
University of Alberta 

MODELLING AND SIMULATION OF CARBOHYDRATE SYSTEMS: FROM SOLUTION 

TO PROTEIN BINDING IN THE GAS PHASE 

by 

Mikyung Seo n Q 

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill­
ment of the requirements for the degree of Doctor of Philosophy. 

Department of Chemistry 

Edmonton, Alberta 
Fall 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-46420-5 
Our file Notre reference 
ISBN: 978-0-494-46420-5 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

•*• 

Canada 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

This thesis presents studies aimed at providing a deeper understanding of protein-

carbohydrate recognition and binding process by means of theoretical modelling and 

computational simulations. This study focuses on the theoretical modelling of fura-

nosides in particular. Furanoside ring systems can exist in a variety of conformers 

that are separated by low energy barriers. This conformational flexibility renders the 

modelling of such systems quite challenging. An earlier model had been shown to 

be reliable for simulation studies of more rigid pyranoside ring systems. Our new 

model, however, incorporates the effects of ring flexibility for better description of 

furanosides. It is applied to a monosaccharide, the methyl a-D-arabinofuranoside. 

The simulations results are compared to the results from NMR experiments in order 

to assess the validity of the model. For the study of the interactions between proteins 

and carbohydrates, an antibody single-chain fragment (scFv) and its native ligand, 

aGal[o;Abe]Q!Man are investigated as a model system. The intermolecular hydrogen 

bonds within a desolvated protein-ligand complex are characterized. This work is in­

spired by recent mass spectrometry experiments where some specific interactions are 

found to be preserved from solution to gas phase. We provide a more complete picture 

of the nature of the binding interactions between the protein and the ligand through 

hydrogen bond analysis. This analysis method is also used to probe the interactions 

between crystallographic" water molecules and the complex. Through calculations of 

free energy profiles of the native complex and its mutants, the contributions of var-



ious specific protein-ligand interactions to the stability of the mutant complexes are 

observed. This study also allows us to quantify the strength of specific interactions. 
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Chapter 1 

Introduction 

1.1 Context 

" The secret of life is molecular recognition; the ability of one molecule to 'recognize' 

another through weak bonding interactions." Linus Pauling is reported to have said 

these words at the 25th anniversary of the Institute of Molecular Biology at the 

University of Oregon [1]. Molecular recognition by specific targets lies at the heart 

of life processes. It refers to the non-covalent specific interactions between two or 

more biological molecules: protein-carbohydrate, receptor-ligand, antigen-antibody, 

DNA-protein and many other interactions. It is well established that carbohydrates 

play a role in important biological recognition processes. The molecular interactions 

involved in the recognition of carbohydrates by proteins mediate a broad range of bi­

ological activities, such as cell growth, the immune response and bacterial infection. 

The elucidation of the mechanisms that govern how oligosaccharides are accommo­

dated in the binding sites of lectins, antibodies, and enzymes is currently a topic of 

major interest [2, 3, 4]. Therefore, characterizing the structure and energetics, and 

understanding the interactions of protein-carbohydrate complexes are key to under­

standing many biological functions and successful drug design. 

A variety of experimental techniques including X-ray crystallography, Nuclear 

Magnetic Resonance (NMR) spectroscopy, microcalorimetry, and site-directed mu­

tagenesis have provided a great deal of information on the structural and energetic 

principles underlying these important protein-carbohydrate interactions [5]. 
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Detailed information on the structure of the complexes is however difficult to 

obtain since the usually high molecular weight of proteins has prevented their di­

rect studies by means of NMR spectroscopy [6]. In addition, the potential confor­

mational flexibility exhibited by some oligosaccharides impede the growth of crys­

tals, both in the free and complexed form [7]. Unaffected by such experimental 

restrictions, computational approaches offer a promising alternative means of explor­

ing the conformational preferences of flexible carbohydrates, and of understanding 

protein-carbohydrate recognition processes at a microscopic level. During the past 

decade, developments in computational methodologies have been made in the area 

of oligosaccharide conformational analysis and in the field of protein-oligosaccharide 

interactions. Continually evolving computational methods combined with increasing 

computer power not only broaden the range of feasible applications, but also open up 

detailed observations of protein-ligand interactions. 

The computational investigation of molecular systems requires a theoretical de­

scription of the molecules of interest. The accuracy of the description or model, most 

often defines the reliability of the computed results. The conformational diversity and 

complexity of carbohydrates makes them a challenging class of molecules to model. 

Furanosides, in particular, are highly flexible five-membered ring molecules whose 

biological functions are affected by their conformations [8, 9, 10, 11]. In the first 

part of the thesis, our developmental efforts in carbohydrate modelling are presented. 

The notable difference that distinguishes this new approach from an existing model 

for furanosides [12, 11] is the consideration of the inherent flexibility of furanoside 

rings. The performance of the model is then illustrated through the elucidation of 

the solution conformation of carbohydrates containing furanose rings. 

The second area of study presented in this thesis aims at investigating the fac­

tors affecting the intrinsic binding interactions between protein and carbohydrates 

at the molecular level. Computer simulations are carried out for a gaseous protein-

trisaccharide complex consisting of a genetically engineered single chain variable frag­

ment, scFv, of the monoclonal antibody Sel55-4 and its native trisaccharide ligand, 

aGal[o;Abe]Q;Man, in which Gal, Man, Abe stand for galactose, mannose, abequ-
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ose (3,6-dideoxy-D-hexose), respectively [13]. The trisaccharide ligand, which is an 

epitope of the Salmonella group B O-antigen, represents an important disease mark­

ers and a target for therapeutic antibodies [14]. Due to the limited availability of 

simulation data for the antibody-carbohydrate complex, a full understanding of the 

recognition (or binding) process has not yet been achieved to date from a theoretical 

point of view. One of the aims of our work is to contribute to this understanding by 

offering a molecular view of the process. 

This introduction is organized as follows. We start in Section 1.2 with a descrip­

tion of the Born-Oppenheimer approximation, one of the most important approxima­

tions employed when solving Schrodinger's equation for complex systems containing 

more than one or two electrons. Section 1.3 offers an introduction to some useful 

concepts of statistical mechanics. The following section gives an overview of clas­

sical Molecular Dynamics (MD) and the typical properties that can be calculated 

(Section 1.4). Lastly, challenges in carbohydrate modelling and the investigation of 

protein-carbohydrate interactions are discussed in Section 1.5. The development of 

computational methodology to model protein-carbohydrate interactions is described 

therein. 

1.2 Born-Oppenheimer Approximation 

At the beginning of the twentieth century, experimental evidence suggested that 

atomic particles were also wave-like in nature. It is reasonable to assume that a wave 

equation could explain the behaviour of atomic particles. The Schrodinger equation is 

the wave equation used in quantum mechanics to describe the behaviour of particles. 

The time-independent Schrodinger equation is given by the following eigenvalue 

problem, 

HV(r,R) = EtotV(r,R), (1.1) 

where R and r are position vectors of the nuclei and electrons, respectively. \l/(r,R) 

is the wave function, H is the Hamiltonian and Etot is total energy. 
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For a molecular system, the Hamiltonian is given as a sum of five terms: 

_ ^ _ V2 - ^ Y^ V2 - e Y^ ZA 

2mA
 A 2me

2-- i 4ne0 4-f \rt - RA\ 
H \-2mA

VA 2 m e ^ - V i 4ne0 ^ 
A i i,A 

• e ' V - + — V ZAZB (121 4?r£0 "fe 1̂ ' ~ ̂  47r£° Â B ̂  ~ ^ ' 
where A and 5 refer to nuclei and % and j refer to electrons, r denotes electronic 

positions, and R the nuclear positions. The molecular system consists of electrons 

with the electronic mass rae and nuclei with mass mA- Electrons and nuclei have 

charges e and Z, respectively. In this Hamiltonian, the first two terms represent the 

kinetic energy and the last three terms potential energy. The first term is associated 

with the kinetic energy of the nuclei, and the second term with the kinetic energy of 

the electrons. The third term is the attractive Coulombic interaction between nuclei 

and electrons. The last two terms represent the energy associated with the repulsion 

resulting from like-charge interactions, namely the electron-electron and the nuclear-

nuclear interactions [15]. 

Eq. (1.2) can be written more compactly as 

H = fN(R) + fe(r) + VeN(r, R) + Vee(r) + VNN(K) , (1.3) 

where T are the kinetic energy and V is the potential energy operator, respectively. 

The particles involved in each operator are indicated by subscripts, e for electrons 

and AT for nuclei. 

Ideally, the Schrodinger equation should be solved for the wave function ^(r , R), 

a function described by all position variables, R and r. Solving the Schrodinger equa­

tion for systems of higher complexity than an atom with one electron is unfeasible to 

carry out in practice because many degrees of freedom need to be taken into account. 

Thus, various approximations need to be imposed for such molecular systems. 

One of the most important and fundamental approximations used is called the 

Born-Oppenheimer (BO) approximation, developed by Max Born and Robert J. Op-

penheimer [16] in 1927. The BO approximation separates electronic and nuclear 

motion based on the idea that the nuclear mass is so much larger than the mass of an 



electron that the nuclei are basically "fixed" particles. Let us think classically about 

this difference in mass. If two particles attract in some way, and one is much heavier 

than the other, the light particle will simply follow the heavy particle wherever it goes, 

and it will respond instantaneously to changes in the position of the heavy particle. 

It is, therefore, safe to consider the nuclei as being fixed with respect to electronic 

motion, and so the true wave function \I>(r, R) can be factorized into a product of two 

functions ^ ( r ;R)^(R) , where 0(R) depends on the nuclear position variables, and 

•0(r; R) the electronic ones (depending only parametrically on the nuclear variables). 

With this assumption in hand, the time-independent Schrodinger equation can be 

re-written in terms of two separate equations. The first involves the motion of the 

electrons for given nuclear positions: 

tfe^(r;R) = £e /(R)V;(r;R), (1.4) 

where 

Hel = Te(r) + VeN(r, R) + Vee(r) + VNN(R) . (1.5) 

The electronic energy eigenvalue Eei depends on the given positions R of the 

nuclei. Varying these nuclear positions R in small steps and repeatedly solving the 

electronic Schrodinger equation Eq. (1.4), one obtains the electronic energy Eei as a 

function of R. This electronic energy Eei(R) is used as the potential energy surface 

(PES) in the Schrodinger equation, and it can be described the motion of the nuclei 

on the PES: 

Hnuc<j>(R) = Etot<f>{R) , (1.6) 

where 

Hnuc = fN(R) + Eel(R). (1.7) 

In Eq. (1.7), the Hamiltonian Hnuc for the nuclear motion equals the nuclear 

kinetic energy operator TN(R) plus the electronic energy Eei(R). In principle, Eq. 

(1.4) should be solved for Eei(R), and then Eq. (1.7) for the nuclear motion. We 

"just" have to perform a series of electronic structure calculations for given nuclear 

positions using ab initio quantum chemistry methods. But finding the solutions to 
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Eqs. (1.4) and (1.7) requires a large amount of computation. Thus, an empirical 

method to fit Eei(R) (also called a force field) is often employed. A classical force 

field consists of analytical functional forms describing the interactions between atoms 

in a system and parameters in these functional forms. The force fields are typically 

expressed as a sum of bonded interactions corresponding to chemical bonds, bond 

angles and dihedral angles, and non-bonded interactions associated with van der 

Waals forces and electrostatic charges. This will be discussed further in Section 1.5.1. 

Since the nuclei are relatively heavier than electrons, the quantum mechanical 

effects of the nuclei are often insignificant, and Eq. (1.7) can be replaced with classical 

equations of motion (i.e., the Newton's equation of motion, Fj = m;a;): 

where Fj = JR~ is the force on nucleus i, and m* and a; are the mass and the 

acceleration of the nucleus, respectively [17]. Solving this equation for the classical 

motion of nuclei on a single PES Eei(R) (i.e., associated with a single electronic state) 

is called classical molecular dynamics (MD). Classical MD studies the time evolution 

of a system consisting of nuclei or atoms according to classical mechanics. If we are 

not interested in the time evolution of a system, Eei(R) can be used to calculate static 

properties such as equilibrium structures, transition states and relative energies. This 

is called molecular mechanics (MM). 

It is important to note that there are several assumptions in classical MD: First, 

by invoking the BO approximation, the electronic coordinates are averaged over the 

electronic wave function, so the nuclei move in the average field of the electrons. 

Second, the nuclei move on a single adiabatic PES. Third, a PES is approximated by 

an empirically determined function, called the force field. Last, nuclear motions are 

described by classical mechanics. Further detailed description of classical MD will be 

presented in Section 1.4. 

In general, the BO approximation can be justified in most physical situations. On 

the other hand, there are many important chemical phenomena where the BO ap­

proximation is invalid, for example, charge transfer and photoisomerization reactions, 
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which are characterized by the inseparability of electronic and nuclear motion [18], 

thus factorizing the true wave function in Eq. 1.1 would be clearly a poor approxi­

mation. For the systems studied in this thesis, however, the separation of two types 

of motion is reasonable and so the BO approximation is adopted. 

1.3 Statistical Mechanics 

Simulation techniques can help us probe the structural properties of molecules and the 

microscopic interactions between them. This serves as a complement to conventional 

experiments by providing us with new insights. However, all properties cannot be di­

rectly measured in a simulation. Conversely, many quantities that can be obtained in 

a simulation, do not correspond to properties that are measured in real experiments. 

Average properties, averaged over a large number of particles, and usually, also aver­

aged over the duration of the measurement are obtained in typical experiments [19]. 

If we wish to use a simulation technique as a bridge between microscopic length and 

time scales and the macroscopic world of the laboratory, we must know what kind of 

averages we should aim to compute. In order to explain this, we need to introduce 

the language of statistical mechanics. 

Statistical mechanics is that branch of physics which studies macroscopic systems 

from a microscopic or molecular point of view. The goal of statistical mechanics is 

the understanding and prediction of macroscopic phenomena and the calculation of 

macroscopic properties from the properties of the individual molecules making up the 

system [20]. The system could range from a collection of solvent molecules to a sol-

vated protein-DNA complex. In this section, the fundamental concepts of statistical 

mechanics will be described. 

1.3.1 Classical statistical mechanics 

One of the most important concepts of statistical mechanics involves asking what is 

the most probable distribution of energy among a large number of N particles within 

a container of volume V that is maintained in equilibrium at a specified temperature 
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T. According to statistical mechanics, the probability Pi of finding the system in its 

quantum state i with energy Ei in equilibrium at constant N, V and T (the canonical 

ensemble) is proportional to the Boltzmann factor, that is, 

Pi oc exp(-Ei/kBT) , (1.9) 

where kB is the Boltzmann constant, and thus we can write the Boltzmann distribu­

tion as follows: 

p, = ^tEdMl, (1.10) 

where Q is the partition function, the sum of the Boltzmann factors over all quantum 

states i: 

Q = ^2exp(-Ei/kBT) . (1.11) 
i 

Just as the wave function characterizes the microscopic system in quantum mechanics, 

the partition function is a fundamental function having an equivalent status in statis­

tical mechanics, and this allows us to calculate many useful temperature-dependent 

properties of a system such as the internal energy, the heat capacity and the free 

energy. 

The equilibrium value of some observable A is therefore obtained by averaging 

over all states accessible to the system, weighting each state by the Boltzman fac­

tor. Quantum mechanically, this averaging is performed simply by summing over all 

possible discrete states: 

= T,i^M-Ei/kBT)(i\A\i) ^ 

where (i|A|i) denotes the expectation value of the operator A associated with the ob­

servable A in quantum state i. Using the relation of exp(—Ei/kBT) = (i\exp(—H/kBT)\i), 

where H is the Hamiltonian of the system, Eq.(1.12) can be written as 

= E«(«)exp(-£/fcBT)A|t) 

Zi(i\eM-H/kBT)\i) 

In a classical statistical mechanical description, the energy is written as a function 

of positions and momenta, and a state of the system is defined by positions and 
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momenta of all particles. If the system contains N particles, there are 3N positions 

and 3iV momenta. It is convenient to visualize the state of an iV-particle system 

in terms of a 6iV-dimensional vector space, called phase space. The coordinates are 

therefore composed of the 3N positions q and 3iV momenta p. Each point in phase 

space, called a phase point, represents a state of the classical system at any time t. 

As phase space variables, i.e., (q, p) of the system vary, the point representing the 

system traces out a trajectory in the phase space. Thus, the corresponding classical 

expression of a partition function requires an integration over all possible classical 

"states" of the system instead of a discrete summation because the classical states 

are continuously defined by all points on the phase space. It is noted that the classical 

energy is a continuous function of q and p for the N particles in the system, i.e., the 

Hamiltonian function iJ(p,q), and now the partition function can be expressed as 

Qd = whn j I dP*iexP(-/r(P' ̂ )/^T) - (L14) 
where h is Planck's constant and d is the dimensionality of the system. The factor 

1/iV! is for taking the indistinguishability of identical particles into account. 

Eq. (1.12) for the average value of some observable A can also be simplified to a 

more workable expression in the classical limit. 

,AK = 11 dpdqexyj-Hjp, q)/kBT)A(p, q) 

Qci 

Eqs. (1.14) and (1.15) are the starting points for virtually all classical simulations 

of many particle-systems. 

1.3.2 Ergodicity 

In statistical mechanics, the average value of the observable A is defined as an av­

erage over all possible states of the system, called an ensemble average denoted by 

{A)ensemue- An ensemble is the assembly of all possible microstates consistent with 

the macroscopic constraints on the system. An ensemble average can be written as 

(A)ensemble = / / dpdqA(p, q)p{p, q ) , (1.16) 



where p(p, q) is the probability density of the ensemble defined by the set of variables 

(p, q) in turn given by 

p(p,q) = ^ -exp( -F(p ,q) / fc B T) . (1.17) 
Wcl 

However, such a phase space average is not the way we usually think about the 

average behaviour of a system. In most experiments a series of measurements are 

performed over a long time from which an average is then determined. Another 

approach used in MD simulations, is to study the average behaviour of a system by 

computing the natural time evolution of the system numerically and by averaging 

the quantity of interest over a sufficiently long time. This is called as a time average. 

The time average of A is expressed as 

Atime = lim i f A(p(t),q(t))dt , (1.18) 
T->oo 1 J0 

where T is the simulation time. Note that a bar indicates a time average to distinguish 

it from the above ensemble average, denoted by a (...). 

Here, the underlying assumption is called the ergodic hypothesis, which states that 

the time average over a long time is equal to the ensemble average: 

Hime — \-<Vensemble • \^'*-") 

Therefore, given enough time, an ergodic system should explore the set of all phase 

points (p, q). This is our justification for calculating trajectories (values of p(t) and 

q(i)) in order to obtain the thermodynamic properties via time averaging. 

Eq. (1.19) tells us that we can use either the time averaging (the Molecular Dy­

namics (MD) approach) or the ensemble averaging (the Monte Carlo (MC) approach) 

to calculate the average of a function of the positions and momenta of a many-particle 

system [19]. The MD and MC methods are the two main simulation techniques in the 

studies of dynamics in molecular systems. The following section provides a description 

of MD, which is the major focus of the work presented in this thesis. 
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1.4 Molecular Dynamics 

MD is a central computational tool in statistical mechanics. It computes the equilib­

rium and transport properties of a classical many-particle system. The word classical 

means that the nuclear motion of the particles follows the laws of classical mechanics. 

In other words, MD simulates the time evolution of the system based on Newtons 

second law. 

Analogous to traditional experiments, MD simulations can be considered "in sil-

ico" experiments. Just as in an experiment, we first prepare a sample of the material 

that we wish to study, prior to the simulation, we select a system and a model describ­

ing the relevant chemistry and physics of the constituent particles. The details about 

the most commonly used models are given in Section 1.5.1. In experimental work, at 

the data collection stage, we connect the sample to a measuring instrument {e.g., a 

thermometer), and we measure the property of interest during a certain time interval. 

We may need to repeat the measurement several times to achieve high accuracy. In 

MD simulations, Newton's equation F = ma is solved for the model system. Previ­

ous to the data collection, the system has to reach equilibrium, i.e., the properties of 

the system no longer change with time. After equilibration, we perform the actual 

measurement and this is known as production [19]. 

