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Abstract 

Metabolites are small molecules (<1500 Da) that are used in or produced during chemical 

reactions in cells, tissues, or organs. Upon absorption or biosynthesis in humans (or other 

organisms), they can either be excreted back into the environment in their original form, 

or as a pool of degradation products. The outcome and effects of such interactions is 

function of many variables, including the structure of the starting metabolite, and the 

genetic disposition of the host organism. For this reasons, it is usually very difficult to 

identify the transformation products as well as their long-term effect in humans and the 

environment. This can be explained by many factors: (1) the relevant knowledge and data 

are for the most part unavailable in a publicly available electronic format; (2) when 

available, they are often represented using formats, vocabularies, or schemes that vary 

from one source (or repository) to another. Assuming these issues were solved, detecting 

patterns that link the metabolome to a specific phenotype (e.g. a disease state), would still 

require that the metabolites from a biological sample be identified and quantified, using 

metabolomic approaches. Unfortunately, the amount of compounds with publicly 

available experimental data (~20,000) is still very small, compared to the total number of 

expected compounds (up to a few million compounds). For all these reasons, the 

development of cheminformatics tools for data organization and mapping, as well as for 

the prediction of biotransformation and spectra, is more crucial than ever. 

My PhD thesis focused on developing several cheminformatics tools that address 

these limitations. First, I developed ClassyFire and ChemOnt. ClassyFire is a publicly 

available software tool and webserver that automatically and hierarchically classifies any 

given molecule based on its structure. It relies partly on ChemOnt, a comprehensive and 
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comprehensible taxonomy that contains >4,800 chemical categories, as well as their 

textual descriptions and mappings to other ontologies. ClassyFire was used to classify 

and annotate >80 million compounds. The webserver also integrates a text-based search 

engine. These features make ClassyFire unique in the sphere of publicly available 

computational tools. ClassyFire and ChemOnt are available at 

http://classyfire.wishartlab.com. Second, I developed BioTransformer and 

BioTransformerDB. BioTransformer is a software tool for the prediction of small 

molecule metabolism in mammals. It uses a hybrid approach that partly relies on 

BioTransformerDB, a unique database of biotransformations containing experimentally 

confirmed metabolic reactions that transform >1,000 drugs, pesticides, cosmetics, and 

food compounds, among others. The current version of BioTransformer, which is 

available at https://bitbucket.org/djoumbou/biotransformer, focuses on the human 

species, but is easily expandable to other species. Third, I developed CFM-ID 3.0, an 

extension of CFM-ID (1.0, and 2.0), originally developed by Felicity Allen et al. CFM-

ID 3.0 is a software tool and webserver for the prediction and annotation of MS spectra, 

as well as the identification of metabolites. With the integration of a rule-based 

fragmentation approach for spectra prediction, the development of new ranking functions, 

and the expansion of the spectral database, CFM-ID 3.0 showed a significant 

improvement, in terms of speed and accuracy, compared to previous versions. CFM-ID 

3.0 is currently available as we web server at http://cfmid-staging.wishartlab.com/.  

 ClassyFire, BioTransformer, and CFM-ID have found applications in various 

fields including chemical information management, metabolomics, and exposomics, 

among others. Together, they build a cheminformatics platform that can enable 

http://classyfire.wishartlab.com/
https://bitbucket.org/djoumbou/biotransformer
http://cfmid-staging.wishartlab.com/
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metabolomics, and contribute to the understanding of our environment as well as the 

advancement of science. 
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1.1 Introduction 

Metabolites are small molecules (<1500 Da) used or produced during metabolic reactions 

in cells or tissues. They are critical to nearly all life processes, providing energy in the 

form of ATP and NADH, pH and solvent buffers in the form of phosphate and 

bicarbonate ions, enzyme cofactors such as vitamins, cAMP, calcium, as well as the 

fundamental building blocks for cells and tissues such as amino acids, nucleic acids and 

lipids. Metabolites routinely interact with larger biomolecules such as DNA, RNA, lipid 

membranes, enzymes and protein transporters, thereby influencing the phenotype (i.e. the 

observable physical and biochemical characteristics) of a cell or organism (1). While 

most of the metabolites found in an organism are beneficial or essential for life, others 

may be harmful if their concentrations are too high or if they persist in the body for an 

extended period of time. Therefore, it is vital to understand how these small molecule 

chemicals influence larger macromolecules such as genes and proteins, and vice-versa. 

This kind of molecular understanding will ultimately lead to a better biological 

understanding of how living systems function, and why they sometimes fail to work 

properly. 

The relationship between small molecules and their effects on living systems can be 

explored through metabolomics. Metabolomics is an emerging field of science that 

focuses on comprehensively characterizing metabolites in cells, biological extracts, or 

whole organisms and uses this information to reveal new biological or biochemical 

insights (2). Because metabolites represent the end products of both genetically 

programmed events and unprogrammed external exposures, the measurement of the 

metabolome reveals a great deal about an organism’s molecular phenotype. This unique 
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ability to probe an organism’s molecular phenotype, has allowed metabolomics to 

become an increasingly important vehicle for research. Indeed, metabolomics is finding 

applications in a variety of life science endeavours such as drug discovery (3), nutritional 

research (4,5), environmental monitoring (6), precision medicine (7) and many other 

biomedical disciplines. 

Despite the availability of increasingly powerful analytical tools and techniques, 

the routine identification of metabolites remains particularly challenging. This is because 

much of the data that is needed to help identify compounds (such as structures, pathways 

and referential mass spectra) and to interpret their functions is scattered in thousands of 

books, journals, proprietary databases and numerous “boutique” data repositories. 

Fortunately, this situation is beginning to change. Over the past decade, a number of high 

quality computational tools and freely available electronic databases have become 

available to facilitate metabolite identification and improve the interpretation of 

metabolomic data (8-10). Most of these systems incorporate advanced cheminformatics 

capabilities that allow users to store, visualize, and search both chemical and biochemical 

information. However, despite the breadth and depth of today’s metabolomic resources, 

there remain significant gaps in our knowledge regarding the structure, function, 

metabolism, and health effects of most of the chemicals found in our bodies. This is 

partly due to the fact that the field of metabolomics is still very young. It is also due to 

the fact that the “chemical space” of the metabolome is very large, very complex and 

difficult to fully explore. Even now, new chemicals and new metabolites are being 

discovered, synthesized, isolated, or uploaded into both chemical and metabolomic 
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databases every day. As a result, the holes in our knowledge of the metabolome continue 

to be disturbingly large. 

The focus of my PhD research is to develop approaches to help fill these holes and 

to improve the ways that we identify, describe or categorize metabolites. In particular, 

this thesis describes a number of novel software tools and databases that I have developed 

that allow metabolomic researchers to: 1) properly describe and categorize essentially all 

known chemicals and metabolites; 2) predict the chemical structures of novel metabolites 

and describe the biochemical pathways that led to their biosynthesis and 3) predict the 

characteristic mass spectrometry (MS) spectra of many of these novel metabolites. In 

order to fully explain why these objectives were pursued and how the resulting software 

works, it is important to provide some more background on the two areas that are being 

most highly impacted by this work: 1) metabolomics and 2) cheminformatics. A detailed 

introduction to these two very closely connected fields is given in the following pages.  

1.2 A Brief Introduction to Metabolomics 

1.2.1 The Metabolome 

The metabolome is defined as the complete set of low-molecular-weight metabolites 

(<1500Da) found within a cell, tissue, biological sample, or organism at any given point 

of time under a given set of physiological conditions (11). The size of the metabolome 

varies significantly from one species to another. In simple organisms such as Escherichia 

coli (12) up to 3,800 small-molecules have been associated with their metabolome. In 

more complex organisms such as Homo sapiens, more than 42,000 different small 

molecules have been mapped to the human metabolome (7). Interestingly, humans (and 
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other mammals) are not the most metabolically complex organisms. Rather, it appears 

that plants are. Up to 200,000 metabolites have been catalogued in the plant kingdom (1). 

Unlike the genome, the size and character of the metabolome is quite variable and it 

changes throughout the day and the life course of an organism. It is also dependent on the 

sensitivity of the measurement technology (more sensitive techniques yield more 

metabolites) as well as on the tissue or biofluid that is being measured. For instance, 

~3,100 metabolites have been found in human urine (13) but just 468 have been found in 

human cerebrospinal fluid (14). 

The metabolome is often subdivided into two classes: the primary metabolome 

and the secondary metabolome. Primary metabolites constitute the primary metabolome 

and are directly involved in an organism’s development, growth, and reproduction. They 

include amino acids, nucleotides, sugars and lipids, among others. Secondary metabolites 

include, but are not limited to, transformation products of primary metabolites. Typically, 

these so-called secondary metabolites are not essential for the processes of development, 

growth, and reproduction; however, they can play an important role in other 

physiological processes, such as combatting environmental stressors. Indeed, the absence 

of secondary metabolites can seriously impair an organism’s survivability as these 

molecules often play defensive roles as a response to environmental insults. For instance, 

many plants produce polyphenols as secondary metabolites. Polyphenols are actually 

antibiotic compounds that are particularly effective at combatting bacterial pathogens or 

fungal infections. Likewise many bacteria produce secondary metabolites to fight off 

competing bacteria. For instance, Streptomyces kausaensis produces Kanamycin A, an 
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antibiotic that exhibits strong antimicrobial activity against a number of competing 

aerobic bacteria, including Pseudomonas aeruginosa (15). 

While many metabolites may be classified according to their importance, another 

approach to partitioning metabolites is according to their origin. In this regard there are 

two kinds of metabolomes: 1) the endogenous metabolome and 2) the exogenous 

metabolome. The endogenous metabolome of an organism corresponds to metabolites 

produced by its natural metabolic processes. Endogenous metabolites include such 

compounds as essential amino acids, vitamins, and hormones. On the other hand, the 

exogenous metabolome can be defined as the set of metabolites or chemicals directly 

derived from the environment or produced via industrial processes. These include 

compounds found in foods, drugs, pollutants, toxins and metabolites produced by the 

colonic flora (16). While different metabolites can have different (or even multiple) 

origins, the methods available to detect and quantify metabolites are largely indifferent to 

their origins. In the following section we will review some of the most common 

techniques and methods used to detect metabolites in biological systems. 

1.2.2 Metabolomics Technologies 

Metabolomics employs a variety of analytical chemistry technologies to measure and 

identify small molecules from biological samples. The two most popular analytical 

approaches are nuclear magnetic resonance (NMR), and mass spectrometry (MS) (17). 

NMR was the first technology to be used in metabolomics and for many years, most of 

the papers published on metabolomics came from NMR laboratories. NMR has a number 

of appealing advantages for metabolite measurement, including facile sample preparation, 

excellent reproducibility and non-destructive analysis. NMR also gives researchers the 
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ability to accurately and simultaneously identify and quantify large numbers of 

metabolites (17). In addition, NMR is particularly useful in the structure elucidation of 

unknown metabolites or chemicals (18). However, NMR is a much less sensitive 

technique than MS. Most NMR instruments cannot detect metabolite concentrations <1 

M, while many MS instruments can often detect metabolites with concentrations <1 

nM. In addition to the very high sensitivity of MS instruments, the availability of a wide 

selection of separation and ionization methods allows MS techniques to identify a larger 

pool of metabolites than what is typically available through NMR. Mass spectrometry is 

usually coupled with a chromatography technique, such as liquid chromatography (LC-

MS), or gas chromatography (GC-MS) to facilitate compound separation prior to mass 

analysis. Because of the vast array of chemical classes and physico-chemical properties 

seen in metabolites, it is common to combine various types of analytical techniques in a 

metabolomic study. Indeed, it is widely known that certain analytical methods are 

intrinsically better than other analytical methods for measuring certain types of 

metabolites. For instance, NMR is best suited for analyzing sugars and alcohols, GC-MS 

is best suited for measuring volatile metabolites (e.g. short-chain fatty acids, organic 

acids, and certain biogenic amines) (4,19), while LC-MS is best suited for measuring 

larger lipophilic molecules (e.g. lipids)  (4,20). 

Just as there are two general types of metabolomics platforms (NMR and MS), 

there are also two types of metabolomic approaches for characterizing metabolites. One 

approach is called “untargeted metabolomics” and the other is called “targeted 

metabolomics”. Untargeted metabolomics aims at comprehensively analysing all 

measurable molecules in a sample, including unknown chemicals or as yet unidentified 
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compounds. In the standard untargeted metabolomics workflow, large numbers of 

measured (NMR or MS) spectra from two or more groups (or cohorts) are first processed 

by statistical analysis tools (10). This allows researchers to rapidly find important peaks 

or key features in these spectra that can be used to differentiate one cohort from another 

(e.g. a disease state from healthy control). Untargeted metabolomics is particularly 

appealing because it offers the possibility of discovering novel metabolites that had no 

previous disease association or no known biological function. Both NMR and MS 

techniques are commonly used in untargeted metabolomics studies. In contrast to 

untargeted studies, targeted metabolomics tries to measure a very specific set of pre-

selected or well-defined metabolites (e.g. fatty acids, and steroids) using pure, authentic 

(often isotopically labelled) chemical standards. The measured metabolite concentrations 

are then used to make diagnoses, identify phenotypes or draw biologically interesting 

conclusions (2,17). In targeted metabolomics the most important information is contained 

in the accurately measured metabolite concentrations rather than in the metabolite 

identities. Obviously in targeted metabolomics it is not possible to identify novel 

metabolites but it is still possible to identify novel metabolite-disease or metabolite-

phenotype associations. LC-MS and GC-MS are usually the best-suited methods for 

targeted metabolomic studies. 

1.2.3 Metabolomics Applications 

As noted earlier, metabolomics uses a variety of analytical techniques to study the 

alterations in metabolic pathways brought on by genetic or environmental perturbations. 

For this reason, metabolomics has found numerous applications in the fields of drug 

discovery and development (3), nutrition research (21), and environmental monitoring 
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(22). Historically, metabolomics got its start in drug discovery and development, with 

most of the early metabolomics papers focusing on the application of metabolomics to 

drug metabolism and drug toxicity. More recently, the role of altered metabolism as a 

disease indicator has re-energized interest in metabolomics for drug discovery and 

therapeutic intervention. This is nicely illustrated by a series of studies by Stanley Hazen 

and his team (23-25) who connected metabolomics with atherosclerosis and drug 

discovery. Atherosclerosis is a cardiovascular pathology in which plaques build up inside 

the arteries, eventually leading to myocardial infarction and stroke. Wang et al. (25) 

found a strong correlation between high plasma concentrations of a compound known as 

trimethylamine N-Oxide (TMAO) and atherosclerosis, in both rats and humans. TMAO is 

a liver by-product of trimethylamine (TMA), which is a gut microbial metabolite of 

phosphatidylcholines originating from the diet (e.g. meat, cheese or eggs). This finding 

suggested that enzymes capable of synthesizing TMAO or its precursors could serve as 

potential drug targets (3). As a general rule, if the biosynthetic pathway for a metabolite 

is known, a list of such enzymes can be easily retrieved. With regard to the 

aforementioned example, flavin monooxygenase 3 (a liver enzyme) and choline-TMA 

lyase (a gut microbial enzyme) quickly emerged as two potential targets. In fact, Wang et 

al. (26) were able to identify a potent inhibitor of choline TMAlyase called 

3,3dimethylbutanol, a natural product found in olive oil. These findings suggest that 3,3-

dimethylbutanol, if used as a drug or nutrient supplement, may reduce the risk of 

atherosclerosis. Interestingly, olive oil is an essential component to the Mediterranean 

diet, a diet that is widely known to improve heart health and prevent atherosclerosis(27). 
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In addition to using metabolomics in the pursuit of new drugs or novel drug 

targets, there has been an increasing interest in using metabolomics to improve our 

understanding of nutrition. Nutritional metabolomic studies can be divided into two 

categories: 1) dietary intervention studies, and 2) biomarker discovery studies (4). Dietary 

intervention studies aim at studying the effects of certain diets or food items in metabolic 

pathways. One interesting example of metabolomics being used in dietary intervention 

studies relates to the effect of diet on estrogen levels in women.  Estrogen levels are 

strongly correlated to breast cancer risk with higher values increasing the risk (28). Thus, 

a diet that decreases estrogen levels could potentially reduce or prevent breast cancer. 

Carruba et al. (29) conducted a randomized intervention study (the MetDiet project) that 

aimed at assessing the effect of a Mediterranean diet on the profiles of endogenous 

estrogens in healthy postmenopausal women. They reported a significant decrease in 

estrogen levels in women who followed the 6 month long diet (which is rich in vegetable 

fat and proteins) compared to women who followed a normal diet rich in animal fat and 

proteins. 

In contrast to dietary intervention studies, food biomarker discovery studies are 

focused on finding unique compounds indicative of certain diets. They usually involve 

dosing individuals with certain specific foods followed by the collection of biofluids (e.g. 

urine, breast milk, and blood) over a period of time. The collected samples are then 

analysed via an untargeted metabolomics approach in order to identify compounds that 

are specific to the intake of that food. The Food Biomarker Alliance (FoodBAll) project 

is an initiative involving 22 partners (universities, government organizations and 

companies) from 11 countries, which aims at finding specific food biomarkers. This 
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consortium is developing chemical as well as data exchange platforms and resources that 

provide metabolomic data for food, food compounds, as well as their transformation 

products (32). FoodBAll has also recently released a publication and a database (called 

ExposomeExplorer) describing more than 100 different food consumption chemicals 

(30). 

Besides its applications in drug discovery and nutritional science, metabolomics 

has also proven to be an important vehicle to perform comprehensive environmental 

monitoring. A recent demonstration was provided by Boersma et al., who used 19F-NMR 

metabolomics to identify intermediates involved the microbial bioconversion of 

fluorophenols (31). This work led to a number of suggested biodegradation pathways for 

these molecules. Over the past decade there has also been a rapid increase in the number 

metabolomic studies aimed at studying the toxic effects of pollutants on the health of 

various organisms. These include studies that have looked at the effects of pesticides in 

humans (32), insects (33), and plants (34). Other studies that have explored the influence 

of plasticizers as synthetic estrogen analogs (e.g. polychlorinated biphenyls, phthalates, 

and bisphenol A) on humans (35-38). For instance, Lu et al. (35) used a LC/MS/MS 

approach to investigate the relationship between dermal exposure to bisphenol A and 

oxidative damage in humans (36). A recent metabolomics study by Xia et al. (38) showed 

that DBP (di-N-butyl-phthalate) altered the citrate cycle, as well as the amino acid, purine 

and lipid metabolism in the serum and placenta of exposed mice. The study clearly 

suggested potentially teratogenic effects for this commonly used plasticizer. 
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1.2.4 Challenges in Metabolomics 

In spite of the many recent advances in metabolomics and its applications in many 

different life science disciplines, there are a number of limitations that still hamper the 

routine measurement and characterization of metabolites in biological samples. In 

particular, the instruments used to perform metabolomic measurements such as MS and 

NMR spectrometers are very expensive (>$300,000). Furthermore, the sample 

preparation and extraction processes are often very time consuming and labour intensive. 

In addition, the required sample volumes, particularly for NMR-based metabolomics, can 

be significant  (0.3–0.7 mL), separation times on HPLC or GC systems can be lengthy 

(30-60 minutes) and compound identification can be very slow, ranging from hours to 

days (3). 

The identification of compounds is probably the most significant and persistent 

challenge facing the entire field of metabolomics. Compound identification, whether by 

NMR or MS, often involves comparing the experimentally obtained spectrum to other 

reference spectra or spectral libraries of known compounds. Unfortunately, there are a 

limited number of NMR or MS spectral libraries. For this reason, the compound 

identification is often very slow and arduous – especially for untargeted metabolomics 

studies. Publicly available mass spectral libraries such as the NIST/EPA/NIH Mass 

Spectral Library (39), and MassBank of North America (also known as MoNA)  (40), the 

METLIN database (41), and the Golm metabolome database (42), among others, have 

authentic mass spectra of perhaps 70,000 different metabolites. This collection of 

authentic spectra represents only a tiny fraction (<0.07%) of the total number of 

chemicals known or catalogued in various chemical substance databases such as 
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PubChem, the Chemical Abstracts Service (CAS) registry database (43), or ChemSpider 

(44). The PubChem and CAS databases contain data for nearly 130 million compounds. 

Assuming that it costs ~$100 to acquire or synthesize a few milligrams of each 

compound and estimating that it takes a day to measure the MS/MS spectra of 100 

compounds on a single MS spectrometer, then if one had full-time access to 100 mass 

spectrometers, it would take >35 years and cost >$10 billion to generate the 

corresponding MS/MS spectra for all 130 million known compounds using existing MS 

technologies. Given the science budgets of today, this would clearly be an impossible 

task. As a result, the metabolomics community has been looking to develop 

computational or in silico methods to generate MS spectra from known (or predicted) 

chemical structures. There are now several computational tools (45) and databases (46) 

that have been developed to aid in the automated in-silico generation of MS spectra. 

However, these tools are still limited in terms of their performance and/or the range of 

chemical classes that they cover. 

Another challenge confronting the metabolomics community is the fact that even 

with today’s very large chemical databases (>130 million compounds) and the existence 

of very high resolution mass spectrometers, fewer than 10% of the features seen in a 

typical metabolomics MS spectrum can be matched to a known molecular weight or a 

known chemical formula in these massive databases.  This suggests that existing 

chemical databases do not have the structures (or masses) for 90% of detectable 

metabolites. These unknown molecules are often called the “Dark Matter” of the 

metabolome (47). It has been suggested that many of these unknown compounds are 

biotransformation products or secondary metabolites derived from well-known 
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metabolites, contaminants or food constituents. So even though new methods to predict 

MS and MS/MS spectra are starting to appear, the capacity to accurately predict or 

generate biologically feasible metabolites is only just beginning. Developing in silico 

methods to predict/generate biologically feasible metabolites will require the systematic 

collection, classification, and analysis of known compounds and their corresponding 

biosynthesis or biodegradation reactions. This will have to be done by exploiting the 

knowledge of known biosynthetic pathways as well as the knowledge of known enzyme 

mechanisms. This modelling process would require that we: 1) link a compound to a 

biosynthetic pathway, 2) predict its metabolizing enzymes, and 3) predict the structure of 

its biotransformation products. As yet, there are only a few programs or software tools 

that are capable of performing these tasks for a select fraction of molecules (48-51). 

The computer-aided expansion of mass spectral libraries using biologically 

feasible metabolites and putative metabolic pathways could greatly improve the breadth 

of metabolome coverage (perhaps rising from 10% to 50% or more). It would also 

improve the appeal of metabolomics for many researchers. However, each of these efforts 

requires that large volumes of chemical data must be represented and stored in a 

computer-readable format. In addition, the rules and chemical features that must be 

generated to perform these predictive tasks requires the rapid computation of various 

physico-chemical properties. Furthermore, these data must be easily searchable in order 

to accurately identify metabolites. Thanks to recent advances in the field known as 

cheminformatics, this is now possible. 
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1.3 A Brief Introduction to Cheminformatics 

Cheminformatics involves the use of computers and computer programs to facilitate the 

collection, storage, analysis, and manipulation of large volumes of chemical data (52). 

Chemical data usually includes chemical formulas, chemical identifiers (e.g. CAS-

numbers), chemical structures, physico-chemical properties, chemical spectra, and 

biochemical data. Cheminformatics first emerged in the early 1960s in order to help 

chemists manage the enormous amounts of chemical data arising from industrial drug, 

textile and polymer production efforts (53). Until recently, the scope of cheminformatics 

was mostly limited to facilitating chemical structure searching and chemical property 

prediction. However, with the advent in high-throughput drug screening and high 

throughput metabolomics (54,55), cheminformatics has had to become increasingly more 

sophisticated and increasingly more integrated with other fields. These fields include 

molecular modelling, computational chemistry, bioinformatics, machine learning and 

systems biology (54,56). 

1.3.1 Representation of Chemical Entities 

Chemical structures are a foundational concept to both chemistry and cheminformatics. 

Simply stated, the chemical structure describes the atoms within a chemical compound 

and the bonds that link them together. The chemical structure is the starting point for a 

number of cheminformatics tasks such as data exchange and storage, chemical similarity 

searches, the systematic naming of compounds, the prediction of physico-chemical 

properties and the calculation of chemical spectra. There are three main structural 

representations that can be used to describe a compound’s structure: its nomenclature, its 

line notations, and its connection tables. 
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1.3.1.1 Chemical Nomenclature 

Historically chemicals were given trivial or Latin names tied to their appearance, colour 

or origin. From these names, chemical symbols and other shorter representations evolved. 

However, the need for a systematic nomenclature inspired Lavoisier and other early 

chemists, at the end of the 18th century, to develop a method for naming compounds 

using both a stem and a specifying part (e.g.: sodium nitrate) (34). Later on, the 

International Union of Pure and Applied Chemistry (IUPAC) developed a chemical 

nomenclature system (57,58) that describes specific molecular fragments using a number 

of expressions from a well-defined vocabulary. One advantage of this kind of structured 

nomenclature is that, in many cases, it can give an idea of the nature, number, and 

relative positioning of the chemical constituents in a molecule (see Figure 1.1). A 

disadvantage of IUPAC names is that they can be very long and cumbersome, which is 

why trivial names are still used today. Overall, chemical names remain the most 

commonly used identification method for chemists and biochemists. However, chemical 

names do not allow the direct extraction of additional information about the molecule, 

such as molecular weight. Furthermore, many names can be attributed to the same 

compound. It is because of these limitations to chemical names that other approaches, 

such as line notations for describing chemical structures, have emerged. 

1.3.1.2 Line Notations 

Line notations allow chemical structures to be represented as a linear sequence of 

numbers, letters or special characters. The IUPAC nomenclature scheme is an example of 

a line or line-like notation. Another example of chemical line notation is the Wiswesser 

Line Notation (WLN). This early line notation scheme was based on using the elements 
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and functional groups (e.g. alkyl halides) present within the molecule to describe the 

chemical entity (59). WLN has been used in well-known chemical databases such as the 

Chemical Structure Index (60). Another kind of line notation is known as the 

Representation of Organic Structures Description Arranged Linearly (ROSDAL). 

 

Figure 1.1 Chemical representations of Valclavam. 

 

This particular syntax was used in the Beilstein-DIALOG system (61). Another syntax 

known as the SYBYL Line Notation (SLN), developed by Tripos (62), is a nice example 

of a popular line notation still used today. The Simplified Molecular Input Line Entry 

System (SMILES) notation is one of the most popular structure representations in 

chemistry (63). Developed in 1986 by Weiniger et al., the SMILES language uses a small 

set of only six rules to convert a chemical structure into a character string. Because the 

SMILES notation is relatively easy to implement and is software/hardware-independent, 
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it has become a popular format for the representation and exchange of chemical structure 

information (see Figure 1.1). As a result, SMILES has been implemented in numerous 

cheminformatics tools, such as the Chemistry Development Kit (CDK) (64), RDKit (65), 

Open Babel (66), and ChemAxon’s JChem (67). 

Over the past two decades, several extensions of SMILES have been developed. 

Some examples include the popular SMiles ARbitrary Target Specification (SMARTS)  

(68) and SMIRKS languages (69). These extensions allow the specific representation of 

structure-based chemical classes, and generic chemical reactions, respectively. Despite 

the popularity of SMILES, this line notation scheme is not without limitations. As is the 

case for chemical names, a single molecule can be represented by more than one SMILES 

string. Several algorithms have been developed that generate a unique (canonical) 

SMILES string for a given molecule. Nevertheless, it is still common to see different 

algorithms generating different SMILES for the same molecule. Another limitation of 

SMILES strings is that there is no standard way to handle aromaticity. These drawbacks 

have led to the development of more formalized versions of the IUPAC line notation: an 

early version called the International Chemical Identifier (InChI) (70), and later, a 

compressed version called the InChIKey (70). 

The InChI string of a chemical substance is a standard identifier that describes its 

structure in terms of layers or delimiters that encode specific information. This includes 

the atoms and their bond connectivity, tautomeric information, isotope information, 

stereochemistry, and electronic charge information (see Figure 1.1). An advantage of this 

kind of delimiter prefix format is that it gives the user the possibility to use a wildcard 

search that is restrained to certain layers. For instance, by focusing only on the main and 



   19 

charge layers of a given compound, one could expand a search to retrieve not only that 

molecule from a database, but also its stereoisomers. A disadvantage of the InChI string 

is that it can be very long, and therefore difficult for database indexing.  

An InChIKey is a 27-character-long hashed version of the standard InChI string 

(an analogue to the canonical SMILES). It contains three dash-separated blocks of 

fourteen characters, ten characters, and one character, respectively (see Figure 1.1). The 

first block represents a hashed version of the connectivity information, the second 

represents a hashed version of the four remaining layers of the corresponding InChI, and 

the last contains a character that indicates the InChI version that is used. An advantage of 

InChIKeys is that they allow for the efficient indexing of databases. Moreover, structures 

can be easily searched from the web using this key. InChIKeys, like any other form of 

line notation, present some limitations. First, an InChI string or identifier cannot be 

reconstructed from the corresponding InChIKey. As a result, the InChIKey must always 

be linked to its original InChI string, which can be converted into other structure 

representation formats. Second, the limited length of the key increases the possibility of 

“collision”, meaning that two different molecules might have the same InChIKey. This, 

however, is extremely rare. Pletnev et al. (56) estimated the probability of a first block 

collision at 0.014% in a database containing 100,000,000 compounds (e.g. PubChem). 

1.3.1.3 Connection Tables 

Connection tables describe chemical structures by providing a list of atoms and a list of 

bonds, where atoms and bonds are described further on a single line each (see Figure 

1.1). The atom description usually contains the index, symbol, type, coordinates and the 

atom charge, among other values. The bond description provides the indices of the 
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connected atoms, and the type of bond (single, double, aromatic, etc.)  (53,71). 

Depending on the format and software used, a connection table can be extended by 

adding other information, such as stereochemistry. Connection tables can store 2D as 

well as 3D coordinates. Moreover, connection tables offer a concise but complete coding 

of the chemical structure, and are easily processed by computers. However, connection 

tables are not easily interpretable by humans. An example of connection table is 

illustrated in Figure 1.2. For chemical connection tables, the MDL (Molecular Design 

Limited) Molfile format has become the de facto standard. Among other extensions of the 

MDL Molfile, cheminformaticians often use the Structure Data file (SDF) and the MDL 

Reaction formats, both developed by MDL Information Systems, for the storage of one or 

multiple molecules, and the storage of information related to a single chemical reaction, 

respectively (71). 

1.3.1.4 Other Special Representations 

Other models for chemical structure representation also exist. For instance, fragment 

codes (72) are indexed expressions of chemical structures based on specific chemical 

characteristics. These characteristics, which can be pre-defined, include functional 

groups, ring systems, and other assemblies of atoms. Fragment codes are still used in 

chemical patent databases (such as the Derwent database) today (72). One limitation of 

this representation is that one code can describe different molecules, since there is no 

information about the interconnectivity of the chemical fragments. 

Markush structures, named after Dr. Eugene A Markush, are another special type 

of chemical structure representation (73-75). A Markush structure denotes a virtual set of 

compounds, represented by a core backbone, and radical groups at specific positions, 
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selected from a finite list of potential radical substituents. This finite list can be 

enumerated by a Marksuh interpreter to generate all possible structures. Such 

representations are often used in chemical patent claims (74). An advantage of Markush 

structures is that they can encode large numbers of molecules in a single file using a 

single representation. However, because of the potentially large number of encoded 

structures, a large amount of space is required if the structures must be stored in a 

database. Unlike most other known chemical structure representations there is no freely 

available software that handles Markush representations. An example of a commercial 

software package that handles Markush structures is ChemAxon’s JChem Base (76). 

Molecular fingerprints can be viewed as abstract, vector-based representations of 

the structure and properties of a molecule (see Figure 1.1). Fingerprints are usually 

deployed as binary descriptors for machine learning workflows to help predict the 

biological activities and physico-chemical properties of chemical compounds. It is 

possible to generate two-dimensional (2D) or three-dimensional (3D) fingerprints, 

depending on the method used to transform the molecular representation into data bits 

(77). Two-dimensional fingerprints are most common, although 3D fingerprints are often 

used to represent pharmacophore features for drug research. Three approaches exist for 

fingerprint construction: 1) substructure key-based fingerprints, 2) topological (or path-

based) fingerprints, and 3) circular fingerprints (77,78). Substructure key-based 

fingerprints usually report the presence (binary = 1) or absence (binary = 0) of structural 

fragments within the molecule of interest. They can also be customized to report the 

number of occurrences of certain structural fragments as well. Examples include the 

MACCS fingerprint (166 bits) (79), and the PubChem fingerprint (881 bits) (9). 
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Topological fingerprints encode hashed versions of molecular features, captured linearly 

up to a given length. Because topological fingerprints are hashed, it is nearly impossible 

to decipher the fragments contained in the molecule directly from the fingerprints. The 

most popular topological fingerprint is the Daylight Fingerprint (80). Circular fingerprints 

are also hashed, but rather than capturing topological features, these capture the 

environment of each atom up to a pre-determined radius. Examples of circular 

fingerprints include the Molprint2D fingerprint (81). 

The popularity of chemical fingerprints in cheminformatics is due to the fact that 

they are computationally efficient, and they can be designed using expert intuition. 

Fingerprints have been successfully used to implement structure similarity searches, to 

predict biological activities (82), and to help perform virtual screening (78). A number of 

widely used software tools either use or generate molecular fingerprints including 

CDK(64), RDKit (65), PaDEL (83), Open Babel (66), and ChemAxon’s JChem Base 

(76). 

Clearly there are a plethora of formats to represent molecular structures. Each has its own 

advantages and disadvantages. In many cases it is also possible to convert a molecular 

structure from one format to another, but occasionally with the risk of losing some 

information (e.g. from Molfile to SMILES). Many of the structure representation 

schemes, as well as many of the methods for their interconversion, have been 

implemented in a number of popular cheminformatics software packages. Commercially 

available packages that offer extensive support for structure representation and format 

conversion include ChemAxon’s Marvin Suite (84), and the OEChem toolkit. Freely 
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available packages include the Chemistry Development Kit (CDK) (64), Open Babel 

(66), RDKit (65), and OPSIN (85), among others. 

1.3.2 Representing Chemical Reactions 

Simply stated, chemical reactions represent the transformation of one chemical 

compound to another. The starting substances that begin the reaction are called substrates 

or reactants. The end substances are called products. In a single reaction, one or more 

substrates can be transformed into one or more products. Based on the overall change in 

molecularity, chemical reactions can be classified into three different categories: 1) 

substitution reactions, where an atom of the substrate is replaced by another atom or 

group of atoms (e.g. nucleophilic hydroxylation), 2) addition reactions, where an atom (or 

a group of atoms) is added to a molecule with one or more multiple bonds (e.g. alkene 

hydration), and 3) elimination reactions, where two substituents are removed from a 

molecule (e.g. dehydrohalogenation of alkyl halides). In addition to these general 

chemical reaction categories, there are also biochemical reactions or metabolic reactions. 

Biochemical or metabolic reactions can be classified either as catabolic or anabolic.  In 

catabolic reactions, large molecules are broken down to produce energy (e.g. hydrolysis). 

In anabolic reactions, energy is consumed to synthesize a larger molecule from smaller 

components (e.g. glucuronidation). 

