+O
rd

er
in

g
H

eu
ri

st
ic

s)

Number of d-MPs

O1

O2

O3

O4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40

R
at

io
=C

P
U

 T
im

e
b

y
R

SD
P

/(
C

P
U

 T
im

e
b

y
R

SD
P

+
O

rd
er

in
g

H
eu

ri
st

ic
s)

Number of d-MPs

O1

O2

O3

O4

108

mean CPU time ratio, and the mean number of terms ratio for 30 components are shown in

Figure 5.5 and Figure 5.6 respectively. The mean CPU time ratio, and the mean number of

terms ratio for 40 components are shown in Figure 5.7, and Figure 5.8 respectively.

Figure 5.6: Ratio of the mean number of terms for 30 components.

Figure 5.7: Ratio of the mean computation times for 40 components.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40

R
at

io
=N

u
m

b
er

 o
f

te
rm

s
b

y
R

SD
P

/(
N

u
m

b
er

 o
f

te
rm

s
 b

y
R

SD
P

+O
rd

er
in

g
H

eu
ri

st
ic

s)

Number of d-MPs

O1

O2

O3

O4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40

R
at

io
=C

P
U

 T
im

e
b

y
R

SD
P

/(
C

P
U

 T
im

e
b

y
R

SD
P

+
O

rd
er

in
g

H
eu

ri
st

ic
s)

Number of d-MPs

O1

O2

O3

O4

109

Figure 5.8: Ratio of the mean number of terms for 40 components.

The ratio between the mean CPU times and the ratio between the mean number of terms in

disjoint sum increase as the number of d-MPs increases, as shown from Figure 5.1 through

Figure 5.8. As can be seen from these figures, when the number of d-MPs is larger than 10, as

the number of d-MPs increases, the mean CPU time, and the mean number of terms in the

disjoint sums for the RSDP method with O1, O2, O3, and O4 become more advantageous. The

efficiency of the RSDP method with O4 performs better than the RSDP method with O2, as the

number of d-MPs increases. This result indicates that, under length Definition 2, the ordering

heuristic O4, incorporating the idea from [67], is better than the ordering heuristic O2 based on

length Definition 2 alone. The efficiencies of the RSDP method with O3 and O4 are very close,

with O3 performing slightly better under 10 components, and O4 performing slightly better under

20, 30, and 40 components. O1 gives the best performance among the 4 ordering heuristics.

The results indicate that the performance of different ordering heuristics is consistent under both

efficiency criteria.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40

R
at

io
=N

u
m

b
er

 o
f

te
rm

s
b

y
R

SD
P

/(
N

u
m

b
er

 o
f

te
rm

s
 b

y
R

SD
P

+O
rd

er
in

g
H

eu
ri

st
ic

s)

Number of d-MPs

O1

O2

O3

O4

110

5.4 Ordering heuristic methods given minimal cut vectors

The ordering heuristic methods for multistate network reliability evaluations covered earlier in

this paper are based on d-MPs. However, sometimes only the minimal cut vectors, or d-MCs,

are available. Given all d-MCs, denoted as 1 2 L, , ,c c c , the RSDP for d-MCs is the same as that

for d-MPs except that: 1) the “maximum” operator, “”, becomes “minimum” operator, “  ”,

defined as   i j i j
k kmin c ,c ,1 k n   c c ; 2) equation (5.1) becomes equation (5.5) as follows:

            

 

1 2 L

L
i 1 2 L

i 1

Pr 1 1 Pr 1 Pr

1 Pr 1 Pr , .

d d

U

 



            

 
     

 

x x x c x c x c

x c c c c




 (5.5)

In contrast to RSDP given all d-MPs [33], for RSDP given d-MCs, the vector that is smaller

than or equal to others can be removed. Thus, given that O1 gives the best performance among

ordering heuristics given all d-MPs and it is based on length Definition 1, its corresponding

ordering heuristic given all d-MCs, namely O5, can be developed accordingly. First, we can

define the so-called “lowest state vectors” in a way similar to the “highest state vectors” defined

in Section 5.2.1. The procedure of O5 is given as follows.

1) Given all the d-MCs, obtain the lowest state vector, the second lowest state vector, …,

and the (n-1)th lowest state vector and the nth lowest state vector;

2) For each d-MC, obtain the length with respect to the lowest state, the second lowest

state, …, and the nth lowest state using Definition 1;

3) Order the d-MCs in ascending order according to their lengths with respect to the lowest

state;

4) For those d-MCs with the same length with respect to the lowest state, order those d-

MPs in ascending order according to their lengths with respect to the second lowest

state;

111

5) For those d-MCs with the same length of the second lowest state, order those d-MCs in

ascending order according to their lengths with respect to the third lowest state;

……

This process continues in a similar manner up to the (n-1)th lowest state. A tie is broken by

random choice.

The RSDP method and the ordering heuristic O5 proposed in this section are useful for

multistate network reliability evaluation if only d-MCs are available. The properties of these

methods are similar to the RSDP method given all d-MPs developed in [39] and the ordering

heuristic O1 for d-MPs presented earlier in this paper, and thus illustrations and efficiency

investigations of these two methods will not be presented in this paper.

5.6 Summary

In this chapter, we develop ordering heuristics to improve the efficiency of reliability evaluation

for multistate two-terminal networks given all d-MPs. The ordering heuristics are based on the

observation that the importance of each d-MP is different, and different orderings affect the

efficiency of reliability evaluation. We introduce the length definitions for d-MPs in a multistate

two-terminal network, and develop four ordering heuristics, called O1, O2, O3 and O4, to

improve the efficiency of the RSDP method for evaluating the network reliability. The results

show that the proposed ordering heuristics can significantly improve the reliability evaluation

efficiency, and O1 performs the best among the four methods. In addition, a RSDP method and

an ordering heuristic are developed for reliability evaluation of multistate two-terminal networks

given all d-MCs.

112

Chapter 6

An Improved Algorithm for Reliability Evaluation

of Multistate Networks Using State Space

Decomposition Method

Recall the overall framework of the topics in this thesis, as shown in Figure 1.3. In this chapter,

we focus on the third and fourth topics. In Chapter 5, given all the d-MPs found in Chapter 4, we

evaluate the reliability of multistate networks based on the RSDP method. We proposed

ordering heuristics for RSDP to improve the reliability evaluation efficiency. Another popular

method for exact reliability evaluation of multistate networks is the SSD method. In this chapter,

we focus on SSD methods. During each recursive call to decomposition, the existing methods

select qualified d-MPs by comparing all the d-MPs with the upper limiting point [38]. However,

we find that the set of d-MPs can also be decomposed recursively, and only those qualified d-

MPs from previous set of unspecified states need to be compared with the upper limiting point.

Based on the above observation, we propose an algorithm to improve the efficiency of SSD

methods for evaluation of multistate network reliability. An improved heuristic rule is also

proposed for choosing a proper d-MP to decompose each set of unspecified states.

The limitation of existing algorithms using SSD is introduced in Section 6.1. In section 6.2, a

property is proposed to decompose the d-MPs, together with a new heuristic rule to select a

proper d-MP. An improved algorithm is presented, followed by an illustrative example. Section

6.3 investigates the efficiency of proposed algorithm, the existing SSD method, and the RSDP

with ordering heuristic O1 [47], using hypothetical networks. Section 6.4 investigates the

113

efficiency of the proposed algorithm, the existing SSD method, and the RSDP with ordering

heuristic O1 [47], using networks with known structures. The existing SSD method, the RSDP

with ordering heuristic O1, and direct approaches are also added in the efficiency comparisons.

Section 6.5 extends the algorithm to the situations when d-MCs instead of d-MPs are given for

evaluations of the exact reliability. Section 6.6 summarizes the findings. The results of this

chapter have been documented in [49].

6.1 Introduction

For the evaluation of the exact reliability of multistate networks, Aven [38] proposed an

algorithm based on State Space Decomposition (SSD) method. The state space of a multistate

network, � is a Cartesian product of the states of each component, �� , � = 1,2,. . ,� . Aven’s

algorithm [38] starts by using one d-MP to decompose the state space, � into a set of

acceptable states, a set of unacceptable states, and sets of disjoint unspecified states. Then

each set of unspecified states is recursively decomposed using a d-MP until no set of

unspecified states is left. Finally, the reliability is the sum of probabilities of all the disjoint sets of

acceptable states. Associated with each set of unspecified states, �, there are two limiting state

points �� and � such that:

� = {� ∈ �; � ≤ � ≤ ��}.

Initially, �� = ����, where ���� is the maximum state vector, and � = �.

