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nonlinear electron inertial Alfv6n waves 
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Abstract. We describe nonlinear resonance absorption of compressional Alfv6n 
waves in a model magnetosphere. It is shown that the ponderomotive force of 
excited standing shear Alfv6n waves can lead to nonlinear saturation and spatial 
structuring of field line resonances and that in low-beta plasmas ponderomotive 
saturation may occur before other nonlinear saturation processes such as the Kelvin- 
Helmholtz instability. The effects of finite electron inertia axe also considered, 
and it is shown that spatial structuring of field line resonances may occur with 
scale sizes compatible with those found in discrete auroral arcs. Results axe 
discussed in the context of three-dimensional numerical solutions to the resistive 

magnetohydrodynamic equations and based on a simplified analytical model of 
nonlinear resonance absorption. 

1. Introduction 

Ultra low frequency (ULF) waves in the terrestrial 
magnetosphere [Cummings et al, 1969; Samson, 1972] 
are often identified as global compressional wave modes 
trapped inside an inhomogeneous magnetospheric cav- 
ity [Kivelson and Southwood, 1985, 1986]. These global 
modes can excite field line resonances (FLRs) through 
mode conversion of compressional Alfv•n wave energy 
to shear Alfv•n waves (SAWs) on localized resonant 
magnetic surfaces in the magnetosphere. Mode con- 
version in the magnetosphere is a three-dimensional 
process which, in general, requires sophisticated com- 
putational models for accurate modeling [Samson and 
Rankin, 1994; Rankin et al., 1993b] of nonlinear effects. 
Here we shall discuss nonlinear effects that might be re- 
sponsible for the saturation of certain FLRs and which 
can give rise to azimuthal and radial structuring of the 
wave fields. In the magnetosphere, the SAW excited 
at the resonance surface constitutes a standing pattern 
along the magnetic field lines with a node in the mag- 
netic field and an antinode in the velocity field in the 
equatorial plane. In a warm plasma,/• • 1, it has been 
demonstrated that FLRs that have been excited to large 
amplitude may evolve nonlinearly through the Kelvin- 
Helmholtz (KH)instability [Rankin et al., 1903b]. 

We shall consider mode conversion of compressional 
waves to SAW FLRs on closed geomagnetic field lines 
close to the Earth, at 8-10 Rr in the equatorial plane. 
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A primary interest in these FLRs is that they can pro- 
duce field-aligned currents (FACs) above the auroral 
ionospheres which are compatible with those found in 
many discrete auroral arcs, with FACs amounting to 
several pA/m 2. During one half of the wave cycle, an 
excited FLR will have a large upward FAC in the lat- 
itudinal center of the waveform, with two regions of 
smaller-amplitude, downward directed FACs on either 
side [Greenwald and Walker, 1980]. Observational fea- 
tures of these FLRs show a 180øphase decrease with 
increasing latitude, as a result of spatial gradients in 
the Alfv6n speed toward the Earth. For 1- to 4-mHz 
waves, FLRs also exhibit periodic restructuring over 
timescales of several minutes. For example, Samson 
et al. [199.6b], using meridian scanning photometer and 
magnetometer data, identified a 2.6- to 2.8-mHz FLR 
in the evening sector which was observed for a number 
of hours. The H/• emissions from precipitating protons 
placed the location of this FLR on geomagnetic field 
lines threading the inner edge of the plasma sheet. The 
FLR was observed to form large-scale vortex structures 
during various stages of its evolution. Vortex formation 
in FLRs may occur if the velocity field of the excited 
SAW can be driven to large amplitude (roughly 100 
km/s over a scale size of 0.1 Rr in the equatorial plane 
of the magnetosphere), which is possible, provided dis- 
sipation and nonlinear saturation processes are unim- 
portant. In the equatorial plane, the velocity fields of 
FLRs might then allow Kelvin-Helmholtz (KH) insta- 
bilities to form. This offers an explanation for the large- 
scale vortex structures (with scale sizes of hundreds of 
kilometers) given by Samson et al. [1996b] and in other 
auroral arcs [Rankin et al., 1993b; Samson and Rankin, 

Possible external sources that can excite FLRs in- 

clude pressure pulses from the solar wind [Southwood 
and Hughes, 1983; Yumoto, 1988; Allan and Poulter, 
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1992; Lee and Wei, 1993], and many measurements of 
ULF standing wave FLRs in the terrestrial magneto- 
sphere have been made, from the early observations of 
Cummings et al. [1969] and Samson [1972], to a variety 
of more recent observations that use HF radar [Ruo- 
honiemi et al., 1991; Samson et al., 1992; Walker et al., 
1992; Fenrich et al., 1995], ground-based magnetome- 
ters [Samson et al., 1992; Ziesolleck and McDiarmid, 
1994], and optical techniques [Samson et al., 1992; Sam- 
son et al., 1991; Xu et al., 1993; Samson et al., 1996a]. 
These observations indicate that in the equatorial mag- 
netosphere, FLRs might have radial scale sizes of one 
tenth of an Earth radius or less. When mapped along 
dipole field lines to the ionospheres, these scale sizes be- 
come comparable to those found in many 10-km-scale 
discrete auroral arcs. Indeed, substantial observational 
evidence now suggests that many auroral arcs are asso- 
ciated with FLR structures, as discussed, for example, 
by Samson et al. [1996a, b]. 

A further interest in FLRs is that they can lead to 
large parallel electric fields, of the order of i V/m, above 
the ionospheres, particularly at altitudes in the vicinity 
of i Rz, where inverted-V electron precipitation is com- 
monly observed [Weimer and Gumerr, 1993]. As dis- 
cussed byaoertz [1984], Wei et al. [1994] and $treltsov 
and Lotko [1995], large parallel electric fields in FLRs 
can be generated through electron inertia effects after 
the wave fields have narrowed to a number (typically 
6 or 7) of electron inertial lengths. With finite elec- 
tron inertia, the wave fields are limited in amplitude by 
dispersive effects, and a FLR will normally consist of 
a spatial wave train that has a number of electric field 
peaks as one moves equatorward of the resonance po- 
sition. These features have previously been attributed 
to electrostatic shocks [Mozer, 1981], but they may be 
more simply explained as the dispersive effects of FLRs. 
A recent study by Samson et al. [1996a], who used 
the Canadian Auroral Network for the OPEN Program 
Unified Study (CANOPUS) array of magnetometers, 
meridian scanning photometers, and a digital all-sky 
imager, showed strong evidence of auroral arcs formed 
by FLRs. They also observed spatial structure within 
FLRs which had latitudinal scale sizes of 10-15 km that 

are consistent with dispersive FLRs. Meridian scans of 
the all-sky imager data showed that the arcs had an 
inverted-V structure, with maximum energies ranging 
from several hundred eV to i or 2 keV. 