As mentioned earlier, chemical reactions can be represented using computer-readable 

languages or computer-compatible representations. The three most widely used 

computer-readable reaction languages are known as: SMIRKS, Rxnfile, and RDfile. Here 

we will focus on describing the SMIRKS language and refer readers to the literature for 

information about the latter two (71,86). The SMIRKS language or line notation is an 
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extension of the SMILES line notation and a subset of the SMARTS chemical language 

(69). The SMIRKS language is designed to represent generic reactions, which consist of 

one or more atom and bond changes. It is also designed to capture or describe a substrate 

SMARTS pattern upon which the chemical changes are made. The SMARTS pattern 

defines a set of structural constraints that any substrate must fulfil in order for it to be a 

candidate for the encoded reaction. An example of a chemical reaction for an 

organophosphorothioate compound and its SMIRKS representation is illustrated in Figure 

1.2. Organophosphorothioate insecticides represent an important class of insecticides that 

are widely used today. Some examples include Chlorpyrifos, Diazinon, and Disulfoton. 

These compounds are known to undergo enzymatic desulfurization of the 

organophosphorothioate group. The structure of the organophosphorithioate group 

relative to the substituents for Chlorpyrifos (R1= 2,3,5-trichloropyridine, 

R2=R3=methyl), and Diazinon (R1=2-isopropyl-4-methylpyrimidine, R2=R3=ethyl), is 

illustrated in Figure 1.2.a. Figure 1.2.b shows the atom mapping, which is an essential 

part of the SMIRKS representation, as it dictates what atoms are transformed and how. 

The mapped atoms must be present in both sides of the equation (substrates and 

products). Since the (=S) group is replaced with the (=O) group (and not just displaced to 

another part of the substrate), this particular site of metabolism was not indexed. The 

substituents R1, R2, and R3 can be any substituents (including H atoms). It is worth 

noting here that the origin of the substituting oxygen need not be specified in the 

equation, and is thus missing on the left side of the SMIRKS string.  



   25 

 

Figure 1.2 SMIRKS representation of the desulfurization of organophosphorothioates. A) The abstract 

chemical structure representation of Chlorpyrifos (R1= 2,3,5-trichloropyridine, R2=R3=methyl), and 

Diazinon (R1=2-isopropyl-4-methylpyrimidine, R2=R3=ethyl). B) Atom mapping for the reactant and 

product. Mapped atoms must be present in both part of the equation. The sulfur atom in the substrate (not 

indexed) is replaced by an oxygen atom to form the product. 

 

The resulting SMIRKS notation is as follows: 

 

[#6: 1][#8, #16; A; X2: 2][P; X4: 3]([#8: 4])([#8: 5]) = [S; v2X1] >>

[#6: 1][#8, #16; A; X2: 2][P; X4: 3]([#8: 4])([#8: 5]) = [O; X1]  

 

Based on the SMIRKS representation, one could easily infer the SMARTS string of the 

reactant(s) and product(s) by simply removing the atom indices. 
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1.3.3 Molecular Similarity and Structure Search 

1.3.3.1 Molecular Similarity 

Just like biologists or physicists, chemists are often interested in grouping or comparing 

new entities on the basis of their similarity to previously known entities. Molecular 

similarity can be assessed or ascertained through a variety of approaches including 

topological features, structural coordinates, physico-chemical properties, or biological 

properties. The motivation for using molecular similarity measurements is that similar 

molecules likely possess similar properties. Therefore, the assessment of molecular 

similarity is one of the most important and frequently performed tasks in all of 

cheminformatics. Indeed molecular similarity is commonly used to classify or categorize 

chemical compounds, to predict physico-chemical properties, to search for biologically 

active analogues in a database, or to cluster large numbers of molecules into more 

coherent groups or categories (87,88). 

Similarity assessment requires a well-defined molecular representation schema 

and a well-defined similarity function or distance measure. In some cases, a weighting 

function can be introduced to the distance measure to assign a specific weight to each 

individual feature in the molecular representation (89). In chemistry the pairwise 

similarity value usually varies from “0” for completely dissimilar molecules, to “1” for 

identical molecules. A very popular structure representation used for similarity 

assessment is the molecular fingerprint notation. Both 2D and 3D fingerprints can be 

used. These fingerprint representations can be used to depict the presence or absence of a 

large variety of structural patterns (e.g. structural fingerprints) or encode an independent 
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list of paths within the molecule of interest (e.g. hashed fingerprint). This makes 

fingerprint notation more suitable for a global similarity assessment, which considers 

molecules in their entirety. Pharmacophores, which can be defined as the spatial 

arrangement of the atoms or groups responsible for a molecule’s biological activity, are 

generally better suited for a local (or sub-molecular) similarity assessment, which focuses 

on regions of the molecules of interest (89). 

There are a number of functions commonly used to assess chemical similarity, 

with the most popular being the Tanimoto coefficient (77,89). Given two vectors of real 

values A and B, the Tanimoto coefficient (TcG) is defined as: 

𝑇𝑐𝐺(𝐴, 𝐵) =

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

∑ 𝐴2𝑛
𝑖=1 + ∑ 𝐵2𝑛

𝑖=1 − ∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

 

For binary vectors or fingerprints, the Tanimoto coefficient will range between 0 

and 1. There are a number of well-known cheminformatics software packages that offer 

similarity assessment capabilities including CDK (64), RDKit (65), Open Babel (66), and 

ChemAxon’s JChem (67). 

1.3.3.2 Structure Searching 

In contrast to molecular similarity analysis, structure-searching methods are used to 

detect the presence or absence of specific structural fragments in a molecule. There are 

three main types of structure search tasks: 1) similarity searches, 2) substructure searches, 

and 3) superstructure searches. Similarity searches used to retrieve compounds (targets) 

from a dataset, which are structurally similar to the compound of interest (query). The 

compounds that are returned are called “hits”. The number and type of hits varies 

depending on the similarity threshold that is set, and the similarity function that is used. 
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Moreover, when fingerprints are used, the nature of the fingerprints and the type of 

information they contain are a major determinant of the similarity assessment. By default, 

various chemical search engines use the Tanimoto function applied on chemical hashed 

fingerprints. 

In contrast to similarity searches, substructure searches are used to retrieve 

compounds from a dataset that contains the full structure of the query. Depending on the 

choices made by the user, specific features such as stereochemistry and charge 

distribution can be taken into consideration during the structure search protocol. Unlike 

substructure searching, superstructure searching looks for those targets from a dataset that 

are contained within the molecule of interest or the chemical query. Several search 

engines, frameworks, and cheminformatics tools offer at least one of these three chemical 

search types, including OrChem (90), the RDKit database cartridge (91), MatchMol (92), 

the Molecular Database Framework (93), and ChemAxon’s JChem Base (76). These 

software tools are all open-source, except ChemAxon’s JChem Base (which is free for 

academics only). As we will describe later in this chapter, a number of publicly available 

chemical databases also offer extensive chemical search capabilities. These facilitate the 

retrieval of similar compounds, as well as the selection of sub- or superstructures for 

subsequent analysis. Later, we will describe how structure searches can be used to 

classify chemical entities. 

1.3.4 Chemical Databases 

Over the last decade, large numbers of databases have been developed to address the 

burgeoning data needs and data generation bottlenecks that are appearing in both the life 

sciences and the physical sciences. Chemical and biochemical databases have seen 
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tremendous growth over the past few years, particularly with the advent of more publicly 

available resources on chemical structures, properties, industrial roles and biological 

functions. I will briefly describe three different types of chemical or biochemical 

databases that are relevant for my work, namely: 1) chemical substance databases, 2) 

spectral databases, and 3) pathway databases (94). 

1.3.4.1 Chemical Substance Databases 

Chemical substance databases are largely chemical structure resources containing general 

information about pure chemical substances. There are two types of chemical substance 

databases: those that are general (covering everything) and those that are specific (tied to 

a specific organism, a class of compounds or a specific theme). General substance 

databases try to collate all known (or reported) chemicals regardless of their origin or 

purpose. In this regard the emphasis is on breadth (largest number of chemicals) over 

depth (detailed descriptions or facts about the compounds). Most general chemical 

substance databases are extremely large, with 10’s of millions of compounds in their 

repository. Examples of well-known general chemical databases include the Beilstein 

database (61), PubChem (9), ChemSpider (44), ChEMBL (95) and ZINC (96). Some 

general chemical substance databases, such as the Beilstein database, include additional 

data such as physico-chemical properties, chemical reactions and associated substances, 

Other general chemical substance databases, such as the PubChem database, include 

BioAssay data, as well as information related to safety and hazard, biomolecular 

interactions, and vendor information. 

Specific or thematic chemical databases tend to be smaller, but much richer in 

their content. The Human Metabolome Database (HMDB) is an example of a specific or 
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thematic chemical database (8), as it focuses on human metabolites and associates the 

structure of a small molecule with its physico-chemical properties, NMR and MS spectra, 

biological functions, biosynthetic pathways, biofluid concentrations, and many other 

biochemical or biomedical features. In addition to HMDB, several other specific or 

thematic chemical databases are commonly used in the field of metabolomics, which 

provide (bio-)chemical, physiological, metabolomic, toxicology, pharmacogenomic, 

bioactivity, and/or compositional data for specific types of compounds. The Chemical 

Entities of Biological Interest (ChEBI) database organizes >40,000 chemicals in a 

comprehensive chemical ontology (97). The LIPIDMAPS database covers >40,000 

structures of biologically relevant lipids, organized in the lipid-specific LIPIDMAPS 

chemical ontology (98). DrugBank provides comprehensive data for >8,000 drugs and 

drug metabolites (99). The E. coli Metabolome Database (ECMDB) provides data for 

>3,000 E. coli derived compounds (12). The Toxic Exposome Database covers >3,600 

toxins (100). FooDB is a database that provides compositional, biochemical, and 

physiological information for >26,600 food compounds (101). MetaboLights is a 

database for metabolic experiments and detailed information that covers >23,300 

compounds (102) KEGG is a database that provides various types of chemical, biological 

and genomic data covering ~18,000 metabolites (103). Finally, the KnapSack Core 

database covers >111,000 metabolite-species relationships for ~51,000 compounds and ~ 

22,400 species. These databases tend to focus on chemicals found in specific organisms 

or chemicals used for specific industrial purposes. Many of the specific chemical 

substance databases available today have been developed in response to the specific 

needs metabolomics researchers. 
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1.3.4.2 Spectral Databases 

Spectral databases are repositories of spectroscopic data (NMR, GC-MS or LC-MS) that 

were recorded using pure, authentic compounds under well-defined conditions. The 

purpose of spectral databases is to facilitate the comparison of known compounds and 

known spectra with unknown spectra to help solve compound identification tasks. 

Spectral databases are primarily organized on the basis on the technique used to generate 

the spectra. For instance, there are several well-known, publicly available NMR spectral 

databases including the BioMagResBank (metabolites) (104), NMRShiftDB (105), the 

MMCD (106), the HMDB (8), and the COLMAR database (107) that contain hundreds or 

even thousands of 1D and 2D NMR spectra collected on authentic compound standards at 

different spectrometer frequencies. Most of these databases permit users to query the 

resource using compound structures or spectral chemical shifts. 

There are also a large number of GC-MS and/or LC-MS spectral databases with 

similar querying capabilities. These include the NIST/EPA/NIH Mass Spectral Library 

(39), the Golm database (108), MassBank (109), the METLIN database (110) and the 

MassBank of North America (MoNA) (40). These databases contain tens of thousands of 

experimental MS spectra collected under a variety of experimental conditions using a 

variety of different MS instruments.  There are also a number of spectral databases that 

contain “predicted” MS spectra or spectra generated through computational methods for 

compounds that are known to exist but which do not have measured MS/MS or EI-MS 

spectra. One such resource is LipidBlast, a freely accessible database covering >212,000 

in-silico generated tandem mass spectra for 119,200 lipids (46). Another resource is 

CFM-ID, a web server for mass spectral prediction and compound identification, which 
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has a database containing  >140,000 spectra predicted by CFM-ID for >51,000 

compounds (111). As with the chemical substance databases described above, many of 

the spectral databases available today have been developed in response to the specific 

needs of metabolomics researchers. 

1.3.4.3 Pathways Databases 

Pathway databases capture and depict information about chemical or biochemical 

processes that occur within cells or tissues. Many pathway databases are built around 

chemical reactions or chemical processes. Pathway database are very visual resources 

with coloured, interactive graphs and pictures of pathways being the main content of 

most pathway databases. In the field of metabolomics, the most important pathway 

databases are those that contain information about metabolic pathways. Many metabolic 

pathway databases cover the metabolism of multiple organisms and most allow one to 

search for specific enzymes, metabolites or genes related to a given pathway. The 

primary role of metabolic pathways databases in metabolomics is to assist with the 

biological or functional interpretation of metabolomic data or metabolite lists. In addition 

to their role in biological interpretation, metabolic pathway databases can also be used to 

suggest annotations for an incomplete metabolic pathway. This can be done by 

comparing and analysing more complete pathways in closely related organisms. Among 

the most popular pathway databases are the Kyoto Encyclopaedia of Genes and Genomes 

database (KEGG) (103) described above, the MetaCyc database that contains that 

describes >2,400 metabolic pathways (112), the Reactome Pathway database (113), the 

BioCarta pathway database (114), and the Small Molecule Pathway Database (SMPDB)  

(115). 
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1.4 Chemical Taxonomies and Ontologies 

1.4.1 Defining Taxonomies and Ontologies 

One way of establishing order in a complex field, or finding order among complex 

interactions, is to develop taxonomies and ontologies. A taxonomy is a classification 

system that organizes objects into a hierarchy, using a well-defined set of rules and a 

controlled vocabulary. Taxonomic classification has been used in many fields of science 

for hundreds of years. One of the best-known examples of a taxonomy is the Linnaean 

taxonomy for biological species classification (116). In contrast to a taxonomy, an 

ontology is a formal way of describing concepts or objects as well as the relationships 

between them. Ontologies usually share the hierarchical structure of taxonomies; 

however, taxonomies, often use more than one relationship type to link concepts to one 

another, within a domain or between domains. Ontologies can serve as standardized 

dictionaries of terms, and allow the sharing and reuse of knowledge derived from data. 

The best-known biological ontology is the Gene Ontology originally developed by 

Michael Ashburner (117). The Gene Ontology (GO) was designed to standardize the 

representation of genes and gene product attributes across species and across databases. 

1.4.2 Taxonomies and Ontologies in Chemistry 

Biologists have a very long and successful history of developing effective and efficient 

ontologies and taxonomies to help improve the understanding and exchange of biological 

data. For instance ontologies and formats have been developed to represent, organize and 

exchange data related to genes (e.g.: the Gene Ontology (117)), biological pathways (e.g.: 

BioPAX (118), the Pathway Ontology (119)), diseases (e.g.: the Disease Ontology (120)), 



   34 

and other concepts. On the other hand, while chemists have been very successful at 

developing a standard nomenclature system (i.e. the IUPAC nomenclature), and 

standardized structure representation formats (e.g. SMILES, standard InChI), there is still 

no standard chemical ontology or taxonomy. Whenever chemistry has interfaced with 

biology, there has often been an attempt to create some kind of domain-specific 

taxonomy or ontology. For instance, pharmacists and medicinal chemists tend to group 

drugs into pharmacological classes (e.g. non-steroidal anti-inflammatory drugs, 

antidepressants), and biochemists tend to group biochemicals into groups based on their 

biological or nutritional role (e.g. vitamins, amino acids, hormones). Unfortunately, there 

is no simple one-to-one mapping for these different classification schemes. Furthermore, 

most schemes are limited to small numbers of very domain-specific molecules. Thus, in 

recent years, chemists have been increasingly interested in developing a more uniform or 

generic chemical taxonomy and a better defined chemical ontology (97,121). 

It is generally agreed that, for chemistry (116,122-124), the best route is to 

classify chemical compounds is according to their structures. Structure-based 

classification (as opposed to functional classification) provides important insights not 

only into a compound’s chemical content and relationships, but also their interactions 

with macromolecules. One example of a structure-based classification scheme is the 

Fragment Code system. The Fragment Code system was one of the earliest classification 

systems used in chemistry (72). It consists of >2,000 numerical codes that correspond to 

specific chemically significant structure fragments. However, the system is now 

considered out-dated and overly complex. More recently, ChEBI developed a well-

defined chemical ontology to help classify or cluster chemicals. The ChEBI ontology is 
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now one of the most widely used chemical ontologies today. It consists of >20,000 terms 

that classify compounds into three sub-ontologies: structure (e.g. alpha-amino acid), roles 

(e.g. analgesic), and subatomic particles (e.g. fermion). Despite its extensive and well-

developed structure, the ChEBI ontology has only been applied to a small set of 

compounds, namely the 43,000 chemicals of biological interest found in the ChEBI 

database. Furthermore, the assignment of compounds to this ontology requires teams of 

curators who must manually annotate the compounds. As a result, the process is time 

consuming and error-prone (97). Given that there are >100 million known chemical 

compounds (9) and given that thousands of new chemical entities are being described or 

synthesized every week (125), it is not likely that the ChEBI ontology could ever be 

manually applied to another 100 million compounds. This issue has led to increased 

interest in the development of a computer-based, structure-driven chemical 

ontology/taxonomy. 

1.4.3 Developing Ontologies and Taxonomies 

Developing a taxonomy or an ontology requires defining a scope, collecting or defining 

concepts and properties, as well as determining the relationships that link these concepts 

with one another. An ideal chemical taxonomy should hierarchically organize chemical 

classes based on their structural features (e.g. alpha amino acids, and N-acyl-alpha amino 

acids). The main relationship type in a taxonomy or ontology is the transitive “is_a” 

relationship, which implies the following axioms: Given three chemical classes C1, C2, 

and C3: 

𝐶1 𝑖𝑠_𝑎 𝐶2 ↔  ∀ 𝑥 ∈  𝐶1, 𝑥 ∈  𝐶2  (1), 

𝐶1 𝑖𝑠_𝑎 𝐶2 Λ  𝐶2 𝑖𝑠_𝑎 𝐶3  =>   𝐶1 𝑖𝑠_𝑎 𝐶3 (2) 
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This means that C1 is a chemical subclass of C2 if and only if every chemical entity x that 

satisfies the characteristic structural properties of C1 also satisfies those of C2 (1). 

Moreover, if 𝐶2 ∈  𝐶3, the chemical entity x also satisfies the structural properties of C3 

(2). We have described a number of computer-interpretable languages that can be used to 

represent molecules (SMILES, InChI), and most generic chemical classes (SMARTS). 

Moreover, we also described the superstructure search operations, which can be used to 

verify whether a given query molecule Q satisfies the structural constraints of, or if it 

contains the molecule encoded in a target molecule T. Both Q and T can be either a 

chemical entity or a structural pattern. These languages and methods can contribute to the 

design of a structure-based chemical taxonomy, a structure-based chemical ontology, as 

well as the class assignment of chemical entities (see section 1.3). 

One of the main advantages of using a structure-based chemical 

ontology/taxonomy comes from the fact that molecules from the same chemical 

(structure) class are more likely to undergo the same types of biological transformations 

(or biotransformations), to belong to the same biosynthetic pathways, and to have similar 

biological or biochemical functions. For instance, many drugs that belong to the 

structural class of 5-aryl-1,4-benzodiazepines (such as triazolam and diazepam) are 

known to bind GABA-A receptors. They also possess anxiolytic properties and are used 

as sedatives (99,126). Another example of a large and important class of compounds that 

undergoes similar biotransformations or belongs to a common biosynthetic pathway is the 

triacylglycerols (also known as triglycerides). Triacylglycerols, such as triarachidin, can 

be synthesized by human Glycerol-3-phosphate acyltransferase 3 (GPAT3), and function 
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as energy source and membrane stabilizers (127,128). This specific information about 

triarachidin can be easily “transferred” to other structurally related triacylglycerols – so 

long as the compound of interest is robustly identified as being a member of the class of 

triacylglycerols. 

  As will be noted later in this chapter, chemicals with similar structures or similar 

chemical physico-properties will also have similar MS/MS or EI-MS spectra. This is 

particularly true for lipids from the same chemical class (e.g.: triacylglycerols, or 

phosphatidylcholines) as they often have very consistent and predictable fragmentation 

patterns (129). This principle has been used to build lipid-specific MS spectral databases, 

such as LipidBlast (46). Because structure-based chemical taxonomies or ontologies can 

be used to organize compounds according to their structural properties, they can also help 

to study the metabolism and the identification of compounds. 
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Figure 1. 3 Chemical representations of the taxonomical relationships between L-acetylcysteine and 

Alpha-amino acids. 

1.5 Computational Prediction of Metabolism 

Metabolism is defined as the sum of all chemical reactions that occur within a cell or 

living organism to maintain life (130). Metabolism regulates the production and 

consumption of energy, the delivery of chemical entities within and between cells, the 

activation and/or detoxification of chemicals, the elimination of waste, the defence 

against pathogens, and more. In most cases, metabolic reactions are catalyzed by 

enzymes that interact with substrates, thereby increasing the reaction rate, without being 

consumed. The enormous variety of enzymatic chemical reactions (e.g. oxidation, 

reduction, and hydrolysis) that occur within an organism, coupled with the multitude of 
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parameters that influence the activity and substrate specificity of their catalysts (e.g. pH, 

polymorphism, disease state, substrate concentration) has made it difficult to not only 

characterize existing metabolites and metabolic pathways, but even more difficult to 

predict the chemical consequences of known metabolic reactions. 

While the biotransformation pathways of essential metabolites (e.g. alpha-amino 

acids), as well as many well-known secondary metabolites, have been well studied for 

more than 70 years, there is still a large gap in our knowledge about other, less common 

or lesser-known metabolites. Indeed, scientists are still discovering novel metabolic 

reactions in well-studied model organisms such as Escherichia coli (131,132). Moreover, 

given than many animals, including humans, are constantly exposed to thousands of 

foreign compounds (133), it is likely that these compounds are also being metabolically 

transformed. For most of these xenobiotics, the metabolic fate in humans is only partially 

known, if at all. While some of these metabolites may be toxic, others may provide 

beneficial effects for a certain amount of time. For this reason, there is a growing interest 

in learning what these compounds are, how they are formed and how they may interact 

with other proteins and enzymes in the body. While experimental efforts (through 

metabolomics studies) are providing some of these answers, recent advances in 

computational chemistry, cheminformatics, and machine learning are also allowing 

scientists to answer these questions as well. 

1.5.1 Overview of Xenobiotic Metabolism 

The biotransformation of xenobiotics is needed not only for the extraction of nutritional 

value (if there is any) but also for the removal of compounds that cannot be used 

metabolically or compounds that are potentially harmful. Typically, lipophilic 
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xenobiotics (i.e. tending to dissolve in fats, oils, or lipids) are transformed into 

hydrophilic products (i.e. tending to dissolve in water) that can be easily excreted (some 

volatile compounds however, are not transformed and are eliminated through the lungs). 

On the other hand, hydrophilic xenobiotics are typically hydrolysed in the liver or 

processed by the gut microflora. The catalytic reactions that contribute to the xenobiotic 

metabolism can be divided into two categories: 1) Phase I and 2) Phase II reactions. 

Phase I reactions tend to render the lipophilic xenobiotics more reactive by adding or 

modifying functional groups, such as the amino-, hydroxyl-, or the carboxyl group. Some 

examples of Phase I reactions include aliphatic hydroxylation, reductive dehalogenation, 

and epoxide hydrolysis. Such reactions are predominantly catalyzed by cytochrome P450 

(CYP) enzymes that are capable of activating or inactivating xenobiotics as well as 

endobiotics. CYP enzymes execute nearly 90% of xenobiotic metabolism and most of the 

Phase I oxidative reactions (134). In particular, nine cytochrome P450 isozymes account 

for the majority of those reactions (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, 

CYP2C19, CYP2D6, CYP2E1, and CYP3A4). Other enzymes that catalyze Phase I 

reactions include esterases, alcohol dehydrogenases, and flavin-monooxygenases. 

Although Phase I reactions usually result in inactive or less toxic metabolites, some Phase 

I metabolites have also been found to actually (or accidentally) generate more toxic 

compounds than their parent molecules. For instance, acetaminophen is an analgesic 

pharmaceutical drug that is oxidized in the liver by CYP1A2, CYP2A6, and CYP2E1 to 

produce the hepatotoxic metabolite N-acetyl-p-benzoquinone imine (NAPQI) (135). Such 

biotransformations are unwanted; therefore the identification of toxic xenobiotic by-

products at an early stage of drug development has become a major issue in the 
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pharmaceutical industry. 

In Phase II reactions, the more reactive metabolites are conjugated to cofactors, 

making them less toxic, more hydrophilic, and thus easier to eliminate. Some of the more 

common Phase II reactions include the conjugations of xenobiotics to glucuronic acid 

(glucuronidation), sulphate (sulfation), a methyl group (methylation), and glutathione. 

Because of its toxicity, the acetaminophen metabolite NAPQI is readily inactivated via 

conjugation to glutathione, and eliminated. Phase II metabolism does not always occur 

after Phase I metabolism. Certain compounds can be conjugated and eliminated without 

undergoing any Phase I reaction. For instance, acetaminophen can directly undergo 

glucuronidation or sulfation, and be excreted. The metabolism of acetaminophen in 

humans is illustrated in Figure 1.4. 

The richest source of enzymes catalyzing xenobiotic metabolism in humans is the 

liver. In the liver, the majority of these enzymes are located in the endoplasmic reticulum 

(136). Until recently, most studies have focused on the liver as the factory of xenobiotic-

derived metabolites. However, many xenobiotic processing enzymes also reside in the 

lungs, the kidneys, and the gut. The latter is of particular interest as it provides an 

anaerobic environment for a large microbial population. 
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Figure 1.4 Metabolism of Acetaminophen. 

 

In humans, ~100 trillion microbes accounting for 500-1000 species constitute the gut 

microbial population (137,138). This population is referred to as the gut microbiome. In 

humans the gut microbiome is dominated by Firmicutes and Bacteroides species. The gut 

microbes are of great importance, partly because they are capable of metabolizing not 

only many endogenous compounds, but also a variety of bioactive chemicals that cannot 

be synthesized or processed by their host. These chemicals include food derivatives, food 

additives and plant metabolites, such as polyphenols. Some of the resulting bioactive 

compounds enable the gut microbiome to connect to the immune system and to the brain, 

thereby affecting the host in significant and often unpredictable ways (139). As a result, 
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the gut microbiome and the compounds produced by the microbiome have been 

associated with a number of diseases, such as autism, celiac disease and asthma 

(140,141). Given the importance of Phase I/II metabolism as well as the impact of gut 

metabolism on human health, it is clear that a better understanding of xenobiotic 

metabolism needs to be established. 

Over the last few decades, several computational tools have been developed to 

predict or model the metabolism of xenobiotics. They use a variety of approaches, 

depending on the particular task at hand as well as the types, and amount of information 

available. In the next section, we will discuss some of the common approaches and 

software used for metabolism prediction. 

1.5.2 Approaches for in silico Metabolism Prediction 

The prediction of how a molecule is metabolized by a certain enzyme requires 

determining whether and how the molecule binds to that enzyme, the mode of interaction 

between the molecule and the enzyme (e.g. substrate, inhibitor, inducer), what atoms are 

expected to react (i.e. is a site of metabolism or SoM), what reactions apply, and finally, 

what products will be formed (142). A wide variety of computational approaches have 

been used to predict the metabolism of xenobiotics. These include knowledge-base 

systems, shape-based systems, reactivity models, data mining and machine learning, 

docking, and molecular interaction fields (MIF) (49,143-146). In this section, we will 

briefly describe a subset of these systems with a particular focus on 1) knowledge-based 

systems, 2) reactivity model approaches, 3) data mining and machine learning methods, 

and 4) hybrid approaches. For a more detailed description of the different approaches 
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mentioned, the reader is referred to a number of excellent reviews on the subject 

(142,147). 

1.5.2.1 Knowledge–Based Systems 

Knowledge-based systems for metabolism prediction are based on dictionaries of rules 

devised by human experts. They are usually coupled with a reasoning engine that applies 

those rules to predict the metabolites of a given compound. For instance, CYP2D6 is 

known to catalyze the N-hydroxylation of anilines (135). Therefore, a reasoning engine 

connected to a knowledge base that contains this information could predict that CYP2D6 

likely catalyzes the N-hydroxylation of procainamide (an aniline) to produce 

procainamide hydroxylamine. This will not only predict the site of metabolism, but the 

structure of the product. An advantage of such systems is that they provide the user with 

supporting evidence for the prediction. This not only provides a justification and a 

biological pathway for the product, it also provides feedback that could assist experts in 

updating the rules for more accurate predictions. A disadvantage is that such an approach 

can lead to the prediction of too many false positives. For instance, the presence of other 

groups in an aniline-containing molecule can force the molecule to adopt a certain 

orientation leading to the enzyme to prioritize other reactions. To circumvent this, certain 

systems use a ranking method based on the probability of occurrence for specific 

reactions that are applicable to the compound of interest. Only the reactions with a 

likelihood of occurrence greater than a certain threshold, or those reacting sites with a 

higher priority, are selected and ultimately transformed in silico. Some examples of 

knowledge-based systems include the commercial packages known as MetabolExpert and 

Meteor Nexus (50,148). These knowledge-based systems also take into account physico-



   45 

chemical properties, such as the molecular surface area, and the logP of the molecule. 

These properties can also play a role in the correct prediction of the resulting by-products. 

1.5.2.2 Reactivity Models 

For a small molecule to undergo a catalytic transformation, it must enter the binding 

pocket of the target enzyme. If it properly fits within the pocket and the interaction is 

strong enough, then the reaction can be easily catalyzed. Thus, the electronic structure of 

the substrate molecule as well as the target enzyme is a major determinant of the enzyme-

substrate interaction. Reactivity models use steric accessibility descriptors to predict 

metabolism. This is often facilitated by the implementation of quantum mechanical 

methods that simulate the electronic structure of the enzyme-substrate system (147). An 

advantage of such models is that they can accurately predict which atoms in a molecule 

will be modified by a specific enzyme (142). However, the need for quantum calculations 

implies that one must have a very good understanding of the enzyme system and its 

structure. Moreover, the optimization of the mathematical functions that can calculate the 

energy barrier for the enzyme-substrate system is time consuming and difficult to 

perform automatically (142). Thus, most reactivity-based prediction tools tend to use pre-

computed or approximated activation energy values, to accelerate their calculations. The 

program known as CypScore is a tool that uses atomic reactivity descriptors to generate 

individual models for the most important CYP450 oxidation reactions, including aliphatic 

hydroxylation, S-oxidation, among others. This method allows one to find the reactions 

that are most likely to occur, as well as the specific SoMs (Sites of Metabolism) within a 

substrate of interest (149). 
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1.5.2.3 Data Mining and Machine Learning Approaches 

Machine learning approaches to metabolism prediction rely on statistical models built by 

analysing biotransformation databases containing substrates, products and catalyzing 

enzymes. These models can be used to calculate the probability of each atom in the 

molecule of interest to be a site of metabolism (SoM). For machine learning to work, the 

properties of known SoMs, and a description of their atomic environment must be 

assembled and stored, often as fingerprints. Additionally, a list of reactions reported at 

each specific SoM must also be stored in the database (150). In this way, the machine 

learning is often combined with the data mining, to help generate a robust predictor. In 

the machine learning process, every given atom has its computed fingerprint compared to 

that of previously determined SoMs to predict whether it is a reaction centre, and what 

reactions it might undergo. An advantage of machine learning methods is that they can 

reduce the number of false positive SoMs and metabolic products. However, the 

predictions cannot be made for atoms where the corresponding fingerprint is not 

represented in the database. In machine learning, the development of a good predictive 

model requires a very large and comprehensive reaction/metabolism database. The most 

comprehensive and detailed biotransformation database to date is the BIOVIA Metabolite 

database (151), a commercial resource with >100,000 xenobiotics and 

biotransformations. Indeed, because of the importance to the drug industry, most of the 

comprehensive reaction databases are only available as commercial products. Publicly 

available resources that provide xenobiotic transformation data include DrugBank (99), 

SuperCYP (152), ChEMBL (95), and XMetDB (153). Computational tools that use the 
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data mining and machine learning approaches to predict metabolism include MetaPrint2D 

and MetaPrint2D-React (51,154). 

1.5.2.4 Hybrid Approaches 

As discussed earlier in this section, several conditions need to be fulfilled for a metabolic 

reaction to occur. The most important ones are the chemical reactivity, and the solvent 

accessibility of the molecule of interest. However, focusing only on one condition could 

lead to outright failure or serious underperformance of the computational tool. Moreover, 

each one of the aforementioned approaches presents some limitations (142). Thus, it has 

become a very common strategy to develop hybrid systems that rely on the combination 

of several approaches. Examples of hybrid systems include SMARTCyp (146), MetaSite 

(145), and RS-predictor (155), which combine machine learning and quantum chemical 

atom descriptors. SMARTCyp, in particular, allows the prediction of xenobiotic 

metabolism by the CYP450 isoforms CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, 

CYP2E1, and CYP3A4. MetaSite combines molecular interaction field (MIF)-based 

modules, used for the characterization of protein-ligand with quantum-chemical and 

knowledge-based modules (145). The UM-PPS (now EAWAG-BBD/PPS) system (49) 

uses knowledge-based and machine learning-based approaches. In particular, it uses a set 

of relative reasoning rules that were machine learned using >330 biotransformation rules 

in addition to >1,000 parent compounds and intermediates from University of Minnesota 

Biocatalysis/Biodegradation database. Another example is isoCYP (156), a tool that uses 

QSAR and machine learning (multinomial logistic regression, decision trees, and SVM) 

to predict human CYP isoform specificity for small molecules. 
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Table 1.1 Examples of computational tools for the prediction of small-molecule metabolism. 

Software Coverage Approach Licensing Description 
Pathway assignment tools 

TrackSM 11 KEGG 

metabolic 

classes 

Machine 

learning 

Free Uses functional group 

composition of small 

molecules to predict metabolic 

pathway associations (48). 

Enzyme-substrate predictors 

MetaPred CYP1A2, 2C9, 

2C19, 2D6, 

3A4 

Machine 

learning 

(SVM) 

Free Uses SVMs to predict whether 

a drug-like molecule is 

metabolized by up to 5 CYPs  

(157). 

WhichCYP CYP1A2, 2C9, 

2C19, 2D6, 

3A4 

Machine 

learning 

(SVM) 

Free Uses SVMs to predict CYP 

inhibition (158). 

isoCYP CYP2C9, 2D6, 

3A4 

Hybrid 

approach 

Commercial Uses QSAR and machine 

learning to predict CYP 

isoform specificity (156). 

SoM predictors 

MetaPrint2D Phase I/II Data mining  Free Derives probability of 

biotransformations via data 

mining of atomic fingerprints 

(154,159). 

SMARTCyp CYP1A2, 2A6, 

2B6, 2C8, 

2C19, 2E1, 

3A4 

Hybrid 

approach 

Free Combines reactivity models 

and machine learning 

(146,160). 

RS-Predictor CYP1A2, 2A6, 

2B6, 2C8, 

2C9, 2C19, 

2D6, 2E1, 3A4 

Hybrid 

approach 

Free Combines SMARTCyp 

reactivity models with SVM 

models trained on topological 

descriptors (155). 

