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ABSTRACT

Eosinophils are traditionally thought of as protective cells in helminthic infections, but 

increasing evidence proposes a key role for this cell in allergic diseases including asthma. 

Among the proinflammatory mediators released by the eosinophil are cationic proteins, 

cytokines, chemokines and growth factors as well as matrix metalloproteinases (MMPs), 

lipid mediators and reactive oxygen species. This study focused on two o f these products, 

namely MMPs and superoxide (O 2 ), the first being associated with tissue remodeling and 

so-called ' repair", while the other is tissue damaging. Both o f  these processes are 

significant pathophysiological events in obstructive airway disease. We showed that 

tumor necrosis factor-a (TN F-a) was a potent activator o f eosinophils and led to 

enhanced production and secretion o f MMP-9 This increase was regulated at both 

transcriptional and translational levels. Gene and protein expression o f tissue inhibitors o f 

MMPs (TIMPs) varied significantly among patients

Eosinophil O ; is generated following NADPH oxidase activation resulting in 

respiratory burst During this process, activation o f H~ channels is thought to provide a 

mechanism for H* extrusion and charge compensation We found that stimulation o f 

respiratory burst using phorbol 12-mvristate 13-acetate (PMA) could be inhibited by 

several ion channel blockers, especially the Cl' channel blocker 4.4-diisothio- 

cyanostilbene-2,2 -disulfonic acid (DfDS). We conclude that activation o f C f channels, 

possibly C1C-3 channels, may constitute an additional pathway for charge compensation 

during 0 ; ‘ generation.
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Although plasma membrane ion channels are thought to be important in stimulus- 

secretion coupling, little is known about their regulation in eosinophils. We found that 

eosinophil K 'b u t not C l'channels were activated by nitric oxide (NO), a molecule found 

in abundance in inflamed tissues. Although eosinophils expressed mRNA for various K* 

channels, only ATP-dependent K ' channels were activated by NO. Opening o f these 

channels may help to prevent eosinophil activation in an inflammatory environment.

The results o f  this study show that under conditions likely to be encountered in 

>7vo human eosinophils can be activated and release significant amounts o f inflammatory 

mediators These processes may involve the activation o f  different families o f  ion 

channels Selective ion currents across the plasma membrane may ultimately determine 

the activation status o f  the eosinophil.
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CHAPTER I

General Introduction

1. Historical Background:

Although Warton-Jones in 1846 was the first to observe eosinophils in peripheral 

b lo o d '1', it was Paul Ehrlich who introduced the term "eosinophile” in 1879 and 

established methods for ready identification o f these cells He observed that certain 

peripheral blood cells had numerous intracvtoplasmic granules with an affinity for acidic 

dyes such as eosin. He, therefore, named this cell "eosinophil” In the same year, Ehrlich 

found that cells with eosinophilic granules were particularly abundant in the bone marrow 

o f patients suffering from leukemia. Subsequently his staining technique was widely used 

for examination of peripheral blood smears in clinical settings. In the following years and 

decades, an association o f eosinophils and helminthic disease, allergy, asthma and certain 

cutaneous and malignant diseases was established |3'4\  In the I960's and 1970's 

researchers proposed an ameliorating effect o f eosinophils on allergic disease, since this 

cell was shown to degrade mast cell-derived mediators o f  anaphylaxis (?). In the late 

1970's, the observation that eosinophils or their granule-containing proteins were toxic 

for helminthic larvae led to the current, widely accepted belief that the teleological 

function o f  eosinophils lies in host defense against worms (6) In the 1980's. scientists 

reached the consensus that eosinophils, in addition to be protective against parasitic 

infections, are important pro-inflammatory cells in allergy and asthma. This idea was 

inspired by findings demonstrating a toxic effect o f  eosinophil-derived mediators on 

bronchial epithelial cells ' " 10\  In recent years, a rebirth o f interest in the eosinophil has 

occurred, stimulated to a large extent by the possibility o f modulating eosinophil function 

as an effective therapy for asthma and allergic disease. Recent studies indicate that 

eosinophils may have a more complex effector role than previously appreciated. The cell 

has been implicated in processes such as wound healing, tissue remodeling and

1
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development o f post-inflammatory fibrosis (ll i:) Eosinophils are weak antigen- 

presenting cells in vitro, suggesting that they may act as accessory cells in certain T cell- 

mediated immune reactions (1,). Furthermore, there is evidence that eosinophils slow the 

rate o f progression o f certain solid tumors through tumoricidal mechanisms 114). Thus, at 

the moment the eosinophil is considered as a pluripotent cell with, depending on the 

circumstances, distinct roles including maintenance o f  normal tissue homeostasis, host 

defense, as well as propagation o f tissue injury It is worthwhile mentioning that, to date, 

the worldwide economic cost o f one eosinophil-associated disease, bronchial asthma, is 

estimated to exceed the combined costs o f the HIV/AIDS infection and tuberculosis ' 1?)

2. Eosinophil Biology;

2.1 The normal mature eosinophil:

Eosinophils are nondividing, granule-containing cells <lb). They are end-stage cells 

derived from the bone marrow and mature under the influence o f granulocyte- 

macrophage colony stimulating factor (GM-CSF). interleukin-3 (LL-3), and the terminal 

differentiation factor for eosinophils. IL-5 ,I ' \  After a maturation time o f 2-6 days, 

eosinophils efflux the bone marrow and circulate in the blood stream for 6-12 hours 

before migrating into the body tissu es '18', where they survive for up to 2-3 weeks via 

autocrine production o f GM-CSF <l9\ It has been proposed that for every circulating 

eosinophil there are approximately 200 mature cells in the bone marrow and 500 in 

submucosal connective tissue throughout the body lI8>

Eosinophils are approximately 8 urn in diameter with a bilobed nucleus, although 

three or more lobes are not uncommon. One o f  the most characteristic features o f  an 

eosinophil is its membrane-bound specific (crystalloid) granules o f  which there are about 

200 per human eosinophil. The central core o f these granules contains major basic protein 

(MBP) and is surrounded by a matrix composed o f eosinophil cationic protein (ECP),
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eosinophil peroxidase (EPO) and eosinophil-derived neurotoxin (EDN or EPX) (' 0). The 

granules are also the site o f location o f over 25 different cytokines and chemokines 

iio .i.::, y j . e many other cell types, eosinophils contain lipid bodies which are the 

principal store o f arachidonic acid and the enzymes cyclooxygenase and 5-lipoxygenase 

llbl Eosinophil primary granules are a third type o f intracellular organelle. They are 

recognized as distinct from specific granules by the absence o f a core and are o f  variable 

size (' 3). In normal peripheral blood eosinophils these granules are the exclusive storage
. ̂  i ,

site o f Charcot-Leyden crystal protein (CLC protein), a lysophospholipase, '  . 

Eosinophils, particularly those found in the peripheral tissues, also contain a number of 

small granules which stain intensely for acid phosphatase, aryl sulfatase and catalase 

Vesicotubular structures that are distributed throughout the cytoplasm contain 

cytochrome b<5*'* \  This protein is a component o f the superoxide (O ;') producing 

enzyme NADPH oxidase, and fuses with the cell membrane upon cell activation ' ' 8|

2.2 Eosinophil activation and mediator release:

Eosinophils from normal individuals circulate in a resting state, in which their 

effector functions and response to inflammatory mediators are blunted l' 9). Once the 

eosinophil has migrated into inflamed tissue, it becomes activated. This results in release 

o f  stored proteins and de novo synthesis and secretion o f mediators, allowing full 

expression o f eosinophil effector functions The term ‘‘activation’’ has been used to 

describe this transition o f an eosinophil from a resting to a primed and then secretory 

state ,30Jb

Activated eosinophils form a spectrum ranging from primed cells with only subtle 

differences in effector function, as observed in eosinophils from the peripheral blood o f 

subjects with allergic disease, to fully activated degranulating cells as found in biopsies 

o f sites o f florid eosinophilic inflammation such as asthmatic airways ,3‘\  M orphological 

markers o f activation include increased numbers and size o f lipid bodies and increased 

numbers o f primary granules, small granules, and vesicotubular structures llt51 Often, 

particularly in tissue eosinophils, there is a marked reduction in the number o f  specific
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granules and cells may appear necrotic (cytolytic),33’. In studies conducted in airway 

eosinophils it has been shown that activated cells are characterized by increased OV 

generation, enhanced adhesion to extracellular matrix (ECM) proteins, increased survival 

and rapid mobilization o f intracellular Ca: '  stores l34).

It appears that eosinophils can release their granule contents through several 

mechanisms. The best characterized form of degranulation is exocytosis, also referred to 

as “classical degranulation’ or granule extrusion. During this process, granules fuse 

with the plasma membrane and membrane-free specific granules are extruded (3j). This 

release mechanism occurs in human eosinophils in vitro. It has also been observed in 

human gut mucosa but not in airway tissue in vivo ,3'M. Alternatively, granules can fuse 

intracellularlv into large degranulation chambers, which open to the outside o f the cell 

through degranulation pores. This form of degranulation is called compound exocytosis 

3 ', which is rare and appears to be associated with helminthic infection and cell 

activation by various drugs |3S'-39’. Another form of degranulation is a process known as 

piecemeal degranulation (PS/ID) This term implies that granule protein-containing 

vesicles bud o ff from secondary granules resulting in their gradual emptying |40) PMD o f 

eosinophils commonly occurs in vitro and in diseased airway tissues in vivo. PMD has 

recently been quantified by determination o f a degranulation index (PMDi) <41'. In 

humans, almost 70 % o f  eosinophils in inflamed airway tissue showed features o f 

piecemeal degranulation compared to only 30 % necrosis (cytolysis) (4M*\ Moreover, it 

is important to keep in mind that quantitative ultrastructural measurements in vitro 

revealed a certain amount o f PMD occurring during the purification procedure o f 

eosinophils l43)

Once the eosinophils leave the circulation and migrate into the interstitial tissues 

or the lumina o f the airways and the gut, many o f these cells undergo necrosis. This 

mechanism o f cytolysis is characterized by chromatolysis, centralization o f granules and 

loss o f plasma membrane integrity ,l0' This process o f granule release often occurs in 

human airway tissues in vivo l42\  The biology and pharmacology of induction and 

inhibition o f eosinophil cytolysis remains to be explored. However, not all eosinophils 

found in the interstitium release their granule contents. Some o f these cells retain their 

secretory mediators and simply undergo apoptosis. These cells are characterized by

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



chromatin condensation, preservation o f  the plasma membrane, and non-dilated cell 

organelles (44\  Eosinophil apoptosis occurs both in airway lumina and in vitro (45). 

Apoptotic eosinophils can commonly be detected in nasal discharge and sputum from 

asthmatics <4<” However, few investigators have yet succeeded in detecting apoptotic 

eosinophils in airway tissues in vivo <4/\  and there appears to be disagreement in the 

literature whether the data reported by Wolley and coworkers (4°  actually constitute 

"compelling evidence” for the importance o f apoptosis in airways in vivo In summary, it 

may frequently be presumed that degranulation o f eosinophils in vitro occurs via the 

classical degranulation mechanism. However, beyond a few in vitro studies describing 

either shape and membrane changes <4S). or ultrastructural characteristics o f exocytosis 

3 5 little specific information about this mechanism is currently available. An interesting 

report suggests that eosinophil cytolysis is much more prominent in vitro than is the 

exocytosis mechanism l49). If eosinophil exocytosis is a major mechanism in isolated 

eosinophils, this may be yet another example of differences between in vitro and in vivo 

models Currently, a significant participation of classical eosinophil exocytosis remains to 

be demonstrated in diseased airway mucosae.

2.3 Eosinophil mediators:

Eosinophils have the capacity to synthesize and secrete a large number o f potent 

inflammatory mediators. These include stored basic proteins in crystalloid granules, 

newly formed membrane-derived lipids, cytokines and chemokines, proteases, and 

products o f oxidative metabolism 501 Basic proteins include NtBP, EPO, ECP and EDN 

l?,) These proteins are cytotoxic to mammalian cells as well as parasites, and their 

presence in the airway tissue may lead to bronchoconstriction and airway 

hyperresponsiveness Lipid mediators are oxidation products o f  arachidonic acid and 

include eicosanoids (leukotrienes. prostaglandins, thromboxans) and platelet activating 

factor (PAF) i5*\ These mediators have a number o f properties relevant to asthma such as

5
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smooth muscle contraction, mucus hypersecretion, and increased vascular permeability 

l53\  Eosinophils also synthesize and release up to 25 different cytokines, chemokines and 

growth factors including IL-1, -2. -3, -4, -5, -6. -8. 10, -12, -16, GM-CSF, tumor necrosis 

factor (TNT), RANTES and eotaxin (10 41-54->  rL-3. IL-5 and GM-CSF are particularly 

important in eosinophil maturation and differentiation <?b), whereas IL-4 is crucial in IgE 

production in allergic individuals l5,). TNF is a potent proinflammatory mediator and its 

spectrum of activity ranges from cytotoxicity to eosinophil and other inflammatory cell 

activation, including mediator release and stimulation o f  oxidative metabolism l58' 

RANTES. and to a lesser extent eotaxin, are chemokines produced by eosinophils and 

other cells, w hich lead to extravasation and accumulation o f eosinophils at inflammatory 

sites 15,1 Proteases produced by eosinophils include matrix metalloproteinases (MMPs; 

gelatinases. eollagenases and stromelysins). histaminase. catalase, phospholipases and 

arvlsulfatase “’0). MMPs are particularly important in extracellular matrix turnover and 

tissue remodeling and facilitate the transmigration of eosinophils through the vascular 

endothelial layer into the interstitial t is su e s1’1’ However, the role o f  most other 

eosinophil proteases in health and disease remains uncertain.

Activated eosinophils can undergo a respiratory’ burst and generate considerable 

amounts o f reactive oxygen metabolites, including O ;’ and H ;0 ; lb‘\  These highly 

reactive radicals are thought to be important in host defense mechanisms lb3'. 

cytotoxicity lb4'. bronchial hyperresponsiveness ',5' and potentially as intracellular 

signaling molecules lbb\
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2.4 Mechanisms of mediator release:

The eosinophil is thought to be predominantly a secretory cell (l6) Although 

eosinophils are also capable o f phagocytosis, this function appears secondary to that of 

mediator release O f the many effects that can be elicited in eosinophils, perhaps the best 

understood are those processes controlling the regulated secretion of granule proteins, i.e. 

the phenomenon o f exocytosis Until relatively recently, the biochemical sequence of 

events that link activation o f cell surface receptors to the expression o f  specific functional 

responses in eosinophils, also referred to as stimulus-secretion coupling”, was a matter 

for conjecture Secretion of granule proteins is thought to involve at least two steps: (i) 

mobilization and solubilization, which is followed by (ii) extracellular release (6' \

In vitro, and possibly in vivo. eosinophil mediator release can be regulated 

selectively depending upon the nature o f the stimulus Substantive secretion o f eosinophil 

granule proteins can be observed for example follow ing interaction o f the cell with large 

opsonized targets such as metazoan parasites or Sepharose beads l3‘ \  In the case of 

parasite killing, cell adhesion to extracellular matrix proteins such as fibronectin. and 

immunoglobulin (Ig) binding to IgA- and IgG-receptors trigger degranulation and 0 {  

production "kS" 01. IgE-dependent stimulation was reported to induce the release o f  VfBP 

and EPO but not ECP. while IgG-coated surfaces induce a selective release o f ECP but 

not EPO 11 Stimulation with soluble mediators such as GM-CSF and P.AF results in 

degranulation in a CD 11/CD 18-dependent manner ' Furthermore, the interaction o f 

agonists such as PAF and leukotriene B4 (LTB4) with their respective cell surface 

receptors has been shown to directly activate phospholipase C (P L C )(73). PLC catalyzes 

the hydrolysis o f phosphatidyl inositol-4.5-biphophspate (PtdIns-4,5-P:) resulting in two 

second messenger molecules, inositol 1,4,5-triphosphate (IP3 ) and diacylglvcerol 

(D A G )'1'” Cytokines such as IL-3, IL-5 and GM-CSF are able to both prime 

eosinophils 1 ’4) and induce degranulation ,43\  Signal transduction pathways involved in 

these responses include phosphorylation o f Lvn and Jak2 tyrosine kinases, which bind to 

the common 3-chain o f the IL-5 receptor Activated Jak2 undergoes

autophosphoryiation and causes expression o f  nuclear transcription factors o f the STAT 

family, especially STAT-1 IL-5 also stimulates the binding o f GTP to p2I ras. which

8
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results in translocation of raf-I to the plasma membrane and its activation. Raf-l then 

phosphorylates MEK. kinase, which subsequently activates MAP kinases(76). Binding o f 

TNF to one o f the two TNF receptors (TNFR1 and TNFR2) described on eosinophils (7/) 

causes activation o f  yet another pathway of intracellular signal transduction. The 

particularly complex mechanism of cellular activation employed by this cytokine acts via 

various intermediates including protein kinases, protein phosphatases, reactive oxygen 

intermediates, phospholipases, proteases, sphingomyelinases and transcription factors l '8). 

TNF receptor-associated factor-2 (TRAF2) mediates the signal from both TNF receptors 

to kinases o f the MAP kinase family The phosphorylation o f  these proteins activates IkB 

kinase and results in expression o f the transcription factor NFicB ( 91 On the other hand, 

phosphorylation o f  MAP kinases can activate Jun amino-terminal kinase (JNK) and p38 

kinase cascades resulting in expression o f  the nuclear factor AP-1 (80).

Although different stimuli may activate different intracellular signaling 

mechanisms, almost all responses have one common step in their activation pathway, an 

increase in the intracellular Ca: ' concentration ([Ca: ~],). A rise in [Ca*~]j appears, 

therefore, to be prerequisite for exocytosis in secretory cells, but the source o f  Ca*' and 

the mechanism by which it is mobilized, may vary depending upon the activation 

stimulus Moreover, the mechanisms o f  C a*' mobilization may differ also from one cell 

type to another For eosinophil exocytosis to occur, uptake o f extracellular Ca** by the 

cell is believed to be supplemented by the intracellular release o f  Ca** induced by IP3. It 

has been suggested that this pathway may require the activation o f an as yet unidentified 

eosinophil Ca: '-binding protein, together with a putative, membrane-associated, 

eosinophil protein ( G e )  i81) In guinea pig peritoneal eosinophils loaded with the 

fluorescent intracellular Ca: ‘ indicator fura-2/AM, the resting [Ca*~]i is in the order o f 

120 nM and increases rapidly to about four fold values following the addition o f a 

maximally effective concentration o f P.AF (1 p.M )l82). As in many other cells this effect 

o f PAF is transient, peaking after 10-15 sec exposure, and returning to resting levels 

within 60 sec l82). In addition to P.AF. several other agonists increase [Ca*~]j in 

eosinophils including LTB4 and the complement fragment C5a, whereas the formylated 

bacterial tripeptide formvl-methionyl-leucy 1-phenvlalanine (fMLP) is only a very weak 

stimulant for C a: * mobilization, which is in contrast to its effect in neutrophils ,83>.

9
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Although intra- as well as extracellular Ca:~ stores are mobilized upon eosinophil 

activation, the exact contribution made by these two sources is in dispute. Kroegel et. al. 

,8*) attributed the increase in [Ca: ], after activation with PAF predominantly to Ca:~ 

influx through, as yet poorly characterized, voltage-independent ion channels. In 

contrast, Minshall and coworkers t84) concluded from their studies in eosinophils that a 

considerable proportion o f the Ca: ’ mobilized by PAF originates intracellularly. 

Classically, intracellular Ca: * can be released by IP3 from the endoplasmic reticulum, or a 

specialized Ca2~ store, the so-called calciosome (85) Other agonists including LTB4, C5a 

and to a small extent tMLP, also promote the accumulation o f  IP3 in eosinophils, whereas 

the phorbol ester PMA is inactive, indicating that protein kinase C (PKC) does not 

stimulate PLC 1 3>

Another requirement tor eosinophil exocytosis appears to be the presence and 

availability o f ATP This is illustrated by the fact that in permeabilized cells ATP 

increases the atYinities for both Ca* and GTPyS for their respective binding proteins 1861 

ATP is also required to maintain the concentration o f  PtdIns-4,5-P: in cells and to 

provide, by nucleotide rra//.v-phosphorylation. sufficient GTP for G protein activation. It 

is believed that ATP-driven phosphorylation reactions are essential for the early, but not 

later stages o f  the stimulus-secretion coupling mechanism. In contrast, GTP interactions 

with Gk are fundamental for the latter stages o f regulated secretion o f granule proteins in 

eosinophils <8'\

3. Ion currents and cell activation:

3.1 Phy siology of ion channels and electrical currents:

Ion channels are integral membrane proteins that provide low energy pathways 

for ions to cross the cell membrane. They allow ions to passively flow down their 

electrochemical gradients at rates exceeding 10° ions per sec. Ion channels can be 

characterized by their gating properties as well as their conductances, kinetics, ionic

10
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selectivity and pharmacology. Up to date, several types o f ion channels have been 

described in inflammatory cells that open and close in response to specific chemical 

ligands (ligand-gated), voltage (voltage-gated), and other fac to rs^8'89*.

A net flow o f charges caused by an electromotive force is called current (I) and is 

measured in Amperes (A). According to Benjamin Franklin, positive current flows in the 

direction of movement o f  positive charges. The size o f  a current is determined by two 

factors: the membrane potential (E m )  between the recording electrodes (measured in 

Volts; V), and the conductance (measured in Siemens; S) When 1 Volt is applied across 

a 1 Ohm resistor or 1 Siemens conductor, a current o f 1 Ampere flows.

Much o f what we know about ion channels was deducted from electrical 

measurements. Therefore, it is essential to remember certain rules o f electricity before 

performing experiments. The most important one is Ohm's km . a relation between the 

parameters G. I and Em i90'. G it is equal to I divided by Em and its value is the inverse o f 

the resistance (R) which is expressed in Ohms (Q)

Ohm’s law plays a central role in membrane biophysics because each ion channel is an

'Vu ( /
elementary conductor spanning the insulating lipid membrane

Besides Ohm ’s law. another important electrical rule is described in the A’ermt 

equation'91*. All biological systems are continuously moving towards a state o f 

equilibrium, where the tendency for further changes vanishes. When applied to 

physiological solutions, the equilibrium potential (Eq) for a given ion is reached when the 

electrical force balances the diffiisional, or chemical, force. Eq for each ion in solution is 

an important value in the description o f the biological membrane potential o f  a cell. In an 

experimental setting, the applied voltage at which the concentration gradient is exactly 

opposed, is referred to as the “Nernst potential" (Es). If we consider a mole o f an arbitrary 

ion x with charge zv. the Nemst equation is defined as follows:

E. -  In M*

11
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where Es is the equilibrium or Nemst potential. R the gas constant, T the absolute 

temperature in degrees Kelvin. F the Faraday’s constant, [x]0 and [x]i the concentrations 

o f the ion on the outside and inside o f the cell membrane, respectively This equation 

shows that there is an equivalency between chemical and electrical driving forces <9*) The 

Nemst equation allows the prediction o f the membrane potential generated by one 

particular ion once its concentration gradient across the membrane is known. In 

physiological solutions, the equilibrium potentials for K~ and Cl' are negative, and for 

N a’ and Ca: ’ positive. In most biological systems, the equilibrium potential for K* sets 

the negative, and the one for Ca: ‘ the positive limit o f the membrane potential. All cells 

have a negative resting membrane potential because at rest they have far more open K 

and Cl' channels than Na* or Ca: " ones (XX| The Nemst equation is also useful to 

determine the selectivity o f  a channel. When a concentration gradient exists across a 

channel, current will flow until a sufficient voltage is applied to exactly oppose the 

current. If the required voltage is not the Nernst potential for any o f  the ions making up 

the gradient, it means that the channel is not perfectly selective for one ion but rather 

allows more than one type o f  ion to pass.

