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Abstract

This master’s thesis presents a numerical study of the interaction between

plasma and spacecraft. The main contribution of my research consists of im-

proving the parameterization of solar illumination and the resulting photoelectron

emission from satellite surfaces. The simulations are done with PTetra which is a

particle in cell code that uses unstructured tetrahedral meshes to represent space-

craft boundaries and geometries. First, the calculation of photoelectron emission

is improved in this work by considering multiple rays of light per surface element

instead of a single ray as done in the original version of PTetra. This is done by

distributing a number of points per triangular element on each satellite surface.

The number of these points is determined from the ratio between the triangle area

and the smallest triangle area on any of the structure components. Compared with

results obtained with the original version of PTetra, the inclusion of multiple rays

per triangle accounts for the possibility of partial illumination of elements due to

the fact that part of a given triangle can be exposed to solar radiation, while other

parts may be in the shade of physical objects.

The second part of my work considers multiple reflections assuming an arbi-

trary combination of specular and diffuse reflection. The first step here consists

of determining whether a triangular element is exposed to solar radiation. If it is,

then secondary rays are traced as per specular or diffuse reflection to determine

if they intersect other surface elements. If they do, then the process is repeated

until the ray is lost to the outer boundary. The simulations considered use an ide-

alized geometry for the purpose of illustrating the effects of accounting for several

rays per surface triangular element and multiple reflections. Then simulations are

made with a more realistic geometry corresponding to a component of the Swarm
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satellite. In the absence of plasma the effect of multiple reflections is found to be

significant. However, with a plasma background representative of the ionosphere,

the net effect of multiple reflections on collected current density is negligible.
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Chapter 1

Introduction

1.1 Space environment

Space outside of Earth atmosphere is not empty as one might think. In addition

to the multitude of visible objects such as planets, asteroids and stars, it is per-

meated with plasma, neutral particles, dust particles and radiation. Near Earth,

neutral particles come largely from atoms and molecules leaving our atmosphere.

Plasma near-Earth, which consists of free charged particles, comes in part from the

ionization of neutral particles escaping the Earth’s neutral atmosphere, and from

a fraction of the solar wind plasma which penetrates our magnetosphere. Electro-

magnetic radiation consists of electromagnetic waves coming mainly from the Sun,

and it also includes electromagnetic waves reflected by planets and moons, as well

as electromagnetic waves originating from other stars or galaxies.

In this thesis, I focus on photoelectron emission caused by solar ultraviolet

(UV) radiation, and in particular on the effect of multiple reflections on artificial

satellite surfaces. In the following section, I briefly explain some of the main

physical aspects and processes of the space environment relevant to man-made

satellites.
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1.1.1 Solar wind

In the solar system and near-Earth in particular, the Sun is the main source of

radiation and plasma governing space weather which in turn affects artificial satel-

lites. The solar wind is a flow of plasma originating from the solar atmosphere. It

is made up of electrons and positively charged ions consisting mostly of protons,

a small fraction of ionized helium and heavier ions [1]. Solar wind particles take

approximately 4 days to reach the Earth’s magnetosphere [2]. At Earth orbit un-

der quiet solar activity, the speed of solar wind is approximately 450 km/s, the

average temperature is about 105K, and its density is approximately 7× 106 m−3

[3]. The solar wind carries a weak magnetic field of approximately 7 nT in the

interplanetary space. The interplanetary magnetic field (IMF) is a solar magnetic

field which is transported to space by the solar wind. It is known to play an im-

portant role in solar wind coupling with planetary magnetospheres. In particular,

it plays a role in transferring energy from the solar wind to the magnetosphere

[3]. The solar wind parameters however can vary significantly depending on solar

activity. For example, the solar wind speed at Earth can be as low as 200 km/s

during quiet times or it can be up to 1000 km/s during intense activity.

1.1.2 Magnetosphere

The magnetosphere is a region where the Earth’s magnetic field is sufficiently

strong to deflect the flow of plasma in the solar wind. The boundary between the

magnetosphere and the solar wind shown in Fig. (1.1) is called the magnetopause.

The magnetopause extends up to 10 Earth radii in the sun direction. In the

downstream region Earth magnetic field is stretched by its interaction with the

solar wind to form the magnetotail [4]. The pressure associated with the strong

nearly dipolar Earth’s magnetic field stops and deflects the incoming solar wind

at the bow shock, and it prevents solar wind plasma from directly entering the

magnetosphere [5]. The region between the magnetopause and the bow shock is
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known as the magnetosheath [5].

Figure 1.1: Schematic picture of the Earth’s magnetosphere.
(http://pwg.gsfc. nasa.gov/istp/outreach/images/Gusts/mag10.gif)

1.1.3 Ionosphere

The ionosphere is a region where atmospheric gases are significantly ionized by

solar ultraviolet radiation or by impact with energetic electrons or protons [3]. It

is mainly composed of neutral particles and a relatively small fraction of plasma.

The ionosphere has a strong influence in forming our near-Earth space environ-

ment. It is the main source of charged particles for a high density plasma region

referred to as the plasmasphere. It also represents an important source of plasma

for the remainder of the magnetosphere, and it is particularly important for com-

munications because it reflects low frequency radio waves. There are three main

regions of the ionosphere labeled D, E and F. The lower region D is located at an

altitude of approximatively 95 km above Earth surface. It is mainly produced by

the ionization of NO (nitric oxide) by solar L-alpha at a wavelength of 1215 Å, and

the ionization of N2 and O2 by solar UV at other wavelengths [6]. The E region
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is at an altitude ranging from 105 to 110 km above the surface. The ionization in

this region is mainly caused by solar X-rays at a wavelength of 1-10 nm and UV

radiation at a wavelength of 800-1027 Å [6] [7]. At nighttime the E region almost

disappears because of weak ionization. The F region is the upper layer of the iono-

sphere (160, 600) km. It is split into other sublayers F1 at altitude 150 to 200 km

and F2 above 200 km at day time but these two regions merge into a single region

at night time [8]. The electron density in the ionosphere can vary by up to three

orders of magnitude depending on the latitude, longitude and local time, as illus-

trated in Fig. (1.2). The temperature can vary from 103K at the lower altitudes,

to 107K at the higher altitudes extending up to 2000 km. The Earth’s magnetic

field in these regions is mainly dipolar and a typical value near the equator at an

altitude of 400 km is approximately 35 µT . The figure below shows typical day

and night profiles of electron density and altitude in the ionosphere. More profiles

can be constructed by running the International Reference Ionosphere model (IRI)

at a NASA web site: http://omniweb.gsfc.nasa.gov/vitmo/iri2012 vitmo.html

Figure 1.2: Typical day and night profiles of electron density and altitude in the iono-
sphere.
(http://roma2.rm.ingv.it/en/research areas/4/ionosphere)
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1.1.4 Auroral region

In magnetic polar regions Earth’s magnetic field lines are not closed; that is, they

don’t connect with other magnetic field lines in the opposite hemisphere. In con-

trast, in lower latitude regions magnetic field lines are closed because they can be

traced from one point on Earth to another point called the conjugate point. In

polar regions and near the boundary between open and closed magnetic field lines,

the ionosphere emits visible light resulting from the excitation and radiative decay

of molecules in the upper atmosphere. This phenomenon is know as the aurorae.

Auroral radiation is produced at altitudes ranging from approximately 100 to 200

km above Earth’s surface.

1.1.5 Radiation belts

The radiation belts were discovered by Van Allen (1958) [9]. They consist of

high energy (MeV or above) protons and electrons, that are trapped by the Earth

magnetic field. These energetic particles can compromise satellites for example by

penetrating internal components and causing electrostatic discharges which can

then damage sensitive electronic components [10]. The sources of these energetic

particles are the solar wind and the planetary ionosphere [11]. There are generally

two belts around the earth. The inner belt which mainly consists of high energy

protons, and electrons with energies of hundreds of keV for electrons and tens of

MeV for protons. It extends from about 1000 km to 6,000 km in altitude [2]. The

outer belt extends between approximately 13,000 to 60,000 km above the surface

[2]. It is populated by plasma electrons and ions coming from the solar wind,

which are energized as they approach Earth. The exact causes of this energization

are still an area of active research, but it is generally believed to to be due to a

combination of wave-particle interaction and convection of particles from low to

high magnetic field regions [12].
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1.2 Plasma

Plasma is ubiquitous in space. A plasma is a gas of charged particles which are

not bound to atoms or molecules. A plasma can comprise mainly free electrons

and protons as in the solar wind, but it can also consist of negative ions, partly

ionized heavy atoms or molecules. The Coulomb potential at a distance r from a

point charge q in vacuum is

φc =
q

4πǫ0r
. (1.1)

In a plasma, the charge density associated with negatively charged particles is usu-

ally nearly canceled by that of positively charged particles. Under this condition,

the plasma is said to be “quasi-neutral”. Non-neutral plasmas can exist in limited

regions of space such as in electric sheaths typically surrounding material objects

with which it is in contact.