Metabolite structure predictors 

Meteor Nexus Phase I/II Knowledge-

based 

Commercial Uses biotransformation rules 

and considers LogP values as 

a filter(50,143,144). 

MetabolExpert Phase I/II Knowledge-

based 

Commercial Uses biotransformation rules 

and considers LogP values as 

a filter(148). 

EAWAG-

BBD/PPS 

 

 Knowledge-

based 

Free Combines knowledge-based 

and machine learning to 

predict environmental 

microbial catabolism (49,161). 

MetaPrint2D-

React 

Phase I/II Data mining 

and machine 

learning 

Free Generate structures of likely 

metabolites based on the 

MetaPrin2D SoM predictions 

(159). 
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Table 1.1 provides a summary of the software tools already mentioned, as well as a 

number of other tools for metabolism prediction. In compiling this table the programs 

were grouped into 4 categories: 1) Pathway assignment tools; 2) Enzyme-substrate 

predictors; 3) SoM predictors and 4) Metabolite structure predictors. 

1.5.3 Limitations of Currently Available Resources 

No matter what approach is chosen for the development of metabolism prediction 

software, the availability of experimental biotransformation data is crucial. 

Unfortunately, there is a lack of publicly available biotransformation databases. For 

instance, XMetDB (153) is the only publicly available, web-based biotransformation 

database now available. However, it contains just 162 observations for CYP450-mediated 

metabolism of 117 xenobiotics. Moreover, there is no information about the types of 

chemical reactions (e.g. aromatic hydroxylation) that transform the substrates into their 

metabolites. While there are a number of biotransformation tables provided in books and 

journals, these are also very limited in scope and often hard to find. Given the small size 

of existing public resources, most scientists working in this area have often been forced to 

buy very expensive commercial databases. The problem is that if a scientist chooses to 

use a commercial database, the software license will typically not allow them to generate 

freely available software nor to share their structural data with other scientists. Given the 

current situation, most of the freely available metabolism prediction tools and resources 

perform substantially worse or are far more limited in scope than commercially available 

tools. Therefore, it is crucial to develop publicly available repositories that provide 

detailed and comprehensive metabolomic data. 



   50 

Another limitation of publicly available tools is that they tend to focus on a single 

aspect of xenobiotic metabolism (e.g. human CYP450-mediated metabolism only or 

environmental metabolism only or microbial metabolism only) thus limiting their scope. 

Moreover, the metabolic predictions are often reaction- or enzyme-based, and do not take 

into account specific constraints that might be attributed to the system. For instance, 

many compounds will undergo different transformation pathways within the gut 

compared to the liver. Additionally, metabolites that leave the gut can be reabsorbed in 

the liver and vice versa, and be further metabolized. Therefore, it is important to develop 

tools that handle physiological inputs as well as molecular inputs. 

Developing better and more comprehensive metabolism prediction tools is also 

important for the experimental metabolomics community. In particular, predicted 

metabolites and predicted structures can be combined with analytical methods such as 

mass spectrometry to facilitate the identification of previously unknown or 

uncharacterized compounds, as illustrated by Pelander et al. (162). Since the spectra 

obtained from biological samples in metabolomics studies can contain a good deal of 

background noise, it has become common to incorporate prior metabolic knowledge 

when designing strategies that use mass spectrometry to identify metabolites. For 

example, a list of masses for predicted metabolites could help to identify the peaks of 

interest in a parent/molecular ion mass spectrum, which then allows the selection of ions 

for subsequent MS/MS analysis (163). Therefore, a database containing the structure and 

physico-chemical properties for known compounds as well as the predicted structures and 

predicted spectral properties of theoretical (in silico metabolized) compounds would be a 

significant asset for the entire metabolomics community. However, to make this sort of 
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database a reality it will be important not only to develop better quality 

structure/metabolism predictors, it will also be important to develop better MS spectral 

prediction tools as well. 

1.6 Spectral Prediction and Metabolite Identification 

In a mass spectrometry, molecules are ionized, and fragmented into pieces of different 

masses, yielding a fragmentation spectrum. The mass-to-charge (m/z) ratio of the parent 

ion or the molecular ion (before fragmentation) along with the m/z ratio of the fragments 

provides a great deal of structural information about the molecule.  Indeed, if the parent 

ion mass is known to a high degree of precision, it is quite easy to determine its 

molecular formula. Furthermore, if the fragment ion masses are known it is often possible 

to identify particular moieties or substructures (sulfates, glucuronide additions, aromatic 

rings, etc.) within the molecule of interest. This information can be combined and, under 

favourable circumstances, it can allow skilled MS operators to unambiguously identify 

molecules. However, a number of factors can contribute to the challenge of identifying 

small molecules from EI-MS or MS/MS spectra. As mentioned earlier, the chemical 

properties of the molecules often dictate which ionization method to use. While Electron 

Ionization (EI) is often used for Gas Chromatography Mass Spectrometry (GC-MS) 

analysis of volatile and thermally stable compounds, electrospray ionization (ESI) (164) 

is typically used for LC-MS analysis of non-volatile compounds. EI is very reproducible 

and always performed at constant ionization energy of 70 eV. This results in fragment-

rich spectra that are highly similar across instruments. However, the obtained GC-MS 

spectra often lack the molecular ion peak. This means that the mass of the precursor ion, 

which is important for subsequent identification, is often unknown (165). By comparison, 
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Liquid Chromatography Mass Spectrometry (LC-MS) spectra obtained by tandem mass 

fragmentation (or collision induced dissociation -- CID) usually provide masses for the 

molecular ions as well as a smaller number of fragment ions. A disadvantage of ESI-MS 

spectra is that they are not as reproducible as EI-spectra, since the collision energies, the 

collision conditions and the fragmentation patterns can vary significantly across 

instruments. For this reason, LC-MS spectra of reference compounds are often measured 

at several fragmentation energies and, if possible, on several instruments (165). 

As noted earlier, the number of reference compounds (of biological significance) 

with high quality MS/MS or EI-MS spectra is actually quite tiny (<5%) compared to the 

apparent size of the metabolome. Given the challenges of isolating/synthesizing 

compounds and experimentally collecting their MS spectra, there is a growing trend to 

develop computational approaches that can automatically predict/simulate MS 

fragmentation patterns from the millions of known and/or predicted compound structures. 

In this section, I will describe a number of approaches that are used to interpret and 

predict MS spectra. I will also describe how they have been implemented to facilitate 

metabolite identification. 

1.6.1 Spectral Library Search 

Spectral library searching and matching is the standard approach for compound 

identification in mass spectrometry. It involves generating the EI-MS or MS/MS 

spectrum of the pure (or presumably pure) compound and comparing it to reference MS 

spectra contained in a library collected under the same or similar experimental conditions. 

As with structure similarity searching discussed in section 1.2, spectral similarity 

searching requires a similarity function. Although it is the most straightforward approach 
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for compound identification, the performance of a spectral library search algorithm is 

significantly dependent on the scoring function used for assessing spectral similarity. 

Several functions have been developed for the interpretation and comparison of both EI 

and MS/MS spectra. For EI-MS spectra, the Hertz similarity index, introduced in 1971, 

uses the weighted average ratio of the two spectra being compared (166). A more 

efficient algorithm is the Probability Based Matching (PBM) method, which examines 

the peaks in the spectrum of an unknown compound based on how significantly they 

contribute to the probability that the compound is present in the database (167,168). The 

dot product is another scoring function that takes the mass/charge ratio as well as the 

peak intensity. The dot product approach is widely used, and implemented in software for 

EI-MS metabolite identification such as CFM-ID (111). In recent experiments, the dot 

product was shown to perform better than the two previously mentioned functions (169) 

For LC-MS/MS spectra, the dot product, the PBM and the dot product are also often used 

(168,169). Because the fragmentation patterns in LC-MS/MS or ESI-MS are less 

reproducible than EI-MS spectra, reliable identification is often achieved by analysing 

mass spectra obtained at multiple collision energies (10, 20 and 40 eV). After the dot 

product between the query and each of the database spectra is calculated, the program 

returns a ranked list of spectra most similar to the query. This approach remains the most 

straightforward of all; however, it faces two challenges. First, only a small fraction of 

known compounds are covered in spectral databases so far. Freely available databases 

often cover only small number of compounds. For instance, the MassBank of North 

America provides experimental/predicted spectra for  ~75,000 different compounds (40). 

This still represents only a small fraction of the >100 million known chemical 
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compounds. Second, similar structures have similar spectra; this can lead to high 

misidentification rates, especially as the database becomes larger. Ideally one could 

design or select similarity functions that are more discriminative; but this has proven to 

be very difficult (165). Some algorithms may combine several scoring functions or apply 

machine learning to obtain better results (170) 

1.6.2 Mass Spectral Classification 

Because spectral similarity is correlated to structure similarity (171), the candidate list 

obtained from a conventional MS spectral search could be used to indicate the presence 

of common structural features (e.g.: functional groups, or substructures). Alternately it 

could be used to indicate similar chemical properties among the candidates and the query 

compound. These features or properties can be characteristic of a compound class that 

shows a specific m/z peak distribution. The mass spectral classification approach consists 

of predicting the substructures of a query compound or the compound classes it belongs 

to, given its MS-spectrum. This is usually done using a classifier that has been trained on 

the spectral library. Various machine learning methods, such as support vector machines 

or regression methods, can then be applied to the transformed data. For each compound 

class, a classifier can be trained on a set containing the vector of each spectrum, along 

with the annotation that specifies whether the corresponding compound belongs the class. 

Depending on the machine learning method used, the resulting classification model could 

return a yes/no answer, or a probability for the query compound to belong to the class that 

is being predicted. This method appears to work well for GC-MS as the EI fragmentation 

process is well understood and highly standardized (165).  In particular, several reliable 

classifiers, such as the Self-Training Interpretive and Retrieval System (STIRS) (172), 
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have developed to identify compounds from GC-MS spectra. Unfortunately, there are few 

classifiers for LC-MS spectral interpretation because the fragmentation is often not as 

reproducible. 

1.6.3 In Silico Fragmentation 

The lack of experimental reference spectra continues to be a bottleneck in compound 

identification. There is a clear need to expand MS spectral libraries so as to cover a much 

greater portion of chemical space. As we learned from the previous section (section 1.6.2) 

on mass spectral classification, molecular fragments can be quite helpful in metabolite 

identification. If one could accurately predict the MS fragmentation pattern of any known 

molecule, larger databases covering from 100s of thousands to millions of compounds 

could be created. These in silico expanded spectral databases would then be used for 

identifying unknown compounds through conventional spectral similarity searching 

methods. In silico fragmentation is particularly accurate and reliable for compounds that 

have consistent fragmentation patterns, such as lipids. Two main in silico fragmentation 

approaches have been developed so far - the rule-based methods and combinatorial 

fragmentation approaches. 

 The rule-based fragmentation approach uses generic or class-specific rules, 

usually extracted from mass spectrometry literature or learned from experimental data, to 

predict MS fragmentation spectra. Given a molecule with a known chemical structure, the 

molecule is scanned for one or more structural patterns that are typically produced in a 

mass spectrometer fragmentation process. The molecule is then fragmented according to 

these fragmentation rules to generate specific molecular fragments that serve to create a 

mass spectrum. This method was first implemented as a part of the DENDRAL project 
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for the prediction of EI mass spectra in the late 1960’s (172). This concept has continued 

and many software tools use this approach (see Table 1.2), including the Mass Frontier 

spectral interpretation software (173). The Mass Frontier spectral interpretation software 

contains one of the largest EI/ESI fragmentation libraries available, with approximately 

31,000 manually curated fragmentation schemes (173,174). Mass Frontier can predict the 

MS spectrum for a given molecular structure, and it can also identify a molecule from a 

given MS fragmentation spectrum by using curated rules developed from its massive 

spectral library and fragmentation tree collection. Rule-based fragmenters can generate 

large numbers of fragments, based on the number of rules that are applicable to the 

chemical structures. However, rule based methods have a number of limitations. First, 

although the fragmentation rules could be learned automatically, in reality, there is a need 

for expert curation. Moreover, rule-based methods are not particularly efficient when 

trying to predict novel structures that are not covered by existing rules. Furthermore, 

since the applied ionization method can force the rearrangements of fragments or 

influence the fragmentation of the molecule, the quality of the results can vary drastically 

from one method to another (165). 

The combinatorial fragmentation approach uses computational “fragmenters” to 

cleave chemical bonds in a combinatorial fashion. The fragmentation is guided by a 

scoring function that assigns a penalty to each cleavage operation, depending on how 

easy it would break. The penalty function is learned through machine learning techniques 

based on a database of previously annotated fragments. Combinatorial fragmentation 

generally works under the assumption that most MS peaks correspond to compound 

fragments without structural rearrangements (175). Combinatorial fragmenters have been 
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implemented in several software tools (see Table 1.2). Examples of tools using 

combinatorial fragmentation or an extension thereof include the Fragment iDentificator 

(FiD) (176), MetFrag (177) and CFM-ID (45,111,178). CFM-ID implements the 

competitive fragmentation modelling (CFM), which was first introduced by Allen et al. 

CFM-ID models the fragmentation process as a fixed length sequence of random 

fragmentation states. With its competitive fragmentation modelling approach, CFM-ID 

has been shown to outperform other tools such as MetFrag, Mass Frontier, and 

MOLGEN-MS (179) in compound identification from EI-spectra (178) For compound 

identification from ESI-MS spectra, CFM-ID was initially shown to perform better than 

MetFrag and FingerID (178) However, recent improvements to MetFrag and 

CSI:FingerID have allowed these programs to outperform CFM-ID in compound 

identification tasks based on ESI-MS spectra (180-182) An advantage of the 

combinatorial approach over rule-based approaches is that they can enumerate all 

possible molecular fragments. However, because the fragments are recursively broken, 

this often causes an exponential increase in time and computer resources needed. To 

circumvent this problem, one often selects the fragments that are most likely to occur.  

Because both the rule-based and the combinatorial fragmentation approaches can 

generate large number of fragments for a molecule, they often achieve near-perfect recall; 

however, the likelihood of those fragments to occur is often significant only for a few of 

them. Therefore, both in-silico approaches achieve a low precision. To improve their 

overall performance a number of heuristics can be applied in the scoring functions.  For 

instance, Ridder et al. proposed a simple but efficient function that would assign scores 

based on the type (e.g.: single, double, etc.) of the broken bond (183). To improve the 
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performance of the fragmentation approaches even more, machine learning algorithms 

can be used to find bond-cleavage rates or cleavage events that will occur with minimal 

cost. One example of a combined model is a package known as In Silico Identification 

Software (ISIS), which simulates the fragmentation of lipids (184). 

1.6.4 Fragmentation Trees 

Fragmentation trees are diagrams that are automatically generated solely based on the 

mass spectrum (or several mass spectra obtained at different energy levels), and the 

chemical formula of a compound of interest. The use of fragmentation trees to facilitate 

compound identification or classification was introduced by Böcker and Rashe (185) In a 

fragmentation tree, each node represents a fragment of the unknown compound, and 

contains its molecular formula. Each edge contains the molecular formulas of losses 

between the two fragments it connects. A fragmentation tree is computed by 

combinatorial optimization, using a scoring function. The task in generating a useful 

fragmentation tree is to find the tree that best explains the spectrum, according to the 

selected scoring function. An advantage of fragmentation trees is that one does not need 

the molecular mass of the compound of interest. Additionally, one can easily compare 

two compounds by aligning their fragmentation trees. This has the effect that similar 

fragmentation sequences can be identified and scored. One limitation of the 

fragmentation tree approach is that the number of possible fragments can be so large that 

it almost impossible to process, even for small molecules or for spectra with many peaks. 

With the increased interest and activity in MS-based metabolomics over the last 

decade, a number of software tools to facilitate MS-based compound identification and 

MS-spectral prediction have been developed. Many of these implement at least some of 
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the approaches described above. Table 1.2 provides a summary of the most popular 

software tools and computational resources for MS-spectral prediction and compound 

identification. 

 

Table 1.2 Examples of computational tools for MS-spectral prediction and compound identification 

Software Licensing Description 

Spectral search 

CFM-ID Free Uses Jaccard score or dot product to deduce structural information 

corresponding to the most similar spectra from the spectral library 

(45,111,178). 

MetFrag Free Uses an extension peak count scoring function that takes into 

account the number matching fragments and the bond dissociation 

energies (177). 

NIST MS 

Interpreter 

Free Uses an optimized dot product function, and either molecular 

weight or “neutral loss” peaks to deduce structural features of the 

unknown compound (169). 

Mass spectral classification 

STIRS  Combines a rule-based approach with machine learning to retrieve 

structural information for related EI spectra, and predict the 

molecular mass (172). 

FingerID Free First predicts a set of molecular fingerprints from the spectrum of 

interest, which are then used to match against large molecular 

database, such as PubChem (186). 

In-silico fragmentation 

Mass 

Frontier 

Commercial Predicts EI/ESI MS-spectra based on a library of ~ 31,000 

manually curated fragmentation rules (173). 

MASSIMO Commercial Automatically derives the fragmentation rules directly from 

experimental data to predict EI-MS fragmentation (187). 

CFM-ID Free Uses combinatorial fragmentation with a cost function that 

considers functional group composition to predict MS-spectra in 
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single-energy or combined-energy mode (45,111,178).  

FiD Free Predicts MS-spectra based on a single-step or multi-step 

combinatorial fragmentation model (176). 

MetFrag Free Comines combinatorial fragmentation and an extension of the 

peak count scoring function that takes into account the number 

matching fragments and the bond dissociation energies (177). 

Fragmentation trees 

SIRIUS Free Based solely on a high-resolution isotope pattern of a molecule, it 

generates elemental compositions and calculates/ranks isotope 

patterns of relevant compositions (188). 

 

1.7 Research Objectives 

This chapter has provided a brief overview of both metabolomics and cheminformatics. It 

has also highlighted some of the existing computational tools and resources that can be 

used to tackle problems related to metabolomic data representation and management, 

metabolism prediction, and compound identification. While many of these computational 

tools and resources have had a significant and positive impact on the field of 

metabolomics, it is clear that they also have their limitations. In particular, the key issues    

identified were: 1) the lack of freely available tools and resources to help manage the 

description and classification of chemical compounds; 2) the lack of effective, open-

access tools and databases to predict compound metabolism and compound structures 

arising from metabolic process; and 3) the lack of software to accurately predict MS/MS 

and EI-MS spectra from known (or predicted) chemical structures. Each of these 

limitations or shortcomings with existing software tools or databases impacts the other 

and so by addressing one, it helps resolve issues associated with the others. 
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 To address these three outstanding issues in metabolomics and metabo-

informatics (a branch of cheminformatics involving metabolomics), I have set out 3 

specific objectives: 1) design and develop new software tools and resources to help 

manage the description and classification of chemical compounds; 2) develop open-

access tools and databases to predict metabolites and metabolism for a broad range of 

metabolic processes; and 3) improve and extend existing software to predict MS/MS and 

EI-MS spectra from known (or predicted) chemical structures. 

 In working towards objective #1, I have developed a freely available structural 

chemical taxonomy and ontology, called ChemOnt. This resource permits the rapid, 

automated classification and description of nearly all (>100 million) known natural and 

synthetic chemicals according to their structure. It was developed in collaboration with 

scientists from a number of different institutes (NIH, EBI, UCSD) and different fields of 

chemistry and biology. Through these collaborative efforts, lookup tables were created to 

map ChemOnt to other existing ontologies, thereby moving ChemOnt a step closer to 

becoming the standard chemical ontology. In addition to creating ChemOnt, I also 

developed ClassyFire, a restful application/web server that uses ChemOnt to 

automatically classify any type of compound. ClassyFire has been used to classify >100 

million compounds. 

To address objective #2, I have developed BioTransformer, an open access 

software package that is able to predict the metabolism (and resulting structures) of both 

endogenous as well as exogenous compounds. BioTransformer integrates data mining 

and machine learning with a knowledge-based approach to predict: 1) human CYP450-

mediated xenobiotic metabolism (Phase I metabolism), 2) human gut microbial 
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metabolism of xenobiotics, 3) Phase II metabolism, and 4) promiscuous enzyme-based 

metabolism. In order to incorporate the large body of existing a priori knowledge, I 

constructed libraries of biotransformation rules and constraints, some of which were 

based on chemical classification data provided by ClassyFire. Furthermore, 

BioTransformer incorporates the UM-PPS set of rules for the prediction environmental 

microbial metabolism (49,161). The metabolites predicted by BioTransformer can be 

used to enrich chemical databases with new metabolite structures that, when annotated 

with spectral information, can facilitate novel metabolite identification in metabolomic 

studies. 

To address objective #3, I have decided to modify an existing software tool, called 

CFM-ID. This package was recently shown to out-perform other well-established MS 

tools in the identification of never-before-seen compounds (111,178). It uses a 

competitive fragmentation modelling algorithm and machine learning to predict ESI-

MS/MS and EI-MS spectra. However, for the structurally diverse and important class of 

lipids, CFM-ID does not perform well. Because of the length of the acyl chains in these 

compounds, the number of possible fragments that can be generated is very large, and 

thus requires excessive computing resources and time. Moreover, the predicted spectra 

often do not reflect the observed fragmentation of lipids. Fortunately, these metabolites 

are known to have consistent fragmentation patterns. By learning these rules and 

encoding them through cheminformatics methods, I was able to generate more accurate 

spectra, thereby improving the performance of CFM-ID. I also noted that compounds that 

belong to the same chemical class tend to have similar fragmentation patterns. Therefore, 

I hypothesized that chemical classification could further improve CFM-ID’s 
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performance. Inspired by the work of Kind et al. (46,189), I have used chemical 

classification techniques (derived from Objective #1) to develop a module that uses the 

rule-based fragmentation approach to predict the ESI-MS-spectra of 26 classes of lipids 

under various conditions (i.e. adduct types). Moreover, I have expanded the spectral 

library used by CFM-ID to contain >50,000 ESI and EI spectra. I have also added 

chemical classification and citation data to guide the prioritization of candidates. 

1.8 Thesis Outline 

In this document, I will describe the work I have completed towards the development of 

the above-mentioned tools and resources. Most of the programs and databases I have 

developed have been either published or submitted for publication. As a result, this is a 

paper-based thesis. The document itself is organized as follows: Chapter 1 served as a 

general introduction in metabolomics and cheminformatics. It provides an extensive 

literature review that describes current progress in the areas of chemical taxonomies and 

ontologies, metabolism prediction, spectra prediction and metabolite identification. It also 

provides the thesis objectives and briefly summarizes the thesis results. Chapter 2 

describes ChemOnt, a novel chemical ontology and ClassyFire, a computational tool for 

automated chemical classification using a comprehensive, computable taxonomy. 

Chapter 3 describes BioTransformer, a software tool for the automated prediction of 

Phase I, Phase II, microbial, and environmental metabolism. Chapter 4 describes CFM-ID 

3.0, a web server that has been substantially enhanced for the prediction and peak 

annotation of ESI-MS- and EI-MS-spectra, as well as the identification of metabolites. 

Chapter 5 provides a general conclusion and future perspectives.  
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Chapter 2 

ClassyFire and ChemOnt: automated chemical 

classification with a comprehensive, computable taxonomy1 

 

 

 

 

1A version of this chapter has been published previously: Yannick Djoumbou Feunang, 

Roman Eisner, Craig Knox, Leonid Chepelev, Janna Hastings, Gareth Owen, Eoin Fahy, 

Christoph Steinbeck, Shankar Subramanian, Evan Bolton, Russell Greiner, David S 

Wishart (2016); ClassyFire and ChemOnt: automated chemical classification with a 

comprehensive, computable taxonomy; Journal of Cheminformatics 8:61 
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2.1 Introduction 

Taxonomies and ontologies organize complex knowledge about concepts and their 

relationships. Biology was one of the first fields to use these concepts. Taxonomies are 

simplistic schemes that help in the hierarchical classification of concepts or objects (190). 

They are usually limited to a specific domain and to a single relationship type connecting 

one node to another. Ontologies share the hierarchical structure of taxonomies. In 

contrast to taxonomies, however, they often have multiple relationship types and are 

really designed to provide a formal naming of the types, properties and interrelationships 

of entities or concepts in a specific discipline, domain or field of study (191,192). 

Moreover, ontologies provide a system to create relationships between concepts across 

different domains. Both taxonomies and ontologies can be used to help scientists explain, 

organize or improve their understanding of the natural world. Furthermore, taxonomies 

and ontologies can serve as standardized vocabularies to help provide inference/reasoning 

capabilities. In fact, taxonomies and ontologies are widely used in many scientific fields, 

including biology (the Linnean taxonomy) (116), geology (the BGS Rock classification 

scheme) (123), subatomic physics (the Eightfold way) (193), astronomy (the stellar 

classification system) (194,195) and pharmacology (the ATC drug classification system) 

(196). One of the most widely used ontologies is the Gene Ontology (GO) (117), which 

serves to annotate genes and their products in terms of their molecular functions, cellular 

locations, and biological processes. Given a specific enzyme, such as the human cytosolic 

phospholipase (PLA2G4A), and its GO annotation, one could infer the cellular location 

of its substrate PC(14:0/22:1(13Z)) (HMDB07887). Additionally, because PLA2G4A is 
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annotated with the GO term “phospholipid catabolic process”, it could be inferred that 

PC(14:0/22:1(13Z)) is a product of this biological process. 

While chemists have been very successful in developing a standardized 

nomenclature (IUPAC) and standardized methods for drawing or exchanging chemical 

structures (58,197), the field of chemistry still lacks a standardized, comprehensive, and 

clearly defined chemical taxonomy or chemical ontology to robustly characterize, classify 

and annotate chemical structures. Consequently, chemists from various chemistry 

specializations have often attempted to create domain-specific ontologies. For instance, 

medicinal chemists tend to classify chemicals according to their pharmaceutical activities 

(antihypertensives, antibacterials) (196), whereas biochemists tend to classify chemicals 

according to their biosynthetic origin (leukotrienes, nucleic acids, terpenoids) (198). 

Unfortunately, there is no simple one-to-one mapping for these different classification 

schemes, most of which are limited to very small numbers of domain-specific molecules. 

Thus, the last decade has seen a growing interest in developing a more universal chemical 

taxonomy and chemical ontology. 

To date, most attempts aimed at classifying and describing chemical compounds 

have been structure-based. This is largely because the bioactivity of a compound is 

influenced by its structure (199). Moreover, the structure of a compound can be easily 

represented in various formats. Some examples of structure-based chemical classification 

or ontological schemes include the ChEBI ontology (200), the Medical Subject Heading 

(MeSH) thesaurus (121), and the LIPID MAPS classification scheme (198). 
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Figure 2.1 A) List of functional groups present in the molecule Valclavam. B) Valclavam is annotated in 

the PubChem (CID 126919) and ChEBI (CHEBI:9920) databases.  In PubChem, it is incorrectly assigned 

the class of betalactams, which are classified as sulfur compounds (according to the MeSH annotation). 
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Moreover, although some sulfur compounds are inorganic, and other are or organic, it is wrong to describe 

a single compound both as organic and inorganic. The transitivity of the is_a relationship is not fulfilled, 

which makes the class inference difficult. In ChEBI, the same compound is correctly classified as a peptide. 

However, as in PubChem, the annotation is incomplete. Class assignments to “clavams” and “azetidines”, 

among others, are missing. 

 

These databases and ontologies/thesauri are excellent and have been used in various 

studies including chemical enrichment analysis (201), and knowledge-based metabolic 

model reconstruction (202), among others. However, they are all produced manually, thus 

making the classification/annotation process somewhat tedious, error-prone and 

inconsistent (Figure 2.1). In addition, they require substantial human expert time, which 

means these classification systems only cover a tiny fraction of known chemical space.  

For instance, in the PubChem database (9), only 0.12% of the >91,000,000 compounds 

(as of June 2016) are actually classified via the MeSH thesaurus. There are several other, 

older or lesser-known chemical classification schemes, ontologies or taxonomies that are 

worth mentioning. The Chemical Fragmentation Coding system (72) is perhaps the oldest 

taxonomy or chemical classification scheme. It was developed in 1963 by the Derwent 

World Patent Index (DWPI) to facilitate the manual classification of chemical 

compounds reported in patents. The system consists of 2,200 numerical codes 

corresponding to a set of pre-defined, chemically significant structure fragments. The 

system is still used by Derwent indexers who manually assign patented chemicals to these 

codes. However, the system is considered out-dated and complex. Likewise, using the 

chemical fragmentation codes requires practice and extensive guidance of an expert. A 

more automated alternate to the Derwent index was developed in the 1970’s, called the 
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HOSE (Hierarchical Organisation of Spherical Environments) code (203). This 

hierarchical substructure system allows one to automatically characterize atoms and 

complete rings in terms of their spherical environment. It employs an easily implemented 

algorithm that has been widely used in NMR chemical shift prediction. However, the 

HOSE system does not provide a named chemical category assignment nor does it 

provide an ontology or a defined chemical taxonomy.  More recently, the Chemical 

Ontology (CO) system (204) has been described. Designed to be analogous to the Gene 

Ontology (GO) system, CO was one of the first open-source, automated functional group 

ontologies to be formalized. CO functional groups can be automatically assigned to a 

given structure by Checkmol (92), a freely available program. CO’s assignment of 

functional groups is accurate and consistent, and it has been applied to several small 

datasets. However, the CO system is limited to just ~200 chemical groups, and so it only 

covers a very limited portion of chemical space. Moreover, Checkmol is very slow and is 

impractical to use on very large data sets.  SODIAC (205) is another promising tool for 

automatic compound classification. It uses a comprehensive chemical ontology and an 

elegant structure-based reasoning logic. SODIAC is a well-designed commercial software 

package that permits very rapid and consistent classification of compounds. The 

underlying chemical ontology can be freely downloaded and the SODIAC software, 

which is closed-source, is free for academics. The fact that it is closed-source obviously 

limits the possibilities for community feedback or development. Moreover, the SODIAC 

ontology does not provide textual definitions for most of its terms and is limited in its 

coverage of inorganic and organo-metallic compounds. Other notable efforts directed 

towards chemical classification or clustering include Maximum Common Substructure 
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(MCS) based methods (206,207), an iterative scaffold decomposition method introduced 

by Shuffenhauer et al. (208), and a semantic-based method described by Chepelev et al. 

(209). However, most of these are proof-of-principle methods and have only been 

validated on a small number of compound classes, which cover only a tiny portion of rich 

chemical space. Moreover, they are very data-set dependent. As a result, the 

classifications do not match the nomenclature expectations of the chemical community, 

especially for complex compound classes. 

Overall, it should be clear that while many attempts have been made to create 

chemical taxonomies or ontologies, many are proprietary or “closed source”, most require 

manual analysis or annotation, most are limited in scope and many do not provide 

meaningful names, definitions or descriptors. These shortcomings highlight the need to 

develop open access, open-source, fast, fully automated, comprehensive chemical 

classification tools with robust ontologies that generate results that match chemists’ (i.e. 

domain experts’) and community expectations. Furthermore, such tools must rapidly 

classify chemical entities in a consistent manner that is independent of the type of 

chemical entity being analyzed. 

The development of a fully automated, comprehensive chemical classification 

tool also requires the use of a well-defined chemical hierarchy, whether it is a taxonomy 

or an ontology. This means that the criteria for hierarchy construction, the relationship 

types, and the scope of the hierarchy must be clearly defined. Additionally, a clear set of 

classification rules and a comprehensive data dictionary (or ontology) are necessary. 

Furthermore, comprehensive chemical classification requires that the chemical categories 

present in the taxonomy/ontology must be accurately described in a computer-
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interpretable format. Because new chemical compounds and new “chemistries” are being 

developed or discovered all the time, the taxonomy/ontology must be flexible and any 

extension should not force a fundamental modification of the classification procedure. In 

this regard, Hasting et al. (210) suggested a list of principles that would facilitate the 

development of an intelligent chemical structure-based classification system. One of the 

main criteria in this schema is the possibility to combine different elementary features 

into complex category definitions using compositionality. This is very important, since 

chemical classes are structurally diverse. Additionally, an accurate description of their 

core structures sometimes requires the ability to express constraints such as substitution 

patterns. Today, this can be achieved to a certain extent by the use of logical connectives 

and structure-handling technologies such as the SMiles ARbitrary Target Specification 

(SMARTS) format. 

In this paper, we describe a comprehensive, flexible, computable, chemical 

taxonomy along with a fully annotated chemical ontology (ChemOnt) and a Chemical 

Classification Dictionary. These components underlie a web-accessible computer 

program called ClassyFire, which permits automated rule-based structural classification 

of essentially all known chemical entities. ClassyFire makes use of a number of modern 

computational techniques and circumvents most of the limitations of the previously 

mentioned systems and software tools. This paper also describes the rationale behind 

ClassyFire, its classification rules, the design of its taxonomy, its performance under 

testing conditions and its potential applications.  ClassyFire has been successfully used to 

classify and annotate >6,000 molecules in DrugBank (99), >25,000 molecules in the 

LIPID MAPS Lipidomics Gateway (211), >42,000 molecules in HMDB (8), >43,000 
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compounds in ChEBI (200) and >60,000,000 molecules in PubChem (9), among others. 

These compounds cover a wide range of chemical types such as drugs, lipids, food 

compounds, toxins, phytochemicals and many other natural as well as synthetic 

molecules. ClassyFire is freely available at http://classyfire.wishartlab.com. Moreover, 

the ClassyFire API, which is written in Ruby, provides programmatic access to the 

ClassyFire server and database. It is available at 

https://bitbucket.org/wishartlab/classyfire_api. 

 

 

2.2 Methods 

Creating a computable chemical taxonomy requires three key components: 1) a well-

defined hierarchical taxonomic structure; 2) a dictionary of chemical classes (with full 

definitions and category mappings); and 3) computable rules or algorithms for assigning 

chemicals to taxonomic categories.  Each of these components is described in more detail 

below. 

2.2.1 Component 1 – Hierarchical Taxonomic Structure 

A taxonomy requires a well-defined, structured hierarchy. Following standard notation, 

we use the term “category” to refer to any chemical class (at any level), each of which 

corresponds to a set of chemicals. These categories are arranged in a tree structure. The 

main relationship type connecting these different categories is the “is_a” relationship. 

The rationale behind the choice of a tree structure was to provide a detailed annotation 

represented via a simple data structure, which could be easily understandable by humans. 

http://classyfire.wishartlab.com/
https://bitbucket.org/wishartlab/classyfire_api
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Moreover, as described in the results section, ClassyFire provides a list of all parents of a 

compound, which makes it easy to infer all of its ancestors. Inspired by the original 

Linnaean biological taxonomy (116), we assigned the terms Kingdom, SuperClass, Class, 

and SubClass to denote the first, second, third and fourth levels of the chemical 

taxonomy, respectively. The top level (Kingdom) partitions chemicals into two disjoint 

categories: organic compounds versus inorganic compounds. Organic compounds are 

defined as chemical compounds whose structure contains one or more carbon atoms. 

