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spontaneous foundering of mature passive margins is an unlikely subduction-initiation
mechanism. Subduction is more likely to have entered the Iapetus from the boundary
with the external paleo-Pacific, similar to the incursion of the Scotia, Caribbean, and
Gibraltar arcs into the modern Atlantic. The subduction zone probably became
sinuous, entraining fragments of the Gondwanan margin along its complex sinistral
southern boundary where oblique collision caused Monian/Penobscottian deformation.
Following Taconian/Grampian collision of part of the subduction system with Laurentia,
remaining parts of the Iapetus were progressively infected with subduction, leading to
Silurian closure.

Response to Reviewers: In revising the paper I have addressed the comments of reviewer 1 (Chew) as follows. I
have included a short discussion of the South American Andean margin at lines 51-56,
referencing the Chew et al (2007) paper. The relationship of the Ordovician rocks to
the Amazonian craton is not at all well constrained; for all we know they could be
another allochthonous arc from the margins of our Sea of Exploits. There is not space
for an extended discussion of South America, but I have added one more reference
(Rapelini) to paleomagnetic work that indicates the level of uncertainty there.  To
address Chew's second point, I have adjusted Fig 2, and added phrasing (lines 96-98),
to indicate that the arc that invaded the Iapetus could have been initially narrow, like
the Caribbean.

I have kept both of these discussions succinct, as we are pressed for space,
particularly because the reference list, already long, was lengthened by the addition of
doi numbers. The addition of two more references to address Chew's comment
increases this pressure. Because referee 2 was particularly complimentary on the
literature cited, I have hesitated to remove any of the references to Paleozoic Iapetan
geology.  However, I have saved some space by removing one reference on early
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rifting between Amazonia and Laurentia, relying instead on "Hibbard et al. (2007) and
references therein". I also felt that a statement about long fracture zones in modern
oceans was general enough knowledge not to need reference support, enabling me to
remove one other reference. I have not added the Piper reference (rather tentatively
suggested by referee 2), as it is cited in Vizan et al, to which I added "and references
therein" which uses less space.

I have improved the labeling of Gondwanan elements in Fig. 2, as suggested by
referee Chew, and adjusted the extent of Avalonia in England as suggested by referee
2. To save a bit more space, I have also increased the overlap between the globes in
Fig. 2, and shaved a little off the top and bottom of both figures. This made it difficult to
accommodate the chronostratigraphic names requested by reviewer 2, but I have
incorporated these in the captions. As it stands, I calculate the revised manuscript to
be 4.0 pages.
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ABSTRACT 11 

Because subduction in the Iapetus Ocean began only ~35 Myr after the end of rifting, 12 

spontaneous foundering of mature passive margins is an unlikely subduction-initiation 13 

mechanism. Subduction is more likely to have entered the Iapetus from the boundary with the 14 

external paleo-Pacific, similar to the incursion of the Scotia, Caribbean, and Gibraltar arcs into 15 

the modern Atlantic. The subduction zone probably became sinuous, entraining fragments of the 16 

Gondwanan margin along its complex sinistral southern boundary where oblique collision 17 

caused Monian/Penobscottian deformation. Following Taconian/Grampian collision of part of 18 

the subduction system with Laurentia, remaining parts of the Iapetus were progressively infected 19 

with subduction, leading to Silurian closure. 20 

INTRODUCTION 21 

Subduction initiation remains a poorly understood part of the plate tectonic cycle 22 

(Gudmundsson, 2013). The early Paleozoic Iapetus Ocean provides insight by virtue of its short 23 
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lifespan, apparent simultaneous subduction on opposing margins (e.g., van Staal et al., 1998; 24 

Chew et al. 2007), and the final assembly of surrounding continents in an arrangement broadly 25 

similar to their initial configuration, matching the “introverted” model of Murphy and Nance 26 

(2003). Most models for the resulting Appalachian – Caledonide orogen (Fig. 1) assume 27 

subduction initiation along both the Laurentian and Gondwanan margins. We propose instead 28 

that deformation early in the history of the orogen resulted from a single sinuous subduction 29 

system analogous to the Scotia and Caribbean arcs in the modern Atlantic. 30 

RIFT HISTORY 31 

Most previous workers (e.g., Cawood et al., 2001; van Staal et al., 2012) agree that the 32 

Iapetus Ocean originated by 3-way rifting of Laurentia, Baltica, and Amazonia / West Africa 33 

(AWA). Based on ages of mafic dikes and lavas, rifting ranged from ~615–550 Ma, but there are 34 

indications of earlier rifting in some areas (summarized by Hibbard et al., 2007; Leslie et al., 35 

