

1

Abstract — The Android operating system is

increasingly exposed to a growing list of dangerous

malware attacks, these attacks cost users and businesses.

There is considerable research into Android malware

detection, malware behavior, interaction and

permissions. However, there is much less research effort

around digital forensic on the Android platform, which

has been the victim of the malware. Very recent

enhancements to the open source Volatility framework

make it a useful memory image forensic tool to

investigate Android malware. Android memory forensics

is immature, it is also complicated to conduct compared

to other popular operating systems. In this paper, we

explore and document the processes of building an open

source Android forensics investigation environment,

planting samples of Android malware, acquiring

Android memory images of these samples and the

forensic investigation of them. This research will

facilitate future memory forensics investigation of

Android systems and Android malware analysis.

Index Terms — Android, Malware, Forensics, Memory

Image, and Volatility Framework.

I. INTRODUCTION

ndroid operated devices are one of the most

competitive technology devices in the market,

with the fastest growing market share within the

mobile industry [1]. Technology experts predict that

Android will dominate the mobile market in the

coming decade. Additionally, recent research shows a

huge year over year increase in the number of Android

specific malware attacks [1,3]. It is relatively

straightforward to investigate such attacks when they

occur on mature operating system platforms such as

Windows and Linux. However, due to the immaturity

of Android memory image forensics, it is relatively

problematic and time consuming to conduct such

investigations on Android systems. In this research, we

take advantage of recent advances in Android memory

forensics, utilizing the open source digital forensic

suite, Volatility. we explore a sample of these malware

attacks, this powerful investigation framework written

in Python, recently capable of reading memory images

from different Android kernel versions, and capable of

performing a wide range of memory analysis and

digital evidence extraction.
Volatility analyzes memory images, which must

be extracted from the physical memory of the

Android device, the only freely available utility

capable of extracting these images is Linux Memory

Extractor (LiME) [12]. This loadable kernel module

can acquire the full Android memory address range,

either over the network or via an SdCard [10]. LiME,

along with various new Android specific Volatility

plugins and a custom built profile for Volatility, are

used in our research, in order to analyze running

malware through the exploration of hidden processes,

process structure, malicious Android package

activities, process caches, suspicious network

connections, and other suspicious executed code.

Commercial tools like forensic toolkit and

Encase [19,17] can be used for Android content

recovery and forensic investigation, and these tools

are fairly easy to deploy, but are expensive solutions

for small to medium business. This research

illustrates Android memory forensics using open

source, freely available tools. We use the recently

available, first stable version of Volatility, rather than

older beta releases, as this will provide more timely

and accurate evidence and analysis, because of its

very recently developed Android specific plugins

which allow the investigator to explore Android

Dalvik instances, process structure and memory

caches.

In the following sections, we discuss current

work in the Android memory forensics field, then

describe building an Android memory forensics

investigation environment, we also discuss the

Using open source tools to investigate malware

in the Android Operating System

Tareq Hanaysha, Dale Lindskog, Ron Ruhl

Department of Information Systems Security Management

Concordia University College of Alberta

7128 Ada Boulevard, Edmonton, AB T5B 4E4, Canada

hanaysha@live.com,{dale.lindskog, ron.ruhl}@concordia.ab.ca

A

2

challenges involved in acquiring an Android memory

image and finally we describe an experimental

forensics investigation of a number of Android

malware samples.

II. ANDROID MEMORY FORENSICS: AN

OVERVIEW

There is wide consensus, at least in general outline,

about the procedures involved in a forensic

investigation [5,17,21]. NIST guidelines on

cellphone forensics (SP 800-101 and 800-86), for

example, conform to this consensus, and have

defined the digital forensics procedure as consisting

of four major steps: acquire, preserve, analyze and

present. This specification is very similar to any

typical forensic investigation process description, and

applies regardless of the medium being investigated,

including memory. Android memory forensics is

immature, however, and each step in this process is

more complicated than with more mature operating

systems. Consider first acquisition: for the Linux

operating system, Ivor Kollar`s dev/fmem memory

acquisition tool has long been available, and this tool

is capable of full Linux memory capture; other

mature memory acquisition tools for Linux include

Memdump by IBM, crash utility by Red Hat and

many more [22,23,24]. The case is similar to the

Windows operating systems, with many mature

memory acquisition tools, such as the popular Encase

WinEn and MoonSols toolkit, Once a memory image

of these systems is acquired and preserved, many

forensics investigation tools, including Volatility

Crash dump analyzer, Raw Image Analyzer and

FORENSIC TOOLKIT, come with mature Windows

and Linux investigation tools. These tools are

capable of reading different memory image formats,

coming from different operating system versions,

decoding them into digital artifacts, ready for

evidence analysis and presentation. In brief, this

process seems to be straightforward and well

understood on popular operating systems platforms

[7,10,17,19,25].

