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Abstract — The Android operating system is 

increasingly exposed to a growing list of dangerous 

malware attacks, these attacks cost users and businesses. 

There is considerable research into Android malware 

detection, malware behavior, interaction and 

permissions. However, there is much less research effort 

around digital forensic on the Android platform, which 

has been the victim of the malware. Very recent 

enhancements to the open source Volatility framework 

make it a useful memory image forensic tool to 

investigate Android malware. Android memory forensics 

is immature, it is also complicated to conduct compared 

to other popular operating systems. In this paper, we 

explore and document the processes of building an open 

source Android forensics investigation environment, 

planting samples of Android malware, acquiring 

Android memory images of these samples and the 

forensic investigation of them. This research will 

facilitate future memory forensics investigation of 

Android systems and Android malware analysis.  

Index Terms — Android, Malware, Forensics, Memory 

Image, and Volatility Framework. 

 

I. INTRODUCTION  

ndroid operated devices are one of the most 

competitive technology devices in the market, 

with the fastest growing market share within the 

mobile industry [1]. Technology experts predict that 

Android will dominate the mobile market in the 

coming decade. Additionally, recent research shows a 

huge year over year increase in the number of Android 

specific malware attacks [1,3]. It is relatively 

straightforward to investigate such attacks when they 

occur on mature operating system platforms such as 

Windows and Linux. However, due to the immaturity 

of Android memory image forensics, it is relatively 

problematic and time consuming to conduct such 

investigations on Android systems. In this research, we 

take advantage of recent advances in Android memory 

forensics, utilizing the open source digital forensic 

suite, Volatility. we explore a sample of these malware 

attacks,  this powerful investigation framework written 

in Python, recently capable of reading memory images 

from different Android kernel versions, and capable of 

performing a wide range of memory analysis and 

digital evidence extraction.  
Volatility analyzes memory images, which must 

be extracted from the physical memory of the 

Android device, the only freely available utility 

capable of extracting these images is Linux Memory 

Extractor (LiME) [12]. This loadable kernel module 

can acquire the full Android memory address range, 

either over the network or via an SdCard [10]. LiME, 

along with various new Android specific Volatility 

plugins and a custom built profile for Volatility, are 

used in our research, in order to analyze running 

malware through the exploration of hidden processes, 

process structure, malicious Android package 

activities, process caches, suspicious network 

connections, and other suspicious executed code.  

Commercial tools like forensic toolkit and 

Encase [19,17] can be used for Android content 

recovery and forensic investigation, and these tools 

are fairly easy to deploy, but are expensive solutions 

for small to medium business. This research 

illustrates Android memory forensics using open 

source, freely available tools. We use the recently 

available, first stable version of Volatility, rather than 

older beta releases, as this will provide more timely 

and accurate evidence and analysis, because of its 

very recently developed Android specific plugins 

which allow the investigator to explore Android 

Dalvik instances, process structure and memory 

caches. 

In the following sections, we discuss current 

work in the Android memory forensics field, then 

describe building an Android memory forensics 

investigation environment, we also discuss the 
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challenges involved in acquiring an Android memory 

image and finally we describe an experimental 

forensics investigation of a number of Android 

malware samples.  

 

II. ANDROID MEMORY FORENSICS: AN 

OVERVIEW 

There is wide consensus, at least in general outline, 

about the procedures involved in a forensic 

investigation [5,17,21]. NIST guidelines on 

cellphone forensics (SP 800-101 and 800-86), for 

example, conform to this consensus, and have 

defined the digital forensics procedure as consisting 

of four major steps: acquire, preserve, analyze and 

present.  This specification is very similar to any 

typical forensic investigation process description, and 

applies regardless of the medium being investigated, 

including memory. Android memory forensics is 

immature, however, and each step in this process is 

more complicated than with more mature operating 

systems. Consider first acquisition: for the Linux 

operating system, Ivor Kollar`s dev/fmem memory 

acquisition tool has long been available, and this tool 

is capable of full Linux memory capture; other 

mature memory acquisition tools for Linux include 

Memdump by IBM, crash utility by Red Hat and 

many more [22,23,24]. The case is similar to the 

Windows operating systems, with many mature 

memory acquisition tools, such as the popular Encase 

WinEn and MoonSols toolkit, Once a memory image 

of these systems is acquired and preserved, many 

forensics investigation tools, including Volatility 

Crash dump analyzer, Raw Image Analyzer and 

FORENSIC TOOLKIT, come with mature Windows 

and Linux investigation tools. These tools are 

capable of reading different memory image formats, 

coming from different operating system versions, 

decoding them into digital artifacts, ready for 

evidence analysis and presentation. In brief, this 

process seems to be straightforward and well 

understood on popular operating systems platforms 

[7,10,17,19,25].    