In a plasma the potential caused by a charged particle, tends to be neutralized

by charges of opposite sign, located in a region within a Debye length; that is,

within a length

λD =





N
∑

i=1

niq
2
i

ǫ0kTi





−1/2

(1.2)

where ni is the number of particles of species i per unit volume, qi and Ti are

respectively the charge and temperature of species i, k is Boltzmann’s constant

and ǫ0 is the permittivity of free space. As a result, the Debye shielded potential

φD surrounding a point charge q in a plasma in thermodynamic equilibrium is

given approximately by

φD =
q

4πǫ0r
e

(

− r
λD

)

. (1.3)

According to most textbooks [5, 13] a classical plasma must satisfy three conditions:

• It must be contained in a medium with scale length much larger than the

Debye length

λD << l. (1.4)
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• The number of particles in a Debye sphere, the so-called “plasma parameter”,

must be much larger than one.

ND = neλ
3
D >> 1. (1.5)

• The collision time of charged particles between one another or with a possible

neutral background must be much larger than the reciprocal of the plasma

frequency. ωpτ >> 1.

ωp =





N
∑

i=1

niq
2
i

ǫ0mi





1/2

. (1.6)

1.2.1 Collisions

Plasma particles can collide with one another as well as with neutral particles when

the plasma is not fully ionized. In plasma with a significant density of neutral

particles, such as in the Earth’s ionosphere, collisions with neutral atoms can be

dominant. Assuming a constant neutral collision cross section for simplicity, the

ion collision frequency νi is then

νi = nnσn〈|~vi − ~vn|〉, (1.7)

where σn ≃ πd20 ≈ 10−19m2 is the cross section of neutral particles, nn is the neutral

particles density, and d0 is the effective radius of a neutral particles. The term in

brackets represents the statistical average of the absolute value of the difference

between plasma particles of species i and neutral particles. The average distance

between collisions or the mean free path is

λn =
〈v〉
νn

= (nnσn)
−1. (1.8)

In a fully ionized plasma near equilibrium, charged particles collide primarily
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with other charged particles due to Coulomb forces [5]. Detailed expressions

for Coulomb collision frequencies can be found in most plasma physics textbooks

[5, 13]. For example, for stationary thermal electrons colliding with a background

stationary thermal distribution of ions of temperature not exceeding the electron

temperature, one finds

νei = neσc〈ve〉 ≈
nee

4

16πǫ20m
2
e〈ve〉3

(1.9)

νei ≈
√
2ω4

pe

64πne

(

kTe

me

)
−3

2

(1.10)

νei ≈
ωpe

64π

lnΛ

Λ
, (1.11)

where Λ is the Coulomb logarithm Λ and it is of order 10 to 30, depending on the

plasma parameters. The electron mean free path is then expressed as

λe ≈ 64πλD
Λ

lnΛ
. (1.12)

A plasma can be treated as being collisionless whenever the collision mean free

path is much larger than the scale length of interest, and the collision time, much

larger than the timescales of interest.

1.2.2 Magnetic fields in plasma

Most plasmas in the laboratory or in space are permeated with a magnetic field.

This magnetic field can be caused by external sources. For example, for space

plasmas it can be generated in the Earth’s liquid core. It can also be generated

by current in the plasma itself as, for example, in shear or compressional Alfvén

wave propagating in a magnetized plasma. Charged particles moving in space are

affected by the electromagnetic force given by

~F = q ~E + q(~υ × ~B). (1.13)
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In equation (1.13), the first term is the electric force, and the second one is the

Lorentz magnetic force. In that equation, ~E and ~B are respectively the electric

field and the magnetic flux density, q is the particle charge and ~v its velocity.

Assuming a vanishing velocity parallel to ~B and a vanishing electric field ~E for

simplicity, it can be seen from equation (1.13) that the force will be perpendicular

to the velocity and the magnetic field vectors, and particle trajectories will describe

circles in a plane perpendicular to ~B. This is referred to as the gyro-motion, or

the cyclotron motion. The radius (ρ) of this circular motion is called the cyclotron

radius or gyro-radius. An expression for ρ can readily be found by balancing the

centripetal and magnetic forces as

mυ2
⊥

ρ
= q(υ⊥B) (1.14)

from which it follows that

ρ =
mυ⊥
qB

. (1.15)

The cyclotron frequency Ω can also be derived simply from the equations of motion

and shown to be

Ωp =
qB

m
. (1.16)

More generally, particles with a non-zero velocity along the magnetic field, υ‖,

follow helicoidal trajectories with a helix radius which is also given by equation

1.15. For such particles, the pitch angle α is defined as

α = cos−1







υ‖
√

υ2
‖ + υ2

⊥






. (1.17)

In the presence of a constant and uniform electric field ~E and magnetic flux density

~B , the equation of motion of a point particle of mass m and charge q is

m
dυ

dt
= q( ~E + ~υ × ~B). (1.18)
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As a result, in addition to following helical trajectories around ~B, particles also

drift at the so-called E ×B drift velocity given by

~υ =
~E × ~B

B2
. (1.19)

Assuming comparable temperatures, the electron’s thermal gyro-radius is smaller

compared to that of ions by
√

me/mi. Now we can define the ion and the electron

magnetization parameters M, used to parameterize the importance of the magnetic

field in the plasma surrounding an object. In a Maxwellian plasma, Mα, the

magnetization parameter for species α is the ratio of the gyro-radius to the scale

length of system

Mα =
ρα
Lb

, (1.20)

where ρα = vth αmα/(qαB) with vth α being the thermal speed of species α, vth α =
√

2Tα/mα. For practical purposes plasma can be considered as unmagnetized when

Me >> 1 andMi >> 1. Whereas, plasma is considered magnetized whenMe << 1

and Mi << 1.

1.3 Interaction of satellites with space environ-

ment

Spacecraft have been used for different purposes, including communication, mete-

orology, navigation, planetary exploration, and remote observations of forests and

natural disasters. With time, various processes associated with space environment

can affect and compromise spacecraft and their systems. One important process

has to do with surface charging and, under certain circumstances, the penetra-

tion of internal components by energetic plasma particles. Surface charging can

be caused by the collection of electrons and positive ions from the surrounding

plasma. It can also result from photoelectron emission when satellite surfaces are
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exposed to solar radiation, or to secondary electron emission when surfaces are

exposed to the bombardment of sufficiently energetic particles. The result is that

the spacecraft potential, the so-called floating potential, is almost always different

from that of the local background plasma. Moreover, different parts of a satellite,

e.g., solar panels, the main satellite body or its internal components, can be at

different potentials. This in turn can lead to unwanted discharges and arcs which

can be detrimental to the spacecraft operation.

One important factor which influences the interaction of a spacecraft with its

environment is the speed at which it travels. For example, the speed of a satellite

following a circular orbit a distance r from Earth center, can be shown to be [14]

υ0 = υcir =
√

GM⊕/r (1.21)

where G is the constant of gravity, M⊕ is the Earth mass and r is radial distance

from the Earth’s center. For example at Low Earth Orbit (LEO) (r ≈ 6, 600

km) it found that υ0 ≈ 8 km/s, and at Geostationary Earth Orbit (GEO) (r ≈
24, 000 km) υ0 ≈ 3 km/s. When considering the motion of a satellite in the

background plasma, two regimes are of interest: supersonic and subsonic flow. In

LEO, the ions consist mostly of O+, temperatures are low ( . 0.1 eV) and satellites

are supersonic. At higher altitudes, however, ions consist mostly of lighter H+,

temperatures are higher, and satellites are typically subsonic. It should be noted

that while satellites are supersonic at lower altitudes, their speed with respect

to the background plasma is generally smaller than the electron thermal speed

vth e =
√

2Te/me.

The plasma environment can affect spacecraft in all types of orbits such as LEO,

GEO, and Polar Earth orbit (PEO). However, plasma is not the only component

of the environment in space. In order to understand plasma spacecraft interactions

it is important to define some conditions of plasma scales where plasma spacecraft

interaction occurs. Near spacecraft surfaces, when the length scale l is smaller

11



than the Debye length, ambient plasma particles will be strongly affected by the

presence of the satellite. At larger distances away from the wake however, electric

fields associated with the satellite are weak and plasma particles are essentially

unaffected by the presence of a satellite.

Another aspect of importance is collisionality. At satellite altitudes, collisions

between electrons and ions with one another, or with neutral particle are rare, and

the resulting collisions mean free paths are much longer than the Debye length or

the scale length of the satellite. For these reasons, plasma can be treated as being

collisionless when simulating plasma-satellite interactions.

1.4 Mechanisms of spacecraft charging

Spacecraft charging results from the accumulation of charges on its internal com-

ponents as a result of the interaction with the space environment. Here is some

basic terminology of spacecraft charging.

1. Surface charging is caused by relatively low energy particles depositing

at the surface of a satellite. If a surface is conducting, the charge collected

will distribute so that the surface will be an equipotential. On dielectric

surfaces, however, the potential will depend on the position on the surface.

Satellites are typically covered with conducting materials in order to prevent

the buildup of large potential differences which could then lead to arcing

between surface components.