Inorganic compounds are defined as compounds that are not organic, with the exception 

of a small number of “special” compounds, including, cyanide/isocyanide and their 

respective non-hydrocarbyl derivatives, carbon monoxide, carbon dioxide, carbon sulfide, 

and carbon disulfide. The classification of compounds into these two kingdoms aligns 

with most modern views of chemistry and is easily performed on the basis of a 

compound’s molecular formula.  The other levels in our classification schema depend on 

much more detailed definitions and rules that are described below. SuperClasses (which 

includes 26 organic and 5 inorganic categories) consist of generic categories of 

compounds with general structural identifiers (e.g. organic acids and derivatives, 

phenylpropanoids and polyketides, organometallic compounds, homogeneous metal 

compounds), each of which covers millions of known compounds.  The next level below 

the SuperClass level is the Class level, which now includes 764 nodes. Classes typically 

consist of more specific chemical categories with more specific and recognizable 

structural features (pyrimidine nucleosides, flavanols, benzazepines, actinide salts). 

Chemical Classes usually contain >100,000 known compounds. The level below Classes 

represents SubClasses, which typically consist of >10,000 known compounds.  There are 
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1,729 SubClasses in the current taxonomy. Additionally, there are 2,296 additional 

categories below the SubClass level covering taxonomic levels 5 to 11. 

Altogether this extensive chemical taxonomy contains a total of 4,825 chemical 

categories of organic (4,146) and inorganic (678) compounds, in addition to the root 

category (Chemical entities). As a whole, this chemical taxonomy can be represented as a 

tree with a maximum depth of 11 levels, and an average depth of five levels per node 

(Figure 2.2). As with any structured taxonomy, the creation of a well-defined hierarchical 

structure offers the possibility to focus on a sub-domain of the chemical space, or a 

specific level of classification. A more complete description of this taxonomic hierarchy 

can be found in Table 2.1.  The chemical taxonomy and its hierarchical structure 

provided using the Open Biological and Biomedical Ontologies (OBO) format (212), 

which may help with its integration with respect to semantic technology approaches. The 

resulting OBO file was generated with OBO-Edit (213), and can be downloaded from the 

ClassyFire website. 

 

Figure 2.2 Illustration of the taxonomy as a tree. 

2.2.2 Component 2 - Chemical Class Dictionary 

Each node or category name in ClassyFire’s chemical ontology or ChemOnt, was created 

by extracting common or existing chemical classification category terms from the 
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scientific literature and available chemical databases. We used existing terms to avoid 

“reinventing the wheel”.  By making use of commonly recognized or widely used terms 

that already exist in the chemical literature, we believed that the taxonomy (and the 

corresponding ontology) should be more readily adopted and understood.  This dictionary 

creation process was iterative and required the manual review of a large number of 

specialized chemical databases, textbooks and chemical repositories. Because the same 

compounds can often be classified into multiple categories, an analysis of the specificity 

of each categorical term was performed.  Those terms that were determined to be clearly 

generic (e.g. organic acid, organoheterocyclic compound) or described large numbers of 

known compounds were assigned to SuperClasses. Terms that were highly specific (e.g. 

alpha-imino acid or derivatives, yohimbine alkaloids) or which described smaller 

numbers of compounds that clearly fell within a larger SuperClass were assigned to 

Classes or SubClasses. This assignment also depended on their relationship to higher-

level categories. In some cases multiple, equivalent terms were used to describe the same 

compounds or categories (imidazolines vs. dihydroimidazoles). To resolve these disputes, 

the frequency with which the competing terms were used was objectively measured 

(using Google page statistics or literature count statistics). Those having the highest 

frequency would generally take precedence. However, attention was also paid to the 

scientific community and expert panels. When available, the IUPAC term was used to 

name a specific category.  Otherwise, if the experts clearly recommended a set of (less 

frequently used) terms, these would take precedence over terms initially chosen by our 

initial “popularity” selection criteria. Examples include the terms “Imidazolines” 

(229,000 Google hits) and “Dihydroimidazoles” (4,590 Google hits).  The other popular 
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terms were then added as synonyms.  A total of 9,012 English synonyms were added to 

the ChemOnt terminology data set. 

In a number of cases, new SuperClass and Class terms were created for chemical 

categories not explicitly defined in the literature. Of these, the resulting “novel” 

categories were typically constructed from the IUPAC nomenclature for organic and 

inorganic compounds. Because our chemical dictionary was built from extant or common 

terms, it contains many community-specific categories commonly used in the (bio-) 

chemical nomenclature (e.g. primary amines, steroids, nucleosides). 

 

 

Table 2.1 Definitions of terms used in the ontological classification. 

Term Description 

Kingdom First level of hierarchical classification: Organic or Inorganic. 

SuperClass Second level of hierarchical classification. Metabolites with the same 

superclass share generic structural features that describe their overall 

composition or shape. 

Class Third level of hierarchical classification. Metabolites of the same class share a 

parent substructure. The structural similarity is generally higher at the class 

level compared to the superclass level. 

SubClass Fourth level of hierarchical classification. Metabolites of the same class share a 

parent substructure. The structural similarity is generally higher at the subclass 

level compared to the class level. 

Intermediate nodes Nodes that are descendants of the subclass and ascendants of the direct parent. 

Direct Parent The category corresponding to the largest skeleton or most dominant feature of 

the classified compound. The direct parent could correspond to the superclass, 

class, subclass or any other lower level. In the latter case, the intermediate 

parents can be traced back using the ontology file. 

Alternative Parents Other categories in the ontology that describe the classified compound and do 

not display a parent-child relationship to each other or to the direct parent. 
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Molecular Framework Provides a general description of the compound in term of 

aliphaticity/aromaticity, number of cycles, and the variety of atom types (homo, 

hetero). This is calculated only for compounds/mixtures with less than two 

organic moieties. 

Substituents Functional groups and substructures contained in the compound. Only to avoid 

redundancy, the substituents mapped to each category of a given ontological 

classification are removed from the list of substituents. 

Description Textual structure-based description of the compound. It gives a brief 

description of the main characteristics of the largest skeleton or most dominant 

structural feature. 

External Descriptors Annotation of the compounds in other databases. It only shows the deepest 

nodes in the classification. 
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Moreover, due to the diverse nature of active and biologically interesting compounds, 

many chemical categories linked to specific chemical activities or based on biomimetic 

skeletons (e.g. alpha-sulfonopeptides, piperidinylpiperidines) were added. For instance, 

several compounds from the category of imidazo[1,2-a]pyrimidine 

(CHEMONTID:0004377) have been shown to display GABA(A) antagonist activity, and 

a potential to treat anxiety disorders (214). 

Figure 2.3 The chemical taxonomy. The taxonomy is illustrated with the OBOEdit software, showing 

definitions synonyms, references, and extended information. 

 

After all the dictionary terms were identified and compiled (4,825 terms to date), 

each term was formally defined using a precise, yet easily understood text description 

that included the structural features corresponding to that chemical category (Figure 2.3). 
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These formal definitions and the corresponding category mappings formed the basis of 

the structural classification algorithm and the classification rules described below.  Once 

defined, the terms in this Chemical Classification Dictionary were progressively added to 

the taxonomic structure to form the structure-based hierarchy underlying ClassyFire’s 

chemical classification scheme. With the combination of the taxonomic structure and the 

Chemical Classification Dictionary, ChemOnt can be formally viewed as an ontology 

(albeit purely a structural ontology). 

2.2.3 Component 3 – The Classification Algorithm 

The essence of our classification algorithm is to use the structural definitions and terms 

contained in the Chemical Classification Dictionary to classify compounds. This required 

converting the English text definitions into a computable set of rules with each definition 

consisting of one or more chemical structures, and/or a set of characteristic features that 

can be otherwise expressed in a computable form. The main format used for chemical 

structure representation in our classification algorithm is the SMARTS format (68). 

SMARTS is a molecular pattern matching language, related to the popular SMILES 

molecular language, that can be used to specify sub-structural patterns in molecules. For 

instance, thiazoles are heterocyclic compounds containing a five-member aromatic ring 

made up of one sulfur atom, one nitrogen, and three carbon atoms. This category of 

compounds can be described with the following SMARTS expression: 

 

 [$([#16]-1-[#6]=[#6]-[#6]=[#7]-1),$([#16]-1-[#6]=[#6]-[#7]=[#6]-1)]  
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Converting the 4,825 definitions in our Chemical Classification Dictionary led to the 

creation of >9,000 SMARTS strings. The validity of each SMARTS string was first 

tested by performing a superstructure search on small sets of positive or negative example 

compounds. In most cases, manually generated SMARTS strings, or combinations 

thereof, were sufficient to represent the vast majority of chemical categories. However, in 

some cases, SMARTS strings could not express specific constraints that a given 

compound must fulfill in order to be assigned a given category. For instance, SMARTS 

strings cannot describe structures with variable numbers of a specific bond or a specific 

atom. One way around this would be to enumerate the different patterns, which could 

easily lead to a combinatorial explosion. For these exceptions we used the Markush 

format (75), which is available through ChemAxon’s Marvin tool. With the Markush 

format, it is possible to represent substituent’s variations, position’s variations, as well as 

the frequency variation of structural groups within a chemical structure.  The Markush 

patterns used by ClassyFire constitute only about 4% of the set of patterns in the 

ClassyFire database. In addition, some chemical categories were more appropriately 

defined by a combination of logical expressions based on features such as structural 

patterns, physico-chemical properties or chemical formulae. For example, an alkane, 

which is an acyclic branched or unbranched hydrocarbon having the general formula 

CnH2n+2, can be formally represented as the following combination of rules:  

 

𝑅𝑖𝑛𝑔𝐶𝑜𝑢𝑛𝑡(𝐴) = 0 ∧ 𝐴𝑡𝑜𝑚𝐶𝑜𝑢𝑛𝑡(𝐶, 𝐴) > 0 ∧ (𝐴𝑡𝑜𝑚𝐶𝑜𝑢𝑛𝑡(𝐶, 𝐴)   +   𝐴𝑡𝑜𝑚𝐶𝑜𝑢𝑛𝑡(𝐻, 𝐴) =

𝑇𝑜𝑡𝑎𝑙𝐴𝑡𝑜𝑚𝐶𝑜𝑢𝑛𝑡(𝐴))   ∧ (𝐴𝑡𝑜𝑚𝐶𝑜𝑢𝑛𝑡(𝐻, 𝐴) = 2 ×  𝐴𝑡𝑜𝑚𝐶𝑜𝑢𝑛𝑡(𝐶, 𝐴) + 2), 
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where AtomCount(X,A) is the number of atoms of type X in the molecule A, 

RingCount(A) is the total number of rings in the compound A, and TotalAtomCount(A) is 

the total number of atoms in the compound A. In rare cases, some categories of 

compounds could not be accurately described in an explicit and formal way using any 

SMARTS string, Markush representation, structural pattern, physico-chemical property 

or chemical formula. These included certain categories of lipids and lipid-like molecules, 

phenylpropanoids, polyketides, peptidomimetics and alkaloids, among others. In these 

cases, the categories were defined as a union of their subcategories that were formally 

expressed. 

It is also important to remember that chemicals can exist as structural chimeras or 

combinations of different, covalently linked chemical structures, building blocks or 

domains. Consequently some chemicals (Figure 2.1) could potentially belong to more 

than one chemical class or category. To simplify the chemical classification process, we 

chose to prioritize the category corresponding to the largest or most dominant structural 

feature of the chemical compounds (see below). This decision was based on the observed 

and historical tendencies of chemists to manually classify compounds based on the size 

(i.e. the number of atoms) of the most dominant structural feature. Furthermore, 

identifying the largest feature is a technique that is easily measurable and completely 

objective. If two or more dominant structural features are equal in size, methods 

described later are used to select one of the features. In ClassyFire’s algorithm, if a 

structural feature is a represented by structure, its feature weight is equivalent to the 

number of non-hydrogen atoms in that substructure. If a structural feature is represented 
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by a combination of logical terms, its weight is the total number of non-hydrogen atoms 

of the smallest compound that fulfils the defined constraints. 

It is important that any automated classification tool provide a result that is 

identical or near-identical to the outcome of manual assignments by experts. As a result, a 

small number of post hoc adjustments were made for certain well-known chemical 

categories that are commonly identified by their biochemical context. For instance, we 

created a category called “Phenylpropanoids and polyketides”. Phenylpropanoids and 

polyketides can be described as small organic compounds that are synthesized either from 

the amino acid phenylalanine (phenylpropanoids) or the decarboxylative condensation of 

malonyl-CoA (polyketides). These classes are best described as a union of their children. 

The “Phenylpropanoids and polyketides” category currently has 34 direct children and a 

total of 273 descendant categories, including Flavonoids, among others. Describing a 

flavonoid compound as a phenylpropanoid instead of a chromone (a term that can 

legitimately be used to describe flavonoids) is, from a biochemist’s point of view, more 

precise and accurate. 

2.2.4 Mapping of Other Classification Schema and Vocabularies to 

ClassyFire’s Taxonomy 

As noted before, there are a number of well-known, online chemical databases that have 

developed their own, manually annotated chemical taxonomy and/or ontology. For 

instance, the ChEBI ontology (200) provides a sub-ontology for chemical roles, in 

addition to the structure-based sub-ontology. LIPID MAPS (198) focuses on lipids and 

lipid-like molecules, and groups them according to their biosynthetic origin. MeSH is a 

thesaurus consisting of >50,000 terms, about 1/3 of which cover chemical entities or 
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classes thereof. In developing the ChemOnt taxonomy, which is used by ClassyFire, we 

aimed at creating a consensus chemical taxonomy partly inspired by these approaches. In 

that regard, ChemOnt was mapped to three other widely used chemical hierarchies or 

taxonomies (ChEBI, LIPID MAPS and MeSH). This was done by assigning one or more 

synonyms to each ChemOnt category, and specifying the corresponding level or scope of 

term similarity. For any ChemOnt term, a synonym can have the identical meaning (exact 

scope), a more specific meaning (narrow scope), or a less specific meaning (broad scope). 

In some cases, the synonym can have slightly different meaning, so that it cannot be 

assigned any of the three aforementioned scope categories. In this case, it is simply called 

a related synonym. 

In a joint effort with the ChEBI development team, an ontology look-up table was 

created to map ClassyFire’s (and ChemOnt’s) taxonomy to the ChEBI sub-ontology of 

chemical entities. When applicable, an exact CHEBI synonym was assigned to the 

ChemOnt term. Otherwise, either one or more broad synonyms, preferably those mapped 

to its parent, were assigned. In some cases, narrow CHEBI synonyms were also assigned. 

It is worth mentioning that in the case of ChEBI, due to certain philosophical 

discrepancies, some terms may appear to be exact synonyms for a given ChemOnt 

category, but actually have a different meaning. For instance, ChEBI makes a clear 

distinction between “carboxylic acid” and “carboxylic acid anion”, while ChemOnt does 

not. Therefore, the ChEBI term “carboxylic acid” is a narrow synonym of ChemOnt’s 

“carboxylic acids”. A total of 6,014 category mappings were created, with an average of 

1.24 ChEBI synonyms per category. Each ClassyFire category has one or more mapped 

ChEBI terms. This effort highlighted a number of similarities, differences, and suggested 
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some improvements (e.g.: categories to be added) for both systems. Using this training 

information, ClassyFire has been modified and used to annotate >43,000 small molecules 

from the ChEBI database. This ChEBI classification can be downloaded from the 

ClassyFire website. To date, these results have been used by the ChEBI development 

team to annotate more than 10,000 compounds present in the ChEBI database.  In lipid 

biology, the LIPID MAPS consortium provides the standard chemical ontology for lipids 

(198). As a result we designed the lipid subset in ChemOnt to align closely with the 

LIPID MAPS classification scheme. A total of 789 ClassyFire categories were mapped to 

one of 307 LIPID MAPS terms each. As a result, a combination of ClassyFire and LIPID 

MAPS ontologies was used to classify ~35,000 small metabolites, which can be accessed 

from the LIPID MAPS Lipidomics Gateway (211), a resource sponsored by the National 

Institute of General Medical Sciences (215) and the Common Fund of the National 

Institutes of Health (216). As a result of this mapping, several more category assignments 

were added to complement the LIPID MAPS classifications. ClassyFire has also been 

manually mapped, although only partially, to the MeSH thesaurus, which is used in the 

PubChem database. So far, 844 ClassyFire categories have been mapped to at least one 

corresponding MeSH term, accounting for a total of 945 mappings to the MeSH 

thesaurus. This MeSH mapping will likely continue for another year or two. 

A considerable proportion of the structures available in databases, such as 

PubChem, correspond to chemical mixtures. For instance, some drugs or pesticides are 

synthesized as mixtures of several organic compounds. ClassyFire has been programmed 

to classify such mixtures. The underlying algorithm allows it to assign classes while 

considering the organic moieties separately, and also as a whole. For instance, a mixture 
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of an organic compound and a chlorine anion (inorganic) will be assigned the category of 

organic chlorine salts, among others, but not the category of inorganic compounds. 

2.2.5 The Classification Process 

As illustrated in Fig. 2.4, the ClassyFire classification process involves four steps: 1) 

Creation and Preprocessing of the Chemical Entity; 2) Feature Extraction; 3) Rule-based 

Category Assignment and Category Reduction; and 4) Selection of the Direct Parent.  

 

Figure 2.4 Workflow of the chemical classification. 

 

These are described in more detail below: 
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2.2.5.1 Step 1 – Creation and Preprocessing of the Chemical Entity 

This step involves the creation of one or more chemical entity objects (which are stored 

in a database), and the calculation of physico-chemical as well as structural properties. 

Most of these features, such as the number of (aromatic, aliphatic) rings, are used for 

classification. Others, such as the mass, are used for text-based search (See Use Cases, 

below). The calculation of physico-chemical properties is performed using ChemAxon’s 

JChem API (version 15.5.25.0). ClassyFire accepts different types of chemical input: 

SMILES, SDF, InChI, IUPAC name, and FASTA sequence files. The different types of 

chemical input are illustrated in Figure 2.5. SMILES, SDF, and InChI strings are 

common structural representation formats for chemical entities, which can be directly 

used for structure search operations or the generation of physico-chemical properties. In 

contrast, each IUPAC name is converted to the corresponding structure using the OPSIN 

library (85), before any chemical object is created and subsequently pre-processed. If the 

chemical (protein, DNA or RNA molecule) input is submitted in FASTA format, every 

sequence is either identified as a nucleotide or peptide sequence type. This step is 

important, as the interpretation of one-letter sequences will vary depending on the 

sequence type. The ClassyFire web server also allows users to submit their query through 

the MarvinSketch Chemical Drawing Applet, which permits users to import or draw a 

chemical structure, which is then exported as a SMILES string. 

2.2.5.2 Step 2 – Feature Extraction 

The second step in the ClassyFire program involves the generation of structural features 

based on a combination of superstructure-search operations and various property 

calculations. ClassyFire combines several methods for structural pattern detection. Most 
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features are detected through superstructure search, which is performed on its library of 

over 9,000 manually designed SMARTS patterns and Markush structures. Each of the 

terms was validated through iterations of test and improvements (if necessary) over small 

sets of compounds. The library is integrated into ChemAxon’s JChem Base. ChemAxon’s 

Marvin 5.11.5 package was used to generate these patterns, ranging from small functional 

groups (e.g. the carbamoyl group) to complex skeletons (e.g. the (3'->5')-cyclic 

dinucleotide bis(phosphoromonothioate) pattern). Prior to being imported into the 

database, each structure pattern was subjected to a set of standardization operations, 

including normalization and aromatization. Each query compound is subjected to the 

same operations before the superstructure search. This allows the program to deal with 

differences in charges, valences and aromatic configuration. 

Another feature detection method used in ClassyFire involves combining features 

with the use of logical connectives, and cardinality restrictions. Every structural feature 

defined by a logical expression is evaluated in order to assign that feature to the query 

compound. As an example, ClassyFire can detect specific features for an inorganic 

compound based on its elemental content, and the list of oxyanions it contains (if any). 

These features are described by rules embedded in a ClassyFire module that specifically 

handles inorganic compounds. In some cases, the use of structure patterns, chemical 

formulae or physicochemical properties is not sufficient to generate a feature. For 

instance, the category known as leukotrienes describes derivatives of arachidonic acid, 

containing three hydroxyl groups as well as four double bonds, exactly three of which are 

conjugated. The position of the three conjugated bonds as well as the relative position of 
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the non-conjugated bond can vary, yielding a large number of combinations. Therefore, a 

superstructure search might not return a hit. In order to classify leukotrienes, 

 

Figure 2.5 Different types of input accepted by ClassyFire. 

 

ClassyFire makes use of standard IUPAC nomenclature in addition to a structure search 

to check whether these constraints are fulfilled. The IUPAC name of any query chemical 

entity is generated by ChemAxon’s Structure-to-Name Conversion engine provided by 

the JChem API. IUPAC names can give valuable information about the parent of a given 

compound, as well as the positioning, number, and name of substituents relative to that 

parent. We developed a module, which uses a set of ~200 regular expressions and rules in 

order to accurately detect structural features given a query compound by parsing IUPAC 

names. 
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2.2.5.3 Rule-based Category Assignment and Category Reduction 

After a list of structural features has been generated, each feature is then mapped to its 

corresponding category or node in the taxonomy. A manually compiled dictionary, which 

provides the weight and category for each feature, was used for the rule-based category 

assignment. After the category assignment is complete, a non-redundant list of chemical 

categories is constructed. This is done by iteratively reducing the set of chemical 

categories. For every pair of chemical categories, if there is a parent-child relationship 

(e.g. dioxanes [parent] and 1,2-dioxanes [child]), only the child node is retained (1,2-

dioxanes). 

2.2.5.4 Selection of the Direct Parent 

The direct parent is the category defined by the largest structural feature that describes 

the compound. It is selected from the non-redundant list of categories obtained in the 

previous step. If two or more structural features have the largest weight, the direct parent 

is selected following a procedure that takes into account the number of cycles, 

heterocycles, ring atoms, ring heteroatoms, halogen atoms, fused rings, and the total 

number of heteroatoms, which are encoded in each node’s structural key. In some cases, 

the largest feature might be less descriptive or less relevant than another feature. For 

example, the glycoside moiety of a flavonoid glycoside can be much larger than the 

flavonoid moiety. However, the term “flavonoid glycoside” is more informative than the 

term “glycoside”, as it describes the presence of both a saccharide unit and a flavonoid, 

glycosidically linked to one another. In this case, an exception is made and the term 

“flavonoid glycoside” is selected over “glycoside”. A small (but not exhaustive) set of 

such exceptions has been manually compiled. 
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The entire ClassyFire program has been converted to a web-based resource. It is a 

RESTful web application located at http://classyfire.wishartlab.com. It allows users to 

submit one or more query molecules in SMILES, SDF, or InChI format, IUPAC name, or 

1-letter amino acid and nucleic acid (FASTA) notation. The query structure(s) can be 

entered as text, uploaded, or drawn using the MarvinSketch applet. It is recommended 

that all query structures be represented in their chiral or isomeric form, to ensure a more 

precise classification.  This is because different ClassyFire categories can be represented 

by stereoisomers of the same skeleton. Some examples include 3-alpha-hydroxysteroids 

(CHEMONTID:0003232) and 3-beta-hydroxysteroids (CHEMONTID:0003233), which 

are all sub-categories of 3-hydroxysteroids (CHEMONTID:0003027). When represented 

with an isomeric structure string for instance, a compound, such as androsterone, can be 

classified as a 3-alpha-hydroxysteroid. However, if it is represented with a canonical 

structure, it would only be classified as a 3-hydroxysteroid, which is less precise. Upon 

submission, the queries are processed by the ClassyFire classification tool, then entities 

or sequences are classified, and the results are then further processed, formatted and 

shown on a HTML output page (Figure 2.6). Classification results can also be 

downloaded in a JSON (217), SDF (218), or CSV (219) format. In addition to providing 

standard chemical classification data, ClassyFire also returns a list of chemical 

substituents, which are structural features (functional groups, substructures or motifs) 

contained within the molecule. For many compounds ClassyFire also provides a 

secondary attribute called the “Molecular Framework”. The Molecular Framework gives 

an overall description of the compound in terms of aliphaticity/aromaticity and number of 

cycles. 

http://classyfire.wishartlab.com/
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Figure 2.6 Classification results for the molecule Valclavam (CID126919) on the ClassyFire website. The 

structural representations, and the taxonomic tree are illustrated. The classification result can be 

downloaded in different formats. 

 

For instance, benzene is described as an aromatic homomonocyclic compound while 

butanol is described as an aliphatic acyclic compound. The Molecular Framework 

attribute does not apply to mixtures of organic compounds. In addition to providing an 

automated chemical classification service, the ClassyFire web server also provides a 

number of powerful text-based search options, which are described later. 
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2.3 Training and Evaluation 

Training and evaluation of the ClassyFire program was performed throughout the 

development of the program, using data sets from several well known databases, 

containing thousands of drugs (99), lipids (8,198), food compounds (43), toxins, 

environmental pollutants, as well as other organic and inorganic compounds.  

Progressively larger and more diverse sets of manually classified chemicals (from 100+ 

compounds to more than 6,000 compounds) were manually compared and evaluated 

against the computed ClassyFire classifications to ensure that the program properly 

classified new compounds or compounds not previously seen in its training cycles. The 

manual classifications were generated according to the definitions found in the Chemical 

Classification Dictionary. Moreover, classifications of the various compounds were 

collected from the literature and other resources that provided the same category 

descriptions as ClassyFire. As errors or programming bugs were identified, class 

definitions were iteratively refined.  If missing categories were found, or if compounds 

were more suitably classified in new categories, these were added to the Chemical 

Classification Dictionary (and to the ClassyFire algorithm). The identification of new 

categories was aided by the classification schema provided by other databases such as 

LIPID MAPS (198), ChEBI (200), and DrugBank (99). This iterative refinement process 

was conducted until essentially no incorrect assignment could be detected in even the 

largest test sets. 
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Figure 2.7 Classification results for the molecule Valclavam (CID126919) on the ClassyFire website. A 

detailed listing of the structural features of the molecule is provided, along with a structurebased text 

description.  

 

In addition to these manual consistency checks conducted throughout the training 

and development phase of the project, we also conducted an independent performance 

assessment of the final release version (version 2.0) of ClassyFire. A test set was built by 

randomly selecting 800 unique structures from DrugBank, the LIPID MAPS Lipidomics 

Gateway, HMDB (8), and T3DB (100). The compounds are all included in the PubChem 

database. We used a panel of experts to evaluate the correctness of each category 

assignment based on the definition in the Chemical Classification Dictionary. When 
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applicable, we also verified if the direct parent was included in the list of classed assigned 

by ChEBI or LIPID MAPS. 

2.4 Results and Discussion 

The classification process as described in the previous section was implemented into both 

a computer program and a freely accessible web server called ClassyFire, available at 

http://classyfire.wishartlab.com. Moreover, an open source Ruby API 

(https://bitbucket.org/wishartlab/classyfire_api) allows users to programmatically access 

the web server in order to submit queries, and retrieve classification results, as well as 

entity-related properties. The complete taxonomy can be downloaded from ClassyFire’s 

home page. 

An example of ClassyFire’s classification and ontological annotation is illustrated 

for the antibiotic compound Valclavam (Figure 2.7). As can be seen in this figure, 

ClassyFire returns a taxonomic classification based on the most descriptive node in the 

taxonomy (Fig. 2.7A). The direct parent “dipeptides” represents the most dominant 

moiety of Valclavam’s structure. However, the notion of what is most descriptive can 

vary from one user to another, and from one context to another. For example, a cyclic 

depsipeptide could be also be classified as a lactam. Because of this ambiguity, 

ClassyFire also displays a list of Alternative Parents (Fig. 2.7B) providing a more 

detailed description of the chemical. Alternative parents are categories that describe the 

compound but do not have an ancestor-descendant relationship with each other or with 

the Direct Parent. When available, ClassyFire returns Intermediate Nodes. These are 

nodes are descendants of a subclass (any category with a depth of 4), but have a depth 

lower than the direct parent. 

http://classyfire.wishartlab.com/
https://bitbucket.org/wishartlab/classyfire_api
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In addition, ClassyFire provides the Molecular Framework and a list of all 

identified substituents (or structural features).  Furthermore, an English, text-based 

compound description is also provided for non-experts.  The text-based description is 

derived from ClassyFire’s Chemical Classification Dictionary. In an effort to facilitate 

the integration of data from different sources, ClassyFire also contains a database of 

cross-references from other popular chemical databases that use different 

taxonomies/ontologies, such as KEGG (103), ChEBI (200), LIPID MAPS (198), and 

MetaCyc (220). These cross-references and alternate-database classifications are 

routinely provided as ClassyFire output, when available. 

To accelerate ClassyFire’s processing time, all of the chemical structures it has 

ever processed and all of the corresponding taxonomic/ontological outputs it has ever 

produced are stored in a local MySQL database. This allows the ClassyFire web sever to 

perform a simple lookup for those query compounds that have previously been processed 

(more than 70 million compounds to date). Therefore, for previously analyzed 

compounds the ClassyFire web server takes <50 milliseconds to return an answer.  For 

completely novel compounds, the ClassyFire web server takes an average of 540 

milliseconds to classify a structure. 

2.5 Evaluation of ClassyFire’s Classification Results 

After the iterative development, testing and manual evaluation of ClassyFire over several 

data sets consisting of >30,000 compounds from very diverse chemical categories, 

ClassyFire was formally tested on a set of 800 compounds not used during ClassyFire’s 

training phase. The compounds among which, drugs, food compounds, synthetic 

compounds, and biologically relevant metabolites, were selected from PubChem. The 



   96 

classification process took 249.9 seconds on a computer with 4 CPU CentOS nodes, with 

3.6 GB of RAM, running with a maximum of 16 threads. The results were then manually 

reviewed by a panel of seven chemistry experts from three different countries. A total of 

21,102 category assignments were made, for an average of 26.38 assignments per 

compound. On this specific test set, ClassyFire assigned a total of 1,308 distinct 

Categories. Figure 2.8 illustrates some examples of the category assignments. The goal 

was to evaluate how exact the computational rules were able to reflect the text-based 

descriptions, which themselves are traditionally used to classify compounds. Based on 

these textual descriptions, as well as the assignments from the literature and scientific 

databases, each compound’s annotation was reviewed to identify possibly missing or 

wrong assignments. In this test, a total of 17 false positives (out of 21,102 assignments) 

were detected. An example is the misclassification of bixin dimethyl ester 

(CID14413719) as an acyclic diterpene. From a structural point of view, this compound 

contains a chain of four consecutive isoprene units, which is characteristic of diterpenes 

(Fig. 2.9A). However, bixin dimethyl ester is classified in both the LIPID MAPS and the 

ChEBI database as a C40 isoprenoid (tetraterpene). More precisely, bixin dimethyl ester 

belongs to the category of compounds known as apo-carotenoids, which arise from the 

oxidative cleavage of carotenoids. Thus, bixin dimethyl ester, which is a product of 

lycopene metabolism, is classified as a tetraterpene according to its biosynthetic origin. 

Based on its structure, one could argue that bixin dimethyl ester should be classified as a 

diterpene; but based on its biology, it should be classified as a tetraterpene derivative or 

as an apo-carotenoid diterpenoid (CHEBI:53186). 
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Figure 2.8 Examples of class assignments by ClassyFire for 12 compounds from the test set. 

 

Given that ClassyFire is designed to classify compounds on a structural basis rather than 

a biological or biosynthetic basis, this kind of “misclassification” is completely 

understandable and is arguably not a misclassification. In this test set we also detected 13 

missing assignments (false negatives). An example of a compound missing an assignment 

is the experimental drug cytidine-5'-diphospho-beta-delta-xylose (CID46936568), which 

was only classified as a pyrimidine ribonucleoside diphosphate but not classified as a 

purine nucleotide sugar (Fig. 2.9B). 

To evaluate ClassyFire’s overall performance, each category was assigned a 

normalized weight based on its number of occurrences among the 800 chemical entities.  

This way, incorrect or missing assignments of the more populated categories (e.g. those 
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at a higher level of the taxonomic hierarchy) would be penalized more compared to less 

populated categories (i.e. those at a lower level of the hierarchy). Each category was 

assigned to an average of 2.6 compounds. ClassyFire obtained score of 7067.04, or 

99.97% of a maximum score of 7067.24. On average, ClassyFire was able to reproduce 

the text-based description with a precision of 99.8% and a recall of 99.9%. 

 

Figure 2.9 Examples of conflicting and missing class assignments. a) Structure of Bixin dimethyl ester 

(CID14413719). b) Structure of cytidine5′DiphosphoBetaDXylose (CID 46936568). 

 

2.5.1 Comparing automated and manual annotations 

The primary motivation behind automated chemical classification is to provide a 

comprehensive, accurate and fast chemical annotation in order to alleviate the cost and 

potential errors of manual classification. While ClassyFire is many times faster than 

manual classification methods we also wanted to assess its accuracy and completeness 

compared to manual classifications. We therefore conducted a detailed comparison of 

ClassyFire’s results from 20 compounds, randomly selected from the test set described 

above, with their manually curated annotation from the ChEBI database. The 126th 
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ChEBI release from April 1st 2015 was used for this comparison. We did not use a more 

recent version of ChEBI since ClassyFire has actually been used over the past year to 

guide the manual annotation process for the ChEBI database. In order to provide the 

complete ChEBI annotation, a script was used to infer a list of ancestors for each of the 

20 compounds based on the selected ChEBI release. Each compound was assigned an 

average of nearly 33 ChEBI classes. ClassyFire, on the other hand, returned an average 

of  ~31 categories per compound. The ontology lookup table described in the Methods 

section of this paper was used to map categories returned by ClassyFire to the ChEBI 

classes. This mapping returned an average of 27 terms, or approximately 6 terms less 

than that originally provided by ChEBI. 

This discrepancy can be explained by several factors. First, the idea behind the 

term mapping was to assign each ChemOnt category to an equivalent ChEBI term or, if 

not applicable, the closest ChEBI classes that do not have a parent-child relationship to 

each other. Thus, the category “Primary amines” (CHEMONTID:0002450) has been 

mapped only to the equivalent ChEBI term “primary amine” (CHEBI:32877), and not its 

parent. Additionally, the two hierarchies are built differently. While ChemOnt is built as 

a tree, where each node has no more than one parent, a ChEBI term can have several 

parents. For the purpose of our comparison, we complemented the list of the predicted 

ChEBI terms with their inferred parents. When the extended list is considered, each 

compound in the set was assigned to a total number of nearly 45 predicted ChEBI terms. 

Of those, an average of nearly 14 terms were missing from the manual ChEBI annotation. 

These could be added to ChEBI in order provide a more complete and consistent 

annotation. From the 33 terms provided by ChEBI, ClassyFire was unable to return an 



   100 

average of more than 2 terms per compound. This could either suggest that more terms 

should be added to the ChemOnt hierarchy, or the lookup table could be improved. In 

some cases, the term used is based on both a structural and a functional classification. An 

example is the term beta-lactam antibiotic (CHEBI:27933) for Oxacillin (CID 6196). 

Because ChemOnt is strictly structure-based, these terms do not apply. Overall, 

ClassyFire was able to reproduce ~94% of the ChEBI annotations, but also to suggest 

new terms that could accurately increase the number of annotations by another 43.6%. 

The approach presented in this work makes use of diverse cheminformatic 

technologies to precisely detect structural features and classify chemical entities. The 

ClassyFire classification algorithm helps to (partially) overcome many of the limitations 

of previously developed automated chemical classification tools (205,207,208). For 

instance, several rules were developed to classify inorganic compounds, and organic 

metal compounds, which are not comprehensively covered by any current ontology. Most 

categories e.g., benzodiazepines, can be accurately described by one or more structural 

patterns. Others, such as alkaloids and derivatives, can only be defined as a disjunction of 

several subcategories. Furthermore, ClassyFire makes used of IUPAC names to identify 

certain patterns that might not be retrieved by a standard structure search, due to different 

substitution or dehydrogenation patterns. For example, we described a method to classify 

leukotrienes based on IUPAC names, given that there is no single structural backbone 

that could sufficiently and accurately describe each of these compounds. 