Associated with each set of acceptable states, �, there is a critical value �� ∈ � (� is the set

of unspecified states which is decomposed) such that:

� = {� ∈ �; �� ≤ �}.

To each set of unacceptable states, �, there is an associated critical value � such that:

� = {� ∈ �; �� < ��, for at least one �}.

114

As can be seen from Aven’s algorithm [38], during each recursive call of decomposition, a

filtering process is carried out first to select qualified d-MPs that are smaller than or equal to ��.

Currently, this is done by comparing all the d-MPs with ��. This may not be a computational

issue if the total number of d-MPs is relatively small. However, for networks with large number

of components, the number of d-MPs can be very large. Therefore, the filtering process may

consume quite a lot of computational effort.

Virtually, if a d-MP has been filtered out for a set of unspecified states, �, it is not qualified

for the later sets of unspecified states under that � either. Thus, when each set of unspecified

states is decomposed, the set of d-MPs can also be decomposed into a set of qualified d-MPs,

and a set of unqualified d-MPs. As each set of unspecified states is decomposed recursively,

the set of qualified d-MPs can also be decomposed recursively. During each decomposition

process, a proper d-MP is chosen only from the corresponding qualified set of d-MPs. By doing

so, the number of d-MPs that need to be scanned decreases as the decomposition deepens.

Another limitation of Aven’s algorithm is the heuristic rule for choosing a proper d-MP to

decompose each set of unspecified states. During each recursive call of the decomposition, any

d-MP, �� that is smaller than or equal to �� can be used [38]. To make the number of sets of

unspecified states as small as possible, Aven [38] suggests that a large � and a small �� should

be sought for. Currently, the heuristic is to choose a d-MP, �� , such that �� maximizes the

following equation [38]:

    0 0

1

max , ,
n

l l l
i i i

i

H b z b


  z z b . (6.1)

The idea behind this heuristic rule is given as follows. Given that �� is the upper limiting

point for the current set of unspecified states, �, the d-MP is chosen so that the difference

between �� and the d-MP is as large as possible. Then it is more likely that a smaller �� is

obtained, resulting in a smaller number of sets of unspecified states. However, during each

decomposition process, given �� and �, the number of sets of unspecified states is determined

115

by the number of � , satisfying �� < ��
�, � = 1,2,… ,�. [38] Thus, a heuristic rule with � directly

involved may provide better performance.

6.2 The development of the algorithm

In this section, a property named Property 1, is proposed to decompose the set of d-MPs when

decomposing each unspecified set. Then an improved heuristic is proposed to select a proper

d-MP for decomposing each set of unspecified states. Based on Property 1 and the improved

heuristic, we present the improved algorithm. An example is given for illustration.

6.2.1 Decomposition of d-MPs

Virtually, the SSD procedure is a type of branch-and-bound procedure, which produces a tree

structure, with each node representing a set of states [5]. There are three types of nodes in the

tree, one corresponding to a set of acceptable states, one corresponding to a set of

unacceptable states, and one corresponding to a set of unspecified states. The node

corresponding to a set of unspecified states is further branched into several additional nodes. All

the leaf nodes are either corresponding to set of acceptable states, or a set of unacceptable

states. The set of states corresponding to a node must be included in its parental node. Thus, if

a d-MP is not qualified for a parental node, it is not qualified for all the sibling nodes either. Thus,

we have the following property.

Property 1 during the decomposition process, if a d-MP is not qualified for a set of

unspecified states, �, it is not qualified for all the sets of unspecified states decomposed from

that � either.

Proof: Assume there exists an d-MP, �� that is not qualified for a set of unspecified states, �,

but qualified for a set of unspecified states, ��, decomposed from �. Thus, we have �� ≰ ��,

116

where �� is the upper limiting point of set �, and �� ≤ ���, where ��� is the upper limiting point of

set ��. However, given �� is decomposed from �, we have ��� ≤ ��. Contradiction.

Given Property 1, when a set corresponding to a parental node is decomposed, its

corresponding qualified d-MPs are classified into a set of qualified d-MPs, and a set of

unqualified d-MPs, by comparing with the current upper limiting point. Only those qualified d-

MPs are considered when decomposing its sibling nodes. When one of these sibling nodes is

decomposed (now it becomes parental node for its sibling nodes), its corresponding qualified d-

MPs are again classified into a set of qualified d-MPs, and a set of unqualified d-MPs. Only

those qualified d-MPs are considered for decomposing its sibling nodes. Thus, instead of

comparing all the d-MPs with the current upper limiting point to find the qualified d-MPs for each

decomposition procedure, only those qualified d-MPs from the parental node is considered.

Let � denote the total number of unspecified sets generated, L denote the total number of d-

MPs, � denote the number of components, and � denote the average number of qualified d-

MPs (d-MPs that are smaller than or equal to the current upper limiting point). During each

decomposition procedure of Aven’s algorithm, it requires �(�) time to select the qualified d-MPs,

�(�) time for the heuristic to select a proper d-MP, and �(�) time in the worst case to perform

pivot decomposition. Thus, the time complexity of Aven’s algorithm is �(� ∙[� + � + �]). By

incorporating the decomposition of d-MPs procedure, the decomposition of d-MPs implements

recursively as the decomposition of state space is implemented recursively. The number of

qualified d-MPs for the first node, i.e. the root node is �. The number of qualified d-MPs for all

the sibling nodes (corresponding to a set of unspecified states) of the root node is less than �.

The number of qualified d-MPs for all the nodes (corresponding to a set of unspecified states)

becomes smaller as the decomposition deepens. The number of qualified d-MPs for the last

node (corresponding to a set of unspecified states) is 1. Let � denote the average number of d-

MPs from the parental node of each unspecified set. By incorporating the decomposition of d-

117

MPs, the time complexity of the Aven’s algorithm becomes �(� ∙[� + � + �]). The advantage

can be seen given � ≪ �.

6.2.2 An improved heuristic

Because the evaluation of multistate network reliability is an NP-hard problem, the total number

of unspecified sets, � grows exponentially with the size of the network. In order to make the

number of unspecified sets as small as possible, Aven [38] suggests finding a large � and a

small �� during each decomposition procedure as follows.

After initialization, first choose a d-MP, ��, such that �� maximizes the following equation

[38]:

    0 0

1

max , ,
n

l l l
i i i

i

H b z b


  z z b ,

and generate a system state vector, ��, using the following equation [38]:

��� = min���
�,�� ≤ ���, � = 1,2,… ,�.

Second, set ��
� = max���

�,���,� = 1,2,… ,�. �� is selected. Set �� = max{���,��},� = 1,2,… ,�. �

is selected.

After � and �� are selected, the set of acceptable states is determined as

� = {� ∈ �; �� ≤ �},

and the set of unacceptable states is determined as

� = {� ∈ �; �� < ��,for at least one �}.

In order to make the sets of unspecified states disjoint from each other, the decomposition

is implemented by pivoting on each component. Because pivoting on component � , which

satisfies �� = ��
�, is unnecessary, the number of unspecified sets is determined by the number

of �, satisfying �� < ��
�,� = 1,2,… ,�.

118

As can be seen, the number of unspecified sets is determined only by � and ��. However,

the current heuristic for choosing �� involves ��. A heuristic that directly involve � may provide

better performance. Thus, we propose the following steps.

First, select � using the same equation in [38] as follows:

��� = min���
�,�� ≤ ���, � = 1,2,… ,�.

Set �� = max{���,��},� = 1,2,… ,�.

Second, given � is selected, choose a d-MP, �� , such that �� minimizes the following

equation:

     0

1

max , ,
n

l l l
i i i

i

H z b v


  z z b . (6.2)

During the process, whenever there is a tie, the tie is broken arbitrarily.

Set ��
� = max���

�,���,� = 1,2,… ,�.

The idea behind this heuristic is given as follows. Because the number of unspecified sets

is determined by the number of �, satisfying �� < ��
�,� = 1,2,… ,�. Given ��

� = max���
�,���, the d-

MP, ��, is chosen so that the summation of the difference between each pair of ��
� and �� is as

small as possible. Therefore, it is more likely that the number of unspecified sets, determined by

the number of � satisfying �� < ��
�, is smaller.

6.2.3 The algorithm

Given Property 1 and the heuristic, we propose the following algorithm for exact reliability

evaluation of multistate network given all d-MPs.

1. Set the following parameters: initial reliability value, � = 0; index for the current set of

unspecified states, � = 1; index for the current set of qualified d-MPs, � = �, where � is the

total number of d-MPs; initial limiting state points, �� = ����, and � = �. Store all the d-MPs

119

into a stack, �. Create two matrices, �� and � to store the limiting state points of each set

of unspecified states respectively. Create a vector �, to store the index of qualified d-MPs

for each set of unspecified states.