To start a simulation, initial momenta (p) and positions (q) are assigned to all 

particles in the system. The initial positions can be obtained from experimental 

structures, such as the X-ray crystal structure or the solution structure determined 

by NMR spectroscopy. The velocities, thus momenta, are assigned randomly to each 

atom from the Maxwell-Boltzmann distribution, a Gaussian function of momenta, at 

a given temperature. Next, the interactions between constituent atoms need to be de­

scribed. Having specified the potential energy V, we are now ready to investigate the 

classical dynamics. The most time-consuming part of almost all MD is the calculation 

of the force on each atom. The force Fj acting on an atom i is determined by the 

gradient of the potential energy. Suppose that we wish to compute the z-component 
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of the force Fj, that is 

F- - - £ • (i2o) 

This force results in an acceleration a according to Newton's equation of motion 

FXi — rriia.Xi. By knowing the acceleration of each atom in the system, new atomic 

momenta and atomic positions (p(t),q(t)) are calculated at regular time intervals, 

known as the time step At. Integration of the equations of motion over a long period 

of time then yields a trajectory that describes the positions and momenta of all 

particles in the system as they vary with time. The average values of properties can 

be determined from the trajectory. Several numerical algorithms have been designed 

for integrating the equations of motion using finite difference methods. All algorithms 

assume that positions, velocities and accelerations can be approximated by a Taylor 

series expansion. We can derive the simplest but most widely used one, the Verlet 

algorithm [21] which integrates the equations of motion in an MD simulation. This 

Verlet algorithm uses the positions r and accelerations a at time t, and the position 

from the previous step t — At, to calculate the new positions at t + At. The positions 

at t + At and t — At are each expanded as a Taylor series about t: 

r(t + At) = r(t) + v{t) At + -a(t) At2 

r(t - At) = r(t) - v(t)At + -a(t)At2 . (1.21) 

Summing these two equations, one obtains the position at t + At 

r(t + At) = 2r(t) - r(t - At) + a(t)At2 . (1.22) 

The velocities do not explicitly appear in the Verlet algorithm. The velocities can be 

calculated by dividing the difference in positions at times t + At and t — At by 2At: 

y(t) _ Ht + fiQ-rt-U) (1 23) 

It is clear that a good MD program requires a good algorithm to integrate New­

ton's equations of motion. Some of the features that characterize a 'good' method 

is being fast, requiring minimal memory, and being easy to program [22]. The con­

servation of energy in classical mechanics is also an important criterion. Simulations 

12 



carried out in the microcanonical, namely constant NVE ensemble (i.e., with fixed 

number of particles N, volume V and total energy E), require that the total energy be 

conserved throughout the simulation, i.e., the sum of the kinetic and potential ener­

gies is kept constant [23]. Another virtue to be considered is that the algorithm should 

permit the use of a relatively longer time step At. As mentioned earlier, the most 

demanding part of a MD simulation is the calculation of the forces on each particle 

in the system. The size of the time step is particularly relevant to the computational 

demands because the longer the time step, the fewer the number of evaluations of 

the forces needed per unit of simulation time. Hence, accuracy for long time steps is 

important and this suggests that it may be advantageous to use a sophisticated algo­

rithm that allows the use of a long time step. A typical time step used in simulations 

is approximately one order of magnitude smaller than the fastest characteristic time 

scale of the motion of interest [22]. Lastly, a good algorithm must be reversible in 

time as in classical mechanics, i.e., if we change the signs of all velocities, a trajectory 

retraces itself backward in time. 

Constraint algorithms are often applied to MD simulations. A constraint algo­

rithm is a method for satisfying constraints for molecular systems that obey Newton's 

equations of motion. The SHAKE method [24] is the first algorithm developed to sat­

isfy bond geometry constraints with the use of Verlet algorithm. This can enable the 

time step in a MD simulation to be increased. For the studies reported in this thesis, 

the SHAKE algorithm was used for constraining bonds involving hydrogen atoms due 

to their much higher vibrational frequencies. 

MD has been widely applied and has brought and/or could bring important con­

tributions in areas such as liquids, clusters, surfaces, biomolecules, and so on. In 

particular, a classical description of the nuclear dynamics allows us to study the dy­

namics of large macromolecules, including biological systems such as proteins, nucleic 

acids (DNA, RNA), and membranes [25]. Dynamical events may play a key role in 

controlling processes which affect functional properties of biomolecules. MD simu­

lations are commonly used to design drugs in the pharmaceutical industry to test 

properties virtually without actual synthesis. It is also worth mentioning that the 
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development of ab initio MD such as the Car-Parrinello method [26] where the forces 

on atoms are obtained by solving for the electronic structure at each time step not 

through nuclear potential, allows us to study simultaneously electronic as well as 

dynamical properties. 

1.4.1 Constant temperature molecular dynamics 

In a conventional MD simulation, the total energy E is a constant of motion. Hence, 

MD simulations measure time averages in the NVE ensemble. However, we often 

encounter limitations and inconveniences which come from the use of the NVE en­

semble. Many laboratory experiments are carried out at constant temperature T 

and constant pressure P while MD simulations are performed at constant energy E 

and constant volume V. The difference in these conditions makes direct comparison 

with experiments difficult [27]. Although thermodynamic results can be transformed 

between ensembles, this is strictly only possible in the limit of infinite system size 

("the thermodynamic limit"). Therefore, it is often desirable to perform simulations 

in other ensembles, commonly the canonical (constant temperature NVT) ensemble 

or the isothermal-isobaric (constant pressure NPT) ensemble. In order to maintain 

the temperature constant on average, some modifications are applied to the standard 

MD algorithm discussed earlier, and this is called a thermostat algorithm. In this 

section, several such methods will be discussed. 

The temperature of the system is related to the ensemble average of the kinetic 

energies of all particles: 

(K)NVT = (J2 \rntf) = \NkBT , (1.24) 
i 

where Vi is the velocity of particle % and N is the total number of particles in the 

system. 

There have been various types of different thermostats to simulate the constant 

temperature condition. Since the temperature depends on the velocities, the crude 

and simplest way to control the temperature is to multiply the velocities at each time 
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step by the factor A = ^/Tw/T(t), where Tw is the desired temperature and T(t) is 

the current temperature at time t [22]. 

An alternative way to maintain the temperature is to couple the system to an 

external heat bath that is fixed at the desired temperature [28]. The bath acts as a 

source of thermal energy, adding or removing heat from the system as appropriate. 

This method, called Berendsen thermostat, "encourages" the temperature in the de­

sired direction by coupling it to a heat bath. It corrects deviations of the temperature 

T(t) from the desired temperature Tw by scaling the velocities at each time step At 

(and hence control the value of temperature). The scaling factor for the velocities is: 

where r is the coupling parameter. 

The Langevin thermostats follow the Langevin equation of motion instead of New­

ton's equation of motion [29]. In the Langevin equation of motion, a frictional force, 

proportional to the atomic velocity, is added to the conservative force with the pur­

pose of adjusting the kinetic energy of the particles such that the temperature matches 

the desired temperature. 

There are also other methods to maintain constant temperature in MD: stochastic 

(e.g., Andersen thermostat [30, 27]) and extended system methods (e.g., the Nose 

[31] and Nose-Hoover thermostat [32, 33]). For the studies reported in this thesis, the 

Berendsen and Langevin thermostats were used, and simulations were performed in 

the NPT and NVT ensembles. 

1.4.2 Equilibrium properties 

Properties of interest of many-body systems can be "measured" from molecular sim­

ulations. Such properties include, of course, those quantities that can be compared 

with real experimental observables for the thermodynamic properties of the system 

under consideration. Examples are the temperature T, pressure P, and heat capacity 

Cv. As an illustration, consider the temperature. Section 1.4.1 gives the relation­

ship between the temperature and the average kinetic energy. For a system with 3N 
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degrees of freedom, the temperature can be estimated as 

m 2(20 (1.26) 
3NkB 

In MD simulations, it is a common practice to impose geometrical constraints on 

certain high frequency motions, e.g., hydrogen-containing bonds. In such cases, the 

effective number of degrees of freedom is 3N — Nc where iVc is number of constraints. 

However, some thermodynamic functions cannot be obtained directly in a sim­

ulation. In other words, these properties cannot be expressed as a simple average 

of the phase space coordinates of all the particles in the system [19]. Examples of 

such properties are the entropy S, the Helmholtz free energy A, and the Gibbs free 

energy G. We require separate techniques to evaluate such quantities in computer 

simulations. Methods used to calculate these properties will be described in Section 

1.4.4. 

Another property that can be obtained from simulation is the so-called radial 

distribution function (also known as the pair correlation function), denoted by g(r). 

This function is a useful tool to describe the structure of a system, particularly of 

liquids, and can be easily obtained in a simulation. In particular, g(r) is defined 

simply as the ratio between the average number density p(r) at a distance r from 

any given atom and the density at a distance r from an atom in an ideal gas at the 

same overall density. By construction, g(r) = 1 for an ideal gas. Any deviation of 

g{r) from unity reflects correlations between the particles due to the intermolecular 

interactions [19, 34]. 

Both thermodynamic and structural properties do not depend on the time evolu­

tion of the system. They are static equilibrium averages (time-independent). Such 

equilibrium quantities can be obtained by either MD or MC simulations. 

1.4.3 Dynamical properties 

In addition to the static equilibrium properties, dynamical properties (time-dependent) 

can be obtained in an MD simulation, but not in an MC simulation. This is a major 

advantage of the MD over the MC method. 
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Onsager's regression hypothesis [35, 34] states that the law governing the regres­

sion of microscopic thermal fluctuations in a system at equilibrium is identical to 

the law describing the relaxation of a macroscopic system in a state away from equi­

librium, provided the perturbation to the system is very weak. In other words, by 

observing (microscopic) fluctuations in simulations of an equilibrated system, one can 

learn about its (macroscopic) dynamical properties. 

In order to understand this hypothesis, consider an observable A for a system at 

thermal equilibrium. Such a property fluctuates in time with the following sponta­

neous microscopic fluctuations, 

SA{t) = A(t) - (A) , (1.27) 

where A(t) is the instantaneous value of the observable A at time t and (A) is the 

corresponding equilibrium ensemble-averaged quantity. The time evolution of the 

fluctuation is governed by microscopic laws. For classical systems, it really is a func­

tion of time with parametric dependence on positions q and momenta p: 

5A(t) = 6A(t; p, q) = 5A(p(t),q(t)) . (1.28) 

The average correlation between 8A(t) and an instantaneous fluctuation at time 

zero 5A(0) is described by the correlation function [34] 

C(t) = (SA(t)5A(0)) = (A(t)A(0)) - (A)2 . (1.29) 

Thus, for a classical system, the time correlation function of A is defined as 

C(t) = J dp J dq /(p,q)M(0;p,q)<L4(t;p,q) , (1.30) 

where / ( p , q) is the equilibrium phase space distribution function. 

In equilibrium statistical mechanics, all thermodynamic properties can be accessed 

through the partition function of the system under investigation. Similarly, time 

correlation functions are central to the calculation of transport properties [36]. There 

is however one important difference: while the state of thermal equilibrium is uniquely 

defined, there exists a wide collection of different nonequilibrium states. In practice, 
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this means that all thermodynamic quantities can be obtained from one partition 

function. Conversely, a specific time correlation function is required for every different 

transport process. 

The below is an example of the connection between a time correlation function 

and transport properties [34]: 

1 f°° 

This equation relates the diffusion constant D to an infinite time integral of the 

velocity v autocorrelation function. In the present, we will specifically focus on the 

hydrogen bond lifetime correlation function that will be defined in Chapter 5. 

1.4.4 Free energy simulations 

The free energy is arguably the most useful quantity in thermodynamics. It is a state 

function of a system in thermodynamic equilibrium, often expressed as the Helmholtz 

function, or the Gibbs function. Whether one chooses to describe the free energy in 

terms of the Helmholtz or Gibbs function depends on the system under investigation. 

The Helmholtz free energy A provides a suitable description for systems specified by 

a fixed number of particles and constant temperature and volume (NVT ensemble) 

while the Gibbs free energy G is more appropriate for an ensemble with constant 

number of particles, temperature and pressure (constant NPT). Most experiments 

are conducted under conditions of constant temperature and pressure so we usually 

require the Gibbs free energy for proper comparison with experimental values. 

In classical statistical mechanics, A and G are directly related to the canonical 

(N, V, T) partition function and (N, P, T) partition function, respectively. 

A = -kBT\nQ(N,V,T) 

G = -kBT In Q(N,P,T) . (1.32) 

Unfortunately, it is very difficult to compute the absolute free energies because 

this quantity depends on the absolute value of the partition function, which requires 
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an extensive sampling of phase space. Thus, associated quantities such as the en­

tropy and the chemical potential are also difficult to calculate. As we mentioned in 

Section 1.4.2, the free energy cannot be accurately determined from a 'standard' MD 

or MC simulation. It is, however, simpler to compute relative free energies, which 

depend on a much smaller region of phase space. Three methods have been proposed 

for calculating free energy differences: thermodynamic perturbation, thermodynamic 

integration and slow growth [22, 37]. The strategy employed in these methods relies 

on chemical 'mutations'. A thermodynamic integration is often used to calculate the 

difference in excess free energy of similar but distinct molecules, and such calcula­

tions are particularly important in biomolecular modelling [38]. For the studies in 

this thesis, we will not focus on these methods to calculate free energies. 

Instead, we look at the change in free energy as a function of some inter- or 

intramolecular coordinates, such as the distance between two atoms, or the torsion 

angle of a bond within a molecule, or in other words, the variation of free energy 

along conformational degrees of freedom. The free energy surface along a chosen 

coordinate is known as a potential of mean force (PMF). The simplest type of PMF 

is the change in free energy as two tagged particles are moved through the system 

from infinite separation to a relative separation r. We can calculate the PMF from 

the radial distribution function using the following expression for the Helmholtz free 

energy [34]: 

w(r) = -kBT\ng(r) . (1.33) 

A detailed description of the PMF will be provided in the next section. 

1.4.5 Umbrella sampling 

The PMF w(x) along some coordinate x w a s n r s t introduced by Kirkwood [39] in 

1935. It is a key concept in modern statistical mechanical theories of liquids and of 

complex molecular systems. The PMF is denned in terms of the average distribution 

function {p(x)} as 

w(x)=iu{x*)-kBTln <P(X)> 

(p(x*)) 
(1.34) 
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where w(x*) and (p(x*)) are arbitrary reference values. The average distribution 

function along the coordinate is obtained from the average weighted by the Boltzmann 

<P(X)> = jr-J / T / , w, „>. > (1-35) 

where 5(%/(q) — x) is the Dirac function for the coordinate x and x'fa) is a function 

depending on a few or several degrees of freedom. The chosen coordinate x is assumed 

as a geometrical coordinate x(q). 

Unlike the frequently used mutations of free energy perturbation calculations 

[22, 37, 40] which are often along non-physical pathways, the PMF is usually cal­

culated for a physically achievable process. In particular, it is useful for calculating 

conformational equilibrium properties and for predicting the transition rate of dy­

namically activated processes. 

However, it is often impractical to compute the PMF w(x) or the distribution 

function (p(x)) directly from MD simulations. For example, systems in which a large 

potential energy barrier separates two regions of configurational space may suffer from 

poor sampling in a simulation. In other words, the low probability of overcoming 

the potential barrier can leave inaccessible configurations on the other side of the 

barrier poorly sampled or even entirely unsampled within the available computer 

time. To avoid this problem, special sampling techniques have been designed to 

calculate the PMF. One of these approaches is called umbrella sampling [41]. In 

umbrella sampling, a modified-Boltzmann sampling scheme is used to avoid sampling 

difficulties by modifying the potential function. The modification of the potential 

function can be written by adding artificial biasing potentials H to the potential 

energy V(q): 

V'(q) = V(q) + Vb(X) . (1.36) 

This forces the system to compute an ensemble average over a modified-Boltzmann 

distribution within a small interval of a prescribed value of x- Biasing potentials are 

added over a range of coordinates, called the window. Multiple simulations (windows) 

are performed with different biasing potentials H(x)i> centred on successive values of 
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X for every window i. The biasing potential is often expressed as a harmonic function 

of the form: 

Vh{x)i = \Kx-Xi? , (1-37) 

where is k is the harmonic force constant. At every window i, the biased distribution 

function (pix))\ is then obtained through the expression of the distribution function 

in Eq. (1.35) substituting V"(q) for V'{q). 

(p(X)>? = exp(-H(x)i/^T)(p(X))r(exp(-H(x) i /A;BT))-1 . (1.38) 

The superscripts b and u indicate biased and unbiased respectively. Since the window 

potential H(x)i is a known function, we can calculate the unbiased PMF for each ith 

window from the biased distribution: 

w(xK = w(X*)-kBTln {p{x))b Vb(x)i + Ft , (1.39) 
L(p(x*)>. 

where F, are undetermined constants that represent the free energy associated with 

introducing the window potential. Within each window we get a free energy profile 

with a different constant JFJ. The constants Fi are obtained by adjusting the various 

adjacent windows w(x)f m the region in which they overlap until they match. 

The distribution functions from various windows need to be unbiased (p(x))f (the 

modified-Boltzmann factor is removed) and then recombined together to obtain the 

final estimated PMF w(x)- The process of unbiasing and recombining the different 

simulation windows is the main difficulty in umbrella sampling. The different meth­

ods available to unbias and recombine data extracted from umbrella sampling was 

reviewed by Roux [41]. One useful method for calculating free energies is called the 

Weighted Histogram Analysis Method (WHAM) [42]. WHAM represents a general­

ization and an extension of the histogram developed by Ferrenberg and Swendsen [43]. 

It allows us to obtain better estimates by combining the results of all the different 

simulations. The WHAM equation expresses the total unbiased distribution function 

(p(x))u as a %-dependent weighted sum over the Nw individual unbiased distribution 

functions {p(x))t, 
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Nu 

(p(x))u = £>(x)> u x 

1 = 1 

mexp(-[Vb(x)i-Fi]/kBT) 

Y^n^M-lVMj-F^/kBT) . (1.41) 

N > (lA0) 

_ E £ nS exp(-[H(x),- - F^/ksT) 

where Nw is the number of windows and rij is the number of independent data points 

used to construct the biased distribution function. This equation can also be expressed 

in terms of known biased distribution functions (p(x))i-
'N, 

<P(X)>B = X > M X ) > } X 
i=l 

One of the main advantages of the WHAM method is that it can be easily extended 

to treat the case of a PMF depending on more than one variable. 

1.5 Computer Modelling 

Computer simulations have become a useful part of mathematical modelling of many 

natural systems in physics, chemistry and biology [44]. Results presented in the 

current thesis are obtained from molecular dynamics simulations, a form of computer 

simulation described earlier in Section 1.4. 

Simulations make use of a model to represent real world phenomena or objects. 

This representation often takes the form of mathematical equations. Traditionally, 

mathematical models attempt to find analytical solutions to problems and enable us 

to predict the behaviour of the system from a set of parameters and initial conditions. 

Modelling is an important field of computational research in general. The accuracy 

of simulated results is affected by the choice of model. Usually there is no single 

ideal model capable of treating all problems. Often a model will give an accurate 

reproduction or prediction of experimental measurements for certain compounds and 

fail miserably for others. Therefore, the model should be chosen carefully for a given 

problem. 

In theoretical and computational chemistry specifically, molecular modelling at­

tempts to predict physical properties for molecular systems based on the numerical 

solution to the equations that embody the physical laws governing the behaviour. 
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At the most fundamental level, this approach involves the direct solution to the 

Schrodinger equation for the nuclear and electronic degrees of freedom. In practice, 

several approximations are used. For instance, in MD simulations, a classical descrip­

tion of nuclear motion is employed and electronic effects are taken into account in 

the model. A general introduction to the molecular model used in this thesis is given 

below. 

The ultimate aim in molecular modelling is both to explain experimental ob­

servations and to act in a predictive capacity. Some problems are not amenable to 

experiments or some questions are rather hypothetical in nature. In contrast, a model 

can be easily built and studied, and problems encountered during experiments can 

be within the capabilities of modelling. Thus, a good modelling study allows us to 

provide a framework for integrating the experimental results from various techniques 

in order to provide a greater overall understanding of the problem of interest. 

1.5.1 Molecular modelling 

For any calculation in science a model must be constructed, which must in some 

way approximate reality. The underlying model for classical MD simulations, is that 

the energy of a molecule can be described in terms of a function called the force 

field. Force field refers to the functional form and parameter sets used to describe 

the potential energy of a system. As mentioned earlier in Section 1.2, this is a fully 

classical potential and the electrons are considered implicitly in terms of the potential 

energy surface on which the atoms move. 

The basic functional form of a force field consists of both bonded terms relating 

to atoms that are linked by covalent bonds, and non-bonded terms describing the 

long-range electrostatic and van der Waals forces. A typical form for the total energy 

in an additive force field can be written as Etot = Ebonded + Eno^^^^ where the 

components of the bonded contributions are given by 

^bonded = & stretch i E-'bend T •E-'torsion • K^-^-^l 

Egtretch and Ebend, representing the bond stretching and bond angle bending respec-
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tively are usually modelled as harmonic oscillators: 

Estretch = -zkrir ~ Tof 

Ebend = ^ke(6 - 90)
2 , (1.43) 

where kr and kg are harmonic force constants for bond stretching and bond angle 

bending, respectively. The r and 0 are the actual bond length and bond angle and r0 

and #o a r e their corresponding values at equilibrium. The torsional angle interaction 

given by Etor3ion in Eq. 1.42 is expressed as 

^torsion / y ~Z Vn \ J- T cos(nT + 5n)) , (1.44) 
n 

where Vn and r are the torsional rotation force constants and the current torsional 

angle respectively. 5n is the phase angle and the n parameter controls the periodicity. 