The application o f O hm 's law and Nernst equation to a biological membrane 

reveals one o f the central findings in cell electrophysiology: the electrical current o f a 

particular ion equals zero at its equilibrium potential, and not at 0 mV. This finding is 

commonly graphically represented in form o f a so-called current-voltage (l-V) 

relationship, where the current is depicted on the Y-axis and the voltage on the X-axis. 

An I-V curve contains information about the reversal potential o f  a certain current, which 

may help to identify the underlying ionic conductance, on ion channel parameters such as 

rectification, and on increases or decreases in current amplitude after activation or 

inhibition o f a certain channel type, respectively

12
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4. Electrophvsiological measurements using the Patch clamp technique:

Currently, the patch clamp technique is a well-established method for measuring 

ion currents. This technique was originally developed by Neher and Sakmann in 

Goettingen with the intention o f observing ion currents flowing through single ion 

channels in cell membranes (93). Underlying all applications o f patch clam ping is the 

single principle that it provides an extremely sensitive means to measure ion currents 

flowing through cell membranes l94) In fact, using this technique, ion currents o f less 

than I pA ( I0 'i: A) can be detected (95' For their discovery and developm ent o f this 

technique and its application to a range of critical questions in biology. Neher and 

Sakmann were awarded the Nobel Prize in Physiology and Medicine in 1991 (9c”

There are four basic patch clamp configurations (9,). Three o f  these are used to 

record single channel currents in membrane patches and the fourth is used to record 

currents through the whole-cell membrane:

• cell-attached patch

• inside-out patch

• outside-out patch

• whole cell recording

Before discussing these different configurations, one should be aware o f certain 

universal electrical conventions used in patch clamp recordings. Firstly, the cell 

membrane potential is always expressed as the potential inside the cell with respect to a 

ground or zero level outside the cell. Secondly, by convention, positive ions flowing out 

o f the pipette are measured as a positive current. Therefore, in the cell-attached 

configuration both Na influx into the cell and Cl' efflux results in a positive current 

However, one has to be cautious when applying these rules to currents recorded in a 

patch clamp setting to not get confused with basic electrical conventions in biology, 

where a positive current is defined as a current o f cations leaving a cell. e.g. a K~ efflux 

or a Cl' influx

The formation o f a high resistance seal between the patch pipette and the cell 

membrane is fundamental to all patch clamp recordings l98\  A problem in early patch 

clamp recordings were high noise levels. Neher and Sakmann found that the solution to

13
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the noise problem lied in the formation of a high-resistance seal between pipette and cell 

membrane. When precautions are taken to keep the pipette surface clean, tight seals with 

resistances o f 10-100 GQ  can be obtained (so-called Gigaohm seal). To obtain such a 

high resistance seal, the pipette tip, usually 2-10 p.m in diameter, is commonly fire- 

polished shortly before the start o f the experiment The Gigaohm seal is, therefore, highly 

effective in reducing the noise level o f a recording and thus greatly increases the 

resolution o f  single channel currents19

The electrical resistance o f the pipette is monitored by observing the size o f a 

current pulse produced by a repeated test voltage pulse or “t-puise” Most patch 

amplifiers have the facility to produce suitable pulses or they can be produced by a 

suitable pulse generator Upon formation o f a Gigaohm seal, the t-pulse disappears. A 

simplified schematic drawing o f a patch clamp setup is shown in Fig. 2.1.
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The cell-attached patch is the simplest configuration and the one that probably 

causes least disturbance to the microenvironment o f the ion channel <96). In this 

configuration, single channels located directly under the pipette tip can be monitored. The 

membrane potential under the patch pipette equals the resting potential o f  the cell minus 

the potential applied to the pipette. This means that if the pipette potential is 0, the 

membrane potential o f  the patch equals the resting cell potential. When a negative current 

is observed, it can be interpreted as a cationic outward current, and a positive one as a 

cationic inward current Since the integrity o f  the cell is maintained in this configuration, 

all biochemical mechanisms that may be linked to channel function, e.g. second 

messengers and protein kinases, are not disturbed. However, some inconveniences may 

be encountered using this configuration The most important one is the inability to 

measure the real resting potential o f the cell Another problem is the inability to 

determine the driving force for a specific ion, which is defined as the membrane potential 

minus ionic equilibrium potential. This problem can be overcome by measuring the 

current at different applied membrane potentials and by blotting the current versus the 

voltage in an I-V relationship. Another strategy to overcome the unknown resting 

membrane potential is to simultaneously measure the membrane potential o f  the cell with 

an intracellular electrode. A third disadvantage is the impossibility to manipulate the 

pipette solution, unless a sophisticated perfusion system is used ,99).

After obtaining a cell-attached configuration, there is a possibility to obtain a cell- 

free or excised patch. The easiest excised patch configuration to obtain is the inside-out 

patch If the patch electrode is pulled away from the cell in the cell-attached 

configuration, the patch o f membrane under the pipette tip is excised from the cell, but is 

still in place in the electrode and thus open to investigation It is, therefore, possible to 

directly manipulate the internal membrane surface by modifying the composition o f  the 

bath solution, and also to control the potential across the membrane.

The second possibility after a successful cell-attached patch is to perforate the 

membrane under the patch to gain a direct communication between the pipette solution 

and the interior o f the cell. In this whole-cell configuration, the patch electrode will 

record voltage or current changes from the whole cell membrane. An advantage o f this
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technique is that it allows studying cells that are too small in size to be analyzed using 

intracellular microelectrodes. Since a direct communication is established between the 

pipette and the intracellular compartment, the cytoplasm is rapidly dialvzed by the pipette 

solution This allows gaining control over the internal ion composition o f the cell, second 

messengers and other soluble compounds <I00). This configuration has also been employed 

to measure exocvtosis. since it allows continuous monitoring o f the whole-cell membrane 

capacitance<94) The whole-cell configuration can also be used to introduce enzymes such 

as the catalytic subunit o f the cyclic AMP-dependent protein kinase, and other active 

protein agents such as GTP-binding proteins into mammalian cells A drawback o f this 

configuration is that during dialysis o f  the cytoplasm the intracellular material is 

extensively diluted In addition, since the area o f recordable membrane is quite large, the 

noise level is in often too high to discern single channel currents (98)

From the whole-cell configuration it is possible to achieve a new excised-patch. 

When the patch pipette is withdrawn very slowly, a small, circular membrane fraction is 

excised that spontaneously reseals on the pipette tip This is referred to as outside-out 

configuration The advantage o f this configuration is that one is able to study single 

channel characteristics by manipulating the external surface o f  the membrane simply by 

adding pharmacological compounds to the bath solution.

A way to minimize the perturbation o f the cytoplasm that occurs in the whole-cell 

and the outside-out configuration was devised by Horn and Marty llol). In a so-called 

perforated patch clamp recording (10*). the pipette tip is sealed to the cell membrane. The 

membrane under the patch is, however, not disrupted as in a whole-cell patch. Instead, a 

small amount o f an ionophore such as gramicidin, nystatin or amphotericin B is added to 

the pipette solution to gain electrical access to the cell interior by forming small pores in 

the patch membrane lIn::103’ These agents partition into lipids in the membrane and form 

tiny pores that allow exchange o f monovalent cations and anions while excluding 

multivalent ions and nonelectrolytes the size o f glucose or larger, including second 

messengers Access resistance is an important parameter in the measurement o f  whole

cell recordings and is desired to be less than 20 M fi. Therefore, many investigators 

choose amphotericin B over nystatin since amphotericin B channels have twice the single 

channel conductance o f nystatin ones and thus produce lower access resistance <10*\
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Patch clamp recordings can be performed in two different m odes<88):

• current clamp

• voltage clamp

In a current clamp experiment, one applies a known constant or time-varying 

current and measures the change in the membrane potential caused by the applied current. 

This type o f current mimics the current produced by a synaptic input.

The voltage clamp technique was first invented by Marmot and Cole and further 

developed and exploited by Hodgkin and Huxley in 1952 (I04105\  ln a voltage clamp 

experiment, one controls the membrane voltage and measures the transmembrane current 

required to maintain that voltage, even when membrane conductances are changing. In 

practical terms, an electronic amplifier compares the membrane potential with an applied 

potential, the "command potential" If a difference exists, the amplifier injects current 

into the cell proportional to that difference The injected current brings the membrane 

potential as close as possible to the command potential. In this way, the membrane 

potential is controlled, or "clamped", to any desired value There are certain advantages 

to perform such an experiment. Firstly, after each voltage step, the membrane potential is 

constant in time and voltage becomes an independent variable Secondly, exept for the 

brief charging time, the currents flowing are proportional only to the membrane 

conductance Limitations to the voltage clamp technique are the fact that the desired 

voltage cannot be established across the cell membrane instantaneously. When the 

membrane voltage is changed, the membrane capacitance is also changed, and this delays 

establishment o f  a constant potential. This might result in an initial short spike in a 

whole-cell recording, and is referred to as a capacitative current. Another limitation is 

that all pans o f the membrane may not be held at the exact same potential. This arises 

from problems o f  spatial decrement o f injected currents. Hence, the measured currents 

may be recorded from membrane areas that are not all at the same membrane potential.

Although the measurement o f ion channel activity is one o f  the most common 

applications o f the patch clamp technique, some investigators use this method to study 

the phenomenon o f exocytosis. The underlying concept is the following: when a granule 

fuses with the plasma membrane during exocytosis. the area o f  the plasma membrane 

increases by the surface area o f the granule in a single step. Such small changes can be
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resolved by membrane capacitance ( C m )  measurements using the whole-cell 

configuration of the patch clamp technique (IOt>’. When a secretory granule fuses with the 

plasma membrane. Cm increases by the capacitance o f the granule membrane, leading to 

a capacitance step that reflects the size o f  the fusing granule. Therefore, this technique 

has been used in eosinophils to study mediator release. Generally, Cm is approximately 1 

pF /cm‘ in all biological membranes. A resting eosinophil has a Cm o f  about 3 pF. 

corresponding to about 300 pm: o f membrane area ,48\  When eosinophils are stimulated 

with the membrane-permeable GTP analog GTP'/S, a potent G protein-activating 

exocytotic stimulus, single granule fusion events were observed at low doses, whereas at 

high doses compound exocytosis appeared to p revaill48). However, further studies will be 

necessary to determine whether different physiologic stimuli lead to different patterns of 

degranulation

5. Ion channels in leukocytes:

Ion channels have been studied most extensively for over 50 years in the nervous 

system, where they function in information processing and signaling (10,) While ion 

channels in general, and voltage-gated channels in particular, were originally thought to 

be unique to neuronal cells, it is now evident that similar channels are present in most cell 

types. Their functions include establishing a resting membrane potential, shaping 

electrical signals, gating the flow o f messenger Ca: ‘ ions, controlling cell shape and 

volume, and regulating the net flow o f ions across cell membranes |108' 110' They also 

provide a crucial link between events occurring at the cell surface and a variety of 

cellular functions, including cell activation and mediator release011'112’. It follows from 

studies in other cell types than neurons, that ion channels probably also play an important 

role in cellular physiology o f leukocytes Over the last decades, with the advent o f the 

patch clamp technique developed by Sigworth and Neher olJl, it has become feasible to 

record currents from small cells such as leukocytes, which had been difficult to study 

with intracellular microelectrode techniques. For this reason the area o f  leukocyte 

electrophysiology has progressed considerably in recent years. In addition, it became
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evident that leukocytes have extremely high input resistances in the order o f 109 fi, 

suggesting that their plasma membrane has a low permeability to ions <U4> Therefore, the 

opening of several channels, or even a single channel, on the surface o f a leukocyte can 

produce a significant change in the membrane potential and conductance o f  the cell. The 

following pages will provide an overview' o f  the most important classes o f  ion channels 

and summarize the literature on these channels in leukocytes.

5.1 Ca2'channels:

By 1964, Hagivvara and his coworkers had undertaken extensive 

electrophvsiological studies o f Ca2'  action potentials and Ca2' inward currents, initially 

in arthropod muscle 11151 Many features o f Ca* channels were first revealed in this 

insightful comparative exploration. Using barnacle muscle, they learned that intracellular 

Ca2' chelators favor excitability, that permeant divalent ions seem to compete for entry 

into the channel, and that divalent transition metal ions such as Ni2', Cd2' and Co* block 

Ca** fluxes competitively Nowadays. Ca*' channels are recognized as both ubiquitous in 

nature and essential for various biological responses, ranging from muscle contraction to 

secretion. As a broad generalization, excitable cells translate their electrical potential into 

action via Ca2 fluxes regulated by voltage-sensitive Ca2'  channels. Ca*' ions are 

intracellular messenger molecules capable o f activating a myriad o f cellular functions. 

The biophysical properties o f  Ca2' channels might have been determined by classical 

voltage clamp studies if the channels occurred in high density on a clampable membrane 

However, these channels are rarely found in high density, and many o f  them occupy 

membranes that are difficult to clamp, such as dendrites, nerve terminals, and the 

complex infoldings o f muscle cells (U6‘ll8\  Even when Ca** channels are on accessible 

surface membranes, their small currents are often masked by those o f  other channels, 

especially K ' channels lll9). The ambiguity caused by these problems delayed the 

biophysical understanding o fC a* ' channels.

An increase in [Ca2'], can be the result o f influx o f extracellular Ca*' or release o f 

Ca*' from intracellular stores. In excitable cells, voltage-gated Ca2'  channels (L-and N-
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type) regulate the entry o f extracellular Ca2* into the cytoplasm <120). Other types o f  C a2* 

channels, the ryanodine and IP3 receptor, regulate the release o f  Ca2* from the 

endoplasmic reticulum, and are, to a much lesser extent, also found in the plasma 

membrane <I:11:2) Interestingly, in nonexcitable cells, which often appear to lack 

voltage-gated Ca2* channels, prolonged release from IP3-sensitive stores can activate a 

poorly defined Ca2* conductance at the plasma membrane (123). In many cases, following 

cell activation. Ca*' influx from the outside allows replenishing o f  intracellular Ca* 

stores after cell activation, and permits continuously stimulated cells to maintain elevated 

[Ca**], levels even after depletion o f their stores (1*4). This Ca** inward current is referred 

to as Ca2 *-release-activated Ca2* current (Icrac) and the responsible channel as store- 

operated Ca2' channels (S O C ) |8X) A typical manifestation o f SOC occurs in the biphasic 

response to stimuli that generate IP3 n25) .An initial transient rise in [Ca*']j, which is 

thought to be the direct effect o f such a stimulus, is commonly followed by a secondary 

peak in [Ca2']„ which is believed to be the resuit o f activation o f SOC ll24). Finally, 

another Ca* permeable channel found in neurons, the NMDA receptor, is opened by the 

synaptic action o f glutamate Its main function is the voltage-dependent amplification o f 

glutamatergic excitatory postsynaptic potentials (EPSPs) in the central nervous 

system 1 '*'”

Ca** fluxes play a vital role in leukocyte biology. It is well established that

mitogens produce a rapid increase in [Ca: *]„ which is thought to constitute a mitogenic

signal promoting T cell proliferation ll27). Stimulation o f T cell activation by Ca2*

ionophores. e.g. A23187. the dependence o f mitogen-induced proliferation on

extracellular Ca2*, and the demonstration o f a mitogen-stimulated increase in cytosolic

free Ca**. is consistent with this hypothesis " * S1 Stimulation o f  T cells with another Ca2*

ionophore. ionomycin. was reported to stimulate IL-2 synthesis in T cells lI*9).

Proponents o f this so-called "Ca2* hypothesis" for T cell activation postulated the

existence o f Ca*' channels to account for the mitogen-stimulated rise in cytosolic free

Ca*" in lymphocytes llj0). Although it was originally hypothesized that voltage-gated Ca*

channels were responsible for the extracellular Ca* -dependent mitogen-induced rise in 
** >

[Ca**],. it is now believed that they may not play a role in Ca* influx. This is because I)

they are absent in most T cells lU41. 2) mitogen-induced Ca*' increases are insensitive to
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blockers o f  voltage-gated C a2'  channels <131), and 3) cell depolarization in a high K ' 

medium, which is expected to increase Ca*' influx through voltage-gated C a2'  channels, 

has no effect on [Ca2’] i ll32). This view is supported by two reports o f  voltage-insensitive 

Ca*' channels in T lymphocytes (13u33), providing evidence for a non-voltage-gated C a2' 

transport process being responsible for the mitogen-induced C a2'  influx. Other 

investigators suggested that T cell activation by mitogens resulted in an IP3 increase that 

released C a2 from intracellular stores and also activated a transmembrane Ca*’ 

conductance in Jurkat T cells (134). It should be noted, however, that for a long time non

voltage-gated Ca2'  channels have been described only in T cell lines. Therefore, until 

recently, the functionai relevance o f these channels in normal T cells was regarded as 

speculative However, Densmore and coworkers described in 1996 a so-called voltage- 

operable Ca* current in human lymphocytes, where "voltage-operable" is defined as an 

intrinsic property o f the channel protein rather than a requirement for o f  normal gating 

ll3?l They found that inhibition o f non-voltage-gated channels did not block either Ca*' 

entry or Ca* -dependent lymphocyte proliferation, whereas blockade o f this voltage- 

operable channel did Therefore, the voltage-dependence of the rise in [ C a '] i  upon T cell 

activation, remains controversial and needs to be further investigated.

T cell functions other than proliferation also appear to be regulated by Ca*' 

fluxes T cell-mediated cytotoxicity has been described to be Ca**-dependent l3(,> 

Furthermore, a rise in [Ca* ], correlates with a shape change in cytotoxic T cells and a 

reorientation o f cytoplasmic granules 13 ' The Ca*' influx that underlies antigen- 

mediated T cell activation has been solely assigned to activation o f SOC (138\  Several 

other studies in T cells confirm the expression and physiological importance o f SOC in 

lymphocyte activation 139140) in another mononuclear cell type, the monocyte, SOC has 

been shown to be differentially expressed during certain periods o f cell growth and may 

regulate certain stages o f cell maturation ll4n. A role for another Ca2* channel, the 

NMD A receptor, in the biphasic rise in [Ca*']j upon T cell activation was suggested by a 

study showing the expression o f this channel type in natural killer (NK) cells, and its 

involvement in the recall o f  conditioned NK cell responses lt42'

Similarly to lymphocytes, neutrophils exhibit a biphasic rise in [Ca*']j after cell 

activation <I43' This increase in [Ca* ]i has been linked to differential secretion from the
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three granule populations o f the neutrophil M44). The early, transient rise in [Ca2']i was 

shown to be due to release o f Ca2'  from intracellular stores, whereas the later in time and 

more sustained Ca2'  increase required extracellular Ca2'  and was attributed to a Ca2'  

influx n45). The existence o f a Ca2'  influx pathway in neutrophils is suggested by the 

observations that chemoattractant-induced elevations in [Ca2']j are markedly decreased in 

the absence o f extracellular Ca2'  (l43), inorganic channel blockers such as Ni2'  and Cd“'  

abolished the delayed phase o f  the chemoattractant-induced [Ca2*]j elevation (l45), and the 

readdition o f Ca2 after stimulation o f neutrophils with an agonist in a Ca*'-depleted 

medium led to an immediate [Ca2']i elevation <14<,). In contrast to excitable cells, Ca2'  

influx in neutrophils appears to be independent o f plasma membrane depolarization and 

is, like in lymphocytes, insensitive to blockers o f voltage-gated Ca2' channels such as 

nifedipin |I4 '. Therefore, neutrophils are also thought to lack voltage-gated Ca*' 

channels Furthermore, chemoattractant-induced Ca*' influx can be inhibited by pertussis 

toxin, suggesting that the mechanism o f  Ca2'  entry is coupled to the chemoattractant 

receptor via a G protein, either directly or via a second messenger (I48). Emptying o f 

intracellular Ca*' stores was reported to lead to extracellular Ca2'  influx and, via a 

hitherto unknown mechanism, to an increase in the plasma membrane permeability o f  

neutrophils for Ca*' ll4)\  Whether or not Ca*' influx in neutrophils is, like in 

lymphocytes, caused by activation o f SOC. remains to be shown. Evidence for the 

presence o f such channels in neutrophils is suggested by a study showing that the second 

phase o f an IL-8-induced biphasic increase in [Ca*']j was dependent on the presence o f 

extracellular Ca2' ll50) In spite o f  circumstantial evidence, the molecular confirmation o f 

SOC in neutrophils remains a target for future experiments. In single channel patch clamp 

studies. Ca*'-activated nonselective cation channels have been described <I?I). however, 

their physiological significance is not generally accepted <I52). Thus, the question whether 

Ca*' enters the neutrophil through a Ca2 -selective channel, a nonselective channel or 

some nonconductive transport pathway, remains open.
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5.2 K" channels:

Julius Bernstein first postulated in 1912 a selective K~ permeability in excitable 

cell membranes and may be credited with opening the road to the discovery o f  K 

channels (S8). In fact, in the following decades, K ' channels o f related structure have been 

found in prokaryotes and eukaryotes. Human FC channel genes can be classified into 

three groups based on the similarity in membrane topology(88). The first group consists o f 

channels characterized by 6 transmembrane domains (6TM), such as Ca: *-activated (Kca) 

or voltage-gated (Kv) channels. The second group consists o f channels with 4 

transmembrane domains (4TM), such as two-pore-domain (K :h) channels. The third 

group consists o f channels with 2 transmembrane domains, such as ATP-dependent 

(K \rr) channels or G-protein-coupled K ' channels The major role for K." channels 

consists in stabilizing the membrane potential They draw the membrane potential closer 

to the equilibrium potential for 1C ions. K ' channels, therefore, set the resting membrane 

potential o f a cell, keep fast action potential short by inducing repolarization, terminate 

periods o f intense electrical activity, regulate the intervals during repetitive firing, and 

generally lower the effectiveness o f excitatory inputs on a cell when they are open. On 

the other hand, closure o f  K~ channels by second messenger systems is a mechanism to 

enhance excitability. In addition to these electrical roles, some K* channels have a 

transport role for salts and water across epithelial layers li;3) Probably all cells have K* 

channels, and the more channel types there are in one cell, the more difficult it is to 

distinguish their electrophvsiological contributions. Employing the patch clamp 

technique, K~ channels can be studied using pharmacological blockers and activators as 

well as by analysis o f kinetic differences between the various families o f  K~ channels 

Single channel recordings are often useful because some K~ channels have characteristic 

unitary' current signatures and typical single channel conductances (154). For many 

channels subtype-specific antibodies are commercially available nowadays and channels 

can be identified using molecular biological methodology. Although more than 80 

mammalian genes for K" channels have been described, all K ‘ channels share a common 

pore-lining P loop with a consensus amino acid sequence, also called the K~ channel 

signature sequence lI5?l.
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Voltage-gated K ' channels (Kv) possess as their distinguishing feature an intrinsic 

voltage sensor able to detect the membrane potential ll55\  These channels are composed 

o f a type-specific a  subunit that lines the pore, and up to three p subunits that associate 

with different a  subunits n5bl.