2. Based on Property 1, decompose the current set of d-MPs into qualified d-MPs, �� ≤ ��, and

nonqualified d-MPs, �� ≰ ��; put qualified d-MPs on the top of the stack �. Update the index

for the current set of qualified d-MPs, �, which equals to the number of qualified d-MPs.

3. Given all the qualified d-MPs for the current set, do the following:

1) ��
∗ = min���

��, � = 1,2,… ,�.

2) �� = max{��
∗,��},� = 1,2,… ,�.

3) choose a d-MP, ��, such that �� minimizes the following equation:

     0

1

max , ,
n

l l l
i i i

i

H z b v


  z z b .

During the process, whenever there is a tie, the tie is broken arbitrarily.

4) ��
� = max���

�,���,� = 1,2,… ,�.

4. Set �� = �����
� ≤ �� ≤ ��

��,� = 1,2,… ,�.

� ← � + ∏ ��
�
��� .

5. Let ��, � = 1,2,… ,� be the �, � ∈ {1,2,… ,�}, satisfying �� < ��
�. If no such � exists, set � = 0.

If � ≥ 1, for � = 1,2,… ,�,� = 1,2,… ,�, do the following:

��(� + � − 1,�) = �
��

� − 1, for � = ��

��
�, otherwise

�(� + � − 1,�)= �
��

�, for � < ��

��, otherwise

�(� + � − 1)= �.

Set � ← � − 1 + �. If � = 0, stop and output �. Otherwise, set �� = ��(�), � = �(�), � = �(�).

Go to step 2.

120

6.2.4 An illustrative example

Consider the example shown in Figure 2.1. Table 2.1 lists the state distribution of each

component in the network.

There are three 3-MPs given in the following arbitrary order [39].

     1 2 33,2,1,0,0,1 , 2,1,1,0,1,2 , 2,2,0,0,1,1z z z   .

step 1 � = 0, � = 1, � = � = 3, �� = ���� = (3,2,1,1,1,2), � = (0,0,0,0,0,0).

step 2 All three 3-MPs are smaller or equal to ��, � = 3.

step 3

1) ��
∗ = min���

� ,�� ≤ ��� = min{3,2,2} = 2, ��
∗ = 1,��

∗ = 0,��
∗ = 0,��

∗ = 0,��
∗ = 1.

2) �� = max{��
∗,��} = max{2,0} = 2, �� = 1,�� = 0,�� = 0,�� = 0,�� = 1.

3) �(��)= ∑ �max���
�,��� − ��� = 1 + 1 + 1 = 3,�

��� �(��)= 3,�(��)= 2.

�(��)= �(��)> �(��). We select ��.

4) ��
� = max{��

�,��} = 2, ��
� = 2,��

� = 0,��
� = 0,��

� = 1,��
� = 1.

step 4 �� = ��(��
� ≤ �� ≤ ��

�)= 0.85, �� = 0.6,�� = 1,�� = 1,�� = 0.9,�� = 0.95.

� = � + ∏ �� = 0.43605�
��� . (18)

step 5 Given �� < ��
� for � = 2,5. � = 2. We have �� = 2,�� = 5.

1) For � = 1, �� = 2,

��(1,1)= ��
� = 3 ; ��(1,2) = ��

� − 1 = 1; ��(1,3)= 1; ��(1,4) = 1; ��(1,5)= 1; ��(1,6)= 2.

Thus ��(1,:)= (3,1,1,1,1,2).

�(1,1)= 2; �(1,2)= 1; �(1,3)= 0; �(1,4) = 0; �(1,5)= 0; �(1,6)= 1;

 Thus, �(1,:)= (2,1,0,0,0,1). �(1)= 3.

2) For � = 2, �� = 5,

��(2,1)= ��
� = 3;��(2,2)= 2; ��(2,3)= 1; ��(2,4) = 1; ��(2,5)= ��

� − 1 = 0; ��(2,6) = 2.

Thus ��(2,:)= (3,1,1,1,1,2).

�(2,1)= ��
� = 2; �(2,2)= 2; �(2,3)= 0; �(2,4) = 0; �(2,5)= 0; �(2,6) = 1;

 Thus, �(2,:)= (3,1,0,0,0,1). �(2)= 3.

121

step 6 � = 2 ≠ 0, set �� = ��(2)= (3,2,0,1,1,2), � = �(2)= (3,2,0,0,0,1). � = �(3) = 3. Go to

step 2.

step 2 only �� ≤ ��, � = 1.

step 3

1) �∗ = �� = (3,2,1,0,0,1).

2) � = max(�∗,�)= (3,2,1,0,0,1).

3) �� = max(��,�)= (3,2,1,0,0,1).

step 4 �� = ��(��
� ≤ �� ≤ ��

�)= 0.6, �� = 0.6,�� = 0.9,�� = 1,�� = 0.1,�� = 0.95.

� = � + ∏ �� = 0.43605 + 0.03078 = 0.46683�
��� . (19)

Step 5 no such � exists satisfying �� < ��
�. Set � = 0.

Step 6 � = 1 ≠ 0, set �� = ��(1)= (3,1,1,1,1,2), � = �(1)= (2,1,0,0,0,1).

� = �(2)= 3. Go to step 2.

Step2 only �� ≤ ��, � = 1.

step 3

1) �∗ = �� = (2,1,1,0,1,2).

2) � = max(�∗,�)= (2,1,1,0,1,2).

3) �� = max(��,�)= (2,1,1,0,1,2).

step 4 �� = ��(��
� ≤ �� ≤ ��

�)= 0.85, �� = 0.3,�� = 0.9,�� = 1,�� = 0.9,�� = 0.7.

� = � + ∏ �� = 0.46683 + 0.144585 = 0.611415.�
��� (20)

Step 5 no such � exists satisfying �� < ��
�, set � = 0.

Step 6 � = 0. Stop and output � = 0.611415.

This result agrees with the result in [39], which illustrates the correctness of the proposed

algorithm.

122

6.3 Efficiency investigation on hypothetical networks

In this section, we investigate the efficiency of the proposed algorithm using hypothetical

networks. We compare the efficiency of the proposed algorithm with Aven’s algorithm [38] and

RSDP with ordering heuristic O1 [47]. The computation time is affected by three parameters,

namely the number of components (the size of the network), the number of d-MPs, and the

number of states of each component. Thus, we consider hypothetical networks given different

settings of the three parameters. In terms of performance, we are interested in the CPU time

required for obtaining the exact reliability. Let ��, �� and �� represent the CPU time (in seconds)

by Aven’s algorithm [38], RSDP + O1 [47], and the proposed algorithm respectively. In addition,

let �� =
��

��
� denote the ratio between the CPU time by Aven’s algorithm [38] and that of

proposed algorithm; �� =
��

��
� denote the ratio between the CPU time by RSDP algorithm [47]

and that of proposed algorithm. �� and �� present the advantage of proposed algorithm over

Aven’s algorithm and RSDP + O1 respectively. All algorithms are coded in Matlab 2015 and the

experiments are carried on a personal computer with Windows 7, Intel i7 @ 3.6GHz, 16 GB

RAM.

First, we consider hypothetical networks with fixed number of components and fixed

number of states for each component. We consider 20 components and all components are i.i.d

with 3 states. We randomly generate L vectors, and ensure that no vector is dominated. As a

result, these L vectors can be treated as L d-MPs of some hypothetical networks. We consider

different scenarios with 200, 400, 600, 800, and 1000 d-MPs. Results are shown in Table 6.1.

RSDP with O1 is more efficient than Aven’s algorithm for all scenarios, and the proposed

algorithm is more efficient than Aven’s algorithm and the RSDP with O1. Figure 6.1 shows the

ratios with respect to different number of d-MPs.

123

Table 6.1: Efficiency comparison given different numbers of d-MPs

Number of d-MPs 200 400 600 800 1000

CPU time by Aven’s algorithm (��) 91.94 554.72 973.51 2379.50 4395.06

CPU time by RSDP + O1 (��) 42.12 460.70 743.51 1564.88 3475.94

CPU time by the proposed algorithm (��) 12.63 46.17 54.23 104.99 159.12

Ratio (�� =
��

��
�) 7.28 12.01 17.95 22.66 27.62

Ratio (�� =
��

��
�) 3.33 9.98 13.71 14.90 21.85

The advantageous of the proposed algorithm over Aven’s algorithm increases as the

number of d-MPs increases. This can be explained given the time complexities of Aven’s

algorithm and the proposed algorithm, which are �(� ∙[� + � + �]) and �(� ∙[� + � + �])

respectively. The main advantage of the proposed algorithm over Aven’s algorithm is due to

� ≪ � . As the number of d-MPs, � increases, the average number of qualified d-MPs, �

increases. But � grows much slower than �. Thus, the ratio �� increases with number of d-MPs.