Non-bonded interactions are usually divided into two: 

QiQj 

47Te0 Tij 
^nonbonded — A __ _ T ^ij 

<Jij \ / Ol0 

rij / V rij 
(1.45) 

where e0 is the permittivity of vacuum, qi and qj are the charges on atoms i and j 

respectively, and r^ is the distance between i and j . The quantity e^ is the Van 

der Waals well depth and cr̂ - is the distance at which E^/w — 0. The first term on 

the right-hand side corresponds to electrostatic interactions arising from the unequal 

distribution of charges in a molecule. Within most current force fields, this uneven 

distribution of charge can be modelled by placing point charges at each atom (i.e., 

approximating the charge distribution as a single point bearing the charge). The 

interaction between these point charges is generally modelled by a Coulomb potential, 

given by the first term. The second term, called the Lennard-Jones potential is one 

of the most common ways of expressing the van der Waals interactions. 

Once a particular form for a force field has been chosen, a set of parameters 

for each type of atom has to be determined. The typical parameter set includes 

values for atomic mass, van der Waals radius, and partial charge for individual atoms, 

and equilibrium values of bond lengths, bond angles, and dihedral angles for pairs, 
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and values corresponding to the effective spring constant for each potential. Force 

field parameters are usually determined from either experimental data or electronic 

structure calculations. 

There exists a variety of force fields which use different forms for the various in­

teractions within and between molecules. The particular form of a force field depends 

on the accuracy required for its intended purpose. For example, the force fields 3VIM2 

(Molecular Mechanics 2) [45] and MM3 [46] were developed primarily for conforma­

tional analysis of small organic molecules with the aim of making accurate predictions 

of molecular structures and properties. A number of force fields have been developed 

for application to biologically interesting molecules such as proteins, nucleic acids or 

polymers. Typical force fields in this category are the AMBER (Assisted Model Build­

ing and Energy Refinement) [47], CHARMM (Chemistry at HARvard Macromolec-

ular Mechanics) [48], OPLS (Optimized Potential for Liquid Simulations) [49] and 

GROMOS (GROningen MOlecular Simulation) [50] force fields. AMBER is widely 

used for protein and DNA, and this force field was used for the studies presented in 

this thesis. 

The modelling of carbohydrates and protein-carbohydrate complexes is discussed 

separately in the following sections. The parameterization of carbohydrates is ad­

dressed in Chapter 2. In particular, our work on the charge derivation to model 

five-membered ring molecules in solution is presented. The RESP approach [51], an 

electrostatic potential based method using charge restraints, is used to obtain partial 

atomic charges for furanose ring molecules. 

1.5.2 Modelling of carbohydrates 

Carbohydrates are one of four major classes of macromolecules in biology (DNA, 

proteins, carbohydrates, and lipids). They are fundamentally involved in important 

biological phenomena, such as antibody-antigen interactions and bacterial infection. 

It is therefore essential to correctly understand the spatial and dynamic properties 

of carbohydrates [4, 52]. This requires experimental techniques that characterize the 

structure and dynamics of carbohydrates. 
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In contrast to proteins which tend to hold their globular shapes, carbohydrates are 

bendy and twisty, and sometimes they have highly branched strands that are bigger 

than proteins. Proteins only have a single type of linkage, i.e., amide bonds between 

monomeric units. Carbohydrates, on the other hand, can be connected to one another 

via various linkages [4]. The glycosidic oxygens that link together monosaccharides 

are the place that gives rise to the flexibility of carbohydrates. That Soppiness makes 

carbohydrates difficult to crystallize, so their structures are frequently elucidated by 

NMR, rather than the X-ray crystallography that is traditionally used for proteins. 

NMR structures represent averages, however, and it is difficult to say which groups of 

conformers play important roles in biological processes. Computer modelling helps to 

narrow down the shapes that carbohydrates are likely to adopt in a given environment, 

and thus complement experimental data. Computational methods, such as MC and 

MD simulations, are employed increasingly to augment the experimental approaches 

in studying the structural and conformational behaviour of carbohydrates. 

The dramatic increase in computing power, speed and improved software have led 

to significant progress in modelling. Numerous force fields and parameter sets have 

been derived for carbohydrates: HSEA (Hard Sphere Exo-Anomeric) [53], MM2 [54], 

MM3 [46, 55], CHARMM [48], AMBER [56] and GROMOS [50]. However, very few 

have gained widespread recognition for application to MD simulations of oligosaccha­

rides. This is due, in part, to a lack of suitable experimental data to use as bench­

marks in the testing of the force fields [57] and the lack of accurate torsional energy 

profiles [12]. Many researchers who are interested in carbohydrate modelling have 

developed a suitable set of carbohydrate parameters. The GLYCAM (Oligosaccha­

ride/glycoprotein force field) parameter sets developed by Woods and co-workers [12] 

has been of great practical use in working with oligosaccharides [58, 59] and protein-

carbohydrate complexes [60]. For example, one study showed that the parameters 

allowed the correct prediction of the subtle effects on the rotational properties of the 

glycosidic linkages in models of methyl a-D-gluco- and a-D-mannopyranoside [12]. 

The strength of this parameter set comes in large part from its very careful treatment 

of electrostatic interactions. In GLYCAM, unique partial atomic charges for each 
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atom within a sugar unit were computed, whereas the majority of other carbohy­

drates parameter sets assume that certain atom types will be equivalent and trans­

ferable between sugars. This first version of GLYCAM (GLYCAM.93) was designed 

with the intention that it would introduce the minimal parameters necessary to add 

carbohydrate functionality to the AMBER force field for proteins and nucleic acids. 

Furthermore, explicit solvent models for water and several other small molecules are 

available for use with AMBER. Thus, this makes the combination of GLYCAM and 

AMBER a powerful tool for modelling protein-carbohydrate complexes. Recently, the 

new derivations of a highly consistent and transferable parameter set for modelling 

carbohydrates and glycoconjugates (GLYCAM04, GLYCAM06) were reported [11]. 

This new parameter set removed its previous specificity for carbohydrates and its de­

pendency on the AMBER force field and parameters. GLYCAM_93 and GLYCAM04 

were used for the studies in this thesis. 

1.5.3 Modelling of protein-carbohydrate interactions 

Interactions between proteins and carbohydrates are also amenable to computational 

approaches. Since protein-carbohydrate interactions play a critical role in many 

biological processes, a thorough understanding of both carbohydrate and protein 

structure is essential to predict these interactions. The computational methodology 

to model carbohydrate-protein complexes has been developed to accurately predict 

structures of protein-carbohydrate complexes and better understand the details of 

the interactions at the atomic level [61, 52, 57]. 

However, modelling protein-carbohydrate complexes is complicated compared to 

modelling other small molecules because the inherent flexibility of carbohydrates 

and water-mediated hydrogen bonds to proteins make the simulation of the com­

plexes difficult. Additional difficulties in predicting structures of particular protein-

carbohydrate complexes come from the dynamic nature of the structure, allowing 

the carbohydrate to bind to the protein in multiple conformations [62]. Moreover, a 

theoretical quantification of the energies involving protein-carbohydrate interactions 

is more difficult. It is difficult to predict the free energy of binding of a protein-
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carbohydrate complex because the relative contribution of enthalpic and entropic 

terms to the free energy of formation of these complexes varies from receptor to 

receptor, as well as for different ligands binding to the same receptor [57]. Also, a 

considerable solvent contribution to the energies associated with protein-carbohydrate 

interactions makes the prediction of the energies difficult [63, 64]. Consequently, a 

good model (i.e., an accurately parameterized forcefield) and consideration of sol­

vent effects are necessitated. More sophisticated models for calculating interaction 

energies of protein-carbohydrate complexes have been used in free energy simulations 

using explicit solvent [60]. 

Several recent reviews have indicated that many advances have been made both 

in methodology and in approaches to validation to model carbohydrates and protein-

carbohydrate interactions [65, 52, 66, 67]. Despite this progress, currently available 

methods are still limited in their ability to describe certain aspects of real system 

such as proton exchange and anomerization. Nevertheless, modern computational 

approaches can provide insight into physical properties, some of which are not acces­

sible experimentally. 

1.5.4 Overview of thesis 

To reiterate, our goal is to develop tools to contribute to carbohydrates modelling, 

specifically, understanding the solution conformations of carbohydrates containing 

furanose rings and to elucidate the microscopic details of intrinsic binding interactions 

between proteins and carbohydrates. 

In Chapter 2, we present an approach that we developed for the derivation of 

charges to model furanosides in solution. This approach was first tested on a monosac­

charide, the methyl-a-D-arabinofuranoside. Following this development, a model used 

for its description was validated by comparison with NMR experiments. Chapter 3 

involves the elucidation of the intermolecular interactions within desolvated protein-

trisaccharide ligand complexes. This work relies on the interplay between theory and 

experiment. Simulation results are validated using mass spectrometry combined with 

electrospray ionization. In Chapter 4, we extend our study to investigate the dy-
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namics of water molecules in charged and hydrated protein-trisaccharide complexes 

in the gas phase. Simulations are performed over a wide temperature range to study 

hydrogen bond dynamics in gas phase complexes with the aim of probing the fate of 

individual water molecules. In Chapter 5, theoretical approaches for the prediction 

of binding constants of protein-trisaccharide complexes are developed and such an 

approach allows the direct calculation of dissociation rate constants in the context 

of transition state theory. This type of analysis requires the construction of the po­

tential of mean force along the dissociation reaction coordinate. Concluding remarks 

and future work are presented in Chapter 6. 
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Chapter 2 

New Model for Furanose Rings 

Reproduced in part with permission from Mikyung Seo, Norberto Castillo, Robert 

Ganzynkowicz, Charlisa R. Daniels, Robert J. Woods, Todd L. Lowary and Pierre-

Nicholas Roy, Journal of Chemical Theory and Computation 4, 184 (2008),"Ap­

proach for the Simulation and Modeling of Flexible Rings: Application to the a-D-

Arabinofuranoside Ring, a Key Constituent of Polysaccharides from Mycobacterium 

tuberculosis", Copyright 2008 American Chemical Society. 

2.1 Introduction 

Carbohydrates are involved in important biological functions as mentioned in Section 

1.5.2. Thus, a complete knowledge of the conformational properties of carbohydrates 

is essential to understand their mechanisms of action, which may aid in the design of 

carbohydrate-based vaccines, and other therapeutic agents. For these reasons, studies 

of the three-dimensional structures and dynamics of oligosaccharides and polysaccha­

rides have been extensively performed [66, 68, 69, 70, 71, 72, 73, 74]. 

Unlike polypeptides and proteins, oligosaccharides bend and twist. They do not 

form well-organized tertiary structures in solution. Rather, oligosaccharides often 

populate multiple conformational families, thus requiring correct determination of 

their spatial and dynamic properties. Experimental structure determination methods 

such as X-ray crystallography and NMR spectroscopy have been applied in studies 

of carbohydrate conformation. X-ray crystallography generally results in a single 
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three-dimensional structure of the oligosaccharides [8], which is due to a direct result 

of difficulties in crystallizing the generally flexible oligosaccharides. This fails to 

sufficiently describe its dynamic properties. NMR spectroscopy is a more preferred 

technique to conduct solution conformational analysis. However, the conformations of 

the glycosidic linkages in these flexible systems are particularly difficult to determine 

by NMR spectroscopy [11, 75]. 

Theoretical methods, such as MD simulations, are increasingly applied in deter­

mining the conformational properties of oligosaccharides. MD simulations offer the 

advantage of providing valuable information complementary to the experimental re­

sults. Numerous force fields and parameter sets have been derived for carbohydrates 

[76]. However, over the past several years the use of the AMBER force field [77] in 

conjunction with the GLYCAM carbohydrate parameter set [12, 11] has emerged as a 

reliable force field in working with oligosaccharides containing six-membered pyranose 

ring forms [58, 59]. For example, the conformation of hydroxymethyl groups on pyra-

nosides has been studied by Kirschner and Woods [68]. In this study, quantum me­

chanics calculations and solvated MD simulations were performed on two representa­

tive carbohydrates, methyl a-D-glucopyranoside and methyl a-D-galactopyranoside. 

It showed that correct reproduction of the experimental rotamer populations about 

the w-angle (06 — C6 — C5 — O5) was obtained only after explicit water was included 

in the MD simulations. It also provided a quantitative explanation of the conforma­

tional behaviour of oligosaccharides containing glycosidic linkages at the 6-position 

(l->6 linked). 

We have performed a similar conformational study of hydroxymethyl groups on 

five-membered furanoside rings. MD simulations were carried out on methyl-a-D-

arabinofuranoside (1) using the AMBER force field and the GLYCAM carbohydrate 

parameter set. The notable differences from the studies on the conformation of pyra-

noside rings [68] are that ring conformations are addressed and a novel charge deriva­

tion approach that accounts for the flexibility of the furanoside ring is proposed. The 

following sections will focus on the theoretical modeling of furanosides, including a 

description of the new charge derivation procedure. 
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2.2 Furanose Ring Systems 

Puranose rings axe important components of a number of glycoconjugates: nucleic 

acids [78], bacterial, parasitic, and fungal cell wall polysaccharides [79, 80], as well 

as other natural products [81, 82]. Two examples of these glycoconjugates are ara-

binogalactan (AG) and lipoarabinomannan (LAM), which are present in the cell wall 

of Mycobacterium tuberculosis, the organism that causes tuberculosis, and other my­

cobacteria [83]. The AG, a polysaccharide containing approximately 100 monosac­

charide units, is composed entirely of arabinofuranose and galactofuranose residues, 

except for two pyranose moieties, which serve as the linker between the glycan and 

peptidoglycan [84]. Similarly, a significant component of LAM is an arabinan domain, 

representing approximately half the molecular weight, which contains only arabino­

furanose residues [85]. 

Recent progress in the field of carbohydrate chemistry has provided an under­

standing of the three-dimensional structure of oligosaccharides containing pyranose 

rings by X-ray crystallography and NMR spectroscopy [86]. On the other hand, the 

conformational preferences of oligosaccharides composed of furanose rings are not well 

understood. This is due to a lack of experimental data on oligofuranosides and the 

inherent flexibility of five-membered rings, which profoundly influences their role in 

biological processes. Consequently, a greater understanding of the conformational 

preferences of these ring systems is an important area of research. 

Early studies in the area of furanoside conformation focused on defining the confor­

mational preferences of the sugar residues present in the nucleic acids: D-ribofuranose 

in RNA and 2-deoxy-D-ert%ro-pentofuranose (2-deoxy-D-ribose) in DNA [78]. A 

model developed by Altona and Sundaralingam through analysis of a large number 

of nucleoside crystallographic structures can be used to describe conformational pref­

erences of any furanose ring [87, 88]. This model makes use of the pseudorotational 

itinerary (see Figure 2.1) to describe the possible ring conformers. Conformationally, 

furanose rings can adopt a number of envelope (E) and twist (T) conformers that 

are separated by typically low-energy barriers. Each conformer is described by two 
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North 

E3 2Ts
 2E 

South 

Figure 2.1: Pseudorotational itinerary for a D-aldofuranose ring. 

parameters, the pseudorotational phase angle (P) and the puckering amplitude ((j>m), 

which can be calculated from five endocyclic torsion angles (see Figure 2.2) of the 

ring [89]: 

(02 + 4>A) - (0i + 03) 
t a n P = 

0Ti 

3.07700 
00 

cosP 
(2.1) 

HO to 

Figure 2.2: Definition of endocyclic torsion angles 0o - 04-

33 



In solution, there is a dynamic equilibrium between two ring conformers, the 

North (N) and South (S) conformers, found in the northern hemisphere and south­

ern hemisphere of the pseudorotational itinerary, respectively [87]. Conformational 

investigations of furanoside rings by NMR spectroscopy most commonly involve anal­

ysis using PSEUROT [90], a program that assumes this two-state equilibrium and 

which fits the experimental 1H-1H coupling constant data to two conformers and their 

populations. 

Due to the inherent flexibility of furanosides, their conformational analysis is much 

more complicated than similar studies with pyranosides. In addition to the torsional 

flexibility of the ring, other key conformational features are of importance. These 

include rotamer populations about the glycosidic Cl-Ol and C4-C5 bonds. The 

preferred rotamer about the Cl-Ol bond places the aglycone (e.g., the methyl group 

in furanoside) anti to the C1-C2 bond, as this is favoured by the exo-anomeric effect 

[91]. For the C4-C5 bond (u> angle), three rotamers are typically present, gt, tg and 

gg (see Figure 2.3), with the distribution being influenced by a combination of steric 

and stereoelectronic (gauche) effects [92, 93, 94, 95]. 

^5r 

c 3 ^ . o 4 

H4 

gt rotamer 

^5S 

C 3 ^ v . Q 4 

H4 

tg rotamer 

o5 
C 3 < V < 

Hsr T^ H 5 s 
H 4 

gg rotamer 

Figure 2.3: Definition of gt, tg and gg rotamers about the C4-C5 bond. 

Over the past years, a series of NMR studies on the arabinofuranose-containing 

oligosaccharides [96, 89] were carried out and these experimental studies were coupled 

with high-level ab initio and density functional theory calculations on methyl a-D-

arabinofuranoside (1, see Figure 2.4) [97, 98] and related analogs [99, 100, 101, 102]. 
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HO 0 C H 3 

1 

Figure 2.4: Structure of methyl cu-D-arabinofuranoside. 

Having studied the conformation of 1 using both experimental and high-level com­

putational methods, we are interested in looking at larger oligomers of D-arabinofuranose, 

for which we have NMR data [96, 89]. However, given the size of these molecules, 

their treatment with ab initio or density functional theory methods is of limited prac­

ticality. Thus, we have begun to investigate the use of force field models to probe 

the conformation of these oligosaccharides. Previous molecular mechanics studies of 

furanosyl rings have largely been carried out using MM3 or earlier variants of this 

forcefield [103, 104, 105, 106, 107, 108, 67]. The GLYCAM parameter set for carbohy­

drates [12] has been of great practical use in working with oligosaccharides containing 

pyranose rings [58, 59]. Here, we describe the results of our first investigations of the 

use of the GLYCAM parameters and the AMBER force field to study the conforma­

tion of furanoside rings. We initially studied the ability of this computational method 

to predict the rotamer distribution about the C4-C5 bond and pseudorotational phase 

angle in 1 as determined by NMR spectroscopy. We also propose a new charge deriva­

tion approach to consider the flexibility of the furanoside ring by taking an average of 

the charges from a large number of conformers across the pseudorotational itinerary. 

2.3 Methods 

All the MD simulations were carried out using the AMBER 9.0 [109] suite of programs. 

We adopted the combined AMBER/GLYCAM force field for the simulations of 1. For 

solution simulations, a 200 ns MD simulations of 1 were performed with the explicit 
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inclusion of a box of 298 TIP3P [110] water molecules under NPT conditions. The 

total box size was (25.569 x 25.372 x 25.544) (A). The temperature was set to 300 

K and the pressure to 1 atm. Non-bonded interactions were treated with a cutoff 

of 8 A for solution simulation and 18 A for gas phase simulations. The SCNB and 

SCEE scaling parameters were both set to unity in accordance with the GLYCAM 

approach. Prior to production MD simulations, minimization of the waters was first 

performed, followed by minimization of the entire system. The entire system was then 

annealed for 100 ps and equilibrated for 150 ps. Long-range electrostatic interactions 

were handled using Ewald summation. Bonds containing hydrogen were constrained 

to their equilibrium lengths using the SHAKE algorithm [24]. 

Two charge derivation procedures were considered to obtain atomic charges. The 

first one is the ensemble average approach proposed by Woods and workers [111] 

and is referred to as the usual GLYCAM procedure. Following this procedure, 

crystallographic data [112] were employed for the input geometry of methyl a-D-

arabinofuranoside and an ab initio geometry optimization was then performed at the 

HF/6-31G* level of theory. All electronic structure calculations were performed using 

the Gaussian 03 software package [113]. Based on the HF/6-31G* single point, the 

RESP [51] approach was used to obtain an initial set of restrained partial atomic 

charges. A relatively short MD simulation (10 ns) based on these charges and one 

hundred conformations were selected from the resulting trajectory. The dihedral 

angles of the rotatable exocyclic moieties, such as hydroxyl groups, were then deter­

mined from the 100 snapshots and transferred to the quantum mechanics optimized 

geometry. Single point HF/6-31G* calculations were performed for these 100 new 

conformations. Partial atomic charges were obtained using the RESP approach for 

the 100 conformations and the final charge of each atom was obtained as an average. 