Ca2‘-activated K" channels (Kca) are divided according to their conductances into 

channels o f large (BK), intermediate (IK) and small conductance (SK). Whereas channels 

o f large conductance are regulated by both voltage and Ca2* and contribute to action 

potential repolarization, those o f  intermediate and small conductance are gated primarily 

by Ca2" and are involved in generating the hyperpolarization after an action potential|1M.

Inwardly-rectifying K’ channels (Kir) exhibit strong interactions with the 

permeant ions and are well known for their ability to accommodate multiple ions in their 

pore ll5Sl The mechanism for inward rectification is accounted for primarily by a block of 

the channel pore by cytoplasmic cations 11591 Inwardly-rectifying K" channels are widely 

distributed in the mammalian brain and other tissues lIb0). The different members o f this 

family are regulated by a variety o f intracellular signals such as hydrogen ions, redox 

reactions, protein kinases, and ATP hydrolysis llbl1

ATP -sensitive K ' channels ( K a t p )  are composed o f a pore-forming Kirb.x subunit 

and four P subunits, which form the sulfonylurea receptor (SUR) (lb2\  In pancreatic p 

cells, these channels regulate insulin secretion ll<>3'. whereas in the heart they mediate 

cardioprotection during ischemia and cardiac arrhythmia (lb‘l)

In human proliferating lymphocytes, only one type o f voltage-gated K" channels, 

namely n type (Kn) or Kv1.3. has been described In contrast, three voltage-dependent K" 

conductances have been delineated in murine T cells <II4> The K„ channel is one o f the 

best-characterized ionic conductances in leukocytes Whole-cell patch clamp experiments 

revealed a threshold o f  activation in the range o f -50 to -60  mV, and its conductance is 

fully activated above 0 mV These currents exhibit the typical sigmoidal activation 

kinetic o f voltage-activated K* channels l89\ Furthermore. Kn channels are inactivated by 

increases in [Ca2*], <lb5'. and by a decrease in temperature (lbbl and intracellular pH ,Ib,). 

Both. K" channels blockers such as quinidine. TEA and 4-AP, and C a2" channel blockers 

such as diltiazem. verapamil and nifedipin. are described to block the K„ channel,89). The 

total number o f voltage-gated K* channels in human lymphocytes is upregulated by
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approximately 70% following mitogen stimulation (I68). An increased number o f K ' 

channels can also be induced following stimulation of lymphocytes with LL-2. and is 

reversible upon removal o f  this stimulus. This accompanies the return o f  the cells to their 

resting state T cell stimuli such as concavalin A and phorbol esters change the 

voltage dependence o f K ' channels so that they open more readily upon 

depolarization ll,0>. Killing o f allogeneic target cells by cytotoxic T cells is also inhibited 

by K’ channel blockers ,l /1). Furthermore, most but not all protein synthesis, including 

1L-2 production, is inhibited by the broad spectrum K ' channel blockers TEA and 

4-aminopyndine (4-AP) ' Ib8\

The presence o f K ’ channels in neutrophils has been suggested by analysis o f 

their membrane potential The resting membrane potential o f  neutrophils was estimated 

to be around -60 mV, with more positive values as the extracellular K ' concentration is 

increased This suggests that neutrophils possess K channels that maintain the negative 

membrane potential o f  the cell l l ‘ ). Similarly to lymphocytes. Kv channels have been 

described in unstimulated neutrophils, with a threshold of activation o f -6 0  mV These 

currents showed inward rectification and were blocked by Ba‘ ‘ ll48\ Evidence for the 

presence o f K o channels in neutrophils is suggested by studies showing that ionomycin 

induced an increase in K ’ outward current 11 3| In addition, exposure o f  HL-60 

promyelocytic cell line to ionomycin produced membrane hvperpolarization, and using 

ion substitutions and ion channel blockers, it has been shown that this hvperpolarization 

was mediated by Kc.i channels <l 41 In conclusion, it appears that Kv channels are 

important for the maintenance o f  the resting membrane potential o f leukocytes, whereas 

K o  channels regulate the repolarization after cellular activation ,148).

5.3 CF channels:

C f is by far the most abundant physiological anion and plays an important role in 

cellular homeostasis. In most cells it is distributed close to its equilibrium The 

equilibrium potential for C1‘. Eci, is usually near the resting membrane potential l88' 

Therefore, similar to K channels, C f channels are thought to oppose normal excitability,
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to stabilize the membrane potential and, in pan, help repolarize an activated cell. In 

addition. Cl' anions play a role in intracellular pH regulation, cell volume regulation and 

as a driving force for secretion o f fluid from glands and epithelia (1 /?' 17,\  The first Cl' 

channels were discovered as so-called "background channels” in venebrate twitch muscle 

by Boyle and Conway in 1941 ,178). This model is still the best-studied example o f  an 

excitable cell with a high resting Cl' permeability. The voltage- and time-dependence o f 

this Cl' conductance was described as mild and slow |1,J\  Therefore, in many patch clamp 

recordings o f fast channels, C f currents are often masked by leak currents. However, 

distinct Cl' channels can be identified using pharmacological blockers and anion 

substitution.

Four well-established classes o f Cl' channels are now recognized: the cAMP- 

activated cystic fibrosis transmembrane conductance regulator (CFTR) channel, the 

voltage-gated Chloride Channel (C1C) family, ligand-gated Cl' channels (y-aminobutvric 

acid (GABA) and glycine receptors) and Ca*'-activated Cl' channels (CaCCs) (180-181). 

Genetic defects leading to inherited disease are known for the first three o f  these 

c lasses '18*' A combination o f mutagenesis and biophysical analysis has been used to 

correlate their structure with function.

The CFTR Cl' channel belongs to the class of ATP-binding cassette transport 

ATPases and is one of the best-studied C1‘ channels. It is composed of 12 transmembrane 

helices in two groups o f six. two cytoplasmic nucleotide binding domains (NBDs). and a 

cytoplasmic region, the regulatory or R domain, containing numerous consensus 

sequences for phosphorylation ,18;!). Currently, it is well established that CFTR is a 

c.AMP-dependent channel and is acutely regulated at its R domain by protein kinases, 

particularly PKA. and by phosphatases 1184 1851 Phosphorylation bv cAM P-dependent 

protein kinase activates the channel. Binding and hydrolysis o f ATP at the NBDs 

regulates channel opening and closing, whereas the R domain plays an important role in 

coordinating the open and closed states o f the channel ll86). Channel gating kinetics are 

characteristically slow with long closed periods and little voltage-dependence (187'. In 

addition to transport o f Cl* ions. CFTR may also be a regulator o f other ion channels It 

has been shown that patients with cystic fibrosis show an increased Na* reabsorption 

across lung epithelia. suggesting that CFTR may regulate the epithelial N a ' channel
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(ENaC). Indeed, coexpression o f  CFTR with ENaC demonstrated that it inhibits this N a' 

channel in a cAMP-dependent manner <188). Other data suggest that CFTR may regulate 

the activity o f the renal K ' channel ROMK2 <1X9>.

By expression cloning in Xenopus oocytes, Jentsch and coworkers discovered the 

first member o f the voltage-gated C1C family. C1C-0 " 90). Subsequent homology-based 

cloning revealed that CIC-0 is a member o f a large gene family with nine mammalian 

genes recognized"91’ In mammals, the different genes are expressed in different cell 

types. Some isoforms are expressed predominantly in one cell type (e.g. C1C-1 in skeletal 

muscle) or in one organ (e g. CIC-Ka and CIC-Kb in kidney), whereas others appear to be 

more widely distributed (e g. C1C-2, -6. -7) <l9"). The transmembrane topology c f  C1C 

channels is still largely conjectural, since most studies were performed using hydropathy 

analysis This analysis, when applied to C1C-0. led to the prediction o f 12-13 

transmembrane spans ' 190'. C1C channels probably function as dimers, and single channel 

recordings o f C1C-0 suggest a peculiar double-barreled structure o f this channel ,n3> 

Furthermore, studies o f glvcosylation revealed that C1C-0, -1. -2 and -K  are 

glycosylated 1941 Electrophvsiological characteristics of C1C channels are a high 

selectivity for Cl' anions and a voltage-dependent block by V. " 95\ They display a rather 

small single channel conductance, which is largest for C1C-0 with about 9 pS ll9°’ The 

physiological functions are clearest for C1C-1 (control o f muscle excitability) and C1C-2 

(ceil volume control), but are still obscure for newer family members which often cannot 

yet be reliably expressed as Cl* channels " 9T).

The third group of C1‘ channels, ligand-gated Cl' channels, include the 

y-aminobutyric acid (GABA) and the glycine receptor These are postsynaptic Cl' 

channels that are predominantly expressed in neuronal tissue " 9X). Opening o f these 

channels is mostly inhibitory, since the resulting stabilization o f the voltage counteracts 

depolarization caused by excitatory neurotransmitters. GABA and glycine receptors are 

oligomeres composed o f several identical subunits and are believed to function as 

pentameric complexes. The single subunits have four membrane-spanning domains and 

the second transmembrane domain M2 forms the pore " x:i. Both GABA- and glvcine- 

gated anion channels have multiple conductance levels in the 10-90 pS range " 99\  GABA 

receptors are divided into GABA,\, GABA b and G.ABAc subtypes Only GAJBAa. and
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GAB Ac receptors are believed to represent Cl' channels GABAa receptors are 

selectively blocked by the alkaloid bicuculline and are modulated by benzodiazepines, 

steroids and barbiturates. In contrast, GABAc receptors are not blocked by these drugs, 

but are sensitive to (1.2,5.6-tetrahydrpyridin--4-vl)methylphosphinic acid (TPM PA) {*00) 

GABA b receptors activate the second messenger systems PLC and AC, and activate K" 

and Ca: ' channels via G-coupled proteins These receptors produce slow, prolonged 

inhibitory signals and function to modulate the release of neurotransmitters (“ot).

Ca2 -activated Cl' channels (CaCCs) were first described by Ran and coworkers 

in 1992 ' ‘02) These channels have a single channel conductance o f about 25 pS and show 

an ion selectivity o f I'>C1'. which is the opposite o f CFTR and C1C-2 u03\  CaCCs seem 

to be primarily regulated via Ca2"-dependent protein kinases and appear insensitive to 

regulation by PKA They are activated and phosphorylated by calmodulin-dependent 

kinase II (CaMK II) and by PKC. They are composed o f four transmembrane domains 

with several consensus sites for giycosvlation. This group attracted particular attention 

when experiments in cystic fibrosis knock out mice showed that CaCCs were capable o f 

upregulating C f secretion in the epithelium '*H4' Although the CaCCs conductance 

pathway is conserved in humans, for unknown reasons these channels are not able to 

effectively substitute for CFTR.

In T and B lymphocytes, single channel currents o f a large-conductance and 

voltage-dependent CF channel have been described (l7I;205) The single channel 

conductance o f this channel was about 365 pS with several subconductance states. The 

channel opened and closed in a time-dependent manner, was temperature-sensitive and 

blocked by Zn‘" ‘*Ut” In addition, in human T cells a CF channel o f small conductance has 

been described (CF) The currents were too small to resolve at single channel level, but 

noise analysis resulted in an estimate o f 2 6 pS for their single channel conductance 

Hydrolysis o f ATP was required for activation and it was hypothesized that Cls channels 

participate in lymphocyte volume regulation ,s9)

In neutrophils. CF efflux is an early event occurring after exposure o f these cells 

to agonists such as TNT and GM-CSF l*°'' A possible relationship between CF efflux, 

adherence and respirator.' burst was first suggested by kinetic studies, showing that TNF- 

induced CF efflux preceded both the adhesive and the metabolic response, and was then
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confirmed by inhibition o f all three responses with Cl' channels inhibitors such as 

ethacrynic acid l2,m. Other investigators described both voltage-independent C a"- 

activated 11 3> as well as voltage-dependent Cl' currents in human neutrophils u09). These 

channels are believed to participate in neutrophil activation, volume regulation, secretion, 

cytotoxicity and proliferation. The induction o f voltage-dependent Cl* currents in 

neutrophils by phorbol esters was associated with activation o f PKC. Other Cl' currents in 

neutrophils were found to be activated in hypotonic solution (210). These outwardlv- 

rectifving Cl' currents displayed no apparent voltage- or time-dependence and appeared 

to be induced by membrane stretch. The single channel conductance o f these channels 

was 15 pS. which led to the term "mini-Cl' channels” . Currents with very similar 

characteristics were also described in the neutrophil HL-60 cell line ,2in Biochemical 

and ultrastructural studies performed by Korchak and coworkers in 1982 showed that the 

Cl' channel blockers 4-acetamido-4-isothiocvano-2.2-disulfonic acid (SITS) and 4,4- 

diisothiocyano-2.2-disulfonic acid (DrDS) specifically inhibited fusion of lvsosomes with 

the plasma membrane o f neutrophils. However, ion substitution studies indicated that 

influx o f Cl' was apparently not critical for these events which appeared to occur 

independently o f  the extracellular C f concentration *I‘), suggesting that these drugs may 

act on a target different than Cl' channels Interestingly, in contrast to neutrophil
I ** 1 3  )degranulation, O ;' production was not inhibited by these Cl' channel blockers "

5.4 IV channels:

Proton (H ') channels were first discovered by Thomas and Meech in snail 

neurons during studies o f acid regulation ul4\  Neurons were voltage clamped while acid 

loads were injected and the intracellular pH was measured. The H* channels carried 

outward fluxes o f H ’ when the membrane was positive to the equilibrium potential o f H~. 

and helped to remove excess acid from the cytoplasm H~ channels activate with 

depolarization like a voltage-gated, slow delayed rectifier, but in a physiological pH 

range their unitary conductance is often below the resolution o f  direct measurement.
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An essential physiological function o f voltage-gated H~ channels is to aid the 

production o f  O ;' in phagocytes such as neutrophils, macrophages and eosinophils via a 

reaction called the respiratory b u rs t(215). This reaction is elicited by the NADPH oxidase, 

includes the transfer o f electrons from the inside to the outside o f the cell, and the 

generation o f H* ions in close proximity to the cytosolic face o f the plasma membrane. In 

order to avoid excessive acidification o f the cytosol. H~ ions need to be extruded. H~ 

transport through H ' selective channels has been proposed to achieve this goal '*lb' 

However, this suggestion was based on indirect studies using fluorescent dyes, and no 

actual current measurements were performed. In the following years. H~ currents were 

recorded from human neutrophils and HL-60 cells using the whole-cell patch clamp 

technique This method allowed the detection o f voltage-activated currents that were 

carried by H ' ions, since they occurred in the absence of permeant ions other than H~ and 

followed the electrical gradient o f H" l‘ l \  The H~ currents were activated by 

depolarizing voltages, were gated by the intracellular and extracellular pH and were 

remarkably similar to the currents described Thomas and Meech in snail neurons ' ‘ 14) In 

the search for the identity o f this H* conductance, it was proposed that an NADPH 

subunit. g p 9 1 phox. may function as a voltaue-dependent H~ conductance <*18\  The 

authors o f this study described the observed H ' currents as time-dependent and Zn‘~- 

sensitive but insensitive to the extracellular Cl' concentration. Evidence for gp91 phox 

being an integral pan o f the H ‘ conductance is further provided by studies showing that in 

neutrophils from patients suffering from chronic granulomatous disease (CGD), which 

lack this subunit, no H~ currents could be induced '- 19—0) in contrast, the absence o f 

another N.ADPH oxidase subunit in neutrophils from CGD patients, cytochrome h, had 

no effect on induction or amplitude o f the H* current :' 1)

Several agents known to activate leukocytes such as PMA. TNF and fMLP have 

been shown to activate the NADPH oxidase and associated H ‘ currents. In neutrophils, 

the addition o f  PMA caused a negative shift in the H~ channel I-V relationship, faster 

activation during depolarization, slower inactivation during repolarization and larger 

maximum current amplitude Simultaneously, an inward current that directly 

reflected electron transport by the NADPH oxidase was also activated by PMA. The 

identity o f this electron current was confirmed by its sensitivity to diphenvlene iodonium
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(DPI), an inhibitor o f the NADPH oxidase. Similarly to PMA, neutrophil stimulation 

with TNF or fMLP also evoked similar voltage-dependent H ' currents <"*3).

6. Ion channels in eosinophils:

Compared with other leukocytes, very little is known about expression and 

function o f ion channels in eosinophils. Although it seems reasonable to assume that 

eosinophils express Ca: ’ channels, the evidence for their existence is, to date, mostly 

circumstantial An increase in the [Ca2*]i concentration is commonly accepted as a 

prerequisite for eosinophil activation and mediator release lU"). Nevertheless, at present, 

no reports have convincingly shown the expression o f voltage-gated C a"' channels in 

eosinophils Evidence for the presence o f these channels is suggested by a study showing 

that stimulation o f  eosinophils with antigen caused an increase in O ;' and LTC4 release, 

which were inhibited by the voltage-gated Ca" channel blocker verapamil 

Furthermore, using monoclonal antibodies. IP3 receptors were found in eosinophils 

Upon stimulation with chemoattractants. eosinophils show a rapid increase in [Ca"'], that 

is insensitive to removal o f extracellular Ca" Blocking o f  LP3 receptors prevented the 

rise in [Ca"'], suggesting that it is produced by discharge from internal stores '"*b*. In 

contrast, in another study, the rise in [Ca* ]j induced by PAF was shown to be dependent 

on the extracellular Ca"' concentration. The authors conclude that Ca" entry via 

receptor-operated Ca: ' channels may be involved in PAF-induced eosinophil 

degranulation ,s:\ Finally, it has been shown that eosinophil O ;' production upon 

stimulation with PAF and fMLP required intra- as well as extracellular Ca"'. since 

removal or chelation o f either one resulted in decreased 0 ; ‘ release. However, the authors 

of this study failed to identify the transport mechanism underlying the increase in 

[Ca"‘] , A t  present, there is no information available on the expression o f SOC in 

eosinophils, and therefore, the involvement o f currents in Ca*'-induced responses in 

these cells, remains a matter o f speculation.

Most studies o f ion channels in eosinophils were performed on K ' channels A 

role for K* channels in eosinophil biology was first suggested by reports showing that K.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



channel blockers such as quinidine, sparteine and 4-AP inhibited cell shrinkage during 

apoptosis. This effect was attributed to inhibition o f K ' efflux from the cell u28). At the 

same time, other investigators showed that quinidine inhibited O :' production in patients 

with hypereosinophilic syndrome, and proposed a role for Kca channels in this 

process Further evidence for these channels being present in eosinophils was 

provided by studies indicating that the eosinophil-specific chemokine RANTES activated 

K ' channels in a similar manner as did the Ca*’ ionophore A23187 or an increase in 

[Ca*],. Similar results were obtained using PAF '*301. A few years later, Saito and 

coworkers found a correlation between activation o f KCa channels and eosinophil 

mediator release The K~ channel blocker quinidine inhibited both the release o f MBP 

and Kca channels in human PAF-stimuIated eosinophils (*3IF A role for K channels in 

eosinophil survival and 0 ; ‘ production was suggested by studies showing that 

sulfonvlureas. inhibitors o f K. vrp channels, induced eosinophil cell death and inhibited 0 ; ‘ 

generation The authors o f this study also showed mRNA expression o f a K \ t p  channel 

subunit, the sulfonylurea receptor, in human eosinophils (23*\ In addition. Tare and 

coworkers described a whole-cell inward current in human eosinophils, which was 

activated upon membrane hvperpolarization and blocked by C s' and Ba* This current 

was attributed to the presence o f inw'ard rectifier K ' channels The authors exclude a role 

o f these channels in 0 ; ‘ production but suggest an involvement in setting the membrane 

potential o f eosinophils close to the equilibrium potential for K* Molecular biological 

studies identified this channel as K ir2.1 u33).

Very little information is available on CF channels in eosinophils. Nedocromil 

sodium and sodium cromoglycate, two anti-asthma drugs and blockers o f  CF and Ca*' 

channels l234'. were found to inhibit the PAF-induced increase in eosinophil cytotoxicity 

against parasites l23' 1. In allergic disease, the mode o f action o f these drugs is thought to 

be downregulation o f eosinophil and neutrophil l2‘'61. but not lymphocyte 123 °, activation, 

while stabilization o f mast cell membranes appears negligible. This effect may be 

mediated via inhibition o f  CF channels >-38~3'M .Another study showed that two CF 

blockers. DIDS. a stilbene disulfonate, and NPPB. a derivative o f diphenylamine-2- 

carboxylic acid, inhibited LTB4-induced O ;' production. However, removal o f 

extracellular CF had no effect on the respiratory burst. The authors concluded that DIDS
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and NBBP were not inhibiting the LTB^-induced response by blocking Cl' influx. 

Nevertheless, when eosinophil Oz‘ production was induced with opsonized zymosan, the 

presence o f extracellular CP was found to be an absolute requirement u40).

