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Abstract

Space-time coding is an effective approach to improve the reliability o f  data transmission 

as well as the data rates over multiple-input multiple-output (MIMO) fading wireless chan

nels. In this thesis, space-time code designs are investigated with a view to address practical 

concerns such as decoding complexity and channel impairments.

We study low-decoding complexity space-time block codes (STBC), a popular subclass 

o f space-time codes, for quasi-static frequency-flat fading MIMO channels. Therefore, 

the space-time code matrices are designed to allow the separation o f  transmitted symbols 

into groups for decoding; we call these codes multi-group decodable STBC. A new multi

group decodable STBC, called orthogonality-embedded space-time (OEST) codes, is then 

proposed. The equivalent channel, general decoder, and maximum mutual information o f  

OEST codes are presented. The following contributions, based on OEST codes, are made:

•  It is shown that OEST codes subsume existing orthogonal, quasi-orthogonal, and 

circulant STBC. Therefore, the results o f  OEST codes can be readily applied to these 

codes.

•  New STBC, called semi-orthogonal algebraic space-time (SAST) codes, are derived 

from OEST codes. SAST codes are rate-one, full-diversity, four-group decodable, 

delay-optimal for even number o f antennas. SAST codes nearly achieve the capacity 

of multiple-input single-output channels.

•  The framework o f OEST codes is applied to the existing single-symbol decodable 

codes, like minimum decoding complexity quasi-orthogonal STBC (MDC-QSTBC) 

and coordinate-interleaved orthogonal designs, and 4-group quasi-orthogonal STBC. 

Several open problems o f  these codes are solved, including equivalent channel, gen

eral decoder, symbol error rate performance analysis, and optimal signal rotations.
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Additionally, MDC-QSTBC are shown to achieve full diversity using antenna selec

tion with limited feedback.

We also consider the designs o f  space-time codes for MIMO systems, using orthogo

nal frequency division multiplexing (OFDM) for frequency-selective fading channels. The 

resulting codes are called space-frequency codes. The OFDM system performance is heav

ily affected by inter-carrier interference, which is caused by frequency offset between the 

carrier oscillators o f  the transmitter and receiver. We analytically quantify the performance 

loss o f  space-frequency codes due to frequency offset. A new class space-frequency codes, 

called inter-carrier interference self-cancellation space-frequency (ISC-SF) codes, is pro

posed to effectively mitigate the effect o f  frequency offset.
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Chapter 1 

Introduction

1.1 MIMO Systems for Future Wireless Communications

Future wireless communication networks must accommodate a large number o f subscribers 

and variety o f services with different levels o f  predefined quality o f service (QoS) [1,2]. 

Currently, users select communication services, such as voice and data services, with data 

rate up to 2 Mb/s via third generation (3G) land mobile communication networks [3], Ad

ditionally, wireless local area networks (WLAN) offer data rates up to 100 Mb/s [4]. How

ever, the throughput o f wireless networks at the access points (base stations) is expected to 

grow tremendously, in the order o f  Gbit/s [4,5].

There are several technical challenges for reaching high data rates for future wireless 

networks. First, signal fading inherent in mobile wireless channels limits the maximum 

data rates [6], Second, the radio spectrum available for land mobile communications is 

limited [6], Third, the transmit radio power is limited because the radio emissions need to 

be controlled for health reasons and for reduction o f the interference to other radio channels 

o f the same or different wireless systems [6]. Additionally, handheld mobile units or data 

terminals have limited-capacity batteries.

These three challenges may be overcome by MIMO (multiple-input multiple-output) 

technology, where multiple antennas are used at both transmitter and receiver [7-9], Through

out this thesis, the notation (M, N )  denotes a MIMO system with M  transmit and N  re

ceive antennas. The capacity studies by Telatar [8, 10] and Foschini [9, 11] show that a 

much higher capacity (i.e. data rates) can be extracted from MIMO systems than from 

single-input single-output (SISO) systems. Following these initial studies, various MIMO

1
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systems have been proposed. For example, a popular spatial multiplexing architecture is 

called BLAST (Bell laboratories layered space time) [9 ,12 ,13]. Depending on how the 

data streams are distributed over multiple transmit antennas, one obtains V-BLAST (verti

cal BLAST), D-BLAST (diagonal BLAST) and H-BLAST (horizontal BLAST) [14], By 

using such MIMO systems, one can overcome the capacity limitation o f SISO systems 

without spectral expansion or power increase.

In order to increase the reliability o f data transmission against fading, space-time coding 

has been proposed by exploiting the rich diversity o f MIMO channels [15,16]. A space

time code spreads input modulation symbols across multiple antennas (space dimension) 

and multiple time slots (time dimension). A space-time code design has been suggested 

by Guey eta l. [17, 18]. However, the design criteria o f  Tarokh eta l. [15,16] are more 

systematic and applicable for different channel models, such as Rayleigh and Rician fading 

channels [16]. Thus, these designs o f space-time codes exploit fading inherent in wireless 

channels to improve communication reliability.

To achieve full spatial multiplexing (i.e., the number o f transmit symbols per channel 

use (pcu) equals to the number o f transmit antennas), the number o f receive antennas should 

be at least equal to the number o f transmit antennas [9 ,12, 13]. However, in practice, 

due to size and/or cost constraints, the number o f antennas at the mobile handset is likely 

not more than that at the base station [19]. From information theory and efficient signal 

detection viewpoints, the maximum data rate should not exceed minimum values o f M  and 

N  [9,12,20]. Thus, the non-full-rate MIMO mobile wireless systems are more prevalent. 

However, with lower rates, more stringent mathematical structures can be embedded into 

the space-time code matrices, helping to reduce the decoding-complexity at the receiver.

The current developments o f wireless systems have been integrating MIMO into stan

dards. For example, the IEEE 802.1 In standard for WLAN applications [21-23] recom

mends the use o f multiple antennas (up to 4) at the transmitter and receiver to provide a 

data rate o f 100 Mbit/s or higher. The IEEE 802.16e-2005 standard [24,25] for fixed and 

mobile wireless wide-area broadband access also integrate the Alamouti space-time block 

coding [26] and MIMO spatial multiplexing configurations (2, 2), (3, 2), and (4, 2). The 

MIMO architectures are also studied for beyond 3G mobile wireless systems [27].

In conclusion, the applications o f MIMO systems can solve the three challenges o f  wire

2
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less communications. In the next section, we will review the design principle o f space-time 

codes. In particular, a special class o f  space-time codes, space-time block codes (STBC), 

will be discussed in more detail.

1.2 MIMO Channel Models

We consider a MIMO system over a quasi-static Rayleigh fading channel [8-10,16], i.e. the 

channel gains are constant during the duration o f a codeword, and can vary from codeword 

to codeword. The transmitter and receiver are equipped with M  transmit and N  receive 

antennas. The channel gain hrnn(m  =  1 ,2 ,...,  M; n — 1 ,2 ,...,  N )  between the (m , n)-th 

transmit-receive antenna pair is assumed CJ\f{0 ,1 ), which is consistent with the Rayleigh 

fading assumption. This is the most common channel model used for space-time code 

designs. We assume no spatial correlation at either the transmit or receive array. The 

receiver, but not the transmitter, completely knows the channel gains.

The above-mentioned channel model is ideal and is only applicable when there is a 

rich scattering environment around the receive antennas. There exist several more realistic 

MIMO channel models to analyze the performance o f  space-time codes (see e.g. [28-31]). 

These channel models incorporate the correlation among transmit and/or receive antenna 

arrays; the channel gains may also have distributions that are different from the Rayleigh 

distribution [32], Nevertheless, the MIMO channel model with uncorrelated Rayleigh fad

ing is the most widely used model in the literature and will be used throughout the thesis.

1.3 Space-Time Code Design Criteria

We examine the design criteria o f  space-time codes using the channel model described 

in Section 1.2. The block diagram o f a communication system over MIMO channels is 

sketched in Fig. 1.1.

The space-time encoder parses data symbols into space-time codewords C = [ctrn] o f  

size T  x M , where is the symbol transmitted from antenna m  at time t  (1 <  t  <  T). 

The average energy o f a codeword is constrained such that

M  T

E X > [ | c tm|2] = T .  ( i . i )
m=l t ~  1
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Figure 1.1: Multiple-input multiple-output (MIMO) system model.

The baseband received signal ytn at the receive antenna n  and at time slot t is the 

superposition o f the signals transmitted from M  transmit antennas:

M

Vtn =  \fp y   ̂Ctmhmn T  Wtn (1-2)
m—1

where wtn is independently, identically distributed (i.i.d.) additive white noise with distri

bution ~  CN(i), 1).

The received signals ytn can be arranged in a matrix Y  o f  size T  x N . Thus, the 

transmit-receive signal relation can be represented compactly as

Y  = y /pC H  + W  (1.3)

where I i  — [hmn], W  = [wtk\ o f  size T  x N . The transmit power is scaled by p so that the 

average signal-to-noise ratio (SNR) at each receive antenna is p, independent o f  the number 

o f transmit antennas.

The upper-bound o f pair-wise error probability (PEP) derived by Tarokh et al. [16] is 

as follows:
/  r  \  ~ N

n C ^ C ) < ( n A , )  ( £ ) " ' "  (1 .4 )

where C  and C  are the transmitted and erroneous codewords, F  is the minimum rank o f

a matrix A c  ( A c  — C  — C)  for all C  ^  C, A] , A2, ,.... Ar  are non-zero eigenvalues o f a

product matrix Pq  — A [ , A C.

4
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Definition 1.1. The diversity gain or diversity order Gd and coding gain Gc o f  a space-time

code are defined as follows:

The space-time code design criteria can be stated as follows [16]:

•  The rank criterion: The minimum rank o f A c  o f  all pairs o f  distinct codewords 

should be maximized. If the minimum rank o f A c  is then diversity order o f I 'N  

is achieved.

•  The determinant criterion: The coding gain Gc taken over all pairs o f distinct code

words must be as large as possible.

Since the rank A c  = rank Pc, i f  A c  o f  a space-time code is o f full rank M  for all 

pairs o f distinct codewords, then so is the Pc  and the diversity order is maximized, i.e.

Gd =  M N .

Definition 1.2. A space-time code is said to achieve full-diversity i f  its diversity order is

The diversity order tells us how fast the error rate decays with SNR on a log-log scale, 

while the coding gain reflects the SNR saving to achieve the same error rate performance. 

The larger the diversity order, the faster error rate reduces; and the larger the coding gain, 

the better the SNR saving. We illustrate the diversity order and coding gain o f several 

systems in Fig. 1.2, where the values o f the error rate and SNR are in log scale. For 

example, the (2, 2) MIMO system has a diversity order o f  4, which is higher than the 

diversity-one o f the SISO system. Thus, the error rate curve o f the former is steeper than 

that o f the latter. For the two (2, 2) systems, the better-designed system will save some 

SNR compared with the worse-designed system.

Note that the coding gain is an asymptotic performance metric since it is defined for 

the worst-case PEP basis and at high SNR. The actual performance o f a space-time code

Gd = P N (1.5)

nun
c ^ c

( 1.6 )

M N .

In the case o f full-diversity codes, the coding gain follows

r t i 1/M Gc =  min det{A'c A c )  
c±c I '  J

(1.7)
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Figure 1.2: Illustration o f the diversity order and SNR gain o f space-time systems.

depends on the whole PEP spectrum o f all codewords. Simulations are therefore required 

to compare the SNR gain o f  different space-time codes.

Instead o f the above rank-determinant criteria, Hassibi and Hochwald [33] proposed an 

information-theoretic criterion, whereby the mutual information between the transmitter 

and the receiver is maximized. While space-time codes can be constructed for any num

ber o f transmit or receive antennas using mutual information criterion, full diversity is not 

necessarily guaranteed. Moreover, while the rank-determinant approach can be applied to 

design a wide range o f space-time codes, the search for good codes using mutual informa

tion criterion becomes highly complicated for a large number o f antennas or large delay.

Though the upper bound on PEP is given in (1.4), the exact PEP o f space-time codes 

can be evaluated analytically [34-37], Thus, the union bound on PEP can be evaluated [37]. 

Let Q be the size o f the codebook. The union bound on PEP is given below:

A design criterion optimizing the union bound is proposed for several space-time codes 

(e.g. in [38,39]). This approach improves the error performance o f  the space-time codes.

Tarokh eta l. provided space-time trellis codes (STTC) and space-time block codes 

(STBC) [16,40], There are also several types o f space-time codes designed from error

n—i o
(1.8)

1 j—i-fl
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Figure 1.3: Classification o f space-time codes.

control codes [41—43]. In Fig. 1.3 space-time codes are classified. In the first group 

o f the STBC branch, low-rate STBC with orthogonality, includes OSTBC and QSTBC 

[40,44-48]. The other existing STBC (for example, [49-54]) belong to the high-rate non- 

orthogonal group. In this thesis, we focus on STBC and their design criteria based on either 

rank-determinant or union bound performance.

1.4 Space-Time Block Codes

Space-time block codes, which are an important class o f  space-time codes, have been stud

ied extensively recently. They are expected to play a prominent role in both third generation 

and beyond wireless standards [55-57], We consider linear STBC, in which, the space-time 

code matrix is linear with respect to the data symbols and their conjugates. In the following, 

we use the notation STBC to imply linear STBC where no confusion may arise.

In the STBC encoder, a block o f K  data symbols (s i, S2 , ..., sK) is mapped into the 

space-time code matrix o f size T  x M . The space-time code matrix has the following 

general form [33,40]:
K

X  = J 2 ( A kSk + ZkS*k) (1-9)
k=1

where A k and B k, (k = 1 ,2 ,...,  K )  are (possibly complex-valued) fixed matrices o f  the 

same size T  x M .

1
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To compare the coding efficiency o f different coding schemes, including the coding 

for SISO channels, the code rate o f  space-time codes, in symbols per channel use (pcu) is 

defined as follows [16,58],

Definition 1.3. The code rate o f  a space-time code in symbols per channel use is the ratio 

o f  number o f  data symbols transmitted in the space-time code matrix and the number o f  

channel uses T. Thus, the code rate is given by

R  = K /T .  (1.10)

For example, the Alamouti code X Sl  S 2
- 4  s l

has a rate o f R  =  1 [26],

1.4.1 Design Parameters and Fundamental Limits

There are several design parameters to be considered for STBC:

1. number o f transmit antennas (M);

2. code matrix length (T) and also the number o f channel uses per code matrix;

3. number o f  receive antennas (N);

4. diversity gain (or diversity order ) (G f;

5. coding gain (Gc);

6. code rate (R);

7. maximum mutual information (I).

There are some fundamental limits on the parameter designs as follows [20],

•  The maximum diversity order is Gd,max = M N .

•  To achieve the maximum diversity order, the minimum encoding delay is Tmin =  M . 

This limit comes from the rank criterion', the rank o f the matrix o f  order M x T  can 

not be more than the minimum o f M  and T. I f  foil diversity is required, then the 

necessary condition is M  < T.
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•  The maximum code rate (Rmax =  M ). With M  transmit antennas, we cannot trans

mit more than M  independent symbols in a time epoch.

Definition 1.4. A space-time code fo r  an (M , N ) system is said to be full-rate i f  its code 

rate is equal to M  symbols pcu.

The code length T  is proportional to the memory length and encoding/decoding delay. 

Therefore, given a diversity order, the code length T  is subject to be minimized.

Definition 1.5. A space-time code is said to be delay-optimal i f  the encoding delay T  is 

equal to M .

Some o f  these parameters can be combined for optimized code design. For example, 

STBC can be designed with full-diversity Gd — M N  and optimal delay T  =  M  [49-51, 

59]. On the other hand, linear dispersion codes in [33] are designed to maximize I ,  with 

respect to M , N , and T. We next briefly review several classes o f STBC designed with the 

rank-determinant criteria.

1.4.2 Orthogonal and Quasi-Orthogonal STBC

The Alamouti code, one o f  the most well-known STBC, is designed for two transmit anten

nas [26]. The code is successfully integrated in 3G standards [55]. It has been generalized 

as orthogonal STBC (OSTBC) by Tarokh et al. [40] using the results o f  orthogonal matrix 

theory developed by Hurwitz and Radon [60].

Orthogonal design results in a decoupling o f symbol detection, enabling minimal max

imum likelihood detection complexity. However, orthogonal designs entail low code rates 

[44,45]; a code rate o f  one symbol pcu with complex constellations is available for two 

transmit antennas only, and the code rate approaches 1/2 for a large number o f  transmit 

antennas [44,45]. The code rate may be improved by quasi-orthogonal STBC (QSTBC) 

[46-48], which achieve full diversity by signal constellation rotations (see [61] and refer

ences therein), but require joint maximum likelihood detection1 o f  pairs o f  symbols. More

over, QSTBC also have low code rates because they are based on OSTBC.

The channel d ecoupling property o f OSTBC implies that maximum likel ihood detection 

o f a vector o f  input symbols is equivalent to solving a set o f scalar detection problems, one

‘We use the terms detection and decoding synonymously.

9
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for each input symbol; that is, the MIMO channel is decoupled into several equivalent 

SISO channels. The maximum likelihood receiver then has the lowest complexity. The 

transmit-receive signals in (1.3) can be written equivalently for OSTBC [59,62] as

y = \\H \ \Fsk + w. (1.11)

Since all the transmitted symbols experience the same Frobenious norm ||.H ]|f  [63] o f  the 

channel matrix, this quantity \\H ||f can be considered as the equivalent channel o f  OSTBC. 

The decoding o f QSTBC is also decoupled into the detection o f groups o f  two symbols 

[46-48]. However, it is not known what the equivalent channels o f  QSTBC are.

1.4.3 Non-orthogonai STBC

Alternatively, the orthogonality requirement can be sacrificed for increasing the code rate; 

an example is full-diversity diagonal space-time (DST) codes [49-51]. Rate-one codes can 

thus be constructed for any number o f transmit antennas. Optimal DST codes yield bet

ter coding gains compared with OSTBC for more than two transmit antennas. Moreover, 

higher rate codes, namely threaded algebraic space-time (TAST) codes (up to full-rate) can 

be derived from DST codes, for example, in [58]. However, DST and TAST codes exhibit 

high peak-to-average-power ratio (PAPR) and high complexity maximum likelihood de

tection because all the transmitted symbols must be jointly detected. PAPR can, however, 

be reduced by linear TAST (LTAST) codes [20], Rate-one LTAST codes have a circulant 

structure [64] and the same PAPR as the input constellation. TAST and LTAST codes are 

both delay optimal in the sense that the number o f channel uses per space-time codeword 

equals to the number o f transmit antennas, i.e., the space-time codewords are square ma

trices [40]. However, LTAST codes incur the same high complexity maximum likelihood 

detection as TAST codes.

Using the cyclotomic number theory, the authors in [53,54] derive the optimal coding 

gain for diagonal algebraic space-time (DAST) codes and TAST codes. The high rate 

STBC are also constructed using division algebras [52,65], These codes also have high 

maxi mum likelihood decoding complexity as TAST codes.
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1.5 Designs of Space-Time Codes for Frequency-Selective 
Fading Channels

As mentioned before, the first space-time codes proposed by Tarokh et al. [16] for coherent 

systems over MIMO quasi-static flat fading channels (i.e., frequency non-selective fading) 

achieve the maximum diversity order d = M N ,  where M  and N  are the number o f  transmit 

and receive antennas. In frequency-selective fading channels, the maximum achievable 

diversity order is d = LPM N  where Lp is the number o f paths o f the frequency-selective 

fading channel [66,67]. The achievable diversity order o f frequency-selective fading is 

therefore higher than that o f  frequency-flat channels. Therefore, space-time code design 

for MIMO frequency-selective fading channels has received much attention.

Orthogonal frequency division multiplexing (OFDM) is robust to frequency selective 

fading [68-70], OFDM converts the wideband frequency-selective channel into paral

lel narrowband frequency-flat channels, which allow simple receiver designs. Therefore, 

OFDM is widely used in WLAN as well as wireless metropolitan area networks (WMAN) 

[6, 71, 72]. It is expected that OFDM will be the technology o f choice for future 4th- 

generation (4G) wireless systems [24,57,73-75],

The simplified model o f  MIMO-OFDM systems employing space-time coding is illus- 

tated in Fig. 1.4. Since with OFDM, the frequency-selective channel is converted to parallel 

subchannels, the frequency diversity can be obtained only if  the data are spread over multi

ple subchannels. Therefore, when the space-time codes designed for frequency-flat fading 

channels are transmitted over MIMO-OFDM, the maximum diversity order L PM N  may 

not be achievable.

To achieve the full potential diversity order o f frequency-selective fading channels, in 

general, space-time codes can be designed in the time domain [76] or in the frequency 

domain using OFDM and the resulting codes are called space-frequency codes [66], [67], 

[77], Coding for MIMO-OFDM to achieve high diversity order has received much atten

tion after the initial papers [66] and [67]. The authors in [42] design space-frequency codes 

(and also space-time codes) using algebraic theory for frequency-selective fading chan

nels [78], Reference [79] introduces a full-diversity full-rate space-frequency code design, 

which is developed using complex field coding [80], The authors in [81] propose a con-
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Figure 1.4: Simplified diagram o f  MIMO-OFDM systems.

catenation scheme with Alamouti code [82] as the inner and a trellis code as the outer. 

Su et al. [83] derive space-frequency code criteria, showing an explicit relation between 

the space-frequency code matrix and the characteristic parameters o f  frequency-selective 

fading channels, such as the path delays and power delay profile. The authors in [83] in

troduce a class o f space-frequency codes formed by repetition space-time codes. They also 

show that when any full diversity space-time code is used in MIMO-OFDM as a space- 

frequency code, it achieves at least the diversity order that has been designed in the time 

domain. Thus, many space-time codes are usable as space-frequency codes.

The design criteria o f space-frequency codes are similar to those o f space-time codes 

described in Section 1.3 [83], These criteria will be revisited in Chapter VI when we 

investigate the performance o f space-frequency codes in the presence o f  inter-carrier inter

ference.

1.6 Problem Formulation

1.6.1 Designs of STBC for flat fading MIMO channels

Since several STBC are well-known in the literature, it is worthwhile to summarize their 

properties. Table 1.1 compares existing space-time code designs [OSTBC, QSTBC and 

rate-one TAST/LTAST codes (or DST codes)]. By emphasizing the complexity (i.e. the 

number o f real or complex symbols to be jointly maximum likelihood detected), we can

12
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Table 1.1: Comparisons o f  Several STBC

Code M Gd R maximum likelihood real-symbol decoding

OSTBC 4 4 N 0.75 2 symbol

QSTBC 4 AN 1 4 symbols

LTAST 4 AN 1 8 symbols

OSTBC 8 8 N 0.625 2 symbol

QSTBC 8 8 N 0.75 4 symbols

LTAST 8 8 N 1 16 symbols

draw the following observations:

1. Low-rate OSTBC and QSTBC: Current designs o f OSTBC and QSTBC have low  

(maximum likelihood) decoding complexity, but they are subject to the limitation o f  

rates less than 1 symbol pcu; the rate 1 symbol pcu exists for OSTBC with 2 transmit 

antennas and QSTBC with 4 transmit antennas only.

2. High-complexity, ful 1-rate STBC: Full-rate codes such as TAST codes can achieve 

full-diversity, but the decoding complexity is high since all o f the transmitted symbols 

in a code matrix must be jointly decoded in order to achieve full diversity.

In practical mobile wireless systems, the number o f antennas at the mobile units may 

be smaller than that at the base stations; the maximum symbol rate in this case should be 

equal to the number o f receive antennas. Thus, full-rate STBC may not be needed.

Consequently, designs o f full-diversity, non-full-rate STBC with low maximum like

lihood decoding complexity are important; the design o f such STBC is one o f  the main 

challenges in this thesis.

An important property influencing the decoding complexity is the orthogonality. In 

other areas o f communications, e.g. CDMA (code division multiple access), orthogonal 

sequences are used to separate users’ data at the receiver [84], In the designs o f  STBC, the 

orthogonality among linear dispersion matrices o f transmitted symbols will determine the 

decoding complexity.

13
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1.6.2 Designs of Space-Frequency Codes for MIMO-OFDM Systems

Since the space-frequency codes use OFDM, their performance can be affected by un

derlying impairments, such as frequency offset, phase noise and time-varying channels. 

A residual frequency offset exists due to carrier synchronization mismatch and Doppler 

shift [85], Residual frequency offset destroys subcarrier orthogonality, which generates 

inter-carrier interference and the bit error rate (BER) increases consequently. The effect 

of such impairments on the conventional (i.e. single input single output (SISO)) OFDM 

has been widely investigated. For example, in [86], BER is calculated for uncoded SISO- 

01 DM systems with several modulation schemes. The authors in [87], [88] provide BER 

expressions o f MIMO-OFDM employing Alamouti’s scheme [82]. The authors in [89] an

alyze the space-frequency code perfonnance in different propagation environments, such as 

Rayleigh and Rician fading channels, and with spatial correlation at the transmitter and/or 

receiver. However, the impact o f  inter-carrier interference due to frequency offset on the 

pairwise error probability (PEP) performance o f  general space-frequency codes have not 

been investigated. Additionally, the design criteria o f  space-frequency codes when inter

carrier interference exists are unknown. These problems will be addressed in this thesis.

1.7 Contributions of Thesis

The main contributions o f this thesis are broadly twofold. First, we characterize the nec

essary and sufficient conditions to obtain low-complexity STBC for frequency-flat fad

ing channels. The low complexity is achieved by separating the transmitted symbols into 

subgroups for maximum likelihood detection. The codes with such properties are called 

multi-group decodable STBC. We propose a new multi-group decodable STBC called 

orthogonality-embedded space-time (OEST) codes. Second, we analyze the performance 

o f space-frequency codes for MIMO-OFDM systems in the presence o f  frequency offset 

and propose a new class o f  space-frequency codes to combat effectively frequency offset. 

The detailed contributions are summarized in the following.

In Chapter II, the necessary and sufficient conditions for low-decoding complexity 

STBC are presented. A new framework to design STBC called OEST codes is proposed. 

OEST codes subsume existing STBC such as OSTBC, QSTBC, circulant STBC as spe-
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cial cases. Several properties o f OEST codes will also be derived. We derive a subclass 

o f OEST called semi-orthogonal algebraic space-time (SAST) codes, which are identified 

with many desirable features: near capacity achieving, low decoding complexity, and better 

performance than several codes o f  the same rate.

Chapter III treats several open problems o f QSTBC, a special class o f  OEST codes, 

originally proposed by Tirkkonen et al. [47]. This code has been named ABBA because 

o f its structure. We will show how to obtain maximum likelihood single-complex symbol 

decoding for ABBA code, which is the minimum decoding complexity level that can be 

achieved by any non-orthogonal STBC. For ABBA codes, we also systematically solve the 

open problems, including performance analysis, optimal signal rotation, capacity calcula

tion, channel state information feedback, and antenna selection with limited feedback.

Chapter IV proposes a new encoding method so that the OEST codes even have lower 

decoding complexity. SAST codes, a special case o f  OEST codes, are analyzed in detail. 

Initially, SAST codes allow the decoding o f transmitted symbols into two groups. A new 

decoder is derived, enabling the decoding o f the transmitted symbols into four groups and 

resulting in a great complexity reduction. The exact PEP and optimal signal transformation 

o f SAST codes are derived.

Chapter V extends the results developed for OEST codes to solve open issues o f  other 

STBC, including coordinate-interleaved orthogonal designs (CIOD) [90-92] and QSTBC 

with four-group decoding [93]. New decoders, performance analysis and optimal signal 

designs are presented for these two codes.

Chapter VI contributes a performance analysis o f space-frequency codes in the pres

ence o f frequency offset. Additionally, inter-carrier interference caused by a time-varying 

channel and phase noise is also considered. More importantly, we propose a new space- 

frequency coding scheme, called inter-carrier interference self-cancellation space-frequency 

codes, to combat even high values o f frequency offset, up to 1 0 %.

In Chapter VII, we summarize the contributions o f the dissertation. Open research 

topics that can be developed from this thesis are identified.

15
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Chapter 2 

Multi-Group Decodable Space-Time 
Block Codes

Since low decoding complexity STBC are desirable for practical applications, the code 

matrix structure should allow the separation o f the transmitted symbols into sub-groups for 

maximum likelihood decoding, resulting in multi-group decodable STBC. Here we empha

size maximum likelihood decoding as it is a sufficient condition to realize full-diversity. 

Suboptimal detectors, such as zero-forcing decision feedback equalization [94], may not 

achieve full diversity. In this chapter, we first derive the necessary and sufficient conditions 

so that the separation o f transmitted symbols for maximum likelihood decoding is possi

ble. Second, we propose a new class o f  STBC called orthogonality-embedded space-time 

(OEST) codes that are multi-group decodable.

2.1 Algebraic Constraints of Multi-Group Decodable STBC

2.1.1 System Model

We use the MIMO quasi-static frequency-flat fading channel model described in Section 

1.2. Other notations o f  STBC given in Chapter I will be utilized in this and other chapters. 

However, for the reader’s convenience, several basic equations are repeated.

There are M  transmit and N  receive antennas. In the space-time encoder, the data 

symbols are parsed into a T  x M  code matrix1 X  o f  an space-time code X  as follows:

X  =  (2-1)

1 We use the term "codeword" and "code matrix" interchangeably.
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where ctm is the symbol transmitted from antenna m  at time t (1 <  t  < T). The average 

energy o f code matrices is constrained such that

M  T

£x  = E [trace(X fA:)] =  E[||X ||£] =  E E  ̂ [\ctm\2] = T  (2.2)
m=1 t=l

where trace(X ) denotes the trace o f matrix X  [95].

The received signals ytn o f  the nth antenna at time t can be arranged in a matrix Y  o f  

size T  x N . Thus, one can represent the transmit-receive signal relation as

Y  = y /p X H  +  W  (2.3)

where I I  = [hmn\, and W  =  [wtn] o f  size T  x N , and wtn are independently, identically 

distributed (i.i.d.) CAf(0,1). The transmit power is scaled by p so that the average signal- 

to-noise ratio (SNR) at each receive antenna is p, independent o f  the number o f  transmit 

antennas. However, p is sometimes omitted for notational brevity.

The mapping o f a block o f K  data symbols (si, s2, ■ ■ ■ , s k ) into a T  x  M  code matrix 

can be represented in a general dispersion form [33,40] as follows:

K

x  = y ,  + w  (2 -4)
*:=i

where A k and B k, (k: =  1,2, • • • ,K )  are T  x  M  complex-valued constant matrices; they 

are commonly called dispersion matrices. The real and imaginary parts o f the symbol sk

are ak and bk.

In (2.4), there are totally 2K  variables a,; and bt. We replace variables a* and 6j (and 

their dispersion matrices A k and B k) by the same symbolic variable q (and dispersion 

matrix C)). Then (2.4) becomes
L

X  = Y J CiCi. (2.5)
i=i

The benefit o f  the expression (2.5) will be clearer when we derive the algebraic constraints 

o f multi-group decodable STBC. Note that L  in (2.5) is not necessarily an even number.

Denote the transmitted data vector c  =  [cy c2 . .  .c L]T. The maximum likelihood 

decoding o f  STBC is to find the solution c  o f the following metric:

c  =  argm in | |y  — s f p X H \ \ l . (2.6)
C
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2.1.2 Algebraic Constraints of Multi-Group Decodable STBC

The concept o f QSTBC [46-48] is to relax the orthogonality constraints o f  OSTBC to 

achieve higher data rates. In the code matrices o f QSTBC [46-48], the columns are non- 

orthogonal in pairs; the maximum likelihood detection o f QSTBC can be made in pairs 

o f symbols. To obtain a higher data rate o f one symbol for any number o f  antennas, in 

[96-100] the orthogonality is further relaxed so that the columns o f code matrices can be 

divided into two groups, and the columns o f  one group are orthogonal to the columns o f  

the other group. The maximum likelihood detection o f transmitted symbols are decoupled 

into two groups. A rule o f  thumb can be drawn from the STBC in [46^18,96-100]: The 

number o f columns o f a group (that is orthogonal to the other groups o f columns) equals 

the number o f symbols to be jointly detected.

In fact, the orthogonality o f  columns o f  code matrices is not the fundamental condition 

to obtain multi-group decodable STBC, as we will show later. We provide a definition o f  

multi-group decodable STBC to unify the notation in this thesis as follows.

Definition 2.1. A STBC is said to be F  -group decodable STBC i f  the maximum likelihood 

decoding metric (2 .6 ) can be decoupled into a linear sum o f  T  independent submetrics, 

where each submetric consists o f  the symbols from only one group. The T  -group decodable 

STBC is denoted by T -group STBC fo r  short.