Within the framework of linear analysis, a number 
of important and ground-breaking theories have been 
developed to explain the coupling that occurs between 
compressional MHD wave energy and standing SAW 
FLRs [Kivelson and Southwood, 1985, 1986; Chen and 
Hawegawa, 1974; Southwood, 1974; Zhu and Kivelson, 
1988; Lee and Lysak, 1989], and a clear understand- 
ing of the linear behavior of FLRs has emerged. The 
wave fields in FLRs can, however, become quite large, 
and clearly at some point nonlinear effects should be 
considered. One key question is whether nonlinear ef- 
fects still permit large amplitude waves to form and 
whether the nonlinear evolution of FLRs is in agree- 
ment with observations. In previous work, we discussed 

a mechanism of SAW nonlinearity which arises due to 
the ponderomotive force of the waves. This mechanism 
is especially important in the case of standing SAWs 
and may result in ion acceleration [Allan, 1993; Li and 
Ternerin, 1993], wave profile steepening, field-aligned 
spatial harmonic generation [Rankin et al., 1994], and 
chaotic-like temporal behavior of the amplitudes of ex- 
cited waves [Tikhonchuk et al., 1995] . Our theoretical 
findings correlate well with large density depletions (of 
order one) that have been observed in association with 
SAWs [Boehrn et al., 1990]. 

Using a model in which a SAW is excited by a driver 
field in a homogeneous plasma, it was demonstrated by 
Rankin et al., [1994] and Tikhonchuk et al., [1995] that 
the ponderomotive force leads to nonlinear detuning of 
the standing SAW eigenmode from the driver, and ul- 
timately the excited SAW can saturate by decoupling 
itself from the driver. These results suggest that the 
ponderomotive force of standing SAWs might also be 
an effective mechanism of nonlinear saturation of FLRs 

[Rankin et al., 1995] driven by global compressional 
modes. The ponderomotive saturation mechanism may 
effectively compete with the Kelvin-Helmholtz instabil- 
ity or precede and modify its temporal development. 

In this paper we derive a simplified set of equations 
that can be used to describe ponderomotive effects in 
dispersive field line resonances. We derive analytical 
expressions for the amplitude and time of ponderomo- 
tive saturation of field line resonances, describe observa- 
tional features of our models, and compare them with 
three-dimensional (3-D) fully nonlinear MHD simula- 
tions in a simplified 3-D Cartesian geometry. 

2. Basic Equations 
We describe FLRs in a global magnetospheric system 

for which the governing equations consist of the full 
set of resistive MHD equations with the inclusion of 
electron inertia in the generalized Ohms law. 

op 
0--• + V. (pV) = 0 (1) 

(0 p 5+v.v v = -VP +J x B + vV2V (2) 

0B 

V x E = Ot (3) 

V x B = #oJ (4) 

me 0J 
w + v x B = + ne 2 0t 

Here B is the magnetic field, E is the electric field, J is 
the electric current density, p is the density, and P is the 
pressure. The coefficients y and • stand for the plasma 
viscosity and resistivity, respectively. In the Ohms la.w, 
equation (5), the electron inertial term is represented 
by the second term on the right-hand side, while the 
first term on the right describes the effects of magnetic 
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field diffusion. We have ignored the electron pressure 
term in Ohms law, although under certain conditions it 
may become important in the vicinity of the equatorial 
plane. Electron inertial and ponderomotive effects be- 
come appreciable at low altitudes 1-2 RE, where large 
parallel electric fields are commonly observed and where 
the plasma • is significantly less than me/mi. We have 
also ignored the nonlinear electron inertia term in Ohms 
law and, because we are considering only ULF waves, 
have omitted the Hall term. In presenting various forms 
of solution to the above equations, we note that the 
electric field can be eliminated by substituting Ohm's 
law (equation (5))into the Faraday equation (3), and, 
correspondingly, the current density can be eliminated 
from the momentum equation (2) using Ampere's law 
(equation (4)). This leads to a set of equations involving 
the eight unknowns V, B, p, and P. 

In the following sections we present solutions to the 
MHD equations in a 3-D Cartesian geometry [Rankin et 
al., 1993a; Wei et al., 1994]. In this model, coordinate x 
is radial, y is azimuthal, and z is field aligned. The iono- 
spheres are at opposite ends of straight magnetic field 
lines and are bounded on the left by the magnetopause 
and on the right by a boundary that is earthward of 
the turning point of compressional Alfv•n waves. This 
so-called box model is an approximation that gives a 
reasonable description of the behavior of radially lo- 
calized wave modes in the near-Earth magnetosphere. 
The justification for this model is provided by the fact 
that the perpendicular scale of the wave structures be- 
ing examined is much less than their field-aligned ex- 
tent. Further justification is provided by the fact that 
the eigenfunctions and eigenfrequencies of shear Alfv•n 
and compressional waves are primarily influenced by the 
density and magnetic field in the region of the equato- 
rial plane, which is correctly represented in our model. 
However, the box model does not account for the geo- 
metrical variation of perpendicular scales along the geo- 
magnetic field. Therefore when we turn to a discussion 
of inertial effects, we choose a perpendicular scale that 
is relevant to the ionospheric end of the field line, where 
inertial scales become important. The box model mag- 
netosphere also neglects magnetic curvature. However, 
the effects of curvature are negligible for the low-m wave 
modes discussed in this paper. 

3. Slowly Varying Envelope Equations 
In developing a simplified model of FLRs, we shall ex- 

amine the nonlinear evolution of coupled compressional 
and SAWs in an inhomogeneous low-beta plasma by 
constructing a perturbation expansion of the fields in 
equations (1)-(5) of the form A = A0 +•A (1) + •2A(2)+ 
e3A (3), where • is a small expansion parameter which 
is proportional to the amplitude of the excited Alfv•n 
wave or driver. In the linear approximation, to order 
•, we can neglect the effect of plasma pressure by as- 
suming that B = 2poPo/Bo • << 1. We shall also assume 
that dissipation effects are small and account for them 
in the linear approximation. Defining the plasma dis- 

placement V = Oi•/Ot, the x component of the equa- 
tion of plasma motion provides a relationship between 
•x and bz 

1 0 2 A 2 2 0 2 - -;•-¾ V •/e0+•/•0 V a o •'• v• •- v• o•- 

o,) (6) 
where VA(2): •B•/•oPo is the locm Alfv•n velocity. 
Similarly, we can •so write the • component of the 
pl•ma displacement in terms of b•: 

(7) 

Making use of Faraday's law and taking the diver- 
gence of the equation of plasma motion perpendicular 
to the ambient magnetic field, we also obtain a relation- 
ship between bz and •x, 

1 0 2 Ao 2 •72 0 2 •,/po+•l/Pto •72 0 - - 
02• d I (8) 

where V•_ stands for the gradient perpendicular to the 
ambient magnetic field. 