2008). Nonetheless, trace fossils from syn-rift rocks (Simpson and Sundberg, 1987; Williams et 36 

al., 1995) indicate rifting into at least the Terreneuvian. Smith and Rasmussen (2008) found 37 

consistent initiation of drift-phase subsidence from Newfoundland (NL) to Greenland at ~525 38 

Ma. Earliest drift-phase strata in Virginia (Simpson and Sundberg, 1987) are equated with the 39 

Fallotaspis biozone, ~518–520 Ma (timescale of Peng et al., 2012) and in west NL (Williams 40 

and Hiscott, 1987) with the Bonnia-Olenellus biozone, ~511–516 Ma. The drift phase of Iapetus 41 

expansion must have involved mid-ocean ridges that generated an initial ocean floor, none of 42 

which is preserved; ophiolitic rocks in the orogen represent supra-subduction environments 43 

(Swinden et al., 1997). 44 

Subsidence of the Laurentian passive margin continued until Taconian/Grampian 45 

deformation ~470 Ma. However, the Greenland segment was passive until Scandian deformation 46 
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~430 Ma (Smith and Rasmussen, 2008). Other margins of the Iapetus are less well known. The 47 

onset of drift in Baltica is placed at 608 Ma by Svenningsen (2001); contrasting portions of the 48 

margin succession are preserved in thrust sheets of the Scandinavian Caledonides, where the 49 

complex history of later convergence suggests the presence of offshore microcontinents 50 

(Roberts, 2003). On the western margin of Amazonia, Chew et al. (2007, and references therein) 51 

interpret an extended volcanic arc from Early Ordovician onward, preserved in inliers 52 

surrounded by younger rocks. However, the Andean margin of S. America has been strongly 53 

overprinted by late Paleozoic, Mesozoic and Cenozoic events, in some cases involving 54 

significant along-margin translation and rotation (e.g. Rapelini, 2005). Thus the original location 55 

of the early Paleozoic arc is poorly constrained.  56 

SUBDUCTION INITIATION 57 

The timing of subduction initiation is constrained by the oldest arc-related rocks. In NL, 58 

these include the peri-Laurentian Little Port Complex (505 +3/-2 Ma Jenner et al., 1991), and the 59 

~507 Ma Twillingate / Lush’s Bight succession, which were deformed and thrust over a 60 

continental fragment prior to dike intrusion at ~501–488 Ma (Swinden et al., 1997). Farther SE 61 

in NL, arc volcanic rocks (e.g., Tally Pond Group, 509 +/1 Ma; Rogers et al., 2006) are 62 

interpreted as peri-Gondwanan (Zagorevski et al., 2010). These arcs are at most ~35 Myr 63 

younger than the end of rifting. Thus the initial phase of drift, during which the Iapetus contained 64 

only extensional plate boundaries, was short-lived. 65 

Subduction has often been considered to initiate by spontaneous foundering of old 66 

oceanic lithosphere adjacent to a passive margin. Several lines of evidence suggest this is 67 

unlikely. First, although development of the Iapetus has been compared with the Atlantic since 68 

Wilson (1966), no passive margin formed since Pangea breakup has been converted to 69 
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subduction despite protracted cooling and local compressive stress (Heidbach et al., 2007). 70 

Second, subduction of Iapetus began soon after rifting, though passive margin conditions 71 

persisted much later locally. Third, early deformation of the Laurentian margin (e.g., Waldron 72 

and van Staal, 2001) resulted from collision with a pre-existing east-dipping subduction zone. 73 

Thus foundering of mature passive margins cannot explain subduction initiation in the Iapetus. 74 

Mueller and Phillips (1991) and Stern and Bloomer (1992) proposed an alternative 75 

explanation for subduction initiation, at fracture zones juxtaposing lithosphere of contrasting 76 

ages. However, the oceans formed in the breakup of Pangea contain several long fracture zones, 77 

none of which has been converted to subduction. This is therefore an unlikely explanation for 78 

spontaneous early subduction within the Iapetus. 79 

Nonetheless, conversion of an active transform fault between Pacific and Atlantic 80 

lithosphere is a proposed mechanism for subduction initiation in the Caribbean region (Pindell 81 

and Kennan, 2009). Alternatively, Caribbean subduction initiation may have involved 82 

encroachment of an oceanic plateau from the Pacific (e.g., Kerr and Tarney, 2005). Regardless of 83 

the cause, the development of the Caribbean Sea led to transfer of a substantial fragment of 84 

Pacific lithosphere into the Atlantic. Similar processes may have operated in the evolution of the 85 