It is worthwhile to emphasize the following points from Definition 2.1:

1. The numbers o f symbols in groups are not necessarily the same.

2. Since there are no restrictions on the dispersion matrices o f  the real or imaginary 

parts o f  a complex symbol, they may belong to different groups. That is, the real and 

imaginary parts o f a complex symbol can be decoded independently. Such decoding 

is possible for quadrature amplitude modulation (QAM) signals, as we will show 

later.

3. There is no orthogonality constraint on the columns o f  /  '-group STBC even though 

there are some degree o f orthogonality imposed in the code matrices o f  some existing 

r -group STBC [46-48,96,97,99,100]. We will show an example o f F -group STBC, 

in which the columns o f code matrices are not orthogonal at all.
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Figure 2.1: Block diagram of MIMO systems using multi-group decodable STBC.

The block diagram o f MIMO systems with multi-group STBC is illustrated in Fig. 2.1. 

The data frame o f L-real symbols is encoded using multi-group STBC encoder, which 

performs the multiplications and additions. At the receiver, the data symbols are separated 

into groups by spatial matched filters. Each group o f  real symbols is maximum-likelihood 

detected so that the whole data frame can be recovered. Thus, the question is how to design 

the spatial matched filters to separate the data symbols. This question can be addressed by 

exploiting the properties o f the space-time encoder, i.e. the dispersion matrices. Thus, we 

must first find the properties o f  the dispersion matrices o f  multi-group STBC.

In the most general case, we assume that there are F  groups; each group is denoted by 

Fi(i =  1 , 2 , . . . ,  / ’) and has L,; symbols. Thus, L  =  ]Ff=1 Lj- Let Qt be the set o f  indexes 

o f symbols in the group tf'i .

Yuen et a l  [98, Theorem 1] have shown a sufficient condition for a STBC be multi

group decodable. In fact, this condition is also the necessary condition. We will state these 

results in the following theorem.

Theorem 2.2. The necessary and sufficient conditions fo r  a STBC to be F  -group decodable 

are

CfpCq +  C\C p =  0  Vp €  Gi, Mq 6  0 j ,  i f  j .  (2.7)

Theorem 2.2 covers [92, Theorem 9] (single-symbol decodable STBC) and can be 

shown similarly below.
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Proof. Let y n and h n be the nth column o f  Y  and H , respectively. The maximum likeli

hood metric (2 .6 ) is rewritten as

N

\\Y — XH\\f =  ^  \\yn -  X h n\\f:
71=1

N

= K & C K  -  2 ^ { y iC h n)] +  \ \Y § .  (2.8)
n = t

In (2.8), ||r ||2  is a constant with respect to the code matrix C, it can be therefore discarded. 

The term ^ (y '^ C h f  is linear in real variables c,. Thus, we just need to consider the product 

C fC ,  which consists o f  cross products o f  variables c*:

c " ° = ( e ^ ; )

= '£<?clc,+ E  v,(clc , + clc„). (2.9)
1 = 1  p,?=l.p#9

Now we show the necessary condition o f Theorem 2.2. If Ci satisfies the condition 

(2.7), then

r

C 'C  =  T T m )  (2 .10)

where

/( !P i)=  CmCnClCn- (2 .1 1 )
m,n{E0j

Hence, the maximum likelihood metric (2.8) can be decomposed into a linear sum o f P  

submetrics, each submetric involves only the symbols o f  one group. Thus, to minimize the 

metric in (2.8), one can minimize / ’ individual submetrics. In other words, the decoding o f  

L  symbols can be decoupled into / ’ independent groups.

We next prove the sufficient condition. The assumption is that the maximum likelihood 

decoding metric is a linear sum o f r  independent submetrics, each submetric consists o f  

variables from only one group. From (2.9) we cannot decompose further the sum that 

involves the cross-products o f variables cp and cq. Thus, the maximum likelihood metric 

is a linear sum o f independent submetrics only if  that (2.7) holds. That concludes the 

proof. □
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Using Theorem 2.2, we can identify whether a STBC is multi-group decodable or 

not. For example, let us examine a 2-by-2 circulant STBC [20,101] with the code ma

trix X . Let a'i =  ai +  j 6 i, X2 =  a2 +  j b2- It is not hard to verify that theX i  x 2
X 2 X i

dispersion matrices o f symbols (ax,a2) and symbols (6 1 , 62) satisfy Theorem 2.2. Thus, 

this 2 x 2  circulant STBC is a 2-group STBC; it is also a rate-one single complex-symbol 

decodable STBC for 2 transmit antennas, which is similar to the Alamouti code. However, 

the Alamouti code performs better than this 2 x 2  circulant STBC since OSTBC are optimal 

in terms o f  SNR [102] [26], The other higher order circulant STBC can also be shown to 

be 2-group STBC, but this fact is not recognized in [20,101], Interestingly, circulant STBC 

are an example o f 2-group STBC, in which the columns o f  the code matrix are not orthog

onal at all. In the next sections, we develop two new classes o f  rate-one 4-group STBC, 

which have lower decoding complexity than the two-group decodable circulant STBC.

There are several existing multi-group decodable STBC, for example OSTBC [26, 

40,44], QSTBC [46 48], and circulant STBC [20,101]. They have different code con

structions, degrees o f column orthogonality, different code rates, and decoding complexity. 

However, we will show that there is a mother code, called orthogonality-embedded space

time (OEST) codes, o f  OSTBC, QSTBC, and circulant STBC.

The OEST code construction utilizes the generalized complex or real orthogonal de

signs o f the form (skA k +  s lB k), where A k and B k are the linear dispersion matrices o f  

an underlying OSTBC and sk are transmitted symbols, with two modifications: (1) Each 

transmitted symbol sk is replaced by a circulant matrix Ck, in which a block o f  transmitted 

symbols is encoded; (2) The regular scalar-matrix product is replaced by the Kronecker 

product [63,95]. Therefore, it is o f  interest to review important properties o f OSTBC and 

circulant STBC to be used later. We will present the results o f OEST codes with generalized 

complex orthogonal designs; however, these results can be easily extended to generalized 

real orthogonal designs. Therefore, only the properties o f OSTBC from generalized com

plex orthogonal designs are provided.
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2.2 Review of OSTBC and Circulant STBC

2.2.1 Orthogonal Space-Time Block Codes

Definition 2.3 (Orthogonal designs [40,44]). A complex orthogonal design 0  is defined 

as a R  x Q rectangular matrix whose nonzero entries are ± s i ,  ± S 2 , • • ■ > ^ SK or their 

conjugates ±s*, ±4> • • ■ , Azs*K, where Si, S2 , •• • , s k  ore indeterminates over the complex 

fie ld  C, such that

0 * 0  =  ( |S l |2 +  |S l |2 4.......+  \ s k \2) I q . (2.12)

The matrix 0  is also said to be a [R ,Q ,K ] complex orthogonal design. When R  = Q, O  

is called a complex square orthogonal design.

Proposition 2.4 ([44]). 0  is a complex orthogonal design i f  and only i f  the basis matrices 

Ak and Bk in (2.4) satisfy

A \ At + B \B i

A lA j + B jB , 

A \B j  f  ,\)B ,

Iq , * =  1,2, ■ • • ,K

■ 0 Q) 1 < i < j < K

0 q , i , j  — 1, 2 , - - -  ,K .

(2.13a)

(2.13b)

(2.13c)

To construct STBC for Q transmit antennas from orthogonal designs (OSTBC), the 

orthogonal design [R ,Q ,K ]  is used, and the indeterminates are replaced by transmitted 

symbols. For example, the OSTBC for 2 and 4 transmit antennas are given below:

0 2

04

Si

'^2

S2

S l
)

Si S2 S3 0
- 4 0 - S 3
— «* 3 0 s t S2

0 s i - 4 Sl

(2.14)

(2.15)

The OSTBC for 2 transmit antennas is the well-known STBC proposed by Alamouti 

[82], The Alamouti code has rate-one. However, when the number o f transmit antennas 

increases, the code rate o f OSTBC decreases. The maximal code rate o f existing OSTBC 

is given as follows.

Proposition 2.5 ( [44]). The maximal code rate o f  OSTBC fo r  Q =  2a — 1 or Q =  2a, 

where a is any positive integer; is

o +  1R,O.Q
2  a

(2.16)
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Thus, the rate-one OSTBC exists for 2 transmit antennas only. Furthermore, the rate 

approaches 1/2 for a large number o f antennas. The subscript Q o f  O q is added to highlight 

that the OSTBC is designed for Q  transmit antennas. Note that there are several design 

criteria ex isting for OSTBC, such as delay-optimal codes with R  — Q (or square orthogonal 

designs) [59] or rate-optimal, i.e. the code rate is maximized [44].

To guarantee the transmit power constraint (2.2), a scaling factor is required. Thus, the 

OSTBC code matrix with normalized power is ^ /kO q . We can show that

< 2 ' 1 7 )

as follows.

Proof. The total energy So  o f  OSTBC code matrices is

K

S0  =  E [trace(OtC>] =  / s Q E [ £  \sk \2} = Kl<QE[\sk \2} = kK Q .
fc= 1

From (2.2), one has kK Q  — T  or k =  QRxp - . □

For example, the Alamouti code has k 2 — 1/2.

The coding gain o f  OSTBC can be easily found to be

G° ,Q = n E —  (2 -18>

where dmin is the minimum distance o f the input constellation from which sk are chosen.

2.2.2 Linear Threaded Algebraic Space-Time Codes

The idea o f employing circulant matrices [64] to build rate-one STBC has appeared in 

[20,101]. We may call such codes circulant STBC. Let u  =  [«i u 2 • • • % ]  be the 

input modulation vector o f M  symbols. The code matrix o f circulant STBC for M  transmit 

antennas is

(2.19)

Since circulant matrices are not always foil-rank, they cannot be directly applied with 

typical signal constellations to design STBC with foil diversity [101]. To achieve full
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diversity, modulation symbols are drawn from the same signal constellation and rotated 

differently, i.e. the transmitted symbols it, are virtually drawn from different alphabets [2 0 ]. 

The selection o f rotation angles heavily impacts the coding gain. We next briefly review 

how the rotation angles are selected in [2 0 ].

Let S be the input symbol constellation with the minimum Euclidean distance iimin. 

A  block o f M constellation symbols is arranged in a vector s =  [s:1, s 2 , • ■ ■ , sm]t - Each 

symbol st is rotated by an angle where <f> is a Diophantine number [20,103]. Let

6 > =  d ia g [l, <pi/M, , f r M 1)/M ], the transmitted vector u  is as

u  — Os (2.20)

The LTAST code matrices are circulants given by

T ^ C A u ) .  (2.2!)

The rate o f the resulting LTAST code due to this construction is one. The upper bound o f  

the coding gain is as follows.

Proposition 2.6 (eq. (7), [20]). The coding gain o f  the rate-one LTAST codes is upper- 

bounded as Gq,M <  Jfdmin-

To achieve full diversity, the Diophantine number is chosen as 4> =  (j2 =  -1 ) .

Thus, the ith symbol s* is rotated by an angle fy-ot. The optimal values o f  (f> that maximize 

the coding gain are given below.

Proposition 2.7 (Theorem 2, [20]). For M  — T , r  >  1, the optimal coding gain o f  rate-one 

LTAST codes, i.e. G c ,m  = can obtained by choosing the Diophantine number

4> = j and constellations S  carved from the ring o f  Gaussian integers (including QAM), 

and fo r  M  — 2?’°3r i, ro, r\ >  0 by choosing <fi =  e2 -'71’/ 6 and constellations S  carved from  

the ring o f  Einstein integers (including hexagonal (HEX) constellations [104]).

[20, Theorem 1] also suggests how to select ]> for PSK constellations; however, com

puter search is required to find the <p that maximizes the coding gain. Additionally, for 

M  f  2r or M  — 2r°3ri, only local maxima o f  the coding gain are guaranteed by computer 

search. However, for a special case with M  =  2, we will show that the results o f ref

erence [105] can be readily applied to find the optimal rotations for any two-dimensional 

signal PSK.
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Proposition 2.8 ([105]). Consider the rate-one LTAST codes fo r  M  =  2. One o f  the two 

transmitted symbols is drawn from an M -a ry  PSK constellation S  and the other one is 

drawn from e) °S . The coding gain o f  LTAST is maximized i f  and only i f  the rotation angle 

a  is fo r  k =  0 , 1 , M. — 1 i f  M  is even and k = 0 , 1 , 2A4 — l i f f A  is

odd.

We will show that OEST codes include LTAST codes as a special case. Thus, Proposi

tion 2.8 can be verified when we present the properties o f  OEST codes in the next section.

2.3 Constructions and Properties of Orthogonality- 
Embedded Space-Time Codes

In this section, we develop OEST codes by deriving their main properties, such as the code 

rate, diversity order and coding gain. Several existing codes are shown to be special cases 

o f OEST codes. The group decoding property is fully investigated. The orthogonality 

among the group symbols implies the existence o f  the orthogonal (spatial) signatures o f the 

data vectors [32,48]; our main task will be to show these spatial signatures. We also derive 

an explicit form o f the equivalent channel o f  OEST codes, which is used later to analyze 

the maximum mutual information o f  OEST codes.

2.3.1 Constructions of OEST Codes

To construct OEST codes form OSTBC, we replace the symbols sk in (2.4) by circulant 

matrices and the scalar product by the Kronecker product. The resulting OEST codes have 

higher rates than that o f  OSBTC and, importantly, OEST codes offer several code designs 

for the same number o f tran smit antennas with desirable tradeoffs among rate, performance, 

decoding complexity and delay. Furthermore, the new results o f  OEST codes shed light on 

existing codes, such as QSTBC and LTAST [20,47], For example, the maximum mutual 

information, equivalent channel and general decoder for QSTBC and LTAST are obtained 

as a byproduct o f  the OEST results.

Let the number o f transmit antennas be M  — PQ , where P  and Q  are positive integers, 

and let Ak and B k (k =  1 ,2, • • • , i f )  be the basis matrices o f  R  x  Q orthogonal designs. 

A block o f K  x P  input symbols are divided into K  vectors s k, each o f  size P  x 1 .
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We propose two constructions o f OEST codes as follows:

Construction J:

V  --
K
P

Construction II:

V  =

(A ktoC k + B k to C t} ,
fc=1 

-  K

:- Y , ( C* ® A k + C l® B k

(2 .22)

(2.23)

Since A k and B k have the same size, Ck is a square matrix, and the two matrices (Ak ® 

Ck) and (Ck x  A k) are permutation equivalent (the same relation holds for (B k ® Ck) and 

(C \® Bk)) [95, corollary 4.3.10], Hence, Constructions I and II are permutation equivalent. 

We will, therefore, derive the properties o f the OEST codes for Construction I only.

It is o f  interest to find the linear dispersion form (2.4) o f OEST codes. Let u k =  

[uki Uk2 ■ ■ ■ Uk,p]J (k = 1 ,2 , . . .  ,K )  denote the Alh input vector to the circulant space

time encoder (2.21). We know that a circulant matrix has the following decomposition

p

Cr(u k) = J 2 ' ^ i - 1 (2.24)
i=1

wherq forward shift permutation matrix tt is given by [64, p. 6 8 ]

7T

0 1 0 0  • • o'
0 0 1 0  • • 0

1 0 0 0  • • 0

(2.25)

From (2.22) and (2.25), the linear dispersion form o f OEST code matrix is as follows:

K

ED
k =1

A k / ( ^ 2  ukPTtp + B k ® ^ i - p

. i — l

K  P

(2.26)[ukp (A k ®TTP l ) + U*kp (B k ® 7T1 P)] .
fe=l p=l

This represention will later be used to derive the group decoder.

Since several different constructions exist for OSTBC [44,59,106], in combination with 

the circulant codes, we can generate several OEST codes for a given number o f  transmit 

antennas. Moreover, OEST codes subsume several existing STBC as we will show below.

1. OSTBC: II P =  1 , the circulant matrix Ck reduces to a single symbol, and we revert 

to the original construction o f OSTBC codes.
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2. QSTBC: If Q = 2, the Construction II is identical with the QSTBC codes given by 

Tirkkonen et al. [47],

The QSTBC in [47] is known as ABBA codes 2. This construction for M  = 2Q 

transmit antennas is as follows

Q
A  B  
B A

(2.27)

where A  and B  are two matrices o f  OSTBC codes designed for Q transmit an

tennas. Hence, A  and B  can be represented as A  =  (skA k +  s*kB k) ,B  =

Ylf= i { s k + K A k +  s*k + K B k ), where A k and B k, (k =  1 , 2 , ■ ■ • , K )  are the basis ma

trices o f OSTBC for Q transmit antennas. Substitute A  and B  into (2.27), and we 

have

E *= i (skAk +  skB k) ]Cfc=i (sk+i<Ak +  sk+KBk)
Q =

Sk S k+K
$ k - \ - K  S k

K

.Y lk= i (sk+i<Ak +  s*k+KB k) ^2 k==1 (SkAk +  s*kB k)
K

E
i r  i k.=l

>k+K
Slk + K

Ck

— 'y ^  A k +  Ck 0  B k). (2.28)
k =1

The above expression is exactly the Construction II o f  OEST codes in (2.23).

Note that to achieve full diversity and optimal coding gain for QSTBC, signal rota

tions are also required. Thus, the optimal rotations o f rate-one LTAST codes with 

P  = 2 (see Proposition 2.7) can be applied for QSTBC with QAM and Hex constel

lations. Vice versa, the optimal rotations o f QSTBC (see [61,105] and references 

therein) can be applied for rate-one LTAST codes; this result is provided in Proposi

tion 2 .8 .

3. Rate-one LTAST codes [20]: In diis case, Q = 1, A \ — I \ ,  B i = Q\.

We will next examine the properties o f  OEST codes with the multi-group decoding 

property being presented first.

2 There are other QSTBC designed for 4 and 8 transmit antennas proposed by Jafarkhani [46]. However, 
the QSTBC for 8 transmit antennas given in [46] cannot be constructed from the code designed for 4 transmit 
antennas; The code for 8 antennas was designed by proper selection and arrangement o f  the specific OSTBCs’ 
designed for 4 transmit antennas. Thus, the exemplary structures o f QSTBC given in [46] are not general for 
an arbitrary number o f transmit antennas.
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2.3.2 Properties of OEST Codes

1. M ulti-Group Decoding

From the construction o f OEST codes, there are K  vectors embedded in K  circulant 

matrices. The first important property o f  OEST codes is their multi-group decodability 

stated below.

Theorem 2.9. By Constructions I  and II, the OEST codes are K-group decodable.

One can use the linear dispersion form (2.26) and Theorem 2.2 to prove. However, we 

will follow a slightly different approach so that the same proof can be used later to derive 

other properties o f OEST codes, such as diversity order and optimal signal transformations.

Proof. From the proof o f Theorem 2.2, we need to show that i f  V  is a code matrix o f  

OEST codes, then from (2.10), the product V^T> must be decomposed into a linear sum o f  

K  submetrics, each submetric involves only the symbols o f one data vector. We have

K  K  K  K

=  e  ® (e tc , ) + E  E  (b 'm  ® (c 4 )
i = 1 j = 1 i = 1 j = 1

X,.
K  K  K  KK  K

+  E  E t - 4! Bi)  ® ( d d )  +  E  E l d  A )  ® (C.C,). (2.29)
i —1 j = 1

Note that is circulant, then Cj is also circulant; we can apply the commutativity o f  

circulant matrices to derive the three terms X i (i — 1 ,2 ,3 ) in (2.29).

K  K

(2.30)
i = i  j = i
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Using the constraint (2.13c) o f OSTBC, we have A \B j+ A ^B i =  0 q . Therefore,X 2 =  0 M - 

Similarly, we can show that X s =  0 m -

To calculate X i,  we first swap the indices i , j  o f  the second term o f  X \  and exploit the 

commutativity o f circulant matrices to get

-a = E  E(4fo) ® (aE) + E  E(sJSi) ® (c.c])
—1 j  — 1 i — i j  = 1.

i~l j ~l
K  K  K

= E  E  -'M, • ipd > tc/c7) • E^M*- (2.31)
*=1 *=1

From the orthogonality constraint (2.13b), the first term o f  (2.31) vanishes and from (2 .13a), 

A \A i + 13] Ih = IQ. Thus, X !  =  E h  I q  ® (CM ) =  Jq  ® ( Z L  C]Ck) .  Substituting 

the results in (2.30) and (2.31) into (2.29), we have

1<

V ^V  = ~ I Q ^ Cl Ci- (2 -32)
2=1

This completes the proof. □

We next examine the performance o f OEST codes. The diversity order and coding gain 

are the two main performance metrics for designing OEST codes (Section 1.3). O f the 

primary importance, the diversity order is investigated first.

2, Diversity order

We derive the conditions so that OEST codes achieve full diversity.

Theorem 2.10. An OEST code achieves fu ll diversity i f  and only i f  the underlying circulant 

STBC has fu ll diversity.

Proof. We first show the necessary part o f  Theorem 2.10. We now apply the diversity

criterion (Section 1.3) to examine the diversity order o f  OEST codes. For two distinct

OEST code matrices D  and D, the matrix PD defined as

P d  =  { D -  I))\{D  -  D)

=  ) U e ® ( E 4 , A , J  (2.33)
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where A ck = Ck -  Ck. If Pd is full rank for all distinct code matrices D  and D, then the 

OEST code achieves full diversity.

Since D f  D, there exists at least one pair o f C, and C, such that C,, f  Ci or A ^ .A ^  is 

positive definite. Then the matrix (^ fc= i ^ c , ,^ c k)  is always positive definite for any pairs 

of distinct code matrices. Therefore, the matrix PD is always o f full rank and OEST codes 

achieve full diversity. This completes the necessary part o f  Theorem 2.9.

To prove the sufficient part o f  Theorem 2.10, if the OEST code achieves full diversity, 

we must show that the underlying circulant STBC must be lull diversity. From (2.33), if  the 

worst case happens, there is only one non-zero difference matrix (Ci — Ci) for 1 <  i <  K . 

If Pd is full-rank, the matrix A ^ A ^  must be full rank as well; this holds for all possible 

worst-case pairs o f OEST code matrices. Therefore, for all possible matrices (Ci — Ci) 

are o f full rank and the circulant STBC is full diversity. The proof o f  the sufficient part is 

completed. □

3. Coding gain

When OEST achieve full diversity, the coding gain (1.6) immediately follows:

Gt>,m  = 75  min det PD 
P  D^D

K— mm
P  D^D

/  K
det ] T  A lkA Ck 

\k= i ,

Q / M

(2.34)

In the worst case, where there only exists one pair o f  Ct and C, such that Ci f  Ci, the coding 

gain is

K " (  \ \

Gv m  =  p  min det
•* Ciŷ Ci L ' J

= k Gc,p . (2.35)

Thus, using Proposition 2.6 and (2.16), we have the following result.

Corollary 2.11. The coding gain G p:M o f  OEST codes is upper bounded as

1 • di •w'min ^min s n  -y

G v m ~  (236)

Thus, one can select the optimal rotation o f LTAST codes to maximize the coding gain

o f  OEST codes as specified in Proposition 2.7 or Proposition 2.8 for P  =  2 and PSK.
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4. Code Rate

From the construction o f OEST codes, compared with the basis OSTBC, the number 

o f symbols parsed in an OEST code matrix increases P  times. However, the length o f the 

code matrix also increases P  times; the code rate o f  an OEST code for M  = Q P  transmit 

antennas is, therefore, equal to the rate o f OSTBC for Q transmit antennas used to construct 

this OEST code. We thus have the following results.

Corollary 2.12. The rate o f  an OEST code fo r  M  =  P Q  transmit antennas is equal to the 

rate o f  an OSTBC fo r  Q  transmit antennas, R v .m  =  R o ,q , which is used to construct this 

OEST code. The upper hound o f  the code rate fo r  Q — 2 a — 1 or Q — 2 a is 9:~ .

5. Column orthogonality

From (2.32), the orthogonality property o f  OEST code matrices can be stated as follows.

Corollary 2.13. The M  =  PQ  columns o f  OEST code matrices (for M  =  P Q  transmit 

antennas) can be divided into Q separate groups, each o fP  consecutive columns, counting 

from left to right. Then the columns o f  the same group are not orthogonal to each other, but 

they are all orthogonal to the columns o f  the other groups.

2.3.3 A Note on the Maximal Rate of OEST Codes

The rate o f  OEST codes is less than or equal to 1 symbol pcu. One may ask whether there 

is any STBC with group decoding property and with rate larger than one symbol pcu? We 

provide a partial answer to this question in the following.

OEST codes are designed with a special property o f  circulant matrices: If C\ is a circu

lant matrix, then C\ is also a circulant matrix; C\ and C\ inherit the commutative property 

o f circulant matrices. Now, we consider a more general setting, a family £  o f  matrices with 

the following properties: (1) All the matrices o f  C are commutative, i.e. if  C \ , C2 G £ , then 

Cj C2 = C2 C i; (2) If Ci G C, then C \ G £ . Thus, the circulant structure is not imposed to 

the matrices o f  C. Our question is: what is the maximum rate o f  the STBC constructed by 

parsing the data symbols into the matrices o f the set C l

Let Ci G £ , then C\ G C and, therefore, C \C f — C \C \. Thus, £  is a commutating 

family o f normal matrices. All the matrices o f  £  are simultaneously diagonalizable by 

the same unitary matrix [63, Theorem 2.5.5], The input information symbols can only
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be encoded to produce the diagonal entries o f  the diagonal matrix because the common 

unitary matrix cannot deliver any information. Since the number o f  independent entries 

o f diagonal matrix is equal to the number o f the column, the code rate is, therefore, not 

more than one symbol pcu. This is similar to the design o f DST codes [49]. And in fact, 

rate-one circulant LTAST codes are equivalent to rate-one DST codes [20], Thus, using 

the commutating normal matrices to construct OEST codes, codes with rate larger than one 

symbol pcu cannot be obtained.

Having presented the basic properties o f OEST codes, we next show how to design an 

efficient decoder so that multi-group decoding is possible without the exponential com

plexity o f typical maximum likelihood search.

2.3.4 Decoder

In general, OEST codes can be decoded using the matrix-vector method proposed in [33], 

followed by a sphere decoder [107,108], Therefore, we next show how to efficiently decou

ple the transmitted symbols into groups to greatly simplify symbol detection at the receiver.

Since the OEST code rate is not more than 1 symbol pcu, it is possible to use only one 

receive antenna with an efficient maximum likelihood decoder such as a sphere decoder 

[108]. For the sake o f  clarity and simplicity, we first consider the case with N  — 1 receive 

antennas, and then generalize the results for N  > 1.

Let h  =  [// ] hi ■ ■ ■ Hm \ denote the channel gain between the mth (m  = 1 , 2 , . . . ,  M ) 

transmit antenna and the receive antenna. Let D  e  V  be a transmitted code matrix, the 

receive signal vector y  is adopted from the system model (2.3) as

We can use maximum likelihood decoding. The detected code matrix D  is given by

This approach will lead to the separation o f  groups o f symbols for detection. However, we 

will present another equivalent derivation to emphasize the orthogonal property o f  OEST 

codes. Moreover, this approach leads to an interesting representation o f the equivalent

(2.37)

argrmn \\y
b e v

(2.38)

channel o f OEST codes.
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Substituting the code matrix D  in (2.26) to (2.37), we have

K  PI pn •
y X ]  lUk'P (Ak ® nP ’ ) h  +  UkP (Bk ® 71-1 P) ^  +  W '

k=1 p= 1

Let

e kp =  (A k ® n p~l ) h ,

E k — [eki e k 2 ■ ■ ■ e kp] , 

f kp =  {Bk X- tt1 p) h ,

Fk = [ f  kl f  k 2 "  ' f  kp] ■

(2.39)

(2.40a)

(2.40b)

(2.40c)

(2.40d)

We can rewrite (2.39) as

y  =
K  P

E E  (CkpUkp +  f  kpUkp) "b W
k=1 p=1

-  [Ei Fi E 2 F2

x [u[ u \  vJ2

FiK \

+ iT
tXA U K  U I < \

W  .

Furthermore, the following equation is equivalent to (2.41)

y -
E i Fi

y* . V p F? E t
F k  Fk [wT u \ U K  U K ]T +

W

w*

(2.41)

(2.42)

w

An important property o f  W  is that the its columns are orthogonal and can be shown in 

the following.

We have to show that the following equations hold:

'E k t 'E i'
n . F:.
~Ek t 'Ft '

FL Ef\

e I e 1 + f I f ;  = qp

E kFi +  F jE i  =  Op,

for k  7  ̂ I, (2.43a)

(2.43b)

We just provide the proof for (2.43a); (2.43b) can be shown similarly.

The following properties o f the forward permutation matrix 7r will be useful for our 

next derivation [64, page 27],

_T i  - 1  _ P -17T =  7T '  =  7T =  7T (2.44)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Consequently, one has n° = n p — Ip .

From (2.40), the size o f matrix Zki =  {E\Ei + Fk Fj*) is P  x P. The element [Zki]ij o f  

Zki can be calculated from (2.40) as

= «!.«/; +  f l i f i j

= h )(A \  0 7T-<+1)(A, 0 TT^l)h  +  h J (B l  0 7r'" ')( /i;  0 7r_J+1)/r*

=  4 (4 ^ )  0  ( 7 +  /»t [(5 ? b ;)  0

= /if[(4^) ® (^4]^ + h)[{BlB{) 0 (yr̂ ĵfi = /rf[(4^ + ̂ 5,) 0 (rOjh
0 , k i=-1, 4 5 )
h ){ Iq  0  7rJ  )/*.. /,• =  /. 1 ' }

Thus, Zki =  Op if  k I or the columns o f  IV are orthogonal.

Since for k  =  I, the matrices Z kk do not depend on the value o f  />:; we drop the subscript 

k for brevity. Hence, the entries o f  Z  are

zij = h'(IQ (2-46)

Let h q =  [/i(g_i)p+i hiq- i)p+ 2  ••• /r(r-i)p+p ]T for <7 =  1 , 2 , . . . ,  Q. Then h  =

"a t a t a t i Tn., n ,  ■ h rl l  " ' i  " ' Q
, and Zij in (2.46) can be rewritten as

Q

-t
*3 = Y , K i(i~iK  (2 -47)

9=1

The element z rj (2.47) exhibits a strong structure o f  Z. To examine further the matrix 

Z , we recall another representation o f  circulant matrix built from an arbitrary vector x  

below [64]:

C j { x ) = [ v ax  7T~l x  ••• 7T1- px } .  (2.48)

We now check for the entry (i, j ) o f  the product matrix Cj.(x)Cr(x)  using (2.48):

[C l(x)C r(x)]ij = [Cr(x)C l(x)]ij — x Jn ln~~ix* — x jsn ^ ' lx .  (2.49)

Comparing (2.47) and (2.49), interestingly, we find an elegant representation o f Z  be

low:
Q

Z  = Y , C l ( h q)Cr(h q). (2.50)
q= 1
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Since Cr (h q) is circulant, C 'l(hq) is also circulant; the product o f  two circulant matrices 

is also circulant and the sum o f circulant matrices is also circulant [64], thus Z  is also a 

circulant matrix.

To separate the transmitted vector u k at the receiver, we multiply the two sides o f  (2.42) 

with [e \  F j] to get

E \y  +  Fly* =  Z u k +  (E j w + FJkw*) . (2.51)

The covariance matrix o f noise V  Efu^m].] follows

V  =  E [(Elw  +  F > * ) ( F |m  +  F'w*)[

=  ElE[ww^}Ek +  Fk E[m*mT]F^ +  E\.E[wwj )F  ̂+  F j  E[w*w^]Ek 

=  E \E k +  F lF k = Z. (2.52)

During the derivation o f (2.52), we have used the fact that for the vector w  o f circularly 

complex Gaussian random variables, E [m w t ] =  0 m -

The noise covariance matrix is not an identity matrix, but the noise vector can be 

whitened by multiplying the two sides o f  (2.51) with a whitening matrix Z~%. The re

ceived signal with whitened noise is

Z ^ i E l y  + F l y ^ U k  + Z ^ W k  (2.53)
W

where the elements o f w  are CyV(0 , 1 ).

From (2.53), we conclude that all o f  the transmitted vectors u k experience the same 

equivalent channel, i.e. the same equivalent channel gain and additive noise statistics. 

Thus, all o f  the transmitted vectors have the same PEP.

We now generalize the result o f (2.53) for the case o f multiple receive antennas, N  > 1. 