The advantageous of the proposed algorithm over RSDP with O1 increases as the number of d-

MPs increases. This can be explained as follows. The computational time of RSDP with O1

based on SDP method grows exponentially with the number of d-MPs. However, the

computational time of the proposed algorithm does not increase as fast as RSDP with O1 with

number of d-MPs. Thus, the ratio �� increases with the number of number of d-MPs.

124

Figure 6.1: Ratio with respect to different numbers of d-MPs

Second, we consider hypothetical networks with fixed number of d-MPs and fix number of

components. We consider 20 i.i.d components and 100 d-MPs. We consider different scenarios

with 3, 4, 5, 6, and 7 states. Results are shown in Table 6.2, RSDP with O1 is more efficient

than Aven’s algorithm. The proposed algorithm is more efficient than RSDP with O1 when the

number of states is small (3 and 4). However, RSDP with O1 is more efficient than the proposed

algorithm when the number of states is greater than or equal to 5.

As can be seen from Figure 6.2, the advantageous of the proposed algorithm over Aven’s

algorithm stays about the same as the number of states increases. This can be explained given

the time complexities of Aven’s algorithm and the proposed algorithm, which are �(� ∙[� + � +

�]) and �(� ∙[� + � + �]) respectively. The main advantage of the proposed algorithm over

Aven’s algorithm is due to � ≪ �. Because the number of d-MPs is fixed for different scenarios,

the ratio �� remain the same. The advantageous of RSDP with O1 over the proposed algorithm

increases as the number of states increases for states greater than 5. This can be explained as

follows. The computational time of the proposed algorithm based on SSD method grows

exponentially with the number of sets of unspecified states. The number of sets of unspecified

states increases with the state space of the network. Therefore, as the number of states for

0

5

10

15

20

25

30

200 400 600 800 1000

R
a

tio

Number of d-MPs

r1

r2

125

each component increases, the state space of the network becomes larger, resulting in larger

number of sets of unspecified states. However, the computational time of RSDP with O1 does

not increase as fast as the proposed algorithm when the number of states increases. Thus, the

ratio �� decreases with number of states.

Table 6.2: Efficiency comparison given different numbers of states

Number of states 3 4 5 6 7

CPU time by Aven’s algorithm (��) 28.28 133.50 654.00 1320.00 3851.08

CPU time by RSDP + O1 (��) 15.11 47.60 145.40 257.53 634.87

CPU time by proposed algorithm (��) 7.00 32.86 167.54 320.55 956.89

Ratio (�� =
��

��
�) 4.04 4.06 3.90 4.12 4.02

Ratio (�� =
��

��
�) 2.16 1.45 0.8679 0.8034 0.6635

Figure 6.2: Ratio with respect to different numbers of states

Third, we consider hypothetical networks with fix number of d-MPs and fix number of states

for each component. We considered 100 d-MPs and all components are i.i.d with 3 states. We

consider different scenarios with 20, 25, 30, 35, and 40 components. Results are shown in

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 4 5 6 7

R
a

tio

Number of states

r1

r2

126

Table 6.3. The proposed algorithm is more efficient than RSDP with O1 when the number of

components is less than 20. However, RSDP with O1 is more efficient than the proposed

algorithm when the number of components is greater than or equal to 25.

Table 6.3: Efficiency comparison given different numbers of components

Number of components 20 25 30 35 40

CPU time by Aven’s algorithm (��) 24.34 152.50 538.42 2781.25 10135.85

CPU time by RSDP + O1 (��) 10.28 36.58 54.73 238.11 737.63

CPU time by proposed algorithm (��) 5.89 42.22 148.67 836.06 3342.21

Ratio (�� =
��

��
�) 4.13 3.61 3.622 3.33 3.03

Ratio (�� =
��

��
�) 1.74 0.87 0.3681 0.2848 0.2207

As can be seen from Figure 6.3 , the advantageous of RSDP with O1 over the proposed

algorithm increase as the number of states increases when the number of states is greater than

25. Algorithm based on SSD method is more sensitive to the number of components than that of

algorithm based on SDP method. This can be explained as follows. The computational time of

the proposed algorithm based on SSD method grows exponentially with the number of sets of

unspecified states. The number of sets of unspecified states increases with the state space of

the network. Therefore, as the number of components increases, the state space of the network

becomes larger, resulting in larger number of sets of unspecified states. However, the

computational time of RSDP with O1 does not increase as fast as the proposed algorithm when

the number of components increases. Thus, the ratio �� decreases with number of states. The

decreasing trend of ratio �� can be explained given the time complexities of Aven’s algorithm

and the proposed algorithm, which are �(� ∙[� + � + �]) and �(� ∙[� + � + �]) respectively. The

main advantage of the proposed algorithm over Aven’s algorithm is due to � ≪ �. Thus, the ratio

127

�� decreases as the number of components, � increases. However, ratio �� will always be

greater than one.

Figure 6.3: Ratio with respect to different numbers of components

6.4 Efficiency investigation on real networks

The efficiency investigation in Section 6.3 is based on hypothetical networks. Thus, it is

necessary to evaluate the performance of the proposed algorithm using networks with known

structures. In addition, we assume that all the d-MPs are not known in advance. We adopt the

algorithm reported in [43] to search for all MPs, and the algorithm reported in [45] to search for

all d-MPs of one d level given all MPs. Stop the search algorithm in [45] when certain demand d

is reached. We incorporate these procedures into the proposed algorithm, Aven’s algorithm [38]

and RSDP with ordering heuristic O1 [47] respectively. We also compare the efficiency with the

method based on direct approaches by Jane and Laih [19], which does not require d-MPs as

prior information. Jane’s algorithm requires a so called d-flow, to be derived first to decompose

each unspecified state space. In order to derive a d-flow, the reported Maximum Flow algorithm

is used in Jane’s algorithm. In this work, we adopt the build-in Maximum Flow algorithm from

Matlab by Edmond [68]. Let �� , �� , �� and �� represent the CPU time (in seconds) by the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 25 30 35 40

R
a

ti
o

Number of components

r1

r2

128

algorithm in [19], Aven’s algorithm (incorporating the algorithm in [43] and the algorithm in [45]),

RSDP with ordering heuristic O1 (incorporating the algorithm in [43] and the algorithm in [45]),

and the proposed algorithm (incorporating the algorithm in [43] and the algorithm in [45])

respectively. Let �� =
��

��
� , �� =

��
��

� , and �� =
��

��
� denote the ratios. These ratios present the

advantage of proposed algorithm over the other reported algorithms.

6.4.1 Example 1

We consider a network with 21 components as shown in Figure 6.4. We assume the 21

components are independent and identically distributed (i.i.d.), with 5 states (capacities) from 0

to 4. The state distribution of each component is  0.05,0.15,0.2,0.25,0.35p  .

Figure 6.4: A moderate multistate network [42]

We consider the following different demands, which are d=1, d=2, d=3 and d=4. The results

are shown in Table 6.4. The proposed algorithm is faster than Jans’algorithm, Aven’s algorithm

and RSDP+O1. Jane’s algorithm is slower than Aven’s algorithm when the demand is 1 and 2,

and faser when the demand is 3 and 4. Jane’s algorithm is slower than RSDP+O1 when the

demand is 1, 2, and 3, and faser when the demand is 4. Aven’s algorithm is faster than

RSDP+O1 when the demand is 1 and 4, and slower when the demand is 2 and 3.

129

Table 6.4: Efficiency comparison for a network in [42]

Demand (d) 1 2 3 4

Number of d-MPs (�) 16 126 671 2761

Reliability (�) 0.9493 0.7944 0.5815 0.3182

CPU time by Jane’s algorithm (��) 0.3100 7.91 92.46 703.23

CPU time by Aven’s algorithm (��) 0.0276 1.82 94.30 2985.32

CPU time by RSDP + O1 (��) 0.0384 0.9198 78.11 5174.08

CPU time by proposed algorithm (��) 0.0195 0.4279 8.42 107.13

Ratio (�� =
��

��
�) 15.88 18.48 10.98 6.56

Ratio (�� =
��

��
�) 1.41 4.24 11.20 27.87

Ratio (�� =
��

��
�) 1.97 2.15 9.28 48.30

Figure 6.5 presents the ratios in with respect to different demands. Compared with Aven’s

algorithm and RSDP+O1, the poroposed becomes more advantageous as the demand

increases. This is because the number of d-MPs increases as the demand increases in this

example. This agrees with the resulsts and discussiosn in the hypothetical networks with

different d-MPs in Section 3. The ratio �3 decreases as the demand increases when the

demand is greater than 2. This can be explained as follows. The d-flow in Jane’s algorithm is a

component state vector for decomposing the set of unspecified states, which has similar

function of the d-MP in the porposed algorithm. Jane’s algorithm uses maximum flow algorithm

to derive a d-flow for each set of unspecified states. Thus, there is no procedure of comparing

and selecting qualified d-MPs. Thus, the computational time of Jane’s algorithm is not affected

by the number of d-MPs. As the demand increases, the number of d-MPs grows very fast. As

can be seen by the time complexity of the proposed algorithm, �(� ∙[� + � + �]), � also

increases as the number of d-MPs grows. Thus, the advantage of the poroposed algorihtm over

Jane’s algorithm become less as the demand increases when the demand is greater than 2.