As noted, the situation is currently much more

complicated when it comes to Android memory.

While non-volatile flash NAND memory for an

Android system can be easily acquired using Android

Debug Bridge, the evidence extracted from this

process will be helpful only for recovery of file

system artifacts, e.g. videos or images, whereas it is

in Android memory that we may find such

potentially crucial artifacts as executed code,

processes and their structure, active network

connections, and so on.

Android memory acquisition is the first and an

essential step in an Android memory forensics

investigation, but Android memory is complicated to

acquire, by comparison.

 Like other operating systems, Android is

constantly releasing new software version upgrades,

and has diverse hardware support. This makes it

difficult for forensics researchers to have an

automated system for Android memory acquisition,

since the latest and most mature solution, LiME, is

developed for Linux (Android uses a modified Linux

kernel), but is a loadable kernel module requiring

compilation to work on Android, a task further

complicated by the fact that Android runs on the

advanced RISC machines architecture [17,19]. LiME

is capable of acquiring a full memory image from an

Android device, but must be compiled for the

advanced RISC machines architecture and then

compiled for an Android specific kernel image, and

finally loaded as a kernel module into an Android

device [8,10]. These steps are preliminary to an

actual Android memory acquisition, and can be very

challenging to perform, especially for those who are

not experts in both Android and the Linux operating

system [17], and in systems administration generally.

Volatility forensics investigation framework, an

open source tool written in Python, utilizes plugins to

analyze the structure of, and produce output about,

memory. Volatility is capable of analyzing most

operating systems, and recently advertises support for

investigating Android phones. The main challenge of

investigating Android phones was their memory

address space support, since Android memory

structure is different than other operating systems,

and translating it to an understandable output was a

challenge that developers have just recently achieved,

with the help of LiME.

This is not to say that demonstrations of these

tools are not documented. Joseph Syvle, e.g.,

introduces LiME and briefly studies an infected

application on Android, including a high-level

investigation of Android application permissions.

Holger Macht [9] utilized LiME and Volatility in his

research, and created Volatility privacy analysis

plugin scripts. This documentation, however, does

3

not focus on the complexities and details of the full

forensic investigation process itself, including its

preliminaries, and moreover was written at a time

when Volatility advanced RISC machines support

was premature.

III. ANDROID MEMORY FORENSICS

INVESTIGATION ENVIRONMENT AND

ACQUISITION

A forensics investigation is typically divided into

four basic steps: acquisition, preservation, analysis

and presentation. An obvious prerequisite to this

process is that the investigator has a usable forensic

investigation environment, so that the process can in

fact be seen as consisting of five steps: build, acquire,

preserve, analyze and present. The build step focuses

on having those tools and techniques in place that are

necessary for performing subsequent steps of the

forensic investigation process, while acquisition

consists in acquiring a forensically sound copy of the

media under investigation. Because the first two

steps of this process (build and acquire) are, for

Android memory investigations, particularly

complicated, and in fact interrelated, we dedicate this

section to a discussion of their complexities and

potential pitfalls, but we depict in outline the whole

process in Figure 1.

The first two steps of this five step process are

for us interrelated because, unlike in the case of more

mature operating systems, we lack an automated

Android memory acquisition process. Android

operating system version updates are consistent, fast

and diverse; moreover, Android prohibits automated

installation of loadable kernel modules. These two

facts about Android make an acquisition

considerably more complicated, and make it essential

that the proper tools and techniques are in place, or at

least well understood, prior to the time sensitive

acquisition step of a forensic investigation involving

Android memory. The aspects of the build step that

we cover here are: (1) ensuring that a usable LiME

kernel module is available to load on to the Android

device for memory acquisition; and (2) that

Volatility, a memory forensics suite, is installed and

prepared for an Android specific memory

investigation.