In a homogeneous plasma the linear dispersion rela- 
tions for SAWs and compressional Alfv•n waves follow 
from equations (6)-(8) if we assume variations of the 
fields of the form exp i(wt- k•x- kyy- kzz): 

- 1 + k2,ke 2' -- 1 + k2,ke 2' (9) 
The second expression describes the compressional 

wave, and although the dispersion relation of this mode 
is modified by electron inertia, it can easily be shown 
that the SAW (the first expression in equation (9)) is 
more significantly affected by the term 1 + k 2 Ae 2 in the 
denominator. In an inhomogeneous plasma, we may re- 
gard kz as a function of x and note that as the wave 
fields of the FLR narrow with time, k• may become 
large enough to move the resonance position equator- 
ward. More significant, perhaps, is the development of 
a parallel electric field Ez = -iwAe2poJz, which, again, 
only becomes significant after the wave fields have nar- 
rowed and, correspondingly, the parallel current has be- 
come very large. Note that the parallel current is en- 
tirely due to the magnetic field of the SAW. 

Continuing with our derivation, we now consider a 
plasma that is subjected to an external source of fre- 
quency w which excites SAWs in the vicinity of the 
critical layer, x = Xc, where the resonance condition, 
Vaa(Xc) = w •/kz •, is satisfied. For low-m (long azimuthal 
wavelengths) modes characteristic of many FLRs in the 
magnetosphere, it is known that the most significant 
enhancement of the fields is experienced by the SAW 
magnetic field component, by, and displacement, iv. 
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Keeping this in mind, we shall proceed with our study 
of the nonlinear temporal evolution of FLRs by consid- 
ering standing waves along the ambient magnetic field 
lines. 

We can simplify equations (6)-(8) by taking a Fourier 
transform in the homogeneous direction y and by us- 
ing a slowly varying envelope approximation in time. 
This implies that the z component of the magnetic field 
and the z and y components of the displacement can 
be represented as A(z, y, z, •) = Re[A(z, •) exp(iwt - 
ik•y)]sin(kzZ), where the envelope approximation in 
time means that the complex amplitude A(z,t) is as- 
sumed to change in time on a scale that is much longer 
than the driver period. The explicit coordinate depen- 
dence in our equations arises from the inhomogeneity of 
the reference state, ¾•(•), and since coupling between 
the compressional and SAW modes is strongest in a 
narrow region surrounding the resonance point, we, we 
can approximate the Alfv•n velocity there by a linear 
function: 

Using equation (10) and the approximate relations, 
b,,• = kzB0•,,•, we complete our system of equations 
by writing equations (6)-(8)in the form 

2i 20 • i r z--zc, 1 
• ø• ) • b, (13) 

•+5 •+ • +•n b, 
_ _•o0• (14) 

(• 20 • i• •-• 1) 

Here the operator F• = -(n/•0 + u/Po) • describes 
resistive or viscous Alfv•n wave damping, and the dis- 
persion relation for SAWs w• expanded around the res- 
onance point • according to 

1 k•( x-xc 
For the purposes of the nonlinear description of the 

resonance, we have retained the ponderomotive den- 
sity perturbation, 5p, in this expansion. To derive an 
equation for the density perturbations, we note that 
the ponderomotive force of a SAW excites plasma mo- 
tion along magnetic field lines and drives correspond- 
ing nonlinear density perturbations. The equation for 
the density perturbations follows from the longitudinal 
z component of the equation of motion in the equa- 
tion (2), together with the continuity equation, equa- 
tion (1). Nonlinear effects appear in second order, and 
it is straightforward to derive an equation which de- 
cribes a slow magnetosonic plasma wave (SMW) that is 
excited by the ponderomotive force of SAWs: 

O • O O •) 6_•p_ O • b•v (11) 
Here Cs = v/6P/6p is the ion acoustic velocity and 
Fs = -(v/p0)V 2 is an operator which describes spa- 
tial damping of the ion acoustic wave. Because of the 
dependence on by, the driven SMW remains localized 
to the resonance region where the SAW magnetic field 
is large. Recognizing the very different wave periods 
of the SMW and the SAW, we can average the right- 
hand side of equation (11) over the fast timescale w -• 
of the SAW, and find that the ponderomotive force has 
a slowly varying in time component which drives second 
spatial harmonic, (k v = 0,2kz), density perturbations, 
5p/po = n cos(2kzz). The amplitude n(x, t) of these 
density perturbations satisfies the driven ion acoustic 
wave equation 

0 • 0 ) w • • •-• + F s • + 4 kz2 C • n = - 2--•o2 b y . (12) 

•2 w • V•(xc) ' (16) 
2 2 

where k• - ky + k z. Note that in equation (16), the 
right-hand side vanishes only at x - x•, and away from 
the resonance position a spatial frequency mismatch 
Aw(/) = w(x•- x)/2œ develops which is responsible 
for phase mixing. 

4. Model Equations for Coupled 
Standing Shear Alfv4n and Slow Mode 
Waves 

Equations (13)-(15)describe three Alfv•n eigenmodes 
in an inhomogeneous plasma: one compressional mode 
(the first equation) and two shear ones. The first two 
equations are coupled due to the plasma inhomogeneity; 
the third mode is attached only in a three-dimensional 
geometry, i.e., provided ky • 0. This last case is of in- 
terest for the study of FLRs because for low-rn modes, 
only the y component of the magnetic field experiences 
a strong enhancement at the resonance position. One 
should also note that when damping and electron in- 
ertia are negligible, shear components excited on par- 
ticular field lines do not easily couple to neighboring 
field lines (x is simply a parameter), and thus SAWs 
excited on different field lines will evolve more or less 
independently. 

It was shown by Rankin et al. [1994] that small- 
amplitude SAWs can excite large ponderomotive den- 
sity perturbations which nonlinearly modify the SAW 
because of a spatial modulation of the Alfv•n veloc- 
ity profile (equation (10)). It is evident from equations 
(13)-(15) that for the situation considered here, the den- 
sity perturbations lead to a nonlinear shift of the reso- 
nant layer position, xc -• xc -nL/2. In the model of 
homogeneous plasmas [Tikhonchuk et al., 1995] this ef- 
fect is interpreted as nonlinear frequency detuning. On 
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a particular magnetic field line, it leads to local nonlin- 
ear saturation of shear Alfv•n waves that are driven by 
an external monochromatic source. We shall see that 

similar effects occur in the case of inhomogencou3 plas- 
mas. 

We shall consider here the case of relatively weak den- 
sity perturbations for which the nonlinear shift of the 
critical layer is much less than the distance between ze 
and the turning point, zt, of the compressional Alfv6n 
w.e, = >> IlZ- We 
damping of the compressional Alfv•n wave for the sake 
of simplicity. With these assumptions, the density per- 
turbation and time derivative terms can be neglected 
in equations (13) and (14), which then reduce to the 
equation 

02bz 10bz (2 2x- XC) b z Ox 2 x - xc Ox ky + k z L - 0, (17) 

studied in the theory of linear resonance absorption 
[$peziale and Catto, 1977]. According to $peziale and 
Catto [1977], the field bz contains forward, bz +, and back- 
ward, b•, propagating waves in the transparent region, 
x < xt, and becomes evanescent in the forbidden region, 
x > xt. In the vicinity of the critical layer, x - x½, bz 
is approximately constant, bz(x) • b½[1 q-(q/2)• 2 In •], 
with only a logarithmic divergence of its second deriva- 
tive. Hereq- (kzL) 2/3 2 2 kylk z and • -- (z-zc)k•/31L 1/3 
are the standard notations used in resonance absorp- 
tion theory, and the amplitude of the magnetic field 
in the critical layer, bz(xe) • be, can be related to 
the incident compressional Alfv•n wave energy flux, 
So = E•bf/2•o, through the energy conservation con- 
dition: 

= So. • q(k•L)•/s kz 2•0 
The absorption coefficient A(q), which is a function 

of the parameter q only, has been calculated numeri- 
cally by Forslund et al. [1975]. For practical appli- 
cations the following simple asymptotical expressions 
may be useful: A(q << 1) • 2.6q(1 - 1.7q), A(q >> 1) • 

4q3/2 _ exp(_•q3/2) as Speziale 2 exp(- • ) discussed by 
and Catto [1977]. The maximum absorption A • 0.5 
occurs for q • 0.5. 