130

Another reason is that the direct approach tends to be more efficient when the demand

appraoches the maximum demand [18].

Figure 6.5: Ratio with respect to different demands for a network in [42]

6.4.2 Example 2

We consider a bridge network with 31 components as shown in Figure 6.6. We assume the 31

components are independent and identically distributed (i.i.d.), with 6 states (capacities) from 0

to 4. The state distribution of each component is given as follows.

 0.05,0.1,0.15,0.1,0.2,0.4p  .

We consider the following different demands, which are d=1, d=2, d=3, d=4 and d=5.

Figure 6.6: A multistate bridge network

0

10

20

30

40

50

1 2 3 4

R
a
ti
o

Demand

r3

r4

r5

131

Table 6.5: Efficiency comparison for bridge network

Demand (d) 1 2 3 4 5

Number of d-MPs (�) 11 66 286 1001 3003

Reliability (�) 0.8943 0.6356 0.3279 0.1274 0.0362

CPU time by Jane’s algorithm (��) 13.35 10903.65 —— —— ——

CPU time by Aven’s algorithm (��) 0.0133 0.3974 16.44 499.67 11353.92

CPU time by RSDP + O1 (��) 0.0295 0.3157 7.53 272.68 7077.37

CPU time by proposed algorithm (��) 0.0084 0.5226 23.45 343.49 3890.97

Ratio (�� =
��

��
�) 1517.05 20967.87 —— —— ——

Ratio (�� =
��

��
�) 1.5812 0.7605 0.7011 1.4547 2.9180

Ratio (�� =
��

��
�) 3.5174 0.6042 0.3213 0.7939 1.8189

The results are shown in Table 6.5. We did not record the CPU time for Jane’s algorithm

when the demand is 3 and above, because we did not get these results within 10 days.

RSDP+O1 is faster than the proposed algortihm when the demand is 2, 3, and 4, but slower

when the demand is 1 and 5. The propose algorithm is faster than Aven’s algorithm when the

demand is 1, 4, and 5, but slower when the demand is 2 and 3. The proposed algortihm has

more advantage when the CPU time is large. Figure 6.7 presents the ratios of �� and �� in with

respect to different demands.

132

Figure 6.7: Ratio with respect to different demands for a bridge network

As can be seen that Jane’s algorithm is much slower than other algorithms. The reason

behind can be explained as follows. Given 31 components and 6 states for each component,

the state space of this network is very large comparing to Exmaple 1. However, the structure of

this network is relatively simple and the number of d-MPs is very small comparing to Example 1.

The propsoed algorithm, RSDP+O1, and aven’s algorithm are indirect approaches which

require all d-MPs to be known in advance. Becasue the number of d-MPs are small, these

indirect approacheses become very efficient. On the other hand, as a direct SSD approach,

Jane’s algorithm cannot make use of this advantage. RSDP+O1 is more efficient than the

proposed algorithm when the demand is 2, 3, and 4. This is because the number of d-MPs is

relatively small given the size of this network and number of states for each component when

the demand is 2, 3, and 4. As disscussed in Section 3, when the number of d-MPs increases,

the computational time of RSDP+O1 grows faster than the proposed algorithm. Thus, when the

demand is 5, the number of d-MPs increases by more than 2000 compare to the case when

demand is 4. In this case, the proposed algorithm is more efficient than RSDP+O1. Aven’s

algorihtm is more efficient than the proposed algorithm when the demand is 2 and 3. This is also

because the number of d-MPs is relatively small given the size of this network and number of

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4

R
a

ti
o

Demand

r5

r6

133

states for each component when the demand is 2 and 3. The main advantage of the porposed

algoirthm over Aven’s algorithm is due to � ≪ �. Since � is relatively small, computational time

saving due to � ≪ � is also very small. On the other hand, the additional steps of the proposed

algorithm over Aven’s algorithm, particulary the process of updating stack, � for storing all the

sorted d-MPs with qualified ones on top consumes more computational time.

6.4.3 Example 3

We consider a network with 30 components as shown in Figure 6.8. We assume the

components are independent and identically distributed (i.i.d.), with 3 states (capacities) from 0

to 2. The state distribution of each component is given as  0.05,0.25,0.7p  . We consider the

following different demands, which are d=1, d=2, d=3 and d=4.

Figure 6.8: A large multistate network [19]

The results are shown in Table 6.6. We did not record the CPU time for RSDP + O1 when

the demand is 4, because we did not get the calculation finished within 15 days. The proposed

algorithm is faster than Jane’s algorithm, Aven’s algorithm and RSDP+O1. Jane’s algorithm is

slower than Aven’s algorithm when the demand is 1, and faser when the demand is 2, 3 and 4.

134

Jane’s algorithm is slower than RSDP+O1 when the demand is 1, and faser when the demand

is 2, 3 and 4. Aven’s algorithm is slower than RSDP+O1 when the demand is 2, and faster when

the demand is 1, 3 and 4. Figure 6.9 presents the ratios in logarithm format with respect to

different demands. The reasons for the trend of the ratios are similar to Example 1.

Table 6.6: Efficiency comparison for network with 30 components

Demand (d) 1 2 3 4

Number of d-MPs (�) 88 2573 13804 29102

Reliability (�) 0.9997 0.9956 0.9644 0.8291

CPU time by Jane’s algorithm (��) 17.56 3983.48 8579.36 7943.91

CPU time by Aven’s algorithm (��) 4.63 9310.64 82354.07 191553.11

CPU time by RSDP + O1 (��) 18.53 5416.68 724650.32 ——

CPU time by proposed algorithm (��) 1.77 229.7476 1016.92 1172.16

Ratio (�� =
��

��
�) 9.88 17.33 8.43 6.77

Ratio (�� =
��

��
�) 2.60 40.52 80.98 163.41

Ratio (�� =
��

��
�) 10.42 23.57 712.58 ——

Figure 6.9: Ratio with respect to different demands for a network in [19]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4

L
o
g

 (
R

a
ti
o

)

Demand

log (r3)

log (r4)

log (r5)

135

6.5 The algorithm given all minimal cut vectors

The proposed algorithm for multistate network reliability evaluations covered earlier in this paper

is based on d-MPs. However, sometimes only the minimal cut vectors, or d-MCs, are available.

Associated with each set of unspecified states, �, there are two limiting state points �� and �

such that [38]:

� = {� ∈ �; �� ≤ � ≤ �}.

Initially, � = �, where � is the maximum state vector, and �� = �.

For each set of acceptable states, �, there is an associated critical value �� ∈ � (� is the

set of unspecified states which is decomposed) such that [38]:

� = {� ∈ �; � ≤ ��}.

To each set of unacceptable states, �, there is an associated critical value � such that [38]:

� = {� ∈ �; �� > ��,for at least one �}.

The corresponding property for decompose d-MCs is given as follows.

Property 2 during the decomposition process, if a d-MC is not qualified for a set of

unspecified states, �, it is not qualified for all the sets of unspecified states decomposed from

that � either.

The corresponding heuristic rule for choosing a d-MC for decomposition is given as follows.

Given �� , choose a d-MC, ��, such that �� maximizes the following equation:

      0

1

min , ,
n

l l l
i i i

i

H v c b


  c c b . (6.3)

During the process, whenever there is a tie, the tie is broken arbitrarily.

With property 2 and the heuristic rule for choosing a d-MC, we give the following algorithm

for exact reliability evaluation of multistate network given all d-MCs.

136

1. Set the following parameters: initial unreliability value, � = 0 ; index for current set of

unspecified states, � = 1; index for current set of qualified d-MPs, � = �, where � is the total

number of d-MCs; initial limiting state points, �� = �, and � = ����. Store all the d-MCs into

a stack, �. Create two matrices, �� and �, to store the limiting state points of each set of

unspecified states respectively. Create a vector � to store the index of qualified d-MCs for

each set of unspecified states.