Online guides and instructions like Volatility

Wiki, the Android Development website, and others

[4,5,6,8] have written excellent guides about building

an Android memory investigation environment. They

detail the cross-compilation process of an emulated

Android kernel image, and the compilation of the

LiME kernel module for that Android emulated

image. However, there are complexities and pitfalls

not emphasized in these online guides. For example,

Android GNU compiler collection versions can

conflict with Macintosh and Linux 12.6 64 bit

operating systems, and lack of careful attention to

these and similar details will make it impossible to

prepare the LiME loadable kernel module source

code for compilation.

In setting up the environment for an Android

memory acquisition and analysis, we do not need a

full Android development repository (10 GB in size),

and using virtualization technology will allow

snapshots or cloned backups of the investigation

progress, which is especially important when the

processes are immature and therefore buggy, as in the

case of Android. The acquisition step in particular of

Android memory is, however, challenging. When

compiling an emulated Android goldfish kernel

image, it is essential to set various environment

variables in order to direct the kernel cross-compiler

to the right Android tool chain, needed to support the

host operating system; these variables can be defined

within the host operating system bash profile path or

at the terminal, and either approach will avoid

compiler errors, once our kernel variables are

defined, Android kernel image settings must be based

on the current Goldfish kernel code file, in order to

successfully load the LiME kernel module. Kernel

module loading must to be enabled on the Android

device containing the memory to be acquired, and

this must be done during kernel configuration, and

using the configuration file provided with the kernel

code.

 Furthermore, the Android kernel version and the

LiME kernel module version must match, and this

can be verified by examining the LiME kernel

module headers and the compiled Android kernel

version, a failure to match kernel and kernel module

will produce an init_module failure error, because of

Android's module versioning check policy, designed

in part to protect users from security threats.

4

 Figure 1: Android Forensics Investigation workflow

IV. EXPERIMENTAL INVESTIGATION

Like most modern operating systems, Android

divides memory into user and kernel space. The

Android kernel is based on the Linux kernel; with

Android, user space contains the Dalvik virtual

machine (VM), and application software (distributed

in APK format) runs on top of the VM. Each

Android package contains the process instructions,

set in its class.dex file, the message digest of the

signatures, and the resource file of permissions

(named Manifest.xml) [25].

Android malware can be packaged as APKs

[18,19], whether they be Worms, Trojans, Viruses,

Rootkits or Botnets. We acquired a diverse sample of

these Android packages, and then classified them

according to their attack type, symptoms, purpose

and impact on the user or system (Table 1).

Table 1: Android malware attack classifications.

This experiment utilizes Volatility version 2.3.1,

with a custom built Android advanced RISC

machines profile, made specifically for our goldfish

2.6.29-ge3d684d kernel image; this image was cross-

compiled using the 4.7 Android software

development kit GNU compiler collection, and then

equipped with a compiled LiME 1.1 module to the

above kernel image. This set of tools was utilized to

investigate the sample malware depicted in Table 1.

We first ran the Android kernel image emulator,

acquired a clean memory image, preserved it to a

dedicated folder, and then performed our memory

investigation on it. Second we uploaded our first

Android ZitMo infected application to the emulated

Android kernel image, acquired another image after

running the infected application, and then wiped the

Android kernel image. Third, we uploaded the Angry

Birds infected application, and again uploaded the

LiME module, ran the Angry Birds application,

followed the instructions from the application

prompt, acquired an image, preserved the image and

wiped. Fourth, we uploaded the Obada Trojan

Title Attack type Symptoms Purpose Impact

O Bada

Trojan
Backdoor Escalated

Privileges
Malicious

Apps
System

availability

ZitMo

(Zeus)
Update Confirmation

of functions
mTAN Money

SMS

Trojan

Malicious Escalated

Privileges
Malicious

Apps
System

availability

Angry

Birds
Malicious Hidden

transactions
Premium

Charges
Money

5

application, ran the emulator and, since this

application is a backdoor, we couldn’t find any actual

Android application in our emulator to run, so we

wiped the emulator kernel. Finally the SMSsend

trojan was uploaded, along with LiME, and the

malware was executed according to its instructions,

and again the memory image was acquired and

preserved. For each sample malware, data analysis

was compared with the clean image, looking for:

 Hidden processes associated with malware

infected applications.

 Changes to PIDs & PPIDs.

 Attempts to initiate Internet connections.

 Applications initiating system administration

requests and escalated privilege access.

 Applications launching third party Android

application stores.

 Noticeable changes to processing time, e.g.

slow response.