From the discussion above, it can be seen that in 
the vicinity of the resonant layer the right-hand side 
of equation (15) can be treated as an approximately 
constant source, ibcku/kz, which drives the shear com- 
ponent by. In the absence of the electron inertia terms, 
the equations for by and for the density perturbation, 
Equation (12), are of the same form as the equations for 
nonlinear driven SAWs that arise in homogeneous plas- 
mas [cf. Tikhonchuk et al., 1995, equation (18)]. Writ- 
ing our inhomogeneous plasma equations in the same 
form as Tikhonchuk et al. [1995], we find 

(19a) 
(19b) 

where b(t) = b•/Bo. Here R = k•b•/k,Bo is the dimen- 
sionless strength of the driver, and Aco(z) is the spatial 
linear frequency detuning parameter defined earlier. In 
passing, we will note that when electron pressure is im- 
portant, the dispersion term in equation (19) can be re- 
placed by +iw/2p•O2b/Ox 2, where p• = AeVTe/V• and 
VTe is the electron thermal speed. This dispersion is of 
opposite sign to electron inertia and may become im- 
portant in the hot plasma region near to the equatorial 
magnetosphere. A detailed analysis of the competing ef- 
fects requires a more sophisticated model that includes 
field-aligned variations of the ambient parameters. Here 
we restrict our discussion to effects that might dominate 
near to the auroral ionosphere. 

Equations (19a) and (19b) describe the nonlinear in- 
teraction between two parametrically coupled oscilla- 
tors: a SAW and a SMW. The SAW oscillator expe- 
riences a nonlinear frequency shift, wn/4, that is di- 
rectly proportional to the amplitude of the SMW, and 
the SMW oscillator is driven by a ponderomotive force 
that depends on the intensity of the SAW. This sys- 
tem (equations (19a)and (19b))has two characteris- 
tic timescales: One timescale is related to the magne- 
tosound period or plasma ]3, and the other is associated 
with the timescale for SAW nonlinear effects. In the fol- 

lowing section we discuss the behavior of the nonlinear 
model of FLRs described by equations (19a) and (19b). 

5. Nonlinear Saturation Mechanisms 
and Timescales 

In this section, we shall discuss saturation mecha- 
nisms and characteristic timescales associated with the 

model equations derived in section 4. First of all, we 
note that equations (19a) and (19b) posess conserva- 
tion properties. Multiplying equation (19a) by b* and 
adding it to its conjugate, we obtain after some rear- 
rangement, 

d 2 [2 coo ( b, Ob) 
On the left-hand side of this equation, the second 

term represents spatial damping, the third term results 
from the poynting flux of the electron inertia SAW, and 
the right-hand side is a source term due to the com- 
pressional driver. Note that the density perturbations 
in equations (19a) and (19b) do not affect the energy of 
the SAW. The density perturbation produces a tempo- 
ral nonlinear fequency shift that can turn on and off the 
coupling, but there is no net transfer of energy between 
the driven SMW and the SAW. 

First of all, we review the linear predictions of our 
model by ignoring the density perturbation in equation 
(19a). Neglecting dissipation and electron inertia for 
the moment, the linear solution for b reads 

b= R W----sin (•Acot) exp ( i ) Aco - • Acot . (21) 
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Using the above expression, it can be seen that in 
the vicinity of the resonance position, within the thin 
layer 6z • 4•rL/wt (where the linear mismatch Aw is 
small), the excited SAW experiences secular growth, 
b = Rwt/2. This growth corresponds to absorption of 
the energy of the compressional Alfv•n wave. Indeed, 
the shear mode energy W - f-•oo dxlbv[•/41 •o grows 
linearly with time and, according to equation (18), is 
associated with an amount of compressi•nal wave ab- 
sorption W = ASot. 

In the absence of nonlinear effects, spatial wave damp- 
ing and group velocity effects of electron inertia in equa- 
tions (19a) and (19b) will eventually lead to saturation 
of b at the resonance layer. Considering first of all dis- 
sipative effects, it can be shown that linear dissipative 
saturation will occur in the case of a weak driver satis- 

fying R < 8(]•y)l/2(ra/•M) 3/2, where 7 is the adiabatic 
index. From equations (19a)and (19b), the level of dis- 
sipative saturation can then be found by comparing the 
effective spatial damping, r A ~ (,/,0 + •/•0)/(5•) •, 
with the characteristic scale width of the resonance 

•6x/L, at saturation. The timescale of dissipative sat- 
uration, tds, and the amplitude of the SAW magnetic 
field at saturation are given by 

td, • 4•r rl q- , by,d, • •BoR•td,. 
In the case of ULF waves in the magnetosphere, vis- 
cosity and resistivity are likely unimportant, and the 
coefficient r//#0 in. equation (22) can be replaced by, 
for example, the corresponding term due to ionospheric 
damping. 

In the linear regime where dissipation and/or iono- 
spheric damping is negligible, electron inertia will lead 
to saturation of the wave fields of the FLR. This oc- 

curs as a result of the dispersive properties of electron 
inertia SAWs which can propagate energy out of the res- 
onant layer at the perpendicular group velocity. In this 
case, the timescale for saturation, and the scale size of 
structure within the resonance layer at saturation, can 
be estimated from a comparison of the order of mag- 
nitude of the second and last terms in equations (19a) 
and (19b), again assuming that the resonance layer is of 
thickness 5x at the time of saturation. The amplitude, 
time of saturation, and thickness of the resonant layer 
at saturation are given by 

teis • -- , 

1 

by,eis • • BoRwteis, 
. 

In the situation where the scale length of the Alfv6n 
speed profile is of the order of hundreds of electron in- 
ertial lengths, the above expressions predict that struc- 
ture within the resonance will have a spatial scale of the 
order of several electron inertial lengths. This is consis- 
tent with many observations of auroral arcs [Borovsky, 
1993]. 