2. Differential charging occurs when the spacecraft is composed of different

components electrically insulated from one another. The potential difference

between components can range from a few volts to several thousands of volts

[14]. The charge is not uniform in this case and differential charging can

occur depending on the properties of the surface and the environment.
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3. Deep dielectric charging is caused by high energy electrons and ions (E >

100 keV) penetrating inside satellites, causing the avalanche of secondary

electrons, possibly leading to deep dielectric charging.

1.5 Electrical current source to spacecraft

1.5.1 Plasma current collection

The ambient plasma is an important source of the current collected by a spacecraft.

For simplicity a Maxwellian distribution function can be used to estimate the

floating potential of spacecraft in plasma. The current density collected per unit

surface area is given by the integral over the particle distribution function for a

given particle species

J = −q

∫ ∫ ∫

~v · n̂f(v)d3v (1.22)

where ~v is the velocity of particles, n̂ is the normal vector to the surface pointing

outward and q is the particle charge . In order for this integration to be evaluated,

the distribution function and the limits of the integral must be specified. For

current density incident on a surface the velocity integration must be over all

velocities pointing toward the surface; that is, all velocities such that n̂ · ~v < 0.

1.5.2 Backscattered and secondary electrons

When an electron impacts a surface, it can be reflected or absorbed. If absorbed, it

may collide with some other atoms and reverse direction and backscatter out of the

material. The probability of generating a scattered electron depends on material

properties, primary electron energy and the primary electron incidence angle. On

the other hand, this absorbed electron can transfer energy to one or several other

electrons which could then escape from the material. This is called secondary

electron emission. Electrons with energies below a certain threshold cannot lead to

electron emission, and only sufficiently energetic electrons can cause such emission.
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The secondary electron yield δe as a function of energy E and incidence angle θ

can be approximated by

δe(E, θ) =
1.14δmax

cos θ

(

Emax

E

)0.35


1− exp

(

−2.28 cos θ

(

Emax

E

)1.35
)



 (1.23)

where Emax is the energy at which the yield is maximum and equal to the yield

δmax at normal incidence [14].

Table (1.1) (from Katz et al.1977) [14] gives some representative values of the

maximum yield δmax and Emax [14].

Backscattering differs from secondary emission by the energy of the emitted

electrons. Secondary electrons are mainly emitted with energies of only a few eV.

Backscattered electron however, may have an energy close to that of the primary

electron. Backscattering is generally caused by incident electrons with energy

larger than 50 eV [15].

Ions at high energy can also penetrate surfaces or scatter causing secondary

electron emission. A small fraction of ions can be re-emitted but they are generally

neglected in surface potential calculations [15]. In some cases the flux of secondary

electrons emitted at a surface caused by electron or ion impact can be more than

the incident flux, which leads to a positive charge on the spacecraft surface [14].
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Table 1.1: Representative values for maximum yield δmax and Emax of secondary elec-
trons resulting from electron impact (from Katz et al., 1977).

Material δmax Emax (keV)

Aluminum 0.97 0.3

Aluminum oxide 1.5-1.9 0.35-1.3

magnesium oxide 4.0 0.4

silicon dioxide 2.4 0.4

Teflon 3 0.3

Kapton 2.1 0.15

magnesium 0.92 0.25

1.5.3 Photoelectron emission

In addition to back-scattered and secondary electron emission, photoelectron emis-

sion can also contribute to the current balance in a spacecraft. Many materials

emit electrons when they are exposed to solar radiation in the UV range < 2000Å

[15]. Photoelectron current depends on the solar flux, the material properties,

the spacecraft potential, and the angle of incident of solar radiation. Rumsh et

al. (1960) [15] have shown that the emitted photoelectron current depends on

the wavelength. Samson and Cairns (1965) [15] also found that for aluminium, as

the wavelength changes from 300 to 1300 Å, the angular dependence of the yield

decreased [15]. For example table (1.2) shows two results of current densities at

normal incidence for different materials obtained by Feuerbacher and Fitton (1972)

[15] and Hastings (1996) [14].
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Table 1.2: Photoelectron emission characteristics and current densities at normal inci-
dence

Material Work function |jph0
| (µA

m2 ) |jph0
| (µA

m2 )

(Feuerbacher and Fitton 1972) (Hastings 1996)

Aluminium 3.9 48 42

Gold 4.8 29 29

Stainless steel 4.4 24 20

Vitreous carbon 4.8 21 13

Graphite 4.7 7.2 4

Indium oxide 4.8 32 30

1.5.4 Effect of magnetic and electric fields on current col-

lection

Spacecraft are affected by the ambient magnetic field. In the rest frame of a

satellite there is a so-called motional or convection electric field associated with

plasma flow velocity with a component perpendicular magnetic field. This electric

field is given by

~E = −~v × ~B. (1.24)

It is the electric field which corresponds to the drift velocity ~E × ~B/B2 in the

satellite frame of reference. This convection electric field corresponds to a potential

gradient in the background plasma. This in turn leads to differences between the

satellite potential and nearby plasma potential depending on the position on the

satellite surface.

A magnetic field can also cause anisotropy in collected particle fluxes due to

the fact that charged particles gyrate around magnetic fields [14, 16]. If the speed

of these particles in the direction parallel to ~B is larger than the ~E× ~B drift speed,

then particles are effectively confined to flux tubes of a few thermal gyro-radii in

diameter, and the source of electrons incident on satellite surfaces are effectively
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limited to these magnetic flux tubes.

1.6 Spacecraft-environment interaction models

Different models have been developed to analyze spacecraft-environment inter-

action. Some have been sponsored by government agencies, while others have

resulted from individual initiatives carried out in universities. The following gives

a brief description of the main models currently in use. NASCAP 2k is devel-

oped under contract for NASA (National Aeronautics and Space Administration)

and the US Air Force[17]. It is a 3D model designed to calculate the interaction

between spacecraft and different plasma backgrounds, such as geosynchronous, in-

terplanetary, auroral, and LEO plasma environments. It can be used to simulate

surface charging, floating potentials and volume charging under a broad variety of

conditions [18]. MUSCAT (Multi Utility Spacecraft Charging Analysis Tool) has

been developed since 2004 [19] by Professor Cho’s team at Kyushu Institute of

Technology [17]. MUSCAT is a three dimensional code, and it uses an structured

Cartesian mesh. It is applicable to a wide range of space plasma conditions includ-

ing LEO, PEO and GEO. It comes with a full Graphical User Interface designed

for engineers who may not be familiar with computer simulation techniques or

detailed processes of spacecraft plasma interaction.

SPIS (the Spacecraft Plasma Interaction System) is an open source code. It was

developed under contract for the European Space Agency (ESA), and it is available

freely to anyone in the world [20]. It is a 3D electrostatic particle in cell code

written in Java [17, 21]. It uses an unstructured tetrahedral mesh, and it works

based on a numerical simulation called SPIS NUM [21]. SPIS accounts for surface

interaction including photoelectric emission and secondary electron emission from

both electron and ion impact.

EMSES (The Electromagnetic Spacecraft Environment Simulator) is a 3D elec-

tromagnetic particle in cell simulation model (Miyake and Usui, 2009) [22]. It uses
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a structured Cartesian mesh. It is parallelized and can run on thousands of pro-

cessors. EMSES can be used to study the interaction between spacecraft and

plasma including the variations of spacecraft potential under a variety of space

environment conditions [23].

iPic3D (implicit Particle-in-Cell code) is a 3D electromagnetic PIC code, writ-

ten in C++ [17]. It is used for plasma multi-scale simulation by solving Vlasov-

Maxwell system [24]. It also uses a structured Cartesian mesh. It is based on

the implicit moment method, and it is parallelized and can run on thousands of

processors.[24].

PTetra is a simulation code which calculates the interaction between a space-

craft and the surrounding environment. It treats all particle species kinetically,

using the particle in cell method [17], and it uses an unstructured tetrahedral

mesh. It is capable of representing realistic satellite geometries and it is well-

suited to imposed physical boundary conditions on satellite components. PTetra

is an electrostatic time-dependent code however, and it can account for a constant

and uniform magnetic field and it can be used to calculate first order magnetic

field perturbations [17].

The six models mentioned above may differ in the numerical approaches that

they use, but they all account for the same important physical processes of satel-

lite interaction with space environment, such as surface charging, photoelectron

emission, secondary electron emission and the effect of an ambient magnetic field.

1.7 Objectives

The objective of this thesis is to develop and implement an algorithm in the

satellite-environment simulation model PTetra, to improve the calculation of pho-

toelectron emission resulting from solar UV radiation. This is done by a) replacing

the original stepping strategy to follow light rays with a more efficient ray tracing

approach, b) accounting for multiple rays per triangular surface element instead
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of only one in the original version of the code, and c) accounting for multiple

reflections of solar radiation.
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Chapter 2

Spacecraft as a Langmuir probe

The physics of spacecraft charging is similar to that of the interaction of a Langmuir

probe in a plasma. The first analysis of electrostatic probes used to infer plasma

properties was presented by Langmuir and Smith in 1926 [25]. In the following I

summarize the simplest form of this model referred to as the Orbit (or Orbital)

Motion Limited (OML) theory, which is still frequently used to interpret Langmuir

probe measurements. A Langmuir probe is a small spherical or cylindrical electrode

which, when immersed in a plasma, can be used to determine some of its properties.