The subscript n (n =  1 , 2 , . . . ,  Ar) is added to the channel gain vector h. The channel ma

trix H  is therefore written as H  =  [hi h 2 • • • hf f],  where h n [hin h2n ■ ■ •

When multiplying the two sides o f (2.42) with \e \  F,J], we actually perform spa

tial maximal ratio combining [109,110] or spatial matched filtering  [48]. The equivalent 

channel in (2.50) becomes

N N Q

Z  = = C t(h q,n)Cr(h q,n) (2.54)
n=l n—1 q—i
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w h e r e i n  =  [/q9-i)p + i,n /i(g-i)p + 2 ,n fi(9-i)p+p,n] fort? =  1 , 2 , n  —

1 , 2 , . . . ,  iV.

Therefore, with multiple antennas and constellation rotation in (2.20), the detection 

equation (2.53) is generalized for data detection with multiple receive antennas as

N

Z - *  J 2 ( E l ,Vn +  FLV n) Z ^ u k + W  = Z * e a k + W  (2.55)
n—1

Vk

where y n is the received signal vector o f  the nth antenna,

^kn ~  &k2 ,n * * ' f̂cP,n] ; (2.56a)

e kP:n =  (A k ® tt*"1) h n (2.56b)

for k  =  1, 2 , . . . ,  K \p  — 1 ,2 , . . .  ,P ,

Fkn =  /fe2,„ • • • , (2.56c)

f  kp.n = (B k 8 > TT1-?) h n , (2.56d)
Q

lz n h  = Y ,  C H K n )C r(h q,n) for i, j  =  1 , 2 , . . . ,  P , (2.56e)
g=l

and W  ~  C7V(0, N );  however, we do not need to divide both sides o f (2.55) by N .

Notice: By similar derivation with suitable modifications, the transmitted symbols o f  

OEST code matrices o f Construction II are also separated into groups as (2.55). However, 

the main difference is that the elements o f matrix Z  are

Zij = h \ T : F ^ l Q) h ,  (2.57)

which will not lead to a compact representation o f  Z  as in (2.54).

One can use K  sphere decoders (see, e.g. [ 108]) running in parallel, each is to solve

(2.55). Therefore, the decoding complexity and decoding time are greatly reduced.

The matrix Z  2 can be considered as the equivalent channel o f OEST codes. Since 

Z  is a circulant matrix, using [64, Theorem 3.2.3, p. 73], we can show that Z ^  is also a 

circulant matrix. It means that when multiple data vectors are encoded in circulant matrices 

and mapped to an OEST code matrix, the data vectors can be completely decoupled at the 

receiver. Each data vector is equivalently experienced the same circulant channel matrix, 

which is a superposition o f  multiple circulant matrices.
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In the following, as a sanity check, we verify the general detection equation (2.55) for 

two special cases: OSTBC and circulant STBC [101].

Detection o f OSTBC

For OSTBC, P  = 1, Q = M  and hence,

Ekn — Cfci,n — Akhn  , (2.58a)

Fkn =  fk l,n  = B kh n , (2.58b)

Zn = [Zn]u = \\hn\\j. (2.58c)
N  N

Z  = Y J Zn = Y J II^IIf =  II#Hf. (2.58d)
n = l  71=]

and 0  =  1 1 , then (2.55) becomes

N

II#IIF1 E ( ^ 4 l / n  +  h l B l v l )  \\H\\Fuk +  w . (2.59)
ra= 1

' v '
V k

From (2.59), a similar detection equation for single symbol Uk to the metrics given in 

[59,62, 1 1 1 ] can be derived.

Detection o f circulant STBC [101]

For circulant STBC, K  =  Q =  1, A \ — Jj , f?i =  Oi.

From (2.48), (2.56a) and (2.56b), we have Ey<n — Cr(h n); from (2.56a) and (2.56b), 

F\,n = Op Vn; from (2.54), Z  =  Yln=,i^'r(^ln)Cr{hn). Substituting E i,n and Fx n̂ into

(2.55), we obtain
N

Z -5  J ^ [ C l( h n)y n] Z ^ u k + W . (2.60)
n = l

Although (2.60) holds for maximum likelihood detection, it can be easily modified for the 

zero-forcing (ZF) or minimum mean square error (MMSE) receivers proposed in [101].

2.3.5 Maximum Mutual Information

Since OEST codes decompose the MIMO channels with M  =  PQ  transmit and N  receive 

antennas into K  parallel equivalent MIMO channels o f  the same size, P  x  P , we can 

calculate the maximum mutual information o f  OEST codes by taking the sum capacity o f  

these K  identical MIMO channels. Thus, the maximum mutual information o f  OEST codes
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can be calculated using the equivalent channel in (2.61) as follows [ 1 0 ]:

N  QK
P R

E < log2 det I p  + T  J 2 J 2 Cr(h ^ ) C r(h q„P
(2.61)

K

n.=l q ~  1

where R  is the code length o f underlying the OSTBC code. The coefficient appears

because the maximum mutual information o f  OEST codes is a sum o f maximum mutual

information o f K  vectors averaged over T  =  P R  channel uses.

We can use a P  x  P  unitary discrete Fourier transform (DFT) matrix to diagonal- 

ize the circulant matrices Cr{h,hn) without changing the distribution o f  Cp. Let Aq,n(p) 

(p = 1 , 2 , . . .  P) be the eigenvalues o f  Cr(h qn). It is well-known that the vectors o f  

eigenvalues are the DFT o f the channel vector h qn. Thus, \ qn(p) are independent and 

Agni'p) ~  CM (0, P ). Let Aqn(p) = \ /P h qn{p), then hqn(p) ~  CJC{0,1).

By denoting A qn =  d ia g ( \„ ( l ) ,  hqn(2), • • • , hqn{P)), (2.61) becomes

-  Ro.q
P

■ E < log2 det

Ro ,q E S log2 det

N  Q

i p + pn  ^ ' (A inA qn)
n—1 q—1

i  +  — 2 5 I l V ( p ) |
Q-

(2.62)
QRo,Q , .n=1 q=l

In (2.62), C-p is independent o f the index p; therefore, the index p  is omitted without loss

o f generality. Furthermore, let H  — [hqn] 6  

We arrive at the new expression o f Cp:

, we have E l i  I V I 2 =  II^IIf-

Cv  = Ro ,q E { log2 det 

=  Co.Q

1 +
QRo .Q

I^IIf

(2.63)

where C q,q is the m aximum mutual information o f  OSTBC designed for Q transmit anten

nas [112]. Thus, the maximum mutual information o f  OEST codes does not depend on the 

value o f  P, the size o f  data vectors. When increasing the number o f  transmit antennas M, 

but keeping the basis orthogonal matrices, one obtains higher diversity but not capacity 

benefit. This result also hold for QSTBC.

The results o f  this section is summarized in the following theorem.

Theorem 2.14. The maximum mutual information o f  an OEST code fo r  M  =  P Q  antennas 

is the same as that o f  the OSTBC fo r  Q antennas used to construct this OEST code.
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C h a n n e l c a p a c ity  (M, N ) «  (2 ,1 )
—t— C h a n n e l c a p a c ity  (M, N ) «  (4 ,1 )
- O -  C h a n n e l c a p a c ity  (M, N) =  ( 8 ,1 )
- A -  O E S T , m u tu a l in fo rm ation  (P , Q ) = ( 4 ,1 )  
- B -  O E S T , m u tu a l in fo rm ation  (P , Q ) =  (2 , 2 ) 

O E S T , m u tu a l in fo rm ation  (P , Q ) -  (1, 4 )

1
2

co

i£_c
33
2

S N R  [dB]

Figure 2.2: Channel capacity and maximum mutual information o f OEST, (4, 1) system.

The maximum mutual information o f OEST codes for different parameter sets are plot

ted in Figs. 2.2 and 2.3. For one receive antenna or the MISO channel, in Fig. 2.2, SAST  

codes corresponding to Q =  2 nearly attain the channel capacity. Other configurations 

suffer from remarkable capacity loss. These losses are more significant for N  > 1 (see Fig. 

2.3). This result is expected because the rates o f  OEST codes are not more than 1 symbol 

pcu, while MIMO channels support rates o f  m in(M , N ).

2.3.6 Semi-Orthogonal Algebraic Space-Time Codes

We can identify a special case where Q =  2 or the OEST constructed from the Alam- 

outi code. This code has the feature that the columns o f the right and the left halves are 

orthogonal. Thus, we call this code semi-orthogonal algebraic space-time (SAST) code. 

Additionally, there are several points that make SAST codes important.

1. Since the Alamouti code achieves full capacity o f (2,1)  channel, hence, SAST codes 

achieve significant capacity o f the MISO (multiple-input single-output) channel.

2. SAST codes have rate o f 1 symbol pcu, the highest rate achievable by OEST codes.

Fig. 2.4 plots the maximum mutual information o f  SAST and circulant STBC (or 

LTAST) codes, two subclass o f  OEST codes having the same code rate o f 1 symbol pcu,
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C h a n n e l c a p a c ity  (M, N ) =  (2, 2 )
C h a n n e l c a p a c ity  (M, N ) ~  {4, 2 )

- © -  C h a n n e l c a p a c ity  (M, N) =  (8, 2)
- A -  O E S T , m u tu a l in fo rm ation  (P , Q ) = (4, 1) 

O E S T , m u tu a l in fo rm ation  {P, Q ) = (2, 2 ) 
O E S T , m u tu a l in fo rm ation  (P , Q ) = (1 , 4 )

I5
la
c
.o

,o
c

S N R  [dB]

Figure 2.3: Channel capacity and maximum mutual information o f  OEST, (4, 2) system.

together with the capacity o f  MISO channels for M  — 2 , 4 ,8 ,16.  Fig. 2.5 illustrates the 

relative channel capacity attained by the two codes. The numerical results show that for 

M  =  4, SAST codes attain more than 95% and up to 98% o f  channel capacity. For M  

= 16, SAST codes achieve not less than about 92% channel capacity. This is because for 

a specific high SNR, the channel capacity does not actually increase when the number o f  

transmit antennas increases, but the number o f receive antennas is fixed [14]. Fig. 2.4 also 

shows that the capacity increment o f the MISO channel is negligible when the number o f  

transmit antennas increases from 8  to 16. Therefore, SAST codes nearly attain the capacity 

o f MISO channels.

The next section will present the constructions and performances o f OEST codes for 4, 

6  and 1 2  antennas.

2.4 Examples of OEST Codes

Given a value o f  M , one can find the sets o f all pairs {(P, Q)\P, Q G N, P Q  =  M }. Note 

that one can delete one or several columns o f OEST codes for M  transmit antennas to 

construct OEST codes for the smaller numbers o f transmit antennas.

In the following, we will present OEST codes for 4 and 6  transmit antennas using
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—*— C h a n n e l c a p a c ity  M = 2 
C h a n n e l c a p a c ity  M =  4 

- © -  C h a n n e l c a p a c ity  M = 8 
- A -  C h a n n e l c a p a c ity  M *  16 
- e -  S A S T  

LTAST

x

co
g,0
_c

20
S N R  [dB]

Figure 2.4: Maximum mutual information o f  SAST and LTAST codes over MISO channels.

100

M = 4

M = 8
©
2
n§ M= 16

offlQ.reO
M - 4

M =

S A S T

M = 16
84

S N R  [dB]

Figure 2.5: Capacity achievable rates o f  SAST and LTAST codes compared with the ca
pacity o f open-loop MISO channels.

Construction I and their performances in quasi-static flat fading channels.
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2.4.1 Code Construction Examples

Let us denote OEST codes designed for the set o f  parameters P, Q as V pq  . For M  

transmit antennas, there are at least three variants o f  OEST codes as follows.

P i ,
1

v/3
04

V,2,2

£*4,1

Ui u2 U’i 0

1 -U*2 u\ 0 -u a
7! 0 u*

i U‘2
0 ul —u*

2 Ul

’  '«1 u2 ua u4
i U2 Ul u4 u3

7t “ «3 - u *4 u*
1 U*2

-u*4 - “ 3 u2 Ut
s 4 = Q\-

Ui u2 U3 u4
i U4 U\ U2 ua

71 ua u4 Ul u2

u2 u3 u4 Ul

c4.

(2.64a)

(2.64b)

(2.64c)

For M  =  6 , there are at least 4 variants as follows.

P i,
_ 1

7 i
0 6 (see [44, (101)]).

V-2,3

Pa ,2 —

V 2

3

Qe-

7 !

S k.

Ul u2 ua U4 Ua ue
U2 Ul u4 ua ue ua

- u l - u \ u i u 2 0 0

- u \ - u l u *2 u* 0 0

- u l - u l 0 0 ul u l
- < - u l 0 0 ul u\

0 0 U*5 « 6 — ul -U *4

0 0 < u *5 - u l —ul

Ul u2 ua u4 Ua u 6

ua Ul u 2 U(i u4 Ua
u2 u3 Ui ua Uq u4

- u *4 - u l - u l u\ ul u *2

-u % - u l - u l U*2 Ul ul
—ul -III u3 u* u\

(2.65a)

(2.65b)

(2.65c)
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Ui U‘2 Us Ui Us Ue
U(5 Ul U2 Us Ui Us

Us Ufj Ul u2 Us Ui

Ui u 5 ue Ul U2 Us
us U4 U 5 u6 Ul u2

u2 Us Ui Us ue Ul

=  C6. (2.65d)

To construct T>2,3 , we have used Construction I and the orthogonal basis matrices o f  OSTBC 

Os [59] by deleting the last columns o f (2.64a). If  Construction II was used, the resulting 

OEST code would be equivalent to a QSTBC for M  = 6  as we have shown in Section

2.3.1.

The OEST codes presented above for M  — 4 , 6  are equivalent to the previously known 

codes since there are only a few choices for the pairs o f parameters P  and Q. Nevertheless, 

other new OEST codes for M  =  6  can be obtained by deleting some columns o f the 

OEST codes designed for M  > 8. For larger values o f M , for example M  =  12, we have 

more freedom to select the values o f the pairs (P, Q ): (1,12),  (2 , 6 ), (3,4),  (4,3),  (6 ,2),  and 

(12,1).  We can construct several completely new OEST codes for the values o f  parameters 

(P, Q ): (3,4) or (4,3).  The details are omitted for brevity.

The main parameters o f  OEST codes for M  =  4 , 6 , 12  are summarized in Table 2.1. 

The OSTBC with maximal rates in [44] are selected to constructed OEST codes.

2.4.2 Simulation Results

Comparison o f OEST codes implementations

We have performed simulations to compare the performance o f  different implementa

tions o f OEST codes for 4, 6  and 12 transmit antennas. The input constellations are selected 

so that the bit rate is 3 bits pcu. A summary o f OEST codes combined with signal con

stellations is given in Table 2.2. However, except for P 1>6 (or O fi) and X>2,6 (or Q i2) with 

symbol rate o f 2/3 symbol pcu, there is no constellation that matches the bit rate o f  3 bits 

pcu. Thus, 16QAM is selected, resulting in the bit rate 8 /3  bits pcu. Note that the minimum 

Euclidean distances o f 16QAM is 0.6325, and o f  8 QAM and 8 Hex are 0.8165 and 0.9631, 

respectively. The shapes o f  8 QAM and 8 Hex [104] are sketched in Fig. 2.6.

For M  =  4, all OEST code variants have the same spectral efficiency o f  3 bits pcu.
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Table 2.1: Comparisons o f Several OEST Codes

M OEST codes Known as Gc Rate Decoding complexity Delay
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Figure 2.6: Geometrical shapes o f 8 QAM and 8 Hex constellations.

The optimal rotations in Proposition 2.7 can be used for <S4 and T4. <S4 with 8 Hex (large 

Euclidean distance) outperforms O4.  Note that for M  —  4, <S4 and Q4  are equivalent; this 

observation is also made in [61]. Using the same 8 QAM, however, <S4 code gains 1.7 dB 

over %. On the other hand, performance o f  <S4 with 8 QAM is inferior to that o f  O 4 , even
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Table 2.2: OEST Codes and Simulation Parameters

M Codes Modulation Coding gain Bit rate

4 0 1 ,4  / 0 4 16QAM 0.1334 3

4 02,2  /  Q a / 04 8QAM / 8Hex 0 .1667/0 .2319 3

4 I > 4,1 /  % 8QAM / 8Hex 0 .1667/0 .2319 3

6 0 1 , 6 / 0 6 16QAM 0.1 8/3

6 0 2 ,3  / =  Q <3 16QAM 0.0889 3

6 0 3 ,2  /«S6 8QAM / 8Hex < 0 .1 1 1 1 /0 .1 5 4 6 3

6 06,1 /  0 6 8Q A M /8H ex 0 .1111 /0 .1546 3

12 02,6  /  =  Q l 2 16QAM 0.05 8/3

12 0  3,4 16QAM < 0.0445 3

12 0 4 ,3 16QAM 0.0445 3

12 06,2 8QAM <0.0556 3

12 012,1 /  0 2 8QAM <0.0556 3

(P . Q ) = (4, 1), LTAST, 8QAM 
(P , Q ) = (1 ,4 ) ,  O ST B C , 16QAM 

- © -  (P , Q ) = (2, 2 ), S A ST , 8QAM 
- A -  (P , Q ) = (2, 2 ), S A S T , 8H ex

S N R  [dB]

Figure 2.7: Performance o f  OEST codes with 3 bits pcu, (4, 1) system.

though its coding gain is higher.

For M  — 6, with 8QAM and 6 transmit antennas, the optimal rotations for circulant 

STBC are not available analytically. By computer search, the best found rotation angles
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1 0 's

- A -  (P , Q ) = ( 6 ,1 ) ,  LTAST, 8QAM , 3b its  p cu  
(P , Q ) = (2, 3), Q ST B C , 16QAM , 3b its  pcu  

- 0 -  (P , Q ) = (1, 6), O ST B C , v irtual ra te  3b its  pcu  
(P , Q ) = (1, 6 ), O S T B C , 16QAM , 8 /3  bits pcu  

- e -  (P , Q ) = (3, 2), S A ST , 8QAM , 3b its  pcu  
- e -  (P , Q ) =  (3. 2 ), S A ST , BHex, 3 b its  p cu

S N R  (dB]

Figure 2.8: Performance o f four implementations o f OEST codes for 6 transmit antennas 
with 3 bits pcu, except P 1)6 (or 0 6) with 8 /3  bits pcu.

are approximately r/> =  e*71̂ 4 for the S$ and <f> — for %. From Fig. 2.8, S G also 

yields better performance among the investigated OEST codes. <S6 with 8QAM gains about

0.5 and 1.2 dB over T6 and Og, respectively. Moreover, S 6 with 8Hex even outperforms 

OSTBC, which has lower spectral efficiency.

Even though the rate o f  Oe is 8/3 bits pcu, we can still compare its performance with 

other codes with a rate o f 3 bits pcu. Recall the fact that OSTBC convert the MIMO channel 

to the scalar (SISO) channel (Section 1.4.2). Also, in the scalar channel, to obtain 1 more 

bit o f  spectral efficiency using QAM, an additional SNR o f  at least 3 dB is required [113] at 

high SNR. Additionally, in the space-time system, it is shown by Zheng and Tse [114] that 

among OSTBC, only the Alamouti code achieve the optimal diversity-multiplexing tradeoff 

for 2 transmit/1 receive MIMO system. It is also confirmed that with the Alamouti code 

and QAM, to gain an additional rate o f 1 bit, the SNR increment is at least 3 dB [115]. In 

our simulation, the OSTBC Oe do not achieve the optimal diversity-multiplexing tradeoff. 

Therefore, more than 3 dB is expected to gain 1 bit o f  data rate. To reach the rate o f  3 bits 

pcu from the current rate o f  8/3 bits pcu, one needs to increase the data rate by 1/3 bit pcu, 

which requires more than 1 dB o f  SNR. In Fig 2.8, we plot another the BER curve o f Oe 

with a virtual rate o f  3 bits pcu by shifting the a part o f  BER curve o f  O g (starting from
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SNR = 10 dB) to the right by 1 dB. With this virtual rate, perform slightly better than 

QSTBC Q6. This result is different from the case o f 4 transmit antennas, where OSTBC is 

inferior to QSTBC. The virtual rate concept may not provide a precise comparison for the 

codes with similar performance. However, it helps to close the gap o f rate mismatch for 

asymptotic comparisons.

The performances o f  five variants o f  OEST codes for 12 transmit antennas are illus

trated in Fig. 2.9. The OSTBC O n  is not presented due to this code entails a long delay 

o f 792 channel uses [106], For QSTBC Qu  with rate o f 8/3 bits pcu, the virtual rate con

cept is again applied enabling the reasonable performance comparison. With 12 transmit 

antennas, except p 4 3 and T>n,i (or LTAST code TV2), the other three variants o f  OEST 

codes X>6,2 (or SAST code <Si2)> Vs,4 , and £>2,6 (or QSTBC Q 12 with virtual rate o f 3 bits 

pcu) clearly show a performance-complexity tradeoff: the higher decoding complexity, the 

better performance. The decoding complexity o f p 4>3 is slightly higher than that o f P 3>4 

(see Table I), but the latter yields a small SNR gain o f 0.1 dB over the former. The LTAST 

code T12 has highest decoding complexity, but BER is inferior to the other codes at low 

and medium SNR. Only when SNR > 18 dB, the LTAST code performs slightly better than

4 > X>4 ,3 , and Pa.e; but its performance is still about 0.6 dB worse than that o f the SAST 

code.

Comparison o f SAST codes and other codes

In this section, we compare the performance o f SAST codes and other STBC o f rate- 

one symbol pcu or less. Unless otherwise stated, the BER curves are obtained by maximum 

likelihood detection.

Fig. 2.10 plots the BER o f  SAST and LTAST codes for a MISO channel with 4 transmit 

antennas system using 4-, 16- and 64-QAM (with spectral efficiencies 2, 4 and 6 bits pcu 

accordingly). The SNR gain o f SAST codes over LTAST codes is substantial. For example, 

the SNR gain is about 1.3, 2, 2.5 dB for 2, 4, 6 bits pcu, respectively. The gains increase 

with the spectral efficiency.

Similar gains can be observed for a higher number o f transmit antennas. Fig. 2.11 

compares the BER o f SAST and LTAST codes for MISO channel with 8 transmit antennas. 

Again, SAST codes outperform LTAST codes. The SNR gain is 0.7 and 1.3 dB with 2 and 

6 bits pcu, respectively.
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cc
111
CO

- 0 -  (P , Q ) »  (2, 6), Q ST B C , virtual ra te  3b its  pcu  
— (P,  Q ) *  (2, 6), Q ST B C , 16QAM , 8 /3 b its  pcu  
- A -  (P , Q ) -  (3 ,4 ) ,  n e w  O E S T , 16QAM , 3  b its  p cu  
- © -  (p , Q ) = (4, 3), n ew  O E S T , 16QAM , 3  b its p cu  

(P , Q ) = (12, 1), LTAST, 16QAM , 3  b its  pcu  
- B -  (p , Q ) » ( 6 ,2 ) ,  S A S T  8QAM , 3  b its  pcu

S N R  [dB]

Figure 2.9: Performance o f OEST codes with 3 bits pcu, except £>2,6 (or Q 12) with 8 /3  bits 
pcu, (12, 1) system.

While our theoretical analysis is carried out for even numbers o f transmit antennas, 

SAST codes for an odd number o f  transmit antennas can be obtained by deleting one col

umn o f SAST codewords (or switching o ff one transmit antenna) and by setting the channel 

gain associated with the switched-off antenna to zero at the decoder.

Fig. 2.12 illustrates the performance o f SAST codes and space-time linear constellation 

precoding (ST-LCP) codes [51] with the same 2 bits pcu (4-QAM). ST-LCP codes, in fact, 

are equivalent to DAST codes proposed in [49]; by using discrete Fourier transform (DFT), 

one can convert LTAST codes to DAST codes (see [20]). The slopes o f the BER curves 

o f SAST and ST-LCP codes are almost parallel, indicating that the former achieve full 

diversity. Furthermore, notable gains o f  1 and 1.5 dB over ST-LCP codes are obtained for 

M  — 3 and M  — 5, respectively. Thus, SAST codes perform better compared with LTAST 

codes for any number o f  transmit antennas.

Fig. 2.13 compares performance o f  SAST, ST-LCP and linear dispersion codes [33] for 

spectral efficiency 2 and 6 bits pcu (4- and 64-QAM, respectively) and with M  =  3, N  =  1. 

Fig. 2.13 shows that SAST codes perform better than ST-LCP codes for all bit rates. SAST 

codes also perform better than the linear dispersion code with the same delay T  = 4 at 

high SNR. With 2 and 6 bits pcu, SAST codes gain about 0.4 and 0.7 dB over the linear
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M = 4, N = 1

-  LTA ST
-  S A S T

fc 16-QAM 64-QAM: 4-QAM

10"4

Figure 2.10: Performances o f  SAST and LTAST codes, (4, 1) system.

M =  8, N = 1

-  -  LTAST 
  S A S T10'2

\  4-QAM 16-QAM

a:
Uim

20 22 24

S N R  [dB]

Figure 2.11: Performances o f  SAST and LTAST codes, (8, 1) system.

dispersion codes at a BER o f 1CT4. With higher delay design T  =  6 and for 2 bits pcu, 

SAST codes perform the same as the linear dispersion codes at low SNR, but outperform 

them at high SNR. SAST codes improve over the linear dispersion codes because the design 

criterion o f the linear dispersion codes aims at maximizing the mutual information, which
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2 bits/channel u se , odd M

- A -  M = 3 , S T -L C P  
- A -  M = 3, S A S T  
- O  M = 5 , S T -L C P  
- G -  M -  5 , S A ST

10'3

Ui03

1 0 '"

S N R  [dB]

Figure 2.12: Performances o f SAST and ST-LCP codes with 4-QAM, M  = 3,5, N  = 1.

may not extract full diversity. Therefore, the performance o f the linear dispersion codes is 

worse than that o f  SAST codes at high SNR. Note that the decoding complexity o f linear 

dispersion codes is always higher than that o f SAST codes.

We have investigated the error-rate performance o f  SAST codes. The results show 

that SAST codes outperform LTAST, ST-LCP/DAST, QSTBC, and linear dispersion codes. 

Since the performance o f  OSTBC is inferior to these codes [33 ,49 ,51 ,61 ], SAST codes 

also outperform OSTBC codes.

Since suboptimal detectors may sometimes be employed to reduce the detection com

plexity, we examine the performance o f  LTAST and SAST codes with 16-QAM, using the 

V-BLAST optimal nulling and cancellation receiver or the optimal zero-forcing decision 

feedback equalization (ZF-DFE) receiver [94], Fig. 2.14 depicts the performance o f the 

two codes with the ZF-DFE receiver. The BER o f SAST codes with M  =  2 (Alamouti 

code) and M  = 4 ,8  using sphere decoder, and uncoded BER over single Rayleigh fading 

channel are also presented for comparison. By comparing the slopes o f  BER curves, we 

conclude that with the V-BLAST ZF-DFE receiver, SAST codes achieve a diversity order 

o f 2, while the diversity order o f LTAST codes is only 1; moreover, SAST codes have 

smaller BER than that o f LTAST codes. With the ZF-DFE receiver, LTAST codes produce
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- A -  S T -L C P , 4 QAM 
- + -  LD, 4QAM , t  =  4 

LD, 4QAM , t  =  6 
- © -  S A ST , 4QAM  

S T -L C P , 64Q A M  
- B -  LD, 6 4 Q A M ,t= 4  

S A ST , 64QAM

CC -3UJ 10

S N R  [dB]

Figure 2.13: Performances o f  SAST, ST-LCP and linear dispersion codes with 4- and 64-
QAM, (3, I) system.

a marginal gain compared with uncoded data transmitted over single Rayleigh fading chan

nel (M  = N  = 1) case. On the other hand, SAST codes with M  =  4 and 8 gain about 

1-dB and 2.9-dB, respectively, over the Alamouti code. With the ZF-DFE receiver, SAST 

codes do not achieve full diversity, but still deliver a notable coding gain.

The diversity orders o f  SAST codes and LTAST codes using ZF-DFE can be intuitively 

explained by checking back (2.54). With one receive antenna, the elements on the main di

agonal o f  the equivalent channel o f SAST codes are the sum o f two squares o f  two channel 

amplitudes, while the elements on the main diagonal o f  the equivalent channel o f LTAST 

codes are a square o f  a channel gain. Thus using the ZF decoder, the diversity orders o f  

SAST codes and LTAST codes are two and one, respectively. The DFE helps to improve 

the error rate (coding gain) but not diversity order.

From the simulation results, we conclude that SAST codes always perform better than 

LTAST codes (see also [100]), even thought this two special cases o f  OEST codes have 

the same coding gains. The reason is that the distance spectrum o f SAST codes is im

proved compared with LTAST codes. This fact can be verified by counting the number o f  

codewords with minimal coding gain.
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— Un c o d e d ,  s in g le  c h a n n e l 
- A -  LTAST, Z F -D F E , M =  4 
- O -  LTAST, Z F -D F E , M *  8 
- A -  S A S T . Z F -D F E . M = 4 
- © -  S A S T , Z F -D F E . M = 8 
—fc— A lam outi c o d e , ML, M = 2 

S A S T , ML, M *  4 
- B -  S A S T , ML, M *  8_________

czLU
CO

30 4 020
S N R  [dB]

Figure 2.14: Performances o f SAST and LTAST codes using V-BLAST optimal nulling 
and cancellation (or ZF-DFE for short) receiver for 16-QAM, M  — 4 ,8 , N  = 1.

2.4.3 Decoding Complexity

Since SAST codes offer better performance than several STBC, it is o f  interest to inves

tigate their arithmetic complexity. We thus compare the complexity o f  SAST codes and 

LTAST codes, which have the same rate-one, for 8 transmit antennas. The two codes are 

decoded by a sphere decoder with Fincke-Pohst enumerating method [116] [108], written 

in Matlab Release 13. Note that the decoding o f SAST codes is to decode two data vectors, 

each with 4 complex symbols; while with LTAST code, we need to decode only one data 

vector o f 8 complex symbols. Therefore, we have to verify whether the total number o f  

arithmetic operations to decode two length-4 data vectors o f SAST codes is less than that 

o f the decoding o f one length-8 data vector o f  LTAST codes.

We differentiate "hard" operations, including multiplication, division and square, and 

simple addition. The results for a (8, 1) system with 16-QAM are plotted in Fig. 2.15. 

Clearly, the decoding complexity o f  LTAST codes higher than SAST codes 27 times at 14 

dB (low SNR), 16.3 times at 20 dB (medium SNR) and 3.1 times at 30 dB (high SNR). 

Thus much arithmetic computation savings can be obtained by using 2-group SAST codes 

compared with 1-group LTAST codes. This is a good evidence to highlight the efficiency 

o f multi-group STBC in complexity reduction.
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- A -  LTAST, h a rd  o p e ra tio n s  
-© -  LTAST, ad d itio n s  

S A S T , h a rd  o p e ra tio n s  
S A S T , add itio n s________

c
o

o
o5xie

S N R  [dB]

Figure 2.15: Comparison the arithmetic complexity o f SAST codes and LTAST codes for 
(8, 1) system using 16-QAM.

2.5 Summary

We have derived the necessary and sufficient conditions for multi-group decodable STBC. 

Based on these conditions, we have presented a new general class o f space-time codes 

called OEST codes. Their full-diversity and optimal coding gain are achieved by rotat

ing the input constellations. The blocks o f  transmitted symbols in the OEST codewords 

can be maximum-likelihood decoded separately at the receiver without any interference 

from other blocks. This is a highly desirable decoding-complexity-reduction property for 

practical systems. The OEST framework sheds new light on the previously known STBC, 

including OSTBC, QSTBC, and rate-one LTAST codes. Furthermore, a new class o f rate- 

one STBC, namely semi-orthogonal space-time codes, is identified. For a given number 

o f transmit antennas, OEST code variants can be derived with flexible tradoffs among rate, 

performance, and decoding complexity.

In the next two chapters, we will develop two STBC from OEST, which are the exten

sions o f QSTBC and SAST codes, with even lower decoding complexity. More sophisti

cated encoding will be designed to utilize the lower decoding complexity compared with 

the original codes.
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Chapter 3 

Minimum Decoding Complexity 
Space-Time Block Codes

In Section 2.3.1 o f the previous chapter, we have shown that ABBA codes, proposed by 

Tirkkonen, Boariu, and Hottinen [47], are a special case o f  Construction II o f  OEST codes 

(see (2.23)). Even though the two constructions o f OEST codes are permutation equiva

lent, the equivalent channels o f the two constructions are different (see (2.54) and (2.57)). 