Similarly to neutrophils, eosinophil H ' channels have been involved in activation 

o f  NADPH oxidase and respiratory burst. The first H ' currents in eosinophils were 

described as both voltage- and pH-dependent The currents were activated by 

depolarizing voltages, low pH and increased [Ca"'],, and were blocked by Zn‘ and Ni" 

The density o f the H ' conductance in human eosinophils is with 1.5+0.1 nS/pF among the 

highest that has been reported (:4i :4:). Banfi and coworker were able to differentiate two 

different H ’ conductances in human eosinophils. The previously described “classical” H ' 

current was present in CGD eosinophils, whereas a "novel” H* conductance was absent 

in cells from patients deficient in gp9i phox and p47 phox. two subunits o f the NADPH 

oxidase Unique properties o f  this new channel when compared with the “classical 

channel were its low threshold o f voltage activation allowing H ' influx and intracellular 

acidification, its faster activation and slower deactivation, its 20-fold higher sensitivity to 

Zn: ' and the fact that it was only observed upon NADPH oxidase activation ("43). These 

properties led the authors to conclude that the physiological function o f this novel H ' 

conductance may not be restricted to H extrusion and repolarization, but could include 

depolarization, pH-dependent signal termination, and determination o f the phagosomal 

pH set point However, a recent study by De Coursev and coworkers argued against the 

presence o f two different H conductances in eosinophils on the basis that in their hands 

unstimulated and stimulated eosinophils displayed similar sensitivity to Zn"". These 

authors propose a single type o f H* channel with properties that can be modulated by 

stimuli such as PMA ("441
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OBJECTIVES AND HYPOTHESES

This thesis dealt with two aspects of the role o f eosinophils in inflammatory responses 

associated with allergic inflammation. First, the recruitment o f eosinophils to peripheral 

tissues and the mechanisms that need to be in place to allow eosinophil migration to the 

sites o f  inflammation. Matrix metalloproteinases (MMPs) are crucial enzymes in 

eosinophil extravasation and transmigration into the airways <:45). In particular, the 

gelatinase MMP-9 is capable o f degrading collagen type IV, a major constituent o f 

basement membranes <246\ Activation o f  this enzyme is. therefore, thought to promote 

eosinophil recruitment into the airway mucosa and to facilitate their transmigration into 

the airway lumen In addition to their contribution to acute inflammatory processes, 

MMPs may participate also in more chronic inflammatory events by regulating tissue 

remodeling ' 4 1 The balance between MMP-dependent extracellular matrix degradation 

and tissue inhibitors o f matrix metalloproteinases (TIMP)-dependent fibrosis appears 

caicial in the final outcome of airway inflammation

The second aspect o f  this thesis focused on the fate o f eosinophils once they 

infiltrated the inflammatory environment o f the airways When expose to such a milieu, 

eosinophils are activated and upregulate their mediator release. In this part o f the study I 

measured eosinophil activation as an increase in O ;' production and investigated its 

regulation by ion channels. This section o f the thesis also addressed the regulation o f  

eosinophil ion channels by reactive oxygen metabolites, in particular nitric oxide (NO), 

which is present at elevated concentrations in the exhaled air o f asthmatics (:48' In 

summary, this study tried to characterize (i) mechanisms employed by eosinophils to 

infiltrate the airway mucosa and (ii) the regulation o f  eosinophil activation as measured 

by O ;’ production and whole-cell current activation.
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Therefore, the objectives o f  this study were

1) to investigate the mechanisms o f  eosinophil mediator release, particularly M MP-9 and 

O;

2 ) to identify and characterize membrane ion channels and other transport proteins involved 

in human eosinophil activation

3) to determine the effect o f reactive oxygen species on human eosinophil ion channel 

function

We hypothesized that

1) cytokines present in an inflammatory environment regulate MMP synthesis and release 

from human eosinophils

2) Ca: \  K \ Cl' and H ‘ channels as well as other membrane transport proteins (e.g.

CI HCO3 'exchanger) play a role in human eosinophil activation and mediator release

3) increased amounts o f reactive oxygen metabolites, as found at inflammatory sites, alter 

eosinophil ion channel function
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LEGENDS TO FIGURES

Fig. 1.1

Simplified schematic illustration of a selection of eosinophil-derived mediators. 

Eosinophils synthesize, store and release cationic granule proteins, oxidative metabolites, 

as well as numerous cytokines chemokines and growth factors. Lipid mediators are de 

novo synthesized in eosinophils and may be derived from membrane phospholipids or 

intracellular lipid bodies

Fig. 1.2

Simplified schematic drawing o f a patch clamp set up in the whole-cell configuration 

Computer-generated signals are transmitted to the cell under investigation via the pipette 

electrode Currents flowing through the cell membrane are recorded with reference to the 

bath electrode, transmitted to an amplifier, and can then be analyzed using appropriate 

computer software
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CHAPTER 2

Human eosinophils release matrix metalloproteinase VIMP-9 upon 

stimulation with tumor necrosis factor-a.

This chapter is published in:

Schwingshackl, A., Duszvk, M., N Brown, and Moqbel, R. Human eosinophils release 

matrix metalloproteinase-9 upon stimulation with tumor necrosis factor-a. J. Allergy 

Clin. Immunol 1999; 104.983-990.
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INTRODUCTION:

A precise role for the eosinophil in inflammatory diseases has remained elusive 

Eosinophils are thought to exert a beneficial function in protecting the host from 

parasitic infection while at the same time they are considered to play a detrimental 

role in a variety o f acute and chronic airway disorders. In bronchial asthma, strong 

evidence has been provided to indicate that eosinophils may be responsible for damage to 

the bronchial epithelium by releasing cytotoxic granule proteins <3) and other 

proinflammatory mediators 11'4>. The number o f eosinophils is also increased in both 

peripheral blood and airways o f atopic and non-atopic asthmatics (5) Furthermore, the 

concentration o f eosinophil products has been shown to correlate with disease severity (6'. 

Nevertheless, evidence for an etTector function of the eosinophil remains circumstantial 

This fact is complicated by the presence o f a mixed inflammatory reaction involving 

neutrophils ' m acrophages'8', lymphocytes l9t. mast cells ll0), and eosinophils (U)

At the histopathological level, one characteristic o f  asthmatic tissue is sub-basal 

membrane thickening and hypertrophy as well as hyperplasia o f smooth muscle cells and 

subepithelial glands l1*1. These features are thought to correlate directly with the activity 

o f matrix metalloproteinases (MMP) in the airway interstitial tissue, including MMP-9 

,r,) Abundant expression o f MMP-9 mRNA has been detected in airway biopsies from 

asthmatic subjects Interestingly the vast majority o f  cells expressing M MP-9 mRNA 

were eosinophils ll4' Asthmatic tissue associated with the expression o f  MMP-9 was 

characterized by remarkable inflammation, including mucosal edema, cellular infiltration, 

and expression o f adhesion molecules ll‘ ) These findings suggest the overexpression of 

MMP-9 by eosinophils in bronchial tissue o f asthmatic individuals, and the participation 

o f MMP-9 in the maintenance of airway inflammation in asthma.

Among the cytokines involved in MMP regulation <l?), there is evidence to 

suggest that TN F-a may be crucial, particularly with MMP-9. In fact, TN F-a has been 

demonstrated to markedly upregulate MMP-9 production in human monocytes (8). These 

data have been confirmed in endothelial cells l,?). fibroblasts 1161 and leukemia cells (1 \  

TN F-a effects in human inflammatory cells are regulated via specific receptors. 

TN F-aRI or TNF-aRII. Eosinophils express at least one o f the two receptors ,l8\
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It is well known that not only cytokines such as T N F -a  regulate MMP-9 activity, 

but also the physiological tissue inhibitors o f matrix metalloproteinases, T1MP-1 and 

TIMP-2 <19\ TIMP-1 seems to be closely associated with MMP-9 activity <I3) although 

this has not yet been confirmed in eosinophils Interestingly, in human monocytes 

TIMP-1. but not TIMP-2 expression was shown to be induced by T N F-a (!<). Although the 

stimulatory effect o f T N F-a on MMP-9 appears to be consistent, its effect on TIMPs 

needs further investigation.

In this study we hypothesized that in eosinophils 1) TN F-a is a major activator o f 

MMP-9 activity, and 2) T N F-a influences the physiological equilibrium between MMP-9 

and TIMPs In order to understand the equilibrium between MMP-9 and TIMPs upon 

stimulation with TN F-a we examined the expression o f MMP-9 and TIMPs and the 

amounts o f NLMP-9 and TIMP proteins produced by peripheral blood eosinophils. Our 

data suggest that TN F-a markedly increases MMP-9 release from human eosinophils. 

Furthermore, the production o f inhibitors o f MMPs appears inconsistent among different 

atopic subjects These results have important implications on the potential role o f the 

eosinophil in airway remodeling in asthma.
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MATERIALS AND METHODS:

A) Isolation of peripheral blood eosinophils:

Peripheral blood eosinophils were isolated from atopic asthmatic volunteers who had 

given their informed consent, as follows ,J) 21) Heparinised blood (100 mL) was mixed 

with 20 mL Dextran ( 6  %) (Fluka. Buchs, Switzerland) in RPMI-1640 (Bio Whittaker, 

Maryland. USA) Erythrocytes were then sedimented for 30 min at room temperature. 

The plasma was layered on a Ficoll (Pharmacia. Quebec, Canada) cushion (15 mL) and 

centrifuged for 25 min at 1000 g at room temperature Contaminating erythrocytes in the 

resultant pellet were iysed in 2 mL sterile water for 5 sec and the cell suspension was 

then washed in RPMI-1640 The pellet (containing approximately 5 x 10 cells) was 

resuspended in 600 p.L RPMI-1640 containing 2 ° o  FCS/0 5 mM EDTA (Sigma. St 

Louis. USA) and incubated for 45 min with anti-CD 16 <60 (iL), anti-CD 14 (20 (iL) and 

anti-CD 3 (20 (.iL) immunomagnetic beads (MACS. CA, USA). These cells were passed 

through a magnetic column and the eluant contained an eosinophil population o f  >97 % 

purity Eosinophil counts were performed using the Kimura staining technique <“ ).

B) Cell culture:

Eosinophils were resuspended in RPMI-1640 (2 x 10'’ cells/mL) and incubated at 37° C 

in the presence or absence o f 100 ng/mL TN F-a In pilot experiments, we optimized the 

conditions for MMP-9 release from eosinophils following stimulation by TN F-a. A 

generally accepted range for TN F-a concentration is between 1-100 ng/mL. We have 

therefore tested five different concentrations o f TN F-a (0, 0.1. 1. 10. 100 ng/mL). A dose 

o f 100 ng'mL showed the highest increase in MMP-9 secretion, and this concentration 

was used throughout the current study Similarly, time-course experiments indicated that 

24 h incubation of eosinophils with or without TN F-a was optimal, since, especially in
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unstimulated cells, at earlier time points (0, 1, 8  h) MMP-9 mRNA expression and 

protein release was low In order to study the regulation o f MMP-9 synthesis and release, 

cells were incubated with either actinomycin D (10° M), cycloheximide (1CT6  M), the 

protein kinase C inhibitor H7 (500 p.M), the NFkB inhibitor N-CBZ-LEU-LEU-LEU-AL 

(10 pM) or a neutralizing anti-human T N F-a antibody (0.04 pg/mL) for 24 h in the 

presence or absence o f TNF-a. Except for the anti-TNF-a antibody, which was 

purchased from R&D Systems (Minneapolis. USA), all reagents were obtained from 

Sigma. St. Louis. USA.

Since transcription and translation inhibitors are known to be cytotoxic, cell 

viability was assessed after 24 h incubation by using trypan blue dye exclusion and an 

Annexin Y-FITC Apoptosis Detection kit (PharMingen. ON, Canada) to detect dead 

cells In all experiments described, cell viability was >90 % at all time points examined. 

These findings exclude the possibility that the observed increase in MMP-9 activity was 

caused by unspecific protein leakage due to cell death

C) RT-PCR:

Total RNA was isolated from 2 x 10b eosinophils using the Quiagen RNeasy kit (Ontario. 

Canada) The average amount o f RNA obtained from 2 x 10'1 eosinophils was 300 ng 

One third o f the RNA was reverse transcribed using superscript II reverse transcriptase 

(Gibco BRL. Ontario. Canada) and random hexamers (50A260 units) (Boehringer 

Mannheim GmbH. Mannheim, Germany) as primers Thereafter, PCR was performed in 

20 pL reactions using the following primers (25 pM ) for MMP-9 (5’- 

C GT GG AG AGT C G A A AT CTCTG-3 ’; 5 -CCAAAC TGGATGACGATGTCT-3).

TIMP-I (5 -GGGG AC AC C AG A AGT C A AC C AG A-31; 5-CTTTT

CAGAGCCTTGGAGGAGCT-3) and TIMP-2 (5-GAT GC AC AT C ACCCTCT GT G -3'; 

5-CTC GATGTCGAGAAACTCCTG-3'). Glyceraldehvde-3-phosphate dehydrogenase 

(GAPDH) (5 -C  C ACCC AT GGC A A ATT CC AT GGC A- 3 ’; 5 ‘-

TCAAGACGGCAGGTCAGGTCCACC-3 ) was used as a housekeeping gene internal 

standard. One tenth o f  the cDNA was used in PCR experiments. DNA amplification was
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obtained by annealing at 54° C for MMP-9 and TIMP-2. 50° C for T IM P-l and 67° C for 

GAPDH for 30 sec. followed by an elongation step at 72° C for 1 min. All sequences 

were amplified over 30 cycles, except for TIMP-1 sequences, which needed 40 

amplification cycles to be detected. The amplified fragment size for GAPDH, MMP-9. 

TIMP-1 and TIMP-2 was 598 bp. 331 bp 400 bp and 292 bp, respectively.

D) Gelatin zymography:

SDS-PAGE gelatin zymography (7 % polyacrylamide gel containing 2 %  gelatin) was 

performed as follows (-3:4' Serum-free culture supernatants were assayed in order to 

study MMP-9 release, whereas intracellular MMP-9 protein was studied in Ivsed cell 

pellets. Supernatants were concentrated 5 x in Centricon 10 concentrators (Amicon, MA. 

USA) Cell pellets were lysed by 3 x 1 min freeze-thaw cycles on dry ice and a 37° C 

waterbath The resulting homogenate was resuspended in RPMI-1640 in a volume equal 

to that o f the supernatants. Phorbol-12-myristate-13-acetate (PMA)-treated (100 nM. 48 h 

at 37°C) HT-1080 fibroblast supernatants were used as a positive control for gelatinolvtic 

activity and to distinguish MMP-9 activity from that o f MMP-2. Following 

electrophoresis at 4° C, the gels were washed 3 x in 2.5 % Triton X-100 at room 

temperature The gels were then incubated in 50 m \l  Tris-HCl buffer (pH 7 6 ) 

supplemented with 0.15 M NaCl. 5 mM CaCl; and 0.05 % NaN' 3 at 37° C for 24 h. After 

incubation, the gels were stained for 1 h with 0 05 % Coomassie Brilliant Blue G-250. 

Thereafter, the gels were destained overnight in 20 % isopropanol/10 % acetic acid. All 

reagents were obtained from Sigma (ON. Canada) and the electrophoresis unit (Mini- 

Protean II Gel) was obtained from Bio-Rad (CA, USA). Proteolytic activity was 

identified as clear bands on a blue background.
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E) SDS-polyacrylamide gel electrophoresis and Western blotting :

Human eosinophils (2 x 10° cells/mL) were incubated with or without 

TN F-a (100 ng/mL) in RPMI-1640 for 24 h at 37° C. After 5 min centrifugation at 100 g 

supernatants were concentrated ( 1 0  x) and the cells were lysed by repeated freeze-thaw 

cycles (3 x 1 min) in 100 pU homogenisation buffer containing 0.5 mM EDTA (pH=7.4), 

1 0  mg/mL PMSF. and a mixture of 5 mg/mL TAME, aprotinin and leupeptin. Untreated 

HT-1080 fibroblast supernatant was concentrated (20 x) and used as a positive control for 

TIMP-2 PMA-treated (100 nM, 48 h, 37°C) HT-1080 fibroblast supernatant (10 x 

concentrated ) was used as a positive control for TIMP-1 Equal concentrations of 

eosinophil supernatant and cell homogenates (80-100 pg protein) were loaded onto a 1 2  

°o SDS-poIvacrylamide gel and transferred electrophoretically (25 V, 35 min) onto a 

polyvinylidene difluoride (PVDF) membrane (Bio-Rad) using the Semi-Dry Trans Blot 

System according to the manufacturer's instructions The membrane was then blocked 

overnight in 5 % milk powder (Bio-Rad) in tris buffered saline (TBS) containing 0 02 % 

Tween at 4° C In order to avoid non-specitlc background staining due to high 

concentrations o f cationic proteins contained in the eosinophil preparations, the 

membrane was then blocked in 5 % milk powder in TBS containing 5 % goat serum 

(Gibco, ON, Canada) for I h. Thereafter, the membrane was probed with a mouse 

monoclonal anti-human TIMP-1 (1 pg/mL) or anti-human TIMP-2 antibody (5 }ig/mL) in 

5 ° o milk powder containing 5 % goat serum for 1 h at room temperature Both antibodies 

were obtained from Cedarlane Laboratories Ltd (ON. Canada). The membrane was then 

incubated with a peroxidase-conjugated polyclonal anti-mouse antibody (1:5000) 

(Amersham. ON. Canada). Protein bands were detected by enhanced chemoluminescence 

(Amersham. ON. Canada)

F) Statistical analysis and optical density measurements:

Optical densities o f  PCR gels and o f zymograms were measured using the Sigma Gel 

Analysis program (Jandel Scientific, version 10  5 0. 1995. USA). Band intensities of
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PCR products were expressed as percentage o f a GAPDH standard ± SEM. In pilot 

experiments GAPDH expression was shown to be stable upon stimulation with IL-3, IL-5 

and TNF-a. Band intensities o f zymograms were expressed as percentage o f  treated vs. 

untreated cells -  SEM

Densitometry is a quick and very convenient method to compare different band 

intensities on RT-PCR or gelatin-zymography gels. Advantages o f this computerized 

technique are high sensitivity and rapidity in directly measuring large numbers o f band 

intensities. Potential disadvantages include the possible subjective interpretations o f  band 

intensities during the measuring process, especially if performed by different 

investigators In order to avoid these possible pitfalls in this study, only one investigator 

performed optical density measurements. We were, however, aware o f the fact that this 

method is neither helpful in detecting absolute copy numbers or protein concentrations, 

nor able to detect subtle differences in gene expression or protein production.

For statistical analysis the unpaired student t-test was used (InStat, Graph Pad 

Software Inc . USA) A value o f p< 0 05 was considered significant.
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RESULTS

1. MMP-9 and TIM P expression in human eosinophils:

Transcriptional expression o f  MMP-9 as well as TIMP-1 and TIMP-2 was studied in 

human peripheral blood eosinophils using RT-PCR. MMP-9 and TIMP-2 gene 

expression could be detected in both resting and TNF-a stimulated eosinophils (Fig. 

2.1 A), whereas TIMP-1 gene expression appeared to vary between different subjects 

Stimulation of eosinophils for 24 h with TN F-a resulted in upregulation o f M M P-9 gene 

expression (Fig 2. IB) (29.5±4.5 and 40.5*3.5. respectively), although the increase did 

not achieve statistical significance (p=0 09, n=4) In contrast. TIMP-2 gene expression 

(Fig 2 IB) in eosinophils appeared to decrease after TN F-a treatment (46.8*5 and 

32.6—5. respectively), but the ditTerence did again not achieve statistical significance 

(p= 0  08. n-5) Throughout these preparations. GAPDH was equally and consistently- 

expressed in unstimulated as well as in TN F-a stimulated eosinophils.

2. TNF-a increases MMP-9 activity in human eosinophils:

We examined the potential o f  TN F-a to increase MMP-9 release from human eosinophils 

using gelatin zymography (Fig. 2.2A). Addition o f TN F-a (100 ng/mL) to human 

peripheral blood eosinophils significantly increased MMP-9 activity after 24 h incubation 

by 95j:6 % (p<0 .0 l. n=13) compared to untreated eosinophils (Fig. 2.2B). In order to 

ensure that this effect was specific to TN F-a and not due to some non-specific protein 

interactions, a neutralizing anti-TNF-a antibody was added to the cell cultures for 24 h. 

In the presence o f TN F-a and anti-TNF-a antibody, MMP-9 activity remained at 

baseline values (n=3) (Fig 2.2). Other cytokines, including IL-3 and IL-5. caused only a 

weak increase in MMP-9 activity

We also studied the effect o f  TNF-a on the ratio o f released versus intracellularlv 

stored MMP-9 Therefore, supernatants and cell lysates o f both resting and stimulated 

cells were analyzed in gelatin zymography (n=4) after a 24 h incubation period
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(Fig. 2.3A). A clear shift o f M MP-9 activity from the lysed cell pellet into the supernatant 

could be observed upon TN F-a stimulation (Fig. 2 3B). In resting eosinophils MMP-9 

activity could be detected in both, cell lysates (34 %) and supernatants ( 6 6  %). In TN F-a 

treated eosinophils, however, most o f the \lM P -9  protein (92 %) was released into the 

supernatant (p< 0  0 1 ), with only 8  %  retained in the cells (p<0 .0 1 ).

3. The increase in MMP-9 activity is regulated at different levels:

In order to gain insights into MMP-9 activation, eosinophils were incubated with TN F-a 

in the presence or absence o f transcription and translation inhibitors, as well as with a 

protein kinase C (PKC) inhibitor. In RT-PCR experiments, the combination o f  TN F-a 

with transcription and translation inhibitors, as well as the PKC inhibitor H7, decreased 

MMP-9 mRNA levels compared to TNF-a-stimulated cells (Fig.2.4A). These results 

were also confirmed at protein level (Fig 2.4B) The transcription inhibitor actinomvcin 

D decreased MMP-9 activity by 61^7 % (p<0.01. n=7) compared to T N F-a treated cells 

To investigate whether or not the nuclear factor tcB (NFkB) was involved in TN F-a- 

induced upregulation o f MMP-9 transcription, an NFvcB inhibitor, N-CBZ-LEU-LEU- 

LEL'-AL. was used. Inhibition o f  NFkB resulted in a significant reduction o f  MMP-9 

gelatinolvtic activity by 61 + 12 % (p<0.01. n=5) compared to TNF-a-stim ulated 

eosinophils These results indicate that upon TN F-a stimulation M MP-9 protein was 

newly synthesized. In addition, we found that the TNF-a-stimulated M M P-9 activity 

profile was also regulated at translational level. Eosinophils were incubated with TN F-a 

in the presence or absence o f the protein synthesis inhibitor cycloheximide. The latter 

decreased TNF-a-induced MMP-9 activity by 60*11 % (p<0.01. n=7) compared to TNF- 

a  treated cells To determine whether PKC was involved in the TN F-a-induced effects, 

eosinophils were incubated in the presence of this cytokine with or without the PKC 

inhibitor. H7 Addition of H7 to TN F-a stimulated eosinophils resulted in inhibition of 

MMP-9 activity by 57-5 °o (p<0 01, n=8 ) compared to TN F-a stimulated cells. The 

presence o f these inhibitors alone did not affect constitutive MMP-9 secretion using 

gelatin zymography (n=3) (Fig. 2.4B).
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4. TIMP protein expression in human eosinophils:

We investigated the ability o f human eosinophils to produce TIMP-1 and TIM P-2 

proteins using Western blotting. Eosinophil supernatants and cell lysates were assayed in 

order to detect released and intracellular TIMP proteins We detected TIMP-1 protein in 

only two out o f  four subjects studied The pattern o f TIMP-1 release from cells o f  these 

two subjects also appeared to vary between different individuals. In one subject, TIMP-1 

localized primarily intracellularlv, whereas in the other the majority o f  TIMP-1 protein 

was secreted In both cases, TN F-a stimulation increased the levels o f  TIMP-1 protein 

compared to resting cells In the other two subjects, no TIMP-1 protein could be detected 

in either supernatant or cell lysate.

We further investigated the ability o f human eosinophils to produce TIMP-2 

Eosinophils obtained from four subjects showed TIMP-2 protein expression (Fig 2.5). 

However, like TIMP-1, the pattern o f protein release was inconsistent and the amounts o f 

protein varied among subjects, with only two of the four subjects showing similar 

intracellular levels o f TIMP-2. In both cases, TIMP-2 protein was released at an 

increased rate following TN F-a stimulation (Fig 2.5). Eosinophils from the other two 

subjects showed TIMP-2 protein exclusively intracellularlv.
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DISCUSSION:

The recent description of the capacity o f eosinophils to release MMP-9 has opened new 

vistas towards our understanding o f the process o f airway remodeling in asthma <25>. Our 

novel data revealed that human eosinophil-derived MMP-9 expression and secretion is 

upregulated upon TN F-a stimulation. Gelatin zymography provided an excellent method 

to show MMP-9 activity in these cells. NFkB was previously shown to be involved in 

MMP-9 activation in fibroblasts u6), transformed cells and renal cells im)). Our

findings also confirm the validity o f  the hypothesis that TNF-a-induced binding o f NFkB 

to the MMP-9 promoter is a requirement for transcription activation {' 6). However, other 

transcriptional factors such as activator protein AP-1 are also likely to be involved '*8). 