In achieving this goal, first we ran psxview

plugin, looking for hidden processes, by gathering

the processes structure view from different places

like the kernel proc list, the kernel process hash table

and the kmem_cache, if a process is one of these

places, but not in the other, then this leads to further

investigation of that process, this is a suspicious

behavior, where the pstree plugin was used to

identify processes relationship and to see the

hierarchical view of these processes, for instance

looking at ZItmo, processes name

com.Android.mms with PID 692 and UID 10017,

falls under system_server PID 95, this process is a

child of the parent Zygote PID 42, following this

investigation procedure, we are able to identify

processes, escalated privileges and malicious

processes structure. For further evidence gathering

and digging into a certain suspicious processes

structure, we used pslist | grep zygote, looking into

app processes on the disk, Zygote controls the

Android Dalivk machine apps, it contains the shared

libraries like the libdvm.so, these libraries control the

Android process classes, piping Zygote to a file will

grab all the contents of the Android Dalvik machine,

when we did that using proc_maps –p 42 and save to

zygote-maps file, then looked at the content of each

sample and with the help og the pstree plugin, we

figured all Android processes fall under the process

system_server which is a sub processes of the

Zygote, piping the system_server process map to a

file using proc_maps –p 95 to a file called

system_server-maps, at this point, we preserved data

of all Zitmo system processes, For instance

com.Android.mms process from pstree list, showed

more details under system_server process, an inode

505 with reading flag, now we dumped a memory

map of this application, and looked at each instance

of this application to understand the structure, and

compared it to the com.Android.mms code under the

system_server process, we were able to see the code

with the memory app but not in the system_server

proc.

 Then to look at this from a different angle, we

moved into networking investigation, looking for

networking activities, started with running arp plugin

for every sample to see my arp table, then utilizing

the ifconfig plugin, trying to figure my network

interfaces and ip addresses, where we found the

route_cache pluging showing caches of the best route

to take when an application is trying to initiate a

connection to an outside server, with that been said,

any malicious address means evidence of malicious

application activities and leads to further

investigation, we took all the ip addresses and looked

them up, using website that can identify blacklisted

ip addresses.

There were a number of notable results derived

from examining our memory images samples. Again,

In the case of infection with Zitmo malware app, the

plugin pslist showed a created PID of 559 and inode

505 within the system_server, notably after loading

Zitmo app, the system to initiate a process named

com.Android.mms, PID 692 under UID 10017, in an

attempt to request the user to confirm premium

message charges initiation. Whereas, in the Angry

Birds application analysis, once this application was

launched, a new process with PID 925 was also

triggered and this application prompts the user to

click on a link, in order to unlock the Angry Birds

game to its full version, this second application was

named ds.rio.unlocker in the process list within

memory, under UID 10047, an argument that is

leading to another processes of triggering the Internet

browser in an attempt to access the Internet, we

found this creating a memory bug, also to exhaust the

system resources and make my Android very slow,

after that, running the route_cache plugin, we were

able to confirm attempts to connect to both

204.191.12.35 and 204.191.12.24 as well.

6

Installing and running the Smssend application

directs the user to the Goolge Play store, and

interesting enough, within the memory image

acquired, PID 919 shows as an install.app process

with UID 10047, this process seems to have multiple

inodes within the Zygote (inodes 725, 529 and 2457)

which seem like an attempt to escalate privileges;

also, an android.browser process ID 955 with UID

10035 was visible in the memory image, with a series

of child processes: a process named compiler with

PID 961, one named background handler with PID

972, thread-80 with PID 942, and logcat with PID

947; these processes seemed to slow the operating

system, and freeze the Google Play store connection.

V. CONCLUSION AND FUTURE WORK

In this paper, we described Android memory imaging

investigation processes and procedures, mainly

building an Android environment for memory image

investigation and its acquisition. We acquired

samples of Android malware memory images, then

examined this sample utilizing digital forensics

science, this is found to be different than performing

such an investigation on popular operating systems

platforms like Linux, Windows and Macintosh. The

acquisition of Android memory is yet to be

automated, with LiME kernel module being the one

and only open source solution available. We explore

the process of loading this module to an Android

system, utilizing it and acquiring an image. We

detailed the challenges of cross-compiling LiME

kernel module, the module versioning compatibility

issues with Android kernel and the difficulty in

loading kernel module to an Android kernel. This

research also used Volatility framework to

investigate the acquired images, with plugins that

support LiME memory image address space, we were

able to identify suspicious and hidden processes and

in addition to that, we noted and observed escalated

system privileges and internet connection requests,

these networking requests to connect to malicious

destination servers. With this being said, we found

some of Volatility plugins still to mature and the

Android memory acquisition processes to be

automated, this field of Android system continues to

evolve with the speed of Android version upgrades

and diversity.