We have derived the equivalent channel o f  Construction I o f OEST codes, but omitted the 

details o f  Construction II. In this chapter, we derive the equivalent channel o f ABBA codes, 

which is a special case o f OEST Construction II. Many further important results can be de

veloped based on the equivalent channels o f  ABBA codes. For example, the original ABBA  

codes allow pair-wise complex-symbol decoding complexity. However, ABBA codes also 

allow single-complex symbol decoding, the feature which was known to associate with 

only OSTBC.

3.1 Existing Results and Open Issues of ABBA Codes

ABBA codes [47], a class o f  QSTBC, have been proposed to increase the code rate o f  

OSTBC [40,44], Since ABBA QSTBC have low complexity pair-wise complex-symbol 

decoding and perform better than OSTBC [61], they have been widely studied for various 

applications such as coherent and non-coherent MIMO communications, beamforming, 

precoding, and others (see, e.g., [19,117-119]).

Recently, Yuen et al. [120] have shown that the ABBA codes also enable pair-wise 

real-symbol decoding, which is the minimum decoding complexity (MDC) achievable by
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non-orthogonal STBC; they call such codes MDC codes. Thus, while their code rate is 

higher than that o f OSTBC, their decoding complexity is equal to single complex symbol 

decoding. In the following, we reserve the term "ABBA" for the QSTBC proposed by 

Tirkkonen et al. [47] with pair-wise complex-symbol decoding [61] and the term "MDC- 

ABBA" for the ABBA codes with pair-wise real-symbol decoding [120].

Single complex symbol decoding for ABBA codes is possible using phase feedback 

schemes. Specifically, these schemes are tailored for ABBA codes with 4 [121,122], 6 

[123], and 8 antennas [124], However, these methods m aybe unnecessary since the ABBA  

codes are already single-symbol decodable.

To design MDC-ABBA codes with full-diversity, conventional quadrature amplitude 

modulation (QAM) or phase-shift keying (PSK) signals need to be transformed [120,125]. 

Yuen et al. [120] and Wang et al. [125] employ the coding gain metric [16] to derive the 

optimal signal transformations1 for QAM and 8PSK. Their analytical results are reported 

for QAM only. However, maximizing the coding gain is, in fact, to minimize the worst-case 

codeword PEP; this provides no guarantee for minimizing the symbol error rate (SER). In 

general, finding the optimal signal transformations for QAM, PSK, and other constellation 

with good minimum Euclidean distance, such as lattice o f  equilateral triangular (TRI) (also 

called hexagonal (HEX)) or amplitude PSK (APSK) [104,126] in terms o f minimal SER, 

is still an open problem.

Furthermore, despite extensive research, a general decoding method for ABBA codes 

for arbitrary numbers o f transmit and receive antennas is not available. One reason for this 

gap is that the equivalent channel for ABBA codes is not known in the most general case. 

Several decoders for ABBA codes have been proposed, but only for some specific cases, 

for example with 4 or 6 antennas in [127-129],

In this chapter, we will systematically solve the fimdemental open problems o f  ABBA  

QSTBC. They include the general decoder and optimal signal transformations in the mini

mal SER sense. We first derive general decoders o f  ABBA codes and apply these decoders 

for the signal transformations proposed by Yuen et al. [120] and Wang et al. [125], The 

exact symbol pair-wise error probability (PEP) and union bound on the SER are derived.

1 By using the term "transformation", we imply that the transformation matrix is not necessarily orthogo
nal. On the other hand, the term "rotation" is used only whenever the transformation matrix is orthogonal.
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The union bound can be used to precisely predict the performance o f  MDC-ABBA codes 

and, moreover, to optimize the signal transformations for any constellation. Furthermore, 

for the constellations with inphase-quadrature power-imbalance, such as rectangular QAM 

(QAM-R), we propose a new method combining signal rotation and power allocation. Our 

new signal transformations for QAM-R perform better and have lower encoding/decoding 

complexities than that proposed in [125]. Since antenna selection is an effective method 

to improve the performance o f space-time codes, as well as to simplify the structure o f  

transmitter/receiver, we investigate the performance o f MDC-ABBA codes with transmit 

and receive antenna selection. We show that MDC-ABBA codes achieve fall diversity in 

the systems with antenna selection and with limited feedback [130].

3.2 Decoding of ABBA QSTBC Codes

We briefly review the construction o f ABBA codes. Let A k and B k (k =  1 ,2, ■ • • . A') 

be the t x m  basis matrices o f an OSTBC Om ■ Two blocks o f data, each o f  K  symbols, 

are mapped into two code matrices A  and B  o f O m as A  = (skAk +  Ak.Bk),B  =

SaL i {sk+i<Ak +  s*k+KBk).

Q-iM

The ABBA code matrices for M  =  2in transmit antennas are constructed from O m as 
A  B , orB A

Q m ~  z L
k = 1

K

S k  S k + K  

S k + K  S k

K

'Ak+Yl
k—l \

bk+K
S k + K  S i

Ck Cl

<8> A k +  C \ <S> B k).
k=i

0 1 
1 0

(3.1)

, t h e n  7T =  7T” 1 , 7T2 =The above expression have been shown in (2.28). Let ir ■■

1 -2, and

Ck =  (Sk-x0 + Sk+K A -  (2.2)

For example, the code matrix o f the MDC-ABBA code for 4 transmit antennas built
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from the Alamouti code [26] is given below:

Qa

s i  s  2 S 3 S 4

-35  Sj

S3 S4

- S 4

Si

«3

S2
~ S ' a

We next derive the equivalent channel o f ABBA and MDC-ABBA codes, which is 

similar to the steps o f deriving the equivalent channel o f  Construction I o f  OEST codes. The 

number o f receive antenna N  =  1 is considered first and then the results are generalized 

for multiple receive antennas.

Let h  = [/?,] h2 • • • /im]t  denote the channel vector with hi ~  CJ\f(0 ,1 ). Let Q e  QM

be a transmitted code matrix, the receive signal vector is y  = Q h  +  w ,  where w  is 

noise vector with independently, identically distributed (i.i.d.) entries ~  CJ\f(0,1); p is the 

average receive signal-to-noise ratio (SNR).

From (3.1) and (3.2), the received signal vector can be expressed as

W t E E K  7T1 1 ® A k) h s k+(i-i)K  +  (tt1 i(S> B k) hs*k+ii_1)K] +  w  . (3.3)
K  2

k=1 i = l

Let e ki =  (7f  1 0  A k) h, E k = [eki e k2] , f ki =  (7r1 i ® B k) h, Fk = [ f kl f k2),

and s k = [s* sk

y

(3.3) can be rewritten as

[E\ F] E 2 F2 ■ ■ ■ E k  Fk ] x [.S1 *1 S2 S2 s i  s y T + w -

(3.4)

We now use a trick in [111] to decode OSTBC for our next derivation. The following 

equation is equivalent to (3.4):

Ei F\ ■ • • E k  Fk
TP* IP* Z?* Z?*
1 1 ' ' ' *■ K

X [s] s i SK]T +
W

w*
(3.5)

w

We can show that the columns o f matrix I-L are orthogonal. To do this, we need to show 

that the following equations hold:

E k t 'EC
77*J km

/7 *
/  I _

'E k t ~f C

Fl Et.

e Im  +  f ^ f ;  =  o 2

ElFi + F l E * ^  0 2

for k ^  I, 

Wk,l.

(3.6a)

(3.6b)
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We just provide the proof for (3.6a); (3.6b) can be shown similarly. Let Z m — {E\Ei + 

F ^F i) ,  its element can be calculated as

[Zkih =  Fkie n  h f J j J j

=  V ' O  ® ( 4 ^ ) } h  +  h J { ( n ^ )  0  (BjB*)]h*

=  ^ [ ( 7 r ^ ) ® ( 4 ^  +  5 i W  
0, k I;
h){TTj ~l gj I rn)h, k — l. (3.7)

Thus, Z u  =  0 2 if  k ^  I. Since for k  =  I, the matrices Z kk — Z ' i k ,  where the entries o f Z  

are Zjj = 0  I m)h. In particular, zhl = z2,2 = INIf ,  ^1,2 =  *2,1 =  Y h L i(hih*+m +

K*hi+m). Therefore, Z  is also a circulant real matrix and can be represented as

rn
Z  = J 2 Hi H i (3-8)

i—1

. To separate the transmitted vector s k(k =  1 , 2 , . . .  K )  at thewhere II) hi h i 11,1 

hjt j-m hi
receiver, we can multiply the two sides o f  (3.5) with \e \  Fk ] to get

E l y  + F ly*  = J P- Z s k + ( 4 w  +  F Jk w * ) . (3.9)

Thus, [Ek Fa7] plays the role o f the spatial signature o f  the data vector s fc.

We now generalize the result o f  (3.9) for the case o f multiple receive antennas, N  > 1. 

The subscript n (n = 1 , 2 , . . . ,  N )  is added to the channel gain vector h.  The channel ma

trix H  is therefore written as H  =  [hi h 2 h  ,v] , where h n — [hln h2n hMn]J . 

We can show that the matrix Z  in (3.8) becomes

N m,

Z  = Y , Y . H l,X>,s (3.10)
j=l i= 1

where T/ii7 =  

nas as follows:

hi,j h'i-rrn.j 
hi+m,j h ij

Therefore, (3.9) is generalized for multiple receive anten-

n=lv.......-...

E  W l V n  + F l . V n )  =  \ l  Y Z S k  + + F ^ n )  (3-11)
N

n=l

IIk v>k
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where y n is the received signal vector o f  the nth antenna,

E fcn  — [^fcl ,n ^&2,n] j 

e-ki,n = { A k  0 Tr*”1) hn, 

F k,n — [ f  k l,n  f  k.2,n\ >

-  (B, x ‘) h„.

for k — 1 , 2 , . . . ,  K ,  

for * =  1 , 2 ,

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d)

The noise vector w k is colored with covariance matrix V  = E[wkw k] = Z  f  I m - Let

H  — Z s . This color noise can be whitened by a whitening matrix H ~ l = Z  2 .

Since Z  is real, we can rewrite (3.11) by decoupling the real and imaginary parts o f the 

two sides o f (3.11) as

y/£. \1 fr? n  1 V
(3.13)M iik ) ' rpn z  0 2 ' « ( * * ) ' _ L

M iik ) . ~ V  ~2 °2 Z
|_

f s ( w k)_

Vk H wk

Thus, the real and imaginary parts o f the transmitted vector s k can be separately de

tected. Including the noise whitening matrix H  l , the general equivalent transmit/receive 

signal relation o f MDC-ABBA codes are:

H ~ uA (y k

(3.14a)

(3.14b)

In (3.14), H  is the equivalent channel o f  MDC-ABBA codes. We have some important 

properties o f H  as follows.

Lemma 3.1. The equivalent channel matrix o f  ABBA codes and its inversion are real and 

circulant.

Proof. Since Z  is a 2 x 2 normal circulant matrix, its two eigenvalues A] and A2 are 

non-negative; Z  can be diagonalized by a 2 x 2 (real) Fourier transform matrix F2 =  

7 5  j as Z -  F \  diag(Ai, A2 )F 2. If H 2 =  Z, then H  = F \  d iag(v/AT> v7̂ ) ^ .  

Thus, H  is real. One can also verify that i f  is a circulant matrix. The matrix H ~ l can be 

similarly shown to be a real and circulant matrix. The proof is completed. □
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Note that, in general, the equivalent channel o f  Construction II o f  OEST codes is not 

circulant. However, with the special case o f ABBA QSTBC, the equivalent channel is also 

circulant.

The detection o f vectors 5?(sfc) and $ ( s k) in (3.14) involves only 2 real symbols. 

Therefore, maximum likelihood detection o f MDC-ABBA codes becomes single complex- 

symbol decoding, a feature previously known to be possessed by OSTBC only.

In order to achieve full-diversity, optimal signal transformations are required before 

transmission and these are derived for MDC-ABBA codes. We first analyze the encoding 

and decoding o f existing signal transformations proposed by (1) Yuen, Guan, and Tjhung 

(YGT) [120] and (2) Wang, Wang, and Xia (WWX) [125], Note that the coding gain metric 

[16] is used to optimize signal transformation in [120,125], which may not be optimal in 

terms o f minimal SER.

3.3 Analyzing the Existing Signal Transformations

Let the input symbols be dk =  ak +  j bk, dk+K — ak+K +  j bk+K, (k — 1 , 2 , . . . ,  K ); they 

are drawn from a unit average energy constellation S ,  for example QAM, PSK. Let sk = 

Pk ~ ] (lk- sk+K — Pk+K +  j Qk+K be the transmitted symbols. We can jointly transform the 

real input symbols ak, bk, ak+K and bk+K by a real transformation 71 to generate transmitted 

symbols pk, qk ,P k+K,  and qk+K as

Q (sfc)T]T =  [pk pk+K qk qk+K]J

= 7Z[ak bk ak+K &&+/<]T. (3.15)

1. Signal rotation proposed by Yuen et al. [120]:

In [120], the transmitted symbols are generated as follows:

(3.16a)

(3.16b)

where R  is a unitary matrix,

cos(a) sin(a) 
sin(a) — cos(a)

(3.17)
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and optimal angle, in terms o f coding gain [16], for QAM is a  =  \  axctan(|) =  13.2825°. 

Thus, the signal rotation 71 is o f  the form

(3.18)

2. Signal transformation proposed by Wang et al. [125]:

Wang et al. [125] present a general format o f  signal transformations and show that 

there are three cases that can be used to achieve pair-wise real-symbol decoding. However, 

these three cases are permutation-equivalent. We thus consider only the first case with the 

following signal transformation:

and Ui,U 2 , R \ . />’•_■ are 2 x 2 real matrices, R \  =  1 2 , R \  — 1 2 -

However, the symbol mapping in [125] is slightly different from (3.15): the Pk+K and 

qk are permuted compared with the arrangement in (3.15) such that

[Pk Qk Pk+I< <lk+I<\ =  7Z w C k  (3.19)

where

Ui u 2 
U-l R .i u 2r 2

(3.20)

(3.21)

Ttw

where
1 0  0 0 
0 0 1 0  
0 1 0  0 
0 0 0 1

(3.22)

Substituting TZw into (3.13), we have

H7Zw Ck +  Wk (3.23)

The matrix H lZw  in (3.23) is not block-diagonal; thus, pair-wise real-symbol decoding 

seems to be impossible. However, by multiplying to sides o f  (3.23) with TZw, we again 

obtain another block diagonal matrix 'TZ\.vH 7Z\,v .
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Z i 1 2 22 I ‘2 

22 12 Z \ I i
We first can show that the product TrJH n

I I  = TZyyIl7Z,W =  'Ryv'tt H wR w

. Then,

X  o2
0 2 X 2

(3.24)

where

X i =  sJ JJ lh  + z i R l u J l h  + z2UjU1R 1 + Z iR jU jU iR u  

X 2 = Zylll U2 +  z2R T2UjU2 + z2UjU2R 2 +  Zi r ] uJ u2r 2.

where, z\ and z2 are the elements o f  Z  such that Z  — 

Now, multiplying both sides o f  (3.23), one gets:

21 22
22 2i

R w V k
X \  0 2
o2 x2 ck + U w w k. (3.25)

The noise vector 7Z w ^ k can be shown to have covariance matrix H. Thus, we can use

the noise whitening matrix H  2 . Eq. (3.25) becomes

* i 3 0 2
RwUk

X I  o 2i 

o 2 x | j
ck + H  %wk. (3.26)

[02 w 2

Let TZwVk — \ y \ i  vIp]1’ where ipk l and y Jk2 are 2 x 1 real vectors, H~ *w k =  

[w\  j m ^2]T, where w j j  and w k2 are 2 x 1 vectors with i.i.d. real Gaussian elements, 

(3.26) is equivalent to

1 /  OK, A

2 Vk, 1 =  W y  ■X ? Ck +

x p i i k,2 =
tpn  a 
— X 2 Ck+K +  Wk,2-

(3.27a)

(3.27b)

The maximum likelihood detection equations for MDC-ABBA codes with signal transfor

mation from [125] are

c k =  a r g m in  (p iu?kX iC k -  2 i J ^ c l y k tl) J  ,

ck+K =  arg rnin ( pKCTk+KX 2ck+K
Ck +K  \

2 ' l ^ ~ cJk+Kyk;2

(3.28a)

(3.28b)

Thus, the decoding o f  MDC-ABBA codes with W WX-transformation reduces to pair-wise 

real-symbol decoding.

We have some comparisons on the signal transformations by Yuen et al. [120] and Wang 

et a l  [125] as follows.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  Encoding complexity: The 4 x 4  transformation TZw o f  Wang et al. [125] has higher 

encoding complexity compared with the 2 x 2 rotation R  o f  Yuen et al. [120],

•  Decoding complexity: However, the multiplication o f IZw and  y k in (3.25) slightly 

increase the complexity, compare with the decoding o f MDC-ABBA codes with 

YGT-rotation.

•  Performance: For square QAM (QAM-S), the transformation in [125, Theorem 2] 

provides no SNR gain compared with the rotation proposed by Yuen et al. [120]. The 

transformation in [125, Theorem 3] performs better with rectangular QAM (QAM-R) 

at the cost o f higher encoding/decoding complexities.

3.4 Optimal Signal Transformations

We will only consider the signal rotation o f Yuen et al. [120] for deriving the exact sym

bol PEP because their rotation is mathematically convenient. More important, we will 

show that by combining power allocation and signal rotation for inphase-quadrature power- 

unbalanced constellations like QAM-R, we can achieve not only better performance but 

also less complexity than by using the transformation in [125, Theorem 3],

3.4.1 Exact Symbol Pair-Wise Error Probability

From (3.15) and (3.16), we can rewrite (3.14) as

(k =  1 , 2 , . . . ,  K )  experience the same channels; they are subject to the same error proba

bility. We thus can consider the error probability o f one o f the two vectors only; the sub

script o f symbols can be omitted for brevity. Furthermore, the pair-wise error probability 

o f each vector is also the symbol PEP.

^ H R [ a k bk] J + U (w k), 

^ H R [ a k+K bk+K]X + %(wk) (3.29b)

(3.29a)

Since H  l :R(wk) and H  1(<s(wk) are real random Gaussian vectors with i.i.d. entries 

(zero-mean and variance N 0 = 1 /2 ), the information vectors [ak
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Consider two distinct symbols d = a +  j b and d = a +  j b. Let <5i =  a — d, d2 = 

b -  b, A  =  [t>i 42]T, the conditional symbol PEP o f d and d can be expressed by the 

Gaussian <7-function as [32]

P(d  - •  i | t f )  =  Q | • (3-30)

We have shown that H  is a 2 x 2 real circulant matrix in Lemma 3.1. Hence, W H  — 

H H  =  H 2 = Z ,  where Z  is given in (3.10). We can use eigenvalue decomposition 

for so that =  F^AidF2, where Aid =  diag(Aij- j, Ai>ii2) and [A<iia AiJi2]T =  

F A K i  hi+M/2,j}J- Since hitj and hi+M/2j  are i.i.d. ~  CAf(0,1), so are the and Ai>i>2. 

Thus,

N  M / 2

z =  E E ^ dias( lAG4I2. 1 \ d 2)F2. (3-31)
j =i i=i

Let x  =  \H R A \2 =  (R A )^H ^H (R A ) ,  one has

N  M / 2

x = E  E  [(f 2 r^  diag(|Aij,i|2, Wj^mRA)}
j= 1 i- 1 

JV M /2

=  E  E  [^1 I^G'.il2 +  P l\K i/i\2] (3.32)
j —i i= i

where [0i /32]T =  F2R A ,  and 0i and (32 are real.

We can apply the Craig’s formula [131] to derive the conditional symbol PEP in (3.30).

P{d->  d\H)  =  Q ( J Z p j  =  l f g '  exp M

Since A ^ i and Ai)?,2 are i.i.d ~  CA/’( 0 ,1), we can apply a method based on the mo

ment generation function (MGF) [132,133] to obtain the unconditional symbol PEP in the 

following:

I W  2
P (d  * d) =  -  [  [ ( 1  +  ) (1  +  )

n ,/0 \  4 sin (9 /  \  4 sin 0 J

M N / 2

d6. (3.34)

G ( x )
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We can further derive another closed form o f  symbol PEP to avoid integral operation.

t x = sin2 0, ei =  0:2 =  —̂ 7 , and’ 1 (JKpf ' pKli2
equation inside the integral (3.34), one has

Let x = sin2 0, ei =  - j ^ . e -2 =  and L  =  M N /2 .  Using the partial fraction for the

(1 + x / e , y i  1 + x / t 2y  \ U ( x + t 'o (x + £2)rn~k
(3.35)

where

Ui =  ( - i m L + l ) . . . { L  + i - l ) (3.36a)
i!(e2 -  ei )L+i

^  ( - i m + i ) . . , ( L + f c - D ^  (3 36b)
fc!(ei -  e2)L+fc

Substituting G (x ) ,u it vk into (3.34) and after algebraic manipulations, we get

P(d --■■■> d)

'L~l / ,  1  r 12 d,e ^  1  r /2
L i '-j m  r  de A —L -  r

( [ h e  p W o  (1 +  ^-sin 2 e ) l ~ ' + h l F i 'K J *0 (1 +  -̂ sin2 0)L'~i f ^ e % ~ i i r J 0 (1 +  ~  sin2 0)i_ i

(3.37)

Since 1 fd /2 - — ^ 2 1 ,  . (and also -  C j 2 -— ; df.2 t  .) is the symbol PEP o f a maximal
1T J Q  ( l + i sin2 0 )^> v 7T JO (I H“ “ - si n 2 0 ) L ~ % /  J

ratio combining (MRC) system with (L  -  i ) receive antennas [32], we obtain

_ , 1  r 12 do __ ( L - i - l  + l\ f l  + r, ^ 1
1,1 ‘ W o  (1 +  i s i n  20 ) ^  \  2 )  I A  2

(3.38a)

1 r 12 de _ ( l -T]2\ L~iL̂ t}  { L - i - l  + l\ ( l  + r)2
2
(3.38b)

   /    — [ ~ /2 I V '
vr Jo  (1  +  ^  sin2 V 2  y  ^  V I J V 2

where 771 =  \ / l / ( l  +  ti),  772 =  v A T + A

The symbol PEP o f  MDC-ABBA codes can be found below.

l -  1

P (d  -> d) =  ^  ^ 6 1 6 3  A4i,i +  A  62- ^ 2,*) • (3.39)
i= 0
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- © -  E x a c t S E R  un ion  bou n d , 4QAM  
+  S im u la te d  S E R  union  bou n d , 4QAM  

-A -  S im u la te d  S E R , 4QAM
E x a c t S E R  un ion  b o u n d , 8 Q A M -S  

- x -  S im u la ted  S E R , 8 Q A M -S  
- e -  E x a c t S E R  un ion  b o u n d , 1 6Q A M -S  

S im u la ted  S E R , 1 6Q A M -S __________

2 5
S N R  [dB]

Figure 3.1: Union bound on SER compared with simulated SER o f  QAM signals, (4, 1) 
system.

3.4.2 Optimal Signal Rotations Based on Tight SER Union Bound

Assume that (R and ri7, i, j  = 1 , . . . .  17, are signals drawn from a constellation S  o f  size 

Q. Using the symbol PEP expression (3.34), we compute the union bound on SER o f

MDC-ABBA codes with constellation S  as

„ 0 —1 o
E (3.40)

i—1 j —i-fl

The SER union bound o f square QAM (QAM-S) with signal rotation in (3.17) and 

a  =  13.2825° are plotted in Fig. 3.1. The geometrical shape o f  8QAM-S (and also other 

8-ary constellations) can be found in Fig. 3.2. The bit mapping is designed such that the 

average number o f different bits o f  neighbor symbols is minimized.

The union bound is only about 0.1 dB apart from the simulated SER when SER <  

10 2. Therefore, the SER union bound can be used to predict the SER performance o f  

MDC-ABBA codes accurately. Furthermore, this bound can be used to optimize the signal 

rotation R.

We run a computer search to find the optimal rotation in terms o f  minimizing the SER 

union bound for popular constellations. During the search, the incremental step size o f  

rotation angle is 0.001°. The optimal angle is searched in the range [0°, 45°], because if  a
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(a) 8Q A M  Rectangular (b) 8Q A M  Square (c) 8Q A M  Square Rotated
(8Q A M -R ) (8Q A M -S ) (SQ A M -SR )

001 Oil
101 001 000 • •
• •

101 000 010
Oil 010 •  < •

------ • — — a-------
100 110

111 110 100 • •
• •

111(1

(d) 8TRI-a (e) 8TRI-b

010, ,001
000

'100

101

(g ) 8A PSK

010 001

000

100

J101 
(t) 8PSK

Figure 3.2: Geometrical shapes o f  8-ary constellations.

is an optimal angle, the following angles are also optimal —a, 90° ±  a, 180° ±  a, 270° ±  a. 

The SNR is chosen such that the SER o f corresponding optimal rotation angle is about 

10 8. At such low SER, the optimal rotation angles also yield full-diversity MDC-ABBA 

codes. The results are summarized for the optimal angle in the range [0°, 45°] in Table 3.1.

The SER union bounds o f several 4-, 8- and 16-ary constellations are illustrated in 

Fig. 3.3. Compared with QAM, TRI performs quite well when they are used for fading 

channels [104,126], and for OSTBC and ABBA codes [61,105]. The constellations with 

larger minimum Euclidean distance tend to perform better. However, this conclusion may 

not be valid for MDC-ABBA codes. For example, 8TRI-b has the best minimum Euclidean 

distance among 8-ary constellations, but its performance is worse than 8QAM.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1: Optimal Rotation Angles o f  Popular Constellations

Signal Optimal a Signal Optimal a

4QAM 14.382° 8QAM-S 12.268°

4TRI 31.155° 8QAM-R 13.166°

8PSK 5.915°, 39.085° 8QAM-SR 31.964°

8APSK 33.472° 16PSK 24.883°, 42.617°

8TRI-a 30.284° 16TRI 0°

8TRI-b 0° 16QAM-S 13.195°

We also compare the frame error rate2 (PER) o f  MDC-ABBA codes with the new opti

mal signal rotation and existing transformations for square-rotated 8QAM (8QAM-SR) in 

Fig. 3.4. Our new optimal signal rotation gains remarkable SNR at high SNR compared 

with the signal rotation in [120] and performs slightly better than the signal transformation 

in [125], however, with lower encoding/decoding complexities.

Note that in Fig. 3.4, while ABBA codes (with pair-wise complex-symbol decoding) 

have a better FER compared with MDC-ABBA codes, the BER o f the former is inferior to 

that o f the latter. Gray-bit mapping may not be optimal for ABBA codes with 8QAM-SR.

The new optimal rotation angles for QAM (square or rectangular) constellations are 

very close to the proposed angle a  = 13.2825° by minimizing codeword PEP [120]. 

Therefore, the SNR gains in these cases are negligible compared to the results o f [120] 

and [125, Theorem 2]. We will next present a new approach, which is applicable to find the 

optimal rotation angle for QAM-R so that the MDC-ABBA codes perform better but have 

lower encoding/decoding complexity than that proposed in [125, Theorem 3].

3.5 Optimal Signal Rotations with Power Allocations

For QAM-R, for example 8Q AM-R in Fig. 3.3, the average powers o f  the real and imag

inary parts o f  the signal points are different. We may change the power allocation o f the 

real and imaginary parts o f QAM-R signals to a get better overall SER.

2 Since a frame or vector o f symbol data is mapped into a codeword, the term "frame error rate" bears the 
meaning o f "codeword error rate".
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16P S K  
16TRI 
1 6 Q A M -S  
8P S K  

- A -  8A PSK  
- O -  8 T R I-a  

8 T R I-b  
- © -  8 Q A M -R  
- 0 -  8Q A M -S  

8 Q A M -S R  
- a -  4TRI 
-B -  4QAM

S N R  [dB]

Figure 3.3: SER union bound o f 4-, 8-, 16-ary constellations, (4, 1) system.

0)

3.
I111

FE R , M D C -A BBA , Y G T  ro tation  
FE R , M D C -A BBA , W W X tran sfo rm atio n  

- a -  FE R , M D C -A BBA , n ew  op tim al ro ta tion  
F E R , ABBA 

- e -  S E R , ABBA
S E R , M D C -A BBA , n ew  optim al ro ta tion  

- 3 -  B E R , ABBA
B E R , M D C -A B B A , n e w  o p tim al ro ta tion

10 12 14 16
S N R  [dB]

18 20 22 248

Figure 3.4: Performances o f ABBA codes and MDC-ABBA codes using 8QAM-SR, (4, 1) 
system.

In particular, the real and imaginary parts o f QAM-R signals are scaled by constants 

/ii and //,2, respectively, before they are rotated. For example, let <S be a constellation with 

signal set S  = {d | d = a + j  b, a. b G M}, the new constellation with new power allocation 

is S  =  {d  | d = Hia +  j jiob] a, b €  R }. The average energy o f  the constellation is kept
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Table 3.2: Optimal Power Allocation and Signal Rotation for QAM-R

Constellation /A fl2 Optimal a

8QAM-R 0.9055 1.3784 0°

32QAM-R 0.8972 1.3487 1.954°

U.

32Q A M -R , Y G T ro tation  
—t— 3 2 Q A M -R .W W X  tran sfo rm a tio n

32Q A M -R , n ew  op tim al p o w e r a llocation  
8 Q A M -R , Y G T ro tation  
8 Q A M -R , W W X s ig n a l tran sfo rm atio n  

- B — 8 Q A M -R , n ew  op tim al p o w er a llocation

S N R  [dB]

Figure 3.5: Performance o f MDC-ABBA codes with new optimal power allocation and 
existing signal transformations for QAM-R, (4, 1) system.

unchanged. Scalars /ii and //2 are called power loading coefficients. For example, the 

8QAM-R with signal points { (± 3  ±  j, ± 1  ±  j ) / \ /4 8 }  has a constraint equation for power 

loading coefficients //,] and /x2 as 5/x.f +  /x2 =  6. We ran an exhaustive computer search 

to find the best power loading coefficients and rotation angle for 8- and 32QAM-R. The 

results are given in Table 3.2.

The FER o f MDC-ABBA codes with our new power loading scheme for QAM-R is 

compared with the existing signal transformations in Fig. 3.5. Our proposed scheme per

forms better compared with the signal rotation method o f  Yuen-Guan-Tjhung and also per

forms slightly better than the signal transformation method o f  Wang-Wang-Xia with lower 

encoding/decoding complexities.

We can apply the power allocation method for other constellations, such as 8TRI-b and 

16TRL With such power scaling, the square or equilateral triangle o f lattices are actually
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distorted, which reduces the minimum Euclidean distance o f the constellations. Therefore, 

we again confirm that, in contrast with OSTBC, maximization o f  the minimum Euclidean 

distance is not essential for MDC-ABBA codes.

3.6 MDC-ABBA Codes with Antenna Selection

When a low-rate feedback channel exist between receiver and transmitter, several feedback 

schemes have been proposed for OSTBC. Among these schemes, transmit/receive antenna 

selection is simple, yet provides significant SNR gain compared with the open-loop OS

TBC [130,134-136]. We will therefore investigate the performance o f MDC-ABBA codes 

with transmit/receive antenna selection and compare MDC-ABBA codes with OSTBC with 

antenna selection. The transmit (or receive) antennas are selected so that the Frobenius 

norm o f  the channel is maximized.

From (3.32), let f3\ =  min(|/3j|, — m&xdAI) \fh\)i we have

N  M/2

X -  X /  X /  (I^CdI2 +  1̂ *4,2 P)] ,
./• I i=1
N  M/ 2

x — \P% ( 1 ^ * 4 4 12 +  l^ : , i .2 |2) ]  •
i = l  i= l

Since [A -̂ :l A,- j)2]J = F2[hki hi+M/ 2,j}T, we get

|A i j , i |2 +  |A;j,2 |2 — \ h i j 2 +  \ h i + M / 2 , j \ 2 - (3 -4 1 )

Therefore,

P l\ \H \?  < x  < p l \ \H \ \2 ■ (3.42)

Actually, H  is dependent on 7i- We thus rewrite the upper and lower bounds o f condi

tional symbol PEP as

q  <  P{d d \H ) < Q . (3 .4 3 )

If both fii and /?2 are nonzero for all distinct pairs o f symbols, the lower and upper 

bounds o f  symbol PEP o f MDC-QSTBC in (3.43) are simply a symbol PEP o f some OS

TBC transmitted over the same channel % with different SNR scales. Therefore, as long
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as fii and 02 are nonzero, the symbol PEP o f MDC-ABBA codes is bounded by two full- 

diversity symbol PEP curves. Hence, MDC-ABBA codes must achieve full diversity. From 

(3.34), if  Pi and p 2 are nonzero for all distinct pairs o f  symbols, the MDC-ABBA codes 

are full diversity; this condition also holds for the signal transformations using the rank- 

determinant criteria with codeword PEP [16,120].