2. Decompose the current set of d-MCs into qualified d-MCs, �� ≥ ��, and nonqualified d-MCs,

�� ≱ ��; put qualified d-MCs on top of the stack, �. Update the index for the current set of

qualified d-MCs, �, which equals to the number of qualified d-MCs.

3. Given all the qualified d-MCs for current set, do the following:

1) ��
∗ = max���

��, � = 1,2,… ,�.

2) �� = min{��
∗,��},� = 1,2,… ,�.

3) choose a d-MC, ��, such that �� maximizes the following equation:

     0

1

min , ,
n

l l l
i i i

i

H v c b


  c c b .

During the process, whenever there is a tie, the tie is broken arbitrarily.

4) ��
� = min���

�,���,� = 1,2,… ,�.

4. Set �� = �����
� ≤ �� ≤ ��

��,� = 1,2,… ,�.

� ← � + ∏ ��
�
��� .

5. Let ��, � = 1,2,… ,� be the �, � ∈ {1,2,… ,�}, satisfying �� > ��
�. If no such � exists, set � = 0.

If � ≥ 1, for � = 1,2,… ,�,� = 1,2,… ,�, do the following:

��(� + � − 1,�) = �
��

� + 1, for � = ��

��
�, otherwise

�(� + � − 1,�)= �
��

�, for � < ��

��, otherwise

�(� + � − 1)= �.

137

Set � ← � − 1 + �. If � = 0, stop and output 1 − �. Otherwise, set �� = ��(�), � = �(�),

� = �(�). Go to step 2.

6.6 Summary

In this chapter, we develop an improved algorithm based on SSD method for exact reliability

evaluation of multistate networks. The improvement is based on the observation that the set of

d-MPs/d-MCs can also be decomposed recursively and an improved heuristic rule can be used

to choose a proper d-MP/d-MC for each decomposition process. The results show that the

proposed algorithm can significantly improve the reliability efficiency.

Up to now, we have developed two methods for reliability evaluation of multistate networks

given all d-MPs, namely the RSDP with ordering heuristics in Chapter 5 and the improved SSD

in this chapter. Based on the efficiency investigations conducted in Section 6.3 and Section 6.4,

we suggest the following guideline, which can help with choosing the proper method for certain

multistate networks. For multistate networks with simple structures, in which the number of d-

MPs is relatively small, compare to the size of the networks and/or the number of component

states, we suggest using RSDP with O1 proposed in Chapter 5. For example, we suggest using

RSDP with O1 when: 1) the number of d-MPs is less than 1000 for a network with 30

components and 6 component states. 2) the number of states for each component is greater

than or equal to five for a network with 20 components and 100 d-MPs. 3) the number of

components is greater than or equal to 25 for a network with 3 component states and 100 d-

MPs. However, for multistate networks with complex structures, in which the number of d-MPs

is relatively large, compare to the size of the networks and/or the number of component states,

we suggest using the improved SSD algorithm proposed in this chapter. For example, we

suggest using RSDP with O1 when: 1) the number of d-MPs is greater than 1000 for a network

with 30 components and 6 component states, or the number of d-MPs is greater than or equal

138

to 88 for a network with 30 components and 3 component states. 2) the number of d-MPs is

greater than or equal to 200 for a network with 20 components and 3 component states. The

above guidelines are summarized from the numerical example investigated in Section 6.3 and

Section 6.4. These specific numbers may not apply to other networks.

139

Chapter 7

Conclusion and Future Work

This chapter summarizes the main contributions of this thesis, and suggests several problems

that can be further studied.

7.1 Conclusion

In network reliability analysis, it is often assumed that the components in a network system can

take two possible states, completely working or totally failed. The system is said to be

functioning if there exists at least one path from a source node to a sink node. However, in

many real-world network systems, the component can work at different levels of performance.

By allowing both components and systems to have finite number of performance levels (states),

from perfect functioning to complete failure, we are able to represent the system conditions with

more accuracy and flexibility than the binary system models.

Theoretically, the evaluation of multistate network reliability is an NP-hard problem [5].

Therefore, research aimed at developing efficient algorithms is important for analyzing complex

practical networks. Many reported works have proposed efficient algorithms to evaluate the

exact reliability of multistate networks. Two types of approaches are popular in the literature,

namely direct approaches and indirect approaches. This thesis aims to improve the efficiency of

the indirect approaches for exact evaluation of multistate network reliability. In conclusion, the

contributions of this thesis are summarized as follows.

(1) An improved backtracking algorithm based on depth-first search is developed for

finding all minimal paths (MPs) for binary networks. A minimal path (MP) is a path to

140

connect the source node and the sink node without cycles. It is a fundamental structure in

system reliability analysis. At least one MP has to function for a binary network to operate. MP

also serves as building blocks to generate minimal path vectors for multistate networks. In this

thesis, we propose a more efficient algorithm to find all MPs in a network. The proposed

algorithm becomes more advantageous as the size of the network increases. The proposed

algorithm not only accelerates the indirect approaches for the evaluation of multistate network

reliability, but also speeds up the path-based methods for the evaluation of binary network

reliability. Although finding all MPs is an NP-hard problem, the proposed algorithm significantly

enlarges the size of networks that can be analyzed.

(2) Given all the MPs, a recursive breadth-first search algorithm to search for all the

d-MPs for all possible d values is developed. A minimal path vector (d-MP) is a combination

of MPs. The number of MPs depends on the demand level d. One MP in its vector form is

indeed a d-MP for demand level 1. The multistate network operates if its component state vector

is greater than or equal to at least one d-MP. In this research, we develop an efficient recursive

algorithm to generate all d-MPs for all d levels simultaneously. The proposed algorithm is the

first integrated algorithm to find all d-MPs for all possible demand levels, and it is based on

implicit enumeration mechanism. In addition, the proposed algorithm can also be used to search

for d-MPs for one d level. With this more efficient algorithm, the evaluation of multistate network

state distribution becomes more efficient.

(3) Given all d-MPs, ordering heuristics are proposed to improve the efficiency of the

RSDP method for evaluating multistate network reliability. Given all the d-MPs, the indirect

approaches evaluate the reliability of multistate networks by calculating the probability of unions

of events that the component state vector is greater than or equal to at least one d-MP. The

current efficient method is the RSDP method. In this thesis, inspired by the reported ordering

heuristics of MPs for the SDP method for binary network reliability evaluation, the ordering

heuristics of d-MPs for the RSDP method are developed for multistate network reliability

141

evaluation. By using the developed ordering heuristics to order the d-MPs before feeding to the

RSDP method, the efficiency of evaluating multistate network is improved significantly.

(4) Given all d-MPs, an improved SSD algorithm is developed for evaluating

multistate network reliability. Thorough efficiency investigations are conducted to

compare the efficiency of the reported direct approaches and indirect methods, including

the proposed improved SSD method and the RSDP method with ordering heuristics, for

evaluating multistate network reliability. The SSD is another popular method for calculating

probability of unions of events that the component state vector is greater than or equal to at

least one of the d-MPs. In this research, the existing algorithm using SSD method is improved

by incorporating the recursive decomposition of the d-MPs. In addition, an improved heuristic for

selecting a proper d-MP is proposed for implementing pivotal decomposition on each set of

unspecified states. With this more efficient algorithm based on SSD method and the earlier

RSDP method with ordering heuristics, two advanced methods can be used for the union

probability evaluation.

Given both RSDP methods with ordering heuristics and the improved SSD method, we

compare their efficiencies on hypothetical networks under different settings of parameters,

namely the size of the network, the number of possible states of component, and the number of

d-MPs. With the results of the efficiency comparison, the practitioners can decide which method

to choose when analyzing certain practical networks. We also compare their efficiencies on

some real networks. In addition, with all the newly developed algorithms in this thesis, we have

improved the overall efficiency of the indirect approaches for reliability evaluation of multistate

networks. We compare the efficiency of the improved indirect approaches with that of the

reported direct approaches on several real networks. From the results in this thesis, we are able

to conclude that, currently, the indirect approaches improved by the results of this work is more

efficient than the reported direct approaches for the exact evaluation of multistate networks.

142

7.2 Future work

For the exact evaluation of multistate network reliability, the MMDD method can also be used.

Thus, it will be interesting to compare the performance of MMDD with the methods proposed in

this thesis for evaluating the multistate network reliability. For the future topics, first, I plan to

compare the MMDD with RSDP with ordering heuristics in Chapter 5 and improved SSD

algorithm in Chapter 6 based on d-MPs. Then I plan to try to generate MMDD from multistate

network directly and compare with the proposed indirect approaches in this thesis. Besides the

exact evaluation of multistate network reliability, several interesting topics can also be explored

for future study.