The principle is simple: The probe is biased electrically with respect to a ground

and its characteristic, that is, the current that it collects as a function of the bias

voltage, can be used to infer the plasma density and temperature.

A satellite in space is similar to a probe in a plasma, with one important dif-

ference: It usually collects nearly zero net current. Indeed, except for satellites

equipped with ion thrusters or electron guns, the potential of a spacecraft with

respect to space environment cannot be controlled actively. The so-called “float-

ing potential” of a spacecraft is determined from several processes of satellite-

environment interaction, such as collection of charged particles from the surround-

ing plasma, or the emission of photoelectrons or secondary electrons. In the sim-

plest case, for example, where only collection of plasma particles are at play, a

satellite is typically negatively charged and its floating potential is negative. This
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is due to the fact that electrons typically have a much larger thermal speed than

the heavier ions. As a result, if a satellite is initially not charged, electrons will

precipitate on its surface in larger numbers than ions. The satellite will then charge

negatively until its negative potential is sufficient to repel just enough electrons so

that the current associated with the electron flux is balanced by that of the ion

flux. When ions impact the satellite, most of them will combine with electrons

at the surface producing neutral atoms [25]. These neutrals are not considered in

the probe current collection. Conversely in situations where photoelectron or sec-

ondary electron emission would dominate, the spacecraft would charge positively

until its potential is sufficiently high to retain otherwise escaping electrons so as to

have a zero net collected current. The floating potential of a satellite Vfloat is the

potential at which the satellite collects no net current. The different contributions

to the current collected by a satellite are a function of the potential Vs with respect

to its environment. These contributions include:

Ie = Net incident current from electron plasma background.

Ii = Net incident current from ion plasma background.

Ise = Net current from emitted secondary electrons associated with electron

impact.

Isi = Net current from emitted secondary electrons associated with ion impact.

Iph = Net current associated with photoelectron emission.

Ib = Active current sources, as from thrusters or electron guns.

The net current of the satellite plasma is the sum of all these currents [14].

Inet = Ie(Vs) + Ii(Vs) + Ise(Vs) + Isi(Vs) + Iph(Vs) + Ib(Vs). (2.1)

As mentioned previously, under most conditions, satellites are in current balance;

that is, Inet = 0.
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2.1 Orbital motion limited (OML) theory

The OML theory was first introduced by Mott-Smith and Langmuir [26] as a means

to interpret the characteristics of probes in a laboratory plasma. While limited in

scope and not directly applicable to satellites, it does capture important aspects

of satellite interaction with space environment, which is why it is useful to briefly

review it here.

The OML theory applies to small electrical probes in low density collisionless

plasmas [27, 26]. Since the seminal work of Mott-Smith and Langmuir, many stud-

ies have been made to understand the response of biased probes in plasmas under

more realistic conditions including, for example, collisional or magnetized plasmas

[28, 29], high density plasmas [30], non-thermal plasmas [31], and flowing plas-

mas. A first computational analysis of spherical and cylindrical characteristics has

been made by Laframboise [25], and more recently several authors have developed

mathematical and computational models to better describe and understand probe

characteristics under more realistic conditions [15, 32, 31].

It should also be noted that several articles have been published over the years,

in which limitations of the OML theory has been described, and improvements

proposed [27, 33]. In the following, the simplest form of the OML theory is pre-

sented in order to explain the basic process of current collection by a charged body

in a plasma.

The Orbital Motion Limited theory (OML) is valid under certain assumptions

such as: the system is at a steady state, collisions between electrons and ions are

negligible, and all particles come from infinity where the electric potential is zero.

The OML theory is strictly valid only if the Debye length is much larger than

the impact parameter of collected particles. Referring to Fig.(2.1), the impact

parameter is the closest distance that the incident particle would come to the

center of the sphere if it were not deflected.
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2.2 Current Collection by a Spherical Probe

Let us consider particles collected by a spherical probe of radius R and potential

V with respect to the background plasma.

Figure 2.1: Illustration of an attracted particle trajectory as it approaches a spherical
probe.

hmax

R

A vt

V0

Figure 2.2: Illustration of the maximum impact parameter of a repelled particle.

Plasma is assumed to be Maxwellian and for simplicity the probe is assumed

to be much smaller than the plasma Debye length so that the forces affecting

particles approaching the probe are well-approximated by unshielded Coulomb

forces. Referring to Fig. (2.1) let us consider particles coming toward the probe

with a velocity ~v = v0x̂ far from the probe, and impact parameter h. It can be
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seen that the largest impact parameter hmax for which particles will be collected

(i.e., impact the the sphere), is such that the particle trajectory will intersect the

sphere surface tangentially at point A. A relation between hmax and v0 can be

derived straightforwardly from conservation of energy and angular momentum as

follows. Assuming zero potential far from the probe, energy conservation gives

1

2
mv20 =

1

2
mv2t + qV , (2.2)

where v0 and vt are respectively the incident speed at infinity and the tangential

speed at impact. Similarly, conservation of angular momentum gives

mv0hmax = mvta, (2.3)

where a is the sphere radius. Solving for hmax then yields

hmax = a2
(

1− 2q
V

mv20

) 1

2

. (2.4)

The sphere can be attractive or repulsive. If the potential of the sphere is negative,

ions will be attracted and electrons will be repelled. Conversely, electrons will be

attracted and the ions repelled if the potential is positive. To be specific let us

now assume a Maxwell- Boltzmann distribution function for incident particles

f(v) = n

(

m

2πkT

) 3

2

e
−mv2

2kT , (2.5)

when the potential of the sphere is attractive, the flux Γ of collected particles is

given by

Γ =

∫ ∞

0

v3f(v)4πa2
(

1− 2qV

mv2

)

dv

= a2n

(

8kTπ

m

) 1

2

(

1− qV

kT

)

. (2.6)
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Similarly for a repulsive sphere the flux of collected particles is given by

Γ =

∫ ∞

v1

v3f(v)4πa2
(

1− 2qV

mv2

)

dv

= a2n

(

8kTπ

m

) 1

2

e
−qV

kT , (2.7)

where the minimum speed is defined by

v1 =

√

2qV

m
(2.8)

where n is the density of plasma, m and q are respectively the mass and charge of

a plasma particle, T is the temperature and Γ is the flux of particles. The current

on the probe is the sum of the electron and ion currents. In equations (2.6) and

(2.7) putting I = qΓ we obtain an expression for the current from attracted and

repelled particles. For attracted particles, assuming a unit charge for simplicity:

I = qa2n

(

8kTπ

m

) 1

2

(

1− qV

kT

)

, (2.9)

and for repelled particles:

I = qa2n

(

8kTπ

m

) 1

2

e
−qV

kT . (2.10)

Assuming a negative probe potential (V < 0), electrons will be repelled and ions

attracted, the total current will be

Itotal = −ea2ne

(

8πkTe

me

) 1

2

e
eV
kTe + Zea2ni

(

8πkTi

mi

) 1

2

(1− ZeV

kTi

), (2.11)

where Z is the average ion charge. It is convenient to define the total normalized

current Ĩ as

Ĩ = Itotal
1

nea2e

(

me

8πkTe

)

. (2.12)
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From the equations above, it follows that

Ĩ = −e
eV
kTe + Z

(

me

mi

) 1

2

(

Ti

Te

) 1

2

(

1− zeV

kTi

)

. (2.13)

Conversely for a positive potential (V > 0), the ions will be repelled and the

electrons attracted, so that the total current is

Itotal = −ea2ne

(

8πkTe

me

) 1

2

(

1− eV

kTe

)

+ Zea2ni

(

8πkTi

mi

) 1

2

e
−ZeV
kTi . (2.14)

Using equation (2.12) to get the normalized current for the positive probe potential

(V > 0) we find

Ĩ = −
(

1 +
eV

kTi

)

+ Z

(

me

mi

) 1

2

(

Ti

Te

) 1

2

e
zeV
kTi . (2.15)

Figure (2.3) shows the relation between the current and the floating potential.

Dots correspond to calculations made by Laframboise in his thesis [25]. In this

comparison, it is assumed that Te = Ti.
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Figure 2.3: Comparison between the normalized characteristic calculated for a spherical
probe with Eqs. 2.13 and 2.15 and from tabulated values in Laframboise’s thesis (dots).
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Chapter 3

Numerical approach

3.1 Mesh definition and generation

In order to describe numerically physical processes occurring in space it is usually

necessary to use a mesh, or a grid. Computational meshes are made of points or

vertices, which are connected in order to define cells or elements. It is customary

to distinguish between two broad families of meshes: structured and unstructured.

Examples of structured meshes induce uniform Cartesian grids and grids based

on polar or cylindrical coordinates. Unstructured meshes can be constructed, for

example, with triangular elements in two dimensions, or tetrahedra in three di-

mensions. The general distinction between structured and unstructured meshes is

that in the former, there is a simple and implicit relation between a cell or vertex

and its neighbours. For example, in a uniform 2D Cartesian grid, each vertex can

be labeled with two indices i and j and the neighbours of such a vertex are labeled

i± 1, j and i, j ± 1 . With unstructured meshes, however, no such relations exist

and it is necessary to list all vertex coordinates, their connectivity, and cell neigh-

bors (or adjacency) in a data structure. As an example, a simple triangular mesh

consisting of only four triangles, is shown in Fig. (3.1).
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Figure 3.1: A Simple Representation of 2D triangular mesh.