APPENDIX

Code Appendix

1. LiME makefile – sample file of LiME makefile

modified.

obj-m := LiME.o

LiME-objs := tcp.o disk.o main.o

KDIR_GOLD := /home/hanaysha/Android-src/

KVER := $(shell uname -r)

PWD := $(shell pwd)

CCPATH := /home/hanaysha/Android-

ndk/toolchains/Advanced RISC Machines-Linux-

Androideabi-4.7/prebuilt/Linux-x86_64/bin/

default:

 # cross-compile for Android emulator

 $(MAKE) ARCH=Advanced RISC Machines

CROSS_COMPILE=$(CCPATH)/Advanced RISC

Machines-Linux-Androideabi- -C $(KDIR_GOLD)

EXTRA_CFLAGS=-fno-pic M=$(PWD) modules

 $(CCPATH)/Advanced RISC Machines-

Linux-Androideabi-strip --strip-unneeded LiME.ko

 mv LiME.ko LiME-goldfish.ko

 $(MAKE) tidy

tidy:

 rm -f *.o *.mod.c Module.symvers

Module.markers modules.order \.*.o.cmd \.*.ko.cmd

\.*.o.d

 rm -rf \.tmp_versions

clean:

 $(MAKE) tidy

 rm -f *.ko

7

2. Module dwarf compilation makefile [8]

obj-m += module.o

KDIR := /home/hanaysha/Android-src/

CCPATH := /home/hanaysha/Android-

ndk/toolchains/Advanced RISC Machines-Linux-

Androideabi-4.7/prebuilt/Linux-x86_64/bin/

DWARFDUMP :=

/home/hanaysha/dwarf/dwarfdump/dwarfdump

-include version.mk

all: dwarf

dwarf: module.c

 $(MAKE) ARCH=Advanced RISC Machines

CROSS_COMPILE=$(CCPATH)/Advanced RISC

Machines-Linux-Androideabi- -C $(KDIR)

CONFIG_DEBUG_INFO=y M=$(PWD) modules

 $(DWARFDUMP) -di module.ko >

module.dwarf

REFERENCES

[1] Scott Wilson. Praveen Tanguturi. (Aug 2011). The

Deloitte Open Mobile Survey 2012: The growth era

accelerates. [Online] available:

https://www.deloitte.com/assets/Dcom-

Norway/Local%20Assets/Documents/Publikasjoner%2

02012/deloitte_openmobile2012.pdf

[2] Alcatel. Lucent. (July 2013). Kindsight Security

Labs Malware Report – Q2 2013. [Online] Available:

http://www.kindsight.net/sites/default/files/Kindsight-

Q2-2013-Malware-Report.pdf

[3] TREND MICRO. TrendLabs. (2Q 2013). Security

Roundup: Mobile Threats Go Full Throttle, Device

Flaws Lead to Risky Trail.[Online] Available:

http://www.trendmicro.com/cloud-

content/us/pdfs/security-intelligence/reports/rpt-2q-

2013-trendlabs-security-roundup.pdf

[4] Android Developers. (Aug 25, 2013). The Android

Open Source Project. [Online] Available:

http://source.Android.com/index.html

[5] Simson L. Garfinkel. (July 12, 2011). Navyʼs

Research University: Android Forensics Simplified.

[Online] Available: http://simson.net/ref/2011/2011-

07-12%20Android%20Forensics.pdf

[6] Stephan Chenette. (Oct 23, 2013). IOActive labs:

Building Custom Android Malware for Penetration

Testing. [Online] Available:

http://www.slideshare.net/schenette/2013-toorcon-san-

diego-building-custom-Android-Malware-for-

penetration-testing

[7] Volatile Systems (2013). (Nov 7, 2013). Volatility

Framework. [Online] Available:

http://code.google.com/p/Volatility

[8] Michael Hale. (Feb 25, 2013). Android Memory

Forensics: Instructions on how access and use the

Android support. [Online] Available:

https://code.google.com/p/Volatility/wiki/AndroidMe

moryForensics

[9] Ismael Valenzuela. (April 23, 2012). Acquiring

volatile memory from Android based devices with

LiME Forensics, Part I. [Online] Available:

http://blog.opensecurityresearch.com/2012/04/acquirin

g-volatile-memory-from-Android.html

[10] Lodovico Marziale. Joe Sylve. Andrew Case and

Golden G. Richard. Acquisition and analysis of

volatile memory from Android devices. [Online]