In the case o f transmit antenna selection, only M  out o f M t available transmit antennas 

are used. The effective channel o f MDC-ABBA codes with transmit antenna selection is 

f t ,  which consists o f  M  columns with the largest Frobenius norm o f  the matrix H- In 

this case, the matrix 7i  in (3.43) is replaced by f t .  It is similar to the case o f  OSTBC with 

transmit antenna selection [130], Since OSTBC achieve full diversity with transmit antenna 

selection, MDC-ABBA codes also achieve full diversity with transmit antenna selection.

More importantly, full diversity can be obtained with limited feedback [130]. The con

cept o f  antenna selection with limited feedback can be explained as follows. With full 

information feedback, choosing M  out o f  M t transmit antennas requires b =  [log2 ( ^ ) ]  

bits and the number o f  feedback bits b may be large. In some scenarios, it is required to 

keep b small. Therefore, instead o f picking one group o f  M  antennas from the set o f  (^' ) 

possible choices, the M  antennas are selected from the set with smaller cardinality; thus, 

the number o f  feedback bits is reduced. This method is called limited feedback. Obviously, 

the selected M  antennas may not be optimal with limited feedback, but the bandwidth o f  

feedback channel can be set small and also the time to send the feedback would be shorter. 

It is shown that OSTBC can achieve full diversity with limited feedback [130]. Therefore, 

MDC-ABBA codes also achieve full diversity with limited feedback.

The similar explanation can be given with receive antenna selection [134], Therefore, 

with transmit antenna selection and receive antenna selection, MDC-ABBA codes always 

achieve full diversity with full or limited feedback.

3.7 Simulation Results

Simulation results are next presented using the new decoders for ABBA and MDC-ABBA 

codes to compare their performances. The diversity order o f MDC-ABBA codes with 

antenna selection is also verified. All signal constellations use Gray-bit mapping.
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S N R  [dB]

Figure 3.6: Performances o f  MDC-ABBA codes compared with ABBA codes and OSTBC, 
(4, 1) system.

3.7.1 Performance of MDC-ABBA, OSTBC, and ABBB Codes

The performances o f ABBA and MDC-ABBA codes for an open loop 4 Tx/1 Rx antenna 

system are compared in Fig. 3.6. Performance o f  OSTBC rate 3/4 symbol pcu [44] with 

16QAM (3 bits pcu) is also plotted in Fig. 3.6. While the performance o f  MDC-ABBA  

codes with 4- and 16QAM closely approach to that o f  ABBA codes, the former outperforms 

the latter with 8 QAM-S with signal points. Therefore, the Gray-bit mapping may be not 

the optimal bit mapping for ABBA codes. With another 8 QAM-R, MDC-ABBA code also 

performs better than the ABBA code but slightly worse than OSTBC. The MDC-ABBA  

code with 8 QAM-S gains 0.5 dB over OSTBC with the same spectral efficiency o f  3 bits 

pcu.

3.7.2 Performance of MDC-ABBA Codes with Antenna Selection

1. Diversity order o f M DC-ABBA codes with transmit antenna selection and limited  

feedback

We examine the diversity order o f MDC-ABBA codes with transmit antenna selection 

using limited feedback. One can choose M  =  3 out o f  M t =  4 available transmit antennas. 

Full complexity systems require b = [log2 (3)] = 2  bits to be sent back from the receiver
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- 0 ~  (4  c h o o s e  3 ) T A S, M D C -A BBA , 1 -b it  fe e d b a c k  
— (4 c h o o s e  3) TA S, M D C -A B B A , 2 -b i t  f e e d b a c k  
- Q -  (4 c h o o s e  3) TAS, idea l r a te - o n e  O ST B C

S N R  [dB]

Figure 3.7: Performances o f MDC-ABBA codes with limited and full feedback, choose 
M  =  3 transmit antennas from M t =  4 antennas, and 1 receive antenna, 16QAM.

to the transmitter. In the limited feedback system, there are only 2 possible choices to 

choose 3 out o f 4 antennas. Thus only 1-bit feedback is needed. In Fig 3.7, performances 

o f MDC-ABBA codes with full and limited feedback schemes are compared for N  =  1 and 

using 16QAM. There is a loss o f  0.5 dB when using 1-bit feedback compared with optimal 

transmit antenna selection (2-bit feedback). However, the 1-bit limited feedback scheme 

still improves 0.9 dB over the performance o f  the open-loop MDC-ABBA code. Perfor

mances o f  the two feedback schemes are compared with that o f  the ideal rate-one OSTBC 

with transmit antenna selection, which serves as the lower bound on the performance o f  

the MDC-ABBA code with transmit antenna selection. The performance gap between the 

limited feedback MDC-ABBA code and the lower bound is about 0.8 dB.

2. Comparing M DC-ABBA and OSTBC with antenna selection

Performances o f an MDC-ABBA code designed for 3 transmit antennas with transmit 

antenna selection is presented in Fig. 3.8. The number o f available antennas M t = 4 

and 1 receive antenna. Compared with the open loop case, the MDC-ABBA code with 

transmit antenna selection and 16QAM gains about 1.2 dB. Especially, the performance 

of (<j) transmit antenna selection is slightly better than that o f  an ideal imaginative rate- 

one OSTBC using the same 16QAM. Note that the performance o f an ideal hypothetical
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M D C -A B B A , M = 3, Mt = 4, 8 Q A M -S  
M D C -A B B A , M = 3, Mt -  4 , 16QAM

2 5

Figure 3.8: Performances o f  MDC-ABBA codes and OSTBC designed for M  =  3 with 
transmit antennas selection, number o f  available antennas M t =  4, and 1 receive antenna.

icf4

- e -  M D C -A B B A , o p e n  loop , M *  4 
M D C -A B B A , T A S, M = 4. Mt = 6 
M D C -A B B A , T A S, M =  3, Mt *  6 

- 0 -  A lam outi c o d e , TA S, M =  2, Mt =

20
S N R  [dB]

Figure 3.9: Performances o f  MDC codes with transmit antennas selection, 16QAM (4 bits 
pcu), number o f available antennas M t — 6, number o f active antennas M  — 2 ,3 ,4 , and 1 
receive antenna.

rate-one OSTBC is also the performance limit o f  ABBA-QSTBC with phase feedback 

schemes [122-124]. Compared with OSTBC for the same spectral efficiency o f  3 bits pcu 

and transmit antenna selection, MDC-ABBA code gains 0.8 dB.
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- Q -  A lam outi c o d e , TA S, M = 2 , Mt = 6, r  =  1
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S N R  [dB]

Figure 3.10: Performances o f MDC codes compared with the Alamouti code when feed
back is delayed, 16QAM (4 bits pcu), number o f  available antennas M t — 6, number o f  
active antennas M  — 2 ,4 , and 1 receive antenna.

In Fig. 3.9, we compare the performances o f MDC-ABBA codes for 3 and 4 transmit 

antennas with that o f  the Alamouti code. All these STBC are considered with transmit an

tenna selection, where the available transmit antennas M t — 6 and 1 receive antenna, and 

all codes have rates o f  1 symbol pcu and use 16QAM. The Alamouti code performs signif

icantly better than MDC-ABBA codes. Flowever, this excellent improvement is obtained 

with a perfect assumption: there is no feedback delay. In case o f  delayed feedback, the 

transmitter has the outdated channel state information. We provide the simulation results 

with correlation covariance coefficient o f  the actual and outdated channel gains r =  0.9 

and 0.7 in Fig. 3.10. The advantage o f the Alamouti code over MDC-ABBA codes with 

transmit antenna selection vanishes quickly when r =  0.7; the Alamouti code performs 

worse than MDC-ABBA codes when SNR > 17.5 dB.

3.8 Summary

In this chapter, we have applied the framework o f OEST codes to thoroughly analyze 

ABBA QSTBC. We have derived the general decoder o f  ABB A codes, to allow either pair

wise or single complex symbol decoding. Existing signal transformations were adapted for
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the newly proposed decoder o f MDC-ABBA codes. A tight union bound on the SER was 

presented and used to optimize the signal rotations for MDC-ABBA codes with various 

signal constellations. We have also proposed a new method combining the optimal power 

allocation and signal rotation to find the best signal transformation for inphase-quadrature 

power-imbalanced constellations such as rectangular QAM. Our new signal transforma

tions perform better than the existing ones and also have lower encoding/decoding com

plexities. The MDC-ABBA codes have been shown to achieve full diversity with antenna 

selection and with full or limited feedback. Although our analysis is restricted to the ABBA  

codes, it can be also extended for other QSTBC in [46,48] and coordinate interleaved or

thogonal designs (CIOD) [92],
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Chapter 4 

Four-Group Decodable SAST Codes

In Chapter 2, ABBA QSTBC, as a special case o f  OEST codes, is if-group decodable. In 

Chapter 3, we show that by a new encoding method, ABBA codes are actually 2ff-group 

decodable. The single-symbol decoding capability o f  ABBA codes is obtained because 

their equivalent channel is a real matrix. In general, the equivalent channels o f  OEST 

codes are complex matrices, which make the decoding complexity reduction difficult or 

impossible. In this chapter, we will solve this problem by proposing a more sophisticated 

encoding method for OEST codes by exploiting the circulant property o f the equivalent 

channel to obtain lower decoding complexity OEST codes. Hence, OEST codes are 2K -  

group decodable in general.

Among subclasses o f  OEST codes, SAST codes have several distinguishing properties 

such as near-capacity performance, rate-one for any number o f transmit antennas, and bet

ter performance than several existing codes. Therefore, we will present the new encoding 

method to obtain lower decoding complexity for SAST codes. Recall that SAST codes are 

constructed from the Alamouti code with K  =  2. Thus, the new encoding method will 

make SAST codes 4-group decodable.

4.1 General Encoder of 2K-Group OEST Codes

Recall that in Section 2.3, before mapping a data vector (of P  symbols) into a circulant 

matrix, each element (data symbol) o f the data vector is rotated separately by a specific 

angle to make the OEST codes full diversity. We now consider a joint rotation o f all the 

data symbols, i.e. to rotate the data vectors by a special matrix, namely inverse discrete
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Fourier transform (IDFT) JF* [64], Let x  be the data vector, the rotated vector is

s  =  (4.1)

We consider the simple case o f  circulant STBC. The data vector is first rotated as in

(4.1), and then mapped to a circulant STBC. Our question is how many groups o f  symbols 

can be separated at the receiver for maximum likelihood detection? To answer this question, 

we need to examine the dispersion matrices o f  the circulant STBC with respect to Theorem

2.2. Let Xi = • ]b, (/ =  1 , . . . ,  P),  and p  = [fik] =  [ f x f 2 ... f P] ( f ik =
1 e j 2 w ( l - l ) ( * - l ) ^  W g  J j g y g

Let Ak be the vector containing the eigenvalues o f  A k. Since A k is circulant, the 

eigenvalues o f A k can be found by taking the unnormalized DFT o f f k [64]. Therefore,

at the k  position.

Now we consider two different dispersion matrices A { and A j  o f  two real symbols o,t 

and a,j, respectively, and one has

Al A j  +  AjA i = Jrt d iag(/lf) d iag(/lj).F  +  d iag(dt) d iag(/li )jr =  0 . (4.5)

Thus, according to Theorem 2.2, the real symbols o,,; and a3 can be separated at the receiver. 

Similarly, we can show that real symbols a, and bj can be separated as well. It means that all

C(s)  =

5] 52 . . .  Sp 
■Sp Si . . .  Sp—i

S2 S 3 . . .  Si

P P

(4.2)
k=l k= 1

where

p

(4.3)

p

(4.4)

A k = \ f P F f k =  [0 . . .  0 y /P  0 . . .  0]T and the only nonzero eigenvalue appears
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the real symbols can be decoupled for maximum likelihood detection or we obtain single- 

real symbol decoding complexity. This result is beyond our expectation since we just try to 

get two-group decoding for circulant STBC.

However, since the dispersion matrices A k and B k have only one nonzero eigenvalue, 

these dispersion matrices are o f  rank one; one cannot obtain full diversity circulant STBC. 

On the other hand, each circulant matrix A k has only one nonzero eigenvalue at /dh po

sition. Therefore, if  A  is a linear combination o f  P  circulant matrices A k, k = 1, ,P ,  

A  will have P  nonzero eigenvalues or A  is full rank. This means one more time the real 

symbols (ii (or b, ) must be spread out over the new dispersion matrices, which are the linear 

combination o f P  dispersion matrices A k,k  =  1 , . . . ,  P  (or B k, k =  1 , . . . ,  P).

We summarize the above results as follows.

•  With signal rotation (4.1), circulant STBC are single real-symbol decodable. How

ever, the diversity order is only 1.

•  To achieve full diversity, the data vector must be rotated by another rotation matrix 

R  before applying the rotation (4.1). Thus, the compound rotation matrix is in the 

form P^R.  With this two rotating stages, the circulant STBC is two-group decodable. 

Consequently, the product C ( s fC ( s ) can be written as the sum o f two terms, each 

contains the symbols from one group only.

We now con sider the general construction o f  OEST codes, where the circulant matrices 

are embedded. If the matrices o f two-group circulant STBC are substituted to (2.29), we 

get 2K  terms. Hence, OEST codes are actually 2/\-group decodable and full-diversity is 

achievable. We state the main result o f  this section in the following theorem.

Theorem 4.1. Using the signal rotation o f  the form P^R, OEST codes are 2K-group de

codable and fu ll  diversity can be achieved.

To appreciate the advantages o f 4-group SAST codes, we will compare the main pa

rameters o f SAST codes and other low-complexity STBC, including OSTBC, QSTBC, 

MDC-QSTBC, and codes from coordinate-interleaved orthogonal designs (CIOD) [92], 

for 6 and 8 transmit antennas in Table 4.1. Clearly, the new 4-group SAST codes offer sev

eral distinct advantages, such as higher code rate, lower decoding complexity, and lower
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Table 4.1: Comparison o f Several Low-Complexity STBC for 6 and 8 Antennas

Codes r Maximal rate Delay Real symbol decoding

OSTBC [44,137] 21< or K 2/3 (5/8)° 30 (56) 1 or 2 (1 or 2)

CIOD [92] K 6/7 (4/5) 14 (50) 2 (2 )

MDC-ABBA [120] K 3/4 (3/4) 8 (8 ) 2 (2 )

QSTBC [47] K/2 3/4 (3/4) 8 (8 ) 4 (4 )

2-group QSTBC [96] 2 1(1) 8 (8 ) 8 (8 )

SAST 2 1(1) 6 (8 ) 6 (8 )

4-group QSTBC [93] 4 1(1) 8 (8 ) 4 (4 )

4-group SAST (new) 4 1 (1) 6(8) 3(4)

“The numbers in the parentheses indicate the codes’ parameters for 8 antennas.

encoding/decoding delay. The 4-group SAST codes also have lower PAPR than that o f  

OSTBC, QSTBC, MDC-QSTBC, and CIOD codes because there are no zeros in the code 

matrices. Moreover, from extensive simulation results, our 4-group SAST codes also yield 

significant SNR gains compared with the existing codes.

In the next section, we will present the decoding o f OEST codes with two steps. The 

first step is to separate K  transmitted vectors o f  data symbols, as solved in Chapter 2. The 

second step wi ll decompose the real and imaginary parts o f each data vector for maximum 

likelihood detection. As mentioned earlier, we will illustrate these two decoding steps for 

the representative SAST codes.

4.2 Decoder for 4-Group SAST Codes

To obtain 4-group decodable SAST codes, we need two steps. The first step is to decouple 

the transmitted symbols into two group. The second step will separate each group into two 

smaller groups. The first step has been solved in Section 2.3.4 o f  Chapter 2. Nevertheless, 

for the case o f SAST codes, we can develop an alternative approach to design the decoder, 

which is more computationally efficient by reducing intermediate deriving steps.

We first review the construction o f  SAST codes introduced in Section 2.3.6. The SAST 

code matrix is constructed for M  =  2P  transmit antennas using circulant blocks. Two data
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T T
vectors s i  =  [si s2 ••• sp] and S2 =  [sp+i sp+2 . . .  s2p] are used to generate 

two circulant matrices:

CNzr\
i

. S p Sp+1 S p + 2 • • S 2p

S p  S i  . ■ S p - 1
c ( s 2) =

S2P Sp+1 • • S 2 P- l

_s2 s3 . • S:1 S p + 2 S P + 3  • ■ S p+1

C(«i) =

The SAST code matrix is constructed from C («i) and C (s2)as

5

For example, the SAST code for 6 transmit antennas is

<S6 =

(4.6)

C{ s x) C( s2)
-Cf ( s 2) Cf (s i)

(4.7)

U 1 U2 Uz U4 Us u6
u3 Ui u2 ue U4 Us

U2 U3 Ui Us Ufi U4

— U4 -« 6 - “ 5 u\ «3 «2
— Ug - u \ -« e u*2 u\ “ 3

- K - u \ ul U*2 u\

(4.8)

We introduce another type o f circulant matrix called left ciculant, denoted by Cp{x), 

where the rth row is obtained by circular shifts (i — 1) times to the left the row vector x.

Cl (x )

X i  x 2

x 2 £ 3

X p

X \
(4.9)

X p  X \  . . .  X p - 1

Let us define a permutation II  on an arbitrary matrix X  such that, the (P  — i +  2)th row 

is permuted with the ith row for 1 =  2 ,3 ,. .. ,  ] , where [(•)] is the ceiling function. One

can verify that

H(Cl {x )) — C (x ) . (4.10)

This useful operator will be used for our next derivation.

L e ty  = [y] y 2]J , y 1 = [ y i  2/2 ••• yp]J , y 2 = [yp+i yp+2 ••• 2/m]t , h  = 

[h[ h J2]J, h 1 = [ h 1 h2 . . .  hp]T, h 2 = [ h P + 1 hP+2 . . .  h2P]J, w = [ w ]  w l ] J ,
T T

W , =  [wi W‘2 . . . Wp} , W 2 =  [w P + 1  WP+2 . . . W2P\ .

We can write the transmit-receive signal relation as

y 2
C{si )  C{s2)

- C f ( s 2) Cf (s i)
h i
h 2

w  j
w 2 (4.11)
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Applying permutation 77 in (4.10) for the column matrix y 1, we obtain [100]:

\H X H 2V i

Vi
n ( y i )
2/2 H i - H I + Wi

w 2
(4.12)

H

where H\ = C{h\), H 2 = C(h2), Wi = H (w i) ,  w 2 = w*2. The elements o f w i and w 2 

have the same statistics, C Af(0,1), as elements o f  and w 2.

We now multiply H '  with the both sides o f (4.12). Let f i  =  H \H \  +  H \H 2, we get

Vi
Vz

V\
Vi

H  Op 
Op f i + 7V

Wi
W2

'f i Op «1 +
Wi

Op -S2. W2_
(4.13)

The covariance matrix o f the additive noise vector w  is

E[ww^] H  Op 
O p  n (4.14)

Therefore, noise vectors w  \ and w s are uncorrelated and have the same covariance matrix

f i .  Thus, Si and s 2 can be decoded separately using y, — fiS i  +  w u  i = 1,2. The noise
 ̂ —1/2vectors w \  and w 3 can be whiten by the same whitening matrix f i  . The equivalent 

equations for transmit-receive signals are

f i 1/\  = M n 1/2s i + n 1/2w i, i =  1,2. (4.15)

At this point, the decoding o f  SAST codes becomes the detection o f  2 group o f complex 

symbols s* (i =  1 ,2). Our next step is to separate the real and imaginary parts o f  vectors 

Si by exploiting the properties o f f i .

Recall that f i  = I l \ l i i  + I l \ H 2, and both Hi  and H 2 are circulant. Hence, f i  is also 

circulant [64], Let =  [Ajj Aij2 . . .  A^p] be the P  eigenvalues o f  H t {% =  1,2). We 

can diagonalized H, by Fourier transform matrix as Hi — Ai p .  Thus,

H  = P \ A \ A i + AIA2) P .

Let A\A i  +  A \A 2 — A, then A has non-negative entries in the main diagonal and

H
1/2 p ^ A l/2 p ,  

f i  1/2 = P ^ A - 1/2 p .
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We have Si is pre-multiplied (or rotated) by a matrix jA ,  Substituting Si by s, and 

multiplying both sides o f  (4.15) with T ,  one obtains

Since A 1/2 has real elements (in the main diagonal), the real and imaginary parts o f  s* 

now can be separated for detection.

Using (4.19), one can use a sphere decoder to detect the transmitted symbols. The equiva

lent channel o f  4-group SAST codes is A1/2.

We thus have derived the general decoder for 4-group SAST codes. The role o f  the 

IDFT rotation matrix JF1 is to diagonalize the channel, facilitating the lower decoding com

plexity for S AST codes. We next analyze the performance o f the 4-group SAST codes.

4.3 Performance Analysis

Note that the eigenvalues o f P  x P  matrices H\  and Ho can be found easily using un- 

normalized Fourier transformation o f the channel vectors h\ and h2 [64], Therefore, the 

eigenvalues o f H i and I i2 have distribution ~  Cj\f(Q, P).

We introduce a real orthogonal transformation R  to the data vectors lifs,:) and Q(.s,:) 

(i =  1,2) to make 4-group SAST codes full diversity. Thus, the actual signal rotation o f  

4-group SAST codes is R.

Since the PEP o f vectors lft(s,;) and A(s.() (t — 1,2) are the same, we just calculate the 

PEP o f the vector K (si). Let d — 3ft(si) =  [ai a2 . . .  flp]T.

The PEP o f the pair d and d can be expressed by the Gaussian tail function as [32]

A - 1/2T V i

(4.18)

(4.19b)

(4.19a)

p \A lP R 8 \
(4.20)
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where No =  1 /2  is the variance o f the elements o f the white noise vector 'R(wi ) in (4.19a), 

8 — d  — d. Substituting A =  A \A i +  AlA^, one has

/
p ( d  -  d \n )  = q

Q

\
S TR T(A \A 1 +AilA2)R6

16

y

16
(4.21)

where f3 = R8.

We now use the Craig’s formula [131] to derive the conditional PEP in (4.20).

p ( d ^ d \ n )  = Q

i  W 2

p ( £ L i £ L ^ | A d 2)
16

7TJO
exp - p ( E U z u ^ \ 2y

32 sin2 a
da. (4.22)

We can apply a method based on the moment generating function (MGF) [132,133] to 

obtain the unconditional PEP in the following:

P ( d  -► d)
I r*/2

7T
i= \
n  (i+

p/%
! sin2 a

da. (4.23)

Since there are four vectors to be decoded in each code matrix, the codeword PEP is 

therefore equal to 4 times the PEP given in (4.23).

Assume that /?, 0 Vi =  1 , 2 , . . . ,  P. One can find the upper bound on PEP o f 4-group

SAST codes at high SNR as follows.

, ,„.n n—2P f i r /2 \  P
P (d  -> d)

'n6mn-2P f^/2
 1----  / (sina)16̂  J JJ/%"

i = 1

23 M p - M  16j 

217 8 !8 !

M/2
(4.24)

4=1

The asymptotic bound in (4.24) shows an important property o f  the 4-group SAST 

codes at high SNR: The PEP is heavily dependent on the product distance n^=1 Pi (see, 

e.g. [138]). The exponent o f SNR in (4.24) is —M .  This indicates that the maximum
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diversity order o f  4-group QSTBC is 8 and it is achievable if  the product distance is non

zero for all possible data vectors. Furthermore, at high SNR, the asymptotic bound becomes 

very tight to the exact PER Therefore, the larger the product distance, the lower FER can be 

obtained. Thus, we can optimize the rotation by R  so that the minimum product distance
4

dp,mm =  mill TT |/?ft| (4.25)
Vd*,<P t  ,h=1

is non-zero and maximized.

For QAM signals, the symbols a* and 6* are in the set { ± 1 , ± 3 ,± 5 , . . .  }, the best- 

known rotations for QAM that maximizes the minimum product distance are provided 

in [139,140]; they are denoted by R b o v -

In [139,140], the rotated lattice points are generated by x  =  d R s o v ,  where d  E  IT  

and R b o v  is o f  size n  x  n .  In this representation, x  and d  are row vectors, while we use 

column vector notation in our paper. Thus, the rotation matrices R b o v  given in [139,140] 

will be transposed. For the 3 and 4-dimensional lattices, the rotation matrices are given 

below.
" -0.3279852776 -0.7369762291

R BOV,3

R b o v a

-0.5910090485 -0.3279852776  
-0.7369762291 0.5910090485

-0.3663925121
-0.7677000238
0.4230815704
0.3120820187

-0.2264430248
-0.4744647078
-0.6845603618
-0.5049593142

-0.5910090485
0.7369762291

-0.3279852776

-0.4744647080
0.2264430248

-0.5049593144
0.6845603618

(4.26)

-0.7677000246'
0.3663925106
0.3120820189

-0.4230815707
0 .27)

Note that in the construction o f 4-group SAST codes, the data vectors s, (i = 1 ,2) with 

proper size are rotated to generate the vectors u t as u,t =  R^Rsi.

4.4 Simulation Results 

4.4.1 Union Bound on FER

It is o f  interest to investigate the union bound on FER o f  4-group SAST codes using the 

exact PEP in (4.23). The union bound and simulated FER o f  a 4-group SAST code for 6 

antennas is plotted in Fig. 4.1. The bound is only about 0.1 dB from the simulated FER 

when FER < HE2. Therefore, instead o f  optimizing the worst-case PEP, the union bound 

can be optimized to obtain lower FER.
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- x -  F E R , 4QAM  
- B -  U nion  b o u n d , 4QAM

S N R  (dB}

Figure 4 .1: Union bound on FER o f 4-group SAST codes for (6, 1) system.

4.4.2 Performance of 4-Group SAST Codes

The performance o f 4-group SAST codes will be compared with OSTBC, MDC-QSTBC 

[120], QSTBC [47,61], DAST [49], 4-group QSTBC [93], and SAST codes. The per

formance o f CIOD codes [92] is not compared because o f two reasons: (1) We could not 

find suitable constellations for maximal-rate CIOD codes [92] so that CIOD codes have the 

same bit rates with our newly developed codes; (2) Since the minimal-delay CIOD codes 

have the same code rate and performance as that o f MDC-QSTBC [92,125], it is enough 

to compare the performance o f our codes with that o f MDC-QSTBC.

Since 4-group SAST for 4 transmit antennas is equivalent to MDC-ABBA, we thus 

present the results for 5, 6, and 8 transmit antennas. The number o f receive antennas is one 

in all simulations.

1. Performance 4-group SAST codes for 6 transmit antennas

Since the rate o f  OSTBC for 6 transmit antennas is 2 /3  symbol pcu [44], we use 8QAM 

to produce a data rate o f 2 bits pcu and compare performances o f  OSTBC and our new 

codes in Fig. 4.3. The rate o f  4-group QSTBC and 4-group SAST codes is one. We thus 

use 4QAM to obtain 2 bits pcu. Two columns (4 and 8) o f  4-group QSTBC for 8 transmit 

antennas is deleted to create the code for 6 transmit antennas. With spectral efficiency
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1 0 0 1 1 0
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0 1 0 o n 0 0 1 0 0 0
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1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1
• • •

(a) 8QAM-R (b) 8QAM-S

Figure 4.2: Geometrical shapes o f  8QAM-R (de > m =  0.8165) and 8QAM-S (de,mm =  
0.9058).

uj 10'3

- © -  4 G p -S A S T , 16QAM 
- A -  S A ST , 16QAM  
- 0 -  4 G p -Q S T B C , 16QAM 
— OS T B C ,  8 Q A M -R  
- V -  O S T B C , 8 Q A M -S  
- 4 -  4 G p -Q S T B C , 4QAM  

4 G p -S A S T , 4QAM 
- B -  S A ST , 4QAM _________

S N R  [dB]

Figure 4.3: Comparing performances o f  4-group SAST codes with several STBC for (6, 1) 
system, 2 and 4 bits pcu.

o f 2 bits pcu, 4-group SAST codes gains 0.8 and 1.6 dB over OSTBC with 8QAM-S and 

8QAM-R, respectively, while the decoding complexity slightly increases (joint decoding o f  

3 real symbols). Performance o f 4-group SAST codes is slightly inferior to that o f  4-group 

QSTBC (0.2 dB). Note that the decoding complexity o f  4-group QSTBC (joint detection 

o f 4 real symbols) is higher than that o f 4-group SAST codes (joint detection o f 3 real 

symbols).

In Fig. 4.4, performances o f 4-group QSTBC, 4-group SAST codes with 3 bits pcu 

are presented. With this spectral efficiency, only QSTBC and MDC-QSTBC with rate
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- e ~  M D C -Q S T B C , 16QAM 
-G - Q S T B C , 16QAM  
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- B -  S A S T , 8 Q A M -R  
- f r -  4 G p -Q S T B C , 8 Q A M -R

S N R  [dB]

Figure 4.4: Comparing performances o f 4-group SAST codes with MDC-QSTBC, QSTBC, 
and 4-group QSTBC for (6, 1) system, 3 bits pcu.

o f 3/4 symbol pcu (using 16QAM) are compared. For 6 transmit antennas, the 4-group 

SAST codes have 4 groups, each has 3 real symbols. 4-group SAST code yields 0.3 dB 

improvement over MDC-QSTBC (two real symbol decoding) and performs the same as 

QSTBC (four real symbol decoding). The 4-group QSTBC using 8QAM-R gains 0.5 dB 

over 4-group SAST codes at the cost o f higher complexity (4-real symbol decoding versus

3-real symbol decoding).

2. Performance 4-group SAST codes for 8 transmit antennas

Performance o f 4-group SAST codes are compared with 4-group QSTBC, SAST and 

DAST codes for 3 and 4 bits spectral efficiency in Fig. 4.5. 4-group SAST codes perform 

the same as 4-group QSTBC and the two codes have the same decoding complexity (4 

real-symbol decoding). Flowever, the two codes gain 0.8 dB over DAST code, which has 

much higher decoding complexity. The 4-group SAST code is about 0.5 dB worse than 

SAST codes at high SNR, but keep in mind that the decoding o f  this SAST code required 

joint detection o f 8 real symbols (see Table 4.1).

For the data rate o f 3 bits pcu, 4-group SAST code is also superior to MDC-QSTBC and 

QSTBC. Our code yields 0.8 and 1 dB gains over MDC-QSTBC and QSTBC, respectively.

3. Performance 4-group SAST codes for 5 transmit antennas
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D A ST, 16QAM 
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- 0 -  4 G p -S A S T , 16QAM 
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Q S T B C , 16QAM  
- 9 -  4 G p -S A S T , 8 Q A M -S

10"5
S N R  [dB]

Figure 4.5: Comparing performances o f  4-group SAST codes with several STBC for (8, 1) 
system, 3 and 4 bits pcu.

10'1

SC -3yj 10

- Q -  4 G p -S A S T , 16QAM  
- V -  4 G p -Q S T B C , 16QAM 
- A -  4 G p -S A S T , 8 Q A M -R  
—i— 4 G p -Q S T B C , 8 Q A M -R  
- B -  4 G p -S A S T , 4QAM 
- x -  4 G p -Q S T B C , 4QAM

2 5
S N R  [dB]

Figure 4.6: Comparing performances o f 4-group SAST and 4-group QSTBC for (5, 1) 
system.

We compare the performances o f 4-group QSTBC and 4-group SAST codes in Fig. 

4.6. The 4-group QSTBC for 5 transmit antennas is obtained by deleting three columns 

(4, 7, and 8) o f  the 4-group QSTBC for 8 transmit antennas. Similarly, the 4-group SAST 

code for 5 transmit antennas is also created by deleting one column o f  the SAST code for

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 transmit antennas. Therefore, 4-group SAST code is more delay-efficient and have lower 

decoding complexity than 4-group QSTBC. With these advantages, 4-group SAST codes 

incur 0.2 dB loss compared with 4-group QSTBC at high SNR.

4.5 Summary

We have presented a new encoding method so that OEST codes are 2/\-group decodable. 