As noted, the situation is currently much more 

complicated when it comes to Android memory. 

While non-volatile flash NAND memory for an 

Android system can be easily acquired using Android 

Debug Bridge, the evidence extracted from this 

process will be helpful only for recovery of file 

system artifacts, e.g. videos or images, whereas it is 

in Android memory that we may find such 

potentially crucial artifacts as executed code, 

processes and their structure, active network 

connections, and so on. 

Android memory acquisition is the first and an 

essential step in an Android memory forensics 

investigation, but Android memory is complicated to 

acquire, by comparison. 

 Like other operating systems, Android is 

constantly releasing new software version upgrades, 

and has diverse hardware support. This makes it 

difficult for forensics researchers to have an 

automated system for Android memory acquisition, 

since the latest and most mature solution, LiME, is 

developed for Linux (Android uses a modified Linux 

kernel), but is a loadable kernel module requiring 

compilation to work on Android, a task further 

complicated by the fact that Android runs on the 

advanced RISC machines architecture [17,19]. LiME 

is capable of acquiring a full memory image from an 

Android device, but must be compiled for the 

advanced RISC machines architecture and then 

compiled for an Android specific kernel image, and 

finally loaded as a kernel module into an Android 

device [8,10]. These steps are preliminary to an 

actual Android memory acquisition, and can be very 

challenging to perform, especially for those who are 

not experts in both Android and the Linux operating 

system [17], and in systems administration generally. 

Volatility forensics investigation framework, an 

open source tool written in Python, utilizes plugins to 

analyze the structure of, and produce output about, 

memory. Volatility is capable of analyzing most 

operating systems, and recently advertises support for 

investigating Android phones. The main challenge of 

investigating Android phones was their memory 

address space support, since Android memory 

structure is different than other operating systems, 

and translating it to an understandable output was a 

challenge that developers have just recently achieved, 

with the help of LiME.   

This is not to say that demonstrations of these 

tools are not documented. Joseph Syvle, e.g., 

introduces LiME and briefly studies an infected 

application on Android, including a high-level 

investigation of Android application permissions. 

Holger Macht [9] utilized LiME and Volatility in his 

research, and created Volatility privacy analysis 

plugin scripts. This documentation, however, does 
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not focus on the complexities and details of the full 

forensic investigation process itself, including its 

preliminaries, and moreover was written at a time 

when Volatility advanced RISC machines support 

was premature.  

 

III. ANDROID MEMORY FORENSICS 

INVESTIGATION ENVIRONMENT AND 

ACQUISITION 

A forensics investigation is typically divided into 

four basic steps: acquisition, preservation, analysis 

and presentation.  An obvious prerequisite to this 

process is that the investigator has a usable forensic 

investigation environment, so that the process can in 

fact be seen as consisting of five steps: build, acquire, 

preserve, analyze and present. The build step focuses 

on having those tools and techniques in place that are 

necessary for performing subsequent steps of the 

forensic investigation process, while acquisition 

consists in acquiring a forensically sound copy of the 

media under investigation. Because the first two 

steps of this process (build and acquire) are, for 

Android memory investigations, particularly 

complicated, and in fact interrelated, we dedicate this 

section to a discussion of their complexities and 

potential pitfalls, but we depict in outline the whole 

process in Figure 1. 