Available:

http://digitalforensicssolutions.com/papers/Android-

memory-analysis-DI.pdf - "

[11] Mark Loiseau. (July 24, 2012). How to compile

the Android Goldfish kernel. [Online] Available:

http://blog.markloiseau.com/2012/07/how-to-compile-

the-Android-goldfish-emulator-kernel

[12] Joe Sylve. (March 2013) LiME-forensics: LiME

“Linux Memory Extractor”. [Online] Available:

https://code.google.com/p/LiME-forensics/

 [13] Monnappa. (July 13, 2013). Advanced Malware

Analysis Training Session 1-7 Malware Memory

Forensics. [Online] Available:

http://securityxploded.com/security-presentations.php

8

[14] Andrew Hoog. (June 15, 2011). Android

Forensics: Investigation, Analysis, and mobile security

for google Android. Syngress, E-Book-ISBN-13: 978-

1-59749-652-0

[15] Vivek G Gite. (Aug 17, 2001). Linux Shell

Scripting Tutorial Ver. 1.0. [Online]

available:http://cse.yeditepe.edu.tr/~kserdaroglu/spring

2013/cse331/labnotes/WEEK%201%20-

%20UNIX%20BASICS/shellnotes.pdf

[16] Simon Leppert. (May 2012). Android memory

dump a tech report: a student research paper.

Friedrich-Alexander-University Erlangen-Nuremberg.

[Online] available:

https://www1.informatik.uni-

erlangen.de/filepool/thesis/Android_memory_forensics

.pdf

[17] Michael Spreitzenbarth. (March 28, 2013).

Dissecting the Droid: Forensic Analysis of Android

and its malicious Applications. Friedrich-Alexander-

University Erlangen-Nuremberg. [Online] Available:

http://opus4.kobv.de/opus4-

fau/frontdoor/index/index/docId/3286

[18] Holger Macht. (Jan 2013). Live Memory

Forensics on Android with Volatility. Friedrich-

Alexander-University Erlangen-Nuremberg. [Online]

Available:

https://www1.informatik.unierlangen.de/filepool/publi

cations/Live_Memory_Forensics_on_Android_with_V

olatility.pdf

[19] Yajin Zhou. Xuxian Jiang. (May 2012).

Dissecting Android Malware: Characterization and

Evolution: North Carolina state university. [Online]

Available:

http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAN

D12.pdf

[20] Chung-Huang Yang. Yen-Ting Lai. (Jan 1,2012).

Design and Implementation of Forensics Systems for

Android Devices based on Cloud Computing: Nationa

Kaohsiung Normal University. [Online] Available:

http://www.naturalspublishing.com/files/published/3r3

15k3w2rxp64.pdf

[21] Kollar, Ivor. (April 8,2010). Forensic RAM dump

image analyser: Charles university in Prague. Mater

Thesis. [Online] Available:

http://hysteria.sk/~niekt0/fmem/doc/foriana.pdf

[22] Memdump. IBM. [Online] Avaialbe:

http://publib.boulder.ibm.com/infocenter/tivihelp/v24r

1/index.jsp?topic=%2Fcom.ibm.itcamfad.doc_7.1%2F

ABD001%2Fmsve2%2FIDSource%2Fhelps%2Fitcam

_71_msve_help%2FDownloading_ISA.MDDforJ.html

[23] Anderson, David. (2003,2008). White paper: Red

Hat Crash Utility. Redhat Software Inc. [Online]

Available:

http://people.redhat.com/anderson/crash_whitepaper/

[24] Haruyama, Takahiro. (July 04, 2013). Windows

Memory Forensics Analysis using Encase. [Online]

Available:

http://www.slideshare.net/takahiroharuyama5/takahiro-

haruyama-ceic20110515

[25] Juanru Li. Dawu Gu. yuhao Lua. (2012). Android

Malware Forensics: Reconstruction of Malicious

Events: Dept of Computer Science and Engineering,

Shanghai Jiao Tong University. [Online] Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumb

er=6258204