The value of the RESP restraint weight was set to 0.01 and the fitting was performed 

on all of the atoms except the aliphatic hydrogen [59]. The second charge derivation 

procedure is an important result of the current report and is described in Section 2.4. 
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2.4 Results 

Atomic Charges. The atomic charges obtained from the standard GLYCAM pro­

cedure are shown in Table 2.1. The charges are calculated for five different ring 

conformers of 1, labelled A-E. The structures of five reference rings are shown in Fig­

ures 2.5. It is clear from this data that the charges vary when one changes the ring 

conformation. While this variation is not large for all atoms, the effect is especially 

pronounced for atoms C3, C4 and C5. For example, for C3 the charges vary over the 

range 0.20-0.42. This variability will negatively impact the accuracy of the simula­

tions. To remove the bias associated with the choice of a specific ring conformation, 

we developed a charge averaging procedure that accounts for the various furanoside 

ring conformations. 

Ring-Averaged Charges. The usual GLYCAM approach is modified to obtain 

ring-averaged charges, which now incorporates the effects of the ring flexibility. Two 

hundred conformations were selected from a 50 ns simulation and a constrained ab 

initio geometry optimization (HF/6-31G*) was performed for each. During those 

constrained optimizations, the dihedral angles involving hydroxyl protons were held to 

the values obtained from the MD simulation. For each of the 200 new conformations, 

single point HF/6-31G* calculations were performed for the RESP fit. Note that 

the ring geometry and the dihedral angles involving hydroxyl protons are different 

in each of the 200 geometries. The same RESP approach as the one used in the 

usual GLYCAM procedure was then followed to obtain partial atomic charges. The 

charges obtained from our new procedure, where they are ensemble averaged over 

several exocyclic torsions and ring conformations, are presented in Table 2.1. We 

note that the new charges differ from those of the standard GLYCAM approach most 

notably for carbon atoms C3, C4, and C5. An average RMSD of the carbon atoms 

of the ring based on the 200 conformations used in the ring averaging was calculated 

and a value of 0.09 with a fluctuation of 0.08 was obtained. This parameter is a 

convenient measure of the ring flexibility of the system. Along with the calculation 

of the RMSD, a correlation study between RMSD and puckering was carried out 
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to quantify the magnitude of the RMSD in terms of puckering. In essence, this 

correlation study will indicate what change in ring puckering corresponds to a certain 

value of RMSD. However, this correlation study cannot be performed accurately on 

200 conformations. It is necessary to consider many more conformations to get a 

statistically meaningful estimate. Therefore, we selected 100,000 conformations from 

the simulation based on our new ring averaged atomic charges, whose results will be 

shown and discussed below. Based on that study, the current average RMSD of 0.09 

corresponds to a change of about 60 degrees in the puckering angle, P. 

In the development of our ring average procedure, an alternate approach was at­

tempted where one does not only freeze the dihedral angles involving hydroxyl protons 

(as in our final average ring procedure) but where one also freezes the dihedral angles 

of the ring (essentially fixing the ring puckering) in the geometry optimization of the 

200 conformations selected from the simulation. In this way, the shape or puckering 

of the ring from the MD will be preserved and our ring average will be more consistent 

with the simulation, and therefore, with the flexibility of the system. However, the 

geometry optimization of the 200 conformations with all these constraints did not 

converge. The conformations were over constrained and all attempts to make them 

converge failed. The conformations extracted from the simulation seem to be very far 

from the ab initio minimum, and many constraints render convergence impossible. 

Solution Simulations. Having determined the average atomic charges for 1, we 

next set to establish the length of simulation required to achieve convergence. As 

a criteria for evaluating convergence we used the populations of rotamers about the 

C4-C5 bond. Shown in Figure 2.6 are the results of a convergence study of these 

rotamer populations in 1 as a function of simulation time. Charges obtained with the 

new ring-averaged procedure were used. From these results, it is clear that a 200 ns 

simulation is required to converge the populations of all the rotamers to reasonable 

uncertainties (a few units of percentage). Of particular note, simulations of less than 

50 ns produced rotamer populations differing substantially from those obtained after 

200 ns. 
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Figure 2.5: Structures of five reference rings (A-E). 
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'0 50 100 150 
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Figure 2.6: Convergence of the rotamer populations of 1. Lines are a guide to the 
eye, and the gg, gt and tg populations are given by the top, middle, and bottom lines, 
respectively. 

We next compared the C4-C5 rotamer populations obtained from the simulations 

with those derived from experimental results [96]. A histogram of the behaviour of 

this torsion is shown in Figure 2.7. All three rotamers are populated but the tg 

rotamer (180°) is visited infrequently. When the conformers from the three peaks in 

the histogram are integrated, it is possible to quantify rotamer populations, which 

are presented in Table 2.2. In addition to the results based on our ring-averaged 

charge derivation procedure and the experimental values, the results of simulations 

based on the five charge sets of the standard (fixed ring) GLYCAM procedure are 

also presented. Clearly, the new ring-averaged charge calculation procedure leads 

to a good agreement with experiment, which is better than the fixed ring method. 

While both charge derivation approaches yield the correct ordering of the rotamer 

populations, the results based on the usual GLYCAM approach can sometime lead to 
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Table 2.2: Rotamer populations of 1 obtained using the various approaches. 

rotamer population (%) 
experiment [96] 
ring average charges 
fixed ring charges A 
fixed ring charges B 
fixed ring charges C 
fixed ring charges D 
fixed ring charges E 
gas phase 

fft 
38 

37(3) 
29(2) 
29(2) 
39(3) 
33(3) 
27(2) 
7(1) 

tg 
14 

7(1) 
8(1) 
8(1) 
7(1) 
8(1) 
8(2) 

40(3) 

99 
48 

56(3) 
63(3) 
63(3) 
54(3) 
59(3) 
65(3) 
53(3) 

a worse agreement with experiment because of the intrinsic ring bias of that procedure. 

These results validate the ring-averaging method for obtaining charges in these flexible 

rings and, encouraged by these results, we considered other ring parameters in 1, in 

particular P and <j>m. 

Figure 2.8 contains the variation in P, which describes ring puckering; the inset 

shows the variation in puckering amplitude, 4>m. The distribution in </>m is centered 

about 35°, which corresponds well to earlier ab initio, density functional theory and 

molecular calculations [98, 97, 99, 100, 102] on 1, as well as to the puckering ampli­

tude of this molecule in the crystal structure [112]. With regard to P, conformations 

with values in the northern hemisphere of the pseudorotational itinerary (see Figure 

2.1) are clearly favoured although a small fraction of the conformers is also present 

in the southern hemisphere. The area of conformational space centered about P — 

45° corresponds well to the N conformer determined for 1 [96] using the PSEUROT 

[90] procedure, which identified two conformers: a N conformer at P = 44° (39 %) 

and a S conformer at P = 123° (61 %). However, while there is good agreement with 

the identification of the N conformer, the conformer populations obtained from the 

simulation do not correspond well with experiment, nor with previous ab initio and 

density functional theory calculations on 1 [98, 97, 99, 100, 102]. Indeed, the distri­

bution shown in Figure 2.9 suggests that a while a small population of S conformer 

(centered around P = 180°) is present, the equilibrium is heavily biased to the N con-
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former. These results suggest that the two-state model inherent in the PSEUROT 

approach may not be valid for 1. 

Figure 2.9 illustrates the correlation study mentioned earlier where we calculate 

the joint probability distribution of the puckering angle, P, and the RMSD of the 

ring atoms. The graph shows that a change of 180° in ring puckering, which is 

the maximum possible, represents a variation of approximately 0.25 in RMSD. The 

figure also reveals that an RMSD value of 0.09 as obtained in the ring averaged 

charge derivation procedure of the preceding section corresponds to a 60° change in 

the puckering angle, P. If the fluctuation magnitude of 0.08 is taken into account, 

the change in ring puckering will be more than 100°. Obviously, this result lends 

weight to our modification to the standard GLYCAM procedure to derive the set of 

atomic charges. The current solvated molecular system is very flexible and the charge 

derivation cannot be based on only one ring, it has to be based on an average over 

numerous rings to represent all the conformations accessible to the system. 
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Figure 2.7: Time dependence of (a) the C4-C5 torsion angle and (b) its associated 
distribution for 1 in solution. 
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Figure 2.8: Time dependence of (a) the Altona-Sundaralingam P angle and (b) its 
associated distribution for 1 in solution. The distribution of puckeing amplitude, <fim 

is given in the inset of the bottom panel (</£j. 
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Figure 2.9: Joint probability distribution of the puckering angle, P (in deg), and the 
rmsd (A) of the ring carbon atoms. 
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Gas-Phase Simulations. Although we anticipated that the inclusion of explicit 

water molecules to simulate solvent effects would be essential to obtain results consis­

tent with experiment, as a test of this we performed a simulation of 1 in the gas phase. 

We present in Figure 2.10 and in Figure 2.11 the analysis of the C4-C5 torsion angle 

and, pseudorotation behaviour in the gas phase, respectively. As expected, these gas 

phase results differ from those obtained with explicit solvent inclusion. This is pre­

sumably due, in large part, to the fact that in the absence of water, the possibility of 

intermolecular hydrogen bond competition with the solvent is no longer possible. 

We see from Figure 2.10 that the ordering of the rotamer populations is reversed 

compared to the solution and experimental cases. The population of the tg rotamer 

is now greatly enhanced at the expense of the gt rotamer. Figure 2.11 in turn reveals 

that the pseudorotation distribution now shows more distinct north (N) and south 

(S) populations. The most populated values of the two puckering states are P^ — 38° 

and Pg = 165° for the north and south regions, respectively, which agrees well with 

previous ab initio and density functional theory calculations on 1 [98, 97, 99,100,102]. 

This result differs significantly from the simulation done in the presence of water, 

where two distinct puckering states did not exist and instead a single region in the 

northern hemisphere of the pseudorotational itinerary was favoured. As expected, 

these results underscore the importance of using an explicit solvent model to correctly 

describe solution behaviour. An ab initio and density functional theory study of 

several conformers of 1 in the gas phase [97], showed high correlation between the 

rotamer and the ring puckering distributions. In other words, the rotamer population 

depends on the ring puckering and vice versa. 

Motivated by this study, we carried out a correlation study between the C4-C5 

torsion and the puckering angle. Figure 2.12 shows the joint probability distribution 

of the C4-C5 torsion and puckering angle, P, for both gas and solution phase sim­

ulations. The gas phase results reveal the presence of north and south hemispheres 

of the pseudorotational wheel, and different trends of C4-C5 torsion distribution are 

obtained for each hemisphere. For example, conformations with P values between 0° 

and 50° (North) exhibit the trend in rotamers of tg > gg > gt, whereas for confor-
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mations with P values around 180 degrees (South), the trend is gg > tg = gt. The 

favouring of the gg rotamer in the S conformers would be expected given the ability 

of conformers with this C4-C5 torsion to form trans-annular hydrogen bonds between 

OH2 and OH5. Similarly, the tg rotamer is stabilized by hydrogen bonding between 

OH3 and OH5 in the N conformers. Therefore, there is a marked correlation between 

C4-C5 torsion and ring puckering in the gas phase, as concluded from an earlier ab 

initio study [97] although the trends in rotamers for the respective values of ring 

puckering do not coincide. The ab initio study shows gg > gt > tg for P « 30° and 

gg > tg > gt for P m 180°. These differences may arise from the fact that in the 

ab initio study a full sampling of conformational space was not undertaken. Instead 

the energy-minimized structures were obtained by full optimization of a family of 

30 ring-constrained conformers [98] that had been partially optimized to probe the 

effect of ring conformation on various molecular parameters, e.g., bond-lengths and 

bond angles. In solution, this strong correlation between C4-C5 rotamer and furanose 

ring conformation is not observed. As seen in Figure 2.12, the north hemisphere of 

the pseudorotational wheel is mostly populated, regardless of C4-C5 rotamer. We 

propose that the effect is due to the lack of intramolecular hydrogen bonding in the 

solution simulations. 
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Figure 2.10: Time dependence of (a) the C4-C5 torsion angle and (b) its associated 
distribution for 1 in the gas phase. 
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Figure 2.11: Time dependence of (a) the P angle and (b) its associated distribution for 
1 in the gas phase (PJ^ = 38 and P | = 165). The distribution of puckeing amplitude, 
(f)m is given in the inset of the bottom panel (cj)*m = 38). 
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Figure 2.12: Joint probability distribution of the puckering angle, P, and the C4-C5 
torsion for 1 in (a) the gas and (b) solution phases. The units of the angles P and u 
are in deg. 
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2.5 Conclusion 

In this study, a new AMBER/GLYCAM approach for deriving atomic charges has 

been suggested, and applied to methyl a-D-arabinofuranoside (1). The major dif­

ference that distinguishes this new method from the previously suggested method is 

the consideration of the inherent flexibility of five-membered rings. The usual GLY-

CAM procedure that has been thought to be a good standard for deriving charges 

and therefore has been frequently used, assigns atomic charges based on only a single 

ring conformer. The standard procedure is shown to be applicable to the models for 

rigid rings (e.g. pyranosides), but not to the ones for flexible rings such as furano-

sides. However, this study takes the Soppiness of furanosides into account and derives 

charges by averaging them over a large number (two hundred) of selected conformers 

in an MD simulation. 

Furthermore, long simulation times (200 ns) are required to achieve convergence. 

Rotamer population about C4-C5 bond and puckering amplitude of the ring (<f>m) 

obtained from this computational study agree well with the experimental results from 

NMR spectroscopy. Simulation results from this study on a furanoside ring in aqueous 

environment revealed only one low energy region in conformational space rather than 

two. Hence, the popular two-state model for the conformation of furanoside rings may 

not be valid in the case of 1 in water, whereas the simulation results in gas phase as 

well as the previous studies of ah initio and DFT [98, 97, 99, 100, 102] all support the 

validity of the two-state model. This suggests that one must take extreme care when 

applying the two-state model since the two-state model may be unreliable in some 

situations, and that the valid limits of the model must be further explored. This work 

provides a stepping stone to studies to come in the future. 
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Chapter 3 

Intermolecular Interactions within 
Desolvated Protein-Ligand 
Complexes 

Reproduced in part with permission from Elena N. Kitova, Mikyung Seo, Pierre-

Nicholas Roy and John S. Klassen, Journal of American Chemical Society 130, 

1214 (2008),"Elucidating the Intermolecular Interactions within a Desolvated Protein-

Ligand Complex. An Experimental and Computational Study", Copyright 2008 

American Chemical Society. 

3.1 Introduction 

Most biological processes, including the immune response, bacterial and viral infec­

tions, involve the association of biomolecules to form specific, noncovalent complexes. 

The structure and stability of these complexes are determined by the concerted action 

of many forces (e.g. hydrogen bonds (H-bonds), ionic and van der Waals interactions) 

between binding partners and from the displacement and reorganization of solvent 

molecules associated with the solvent shell of the binding partners. An understand­

ing of these forces, the thermochemistry and the structures they lead to, is essential 

to a complete understanding of biological processes. In addition, since biochemical 

function is typically mediated by these forces present in biomolecules, an understand­

ing the links between structures and functions of biological complexes provides an 
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approach to understanding the origin of disease and the effects of therapy at the 

molecular and cellular level. 

To further develop this understanding, a multi-disciplinary approach that com­

bines biology, chemistry, biophysical chemistry and physics is required due to the 

structural complexity of biomolecules. A variety of different methodologies and tech­

niques such as NMR spectroscopy, isothermal titration calorimetry and X-ray crys­

tallography are used to characterize noncovalent complexes [114, 115, 116]. 

Gas phase studies of desolvated biological complexes represent a promising exper­

imental approach to probe directly the intrinsic (solute-solute) intermolecular inter­

actions and, indirectly, the role of solvent in biological recognition. The transfer of 

specific, noncovalent biological complexes from solution to the gas phase is, in most 

cases, readily achieved using electrospray ionization (ES) [117]. Because the interac­

tions between biological macromolecules and individual water molecules are typically 

weak, the hydration waters are rapidly lost in the gas phase giving the desolvated 

ions. Once in the gas phase, the ions can be interrogated using a variety of mass 

spectrometry (MS)-based techniques. Additional experimental techniques used for 

this study will be described in Section 3.2. 

Elucidating the higher order structures of gaseous ions of large biological molecules 

and their noncovalent complexes represents a significant experimental challenge. Many 

studies have shown the evaluation of higher order structures of gaseous biopolymers 

from various experimental techniques [118, 119, 120, 121, 122, 123]. Individual in­

termolecular interactions within gaseous ions of noncovalent biological complexes can 

also be inferred. Normally, they are determined from differences in the stability, usu­

ally kinetic, of structurally-related complexes. There are several examples to identify 

the ligand binding site [124] and evaluate the binding interactions [125] within the 

gaseous ions of protein-ligand complexes. 

Recently, Kitova and co-workers developed a reactivity-based approach, employ­

ing blackbody infrared radiative dissociation (BIRD) [126, 127], a thermal dissocia­

tion technique implemented with a Fourier-transform ion cyclotron resonance mass 

spectrometer (FT-ICR MS), and functional group replacement (FGR). An attractive 
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feature of the BIRD/FGR method is that it allows intermolecular interactions to be 

identified and quantified [128, 129]. However, the BIRD/FGR method has a limita­

tion that it requires sufficient affinity in solution to lead to detectable concentrations 

of complex for the structurally-modified proteins and ligands through FGR. The dis­

ruption of certain key intermolecular interactions in the complex leads to a complete 

loss of binding in solution and, consequently, these interactions can not be investi­

gated using the BIRD/FGR method. Again, the further description of this method 

will be provided in Section 3.2. 

In present work, we seek to provide a complete description of the intermolecular 

interactions (H-bonds) within a desolvated noncovalent protein-ligand complex using 

both experimental and computational methods. MD simulations have been used 

extensively to evaluate the higher order structure of gaseous ions of peptides, proteins, 

as well as other biological molecules and their noncovalent complexes [130, 131, 132, 

133, 134]. Here, MD simulations were performed on the gaseous protein-ligand ions 

to complement the gas phase measurements. MD simulations play a dual role in 

this investigation: they provide a means of confirming interactions identified from 

experimental techniques as well as predicting additional sites of interaction on the 

complex, including sites for which the binding partners cannot be experimentally 

determined. Taken together, the results of this study provide the first detailed and 

quantitative description of the intermolecular interactions within the gaseous ions of 

a protein-ligand complex. 

In the following section, fundamental aspects of the experimental techniques used 

in this study and the experimental results will be briefly described. 

3.2 Experimental Methods and Summary of Ex­
perimental Results 

Mass spectrometry (MS) has been widely used in biomedical research as it offers ad­

vantage in sensitivity, speed, specificity and accuracy of mass determination [135]. MS 

combined with electrospray (ES) [136, 137] or nanoelectrospray (nanoES) [138, 139] 
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ionization has emerged as a powerful tool for studying the complexation processes 

of noncovalent biomolecular complexes such as protein assemblies, protein-ligand 

complexes, oligonucleotide duplexes in solution. Various biochemical information 

is available from ES-MS experiments: detection of specific biomolecular complexes in 

solution, direct determination of their binding stoichiometry [117, 140, 141] and mea­

surements of relative [142, 143, 144] and, in some cases, absolute [145, 146] binding 

affinities. 

Beyond its ability to transfer biomolecular complexes in solution to the gas phase 

in an ionized form, ES-MS, in conjunction with gas-phase dissociation techniques, 

ES-MS becomes possible for identifying binding sites and investigating intrinsic non-

covanlent interactions [147, 148, 129, 128]. Many studies have suggested that at least 

some aspects of the higher order structure of proteins [149] or to some extent, specific 

intermolecular interactions in protein-ligand complexes can be preserved after transfer 

into the gas phase [128, 147]. Thus, the ES-MS observations of gaseous noncovalent 

complexes reflect the nature of the interactions found in solution [150]. 

Elucidation of the intermolecular interactions present in gaseous protein-ligand 

complexes can be realized by employing blackbody infrared radiative dissociation 

(BIRD) [126, 127], a thermal dissociation method combined with a Fourier-transform 

ion cyclotron resonance mass spectrometer (FT-ICR MS), and functional group re­

placement (FGR) [128, 129]. Using this approach, individual interactions in gaseous 

biological complexes can be identified and the strength of the interactions can be 

quantified. In the BIRD/FGR method, to identify whether a particular functional 

group, either on the protein or ligand, is involved in binding, the group is modified in 

such a way that any pre-existing interaction is lost. The activation energy, Ea, of the 

modified complex is then compared to the Ea of the unmodified complex. The value 

of Ea is determined from the slope of the linear least-squares fit of Arrhenius plot, 

which constructed from the temperature-dependent rate constants measured from 

the BIRD method. A decrease in Ea upon modification indicates that the particu­

lar functional group stabilized the complex. Furthermore, the difference in Ea, i.e. 