Scotia plate (reviewed by Dalziel et al., 2013), and may be currently starting at the SW Iberian 86 

margin (Duarte et al., 2013). Plate motion of this type has also been invoked in the Canadian 87 

arctic by Colpron and Nelson (2009). Application of this model is also supported by geochemical 88 

data (Murphy et al., 2014) suggesting derivation of Iapetan ophiolites from mantle that 89 

underwent Proterozoic melt extraction, implying encroachment of old lithosphere into the young 90 

ocean. 91 
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We therefore propose that subduction in the Iapetus was initiated at a boundary between 92 

new and old oceanic lithosphere, between Baltica and AWA (shown schematically in Fig. 2), 93 

possibly inherited from a Neoproterozoic strike-slip system that bounded AWA (e.g., Murphy et 94 

al., 2009). The subduction zone is represented by the Notre Dame – Lough Nafooey Arc system 95 

in Canada and NW Europe (van Staal et al., 1998; Chew et al., 2010). Initially narrow, like the 96 

Caribbean Arc, it became more arcuate as rapid trench roll-back caused it to migrate into the 97 

young Iapetus (Fig. 2B, C). We propose that it progressively “infected” (Mueller and Phillips, 98 

1991) the Iapetus with subduction, eventually leading to ocean closure (Fig. 2E). Similar to the 99 

modern Caribbean, the plate boundary system caused transpression and transtension on adjacent 100 

continental margins, and incorporated fragments of these as a mosaic of terranes, while margins 101 

elsewhere in the ocean remained passive. 102 

IMPLICATIONS FOR CONVERGENCE AND COLLISION 103 

Paleogeographic Reconstructions 104 

In detail, models for Iapetus closure depend on the fate of microcontinental and arc 105 

fragments in the Appalachian-Caledonide orogen, where paleogeography has typically been 106 

interpreted from 2D cross-sections, and paleogeographic zones have been assumed to be 107 

generally continuous: i.e., cylindrical sensu Martínez-Catalán (1990). A cylindrical interpretation 108 

requires two subduction zones, simultaneously active, to explain coeval tectonism on opposing 109 

margins. Our proposed mechanism of subduction initiation implies a non-cylindrical evolution, 110 

in which convergent deformation developed from a single proliferating subduction system.  111 

Events on the Gondwanan Margin 112 

Terrane classifications (e.g., Hibbard et al., 2007) typically distinguish peri-Laurentian 113 

from peri-Gondwanan terranes, the latter including Ganderia and Avalonia (Fig. 1). Both these 114 
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domains are heterogeneous, but are believed to have originated along the northern margin of 115 

Neoproterozoic AWA (e.g., Murphy et al., 2004) although Barr et al. (2014) place them nearer 116 

Baltica. These terranes must have undergone westward translation, to bring them to their present 117 

positions. Carolinia (Fig. 1) may have had a similar history but is of uncertain provenance; in 118 

Fig. 2 we consider only northern Appalachian and Caledonide terranes. 119 

Late Cambrian to Early Ordovician deformation attributed to the Monian and 120 

Penobscottian orogenies (e.g., Neuman and Max, 1989) affected Avalonia and Ganderia. During 121 

this interval, E. and W. Avalonia show major changes in detrital zircon provenance (Pollock et 122 

al., 2009; Pothier, 2013), suggesting plate reorganization prior to their dispersal in the Iapetus. 123 

Subsequent arc and back-arc systems in Wales record intermittent subduction until early Katian 124 

(e.g., Thorpe et al., 1993). 125 

Ganderia displays more profound Monian/Penobscottian deformation. In NL, ophiolites 126 

were emplaced onto quartzose metaclastic successions interpreted as a Cambrian margin of 127 

Amazonia, in a “soft” collision between ~486 and ~474 Ma (Colman-Sadd et al., 1992). The 128 

Exploits back-arc basin opened during subsequent arc activity (Zagorevski et al., 2010). In New 129 

Brunswick (van Staal et al., 1991) and Maine (Neuman and Max, 1989) unconformities separate 130 

quartzose metasedimentary rocks from later arc successions. Comparable Cambrian metaclastic 131 

rocks in SE Ireland and NW Wales (Tietzsch-Tyler and Phillips, 1989) were deformed prior to 132 

Floian sedimentary cover, and juxtaposed with unmetamorphosed Cambrian successions along a 133 

pre-Floian boundary interpreted by Gibbons (1990) as sinistral and transpressional. 134 

We interpret all these events to have occurred along the north margin of AWA (Fig. 2C), 135 

at the southern transpressional boundary of the advancing Caribbean-style plate, analogous to 136 

Cenozoic deformation along the northern boundary of S. America. 137 
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Events on the Laurentian Margin 138 