The first two steps of this five step process are 

for us interrelated because, unlike in the case of more 

mature operating systems, we lack an automated 

Android memory acquisition process. Android 

operating system version updates are consistent, fast 

and diverse; moreover, Android prohibits automated 

installation of loadable kernel modules. These two 

facts about Android make an acquisition 

considerably more complicated, and make it essential 

that the proper tools and techniques are in place, or at 

least well understood, prior to the time sensitive 

acquisition step of a forensic investigation involving 

Android memory. The aspects of the build step that 

we cover here are: (1) ensuring that a usable LiME 

kernel module is available to load on to the Android 

device for memory acquisition; and (2) that 

Volatility, a memory forensics suite, is installed and 

prepared for an Android specific memory 

investigation. 

Online guides and instructions like Volatility 

Wiki, the Android Development website, and others 

[4,5,6,8] have written excellent guides about building 

an Android memory investigation environment. They 

detail the cross-compilation process of an emulated 

Android kernel image, and the compilation of the 

LiME kernel module for that Android emulated 

image. However, there are complexities and pitfalls 

not emphasized in these online guides.  For example, 

Android GNU compiler collection versions can 

conflict with Macintosh and Linux 12.6 64 bit 

operating systems, and lack of careful attention to 

these and similar details will make it impossible to 

prepare the LiME loadable kernel module source 

code for compilation. 

In setting up the environment for an Android 

memory acquisition and analysis, we do not need a 

full Android development repository (10 GB in size), 

and using virtualization technology will allow 

snapshots or cloned backups of the investigation 

progress, which is especially important when the 

processes are immature and therefore buggy, as in the 

case of Android. The acquisition step in particular of 

Android memory is, however, challenging. When 

compiling an emulated Android goldfish kernel 

image, it is essential to set various environment 

variables in order to direct the kernel cross-compiler 

to the right Android tool chain, needed to support the 

host operating system; these variables can be defined 

within the host operating system bash profile path or 

at the terminal, and either approach will avoid 

compiler errors, once our kernel variables are 

defined, Android kernel image settings must be based 

on the current Goldfish kernel code file, in order to 

successfully load the LiME kernel module. Kernel 

module loading must to be enabled on the Android 

device containing the memory to be acquired, and 

this must be done during kernel configuration, and 

using the configuration file provided with the kernel 

code. 

 Furthermore, the Android kernel version and the 

LiME kernel module version must match, and this 

can be verified by examining the LiME kernel 

module headers and the compiled Android kernel 

version, a failure to match kernel and kernel module 

will produce an init_module failure error, because of 

Android's module versioning check policy, designed 

in part to protect users from security threats. 
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    Figure 1: Android Forensics Investigation workflow 

 

IV. EXPERIMENTAL INVESTIGATION  

Like most modern operating systems, Android 

divides memory into user and kernel space. The 

Android kernel is based on the Linux kernel; with 

Android, user space contains the Dalvik virtual 

machine (VM), and application software (distributed 

in APK format) runs on top of the VM. Each 

Android package contains the process instructions, 

set in its class.dex file, the message digest of the 

signatures, and the resource file of permissions 

(named Manifest.xml) [25]. 

Android malware can be packaged as APKs 

[18,19], whether they be Worms, Trojans, Viruses, 

Rootkits or Botnets. We acquired a diverse sample of 

these Android packages, and then classified them 

according to their attack type, symptoms, purpose 

and impact on the user or system (Table 1). 

Table 1: Android malware attack classifications.  

 

This experiment utilizes Volatility version 2.3.1, 

with a custom built Android advanced RISC 

machines profile, made specifically for our goldfish 

2.6.29-ge3d684d kernel image; this image was cross-

compiled using the 4.7 Android software 

development kit GNU compiler collection, and then 

equipped with a compiled LiME 1.1 module to the 

above kernel image. This set of tools was utilized to 

investigate the sample malware depicted in Table 1. 

We first ran the Android kernel image emulator, 

acquired a clean memory image, preserved it to a 

dedicated folder, and then performed our memory 

investigation on it. Second we uploaded our first 

Android ZitMo infected application to the emulated 

Android kernel image, acquired another image after 

running the infected application, and then wiped the 

Android kernel image. Third, we uploaded the Angry 

Birds infected application, and again uploaded the 

LiME module, ran the Angry Birds application, 

followed the instructions from the application 

prompt, acquired an image, preserved the image and 

wiped. Fourth, we uploaded the Obada Trojan 

Title  Attack type Symptoms Purpose Impact 

O Bada 

Trojan 
Backdoor  Escalated 

Privileges 
Malicious 

Apps 
System 

availability 

ZitMo 

(Zeus) 
Update  Confirmation 

of functions  
mTAN  Money 

SMS  

Trojan 

Malicious   Escalated 

Privileges 
Malicious 

Apps 
System 

availability 

Angry 

Birds  
Malicious   Hidden 

transactions 
Premium 

Charges 
Money 
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application, ran the emulator and, since this 