7.2.1 Approximation of multistate network reliability

The focus of this thesis is on the exact reliability evaluation of multistate networks. The

algorithms developed in Chapter 3, Chapter 4, Chapter 5, and Chapter 6, are much more

efficient than reported methods for exact reliability evaluation of multistate networks. However,

for complex networks with a large number of components and a large number of possible states,

it is still computationally expensive and impractical to obtain the exact system reliability and

system state distribution. This leads one to consider its approximation when the size of the

network is relatively large.

One way of approximating the reliability is the reliability bounding technique. Reliability

bounds can provide approximated reliability with less computational effort. We can provide

sufficient approximation for practical applications in a much shorter computation time. Then

decision maker can make a tradeoff between the computational effort and the acceptable

precision. There are some reported works on reliability bounds, which extend those reported

studies on exact reliability evaluation [39] [41]. Thus, it is necessary to extend the exact

reliability evaluation methods in this thesis and develop better reliability bounding methods.

143

Another approximation method is the Monte Carlo (MC) simulation. The crude MC

technique is straightforward. However, it suffers from heavy computational burden if the network

system is highly reliable and/or the required precision is high given that the system is critical.

This leads to advanced simulation methods, such as the importance sampling MC method [23]

[42]. Thus, it is necessary to extend the exact reliability evaluation methods in this thesis and

develop more efficient importance sampling MC methods.

7.2.2 Study of more complex multistate networks

The focus of this thesis is on the two-terminal multistate networks with single commodity. Some

real-world networks can be more complicated. One of the extensions is multistate networks with

multiple sources and/or sinks. It is necessary to extend two-terminal multistate network reliability

analysis to multi-terminal network reliability analysis. For multi-terminal networks, two scenarios

remain further exploration. One is that demands for all specified node pairs should be satisfied

simultaneously, in which each component may need to carry flows for different node pairs

simultaneously. Another scenario is that the demands for all the source-sink pairs are non-

simultaneous or non-interacting, in which we wish to compute the probability that every demand

can be satisfied individually, without regard to other demands. For example, consider a network

system in which each demand represents an “emergency” shipment of a commodity. Such

emergencies are rare and unlikely to occur simultaneously.

Other extensions to the network model in this thesis include multistate networks with

multiple commodities, multistate networks with time threshold for delivering the flow, multistate

networks with budget constraint for delivering the flow and Multistate networks in which the flow

is not preserving during transmission. All these extended models require further study. The

focus is to develop efficient algorithm to generate the corresponding minimal path/cut vectors

(upper/lower boundary points) for each problem. Then the methods developed in Chapter 5 and

Chapter 6 can be used to obtain the corresponding reliability.

144

7.2.3 Design and maintenance optimization of multistate networks

Recall the ultimate goal of this thesis is to provide a powerful tool for optimal design and optimal

maintenance strategy for multistate networks. With all the efficient methods and algorithms

developed in this thesis, the optimal design and maintenance decision-making, which require

repetitive evaluation of multistate network reliability, become more viable. For instance, the

optimal design of multistate networks is often solved using importance measure. By analyzing

the importance of each component in the network, a heuristic can be developed to solve the

optimal component allocation problem and/or the optimal redundancy allocation problem. Thus,

based on the exact reliability evaluation methods developed in this thesis, there is a need to

explore efficient methods for the evaluation of importance measure of multistate network

reliability.

7.2.4 Study of continuous state network reliability

One basic assumption in this thesis is that the state (capacity) of the component and/or the

system is a non-negative, integer-valued random variable, following a discrete probability

distribution. A more general model is to assume the state (capacity) of a component and/or a

system is a continuous random variable with any arbitrary distribution. Then the question

becomes how to evaluate the reliability of such continuous state networks. The structure

function given in Section 2.1.3 remains the same for continuous state networks. However, the

minimal path (cut) vectors do not exist for continuous state networks. All the methods developed

for evaluating the multistate networks reliability cannot be applied directly to reliability analysis

of continuous state networks. Thus, there is a need to explore the methods for reliability

evaluation of continuous state networks.

145

Bibliography

[1] Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., ... &

Vittal, V. (2005). Causes of the 2003 major grid blackouts in North America and Europe,

and recommended means to improve system dynamic performance. Power Systems,

IEEE Transactions on, 20(4), 1922-1928.

[2] Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic

cascade of failures in interdependent networks. Nature,464(7291), 1025-1028.

[3] The 2003 Blackouts of Western North America. URL http://www.toptenz.net/10-largest-

20th-century-power-outages.php. Accessed Oct 2015.

[4] The 2012 India blackouts. URL http://www.desismartgrid.com/2012/08/indian-power-grid-

blackout-reasons-and-future-requirements/. Accessed Oct 2015.

[5] Ball, M. O., Colbourn, C. J., & Provan, J. S. (1995). Network reliability. Handbooks in

operations research and management science, 7, 673-762.

[6] Aven, T. (1987). Availability evaluation of oil/gas production and transportation

systems. Reliability engineering, 18(1), 35-44.

[7] Lin, Y. K., & Yeh, C. T. (2011). Maximal network reliability with optimal transmission line

assignment for stochastic electric power networks via genetic algorithms. Applied Soft

Computing, 11(2), 2714-2724.

[8] Lin, Y. K. (2009). System reliability evaluation for a multistate supply chain network with

failure nodes using minimal paths. Reliability, IEEE Transactions on, 58(1), 34-40.

[9] Lin, Y. K., & Chang, P. C. (2012). Evaluate the system reliability for a manufacturing

network with reworking actions. Reliability Engineering & System Safety, 106, 127-137.

[10] Lin, Y. K., & Yeh, C. T. (2015). System reliability maximization for a computer network by

finding the optimal two-class allocation subject to budget. Applied Soft Computing, 36,

578-588.

[11] Frank, H., & Hakimi, S. (1965). Probabilistic flows through a communication

network. Circuit Theory, IEEE Transactions on, 12(3), 413-414.

146

[12] Doulliez, P., & Jamoulle, E. (1972). Transportation networks with random arc

capacities. RAIRO-Operations Research-Recherche Opérationnelle, 6(V3), 45-59.

[13] Ford, L. R., & Fulkerson, D. R. (1962). Flow in networks. Princeton University Press.

[14] Evans, J. R. (1976). Maximum flow in probabilistic graphs‐the discrete case.

Networks, 6(2), 161-183.

[15] El-Neweihi, E., Proschan, F., & Sethuraman, J. (1978). Multistate coherent

systems. Journal of Applied Probability, 675-688.

[16] Barlow, R. E., & Wu, A. S. (1978). Coherent systems with multi-state

components. Mathematics of Operations Research, 3(4), 275-281.

[17] Griffith, W. S. (1980). Multistate reliability models. Journal of Applied Probability, 735-744.

[18] Alexopoulos, C. (1995). A note on state-space decomposition methods for analyzing

stochastic flow networks. Reliability, IEEE Transactions on, 44(2), 354-357.

[19] Jane, C. C., & Laih, Y. W. (2008). A practical algorithm for computing multi-state two-

terminal reliability. Reliability, IEEE Transactions on, 57(2), 295-302.

[20] Jane, C. C., & Laih, Y. W. (2010). A dynamic bounding algorithm for approximating multi-

state two-terminal reliability. European Journal of Operational Research, 205(3), 625-637.

[21] Clancy, D. P., Gross, G., & Wu, F. F. (1983). Probabilistic flows for reliability evaluation of

multiarea power system interconnections. International Journal of Electrical Power &

Energy Systems, 5(2), 101-114.

[22] Fishman, G. S. (1989). Monte Carlo estimation of the maximal flow distribution with

discrete stochastic arc capacity levels. Naval Research Logistics (NRL), 36(6), 829-849.

[23] Bulteau, S., & El Khadiri, M. (2002). A new importance sampling Monte Carlo method for

a flow network reliability problem. Naval Research Logistics (NRL), 49(2), 204-228.

[24] Jane, C. C., Lin, J. S., & Yuan, J. (1993). Reliability evaluation of a limited-flow network in

terms of minimal cutsets. Reliability, IEEE Transactions on, 42(3), 354-361.

[25] Lin, J. S., Jane, C. C., & Yuan, J. (1995). On reliability evaluation of a capacitated‐flow

network in terms of minimal pathsets. Networks, 25(3), 131-138.

[26] Rai, S., & Aggarwal, K. K. (1980). On complementation of pathsets and cutsets. Reliability,

IEEE Transactions on, 29(2), 139-140.

147

[27] Yeh, W. C. (2009). A simple universal generating function method to search for all minimal

paths in networks. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 39(6), 1247-1254.