Our data shed new important light on the possible involvement o f PKC in MMP-9 

transcription and translation. However, this aspect requires further investigation. Studies 

in uterine fibroblasts have suggested that MMP-9 production is PKC-independent ,lbl. In 

addition. PMA. a PKC activator, increased MMP-9 secretion in alveolar macrophages o f 

healthy controls, but not asthmatic subjects l30\  However. PKC appears to be one o f the 

intracellular signaling mediators o f TN F-a effects In bronchial epithelial cells. TN F-a 

has been shown to increase PKC activity by 3-5 fold (31). Our data underscore the 

importance o f PKC in MMP-9 expression and secretion and confirm this in eosinophils.

TN F-a is only one out o f many cytokines released at the inflammatory site. In 

preliminary experiments we investigated the effects o f two other important cytokines in 

eosinophilic inflammation, namely IL-3 and IL-5 |3*J3\ However, both cytokines were 

able to elicit only a weak increase in MMP-9 activity Similar results have been reported 

by Fujisawa et al.. who could not induce a significant increase in MMP-9 release from 

eosinophils upon IL-5 stimulation ,34>. These data emphasize the potential o f  TN F-a as a 

major regulatory molecule for MMP-9 regulation in eosinophils. We can not. however, 

exclude the possibility that in vivo interactions between different combinations and 

concentrations o f  cytokines may have additional synergistic and/or antagonistic effects on 

MMP-9 regulation

In addition to different types and concentration o f  cytokines present at the 

inflammatory site, the equilibrium between MMPs and their specific tissue inhibitors
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(TIMPs) may also determine the degree of tissue degradation. It was, therefore, tempting 

to speculate that the production and secretion o f both MMP-9 and TIMPs might be 

altered in an inflammatory environment. Other investigators who described TIMP-1 as an 

inducible protein in contrast to TIMP-2 ,s\  have reported similar observations The 

inconsistent pattern o f release, however, puts into question the physiologic relevance o f  

TIMP production by eosinophils. More importantly, other inflammatory and tissue 

structural cells in the airways, including monocytes/macrophages<8), epithelial cells {3' ’, 

and myofibroblasts l3b| are known to produce considerable amounts o f TIMP proteins It 

is. therefore, likely that, in addition to limited autocrine TIMP production, eosinophil 

MMP-9 activity is primarily regulated by TIMP proteins secreted from other cells at the 

inflammatory site

Increased production of MMP-9 at the inflammatory site has been shown to be 

associated with airway tissue remodeling 13 °. We suggest that in a TN T-a-rich 

inflammatory milieu MMP-9 activity might be increased. This does not exclude the 

possibility that other MMPs. such as the gelatinase MMP-2. together with collagenases 

and stromelysins, may participate in increased interstitial matrix turnover in asthmatic 

airways l3!<’ The magnitude o f contribution o f these other MMPs, in addition to MMP-9, 

to overall tissue destruction in hyperreactive airways, remains to be elucidated.

Our study relied on peripheral blood eosinophils obtained from atopic asthmatic 

subjects It would be ideal to compare these observations with cells obtained from 

broncho-alveolar lavage 39). segmental bronchoprovocation <40), mucosal biopsies ,41> or 

induced sputum sam plesl4:) from asthmatic patients There remains a paucity o f  data on 

possible differences between blood and tissue eosinophils. However, it is now generally 

accepted that peripheral blood eosinophils are a useful model o f their tissue counterparts. 

Eosinophil numbers in the peripheral blood o f asthmatics appear to correlate significantly 

with tissue cell counts l4' ) and the degree o f  airflow obstruction (43)

In conclusion, our data propose a major role for TN F-a in MMP-9 regulation in 

asthmatic airways and an important function for the eosinophil in interstitial matrix 

turnover and airway tissue remodeling. These findings may have significant implications 

for future anti-eosinophil therapies in asthma and related conditions.
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LEGENDS TO FIGURES

Fig.2. 1

Panel A shows a representative RT-PCR experiment o f resting and T N F -a stimulated 

eosinophils Cells were incubated for 24 h at 37° C in the presence or absence o f TN F-a 

(100 ng/mL). Sequences for GAPDH (lane 1 and 2). MMP-9 (lane 3 and 4) and TEMP-2 

(lane 5 and 6 ) were amplified over 30 cycles. MMP-9 expression in eosinophils was 

increased upon TN F-a stimulation (lane 4) compared to unstimulated cells (lane 3). In 

contrast. TIMP-2 expression was weaker in TNF-a treated (lane 6 ) than in untreated cells 

(lane 5) No difference could be observed in the expression o f  GAPDH between untreated 

< lane 1) and TN F-a treated (lane 2) eosinophils

Panel B shows densitometric analysis data o f MMP-9 and TIM P-2 expression in 

unstimulated and TN F-a stimulated eosinophils using RT-PCR. Cells (2 x 10°) were 

incubated for 24 h in the presence or absence o f TNF-a. MMP-9 and TIMP-2 band 

intensities are expressed as percentages (mean -  SEM) o f a GAPDH internal standard. 

After T \F - a  stimulation MMP-9 expression increased by 11 % compared to 

unstimulated eosinophils In contrast. TIMP-2 expression decreased by 14 % upon TNF- 

a  stimulation

Fig.2. 2

Panel A shows MMP-9 activity o f unstimulated and TN F-a (100 ng/mL) stimulated 

eosinophil supernatants using gelatin zymography. After a 24 h incubation period 

supernatants obtained from 2 x 1 0 ° cells were 1 0  x concentrated and analyzed by gelatin 

zymography. PMA-stimulated HT-1080 fibroblast supernatant (lane 1) was used as a 

positive control for active MMP-9 (MW: 92 kDa). L'nstimulated eosinophils 

constituitively showed MMP-9 gelatinolytic activity (lane 2). Upon T N F -a  stimulation 

MMP-9 gelatinolytic activity was significantly increased (lane 3). The T N F -a specificity 

o f this effect was shown using a neutralizing anti-TNF-a antibody, which clearly 

decreased MMP-9 activity (lane 4).
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Pane! B shows densitometric analysis o f  cell-free eosinophil supernatants using 

gelatin zvmography Eosinophils were incubated for 24 h with or without T N F-a, or 

T N F -a and anti-TNF-a. Results are expressed as percentage o f activity o f  T N F -a  treated 

to resting cells (mean -  SEM). MMP-9 gelatinolytic activity o f resting cells is expressed 

as 1 0 0  % TN F-a significantly increased MMP-9 gelatin-degrading activity bv 95 % 

(p<0.01) compared to unstimulated cells. This effect could be reversed by the addition of 

neutralizing TN F-a antibody.

Fig.2. 3

Panel A shows intracellular and secreted MMP-9 protein o f resting and T N F -a  (100 

ng/mL) stimulated eosinophils after 24 h incubation in a representative gelatin 

zymographv experiment PMA-stimulated FIT-1080 fibroblasts (lane 1) were used as a 

positive control for active MMP-9 (MW: 92 kDa). Resting eosinophils constituitively 

showed MMP-9 gelatinolytic activity in both, lvsed cell pellet (lane 2) and supernatant 

(lane 4) After TN F-a stimulation the pellet was almost completely depleted o f  MMP-9 

(lane 3) and the majority o f  active MMP-9 protein was released into the supernatant 

(lane 5)

Panel B shows densitometric analysis o f intracellular and released M MP-9 in 

lysed eosinophil pellets and supernatants using gelatin zymographv. Results are 

expressed as percentage of total MMP-9 activity (mean ± SEM). After 24 h incubation 

resting eosinophils showed constituitively MMP-9 activity in pellets (39 %) as well as 

supernatants (61 %). Upon TN F-a stimulation, MMP-9 activity in the pellets decreased 

( 8  %), whereas active MMP-9 levels were increased in the supernatants (91 %).

Fig.2. 4

Panel A shows the regulation o f TN F-a-induced increase in MMP-9 expression using 

RT-PCR Eosinophils were incubated for 24 h in the presence or absence o f  T N F-a and 

with actinomycin D. the NFkB inhibitor N-CBZ-LEU-LEU-LEU-AL, or the protein 

kinase C inhibitor H7 Resting eosinophils showed constitutively M MP-9 (product size 

331 bp) expression (lane 1) Upon T N F-a stimulation MMP-9 expression was markedly
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upregulated (lane 2). The addition o f actinomycin D (lane 3), the NFicB inhibitor (lane 4) 

and H7 (lane 5) to TN F-a stimulated cells clearly decreased MMP-9 expression.

Panel B shows densitometric analyses o f  MMP-9 regulation in gelatin 

zymographv Eosinophils were incubated with or without TN F-a and actinomycin D. the 

NFkB inhibitor N-CBZ-LEU-LEU-LEU-AL. cycloheximide, or the protein kinase C 

inhibitor H7 Results are expressed as percentage o f activity o f TN F-a treated to 

untreated cells (mean + SEM). MMP-9 gelatinolytic activity o f untreated cells is 

expressed as 100 °b TN F-a significantly upregulated MMP-9 activity by 95+6 %. The 

combination o f TN F-a and actinomycin D or the NFkB inhibitor decreased MMP-9 

activity significantly by 6 1 -7  % and 61 + 12 °o. respectively, compared to T N F-a 

stimulated cells. Similarly, cycloheximide decreased MMP-9 activity by 60+11 %  and 

H7 by 57+5 °o compared to TN F-a treated cells The inhibitors alone did not affect 

constituitive MMP-9 release In all experiments the p value was <0 01

Fig.2. 5

Figure 2 5 shows a Western blot experiment for TlM P-2 As a positive control for 

TIMP-2 unstimulated HT-1080 fibroblast supernatant was used (lane 1). Lane 2 and 3 

show similar expression of TLMP-2 protein in cell pellets o f resting (lane 2) and T N F-a 

stimulated (lO O nam L ) eosinophils (lane 3) from this patient. In the supernatant 

increased amounts o f  released TLMP-2 protein were found after TN F-a stimulation 

(lane 5) compared to the supernatant o f resting cells (lane 4).
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CHAPTER 3

The involvement of ion channels in human eosinophil respiratory burst

This chapter is published in

Schw ingshnckl, A . Moqbel, R, and Duszyk, M. Involvement o f ion channels in human 

eosinophil respiratory burst J Allergy Clin Immunol. 2000,106;272-279.
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INTRODUCTION

During respiratory burst, eosinophils produce reactive oxygen species such as superoxide 

( 0 ;*) and hydrogen peroxide (H ;0 ;). These mediators have been implicated in bronchial 

tissue damage and persistent inflammation in the airways (l). The importance o f O-*' as a 

major damaging molecule in asthmatic airways is suggested by the fact that several anti

asthma drugs have been shown to inhibit 0 :" release from human eosinophils (2).

There is increasing evidence to suggest that ion currents play an important role in 

eosinophil activation. The IT  channels serve to extrude H~ ions generated during 

eosinophil respiratory burst ,3'4) However, in addition to H~ channels, there is also 

significant evidence that other ion channels might be involved in eosinophil respiratory 

burst. For example, K" channel blockers have been shown to inhibit 0;*‘ release from 

eosinophils l5' Similarly, nedocromil sodium, an anti-asthma drug, was shown to block 

CT flux lbl. Other studies have demonstrated that activation o f Ca'~ channels is required 

for eosinophil mediator release All these studies suggest that in addition to 

channels, control o f ion movement by other channels may be an important factor in 

eosinophil activation

The aim o f the present study was to explore the role o f CF channels in 0 ;*' 

production in human eosinophils. We have used PMA to stimulate O;*' production by 

eosinophils This agent is recognized as a potent activator o f eosinophil respiratory burst, 

and its mechanism of action has been extensively investigated l8\  Our data show, for the 

first time, that activation o f  Cl' channels is an integral event associated with respiratory 

burst activity in human eosinophils.
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MATERIALS AND METHODS

A) Measurements of 0 :' production in purified human eosinophils:

Peripheral blood eosinophils were purified from atopic asthmatic volunteers who had 

given their informed consent, as described previously in Chapter 2 <9 I0) Superoxide 

generation was determined by SOD-inhibitable reduction o f cytochrome c. Eosinophils 

(2 0 x 1 0 '' cells/mL) were resuspended either in a high-CT buffer (mM: 137 NaCl, 6.4 KC1, 

4 3 Na2 H P 0 4, 1.4 KH; P 0 4, 12  MgCl;, 0  5 CaCl;, 5 glucose), or a low -C f buffer (mM: 

127 Na-gluconate. 1 0  NaCl, 6.4 K-gluconate. 4 3 N a;H P04, 1.4 K H :P 0 4, 12 MgCh.

0  5 Ca"' gluconate and 5 glucose). In experiments with K’ channel blockers, eosinophils 

were resuspended in a high-K’ buffer (mM: 5 NaCl, 140 M KC1, 4 3 Na2 H P 0 4,

1 4 K H ;P 04. 12 MgCl: . 0 5 CaCl2, 5 glucose. 10 HEPES) All buffers were 

supplemented with 0 1 % BSA. The cells were kept in the above buffers for 1 hour before 

starting the experiments Eosinophils ( lx l0 b/mL) and cytochrome c (114 pM, Sigma) 

were pre-incubated for 1 0  min in the presence or absence o f  clotrimazole, BaCl;. 

amiloride. DPC. niflumic acid, acetozolamide and diltiazem (all from Sigma), or D1DS 

and DNDS (Molecular Probes) The effect o f these chemicals on PMA-stimulated O f  

production was measured in a spectrophotometer (Becton Dickinson) at a wavelength of 

550 nm. for up to 20 min To determine the effects of halides on O f  production, C f in 

the buffer was replaced by Br‘. f , or F* in equimolar concentrations. In experiments using 

low-Cf buffer. NaCl was exchanged for Na-gluconate The pH o f all solutions was 

adjusted to 7 4 The amount o f O f  generated by eosinophils was expressed in 

nM/(min 10° cells) r  SEM using a molar extinction coefficient e for cytochrome c of 

2.1 IxlO 4 M ’ 1 cm '1.

The dose-response curve for the stimulation o f O f  production (P) by PM A was fitted by

s ;
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where P,nax is the maximum production o f O f ,  C is the concentration o f PMA, Kj is the 

half maximal concentration for the reaction between PMA and its intracellular target, and 

n is the cooperativitv factor.

B) Patch clamp experiments:

Whole cell recordings were obtained using the amphotericin B-perforated patch clamp 

technique. Patch pipettes were pulled from borosilicate glass (A-M Systems. USA) with 

use o f a Narishige puller (Tokyo, Japan). The pipette tip was dipped into pipette solution 

(137 mM KC1. 6 4 mM NaCl. 4 3 mM N 'aHP04, 14 mM KH: P 0 4, 1.2 mM MgCI;, 0 5 

mM CaCl;. 1 mM EG TA  4 mM glucose and 0 1 °'o BSA) and the pipette was then back

filled with the same solution containing amphotericin B (240 j.tg/mL, Sigma). Pipette 

resistances were between 3-8 MQ and recordings were obtained using a patch clamp 

amplifier (EPC-7. List Medical, Germany) in the voltage clamp mode. The holding 

potential was -60 mV. and 20 mV steps ranging from -80 to *80 mV, were applied every 

200 ms The contribution o f Cl' channels to the whole-cell current was evaluated using 

high- and low-Cf buffers When cells were bathed in the low-Cf buffer, 100 mM C f in 

the pipette was replaced by gluconate. The contribution of K~ channels to the whole-cell 

current was evaluated by replacing K* in the bath and the pipette buffers by Cs* Data 

were analyzed using custom-written patch clamp software (kindly provided by Dr. A.S. 

French. Dalhousie University). Analysis o f  whole cell currents was performed at 

*80 mV Liquid junction potentials, which develop whenever solutions with two different 

compositions come into contact, were calculated as previously described11. All 

experiments were performed at room temperature.

C) RT-PCR:

Total RNA was isolated from 2x10° eosinophils using the Qiagen RNeasy Mini kit 

(Qiagen). The average amount o f RNA obtained from 2x10b eosinophils was 300 ng. One 

third o f the RNA was reverse transcribed using superscript II reverse transcriptase 

(Gibco) and random hexamers (50A;6o units. Boehringer M annheim) as primers.
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Thereafter, PCR was performed in 20 p.L reactions The expression o f CLC-2, CLC-3. 

CLC-4, CLC-5, CLC - 6  and CFTR in eosinophils was studied using the primer pairs 

described in Table 3.1. As a positive control for CFTR and CLC gene expression, mRNA 

was isolated from the human airway submucosal cell line Calu-3 and the human 

embryonic kidney cell line HEK 293, respectively One tenth o f the cDNA was used in 

PCR experiments. DNA amplification was obtained by annealing for 30 sec at 62°C for 

CLC-2, 60°C for CLC-3 and CLC-4, 57°C for CLC-5, 60°C for CLC-6 , and 55°C for 

CFTR, respectively This was followed by an elongation step at 72 °C for 1 min. DNA 

sequences were amplified during 40 cycles. The sizes o f the expected amplified products 

are shown in Table 3 I

D) Statistical Analysis:

Data are presented as means ± SEM; n refers to the number o f experiments The unpaired 

Student's t-test was used to compare the means o f two groups. Statistical differences 

among the means o f multiple groups were determined using one-way analysis o f variance 

(ANOVA) A value of p<0 05 was considered statistically significant.
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RESULTS

1) Production of O f  by human eosinophils:

Eosinophils stimulated with PMA released 0 ;*' in a dose- and time-dependent manner 

(Fig. 3.1). At doses o f 1 ng/mL PMA, no substantial O f  generation could be detected 

within 15 min. At doses higher than 10 ng/mL PMA, O f  production reached a plateau 

between 8 - 1 0  min after stimulation (Fig. 3.1 A). Figure 3 .IB shows the release o f  O f  

(nM/min 10° cells) as a function o f the PMA concentration. The steepness o f the dose- 

response curve is reflected in the relatively high cooperativity value (3 5) obtained by 

fitting equation 1 to the data (see Materials and Methods). The half-maximal 

concentration o f PMA for stimulation o f 0 ;" production in human eosinophils was 

4 98 ng/mL. In the remaining experiments. 10 ng/mL PMA was used, since this dose 

evoked a consistent response in eosinophils obtained from different individuals 

L'nstimulated eosinophils from all donors tested did not show any detectable O f' 

production.

As reduction of cytochrome c is sensitive to other oxygen- or nitrogen-derived 

free radicals, SOD was added to PMA-stimulated eosinophils (Fig. 3.1 A). In the presence 

o f SOD. the O f production was reduced by more than 96 % (n=3, p<0.01). These results 

suggested that the majority o f free radicals produced by eosinophils upon PMA- 

stimulation were O f  anions.

2) The role o f ion channels in eosinophil O f  production:

Figure 3 2 shows the effects o f different channel blockers on O f  generation in 

eosinophils. In preliminary experiments we established that each o f  these drugs alone had 

no effect on O f  production in unstimulated eosinophils. Clotrimazole, a blocker of 

intermediate and large conductance Ca:~-activated K~ channels (i:). had no effect on O f  

production (n=7). Another K ‘ channel blocker, barium, reduced O f  generation by 

1 8 -6%  (n=4. p<0 05). suggesting the involvement o f clotrimazole-insensitive K '
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channels in this process. Amiloride, an inhibitor o f  N a ' channels and the Na7H~ 

exchanger, had no effect on O f  generation (n=7). In the absence o f DIDS, eosinophils 

produced 1CM) 9 nM/(min 10b cells) o f O f .

The role o f  CT channels in PMA-induced O f  generation was studied using DIDS, 

niflumic acid. DPC and DNDS. DIDS inhibited 0 :*' production in a dose-dependent 

manner (0-100 p.M) Significant reduction o f O f  production was observed at DIDS 

concentrations o f  50 p.M (31±7%, p<0 01, n=IO) and 100 nM  (6 7 r l8  %, p<0.01, n=3). 

Niflumic acid, an inhibitor o f  Ca: -sensitive C f channels, and DPC, an inhibitor o f CFTR 

Cl' channels, had no effect on O f  generation (n=3 and 5, respectively). DNDS, an 

inhibitor o f outwardly rectifying Cl' channels '131, the N a’-HCCV cotransporter m i, and 

ClVHCOf exchanger (I?I. had no significant effect on O f  production (Fig. 3 2). This lack 

o f involvement o f the ClVHCOf exchanger in O f  generation was confirmed by RT-PCR 

and Western blot experiments Both techniques were unable to detect mRNA or protein 

for any o f  the known three CIVHCCb' exchanger isoforms (n=3) In addition, 

acetozolamide. an inhibitor o f the carbonic anhydrase, had no effect on O f  generation, 

indicating that HCO 3 ' ions were not involved in this process (Fig. 3 2) Diltiazem. a 

blocker o f voltage-gated L-tvpe Ca*~ channels, inhibited PMA-stimulated O f  generation 

by 35-8  % (n=3. p<0.05)

Anion channels are often characterized by determining their relative permeability 

to different halides In this study, we replaced Cl' ions in the high-CP buffer with Br'. F o r 

F'. in order to determine their effects on O f  production. Substitution o f Cl' ions with Br' 

had no significant effect on O f  production (n=3. p>0 05). In the presence o f f  and F‘, O f  

generation decreased by 31 % and 9 9 %  (n=3. p<0 01), respectively, when compared 

with the Cl' containing solution. The overall effects o f halides on O f  production could be 

described by the sequence

C l'>  Br‘> I' Complete inhibition o f O f  production by another halide, F \ is likely due to 

its interactions w ith cellular enzymes, particularly. G proteins 1161

Further involvement o f  Cl' channels in O f  production was investigated in lovv- 

and high-CI' buffers (Fig. 3.3). In a high-CI' buffer. O f  production was 

1 0  6 - 0  6  nM/(min 1 0 ° cells) and 7 .4r0  9 nM/(min 1 0 b cells) in the absence and presence 

o f 50 uM DIDS (n = I0 . p<0,05). respectively In contrast, in low -Cf buffer. O f
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production was 6  1-1 nM/(min 106 cells) and 6.05+1.2 nM/(min 10b cells), in the absence 

and presence o f 50 pM DIDS (n=3), respectively. These experiments showed a 

requirement for extracellular Cl' in eosinophil 0 :*‘ production.

3) Patch clamp studies:

We used the perforated patch clamp technique to characterize whole cell currents in 

human eosinophils. This modification of a conventional whole-cell recording is 

commonly used for measuring the electrical signal while maintaining the intracellular 

environment Figures 3 4.A.B show representative recordings in high- and lovv-Cl" 

buffers, and the corresponding current-voltage relationships. Replacement o f  134 mM C f 

in the bath solution with gluconate, reduced the whole-cell current by 43±6 % (n= l2. 

p<0 01). and caused a shift in the reversal potential from -27±3 mV to -9±2 mV (p<0.01. 

n = 1 2 ). suggesting a significant contribution o f  C f ions to the whole-cell current. This 

conclusion was further confirmed by showing that 50 pM DIDS reduced the whole cell 

current by 43^10 % (n=4. p<0.01) and caused a shift in the reversal potential (-35+6 to - 

16-8 mV; n=4. p<0.01).