If dissipation and electron inertia effects are small, 
the estimated levels of saturation of the FLR defined 

by equations (22) and (23) become irrelevant, and non- 
linear ponderomotive effects should be considered. For 
a weak driver and/or a warm plasma characterized by 
the inequality R < (8•7) 5/4, the density perturbation 
(equations (19a)and (19b))responds adiabatically, and 
we find that_ periodic pulsations of the amplitude of the 
SAW occur. These pulsations are characterized by the 
following parameters: 

by,max.- 321/3 (1:•/•7)1/3 Bo, 
[nlmax: 161/3(R2/]•'y) 1/3, 
t r - 15.4w-•(/•y/R2) •/3. (24) 

where by,max is the maximum amplitude of the mag- 
netic field at the resonance layer, Inlmax is a parameter 
that gives an estimate of the maximum amplitude of the 
ponderomotive density perturbations in the resonance 
layer, and tr is the period of nonlinear SAW pulsations. 
The numerical factor in the equation for t r comes from 
the numerical approximation of an integral. It can be 
shown also that the width of the region of nonlinear sat- 
uration of the FLR corresponds to a small amount of 
frequency aletuning, 161 < 0.4kzCsRe/s/(•37) 5/•, and 
is localized to a small region 6x < L(tS7R2) x/a sur- 
rounding the resonance layer. 

In the opposite limit of a strong driver and/or a colder 
plasma satisfying R > (8f/7) •/4, there are no real os- 
cillations of the density perturbation over the time of 
nonlinear saturation, and the density is found to be sec- 
ularly growing. In this limit, we can neglect the term 
•an in the second equation of system (22). Saturation 
of the SAW amplitude occurs when the nonlinear term 
in the first equation of system (22) becomes of the same 
order of magnitude as the driver. In this case, the SAW 
magnetic field component is found to saturate according 
to 

by,max: 2BoR 3/•, tsat -- 6a• -1 i• -2/5, (25) 
where by,max is the saturation amplitude of the SAW 
and tsat is the time of nonlinear saturation. In this case, 
the induced nonlinear dephasing between the driver 
and the excited SAW at the resonance position leads 
to burst-like chaotic pulsations around the level by,max. 
These pulsations are due to the fact that the SAW can 
only gain energy from the compressional driver during 
intervals for which the phase slip between the waves 
is not changing rapidly. In the strongly driven cold 
plasma case, the ponderomotive force in the resonant 
layer can easily excite density perturbations compara- 
ble to the background density. The thickness of the 
nonlinear layer in that case does not depend on the 
driver strength. 

In discussing linear and nonlinear saturation timescales, 
it is interesting to note that the regime of pondero- 
motive saturation defined by equation (25) will easily 
dominate electron inertia effects provided the driver 
satisfies the inequality R > (L/Ae) -s/s. Electron in- 
ertia effects will then manifest as a secondary process 
in the nonlinear evolution of FLRs. We should also 
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mention here that ponderomotive SAW amplitude sat- 
uration prevents further energy absorption of the com- 
pressional Alfv6n wave. This may affect the magnitude 
of the driver field bc (assumed constant in our model) 
at the resonance layer, and a self-consistent analysis df 
equations (12) and (13)-(15)is then required to include 
the effects of compressional wave amplitude depletion 
at the time of resonance saturation. However, this is 
better addressed by solving the full system of equations 
defined by equations (1)-(5). Nonlinear saturation of 
the acoustic waves might also be affected by Landau 
damping. This can possibly lead to high-energy electron 
bursts that are often seen near the polar ionospheres. 
Landau damping requires a kinetic treatment for ions 
and is outside the scope of the MHD formalism used in 
the present study. 
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Figure 2. The amplitude of the (a) magnetic field 
and (b) density perturbation as a function of z ob- 
tained from the numerical solution to equations (19a) 
and (19b). Results are shown at a time corresponding 
to t = 4tsar. Parameters correspond to Q = 4.25 and 
R = 1.32 x 10 -4. The electron inertia length is set to 
zero. 

(b) 

0 0.2 0.4 0.6 0.8 1.0 

x (Normalized) 
Figure 1. The temporal behavior of the amplitude 
of the (a) magnetic add and (b) density perturbation 
obtained from the numerical solution to equations (19a) 
and (19b). Parameters correspond to Q = 4.25 and 
R = 1.32 x 10 -•. The electron inertia length is set to 
zero. 

6. Numerical Analysis of Simplified 
Nonlinear Model of FLRs 

In this section, we shall examine some of the predic- 
tions of our simplified nonlinear models of FLRs that 
will later be compared with numerical solutions of the 
fully nonlinear three-dimensional (3-D) MHD equations 
[Rankin et al., 1993b]. As mentioned by Tikhonchuk 
et al. [1995], it is convenient to define a nonlinear 
parameter Q = fZt•t, where • = 2k•C• is the fre- 
quency of the driven acoustic wave in equations (19a) 
and (19b), and t•t is a convenient timescale for non- 
linear effects, as defined by equation (25). Crudely 
speaking, very strong nonlinear behavior corresponds 
to Q œ 1, whereas-Q > 1 results in increasingly milder 
nonlinear behavior. As discussed above, different tem- 
poral behavior of the excited SAW and ponderomotive 
density perturbation is predicted for the weakly and 
strongly nonlinear cases, respectively. 

As an example, we show in Figures 1-3 results of 
the numerical solution to equations (19a) and (19b) 
for Q = 4.25 and R = 1.32 x 10 -4. Figure la is a 
grey scale plot showing the excited magnetic field b as 
a function of ß and time, with the time unit normal- 
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Figure 3. Tempor• behavior of (a) magnetic field am- 
plitude, (b) amplitude of density perturbation, and (c) 
nonlinear ph•e shift, obt•ned from the numericM so- 
lution to equations (19a) and (19b). Parameters corre- 
spond to Q = 4.25, and R = 1.32 x 10 -4. The electron 
inertia length is set to zero. 

ized to tsat. Figure lb shows the excited density per- 
turbation that is driven by the ponderomotive force of 
the excited SAW. Note that as time proceeds, the mag- 
netic field and density perturbation are constricted into 
a channel that becomes increasingly more narrow with 
time. The earthward edge of this channel stays at a 
more or less fixed x-position, while the resonance peak 
shifts slightly earthward (equatorward) with time. Fig- 
ure 2 shows a cut along the x direction of Figure i at 
a time near 4tsar. In Figure 2b, the local decrease in 
density means that the resonance position, defined as 
the position xc where ;v = kzVa(x), moves to higher 
values of x. An analysis of equations (19a) and (19b) 

shows that the resonance position cannot shift signifi- 
cantly beyond the first minimum in the magnetic field 
(near x - 0.6 in Figure 2a). Narrowing therefore takes 
place asymmetrically, and in the absence of significant 
thermal pressure, the resonance width can become par- 
ticularly narrow, 6x • Lvf• in the strongly nonlinear 
case. If the plasma/9 is very small , nonlinear effects 
may cause the width of the FLR to become comparable 
to the electron inertial length, a regime we shall discuss 
later. 