AEa — Ea (unmodified complex) - Ea (modified complex), provides a measure of the 
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strength of the interaction. To identify H-bond donor/acceptor pairs, a three step 

approach is normally utilized, in which the AEa values are determined for complexes 

containing a single modification of the ligand (functional group modification), a single 

modification of the protein (active site mutation) and simultaneous modification of 

the protein and the ligand (dual modification) [128, 129]. For a given donor/acceptor 

pair, the magnitude of the AEa values determined for all three complexes will be 

identical. 

Several preliminary studies [128, 129, 151] described the application of the 

BIRD/FGR technique to a gaseous protein-trisaccharide complex consisting of a ge­

netically engineered single chain variable fragment, scFv, of the monoclonal antibody 

Sel55-4 and its native trisaccharide ligand, aGalfaAbeJaMan (1). A representation 

of the 3D structure of the complex is shown in Figure 3.1. Crystal structures for 

the (scFv + 1) complex [13] and the corresponding antigen binding fragment (Fab) 

complex have been solved. Analysis of the crystal structures suggests that 1 is bound 

Figure 3.1: Structure of the complex of scFv and its trisaccharide ligand (1) 

to the scFv through as many as five intermolecular H-bonds in solution (see Figure 

3.2). Additionally, a water molecule (Watl) at the base of the binding site, which 

mediates H-bonds between scFv and 1, has been identified. Two additional waters 

(Wat2, Wat3) are also observed in the crystal structures. It has previously been 
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His 34L 

Figure 3.2: Intermolecular hydrogen bond scheme for the complex of scFv and its 
trisaccharide ligand (1) obtained from X-ray analysis of the crystal structure. 

shown that one of the specific intermolecular H-bonds (His101H - Man C4 OH) is pre­

served in the gas phase, at least at certain charge states [129, 151]. Indirect evidence 

for the formation of nonspecific interactions, i.e. interactions not present in solution 

but which form in the gas phase, was also reported [128]. 

In the present work, the BIRD/FGR technique was applied to the complexes 

of 1 and monodeoxy analogs (2 - 5) with the scFv and an array of single point 

scFv mutants to provide a complete description of the intermolecular interactions 

within the protonated and deprotonated ions of the desolvated (scFv + 1) complex. 
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The structures of trisaccharide ligands are shown in Figure 3.3: cuGalfctAbejaMan 

(1), (3-deoxyaGal)[aAbe]aMan (2), (6-deoxyaGal)[a;Abe]aMan (3), ctGal[aAbe](4-

deoxycuMan) (4), and aGal[o;Abe] (6-deoxyo;Man) (5). A series of single point scFv 

mutants were prepared by using site-directed mutagenesis: His101HAla, His101HArg, 

His101HLys, His101HGln, His34LAla, His35HAla, His97LAla, Trp33HAla, Trp33LAla, 

Trp98LAla, Asp96LAla. Measurements were performed over a range of charge states in 

order to asses the influence of charge on the nature and strength of the intermolecular 

interactions. 

To provide a complete description of the intermolecular interactions within the 

protonated and deprotonated ions of the desolvated (scFv + 1) complex, MD sim­

ulations were performed and the intermolecular H-bonds were identified. Since MD 

simulations were performed on the (scFv + l ) " + / / _ ions at charge state +8 and -8, 

we only report here the experimental data obtained from BIRD/FGR technique for 

the (scFv + l ) n + / / _ ions at charge state +8 and -8. Arrhenius parameters (activation 

energies and A-factors) determined for the dissociation of the (scFv + l)8+/~ ions 

are listed in Table 3.1 and 3.2. Figure 3.4 shows the summary of interaction maps 

determined from BIRD/FGR method for the (scFv + 1)8+/ - ions. These maps are 

compared to the maps (see Figure 3.6) obtained from MD simulations in the Section 

3.4. Also, comparison of the interactions identified in the gas phase with the H-bond 

map inferred from crystallographic data provides new insights into the structural 

changes that accompany the transfer of protein-ligand complexes from solution to 

the gas phase by ES and the influence of charge state thereon. 
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Figure 3.3: Structures of the trisaccharide ligands ( 1 - 5 ) . 
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Table 3.1: Arrhenius Parameters determined for the dissociation reaction: (scFv + 
1)8+/- ->• scFv8+/~ + L, where L = 1 - 5. 

ligand charge state i?a(kcal/mol) Ai£a(kcal/mol) A (s_1) 
-8 
+8 
-8 
+8 
-8 
+8 
-8 
+8 
-8 
+8 

49.5 ± 0.5a 

54.9 ± 1.5 
49.0 ± 1.1 
48.5 ± 0.9 
48.1 ± 0.7 
47.6 ± 0.2 
45.0 ± 0.5 
51.7 ±0 .9 
49.0 ± 1.3 
46.9 ± 1.5 

-

-

0.5 ± 1.2 
6.4 ± 1.7 
1.4 ± 0.9 
7.3 ± 1.5 
4.5 ± 0.7 
3.2 ± 1.7 
0.5 ± 1.4 
8.0 ± 2.1 

•J^Q25.0±0.3 

"LQ27.6±0.8 

2Q25 .4±0 .6 

^ Q 2 5 . 0 ± 0 . 5 

J Q 2 5 . 0 ± 0 . 4 

^ Q 2 4 . 2 ± 0 . 1 

^ Q 2 3 . 2 ± 0 . 3 

^ Q 2 6 . 4 ± 0 . 5 

•^Q25.5±0.7 

^ Q24 .4±0 .8 

"Errors are on standard deviation. 
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Table 3.2: Arrhenius Parameters determined for the dissociation of (scFv + 1)8+// ions composed of the trisaccharide 
ligands, L = 1 - 5 and scFv mutants, 

mutant ligand charge state i?a(kcal/mol) Api?a(kcal/mol) Ap£.Ea(kcal/inol) A (s_1) 
His lomAla 1 ^8 47.1 ± 0.8a 2.4 ± 0.9 - 1024"0±a4 

1 +8 52.1 ± 1.0 2.8 ± 1.8 - 1026.2±o.5 
4 -8 45.2 ± 10.7 - 4.3 ± 0.9 IQ23A±OA 

4 +8 52.0 ± 0.6 - 2.9 ± 1.6 io26.6±o.3 
His34LAla 1 -8 49.7 ± 1.0 -0.2 ± 1.1 - 1024.9±o.5 

1 +8 50.9 ± 0.4 4.0 ± 1.6 - 1025.5±o.2 

2 -8 45.6 ± 1.0 - 3.9 ± 1.1 1023.4±o.5 

2 +8 47.2 ± 1.0 - 7.7 ± 1.8 1024.3±o.5 
Asn96LAla 1 -8 51.2 ± 0.8 -1.7 ± 0.9 - 1025.6±o.4 

1 +8 52.6 ± 0.6 2.3 ± 1.6 - 1026.4±o.4 
3 -8 48.1 ± 0.8 - 1.4 ± 0.9 IQ25.O±OA 

3 +8 49.2 ± 0.6 - 5.7 ± 1.6 i()24.2±o.3 
His35LAla 1 -8 48.3 ± 0.5 1.2 ± 0.9 - 1024.6±o.3 

1 +8 47.5 ± 1.1 7.4 ± 1.9 - 1023.9±o.e 
His97LAla 1 -8 49.4 ± 0.3 0.1 ± 0.6 - 1024.9±o.2 

1 +8 50.7 ± 1.0 4.2 ± 1.8 - 1025.5±o.5 

"Errors are one standard deviation. 
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3.3 Computational Methods 

The AMBER 9.0 program suite[109] was used in MD simulations. The crystal struc­

ture (1MFA) [13] was used for the initial geometry of the (scFv + 1) complex. The 

simulations were performed using the AMBER 94 forcefield with the GLYCAM pa­

rameter set for oligosaccharides [12]. Electrostatic potential (ESP) atomic partial 

charges, determined by Woods and coworkers [60], were used for 1. The (scFv + 

1) complex at the +8 and -8 charge states were chosen for investigation. As de­

scribed in more detail below, ten different charge distributions were considered for 

each charge state. The charge distributions considered for -8 charge state required 

that Arg residues be in the neutral form. Currently with AMBER, atomic charges 

and (atom type) parameters are only available for the Arg residue in its protonated 

form. Consequently, it was necessary to develop charges and parameters for the 

neutral form of Arg. The energies of the desolvated (scFv + l ) 8 + /~ ions were first 

minimized with the conjugate gradient method using a 0.0001 kcal/mol convergence 

criterion. The entire system was then heated from 10 to 300 K over a period of 15 

ps. In order to mimic experimental conditions, simulations were performed in the gas 

phase under isothermal conditions. Constant temperature was maintained using the 

weak-coupling algorithm with time constant 1.0 ps [152]. During the simulation, bond 

length constraints were applied to all hydrogen-containing bonds using the SHAKE 

algorithm [24]. The system was equilibrated for 1 ns with a time step of 1 fs. After 

this period, production dynamics were performed for 4 ns and data were collected 

every 500 fs. Upon completion of the simulations, analysis of structural parameters 

was carried out: the Ca root-mean-square deviation (rmsd) for scFv, the OH oxygen 

rmsd for 1, the dihedral angles associated with the glycosidic linkages in 1 and the 

intermolecular H-bonds. The geometric criteria used to establish H-bonds are: heavy 

atom (A) to heavy atom (B) distance (r) < 4.0 A and AHB bond angle > 120°. 

Additionally, the occupancy, i.e., the fraction (/) of the simulation steps for which 

the H-bond criteria are satisfied, was evaluated. 
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3.4 Computational Results 

To assist in evaluating the structural differences between the (scFv + 1) complex 

in solution and in the gas phase, MD simulations were performed on the desolvated 

(scFv + l ) n + / ~ ions at charge states +8 and -8, and several structural parameters 

were evaluated: Ca rmsd for scFv, the OH oxygen rmsd for 1, the dihedral angles 

associated with the glycosidic linkages in 1 and the intermolecular H-bonds. 

Uncertainty in the location of the charges is a major challenge to the implemen­

tation of MD simulations to large gaseous, multiply charged ions such as proteins 

and protein complexes. In the present study, ten different charge distributions were 

considered for the (scFv + 1)8+ and the (scFv + l ) 8 - ions. Since the scFv contains 

eight Arg residues, and because Arg is the most basic amino acid in the gas phase 

[153], one of the distributions involved protonation of all eight Arg residues. Nine 

other distributions, in which one or more of the Arg residues were neutralized and 

the charge was placed instead on Lys or His residues, were also considered. Of the 

common amino acids, Asp and Glu have the lowest intrinsic gas phase acidities and 

are, in the absence of other effects, the most likely sites of deprotonation for the neg­

atively charged (scFv + l ) n ~ ion [154]. Consequently, the ten charge distributions 

considered for the (scFv + 1)8_ ion involved deprotonation of Asp and Glu residues. 

The energies of the (scFv + l ) 8 + / / _ ions, at each of the charge distributions consid­

ered, were minimized and the charge distribution of the complex was determined by 

analysing the relative energies of ten different charge distributions. The lowest energy 

charge distributions were used for the MD simulations. 

The Ca rmsd was calculated with respect to the crystal structure of the (scFv + 

1) complex [13]. Values of 1.96 (standard deviation 0.09) and 2.77 (0.22) A were 

determined for the (scFv + 1)8+ and (scFv + 1)8~ ions, respectively. Smaller Ca 

rmsd values were obtained when only the amino acid residues located in vicinity of 

the ligand binding site were considered, 0.54 (0.07) for +8 and 0.99 (0.12) Afor -8. 

Values of 1.77 (0.11) and 1.43 (0.18) A were calculated for the OH oxygens in 1 at the 

+8 and -8 charge states, respectively. The small rmsd values, which are comparable in 
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size to values recently reported by Patriksson and coworkers [134], suggest relatively 

minor structural changes accompanying the transfer of the complex from solution to 

the gas phase, at least at the +8 and -8 charge states. The average glycosidic dihe­

dral angles in 1 [01(O5Gal-ClGal-O2Man-C2Man) and ^i(ClGal-02Man-C2Man-C3Man); 

02(O5Abe-ClAbe-O3Man-C3Man) and ^2(ClAbe-03Man-C3Man-C4Man)] are for +8: fa = 

90 (8), fa = 97 (7), fa = 69 (10) and i\)2 = 92 (10), and for -8: fa = 75 (9), fa = 

118 (11), fa — 54 (9) and fa = 100 (9). According to the crystal structure, these 

angles are: fa = 77, fa =144, fa = 72 and 4>2 = 104 (± 10°). This analysis suggests 

that, at -8, the conformation of 1 is similar to the bioactive conformation in solution. 

However, at +8, changes in conformation, particularly for the Gal-Man residues, are 

predicted. 

Analysis of the MD trajectories obtained for the (scFv + 1)8+ and the (scFv + 

1)8~ ions revealed two general types of intermolecular H-bonds: type 1 interactions, 

which exhibit a narrow distribution of bond lengths (r) centered at short r (~ 3 A), a 

narrow distribution of bond angles (6) centered at 9 > 150° and a high occupancy (/ 

> 0.90), and type 2 interactions, which exhibit a broader distribution of r centered at 

3.1 to 3.5 A, a broader distribution of angles, sometimes slightly bimodal in nature 

and centered at lower values, 9 < 150°, and lower occupancy. Although the ener­

gies of the identified H-bonds can not be assessed quantitatively, the characteristics 

of the type 1 interactions are generally associated with strong H-bonds, while the 

type 2 interactions correspond to weak H-bonds. The distribution of bond lengths 

and angles determined for the H-bond donor/acceptor pair Man C4 OH/His101H, a 

type 1 interaction, and the Abe C4 OH/Tyr103H interaction, an example of a type 2 

interaction, found for the (scFv + 1)8+ ion are shown in Figure 3.5. The Man C4 

OH/His101H interaction persists throughout the simulation (/ = 0.97 occupancy) and 

the distributions of hydrogen bond lengths and angles are narrow, with maxima close 

to the optimal values (2.86 A, 162°). In contrast, the Abe C4 OH/Tyr103H interaction 

has a much lower occupancy (/ = 0.51), a markedly larger average r (3.31 A) and a 

lower average 9 (128°) values. All of the type 1 and type 2 H-bonds, along with the 

corresponding r, 9 and / values are summarized in Table 3.3. The corresponding the 
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H-bond maps are shown in Figure 3.6. 

Eight intermolecular H-bonds were identified for the (scFv + 1)8 + ion from the 

MD simulations. Of these, five are of the strong, type 1 variety: Trp98L/Abe C4 

OH, Gly102H/Abe C2 OH, Trp93L/Gal C4 OH, Gal C6 OH/Asn96L and Man C4 

OH/His l o m . The weaker, type 2 interactions identified are: His34L/Gal C2 OH, 

Abe C4 OH/Tyr103H, His35H/Abe C4 OH. Nine H-bonds were identified for the (scFv 

+ 1)8_ ion. Of these, only Gal C4 OH/Asn95L is type 1; the remaining interactions 

fail to meet one or more of the criteria for a strong H-bond: Trp98L/Abe C4 OH, 

Gly102H/Abe C2 OH, Gal C6 OH/Asn96L, and Man C4 OH/His101H, His34L/Gal C2 

OH, His35H/Abe C4 OH, Abe C4 OH/Gly100H and Trp93L/Gal 0 (ring). Overall, there 

is a high degree of structural similarity in the (scFv + l ) 8 + / / _ ions, with six common 

H-bonds identified. However, important differences are also evident. Notably, the 

weak Abe C4 OH/Tyr103H interaction found in the (scFv + 1)8 + ion is replaced by 

a stronger Abe C4 OH/Gly100H interaction in the (scFv + 1)8 _ . There are also in­

teractions involving Gal C4 OH and Gal 0 (ring) which are present in the (scFv + 

1)8_ ion but absent in the (scFv + 1)8+ ion. Importantly, with the exception of the 

His34L/Gal C2 OH interaction, all of the conserved H-bonds in the (scFv + 1)8_ ion 

have larger average r and smaller average 6 values than the corresponding interactions 

in the (scFv + 1)8+ ion. Also, of the three new H-bonds found in the (scFv + 1)8_ 

ion, only one of these is a type 1 interaction. Therefore, despite the greater number 

of interactions identified for the (scFv + 1)8_ ion, compared to the (scFv + 1)8+ 

ion, the individual interactions are likely weaker. Although it is not possible to draw 

firm conclusions regarding the relative stability of the (scFv + l ) 8 + /~ ions from the 

MD data, the present analysis suggests that, despite the greater number of identified 

interactions, the (scFv + 1)8~ ion is energetically less stable than the (scFv + 1)8+ 

ion. This prediction is consistent with the lower dissociation Ea determined for the 

(scFv + 1)8~ ion, compared to the (scFv + 1)+8 ion (See Table 3.1). 

Comparison of the H-bond maps predicted by the BIRD/FGR data (see Figure 

3.4) and by the MD simulations (see Figure 3.6) affords an opportunity to test of 

the predictive value of the MD simulations. For the (scFv + 1)8+ ion, the agreement 
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between experiment and theory is reasonably good. Interactions between Man C4 

OH and His101H and between Asn96L and Gal C6 OH were identified with both meth­

ods. An interaction between His34L and Gal C3 OH was predicted by BIRD/FGR; 

according to the simulations, His34L interacts with the neighbouring Gal C2 OH. 

Also, both methods predict an interaction at His35L, although the binding partner, 

Gal C4 OH, suggested by simulation could not be confirmed experimentally (due to 

the unavailability of the corresponding monodeoxy analog of 1). The BIRD/FGR 

results suggest energetically important interactions involving, separately, His97L and 

Man C6 OH. According to the MD simulations, neither the amino acid residue nor 

the OH group engage in intermolecular H-bonds. The agreement between experiment 

and theory is less favourable in the case of the (scFv + 1)8 _ ion. Of the five inter­

actions suggested from the simulations and amenable to experimental testing (Gal 

C4 OH/Asn95L, Gal C6 OH/Asn96L, Man C4 OH/His101H, His34L/Gal C2 OH, and 

His35H/Abe C4 OH), only one, the Man C4 OH/His101H interaction, was identified by 

BIRD/FGR. Based on the results of the above comparison, it is concluded that the 

MD simulation method, as implemented in the present study, can be used to iden­

tify intermolecular interactions within noncovalent biological complexes. However, 

the method can lead to false positives and false negatives. These shortcomings may 

reflect limitations in the theoretical model, in particular deficiencies in the choice and 

use of fixed atomic charges and the choice of charge distributions, as well as the dis­

parity between the computational (ns) and experimental (s) timescales. Additionally, 

from trajectory analysis it is not possible to quantify the H-bonds and some of the 

interactions suggested computationally may not be sufficiently strong (> 2 kcal/mol) 

to be detected using the BIRD/FGR method. 

Comparison of intermolecular interactions identified in the gas phase 

and in the crystal structure Comparison of the intermolecular H-bond maps for 

the gaseous (scFv + 1) 8 + / - ions (see Figure 3.4) and the crystal structure of the 

(scFv + 1) complex (see Figure 3.2) allows for several conclusions to be drawn. 

First, there is evidence for the retention of specific H-bonds: His101H/Man C4 OH 

and His34L/Gal C3 OH in the (scFv + 1)8+ ion, and His101H/Man C4 OH in the 
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(scFv + 1)8~ ion. This is an important finding as it suggests that the structure 

of the binding site in the (scFv + 1) complex is at least partially conserved upon 

transfer of the complex from solution to the gas phase by ES. Secondly, nonspecific 

intermolecular interactions (i.e., interactions formed in the gas phase, but not present 

in solution) can play a significant role in stabilizing the protonated (scFv + 1)8+ ion. 

For example, Gal C6 OH/Asn96L is found in the (scFv + 1)8+ ion from BIRD/FGR 

and MD simulations (see Figure 3.4 and 3.6). According to the crystal structure 

of the (scFv + 1) complex this C6 OH group of Gal is exposed to solvent and, 

according to microcalorimetry measurements, they contribute little to the binding 

free energy in solution [155]. Surprisingly, nonspecific intermolecular interactions 

within the (scFv + 1)8_ ions were not detected. Finally, differences in intermolecular 

interactions identified experimentally and computationally notwithstanding, the MD 

data suggest that the loss of the structural water (Watl) does not result in a dramatic 

change in the structure of the ligand binding site. Instead, the void created by the 

loss of Watl is filled by new intermolecular interactions between scFv and the Abe 

residue. Specifically, two of the three residues (His35H, Gly100H and Tyr103H) that are 

suggested by the crystal structure to interact with Watl form new H-bonds with Abe 

C4 OH: His35H/Abe C4 OH and Abe C4 OH/Tyr103H interactions in the (scFv + 

1)8+ ion, and His35H/Abe C4 OH and Abe C4 OH/Gly100H interactions in the (scFv 

+ 1)8~ ion. The behaviour of crystallographic water molecules will be addressed in 

Chapter 4. 
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Figure 3.5: Number of occurrences (N) of H-bond distances, and angles (inset), 
obtained by MD simulations for the (a) Man C4 OH/His101H interaction (type 1) in 
the (scFV + 1)8+ ion; (b) Abe C4 OH/Tyr103H interaction (type 2) in the (scFV + 
1)8+ ion; (c) Man C4 OH/His101H interaction (type 2) in the (scFV + 1)8~ ion. 