Table 3.1: Data structure of the triangular mesh shown in Fig. 3.1.

Elements Vertices Adjacency

1 3, 1, 2 -1, 2, -1

2 3, 2, 5 4, 3, 1

3 4, 3, 5 2, -2, -1

4 5, 2, 6 -1, -2, 2

Table (3.1) shows how the information describing the simple mesh illustrated

in Fig. (3.1) is listed in a file. In addition to the x and y coordinates for each

vertex (not shown in the table), each element is defined by its own index (first

column) followed by the indices of its three vertices (columns 2-4), followed by the

indices of the three adjacent triangles opposite each vertex (columns 5-7). In this

example, element 2 is made of vertices 3, 2, and 5. The element opposite the first

listed vertex (3) is element 4, the element opposite the second listed vertex (2)

is the element with index 3, and so on. Note that some indices in the adjacency

list are negative, for example the first and the second adjacency of the element 1.
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This refers to physical boundaries in the simulation domain. It is used in the PIC

code and by the Poisson solver to identify boundaries on which different boundary

conditions can be imposed. Finally we note that when listing vertex indices making

a triangular element, the convention is to list them anti-clockwise. This convention

is useful when determining whether a point is in a given element or not. It is also

useful for finding the index of a triangle containing an arbitrary point. Essentially

the same procedure is used to represent a tetrahedral mesh in 3D. As illustrated

in Tables 3.2 and 3.3, the mesh is defined with a list of x, y, z coordinates for each

vertex. Then follows a list of tetrahedra indices, connected vertices and adjacent

elements. As with a triangular mesh, these are indices of tetrahedra opposite the

four vertices. Here also negative indices are used to identify boundary indices.

3.2 Idealized geometry

We now introduce an idealized geometry constructed for the purpose of illustrating

multiple reflections in PTetra. It consists of two blocks of height and width 2.8 cm,

and thickness 0.4 cm. The blocks are separated by 2 cm. A cylinder with height 1.8

cm and radius of 0.4 cm is centered between these two blocks, on which multiple

reflections can take place. The simulation domain is delimited by a cubic boundary

with sides of height of 3.6 cm as shown in Fig. (3.2). The gmsh file defining the

complete geometry used to construct the mesh is given in the Appendix. Table

(3.2) shows the coordinates of the vertices of the first four elements. Table (3.3)

shows the indices of the first four tetrahedra, the indices of their vertices, and the

indices of the element opposite each vertex. In this geometry the mesh resolution

was chosen so as to give a good representation of the three objects considered.

Since no plasma is considered here, the mesh resolution is otherwise unimportant.
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Figure 3.2: Illustration of the test geometry used to demonstrate the effects of multiple
reflections. The two rectangular prisms have dimensions of 2.8 × 2.8 × 0.4 cm, and the
central cylinder has a height of 1.8 cm and a radius of 0.4 cm.
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Figure 3.3: Illustration of the 2D surface mesh on the idealized geometry .

Table 3.2: Coordinates of vertices of element 1.

Vertices Coordinates

1 -1.8000000000000000E+00, -1.8000000000000000E+00, -1.8000000000000000E+00

2 1.8000000000000000E+00, -1.8000000000000000E+00, -1.8000000000000000E+00

3 -1.8000000000000000E+00, 1.8000000000000000E+00, -1.8000000000000000E+00

4 1.8000000000000000E+00, 1.8000000000000000E+00, -1.8000000000000000E+00
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Table 3.3: Data structure of a 3D mesh.

Elements Vertices Adjacency

1 19025, 17594, 23364, 25599 84136, 1755, 9909, 13284

2 8292, 17310, 20184, 22685 11441, 28808, 2557, 13271

3 18159 20895 16514 24627 1049 58440 11048 338

4 16490 19840 17643 23636 3177 7866 1760 8730

The four neighbors of a tetrahedron are associated with the vertices to which

they are opposite. For example element 1 is made of vertices 19025 17594 23364

25599 and its four neigbours are 84136 1755 9909 13284. The face opposite to

the first vertex (with index 19025); that is, the face made of vertices with indices

17594, 23364 and 25599 is adjacent to a element 84136. Similarly, the face opposite

the second vertex ( index 17594), its adjacent is element 1755.

3.2.1 Connectivity of points

At this point is interesting to mention something about the way vertices are con-

nected when constructing an unstructured triangular (2D) or tetrahedral (3D)

mesh. Given a distribution of points in space, there are generally very many ways

to connect them into triangles or tetrahedra. One method which produces sim-

plexes (triangles in 2D and tetrahedra in 3D) that are as “compact” or equilateral

as possible is based on the Delaunay criterion [34, 35, 36]. This criterion works as

follows in two dimensions. If no point in the mesh is inside the circumscribing circle

of every triangular element, then the resulting mesh is said to be “Delaunay”. The

criterion is the same in three dimensions: If no mesh point is in inside the circum-

scribing sphere of every tetrahedron in the mesh, then the mesh is also said to be

“Delaunay”. Given a triangular or tetrahedral mesh, it is then possible to define a

so-called “dual mesh” by constructing “Voronoi cells” around every mesh vertex.

This is done by constructing perpendicular bisectors (lines in 2D and planes in

33



3D) on every element edge. The domain containing mesh vertices and delimited

by the closest bisectors is the Voronoi cell at that vertex [37]. Given a distribution

of vertices in space, the Voronoi cell surrounding a point can equivalently be con-

structed as the volume delimited by the closest perpendicular bisectors defined on

segments joining this point and every other mesh vertices.

Figure 3.4: Illustration of a Delaunay triangulation with all the circumcircles and their
centers (in red).
(https://en.wikipedia.org/wiki/ Delaunay triangulation)

34



Figure 3.5: Voronoi cells can also be constructed by connecting the centre of every
circumscribing triangle (in red) with all others with which it shares the side of a triangle.
(https://en.wikipedia.org/wiki/Delaunay triangulation)

3.3 Solar illumination

3.3.1 Stepping strategy

In the original version of PTetra, the method used to determine whether a triangle

is illuminated by the Sun or not was based on a stepping strategy. In this approach

a point located at the center of each triangle on a satellite surface element is used

as an initial position from which small steps are made in the direction of the Sun.

The step size was defined as a small fraction of the linear scale of the smallest

mesh element. Specifically, the step size was defined as δ = 0.1(Vmin)
1/3, where

Vmin is the smallest tetrahedron volume in the entire mesh. If this stepping process

resulted in the path crossing a physical object represented in the mesh, the triangle

was treated as being entirely in the shade of that other object. If, on the other

hand, the stepping process led to the path reaching the outer boundary without

crossing any physical object, then the triangle was considered to be fully exposed
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Figure 3.6: Illustration of a step passing through a physical object in the mesh

to solar radiation. One shortcoming of this approach was that triangles (large or

small) were considered to be either fully illuminated or completely in the shade.

No account was made for the possibility of a triangle to be partly illuminated

and partly in the shade. Another possible problem comes from finite step size

used. While unlikely, it is always possible that marching paths will step through

a sharp edge of a physical object as shown in Fig. (3.6), and result in a triangle

being illuminated instead of being in the shade. These shortcomings motivated

the improvements described in the following paragraphs.
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3.3.2 Ray tracing

Figure 3.7: Illustration of ray tracing along direction ~u from one point ~R0 in a face of a
tetrahedron to another point ~R in one of the three other faces.

Ray tracing is done by considering a point ~R0 in a triangular face, and finding

the intersection between the line going through ~R0 and directed along ~u with one

of the tetrahedral faces. This process will continue marching from tetrahedron to

tetrahedron toward the Sun direction until either crossing a physical object in the

mesh or reaching the outer boundary. For computing intersections of lines and

a plane, we use the parametric equation representation for a line. A point in a

triangle can be defined as:

~R = ~R1 + S1(~R2 − ~R1) + S2(~R3 − ~R1) (3.1)

and the parametric equation of the line is:

~R = ~R0 + t~u (3.2)
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where ~R1, ~R2 and ~R3 are the vertices of a triangular face of a tetrahedron, ~u is a

vector that provides the line’s direction and ~R0 is a starting point. In order to

have the intersection point inside the triangle, the solution to Eqs. (3.1) and (3.2)

must satisfy this condition

S1 > 0, S2 > 0, S1 + S2 <= 1. (3.3)

When a single point per triangular face is considered and the stepping process

encounters a physical object along the path to the Sun, the triangle is treated as

being entirely in the shade of that object. On the other hand, when the ray reaches

the outer boundary without encountering any physical object, then, the triangle is

considered to be fully exposed to solar radiation. From tetrahedron to tetrahedron

the intersection point ~R is used as new starting point, and the process is repeated

until the the point reaches a physical object or the outer boundary.