The contribution o f cation channels to the unstimulated whole-cell current was 

investigated using amiioride and cation substitution. Amiloride had no effect on the 

whole-cell current (n=4). indicating that amiloride-sensitive Na* channels did not 

significantly contribute to the whole-cell current. In contrast, replacement o f  K* with C s’ 

ions in the bath solution reduced the whole-cell current by 49 % (n=6 , p<0.01), indicating 

an important contribution o f K* channels to the unstimulated whole-cell current.

A summary o f the effects o f PMA treatment on the whole-cell current is shown in 

Fig. 3 4D In high-Cf buffer. PMA increased whole cell currents by 168^23 ° o (n=4. 

p<0 001) In the presence o f DIDS, the PMA effect was reduced to a 75-28 % increase 

over baseline current values (n=6 , p<0.05). indicating that DIDS-sensitive C f channels 

were affected by PMA treatment. In the low -Cf buffer. PMA increased the whole cell
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current by 62+18 % (n=7, p<0.05), which was significantly less than in the high-CI' 

buffer (n=7.p<0.01).

While K~ channels were major contributors to the unstimulated whole-cell 

current, their function was not affected by PMA treatment. Equimolar replacement o f K 

with C s' cations had no effect on the PMA-stimulated whole cell current (increase o f 

141+18 %. n=6, p>0 05). This indicates that the main target for PMA action is most 

likely DIDS-sensitive C f channels.

4) Cl channel gene expression in eosinophils:

It has been shown before that CFTR Cl' channels are present in human lymphocytes (1 ) 

However, the expression o f CFTR or any other C f channel in human eosinophils has not 

been studied Therefore, we have investigated gene expression o f CFTR and some 

members o f the CLC family in eosinophils using RT-PCR (Fig. 3 5) Our data show, that 

in contrast to lymphocytes, eosinophils do not express CFTR Cl' channel mRNA. RT- 

PCR studies ofClC-2. -3, -4, -5 and -6 have only shown CLC-3 mRNA expression.
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DISCUSSION

The central observation o f this report is that Cl' channels play an important role in O f 

generation by PMA-stimulated eosinophils. The channel most likely involved in this 

process is C1C-3. a member of the C1C family Superoxide (0 :*' ) is generated as a result 

o f  a single electron transfer from cytosolic NADPH to external O;, catalyzed by the

NADPH oxidase complex ll8\  This is an electrogenic process that causes depolarization
* ( 18)of the plasma membrane, and an increase in the intracellular H ' concentration In 

order to prevent massive membrane depolarization and a rapid fall in intracellular pH. it 

has been proposed that an etTlux o f H~ ions through a H’ channel provides the necessary 

charge compensation l19’ The experiments presented in this study show that other ion 

channels are also likely to be involved in this process In particular, during the initial 

phase of O f production, a Cl' influx may counteract the depolarization o f the plasma 

membrane. When Cl' is prevented from entering the cell, uncompensated depolarization 

o f  the eosinophil plasma membrane could result in impaired function o f  NADPH oxidase

Patch clamp studies indicated that under unstimulated conditions, the whole-cell 

current in human eosinophils was dominated by Cl' and K ' conductances. This 

conclusion was based on the ion substitution studies and the use o f ion channel blockers 

Since ionic conductances control the membrane potential l'° \  it is likely that changes in 

transmembrane ion gradients affected the membrane potential, and thus, the activity o f 

the NADPH oxidase

The presence of H ’ currents in human eosinophils has been shown in several 

studies However, under our experimental conditions, a significant contribution o f 

H ' channels to the whole cell current was unlikely H ' currents show characteristic time- 

dependent activation at depolarizing voltages (*3\  Since the single channel conductance o f 

H ' channels is very small (-10 fS) '*3). studies o f H* currents are usually performed at 

low pH (-5.5) to increase H~ ion concentration and the current amplitude. The whole cell 

current recorded in our study did not show any significant time dependence. Furthermore, 

in our experiments, the pH o f pipette and bath solutions was adjusted to 7 4. 

corresponding to a H ' concentration o f less that 40 ruVI Under these conditions it is
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unlikely that H ' ions could contribute more to the whole-cell current than 145 mM o f K*

or Cl' ions.

The addition o f PMA leads to the activation of the NADPH oxidase and to the
,■> n

phosphorylation o f a wide range o f  proteins, including different types o f ion channels '  . 

In eosinophils, application o f PMA significantly activated Cl' currents, as shown using 

anion substitution and Cl* channel blockers. However, although K ' channels accounted 

for approximately 50 % o f the whole cell currents in unstimulated eosinophils, 

substitution o f K* with Cs* in PMA-stimulated eosinophils had no significant effect on 

whole cell current activation. Therefore, these results indicated that, in contrast to Cl' 

channels, K.' channel function was not affected by PMA treatment.

Studies o f halide permeability sequences can provide important information about 

the nature o f ion channels involved t:,)> In this study, the role o f  different halides in 0 ;*' 

production could be described by the sequence Cl' > Br' > T This sequence is different 

from those reported for CFTR (Br' > Cl' > I') or Ca: -dependent Cl' channels (1>C1' 

>Br ) b u t  is similar to the permeability sequences o f the C1C family (Cl‘> Br“>F)

The lack o f the involvement o f CFTR Cl' channels is further supported by the fact that 

0 ;" production was insensitive to DPC, an inhibitor o f CFTR Cl' channels (*S). and that 

RT-PCR experiments were unable to detect CFTR mRNA in eosinophils. The lack o f 

CFTR expression in human eosinophils is interesting, since other leukocytes have been 

shown to express this channel <M. Similarly, patients with cystic fibrosis appear to lack 

eosinophils in their nasal polyps, whereas polyps of asthmatics show marked 

eosinophilia l‘9>

Presently, nine different C1C genes have been cloned l2'\  The results o f RT-PCR 

experiments have shown that only CIC-3 Cl' channels are expressed in human 

eosinophils These channels are thought to be involved in the cell volume regulation l30), 

but their biophysical characterization remains controversial. W hile several laboratories 

have reported the inability to measure CIC-3 currents (: the results o f other studies

suggested that CIC-3 channels were: 1) voltage-independent. 2) blocked by DIDS 

(100 uM). 3) showed outward rectification. 4) had T>C1' selectivity sequence, and 5) had 

single channel conductance either -40  pS l30'. or 140 pS 1311 The whole-cell current 

recorded in our study was voltage-independent, showed some outward rectification, and
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was inhibited by DIDS. suggesting the involvement o f CIC-3 C1‘ channels in eosinophil 

activation. However, the selectivity sequence and estimation o f the single channel 

conductance in our studies were not compatible with the above-published reports. Our 

studies show Cl' 2i3r > I' selectivity sequence, which is characteristic for all members o f 

C1C family except CIC-3 (30) Similarly, channels with the conductance o f  40 pS 

might allow observing single channel events in whole-cell recordings, since eosinophil 

current was rather small (<50 pA). A 40 pS channel would have single channel current 

equal to 3 2 pA at the applied voltage o f 80 mV However, current noise recorded at 

80 mV was less than 2 0 pA. This suggests that the maximal conductance o f the channels 

contributing to the whole-cell current is 25 pS. and most likely much smaller, since no 

single channel events could be distinguished in current tracings.

More experiments will be necessary to confirm the involvement o f  CIC-3 

channels in eosinophil activation. However, if the role of CIC-3 channels in eosinophil 

activation is confirmed, it is likely that CIC-3 channels could also be involved in other 

processes that are crucial for eosinophil physiology In particular, migrating eosinophils 

undergo extensive changes in shape and volume that facilitate extravasation and tissue 

penetration lSl It is likely that CIC-3 channels could facilitate this process by regulating 

cell volume changes.

In conclusion, our findings show that PMA-stimulated O f  production is 

regulated, in part, by the function o f Cl' channels that share some similarities with the 

members o f  CIC family Molecular identification o f  these channels and understanding o f 

their regulatory mechanisms may help to control the respiratory burst o f eosinophils, and. 

thus serve as a new therapeutic strategy in asthma and related allergic inflammatory 

conditions
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Figure 3.5
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Table 3.1

The list o f the Cl' channel tested, the positions o f the primers relative to the published 
data sequences, the expected size o f  the RT-PCR products, and the base sequence o f  the 
primers in the 5’—> 3’ direction.

c r
channel

Primer PCR
product

(bp)

Primer sequence

CFTR 1 7 6 5 - 1 7 8 9
2 3 2 0 - 2 3 0 0

5 5 5 CATCAGAATCCTCTTCGATG
GGAATCACACTGAGTGGAGGTCAAC

CLC-2 1 0 7 9 - 1 1 0 2
1 7 7 3 - 1 7 5 1

6 9 5 AGCCCTCTTTGTCTACCTGAACCG
CAGGCAGGTAGGGCAGTTTCTTG

CLC-3 9 0 7 - 9 3 0
1 4 7 3 - 1 4 5 0

5 6 7 GGGCACTGGCCGGATTAATAGACA
GTGCACCAAAAGCTACAGAAACCC

CLC-4 6 8 4 - 7 0 7
1 1 4 4 - 1 1 2 1

4 6 1 GGGGTCTGCCTGTCTGCCTTCTGG
TCCCGCCTCTTGCCCTCATTCTTG

CLC-5 1 3 6 2 - 1 3 8 5
1 7 1 8 - 1 6 9 5

3 5 7 TATAGAGGTACTCGTCGTGACAGC
AGCTGTTCCATTCCTACTCCTAGA

CLC-6 4 7 - 7 0
3 9 1 - 3 6 3

3 4 4 TCTGTGCTGCTGCTGCAGGTGGTG
TGGCTGCACTCCTCCACCGATGTC

The sequences o f human C f channels were taken from GenBank under the following 

accession numbers: CFTR. NM000492; C1C-2. AF026004; CIC-3, X78520; CLC-4, 

X77197; CLC-5. X91906; CLC-6. NM001286.
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FIGURE LEGENDS

Fig.3. 1

Dose-response curve o f PMA-induced O f  production in human eosinophils (Ix lO 6). 

A: Time course o f O f  production stimulated by 0-100 ng/mL PMA, added at the time 

indicated by the arrow B: Dose-response curve expressed as nM/(min 106 cells) and 

fitted by Eq 1 with Pmax= 9.34 nM/(min 106 cells), Kj = 4.98 ng/mL, and n = 3 5. Data 

are plotted as means r  SEM o f 3 different experiments.

Fig.3. 2

The effects o f channel blockers on O f  production Prior to PMA stimulation (10 ng/mL), 

cells (1x10'’) were treated with clotrimazole (100 |iM , n=7). BaCl; (5 mM. n=4). 

amiloride (100 uM. n=7). DIDS (50 (aM, n=10). niflumic acid (100 ;aM, n=3), DPC (1 

mM. n=5). DNDS (0.5 mM, n=3), acetozolamide (100 p.M. n=5) and diltiazem (50 nM, 

n=3) Values are expressed as percent o f O f  production of PMA-treated eosinophils. A 

significant decrease in O f  production was observed in the presence o f BaCl;, DIDS and 

diltiazem (p<0 05)

Fig.3. 3

The effect o f C f ions on eosinophil O f  production. In a high-Cf buffer, PMA (10 

ngm L ) generated 9.3+0.5 nM/(min 106 cells) o f O f . In the presence o f DIDS (50 jaM), 

PMA-stimulated O f  production was reduced by 22 % (p<0.05. n=10). In a low-Cf 

buffer. PMA generated 6 1 + 1 nM/(min 106 cells) o f O f ,  and DIDS had no effect on 

PMA-stimulated O f  production (6 05+1.2 nM/(min 106cells), n=3).

Fig.3. 4

A: The effect of C f on the whole cell current in human eosinophils. B: Current-voltage 

relationships for the recordings shown in panel A. Reducing the C f concentration from 

145 I mM to 11.2 mM. decreased the whole cell current and shifted the reversal potential 

changed from -32 mV to -19 mV. The holding potential was -60 mV, and 20 mV steps 

ranging from -80 to -8 0  mV. were applied every 200 ms. C: Activation o f  the whole cell

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



current by PM A (10 ng/mL). D: The effects o f DIDS and ion replacement studies on 

eosinophil whole cell currents. The mean values o f 4-7 recordings obtained from 4 

different individuals are shown as percent o f whole cell currents in resting eosinophils. 

PMA increased the whole cell current by 168 % (p<0.001). In the presence o f DIDS, the 

whole cell current decreased by 43 % (p<0.0l), and PMA increased the current by 75 % 

(p<0.05). The replacement o f Cl' with gluconate reduced the baseline current by 43 % 

(p<0 01), and PMA increased the current by 62 % (p<0.05). The replacement o f  K* with 

C s’ decreased the baseline current by 49 % (p<0.01), but had no effect on the PMA- 

stimulated current, when compared with the PMA-induced whole cell current in a high

e r  solution (p>0.05).

Fig.3. 5

A: Lack o f CFTR mRNA expression in human eosinophils (Eos). The human airway 

epithelial cell line Calu-3 was used as a positive control for CFTR expression. B: CLC 

mRNA expression in human eosinophils (Eos). Eos expressed mRNA for CLC-3. but not 

for CLC-2. CLC-4. CLC-5 or CLC-6 HEK 293 cells were used as a positive control for 

CLC expression. The data are representative o f  3 different experiments. M represents 

DNA standard (a 100 bp DNA ladder).
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CHAPTER 4

Nitric oxide activates ATP-dependent K+ channels in human eosinophils

This chapter has been submitted as a manuscript for publication on October 22. 2001 to: 

Schw ingshackl. A.. Moqbel, R. Duszyk, M Nitric oxide activates ATP-dependent K

channels in human eosinophils J Leukocyte Biol.
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INTRODUCTION

Plasma membrane ion channels are involved in stimulus-response coupling in many cell 

types ll>. However, relatively little is known about their role in eosinophil activation. 

Ca"-activated K ' currents (Kca) were shown to affect eosinophil superoxide (0 ;  ) 

production (' \  Furthermore, quinidine-sensitive K~ channels were implicated in 

promotion o f eosinophil shrinkage during apoptosis (3). O ther studies have shown that 

eosinophils express inwardly rectifying K* currents (Kir 2.1) (A\  but their functional role 

is unknown The involvement o f other ion channels, in particular Cl' channels, in 

eosinophil activation and O :' production has recently been demonstrated (5)

Nitric oxide (NO) is known to regulate ion channels in many cell types. NO 

activates Kc., and ATP-sensitive K‘ channels (Katp) in smooth muscle (b’, neuronal {'\  

endothelial |X' and colonic epithelial cells (9) via cGMP-dependent and -independent 

mechanisms 111)111 [n addition, NO activates CFTR (l*) and non-CFTR Cl' channels in 

lung epithelial cells lI3'. In human airways, several cell types produce NO, including 

neutrophils l14'. macrophages <l5), epithelial cells endothelial cells (l ), and to a lesser 

extend eosinophils llSl An increased amount o f NO was found in the exhaled air o f 

asthmatic patients and shown to correlate with lung eosinophilia' 19) NO may also be 

protective to airways reducing neutrophil recruitment <:0) and O ;' production '*l). 

However, the intracellular mechanisms that enable NO to exert such a wide range of 

effects in airways are not completely understood.

The aim o f the present study was to investigate the effect o f NO on ion channel 

function in human peripheral blood eosinophils. We hypothesized that endogenous and 

exogenous NO affects ion channel function via cGMP-dependent and/or -independent 

mechanisms We found that endogenous NO did not affect channel function, but NO 

donors activated whole-cell currents via a cGMP-dependent pathway. Ion replacement 

studies indicated that the NO-activated current was carried by K ' ions. Interestingly, NO 

affected only K atp channel function, suggesting that these channels may represent a 

novel target to modulate eosinophil activation in asthma and related allergic diseases.
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MATERIALS AND METHODS

Chemicals and reagents:

Amphotericin B, S-nitroso-glutathione (GSNO), l-ethyl-2-benzimidazoline (1-EBIO), 

H89, diazoxide, glibenclamide, clotrimazole and 4-aminopyridine (4-AP) were purchased 

from Sigma-Aldrich, ON, Canada. S-nitroso-N-acetyl penicillamine (SNAP), N-nitro-L- 

arginine methyl ester (L-NAME) and 1.2,4-oxadiazole-4,3-quinoxalin-l (ODQ) were 

purchased from Alexis CA, USA. 8-Br-cGMP was purchased from Calbiochem, CA, 

USA.

Patch clamp experiments in human peripheral blood eosinophils:

Peripheral blood eosinophils were purified to homogeneity (<98 °-o) from atopic 

asthmatic volunteers who had given their informed consent, as described in 

Chapter 2 YVhole-cell recordings were obtained using the amphotericin B- 

perforated patch clamp technique. Patch pipettes were pulled from borosilicate glass (A- 

M Systems, USA) using o f a Narishige puller (Tokyo. Japan).

Experiments were performed in the following bath solution. (mM) 137 NaCI, 

6 4 KCI. 4 3 Na:H P 0 4, 1 4  KH:P 0 4, 12 MgCl: , 0 5 CaCl2, 5 glucose. The pipette tip was 

dipped into pipette solution: (mM) 137. KCI, 6.4 NaCI, 4.3 N aH P 04, 1.4 KH2P 0 4, 

12 MgCl;. 0 5 CaCl2, 1 EGTA, 4 glucose. The pipette was then back-filled with the same 

solution containing amphotericin B (240 qg/mL, Sigma). When the contribution o f K~ 

channels to the whole-cell current was measured, 137 mM Cs~ replaced equim olar K~ in 

the pipette solution Similarly, to study the contribution o f  Cl* channels. 134 mM 

gluconate replaced equim olar C f in the bath and pipette solutions. All buffers were 

supplemented with 0 I 0 0 BSA and the pH was adjusted to 7.4. Experiments were 

performed at room temperature.

Pipette resistances were between 3-8 MD and recordings were obtained using a 

patch clamp amplifier (EPC-7. List Medical. Germany) in the voltage clamp mode. The

1 1 1
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holding potential was -60 mV, and 20 mV steps, ranging from -80 to +80 mV, were 

applied every 200 ms The cells were kept in the bath solution for 1 hour before starting 

the experiments. After baseline currents stabilized, stimuli or blockers were added to the 

bath solution and currents were recorded for up to 40 min. Data were analyzed using 

custom-written patch clamp software (kindly provided by Dr. A.S French, Dalhousie 

University). Statistical analysis o f whole-cell currents was performed at +80 mV.

RT-PCR:

Total RNA was isolated from 2x10° eosinophils using the Qiagen RNeasv Mini kit 

(Qiagen) The average amount o f RNA obtained from 2x10° eosinophils was 300 ng. One 

third o f the RNA was reverse transcribed using superscript II reverse transcriptase 

(Gibco) and random hexamers (50A;6o units. Boehringer Mannheim) as primers. 

Thereafter. PCR was performed in 20 pL reactions The expression o f K ' channels was 

studied using the primer pairs described in Table 4 .1 As a positive control for IK. BK 

and K,. mRNA from the human airway epithelial cell line A549 was used. As a positive 

control for TWIK-1 and TASK-2 expression. mRNA from Calu-3 cells was used One 

tenth o f  the cDNA was used in PCR experiments. DNA amplification was obtained by 

annealing for 45 sec at 64°C for IK and BK, 56°C for Kv. 60° C for TWIK-1 and 51° C 

for TASK-2. This was followed by an elongation step at 72 °C for 1 min. DNA 

sequences were amplified during 30 cycles. The sizes o f the expected amplified products 

are shown in Table 1.

Statistical analysis:

Data are presented as means -  SEM; n refers to the number o f experiments. In bar 

diagrams. 100°o represents the amplitude o f baseline whole-cell currents at -8 0  mV 

Data are expressed as percentage of baseline currents. The unpaired two-sided Student's
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t-test was used to compare the means o f two groups. Values o f p<0.05 were considered 

statistically significant.
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RESULTS

NO increases the w hole-cell current in human eosinophils

Figure 4 1 shows the effects o f two chemically different NO donors, GSNO and SNAP, 

on the whoie-cel! current in human eosinophils. In all recordings, the current-voltage 

relationship (l-Y) was obtained in 20 mV steps from -80 mV to +80 mV. Statistical 

analysis o f whole-cell currents was performed at +80 mV In resting eosinophils, the 

baseline whole-cell current was 53 ± 13 pA (n=7). GSNO increased the current by 

47 r  7 pA (88%, n=4) whereas SNAP by 59 ± 18 pA (111%, n=4). Similarly, GSNO 

caused a shift in the reversal potential by -9+2 mV (n=3, p<0.05) and SNAP by 

-12 r  0.5 mV (n=3, p<0.05) This suggests that K channels make a major contribution to 

the whole-cell current activated by NO

In order to evaluate the role o f endogenous and exogenous NO in the whole-cell 

current activation, we suppressed endogenous NO production with L-NAiVIE. an inhibitor 

o f nitric oxide synthases L-NAME had no effect on the baseline current, indicating that 

endogenous NO did not affect channel function in resting eosinophils (n=4). Subsequent 

addition o f SNAP (100 pM) increased the whole-cell current by 114 ± 10 % (n=4, 

p<0 01). suggesting that exogenous NO mediated this increase.

NO stimulates the whole-cell current via a cGMP-dependent pathway

In order to investigate whether NO was acting on eosinophil ion channels via a cGMP- 

dependent or -independent mechanism, cells were incubated with 8-Br-cGMP. the 

soluble guanylyl cyclase (sGC) inhibitor ODQ. or a PKG inhibitor H89. before 

stimulation with SNAP (Fig. 4.2). ODQ (10 pM) and H89 (1 pM ) had no effect on the 

baseline current and prevented subsequent activation o f the current by SNAP (n=5 for 

both drugs) In other experiments, addition o f S-Br-cGMP significantly increased the 

whole-cell current, indicating that cGMP is involved in the activation o f the observed
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current The addition o f 100 jaM and 500 pM 8-Br-cGMP increased whole-cell currents 

by 27 ± 8 % (n=4), and 124 ± 25 % (n=4). The increase in whole-cell current caused by 

500 pM  8-Br-cGMP was similar to that induced by SNAP (139+12 % ) All these results 

suggest that exogenous NO activates the whole-cell current via a cGM P-dependent 

pathway

SNAP activates K~ channels

In order to investigate which ions participate in whole-cell currents evoked by NO, we 

replaced K ' or Cl' ions in the bath solution with C s ' or gluconate, respectively (Fig. 4.3) 

In a gluconate-containing solution, SN.AP increased the whole-cell current by 177+25 % 

(n=4, p<0 05). indicating that Cl' currents do not contribute to the NO-induced current. In 

contrast, in a Cs'-containing solution, SNAP was ineffective (n=7. p>0.05), indicating 

that currents activated by SNAP were carried by K ' ions.