The complexity reduction is significant because the number o f  symbols in each group is 

reduced by half compared with K -group OEST codes. As a typical example, we obtained 

4-group SAST codes from 2-group SAST codes. Extensive simulation results show that

4-group SAST codes perform better than several existing low-complexity STBC, such as 

OSTBC, MDC-QSTBC, and QSTBC codes. Additionally, 4-group SAST codes have low 

encoding/decoding delay. Since there are no zeros in SAST code matrices, SAST codes 

have better PAPR than that o f OSTBC. These advantages make 4-group SAST codes suit

able for MISO systems, where transmit diversity is one o f the available resources to im

prove the error performance o f  wireless links.
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Chapter 5 

Extensions of OEST Framework

In previous chapters, we have derived the multi-group decoding property o f OEST codes 

in general and examined in detail MDC-ABBA and SAST codes, two subclasses o f  OEST 

codes. A rigorous approach to decouple the data vectors is to use their orthogonal spatial 

signatures at the receiver. In this chapter, this approach is extended to investigate other two 

existing STBC. The first code, called coordinate interleaved orthogonal designs (CIOD), is 

proposed by Khan and Rajan. Similar to MDC-ABBA codes, CIOD codes are also single

symbol decodable. The second code, 4-group QSTBC, is similar to 4-group SAST codes. 

However, SAST codes are more delay-efficient than 4-group QSTBC.

5.1 Coordinate Interleaved Orthogonal Designs

5.1.1 Introduction

While OSTBC have minimal decoding complexity, their code rates are low for more than 

2 transmit antennas (see Section 1.4.2). To improve the code rate o f  OSTBC and maintain 

low decoding complexity, some alternative code designs have been introduced recently. 

They are (1) minimum decoding complexity (MDC) QSTBC [120,141] and (2) STBC us

ing coordinate interleaved orthogonal designs (CIOD) [90-92]. These two codes are single 

(complex) symbol decodable. In Chapter 3, we have studied MDC-ABBA codes, which 

are similar to MDC-QSTBC. The maximal code rates o f OSTBC, MDC-QSTBC (and also 

MDC-ABBA codes), and CIOD codes are summarized in Table 5.1 for the number o f  trans

mit antennas M  =  2 . . . . .  8. Clearly, CIOD codes offer equal or higher rates than the other 

codes. This advantage motivates the study o f CIOD codes here.
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Table 5.1: Code Rates o f  Single-Symbol Decodable STBC

Codes M  — 2

COit M  — 5,6 II 00

OSTBC 1 3/4 2/3 5/8

MDC-QSTBC 1 3/4 3/4

CIOD 1 6/7 4/5

While OSTBC achieve full diversity for any constellation, CIOD codes may not achieve 

full-diversity with the conventional constellations, such as QAM or PSK. To achieve full 

diversity, modulation symbols may need to be rotated by an angle a  [90-92], Proper choice 

o f the rotation angle a  will maximize the code diversity gain and also minimize the error 

performance. The authors in [92] use the coding gain parameter [16] to derive the optimal 

a  for QAM. However, maximizing the coding gain amounts to minimizing the worst-case 

codeword pair-wise error probability (CPEP), which provides no guarantee for minimiza

tion o f the symbol error rate (SER). Moreover, references [90-92] did not derive optimal 

signal rotations for QAM, PSK, and other constellations with good minimum Euclidean 

distance, such as lattice o f equilateral triangular (TRI) (also called hexagonal (HEX)) or 

amplitude PSK (APSK) [104] in terms o f minimal SER.

In this chapter, we will extend the method, which has been used to analyze MDC- 

ABBA codes to solve several open issues o f  CIOD codes. First, we derive equivalent 

channel representations. A new maximum likelihood decoder is also presented in a simple 

form. A closed form symbol pair-wise error probability (SPEP) is derived. Hence, the 

union bound on the symbol error rate (SER) can be easily evaluated. For all the tested 

cases, the union bound is with in 0.1 dB o f  the simulated SER. Therefore, this bound can be 

used to accurately analyze the performance o f  CIOD codes as well as to optimize the signal 

rotation for any constellation with an arbitrary geometrical shape. Similar to MDC-ABBA  

codes, we present a design o f signal transformation for signals with unbalanced powers o f  

real and imaginary parts such as rectangular QAM (QAM-R). The new method combines 

signal rotation and power (re)allocation yielding better performance than the existing ones 

in [92,125] for QAM-R.
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5.1.2 Construction of CIOD Codes

The CIOD code for M  transmit antennas is constructed from two OSTBC components, 

O m ,  and (9 a /,, , where M  = M \  +  M 2 [90-92], The size o f  code matrices o f  Om, and Om2 

are 7\  x M i  and 7 2 x M 2, respectively; there are K\  and K 2 complex symbols embedded 

in O m ,  and O m 2 , respectively. Additionally, the matrices Om, and Om2 are scaled by 

constants k , and k 2 to satisfy the power constraint (2.2).

Let K  be the least common multiple (1cm) o f K \  and K 2, n\  =  K / K i , n 2 = K / K 2, 

7 \ = u{]\. 12 = n 2T2. A block o f  K  — 2K  data (information) symbols s* =  a, +

(j2 =  — 1), i =  1 , 2 , . . . ,  K  is mapped to the intermediate symbols x k (k =  1 , 2 , . . . ,  K )  as 

follows:
fl'fc +  ]bk+R, k — 1 , 2 , . . . , R \,T    ) xa,k 1 J xjk+i\ 7 , v  2  ’ ‘ ‘ L  5 n

* \ a k + j b k_R , k  = K  + l , K  + 2 , . . . , K .

By this encoding rule, the coordinates o f the symbols s 1, s 2, . . . ,  s r  a r e  interleaved with 

the coordinates o f the symbols , s 2+ r , . . . ,  s 2r .  Now we construct n  1 OSTBC code

matrices G mu% (i — 1 , 2 , . . . ,  n\)  and n2 OSTBC code matrices O m2,j (j  =  1, 2 , . . . ,  n 2)

and arrange them in the intermediate matrices C\ and C2 as

O m 1, i { x u X 2 , . . . , x K i )

O M i , 2 { x K i  +  1 , X r 1 + 2 , . . . , X 2K x )

O m i ^v, — l ) A ’ i + 1 ,  A n i  -- \ )K ,R2 , • • • , x  R )

O m 2, i { x k + l , x K + 2 i . . . ,  x r + i < 2 )

O m 2,2 ( X K + K 2+ 1>X K + K 2+ 2 > • • • i X K + 2K 2 )
C2 =

O  M 2, n2 { x  K + ( n 2- l ) K 2+ l ,  x K + { n 2- l ) K 2+ 2 i ■ • • i  X 2K )

Hence, the size o f Ci and C2 are T\ x  M\  and T2 x M 2, respectively.

The CIOD code matrix is formulated by

t/ k i Ci &
C O7

J T \  x  M 2

\fK 2 C2_
(5.2)

j T 2 x M x

Thus, the size o f  the CIOD code matrices are T  x  M , where 7 ’ =  T\ + T2 — n \T \  +  n2T2, 

M  =  My  + M2.

For example, here is a CIOD code for 4 transmit antennas, using the 2-by-2 Alamouti 

code. In this construction, M i  =  M 2 =  2, K \ = K 2 — 2, Ti — T2 =  2. Therefore, the
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CIOD code is

«i +  j h  a2 +  j 64 0  0

- a 2 + j &4 ai — j ki 0  0

0  0  0,3 +  j b\ <24 +  j b2
0  0  — (24 +  j b2 (*3 — j b\

0
0

(5.3)

In this CIOD example, the real and imaginary parts are separately transmitted over M i  

and M 2 antennas, i.e., a,i appears on the first two antennas only. Thus, full diversity gain 

cannot be achieved. The solution is to rotate the real and imaginary parts o f  the input 

symbols and then to map the rotated symbols to CIOD code matrices. This ensures that the 

real and imaginary parts o f the input symbols are spread over all transmit antennas, leading 

to full symbol-wise diversity [19].

Nevertheless, not all signal rotations will result in the best error-rate performance. Khan 

and Rajan [92] use the coding gain [16] to minimize the worst-case PEP o f code matrices, 

which may not be optimal for the overall code performance. In contrast, we investigate 

the performance o f CIOD codes by deriving a tight union bound on SER. As a preliminary 

step, we derive a new simplified transmit-receive signal relation o f CIOD codes, in which 

the equivalent channel can be shown explicitly.

5.1.3 Equivalent Channels and Maximum Likelihood Decoder

Since the mapping rule o f  the real and imaginary parts o f symbols sk are known, one 

can write explicitly the dispersion matrices o f these symbols. For notational convenience, 

we reserve A  and B  for the dispersion matrices o f OSTBC and use E  and F  for the 

dispersion matrices o f  CIOD codes; there are K  — 2K  pairs o f  such matrices E k,F k 

(•i = 1 , 2 , ,  K ) .  Additionally, we write Ai(OMj) or B ^ O m^  to denote the dispersion 

matrices o f  OSTBC O m, (j  - 1 , 2 ) .

The matrices E k and Fk can be explicitly written though they are quite lengthy. For 

example, the dispersion matrices o f  symbol 64 are:

A i ( O m i ) O74 xM2

0(m —1)7\ xMi 0(„1_1)rlXM2
Q'f2xMi 0 T2 x M 2

0(n2 -  1)T2 x M x 0 („2 _  i ) t 2 x m 2

(5.4a)
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F, =

O t i  x M i  0 i \  X M 2

0(111-1)7! x M x 0 ( n 1- l ) T 1xM 2 

0 t2xMi F l(0 A /2)
0,

(5.4b)

_U(n2 -  1)T2 x Ml 0 („ 2 _ 1)'P2 x m 2 _

We can write the CIOD codes using the dispersion form (2.4) as C = Y l k=i {akEk +  bkFk), 

note that K  =  2 K  and K  =  IcmfA'j, I \ 2}.

To simplify our analysis, we first consider the number o f receive antennas is N  = 1 and 

generalize for N  > 1 later. The following derivation is similar to the steps to derive the 

decoder and equivalent channels o f  MDC-ABBA codes in Section 3.2.

Let the channel vector be h  = [hi h2 . . .  hM]T, the receive vector be 

V =  [vi V2 ■■■ hr]1, the data vector d = jai b2 a2 b2 . . .  a« for]1, the ad

ditive noise vector be w  = [vii ui2 . . .  w t] 

transmit-receive signals in (2.3) becomes

Let C  be a CIOD code matrix, the

y /̂T>Ch +  w
K

iff) {a-kEkh +  bkFkh) + w
k= 1

^ [ E ^  F ih  E 2h  F2h  . . .  E Kh  FKh ] d  + w. (5.5)

In (5.4), the scalars k.j and k2 are not included for brevity. We can rewrite (5.5) equivalently

as

£ ’i h  F ih  . . .  E Kh  FKh
\fp E{h* F*h* E*Kh * F*Kh*

w
d  + w* (5.6)

Let Tik
E kh  Fkh  
E*kh* Fk fi for k =  1 , 2 , . . . ,  K ,  it follows

H ]kHk  =  diag ( h i , h 2 ĵ = H i ,  for 1 <  k < K ,  

A H 2, forK  < k < K,TilHk diag (h 2, h i j

n l n i  =  0 2x2, for k /  I.

(5.7a)

(5.7b)

(5.7c)

w h e r e -  2 E ^  l ^l 2 ^ 2  =  l^ l2-

Thus, if the two sides o f  (5.6) are multiplied by one gets

n { \/~P'kiy

Vk

ak
_bk

dk

+ n l
w
w* (5.8)

™k
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where p = 1 i f  1 < k < K  and p = 2 if  K  < k < K .

The matrix H{  plays the role o f  the spatial signature o f the data vector dk. Since the 

data vectors 4  can be completely decoupled, (5.8) can be used for maximum likelihood

detection. However, since the noise vector w k is colored with covariance matrix U p, it
^   1 / 2

needs to be whitened by a whitening matrix 7i  . After this whitening step, (5.8) becomes

- 1 /2 1/2, " ! /2  .n P ' yk = V~pn; dk + n pH wk. (5.9)

A \/2 ■*. 1/2 
We can conclude that the matrices 'Hi — 'H\ and 7 4  =  H k  are the equivalent

channels o f CIOD codes.

The maximum likelihood solution o f  (5.9) is

dk =  arg mm (pdkf i pdk -  2 ,/p U (y l)d k) .
dk

(5.10)

The result in (5.10) can be generalized for multiple receive antennas. To this end, we in

clude the scalars ki and re2 for completeness. We can show that hi = 2ki Yhi^i \hi,j\2,

h

h n Fkh n

t
k.n

Vn
Vn

where y n is the receive vector o f  nth

antenna, Hk,n
E k K

, h n is the nth column o f the channel matrix H.

From (5.8), the decoding o f the real symbols ak and bk can be decoupled. However, 

since the symbols ak and bk are not transmitted over M  channels, full diversity cannot be 

achievable. Hence, we need to spread out these symbols over M  channels by applying a 

real unitary rotation R p as

R p —
cos (ap) sin (ap)
sin(a:p) — cos(ap) (P =  !>2),

to the data vectors dk [92,125]. Including the rotation matrix to (5.9) and (5.10), we have

(5.11)Rp 1/2Vk \ f p f t j 2 RjAk + U p 1/2 w k,

and

4  =  arg mm (pdkR pU PRpdk ~  2yfp$l(yl)Rpdk). (5.12)

Some interesting facts can be drawn from the newly proposed decoder o f CIOD codes. 

First, akin to the decoding metric o f OSTBC, the decoding metric (5.12) o f  CIOD codes
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does not involve the dispersion matrices [62], This fact reduces the decoding complexity 

compared with the one proposed in [92, eq. (84)], where the dispersion matrices o f  symbols 

are required. Second, with OSTBC, the MIMO channel is decoupled into single-input 

single-o utput (SISO) channels and the equivalent channel gain is the Frobenius norm o f the 

MIMO channel. On the other hand, similar to the MDC-ABBA codes, the MIMO channel 

becomes 2 x 2  diagonal channels with CIOD codes; the two entries o f  the diagonal are 

simply Frobenius norms o f  the first M x and the other M2 columns o f  the MIMO channel 

matri x, where respectively, the real and imaginary parts o f  the rotated signal are transmitted 

on.

In the next section, we will investigate the performance o f CIOD codes with different 

types o f  constellations by exploiting this special structure o f the equivalent channels.

5.1.4 Union bound on SER and Optimal Signal Designs

We first consider the data vectors dk = [a* bk]J for 1 <  k < K .  These data vectors are sent
A 1/2

over the same equivalent channel H i  and, therefore, they have the same error probability; 

we thus drop the subindex k for short. Let d =  [a &]T and d =  [a 6]T be the transmitted and 

the erroneous detected vectors, let 6i = a — a, 5% = b — b, A  = [£i <52]T. From (5.11), the 

SPEP o f the symbol pair dk and dk can be expressed by the Gaussian tail function as [32]

where N 0 — 1 /2  is the variance o f  the real part o f the elements o f  the white noise vector

Using the Craig’s formula [131] to derive the conditional SPEP in (5.13), one has

(5.13)

fC p '^ w  in (5.11). Let

cos(a i) sin(o'x) 8\
sin(o'i) — cos(a i) §2

(5.14)

■71-/2 N r Mi

j=i L*=i
n  i l *p

pK2Pl\hid \2 
4 sin2 0

(5.15)
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We can apply a method based on the moment generating function (MGF) [132,133] to 

obtain the unconditional SPEP in the following:

Pl {d ~ ^d )  =
1
7r

7r/ 2

1 + pK 101
-MtN

1 +
pK2(i. -M2N

d,e. (5.16)
4 sin2 6 J  \  4 sin2 i

The exact SPEP o f CIOD codes is quite similar to that o f MDC-ABBA codes in (3.34). 

The difference is that the exponents o f the term involving 3X and p2 are M XN  and M 2N ,  

respectively, while the exponents o f the term involving Pi and P2 are the same M N / 2  with 

MDC-ABBA codes. Note that M  — M \  +  M2. We can further simplify (5.16) to avoid 

integration as we have done for MDC-ABBA codes. However, more details are omitted for 

purposes o f brevity.

The SPEP in (5.16) is given for symbols s* sent over the equivalent channel Hi- For 

the symbols sit (K  < k < K ) transmitted over the equivalent channel Hz, the SPEP can 

be found similarly:

P2(d d)
1 
7r

i +
pKzPf 
4 sin2 9

-m 2n

1 +
4 sin 6

-MtN
d,e (5.17)

where

Ih cos(a2) sin («2) ’Si'
A _sin(ai2) -  cos(a2)_ s2_

Assume that diy dj, dm, dn, (i , j , m , n

(5.18)

1 , 2 , . . . ,  Q), are signals drawn from a con

stellation S  o f  size Q. From the SPEP expression (5.15) and (5.17), we can find the union 

bound on SER o f CIOD codes with constellation S  as

Pu{S) -  Pu,i{S) +  Pu,2(S) (5.19)

where

j n - i  n

p . , . ( s )  =  ^ E  E

o—i n

(5.20)

(5.21)PufiiS) — Yj ^   ̂ 'y 1 P(dm dn).
m ,—1 n=?'+l

For a fixed SNR, the union bound PU(S)  depends on the constellation S  and the rotation 

angles a  i and o 2. Thus, one can find the optimal values o f  a x and a 2 to minimize the union
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10'1

- B -  S E R , un ion  b o u n d , 16QAM 
S E R , sim u la tion , 16QAM 

- A -  S E R , un ion  b o u n d , 8 Q A M -R  
—F -  S E R , s im u la tion , 8 Q A M -R  
- O -  S E R , un ion  b o u n d , 4QAM  
—x -  S E R , sim u la tion , 4QAM ______

S N R  fdBj

Figure 5.1: Comparison o f the simulated SER and the union bound o f  a rate-one CIOD 
code for (4, 1) system and M\  =  2. M 2 =  2.

bound on SER. Note that a\  and a 2 can be optimized separately. We can run a computer 

search to find the optimal values o f  q.\ and a 2.

The run time for searching optimal values o f  « i  and o 2 o f  a given constellation is 

only few minutes. However, we can further reduce the searching time by considering the 

following observation. In practice, S  is usually symmetric via either horizontal or vertical 

axis o f the Cartesian coordinate system. We can assume that S  is symmetric via the vertical 

axis. If S  is symmetric via the horizontal axis, we can always rotate the whole constellation 

an angle o f ir/2 to make it symmetric via the vertical axis.

Assume that a 2 =  zr/2 -  « i . For each pair o f  symbols (ck, dj) = ([ai5 bi}7, [aj, bj]T), 

we can find one and only one pair (drn, dn) = ([a*, — b i } 7 ,  [aj, —6,-]T) so that PiUk —> 

dj) = P2(d,n —> dn). Therefore, Pu,i{S) =  PU,2 (S); and if  a opt is the optimal value o f  a l5 

then 7t/2 — a opt is optimal for a 2. Hence, we just write the value o f  a.i and imply that the 

value o f  <x2 =  7t/2  — ot\.

The union bound on SER is plotted in Fig. 5.1 for a CIOD code for M  — 4 transmit 

antennas (M i, M2) =  (2 ,2). For the three examined constellations (4QAM, 8QAM-R, and 

16QAM), and on =  31.7175° [92], the union bound becomes tight when SER <  10 1 and 

is less than 0.1 dB apart from the simulated SER at high SNR. Similar results can be found
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a :  -3
w 10

10-
- e -  S E R , un ion  b o u n d , 16QAM  

S E R , s im u la tion , 16QAM 
- © -  S E R , un ion  b o u n d , 4QAM  
- x -  S E R , sim u la tion , 4QAM

S N R  [dB]

Figure 5.2: Comparison o f the union bound and simulated SER o f  a CIOD code with rate 
o f 6/7 symbol pcu for (6, 1) system and Afj =  2. M2 — 4.

for the case with M  =  6, Mi =  2, M2 =  4 in Fig. 5.2; the union bound even converges 

with the simulated SER.

5.1.5 Numerical Examples

Since the union bound is very tight for SER < 1CT2, it can be used to optimize the values o f  

rotation angles ai  and . The new optimal signal rotations for the popular constellations 

based on minimizing the SER union bound are summarized in Table 5.2. Only the optimal 

values a opt o f  evi are listed, the optimal values o f  a 2 = 7t/2 — o ^ .  The geometrical shapes 

o f 8-ary constellations are sketched in Fig. 5.3. The best 8TRI in terms o f  minimum 

Euclidean distance (carved from the lattice o f  equilateral triangular) is selected [104],

Note that in Table 5.2, the a.opt varies with the number o f antennas M i and M2.

It is shown that CIOD codes perform better that OSTBC in [92], We thus just com

pare the SER union bounds o f CIOD code with new optimal signal designs in Fig. 5.4 for 

(M i, M2) =  (2,4).  Obviously, QAM signals yield the best performance compared with 

other constellations o f the same size. On the other hand, TRI constellations have the best 

minimum Euclidean distance; however, their performance is inferior to that o f QAM sig

nals. This observation is also confirmed in Fig. 5.4, where the SER o f CIOD codes for
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Table 5.2: Optimal Rotation Angles o f  Popular Constellations

Signal (2,1) (2 ,2 ) (2, 3) (2 ,4 ) (3,3)

4QAM 28.939° 30.417° 29.698° 29.003° 30.778°

4TR1 20.142° 13.883° 71.739° 68.687° 75.836°

8PSK 37.690° 39.216° 38.808° 38.534° 39.857°

8APSK 10.316° 11.528° 11.181° 11.000° 12.015°

8TRI 20.309° 45.000° 11.061° 9.430° 45.000°

8QAM-R 33.037° 31.834° 29.658° 28.626° 31.737°

8QAM-SR 12.234° 13.036° 12.925° 12.701° 13.173°

16PSK 3.485° 2.570° 2.832° 2.964° 2.200°

16TRI 19.236° 45.000° 47.116° 70.690° 45.000°

16QAM 31.436° 31.677° 31.557° 31.462° 31.704°

010 011 001 000
• • • •

• • • •
110 111 101 100

(a) 8QAM-R

001

101

000I
010

011 100

111 110 

(b) 8QAM-SR

001 011

101 000 010

100 110

(c) 8TR1

P11011
010 001

010.
000 110, |000110

100

(e) 8APSK

Figure 5.3: Geometrical shapes o f 8-ary constellations.

(M i, M2) =  (3,3) with various constellations is sketched.

Our newly proposed rotation angles are only slightly different from the optimal rota

tion angles for QAM in terms o f coding gain derived in [92], Therefore, the performance
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: - o -  16P S K  
: - a -  16TRI 

-e . - Q -  16QAM 
I -B- 8P S K  
: 8A PSK

- © -  8TRI 
7 , - A -  8 Q A M -R  

! 8 Q A M -S R  
: - x -  4TRI 

4QAM

S N R  [dB]

Figure 5.4: SER union bound a CIOD code with rate o f  6/7 symbol pcu for (6, I) system
and M \ — 2, M2 — 4.

.2  10 '

- O -  16P S K  
-O - 16TR1 
- Q -  16QAM  
- G -  8 PSK  
- 0 -  8A PSK  
- © -  8TRI 
- A -  8 Q A M -R  

8 Q A M -S R  
- x -  4TRI 

4 QAM

10'7

S N R  [dB]

Figure 5.5: SER union bound a CIOD code with rate o f  3/4 symbol pcu for (6, 1) system
and M i  =  3, M2 =  3.

improvement is marginal, but note that [92] does not cover constellations other than QAM. 

Nevertheless, the exact PEP derivation is a useful tool to accurately analyze the perfor

mance o f different constellations with signal rotations.

Note that we have used unitary rotations for the above analysis. This approach produces
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good performance for signal constellations with even power o f the real and imaginary parts. 

For the signal with bias powers o f  the real and imaginary parts, such as QAM-R, the non- 

unitary rotations may perform better. This approach works well for MDC-ABBA codes (see 

Section 3.5). In the next following, we will apply this method presented for MDC-ABBA  

codes to design the non-unitary rotation for CIOD codes with QAM-R by combining power 

allocation and signal rotation.

5.1.6 Optimal Signal Rotation with Power Allocation

For QAM-R, e.g. 8QAM-R in Fig. 5.3, the average powers o f the real and imaginary 

parts o f  the signal points are different. We may change the power allocation to the real and 

imaginary parts o f  QAM-R signals to get better overall SER.

To change the power allocation, the real and imaginary o f  QAM-R signals are first 

multiplied by constants a x and ct2, respectively, then they are rotated by unitary matrix 

R i ! R'l- For example, let S  be a constellation with signal set S  — {d  | d — a + j b, a, b €  R}, 

the new constellation with new power allocation is S  =  {d | d =  a xa + j <t26; a, h €  M}. 

The average energy o f the constellation S  is kept the same as that o f S ,  i.e. unitary. For 

example, the 8QAM-R with signal points { (± 3  ±  j, ± 1  ±  j ) / \ /4 8 }  has constraint equation 

for coefficients a x and cr2 as 5o f +  (j| =  6. Hence, if  the value o f  <j\ is given, the value o f  

a2 is known explicitly.

We still use (5.15) to calculate the union bound on SER o f  CIOD codes with signal 

rotation and power re-allocation; (5.16) can be rewritten to include the effects o f  power 

re-allocation as

cos(a i) sin(«x) 
sin (a i) — cos(a i)

0-1 o '
0 0-2 h .

(5.22)

Ri

The total effect o f signal rotation and power re-allocation is the non-unitary signal trans

form Ri.  Now the minimization o f  the union bound is based on two variables: a i (or <72) 

and on. We run exhaustive computer search to find the optimal values o f ai  and a,x. In fact, 

there is only single value o f a x so that the union bound is minimized; this value o f  o\ is 

the global solution o f the union bound minimization. The optimal values o f  a x and a x for 

8QAM-R and 32QAM-R are provided in Table 5.3.
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Table 5.3: Optimal Power Allocation and Signal Rotation for QAM-R

Constellation o\ 02 Q:opt

8QAM-R 0.9055 1.3784 45.0°

32QAM-R 0.8972 1.3487 43.0°

o
UJ

- 0 -  S E R  union  b o u n d , 32Q A M -R , KR ro tation  
—I— S E R  un ion  b o u n d , 32Q A M -R , W W X tran sfo rm atio n  
- A -  S E R  un ion  b o u n d , 32Q A M -R , n e w  tran sfo rm atio n  
- B -  S E R  un ion  b o u n d , 8 Q A M -R , KR ro tation

S E R  un ion  bou n d , 8 Q A M -R , W W X tran sfo rm a tio n  
- © -  S E R  un ion  b o u n d , 8 Q A M -R , n ew  tran sfo rm atio n  

B ER  sim u la tion , 8 Q A M -R , KR ro tation  
*-©- B ER  s im u la tion , 8 Q A M -R , W W X tran sfo rm a tio n  
- A -  B E R  sim u la tion , 8 Q A M -R , n e w  tran sfo rm atio n

10-

10-
S N R  [dB]

Figure 5.6: BER and union bound on SER o f  the rate-one CIOD code with rectangular 
8QAM and 32QAM for (4, 1) system and Mj =  2, M2 =  2.

In Fig. 5.6, we compare the union bounds on SER o f 8QAM-R and 32QAM-R using 

signal rotation o f Khan-Rajan with au =  31.7175° [92], signal transformation o f  Wang- 

Wang-Xia [125, Theorem 6], and our new signal transformation for CIOD codes with M  =  

4 (M i =  2, M2 =  2), N  =  1. At SER = 10-6 , our new signal transformation yields 0.2 dB 

and 0.4 dB gains compared with the signal designs o f  Wang-Wang-Xia and Khan-Rajan, 

respectively. The BER o f  8QAM-R also confirms the improvement o f our newly proposed 

transformation over the existing ones.

The success o f the new signal design arises because the powers o f  the real and imag

inary parts o f  QAM-R are significantly different. We found that for other constellations 

with more balanced powers o f the real and imaginary parts, even though the new signal 

design method can improve the performance, the improvement is marginal.

To this point, we have extended the methodology, which has been used for MDC-ABBA
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codes, to analyze CIOD codes. CIOD codes are single-symbol decodable. The main ad

vantage o f CIOD codes is the higher code rate compared with MDC-ABBA codes and 

OSTBC. Various open issues o f CIOD codes have been addressed, including the equivalent 

channels, new maximum likelihood decoding method, performance analysis and optimal 

signal designs.

The next section will treat another class o f STBC with 4-group decoding called 4-group 

QSTBC proposed by Yuen, Guan, and Tjhung [93]. We also follow the steps that help us in 

analyzing several low-complexity STBC. The key problem is how to derive the equivalent 

channel o f 4-group QSTBC.

5.2 4-Group Quasi-Orthogonal STBC

5.2.1 Code Construction

The 4-group QSTBC is developed from MDC-QSTBC [120], The real and imaginary parts 

o f a complex symbol can be mapped to the same group. We thus use the general form o f  

STBC in (2.4): X  = J2k=i (akAk +  bkBu) to study 4-group QSTBC; hence, Theorem 2.2 

can be restated as follows.

Lemma 5.1. The necessary and sufficient conditions for a STBC in (2.4) becomes V -group 

decodable are

Vp € 6>i, \/q G Gj,  1 <  i ^  j  <  f .

The sufficient condition so that a STBC is four-group decodable is found in [93].

Theorem 5.2 ([93 ]). Given a 4-group STBC for M  transmit antennas with code length T  

and K  sets o f dispersion matrices (Ak, B k\ 1 <  k < K ) ,  A  4-group STBC with code length 

2T  for 2M  transmit antennas, which consists o f  2K  sets o f  dispersion matrices denoted as

A\,Aq +  Aj^Ag — 0,

BpBq +  BpBq =  0,

A ^ B q + B l A q = 0.

(5.23a)

(5.23b)

(5.23c)
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(Ai, Bi),  1 <  i < 2K,  can be constructed using the following mapping rules:

A.k 0  

. 0 A k.

II-56CM

Bk 0  

0 B k > B^k-i  —
0  A k 

A k 0
, B2k —

' 0  B k 
B k 0

(5.24)

The recursive construction o f  4-group STBC specified in Theorem 5.2 suggests that 

we can start with the MDC-QSTBC for 4 transmit antennas proposed in [120] to construct 

4-group STBC for 8 , 16 transmit antennas and so on, because MDC-QSTBC is one o f  

the STBC satisfying Lemma 5.1; the resulting STBC is thus called 4-group QSTBC. For 

practical interest, we will ill ustrate the encoding process o f  4-group QSTBC for 8  transmit 

antennas from the MDC-QSTBC for 4 transmit antennas [120] in the following.

Note that MDC-QSTBC in [120] is actually equivalent to the ABBA codes [47,125], 

We can write the code matrix o f  MDC-QSTBC for 4 transmit antennas as

0 \ i - j  </;•; a 2 +  j  O4 bi  + j &3 b2 +  j  &4 X i £ 2 £ 3 £ 4

~ « 2  + j o 4 0 1  -  j  o 3 — 62 +  j  bA h  -  j  63 - x \ £ 1 - £ 4 £ 3

b\ T  j  63 h  + ) b A a\ +  j  a 3 o2 + j  CI4 £ 3 £ 4 £ 1 £ 2

_ — 1>2 +)b. i h  -  j  63 —a 2 +  j  0 4 a 1 -  j  a 3 _ - X 4 £ 3 - £ 2 X\_
(5.25)

where j2 =  —1 , the intermediate variables x \  =  cii + j  o3, x 2 =  a2 + j  aA, £ 3  =  b\ + j  6 3 , and 

£ 4  =  h-2 +  j 64 are used to highlight the ABBA structure o f  MDC-QSTBC codes [47,120].

The four transmitted symbols Si =  a, +  j bi, (i = 1 , . . . ,  4) in the code matrix FA can be 

separated at the receiver for maximum likelihood detection. We now build the code matrix 

of 4-group QSTBC for 8  transmit antennas from FA using mapping rules in (5.24) below:

a i  +  j 05 03  T  j 0,7 0-2 +  j 06 a 4  +  j a8 . . .
~Og +  j 0’7 0\ -  j a  5 -a,4 + j a 8 a,2 ~  j a & . . .
0,2 +  j 06 O4 +  j Og Ol  +  j O5 Og +  j 0 7  . . .

—0,4 +  j Clg 02 -  j a 6 - a 3 + j a 7 ai -  j a5 . . .
bi +  j 65 bg + j b7 b2 +  j^e bA +  j bg . . .
^3 +  j b-j bi -  j h —64 +  j bg b2 — j ^6 • • •
b2 +  j ^6 b4 + }bs b i +  j bg b3 + j 67 . . .

—64 +  j bg b2 - —bg + '}b7 bx -  j 65 . . .