3.3.3 Multiple points per triangle

An improvement to the calculation of surface illumination consists of applying the

ray tracing technique described above with multiple points distributed in each tri-

angle, instead of only one. Every point is assigned a weight equal to the reciprocal

of the number of points in a given triangle. The number of points used in a triangle

is determined from the ratio between the triangle area and the smallest triangle

area on any of the structure components. Two methods have been considered to

distribute these points: a random distribution, and a structured, uniform distri-

bution. Both types of distributions were found to produce similar results and a

uniform distribution of points has been adopted in the calculations which follow.
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3.4 Multiple reflections

Reflection is the phenomenon by which light incident on a surface is re-emitted,

possibly in different directions. There are two types of reflections considered here:

specular and diffuse. In specular reflection, a collimated beam of light on a surface

reflects into another collimated beam of light. The angle between the incident ray

and the normal vector is equal to the angle between the reflected ray and the normal

vector. Furthermore the incident beam, the normal to the surface and the reflected

beam are in the same plane. In contrast, a beam of light can reflect diffusively

into many beams propagating in many different directions. Reflection of solar UV

radiation on satellite surfaces can be important whenever the reflected light can

reach another surface element. This then leads to enhanced solar illumination on

surfaces already exposed to direct solar radiation, or to illumination on elements

which would otherwise not be exposed to UV radiation at all. In either case the

result is an enhancement of emitted photoelectrons by satellite components. The

new reflection solar illumination model implemented in PTetra can also account

for the albedo α, or reflectivity of materials whereby the energy reflected by a

surface triangular element is α times the incident energy.

3.4.1 Specular reflection

Consider an incident ray reflected as shown in Fig. (3.8), where n̂ is the normal

vector to the surface, û and ρ̂ are the incident and reflected ray vectors respectively.
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Figure 3.8: Illustration of the unit vector û pointing toward the Sun and the unit vector
ρ̂ pointing in the direction of a ray reflected specularly.

From the relations

ρ̂ = n̂cosθ + ~a (3.4)

û+ ~a = n̂cosθ (3.5)

cosθ = n̂.û,

it can be seen that

~a = n̂(n̂.û)− û (3.6)

and

ρ̂ = 2(n̂.û).n̂− û. (3.7)

At the beginning, the reflection vector ρ̂ is calculated, from a beam û that has

direct illumination and pointing toward the Sun as shown in equation (3.7). Once

ρ̂ is calculated it is considered to be the new direction in which solar radiation

propagates. If incident on another surface, the illumination of that surface element

is incremented, and the process is repeated. Whenever a reflected ray reaches the

outer boundary the ray is considered to escape the simulation domain, and the

iterations stop. The cross section of the illuminated area is defined as the absolute

value of the dot product between the unit vector perpendicular to the area and

the unit vector pointing in the direction of the light ray, multiplied by the surface
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area.

In some cases such as shown in Fig. (3.9), the cross section of the incident beam

might be different from the cross section of that beam on the receiving triangle.

For example, in the right side of Fig. (3.9) the cross section of the incident beam

A1 is larger than the cross section of the beam B1 on the receiving triangle. In this

case, only a fraction of the radiation incident on surface B1 is accounted for, and

it is that fraction of the incident radiation which is considered when accounting

for the light reflected from the smaller element B1. On the left side of Fig. (3.9),

the cross section of the incident beam A2 is smaller than the cross section of the

receiving area B2. In this case the full amount of light of the incident beam is

received by the surface with the larger cross section.

Receiving area B2

Incident beam A2

Incident beam A1 

Receiving area B1

Figure 3.9: Illustration of the cross section of a surface area illuminated by a light beam.

3.4.2 Diffuse reflection

For diffuse reflection, the incident light can be reflected in many directions with

different angles. For a given incident light ray a single reflected ray is generated

with a random angle θ between the direction of propagation and the normal to the

surface. This angle is in the range between (0, π/2). A random azimuthal angle φ
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ranging from (0, 2π) is also used to complete the definition of the direction of the

reflected light as shown in Fig. 3.10.

z

y

x

θ

φ

ρ

Figure 3.10: Illustration of the geometry used in calculating diffuse reflection.

The two angles θ and φ are defined as follows:

θ = cos−1 A1 (3.8)

φ = 2πA2 (3.9)

where A1 and A2 are random numbers from 0 to 1 and

ρ̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (3.10)

where x̂, ŷ and ẑ are normalized vectors in the plane of the reflecting surface, and

perpendicular to it respectively.
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Chapter 4

Example simulations and results

Simulations of solar illumination and multiple reflections were done by using the

three dimensional code PTetra which is summarized in Chapter 1 and for which

a detailed description of the code is given in [38]. The code uses unstructured

tetrahedral meshes to represent complex structures. It is generated with gmsh.

PTetra uses a PIC approach, in which macro particles carry a statistical weight

equal to the ratio between the actual number of particles in a plasma, to the

number of “macro particles” considered in the simulation. It accounts for satellite

interaction with the plasma accounting for such processes as satellite charging,

photoelectrons and secondary electrons emission.

4.1 An idealized satellite geometry

In this section results are presented for an idealized geometry constructed specif-

ically to illustrate multiple reflections. A detailed description of the idealized

geometry was introduced in section (3.2). For simplicity, no background plasma is

assumed when looking at photoelectron emission. In all cases considered an albedo

of 0.9 is assumed when considering reflections, and the direction toward the Sun

is given by ~u = (1, 0.2, 0.3)
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4.1.1 Direct illumination

Figure (4.1) shows a distribution of collected current density associated with pho-

toelectron emission. We note that photoelectron emission leads to negative current

emitted per unit surface area, or equivalently, to a positive collected current den-

sity. This is why the figure shows positive current density collected on surface

elements in these illustrations. We also note that collected current density cal-

culated on each triangular surface element is not perfectly constant on a given

surface. The small variations between triangles are caused by statistical errors and

the finite number of electrons used in the simulation of emitted photoelectrons.

The first case considered is obtained with the ray tracing approach in which a

single ray, starting from each triangle centre, is traced in the direction of the Sun,

as described in section (3.3.2). We recall that with this approach, a triangle is fully

lit when the ray reaches the outer boundary of the simulation domain, or not at

all when it intersects a structure before reaching the boundary. This is clearly seen

from the lower right panel in Fig. (4.1) where triangles are either red (emitting

electrons) with approximately the same intensity, or blue (not emitting). The

illumination pattern calculated in this case is identical to what would be obtained

with the original PTetra stepping strategy.
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Figure 4.1: Illumination pattern computed with the original PTetra stepping algorithm,
using only one ray per triangle. Current densities J are in units of A/m2 .
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Figure 4.2: Illumination pattern computed when using multiple points per triangle from
direct illumination only.

Figure (4.2) shows results from a simulation in which many points are traced to-

ward the Sun, in each triangle. The number of points traced from each triangle

is proportional to the surface area of each triangle, and the proportionality con-

stant is set by the user. In this example 25 points were used for the triangle with

the smallest surface area. In this case, some rays will intercept other structures,

while others reach the outer boundary without going through any physical struc-

ture. The fraction of rays which reach the outer boundary to the total number

of rays considered is proportional to the illumination, and photoelectron emission

attributed to a given triangle. The band of partially illuminated triangles is clearly

visible in the lower right panel in the figure.

4.1.2 100% Specular reflection

The manifestation of multiple reflections is clearly visible in Fig. (4.3) where the

illumination pattern seen in Fig. (4.2) is still visible, but where several other

46



illumination patterns appear as a result of light being reflected back and forth

between the structures. The patterns seen in the figure are readily understood in

terms of these multiple reflections. For example the oval shape on the top left slab

in the lower panel is associated with light reflected on the opposite rectangular

prism, incident on the flat top of the cylinder, and reflected again on the opposite

rectangular prism. We also note that some triangles emit more photoelectrons than

the maximum emitted current density calculated without multiple reflection (see

Fig.4.2). This is due to the fact that multiple reflections cause certain triangles to

be illuminated by reflecting rays more than once. Finally we note that reflection

of light from the cylinder leads to somewhat spotty patterns, particularly on the

upper left block in the lower panel. This is due to the fact that the cylinder is

represented with finite size triangles rather than as a smooth surface. A higher

mesh resolution (smaller triangles) here would lead to smoother looking reflection

patterns.
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Figure 4.3: Illumination pattern computed when using multiple points per triangle with
multiple reflections, assuming 100% specular reflection.
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4.1.3 Combination of specular and diffuse reflection

Figure (4.4) shows illumination patterns obtained with half specular and half dif-

fuse reflection. Here essentially the same patterns are seen as in the case with 100

% specular reflection Fig. (4.3), except that in this case: i) the maximum collected

current is less than with 100 % specular reflection, and ii) we see photoelectron

emission in parts of the surface where there was none when reflection was purely

specular. The lower collected current is understandable from the fact that with

half diffuse reflection, a fraction of the reflected light that would be incident on

other structures will in fact be directed between structures and not add to the

illumination of other structures. Here also we observe areas where illumination

is enhanced due to multiple illuminations, but the maximum values of collected

current density are less than when reflection is purely specular.
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Figure 4.4: Illumination pattern computed when using multiple points per triangle with
multiple reflections assuming 50% specular and 50% diffuse reflection.