Figure 3 shows the temporal behavior of the wave 
field and density perturbation at two locations along x, 
namely, x = 0.5, and in the vicinity of the magnetic field 
maximum (x = 0.58) in Figure 1. This figure shows 
that the SAW magnetic field saturates at the instant 
when the density perturbation goes through a mini- 
mum. Figure 3c shows the temporal nonlinear phase 
shift between the driver and the excited SAW at the po- 
sition x = 0.5. Ponderomotive saturation of the SAW 

magnetic field occurs due to the temporal nonlinear fre- 
quency shift, ;vn/4, in equation (19a). Physically, this 
effect is the result of the ponderomotive force creating 
a nonuniform distribution of plasma along geomagnetic 
field lines. Note that the integrated mass density along 
each flux tube remains constant. However, the redis- 
tribution of plasma causes a decrease in the natural 
frequency of the magnetic field line with time. Once 
the nonlinear phase shift associated with this effect has 
reached 7r/2, the driver and locally excited SAW get out 
of phase and momentarily do not interact. When the 
instantaneous amplitude of the density perturbation re- 
turns through its minimum, the excited magnetic field 
can once again become reinforced by the driver. How- 
ever, the earthward shift and narrowing of the resonance 
means that the peak value of the SAW magnetic field 
will move slightly earthward. The faint lines in Figures 
3a and 3b correspond to temporal fluctuations of n and 
b near to the shifted resonance position, where the lin- 
ear frequency detuning parameter A;v is nonzero. This 
contributes to the more rapid temporal growth that is 
seen near t = 5tsat. At this time, the ponderomotive 
force has led to a near discontinuity in the density in 
the radial direction. Because dissipation and electron 
inertia are absent from this example, the resonance con- 
tinues to narrow asymmetrically, and ultimately either 
of these two effects will be required to prevent further 
narrowing of the resonance. 

For completeness, Figure 4 shows results for a warm 
plasma, satisfying Q - 12.25 and R - 1.32 x 10 -4. 
In this case, the increased thermal pressure prevents 
strong perturbations of the density. The maximum den- 
sity perturbation is only 3% or so of the ambient den- 
sity by the time t = 7tsat, and differences between this 
warm plasma case and the results shown in Figure 3a 
are apparent. In particular, the asymmetrical shift of 
the SAW magnetic field peak amplitude occurs much 
later in time, after the resonance has grown to large am- 
plitude. The maximum amplitude of the excited SAW 
magnetic field in Figure 4 is roughly a factor of 2 larger 
than in Figure 3a, and is determined by equation (24) 
rather than by equation (25). However, in spite of the 
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Figure 4. Temporal behavior of magnetic field ampli- 
tude obtained from the numerical solution to equations 
(19a) and (19b). Parameters correspond to Q = 12.25 
and R = 1.32 x 10 -4. The electron inertia length is set 
to zero. 

demonstrates that the finite group velocity of the SAW 
enables the wave to propagate earthward of the turning 
point. Figure 5b shows the amplitude of the SAW mag- 
netic field and provides a comparison with results ob- 
tained by setting Ae to zero. With finite electron inertia, 
the amplitude saturates at a lower level because of the 
earthward directed poynting flux. The maximum am- 
plitude also shifts earthward after the wave fields have 
narrowed to several electron inertia lengths, in agree- 
ment with equation (9). Note that in this example, the 
electron inertial length is selected such that the reso- 
nance width at saturation is larger than for the pon- 
deromotive mechanism. 

Now we briefly consider electron inertia effects in a 
cold plasma for which the nonlinear parameter Q = 1.5. 
Figure 6 shows the amplitude of the real part of the 
SAW magnetic field and nonlinear density perturba- 
tions as a function of the x coordinate and time. The 

initial development up to time 2tsar is similar to the 
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relatively small density fluctuations in this example, the 
temporal ponderomotive nonlinear phase shift that de- 
velops still leads to saturation of the wave fields. 

In a warm plasma, the ponderomotive saturation am- 
plitude is large, and correspondingly, the resonance is 
very narrow. In a cold plasma, the asymmetrical shift 
and extreme narrowing of the resonance can occur early 
in time, and both of these examples suggest that at 
some point nonideal MHD effects must be considered. 
If dissipation is small, the first modification that occurs 
is due to electron inertia. This is illustrated in Figure 
5, which uses parameters of Figure 4, with Q = 12.25, 
R = 1.32 x 10 -4, and the electron inertial length finite 
and chosen such that the x dimension is 400Ae, where 
A• is the electron inertia length. Figure 5a shows 'the 
real and imaginary parts of the SAW magnetic field and 
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Figure 5. Shear Alfv•n wave magnetic field near the 
time 4tsar. In Figure 5a the real part (bold line) and 
the imaginary part (faint line) of the magnetic field are 
sketched for the case where the x dimension is 400A•. 
In Figure 5b the amplitude for the electron inertia case 
bold line) is compared with the case for which A• = 0 
faint line). Other parameters correspond to Q = 12.25. 
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periodic boundary conditions in the azimuthal y and 
field-aligned z directions, and in the direction of inho- 
mogeneity x, we apply a reflecting boundary condition 
at x = L,. At w = 0, we propagate into the system a 
monochromatic fast mode wave which reflects from its 

turning point near to the center of the inhomogeneity 
direction. Part of the fast mode energy evanescently 
tunnels to the resonant layer where it excites a SAW 
FLR. The remaining part of the fast mode energy re- 
flects from the turning point and is able to freely exit 
through the ß = 0 boundary. Note that the ß = 0 
boundary conditions involve using the fast mode dis- 
persion relation w = w(k) to relate wave quantities 
(6p, b, v) at ß = 0 to an imposed electric field. Then, 
the boundary conditions for each wave quantity at x = 0 
are expressed in the form 

o! o! (26) Ot V•x x = 20t ' 
which enables outgoing waves to pass freely through 

• the boundary. In the above equation, f represents any 
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Figure 6. Temporal behavior of magnetic field ampli- 
tude and density perturbation obtained from the nu- 
merical solution to Equations (19a) and (19b). The 
nonlinear parameter Q = 1.5, and the x dimension is 
400Ae. 

of the electron inertia SAW. This is shown in Figure 
7a, which shows the real part of b at times equal to 
1.2tsar and 2.4tsar, respectively. Later in time, Figures 
6 and 7b indicate that a transition stage occurs whicta 
involves a new set of spatial and temporal scales. We 
shall return to an explanation of this later. 
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7. Results of Three-Dimensional 

Numerical Simulations 

In this section, we shall investigate the validity of 
the results described above by using a fully nonlinear 
3-D computer model that solves the complete set of 
MHD equations (1)-(5). Our computer model imposes 

x (Normalized) 

Figure 7. Temporal behavior of magnetic field ampli- 
tude obtained from the numerical solution to equations 
(19a) and (19b). In Figure 7a, t = 1.2t•t (bold line) 
and t = 2.4t•t (faint line). In Figure 7b t = 2.4t•at 
(bold line) and t = 4t•t (faint line). The nonlinear 
parameter Q = 1.5, and the x dimension is 400Ae. 
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Figure 8. The temporal behavior of the amplitude 
of the (a) fundamental mode magnetic field and (b) 
2k• component of the density perturbation from the 
numerical solution to equations (1)-(5). Parameters 
correspond to Q • 4.25. The maximum contour level 
in Figure 8a corresponds to 0.18B0, and in Figure 8b, 
6p = 0.33p,•, where p,• is the density at the resonance 
layer. The electron inertia length is set to zero. 

nonlinear system and in the simplified model (equations 
(19a) and (19b)). In the latter, the driver is modeled 
by the constant term R, and nonlinear effects on the 
driver are therefore ignored. In the full system, the 
interaction of the fast mode driver and excited SAW is 

.,.modeled self-consistently. In our simulations, we also 
impose an ambient magnetic field that is uniform along 
x so that the gradient in the Alfv•n velocity is due to a 
spatially varying density profile. 