application is a backdoor, we couldn’t find any actual 

Android application in our emulator to run, so we 

wiped the emulator kernel. Finally the SMSsend 

trojan was uploaded, along with LiME, and the 

malware was executed according to its instructions, 

and again the memory image was acquired and 

preserved. For each sample malware, data analysis 

was compared with the clean image, looking for: 

 Hidden processes associated with malware 

infected applications. 

 Changes to PIDs & PPIDs. 

 Attempts to initiate Internet connections. 

 Applications initiating system administration 

requests and escalated privilege access. 

 Applications launching third party Android 

application stores. 

 Noticeable changes to processing time, e.g. 

slow response. 

 
In achieving this goal, first we ran psxview 

plugin, looking for hidden processes, by gathering 

the processes structure view from different places 

like the kernel proc list, the kernel process hash table 

and the kmem_cache, if a process is one of these 

places, but not in the other, then this leads to further 

investigation of that process, this is a suspicious 

behavior, where the pstree plugin was used to 

identify processes relationship and to see the 

hierarchical view of these processes, for instance 

looking at ZItmo,  processes name 

com.Android.mms  with PID 692 and UID 10017, 

falls under system_server PID 95, this process is a 

child of the parent Zygote PID 42, following this 

investigation procedure, we are able to identify 

processes, escalated privileges and malicious 

processes structure. For further evidence gathering 

and digging into a certain suspicious processes 

structure, we used pslist | grep zygote, looking into 

app processes on the disk, Zygote controls the 

Android Dalivk machine apps, it contains the shared 

libraries like the libdvm.so, these libraries control the 

Android process classes, piping Zygote to a file will 

grab all the contents of the Android Dalvik machine, 

when we did that using proc_maps –p 42 and save to 

zygote-maps file, then looked at the content of each 

sample and with the  help og the pstree plugin, we 

figured all Android processes fall under the process 

system_server which is a sub processes of the 

Zygote,  piping the system_server process map to a 

file using proc_maps –p 95 to a file called 

system_server-maps, at this point, we preserved data 

of all Zitmo system processes, For instance 

com.Android.mms process from pstree list, showed 

more details under system_server process, an inode 

505 with reading flag, now we dumped a memory 

map of this application, and looked at each instance 

of this application to understand the structure, and 

compared it to the com.Android.mms code under the 

system_server process, we were able to see the code 

with the memory app but not in the system_server 

proc. 

 Then to look at this from a different angle, we 

moved into networking investigation, looking for 

networking activities, started with running arp plugin 

for every sample to see my arp table, then utilizing 

the ifconfig plugin, trying to figure my network 

interfaces and ip addresses, where we found the 

route_cache pluging showing caches of the best route 

to take when an application is trying to initiate a 

connection to an outside server, with that been said, 

any malicious address means evidence of malicious 

application activities and leads to further 

investigation, we took all the ip addresses and looked 

them up, using website that can identify blacklisted 

ip addresses. 

There were a number of notable results derived 

from examining our memory images samples. Again, 

In the case of infection with Zitmo malware app, the 

plugin pslist showed a created PID of 559 and inode 

505 within the system_server, notably after loading 

Zitmo app, the system to initiate a process named 

com.Android.mms, PID 692 under UID 10017, in an 

attempt to request the user to confirm premium 

message charges initiation. Whereas, in the Angry 

Birds application analysis, once this application was 

launched, a new process with PID 925 was also 

triggered and this application prompts the user to 

click on a link, in order to unlock the Angry Birds 

game to its full version, this second application was 

named ds.rio.unlocker in the process list within 

memory, under UID 10047, an argument that is 

leading to another processes of triggering the Internet 

browser in an attempt to access the Internet, we 

found this creating a memory bug, also to exhaust the 

system resources and make my Android very slow, 

after that, running the route_cache plugin, we were 

able to confirm  attempts to connect to both 

204.191.12.35 and 204.191.12.24 as well.   
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Installing and running the Smssend application 