4.1.4 100% diffuse reflection

Finally we consider a case in which reflection is purely diffusive. In the result

shown in Fig. (4.5) essentially all the patterns seen in Figs.(4.3)and (4.4) obtained
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with full and partial specular reflection have disappeared. Multiple reflections lead

to weak and approximately uniform illumination on areas not directly illuminated

by the Sun. The bands subject to direct illumination on the lower block in the top

panel of the figure show slightly higher emission than in the absence of multiple

reflections. Also due to the finite number of rays used to simulate diffuse reflection,

statistical variations in the magnitude of photoelectron emission is clearly larger

than with direct illumination only (c.f. Fig. 4.2).
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Figure 4.5: Illustration of the collected current density when multiple reflections are
taken into account with 100% diffuse reflection.
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4.2 More realistic geometry

Simulation results obtained with a more realistic satellite component geometry are

now presented. The component considered approximates the vector magnetometer

star tracker assembly on the Swarm satellites. For brevity, these will be referred

to as the “assembly” in what follows. The three Swarm satellites were launched

in 2013. The satellite length is approximately 10m. They were deployed for the

purpose of measuring Earth magnetic fields with very high accuracy [39]. Figure

(4.6) illustrates the full length of the satellite and its main instruments. Simulat-

ing the entire spacecraft under realistic ionospheric conditions would be too time

consuming for the purpose of this thesis, so only the optical bench and vector

magnetometer assembly are considered in what follows. The mesh resolution was

chosen to show the main geometrical variation of the object, but was not optimized

for the purpose of simulating the interaction of plasma. It was for the purpose of

illustration of solar Illumination and multiple reflections. Two sets of simulations

are considered, corresponding to illumination and photoelectron emission calcu-

lated a) without, and b) with a plasma background. In all cases considered, the

direction toward the Sun is given by ~u = (1, 1, 1).
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Figure 4.6: Illustration of a Swarm satellite with several of its main instruments. The
length of the satellite is approximately 10 m.
(http://www. geomag.bgs.ac.uk/education/swarm overview.html)

4.3 Simulations made without a plasma back-

ground

4.3.1 Direct illumination

Figure (4.7) shows a map of emitted photoelectron current density when only direct

illumination is considered; that is, when multiple reflection is ignored. Here and

in what follows, we use many points per triangular surface elements as described

in section (3.3.2) in order to account for the possibility of partial illumination of

triangles.
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Figure 4.7: Illumination map of the Swarm optical bench - magnetometer assembly com-
puted with direct illumination only. The scale length of this assembly is approximately
70 cm.

4.3.2 100 % specular reflection

Figure (4.8) shows the illumination map calculated with multiple reflections as-

suming 100% specular reflection. With this geometry and the direction of the Sun,
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the number of reflections which result in other surface elements being illuminated

is limited to one or at most two.

Figure 4.8: Illumination map of the Swarm optical bench - magnetometer unit computed
with 100% specular reflection.

4.3.3 Combination of specular and diffuse reflection

Figure (4.9) shows the illumination map calculated when reflection is half specular

and half diffuse. Basically the same patterns of reflected light can be seen as

with 100% specular reflection, but with attenuated intensities. This is similar to

what was found with the idealized geometry when comparing illumination patterns

obtained with fully specular and partly specular reflection.
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Figure 4.9: Illumination map of the Swarm optical bench - magnetometer unit computed
with 50% specular and 50% diffuse reflection.

4.4 Simulations made with a plasma background

We now consider simulation results obtained with the same geometry but in the

presence of a plasma background. The effects of multiple reflections are illustrated
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in three cases, calculated with a) direct illumination only (no multiple reflection),

b) multiple reflections taken into account with 100% specular reflection, and c)

multiple reflections with half specular and half diffuse reflections. In each case

we show the profile of current density collected at the surface of the assembly,

which is now caused by a combination of photoelectron emission and a collection

of plasma particles. We also show cross sections of the plasma current density

caused by photoelectron emission and plasma interaction with the assembly, and

the resulting perturbed magnetic field. The importance of multiple reflections is

assessed by comparing illumination maps, plasma current densities and resulting

perturbed magnetic fields computed with and without multiple reflections. The

plasma parameters used in the simulations are summarized in Table (4.1).

Table 4.1: Plasma parameters assumed in the simulations

Physical Parameter Numerical value

Electron density 1× 1010 m−3

Electron temperature 4.0 eV

Ion species H+

Ion density 1× 1010 m−3

Ion temperature 4.0 eV

Ion mass 1.66× 10−27 kg

Background magnetic field (35 , 10 , 0) µ T

Electron thermal velocity vthe =
√

2kTe

me
1.19× 106 m/s

Electron thermal gyro-radius vtheme

eB
0.187 m

Ion thermal velocity vthi =
√

2kTi

mi
2.78× 104 m/s

Ion thermal gyro-radiusvthimi

eB
7.713 m

Debye length
√

ǫ0kT
nee2

0.148 m
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4.4.1 Direct illumination

Figure (4.10) shows the collected current density calculated when direct solar il-

lumination only is taken into account (no multiple reflections). Cross sections of

the corresponding plasma current density are shown in Fig. (4.11). Given the

computed current densities associated with spacecraft-plasma interaction, it is in-

teresting to use the Biot-Savard law to calculate the associated perturbed magnetic

field. Cross sections of the x, y, z components of this field are shown in Fig. (4.12).

The current densities and resulting magnetic field perturbation are very small in

this case; of order of 10 pT for the magnetic field magnitude. Referring to Figs.

(4.11) and (4.12) it is interesting to note that the positive x component (directed

to the right) of the perturbed magnetic field is consistent with the current density

layers going into the page above the spacecraft and out of the page below it.
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Figure 4.10: Collected current density on the Swarm optical bench - magnetometer unit
computed with plasma and direct illumination only.
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Figure 4.11: Cross sections of the average current densities in x, y and z directions
computed with direct illumination.
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Figure 4.12: Cross section s of the perturbed magnetic field in the x, y and z directions
computed with direct illumination.

4.4.2 Specular reflection

Similar results are now presented in Fig. (4.13) to (4.15) when multiple specular

reflections are taken into account. Emitted photoelectron patterns are attenuated

by collected current surface density associated with background plasma. Here

again we find current into the page above the structure and out of the page below

it, which leads to a positive (to the right) x component of the perturbed magnetic

field. In this case the magnitudes of the components of the current density in

the plasma surrounding the spacecraft and their spatial profiles are comparable to

those computed without multiple reflections.
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Figure 4.13: Collected current density computed with 100% specular reflection on the
Swarm optical bench - magnetometer unit, while accounting for a background plasma.
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4

Figure 4.14: Cross sections of the average current densities in x, y and z directions
computed with 100% specular reflection with plasma.
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Figure 4.15: Cross section s of the perturbed magnetic field in the x, y and z directions
computed with 100% specular reflection with plasma.

4.4.3 Specular and diffuse reflection

Finally, Figs. (4.16) to (4.18) show results obtained in the presence of a back-

ground plasma, with multiple reflections assuming 50% specular and 50% diffuse

reflection. In this case, the numerical values of the components of the current

density and perturbed magnetic field are different, but their spatial distribution

is seen to be similar to that computed with direct illumination only (Figs. 4.11

and 4.12). Referring to table 4.2, the relative differences of the maximum current

densities and the maximum and the minimum values of the perturbed magnetic

field for all cases considered (direct illumination, 100% specular and 50% / 50%

) are approximately 5% or less. The largest relative differences are found for the

minimum current densities, which are of order 10%. The assembly floating poten-

tials computed in the three cases considered are identical four significant figures.
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These relative differences are not considered to be significant considering other un-

certainties such as albedos, angular distributions of diffusively reflected radiation,

and photoelectron emission rates used in the simulations.

Figure 4.16: Collected current density on the Swarm optical bench - magnetometer unit
computed with 50% specular and 50% diffuse reflection in the presence of plasma.

66



Figure 4.17: Average current densities in x , and z components computed with 50%
specular and 50% diffuse reflection.

67



Figure 4.18: Cross section s of the perturbed magnetic field in the x, y and z components
computed with direct illumination.

Table 4.2: Quantitative comparison between results obtained with different types of
illumination

Type of illumination Direct illumination 100% specular 50% / 50%

floating potential -7.752 V -7.752 V -7.752 V

Jmax(x,y,z) (
µA
m2 ) (40.2, 26.4,20.20) (39.4, 26.7,20.8) (40.9,27.1,19.9)

Jmin(x,y,z) (
µA
m2 ) (-29.4,-22.5,-48.01) (-30.7,–27.4,–54.8) (-30.3,-26.3,-53.9)

Bmax(x,y,z) (pT ) (8.97,4.24,2.34) (9.42,4.24,2.98) (9.31,4.34,2.72)

Bmin(x,y,z) (pT ) (-2.34,-3.66,-3.77) (-2.43,-3.78,-3.90) (-2.42,-3.70,-4.02)
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Chapter 5

Summary and conclusion

Simulation results for two cases of plasma satellite interactions have been pre-

sented in this thesis, corresponding to direct illumination and multiple reflections.