In the following, we consider numerical solutions to 
the full set of MHD equations for different values of 
the nonlinear parameter Q. In the first case that is 
considered, for which Q • 4.25, we impose a flux of 
compressional Alfv•n waves at the boundary of our sys- 
tem, x - 0, which gives a driver strength correspond- 
ing to R • 0.018. Figure 8 shows the Fourier ampli- 

tudes (taking transforms in the y and z directions) of 
the y component of the fundamental mode (ky, kz) of 
the SAW magnetic field and the ponderomotive force 
induced density perturbation (0,2k•) as a function of 
x and time t, where the time axis is normalized to the 
number of wave periods of the incident fast mode driver. 
The localized nature of the excited SAW field and pon- 
deromotive density perturbation is quite evident in this 
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Figure 9. TemporalSbehavior of the amplitude of (a) 
the fundamental mode magnetic field, (b) nonlinear 
phase shift, and (c) ponderomotive density perturbation 
obtained from numerical solutions to equations (1)-(5). 
In Figure 9b, the bold line corresponds to Figure 9a, and 
the faint line is on a field line that is outside of the peak. 
In Figure 9b, the (0, 2kz) spatial harmonic dominates 
higher modes. Parameters correspond to Q • 4.25. 
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figure. Figure 9 shows the nonlinear phase shift, density 
perturbation, and resulting local saturation of the wave 
fields of the excited SAW. On comparing Figures 9a and 
9b, it can be seen that the SAW magnetic field saturates 
on a given field line when the ponderomotive nonlinear 
phase shift is approximately •r/2. The faint horizontal 
line in Figure 9b shows the nonlinear phase shift that 
occurs on a field line which is outside of the FLR (to the 
right of the peak). It is clear that ponderomotive effects 
occur within the region of strong SAW fields. In Figure 
9c we have also plotted the amplitude of (0, 2nkz) higher 
spatial harmonics of the density. These can be seen as 
the low-amplitude modes in Figure 9c, where it is clear 
that the lowest wavenumber mode (0,2kz) dominates 
over higher spatial harmonics. This confirms that our 
simplified model of FLRs derived earlier provides a valid 
description of the nonlinear dynamics in this example. 

The time dependence of the bz component of the 
compressional wave magnetic field is shown in Figure 
10. This component of the magnetic field represents 
the driver term in the simplified model of FLR excita- 
tion discussed above. It can be seen that bz is nearly 
constant across the resonance layer (from x - 0.4 to 
x - 0.6) during the first few periods of the excited SAW. 
However, after nonlinear effects become important, bz 
becomes spatially inhomogeneous in a narrow region 
surrounding the resonance layer. At the time of non- 
linear saturation, the spatJolly averaged driver strength 
in the vicinity of the resonance layer corresponds to 
R • 0.018. According to equation (25), the nonlinear 
saturation timescale is approximately 4.8 wave periods, 
and the saturated amplitude of the y component of the 
SAW magnetic field is predicted to be approximately 
0.18B0. These estimates are found to be in good agree- 
ment with the numerical results shown in Figure 8. Sub- 
tracting the 2 Alfv6n period linear ramp up time of the 
compressional •ave field, Figure 9 shows that near the 
center of the magnetic field structure, nonlinear satura- 
tion occurs in approximately 4.6 periods, again in good 
agreement with the theory. 

0.025 
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'" 0.015 

0.01 

0.005 
0 0.2 0.4 0.6 0.8 1 

x (normalized) 

Figure 10. Temporal behavior of the amplitude of 
the bz component of the fundamental mode magnetic 
field obtained from numerical solutions to equations 
(1)-(5). Parameters correspond to those of Figure (8). 
Curves labeled a-c correspond to time t - 3.9rs^w, 
t- 6.8rs^w, and t- litsAw, respectively. 
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Figure 11. Radial dependence of (a) the By compo- 
nent of the magnetic field and (b) the plasma density 
obtained from numerical solutions to equations (1)-(5). 
The faint lines correspond to t = 6.StsAw, and the bold 
lines to t = litsAw. Other parameters correspond to 
those of Figure 8. 

Figure 11 shows the y component of the magnetic 
field and plasma density at one particular azimuthal 
position in the equatorial plane of the magnetosphere. 
Note that the x-axis scale is now plotted in terms of 
the real spatial coordinate. The faint lines show results 
near the time of nonlinear saturation, and the solid lines 
correspond to t • 11ts^w. Figure 11b shows the mod- 
ification to the plasma density that occurs as a result 
of the ponderomotive force of the excited SAW. The 
fluctuation in density near ;r - 0 is due to the incident 
compressional wave. In Figure 11a, a slight earthward 
shift of the SAW magnetic field with time can be seen. 
It can also be observed that following the time of non- 
linear saturation, the radial scale size of the resonance is 
quite narrow. Our simplified model equations indicate 
that following the time of ponderomotive saturation, 
nonlinear structuring can lead to radial scale sizes that 
are an order of magnitude smaller than for dissipative 
saturation. Unfortunately, in our 3-D model the spatial 
resolution of the finite difference grid prevents us from 
following the development of the FLR beyond the time 
indicated in Figure 11. 

In terms of physical quantities, the minimum radial 
scale sizes reached in Figure 11 are of the order of 
0.1 Rr, with the overall width of the FLR being up- 
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0.2 0.39 0.58 0.77 0.96 

x (Normalized) 

Finally, we consider nonlinear ponderomotive effects 
in the presence of finite electron inertia. Figure 12 com- 
pares warm and cold plasma effects. In Figure 12a, pon- 
deromotive effects are negligible, while in Figure 12b, 
parameters are chosen such that Q is approximately 1.5 
at the resonance position. It is seen that ponderomotive 
effects lead to a significant motion of the FLR across the 
spatial gradient in the Alfv6n speed profile and that 
narrowing of the resonance occurs as it shifts position. 
The results in Figure 12b also show that ponderomotive 
steepening of the Alfv6n speed profile, which is very sim- 
ilar to that observed in Figure 11, leads to a truncated 
Airy-like pattern of the SAW magnetic field. This is 
more clearly seen in Figure 13, which shows cuts of the 
data in Figure 12 at times corresponding to t = 6tsAw 
and t = 12tsAw, respectively. This results from the fact 
that mode conversion is now tak.;ng place in a steepened 
Alfv6n speed profile, with a correspondingly narrower 
resonance width. Note that the results shown in Fig- 
ure 13b are in agreement with the behavior observed in 

e• :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: i..:.:-.'. '.'.-::.:/:...-•i:i:: '" .' !::::?:•i?.iii!ii:•iii:•iiiiii:•i!?•iii:ii??•iiiiiiiiiiiiii Figure 7a, which was obtained using the reduced MHD 
•:•i•i•i•i•::•::•::•::•:• ................ •i•i•::::::•i•i•:.•:':•.:¾•:-•:..'.." ::::::::::::::::::::: '-.' .•¾:•i•i•::.-".:•::•::•i•::•::•::•i•::•::•::i::•::•::•i.-'::i::•::!::•i::i models described earlier. The truncation of the spatial 