[28] Al-Ghanim, A. M. (1999). A heuristic technique for generating minimal path and cut sets of

a general network. Computers & industrial engineering, 36(1), 45-55.

[29] Yeh, W. C. (2007). A simple heuristic algorithm for generating all minimal paths. Reliability,

IEEE Transactions on, 56(3), 488-494.

[30] Colbourn, C. J. (1987). The combinatorics of network reliability. Oxford University Press,

Inc..

[31] Chen, S. G., & Lin, Y. K. (2012). Search for all minimal paths in a general large flow

network. Reliability, IEEE Transactions on, 61(4), 949-956.

[32] Lin, Y. K. (2001). A simple algorithm for reliability evaluation of a stochastic-flow network

with node failure. Computers & Operations Research, 28(13), 1277-1285.

[33] Yeh, W-C. (2002) A simple method to verify all d-minimal path candidates of a limited-flow

network and its reliability. The international journal of advanced manufacturing

technology. 20(1), 77-81.

[34] Yeh, W. C. (2005). A novel method for the network reliability in terms of capacitated-

minimum-paths without knowing minimum-paths in advance. Journal of the operational

Research Society, 56(10), 1235-1240.

[35] Ramirez-Marquez, J. E., Coit, D. W., & Tortorella, M. (2006). A generalized multistate-

based path vector approach to multistate two-terminal reliability. IIE Transactions, 38(6),

477-488.

[36] Hudson, J. C., & Kapur, K. C. (1983a). Reliability analysis for multistate systems with

multistate components. IIE Transactions, 15(2), 127-135.

[37] Hudson, J. C., & Kapur, K. C. (1983b). Modules in coherent multistate systems. Reliability,

IEEE Transactions on, 32(2), 183-185.

[38] Aven, T. (1985). Reliability evaluation of multistate systems with multistate

components. Reliability, IEEE Transactions on, 34(5), 473-479.

[39] Zuo, M. J., Tian, Z., & Huang, H. Z. (2007). An efficient method for reliability evaluation of

multistate networks given all minimal path vectors. IIE transactions, 39(8), 811-817.

148

[40] Satitsatian, S., & Kapur, K. C. (2006). An algorithm for lower reliability bounds of

multistate two-terminal networks. Reliability, IEEE Transactions on, 55(2), 199-206.

[41] Hudson, J. C., & Kapur, K. C. (1985). Reliability bounds for multistate systems with

multistate components. Operations Research, 33(1), 153-160.

[42] Ramirez-Marquez, J. E., & Coit, D. W. (2005). A Monte-Carlo simulation approach for

approximating multi-state two-terminal reliability. Reliability Engineering & System

Safety, 87(2), 253-264.

[43] Bai, G., Tian, Z., & Zuo, M. J. (2016). An improved algorithm for finding all minimal paths

in a network. Reliability Engineering & System Safety, 150, 1-10.

[44] Bai, G., Tian, Z & Zuo, M. J. An Improved Algorithm for Searching for Minimal Paths in

Two-Terminal Networks. 9th International Conference on Mathematical Methods in

Reliability (MMR), Tokyo, Japan, June 1-4, 2015.

[45] Bai, G., Zuo, M. J., & Tian, Z. (2015). Search for all d-MPs for all d levels in multistate two-

terminal networks. Reliability Engineering & System Safety. 150, 1-10.

[46] Bai, G., Zuo, M. J., & Tian, Z. Search for all d-MPs for all d levels in multistate networks.

Reliability and Maintainability Symposium (RAMS), Palm Harbor, Florida, USA January

26-29, 2015.

[47] Bai, G.; Zuo, M.J.; Tian, Z. (2015). Ordering Heuristics for Reliability Evaluation of

Multistate Networks. Reliability, IEEE Transactions on. 64(3), 1015-1023.

[48] Bai, G., Zuo, M. J., & Tian, Z. A heuristic for ordering d-MPs for evaluation of multistate

network reliability. 6th Asia-Pacific International Symposium on Advanced Reliability and

Maintenance Modelling (APARM), Sapporo, Japan, 21-23 August 2014.

[49] Bai, G.; Tian, Z.; Zuo, M.J. (2016). Reliability Evaluation of Multistate Networks: An

improved algorithm using State Space Decomposition and Experimental Comparison. IIE

Transactions. Submitted.

[50] Kuo, W., & Zuo, M. J. (2003). Optimal reliability modeling: principles and applications.

John Wiley & Sons.

[51] Ball, M. O. (1986). Computational complexity of network reliability analysis: An

overview. Reliability, IEEE Transactions on, 35(3), 230-239.

149

[52] Euler diagram for P, NP, NP-complete, and NP-hard set of problems. URL

https://en.wikipedia.org/wiki/NP_(complexity). Accessed Dec 2015.

[53] Tarjan, R. E. (1983). Data structures and network algorithms (Vol. 14). Philadelphia, PA:

Society for industrial and Applied Mathematics.

[54] Cormen, T. H. (2009). Introduction to algorithms. MIT press.

[55] Knuth, D. E. (1968). The Art of Computer Programming, Vols. 1, 2, 3. Addison-Wesley.

[56] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

mathematik, 1(1), 269-271.

[57] Luo, T., & Trivedi, K. S. (1998). An improved algorithm for coherent-system

reliability. Reliability, IEEE Transactions on, 47(1), 73-78.

[58] Chen, S. G. (2013). Efficiency improvement in explicit enumeration for integer

programming problems. In: 2013 IEEE International Conference on Industrial Engineering

and Engineering Management, Bangkok, Thailand, 10 - 13 Dec., pp. 1-3.

[59] Forghani-elahabad, M., & Mahdavi-Amiri, N. (2014). A New Efficient Approach to Search

for All Multi-State Minimal Cuts. Reliability, IEEE Transactions on, 63(1), 154-166.

[60] Traldi, L. (2006). Non-minimal sums of disjoint products. Reliability Engineering & System

Safety, 91(5), 533-538.

[61] Yeh, W. C. (2007). An improved sum-of-disjoint-products technique for the symbolic

network reliability analysis with known minimal paths. Reliability Engineering & System

Safety, 92(2), 260-268.

[62] Abraham, J. A. (1979). An improved algorithm for network reliability.Reliability, IEEE

Transactions on, 28(1), 58-61.

[63] Locks, M. O. (1987). A minimizing algorithm for sum of disjoint products.Reliability, IEEE

Transactions on, 36(4), 445-453.

[64] Wilson, J. M. (1990). An improved minimizing algorithm for sum of disjoint products

[reliability theory]. Reliability, IEEE Transactions on, 39(1), 42-45.

[65] Soh, S., & Rai, S. (1993). Experimental results on preprocessing of path/cut terms in sim

of disjoint products technique. Reliability, IEEE Transactions on, 42(1), 24-33.

[66] Rai, S., Veeraraghavan, M., & Trivedi, K. S. (1995). A survey of efficient reliability

computation using disjoint products approach. Networks, 25(3), 147-163.

150

[67] Balan, A. O., & Traldi, L. (2003). Preprocessing minpaths for sum of disjoint

products. Reliability, IEEE Transactions on, 52(3), 289-295.

[68] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in the algorithmic

efficiency for network flow problems. Journal of the ACM 19, 248-264.

[69] Shen, Y. (1995). A new simple algorithm for enumerating all minimal paths and cuts of a

graph. Microelectronics Reliability, 35(6), 973-976.

[70] Kobayashi, K., & Yamamoto, H. (1999).A new algorithm in enumerating all minimal paths

in a sparse network. Reliability Engineering & System Safety, 65(1), 11-15.

[71] Shrestha, A., Xing, L., & Coit, D. W. (2010). An efficient multistate multivalued decision

diagram-based approach for multistate system sensitivity analysis. Reliability, IEEE

Transactions on, 59(3), 581-592.

[72] Yeh, W. C. (2015). An Improved Sum-of-Disjoint-Products Technique for Symbolic Multi-

State Flow Network Reliability. Reliability, IEEE Transactions on, 64(4), 1185-1193.

[73] Yeh, W. C., Bae, C., & Huang, C. L. (2015). A new cut-based algorithm for the multi-state

flow network reliability problem. Reliability Engineering & System Safety, 136, 1-7.

[74] Xing, L., & Dai, Y. (2009). A new decision-diagram-based method for efficient analysis on

multistate systems. Dependable and Secure Computing, IEEE Transactions on, 6(3), 161-

174.

[75] Shrestha, A., Xing, L., & Dai, Y. (2010). Decision diagram based methods and complexity

analysis for multi-state systems. Reliability, IEEE Transactions on, 59(1), 145-161.