The presence of K ' channels in eosinophils was investigated using openers o f 

intermediate conductance Kc., channels (IK), 1-EBIO, and K atp channels, diazoxide 

(Fig. 4.4). 1-EBIO increased the current by 64 j^20 % (500 pM, n=5) whereas diazoxide 

by 73 ^ 1 9  % (100 pM. n=10), demonstrating the presence o f IK and K .\tp  channels in 

eosinophils. In the presence o f diazoxide, SNAP further activated the whole cell current 

by 2 9 =  10% (100 |aM. n=5).

In other experiments, we studied activation o f  the whole-cell current by SNAP in 

the presence o f different K* channel blockers (Fig. 4.4). An inhibitor o f  K atp channels, 

glibenclamide (5 jaM and 100 pM), had no effect on the baseline current, but prevented 

current activation by SN.AP (n=6 and n=4. respectively). A blocker o f  IK channels, 

clotrimazole, had also no effect on the baseline current (n=6), but it did not prevent 

current activation by SN.AP (n=4. p<0.05), indicating that NO had no effect on LK 

channels A chemical frequently used to block Kv channels. 4-aminopvridine (4-AP; 

2 mM). inhibited the baseline current by 41 + 5  %  (n=7, p<0.01), and also prevented its 

activation by SN.AP (n=4).
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Gene expression or K+ channels in eosinophils

Since K Atp channels have previously been described in human eosinophils <4), we 

investigated the expression o f  IK and large conductance (BK) Kca channels, Kv, and two 

members o f the K;p family, TWIK-1 and TASK-2 (Table 4.1). Figure 4.5 shows 

representative RT-PCR experiments. Eosinophils express mRNA for IK, Kv and 

TWIK-1, but not for BK and TASK-2 channels (n=6). The identity o f the PCR products 

was confirmed by sequencing and comparison with the corresponding Genbank 

sequences.
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DISCUSSION

The central observation o f this study is that an increased level o f NO activates K atp 

channels in human peripheral blood eosinophils via a cGMP-dependent pathway. 

Eosinophils produce NO in a proinflammatory environment (24>, and our aim was to 

investigate the effects o f endogenous and exogenous NO on eosinophil ion channel 

function. An inhibitor o f NO synthases, L-NAME, had no effect on the whole-cell 

current, indicating that endogenous NO did not affect cell membrane potential and ionic 

permeability However, NO donors significantly increased the whole-cell current and 

shifted the reversal potential towards more negative values, consistent with the activation 

o f K* channels

Activation o f  soluble guanylvl cyclase (sGC) and generation o f  cGMP is 

responsible for many biological effects o f NO " 3— The results o f  this study show that 

the NO/cG.VtP-dependent pathway is also involved in the regulation o f the whole-cell 

current in eosinophils because, (i) the NO effects could be eliminated by pretreatment o f 

cells with a selective inhibitor o f sGC, ODQ, (ii) activation o f the whole-cell current by 

NO was abolished in the presence o f a PKG inhibitor. H89, and (iii) application o f 

membrane-permeable 8-Br-cGMP produced an effect similar to that o f NO. While these 

results are consistent with the regulation o f eosinophil whole-cell current via the 

NO/cGMP-dependent pathway, they do not exclude the involvement o f  a cGMP- 

independent pathway in this process. The role o f a cGMP-independent pathway could be 

especially important under inflammatory conditions when large amounts o f NO are 

generated, and NO groups could be introduced into some thiol- and transition metals- 

containing proteins, altering their properties and functions.

The concentration o f  NO donors used in our study (100 pM ) is likely to yield NO 

concentrations similar to those encountered in native tissues. It is known that alveolar 

macrophages produce 0.1 n \l/(m in  10° cells) o f  NO (*°', which may generate pM 

concentrations in the airway surface liquid. Similarly, distal airway fluid o f  patients with 

pneumonia contains -4  pM  nitrosothiols ' " I  and 2-4 pM  concentrations o f NO were 

reported in brain during cerebral ischem ia,:S) In addition, it has been shown that 100 pM 

SNAP generates a stable NO concentration o f 0 1 pM  at 25=C (*9' Therefore, it is
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reasonable to assume that NO amounts used in our study are similar to those found in the 

native tissue.

The baseline and NO-stimulated whole-cell currents showed a nearly linear 

current-voltage (I-V) relationship and were neither time- nor voltage-dependent 

(Fig. 4.1). This suggests that under our experimental conditions a contribution o f  H ' 

channels to the whole-cell current was insignificant, since these channels show time- 

dependent activation at depolarizing vo ltages'301. Our data indicate that C f and K ' 

channels dominate the whole-cell current in eosinophils. This conclusion is based on ion 

substitution studies and the use o f ion channel blockers. While C f channels account for 

-50  ° o o f the whole-cell current in unstimulated eosinophils <5), substitution o f C f with 

gluconate did not affect current activation by NO. indicating that NO donors activated K~ 

but not CT channels.

Human K ’ channel genes can be classified into three groups, based on the 

similarity in membrane topology ll>. The first group consists o f channels characterized by 

6 transmembrane domains (6TM), such as K o  or Kv channels. The second group consists 

of channels with 4 transmembrane domains (4TM). such as K;p channels. The third group 

consists o f channels with 2 transmembrane domains, such as K atp channels or G-protein- 

coupled channels Previous studies have shown that eosinophils express mRNA for 

the K atp i I ’ and the voltage-dependent Kir2.1 channels (4) Therefore, we used RT-PCR 

to investigate the expression o f other K* channels. We found that eosinophils express 

mRNA for the 3 subunit o f Kv channels, Ca: -dependent K ' channels (IK), and a member 

o f K:p family. TWIK-1 However, the functional role o f Kv channels in eosinophils 

remains unclear, since the nearly linear I-V relationship suggests that these channels do 

not make a significant contribution to either the baseline or SNAP-induced current. 

Similarly, we conclude that the Kir2 1 and TWIK-1 channels do not contribute to 

baseline or NO-stimulated currents, since both these channels conduct inwardly 

rectifying currents.

The K atp channel is a heteromultimeric complex o f a K*-selective pore and a 

sulfonylurea receptor (SUR) that are structurally unrelated to each other. It is composed 

of four inwardly rectifying K~ channel subunits, either Kir6 1 or Kir6.2. and four SUR 

subunits, w hich belong to the family o f  .ABC transporters Different combinations o f the

L18
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Kir6 2 or K ir6.1 subunits and the SUR1 and SUR2. account, in part, for the molecular 

and functional diversity o f K atp channels. Depending on the combination o f Kir6.x and 

SlIRx subunits, the single channel conductance of K atp channels has been estimated 

between 10 and 80 pS in the presence o f  140 mM K~ on both sides o f  the 

membrane <3:'34\

The results shown in this study suggest that K atp channels do not contribute to 

eosinophil baseline currents, since glibenclamide did not affect the cell membrane 

potential. However, an opener o f K atp channels, diazoxide, and NO donors activated a 

whole-cell current o f -5 0  pA, corresponding to a whole-cell conductance o f 625 pS at 

80 mV The number o f ion channels (N) activated by NO could be evaluated from the 

following relationship: G = y N P, where G -  is the whole-cell conductance, y -  is the 

single channel conductance, and P -  is the channel open probability. If we assume that 

the K a t p  channel conductance is 50 pS and that its open probability is P -  0 5. then the 

number o f K atp channels activated by NO is equal to 25

After activation o f K atp channels by diazoxide. the subsequent addition o f SNAP 

further increased the whole-cell current. Similar effect has been reported for 

mitochondrial K atp channels, where NO has been shown to activate K atp channels and 

potentiate the effect o f diazoxide l3?\  It is possible that diazoxide partially opens K atp 

channels, and NO is further increasing the channel open probability. Alternatively, 

eosinophils may possess different subtypes o f K atp channels, and NO might open a 

different subpopulation than diazoxide.

It is interesting to note that 4-aminopyridine (4-.AP), a chemical commonly used 

to inhibit Kv channels, reduced baseline and NO-induced currents in eosinophils. 

However, this effect is not likely to be mediated by K  channels, since Kv current is 

strongly voltage-gated A possible explanation for the effects o f 4-AP on eosinophil 

whole-cell current is the relative lack of specificity o f  this chemical. It has been reported 

that aminopyridines, including 4-AP. inhibit some but not all voltage-dependent K~ 

channels. G-protein-coupled channels. K atp and BK channels (36‘38\  The K~ channel 

independent effects o f 4-.AP include activation o f protein kinase C (PKC) l39). allosteric 

interaction with the muscarinic acetylcholine receptor <4()), increase in intracellular pH |3S' 

and Ca’~ concentration 1 4 1 potentiation o f capacitative Ca2~ entry <4I/. and induction of
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apoptosis <42'. Thus, several different mechanisms may underlie the inhibitory effect o f 

this drug on the eosinophil whole-cell current.

The functional role o f Kca channels in eosinophils has been demonstrated in 

several studies '" 431. but the molecular identity o f these channels has not been identified. 

Kca channels are classified according to their conductance into large (BK), intermediate 

(IK) and small conductance (SK) channels BK channels are abundant in neuron and 

smooth muscle, IK channels are predominantly expressed in peripheral tissues, whereas 

SK channels are exclusively expressed in excitable cells (44). The results o f our study 

show that eosinophils express IK but not BK channels. The presence o f functional IK 

channels was confirmed by showing that 1-EBIO activated the whole-cell current. 

Interestingly, clotrimazole, a blocker o f IK channels, had no effect on the baseline current 

or its activation by NO. indicating that these channels were likely closed in unstimulated 

eosinophils and were not affected by NO

In summary', eosinophils possess several types o f  K ' channels but NO affects only 

K \rr channel function NO induces an outflow of K" ions in eosinophils and thus causes 

membrane hyperpolarization This reduces the cytoplasmic Ca*‘ concentration, and as a 

result, the eosinophils could be less excitable and stronger stimuli are needed for 

depolarization. Thus. NO at concentrations likely to be encountered in vivo could perform 

a protective role, preventing eosinophil activation.
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Figure 4.1
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Figure 4.3

0.06 T  I (nA) Cs
SNAP

0.04--

0.02 "

-80
V (mV)

- 0 . 02 - -

Cs

SNAP

Gluconate r
-iis

SN.AP
SSS2 Jr

D 0 0 6 t  I (nA) 

0.04- 

0 . 0 2 -

j  - J -

I0 0 p  A — ms

- 0 . 02 "

-0 .04-1-

Gluconate
SNAP

80 
V (mV)

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.4
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Figure 4.5
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Table 4.1

List o f the K ' channels tested, the positions o f the primers relative to the published data 

sequences, the expected size o f  the RT-PCR products, and the base sequence o f the 

primers in the 5’-> 3 ’ direction.

K '
channel

Primer PCR 
product (bp)

Primer sequence

7 0 3 -  7  2 2 
3 9 3 - 3 7 4

191 GGGCACC T T T CAGACACACT
^  ̂  ̂  <T* ^  r-n rp ̂  ryi

y 6 3 - 3 5 19 4
T C C AT G AA.C AC G TAGAAA

~y ^ — i ~

J  Q r  J  — J  r. ?

3 33 CAGCAT T T GC C GT CA.GT GT C C T

1 j ** 3 ” 1 ■ I* 3  6 
1 2 5 0 - 1 2 3 0

17 3 ^ c rn^ 'T,̂ ^ x rrCrT,r*r*rT1̂ '’“.A ^ ^ ^ C 
AGCCTCTTCCTTGCACCCTGA.

3 3 3 - 3 3 1  
9 0 1 - 9 2 4

5 6 7 CTGCTCACCTCGGCCA.TCA.TCTTC 
GTAGAGGC C C T C GAT GT AGT T C CA.

The sequences o f human K ' channels are available at the following Genbank accession 

numbers IK. AF000972; Kv, LT6953; BK, U 11058; TW IK -l, U33632; TASK-2. 

AF084830.
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FIGURE LEGENDS

Fig. 4.1

A Representative recording showing activation of the whole-cell current by GSNO 

(lOOpM). B Current-voltage relationship of the recording shown in panel A. GSNO 

shifted the reversal potential from -21 mV to -30  mV. C: Representative recording 

showing activation o f the whole-cell current by SNAP (100 pM). D: Current-voltage 

relationship o f the recording shown in panel C. SNAP shifted the reversal potential from 

-18 mV to -31 mV

Fig. 4.2

The NO/cGMP pathway is involved in the whole-cell current activation by SNAP 

Baseline currents are expressed as 100 %. ODQ (10 pM ) had no effect on the baseline 

current (p>0 05. n=5). but inhibited the SN.AP-induced increase (n=5). Similarly. H89 

(1 pM) did not affect the baseline current (p>0.05, n=5), but inhibited stimulation o f the 

whole-cell current by SNAP (n=5). 8-Br-cGMP (100 pM  and 500 pM ) increased the 

whole-cell current in a dose-dependent manner by 27 ± 8 % and 124 ± 25 % (n=4, 

p<0.05. in each series), respectively

Fig. 4.3

SNAP activates K ' but not Cl' channels. A. Representative trace o f  a whole-cell current 

using Cs'-containing pipette and bath solution, showing that the addition o f  SNAP had no 

effect on the whole-cell current. B: Current-voltage relationship o f  the recording shown 

in panel A.

C Representative trace o f a whole-cell current in the presence o f gluconate in the pipette 

and bath solution, showing that SNAP increased the whole-cell current. D: Current- 

voltage relationship o f  the recording shown in panel C.
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Fig. 4.4

Summary o f the effects o f K ' channel openers and blockers on the eosinophil whole-cell 

current Baseline currents are expressed as 100 %. Diazoxide increased the current by 

73— 19 % (100 pM. n=IO). Glibenclamide (5 pM ) had no effect on the whole-cell current 

but inhibited subsequent current activation by SNAP (n= 6  and n=4, respectively). 

1 -EBIO increased the current by 64+20 % (500 pM, n=5), whereas clotrimazole had no 

effect on the baseline current (10 pM, n=6 ) and did not affect subsequent current 

activation by SNAP (n=4). 4-AP inhibited the baseline current by 41+5 % (2 m \l ,  n=7), 

and blocked subsequent current activation by SN.AP (n=4). * Indicates p < 0.05.

Fig. 4.5

Expression o f K channels in human eosinophils using RT-PCR. Eosinophils express 

mRNA for IK. K, and TW IK-I. but not BK and TASK-2. For IK, BK and Kv A549 cells 

were used as a positive control. For TVVIK-I and TASK-2 Calu-3 cells were used as a 

positive control Data are representative o f 6  different experiments. M represents DNA 

standard (a 1 0 0  bp ladder).
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CHAPTER 5

Summary and proposed model for stimulus-secretion coupling 

in human eosinophils
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The central question in the phenomenon of stimulus-secretion coupling is how does the 

interaction o f a given stimulus with the cell surface translate into membrane potential 

changes, and ultimately activate or inhibit cellular function0  Over the last two decades a 

vast array o f data has accumulated and increasingly refined methods enriched the 

knowledge about membrane dynamics <l‘3>. Undoubtedly, a new impetus was gained 

when ion channel activities o f different cell types became a commonplace and techniques 

such as patch clamp and flow cytometry became more commonly accessible Regulated 

ion channel activity is believed to be the mechanism by which several neurotransmitters, 

hormones, lymphokines and therapeutic drugs mediate their effects on cell function 

Most cell activation processes employ a complicated cascade o f second messenger 

systems, in which Ca*~ influx and liberation from intracellular stores often play a 

significant role ' 5| Even in cases where Ca: -independent pathways are used for signal 

transduction, changes in membrane potential and ion transport mechanisms are usually 

invoked

The binding of ligands to their specific surface receptors often affects the 

molecular structure o f the membrane. A signal-induced conformational change of 

membrane receptors and the activation o f ion channels is an almost ubiquitous event in 

the transduction pathway o f extracellular signals that control cell growth, differentiation 

and activation 161 The term ‘cell surface dynamics" refers to a complex pattern o f plasma 

membrane glycoprotein and lipid interactions. The dynamic behavior o f  the cell 

membrane includes rotational, translational and segmental movements o f molecules, and 

changes in these parameters frequently have functional implications for the cell 111 

Proteins and other effectors such as hormones and drugs bind to their respective receptors 

and often trigger local aggregations o f particular subunits. They may also induce 

formation o f second messenger molecules via regulation o f specific enzyme activities, 

e g the generation o f inositol 1.4.5-triphosphate (IP 3 ) and diacylglvcerol (DAG) from 

phosphatidyl inositol-4,5-biphophspate (PtdIns-4,5-P: ) by phospholipase C (PLC) 

These processes commonly result in an altered transmembrane potential. This may 

further facilitate conformational changes o f  membrane proteins and a different 

accessibility o f  cell surface molecules to their ligands. The suitable range o f membrane
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potential values, allowing the proper intermolecular interactions to occur, is usually 

limited by a very narrow window. Any significant deviation from this membrane 

potential window may dramatically decrease the effectivity o f transmembrane signaling. 

For example, sustained and excessive hyper- or depolarization o f lymphocytes equally 

impair signal transduction <S). In addition to these physical events, several biochemical 

steps are interwoven into the stimulus-secretion coupling cascade. Among the most 

important biochemical steps are phosphorylation and dephosphorylation events, which 

are mediated by kinases and phosphatases, respectively. These reactions can introduce or 

change the electric charge o f molecules, thereby altering their interactions and mobility 

parameters The study o f stimulus-secretion coupling is further complicated by the fact 

that in most systems biochemical and biophysical events in a cell change in parallel. 

Separation o f these events into single steps presents itself as an extremely difficult task.

Secretion o f  vesicular contents is a common feature o f excitable (e.g. neurons, 

pancreatic P-cells) and non-excitable cells (e g. eosinophils, neutrophils, mast cells) (9‘12\ 

The simplistic view that the universal mechanism controlling secretion is an elevation o f 

[ C a * w h a t e v e r  the source o f this second messenger may be. is no longer tenable in 

view of repons demonstrating secretion at basal or even negligible [Ca: ~]i levels It

is nevertheless commonly accepted that in excitable cells an increase in [Ca*~]i is a 

critical triggering event that induces secretion. In non-excitable cells, however, secretion 

may also be triggered by other second messenger systems, although [Ca2‘]j appears to act 

as an important regulator in these processes. Given the relative importance o f [Ca:*]j in 

the regulation o f  cellular functions in both excitable and non-excitable cells, it is not 

surprising that several mechanisms are expressed in a ceil to regulate [Ca*], levels. In 

excitable cells, the major pathway for Ca** entry is activation o f  voltage-gated Ca** 

channels, whereas in non-excitable cells, Ca** release from intracellular stores appears to 

prevail (see Chapter 1). Receptor-operated and second messenger-gated Ca* 

conductances may also prove to be important in these processes Many o f  these 

mechanisms are regulated by a variety o f interactive second messenger systems, which 

provide the necessary fine-tuning for an appropriate control o f [Ca**],. However, in non- 

excitable cells in vivo, the question whether an elevation in [Ca**], occurs only as a
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consequence o f a ligand-receptor interaction, or is not even necessary for secretion to 

occur, remains unanswered.

Up to date only few studies have addressed the role o f ion channels in stimulus- 

secretion coupling in eosinophils. Aizawa and coworkers showed a stimulatory role for 

intracellular Ca*’ in human eosinophil EPO release. The effect was amplified by co

administration o f the non-hydrolyzable GTP analog GTP-yS, and coincided with an 

increase in plasma membrane capacitance, indicating granule-fusion events <I5). In 

addition, to induce maximal O :' production physiological concentrations o f both intra- 

and extracellular Ca: ' appear to be necessary ,1<>l PAF- and ionophore-activated KCa 

channels have been proposed to play a role in eosinophil MBP release 11 

Hyperpolarization caused by opening of Kca channels was proposed to increase the 

electrical driving force for Ca*" entry, via a mechanism similar to that described in the 

mast cell 1X1 It is important, however, to remember that voltage-gated Ca*’ channels are 

closed at hvperpolarizing voltages ll9). Activation o f Kca channels has also been involved 

in human eosinophil O ;' generation, although the particular role o f KCa channels in this 

process has not been clearly defined l20) An interesting report was published by Stanley 

and coworkers who proposed a role for intracellular, vesicle-associated Kca channels in 

eosinophil exocvtosis (*n They hypothesized that opening o f Kca channels coupled with 

anion transport across the vesicle membrane would result in an influx o f K* ions and 

anions into the vesicle This would increase the osmotic pressure o f the vesicle and cause 

mediator release This model suggests a mechanism by which Kca channels affect 

degranulation through cell volume regulation. Furthermore, our own data show the 

presence of K At p  channels in eosinophils and suggest a possible role o f these channels in 

NO-induced responses (Chapter 4).

The few reports available on CP channels in eosinophils include a study 

describing the inhibitory effect o f the CP channel blockers such as nedocromil sodium. 

NPPB and DIDS on eosinophil cytotoxicity against parasites u2) and on LTBA-induced 

O ;’ production '*3' The authors o f the latter study also suggested that the dependence of 

O ;’ production on extracellular CP may be stimulus-specific. From our own results 

described in Chapter 3 we concluded that activation of CP channels may be an important 

mechanism for charge compensation during eosinophil O;’ production.
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In addition to these observations, feedback mechanisms may exist through which 

eosinophil-derived mediators regulate ion channel function in eosinophils RANTES and 

PAF have been shown to open Kca channels in eosinophils through activation o f  pertussis 

toxin-sensitive G proteins via a Ca2'-independent mechanism t24). Therefore, ion channels 

might regulate eosinophil mediator release and, in turn, also be regulated themselves by 

these substances

In an attempt to gain a better understanding o f stimulus-secretion coupling in the 

eosinophil, and considering the relatively small amount o f literature on such events in this 

cell type, one may try to integrate information obtained from studies in other 

inflammatory cells The controversial role o f Ca*' and other ions in stimulus-secretion 

coupling has been well studied particularly in the mast cell. This cell type is thought to 

be. like the eosinophil, an important secretory cell and one o f the key players in allergic 

inflammation l2f’. Mast cells, and the related basophils, initiate allergic reactions by 

secreting histamine and other inflammatory mediators. The plasma membrane o f  these 

cells contains high affinity receptors for the Fc portion o f IgE (FcsRJ). If a multivalent 

specific allergen or anti-lgE is added to mast cells primed with the appropriate IgE, the 

receptors are crosslinked. This leads to fusion o f the secretory granule with the plasma 

membrane and release of granule m aterial(26).

Early experiments showed that Ca2' injection and ionophore-mediated Ca** influx 

induce degranulation <2'\ This led to the suggestion that control o f secretion in mast cells 

was strictly C a2 -dependent Until quite recently. Ca2* channels, like those in neurons, 

have been postulated to be present in mast cells. Meanwhile, however, it became clear 

that most likely no voltage-dependent C a2'  channels exist in these cells <28\  It was also 

shown that changes in the [Ca2*]; - in comparison to neurons - are much less important for 

secretion to occur '*9'. Simple experiments o f loading cells with Ca2*-containing buffers 

showed a distinct difference between mast cells and neurosecretory cells. W hereas an 

increase in [Ca*'], to approximately I p.Vl led to secretion in chromaffme cells, as 

measured by an increase in cell capacitance, this same level had no effect on mast 

ce lls1301, indicating that an increase in [Ca:~]j is not a sufficient stimulus for secretion to 

occur in these cells However, these studies did not contradict earlier reports showing that 

an increase in [Ca**]j could trigger secretion, since in the latter study an
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unphvsiologically high concentration o f [Ca2*], in the range of several pM  was used (31). 