•!i!!!iiiiiii! wave train in Figure 13b may explain why undamped 
:!'..::.-• Airy pattern signatures of FLRs are not easily observed. • i•i•:i•?•?i:??•i•-•::: .......... ?•-i':.':•-:......::-: :i:'-.:.i-:• i'i!i?ii:i iiii:ili: i iiiiii:ii?iii•i!![:il ure 12b differs significantly from that shown in Figure 
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Figure 12. Temporal behavior of the amplitude of the -0.05 
fundamental mode magnetic field. Shown are (a) warm 0 0.1 0.2 0.3 0.4 0.5 
plasma with Q = 24 and (b) cold plasma with Q • 1.5. 
In both cases, the electron inertia length is finite. x/•e 

proximately 1 /i•r. Taking account of mapping factors 
between the equatorial plane and the ionosphere, the 
smallest scale size corresponds to a few kilometers above . 

the ionosph'ere and is compatible with latitudinal scale 
sizes of FLRs observed in the F region [Samson et al., 
1992]. In the equatorial plane, Figure 11 also suggests 
that tyroradius effects might play an important role in 
the evolution of FLRs, with electron inertia effects be- 
coming more important in the auroral accelerator region 
where the electron inertia length can be of the order of 
1-2 km. We again caution that the limiting scale size 
in Figure 11 is set by the dissipation scale size of our 
numerical scheme. In reality, this limiting scale size is 
likely to be much smaller, and thus our results suggest 
that nonlinear radial structuring of FLRs may become 
significant. 
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Figure 13. Spatial dependence of the fundamental mode 
magnetic field at t = 6ts^ w (faint lines) and t = 12ts^ w (bold 
lines). Shown are (a) warm plasma with Q = 24 and, (b) 
cold plasma with Q = 1.5. In both cases, the electron inertia 
length is finite. 
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ening of the wave packet is prevented by the dissipation 
present in the numerical scheme, while in the reduced 
MHD model, a transition stage is observed, as discussed 
previously. An analysis shows that the transition ob- 
served in the reduced model, i.e., Figure 7b, is due to a 
secondary nonlinear process called the parametric decay 
instability [Galeev and Oraevskii, 1963]. This involves 
the decay of the SAW into a slow magnetosonic wave 
and a pair of daughter electron inertia SAWs. The dis- 
persion associated with electron inertia SAWs means 
that frequency and wavenumber matching conditions 
can be satisfied for the decay instability provided the 
electron inertia !ength is finite. The growth rate for the 
decay process is exponential, and this introduces new 
temporal and spatial scales into the problem. This is 
beyond the scope of the present analysis and will be 
discussed in a separate publication. 

$. Conclusions 

We have presented theory and numerical simulations 
of highly nonlinear plasma processes associated with the 
ponderomotive force of standing shear Alfv•n FLRs in 
a box model magnetosphere. The ponderomotive force 
drives nonlinear density perturbations which evolve as 
slow mode acoustic waves. The excited slow modes 

change the natural frequency of the magnetic field lines 
on which they are excited, and it has been shown that 
this can lead to nonlinear saturation of electron inertia 

SAWs that are being resonantly excited by compres- 
sional MIlD fast mode waves. Using a simplified set of 
reduced MIlD equations, we have derived expressions 
for the amplitude, width, and timescale of ponderomo- 
tire saturation and have shown that in low-/• plasma, 
the ponderomotive nonlinearity is the controlling factor 
in determining the temporal evolution of FLRs. 

In the limit of vanishing electron inertia, pondero- 
motive saturation is accompanied by an asymmetrical 
narrowing and nonlinear radial structuring of the ex- 
cited SAWs. With finite electron inertia, the asymmet- 
rical narrowing and structuring of the FLR wave form 
coincides with earthward (equatorward) motion. This 
arises due to the perpendicular group velocity of elec- 
tron inertia SAWs. When ponderomotive effects are 
dominant, the nonlinear steepening of the Alfv4n speed 
profile confines the excited wave field to a narrow region, 
so that the spatial radial profile resembles a truncated 
Airy function. The plasma excavated by the pondero- 
motive force leads to the formation of a density cavity. 
Such cavities have been observed in the auroral zone. 

Ponderomotive saturation of FLRs is accompanied by a 
parametric decay of the excited electron inertia SAWs. 
The parametric decay evolves as a secondary process 
in the nonlinear evolution and introduces a new set of 

spatial and temporal scales that is currently under in- 
vestigation. • Fully nonlinear 3-D Cartesian simulation 
results have also been presented. The simulations have 
confirmed the main findings associated with the reduced 
MHD models. 

Finally, it is interesting to compare the level of pon- 
deromotive.saturation of FLRs with another nonlinear 

process: the Kelvin-Helmholtz (KH) instability. It is 
well known that the KH instability of a plasma shear 
flow has a maximum growth rate given approximately 
by ?KH • 0.3Vy/a, where a is the thickness of the 
shear layer. In the case of FLRs, the thickness of the 
shear layer corresponds to a • 5x]2 • 2•rL/•t, and Vy 
can be related to the amplitude of the magnetic field 
by according to Vy ~ wby/Bokz • t•2t/2kz so that 
?KH ~ O.024t•st2/kzL. It is expected that the KH 
instability will only affect the resonance if it can de- 
velop during one period of the compressional Alfv•n 
wave. Therefore we may roughly estimate ?KH • •v 
as the condition for FLR saturation due to the KH 

instability [Samson and Rankin, 1994] and arrive at 
by,sat •* 3.2Bov•kzLR and tsat •-• 6.5a• --1 v/kzL/R. The 
comparison of the timescales for saturation of the FLR 
by the KH instability and by the ponderomotive mech- 
anism (equation (25))demonstrates explicitly that the 
competition between these two nonlinear mechanisms, 
at least in the case of cold plasma, f• • 1, depends 
on the relationship between the driver strength R and 
the plasma inhomogeneity scale k•L. The pondero- 
motive nonlinearity develops faster and saturates at a 
lower level if R • (kzL) s. Our initial assumptions of 
weak plasma inhomogeneity, k•L • 1, and weak driver, 
R • 1, favor the ponderomotive nonlinearity. How- 
ever, it may not be so under realistic magnetospheric 
conditions because the parameter k•L may be less than 
one and an increase of the plasma thermal pressure will 
lengthen the ponderomotive saturation time. We also 
cannot exclude the possibility that the KH instability 
will develop as a secondary instability of a ponderomo- 
tively saturated FLR. 
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