2.5.2 Limitations 

Despite the many capabilities that ClassyFire offers, and the different methods used to 

circumvent some of the formalization problems mentioned so far, certain limitations in 
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ClassyFire still remain. For instance, ClassyFire’s reliance on IUPAC names as a 

classification feature continues to cause some problems, particularly for compounds such 

as leukotrienes. This is because the classification of leukotrienes is also partly based on 

their biosynthetic origin. Certain, leukotriene derivatives that are oxidized or reduced at 

one double-bond position are still classified as leukotrienes, even though they might no 

longer have the three conjugated double bonds or the fourth double bond. An example is 

10,11-dihydro-12-oxo-LTB4 (LMFA03020041) found in the LIPID MAPS database. 

Improvements could be made by taking a closer look at such compounds to find more 

common structural patterns. Currently, these leukotrienes would be classified as 

hydroxyeicosadienoic, hydroxyeicosatrienoic, or other eicosapolyenoic acids, depending 

on the number of carbon-carbon double bonds. Additionally, IUPAC names can become 

very difficult to exploit for certain complex structures, such as large fused ring systems. 

Another limitation with ClassyFire lies on its heavy dependence on predefined chemical 

patterns that use imperfect structure representation formats. Because ClassyFire inherits 

some of the limitations found with standard chemical structural representations (i.e. 

SMILES, SMARTS, Markush), the classification accuracy for certain kinds of “sandwich 

compounds” (e.g. metallocene) and alloys (e.g. chromium alloys) is not as good as it 

could be. 

In order to circumvent the aforementioned limitations, and for the sake of 

developing a standard taxonomy, ClassyFire and ChemOnt could benefit from the 

involvement of the International Union of Pure and Applied Chemistry (IUPAC), and 

other chemical standardization or data reporting bodies. These groups could help to 

propose newer/better classifications and provide the long-term continuity that would, in 
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turn, help to achieve a more sustainable and more consensual approach to chemical 

classification. Currently, the ClassyFire code is compatible only with the commercial 

ChemAxon JChem package. In order to ensure the sustainability of ClassyFire, we are 

committed to making ClassyFire a completely open source project that could benefit 

from contributions from the global cheminformatics community. ClassyFire’s continued 

maintenance and further development will be achieved under the joint supervision of The 

Metabolomics Innovation Center (TMIC), the National Institute of Health (NIH), the 

European Bioinformatics Institute (EBI), as well as IUPAC. We believe that this will 

facilitate the involvement and more widespread adoption of ClassyFire and ChemOnt, by 

the scientific community. 

2.6 Use Cases 

As mentioned earlier, the benefits and applications of a comprehensive chemical 

classification schema and well-defined chemical ontology system are multifold. Chemical 

classification makes chemical information easy to index, easy to organize, easy to search 

and easy to exchange. It also makes it possible to automate chemical annotations, to 

perform complex chemical searches, to rapidly identify compounds for compound-

specific predictions, and to decipher patterns that underlie key biomolecular interactions. 

To illustrate this, we provide some example use cases showing how ClassyFire’s 

chemical classification has been used to help solve some common cheminformatics tasks. 

2.6.1 Example 1: Classification of the PubChem Database 

PubChem (9) is a freely available chemical database maintained by the National Centre 

for Biotechnology Information. It stores chemical, physicochemical and biological 
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information for more than 91 million chemical entities as of June 2016, making it the 

largest, open-access chemical database in the world. However, as large as PubChem is, 

only 0.12% of the compounds in the database have ever been assigned to a chemical class 

or given a Medical Subject Heading (MeSH) classification.  MeSH is a manually 

maintained, controlled vocabulary produced by the National Library of Medicine. It is 

used for indexing, cataloging, and searching for biomedical and health-related 

documents, including all abstracts and papers listed in PubMed (221). Over the past 40 

years, MeSH classifications have been assigned manually for just 115,000 compounds in 

PubMed, yet there are 60 millions compounds listed in PubChem. Given that the number 

of documents listed in PubMed is rapidly increasing, a manual assignment of the MeSH 

classes will become increasingly difficult. Moreover, it would be impossible to manually 

annotate all 60 million compounds in PubChem using the standard MeSH methodology. 

Therefore, we decided to automatically annotate and classify all of PubChem (and all 

PubMed chemicals) using ClassyFire. The structure-based classification of PubChem 

compounds was performed through parallel computing on 22 CentOS quad-core CPUs, 

with 3.6 GB of RAM each. The operation was completed in 424 hours for an average of 

550 milliseconds (ms) per compound. The classification results have been submitted to 

the PubChem development group. This group is actively working to display ClassyFire’s 

classification of all the PubChem compounds, thereby allowing users to view, query and 

access compounds based on their ChemOnt classification. This should be completed by 

late 2016. With PubChem fully classified, the indexing of PubMed documents will now 

be much easier. Combining structure-based annotations with biological data could also 

assist scientists in various projects, such as ontology-based chemical enrichment analysis 



   104 

(201). Moreover, through ClassyFire, it is now possible to perform a variety of fast data 

searches and retrievals of PubChem data, as outlined below. 

2.6.2 Example 2: Fast Searching and Data Retrieval 

Chemical databases can typically be queried via physico-chemical parameters (e.g. mass) 

while others can be searched for the presence of functional groups (e.g. a ketone or 

carboxylic acid), among other properties. However, querying a chemical database with 

both substituent constraints and mass constraints is very difficult. For large databases, 

this would require one to perform structure-based searches over millions of compounds, 

which can take several minutes, even when the compounds are fully indexed. Moreover, 

certain structural constraints cannot be expressed using conventional structure-handling 

formats, such as SMARTS. Additionally, conventional substructure or structure-based 

searches do not allow one to search for chemicals belonging to categories such as 

“Alkanes” or “Alkaloids and derivatives”. Having a chemical database annotated with 

substituent or chemical classification information can make these kinds of substituent and 

mass constraint searches very fast and easy. ClassyFire supports exactly this type of 

flexible search as it allows users to select compounds by defining a set of conditions 

based on various parameters such as, the chemical category, the mass, the number of 

rings, etc. These types of search combinations are very common in fields such as mass 

spectrometry, where compounds must be identified based on physico-chemical properties 

and relatively vague information about their putative substituents. ClassyFire’s text 

search operations are supported by Elastic Search (222), an open source search and 

analytics engine. As a result, compounds can be selected from over 77 million 

compounds stored in the ClassyFire database (as of June 2016) based on the ChemOnt 
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terminology. Additionally, when needed, the results can be filtered based on physico-

chemical properties. An illustration of how such a search can be conducted is provided in 

Figure 2.10, where ClassyFire returned a list of “Alkaloids containing more than one ring 

or, and having a mass lower than 700 daltons”. The operation returned 30,392 hits 

through its text-based search in 509 ms. The results of the text-based search could be 

used to identify unknown structures obtained from biological samples. They could also be 

used to explore and cluster sets of small-molecules isolated from metabolomics or natural 

product extraction experiments. 

2.6.3 Example 3: Automated Chemical Annotation  

A growing number of chemical databases are being developed wherein detailed 

descriptions of individual chemicals are required.  Examples include MetaCyc (220), 

ChEBI (200), DrugBank (99), T3DB, ECMDB (223) and FooDB (224). In many cases 

these descriptions must be manually composed and edited by experts and annotators. For 

well-known chemicals writing a comprehensive description is trivial. However, for 

lesser-known chemicals or chemicals where very little literature is available, the 

preparation of an even a short textual description of 20-30 words can take hours of library 

sleuthing and reading. 
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Figure 2.10 Text-based search on the ClassyFire web server. A) Building the query. B) Sparteine, one of 

the returned compounds. 

 

Because ClassyFire has a comprehensive Chemical Classification Dictionary consisting 

of thousands of 20-50 word textual descriptions for different compound classes, it is 
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possible to use this Dictionary to automatically describe or annotate obscure or little-

known compounds. In particular, ClassyFire was used to generate over 13,100 

meaningful, 20-50 word descriptions for compounds in, ranging from drugs to poisons, 

for which no literature data was available. These precise, but automatically generated 

compound descriptions are now available in the HMDB, ECMDB, T3DB, FooDB, and 

YMDB (225). 

2.7 Conclusions 

In this paper, we have described a comprehensive, computable chemical taxonomy along 

with a structure-based ontology that permits the fully automated classification of most of 

the world’s known chemicals.  In particular we have described: 1) a well-defined, 

hierarchical classification structure consisting of up to 11 taxonomic levels; 2) a freely 

available Chemical Classification Dictionary (or ontology) consisting of >4,800 carefully 

identified and precisely described chemical classification terms, with over 9,000 

synonyms; 3) a set of >9000 objective rules, patterns and criteria for classifying 

compounds on the basis of their structure; and 4) a computer program and a freely 

available web server (called ClassyFire) that performs rapid, accurate, automated rule-

based taxonomic classification of chemical compounds. To our knowledge, this is the 

first freely available system that is capable of automatically, accurately and 

comprehensively organizing most of the world’s known chemical entities into structural 

classes, at the scale presented. 

The flexibility of ClassyFire’s source code and ChemOnt’s chemo-taxonomic 

definitions, along with their open accessibility should allow ClassyFire and ChemOnt to 

easily evolve to fit with the ever-changing views of chemistry and with the increasing 
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number of newly discovered scaffolds of natural and synthetic chemicals. In addition to 

developing an extensive taxonomy of organic compounds, we have also developed a 

comprehensive taxonomy for inorganic compounds consisting of 674 categories based on 

molecular formulas and atom types. We believe this is the first significant attempt to 

design a comprehensive computable chemical taxonomy for inorganic compounds.  

ClassyFire’s performance shows that the classification of chemical compounds 

can be accurately computed in a rapid, dataset-independent manner by relying solely on 

structural properties. Our data suggests that most chemical classes can be represented by 

one or more structural patterns. In certain cases, however, compounds from a given 

chemical category undergo reactions (e.g. loss of oxygen, substitutions) that might not 

match the constraints described in a category description. Some approaches to provide 

accurate descriptions in these scenarios would be to add more patterns, update position-

specific constraints, and/or develop some heuristics for a more accurate classification. For 

instance, creating more rules for IUPAC name parsing could help to assign some classes 

more accurately. Overcoming these limitations would certainly improve the overall 

performance of ClassyFire. 

It is important to emphasize that this taxonomic effort was not done in isolation.  

It has been jointly developed and tested by curators and developers some of the largest 

and most popular open-access chemical databases in the world, including PubChem, 

ChEBI, LIPID MAPS, DrugBank, HMDB and others.  The ClassyFire/ChemOnt 

taxonomy is already being used in several of these databases and is expected to be 

adopted by several other chemical databases in the near future. Furthermore, the entire 

ClassyFire/ChemOnt taxonomy was mapped, in a joint effort, to several existing 
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taxonomic/ontological schemes, such as the ChEBI and LIPID MAPS ontologies. As 

illustrated with the previous examples, applications of ClassyFire are multifold, spanning 

areas including drug design and metabolomics. ClassyFire has also found applications in 

the field of Chemical Health and Safety, where hazard assessment of small molecules, 

based on their structural features, has gained increasing interest recently. 

ClassyFire is obviously not the final word on chemical classification or chemical 

taxonomies/ontologies.  Given the size and complexity of the global chemical space 

along with the rapidly evolving needs of chemists and cheminformatics specialists, we 

expect that this subject (and this software) will evolve considerably over the coming 

years. Therefore, besides the freely available web service, we are actively working on a 

version of ClassyFire that has freely accessible source code and documentation. We are 

committed to making this resource fully open source (by December 2016). We believe 

this effort is an important first step towards the design of a fully computable, universally 

accepted chemical taxonomy and ontology.
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3.1 Introduction 

Metabolism can be defined as the sum of all chemical reactions that take place in a cell or 

within an organism. Metabolism is key to the production of energy (catabolism), the 

generation of cellular building blocks (anabolism) as well as the activation, 

detoxification, and elimination of metabolic by-products or xenobiotics. Over the past 

100 years considerable effort has gone into determining the precise molecular details of 

primary metabolism – i.e. the metabolic processes associated with the production and 

breakdown of essential metabolites (226). The citric acid cycle (227), gluconeogenesis 

(228), glycolysis (228), lipid biosynthesis (229), steroid metabolism (230) are all 

examples of primary metabolic processes that are now thoroughly understood. 

Unfortunately, somewhat less effort has been devoted to the characterization or 

understanding of non-essential or secondary metabolism and secondary metabolites. 

Secondary metabolism typically refers to non-essential metabolites or metabolites 

generated through the detoxification and elimination of metabolic by-products or 

xenobiotics. Xenobiotics include compounds such as drugs, herbicides/pesticides, plant 

or food compounds, food additives, surfactants, solvents, cosmetics and other man-made 

or biologically foreign substances.  In many cases these secondary metabolites are the 

products of promiscuous or non-specific enzymatic reactions (231,232), microbial or gut 

metabolism (233,234), liver-based phase I metabolism (oxidation, reduction or 

hydrolysis) or general phase II metabolism (conjugation). The characterization of 

secondary metabolites has long been vitally important to the pharmaceutical industry 

(232) but more recently it has become increasingly important to the herbicide/pesticide 

industry (235) and to the field of metabolomics (236).  Indeed, it is widely thought that 
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much of the so-called “dark matter” (47) in metabolomics is represented by large 

numbers of uncharacterized secondary metabolites. 

The characterization or identification of secondary metabolites is quite difficult 

and is not unlike natural product identification or dereplication (237). It can take months 

or even years to purify and positively identify a secondary metabolite using standard 

analytical techniques. As a result, there has been growing focus on using computational 

tools to help with this process. Indeed, over the past two decades, a number of very 

effective computational tools have been developed to predict the secondary metabolism 

of xenobiotics – especially drugs. These computer programs typically require a starting 

parent molecule and employ pattern recognition along with hand-made rules or machine-

learned algorithms to identify: 1) a site of reaction or a site of metabolism (SoM); and/or 

2) a resulting chemical product.  For a more detailed review of the main approaches and 

software tools used for in silico metabolism prediction, the reader is referred to section 

1.9. Most in silico metabolism prediction tools are quite specific to certain classes of 

reactions or metabolic processes, such as phase I (only) or phase II (only) reactions. 

Table 3.1 provides a list of widely used in silico metabolism prediction tools. As can be 

seen from this table, some programs are commercial (Meteor Nexus (50), MetabolExpert 

(148)), some are freely available as web-servers (e.g. MetaPrint-2D React (159), 

XenoSite (238)) and others are freely accessible standalone software packages (e.g. 

SMARTCyp (146)). Most of these tools are focused on mammalian metabolism (e.g. 

Meteor Nexus), while a smaller number are targeted towards environmental applications 

(e.g. EAWAG-BBD (239)). Some in silico metabolism predictors, such as SMARTCyp 

and isoCYP (156) are limited to predicting phase I metabolism (or a portion of phase I 
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metabolism), while others are more comprehensive  (Meteor Nexus, and SyGMa (240)), 

covering a broad range of phase I and phase II biotransformations. 

 

Table 3.1 Computational tools and resources used for in silico metabolism prediction. 

Software Coverage Approach Output Licensing 

SMARTCyp(146,160) CYP450 Hybrid SoMs Free 

StarDrop P450 

(241)  

CYP450 Hybrid SoMs Commercial 

MetaSite(145) CYP450 Hybrid SoMs Commercial 

MetaPrint2D-

React(159) 

Phase I + II Data 

mining/Machine 

learning 

Metabolites Free 

MetabolExpert(148) Phase I + II Knowledge-

based 

Metabolites Commercial 

SyGMA(240) Phase I + II Knowledge-

based 

Metabolites Available to 

academia 

EAWAG-

BBD/PPS(161,239) 

Environmental 

microbial 

Knowledge-

based 

Metabolites Free 

FAME(242)   Metabolites Free for 

academic 

 

Unfortunately, even with the growing abundance of in silico metabolism 

prediction tools, there continue to be a number of significant limitations, especially with 

regard to their performance, their utility and their accessibility.   In particular: 1) very few 

tools predict more than the SoM; 2) only a small number of tools provide predicted 

structures, and those that do place restrictions on their distribution; 3) almost none of the 

existing tools are open source or open access; 4) very few of the tools make their 
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databases or training sets available; 5) none of the comprehensive prediction tools are 

freely available; 6) none of the tools combine phase I, II, gut metabolism and 

promiscuous metabolism together; 7) many tools seriously over-predict metabolites and 

have remarkably high false positive rates (>90%); and 8) almost all of the tools were 

developed and trained on drug molecules and are not adapted for non-drug xenobiotics. 

These limitations have slowed the development of in silico metabolism prediction 

software and have also restricted the field to a tiny number of applications mainly in the 

pharmaceutical industry.  Addressing these limitations and extending the capabilities of 

in silico metabolism prediction software could lead to substantial benefits in many other 

areas of analytical chemistry, natural product chemistry and metabolomics. These might 

include the in silico expansion of chemical databases of drugs (DrugBank (99)), food 

compounds (FooDB (224)), phytochemicals (PhytoHub (243)), environmental 

contaminants (ContaminantDB (244), T3DB (100)), organism-specific metabolites 

(HMDB (8), ECMDB (12), YMDB (225)), and other chemicals of biological interest 

(ChEBI (200)). This in silico expansion could lead to the discovery of new metabolite 

biomarkers, the development of better drugs and consumer products (e.g. food, household 

and cosmetic products), improved toxicology assessment, and the advancement of 

precision medicine (3). 

In this chapter, we present BioTransformer, an accurate, freely available, 

comprehensive tool for in silico metabolism prediction of small molecules. It has been 

specifically designed to address essentially all of the shortcomings previously identified 

with existing in silico metabolism prediction tools. In particular, BioTransformer is open 

source, it is freely available, its databases and predictions are free to download and use, it 
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calculates structures, it provides comprehensive (phase I, II, microbial, promiscuous and 

environmental) metabolite predictions, it is accurate and it covers a wide range of 

molecular classes. BioTransformer combines a knowledge (or rule)-based approach with 

a machine learning approach to predict 1) human CYP450-calyzed phase I metabolism of 

xenobiotics, 2) human gut microbial metabolism, 3) phase II metabolism, and 4) 

promiscuous metabolism of endogenous and exogenous compounds. It also implements a 

set of rules provided by the EAWAG-BBD system (239) to predict environmental 

microbial degradation. In addition to providing a description of BioTransformer we also 

provide a detailed analysis of its performance, including a number comparative analyses 

of BioTransformer with Meteor Nexus with regard to a number of experimentally 

determined metabolites identified after the ingestion of drugs, foods, plants and other 

xenobiotics by various mammalian species. 

3.2 Structure and Implementation of BioTransformer 

BioTransformer consists of five independent prediction modules called “transformers”, 

namely: 1) the EC-based transformer, 2) the CYP450 (phase I) transformer, 3) the phase 

II transformer, 4) the human gut microbial transformer, and 5) the environmental 

microbial transformer. For the prediction of metabolites, BioTransformer implements two 

approaches, a rule-based or knowledge-based approach, and a machine learning 

approach. 
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Figure 3.1 Overview of BioTransformer’s five modules, the EC-based, CYP450, phase II, human gut 

microbial, and environmental biotransformers. 

 

BioTransformer’s knowledge-based system consists of three major components: 1) a 

biotransformation database (called BioTransformerDB) containing detailed annotations 

of experimentally confirmed metabolic reactions, 2) a reaction knowledgebase containing 

generic biotransformation rules, preference rules, and other constraints for metabolism 

prediction, and 3) a reasoning engine implemented separately for each “transformer” 

module. Its machine learning system uses a set of random forest prediction models for the 

prediction of CYP450 substrate selectivity. In this section, we describe the structure, 

content, and implementation of BioTransformerDB, the knowledgebase and the reasoning 

engine. Moreover, we briefly describe the CYP450 Metabolism Prediction System. 
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Finally, we will describe BioTransformer’s workflow. Figure 3.1 gives a brief overview 

of each module, their tasks, and the type of prediction approach they employ. 

3.2.1 BioTransformerDB: A Small Molecule Biotransformation 

Database 

BioTransformerDB is a database that consists of a manually curated collection of 1200+ 

experimentally confirmed biotransformations derived from the literature. It was 

developed to help with: 1) the design of biotransformation rules, 2) the training and 

validation of machine learning-based metabolism prediction models, and 3) the supply of 

known biotransformation data to BioTransformer’s reasoning engine. Each 

biotransformation in BioTransformerDB includes a starting reactant, a reaction product, 

the name or type of the enzyme catalysing the biotransformation and a reference. For the 

purposes of this document, a reactant is defined as a small molecule that binds to a 

specific enzyme and undergoes a metabolic transformation catalysed by that enzyme. A 

biotransformation describes the chemical conversion of molecular transformation of a 

reactant to one or more products by a specific enzyme (or enzyme class) through a 

defined chemical reaction. These biotransformations include the cytochrome P450-

catalyzed phase I metabolism of ~400 unique starting reactants (and 780+ reaction 

products), the phase II metabolism of 300+ unique starting reactants (and 400+ reaction 

products) and human gut microbial metabolism of 50+ unique starting phenolic 

compounds (along with 80 reaction products). Cytochrome P450 enzymes (CYP450s) are 

responsible for > 90% of phase I oxidative reactions and >75% of drug metabolism (134), 

while UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) are 

responsible for the phase II metabolism of most xenobiotics(245,246). In the gut 
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microbiota, the enzymatic reactions are mostly reductive, and carried out by anaerobic 

bacteria due to the very low concentration of oxygen. 

The “starting” reactants in the current version (1.0) of BioTransformerDB 

primarily consist of xenobiotics such as drugs, pesticides, toxins and phytochemicals. The 

database also includes a small number of sterol lipids and a selected set of mammalian 

primary metabolites. In assembling BioTransformerDB we gathered reaction data from 

the existing literature (>100 references) along with data downloaded from publicly 

available databases such as DrugBank (99), PharmGKB (247), XMETDB (153), 

SuperCYP (152). These databases list over 1,000 enzyme-substrate associations for the 

major CY4P50s and UDP-glucuronosyltransferases (UGTs). PhytoHub (243)was used to 

compile information about the metabolism of phenolic compounds in the gut.  

The data curation process was conducted collaboratively with a small team of 

chemistry experts, and consisted of three phases. These phases involved: 1) the collection 

of biotransformation data, 2) the creation and annotation biotransformation objects and, 

3) data validation.  Enzyme-substrate associations were collected from various publicly 

available databases such as DrugBank, SuperCYP, and KEGG. Other enzyme-substrate 

associations were extracted manually from >100 scientific papers, review articles and 

drug metabolism textbooks, most of which were accessible electronically. When 

available, information about the structure and/or the name of a metabolite was also 

extracted. In some cases, insufficient information was provided about the exact reaction 

type, the structure of the resulting products or at least the site of metabolism. Moreover, 

for several compounds the reported sets of metabolites were either incomplete or 

conflicting. Such scenarios required further reading and checking by the annotation team 
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in order to acquire more supporting evidence, and to further validate the data. During the 

data collection and validation process, enzyme associations were retained only if they had 

experimental supporting evidence about the correct structure of the metabolite, or both 

the site of metabolism and the reaction type. In total, 782 enzyme-substrate associations 

were validated. 

For each biotransformation, the reactant and products were required to have a 

valid name and valid structural representations (SMILES string and standard InChIKey). 

The InChIKeys proved to be very useful for sorting, grouping and categorization, as well 

as in the indexing and searching of the chemical database. For most compounds the 

structures were available from online databases such as DrugBank, ChEBI (200), 

PubChem (9), and PhytoHub. When necessary, structures were generated using 

ChemAxon’s MarvinSketch v.17.2.27.0 (84). In many cases the same compound was 

found to have several identifiers (e.g. names, synonyms IDs, etc.) and several structural 

representations that were linked to the same name, due to the existence of multiple salt 

forms, different protonation states, and tautomerism. This is a very common problem in 

managing chemical information, and represents a significant challenge in chemical data 

curation and aggregation (248). In an effort to eliminate this problem, all the structures 

were standardized through the removal of salts and charges. For mixtures, only the active 

compound was selected. Particular attention was also paid to stereochemistry, when the 

information was provided. 

After the name and structure standardization process was complete, a list of 

unique compounds was created by comparing the standard InChIKeys and aggregating 

the data corresponding to each InChIKey. If no name was reported for a given reactant, 
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product or metabolite, additional online databases were searched using the standardized 

structure until a name was found. If a given name could not be found, an appropriate 

chemical name was generated using ChemAxon’s MarvinSketch. In certain simple cases, 

the name of the metabolite could be derived from information about the site of 

metabolism and the type of reaction (e.g. 3-OH glucuronide for a glucuronidation of the 

hydroxyl group at the C3 position). For each compound, identifiers from external 

databases were also collected, using DataWrangler, an in-house chemical annotation tool, 

which searches four major chemical databases for the given small molecule and returns 

various types of data, including links to other databases. 

The reaction type for each assembled reaction or biotransformation was assigned 

by selecting the corresponding biotransformation rule in BioTransformer’s reaction 

knowledgebase (described in section 3.2). When the corresponding reaction type or 

pattern was unavailable, a new metabolic reaction object was added to the 

knowledgebase, as described later in this chapter. Certain enzyme classes, such as 

CYP450s, have very broad substrate specificity, and can catalyse a large pool of 

reactions. Therefore, it is common that a phase I oxidative transformation of a small 

molecule will be mediated by several CYP450s, one of which would be the major 

catalysing enzyme. Additionally, it is often the case that several reactions would apply to 

a single starting compound, leading to different metabolites (and metabolic pathways), at 

least one of which would be the major pathway. When reported, such information was 

also integrated in the database’s annotation. 

 The validation process consisted of having one or more database curators check 

the correctness of the structures, names, reaction types and enzyme lists. For each 
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reported biotransformation, a list of scientific sources providing supporting evidence was 

compiled. Because one of the main goals of BioTransformerDB is to support the 

development of in silico metabolism prediction models, the biotransformations had to be 

accurately reproduced when applying the specified reactions. Considerable effort was put 

into performing this specific task, as described in section 3.2.2, which also led to 

improvements in the encoded reaction descriptions in the reaction knowledgebase 

(section 3.2.1). 

 All the data in BioTransformerDB is stored as a JSON document. It currently 

contains 2,824 enzyme-reactant associations, 1,284 unique biotransformations, and 1,290 

external database identifiers for a total of 1,428 compounds. Figure 3.2 displays an 

example of a BioTransformerDB entry corresponding to the N-dealkylation of the 

tranquilizing agent diazepam. 

 

 

Figure 3.2 N-dealkylation of diazepam, a tranquilizing agent, as represented in BioTransformerDB. The 

methyl group (within the red circle) is substituted by an hydrogen atom. 
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3.2.2 The Reaction Knowledgebase 

The reaction knowledgebase contains chemical reaction descriptions and rules encoded 

by SMILES (197), SMARTS (68), and SMIRKS (69) strings that are used by the 

reasoning engine to make biotransformation predictions. This knowledgebase encodes 

information about, and contains mapping data between, five different concepts: 1) the 

Biosystem, 2) the Metabolic Enzyme, 3) the Metabolic Reaction, 4) the Metabolic 

Pathway, and 5) the Chemical Class (as determined by ClassyFire) (Chapter 2). These 

concepts are defined as follows: 

1) A biosystem is a living organism or a community of living organisms within 

which the biotransformation reactions can occur. Currently, the implemented 

biosystems are the human organism, the human gut microbiome, and the 

environmental microbiome. 

2) A metabolic enzyme is an enzyme that catalyses or accelerates a metabolic 

reaction. 

3) A metabolic reaction is a chemical reaction that modifies the structure of a 

molecule, leading to the generation of one or more products. 

4) A chemical class refers to a group of chemicals that share a common structure 

feature or a group thereof as defined using ClassyFire (249). 

5) A metabolic pathway is a linked series of chemical reactions that occur in a 

specific order in the cell or within the organisms. A metabolic pathway is 

organism-specific as an enzyme can be expressed by some organisms but not by 

others. 
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The interrelationships between the different concepts are illustrated in Figure 3.3. The 

construction of the reaction knowledgebase required data acquisition and aggregation 

from several sources, including the information captured in BioTransformerDB. 

Additional reaction information was gathered from resources such as the SIB 

Bioinformatics Resource Portal (ExPASy) (250), the BRENDA enzyme database (251), 

the Cyc database (112), the UniProt knowledgebase (UniProtKB) (252), the KEGG 

database(253), and enzyme nomenclature information provided by the International 

Union of Biochemistry and Molecular Biology (IUBMB) (254). The collected data was 

used to: 1) design, test, and validate generic reaction/transformation rules, 2) add 

constraints and rules that would be used by the reasoning engine, and 3) map entities (e.g. 

phosphatidylcholines, glycerophospholipids metabolism pathway, human) from different 

concepts (e.g. Chemical Class, and Metabolic Pathway, Biosystem). Based on the 

information gathered from the various resources, 398 associations could be established 

between the reaction knowledgebase’s enzymes and reactions. Priority was given to 

enzymes with wide substrate specificity such as the arylamine N-acetyltransferase (EC 

2.3.1.5), as the aim was to predict the metabolism of small molecules partly based on 

generic biotransformation rules. Exceptions included serine palmitoyltransferase (EC 

2.3.1.50), which provides the sphingoid base 3-dehydrosphinganine needed for the 

biosynthesis of sphingolipids. In total, 680 biotransformation rules were created and 

associated with at least one enzyme. The biotransformation rules were encoded in the 

SMIRKS language (69). For each biotransformation rule, one or more structural 

constraints (e.g. the known enzyme substrates are restricted short-chain fatty acyl chains) 

were encoded separately, either in the SMARTS language (68) or programmatically (by 
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combining several rules based on the structural constraints and/or physico-chemical 

properties). 

 

Figure 3.3 Interrelationships between the five different concepts represented in the BioTransformer’s 

knowledgebase. The figure depicts a small portion of the sphingolipid metabolism pathway in humans, as 

provided by the KEGG database. An example of a metabolic reaction is the conversion of compounds from 

the chemical class of sphingomyelins into their corresponding ceramides (as shown by the corresponding 

arrow) by the enzyme sphingomyelin phosphodiesterase (EC 3.1.4.12). The dotted arrow shows the 

conversion of sphingomyelins to ceramide-1-phosphates by sphingomyelin phosphodiesterase D (EC 

3.1.4.41), which is expressed in Aspergillus flavus, but not in humans. 

 

The separate design of structural constraints was necessary for several reasons. First, 

structural constraints can sometimes be difficult or impossible to fully encode using the 

SMIRKS language alone, due to its limited expressivity. Second, the juxtaposition of 

constraints within a SMIKRS pattern can make it difficult to understand, and 

cumbersome to update. 

A typical reaction scheme encoded in the reaction knowledgebase is shown in 

Figure 3.4, which illustrates the biotransformation of 1,2-dihexanoyl-sn-glycero-3-
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phosphoserine (PS(6:0/6:0)) into 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine 

(PE(6:0/6:0)) by the human phosphatidylserine synthase 2 (EC 2.7.8.29). The encoding of 

this generic reaction via SMIRKS and SMARTS allows the reaction to automatically 

replace the ethanolamine in any diacyl-sn-glycero-3-phosphoethanolamine by a serine 

molecule to produce the corresponding diacyl-sn-glycero-3-phosphoserine. 

 

Figure 3.4 Encoding a phosphatidylserine biosynthetic reaction. A) Metabolism of 1,2-dihexanoyl-sn-

glycero-3-phosphoethanolamine (PE(6:0/6:0)) to 1,2-dihexanoyl-sn-glycero-3-phosphoserine (PS(6:0/6:0)) 

by the human phosphatidylserine synthase 2 (EC 2.7.8.29). B) The encoding of the reaction requires that 

the atoms be indexed, so that the substitution can be accurately executed. 

 

Once a reaction was encoded, several tests were performed to assess its 

correctness by applying the reaction to known substrates as well as to non-substrates (i.e. 

chemicals that were known not to satisfy the various constraints). If the reaction passed 

all the tests it was added to the database; if it failed, the reaction schema was subject to 

one or more iterations and tests until validated. Some of the encoded reactions in the 
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reaction knowledgebase apply to a very limited set of chemicals, and can be used to 

accurately predict the metabolism of compounds belonging to those classes. Such 

examples include the aforementioned conversion of diacyl-sn-glycero-3-

phosphoethanolamines to diacyl-sn-glycero-3-phosphoserines, and the metabolism of 

several classes of lipids, which are known to follow classic primary metabolic pathways. 

Other reactions are so generic or non-specific that they would lead to the high number of 

false predictions if applied blindly. Some examples of highly non-specific reactions 

include aliphatic hydroxylation, N-dealkylation, and glucuronidation, among many 

others. These reactions are catalysed by enzymes that have broad substrate specificity, 

such as CYP450s and UGTs. To handle these situations, new reaction subtypes and 

constraints were defined, which focused on a specific subclass of compounds that 

fulfilled a defined set of structural constraints. The resulting manually generated rules 

were then subject to further testing and validation. An example of such a reaction is the 

N-dealkylation of alicyclic tertiary amines catalysed by CYP3A4 (among others), a well-

studied bioactivation pathway of cyclic amines (135). 

In addition to the core knowledge provided by textbooks, online databases and 

journal articles, the design of biotransformation rules for the reaction knowledgebase 

often required additional investigation.  One approach consisted of selecting compounds 

(from BioTransformerDB) that triggered a given reaction and labeling them based on 

whether their expected metabolites were reported or not. Further analysis of these 

reaction sets often suggested new reaction schemes or the addition of new constraints to 

existing reaction schemes. A similar process was previously used to generate 300+ 

biotransformation rules for the prediction of environmental microbial metabolism 
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(161,239). These rules were also encoded, tested and added to BioTransformer’s reaction 

knowledgebase. Overall, a total of 797 biotransformation rules were encoded, tested, and 

added to the reaction knowledgebase.  

 In addition to identifying the mechanisms involved in various metabolic reactions, 

and the encoding of biotransformation rules, another challenge to building the reaction 

knowledgebase was the prioritization of specific metabolic reactions. For any compound 

that triggers several competing reactions, certain reactions are more likely to occur than 

others. Therefore the metabolites resulting from these preferred reactions are more likely 

to be observed. Given a pair of metabolic reactions, a common approach to define 

precedence rules involves a detailed analysis of common putative and observed 

metabolites via NMR or mass spectrometry (161). Another approach involves using 

NMR or mass spectrometry to perform time-course monitoring of biotransformations in 

order to elucidate the preferred metabolic pathways (255). In this work, our construction 

of precedence rules between pairs of reactions was mostly based on data acquired from 

previously reported scientific studies, as well as observations made in previous studies. 