On the other hand, fixing [Ca*']i at basal level using an appropriate Ca2"/EGTA solution 

did not prevent secretion elicited by compound 48/80 (30), indicating that for this 

particular stimulus an increase in [Ca2*]; was not necessary to induce secretion. The 

authors stressed, however, the fact that these results should not lead to the conclusion that 

Ca- '  is not essential for secretion in mast cells, since when it is completely removed from 

the medium and not just clamped to basal levels, the secretory response to external 

stimuli was suppressed. Also, increased [Ca2 ], dramatically accelerated secretion 

induced by other stimuli such as GTP-yS, which is known to induce massive and reliable 

degranulation '"*'. It seems likely that GTP-yS and protein kinase C (PKC) activating 

stimuli such as phorbol esters, render mast cells more sensitive to Ca2* Nevertheless, it 

should be kept in mind that without such an additional stimulus, unlike neurosecretory 

cells, mast cells generally appear relatively unresponsive to Ca2" signals in the 

physiological range

Having recognized the importance of basal intracellular Ca*" concentrations in a 

secretory response, the next question that presents itself is what are the mechanisms that 

regulate [Ca* * ] , ' 7 In mast cells, the transient rise in [Ca2*]; following antigen stimulation 

appears to be mainly due to nV m ediated release from intracellular stores, since a similar 

signal could be elicited (i) in the absence o f extracellular Ca: * and (ii) by direct 

intracellular application o f IP3 (33) However, in addition to Ca2* release from intracellular 

stores, a Ca2" influx mechanism has been proposed. This influx was observed to occur 

during the falling phase o f the IPj-mediated Ca2* transient. To investigate the nature o f 

this Ca** influx, voltage steps were applied to the membrane o f resting rat peritoneal mast 

cells, showing that changes in the membrane potential did not affect [Ca2*]; However, if 

an external stimulus such as substance P. was applied simultaneously, a release transient 

was observed which was followed by a secondary increase in [Ca2"]; that appeared to be 

voltage-dependent l?0' The increase in [Ca2*], was most prominent at negative potentials.

since under these conditions the driving force for Ca** is very high. Two pathways for
•> _

Ca* influx were suggested: (i) a non-selective cation channel, which opens and closes 

randomly and is voltage-independent and (ii) a poorlv-defined Ca**-specific conductance 

associated with very small currents and activated by external stimuli and IP3 , which
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caused, however, large changes in [Ca2*];. So far, no single channel currents o f  this 

conductance have been recorded. Interestingly, the expression o f  both conductances 

varied significantly among cells and animals, and a correlation with the immunological 

status o f the animals was suggested <30). However, one has to be cautious in concluding 

from these experiments that the membrane potential plays an important role in stimulus- 

secretion coupling even in the absence o f  voltage-gated channels, by affecting the ion 

flux through non-voltage-operated channels by simply changing the electrochemical 

driving force for Ca2* It has to be kept in mind that the intracellular concentration o f 

Ca2* (nM range) is always several magnitudes lower than the extracellular concentration 

(m.Vl range), and thus a driving force for Ca2" to enter the cell is constantly present 

throughout the cell activation process (J4) In another study, further evidence for a Ca2*- 

selective. voltage-independent ion channel was provided (35> Both, reversal potential and 

amplitude of the recorded currents were dependent on extracellular C a' Other authors 

reported the early increase in [Ca2’], being IPj-dependent but independent o f  extracellular 

Ca'". and found that exocvtosis was greatly diminished in the absence o f external 

Ca2" |,<>l They concluded that extracellular Ca'" is a key modulator o f mast cell 

activation, it greatly enhances cell activation by other stimuli, but this amplification effect 

as a second messenger differs significantly among cell types and stimuli.

On the other hand. Lindau and coworkers showed that mast cells could evoke 

large intracellular Ca* gradients and normally degranulate after antigenic stimulation 

1 min after removal o f extracellular Ca2" u8) In the same study, in most but not all cases, 

antigenic stimulation o f mast cells induced a transient Ca2"-activated conductance, which 

preceded the increase in membrane capacitance representative o f degranulation. 

Interestingly, quinidine and pimozide, inhibitors o f Ca2 -activated K" channels, abolished 

the currents without affecting the amplitude and time course o f  degranulation, indicating 

that the two observations might represent independent events. Therefore, to date the role 

o f Ca'" in stimulus-secretion coupling is still not completely understood. It seems likely 

that a minimal concentration o f intracellular Ca'* is required for optimal cell activation, 

but an elevation o f [Ca**], -  whether caused by Ca'" influx or intracellular release -  may- 

under certain conditions neither be sufficient nor necessary for secretion to occur.
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In another non-excitable secretory cell, the neutrophil, the release o f granular 

enzymes, P-glucronidase and lysozvme, as well as the non-granule-associated mediator, 

O;', was activated by Ca2'  release from intracellular stores, but was independent o f  Ca2' 

influx 1 3 However,  other authors reported that for optimal O 2’ production Ca2'  

originating from an intra- or extracellular source was equally effective, and that 

decreasing the extracellular Ca2'  concentration reduced O :' production l38). Thus, in 

neutrophils also the role o f Ca2' in granule- and non-granule-associated mediator release 

remains a matter o f discussion.

In addition to C a"' channels, other ionic conductances have been involved in 

stimulus-secretion coupling. A role for K ' channels in this process has been proposed by 

several investigators. At physiological K ' concentrations o f  about 130 mM inside and 

3 mM outside the cell, the resting membrane potential o f  cells is strongly negative 

(around -9 0  mV) A K -selective inward rectifying current with a conductance o f 2-3 pS 

is thought to represent its underlying cause in mast cells (36 39) Labrecque and coworkers 

described a different type o f  K ’ conductance in rat mast cells, which should operate 

during cell activation llx' The function o f this outward current is thought to damp 

depolarization during cellular stimulation and therefore increase the driving force for 

Ca"' influx Both currents showed differential effects o f pertussis toxin, suggesting the 

involvement o f separate GTP-binding proteins in their control. On the other hand. K ' 

channel blockers such as quinidine. sparteine and 4-aminopvridine were found to 

promote histamine release and 43Ca2' uptake in peritoneal mast cells (3b), suggesting that 

reduction o f  K* channel activity may facilitate membrane depolarization and thus be a 

prerequisite for opening Ca*' influx routes. In rat mast cells, depolarization by a high 

extracellular K* concentration was reported to inhibit Ca2'  influx and antigen-induced 

secretion l40>. The authors concluded that changes in the electrochemical gradient for Ca"' 

are important in determining Ca‘ * influx and the magnitude o f antigen-stimulated 

secretion from rat mast cells, while the release o f Ca"' from intracellular stores is 

unaffected. Beauvais and coworkers reported that a high extracellular K* concentration 

favored histamine release in one case l4I) and inhibited it in the other (42> The authors 

suggested that in the former case, high K '-mediated depolarization decreased the driving 

force for external Ca2* to enter the cell and consequently decreased IgE-mediated
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secretion. This Ca2* entry was believed to occur through channels opened by an IgE- 

mediated mechanism. In the second case, a high K ' containing external solution caused a 

Ca"*-dependent release o f  histamine from PMA-stimulated cells, but high extracellular 

K* by itself did not induce release l42). The authors propose that in this case high K '- 

mediated depolarization also decreased the driving force for Ca: \  but may also allow 

Ca"’ to enter the cell by opening voltage-dependent Ca2'  channels. However, as 

described previously, the presence o f  such channels in non-excitable cells is still 

controversial. Recently, in human mast cells, a charybdotoxin-sensitive current was 

described, suggesting the presence o f intermediate conductance Kca channels (IK) (43). 

However, charvbdotoxin had inconsistent effects on histamine release, indicating that the 

Kca channel may enhance, but not be essential, for release o f  this mediator In summary, 

if K is in fact important in stimulus-secretion coupling, its role may most likely be the 

regulation o f membrane potential, which in turn may increase or decrease the electrical 

driving force for any other ion involved in mediator release

In addition to mast cells, K" currents have also been extensively studied in 

lymphocytes. Ishida and coworkers found hvperpolarization producing Kca channels in T 

cells ,44’ These channels showed voltage-dependent opening characteristics, with higher 

channel activity at lower membrane potentials. Activation o f  another voltage-gated K ' 

channel. KV1 3. has been reported to cause an increase in the extracellular K ' 

concentration and subsequently mediate T cell adhesion via P-integrins <45). Interestingly. 

Kvl.3 and P-integrins could be coimmunoprecipitated, suggesting that their physical 

association may underlie their functional cooperation. The KV1 3 channel is believed to 

regulate the resting membrane potential in T cells, and blocking o f this channel inhibited 

a delayed-type hypersensitivity response and thymic development o f  T cells l46' In 

addition. KV1 3 has also been involved in membrane hvperpolarization and in 

maintenance of an inwardly directed driving force for the secondary influx o f C a"*l4,\  

Interestingly, this channel has been reported to form a multi-protein complex with 

calmodulin kinase II. which is known to associate with src tyrosine kinases f48\  Kv1.3 is a 

good example for the wide range o f effects that activation o f  one single channel type may 

exert on cellular function, and prepares us for the complexity which might be
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encountered while dissecting the stimulus-secretion coupling mechanism, a single step at 

a time

We have also evidence from mast cell studies for a role o f Cl' channels in 

stimulus-secretion coupling Stimulation o f rat mucosal mast cells by IgE and antigen or 

by a monoclonal antibody specific for the high affinity IgE receptor (FcsRi) was reported 

to result in activation o f a C f channel. The conductance o f this channel was 32 pS with 

an increasing open state probability with increasing depolarization ,40). Two compounds, 

the C f channel blocker 5-nitro-2-(3-phenylpropyIamino) benzoic acid (NPPB) and the 

anti-allergic drug cromolyn, which is a weak inhibitor of mast cell degranulation, showed 

parallel inhibition o f both C f channel activity and mediator release, i.e. serotonin. 

Interestingly, serotonin release from rat mast cells was found to be strictly dependent on 

extracellular Ca*' influx (?,)) Membrane potential changes o f antigen-stimulated rat mast 

cells showed a biphasic behavior. An initial depolarization attributed to Ca: " influx was 

followed by a long-lasting repolarization l5l> The authors suggested that this 

repolarization was caused by FcsRJ-mediated activation o f Cl' channels, leading to a 

decay o f the membrane potential to more negative values. A low density o f activated C f 

channels was proposed to be sufficient for this purpose, since their open channel 

probability is high at the C f equilibrium potential o f approximately -45 mV This 

mechanism may effectively clamp the membrane potential close to this value in order to 

maintain Ca*' influx. Inhibition o f CP channels may lead to sustained depolarization and 

thus inhibition o f mediator release as shown for serotonin (49). Neher agrees with the 

hypothesis that activation o f C f channels may be necessary for sustained Ca: ' entry <30\ 

The Cl' conductance observed in his study was activated by cAMP. However, if  applied 

through the patch pipette. cAMP is known to suppress secretagogue-induced secretion 

,5*’ Therefore. c.AMP may have two opposing effects in stimulus-secretion coupling. In 

the intact cell, the timing and size o f a c.AMP response may determine which o f  the two 

effects predominates. The involvement o f Cl' currents in stimulus-secretion coupling has 

been confirmed by other studies. Duffy and coworker recently described a slowly 

activating. Ca**-independent and outwardly rectifying C f channel, which was stimulated 

following IgE-dependent mast cell activation and was expressed in about 50 0/o o f  human 

lung mast cells 43\ The authors o f this study proposed caution in interpreting the role o f
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this Cl' conductance during cell activation, since the intracellular Cl' concentration, 

which varies widely between cells, is not known for human mast cells. The extracellular 

Cl' concentration in the tissue has been estimated to be approximately 100 mM (5J), and 

intracellular values o f around 30 mM have been proposed for rat peritoneal mast cells t54). 

Under such circumstances. Cl' currents would contribute to membrane repolarization 

since the reversal potential for Cl' at these concentrations is about -40 mM, and further 

indicate a role for Cl* currents in maintaining Ca: * influx by increasing its electrical 

driving force. However, if intracellular Cl' concentrations were similar to those 

extracellular, then Cl' channel opening would depolarize the cell and decrease the 

electrical driving force for Ca** influx. In such a scenario, with delayed activation o f  a C f 

conductance after cell stimulation, it is likely that this Cl' efflux represents a negative 

feedback mechanism The latter may help the cell to recover in between degranulation 

events 14,1 Most o f these conductances have not been attributed to a specific Cl' channel 

type yet Duffy and coworker suggested that the Cl* conductance described in their study 

could be C1C-3, since this channel is widely expressed in mammalian cells and carries an 

outwardly rectifying current '55' Interestingly, in human skin mast cells, mRNA 

expression for CIC-3 and C1C-5 was described l5o)

On the other hand, Dietrich and coworker suggested that Cl’ currents might not 

play a significant role in rat mast cell degranulation They found that the Cl' channel 

blocker 4,4-diisothio-cyanostilbene-2,2’-disuIfonic acid (DIDS) blocked a Cl* outward 

current in a time- and voltage-dependent manner and, in parallel, inhibited 

glucosaminidase release upon compound 48/80 stimulation. However, replacement o f 

extracellular Cl' with glutamate had only a very weak effect on secretion, suggesting that 

C f currents are not essential for stimulation o f exocytosis. This study indicates that care 

must be exercised in interpreting results obtained using ion channel blockers. Many o f 

these agents may. in addition to ion channels, inhibit other cellular functions 

independently o f ion movement, and thus suggest the involvement o f particular ion 

channels in totally unrelated phenomena.

Similarly to Ca*' channels. Cl' channels appear to be involved in non-granule- 

associated mediator release processes such as O;* production. Our group proposed a role
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for Cl' influx, possibly via C1C-3 channels, as a mechanism for charge compensation 

during depolarization caused by electron efflux via the NADPH oxidase t58).

Reports o f a role for channels in cell activation are mostly limited to O ;' 

production, as described in Chapter 1, and such channels are expressed in eosinophils, 

neutrophils and macrophages Their main function consists in the compensation of 

loss o f  negative charge caused by an NADPH oxidase-mediated electron efflux (6:>. This 

would, in addition to Cl' influx, help to re-establish electroneutrality and counteract the 

depolarization caused by the electron transport mechanism.

Finally, stimulus-secretion coupling may occur in the absence o f  activation o f any 

ionic conductance. In fact, Lindau and coworkers showed that the ionic membrane 

conductance o f mast cells remained unchanged after crosslinking IgE receptors under 

conditions where degranulation occurred in the surrounding cells l39).

In summary, the enigma of the role o f ion fluxes in stimulus-secretion coupling 

remains partly unresolved. Nevertheless, using the information obtained from systems 

such as the mast cell, lymphocyte and neutrophil, which have hitherto been better studied 

than the eosinophil, we can start to propose a model o f  stimulus-secretion coupling in 

human eosinophils: The first step is usually the interaction o f a ligand with its membrane- 

bound or intracellular receptor (Figure 5 1) Many stimuli including leukotrienes ">3>. 

prostaglandins ",4‘. PAF complement factor 5a l0<,) and chemokines (e.g. RANTES. 

eotaxin. IL-8) 1 exert their effects via G protein-coupled cell surface receptors (GPCR).

as depicted in pathway (1). The large number o f GPCRs and their physiological 

importance is supported by studies performed in GCPR knockout anim als<b8) and their 

link to hereditary diseases <69\ Interestingly. GPCR are the target o f over 50 % o f the 

currently available therapeutic agents (,0). GPCR are composed o f a . p and y subunits, 

which upon receptor activation undergo conformational changes leading to the exchange 

of GDP for GTP at the a  subunit. Consequently, the G a  and GPy subunits stimulate or 

inhibit effector molecules, including adenylyl cyclase (AC) and PLC < li Stimulation of 

AC increases intracellular cAMP levels causing, among other effects, the activation of 

protein kinase A (PKA). PLC, on the other hand, cleaves PIP; into DAG and IP3. DAG 

activates PKC. whereas IP3 binds to its endoplasmic reticulum receptor and subsequently 

leads to emptying o f intracellular Ca** stores ( Among other effects, an increase in
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[Ca"']; activates calmodulin-associated kinase (CaMK) ('3). However, the main result 

associated with intracellular Ca2* release is cell depolarization. Whether this increase in 

[Ca2 ]; is supported by influx o f extracellular Ca2 , requires further investigation (,4;,5). 

Even in the absence o f voltage-gated Ca2' channels on the cell surface o f inflammatory 

cells 1 r”. such an influx may occur via other ceil membrane Ca2* channels, e.g. ligand- 

gated channels or SOC Membrane depolarization appears to be closely linked to both 

NADPH oxidase activation and vesicle-associated mediator release. However, the exact 

relationship between these events is poorly understood and needs further investigation 

(dotted lines)

Once the membrane is depolarized, and in order for the cell to reassume normal 

function, the membrane potential needs to return to its resting value, i.e. repolarize. Such 

a mechanism is usually provided by the activation of K* channels on the cell surface <7,) 

We have shown in Chapter 4 that eosinophils express IK. Kv, K.vtp and TWIK-1 K* 

channels, and K ’ extrusion through these channels may help cell repolarization 

Particularly Kc., channels could be involved in this process since at the end o f cell 

depolarization the [Ca"']j is high. Although the major function o f Cl' channels is to 

stabilize the resting membrane potential, a small contribution to the membrane 

repolarization could derive from activation o f these channels. If in fact Cl' channels 

participate to a certain degree in cell repolarization, this effect is most likely exerted by 

Ca" -activated Cl' channels (CaCC), since at the end o f the depolarization process the 

[Ca‘ "]i is high. This would favor the opening o f these channels (78\  In contrast. C1C 

channels are less likely to be involved in membrane repolarization. Although these 

channels are activated by high [Ca2*]; (,9>, as found during cell activation, eosinophils 

express only C1C-3 (as described in Chapter 3), a channel which is closed at depolarizing 

membrane potentials l55’ The depolarized membrane potential provides the necessary 

driving force for K ' to leave and Cl' to enter the cell. In summary. K* efflux, whether or 

not supported by a certain amount o f  Cl' influx, will result in an increase in intracellular 

negative charges and therefore membrane repolarization

Protein kinases have been described in numerous systems to activate K* and Cl* 

channels'80'81' Regulation o f K* channels may occur via protein kinase-dependent 

pathways, including PKA. PKC. PKG. CaM-dependent kinase and MAPK kinases
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Binding to tyrosine kinase-associated receptors and activation o f  the MAP kinase- 

signaling pathway, as shown in Figure 5.1. pathway (2), is employed by stimuli such as 

immunoglobulins <821, most interleukins ‘83) and growth factors (84). Furthermore, Ca:~ 

channel activation may also be supported by such phosphorylation processes since, for 

example, ryanodine receptor activation in T cells has been reported to be tyrosine 

phosphorylation-dependent <85). Other possible ion channel activators are membrane 

permeable compounds such as NO, which diffuses across the membrane barrier and 

activates ion channel proteins either directly via nitration or nitrosylation processes or 

indirectly via cGMP-mediated stimulation o f PKG lSb ST) This is depicted in Figure 5.1, 

pathway (3) As a matter o f fact, in eosinophils. NO activates Katp but not C1‘ channels, 

as described in Chapter 4. Finally, once vesicle- and non-vesicle-associated mediators are 

released, these substances may by themselves regulate ion channel function.

To conclude, most investigators agree that an elevation o f [C a"']t represents an 

important step in inflammatory cell mediator release. Intracellular Ca2 is. in many 

systems, necessary for fusion of mediator-containing vesicles with the plasma membrane 

and optimal generation o f non-vesicle-associated mediators such as O ;' In the case o f 

NADPH oxidase activation. H efflux results in charge compensation (60). but Cl' 

channels may play a supportive role in eosinophils,?8) Thus, stimulus-secretion coupling 

in inflammatory cells resembles a complex network of interactions between intracellular 

second messenger systems and ion channel activation and inactivation. Different 

pathways employed by different stimuli may ultimately lead to a common outcome, cell 

activation and mediator release.

After reviewing the literature it appears increasingly evident that the role o f ion 

channels in inflammatory cell activation and mediator release is far from being 

completely understood. Generally, future studies will be necessary to identify at a 

molecular level the ion channels expressed in inflammatory cells, and how they correlate 

with stimulus-secretion coupling processes. In particular, the presence or absence and the 

functional role o f  voltage-gated Ca*' channels in non-excitable cells, including 

eosinophils and neutrophils, has to be confirmed. In addition, it is important to screen for 

other Ca*~-permeable conductances such as SOC or non-selective cation channels on the
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plasma membrane o f these cells and to clarify whether plasma membrane Ca2* channels 

can ‘crosstalk" with Ca2' channels in the endoplasmic reticulum.

Furthermore, considering the large variety and importance o f K ' channels 

identified in other cell systems, it is unlikely that we have a complete knowledge o f all 

K ' channel subtypes functioning in inflammatory cells. Once other K* channels are 

described at molecular level in these cells, another difficult but nevertheless important 

task would be to elucidate the specific functions o f these channel subtypes. A small, but 

important step towards a better understanding o f K ' channel activation in eosinophils is 

outlined in Chapter 4, where I described the presence o f IK, Kv and TWIK-1 K ' channels 

in this cell type as well as the activation o f Katpchannels by NO.

Literature on C f channels in inflammatory cells is particularly scarce Further 

studies will be necessary to clarify the role of Cf, the most abundant anion in nature, in 

inflammatory cell activation My own work focused on identifying the C f channels 

expressed in human eosinophils where a role for these channels in O;' production was 

proposed However, different Cl' channels may be expressed in other inflammatory cells 

and serve different purposes. Furthermore, the role o f C l'channels in eosinophil mediator 

release other than O;' needs to be addressed.

In summary. I believe that we stand at an important juncture in this fascinating 

field where future studies leading to a better understanding o f ion channel function in 

stimulus-secretion coupling in eosinophils appear crucial in the search for new 

therapeutic strategies against eosinophil-associated diseases.
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LEGENDS TO FIGURES

Fig.5.1

A schematic illustration o f possible mechanisms associated with stimulus secretion 

coupling in eosinophils Agonist-induced stimulation of plasma membrane receptors or 

direct diffusion of reactive oxygen species such as N'O into the cell can activate numerous 

intracellular signaling pathways. Stimulation o f GPCRs can lead to activation o f PKA, 

PKC and IP3. whereas stimulation o f  tyrosine kinase associated receptors commonly 

activates the MAP kinase pathway. Cell activation leads to an increase in [Ca2~], and to 

membrane depolarization. These events are commonly associated with cell degranulation 

and activation o f the NADPH oxidase, but the underlying mechanisms are poorly 

understood (dotted lines) Subsequent activation o f K ' channels contributes to membrane 

potential repolarization Activated protein kinases may modify ion channel function via 

phosphorylation processes Reactive oxygen metabolites can interfere with channel 

function either directly or via activation o f a cGMP/PKG-dependent pathway Also 

eosinophil-derived mediators may regulate plasma membrane ion channels.
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