61 +  j 65 b g + ) b 7 b2 + j& 6 &4 +  j ^8
—63 +  j 67 bi  -  j 65 —64 T  j bg b2 -j& 6

b2 +  j be bi  +  j bg bi  +  j 65 bg +  j 67
- b A +  jfes b2 -  j b6 - b g  T  j 67 61 ~  j &5

a A +  j ag Og ~h j O7 a 2 +  j Og 04 T  j 08
—Og +  j a 7 04 -  j a 5 — O4 +  j 0 8 «2 -  jae

o2 +  j «6 O4 +  j o8 Ol +  j Og a3 +  j a7
—O4 +  j Os 02 ~  j Oe - O g  + j a 7 Ox — j « 5
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The code rate o f 4-group QSTBC for 8 transmit antennas is one symbol pcu. In general, 

by construction, the rate o f 4-group QSTBC for 2M  transmit antennas is the same at the 

rate o f  MDC-QSTBC for M  transmit antennas. Since the maximal rate o f  MDC-QSTBC 

is one symbol pcu [120], the maximal rate o f  4-group QSTBC is also one symbol pcu and 

it is achievable for any number o f  transmit antennas. Since 4-group QSBTC is constructed 

for 2m transmit antennas, i f  the number o f transmit antennas is M  < 2m, then (2m — M )  

columns o f the code matrix for 2m transmit antennas can be deleted to obtain the code 

for M  antennas. The resulting codes can be shown to achieve full-diversity [16,96] if  the 

mother code for 2m antennas is full-diversity.

5.2.2 Decoding

We know that the symbols s 1; s2, s3, s4 o f  F4 can be separately detected. Therefore, from 

Theorem 5.2, the 4 groups o f 8 symbols o f  F8 can be detected independently. These 4 

groups are (s i, s 2), (*'3 , 5 4 ); («5 , s&), and (s7, s8). We will present the decoding o f  4-group 

QSTBC for 8 transmit antennas in details.

The decoding o f 4-group QSTBC F8 requires maximum likelihood search over 4 real- 

symbols [93]. It is desirable to alleviate this high complexity o f  maximum likelihood search 

by using a sphere decoder [107,108], To do so, we will derive an equivalent code and the 

equivalent channel o f F8.

The equivalent code o f F8 is obtained by column permutations for the code matrix o f  

F8 in (5.26): the order o f  columns is changed to (1, 3, 5, 7, 2, 4, 6, 8). This order o f  

permutations is also applied for the rows o f  F8. Let x\  = a4 +  j a5, x 2 =  a2 +  j a6, x 3 =

+  j XA =  &2 +  j &6i x 5 — a 3 +  j a 7> x 6 =  a 4 +  j a 8> x 7 =  +  j b7, X8 = 64 +  j feg be the

intermediate variables, we obtain a permutation-equivalent code o f F8 below

D = T> i V  2 

>2-V \  VI
(5.27)

where

V i

Xi x 2 x 3 x 4 x 5 x e x 7 Xs
x 2 X'l X’4 X3 , v 2 =

x’e x 5 x 8 x 7
X'i X 4 Xi x 2 x 7 x 8 x 5 x 6
x 4 x 3 x 2 X K *8 x 7 X 6 x 5_

(5.28)
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The sub-matrices V i  and T>2 have a special form called block-circulant matrix with circu- 

lant blocks [64],

We next show how to decode the code D.  For the sake o f  simplicity, we consider a 

single receive antenna. The generalization for multiple receive antennas is straightforward.

Assume that the transmit symbols are drawn from a constellation with unit average 

power. The transmit-receive signal model in (2.3) for the case o f  STBC D  follows

rp

Let x  =  [xj x 2

w U I 4  W l

Hi

y  = \

[vi 

u’g] , and

-D h  +  w.

2/4 2/5

(5.29)

‘ h i h 2 h s h 4 h 3 h6 h 7 h 8'
h 2 h i h 4 h s

, W2 -
h e h 3 h s h 7

h s h 4 h i h 2 h 7 h s h s h&

h 4 h h 2 h\_ K h 7 h s h-,_

(5.30)

We have an equivalent expression o f (5.29) as

fpy Hi
H i

H2
HI

x  + w. (5.31)

H
Note that H i  and H 2 are block-circulant matrices with circulant-blocks [64], Thus, 

they are commutative and so do H* and Hi-  We can multiply both sides o f (5.31) with h }  

to get

IP HIH1 + HIH2 0
0 HIH1 + HIH2 x  + hT w/ -

w
(5.32)7 £ y

V

It is not hard to show that the noise elements o f  vector w  are correlated with covariance 

matrix H^H.  Thus, this noise vector can be whitened by multiplying both sides o f (5.32) 

with the matrix (h ) h ) ~ l^2- Let H  — H * H i  + H 2 H 2 , (5.32) after the noise whitening step 

is equivalent to the following equations

~  y/lH  ̂ xi +  ^ i i

_ n>xM2„
h ' H

H "  y 2 =  \ / f H x 2 + W‘2
T _ r -  -  -  -  iT

(5.33a)

(5.33b)

where y x = [yx y2 y-A y4\ , y 2 = ['2/5 2/6 2/7

x G x 7 x 8] 1. The noise vectors w t =  H  1 [.

, x i  — [xx x 2 x 3 

I z2 z3 z A J,

x 4 ] T , x 2

w 2 — H
-1 /2 z5 Z(j z7 z$] are uncorrelated and have elements ~  CAf(0,1).
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At this point, the decoding o f  the 8  transmitted symbols in the code matrix D  can be 

readily decoupled into 2 independent groups. However, since the code is a 4-group STBC, 

we can further decompose them into 4 groups in the following.

circulant matrices Hi  and 'Hi can be diagonalized by a (real) unitary matrix T  =  T i  ® T i  

[64, Theorem 5.8.2, p. 185], Note that T* =  T, therefore, H i  =  T A \ T  and H i  = 

T A 2T,  where Ai  and A2 are diagonal matrices, with eigenvalues o f  H i  and H i  in the main 

diagonal, respectively. Thus,

symbols si and s 2 only. Similarly, 3?(a52)> 9 (a ji), and Q (x2) depend on (5 3 , 5 4 ), (s5. .s6), 

and (.S7, s8), respectively.

From (5.35), the decoding o f 8  transmitted complex symbols o f STBC D  reduces to 

the decoding o f 4 groups, each with 4 real (or two complex) symbols. The maximum- 

likelihood solution of) for example, vector 3?(*i), which consists o f  symbols s i and s2, 

is:

Nevertheless, we can use a sphere decoder [108] to reduce the complexity o f the maxi-

o f the 4-group QSTBC D.

5.2.3 Performance Analysis

In (5.35), the four data vectors experience the same equivalent channel and the additive 

noise vectors have the same statistic; the PEP o f the four vectors are the same. We only

Denote the 2 x 2 (real) Fourier transform matrix by =  41 1 1
V2 1 - 1  ' The block-

and also H  = T { A \ A X +  A \A 2)l/2T.

Since is a real matrix, (5.33) becomes

(5.35b)

(5.35a)

(5.34)

Note that 9i(a?i) =  [«i a2 by h2] T :=  d\ ,  i.e. 3?(*i) is dependent on the complex

■i =  arg mm
d i

(5.36)

^  1 / 2
mum likelihood search (5.36). The matrix H  can be considered as the equivalent channel
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need to consider the PEP o f  vectors di  =  3R(asi) =  [0.1 a2 hi h2]T. For notational 

simplicity, the subindex 1 o f  d\  is dropped.

Additionally, we can introduce redundancy on the signal space by using a 4 x 4 real 

unitary rotation R  to the data vector [at a2 bi h2]T [138]. Thus, the data vector d  =  

R[cii a2 hi h2]T. To keep the transmit power unchanged, the rotation matrix is assumed 

orthogonal, i.e. R JR  =  I  [63].

From (5.35a), the PEP o f  the pair d  and d  can be expressed by the Gaussian tail function 

as [32]

p( d  -> d\n) =  q
I p \h 1/2r s \2

8  41V0
(5.37)

where No =  1/2  is the variance o f the elements o f the white noise vector -R(wi) in (5.35a), 

8 — d — d. From (5.34), one has

1 p S ' R ' T ' { A [ A i +A'2A2) T R 5
(5.38)p ( d  d\n) = Q \ 16

V /
Let f3 = TR8 .  Remember that Ai  is a diagonal matrix with eigenvalues o f  H i  on the 

main diagonal. Let Â  (i = 1,2; j  =  1 ,2 ,3 ,4 )  be the eigenvalues o f  Hi- Then A, —

diag (A,:,] , Aj,2 , A.̂ 3 , A,^).

P(d -* d\H) = Q
/pCELi E ^ ^ I ^ I 2)

16
(5.39)

To derive a closed form o f (5.38), we need to evaluate the distribution o f  XhJ. The 

eigenvectors o f Hi  is the columns o f  the matrix T  = \ p 2 0  jr2. Thus, the eigenvalues o f  

H i  can be found to be

[E ,i ^1,2 ^1,3 ^1,4 ] =  (JF2 0  P 2 ) [hi h-2 ho /14] . (5.40)

Since hj  (j  =  1 , . . .  ,4) have distribution ~  C N ( 0 , 1), thus, A ij (j  — 1 , . . .  ,4) have 

distribution ~  CJ\f(0,4) and so do A2 j .
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We now use the Craig’s formular [131] to derive the conditional PEP in (5.39).

P ( d d \ n ) Q 'JpiY.UY.Ut3jIV )
16

1 f*7T/2
exp da. (5.41)

7r j 0 \ 32 sin a

We can apply a method based on the moment generating function (MGF) [132,133] to 

obtain the unconditional PEP in the following:

i  r /2
P ( d  -> d)  =  -  /  

ft Jo i= 1
n  (i+ > sin2 a

da. (5.42)

Since there are four vectors to be decoded in each code matrix, the codeword PEP is 

therefore bounded by 4 times the PEP given in (5.42). Assume that there are a  possible 

vectors d,  the union bound on the frame error rate (FER) is

2 j - i
P,. =  4 x E E (5.43)

R y g t  = (5.44)

j = l  j = i - j-1

We now examine the tightness o f the union bound (5.43) compared with the simulated

FER. Recall that the signal rotation R  plays an important role on the decoding performance

o f 4-group QSTBC. In [93], the symbols s i, s3, .s5, s7 are rotated by and angle 7 1 , and the

other symbols are rotated by an angle 7 2 . This type o f complex signal rotations is equivalent

to the real signal rotation, denoted by R y g t ,  below.

cos 7 1  sin 7 1  0  0

sin 7 a — cos 71 0  0

0  0  cos 7 2  sin 7 2

0  0  sin 7 2  -  cos 72

For this class o f rotation matrices and 4QAM, the values 71  =  7° and 7 2  =  23° maximize

the coding gain [16]. In Fig. 5.7, the FER o f STBC D  with the best-found rotation o f

the form in (5.44) is plotted for 16QAM. The union bound becomes tight at FER <  10 2.

Since a similar result was obtained with 4QAM, we omit the FER curve o f 4QAM.

The tight union bound at medium and high SNR suggests that this bound can be used to 

optimize the signal rotation R.  In the most general case, the 4 x 4 orthogonal matrix R  has 

no less than 4 independent entries. Therefore, an exhaustive search becomes impractical.

To overcome this problem, we propose two search strategies with complexity reduction 

in the following.
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- © -  UB, 16QAM , Y G T ro tation  
- x -  F E R , 16QAM , Y G T ro tation  
- e h  UB, 4QAM , Y G T ro tation  

FE R , 4QAM , Y G T ro tation

10 15 20 2 5
S N R  (dB]

Figure 5.7: FER and union bound o f 4-group QSTBC for (8, 1) system using the signal 
rotation in [93],

S tl Reducing number o f  independent variables o f  the rotation matrix R.

One class o f  the 4 x 4 real orthogonal matrix is given below:

0i °2 03  04

where Xw=i °1 =  1 and entries ot are real. Because o f this normalization, there are 

only 3 independent variables out o f 4 variables.

Another class o f 4 x 4 orthogonal matrix is given in (5.44). This class has only two 

variables, we therefore would not expect further performance gain over the orthogo

nal family in (5.45).

St2 Optimizing R  based on the asymptotic bound at high SNR. If R  =4 OVi =  1 ,2 ,3 ,4 ,  

then 1 +  ~  g- ^ 2  a at high SNR, the approximation o f the exact PEP in (5.42)

R  = — 02  01 —04 03
— 0.3 04 01 —02
- 0 4 03 02 Ol

(5.45)

is

P ( d  -► d)

(5.46)

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using the asymptotic bound, the searching time is reduced tremendously, because no 

integration is required. We can also use the rotation given in (5.45) for the computer search. 

The values o f o; (/' =  1 ,2 ,3) are in the range ( —1,1) and the increment is 0.005.

Similar to 4-group SAST codes, the asymptotic bound in (5.46) so that the PEP o f  

4-group QSTBC is heavily dependent on the product distance n t= i A  (see, e.g. [138]). 

Recall that (3 = T R ( d  -  d); we can consider the product matrix T R  is a combined rotation 

matrix for data vector d.

The exponent o f SNR in (5.46) is -8. This indicates that the maximum diversity order 

o f 4-group QSTBC is 8 and it is achievable if  the product distance is non-zero for all 

possible data vectors. Furthermore, at high SNR, the asymptotic bound becomes very tight 

to the union bound and, therefore, very tight to the FER. Therefore, the larger the product 

distance, the lower FER can be obtained. This observation is very similar to the diversity- 

coding gain concept due to Tarokh et al. [16]. Thus, we can optimize the rotation by R  so 

that the minimum product distance

4

dp,mi„ =  min TT |/?*|, where (3 = [TR(<? -  d j )\ (5.47)
Vd''d3 k=l 

is non-zero and maximized.

Note that the searches for the best rotation matrix R  based on the union bound (5.43) 

and the worst-case PEP (5.47) can be run independently. In addition, one can use the 

coding gain metric [16] to search for the matrix R  [93]. The rotation matrix minimizing 

the union bound o f FER should yield the lowest FER compared with the best rotation 

found by optimizing the worst-case PEP and coding gain. However, we have used the 

rotation matrices in (5.44) and (5.45) with a few independent variables to reduce the search 

complexity, the results may not as good as the case with the best rotation matrix in terms 

o f optimizing the worst-case PEP.

If the complex signals are drawn from QAM, the (real) elements o f  d  are in the set 

{±1 ,  ±3 ,  ± 5 , . . . } .  The best known rotations for QAM in terms o f maximizing the mini

mum product distance are provided in [139,140,142]; the rotation matrix for 4-dimensional 

vector is given in (4.27).

The FER and BER o f 4-group QSTBC with 16QAM, using signal rotation in (4.27) and 

the best rotation in (5.44) (in terms o f coding gain), are compared in Fig. 5.8. Clearly, the
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ID

FE R , Y G T ro tation  
-B~  F E R , p ro p o se d  ro tation  
- A -  B E R , Y G T ro tation  
- B -  B ER, ro tation

S N R  [dB]

Figure 5.8: FER and BER o f 4-group QSTBC with newly proposed rotation for (8, 1) 
system.

rotation in (5.44) performs better at high SNR.

We have compared performances o f 4-group QSTBC with signal rotation in (4.27) and 

with the best rotations o f the form (5.45) in terms o f minimizing the union bound (5.43) 

and asymptotic bound (5.46). The rotation in (4.27) also yields the best performance. Thus, 

from now on, we use the rotation given in (4.27) for 4-group QSTBC.

Another application o f  the union bound on PEP is to compare the performance o f 4- 

group QSTBC with different types o f constellations. For example, we investigate the per

formance o f  4-group QSTBC with 8QAM-R and 8QAM-S (see Fig. 4.2). The FER of  

4-group QSTBC with these two constellations are also compared in Fig. 5.9. The union 

bounds for 8-ary constellations are very tight to the simulated FER when FER <  10-2 . 

We observe an SNR gain o f 0.9 dB by using 8QAM-S instead o f 8QAM-R. Flowever, this 

improvement comes at the cost o f  complexity; we can use the sphere decoder to decode 

transmitted symbols from 8QAM-R, while maximum likelihood search must be used to 

decode signals from 8QAM-S.
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Figure 5.9: The union bound on FER o f  4-group QSTBC using 8QAM-R and 8QAM-S 
rotated by the newly proposed rotation, (8, 1) system.

5.2.4 Summary

In this chapter, we have analyzed single-symbol decoding CIOD codes and 4-group QSTBC 

by applying the methods developed for OEST codes. The equivalent channels and new de

coders o f  the two codes were derived. Optimal signal designs have been presented, based 

on the exact PEP and union bound. These results show that our approach for OEST codes 

is powerful for analyzing the performance o f the existing STBC.

In the next chapter, design and performance o f space-time codes in frequency selective 

fading channel are considered for MIMO-OFDM.
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Chapter 6

Intercarrier Interference 
Self-Cancellation Space-Frequency 
Codes for MIMO-OFDM

In this chapter, the design o f space-time codes in frequency-selective fading is considered. 

Since OFDM is robust against frequency-selective fading, it is used in current wireless 

systems and is under investigation for the future MIMO systems. In frequency-selective 

channels, the frequency diversity can be exploited so that the total diversity order becomes 

Lp times higher than that o f  a frequency-flat fading channel, where Lv is the channel order. 

This full spatial-frequency diversity can be extracted by combining OFDM with MIMO, 

and encoding the data symbols along the spatial and frequency dimensions. The resulting 

codes are called space-frequency codes. Since the performance o f  OFDM is sensitive to 

the intercarrier interference, which is caused by frequency offset, phase-noise, and time- 

varying channel, we will investigate the performance o f  space-frequency codes in the pres

ence o f intercarrier interference. Furthermore, a new encoding method will be proposed to 

effectively improve the performance o f space-frequency codes when intercarrier interfer

ence is severe.

6.1 Introduction

The previous chapters focused on the low-decoding complexity STBC for flat-fading MIMO 

channels. In practice, because o f the multipath propagation, the mobile wireless chan

nels are frequency-selective. An OFDM front-end can be used to combat the frequency-
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selective channels because OFDM converts the wideband frequency-selective channel into 

parallel frequency-flat channels. In order to exploit the frequency diversity, coding is per

formed across the subchannels or in the frequency dimension. Therefore, signal design for 

MIMO-OFDM can be regarded as space-frequency coding. Since the subchannels have 

different amplitudes and phases, the quasi-static assumption in space-time coding is no 

longer valid for space-frequency coding and low-complexity space-frequency code design 

is more difficult.

In OFDM systems, there are several inherent factors that could severely degrade the 

error rate performance o f any space-frequency coding schemes. They are frequency offset, 

phase noise, fast time varying channels, to name a few. A residual frequency offset exists 

due to carrier synchronization mismatch and Doppler shift [85]. Residual frequency offset 

destroys subcarrier orthogonality, which generates inter-carrier interference and the BER 

increases consequently. The effect o f such impairments on the conventional SISO (single 

input single output) OFDM has been widely investigated. For example, in [86], BER is 

calculated for uncoded SISO-OFDM systems with several modulation schemes. Several 

works have been done for MIMO-OFDM. The authors in [87], [88] provide BER expres

sions o f MIMO-OFDM employing Alamouti’s scheme [82]. The authors in [89] analyze 

the space-frequency code performance in different propagation settings, such as Rayleigh 

and Rician fading channels, and with spatial correlation at the transmitter and/or receiver. 

However, the impact o f  inter-carrier interference due to frequency offset on the pairwise 

error probability (PEP) performance o f general space-frequency codes and whether the 

existing space-frequency code design criteria should be modified when inter-carrier inter

ference exists have not been investigated. This important question will be addressed in this 

chapter.

We will analytically show that the conventional space-frequency code design criteria 

hold even with frequency offset. The performance loss is negligible if  the normalized fre

quency offset is small. This loss, however, increases rapidly with the increasing normalized 

frequency offset and with SNR. When the normalized frequency offset is large, the domi

nance o f inter-carrier interference noise power prevents the typical rapid decay o f PEP with 

SNR and the PEP performance hits a floor.

Since inter-carrier interference can severely degrade the performance o f OFDM, sev-
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eral inter-carrier interference suppression methods are available (see [143], [144], [145] 

and references therein). For SISO-OFDM, the authors in [146], [147] propose an inter

carrier interference self-cancellation coding (or polynomial cancellation coding) method 

to mitigate inter-carrier interference (caused by frequency offset) effectively. By analyz

ing [146], [147] and [83], we derive a new class o f  space-frequency codes, named inter

carrier interference self-cancellation space-frequency (ISC-SF) codes, that provide a sat

isfactory trade-off among error correction ability, inter-carrier interference reduction and 

spectral efficiency. ISC-SF codes not only achieve the same diversity order (at least 2M N )  

and coding gains as the corresponding space-frequency codes derived in [83] but also no

tably improve the performance o f space-frequency codes with frequency offset. Although 

our primarily focus is the performance o f ISC-SF codes with frequency offset, we demon

strate that ISC-SF codes also perform well when inter-carrier interference is caused by 

phase noise and time-varying channels. Due to the similar nature o f  inter-carrier interfer

ence caused by frequency offset, phase noise and time varying channels, we present the 

simulation results for frequency offset only.

6.2 MIMO-OFDM System Model

Consider a MIMO-OFDM system with M  transmit and N  receive antennas as illustrated 

in Fig. 1.4 . The number o f  subcarriers in the OFDM modulators is K .  The Lp—path quasi

static Rayleigh fading channel model is assumed for the link between transmit antenna m  

(m  =  1,...,  M )  and receive antenna n ( n =  1,..., N ). The channel impulse response in the 

time domain is [6 ]
■E.p-1

T ) =  ^ 2  a „ h n ( t ,  l)S(T ~  T i )  (6 .1)
1=0

where 77 is the channel delay o f  the Zth path (I =  0,. . . ,  Lp — 1) and <5(.) denotes Dirac’s delta 

function. The coefficients a TO]„(f, l ) ’s are complex channel gains o f the /th path between 

transmit antenna m  and receive antenna n.  They are modeled as zero-mean complex Gaus

sian random variables (GRV’s) with variance E [ |a mi„,(/)|2] =  5f. We assume the MIMO 

channel is spatially uncorrelated and remains constant for at least one OFDM symbol du

ration, but can vary randomly from symbol to symbol. Thus, the coefficients a m,n(M ) 

are independent variables and the time index t  can be omitted. Without loss o f  generality,
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the total power o f  Lv-path channels is normalized, so that o'* ^  = 1- The frequency 

response o f the channel between the transmit antenna m  and the receive antenna n  at sub

carrier k  is
Lp - 1

H m,n(k) =  a m,n(Z) e r ^ kA^  , j  = ^ T 1 (6.2)
1=0

where A f  = 1 / T s is the subcarrier spacing and Ts is the OFDM symbol duration.

The transmitted symbols are distributed over M  transmit antennas and K  subcarriers o f  

each OFDM modulator. Let cm(k) be the A th subcarrier being sent from transmit antenna 

rri in one OFDM symbol duration. In the frequency domain, the transmitted symbols over 

M  antennas can be represented in the matrix form as follows.

°i(0) C2(0) cm(0)

— c i( l) < * ( 1 ) cm(1)

_ c i ( K  — 1) c 2 ( K  -  1) c m ( K  -  1) _

Before transmitting, the K  symbols o f each column in (6.3) are modulated by inverse 

discrete Fourier transform (IDFT) and cyclic prefix (CP) symbols are appended [148]. At 

the receiver side, the CP symbols are discarded to remove inter-block interference. The re

maining K  symbols are DFT demodulated to recover transmitted symbols in the frequency 

domain. Assume that received subcarriers are perfectly sampled and let the received signal 

at the receive antenna n  be y„ (k)

M

V n ( k )  = Y 2 c m ( k ) H m ,n ( k )  + Wn(k) , k = 0, . . . ,  K  -  1, (6.4)
m = l.

where wn( k y s are independent and identically distributed (i.i.d) noise samples, which are 

modeled as zero-mean complex GRV’s. The transmit power from each antenna is normal

ized to 1, resulting a noise variance per dimension o f M/(2p)  where p is the average SNR 

at each receive antenna.

The input-output relation o f MIMO-OFDM systems can be described in several matrix

forms. We adopt the approach in [83] to derive the PEP o f space-frequency codes. For the

zero frequency offset case, the received signal in (6.4) is presented in the vector form as

Y =  DH  +  W  (6.5)
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where Y is the received signal vector that concatenates received signals o f  N  receive an

tennas as

Y =  [ 2/i(0) ... y i ( K - l )  2/2 (0 ) ... y2( K -  1) yN(0) ... yN ( K  -  1) ]T , (6.6) 

and the channel vector H  is o f size K M N  x 1 is given by

H =  [ H'fi  ... //;(,, H i ,  ... H l L, ... H i ,  ... //;(,.v ]•

where

(6.7)

(6 .8)Hm,n = [ H m>n{0) t f m,n( l )  ... Hm,n( K  — 1) ] •

The noise vector W  is represented similarly to the received vector Y as

W  =  [ vi;i(0) ... w i ( K  — 1) w2(0) ••• W2(K — 1) w n (0) ... w n ( K  — 1 ) ] T .

(6.9)

The data matrix D size K M  x K M N  represents the transmitted data in (6.3):

D

D y D 2 . . .  D m  0 0 . . .  0 . . .  0 0 . . .  0
0 0 . . .  0 D] D 2 ■ ■ ■ D m  ■ ■ ■ 0 0 . . .  0

. (6.10)

0 0 . . .  0 0 0 . . .  0 . . .  Dy D2 . . .  D m

Each matrix D m consists o f  coded symbols transmitted from antenna rri

Dm — diag [cm(0), cm( l ) , cm{K  1)] .

6.3 Model of MIMO-OFDM with Frequency Offset

(6.11)

We now extend the MIMO-OFDM system given in (6.5) for the non-zero frequency offset 

case. To subsume the frequency offset in (6.5), we first review the model o f  SISO systems 

with frequency offset that was described in [149].

There is always a frequency offset () /  at the sampling points o f  received signal in fre

quency domain [149], [148]. In the SISO-OFDM system, the normalized frequency offset 

e is defined by e =  5 f / A f .  The normalized frequency offset is the same for all subcarriers 

o f one OFDM symbol, but may vary from symbol to symbol. In the SISO systems, the 

received icth subcarrier is expressed as follows:
K - 1

y(k)  =  S(0) H{k)c{k)  +  E E  S(p — k)H(p)c(p) + w (k ) (6 .12)

desired signal p—0 pjkk,

ICI

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Let 1(h) denotes inter-carrier interference from the other subcarriers to the received kth 

subcarrier:
K - 1

"  "  (6.13)J (A:) =  s (p -  k )H (p)°(p) ■
p—0 p ^k

Coefficients S(k)  in (6.13) are expressed as:

sin [it (k +  e)]
S(k)  = e x p j n  1

1_
K

( k  +  e)
K  sin [Jjr {k +  g)]

The coefficient 5(0 ) in (6.12) can be derived by substituting k — 0 in (6.14) to be

(6.14)

5(0)
Sill 7T£

e x p j *  1 - K
(6.15)

K  sin ( f  s)

Eqs. (6.12) and (6.15) show that due to the frequency offset, the amplitude o f  the 

desired subcarrier is attenuated and its phase is rotated. Furthermore, the inter-carrier in

terference from the other subcarriers can be considered as an additional noise. Hence, the 

SNR o f  the received signal is reduced.

We now generalize (6.12) for MIMO-OFDM systems and allow for distinct frequency 

offset’s among different transmit/receive antennas pairs. Let the normalized frequency 

offset o f  the transmission link from transmit antenna m  and receive antenna n be em -n. For 

MIMO systems, the inter-carrier interference term In(k) at subcarrier k  o f  each receive 

antenna n  is the superposition o f  M  inter-carrier interference terms caused by

transmitted signals from transmit antennas to as

M

m —1

where

and

K - l

Irn,n(k) — ^   ̂ Cm(p)-^7n,n(p)‘Sm,n(P
P=0 pŷ k

5„i>n(0) 

Eq. (6.12) becomes:

Vni k )  =

s i ll  [tt (k +  £„,.,„)] 
K  s in  (k +  e m,n)] 

s in  ( 7r£m,n )

)sin ( j '  ' - r n j i

e x p

e x p

j  tt !  -
K

k)

(k  -p £m,n)

j n  1 JL
K

M

E
m —1

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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Note that Sm/n(0) is a constant with respect to subcarrier index k. Hence, in (6.20) we 

can group H m .n(k ) and S m,n(0) as:

=  Sm,n(0)Hm,n( k ) .

The equivalent form o f (6.8) is

m.n ^m ,n (0 ) -  1) . (6.21)

Matrices I lm,n are arranged into the matrix H, which has exactly the same structure

with the matrix H given in (6.7), but the matrix H accounts for the presence o f  frequency

offset.

The equivalent noise at each received subcarrier is a sum o f the inter-carrier interference 

noise and complex Gaussian thermal noise terms as

zn(k) =  I„(k) + wn(k ) . (6.22)

The MIMO-OFDM model with frequency offset is now written as

Y =  DH +  W  (6.23)

where Y is the received vector and the matrix D consists o f transmitted symbols. They are 

described in (6.6) and (6.10) accordingly and rewritten in (6.23) without modification.

The matrix representations (6.5) and (6.23) are suitable for deriving the PEP perfor

mance o f space-frequency codes. In the next section, the PEP upper bound o f space- 

frequency codes without frequency offset based on (6.5) will be given. It is an asymptotic 

bound [150] and is tighter than the Chemoff bound [16] at high SNR. In the presence o f  

frequency offset, the equivalent representation (6.23) will be used to derive the PEP perfor

mance (Section IV).

6.4 Design Criteria of Space-Frequency Codes

In the space-frequency encoding process, the source data is two-dimensionally encoded 

across the space (over multiple antennas) and frequency (over the subcarriers o f  OFDM 

symbols). A space-frequency codeword may occupy several OFDM symbols [77], [81]
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or one OFDM symbol [67], [42], [83], The maximal diversity order can be achieved by 

coding over the subcarriers o f  only one OFDM symbol [67], [83], whereas in [77], [81] the 

maximal diversity order is gained by coding over multiple OFDM symbols. That obviously 

causes higher coding and decoding delay. We adopt the approach in [83] for our analysis. 

In the following, we summarize the results o f  [83].

The input data symbols are divided into 6-symbol source words and are parsed into 

blocks and mapped to space-frequency codewords as represented in (6.3). At the receiver, 

the maximum likelihood (ML) decoder selects a codeword E  if  its metric M e  is minimum:

K  I N

k —0 n = 1

M

IJnik') ^  ] cm (A:) H min (A;)
m = l

(6.24)

Assume perfect channel state information (CSI) is available at the receiver but not at 

the transmitter and perfect symbol timing. The PEP for a transmitted codeword C  and 

erroneously decoded codeword E  in a frequency-selective fading fading channel is upper 

bounded as [83]:

1  ̂ i r
E NP [ C  E)  <  [ 2™ ,  1 ) ( I J A .

v,»=l

-N
-TN (6.25)

where f  is the rank o f the matrix Q which is defined as

Q ^ A o R (6.26)

and where o denotes Hadamard product [63] and Aj(i =  1,.... jT) are non-zero eigenvalues 

o f Q. The matrices A  and R  are as follows:

(C - E ) { C -  E)^ ,

R  = Rr, E [Hm,nH l , n] =  V d m g ( 5 l 5 l . . . , 5 2Lp^ )  0

where

V

1

(6.27)

(6.28)

(6.29)

v ( K ^ ) r o  v ( K - l ) n  V ( K ~  l)T i p _ i

and v =

From (6.25), the space-frequency code design criteria can be stated as follows.
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•  Diversity criterion: The minimum rank o f Q over all pairs o f  distinct codewords 

should be as large as possible.

r
•  Product criterion: The minimum value o f the product f j  A* over all pairs o f  distinct

i = 1
codewords should be also maximized.

From (6.25), the diversity order o f space-frequency codes is E  N ,  maximum achievable 

diversity order is equal to m.m(L.pM N ,  K N ) .

6.5 Performance of Space-Frequency Codes with 
Frequency Offset

We continue the analysis with the two assumptions below:

• AS1: Residual normalized frequency offset’s eTO)„ are independent o f  the channel 

coefficients.

•  AS2: The inter-carrier interference terms /,„,,„(&:) in (6.16) and (6.17) are indepen

dent.

The coherent receiver first estimates the channel coefficients. Then the phase shift 

caused by frequency offset is compensated [149]. Thus, the residual frequency offset is 

somehow dependent on the channel estimation method. The AS 1 is given to simplify our 

analysis. In practice, transmit data over multiple antennas are encoded. There may be a 

degree o f correlation among the transmitted data streams and consequently, the inter-carrier 

interference noise terms c) could be also correlated with respect to the subscript m.  