For instance, when absorbed in the small intestine, polyphenolic compounds must 

be deconjugated first (via glucuronidases or carboxylesterases) before undergoing any 

reductive transformation (256,257). Recently, Burapan, S. et al. (255) investigated the 

regioselectivity of O-demethylation by the human gut bacterium Blautia Sp. MRG-

PMF1, and concluded that O-demethylation of polymethoxyflavones occurs most 

preferably at the C-7 position, compared to the C-4’ and C-3 positions. Based on these 

observed patterns, kaempferol 7,4'-dimethyl ether 3-glucoside would more likely undergo 

O-deglycosylation, followed by C-7 O demethylation to give kaempferol 4’-methyl ether, 
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which will then undergoes further metabolism (see Figure 3.5). In total, 190 precedence 

rules were created for 49 unique biotransformation rules that were encoded for the human 

and/or human gut microbial biosystems. In addition, 1960 precedence rules for 195 

unique biotransformation rules were adopted from the EAWAG-BBD system 

(environmental microbial metabolism). 

 

Figure 3.5 Metabolism of kaempferol 7,4'-dimethyl ether 3-glucoside in the human gut microbiome. The 

encoding of preference rules provides a more likely metabolism pathway leading to kaempferol 4’-methyl 

ether. 

 

 Not all reaction schemes in the reaction knowledgebase are fully specified. For 

instance, because relatively little is known about the biology and enzymology of the gut 

microflora, a large number of encoded biotransformation rules were either assigned to an 

enzyme superfamily or to an “unspecified enzyme”.  For the knowledgebase’s collection 

of environmental microbial reactions, the biotransformation rules were assigned to a 

single “unspecified enzyme”, as they are often consensus rules designed by combining 
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patterns of reactions catalysed by several enzymes. Upon validation of the reactions and 

the addition of constraints, 1,408 enzyme-based reaction associations were created. The 

next step consisted of associating enzymes with metabolic pathways, and the 

corresponding biosystems. This step is very important for several reasons. First, many 

metabolic pathways are organism-dependent as different organisms express different 

enzymes or transporters (see Figure 3.3). Thus, as illustrated in Figure 3.3, the metabolic 

route linking a compound to a metabolite could vary between organisms. While 

sphingomyelins can be directly converted into ceramide-1-phosphates in Aspergillus 

Flavus, humans must convert sphingomyelins into ceramides first, which are then 

transformed into ceramide-1-phoshphates. Second, the mapping also allows one to 

encode more constraints and exclusion rules for certain types of compounds. For 

instance, glycerophospholipids are transformed solely within the glycerophospholipid 

metabolism pathway, and do not undergo CYP450- or UGT catalysed metabolism. In 

total, seven metabolic pathways were created, 84 enzyme-pathway associations, and nine 

chemical class-pathway associations were created for the human biosystem. A summary 

of the numbers of rules and associations encoded in the biotransformation database are 

shown in Table 3.2 for each of the five transformers (EC-based, human CYP450, Human 

gut microbial, phase II, and environmental microbial). The biotransformation rules and 

the list of enzymes cover the EC classes EC1 through EC6, with more focus on classes 

EC1 to EC4. The metabolic pathways are currently limited to lipid metabolism. 
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 No. of 

enzymes 

No. of 

biotransformation 

rules 

No. enzymes-

rules 

associations 

No. of 

covered 

biosystems 

EC-based 193 252 282 1 

CYP450 9 132 690 1 

Human Gut 25 135 135 1 

Phase II 8 40 46 1 

Environmental 

microbial 

1 301 301 1 

 

Table 3.2 Statistics for each of the five biotransformers. 

3.2.3 The Reasoning Engine 

BioTransformer’s reasoning engine uses the rules in the biotransformation database to 

select the most likely of all applicable metabolic biotransformations/pathways. In general, 

two types of reasoning are used for the selection/ranking of predicted metabolites: 

absolute reasoning, and relative reasoning (258). Absolute reasoning solely focuses on 

the likelihood of a biotransformation to occur, and is used to select the biotransformations 

with an occurrence ratio above a given threshold. Examples of biotransformation 

software using absolute reasoning include SyGMA and Meteor Nexus. Relative reasoning 

evaluates the comparative likelihood between two independent but competing reactions 

(e.g. flavone 7-O-demethylation if more likely to occur than flavone 4’-O-demethylation 

(255)). Examples of computational tools using relative reasoning include Meteor Nexus 

and the EAWAG-BBD/PPS system. The current version of BioTransformer only 

provides an option to use relative reasoning. 
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 Besides qualitative attributes (e.g. chemical class), reasoning engines often also 

use quantitative attributes (e.g. mass, LogP) to guide their predictions. BioTransformer’s 

reasoning engine uses both types of attributes. While chemical classification can help to 

select the most likely biotransformations or discard the unlikely ones, quantitative 

attributes such as the mass and LogP are used to predict the substrate specificity for 

various enzymes. For this specific task, the current version of BioTransformer focuses on 

nine of the most “active” or best-studied CYP450 enzymes. The prediction of their 

specificity toward a given substrate is made by CypPred, a machine learning based 

software tool developed in a collaborative project. CypPred is unpublished as of now, and 

will be briefly described in section 3.2.4. 

 With the reaction knowledgebase in hand, the reasoning system was implemented 

programmatically for each of the five different transformers. The rationale behind this 

design was to have independent transformers that could be used separately. This way, one 

could focus on a specific type of metabolism (e.g. CYP450-ctalyzed metabolism) or a 

specific type of biosystem (human). Among the five transformers, four rely solely on the 

application of rules and constraints from the reaction knowledgebase. These four are the 

EC-based transformer, the phase II transformer, the human gut transformer and the 

environmental transformer. The cytochrome P450 (phase I) transformer, which focuses 

on the metabolism of small molecules mediated by CYP450 enzymes, is the only one that 

implements a machine learning approach in combination with a knowledge-based 

approach. In addition to the five transformers, the reasoning engine is used by a 

combined human “super transformer”, which aims at simulating the metabolism of small 

molecules in humans (including the human gut), from their absorption to their excretion. 
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3.2.4 The CYP450 Metabolism Prediction System 

Cytochrome P450 enzymes (CYP450s) constitute a superfamily of heme proteins, with 

over 50 isozymes identified in humans (259). They are predominantly found in the liver, 

but also occur in other organs such as the lungs and the kidneys. CYP450s are the major 

oxidative enzymes in the human body, and are responsible for the metabolism of a large 

number of compounds. Nine specific CYP450s have been identified as responsible for 

most of the phase I metabolism of xenobiotics (e.g. drugs, food additives, and 

environmental contaminants) and a small number of endogenous compounds. These 

include the CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2D6, 

CYP2E1, and CYP3A4 isozymes. Because of their broad specificity, a special CYP450-

reactant specificity prediction was implemented, in order to predict metabolites for the 

more likely reactants only. The enzyme-specificity is assessed by a program called 

CypPred. CypPred is a software tool that uses a machine learning based approach 

(random forest (260)) to predict whether a small molecule reacts with any of the CYP450 

isozymes. CypPred provides nine random forest models, one for each of the isozymes. 

These models use the physico-chemical properties and a substructure fingerprint of a 

molecule for their prediction. The substructure fingerprints were partly developed by 

including a subset of SMARTS pattern definitions from ClassyFire (249), a set of 

SMARTS patterns known to trigger CYP450-catalyzed metabolism (e.g. p-substituted 

phenols, or N-substituted piperazine), the corresponding PubChem fingerprint (9), and 

the MACCS fingerprint (79). These fingerprints encode pattern definitions for key 

functional groups and structural features relevant to CYP450-catalyzed metabolism, 

which were obtained through data mining. In addition to the nine models, CypPred also 
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used a heuristic approach to filter candidates that are known to be out of scope for 

CYP450 mediated metabolism, based on their chemical structure and/or physico-

chemical properties. CypPred is freely available at 

https://bitbucket.org/Leon_Ti/cyppred/overview. 

Given any small molecule, the CYP450 transformer uses CypPred to predict 

which of the nine CYP450s is likely to metabolize the molecule. Subsequently, it 

implements the constraints and biotransformation rules encoded within the knowledge 

database to predict the metabolites. As for any other transformer, the user can vary the 

parameters, including the number of transformation steps, and whether to use precedence 

rules. 

3.2.5 BioTransformer’s Input and Workflow 

BioTransformer was implemented in the Java programming language, and can be used as 

a command-line tool to predict the metabolism of small organic molecules. Beside 

CypPred described in the previous section, BioTransformer uses two other open-access 

tools, namely the Chemistry Development Kit (CDK) (261), and the AMBIT library 

(262).  The CDK programming library is used for several operations, including the 

calculation of physico-chemical properties, the execution of superstructure search 

operations, and the handling of chemical structures, among others. The AMBIT library is 

used for the application of biotransformation rules and structure generation. 

 BioTransformer’s workflow is illustrated in Figure 3.6. As can be seen in this 

diagram BioTransformer accepts molecules either in SMILES (single molecule), MOL 

(single molecule), or SDF (single or multiple compounds) format as input. Each molecule 

must be an organic molecule and it must not be a mixture. Once the input is parsed, the 

https://bitbucket.org/Leon_Ti/cyppred/overview
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structures are subjected to chemical validation and standardization. The standardization 

process consists of removing charges from functional groups (with some exceptions, such 

as nitro groups), checking and validating bond types and adding explicit hydrogen atoms. 

Subsequently, BioTransformer predicts biotransformations and the resulting metabolites 

for each query molecule separately.  The prediction can be run in single mode, involving 

one of the five transformers (CYP450, EC-based, phase II, gut microbial, or 

environmental microbial). Additionally, a human “super transformer” has been 

implemented to mimic the metabolism of small molecules in the human “superorganism”, 

which also includes the gut microbiota. This super transformer integrates the CYP450, 

EC-based, phase II, gut microbial transformers and covers a number of different reaction 

types, including hydrolysis, oxidation and reduction, and conjugation. The prediction step 

is followed by the “metabolic tree reconstruction and metabolite annotation” step. Based 

on the information from the predicted biotransformation, BioTransformer builds a 

metabolic tree by associating each metabolite with its parent(s). Moreover, each predicted 

metabolite is annotated with various information that provides structural identification, 

reports its physico-chemical properties, and explains its origin. The data includes: 1) 

three chemical identifiers (metabolite ID, InChI, InChI Key), 2) the molecular formula, 3) 

the monoisotopic mass, 4) the reaction type leading to the metabolite, 5) the biosystem 

that generated the molecule, 5) the parent compound identifiers (BioTransformer ID, 

InChIKey) and, 6) the parent monoisotopic mass. For each query molecule, the results are 

returned in a separate SDF file that contains the structure and annotation of each 

metabolite. The returned information can be used separately to build a metabolic tree. It 
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can also be used to compute neutral losses for MS-based analyses that can be used to 

experimentally detect each biotransformation. 

 

Figure 3.6 BioTransformer’s workflow. 

 

3.3 Evaluation of BioTransformer’s predictions 

In order to evaluate the performance of BioTransformer, we performed a comparative 

analysis with two popular in silico metabolism prediction tools, namely Meteor Nexus 

(50) and the EAWAG BDD/PPS system (49,161,239). The procedures and results are 

presented below. 
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3.3.1 Evaluation of BioTransformer’s Single-step Metabolism 

Prediction in Mammals 

In order to evaluate whether BioTransformer could accurately predict single-step 

biotransformations already reported in the biotransformation database, we randomly 

selected three compounds from the database with known CYP450 metabolism profiles. 

These include caffeine (a food compound), omeprazole (a drug), and disulfoton (a 

pesticide). BioTransformer was set to apply relative reasoning and no cut-off. Its 

prediction results were compared to those provided by Meteor Nexus. Meteor Nexus was 

set to apply the following constraints: 1) all reactions applicable to CYP450s; 2) 

absolute/relative reasoning; 3) a cut-off of two; 4) a maximum of 60 metabolites; and 5) 

breadth first as processing direction. To predict its biotransformation products the settings 

remained the same in BioTransformer. In Meteor Nexus we modified the set of reactions 

to apply all possible reactions (without manual optimization), while the other settings 

remained unchanged. For the three xenobiotics (caffeine, omeprazole, and disulfoton), 

the evaluation of the prediction was based the analysis of reported metabolites 

Overall, BioTransformer was able to predict a total of 13 metabolites, including 6 

of 9 previously reported ones. In comparison, Meteor Nexus was able to predict 11 

metabolites; including 5 of 9 previously reported ones. The results are displayed in Table 

3.3.  
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Compound Prediction BioTransformer Meteor Nexus 

 

Omeprazole 

True predictions 4 4 

False predictions 3 2 

Missed predictions 0 0 

 

Caffeine 

True predictions 1 1 

False predictions 1 1 

Missed predictions 3 3 

 

Disulfoton 

True predictions 1 0 

False predictions 3 3 

Missed predictions 0 1 

 

Table 3.3 Comparison between BioTransformer and Meteor Nexus for the CYP450-catalyzed single-step 

metabolism of three xenobiotics. 

 

3.3.2 Evaluation of BioTransformer’s Multi-step Metabolism Prediction 

in Mammals 

To evaluate BioTransformer’s ability to predict multi-step biotransformations, we 

selected the flavan-3-ol compound epicatechin (an antioxidant from tea leaves(263)), and 

the monoterpene carvacrol (a chemopreventive agent and antioxidant from essential oils 

(264)). Carvacrol and epicatechin are both extensively metabolized in mammals and their 

metabolites are well known and well characterized. In particular, the multi-step 

metabolism of epicatechin is carried out in both the liver and the human gut (colon and 

intestine). For the comparative analysis against Meteor Nexus, the metabolism prediction 

was applied over multiple phases (Phase I, Phase II, as well as human gut microbial), in 

order to give a comprehensive overview of the metabolism, and to test the ability of both 
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tools to predict various types of enzymatic biotransformations within humans. 

BioTransformer’s human super transformer was used (see section 3.2.5) by applying the 

following settings: 1) all applicable reactions, 2) relative reasoning and, 3) no cut-off. 

Meteor Nexus applied the following settings: 1) a selected set of 22 chemical reactions, 2) 

absolute/relative reasoning, 3) a cut-off of 2, 4) a max depth of 4, 5) a maximum of 60 

metabolites and, 6) breath first as processing direction. The settings for Meteor Nexus 

were set based on previous analyses (on other similar polyphenolic compounds), in order 

to optimize its performance for epicatechin.  

 

Compound Prediction BioTransformer Meteor 

 

Epicatechin 

True predictions 20 3 

False predictions 22 51 

Missed predictions 4 21 

 

Carvacrol 

True predictions 12 14 

False predictions 18 22 

Missed predictions 3 3 

 

Table 3.4 Comparison between BioTransformer and Meteor Nexus for the multi-step metabolism of 

epicatechin. 
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Figure 3.7 Examples of predicted metabolites of epicatechin. The green arrows point to correct 

metabolites, identified by BioTransformer and Meteor Nexus. The red arrow points to a false prediction 

(M9) by Meteor Nexus. 

 

Figure 3.8 Examples of predicted metabolites of carvacrol. 
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Overall, BioTransformer predicted 42 epicatechin metabolites, and 22 out of 24 reported 

metabolites for epicatechin. Meteor Nexus predicted 51 metabolites, 3 of which had been 

reported. For the monoterpene carvacrol, BioTransformer predicted 30 metabolites, and 

12 out of 15 previously reported previously metabolites. In comparison, Meteor Nexus 

predicted 36 metabolites, and 14 out of 15 previously reported ones. The detailed results 

of our analysis are shown in Table 3.4. Examples of predictions are in Figure 3.7 

(epicatechin) and Figure 3.8 (carvacrol). 

3.3.3 Comparative Analysis with The EAWAG BBD/PPS System 

Meteor Nexus is not capable of predicting environmental microbial 

metabolism/degradation; thus, in order to assess BioTransformer’s abilities to predict 

environmental microbial metabolism, we compared to the EAWAG-BBD/PPS system 

using three test compounds, namely Ampicillin (an antibiotic), Nitroglycerin (a 

plasticizer, a drug), and Disulfoton (an insecticide), all of which (along with their 

metabolites) have been found in wastewater treatment plants (265-267). Here, only 

BioTransformer’s environmental microbial biotransformer was used, and one step of 

biotransformation was used for each compound. The aim of this comparison was to 

assess the ability of BioTransformer to reproduce the EAWAG-BBD/PPS predictions, 

since the rules applicable to environmental degradation were encoded using the freely 

accessible EAWAG Biodegradation and Biocatalysis database. Both BioTransformer and 

the EAWAG-BBD/PPS system were set to apply relative reasoning, and both were set to 

predict all microbial transformations (i.e. aerobic and anaerobic). 

 BioTransformer was able to replicate all 15 biotransformations predicted by the 

EAWAG system, and a total of 18 out of 18 metabolites. In addition, BioTransformer 
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predicted three more metabolites for the degradation of Disulfoton. All three metabolites 

resulted from the correctly used biotransformation rule (bt0259), which was applied at 

three different sites of metabolism, producing two metabolites in each case. Figure 3.9 

displays the metabolites predicted by BioTransformer and the EAWAG system, and 

highlights the metabolites reported only by BioTransformer. 

 

Figure 3.9: Environmental microbial metabolism of disulfoton, as predicted by BioTransformer and the 

EAWAG-BBD/PPS system. The metabolites BTM0004, BTM0006, and BTM0010 are reported by 

BioTransformer as by-products of the biotransformation bt0259 that generate BTM0003, BTM0005, and 

BTM0009. These by-products were not reported by the EAWAG-BBD/PPS system, as required by the 

applicable biotransformation rule. 
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3.4 Discussion 

3.4.1 BioTransformer’s Structure and Implementation 

BioTransformer is a software tool that uses a combination of the knowledge-based 

approach and the machine learning approach to predict the metabolism of small 

molecules. The knowledge-based system consists of a biotransformation database, a 

knowledgebase, and a reasoning engine. The biotransformation database is called 

BioTransformerDB. It is a unique resource as it is freely available and covers a wide 

range of enzymatic reactions that occurs in humans and mammals, as well as reactions 

that are catalyzed by the human gut microbial enzymes. In contrast to most publicly 

available databases, BioTransformerDB provides detailed biological and chemical 

information about the biotransformation, including the catalyzing enzymes, the 

substrates, the products, and the biotransformation rule(s) that is/are applied. 

BioTransformerDB describes the metabolism of >1,000 compounds catalyzed by ~15 

enzyme families. For each biotransformation, at least one scientific source or reference is 

provided. BioTransformerDB is stored as JSON document, which can be easily parsed. 

An application of BioTransformerDB is the design of biotransformation rules with 

narrow specificity, which can be used for in silico metabolism prediction. In fact, this 

resource has been used to successfully design >300 biotransformation rules, which were 

used to annotate the biotransformations in the database and predict metabolites via the 

BioTransformer reasoning engine. 

Despite the aforementioned strengths of BioTransformerDB, the database still has 

a number of limitations. Although it covers a large number of enzymatic reactions, it is 

clear that more data is needed in order to cover an even larger set of reactions (e.g. 
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oxidation reactions) catalyzed by enzymes other than CYP450s). It is also clear that there 

is a need to define more constraints and/or build more other models that would increase 

the quality of the predictions. Moreover, users could benefit from data about the different 

sites of metabolism for each specific biotransformation, as it would serve as a training set 

for the development of models for the prediction of sites of metabolism. For the current 

version of the database, the intent was simply to provide an easily readable and 

comprehensible data set. However, providing BioTransformerDB in a database format 

that can be parsed and queried in a more sophisticated way (e.g. SQL) would make the 

database much more useful to a broader number of users. 

3.4.2 Evaluation of BioTransformer’s Predictions 

 BioTransformer was evaluated against Meteor Nexus for several randomly chosen 

xenobiotics using both single- and multi-step metabolic biotransformations. Meteor 

Nexus is a popular, commercially available software tool that is often considered to be the 

“gold standard” for predicting biotransformations. Based on the single step 

biotransformation test set, BioTransformer achieved a precision of 0.46 and a recall of 

0.66. In comparison, Meteor Nexus achieved a precision of 0.45 and a recall of 0.55. Both 

tools were able to identify the four reported metabolites of omeprazole. However, they 

both missed three out of four metabolites of caffeine, suggesting that either new 

biotransformation rules should be added, or that some of the applied constraints ruled out 

caffeine as a substrate for the missed biotransformation rules. Although unwanted, such 

false negatives can be expected, as many biotransformation rules and constraints are often 

designed as a consensus and cannot always satisfy all molecules. This applies especially 
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for the prediction of biotransformations catalyzed by enzymes with broad substrate 

specificity. 

 The prediction of multi-step metabolism was of particular interest, as it helped to 

assess the ability of BioTransformer to model the metabolism of molecules in mammals, 

from absorption to excretion. In this test BioTransformer displayed a significant 

advantage over Meteor Nexus in the prediction of epicatechin metabolites. Epicatechin is 

extensively metabolized both in the human gut (intestine, colon), and the liver. It 

undergoes reduction in the gut resulting in a number of metabolites that include 

dihydrochalcones, phenylvalerolactones, phenylavaleric acids, phenolic acids, as well as 

their conjugates (e.g. glucuronides, glycine conjugates, sulfates, etc.) (268). These 

compounds are further metabolized by the liver and/or recovered in the urine. While most 

of these metabolites were predicted by BioTransformer (see Figure 3.7 for some 

examples), they were all absent from the set of metabolites predicted by Meteor Nexus. 

As shown in Table 3.4, the prediction of multi-step metabolism can lead to higher rate of 

false predictions, and potentially, lower precision. As the molecule is activated (often by 

addition of reactive functional groups), the number of potential subsequent reactions can 

increase rapidly. For certain reactions with broad specificity, it is common to see several 

sites of metabolism within the same molecule, leading to a number of metabolic 

regiomers (structural isomers that differ in position of functional group). In the case of 

carvacrol, six regiomers were predicted by BioTransformer for the hydroxylation of 

inactivated carbons (aliphatic or aromatic), two of which have not been reported before 

(thymohydroquinone (BTM002), and 3,5-dihydroxycymene (BTM0005)) (see Figure 

3.8). Of those six isomers, Meteor Nexus predicted three, which had all previously been 
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reported. Theoretically, the prediction of two metabolites previously not reported 

illustrates the fact that BioTransformer needs to potentially define more/better patterns 

for the aromatic and aliphatic hydroxylation of carbons, and more preference rules (for its 

relative reasoning scoring system). On the other hand, BioTransformer could also be 

suggesting the structures and mechanistic details of several new metabolites for which 

LC-MS (or LC-MSn) based identification could be attempted. In this regard, 

BioTransformer could be particularly useful as a hypothesis generator for new metabolite 

structures and new metabolic transformations. Overall, for the prediction of multi-step 

metabolism, BioTransformer achieved a precision of 47.3% and a recall of 83.7%, while 

Meteor achieved a precision of 18.9% and a recall of 28.3%. 

 In order to evaluate BioTransformer’s ability to predict environmental 

metabolism, we compared its prediction results with the EAWAG-BBD/PPS system. It is 

worth noting that the biotransformation and preference rules we encoded in 

BioTransformer were based on the same set of rules defined by the EAWAG-BBD/PPS. 

The key difference was that the rules were encoded in the same common 

SMIRKS/SMARTS format used by all of BioTransformer’s other transformer tools. 

Based on the sample tests provided in the Results section, it is clear that BioTransformer 

was able to accurately replicate the predictions provided by the EAWAG-BBD/PPS 

system. These results suggest that BioTransformer could also be used to accurately 

predict environmental microbial metabolism. 

We believe the examples used here nicely demonstrate the ability of 

BioTransformer to accurately predict a wide range of metabolic reactions, for a number 

of different types of small molecules (endogenous and xenobiotic compounds) and a 
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number of different biosystems (humans, microbial/environmental). BioTransformer is 

unique in its ability to cover almost all aspects of secondary metabolism (drug/xenobiotic 

metabolism, endogenous compound metabolism, gut microbial metabolism, 

environmental metabolism). This makes it particularly useful for the wide-ranging 

applications seen in metabolomics. Furthermore, the accuracy, coverage, precision and 

recall of BioTransformer appears to be as good as, or better than some of the most highly 

regarded metabolic prediction systems now available. Additionally, BioTransformer is 

fast. It takes on average 3.95 seconds per query compound for single-step transformations 

using the EC-based metabolism biotransformer, and 9.36 seconds when using the super 

transformer. It is, easy to use, open-source and freely available. Certainly a more 

extensive analysis of a much larger set of query compounds would likely better illustrate 

the strengths and weaknesses of BioTransformer. However, it is important to remember 

that there are relatively few experimentally validated, comprehensive sets of metabolic 

“biotransformation trees” and that the examples selected here cover a good portion of the 

better known trees.  Nevertheless, we are currently collaborating with the French 

National institute for Agricultural Research (INRA) on a project that aims at assessing the 

predictions of BioTransformer and Meteor Nexus for a much larger set of compounds 

including monoterpenes and a number of well-studied polyphenols. 

While there are a number of strengths and advantages to BioTransformer, we 

believe that certain improvements could still be made to the program. First, the addition 

of more biotransformation data would certainly provide more reaction “fodder” to create 

more biotransformation rules. Additional biotransformation data would also provide 

statistical evidence to fine tune the reaction preference rules (relative reasoning) and 
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occurrence ratios for absolute/relative reasoning. In particular, adding an option for 

absolute reasoning would give BioTransformer the ability to select candidates with a set 

cut-off score. Currently BioTransformer’s biotransformation database and its 

knowledgebase cover only a small portion of the gut microbial degradation (i.e. 

metabolism of plant-derived polyphenols). As gut metabolism plays a significant role in 

the secondary metabolism of humans, and many xenobiotics as well as endogenous 

compounds are known to be metabolized in the gut (269-272), it will be important to 

further expand the coverage of gut microbial metabolism in BioTransformer. We plan to 

make these improvements in the next version of BioTransformer. Over the longer term 

we are hoping to integrate more machine learning based prediction models (e.g. SoMs for 

CYP450 metabolism, and SoMs for phase II metabolism). This integration depends 

mostly on the amount of data available as machine learning depends on having large 

training sets to optimize its performance. Given that the number of experimentally 

confirmed biotransformations is still quite low for the systems of interest, it is likely that 

this will take a number of years to complete. 

3.5 Conclusion 

In this work, we have presented BioTransformer, a freely available software tool that 

supports the rapid, accurate, comprehensive prediction of secondary metabolism of small 

molecules in both mammals and in the environment. Within mammals, BioTransformer 

was able to accurately predict both single-step as well as multi-step biotransformations 

over a range of xenobiotics, including drugs, pesticides, and food compounds. The 

reactions that BioTransformer predicts cover phase I and phase II metabolism in 

mammals, as well as the human gut. Overall, BioTransformer was shown to achieve 



   148 

higher precision and recall, compared to Meteor Nexus, a commercial software tool for in 

silico metabolism prediction. In fact, BioTransformer proved to be significantly more 

accurate than Meteor Nexus for predicting the metabolism of polyphenols in the gut. 

Unlike most other metabolic prediction tools, BioTransformer also supports the 

prediction of metabolism of small molecules by environmental microbes. The integration 

of environmental metabolism with endogenous (liver/gut) metabolism allows 

BioTransformer to address many of the predictive metabolic needs of metabolomics 

researchers, which tend to span a much wider range than, say, drug researchers, food 

chemists or environmental scientists. 

Despite its strengths, BioTransformer is not without some limitations. Addressing 

these would certainly make the program much more flexible, more accurate, and more 

comprehensive. Obvious improvements for the current version of BioTransformer 

include: 1) the validation of BioTransformer’s predictions for a larger and more diverse 

test set; 2) the experimental validation of BioTransformer’s predictions for a small set of 

monoterpenes and polyphenols; 3) the expansion of the knowledgebase to cover more 

reactions, and 4) the addition of new options for metabolite prediction/ranking.
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4.1 Introduction 

Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass 

spectrometry (MS/MS) has become one of the leading techniques for compound 

identification in organic chemistry, natural product chemistry, and metabolomics 

(273,274). In the field of metabolomics, LC-MS/MS is widely used to identify and 

quantify individual chemicals in complex biological or environmental mixtures. For 

untargeted metabolomics applications using LC-MS/MS, high performance or ultrahigh 

performance liquid chromatography (HPLC or UHPLC) is first performed to separate 

compounds in the sample and then electrospray ionization (ESI) mass spectrometry (MS 

and MS/MS) is used to collect the mass spectra of each chromatographic peak.  In order 

to identify individual compounds, the resulting MS/MS spectra, along with the 

chromatographic retention time and parent ion masses of the compound of interest, are 

then (ideally) compared to the MS/MS spectra and retention time of authentic standards 

to confirm the compound’s identity. 

Because of the limited availability of many authentic chemical standards in most 

metabolomics labs, putative metabolite identification is more commonly performed. 

Putative identification is achieved by comparing the MS/MS spectra to experimentally 

collected reference spectra found in various MS/MS spectral databases. Key to the 

success of this putative identification process is the availability of a large, comprehensive 

database containing experimentally collected MS/MS spectra of pure compounds that 

covers a large portion of “chemical space”. Unfortunately, publicly available databases of 

experimental MS/MS spectra currently cover a total of only ~20,000 unique compounds 

(275). Consequently, as reported in many large-scale metabolomic studies (47,276), the 
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percentage of MS spectral features that can be confidently assigned to known compounds 

is often less than 2%. As a result, the compound identification step continues to be the 

central bottleneck in almost all untargeted MS-based metabolomic studies. 

Given the cost of synthesizing or acquiring the 100,000’s of chemicals needed to 

create the required experimental MS/MS spectral libraries, a growing number of 

scientists are turning to in silico metabolomics methods to facilitate compound 

identification.  Over the last decade, a number of computational MS approaches have 

been developed for this purpose.  Some of the more popular software tools use MS/MS 

fragmentation trees and spectral fingerprints (e.g. CSI:FingerID (180)) of an observed 

ESI-MS/MS spectrum and rank the likelihood that a given chemical structure could 

produce such a spectrum, or arrange substructures of a candidate molecule into a 

hierarchical tree that best explains the fragmentation pattern observed in a given 

experimental MSn spectral tree (MAGMA (183)). Other tools, such as MetFrag (182) and 

CFM-ID (45,111,178) use in silico fragmentation of a given compound structure to 

predict ESI-MS/MS (for LC-MS) and EI-MS (for GC-MS) spectra. By matching the 

observed MS/MS spectrum to a library of predicted MS/MS spectra, it is possible to 

identify or rank which compound is being observed. Increasing the size of the library of 

in silico predicted spectra is expected to increase the likelihood of successfully 

identifying compounds from newly acquired MS/MS spectra (181). 

The two main in silico fragmentation techniques are rule-based approaches and 

combinatorial approaches. Rule-based “fragmenters” use hand-made rules based on 

experimentally observed fragmentation patterns that are specific to one or more structural 

features or chemical classes. These rules are typically extracted from analyzing the 
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scientific literature or, preferably, learned from in-house experimental data. Mass 

Frontier (173) is an example of a software tool that uses hand-made fragmentation rules. 

Once the rules are implemented, this approach can be very fast, consistent and accurate. 

However, a major disadvantage to this approach is that the design of fragmentation rules 

requires considerable expert curation. Furthermore, these rules cannot be applied to novel 

classes of molecules. For these reasons, much more emphasis has recently been put 

towards the implementation of combinatorial fragmentation approaches. Combinatorial 

fragmentation approaches iteratively cleave chemical bonds within a molecule in a 

combinatorial fashion, and use penalty scores that favour the cleavage events that are 

most likely to occur at each step. Examples of tools that implement combinatorial 

fragmentation include CFM-ID (111), MetFrag (182) and FiD (176). 

CFM-ID is a publicly available software tool and web server that can be used for 

MS/MS spectral prediction, MS/MS spectrum peak assignment, as well as MS-based 

compound identification (45,111,178). It implements a technique known as Competitive 

Fragmentation Modeling (CFM), a probabilistic generative model using a customized 

cost function that takes into account the structural composition of a molecule to predict 

spectra resulting from electrospray (CFM-ESI) or MS/MS spectra. CFM-ID has been 

used to generate a reference MS/MS spectral library of over 30,000 known compounds 

from the HMDB (8) and KEGG (103) databases at 3 different collision energies (10 eV, 

20 eV and 40 eV). For compound identification tasks, CFM-ID can use this spectral 

library to suggest candidate molecules that match input experimental MS/MS spectra. In 

2015 CFM-ID was shown to outperform FingerID and an earlier version of MetFrag in 

various identification tasks from ESI-MS/MS spectra (178). However, subsequent tests 
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and subsequent studies on the performance of CFM-ID have shown that a number of 

improvements could be made to the program and its spectral database. 

For instance, one well-known limitation of CFM-ID is its very slow and relatively 

poor performance for predicting MS/MS spectra of lipids and other large “segmented” 

metabolites. This is primarily due to the length of the fatty acids or attached head-group 

segments, leading to a combinatorial explosion of the possible fragments at each step of 

the in silico fragmentation process. As demonstrated by Kind et al. (46) who developed 

LipidBlast, and Tsugawa et al. (277) who studied sphingolipid fragmentation, the use of 

structure-based fragmentation rules appears to be much better at handling lipids and other 

large segmented or modular molecules (such as carbohydrates) than combinatorial 

fragmentation. However, it is important to note that LipidBlast also has some limitations.  

For instance, it does not provide a well-defined set of fragmentation rules or algorithms 

that can be incorporated into other computational MS spectral prediction tools. 

Furthermore, while it does provide m/z values for fragment ions, LipidBlast does not 

provide structural data or structural annotations for the fragment ion peaks nor does it 

estimate peak intensity.  These are the kinds of output that are typically found with most 

in silico fragmenters and these shortcomings have been addressed in this update to CFM-

ID. 

In addition to the incorporation of compound-specific fragmentation rules, it has 

also been shown that significant improvements in MS-based compound identification can 

be achieved by including metadata or other forms of external data in the spectral 

matching or scoring functions (182). In particular, the inclusion of citation frequency (the 

number of times a given compound is mentioned in the literature), along with the 
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incorporation of experimentally collected MS/MS spectra in the reference spectral 

database can often improve compound identification performance by a factor of 2 or 

more (278). When taking into account the chemical similarity or the distribution of 

structural features or chemical classes (via ClassyFire (249)) among candidates, it is 

often possible to improve the performance even further (180). Based on these and other 

developments in the field of in silico metabolomics and in silico mass spectrometry, we 

have implemented a number of modifications to CFM-ID that have helped to: 1) achieve 

faster and more accurate prediction of MS-spectra for 26 classes of lipids, 2) expand 

CFM-ID’s reference spectral library to include both experimental and predicted MS/MS 

spectra, 3) enhance CFM-ID’s ability to incorporate metadata and chemical similarity, 4) 

improve CFM-ID’s compound identification rates, and 5) enhance CFM-ID’s ability to 

predict the structural classification of compounds for query spectra that could not be 

matched in CFM-ID’s spectral database. This improved version of CFM-ID is called 

CFM-ID 3.0. It is freely available as a web server at http://cfmid-staging.wishartlab.com. 

Its source code is also freely accessible at https://sourceforge.net/p/cfm-id/wiki/Home. 

4.2 Methods 

To improve CFM-ID’s overall performance for MS/MS analysis, we pursued several 

algorithmic and database enhancements. These included: 1) Encoding and validating 

rules for ESI-induced fragmentation of 26 classes of lipids; 2) Implementing an 

automated chemical classification schema (via ClassyFire) for both CFM-ID’s database 

and its query compounds; 3) Redesigning, significantly expanding and improving CFM-

ID’s MS/MS spectral library (by including experimental MS/MS spectra and adding 

many thousands more predicted MS/MS spectra); 4) Collecting citation information on 

https://sourceforge.net/p/cfm-id/wiki/Home
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all of the compounds in CFM-ID’s MS/MS spectral library; and 5) Modifying CFM-ID’s 

scoring function to incorporate the above changes and improve its overall performance. 