70 



T
ab

le
 3

.3
: 

A
ve

ra
ge

 l
en

gt
hs

 (
r)

, 
an

gl
es

 (
9)

, 
an

d 
oc

cu
pa

nc
y 

(/
) 

fo
r 

in
te

rm
ol

ec
ul

ar
 H

-b
on

ds
 w

it
hi

n 
th

e 
(s

cF
v 

+
 1

)8
+
 a

nd
 

(s
cF

v 
+

 1
)8~ 

io
ns

 i
de

nt
if

ie
d 

fr
om

 M
D

 s
im

ul
at

io
ns

. 

H
-b

on
d 

do
no

r/
ac

ce
pt

or
 p

ai
ra 

b 

T
rp

98
L
/A

be
 C

4 
O

H
 

G
ly

10
2H

/A
be

 C
2 

O
H

 
T

rp
98

L
/G

al
 C

4 
O

H
 

G
al

 C
6 

O
H

/A
sn

96
L

 

M
an

 C
4 

O
H

/H
is

10
1H

 

H
is

34
L
/G

al
 C

2 
O

H
 

A
be

 C
4 

O
H

/T
yr

1
0

3
H

 

H
is

35
H
/A

be
 C

4 
O

H
 

A
be

 C
4 

O
H

/G
ly

1
0

0
H

 

G
al

 C
4 

O
H

/A
sn

9
5

L
 

T
rp

93
L
/G

al
 0

 
(r

in
g)

 

/ 
0.

99
 

0.
99

 
0.

99
 

0.
99

 
0.

96
 

0.
72

 
0.

51
 

0.
18

 

(s
cF

v 
+

 
1

)8
+

 

r(
A

) 
2.

98
 (

0.
16

) 
2.

99
 (

0.
15

) 
2.

98
 (

0.
16

) 
2.

77
 (

0.
16

) 
2.

86
 (

0.
15

) 
3.

02
 (

0.
19

) 
3.

31
 (

0.
32

) 
3.

07
 (

0.
18

) 
N

D
 

N
D

 
N

D
 

0 
(d

eg
) 

15
7.

69
 (

9.
45

) 
15

9.
21

 (
10

.5
1)

 
15

5.
97

 (
10

.7
4)

 
15

8.
94

 (
11

.0
2)

 
16

2.
42

 (
9.

71
) 

14
6.

33
 (

14
.3

1)
 

13
1.

74
 (

8.
46

) 
12

7.
74

 (
6.

41
) 

/ 
0.

97
 

0.
84

 

0.
89

 
0.

44
 

0.
94

 

0.
24

 
0.

92
 

0.
90

 
0.

86
 

(s
cF

v 
+

 1
)8

_ 

r(
A

) 
3.

25
 (

0.
22

) 
3.

28
 (

0.
22

) 
N

D
C

 

3.
06

 (
0.

23
) 

3.
54

 (
0.

22
) 

3.
24

 (
0.

23
) 

N
D

 
3.

28
 (

0.
24

) 
3.

26
 (

0.
25

) 
2.

93
 (

0.
16

) 
3.

19
 (

0.
22

) 

0 
(d

eg
) 

14
8.

30
 (

10
.4

7)
 

14
3.

14
 (

12
.6

7)
 

15
4.

39
 (

11
.9

3)
 

13
0.

03
 (

7.
25

) 
15

8.
27

 (
11

.1
7)

 

13
2.

22
 (

10
.5

1)
 

15
3.

01
 (

13
.1

5)
 

15
6.

81
 (

11
.8

1)
 

13
4.

30
 (

8.
92

) 

aT
h

e 
hy

dr
og

en
 b

on
d 

di
st

an
ce

 i
s 

gi
ve

n 
w

it
h 

re
sp

ec
t 

to
 t

he
 h

ea
vy

 a
to

m
s.

 
6V

al
ue

s 
in

 p
ar

en
th

es
es

 c
or

re
sp

on
d 

to
 o

ne
 s

ta
nd

ar
d 

de
vi

at
io

n.
 

cN
D

=
n

o 
in

te
ra

ct
io

n 
de

te
ct

ed
. 



(a) His 34L 

•iS. 

Trp 93L 

NH 

k-NH 

His101H 
A \ H < 

H l / N \ ^V 
\U \HCS0 o --v \ Af ^ - \ : 4 

Asn 96L 
r-oH / 
/ \ CH2 

\ ,9 \ | 

Gly 102H 

Trp 98L 

NH-' 

A- . 
CH, 

OH 

OCH 

- H N ^ N 

\=</ 
His 35H 

~C—-~CH-__ 

/ 
Tyr103H 

• N H . 

~NH, 

(b) 
His 34L 

His101H 

\ = N . 
O 

// 
C ~ - C H , 

Gly102H 

Trp 98L 

S,-
N H -

Asn 95L 
/ 

CH2 

// 
..0 

"NH, 

0CH> Trp 93L 

H A 

His35H 

- c—~CH_ . 

/ 
Gly 100H 

• N H . 

Figure 3.6: Interaction maps determined from MD simulations performed on (scFV 
+ l ) n + / ~ ions at charge state (a) +8 and (b) -8. 
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3.5 Conclusions 

In conclusion, a detailed study of the intermolecular H-bonds within the protonated 

and deprotonated ions of a desolvated protein-ligand complex is reported. Using the 

BIRD/FGR method, we are able to identify intermolecular H-bonds that stabilize 

the protonated and deprotonated (scFv + l ) n + / ~ ions. H-bond donor/acceptor pairs 

are: three pairs (Man C4 OH/His101H, His34L/Gal C3 OH and Gal C6 OH/Asn96L) 

within the (scFv + 1)8+ ions and one (Man C4 OH/His101H) within the (scFv + 1)8~ 

ions. It is worth noting that two of the above interactions (Man C4 OH/His101H and 

His34L/Gal C3 OH) correspond to specific intermolecular H-bonds in solution. This 

strongly suggests that the binding site is, at least partially, conserved upon transfer 

of the (scFv + 1) complex from solution to the gas phase by ES. Additionally, other 

interacting sites on the scFv and on 1, for which the binding partner could not be 

elucidated, were identified, as well as nonspecific intermolecular interactions that form 

upon desolvation. Intermolecular H-bonds were also recognized from MD simulations 

performed at the +8 and -8 charge states. Our simulations for the (scFv + 1)8+ 

ion showed good agreement with the BIRD/FGR results in predicting a majority of 

intermolecular interactions; although the agreement was less favourable in the case of 

the (scFv + 1)8~ ion. The structure of the complex at +8 and -8 charge states was 

found to be different in both the computational and experimental work. In addition to 

the above results, the computational work also indicated that the nature and strength 

of the intermolecular interactions can vary with charge state. It was shown that the 

intermolecular interactions within the (scFv + 1)8~ ion are inherently weaker than 

those within the (scFv + 1)8+ ion. Finally, it was suggested from our MD simulations 

that the water mediated H-bonds between the scFv and 1, which have been identified 

in the crystal structure but lost upon transfer of the complex from solution to the 

gas phase, were replaced with direct H-bonds between 1 and two of the three scFv 

residues that were originally interacting with the structural water molecule. 
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Chapter 4 

Water Dynamics in Charged and 
Hydrated Protein-Ligand 
Complexes 

4.1 Introduction 

Noncovalent biomolecular complexes between proteins, carbohydrates, small molecules, 

DNA, and RNA play a key role in many important biological processes [156, 157, 158]. 

Many biological processes involve the formation and dissociation of specific, non­

covalent complexes between proteins and ligands, with solvent molecules playing a 

significant role in the biophysics of the processes. 

However, an understanding of the structure and stability of these complexes and 

the structural and energetic role played by solvent molecules in the recognition pro­

cess is incomplete [159]. To achieve a more complete understanding of the molecular 

recognition process, one must face the challenge of separating solvent effects from 

intrinsic (solute-solute) interactions. Comparing the structure and stability of biolog­

ical complexes in solution and in the gas phase is a promising approach to understand 

the contribution of solvent effects and intrinsic interactions to the binding affinity of 

protein-ligand complexes. 

Specific, noncovalent biological complexes in solution can be converted to the 

corresponding desolvated gas phase complex through electrospray ionization (ES) 

[117] and subsequently analysed with a variety of mass spectrometry (MS)-based 
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techniques. The loss of water molecules which occurs during the ionization process 

is due to the relatively low strength of the interactions between individual water 

molecules and the complexes. 

Mass spectrometry combined with electrospray is a powerful tool for studying 

noncovalent biological interactions in the gas phase [149, 117] and ES/MS is also 

increasingly being used for a variety of applications: measuring the relative binding 

affinities [142, 143], establishing the composition of biomolecular complexes[160, 161] 

and investigating the intrinsic interactions in biological complexes [162, 129, 151, 

163]. In earlier experimental studies, Klassen and co-workers [129, 151, 163, 128] 

used the blackbody infrared radiative dissociation (BIRD) technique implemented 

with a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS) 

combined with functional group replacement (FGR) to identify individual interactions 

in gaseous biological complexes and to quantify the strength of the interactions. 

The biological complex of interest in the current study is composed of a single 

chain variable fragment (scFv) of the monoclonal antibody Se 155-4 and its natu­

ral trisaccharide ligand, a-D-Galp(l->2)[a-D-Abep(l->3)]-a:-D-Manp(l->OMe) (1). 

Its crystal structure and that of the corresponding antigen binding fragment (Fab) 

complex have been solved [13]. Analysis of the crystal structures suggests that a 

trisaccharide ligand is bound to the scFv through intermolecular hydrogen bonds in 

solution. Additionally, water molecules belonging to a network of well-ordered solvent 

molecules surrounding the trisaccharide in the scFv structure were observed. These 

"crystallographic" water molecules participate in H-bonds with both the ligand and 

the protein. In the crystal structure, the first water (Wat 1) is located in the base of 

the binding pocket, and mediates H-bonds between the scFv protein and the ligand 

1. Two additional waters (Wat 2, Wat 3) are also observed in the crystal structure 

(see Figure 4.1). 
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Figure 4.1: Intermolecular hydrogen bond scheme for the (scFv + 1) complex ob­
tained from X-ray analysis of the crystal structure. 
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Recently,1 we have presented the detailed and quantitative investigations of the 

intermolecular interactions within gaseous ions of the desolvated complex described 

above over a range of charge states using both experimental and computational meth­

ods [162]. Our analysis identified H-bonds between the protein and the ligand in dif­

ferent charge states and suggested that there was a conservation of the binding site, to 

some extent at least, upon transfer of the complex from solution to the gas phase. In 

the same study, we compared the noncovalent interactions identified in the gas-phase 

with the aid of computer simulations with those present in the crystal structure. It 

was shown that water-mediated H-bonds between the protein and ligand, which are 

originally present in the crystal structure and lost upon transfer of the complex from 

solution to the gas phase, are replaced with direct H-bonds between the protein and 

the ligand. 

It is of great interest to extend our study to investigate the dynamics of "crys-

tallographic" water molecules in the charged and hydrated protein-ligand complex 

in the gas phase. As mentioned above, the hydration waters are rapidly lost in the 

gas phase and the "crystallographic" water molecules are the last ones to evaporate 

during the desolvation process because they participate in H-bonds with the complex 

(see Figure 4.1). Thus, MD simulations are performed in the gas phase including only 

those "crystallographic" water molecules. Here, we performed a series of MD simula­

tions from low to high temperatures in order to study the temperature dependence of 

the individual water dynamics around the binding site of the charged protein-ligand 

complex in the gas phase. As opposed to our previous efforts [162], where equilibrium 

properties were investigated in the form of the identification of H-bonded interactions, 

the current study probes the dynamics of water molecules and utilizes the concept 

of hydrogen bond lifetime to determine the structural relaxation of H-bonds between 

water molecules and the complex. 

The dynamics of water molecules can be experimentally measured by dielectric 

relaxation [164], NMR spectroscopy [165], solution X-ray, and neutron scattering 

[166]. A number of experimental techniques have probed properties of hydration wa-

1See Chapter 3 
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ter molecules on time scales between microseconds and nanoseconds [167]. Recently, 

terahertz absorption spectroscopy was applied as a probe for the fast solvation dy­

namics around a chosen solute, lactose [167]. This approach was used to detect the 

solute-induced changes in the water network near lactose, where the H-bond rear­

rangement dynamics of water molecules occurs on the picosecond time scale. The 

dynamics of water molecules can be observed over a broad range of time scales in 

different physical phenomena, but a complete picture of the nontrivial interactions of 

hydration water molecules is still lacking [168]. 

In recent years, simulation techniques have proven to be an increasingly powerful 

tool in modelling the behaviour of water molecules [169]. With such simulations, 

we can track individual water molecules at the molecular level, something currently 

beyond the capability of experiments. There has been a number of simulation studies, 

primarily focused on the relaxation behaviour of H-bonds in pure water [170, 171, 172] 

as well as in aqueous solutions of electrolytes and micelles [173]. The concept of 

hydrogen bond lifetime has been used to study H-bond dynamics for carbohydrates 

in solution [174, 175], in an aqueous micelle [176, 177], and recently in DNA groove 

water dynamics [178, 179, 180]. 

In the present study, we aim at providing a direct microscopic picture in terms of 

H-bond dynamics of the individual water molecules at different temperatures in the 

charged and hydrated protein-ligand complex in the gas phase. The hydrogen bond 

lifetimes were obtained for H-bonds between water molecules and the complex. Note 

that this lifetime is on the picosecond time scale, and corresponds to the forming and 

breaking of protein-water or ligand-water H-bonds. 

4.2 Computational Methods 

The AMBER 9.0 program suite [109] was used for the molecular dynamics simula­

tions. The initial geometries for a single chain variable fragment (scFv) of the mono­

clonal antibody Sel55-4 and a trisaccharide ligand, aGal[aA.be]a:Man(l) were taken 

from the Brookhaven protein database (pdbid=lMFA) [13]. The simulations were 
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performed using the AMBER 94 forcefield [47] with the GLYCAM [12] parameter 

set for the ligand. We conducted simulations for the +8 charge state of the protein. 

The details of the chosen charge distribution of the protein in this study are reported 

elsewhere [162]. Electrostatic potential (ESP) atomic partial charges, determined by 

Woods et al., [60] were used for the ligand. Three " crystallographic" water molecules, 

described by the TIP3P model [110], were included in the system. A series of MD 

simulations were performed over a wide temperature range (25, 50, 75, 100, 150, 200, 

250, 300, 350, 400, 450 and 500 K). The energy of the system was first minimized 

with the conjugate gradient method using a 0.0001 kcal/mol A convergence criterion. 

The entire system was then gradually heated from 10 K to the desired temperature 

over a period of 20 ps. Simulations were first performed in vacuum and in the canon­

ical ensemble (NVT). Constant temperature was maintained using the weak-coupling 

algorithm with time constant of 1.0 ps [152]. The system was equilibrated for 1 ns 

with a time step of 1 fs. After this period, production dynamics were performed for 

4 ns and data was collected every 500 fs. In order to study the dynamics of water 

molecules, correlation functions were calculated at each temperature from a total of 

493 microcanonical (NVE) production runs (150 ps for each) with initial conditions 

sampled from the initial canonical simulation. During the simulations, bond length 

constraints were applied to all hydrogen-containing bonds using the SHAKE algo­

rithm [24]. Upon completion of the simulations, we carried out a structural hydrogen 

bond analysis. The geometric criteria used to establish H-bonds are: heavy atom (A) 

to heavy atom (B) distance (r) < 4.0 A and AHB bond angle (0) > 120°. Addi­

tionally, the occupancy, i.e., the fraction (/) of times that the H-bond criteria are 

satisfied, was evaluated. For the H-bonds identified using a structural hydrogen bond 

analysis, the hydrogen bond lifetime correlation functions were calculated. 

4.3 Results and Discussion 

In general, the crystal structure is only representative of a single configuration. At 

very low temperatures, the configurations explored during the simulation should be 
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similar to the crystal structure. To illustrate this point, we show the water densities 

at 25 and 50 K in Figure 4.2. Those were obtained by calculating a three dimensional 

histogram of the oxygen and hydrogen atoms of all the water molecules over a canon­

ical simulation. In order to obtain a consistent frame of reference, the configuration 

of the system was adjusted via an RMS fit to the initial (time zero) configuration of 

the trajectory. The frame of reference of this fit is based on the ligand and residues 

of the active site. For the purpose of comparison, we used the same density isovalue 

in all the figures. Oxygen density is represented in red and hydrogen density is in 

gray. The ligand and the protein are in orange and green, respectively. 

As temperature is increased, we observed that the water mobility also increases. 

This prompts us to investigate the temperature dependence of the dynamical be­

haviour for individual water molecules. The water densities at different higher tem­

peratures are shown in Figure 4.3. We observed that the most buried water molecule 

(Wat 1), which interacts with Abe and key amino acid residues, remains localized 

while the other two become more and more delocalized as the temperature is in­

creased up to 300 K. At this temperature, these latter two water molecules have left 

the binding site and interact with the surface of the protein. 

We have made an initial estimate that Wat 1 can survive to temperatures of up to 

300 K. Thus, all crystallographic waters leave the complex above 300 K. The analysis 

of the trajectories was therefore carried out up to 300 K. We chose to report here the 

simulations results obtained at three temperatures (100, 200 and 300 K) and we now 

focus on the dynamical behaviour of these crystallographic water molecules. 

80 



(a) 

(b) 

Figure 4.2: Water density at (a) 25 K and (b) 50 K. 
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(a) 

(b) 

(c) 

Figure 4.3: Water density at (a) 100 K, (b) 200 K and (c) 300 K. 

82 



4.3.1 Hydrogen bond lifetime dynamics 

Water molecules can form H-bonds both with the amino acids of the protein and with 

hydroxyl groups of the ligand. We have studied the protein-water and ligand-water 

H-bond lifetime dynamics. Table 4.1 shows the occupancy (/) of the identified H-

bonds between water molecules and the complex. We observed a competition between 

the two hydrogens of Wat 1 to form a H-bond with Tyr103H at 200 and 300 K. In our 

previous study on protein-ligand interactions [162], we showed that the Tyr103H also 

makes a H-bond as an acceptor with the Abe C4 OH group of the ligand. This Abe 

C4 OH/Tyr103H interaction corresponds to one of the weak type 2 (see Section 2.4) 

identified H-bonds within (scFv + 1)8+ ion in the gas phase. Using the information 

in Table 4.1, we note that when Wat 1 is acting as a H-bond acceptor, the H-bonds do 

not show a dynamical behaviour. This is because Wat 1 makes a strong interaction 

with His35H with a high occupancy (/ = 1.00 at 100 and 200 K, and / = 0.96 at 

300 K). The high occupancy indicates that the His35H/Wat 1 interaction persists 

throughout the simulation. A similar behaviour is observed for the Abe C4 OH/Wat 

1 interaction. Therefore, these two interactions (i.e., both strong H-bonds of Wat 1 

acting as an acceptor with ligand and protein) serves to explain why Wat 1 is locked 

in the binding site over the range of temperatures studied. Those strong interactions 

of Wat 1 are in agreement with the crystal structure (see Figure 4.1). 

We found that Wat 2 makes two strong H-bonds (Man C4 OH/Wat 2 and Wat 

2/His101H) at 100 K. These H-bonds display narrow distributions of r, 9 and a high 

occupancy. However, no interactions were detected for these pairs at higher temper­

atures. Similarly, strong H-bonds were also identified for Wat 3: Trp33H/Wat 3 and 

Wat 3(H1)/Man C4 OH at 100 K and Asn55L/Wat 3 at 200 K. As in the case of Wat 

2, these interactions do not exist at 300 K. 
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Table 4.1: Occupancy (/) for water hydrogen bonds within the (scFv + 1)8+ ion at 
T = 100, 200 and 300 K. 