Leading parts of the Notre Dame – Lough Nafooey arc collided with peri-Laurentian 139 

continental fragments early in the Taconian/Grampian orogeny, starting ~490 Ma (e.g., Waldron 140 

and van Staal, 2001; Chew et al., 2010). Macdonald et al. (2014) have recently identified a 141 

Gondwanan fragment in New England involved in this collision by ~475 Ma; its presence is 142 

much more easily explained by a scenario such as Figure 2D-E than by a cylindrical model. The 143 

arc-trench system, incorporating these deformed fragments, then collided with the main 144 

Laurentian margin from Scotland to NL starting ~470 Ma, whereas collision in New England 145 

was ~10 Myr later (Bradley, 1989). Subduction reversal probably progressed diachronously (van 146 

Staal et al., 1998) following arc collision, leading to westward subduction (Fig. 2E) beneath 147 

Laurentia from Late Ordovician onward (Zagorevski et al., 2009; Stone et al., 2012). 148 

Late Ordovician – Silurian Closing of the Iapetus Ocean 149 

East of the arc system was a complex region of back-arc basins and continental fragments 150 

similar to the modern Caribbean Sea, here termed the Sea of Exploits (Reusch et al., 2014). Peri-151 

Gondwanan fragments arrived at the Laurentian margin from Katian (Wilson et al., 2004; 152 

Waldron et al., 2012) to Wenlock (Waldron et al., 2014 and references therein). Their present-153 

day distribution requires clockwise rotation (Fig. 2C-E) relative to the likely arrangement on the 154 

AWA margin (Pothier, 2013), possibly due to eastward drift of Laurentia; Vizan et al. (2003, and 155 

references therein) noted that paleomagnetic data from Britain are compatible with large vertical-156 

axis rotations. 157 

The complex transpressional zones bounding the Sea of Exploits to the N. and S. were 158 

probably progressively converted to subduction; roll-back allowed them to extend into the 159 

remaining parts of the Iapetus, “infecting” it with subduction, and enlarging the Sea of Exploits 160 
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at the expense of original Iapetan ocean floor (Fig. 2E). At the N. boundary, Avalonia collided 161 

with Baltica in dextral transpression during the Late Ordovician along the “Tornquist” line (e.g., 162 

Torsvik and Rehnstrom, 2003) 163 

Peri-Laurentian fragments in the Uppermost Allochthon of the Scandinavian Caledonides 164 

show Ordovician thrusting and arc development (e.g., Roberts et al., 2007), comparable to the 165 

Canadian Appalachians, but contrast with the Greenland Caledonides, where a passive margin 166 

survived into the Silurian (Smith and Rasmussen, 2008). We infer that these fragments were 167 

transported northward following arc collision, to be emplaced onto Baltica in the Silurian. 168 

CONCLUSIONS 169 

Most models for the evolution of the Iapetus assume subduction initiation by foundering 170 

of passive margins on opposite sides of the ocean. In contrast, we suggest incursion of a single 171 

highly curved plate boundary system, analogous to the Caribbean, Scotia and Gibraltar arcs in 172 

the Atlantic. Behind the advancing arcs, a mosaic of back-arc basins and continental fragments 173 

was translated westward. The “infection” of the Iapetus with subduction may explain: early 174 

transition from opening to closing; simultaneous deformation on the Laurentian and Gondwanan 175 

margins; and the complex collage of terranes in the central Appalachian-Caledonide orogen, 176 

many of which were deformed well before Silurian closure. By analogy, the future of the 177 

Atlantic may involve subduction propagating from invading arcs, leading to eventual collision 178 

and orogenesis. 179 
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 372 

Figure 1. Map of the Appalachian-Caledonide orogen modified from Hibbard et al. (2007) and 373 

van Staal et al. (1998) 374 

Figure 2. Schematic model for the incursion of a Caribbean-style plate into the Iapetus, showing 375 

possible terrane locations and collisions at five time intervals. Colours as Fig. 1. Cambrian 376 

positions of main continents based on Murphy et al. (2004); later history based on Domeier and 377 

Torsvik (2014). Dotted lines conjectural. (a) Conclusion of rifting (Terreneuvian); (b) Cambrian 378 

(Epoch 3) incursion of subduction into the Iapetan realm; (c) Latest Cambrian to Early 379 

Ordovician Monian/Penobscottian and early Taconian collisions involving peri-Laurentian and 380 

peri-Gondwanan terranes; (d) Floian-Dapingian Taconian/Grampian collision; (e) Katian; dashed 381 

lines schematically represent future migration of subduction zones. 382 
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