These were simulated using the computational model PTetera based on an elec-

trostatic time-dependent particle in cell (PIC) approach. A distinctive feature of

PTetra is that it accounts for a background magnetic field, and it uses an unstruc-

tured adaptive mesh to represent the simulation domain. This enables a realistic

representation of structures with complex shapes, and the imposition of physical

boundary conditions. The main contribution of this study was to improve the

calculation of solar illumination in PTetra, for the purpose of better simulating

photoelectron emission. This was done by:

• replacing the original stepping strategy for determining surface illumination,

with a more reliable ray tracing approach,

• improving the accuracy of solar illumination by accounting for partial illu-

mination of surface triangular elements, and

• adding an option in the code to account for multiple reflections between

surface elements with an arbitrary combination of specular and diffuse re-

flections.
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Simulations were made by considering an ideal satellite geometry and a more

realistic geometry representing the optical bench of the Swarm satellites. The ide-

alized geometry is used to clearly illustrate the effects of multiple reflections of

incident solar radiation. These can enhance solar illumination on satellite surfaces

directly exposed to solar radiation, or produce illumination on elements which

would otherwise not be exposed to UV radiation at all. The effect of multiple re-

flections on plasma currents and resulting perturbed magnetic fields is considerably

weaker than that associated with the interaction of surfaces with the background

plasma when such effects from a plasma are taken into account. It is therefore

concluded that multiple reflection effects on photoelectron emission and currents

generated by satellite-environment interaction, are relatively unimportant in the

presence of plasmas with densities corresponding to those encountered in the iono-

sphere. Multiple reflections however, should be more significant in lower density

plasmas such as those encountered in the solar wind.

5.1 Future work

This thesis presents improvements to the algorithm used for calculating photoelec-

tron emission in PTetra. The main improvement consists of accounting for partial

illumination of surface triangular elements, and multiple reflections of solar radia-

tion on spacecraft components. In the calculations considered here, for simplicity,

the Sun was treated as point source, a constant albedo was assumed for all surfaces

and diffuse reflection was assumed to be isotropic. Further improvements to the

model should include:

• a finite width of the solar disk,

• the use of tabulated albedos for different materials, and

• a more physical model for diffuse reflection, accounting for a) the angle at

which incident radiation reaches a surface, and b) the angular distribution
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of reflected light depending on the angle of incidence and surface material

properties.
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[39] Eigil Friis-Christensen, H Lühr, and Gauthier Hulot. Swarm: A constellation

to study the Earths magnetic field. Earth, Planets and Space, 58(4):351–358,

2006.

76



Appendix

Appendix 1

Geo file of a geometry used to illustrate the effects of multiple reflections

// Gmsh project created on Wed Mar 16 16:29:07 2016

res=0.1;

zmax=1.8;

zmin=-1.8;

ymax=1.;

ymin=-1.;

xmax=1.4;

xmin=-1.4;

Point(1) = zmin, zmin, zmin, res;

Point(2) = zmax, zmin, zmin, res;

Point(3) = zmin, zmax, zmin, res;

Point(4) = zmax, zmax, zmin, res;

Point(5) = zmin, zmin, zmax, res;

Point(6) = zmax, zmin, zmax, res;

Point(7) = zmin, zmax, zmax, res;

Point(8) = zmax, zmax, zmax, res;

Point(11) = ymin, xmin, xmin, res;

Point(12) = xmin, xmin, xmin, res;

Point(13) = ymin, xmax, xmin, res;
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Point(14) = xmin, xmax, xmin, res;

Point(15) = ymin, xmin, xmax, res;

Point(16) = xmin, xmin, xmax, res;

Point(17) = ymin, xmax, xmax, res;

Point(18) = xmin, xmax, xmax, res;

Point(21) = ymax, xmin, xmin, res;

Point(22) = xmax, xmin, xmin, res;

Point(23) = ymax, xmax, xmin, res;

Point(24) = xmax, xmax, xmin, res;

Point(25) = ymax, xmin, xmax, res;

Point(26) = xmax, xmin, xmax, res;

Point(27) = ymax, xmax, xmax, res;

Point(28) = xmax, xmax, xmax, res;

rad=0.4;

res2=0.2;

zmi=-0.9;

zma=0.9;

Point(31) = 0, 0, zmi, res2;

Point(32) = rad, 0, zmi, res2;

Point(33) = -rad, 0, zmi, res2;

Point(34) = 0, rad, zmi, res2;

Point(35) = 0, -rad, zmi, res2;

Point(36) = 0., 0., zma, res2;

Point(37) = rad, 0., zma, res2;

Point(38) = -rad, 0., zma, res2;

Point(39) = 0., rad, zma, res2;

Point(40) = 0., -rad, zma, res2;

Line(1) = 3, 7;

Line(2) = 7, 8;
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Line(3) = 8, 4;

Line(4) = 4, 3;

Line(5) = 3, 1;

Line(6) = 1, 5;

Line(7) = 7, 5;

Line(8) = 5, 6;

Line(9) = 6, 2;

Line(10) = 2, 1;

Line(11) = 2, 4;

Line(12) = 8, 6;

Line(13) = 18, 17;

Line(14) = 17, 13;

Line(15) = 13, 14;

Line(16) = 14, 18;

Line(17) = 18, 16;

Line(18) = 16, 15;

Line(19) = 15, 11;

Line(20) = 11, 12;

Line(21) = 12, 16;

Line(22) = 14, 12;

Line(23) = 17, 15;

Line(24) = 11, 13;

Line(25) = 28, 27;

Line(26) = 27, 23;

Line(27) = 23, 24;

Line(28) = 24, 28;

Line(29) = 26, 25;

Line(30) = 25, 21;

Line(31) = 21, 22;
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Line(32) = 22, 26;

Line(33) = 28, 26;

Line(34) = 24, 22;

Line(35) = 27, 25;

Line(36) = 21, 23;

Circle(37) = 35, 31, 33;

Circle(38) = 33, 31, 34;

Circle(39) = 34, 31, 32;

Circle(40) = 32, 31, 35;

Circle(41) = 40, 36, 38;

Circle(42) = 38, 36, 39;

Circle(43) = 39, 36, 37;

Circle(44) = 37, 36, 40;

Line(45) = 39, 34;

Line(46) = 35, 40;

Line(47) = 38, 33;

Line(48) = 32, 37;

Line Loop(49) = 8, -12, -2, 7;

Plane Surface(50) = 49;

Line Loop(51) = 6, -7, -1, 5;

Plane Surface(52) = 51;

Line Loop(53) = 5, -10, 11, 4;

Plane Surface(54) = 53;

Line Loop(55) = 9, 11, -3, 12;

Plane Surface(56) = 55;

Line Loop(57) = 8, 9, 10, 6;

Plane Surface(58) = 57;

Line Loop(59) = 4, 1, 2, 3;

Plane Surface(60) = 59;
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Line Loop(61) = 23, -18, -17, 13;

Plane Surface(62) = 61;

Line Loop(63) = 22, -20, 24, 15;

Plane Surface(64) = 63;

Line Loop(65) = 20, 21, 18, 19;

Plane Surface(66) = 65;

Line Loop(67) = 13, 14, 15, 16;

Plane Surface(68) = 67;

Line Loop(69) = 24, -14, 23, 19;

Plane Surface(70) = 69;

Line Loop(71) = 17, -21, -22, 16;

Plane Surface(72) = 71;

Line Loop(73) = 29, -35, -25, 33;

Plane Surface(74) = 73;

Line Loop(75) = 36, 27, 34, -31;

Plane Surface(76) = 75;

Line Loop(77) = 31, 32, 29, 30;

Plane Surface(78) = 77;

Line Loop(79) = 25, 26, 27, 28;

Plane Surface(80) = 79;

Line Loop(81) = 32, -33, -28, 34;

Plane Surface(82) = 81;

Line Loop(83) = 30, 36, -26, 35;

Plane Surface(84) = 83;

Line Loop(85) = 44, 41, 42, 43;

Plane Surface(86) = 85;

Line Loop(87) = 40, 37, 38, 39;

Plane Surface(88) = 87;

Line Loop(89) = 47, 38, -45, -42;
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Ruled Surface(90) = 89;

Line Loop(91) = 46, 41, 47, -37;

Ruled Surface(92) = 91;

Line Loop(93) = 46, -44, -48, 40;

Ruled Surface(94) = 93;

Line Loop(95) = 39, 48, -43, 45;

Ruled Surface(96) = 95;

Surface Loop(97) = 52, 58, 50, 56, 54, 60;

Surface Loop(98) = 66, 64, 72, 62, 70, 68;

Surface Loop(99) = 90, 92, 94, 86, 96, 88;

Surface Loop(100) = 84, 78, 76, 80, 74, 82;

Volume(101) = 97, 98, 99, 100;

Physical Surface(102) = 60, 50, 58, 52, 54, 56;

Physical Surface(103) = 64, 66, 68, 62, 72, 70;

Physical Surface(104) = 92, 88, 94, 86, 90, 96;

Physical Surface(105) = 78, 76, 80, 74, 82, 84;

Physical Volume(106) = 101;
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