The encoding of the lipid rule-based fragmentation approaches was added to 

improve the speed and accuracy of CFM-ID’s lipid ESI-MS/MS predictions, as well as to 

cover a larger pool of experimental conditions as reflected by the different adduct types. 

The use of ClassyFire’s chemical classification method (249) was implemented to 

automate the rule-based/combinatorial-based decisions for CFM-ID and to improve 

CFM-ID’s ability to identify or re-rank potential MS/MS spectral matches based on 

structural similarity. The redesign and expansion of the CFM-ID’s spectral database was 

performed to accelerate search speeds, reduce the memory requirements and to grow the 

spectral database size (of both predicted and known MS/MS spectra) by a factor of 2, so 

as to improve the likelihood of user query spectral matches. The inclusion of citation data 

was intended to enhance the scoring accuracy of potential MS/MS spectral matches, 

while the modification of CFM-ID’s scoring function was intended to improve its overall 

performance. Details regarding how all of these changes were implemented are described 

below. 

4.2.1 Encoding Lipid Fragmentation Rules 

Our analysis of numerous databases and the literature indicated that there are 26 major 

classes of lipids for which MS/MS spectra are best predicted using hand-made 

fragmentation rules. The encoding of these hand-made lipid fragmentation rules involved 

several steps including: 1) experimentally measuring or compiling (via literature) 

characteristic MS/MS fragment ions observed at each of three collision energy levels (10 

eV, 20 eV, and 40 eV) for each lipid class, 2) determining the relative abundance of each 
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fragment ion at each energy level, 3) accurately determining the chemical structure and 

m/z values of each of the fragment ions, 4) including more MS/MS experimental 

conditions (and adduct ions) by expanding the list of adduct types covered by previous 

versions of CFM-ID, and 5) implementing these rules using standardized 

cheminformatics languages (SMILES (197), SMARTS (68) and SMIRKS (69)) in order 

to rapidly and accurately predict and annotate ESI-MS/MS spectra for lipids. 

4.2.1.1 Acquisition of Reference Lipid MS/MS Spectra 

The generation of the lipid fragmentation rules required the acquisition of experimental 

ESI-MS/MS spectra for a number of lipids and lipid classes. The acquired spectra were 

collected at several collision energies, for various adduct types (e.g. [M+H]+, [M-H]-), 

and, if possible, from various MS instruments. This was used to help capture fluctuations 

or biases that can be introduced by the different parameters. A total of 533 experimental 

MS/MS spectra were collected for 16 standard lipids (purchased from Avanti Polar 

Lipids Alabaster, AL) from 15 lipid classes at various collision energies (10 eV to 60 

eV), in both positive and negative mode using an AB Sciex QTrap 4000 MS instrument. 

For each lipid standard, an enhanced MS (EMS) scan was first collected to identify 

precursor ions with high abundance in either ionization mode. Enhanced product ion 

(EPI) scans were then collected for each precursor ion to generate the MS/MS spectra 

with different collision energy levels ranging from 10 to 60 eV.  In addition to the 

MS/MS spectra collected in our laboratory, published lipid MS/MS spectral data were 

compiled from the LIPID MAPS (198) and the MoNA (40) databases. For the LIPID 

MAPS spectra, only annotated spectral images were available. Therefore, MS/MS peak 

lists were generated by annotating the peaks using a semi-automated approach. This 
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approach consisted of computing the relative abundance of each peak, and manually 

mapping it to the m/z list provided in the LIPID MAPS spectrum. In addition to the 

experimental spectra, the LipidBlast and FAHFA (46,279) libraries, as well as MassBank 

(109), mzCloud (280) and the sphingolipid library of Tsugawa (277) served as references 

that provided additional information for lipid classes not covered by our experiments. In 

total, 844 lipid MS/MS spectra from 26 lipid classes were collected and analyzed. 

4.2.1.2 Annotation of Reference Lipid MS/MS Spectra 

With the lipid MS/MS spectra in hand, we proceeded to manually annotate each 

spectrum. This consisted of assigning each fragment ion peak to a specific structure and a 

specific reaction or fragmentation event (e.g. the loss of a water molecule from a [M+H]+ 

precursor ion, the loss of a side chain, or the presence of a specific fragment). The 

annotation of spectra was limited to the in-house generated MS/MS spectra and the 

LIPID MAPS set, as both were measured with the same model of instrument (AB Sciex 

QTrap 4000). The annotation process was largely guided by the information provided in 

LIPID MAPS, LipidBlast and other scientific reports (46,198,281,282). In a number of 

cases, the same compound had MS/MS spectra in at least two of the data sets (including 

the LipidBlast database), and the corresponding spectra were available for the same 

adducts or ions. In these cases, we annotated the spectra by direct comparison of the peak 

lists. Among the 26 lipid classes, 11 were not covered by our in-house experimental data. 

For this reason, the MS/MS spectra of these missing lipid classes were extracted from the 

LIPID MAPS (experimental) and/or LipidBlast (in silico) library. Since the experimental 

and theoretical spectra acquired from other sources (LipidBlast, LIPID MAPS) did not 

always cover all three collision energy levels (10 eV, 20 eV, and 40 eV), the generation 
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of consensus fragmentation patterns was done by comparing standards with the 

corresponding acquired experimental spectra. This was further validated by mining the 

scientific literature. Once the energy-specific fragmentation patterns were generated, the 

relative abundance of each peak was assigned to one of four intensity levels: low, 

medium, high, or maximum abundance level. The assigned intensity was based on 

observed relative abundances from our experimental spectra. The maximum level of 

abundance was assigned to the base peak, typically when no fragmentation was observed 

(usually at a low collision energy). Additional feedback from local MS experts combined 

with an extensive review of the lipid MS/MS literature helped to complete the spectral 

annotation process. This effort led to the near-complete annotation of all observed 

fragment ions, their precise m/z values and the corresponding fragmentation reactions for 

a total of 767 peaks from 26 lipid classes at each of 3 collision energies (10 eV, 20 eV 

and 40 eV). 

4.2.1.3 Implementation of the Lipid Fragmentation Rules 

The annotated fragment ions along with their structures and reactions provided the basis 

for the creation of fragmentation rules. All of the fragmentation rules were implemented 

in the Java programming language through a new “lipid fragmenter module” in CFM-ID. 

The structural backbone of each lipid or lipid fragment class was represented using the 

Daylight SMARTS language (68). This is a module implemented in ClassyFire, a 

software tool for automated structure-based hierarchical annotation of chemicals 

(249).  To accelerate the lipid classification process, a sub-ontology from the ChemOnt 

(249) ontology was used. For each lipid or lipid fragment class, one set of fragmentation 

patterns is encoded for each of the applicable adducts as chemical reactions. The 
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chemical reactions are represented using the Daylight SMIRKS language (69). 

Additionally, a number of transformation rules were encoded to standardize the structures 

of all the query compounds. The standardization of the fragmentation reactions using 

well-developed cheminformatics languages ensures that the structural representations are 

consistent for all query compounds, structural classes and chemical reactions. Without 

adhering to these standards many chemicals classes could be misidentified or invalid 

fragments could be returned. 

The new CFM-ID lipid fragmenter program has been fully integrated into the 

existing spectral prediction workflow of the previous version of CFM-ID (45). In CFM-

ID 3.0, the lipid MS/MS prediction tasks requires a lipid structure (submitted as a 

SMILES string or SDF file) and an adduct or an ion as input. Upon submission, the 

compound is classified based on its structure via ClassyFire. If the compound is 

identified by ClassyFire as a lipid molecule belonging to any of the covered classes, and 

fragmentation patterns applicable to the selected adduct exist in the lipid fragmentation 

library, the compound is fragmented accordingly. The fragmentation operation is 

executed using the AMBIT library (262). After the in silico fragmentation step is 

completed, the relative abundance of each peak is assigned (using the fragmentation rules 

described above), and three ESI-MS/MS spectra are generated (at 10 eV, 20 eV, and 40 

eV). If no set of fragmentation patterns is applicable to the compound and/or the selected 

adduct, then the ESI-MS/MS spectra are predicted using the original CFM algorithm as 

implemented in CFM-ID 2.0. The resulting ESI-MS/MS spectra are then returned with 

each peak annotated by its m/z value, its relative abundance, and the chemical structure 

of the corresponding fragment encoded in a standard SMILES format. Additionally, any 
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available experimental MS spectra in the CFM-ID spectral database matching the query 

compound are also displayed in the results alongside the predicted spectra. 

4.2.2 Integration of Chemical Classification 

Similar structures tend to undergo similar fragmentation patterns under the same 

conditions. For this reason, a number of in silico MS fragmentation algorithms now take 

the chemical structure of query molecules into consideration for improved MS-spectra 

prediction and compound identification tasks. For the prediction of EI-MS/MS spectra, 

CFM’s scoring function partly relies on a list that describes the presence or absence of 

107 functional groups and 86 fragment descriptors. These groups and fragment 

descriptors are provided by ClassyFire (249) and RDKit (65,91), respectively. Other 

computational tools such as CSI:FingerID (180) rely on models that can predict the 

presence of functional groups and fragments based on a given compound or a given MS-

spectrum. For this reason, it might be expected that in compound identification tasks, the 

highest ranked candidates would likely share a significant number of functional groups or 

possibly share a maximum common substructure. This information would be particularly 

helpful in cases where it is very difficult to discriminate between the highest ranked 

candidates. More specifically, the presence of one or more common structural backbones 

(e.g. diterpene, ceramide, phosphatidylglycerol) could significantly impact the ranking, 

when very structurally similar candidates are prioritized among those that have a high 

spectral similarity to the query compound. 

Therefore, a chemical classification was stored for each compound in the 

database. The chemical classification was computed by ClassyFire and retrieved using 

the ClassyFire API (249). As will be described later in this section, the chemical class 
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assigned to candidate molecules was taken into account along with other metadata to 

improve the original CFM scoring method (dot product or Jaccard score). In addition to 

the adjustment of the scoring function, chemical classification was also used to predict 

the chemical class(es) to which the query compound belonged. Formally, the predicted 

chemical class corresponds to the direct parent of the highest ranked candidate. In case of 

a tie, the predicted chemical category is the most frequently occurring direct or 

alternative parent among all candidates that has the highest score. 

4.2.3 Collection of Compound Citations 

Several studies have demonstrated that the integration of metadata can significantly 

improve compound identification rates with spectral library searches (180,182,278). In 

particular, the frequency with which a compound is mentioned in the literature could 

serve as a proxy for the likelihood that the compound is either sufficiently abundant or 

sufficiently ionisable for detection via MS/MS methods. Therefore, every compound in 

the CFM-ID spectral library was assigned a citation score. An initial set of citation counts 

was obtained using DataWrangler. DataWrangler is an in-house tool that automatically 

mines PubChem (9), HMDB(8), ChemSpider (283), and ChEBI (200), and returns a 

unique list of scientific reference citations for a given compound. A second set containing 

PubMed citation counts (without PubMed IDs) was obtained by mining the EPA’s 

CompTox dashboard (284). This set was computed and provided to us by the CompTox 

dashboard's development team. The two sets were merged by comparing each 

compound’s InChI keys. More specifically, when a compound had a citation count in 

only one set, the corresponding citation count was assigned to that compound. For 

compounds that had citation counts both from DataWrangler and CompTox, the largest 
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count was assigned, as it was expected that both counts could include many of the same 

citations. A total of 17,000 compounds were assigned a citation count of 1 or more. For 

the remaining compounds, DataWrangler assigned a custom citation count of 1, if and 

only if, they were found in at least one of the following databases: HMDB (8), DrugBank 

(99), T3DB (100), ContaminantDB (244), FooDB (224), ECMDB (12), YMDB (285), 

and PhytoHub (243). It is also important to note that CFM-ID’s compound library 

includes more than just “pure” metabolites that are used to count citations and generate 

ESI-MS/MS spectra. In particular, CFM-ID’s library also contains ~76,000 compounds 

that were computationally derivatized with TMS (for GC-MS spectral analysis) from 

known HMDB compounds. Each of these derivatized compounds has had their EI-MS 

spectrum generated by CFM-ID and each was assigned the citation count of its parent 

(derivative-free) molecule. 

4.2.4 Redesigning and Expanding of CFM-ID’s Spectral Library  

The original reference spectral library in CFM-ID 2.0 contained 166,543 unique 

computationally generated ESI-MS/MS and EI-MS spectra for ~118,000 compounds 

(including TMS derivatives) from the HMDB and KEGG databases. ESI-MS/MS spectra 

were computed in positive ([M+H]+) and negative ([M-H]-) ionization modes, one for 

each of three collision energies (10 eV, 20 eV, and 40 eV). The EI-MS (for GC-MS 

studies) spectra were predicted at a collision energy of 70 eV. EI-MS spectra were also 

computed for 64,390 TMS derivatives of HMDB compounds. In order to significantly 

improve identification rates, the new CFM-ID library was updated as described below. 
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4.2.4.1 Collection of Experimental MS/MS Spectra from External Sources 

While the accuracy of computationally predicted MS spectra is often quite good, the 

accuracy of experimentally collected MS spectra is much better. Therefore the inclusion 

of experimentally determined EI-MS and ESI-MS/MS spectra would be expected to 

improve the match scores for query spectra/compounds that have previously been 

analyzed by EI-MS or ESI-MS/MS. Experimentally determined ESI-MS/MS and EI-MS 

spectra were downloaded from the MassBank of North America’s (MoNA) online 

repository (40). As of February 2017, MoNA contained 14,847 EI-MS spectra for 9,242 

compounds, and 51,135 LC-MS/MS spectra for 10,538 compounds. The spectra and 

compounds in MoNA originate from several databases, including the HMDB database 

(8), MassBank (109), the GNPS database (286), and the ReSpect database (287), among 

others. Only experimental spectra were collected from MoNA, except the set from 

HMDB. An additional 915 ESI-MS/MS spectra were manually regenerated for 523 

compounds from information contained in the NIST 14 database. Since CFM-ID uses 

models trained on MS spectral sets utilizing specific collision energy and mass accuracy 

criteria, the HMDB, MoNA, and NIST spectra were further filtered to match these 

criteria. Specifically, experimental MS spectra were required to have a known ionization 

type, a known compound neutral mass, and to have been analyzed with high-resolution 

MS instruments (e.g. Q-TOF instruments) in the case of LC-MS spectra. Moreover, EI-

MS spectra obtained from high-resolution MS spectra were also selected/filtered. The 

complete library of experimental spectra from HMDB was obtained from our in-house 

repository, and filtered. Upon filtering, it contained 1,492 unique EI-MS spectra for 647 

unique compounds, and 1,152 unique ESI-MS/MS spectra for 239 unique compounds. 
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Moreover, there were 54,529 usable experimental MS spectra remaining. These 

experimental MS spectra were converted into the peak list format required for CFM-ID 

and uploaded into CFM-ID’s online spectral library. 

4.2.4.2 Compilation of Predicted ESI-MS/MS and EI-MS Spectra 

As noted earlier, the original CFM-ID 2.0 database contained 102,153 unique 

computationally generated ESI-MS/MS spectra (from 51,635 compounds) and 64,390 

unique computationally generated EI-MS spectra (from 64,390 TMS derivatized 

compounds). Among the 102,153 ESI-MS/MS spectra, 36,746 were previously computed 

for 18,373 unique compounds belonging to the 26 lipid classes covered by the rule-based 

fragmenter, and transferred to the CFM-ID 3.0 database. The remaining 65,407 mass 

spectra computed by CFM-ID 2.0 were also moved to the CFM-ID 3.0 database. In total,  

~36,900 spectra were generated for the 18,438 lipids. To this database, another ~145,460 

ESI-MS/MS spectra were computed for 80,000 lipids and 7288 other metabolites 

obtained from recently updated versions of HMDB, DrugBank and PhytoHub. Those 

compounds were added to the CFM-ID 3.0 database. These predicted ESI-MS/MS 

spectra were generated for both positive and negative ion-mode as well as at three 

different collision energies (10 eV, 20 eV, and 40 eV).  Likewise, another 7,288 

computationally generated EI-MS spectra were added from 7,288 other derivatized 

metabolites taken from recently updated versions of HMDB, DrugBank and PhytoHub.  

In total, the CFM-ID 3.0 database now contains 247,767 computationally generated ESI-

MS/MS spectra (from 135,506 compounds) and 71,678 computationally generated EI-MS 

spectra (from 71,678) compounds.  If the experimental ESI-MS/MS and EI-MS spectra 
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are added to this total, the CFM-ID 3.0 spectral database now contains a grand total of 

289,170 ESI-MS/MS spectra and 86,464 EI-MS spectra. 

4.2.5 Modifying CFM-ID’s Scoring Function and Ranking Schema 

The results of the Critical Assessment of Small Molecular Identification (CASMI) 2016 

contest showed that the integration of additional data (i.e. citation frequency of 

compounds and structure similarity) into the original scoring function for CFM-ID 

improved compound identification rates (278). This trend was also observed for several 

other tools during the contest in separate studies (182,278). To create a combined score, 

the original spectral similarity score computed by CFM-ID (Jaccard or Dot Product, 

according to the user specification) was combined with a citation score and a chemical 

classification score. As described earlier, the citation score is based on the number of 

citations that a given compound has in the scientific literature.  More highly cited 

compounds are typically those that are more commonly detected, studied or used.  

Therefore the citation score serves as a proxy of the general abundance or concentration 

of a compound and is intended to favour more abundant compounds over extremely rare 

or trace level compounds. 

As noted earlier, the chemical classification score is based on the number of 

chemical categories to which a compound is assigned (by ClassyFire), relative to the total 

pool of chemical classes assigned to all candidate molecules. The chemical classification 

score was added to help re-rank or cluster structurally similar molecules (and MS spectra) 

closer together. Each of the three scores was normalized by dividing its computed score 

by the maximum score across the candidate list. The general formula for the total 

candidate score is: 
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𝑆𝑇𝑂𝑇𝐴𝐿(𝐶) = 𝑎𝐶𝐹𝑀_𝑂𝑅𝐼𝐺 ∗ 𝑆𝐶𝐹𝑀_𝑂𝑅𝐼𝐺(𝐶) + 𝑎𝐶𝐿𝐴𝑆𝑆 ∗ 𝑆𝐶𝐿𝐴𝑆𝑆(𝐶) +  𝑎𝑅𝐸𝐹 ∗ 𝑆𝑅𝐸𝐹(𝐶) 

where  STOTAL(C), SCFM_ORIG(C), SCLASS(C), and SREF(C) are the total score, the normalized 

spectral matching CFM-ID score, the normalized ClassyFire score, and the normalized 

reference score for candidate C, respectively.  Each of the three scores are weighted by 

the coefficients aCFM_ORIG, aCLASS. and aREF , respectively, where: 

𝑎𝐶𝐹𝑀_𝑂𝑅𝐼𝐺 , 𝑎𝐶𝐿𝐴𝑆𝑆, 𝑎𝑅𝐸𝐹 ≥ 0 

and 

𝑎𝐶𝐹𝑀_𝑂𝑅𝐼𝐺 + 𝑎𝐶𝐿𝐴𝑆𝑆 + 𝑎𝑅𝐸𝐹 = 1 

This approach was used to build two scoring functions for metabolite identification, one 

for the ESI-MS/MS input and one for EI-MS input. The optimal set of coefficients was 

determined through a grid search using a manually selected set of 1,000 

spectral/compound identification tasks (for 1,000 unique compounds ranging from drugs 

to lipids). Each of the selected molecules had one or more experimental spectra at one of 

three level energies (10 eV, 20 eV, and 40 eV), in addition to predicted ESI-MS/MS and 

EI-MS spectra. The data set was divided into five equally sized subsets. Several models 

(with a unique combination of coefficients) were trained on 800 compounds (4/5 of the 

data set) and tested on the remaining 200 (1/5 of the data set). This process was repeated 

four more times, using a different test set of 200 compounds for each iteration. 

Experimental spectra were used as input for each identification test, and upon testing, 

only the best model was selected. A consensus model was built based on the five selected 

models, and further tested using a smaller test set.  The final coefficient values for the 

ESI-MS/MS scoring function were aCFM_ORIG=0.6, aCLASS=0.1, and aREF=0.3. The final 
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coefficient values for the EI-MS scoring function were aCFM_ORIG=0.8, aCLASS=0.1, and 

aREF=0.1. 

4.2.6 Performance Testing 

Three types of performance tests were conducted. The first assessed the performance of 

the lipid ESI-MS/MS spectral prediction method; the second assessed the performance of 

the new scoring function in exact compound identification and the third assessed CFM-

ID’s performance in identifying a compound’s correct chemical class. To test the lipid 

ESI-MS/MS spectral prediction method, a benchmark analysis was performed on 20 

randomly chosen lipids from the 26 known lipid classes for which fragmentation rules 

were derived. The computation was performed on a 2.7 GHz Intel Core i5 MacOSX with 

16 GB (1867 MHz DDR3) of memory. A total of 120 ESI-MS/MS spectral predictions 

were generated for both CFM-ID 2.0 and CFM-ID 3.0 at 3 different energies and 2 

different ionization modes with various adduct types. The average execution time was 

determined for each spectral prediction. In addition to the execution time comparison, an 

additional performance comparison was conducted to assess the quality of the predicted 

MS/MS spectra. For this task, a set of 10 experimental ESI-MS/MS spectra measured in 

positive ion mode, and 10 experimental ESI-MS/MS spectra measured in negative ion 

mode were selected. The selected spectra were measured under conditions that can be 

simulated by CFM-ID 3.0’s lipid fragmentation rules (same energy levels, same adducts). 

For each experimental MS/MS spectrum, CFM-ID 2.0 and CFM-ID 3.0 were used to 

predict a corresponding MS/MS spectrum under the same conditions. The performance 

was assessed by measuring the average pairwise spectral similarity between experimental 

and predicted spectra using a standard dot product score as implemented in the 
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OrgMassSpecR package (288). Moreover, they were also compared to LipidBlast, as the 

selected lipids and corresponding predicted spectra were also contained in the LipidBlast 

library. 

In order to evaluate the performance of CFM-ID’s 3.0 new scoring functions, we 

built a data set for each function. The ESI-MS/MS scoring function was tested on a set of 

208 experimental ESI-MS/MS spectra (for 185 unique compounds) generated on a Q 

Exactive Plus Orbitrap (Thermo Scientific), and used for the CASMI 2016 contest 

(Category 3) (278). These spectra were used as input for compound identification. 112 of 

the 185 compounds were included in the database and had at least one experimental ESI-

MS/MS spectrum in addition to the precomputed ones. For each of the remaining 

compounds, ESI-MS/MS spectra were predicted using CFM-ID and stored in the spectral 

library. The EI-MS scoring function was tested on a set of 200 experimental EI-MS 

spectra (for 200 unique compounds) that were collected as described section 4.2.4.1. For 

each compound, EI-MS spectra were predicted and stored in the database. For each 

compound identification task, just one experimental spectrum was used as input. For each 

test, we used CFM-ID 2.0 and CFM-ID 3.0 scoring functions, separately, to attempt to 

identify the query compounds. 

For the third kind of assessment, CFM-ID 3.0 was assessed with regard to its 

performance in chemical class prediction/identification.  This particular performance 

assessment was included because in many practical cases in MS-based metabolomics or 

MS-based natural product identification, it may not be possible to identify the exact 

compound via MS/MS spectral matching. Therefore, the ability to use MS/MS spectra to 

reduce the candidate list and to predict the correct chemical class or chemical family for a 
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given query spectrum or compound can be very valuable. In assessing the performance of 

CFM-ID’s chemical class prediction the query compound was predicted to belong to the 

“direct parent” class of the highest-ranked candidate. In cases of a tie, the chemical class 

was predicted to be the most frequently occurring among all the direct and alternative 

parents among all the compounds with the highest score. 

4.3 Results 

4.3.1 Encoding Lipid Fragmentation Rules 

Our manual analysis of the experimentally acquired lipid spectra provided a basis for the 

generation of 378 unique fragmentation rules covering 26 lipid classes and seven adducts, 

for a total of 55 combinations of chemical classes and adduct types. For each lipid class, 

an ESI-MS/MS spectrum can be simulated by CFM-ID 3.0 at collision energies of 10 eV, 

20 eV, and 40 eV. In general, almost all ESI-MS/MS spectra of lipids show similar 

fragmentation patterns with characteristic losses of the polar head group, and the acyl or 

alkyl chains, with relatively little fragmentation within the acyl or alkyl chains. For 

example, in choline-containing glycerophospholipids the most commonly observed 

fragments include phosphocholine (C5H14NO4P+ ion; neutral mass = 184.07 Da), and the 

cyclic 1,2-cyclic phosphate diester (C2H6O4P+ ion; neutral mass =123.99 Da). Figure 4.1 

illustrates consensus fragmentation patterns for phosphatidylcholines from their [M+H]+ 

precursor ions.  The numbers of rules for each lipid class and the number of covered 

adduct types per lipid class are shown in Table 4.1. 
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Figure 4.1 Fragmentation patterns of phosphatidylcholines from their [M+H]+ precursor ions. Only the 

precursor ion is the observed at each of the three energy levels. The ion fragment C5H14NO4P+ (red arrow) 

corresponding to phosphocholine is observed at 20 eV and 40 eV, and the remaining fragments were 

observed only at 40 eV. 

 

Table 4.1 Number of fragmentation rules and adduct types covered for each chemical category. 

Lipid Class No. of covered rules No. of covered adduct types 

1-monoacylglycerols 8 2 

2-monoacylglycerols 13 3 

1,2-diacylglycerols 10 2 

Triacylglycerols 13 3 

Phosphatidic acids 21 3 

Phosphatidylcholines 42 4 

Phosphatidylethanolamines 24 3 

Lysophosphatidylcholines 29 4 

Lysophosphatidic acids 12 2 

Phosphatidylserines 28 3 

Ceramides 16 3 

Sphingomyelins 13 3 
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Cardiolipins 13 1 

Acyl carnitines 12 2 

1-alkylglycerophosphates 4 1 

Phosphatidylglycerols 10 1 

Lysophosphatidylglycerols 7 1 

Plasmanyl-PC 17 2 

Plasmenyl-PC 17 2 

1-alkanylglycerophosphocholines 16 3 

1-alkenylglycerophosphocholines 14 2 

Phosphatidylinositols 12 1 

Lysophpshatidylinositols 9 1 

Plasmanyl-PE 4 1 

Plasmenyl-PE 8 1 

Fatty acids of hydroxylated fatty acids 6 1 

Total 378 55 

 

4.3.2 The New CFM-ID 3.0 Spectral Library 

The original CFM-ID 2.0 spectral library contained 102,153 unique computationally 

generated ESI-MS/MS spectra (from 51,635 compounds), and the 64,390 unique 

computationally generated EI-MS spectra (from 64,390 TMS derivatized compounds), 

for a total of 117,905 compounds. Because of improvements in the spectral prediction 

performance, additions of new compounds and the addition of new (experimental spectra) 

the new CFM-ID 3.0 spectral library has been able to be expanded by a factor of 2.2 over 

the original CFM-ID 2.0 spectral library (as of August 12, 2017). In particular the new 
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library now contains a total of 373,974 ESI-MS/MS and EI-MS experimental spectra for 

218,689 compounds, collected from various repositories. Previously, the CFM-ID 2.0 

spectral library had no experimental ESI-MS/MS or EI-MS/MS spectra. The compounds 

with experimental spectra are structurally and functionally diverse, and originate from 

various databases/libraries including HMDB (human metabolites)  (8), DrugBank (drugs 

and drug metabolite) (99), KEGG (metabolites and drugs) (253), PhytoHub (dietary 

phytochemicals and their metabolites) (243), GNPS (natural products) (286), LipidBlast 

(detected and theoretical lipids) (46), and the FAHFA library (detected and theoretical 

lipids) (279). In addition to the experimentally collected spectra, CFM-ID 3.0’s predicted 

spectral library contains 86,464 EI-MS and 289,170 ESI-MS/MS spectra (from 218,689 

compounds), all of which were computed with CFM-ID 3.0. Each of the 218,689 

compounds in the new spectral library was assigned a citation score that is used in 

compound identification tasks. Among the 218,689 compounds, 93,871 had a citation 

count of 1 or more. 

In our effort to improve the identification rates, a full chemical classification was 

computed for all 218,689 unique compounds, using ClassyFire (249). An average of ~26 

chemical categories were assigned per compound. The chemical classification was used 

to adjust CFM-ID’s original scoring system, so as to take into account the chemical 

composition and chemical similarity among candidate molecules. It also served as basis 

to predict the chemical classification of the compound corresponding to the query 

spectrum in identification tasks. 
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Table 4.2 Statistics for the CFM-ID 3.0 spectral database. (*) Only compounds with >=1 citation were 

counted. (*) the total number includes the TMS derivatives from HMDB compounds. 

Feature Value 

Total no. of unique compounds  218,689 

No. of unique compounds in CFM-ID 2.0 117,905 

Total no. of unique MS spectra  373,974 

Total number of unique MS spectra in CFM-ID 2.0 166,543 

Total no. of unique experimental MS spectra 54,529 

Total no. of unique predicted MS spectra 319,445 

No. of compounds with >=1 exp. MS/MS spectra 17,582 

Total number of unique EI-MS spectra 86,464 

Total no. of experimental EI-MS spectra 14786 

Total no. of predicted EI-MS spectra 71,678  

No. of compounds with >=1 exp. EI-MS spectra 8,963 

No. of compounds with >=1 pred. EI-MS/MS spectra 71,678  

Total number of unique ESI-MS/MS spectra 287,510 

Total no. of experimental ESI-MS/MS spectra 39,743 

Total no. of predicted ESI-MS/MS spectra 247,767 

No. of compounds with >=1 exp. ESI-MS/MS spectra 9,422 

No. of compounds with >=1 pred. ESI-MS/MS spectra 135,506 

No. of compounds with >= 1 citations 93,871 

Avg. no. of citations/compound* 315 

No. of compounds with chemical classification assignments 218,689 

Avg. no. of chemical category assignments/compound 26 
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4.3.3 Performance Testing 

4.3.3.1 Lipid ESI-MS/MS Spectral Prediction 

Two tests were performed to assess the lipid spectral prediction performance. One was 

for speed while the other was for accuracy. In terms of speed, CFM-ID 3.0 averaged 

0.395 +/- 0.03 seconds of computation time to predict each of the 120 lipid ESI-MS/MS 

spectra while CFM-ID 2.0 averaged 68.58 +/- 0.21 seconds for the same task. This 

represents a speed-up of 173.6X. Clearly the rule-based approach for lipid analysis in 

CFM-ID 3.0 is significantly faster than the combinatorial approach in CFM-ID 2.0. For 

most other kinds of molecules, the average processing time for CFM-ID is about 23.75 

+/- 0.2 seconds.  Clearly the computational slow-down for lipid spectral calculation (due 

to the many potential fragmentation combinations) is quite significant, which largely 

motivated us to develop a faster rule-based approach. 

In terms of spectral prediction performance, the average spectral similarity score 

between the experimental lipid ESI-MS/MS spectra (collected on a QTOF) and the CFM-

ID 3.0 predicted ESI-MS/MS spectra was 0.92 +/- 0.02. On the other hand, the average 

spectral similarity score between the CFM-ID 2.0 predicted ESI-MS/MS spectra and the 

experimental ESI-MS/MS spectra was 0.07 +/- 0.04.  This suggests that the accuracy of 

CFM-ID 3.0 for lipid spectral prediction is 13X better than CFM-ID 2.0, which is highly 

significant. It is worth mentioning that CFM-ID predicts ESI-MS/MS spectra at three 

different collision energies while other programs, such as LipidBlast generate a 

consensus MS/MS spectrum that essentially merges the MS/MS spectra over all 3 

energies. Therefore, during our comparative analysis, only one LipidBlast-generated 

consensus ESI-MS/MS spectrum was used for each unique compound, and compared 
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against the experimental spectrum, independent of the energy level. Figure 2 shows head-

to-tail-plots comparing the experimental ESI-MS/MS spectrum of dipalmitoyl 

phosphatidylcholine (PC(16:0/16:0)) collected at 40 eV collision energy with the 

corresponding in silico spectra predicted with CFM-ID 2.0 – Figure 4.2a (178), CFM-ID 

3.0 – Figure 4.2b, and LipidBlast – Figure 4.2c  (46), respectively. The experimental 

spectrum was measured in positive ion mode ([M+H])+, with a collision energy of 40 eV. 

The spectral similarity between the CFM-ID 2.0 generated spectrum and the experimental 

ESI-MS/MS spectrum was 0.07, with CFM-ID 2.0 being able to predict only two 

fragments that were observed in the experimental spectrum (namely the C5H12N+ and 

C5H14NO4P+ ion fragments).  For this particular example, CFM-ID 2.0 predicted 31 

fragments (Figure 4.2a) while CFM-ID 3.0 predicted 10 fragments (Figure 4.2b), seven 

of which were observed in the experimental ESI-MS/MS spectrum. It is worth noting that 

the remaining three fragments result from fragmentations that were observed in 

experimentally measured ESI-MS/MS spectra of phosphatidylcholines obtained for 

[M+H]+ adducts at 40 eV. For this example the spectral similarity score was 0.98 when 

comparing the experimental ESI-MS/MS spectrum with the CFM-ID 3.0-predicted 

spectrum, and surprisingly, only 0.13 when comparing with the LipidBlast-predicted ESI-

MS/MS spectrum.  Figure 4.3 shows comparisons between experimental and predicted 

ESI-MS/MS spectra for 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine 

(PS(16:0/18:1(9Z))) in the negative ([M-H]-) ion mode at a collision energy of 40 eV. 