With AS2, all the inter-carrier interference noise at the receive antennas will have the same 

variance and zero mean. AS2 will be made clearer during the derivation below. Therefore, 

the ML detection in the presence o f AWGN noise given in (6.24) holds.

To investigate the PEP o f space-frequency codes with frequency offset using formula

(6.25), the channel coefficients Hm<n(k) in (6.21) should be complex GRVs. This require

ment can be met if  S„hn (0) is deterministic or normalized frequency offset is not a random 

variable (Case 1). In general case, em .n can be assumed to be i.i.d random variables in 

the range [Ex. E 2\, their values can be changed from OFDM symbol to symbol (Case 2).
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However, the performance o f space-frequency codes with fixed values o f  frequency offset 

is o f greater interest since it provides a closer look at the performance o f space-frequency 

codes at specific frequency offset values.

For analytical tractability, we further have the third assumption:

•  AS3: normalized frequency offset em,n are constant and the same for all pair o f  

indices (rn, n): =  eo-

If Ei  =  \E2\ = fr(J (if the absolute value o f  random normalized frequency offset is 

not more than a fixed normalized frequency offset value), we expect that the PEP perfor

mance o f  Case 2 is more optimistic than that o f the Case 1. Therefore, PEP obtained with 

AS3 is an upper bound o f PEP with frequency offset. This assumption will be relaxed in 

our simulation study and thus more realistic performance evaluation is carried out by sim

ulations. Our analytical results below, however, provide useful insight into the inter-carrier 

interference performance o f space-frequency codes.

In OFDM systems, K  is typically 64 or larger. Therefore, the central limit theorem 

can be applied to model the term I m , n { k )  as a GRV [148]. The inter-carrier interference 

term I n ( k )  in (6.16) is a sum o f  M  independent GRV’s, it is also a GRY. The first two 

moments o f  the term I m .n , ( k )  in (6.17) by Gaussian approximation are calculated as follows. 

Assume that coded symbols cm(p) have zero-mean (such as M-PAM, M-PSK, M-QAM  

signal constellations), then E [ I m , n ( k ) }  =  0.

The variance j m n o f Im<n{k) in (6.17) is

IE [\Irn(k)\2]

( Cm ('P )H m ,n (P )S m ,n (P  ~  k )E

E

K~1

\  P ~ 0  

/ K-1
C m ( p ) H „ h n (p)Sm ,n(p -  k)

c-m (k) H m>n (k) Sm>n (0) 

- E [ \ c m(k)Hnhn(k)Srn,n(0)\2}

E [\cm(p)I2] E [|.Hm,„(p)|2] E [|5ro,n(p -  n )|2]
p ~  0

-  E [> m(/c)|2] E [\Hm<n(k)\2] E [|5 m,n(0)|2] . (6.30)

In the last two rows o f  (6.30), the term E [|cm(/c)|2] is the signal power, which is nor

malized to 1. The term E [ \ H m , n ( k ) \ 2 ]  is the average o f the channel power, and it is also
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normalized to 1. Eq. (6.30) becomes

K - 1

< ,  =  E  E 0 -S(P -  m 2] -  s„ (6 .3 1 )
p ~  0

where So =  E [|5'm,,>t(0)|2] — |STOin(0)|2. Note that the residual normalized frequency off

set is usually small, e <  0.2 [148], the number o f subcarriers K  > 8, hence K  sin ( n s / K )  & 

i r e .  Let p(e) be the probability density function (pdf) o f  sm,n- In the case o f  constant fre

quency offset, p( e)  — 1 , S’o can be evaluated as

It is clear that n is independent o f indices m  and n, it is just dependent on the 

normalized frequency offset through 5'0. With AS2, In(k) is a complex GRV with zero- 

mean and variance M ( 1 -  So). Therefore, the inter-carrier interference noise o f  MIMO- 

OFDM zn(k) given in (6.22) is also a zero-mean complex GRV with variance as

Values o f d\  is identical for all receive antennas.

From (6.20), it is seen that the received signal power has a factor o f  5'o; hence the 

equivalent SNR at each receive antenna with frequency offset is

Using the MIMO-OFDM model developed in Section 6.3 and space-frequency code 

design criteria in Section 6.4, we derive PEP performance given in (6.25) with frequency 

offset in the following.

The correlation matrix defined in (6.28) for equivalent channel matrix Hm,n given in 

(6.21) has a new form

[sinc(e0)]
2

(6.32)

w h ere  s in c j z )  =  5^ .
v '  1TX

K ~  1
It is found in [85] that the sum E [|5(p  ~  k) | ] = 1 ,  hence

(6.33)

o-2 =  m  ( i  -  So + 1/ p ) . (6.34)

(6.35)
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Hence, the matrix Q in (6.26) becomes matrix Q

(6.37)

We can easily verify that:

•  Matrices Q and Q have the same rank iP.

•  If Ai is an eigenvalue o f O  then A* =  5 0A, is an eigenvalue o f  Q.

Substitute A =  .3),A, and p into (6.25), re-arrange the terms, the PEP expression with 

frequency offset is

Comparing (6.25) and (6.38), we discern that L 0 represents the PEP performance loss 

due to frequency offset. From (6.25), (6.38) and (6.39), we draw the following theoretical 

conclusions:

1. The design criteria for space-frequency codes without frequency offset is still valid 

in the case o f  frequency offset. The code design should maximize the diversity order 

and coding gain.

2. For the same transmit power, the higher the normalized frequency offset, the higher 

PEP performance loss. That is, at the same PEP, the higher normalized frequency 

offset, the further PEP curve shifted to the right.

3. The PEP curves will shift right if  frequency offset is nonzero. However, with the 

same normalized frequency offset, the shift o f PEP curves o f  lower diversity order 

systems is larger than the shift o f  PEP curves o f  the system with higher diversity or

der. This is due to the fact that given the same loss factor L0, the SNR compensation 

for this loss is smaller for the codes with higher diversity order [c.f. (6.39)]. Thus, 

the higher diversity order systems are more robust to the effects o f frequency offset.

P (6.38)

where

(6.39)
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4. If p (1 - So) >  1 or at high transmit power and high value o f frequency offset,

P ( C ^ E ) <  ( f t  A. )  x  . (6.40,

The PEP is no longer inversely proportional with SNR and hits a floor.

These analytical results can be anticipated since the inter-carrier interference term is 

considered as an additional Gaussian noise. When frequency offset is small, the inter

carrier interference power is smaller than the power o f thermal noise; thus, its impact on 

the performance o f space-frequency codes is negligible. However, when the frequency off

set is large, the inter-carrier interference noise dominates thermal noise. The inter-carrier 

interference power increases with desired signal power. Therefore, when SNR is large, 

inter-carrier interference causes the error floor as we have derived. Nevertheless, the ana

lytical results reveal explicitly that when residual frequency offset is small, about 1%, the 

performance loss is almost negligible (cf. (6.39)).

To complete this section, we note that one can derive the ML receiver using (6.20) and

(6.24), the same result as (6.38) can be obtained.

6.6 Inter-Carrier Interference Self-Cancellation 
Space-Frequency Codes

In Section IV, we have shown that if  the normalized frequency offset is high, the PEP 

performance is limited by a floor level at high SNR. Thus, a space-frequency code which 

can mitigate the effects o f high normalized frequency offset is desirable. We now relate 

space-frequency codes and polynomial cancellation coding (PCC). PCC is first proposed 

by authors in [146]. This idea is further analyzed in [147] from theory o f  finite differences.

We now summarize and analyze the main results o f PCC in [146]. To mitigate the inter

carrier interference caused by frequency offset, one coded or uncoded data symbol modu

lates a group o f r, where r — 2 ,3 ,4 , . . . ,  consecutive subcarriers. The optimum weighting 

coefficients for r  subcarriers to minimize inter-carrier interference are the coefficients o f  the 

polynomial (1 — D)r~l . The code rate o f PCC is 1 /r. The inter-carrier interference perfor

mance o f this coding scheme increases with r at the cost o f  spectral efficiency. Simulation
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results [146] show that this coding scheme with r = 2 (or code rate 1/2) outperforms the 

system using rate 1 /2  convolutional code when normalized frequency offset is high (20%) 

but PCC performs poorly when normalized frequency offset is small or medium (<  10%). 

The reason is that this code is particularly designed to minimize inter-carrier interference 

and hence may not be suitable for error correction purposes. To improve the performance 

o f PCC, an outer error control code is required. The resultant concatenated code has lower 

rates as r increases. Thus, the smallest possible value o f  r, r =  2 is o f  practical interest.

Another result o f  [146] is the inter-carrier interference cancellation demodulation con

cept. For example, when r =  2 one data symbol x  is sent over two subcarriers that satisfies: 

c ( k )  =  x ,  c ( k  +  1) =  —x.  This process is called inter-carrier interference cancellation 

modulation. The received signals y ( k )  and y ( k  +  1) create a new signal for detection: 

y ( k )  =  y ( k ) — y ( k  +  1). This process is named interference cancellation demodulation. 

The combination o f interference cancellation modulation and demodulation is called inter

carrier interference self-cancellation (ISC). The inter-carrier interference noise power o f  

ISC is smaller than the original inter-carrier interference and inter-carrier interference o f  

interference cancellation demodulation. Therefore, the ISC scheme is powerful against fre

quency offset. From a diversity point o f  view, using two values y ( k )  and y ( k  +  1) to detect 

one transmitted symbol x  could yield a diversity order o f  two. Since there is a strong corre

lation between adjacent subcarriers, however, the use o f the two signals y ( k )  and y ( k  +  1) 

may not, in fact, provide a diversity order o f two. Our target is to maximize the diver

sity order o f  space-frequency codes. Thus, the interference cancellation modulation is our 

concern, but not the ISC scheme.

In sum, PCC is suitable for inter-carrier interference reduction. However, its error 

correction ability and spectral efficiency are low. Therefore, a low order PCC code with 

r =  2 concatenated with powerful error control codes would be a good trade-off solution. 

We next develop the idea o f  interference cancellation modulation to design a class o f space- 

frequency codes that are robust to inter-carrier interference.

Su etal.  [83] show that the space-frequency code formed by repeating each row o f  

a full diversity order space-time codeword r times (1 <  r < Lp) achieves at least the 

diversity order d =  r M N .  This repetition obviously reduces the spectral efficiency; thus, 

we consider only r  = 2.
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Let the number o f OFDM subcarriers K  =  ‘I K .  Suppose that the length o f a space- 

ffequency codeword equals to the number o f subcarriers K.  If the space-frequency code

word length is smaller than K ,  a zero-padding matrix can be used for the remaining sub

carriers. A space-frequency codeword has the form

0 1

C i ( 0 ) c2(0) . cM( 0 )
c i  ( o ) c2(0) . cm ( 0 )

d ( K -  1 ) c2( K -  1 )  • .  cm(K — 1 )
. d { k -  1 ) C2(K~  1 )  • • cm ( K -  1 ) .

(6.41)

Applying the interference cancellation modulation scheme, for r  — 2, this scheme is 

actually a repetition scheme but the repeated symbols are sign-reversed. In the case o f  

MIMO-OFDM, the repeated rows are sign-reversed to form new ISC-SF codewords as

C2

r  a ( o ) c 2 ( 0 ) c m ( 0 )
- c i ( 0 ) - c 2 ( 0 )  .. - c M( 0 )

c , { k  - 1 ) c2( k - i )  .. cm( K -  1 )i-H1T —c i { k  — i )  .. 1<01

(6.42)

We call the space-frequency coding schemes given in (6.41) and (6.42) as SCI and SC2 

for short. We now prove that the new coding scheme SC2 yields the same coding gain and 

diversity order (at least d =  2M N ) compared with SC 1, but SC2 integrates inter-carrier 

interference self-cancellation capability.

Consider an entry o f the matrix A  i defined in (6.27) being created by space- 

frequency codewords (6.41). The entry bij o f  the matrix A i  being created by space- 

frequency codewords in (6.42) is related with a,;j as

if  (i +  j ) is even 

ij, i f  (i + j )  is odd.

Note that the size o f A , and Z\2 is K  x K, K  =  2K  and, in particular, they can be 

written as follows.
a i l ar2 • ■ ®1K

A i  =
a 2i a 22 • ■ C'2K

a K i &K2 ■ • O-KK
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'  6 1 1 b n  ■ ■ b i K + ( l n —O 1 2 • — cl\ k

6 21 b 22 ■ • b 2 K =
— a2i + U 2 2 ‘ +& 2  K

b i a 1> K 2 ■ 1 — O-Kl + « A ' 2  ' ■ + & K K

The matrix R  defined in (6.28) is the same for both SCI and SC2. Therefore, comparing 

the signs o f entries o f  Qi = A x o R  and Q2 =  A 2 o R  (defined in (6.26)), we can see that 

the signs o f  entries o f Q2 are changed in accordance with the sign changes o f entries o f A 2 

compared to Aj .  Thus, we have following relationship:

•  If vector X i  = [ ./■ [ x 2 X3 X4 ... x ^ ~ i  x k  ) is an eigenvector o f  Qi  =  4 °  

/?., then X 2 =  [ xi  —x 2 x 3 —x 4 ... * k - i  ~ x k  ] is an eigenvector o f Q2 =  

A ‘2 o R  and vice verse, where (Q \ , A-i) and (Q2, A 2) are sets o f  matrices associated 

with space-frequency codewords defined in (6.26) and (6.27) respectively.

•  If A is an eigenvalue o f  X \ ,  it is also an eigenvalue o f X 2 and vice verse. The rank o f  

Qi  and Q2 are the same, hence, space-frequency codes SCI and SC2 have the same 

diversity order.

Thus, space-frequency codes constructed as in (6.41) and (6.42) have the same diversity 

order and coding gain.

We refer to SC2 codes as inter-carrier interference self-cancellation space-frequency 

codes or ISC-SF codes for short. The code rate o f  ISC-SF is R t/ 2, where R t is the code 

rate o f the underlying ST code. Repetition the space-frequency codewords more than twice 

in combination with polynomial cancellation coding will gain additional diversity order 

and inter-carrier interference mitigation. However, the price paid for those improvements 

is the spectral efficiency reduction. Moreover, from the simulation results, we will see 

that the ISC-SF codes (r =  2) perform well compared with the codes without inter-carrier 

interference cancellation. The higher order PCC codes (r >  2) would not significantly 

improve inter-carrier interference reduction. Thus, analysis o f the space-frequency schemes 

with higher repetition orders (i.e. lower rate) is not discussed further. The ISC-SF coding 

scheme (6.42) gives a satisfactory trade-off among error-control performance, inter-carrier 

interference reduction and spectral efficiency.
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6.7 Phase Noise and Time Varying Channel

Channel variations and phase noise also produce inter-carrier interference. In Section II, we 

assume that the MIMO channels remain constant during one OFDM symbol. However, due 

to the relative movement o f the transmitter and receiver, the channels may vary during one 

OFDM symbol. This variation causes inter-carrier interference and makes BER increase 

(see [151], [145] and references therein). For the description o f  phase noise and its effects, 

the readers may refer to the references [152], [143], [71],

In the following, we use continuous time model to show how inter-carrier interference 

is created by phase noise and time varying channels. Consider SISO-OFDM systems. The 

transmitted signal over a block including CP, is given by

K - 1
s(t)  =  J 2  c ( k ) e ^ kA^  , —Tcp < t < T s, (6.43)

k= 0

where Tcp is the length o f CP. The duration o f  one OFDM symbol with CP is rL\ =  Tcp+ T ,.  

The signal at the input o f the receiver is

OO

r(t)  =  s(t) * h(t, t )  =  J h(t, r )s ( t  -  r)dt  + w{t)
— OO

K - l L p - 1

=  E  E  c(fc)M*> Tl)e~j27rkAf Tle ^ rkAft +  w{t) . (6.44)
fc=0 1=0

where w(t) is an AWGN process with zero-mean and one-sided power spectral density is 

N 0. At the demodulator, the phase noise <j)(t) between the carrier and the local oscillator is 

added to the phase o f received signals. In the baseband representation, adding phase noise 

is equivalent to multiply r(t)  with 0(t) — .

If we consider the effect o f  frequency offset only as in Section II-B, let 4>(t) =  0 and

h (t, t ) to be constant, one can derive y (p) as in (6.12). In this section, we consider the inter

carrier interference due to phase noise and time varying channels. Thus, we let 5f  =  0 to 

simplify the expressions. The demodulated signal y(p) is

j2 ^ ( k - P) A f t d t  J + tw (p)t (6-45)
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To consider the effect o f  time varying channels only, let Mt)  =  0 in (6.45), we have

rc-i
y(p) = H(p)c(p) +  H(p  -  k)c(k) +w(p)  (6.46)

desired signal k —0,k^p

1CI

where
Lp- 1

H(i)  =  \^ (k )e~ j27rkAfri j  h(t, J  . (6.47)

The inter-carrier interference term in (6.46) can be approximated by a zero-mean GRV. 

Its power can be found in [153],

If we consider the effect o f  phase noise only, let h( t , r )  in (6.45) be constant, y{p) 

becomes

I< - 1

y(p) =  a{i))H{k)c(p) +  a(p — k)H{k)c{k)  +w(p)  (6.48)
desired signal k —0,k^p _______  ________________

ICI

where
T s  T a

a(i) = T ~ l j  $(t)e- j2viAftdt , o(0) =  T ~ l J  6{t )dt . (6.49)

o o

Since H(i)  in (6.47) is a non-GRV and a(0) in (6.49) is non-constant, analyzing the 

PEP o f space-frequency codes with phase noise and time varying channels becomes diffi

cult. However, comparing Eqs. (6.46) and (6.48) with (6.13), one can see the inter-carrier 

interference contributions o f  subcarriers to one subcarrier due to time varying channels and 

phase noise are similar to the inter-carrier interference contribution due to frequency offset. 

Thus, ISC-SF codes with capability o f cancelling inter-carrier interference should perform 

well compared with the space-frequency codes without this feature in cases o f phase noise 

and time varying channels as discussed for the case o f frequency offset.

6.8 Simulation Results and Discussion

We give simulation results to verify the theoretical analysis for space-frequency codes with 

frequency offset. We use two channel models: (1) a simple two-path channel with uni

form power delay profile and time delay between the two paths is 5/i.s and (2) the six-path
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COST207 typical urban channel model [6], a more realistic model. We use algebraic ST 

convolutional codes [42], [154] o f code rate 1 /2  with generator polynomial (5 ,7) [32] 

without channel interleaver. The Viterbi decoder [154], [32] is employed. The similar sim

ulation results are observed for both channel models. Thus, we present the simulations with 

six-path COST207 typical urban channel model for brevity.

6.8.1 Simulations with Constant Frequency Offset

We compare the performance o f space-frequency codes for 1%, 10% and 20% normalized 

frequency offset. Fig. 6.1 illustrates PEP curves o f two OFDM systems with 64 subcarriers 

and two transmit antennas. System 1 is equipped with one receive antenna and System 2 

has two receive antennas, so that the diversity order o f the two systems is at least d = 2 

and d = 4, respectively. Using (6.32), for 1% normalized frequency offset, S0 = 0.9997, 

L 0 as 1 in the SNR region o f interest (<  30 dB). Therefore, theoretically the performance 

loss is not significant. Fig. 6.1 confirms this conclusion. If the normalized frequency offset 

is small, say 1%, the PEP curves almost overlap the PEP o f the systems with no frequency 

offset. In case normalized frequency offset is 10%, the PEP curves o f  all systems are shifted 

to the right and less s teep than the curves o f PEP with 1% normalized frequency offset; this 

shift is larger for the system with smaller diversity order. For example, at P E P  — 10~3 the 

PEP curve o f the system with d = 2 shifts right 1.4 dB, whereas it is 0.8 dB for the system 

with d = 4. The SNR needed to compensate the effect o f  frequency offset increases with 

normalized frequency offset. When normalized frequency offset is 20%, the PEP reduces 

slightly even if  there are large increases in SNR. The PEP performance reaches a floor at an 

SNR o f  about 22 dB. This symptom is more serious for low diversity order systems, where 

the floor level is higher than that o f  higher diversity order systems.

6.8.2 Simulations with Inter-Carrier Interference 
Self-Cancellation Space-Frequency Codes

The performance o f  space-frequency coding schemes with and without inter-carrier inter

ference self-cancellation (SC2 and SCI accordingly) is illustrated in Fig. 6.2. The systems 

to be examined have 128 subcarriers, 2 transmit and 1 receive antennas. We can verify the 

results in Section 6.5 that when frequency offset is absent, SCI and SC2 have the same
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Figure 6.1: Performance o f space-frequency codes with K  =  64, constant frequency off
set for the six-path COST207 typical urban channel model. NFO stands for normalized 
frequency offset.

CL
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Figure 6.2: Performance o f space-frequency codes with K  =  128, r =  2, constant fre
quency offset, six-path COST207 channel model with and without inter-carrier interference 
self-cancellation.

diversity order. The difference between the coding gains o f the two schemes is very small, 

less than 0.2 dB at the plotted SNR. This difference is expected to be zero at higher SNR 

region. Once again, the performance loss for 1% normalized frequency offset is negligible
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Figure 6.3: Performance o f space-frequency codes with K  =  64, uniformly distributed 
frequency offset and the six-path COST207 typical urban channel model.

for both SCI and SC2. However, the improvement o f  SC2 over SCI is remarkable when 

normalized frequency offset is 10% and 20%. For example, in Fig. 6.2 at P E P  =  10 3 and 

10% normalized frequency offset, the performance loss o f  SCI is about 3.7 dB, whereas the 

loss is about 0.5 dB with SC2. This improvement is significant in Fig. 6.2 where the loss o f  

SC2 is only 0.5 dB. In addition, SC2 lowers the error floor level notably when normalized 

frequency offset is very high 20%.

6.8.3 Simulations with Variable Frequency Offset

In practice, the frequency offset values o f receive signals at antenna n that were transmitted 

from antenna m  can be different and they vary from symbol to symbol. We now provide 

simulation results for variable frequency offset. The distribution o f normalized frequency 

offset values are assumed uniform over the range [—Eo,  Eo],  where jE ()| is the maximum 

normalized frequency offset. Similarly to the previous simulations, we will examine per

formance o f the space-frequency codes for |J570| =  1%, 10% and 20%.

As discussed in Section IV, assumption AS3, the performance o f space-frequency codes 

with variable frequency offset should be upper-bounded by the performance curves with the 

constant frequency offset. Fig. 6.3 presents performance o f  64-subcarrier systems with one

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a .
UJ
a .

- B -  S C 1 , E o  =  0 
S C 1 , E o  ** 10%  
S C 1 , E o  =  20%  

e  S C 2 , E o  =  0 
*  S C 2 , E o  =  10%  
3  S C 2 , E o - 2 0 %

28
S N R  [dB]

Figure 6.4: Performance o f space-frequency codes with K  =  128, r  = 2, uniformly dis
tributed frequency offset, six-path COST207 channel model with and without inter-carrier 
interference self-cancellation.

and two transmit antennas. The two systems have two transmit antennas. By examining 

Figs. 6.1 and 6.3, exactly the same observations can be made as with the constant frequency 

offset. The only difference between the constant and variable frequency offset cases is that 

in the latter case, the performance loss is always less than the loss o f  the former case, 

as expected. For example, comparing Figs. 6.1 and 6.3, for the system 1 (d = 2), 10% 

normalized frequency offset, at PEP = 10~3, the loss is about 3 dB in case o f  constant 

frequency offset, while it is about 1.7 dB for the system with varying frequency offset.

Fig. 6.4 presents the performance o f  the space-frequency coding schemes SCI and SC2 

with variable frequency offset. Comparing with their performance that are given in Fig. 6.2 

with fixed frequency offset, the loss for variable frequency offset is smaller.

6.9 Summary

We have analyzed the performance o f  space-frequency codes in the presence o f  frequency 

offset. A MIMO-OFDM model with frequency offset has been developed to analyze the 

PEP performance o f space-frequency codes. Using the PEP upper bound for o f  space- 

frequency codes, we showed that the conventional code design criteria remain valid pro-
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vided frequency offset is small. Inter-carrier interference is less severe for space-frequency 

codes with high diversity order. Therefore, diversity not only improves the performance o f  

OFDM systems in the dispersive channels, but also makes the system robust to inter-carrier 

interference. Furthermore, we proposed a new class o f  space-frequency codes, ISC-SF 

codes with diversity order o f  at least 2 M N .  ISC-SF codes are constructed from ST codes to 

mitigate inter-carrier interference caused by frequency offset, phase noise and time varying 

channels efficiently. This class o f  space-frequency codes permits a good trade-off among 

error correction capability, inter-carrier interference reduction and spectral efficiency. Our 

results suggest a new direction in the design o f space-time/space-frequency codes capable 

o f both error correction and inter-carrier interference reduction.
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Chapter 7 

Conclusion and Future Work

7.1 Conclusion

We have designed space-time codes for MIMO systems considering the practical con

straints such as decoding complexity and system imperfections. While reduction in de

coding complexity leads to power and manufacturing cost savings, mitigating the system 

imperfections is necessary to prevent possible transmission errors.

Low decoding complexity STBC have been considered in Chapters 2 to Chapter 5. 

The necessary and sufficient conditions for low decoding complexity STBC are proposed 

for quasi-static frequency-flat MIMO fading channels. To achieve low complexity, we 

have developed multi-group decodable STBC. For a fixed number o f  transmitted symbols 

encoded in a code matrix, an increase in the number o f groups leads to lower decoding 

complexity.

We have proposed a new framework, OEST codes for low complexity STBC. The or

thogonal designs are employed for constructing OEST codes, in which the indeterminates 

are substituted by circulant matrices and scalar product is replaced by Kronecker product. 

If the orthogonal designs have K  indeterminates, the resulting OEST codes have K  data 

vectors embedded in the K  circulant matrices. At the receiver, these K  data vectors can 

be detected separately with no interference from the other vectors. Hence, OEST codes are 

/C-group STBC.

The main properties o f OEST codes have been derived. We have shown that OEST 

codes can achieve full diversity with signal rotation. Optimal signal rotations that maximize 

the coding gain or minimize the union bound have been computed. The maximal mutual
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information o f OEST codes is shown to be equal to that o f the underlying OSTBC. A 

general decoder o f OEST codes has been developed.

Additionally, we have shown that OEST codes subsume OSTBC, QSTBC (ABBA  

codes), and circulant STBC. Therefore, many open problems o f these codes can be solved 

in a systematic manner. Detailed analysis has been performed for ABBA codes. A  new 

decoder is derived to facilitate single complex symbol decoding, i.e. minimal decoding 

complexity (MDC), a property has been known to be possessed by OSTBC only. Further

more, the SER performance o f MDC-ABBA codes is directly optimized. This approach is 

different from all the previous works, which optimize the code performance based on the 

worst-case codeword PER The combination o f MDC-ABBA codes and various signal con

stellations is investigated. The results show that MDC-ABBA codes yield the best perfor

mance with QAM. We also considered antenna selection, a closed-loop method to improve 

the performance o f  MDC-ABBA codes. It is shown that MDC-ABBA codes can achieve 

full diversity even with limited feedback. Simulation results shown that MDC-ABBA codes 

perform better than OSTBC with the same decoding complexity. Thus MDC-ABBA codes 

are a potential replacement o f OSTBC when there are more than 2 transmit antennas.

Importantly, the framework o f OEST codes allows us to design a new STBC called 

SAST codes. SAST codes are constructed by the Alamouti code, thus they are 2-group 

decodable. SAST codes are o f  rate-one symbol pcu and they can nearly achieve the capacity 

o f MISO channel. From extensive simulations, we find that SAST codes also perform better 

than other STBC having the same code rate, such as linear dispersion codes, DAST codes, 

LCP codes, and QSTBC.

We furthermore proposed a new encoding method so that the OEST codes become 2K -  

group decodable, which was K -group decodable initially. The representative SAST codes 

have been analyzed in great detail. The new decoder for SAST codes has been derived for 

the new encoding method. This makes SAST codes 4-group decodable. The best signal 

transformations, in terms o f  coding gain, have been identified. They are the real rotation 

matrices proposed for square lattices. Since 4-group SAST codes have low complexity, are 

near-capacity achieving, and have good performance, 4-group SAST codes are suitable for 

downlink wireless channels, where the multiple transmit antennas are used to improve the 

diversity gain o f the systems.
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Another contribution o f OEST framework is the general method to derive the decoder 

for low complexity STBC. This method is implemented into 3 sub-tasks: (1) to obtain the 

spatial signature o f  data vectors; (2) to derive the equivalent channels; and (3) to propose 

the simplified transmit-receive signal relations. This method has been successfully applied 

for other low-complexity STBC: CIOD codes and 4-group QSTBC. As a side product, we 

also derive the optimal signal designs for these two codes.

Chapters 2 to 5 deal with STBC in frequency-flat fading channels. However, frequency- 

selective channels are o f  interest too and OFDM is commonly employed to deal with such 

situations. We have studied the design o f space-frequency codes for MIMO-OFDM sys

tems with imperfections due to frequency offset. The design criteria o f space-frequency 

codes have been revised when frequency offset exists. The results showed that the diversity 

gain o f MIMO system may be totally lost when frequency offset is large, resulting in a irre

ducible error floor. We proposed a new space-frequency coding scheme to partially cancel 

the inter-carrier interference. The new coding scheme works well even when the frequency 

offset is 10%.

7.2 Future Work

7.2.1 Maximal Rate of Multi-Group Decodable STBC

We have derived the necessary and sufficient conditions so that a STBC is multi-group 

decodable. These conditions are given for a quasi-static fading channel, where the channel 

is constant during the transmission o f a code matrix. However, given a specific number o f  

groups r  >  1, the maximal code rate that can be designed is still unknown. For example, 

the maximal code rate o f OSTBC, a special case o f  single-symbol decodable, is known

[44]; but the maximal rate o f single-symbol decodable is not yet reported [92], In another 

effort to search for high rate 2-group STBC, Yuen et al. [98] find a code o f rate 5/4 for 

4 antennas. Nevertheless, this rate is not shown to be maximal for 2-group STBC for 4 

antennas. Thus in the direction o f  designing low complexity STBC, we have two main 

open problems.

1. What is the maximal rate o f  /"’-group STBC?

2. How to systematically construct jT-group STBC with maximal code rate.
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Another open problem is to design the low complexity space-frequency codes for MIMO- 

OFDM systems. Since the channels o f subcarriers vary along the frequency axis, that 

means, the rows o f space-frequency code matrix experience different channel gains. This 

fact opposes to the MIMO frequency-flat channels, where the rows o f space-time code 

matrix experience the same channel gains. Therefore, the necessary and sufficient con

ditions so that a space-frequency code is multi-group decodable need to be revised. The 

design o f  low-complexity space-frequency codes becomes more difficult. Furthermore, the 

two open questions o f  designing low complexity STBC in quasi-static frequency-flat fad

ing channels are the open problems o f designing low complexity space-frequency codes in 

MIMO-OFDM.

7.2.2 Exploiting Channel State Information

We have pointed out that SAST codes are suitable for coherent MISO channels. SAST 

codes can also be used in MIMO systems where the code rate o f  one symbol pcu is ac

ceptable. When some form o f channel state information is available at the transmitter, one 

can derive the precoders to improve the performance o f  SAST codes. Several precoding 

methods have been proposed for OSTBC [155-159] and for QSTBC [19,118,119]. The 

combination o f SAST codes (and also OEST codes in general) and precoding to exploit the 

channel state information can be investigated.

7.2.3 Combination with Error Control Coding in Multi-User Systems

We may investigate the combination o f  OEST codes with error control codes, which are 

employed by practical systems to correct transmission errors [41]. In Addition, modem  

error control codes, like turbo codes [160,161] or low-density parity-check (LDPC) codes 

[162-164], require the soft output from the inner STBC for iterative decoding [165-167]. 

An OEST decoder that produces the soft output information may be developed. While this 

thesis has focused on point-to-point communications, adaptation o f  OEST codes and their 

subclasses, such as SAST codes and MDC-ABBA codes, in multi-user systems with error 

control codes can be investigated.
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7.2.4 Applications of OEST Codes

We have designed OEST codes for coherent communications and for point-to-point links. 

However, OSTBC and QSTBC, two special cases o f  OEST codes are shown to be suit

able for differential encoding and non-coherent detection [117,168,169]. Furthermore, 

OSTBC and QSTBC are recently investigated for relay cooperative communication proto

cols [170-172]. Therefore, the applications o f OEST codes for non-coherent or cooperative 

communications, in general, can be further developed.
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