H-bond donor/acceptor pair 
His35H/Wat 1 
Abe C4 OH/Wat 1 
Wat l(Hl)/Tyr103H 

Wat l(H2)/Tyr103H 

Wat 1 (Hl)/Gly99H 

Wat l(Hl)/Gly100H 

Wat l(H2)/Gly100H 

Man C4 OH/Wat 2 
Wat 2/His101H 

Ser94L/Wat 2 
Gal C2 OH/Wat 2 
Gln1L(Hl) /Wat 2 
Gln1L(H2) /Wat 2 
Gln1L(H3) /Wat 2 
Wat 2(Hl)/Gly32L 

Wat 2(H2)/Gly32L 

Wat 2(Hl)/Asn95L 

Wat 2(H2)/Asn95L 

Wat 2(H1)/Gal C4 OH 

Trp33H/Wat 3 
Asn55L/Wat 3 
Wat 3(HI)/Man C4 OH 
Wat 3(Hl)/Asn54L 

Wat 3(H2)Asn54L 

Wat 3(Hl)/Asn95L 

Wat 3(H2)/Asn95L 

Gln1L(Hl) /Wat 3 
Gln1L(H2)/Wat 3 
Gln1L(H3)/Wat 3 

0.89 
0.81 
0.10 
0.25 

0.32 

100 K 
1.00 
1.00 

(bi0)a 

(bi0) 

M) 
(ue) 

0.97 
0.94 

! (bir) 

1.00 

0.97 

200 K 
1.00 
0.99 

0.18 (bi0) 
0.80 (bi0) 

0.72 (bir, bi^) 

0.29 (bir) 
0.29 (bir, bi0) 

0.16 (bir, biB) 

0.95 

0.54 (bi9) 
0.43 (bi0) 

300 K 
0.96 
0.83 

0.42 (bi0) 
0.50 (bi0) 

0.18 (bir, bi0) 
0.24 (bir, bi0) 
0.23 (bir, bi0) 

0.25 (bir, bi0) 
0.20 (bir, bi0) 

0.18 (bir, bi0) 
0.15 (bir, bi0) 

0.27 (bi0) 
0.23 (bi0) 
0.22 (bi0) 

°bir = bimodal distribution of r, b\8 = bimodal distribution of 9, otherwise narrow distributions 
of r or 9. 

84 



The structural relaxation of H-bonds can be characterized by the hydrogen bond 

lifetime correlation function (HBLTCF) given by [171, 172, 178, 179, 180] 

SH) = £ « , (4.1) 

C(t) = « , (4.2) 

where h(t) and H(t) are the hydrogen bond probability variables. The quantity h(t) 

is 1 if a particular pair of protein-water or ligand-water, is hydrogen bonded at given 

time t and 0 otherwise. On the other hand, H(t) is equal to 1 if a particular pair is 

continuously hydrogen bonded up to time t and 0 otherwise. Therefore, C(t) allows 

reformation of a bond that is broken at some intermediate time while S(t) decays as 

soon as the bond breaks for the first time. 

The HBLTCF were calculated for H-bonds that show bimodal distributions of 

distances (r) or angles (6) with an occupancy / > 0.1.2 These particular H-bonds 

were chosen because of their dynamical behaviour as opposed to stronger H-bonds 

that have extremely large lifetimes on the time scale of the simulation. Our previous 

example of a strong and long lived interaction (His35H/Wat 1) was given in Figure 

4.4(a). This interaction exhibits a narrow distribution of r centered at a short value 

(~3 A), a narrow distribution of 6 centered at 8 > 150° and a high occupancy (see 

Table 4.1). 

In earlier studies on various aspects of H-bond lifetime dynamics in bulk water 

[170, 171, 172] or DNA grooves [180], the average time correlation functions over all 

the H-bonds were computed to obtain a measure of dynamics. However, each water 

molecule around the protein-ligand complex in our study behaves differently, so we 

need to study each H-bond separately. Thus, to find the H-bond geometric criteria 

used in calculating the HBLTCF, we looked at the distributions of r and 9 determined 

for each selected H-bond pair at each temperature. An example is shown in Figure 

4.4(b) where one can identify the minimum between the two peaks of the distributions 

2Note that the occupancy was obtained using a criterion of r < 4.0 A and 6 > 120° as stated 
earlier. 
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as the cutoff point (criterion for H-bond). For example, the Ser94L/Wat 2 bond is 

said to exist if r is less than 4.0 A and 9 is greater than 109.4°. 

Using the above geometric criteria, we calculated the HBLTCFs for the H-bonds 

that show their dynamical behaviour. Figure 4.5 contains the HBLTCFs for the Wat 

l(H2)/Tyr103H interaction at different temperatures, calculated over a time of 150 ps. 

Note that to obtain the H-bond criteria, we averaged over the different temperatures 

in order to have the same criteria at all temperatures. The Wat l(H2)/Tyr103H 

interaction shows a strong temperature dependence. The H-bond lifetime dynamics 

for the Wat l(H2)/Tyr103H interaction at 300 K is faster than ones at 100 or 200 K. A 

slow tail in the decay of S(t) is observed at 200 K and it becomes more important at 

100 K. It can be seen from Figure 4.5 that the decay behaviour of the C(t) correlation 

function is much slower. This makes sense since that quantity is associated with 

intermittent H-bonds. 

The characteristic decay time of the continuous hydrogen lifetime correlation func­

tion S(t) yields an estimate for the H-bond lifetime (THB) of each the protein-water 

and ligand-water H-bond. We have fitted these S(t)s to a single exponential form 

to get THBI
 a n d H-bond lifetimes are provided in Table 4.2. Generally, the H-bond 

lifetime {rHB) decreases as temperature increases for the same interaction pair. In 

the case of the Wat l(H2)/Tyr103H interaction, the H-bond lifetime is much longer at 

100 K than at higher temperatures. It was observed that contrary to Wat 1, Wat 2 

and Wat 3 show much faster decay of their H-bonds. Also, the temperature depen­

dence of the H-bond lifetime of water H-bonds is large. We see that Wat 2 and Wat 

3 diffuse away from the binding site at high temperatures with shorter THB- These 

observations are consistent with the water densities shown in Figure 4.3. 
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Figure 4.4: Number of occurrences (N) of H-bond distances (r), and angles (8) (inset) 
for (a) the His35H/Wat 1 and (b) the Ser94LWat 2 interactions at 200 K. 
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Figure 4.5: Hydrogen bond lifetime correlation functions, (a) S(t) and (b) C(t) for 
the Wat l(H2)/Tyr103H interaction at T = 100, 200 and 300 K. 
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Table 4.2: Hydrogen bond lifetime THB (in ps) for water hydrogen bonds at T = 100, 
200, and 300 K. 

H-bond donor/acceptor pair 
Wat l(Hl)/Tyr iU3i l 

Wat l(H2)/Tyr103H 

Wat l(Hl)/Gly99H 

Wat l(Hl)/Gly100H 

Wat l(H2)/Gly100H 

Ser94L/Wat 2 
Gln1L(Hl)/Wat 2 
Gln1L(H2) /Wat 2 
Gln1L(H3)/Wat 2 
Wat 2(Hl)/Gly32L 

Wat 2(H2)/Gly32L 

Wat 2(Hl)/Asn95L 

Wat 2(H2)/Asn95L 

Wat 2(H1)/Gal C4 OH 

Wat 3(Hl)/Asn54L 

Wat 3(H2)/Asn54L 

Wat 3(Hl)/Asn95L 

Wat 3(H2)/Asn95L 

Gln1L(Hl)/Wat 3 
Gln1L(H2)/Wat 3 
Gln1L(H3)/Wat 3 

100 K 

157.9 
10.7 
1.1 

11.2 

200 K 
48.0a 

52.2 

47.8 

1.4 
1.0 

2.3 

35.6 
27.7 

300 K 
11.0 
12.6 

2.0 
2.2 
2.1 

2.6 
2.1 

4.6 
0.7 
2.4 
3.7 
2.8 

aT~HB was calculated for H-bonds that show bimodal distributions of r or 0 with the occupancy 
/ > 0.1 in Table 4.1. 
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4.4 Conclusions 

In this chapter, we have explored in detail the H-bond dynamics of three "crys-

tallographic" water molecules in a charged protein-ligand complex by means of MD 

simulations. These water molecules participate in H-bonds with both the scFv protein 

and the ligand in the crystal structure. A series of MD simulations were performed 

from low to high temperatures in order to study the temperature dependence of the 

individual water dynamics around the binding site of the complex in the gas phase. 

The calculated water densities suggested that the water mobility also increases as 

temperature is increased. It was shown that the first water molecule (Wat 1) located 

in the deep binding pocket remains localized while the other two (Wat 2, Wat 3) be­

come more and more delocalized as the temperature is increased up to 300 K. Using 

a structural H-bond analysis, intermolecular H-bonds between water molecules and 

the complex were identified. In order to understand the diversity in the nature of 

water-protein and water-ligand H-bonds around the protein-ligand complex, we cal­

culated H-bond lifetime correlation functions for the H-bonds that show a dynamical 

behaviour. Lifetimes were obtained for these H-bonds by exponential fits. The calcu­

lations revealed that the H-bond lifetime decreases as temperature increases, and the 

structural relaxation of the H-bonds formed at high temperatures has been found to 

be faster than those at low temperatures. It was also observed that the relaxation of 

H-bonds formed with Wat 1 is much slower than that of those formed with Wat 2 or 

Wat 3. 
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Chapter 5 

Dissociation Kinetics of 
Protein-Ligand Complexes 

5.1 Introduction 

Essential biological processes are dependent upon specific interactions between biolog­

ical molecules. Thus, understanding how two molecules recognize each other is one of 

the fundamental and central issues in many biological processes. A number of experi­

mental and theoretical efforts have gone into the study of elucidating the mechanisms 

involved in recognition processes for these reasons [181, 182, 183, 184, 185, 186]. To 

understand fully the molecular recognition phenomena in the vast majority of chemi­

cal and biological processes, a close examination of the underlying binding free energy 

behaviour is often necessary. 

Free energy is an important thermodynamic property. It is expressed in two forms: 

the Helmholtz free energy A and the Gibbs free energy G which can be defined as A — 

U — TS and G = H — TS where U is the internal energy, T is the temperature, S is the 

entropy and H is the enthalpy. The accurate prediction of binding free energy is one of 

the challenges in molecular modelling because free energy differences between different 

molecular states are directly related to experimental observables, from binding affinity 

or equilibrium constants in the context of equilibrium thermodynamics, to kinetic rate 

constants via transition state theory. We can obtain important insights and improved 

understanding of a wide variety of chemical phenomena, such as ligand binding and 
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mutations, from a accurate knowledge of free energy, especially by breaking down the 

total free energy change into contributions from solvent, protein and even individual 

residues or chemical groups. For instance, protein-ligand binding constants are of 

importance in the emerging field of de novo, rational drug design, and cannot be 

predicted reliably and accurately without the knowledge of the associated free energy 

changes [37]. 

The discovery of a ligand that binds a targeted protein with high affinity in the 

field of rational drug design, while keeping favourable pharmacological properties, is 

a major and costly challenge [187]. Computer simulations can help circumvent some 

of the difficulties. Indeed, computer simulation plays a significant role in guiding 

molecular design due to its potential for predicting accurate protein-ligand binding 

free energies. 

Over the years, a variety of computational methods have been used to determine 

binding free energies in complex biomolecular systems. One particular class of such 

methods involves the calculation of the potential of mean force (PMF) along a reaction 

pathway. This pathway is usually referred to as the reaction coordinate and the PMF 

is a free energy profile determined along the chosen reaction coordinate [39, 188]. 

Different techniques have been successfully applied for the calculation of the PMF 

profile. Most commonly used techniques include free energy perturbation (FEP) 

[189, 190], thermodynamics integration (TI) [191], and umbrella sampling [192] with 

the weighted histogram analysis method (WHAM) [42, 193]. 

In applications to protein-ligand binding, the free energy perturbation (FEP) 

methodology was first applied to compute relative free energies [189]. Since the 

first applications of FEP to the calculation of relative free energies were reported, 

theoretical and computational tools to predict binding free energies with quantitative 

accuracy were developed and improved, making the free energy simulation techniques 

a well-characterized modelling tool for drug design [194, 195, 196]. Also, developments 

on both formal and technical aspects have contributed to decrease the computational 

cost of free energy calculations. 

Recently, the usage of the conformational and orientational restraint potentials 
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was introduced into the calculation of protein-ligand binding free energy to improve 

convergence by modelling a flexible ligand as a relatively rigid one [185, 183, 197]. 

With this approach, the difficulties associated with exploring a multitude of confor­

mations are significantly reduced because the ligand does not have to sample the 

entire simulation volume [185, 183, 197]. Those restraint potentials also helped to 

improve the computational efficiency. The choice of restraints for our case of interest 

will be discussed further in Section 5.2.4. 

In the current chapter, we present our work on the free energy simulation study of 

the dissociation kinetics of a series of structurally related noncovalent protein-ligand 

complexes in the gas phase. The protonated ion of a complex composed of a single 

chain fragment (scFv) of a monoclonal antibody and its native trisaccharide ligand, 

ctGalfctAbeJaiMan (1) was chosen for this study. A series of single amino acid mutants, 

single ligand mutants and double amino acid-ligand mutants were also chosen. Details 

of the studied systems will be provided in Section 5.3. Through simulations of various 

mutants, the free energy change associated with substituting a chemical group with 

another is evaluated. This allows us to predict such effects as the influence of point 

mutations on thermal stability and ligand binding of proteins, or the role of different 

substituents in determining the affinity of the ligand for a protein. 

A number of experimental studies on scFv-oligosaccharide have been reported. 

The association thermodynamics for Se 155-4 with a variety of oligosacchrides has 

been extensively investigated in solution [198]. Recently, Klassen and co-workers 

developed a reactivity-based approach, employing blackbody infrared radiative dis­

sociation (BIRD) [126, 127, 199, 200], a thermal dissociation technique implemented 

with a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS). 

They reported the first time-resolved thermal dissociation kinetic and energetic mea­

surements, carried out using the BIRD technique, for a series of scFv-trisaccharide 

complexes [128]. In this study, BIRD was used to measure the thermal dissociation 

rate constants (k) and to determine Arrhenius activation parameters for the dissoci­

ation of noncovalent protein-ligand complexes. 

The PMFs for the dissociation of protein-ligand complexes were obtained using 
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MD simulations. Restraint potentials were applied into the calculation of the protein-

ligand binding free energy to solve the convergence problem which arises from the 

flexibility of the unbound ligand [183, 185]. Technical details regarding the systems 

and the computational procedure are given in Section 5.3. The dissociation rate con­

stants for the desolvated protein-ligand complexes can be computed from the PMFs 

by employing the variational transition state theory (VTST) [201, 202, 201, 203]. Fur­

ther discussion of the application of PMF to kinetics as well as the definition of PMF 

will be described in Section 5.2. Here, our goal is to present detailed computational 

studies aimed at calculating PMFs for the dissociation of protein-ligand complexes in 

the gas phase, and computing dissociation rate constants from the free energy of the 

complexes. 

5.2 Theory 

5.2.1 Potential of mean force and umbrella sampling 

The protein-trisaccharide complex is a reactant in the process leading to its dissoci­

ation into two components, the protein and trisaccharide. The resulting PMF u(r) 

along some coordinate r is defined from the average distribution function (p(r)) [41]: 

w(r)=w(r*)-kBTln\}^} , (5.1) 
L(p(r*))J 

where fcg and T are the Boltzmann constant and temperature, respectively. w(r*) 

and (p(r*)) are arbitrary reference values. Since only differences in PMF are used in 

calculating rate constants, the choice of w(r*) does not affect the results. The details 

of the PMF formulation and the umbrella sampling method were given in Section 

1.4.5. 

5.2.2 Variational transition state theory: application of P M F 
to kinetics 

Transition state theory (TST) [204, 205, 206, 201] plays a central role in calculating 

rates of chemical reactions occurring in the gas phase, in condensed phase or in 
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enzymes. Classically, the fundamental assumption of TST is that there exists a 

hypersurface (or surface) in phase space which divides space into a reactant region 

and a product region. TST provides the equilibrium rate constant from the one-way 

flux through this dividing surface. The classical reactive flux across a dividing surface 

in a given direction is greater than or equal to the exact classical reactive flux. This 

upper bound to the exact classical, equilibrium rate constant is the basis for classical 

variational transition state theory (VTST) in which the best estimate of the rate 

constant can be obtained by variationally optimizing the dividing surface. Therefore, 

the transition state is represented by a dividing surface, corresponding to the lowest 

upper bound, i.e. a minimum in the reactive flux [207, 208]. 

By employing the TST, an upper bound to the dissociation rate constants for the 

desolvated protein-ligand complexes is given by [201, 202] 

k™T--\l2^T {~ir)r,'
 (5-2) 

where m is the reduced mass of the complex and A(r) is Helmholtz free energy. The 

quantity r is the reaction coordinate and the dividing surface r^ separates the associ­

ated complex (reactant) and dissociated complex (product) phases. The reactant and 

product regions are defined as r < r^ and r > r^, respectively. The PMF is calculated 

directly from computer simulations and A(r) can be expressed in terms of the PMF 

[202]: 

A(r)-A{r0) = -kBTln. 8 / M - ^ (5.3) 

where 7 = (2irmkBT/h2)s/2 and h is the Planck constant. A(r0) is the reference 

Helmholtz free energy of a complex at a specific r0. Eq. 5.4 is the differentiated form 

of A(r) and it is proportional to the TST dissociation rate constant in Eq. 5.2, 

*M\ =kaT M-^O;' . (5.4) 
To obtain a minimum in reactive flux according to VTST, the value of dividing surface 

r* should be determined to minimize — ( —£^-) because the reactive flux based on 

TST is always greater than the real flux. 
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5.2.3 Reaction coordinates 

The PMF in Eq. 5.1 depends on the choice of the reaction coordinates, r. The 

improper choice of a reaction coordinate can cause the simulation bias and yield 

slower convergence [209]. Especially for complex systems, it is not always clear how to 

best determine the reaction coordinate. Geometrical parameters such as a distance, a 

dihedral angle or a torsion are widely used as a simple function in most work [210, 211]. 

For example, the distance TAB — \*A ~ *B\ between two atoms or monatomic ions A 

and B has been used to study the dissociation of ion pairs [212] and enzyme-catalysed 

reactions [213]. A similar results is obtained when the reaction coordinate is the 

distance between the center-of-mass (COM) of two molecules or molecular fragments 

or between an atom and the COM of a collection of atoms. These types of reaction 

coordinates are called Jacobi distances [214]. 

The use of a geometrical variable as the reaction coordinate is particularly in­

structive and intuitive for chemists and biochemists to describe the mechanism of 

chemical reactions and enzymatic processes. Thus, it is often used in free energy 

simulations. The use of such a reaction coordinate also allows convenient analy­

sis to compare specific structures with those obtained from spectroscopic and X-ray 

diffraction experiments [215]. However, one may sometimes need a more complicated 

reaction coordinate to yield a more accurate description of the reaction. As one ex­

ample, the PMF along two reaction coordinates can be obtained by an extension of 

the one-dimensional Eq. 5.1 to two dimensions [216]. 

Choice of Reaction Coordinates. For the PMF study in this chapter, a geo­

metrical variable was chosen as the reaction coordinate, r. The distance (ri) between 

two atoms, Ca of Trp98L (blue) and the ring oxygen of Abe (the ligand is in orange) 

was used to study the dissociation of protein-trisaccharide complexes (see Figure 5.1). 

The positions of these two atoms are shown as yellow and red spheres, respectively. 

The reaction coordinate was chosen based on the scFv-trisaccharide ligand inter­

action map in the gas phase (see Figure 5.2). The pair of Trp98L and Abe indicates 

a specific, strong interaction with average bond length r = 2.98 A, angle 9 = 157.69° 
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Figure 5.1: The reaction coordinate used in free energy calculations. 

and 99 % occupancy from structural H-bond analysis [162]. 

5.2.4 Restraints and convergence 

The central question in free energy simulations is whether convergence is achieved. 

That is, simulations must have enough time to sample all of the relevant regions of 

configuration space so that thermodynamic averages will be accurate (converged). 

However, simulations do not even visit other relevant regions of configuration space 

if simulations are short and the system is trapped in a metastable state. 

In the past decade, restraint potentials have been introduced and employed to 

avoid convergence problems in free energy simulations [197, 217, 218, 219, 220]. Con­

vergence can be affected by the choice of restraints. Without restraints, the ligand 

must sample all degrees of freedom and the entire simulation volume during the pro­

cess of dissociating the ligand from the protein. 

The simplest restraint is a single distance restraint between the protein and ligand. 

When only the protein-ligand distance is restrained the ligand must at least remain 
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Figure 5.2: Gas phase interaction map determined from MD simulations performed 
on the (scFv+ 1)8 + [162]. 

near the binding site, but all relevant orientations must still be sampled in every 

simulation. To improve convergence, orientational restraints have also been used to 

restrict the ligand's orientation relative to the protein [197, 183, 217]. These restraint 

potentials further contribute to reduce the amount of configurational space that needs 

to be thoroughly sampled. 