The measured spectral similarity scores between the experimental and the in silico 

generated spectra are 0.10, 0.92, and 0.91 with CFM-ID 2.0 (Figure 4.3a), CFM-ID 3.0 

(Figure 4.3b) and LipidBlast (Figure 4.3c), respectively. 
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As highlighted in Table 4.3, CFM-ID 3.0 vastly outperforms CFM-ID 2.0 in terms 

of lipid spectral prediction performance (average score of 0.92 vs. 0.07) and CFM-ID 3.0 

generally outperforms LipidBlast (average score of 0.92 vs. 0.88).  Another important 

advantage of CFM-ID 3.0 over LipidBlast is the fact that it generates spectral predictions 

for multiple collision energies (10, 20 and 40 eV) whereas LipidBlast only provides a 

single spectrum at an unknown collision energy. Furthermore, all spectral predictions 

generated by CFM-ID 3.0 include information about not only the m/z values and their 

relative intensities but also the structure of the actual fragments (expressed as InChI and 

SMILES strings) for every predicted peak. LipidBlast only provides the m/z values and 

intensities. 
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Figure 4.2a Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of dipalmitoyl 

phosphatidylcholine (PC(16:0/16:0)) measured at 40 eV, and the matching ESI-MS/MS spectrum predicted 

by CFM-ID 2.0. The computed spectral similarity is 0.07. 
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Figure 4.2b Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of dipalmitoyl 

phosphatidylcholine measured in positive ion mode ([M+H]+) at 40 eV, and the matching ESI-MS/MS 

spectrum predicted by CFM-ID 3.0. The computed spectral similarity is 0.98. 
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Figure 4.2c Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of dipalmitoyl 

phosphatidylcholine measured in positive ion mode ([M+H]+) at 40 eV, and the matching ESI-MS/MS 

spectrum predicted by LipidBlast. The computed spectral similarity is 0.13. 
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Figure 4.3a Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phospho-L-serine (PS(16:0/18:1(9Z))) measured at 40 eV, and the matching ESI-MS/MS 

spectrum predicted by CFM-ID 2.0. The computed spectral similarity is 0.10. 
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Figure 4.3b Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phospho-L-serine (PS(16:0/18:1(9Z))) measured at 40 eV, and the matching ESI-MS/MS 

spectrum predicted by CFM-ID 3.0. The computed similarity is 0.92. 
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Figure 4.3c Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phospho-L-serine (PS(16:0/18:1(9Z))) measured at 40 eV, and the matching ESI-MS/MS 

spectrum predicted by LipidBlast. The computed similarity is 0.91. 
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Table 4.3 Computed spectral similarities between experimental and predicted ESI-MS/MS spectra. The 

results show higher similarities, and thus an improvement when using a rule-based approach (CFM-ID 3.0) 

over a combinatorial one (CFM-ID 2.0) for the prediction of lipids. The spectral similarities of the 

LipidBlast generated spectra further illustrate this trend. 

Compound Adduct Energy CFM-ID 

3.0 

CFM-ID 

2.0 

LipidBlast 

DG(16:0/16:0/0:0) [M+NH4]+ 20 eV 0.98 0.07 0.28 

PC(16:0/16:0) [M+H]+ 40 eV 0.88 0.0 0.13 

PE(16:0/18:1(9Z)) [M+H]+ 20 eV 0.90 0.03 0.95 

SM(d18:1/16:0) [M+Na]+ 40eV 0.96 0.0 0.68 

PI(18:0/20:4) [M+H]- 40 eV 0.91 0.12 0.91 

TG(22:6/22:6/22:6) [M+Li]+ 40 eV 0.96 0.09 0.97 

PE(16:0/18:1(9Z)) [M-H]- 40 eV 0.96 0.15 0.89 

PS(16:0/18:1(9Z)) [M-H]- 40 eV 0.92 0.10 0.91 

CL(18:1/18:1/18:1/18:1) [M-2H](2-) 40 eV 0.95 0.02 0.94 

PG(16:0/18:1(9Z)) [M-H]- 40 eV 0.96 0.08 0.96 

 

 

4.3.3.2 Compound Identification using the New Scoring Functions 

As noted earlier, two sets of 1,000 compounds were used to train a specific scoring 

function for ESI-MS/MS-based compound identification, and a second one for EI-MS-

based compound identification. Both functions were developed in order to optimize 

CFM-ID 3.0’s compound identification performance. The models were obtained using 
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5X cross-validation, and tested on different sets. Table 4.4 compares the performance of 

CFM-ID 3.0 versus CFM-ID 2.0 for compound identification based of 208 ESI-MS/MS 

spectra from 185 unique compounds. The spectra were provided during the CASMI 2016 

contest (category 3). Here, CFM-ID 3.0 was able to correctly identify the query 

compound in 144 out of 208 challenges, compared to only 113 by CFM-ID 2.0. This 

represents an improvement of 27.4%. The query compound was generally ranked higher 

(3) by CFM-ID 3.0 compared to CFM-ID 2.0 (4). Table 4.5 shows the comparison 

between CFM-ID 3.0 and CFM-ID 2.0 for compound identification tasks based on 200 

EI-MS spectra for 200 unique compounds. The spectra were retrieved from the set of 

compounds imported from various sources, as described in section 4.2.4. These spectra 

were excluded from the searchable database during the test phase. Here, CFM-ID 3.0 was 

able to correctly identify the query compound in 118 out of 200 challenges, compared to 

only 109 by CFM-ID 2.0. This represents an improvement of 8%. When using EI-MS 

spectra as input, CFM-ID 3.0 also ranked the query compound higher (3) compared to 

CFM-ID 2.0 (4). CFM-ID 3.0 also achieved a better medal score compared to CFM-ID 

2.0. 
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Table 4.4: Comparison of CFM-ID 3.0 and CFM-ID 2.0 scoring functions upon identification of 185 

compounds from 208 ESI-MS/MS spectra. Reported are the total number of challenges in which the 

corresponding implementation of the scoring function ranked the query compound in the Top 1, Top 3, and 

Top 10. The average rank for the query compound is also reported. A chemical classification is assessed as 

correct if the predicted category matches a category originally assigned by ClassyFire. N/A: Not 

Applicable. 

Version # Top 1 # Top 3 # Top 10 Avg. rank # Correct classifications 

CFM-ID 3.0 137 191 205 1.7 159 

CFM-ID 2.0 133 190 205 2 N/A 

 

 

Table 4.5: Comparison of CFM-ID 3.0 and CFM-ID 2.0 scoring functions upon identification of 200 

compounds from 200 EI-MS spectra. Reported are the total number of challenges in which the 

corresponding implementation of the scoring function ranked the query compound in the Top 1, Top 3, and 

Top 10. The average rank for the query compound is also reported. A chemical classification is assessed as 

correct if the predicted category matches a category originally assigned by ClassyFire. N/A: Not 

Applicable. 

Version # Top 1 # Top 3 # Top 10 Avg. rank # Correct classifications 

CFM-ID 3.0 118 153 184 3 134 

CFM-ID 2.0 109 137 175 4 N/A 

 

4.3.3.3 Compound Classification 

Since CFM-ID 3.0 uses different scoring functions for ESI-MS/MS and EI-MS based 

metabolite identification, the compound classification algorithm was tested separately for 

each type of MS spectral mode. The chemical class of the query compound is predicted 

as the direct parent of the highest-ranked compound. In case of a tie, the predicted class is 
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the most occurring chemical class among the direct and alternative parents of all 

compounds with the highest score. When using ESI-MS/MS spectra as input, CFM-ID 

3.0 correctly predicted the chemical class in 160 out of 208 challenges. In 24 out of 208 

cases, the query compound had not been correctly identified; thus, in 33.3% of the cases 

were the compound could not been identified (48 in total), it was assigned a correct 

chemical class. When using EI-MS spectra as input, CFM-ID correctly predicted the 

chemical class of the query compound in 134 out of 200 challenges. Moreover, in 16 out 

of those 134 cases, the query compound was not correctly identified; thus, in 24.4% of 

the cases where the compound could not be identified (66 in total), it was at least 

assigned a correct chemical class. These results suggest that CFM-ID 3.0 was still able to 

capture structural features that characterize the fragmentations observed in the 

corresponding input MS/MS spectra. These results also demonstrate the importance of 

using a diverse set of compounds and spectra, as well as the need of having a sufficiently 

large compound/spectral database. 

4.4 Discussion 

4.4.1 ESI-MS/MS Lipid Spectral Prediction 

The comparisons illustrated in Figures 4.2b and 4.3b show that CFM-ID 3.0 can predict 

ESI-MS/MS spectra for lipids that very closely match experimental ESI-MS/MS spectra 

collected for the same compounds. The predicted MS/MS peaks match most of the peaks 

in the experimental spectra. Figures 4.2a, and 4.3a compares an experimental ESI-

MS/MS spectrum with the corresponding in silico MS/MS spectrum generated by CFM-

ID 2.0, and shows relatively little similarity between the experimental and predicted 
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spectra, in both cases. The much higher performance for lipid spectra obtained with rule-

based fragmentation approaches over combinatorial fragmentation approaches can be 

explained by two factors. First, lipids are modular molecules and so the MS 

fragmentation patterns seen under most collision energies are easily understood and 

relatively simple to describe.  On the other hand, combinatorial fragmenters have no 

knowledge of molecular structure and so they cannot recognize modular structures. 

Instead, they view lipids as molecules with dozens of breakable bonds, all of which could 

potentially be fragmented. This leads to a substantial over-prediction of MS peaks. The 

second reason why combinatorial fragmenters do not perform well is that they have 

generally not been “trained” on lipid spectra.  For example, CFM-ID 2.0 was only trained 

on ~1000 experimental MS/MS spectra, none of which included lipid MS/MS spectra.  

Similarly, MetFrag (182), another combinatorial fragmenter, was also not programmed to 

handle lipid MS/MS spectra. By expanding CFM-ID’s training set and including lipid 

spectra as well as other modular compound classes) in that training set, CFM-ID could 

potentially improve its performance to match even the rule-based fragmenter.  Currently 

we are working on testing this possibility. 

Overall, our results show that CFM-ID 3.0 was able to reproduce most lipid 

fragments with accurate m/z ratios and reasonably accurate relative intensities. 

Characteristic fragment ion losses (e.g. loss of polar head, or side chains) were 

reproduced accurately. They also include many ion fragments that are independent of the 

acyl or alkyl chain(s) of the molecular ion, including the cyclic 1,2-cyclic phosphate 

diester (neutral m/z=123.99 Da) fragment, which often observed in ESI-MS/MS spectra 

of various choline glycerophospholipids. Interestingly, most of these fragments were not 
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reported in LipidBlast. As expected, some discrepancies were observed when comparing 

predicted MS/MS spectra with the corresponding experimental MS/MS spectra. First, the 

relative peak intensities were generally found to be higher in the predicted MS/MS 

spectra than the experimental spectra. Second, the peak lists are often not identical. 

MS/MS spectral peak intensities are very difficult to predict and vary considerably 

depending on the instrument, the instrument parameters and experimental design. For 

instance, phosphatidylcholines, when analyzed by Q-TOF instruments, tend to lose the 

molecular ion even at medium collision energies. On the other hand, when 

phosphatidylcholines are analyzed on Ion Trap MS instruments the molecular ion is still 

highly abundant at medium collision energies, and is significantly fragmented only at 

high energies  (198,281,289). In addition to instrument differences, the type of solvent 

being used can affect the extent to which a compound is fragmented. However, rather 

than focusing on these subtleties, we chose to focus on selecting (and annotating) the 

most abundant or most characteristic fragments, which were generally reproducible on 

different instruments, and reported in multiple studies. Moreover, we limited the number 

of peaks to be predicted to the centroid peaks and did not include their isotopomers, since 

those are often of much lower intensity. 

While CFM-ID 2.0 predicts fragmentation probabilities and numeric peak 

intensities, CFM-ID 3.0 does not predict peak intensities for lipid spectra (however it still 

predicts numeric peak intensities for all other classes of molecules). Instead, CFM-ID 3.0 

predicts categorical peak intensities for lipid spectra (low, medium, high, and maximum 

abundance). This simple categorization partly explains why, in many cases, the relative 

peak intensity is higher in predicted lipid spectra compared to experimental spectra. We 
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believe that a larger lipid MS spectral training set would help to improve the prediction of 

numeric intensities and simulate their variation between collision energies more 

accurately. Another limitation of CFM-ID 3.0’s rule-based approach is that the current 

fragmentation rules do not take the information about the stereochemistry and the 

position of double/triple bonds into consideration. Therefore, they cannot allow one to 

distinguish between stereoisomers or regiomers. This is a common problem for rule-

based “fragmenters”, since the incorporation of such distinctions would required the 

acquisition of a much more diverse and larger set of high-resolution MSn spectra. 

As noted before, CFM-ID 3.0 returns the structure (in InChI or SMILES strings) for all 

predicted fragments. This helps to provide a rationale for nearly all observed peaks. 

Additionally this linkage simplifies lipid ESI-MS/MS spectral annotation process. 

Because CFM-ID 3.0 provides MS/MS spectra at three energy levels (10 eV, 20 eV, and 

40 eV), it means that the predicted MS/MS spectra can be matched more closely to real 

experimental conditions and real experimental MS/MS spectra.  Many other spectral 

libraries (LipidBlast, NIST) only provide consensus MS/MS spectra for lipids, which 

makes it difficult to relate experimental data to the predictions. 

4.4.2 Compound Identification and Class Prediction 

The incorporation of citation counts in MS-based compound identification protocols has 

been consistently shown to improve identification rates in recent studies  (182,278). 

However, an obvious limitation of this approach is that it reduces the probability of 

identifying novel or rare compounds that have never been cited.  It can also bias the 

ranking scheme to select one very similar structure (and therefore very similar MS 

spectrum) over another purely on the basis of one having slightly more citations than 
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another.  To help balance the influence of citation counts we incorporated chemical 

classification into our new scoring system. In this way, the scientific relevance or 

approximate abundance (in terms of citations) as well as the structural features among 

candidates could be taken into consideration. Using this approach, two scoring functions 

were defined for compound identification: one for ESI-MS/MS spectra and one for EI-

MS spectra. In comparison, CFM-ID 2.0 uses the same scoring function for ESI-MS/MS 

and EI-MS input spectra. The newly defined functions used in CFM-ID 3.0 helped to 

improve identification (see Tables 4.4 and 4.5). In particular, when applied to 208 

identification challenges, the ESI-MS/MS scoring function achieved an improvement in 

ranking (1.0) and identification rate (27.4%) over CFM-ID 2.0’s original scoring 

function, and the compound identification rate was 27.4% higher. Moreover, the new EI-

MS scoring function also improved the ranking of the query molecule by and average of 

1.0, and achieved 8% more correct identification, compared to CFM-ID’s 2.0 original 

function. We believe the use of diverse training sets of compounds, representing widely 

varying structures and structural classes was critical to achieving this performance.  

CFM-ID 3.0 was also assessed with regard to its performance in chemical class 

prediction. As noted earlier, while it may not be possible to identify the exact compound 

via MS/MS spectral matching, the ability to use MS/MS spectra to narrow down the 

correct chemical class or chemical family for a given query spectrum or compound can 

be very valuable for many applications in metabolomics or natural product de-replication. 

In assessing the performance of CFM-ID’s chemical class prediction the same scoring 

systems introduced here was used to rank the individual candidates; but in order to 

perform a formal chemical class identification, the query compound was predicted to 
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belong to the “direct parent” class of the highest-ranked candidate. In cases of a tie, the 

predicted chemical class was predicted to be the most frequently occurring among all the 

direct and alternative parents among all the compounds with the highest score. Upon 

testing the new ESI-MS/MS scoring function on 208 challenges, the correct class as 

predicted in 76.9% of the challenges.  In 33.3% of correct class predictions, the query 

compound was not correctly identified; this suggest that CFM-ID 3.0 was still able to 

capture structural features that characterize the fragmentations observed in the 

corresponding input MS/MS spectra. Upon testing of the new EI-MS scoring function on 

200 challenges, the correct class was predicted in 67% of the challenges, with 24.4% of 

the correct classification achieved despite a misidentification of the query compound. 

These results also demonstrate the importance of using a diverse set of compounds and 

spectra, as well as the need of having a sufficiently large database. Structurally similar 

compounds tend to produce similar spectra. Therefore, even if the compound is not 

available in the database (or is poorly ranked), high number of compounds from various 

classes of compound could help to discriminate between the different classes, and also 

capture the patterns that are characteristic of specific class. We believe that this helped 

CFM-ID 3.0 to achieve a good performance in the class prediction task. 

The inclusion of additional data (citation frequency and chemical class information) 

in the CFM-ID scoring functions is clearly important in achieving good compound 

identification results, but so too is the quality of MS/MS spectra predicted by CFM-ID 

3.0. While we have made substantive improvements to the quality of CFM-ID’s lipid 

spectra prediction, more work still needs to be done in CFM-ID to better mimic the 

fragmentation of other classes of compounds (such as alkaloids, polyphenols, terpenes 



   192 

and steroids) and increase the quality predicted MS/MS spectra. Work is now ongoing to 

increase CFM-ID’s training set (by a factor of 5) and to improve its generative rules 

through advanced machine learning techniques. These will be described in an upcoming 

publication. The addition of 57,500+ experimental EI- and ESI-MS/MS spectra, 

measured with various MS instruments, and under different conditions, is expected to 

further help capturing spectral patterns that are not yet described by CFM-ID’s predicted 

spectra, and thus, help increase the compound identification rates. 

4.5 Conclusion 

We have shown that it is possible to substantially improve CFM-ID’s performance in 

both spectral prediction and compound identification tasks. This was achieved by: 1) 

integrating a rule-based fragmentation approach that currently applies 378 manually 

curated rules to predict the ESI-MS/MS spectra for 26 classes of common, biologically 

important lipids, 2) modifying the structure of CFMD’s spectral database, and increasing 

its size by a factor of 2.2, and 3) designing a new scoring function that takes into account 

both compound citation frequency and chemical classification features of candidate 

molecules. 

In particular, the implementation of a rule-based approach for fragment ion 

prediction was shown to improve the speed and accuracy of the lipid ESI-MS/MS spectra 

prediction by a factor of 10-200X. The success of using rule-based fragmentation patterns 

encoded in standard chemical representations (SMILES, SMARTS and SMIRKS) 

suggests that this concept could be successfully applied to other classes of modular 

molecules such as polyphenols, terpenes and carbohydrates. The construction and 

expansion of CFM-ID’s spectral library has also helped CFM-ID’s overall performance. 
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The spectral library has been expanded by a factor of 2.2 over the previously available 

library. This expansion process is still ongoing, and we plan to include ~400,000 more 

compounds including drugs, lipids, environmental pollutants, phytochemicals, food 

compounds, as well as their predicted metabolites generated by BioTransformer (see 

Chapter 3). The new scoring function, which already showed an improvement over CFM-

ID 2.0’s scoring function, could potentially be further improved by using machine 

learning techniques and training over a much larger set of MS/MS spectra. Moreover, the 

acquisition and incorporation of other metadata, such as retention time, could help further 

increase the compound identification rates, as demonstrated in several recent studies  

(182,278). The fields of in silico metabolomics and in silico mass spectrometry are 

rapidly evolving. Thanks to the many excellent ideas emerging in many labs and the 

willingness of many researchers to share their code and their databases, it is likely that 

these fields will continue to grow and continue to inspire others to make MS spectral 

analysis, MS spectral prediction, MS-based compound identification better, faster and 

even more informative.
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5.1 General Conclusions 

This thesis has focused on three computational challenges in the fields of metabolomics 

and cheminformatics - 1) the proper description and categorization of known chemicals 

and metabolites, 2) the prediction of secondary metabolite structures and the biosynthetic 

pathways that lead to them, and 3) the improved prediction of the mass spectrometry 

(MS) spectra of known (or predicted) metabolites. As highlighted in the introduction, 

tackling these issues would provide the necessary tools to accelerate drug development, 

improve biomarker discovery, enhance environmental toxicology, and make many other 

fields of metabolomic science better, faster and cheaper. To this end, I have developed 

several new programs and databases including ChemOnt, ClassyFire, and 

BioTransformer to address the first two computational challenges. To address the third 

computational challenge, I have implemented new algorithms and produced an improved 

version of CFM-ID, a software tool and web server for the automated prediction of MS 

spectra. Here I will summarize the main findings and novel features for each of these 

tools or data resources. 

5.1.1 Automated Hierarchical Structure-based Chemical Classification 

with ChemOnt and ClassyFire 

To address the first computational challenge (Objective #1 in Chapter 1), I developed 

ChemOnt and ClassyFire. These tools were described in detail in Chapter 2 of this thesis.  

Briefly, ChemOnt is a chemical ontology that contains 4,825 chemical categories with 

detailed textual descriptions or definitions. Each of these chemical categories was named 

using chemical terms extracted from the scientific literature or scientific databases. For 
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the sake of organizational simplicity, ChemOnt is implemented using a tree structure with 

11 different levels, partly inspired by the Linnaean taxonomy of living species. These 

categories are organized and named in a way that reflects the conventions and knowledge 

of both biochemists and chemists. ChemOnt has been designed to work for both organic 

and inorganic compounds. Each chemical category is carefully described in English (25-

75 words) based on the structural features common to all the compounds found in that 

category. To improve the interoperability of this ontology, ChemOnt also provides a total 

of 9,012 English synonyms for its chemical categories. These synonyms were obtained 

by mapping ChemOnt to other well-established and popular ontologies such as ChEBI 

(200), LIPIDMAPS (198), and MeSH (121). The mapping of ChemOnt to ChEBI and 

LIPIDMAPS was performed jointly with the ChEBI and LIPIDMAPS curation teams. 

This was done to facilitate the development of a standard chemical computable ontology, 

and the facilitation of data exchange between the main chemical/biochemical libraries 

used in metabolomics.  ChemOnt is compliant with the Open Biological and Biomedical 

Ontologies (OBO) format to improve its integration with respect to modern semantic 

technology approaches. ChemOnt is currently the largest and most complete computable 

chemical ontology constructed to date. 

 ClassyFire is a RESTful application and web server that automatically performs 

hierarchical structure-based classification of chemicals using the ChemOnt ontology. It is 

written in the Ruby language and uses the Rails Framework. The central idea behind 

ClassyFire’s operation is the expression of the text descriptions provided by ChemOnt 

into a set of rules that are understandable by a computer. ClassyFire combines a number 

of cheminformatics approaches to analyze each compound’s elemental composition, 
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structure, name, and physical properties, in order to rapidly and precisely identify 

structural features, and to automatically generate a comprehensive, consistent 

classification based on the ChemOnt ontology rules. In addition to small molecules (e.g. 

amino acids, vitamins, bisphosphonate drugs), ClassyFire can also classify large 

polymeric molecules such as polypeptides, DNA and RNA based on their chemical 

substituents. The resulting classifications are provided in several standard formats (JSON, 

SDF, CSV) that can be easily retrieved and parsed. Moreover, in order to reduce the 

computational time and to enable text-based searching, all of ClassyFire’s classification 

results are stored into a MySQL database. ClassyFire was tested on a chemically diverse 

set of 800 compounds that had been manually classified and annotated by multiple 

experts, and achieved a precision of 99.8% and a recall of 99.9%. Moreover, upon 

analysis of a smaller set of compounds, it was shown to reproduce ~94% of manually 

performed ChEBI ontological annotations and to suggest many new ontological terms 

that could further increase the number of annotations by 43.6%. 

 ClassyFire has been used to classify >90 million compounds so far, most of 

which are from the NCBI’s PubChem database (the largest publicly available chemical 

database). These classifications are currently accessible via the ClassyFire web server, 

and will be uploaded soon, in a joint effort with the NCBI, to the PubChem database. In 

addition to this work with PubChem, ClassyFire was also used to generate textual 

descriptions for >13,000 compounds and to infer the biological properties of >100,000 

molecules found in the HMDB, T3DB, ECMDB, FooDB, and YMDB databases. The 

ClassyFire web server is available at http://classyfire.wishartlab.com. 

http://classyfire.wishartlab.com/
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Because ClassyFire is the only open access, fully automated chemical 

classification tool available for chemists, many research scientists around the world are 

using it.  This popularity has required the development of several APIs that allow 

programmatic access to the ClassyFire web server. The first Ruby-based API for 

ClassyFire was written as part of my thesis, and is available at 

https://bitbucket.org/wishartlab/classyfire_api. 

5.1.2 Metabolism Prediction with BioTransformer 

To address the second computational challenge (Objective #2 in Chapter 1), I developed 

BioTransformer. This program was described in detail in Chapter 3 of this thesis.  

Briefly, BioTransformer is a software tool designed to predict the secondary metabolism 

(both the pathways and resulting structures) of endogenous and exogenous small 

molecules. The key motivation behind the development of BioTransformer was to 

synthetically expand the universe of known compounds/metabolites by generating 

biologically feasible compounds from existing parent (i.e. known) compounds. To 

achieve this, BioTransformer uses a hybrid approach that combines machine learning 

capabilities with a knowledge-based system to predict the following: 1) CYP450-

mediated (phase I) and phase II metabolism of xenobiotics in humans, 2) metabolism of 

xenobiotics by the human gut microbiome, 3) small molecule metabolism by the 

environmental microbiome (covering soil and water), and 4) metabolism of small 

molecules via promiscuous enzyme reactions (based on the Enzyme Classification (EC) 

provided by the International Union of Biochemistry and Molecular Biology (IUBMB)). 

BioTransformer is designed to work in three biological systems or environments (simply 

referred to as “biosystems”) - the human body, the human gut, and the environmental 

https://bitbucket.org/wishartlab/classyfire_api
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microbiome. BioTransformer was developed in such a way that additional “biosystems” 

could be easily included in its framework. 

BioTransformer’s knowledge-based system consists of several dictionaries 

containing descriptions (in text and in the SMIRKS language) that map generic chemical 

reactions, enzyme lists, as well as manually curated and expert-validated rules for 

reaction prioritizations and compound validation. In particular, this knowledgebase 

consists of a manually curated collection of >1200 experimentally confirmed 

biotransformations, called BioTransformerDB. BioTransformerDB covers CYP450 

metabolism, phase II metabolism, and human gut metabolism. BioTransformer’s machine 

learning module was developed partly by exploiting the data in BioTransformerDB to 

train a machine learning model to predict the substrate specificity of nine phase I 

metabolizing enzymes. These enzymes catalyze >90% of the xenobiotic metabolic 

reactions and most of the phase I oxidative reactions in humans. The prediction of phase 

II biotransformations, human gut (i.e. microbial) biotransformations, promiscuous 

enzyme transformations as well as environmental biotransformations is based on the data, 

hand-made rules and reaction schemes contained in BioTransformerDB. While almost all 

of the reaction schemes and biotransformations in BioTransformerDB were obtained via 

manual literature searches, the biotransformations for environmental microbial 

metabolism were extracted from the EAWAG prediction system, with permission from 

the developers. 

 BioTransformer predicts metabolites resulting from either a single chemical 

reaction or a multiple reaction sequence. As a result, it provides users with the ability to 

mimic the interplay of several biosystems (e.g. human organs and the human gut 
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microbiome) in predicting or modeling the metabolism of small molecules. These 

functions exploit the rules designed, in part, through the ChemOnt ontology to guide the 

selection of pathways or reactions lists in order to reduce computational costs. Upon 

completion of each metabolism prediction task, BioTransformer returns one or more 

predicted biotransformations, with descriptions, scores, and the structures of the predicted 

metabolites. 

To validate our approach, BioTransformer was compared to Meteor Nexus, a 

well-regarded, commercially available metabolism prediction tool. For the prediction of 

human secondary metabolites on a defined set of input molecules (including phase I, 

phase II, and human gut microbial), BioTransformer achieved a precision of 47.3% and a 

recall of 83.7%, compared to a precision of 18.9% and a recall of 23.8% by Meteor Nexus 

(50). For the prediction of environmental secondary metabolites, BioTransformer was 

able to reproduce 100% of the metabolites, when compared to the EAWAG system 

(49,161). BioTransformer is an open-source project and is freely available at 

https://bitbucket.org/djoumbou/biotransformer. 

5.1.3 MS-spectral prediction and Compound identification with CFM-

ID 3.0 

To address the third computational challenge (Objective #3 in Chapter 1), I enhanced and 

improved the performance of an MS prediction program called CFM-ID. These 

enhancements are described in detail in Chapter 4 of this thesis.  Briefly, CFM-ID is a 

software tool and web server that performs three tasks – 1) the prediction of EI and ESI 

MS-spectra, 2) the annotation of peaks in a set of MS-spectra given a molecule, and 3) 

https://bitbucket.org/djoumbou/biotransformer
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the identification of compounds given a set of MS-spectra. My specific focus was on 

improving the performance of the first and third tasks. 

 The first two versions of CFM-ID addressed the prediction of MS-spectra solely 

using the combinatorial fragmentation approach (10-12). However, as noted in Chapter 4, 

there are numerous examples where this approach leads to very long computational times 

(>1 hour) for certain compounds. In many cases these also lead to incorrect predictions. 

This is particularly true for lipids and fatty acids. To improve CFM-ID’s performance, I 

implemented a rule-based approach using Java to encode adduct-dependent fragmentation 

rules for 26 classes of lipids. This work is partly based on the templates provided by Kind 

et al. (189) and LipidBlast for the automated construction of MS/MS-spectral libraries for 

lipids. Key to making this work was the integration of ClassyFire as a front-end filter to 

CFM-ID, which permits the automated recognition of lipids (and other hard-to-predict 

structures) and subsequent rule-based processing. The integration of this module in CFM-

ID 3.0 not only sped up the analysis of lipids by a factor of 173X but it was also able to 

reproduce experimental spectra with a similarity of 0.92 +/- 0.02 on average, compared to 

0.07 +/- 0.04 for CFM-ID 2.0. 

 In order to improve CFM-ID’s performance in compound identification, CFM-

ID’s spectral library was enriched with >207,000 high-quality, experimentally collected 

MS-spectra for >100,000 distinct compounds. As was shown by others (MetFrag (182)), 

combining experimentally collected MS/MS spectra with computationally generated 

MS/MS spectra greatly improves compound identification performance. Thus, I also 

enhanced CFM-ID’s compound and spectral databases with meta-information, such as 

chemical classification data and citation counts (associated with each compound). The 
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inclusion of this information was also shown to improve the performance of compound 

identification tools when integrated in the scoring function. The chemical classification 

was provided by ClassyFire, while the citation count was obtained from several 

databases, including the PubChem database (9), the ChEBI database (97), and the 

CompTox database (133), among others. These enhancements provided data that was 

used to develop new ranking functions. Indeed, in several tests we found CFM-ID’s 

performance improved by 27.4% when the input consists of ESI-MS/MS spectra, and by 

8% when the input consists of EI-MS spectra. Moreover, CFM-ID 3.0 integrates a 

classification approach, which is helpful when CFM-ID 3.0 fails to correctly identify a 

compound. When the input consisted of ESI-MS/MS, CFM-ID 3.0 correctly classified the 

query compound in 33.3% of the cases where the compound was misidentified. When the 

input consisted of EI-MS, CFM-ID 3.0 correctly classified the query compound in 24.4% 

of the cases where the compound was misidentified. CFM-ID’s source code is available 

at https://sourceforge.net/p/cfm-id/wiki/Home, and the web server is accessible at 

http://cfmid-staging.wishartlab.com 

5.2 Future Perspectives 

As demonstrated throughout this document, the structural and physico-chemical 

properties of metabolites influence their fate and their effects in the environment. 

Beginning with my structure-based chemical classification scheme implemented via 

ChemOnt and ClassyFire, I was able to develop a suite of computational tools capable of 

predicting biosynthetic pathways and the corresponding metabolite structures associated 

for a wide variety of biosystems or environments. These same principles and tools also 

helped me implement a rule-based MS/MS fragmentation approach for predicting the 

https://sourceforge.net/p/cfm-id/wiki/Home
http://cfmid-staging.wishartlab.com/
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MS/MS spectra of lipids and provide the program with the necessary meta-information 

needed to improve ESI-MS/MS-based and EI-MS-based compound identification. While 

each of these developments represents an important advance or a significant improvement 

to the current “state-of-the-art”, there is still considerable room for improvement. In the 

following paragraphs, I provide some suggestions and ideas that could be explored to 

help improve the quality and performance of these tools. 

5.2.1 ChemOnt and ClassyFire 

While a structure-based ontology for chemical compounds is very useful from the 

perspective of chemists, I believe that the integration of other biomedical or biochemical 

concepts (e.g. diseases, health effects, biological pathways, chemical and biological roles) 

into the ChemOnt ontology would be helpful. In particular, the inclusion of biomedical 

information would further facilitate the integration and exchange of data between 

chemists and biologists as well as between cheminformaticians and bioinformaticians. 

This is something that happens very infrequently. This kind of cross-disciplinary 

ontology would also help in the development of a semantic-based framework for 

knowledge discovery. Such a framework may lead to a more widespread adoption of 

ChemOnt in the cheminformatics/bioinformatics communities. 

While such a modification to the ChemOnt ontology could take several years to 

complete, I believe there are other, smaller enhancements that could be done over a much 

shorter period of time. For example, one simple improvement could be made by 

optimizing ClassyFire’s structure search algorithm. By using a technique known as 

“partology” (describing the relationship between a structural pattern and its parts), it 

should be possible to significantly reduce the number of structure search operations and 
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rule evaluations needed to classify compounds. For instance, more than 5,000 structural 

patterns in the ClassyFire’s pattern database contain a benzene ring. Given a query 

molecule to classify, the current version of ClassyFire would run a superstructure 

operation each on these patterns individually, whether the molecule was found to contain 

a benzene ring or not. By using a partology that specifies every pattern containing a 

benzene ring, such patterns could be eliminated form the target list after only one 

superstructure matching (against benzene). Thus, the search operation over the whole 

database could be up to 5,000 times faster. Using the same logic, if a compound contains 

a given pattern, ClassyFire would be able to infer all of its substituent patterns that are 

part of the database without having to run further superstructure search operations. In 

those two scenarios, the cost of the superstructure search, which remains the bottleneck of 

the classification process, could be significantly reduced. 

5.2.2 BioTransformer 

The current version of BioTransformer uses a hybrid approach (rule-based and machine 

learning) for predicting CYP450-mediated (phase I) biotransformations. I believe that the 

acquisition of much more biotransformation data (1000’s of additional reactions) would 

facilitate the design of much better machine learned models for improved phase I 

metabolism prediction – particular with regard to predicting the site of metabolism 

(SoM). The current set of reactions (~1,000 in total) in my reaction database is not 

sufficiently large to develop a robust machine-learning algorithm.  However, the 

acquisition and annotation of 2-3X more phase I reactions would undoubtedly take many 

months of reading and coding work. While improvements to phase I metabolism 

prediction are likely to prove to be very challenging, I believe that developing a machine-
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learning approach for phase II metabolism may prove to be much easier. This is because 

there is a large abundance of known phase II reactions and the fact that phase II 

metabolism follows somewhat simpler chemical biotransformation rules. On the other 

hand, the application of machine learning to predict human gut metabolism is likely to 

many years away, as the number of known reactions is still quite tiny. 

5.2.3 CFM-ID 3.0 

While the performance of CFM-ID 3.0 has been improved quite significantly through the 

modifications described in Chapter 4, the program is still not able to efficiently cover all 

of chemical space. In particular, CFM-ID’s rule-based fragmentation library is currently 

limited to handling or predicting the fragmentation patterns of lipids. I believe that adding 

fragmentation rules for other chemical categories, such as surfactant polymers, would 

make CFM-ID much more useful, especially for environmental metabolomics 

applications. I also believe that the recent expansion of CFM-ID’s experimental MS/MS 

library could also be used to improve its performance. One reason why CFM-ID 

performed so poorly with lipids was because the original training set had essentially no 

lipids. By expanding CFM-ID’s MS/MS spectral training set by a factor of 10 and 

ensuring that the training set includes a far broader collection of compound classes, I 

believe that CFM-ID could improve its performance in spectral prediction and compound 

identification by another 10-15%. 

5.3 Final Words 

Given the many challenges facing metabolomics in terms of funding (which is small 

relative to proteomics or genomics) and in terms of the number of known 
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metabolites/compounds (which is very large relative to the number of genes or number of 

proteins), I believe the only way to continue to move the field forward will be to improve 

our ability to 1) computational organize and describe chemicals, 2) computationally 

predict their chemical/biochemical transformation products and 3) computationally 

predict the observable properties of chemical compounds (MS spectra, NMR spectra, 

retention time, drift time, etc.). Through the work described in this thesis, I believe I have 

made some useful and important contributions to each of these areas and that they will 

eventually find applications far beyond the relatively narrow field of metabolomics.
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