

 Page 1

Primitives:
1) Data type

2) Set (mathematical)

3) Element (mathematical)

Axioms:
1) For each , a function returns true iff is of type .

Universe Sets:
1) The following notation will be used to express “universe sets” for some components. The

components that will make up these sets will be defined in the progression that follows, but these
sets are collected here for ease of reference.

Set Definition Description

 All types.
 All values of type t.

 All methods.

 All objects.

 All keyed objects.
 All properties.

 All binary relations

 Page 2

Progression of Components:
1) type

2) Datum

3) Method

4) Property :

a) Property instance :

5) Object :

a) Object instance

6) Object Method

7) Key :

8) Keyed Object

a) Keyed object instance

9) Application :

10) Container

 Page 3

Examples of Components:

Unary Operators:
Operator Applies To Notation Example (using above)
element at set set[x] {a, b, c}[0] = a
extractor .
 m m.name m1.name = “getfname”
 d d.value (int, 2).value = 2
 d d.type (int, 2).type = int
 p p.name pfname.name = “fname”
 p p.type pfname.type = String
 pi pi.name pfname(1).name = “fname”
 pi pi.value pfname(1).value = “Zack”
 B B.name BPerson.name = “Person”
 B B.props BPerson.props = {pfname}
 B B.mtds BPerson.mtds = {m1,m2}
 Bi Bi.id BPerson(1).id = 1
 Bi Bi.type BPerson(1).type = BPerson
 A A.name Aex.name = “ExApp”
 A A.mtds Aex.mtds = {q1}
 A A.objs Aex.objs = {BPerson,oUser}
key of o key(o) key(oUser) = kid

Comment [s1]: Assumes keyed
objects have only one key… this is
an acceptable simplification!

 Page 4

Binary Operators:
Operator Expression Arg 1 Arg 2 Produces
extension b {m*}

 b {p*}
 b k
 A {m*}
 A {b*}
 A

reduction b {m*}
 b {p*}
 A {m*}
 A {b*}
 A

r-extension A {b*} A: , with relations involving Y added.
r-reduction A {b*} A: , with relations involving Y removed.

compose A A
r-compose A A
compose A A

r-compose A A

Ternary Operators:
Operator Expression Arg 1 Arg 2 Arg3 Produces
internal extend A b * X, whose Y has been replaced by Y Z
internal reduce A b * X, whose Y has been replaced by Y Z

 Page 5

Basic Operations:
1) Extraction:

a. Intuition: This operation is used to “extract” desired information about a component
from the progression above.

b. Input: X, Y where X is a component from the progression above and Y is the name of one
field of X.

c. Returns: Z, which corresponds to a member of X, and whose type is dependent on Y.

2) Extension:
a. Intuition: This operation “extends” X by adding to it the properties, objects, methods, or

relations contained in Y.
b. Input: X, Y where X is a component from the progression above and Y is a homogenous

set of components that will become members of X.
c. Returns: Z, of the same type of X where the components of Z are the union of the

components of X with the elements of Y.

3) Reduction:
a. Intuition: This operation “reduces” X by removing from it the properties, objects,

methods, or relations contained in Y. Note: If objects are removed from X in this
fashion, the possibility exists that invalid relations involving those objects are still
present.

b. Input:
c. Returns:

4) R-Extension:
a. Intuition: This operation “r-extends” X by first adding to it the objects given in Y, and

then further generates new relations between each object originally in X and each
object newly added from Y.

b. Input:
c. Returns:

5) R-Reduction:
a. Intuition: This operation “r-reduces” X by removing from it the objects given in Y, and

also removes from X any relations that involved at least one object in Y.
b. Input:
c. Returns:

6) Composition:
a. Intuition:
b. Input:
c. Returns:

7) R-Composition:
a. Intuition:
b. Input:

 Page 6

c. Returns:

 Page 7

Methods:
1) Method:

a. We use a functional notation to consider methods as operations that have an input
domain and an output range. The domain of a method is defined as the Cartesian
product of its parameter types, and the range is the Cartesian product of its return
types. This is the broadest definition of a method, and we will see that more specific
types of methods can be expressed by adding further constraints to the domain and
range. Note that this triple notation is synonymous with the classic functional notation,
and will be used interchangeably.

2) Object Method (of b):
a. These are specified in object definitions, and are taken when invoked to apply to a single

instance of that object. To express this Object-Oriented notion of instance methods, we
extend our notation of methods to include the implied parameter (typed accordingly) to

represent the instance on which the method is invoked. The notation of
here specifies a constraint on the domain of an object method – b must be a component
of the domain for any object method of b. Other components may exist as well, but are
optional.

3) Constructors (of b):
a. Constructors for a given object are those methods, object or otherwise, whose range

includes an instance of that object. The notation here expresses that
constraint – b must be a component of the range for any constructor of b. If a
constructor is also an object method, the instance returned may be either the original
instance, in a possibly modified state, or a new instance entirely. The distinction is
dependent on the semantics of the method, and is beyond the scope of our notation.
Common examples of Constructors include classic “setter” methods, and of course the
traditional instantiating methods by that name.

4) Interrogators (of b):
a. Interrogators for a given object are those methods, instance or otherwise, whose

domain includes an instance of that object but whose range does not. These methods
may provide information about an existing instance, but cannot be used to produce or
alter those instances. The classic “getters” are common examples of this type of
method.

5) Calculators:
a. Calculators are another notional classification of methods, but at this point we can see

that they are redundant. Every calculator either changes the state of an instance (and is
therefore a Constructor) or does not (and is therefore an Interrogator). No extra
notation is needed to describe this class of methods.

 Page 8

Commentary on Components:
1)

2)

3)

4) Properties are specified in terms of a name and a type, where name is a String and type specifies
the type of values that instances of this property are allowed to take.

5) An object (class) is specified in terms of its name, a set of property specifications, and a set of
method specifications. The name is a String, and either or both of the sets of properties and
methods can be empty.

a) An object instance is specified in terms of its id, its type, and its property instances. The
type must correspond to a specified object (class), and the property instances in turn
correspond to the property specifications included in that object definition.

6) See explanation of Method types on page 2.

7) Next in the progression is the notion of a key. Keys are properties that, across the set of all
instances of a given object (class), have a unique value.

8) It now makes sense to refer to keyed objects, a special subset of objects for which there are
defined at least one key.

a) Keyed object instances are, as expected, instances of an object (class) that satisfies the
keyed object requirement. One of the property instances included in this object instance
must then be an instance of the key.

9) Applications are specified in terms of a name, a set of objects, a set of relationships between
those objects, and a set of methods.

 Page 9

Open Questions:
Do we still have a notion of Application instance that needs to be expressed?