Choice of Restraints. The coordinate system for specifying the overall relative 

position and orientation of the ligand with respect to the protein was constructed by 

choosing three atoms within the protein (green) and in the ligand (red) (see Figure 

5.3). The three atoms, Pi, P2 and P3, labelled in blue, for the scFv of a monoclonal 

antibody were given by the Ca of Trp93L, Gly102H and Trp98L, respectively. The three 
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atoms, Li, L2 and L3, for the trisaccharide ligand were given by the ring oxygen of 

Gal, Man and Abe, respectively. These positions are shown as yellow spheres. 

Figure 5.3: The coordinate system used to define the positional and orientational 
restraints on the ligand. 

Six potentials restraining the position and orientation of the ligand were em­

ployed in the form of harmonic biasing potentials to help enhance the convergence 

of the calculations by biasing the ligand to be near its bound configuration as it be­

comes completely dissociated from its complex. The translational restraint potential 

is defined as 

ut = kr(n - r0)2 + ka(9 - 60)
2 + ka((t> - 0O)2 , (5.5) 

where r\ is the distance P3 - L3, 9 is the angle P2-Pi-L!, and <f> is the dihedral angle 

P3-P2-P1-L1. The kr and ka are the force constants, and ro, #0 and 0o are the average 

values for the bound ligand taken as the reference. Similarly, the orientation of the 
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ligand was restrained by using the following potential: 

Uo = k0(Q - e 0 ) 2 + fc0($ - $0)2 + *<,(* - Wo)2 , (5.6) 

where © is angle P2-Li-L2, $ is the dihedral angle P2-Pi-Li-L2 and \& is the dihedral 

angle Pi-Li-L2-L3. The k0 is the force constant, and @0> $0 and W0 correspond to 

the average orientation of the bound ligand. In general, the reference values and the 

force constants for each restraint potential are determined from the average values 

based on an unbiased simulation. The magnitude of the force constants is obtained 

from the fluctuations of its associated coordinates as [217] 

K « - ^ . (5.7) 

The units of force constants used in distance and angle restraint potentials are 

kcal/mol A2 and kcal/mol per rad2, respectively. 

5.3 Methods 

All MD simulations were carried out with the recently released AMBER 10 program 

suite [221]. The crystal structure (1MFA) [13] was used for the initial geometry of 

the (scFv + 1) complex. The simulations were performed using the AMBER 94 

forcefield with the GLYCAM parameter set for oligosaccharides [12]. Electrostatic 

potential (ESP) atomic partial charges, determined by Woods and co-workers [60], 

were used for 1. The (scFv + 1) complex at the +8 charge state was chosen for investi­

gation. A series of mutants were also selected: a single amino acid modification of the 

protein (active site mutation: His101HAla); a single modification of the ligand (func­

tional group modification: aGal[aAbe](4-deoxyQ;Man) (2)); and simultaneous modi­

fication of the protein and the ligand (dual modification: His101HAla-aGal[aAbe](4-

deoxyctMan)). Figure 5.4 shows the structures of the native trisaccharide ligand (1) 

and its monodeoxy analog (2). 

To get the reference distance, angle values, and force constants for the biasing 

potentials, unrestrained simulations of the fully interacting ligand in the binding site 

were performed for the unmodified complex and its mutants. The energies of the 

100 



ft 
HO ^ j H Q 

HO 
O 

OH 

OH C H s 

O 

OCH, 

Figure 5.4: Structures of the trisaccharide ligands (1 and 2) 

(scFv + 1)8 + ion and its mutants were first minimized with the conjugate gradient 

method using a 0.0001 kcal/mol A convergence criterion. The entire system was then 

heated from 10 to 300 K over a period of 15 ps. In order to mimic experimental 

conditions, simulations were performed in the gas phase under isothermal conditions. 

Constant temperature was maintained using the weak-coupling algorithm with time 

constant of 1.0 ps [152]. During the simulation, bond length constraints were applied 

to all hydrogen-containing bonds using the SHAKE algorithm [24]. The system was 

equilibrated for 1 ns with a time step of 1 fs. After this period, production dynamics 

were performed for 4 ns and data were collected every 500 fs. 

The PMF along the distance (ri) was calculated by using umbrella sampling simu­

lations [192, 41] and the WHAM method for unbiasing the data from multiple simula­

tions [42, 193, 41]. After a 1 ns period of the above equilibration, initial configurations 

for umbrella sampling were then generated in the presence of the restraint potentials. 

The PMF was calculated with a series of simulations in different windows; 49 windows 

centered at 0.5 A intervals from r\ = 6.0 - 30.0 A. For each window, the system was 

further equilibrated for 10 ps, followed by production for 90 ps with a time step of 

1 fs. The Langevin algorithm was employed to maintain constant temperature with 

the collision frequency 7 = 5 ps - 1 [222]. 
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To provide correct PMF results, the effect of the restraint potentials was unbiased 

using the WHAM approach. It should be noted that the data were unbiased only for 

the distance restraint potential, but not for angle or dihedral angle restraint poten­

tials. Since we are interested in the relative difference in rate constants between the 

unmodified and the mutant complexes, the resulting biased data do not affect the 

ultimate quantities of interest. 

5.4 Results 

In addition to the convergence of simulations mentioned in Section 5.2.4, equilibra­

tion is another important condition to be met. The system evolves from the starting 

configuration to reach equilibrium, and equilibrium should continue until the values 

of a set of monitored properties become stable [22]. Usually, the energy, tempera­

ture, pressure and the structural properties are used to monitor the progress of the 

equilibration. Thus, before we carry the analysis of the trajectories, we first assessed 

whether the system has reached equilibrium. Here, for each window, the r\ along the 

simulation time is used to assess equilibration. An illustration is given in Figure 5.5. 

Small fluctuations of r\ about the restrained distance for each window indicate that 

the system reaches equilibrium after ~2 ps and that the 10 ps of equilibration time 

used in our simulations is therefore sufficient. 

Next, the umbrella sampling technique requires that adjacent windows exhibit 

some overlap in the distributions of r\ in order to obtain the potential of mean force 

[41]. The distributions of some T\ values (the first 9 windows at r\ — 6.0 - 10 A) are 

shown in Figure 5.6 to illustrate this overlap. 

By unbiasing and recombining the results of all the different simulations (windows) 

using WHAM [42], the final PMF estimate, w(ri), was obtained. It is worth noting 

that the data were unbiased only for the distance restraint potential as stated in 

Section 5.3. The calculated PMFs for the unmodified complex and its mutants are 

plotted in Figure 5.7. We observed that the activation barrier is lower for the mutants 

because mutations exclude the possibility of the interactions between the protein and 
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40 

Figure 5.5: Equilibration trajectories for the ctGal [oA.be] (4-deoxyet:Man) mutant 
(each colour corresponds to a different window). 

ligand. This effect is due to the replacement of interacting functional groups on 

protein, or sugar, or both, by non-interacting substituents, thus lowering the affinity 

of the ligand for a protein. 

Table 5.1: The calculated and experimental dissociation rate constants for the un­
modified complex and its mutants at T = 300 K. 

complex 
unmodified complex 
His101HAla 
aGal[aAbe] (4-deoxyaMan) 
His101HAla-Q!Gal[Q;Abe](4-deoxyaMan) 

Kr (s-1) 
3.3 x 10-23 

1.0 x 10-17 

8.7 x 10~23 

8.6 x 10-16 

™exp \S ) 

4.6 x KT13 ± 14.4 x 10~13 

2.1 x 10"12 ± 4.3 x 10~12 

6.2 x 10-12 ± 11.8 x KT12 

5.7 x io-12±6.9x nr12 

The calculated (k?fT) and experimental (kexp) dissociation rate constants for the 

unmodified complex and its mutants at T = 300 K are provided in Table 5.1. Note 

that no minimum was found for the — ( —Jp- j function discussed in Section 5.2.2 in 

all the cases under study. A common dividing surface radius r* = 25 A was therefore 

chosen for all cases. This value is near the top of the barrier and corresponds to the 
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Figure 5.6: Distributions of T\ (the first 9 windows separated by 0.5 A for r\ = 6.0 
10 A , N = Number of occurrences) 

dissociated complex. The dissociation of the protein-ligand complex occurs faster for 

the mutants than the unmodified complex as expected. 

This big discrepancy between our preliminary computational results and experi­

mental rate constants could be attributed to the length of simulation and the choice of 

7"t. Longer simulation time, convergence studies and careful choice of r* are strongly 

encouraged for future investigations. 

5.5 Conclusions 

In summary, we have computed the potential of mean forces for the unmodified 

protein-ligand complex and its mutants in the gas phase at T = 300 K. Restraint 

potentials were employed in the calculation of the protein-ligand binding free energy 

to avoid convergence problems. Our study showed that the potential of mean force 

barrier is lowered (smaller free energy of activation) in the case of mutants. The 

dissociation rate constants were also calculated from the potentials of mean force 

by employing TST. The dissociation happens on a faster timescale for the mutants 
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Figure 5.7: Potential of mean force w(ri) plots of the unmodified complex and mu­
tants along a reaction coordinate rx at T = 300 K: the unmodified complex, black 
line; His101HAla mutant, red line; aGal[aAbe](4-deoxyaMan) mutant, green line; and 
His101HAla-Q!Gal[Q;Abe](4-deoxyQ;Man) mutant, blue line. 

and this can be explained by the removal of interactions between the protein and 

ligand through mutations. Further studies on computing potentials of mean force 

and calculating the rate constants for the unmodified complex and its mutants at 

different temperatures (400 and 500 K) are underway. The resulting dissociation 

rate constants will then be fitted to the Arrhenius relation in order to obtain pre-

exponential factors and activation energies. The dissociation kinetics and energetics 

computed theoretically will then be compared directly with available experimental 

data [162]. 
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Chapter 6 

Conclusions 

Molecular recognition plays a crucial role in a wide range of biological processes. The 

recognition of carbohydrates by proteins is a subject of major interest with many 

practical implications once the specifics of the molecular recognition process are un­

derstood. In order to understand carbohydrate recognition more fully, a deeper ap­

preciation of intermolecular interactions that govern the affinity and specificity of the 

carbohydrate-protein binding is required. Over many years, a great deal of informa­

tion about carbohydrate-protein binding has been obtained from both experimental 

and theoretical methods. The contributions of many researchers, including ours, have 

helped to draw a more detailed picture of the recognition process. 

In Chapter 1 we briefly reviewed experimental studies on protein-carbohydrate 

interactions. We also pointed out some of difficulties present in these experimental 

methods and offered computational approaches as a promising alternative means of 

investigating carbohydrate-protein recognition processes at a molecular level. In ad­

dition, we provided a description of MD simulations technique used for the studies 

presented in this thesis. Throughout this work, we focused on studies that aim to 

achieve a better understanding of carbohydrate-protein recognition at a microscopic 

level in terms of the structure and dynamics of carbohydrate-protein complexes by 

means of MD simulations. The investigations undertaken of this thesis can be cate­

gorized into two main aspects: (i) the development of tools and simulation protocols 

to contribute to the modelling of carbohydrates; (ii) the investigation of the factors 

affecting the nature of the intrinsic binding interactions between a protein and a 
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carbohydrate molecule. The main findings presented in this thesis are summarized 

below. 

In Chapter 2 we developed a new approach to model furanosides in solution. 

Due to the inherent flexibility of furanosides, the conformations they can adopt are 

diverse, and this makes their conformational analysis much more complicated than 

similar studies conducted on the more rigid pyranosides. We proposed a new charge 

derivation approach that accounts for the flexibility of these ring systems by taking 

an average of the charges from a large number of conformers. The first test of this 

approach was performed on the methyl-a-D-arabinofuranoside. It was shown that the 

model can predict conformational properties with good agreement with NMR exper­

imental data. From the knowledge of solution conformations of sugars, we proceeded 

to investigate the interactions between sugars and proteins as discussed below. 

We presented in Chapter 3 a detailed study of the intermolecular interactions 

of a charged protein-ligand complex in the gas phase. A single chain-variable do­

main fragment (scFv) of a carbohydrate-binding antibody and its native trisaccha-

ride aGal[aAbe]o;Man served as a model system. Simulations were carried out for the 

protonated (+8) and deprotonated (-8) ions of a complex in order to predict which 

specific interactions are preserved under the conditions of mass spectrometric exper­

iments. Intermolecular H-bonds were identified and gas-phase maps were generated 

for the complex. This was compared with the corresponding experimentally-derived 

maps. Most of the intermolecular interactions identified from our simulations of the 

protonated ion of the complex were also observed experimentally; the agreement was 

less favourable in the case of deprotonated ion. However, both the simulation and 

experimental results pointed to structural differences between the +8 and -8 ions. In 

addition, comparison of these gas-phase H-bond maps with the crystal structure of 

the complex provided a deeper understanding of the structural changes that accom­

pany the transfer of complexes from solution to the gas phase. First, at least two of 

the specific H-bonds are conserved upon transfer of the complex from solution to the 

gas phase. This is compelling evidence for the retention of specific interactions. In 

addition, newly created (nonspecific) interactions were identified. We also found that 
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the water-mediated H-bonds identified in the crystal structure are lost upon transfer 

of the complexes from solution to the gas phase and are replaced with direct H-bonds. 

To further our understanding of protein-ligand interactions we focused on the 

behaviour of "crystallographic" water molecules. In Chapter 4, as opposed to the 

previous work on equilibrium properties in the form of the identification of H-bonds 

in Chapter 3, we studied the temperature dependence of the dynamics of the three 

"crystallographic" water molecules present in a protein-ligand complex at +8 charge 

state. The computed water densities showed that the most buried water molecule 

remains localized. However, the other two become more and more delocalized as 

the temperature is increased up to 300 K, and finally they diffuse away from the 

binding site and interact with the surface of the protein at this temperature. The 

structural relaxation of H-bonds between water molecules and the complex was then 

investigated in terms of hydrogen bond lifetime dynamics to better understand the 

role of water molecules in protein-ligand binding. Generally, the H-bond lifetimes 

decrease as temperature increases. The structural relaxation of the H-bonds formed at 

high temperature is faster than that at low temperature. In addition, the observation 

of the two water molecules diffusing away from the binding site at high temperatures 

in the water densities is confirmed by their shorter H-bond lifetimes. 

Finally, in Chapter 5, we presented the results of the computation of the free 

energy profile along a protein-ligand complex dissociation coordinate. Potentials of 

mean force were calculated for the native complex and its mutants. The contribution 

of a specific protein-ligand interaction to the stability of the mutant complexes were 

understood in terms of changes in the potential of mean force barrier height. Our 

calculations showed that the potential of mean force barrier is lowered in the case of 

mutants. The mutant from double modification showed the lowest potential of mean 

force barrier. The dissociation rate constants were also obtained, and showed that the 

dissociation of the complex occurs faster for the mutants. The various possibilities of 

extending the present work is discussed in the final section of the chapter. 
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6.1 Contributions to Research Tools and Original 
Knowledge 

In this section, we provide our novel contributions to scientific knowledge and com­

putational methodologies. Our first accomplishment is the development of an ap­

proach to derive charges for furanose rings. Several models have been developed 

and implemented to perform simulation studies on carbohydrates [11, 12]. The most 

notable feature that distinguishes this new approach from the existing model is the 

incorporation of the inherent flexibility of the furanoside rings. Following the suc­

cessful implementation of this approach to model methyl-a-D-arabinofuranoside, this 

method was and is currently being used in the study of other commonly occurring 

furanoside monosaccharides (e.g. /?-D-arabinofuranoside and /3-D-galactofuranoside). 

The extension of this method also involves the study of more complex oligomeric and 

polymeric structures. 

Our investigation of the interactions between proteins and ligands adds to the 

existing multitude of reports on the exploration of systems comprised of proteins or 

protein complexes through computational simulations in tandem with experimental 

means. The specific combination of simulations in the gas-phase and mass spec-

trometric experiments however, represents a novel tool for probing directly the in­

teractions of protein-ligand systems. In particular, we have developed a simulation 

protocol to study oligosaccharides and their complexes with proteins in the gas phase. 

The methodology was applied to determine structural properties such as H-bond dis­

tances and angles, dynamical properties of H-bonds, energetic properties in the form 

of binding free energy, and kinetics of protein-ligand dissociation. The simulation 

results were compared with experimentally determined quantities to both rationalize 

experimental observations and act in a predictive capacity. Due to the computational 

nature of the developed method, it possesses an inherent ability to offer a broader pic­

ture than experimental techniques, which are often affected by practical limitations. 

For instance, the mass spectrometric tool used in investigating the protein-ligand 

complex relied on mutagenesis, a technique involving the mutation of interacting 
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sites. In practice, the mutation was sometimes observed to lead to a dissociation of 

the complex, thus restricting the scope of the experimental investigation. In contrast, 

our computational approach is unaffected by such problems. We are of course aware 

that any simulation approach is also limited, especially because of uncertainties in 

the models. 

In addition, a large portion of the work involved in this thesis has required the 

development of computer codes and analysis software. Computer software codes were 

designed and programmed,1 e.g. scripts for the calculation of H-bond lifetime corre­

lation functions and the reaction rate constants, and an automated input generators 

for umbrella sampling. 

6.2 Future Directions and Outlook 

In this last section of the thesis, we propose some possible future research avenues. 

6.2.1 Dissociation kinetics of a protein-ligand complex: Ar-
rhenius analysis 

In Chapter 5, we mentioned that theoretically determined dissociation kinetics and 

energetics could be directly compared to experiment via free energy calculations. 

Dissociation rate constants (k) for the unmodified complex and its mutants can be 

obtained from the calculated PMFs. Further studies on computing PMFs and rate 

constants for the unmodified complex (scFv-ojGal[aAbe]aMan) and its mutants at 

different temperatures (T = 400 and 500 K) are actually in progress. A series of 

additional mutants could be considered: a single amino acid modification of the pro­

tein (active site mutation: His101HAla, His34LAla, His35HAla, His97LAla, Asn96LAla); 

a single modification of the ligand (functional group modification: aGal[aAbe](4-

deoxyaMan), aGal[aAbe](6-deoxyaMan)); and simultaneous modification of the pro­

tein and the ligand (dual modification: His101HAla-aGal[aAbe](4-deoxyo;Man)). The 

resulting dissociation rate constants can be fitted to the Arrhenius relation. Arrhe-
1For the work in this thesis, over 5000 lines of code were written using python language. 
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nius plots are constructed from the computed temperature-dependent rate constants 

by plotting In k vs ^. This procedure is simply derived from the Arrhenius expression 

k = Aexp(^?-) where A is the so-called pre-exponential factor and Ea is the activa­

tion energy. By rearranging the above equation, a plot of In k vs. ^ has slope =j^L 

and intercept In A [204]. Thus, the calculated Ea and A will provide a direct com­

parison with available experimental data obtained from blackbody infrared radiative 

dissociation (BIRD) technique [162, 128, 151, 200]. 

6.2.2 Water evaporation 

As an extension of the study on the H-bond dynamics of "crystallographic" water 

molecules, we suggest free energy calculations of water-complex dissociation in the 

gas phase to calculate water evaporation rate constants. PMFs can be calculated 

for the dissociation of an individual water molecule from the complex along a chosen 

reaction coordinate at different temperatures. The distance between the center-of-

mass of a water molecule and one of the key amino acid residues or an hydroxyl group 

on the ligand in the binding site can be selected as a possible reaction coordinate. 

These PMF calculations would allow us to determine how long water molecules stay 

in the complex at a given temperature, i.e. the time scale of the water evaporation 

for an individual water molecule, by calculating evaporation rate constants using 

transition state theory. It would be interesting to compare the timescales of these 

water evaporation rates with the ones of the H-bond dynamical analysis of Chapter 

4. 

6.2.3 Dissociation kinetics of a protein-ligand complex in so­
lution 

The next class of systems we propose to study is protein-ligand complexes in solution. 

Potentials of mean force can be calculated for the dissociation of these systems. Com­

parison of the free energies of the complex in the gas phase with the ones in solution 

will provide new insights into the solvent effects that accompany the transfer of the 

complexes from solution to the gas phase. In our research group, the comparison 
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of the PMF for the dissociation of an hexasaccharide bound to an arabinan binding 

protein was calculated both in the gas phase and solution. Preliminary results are 

shown in Figure 6.1. This study shows that the PMF barrier is lowered when one 

goes from the gas phase to solution due to the stabilizing effects of the solvent [223]. 

With these kinds of solution simulations, one can also envisage the design of novel 

ligands or more potent inhibitors. 
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Figure 6.1: Potential of mean force of the protein-hexasaccharide complex along 
reaction coordinate r at T — 300 K in the gas phase and solution 
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