directs the user to the Goolge Play store, and 

interesting enough, within the memory image 

acquired,  PID 919 shows as an install.app process 

with UID 10047, this process seems to have multiple 

inodes within the Zygote (inodes 725, 529 and 2457) 

which seem like an attempt to escalate privileges; 

also, an android.browser process ID 955 with UID 

10035 was visible in the memory image, with a series 

of child processes: a process named compiler with 

PID 961, one named background handler with PID 

972, thread-80 with PID 942, and logcat with PID 

947; these processes seemed to slow the operating 

system, and freeze the Google Play store connection. 

 

V. CONCLUSION AND FUTURE WORK  

 

In this paper, we described Android memory imaging 

investigation processes and procedures, mainly 

building an Android environment for memory image 

investigation and its acquisition. We acquired 

samples of Android malware memory images, then 

examined this sample utilizing digital forensics 

science, this is found to be different than performing 

such an investigation on popular operating systems 

platforms like Linux, Windows and Macintosh. The 

acquisition of Android memory is yet to be 

automated, with LiME kernel module being the one 

and only open source solution available. We explore 

the process of loading this module to an Android 

system, utilizing it and acquiring an image. We 

detailed the challenges of cross-compiling LiME 

kernel module, the module versioning compatibility 

issues with Android kernel and the difficulty in 

loading kernel module to an Android kernel. This 

research also used Volatility framework to 

investigate the acquired images, with plugins that 

support LiME memory image address space, we were 

able to identify suspicious and hidden processes and 

in addition to that, we noted and observed escalated 

system privileges and internet connection requests, 

these networking requests to connect to malicious 

destination servers. With this being said, we found 

some of Volatility plugins still to mature and the 

Android memory acquisition processes to be 

automated, this field of Android system continues to 

evolve with the speed of Android version upgrades 

and diversity. 

 

APPENDIX 

 

Code Appendix  

 

1. LiME makefile – sample file of LiME makefile 

modified. 

obj-m := LiME.o 

LiME-objs := tcp.o disk.o main.o 

KDIR_GOLD := /home/hanaysha/Android-src/ 

KVER := $(shell uname -r) 

PWD := $(shell pwd) 

CCPATH := /home/hanaysha/Android-

ndk/toolchains/Advanced RISC Machines-Linux-

Androideabi-4.7/prebuilt/Linux-x86_64/bin/ 

default: 

 # cross-compile for Android emulator  

 $(MAKE) ARCH=Advanced RISC Machines 

CROSS_COMPILE=$(CCPATH)/Advanced RISC 

Machines-Linux-Androideabi- -C $(KDIR_GOLD) 

EXTRA_CFLAGS=-fno-pic M=$(PWD) modules 

 $(CCPATH)/Advanced RISC Machines-

Linux-Androideabi-strip --strip-unneeded LiME.ko 

 mv LiME.ko LiME-goldfish.ko 

 $(MAKE) tidy 

tidy: 

 rm -f *.o *.mod.c Module.symvers 

Module.markers modules.order \.*.o.cmd \.*.ko.cmd 

\.*.o.d 

 rm -rf \.tmp_versions 

clean: 

 $(MAKE) tidy 

 rm -f *.ko  
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2. Module dwarf compilation makefile [8] 

 

obj-m += module.o  

KDIR := /home/hanaysha/Android-src/  

CCPATH := /home/hanaysha/Android-

ndk/toolchains/Advanced RISC Machines-Linux-

Androideabi-4.7/prebuilt/Linux-x86_64/bin/  

DWARFDUMP := 

/home/hanaysha/dwarf/dwarfdump/dwarfdump  

-include version.mk  

all: dwarf  

dwarf: module.c  

 $(MAKE) ARCH=Advanced RISC Machines 

CROSS_COMPILE=$(CCPATH)/Advanced RISC 

Machines-Linux-Androideabi- -C $(KDIR) 

CONFIG_DEBUG_INFO=y M=$(PWD) modules  

 $(DWARFDUMP) -di module.ko > 

module.dwarf 
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