
Learning with Artificial Neural Networks

by

Shangtong Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c© Shangtong Zhang, 2018

Abstract

In this thesis, we make two contributions in learning with artificial neural

networks. Artificial neural networks have made great success in various chal-

lenging domains.

Our first contribution is a new technique named cross-propagation that

does cross-validation online. In cross-validation, hold-out training data (i.e.,

validation set) is used to tune hyper-parameters (e.g., step size) of an algo-

rithm. The key idea of cross-propagation is to use the newly coming training

example as a hold-out validation set to update parameters (e.g., weights of a

neural network) of an algorithm. We propose three cross-propagation-based

algorithms to train neural networks and show the advantage of the three al-

gorithms empirically in both online and off-line setting.

Our second contribution is a systematic evaluation of experience replay,

a method that is commonly used in modern deep reinforcement learning sys-

tems to stabilize the training of neural networks. Experience replay involves

storing transitions into a memory and training the agent with sampled tran-

sitions from the memory. In this thesis, we rethink the utility of experience

replay. It introduces a new hyper-parameter, the memory size, which is a

task-dependent hyper-parameter. We further propose a simple new experi-

ence replay method which requires only little extra computation and made

the reinforcement learning system more robust to the selection of the memory

size compared with the original experience replay.

ii

Preface

A version of Chapter 3 has been accepted for publication and presentation as

Vievek Veeriah, Shangtong Zhang, & Richard S. Sutton, Crossprop: Learning

Representations by Stochastic Meta-Gradient Descent in Neural Networks.

In Proceedings of the Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pp. 445-459. Vivek Veeriah and I con-

tributed equally to this work. To be more specific, we developed the cross-

propagation algorithm, designed and performed experiments, and wrote the

paper together. Richard was the supervisory author and provided insights and

feedbacks. The Chapter 3 of this thesis is solely based on my writing.

A version of Chapter 4 has been accepted for presentation as a poster as

Shangtong Zhang & Richard S. Sutton, A Deeper Look at Experience Replay.

In Deep Reinforcement Learning Symposium at the Conference on Neural

Information Processing Systems (NIPS). Long Beach, U.S., 2017. I designed

experiments and wrote the paper. Richard was the supervisory author and

provided insights and feedbacks. The Chapter 4 of this thesis is solely based

on my writing.

iii

To Mom and Dad

iv

Were it to benefit my country I would lay down my life;

What then is risk to me?

– Zemin Jiang, Chinese President, 2009.

v

Acknowledgements

I would like to thank first my advisor Richard S. Sutton, whose supervision is

the most valuable treasure I got in the past two years, introducing me to the

fantastic world of reinforcement learning. The most important thing I learned

is to have a scientific attitude to problems and be clear about what you are

saying.

Further, I would like to thank Vivek Veeriah, who helped me a lot when

I was a beginner in research in my first year of graduate study and gave me

many useful suggestions when I wrote this thesis. I would also like to thank

Kris De Asis, who helped me a lot in my writing, gave insightful feedback

on my ideas and taught me to play Rubik’s cube. I am also thankful for Yi

Wan, Prof Osmar R. Zaiane, Eric Graves, Janey Yu and Tian Tian for their

thoughtful discussion and kindly help along the way. I would also like to thank

all the members in the RLAI lab for their help during the past two years.

Last but not least, I would like to thank my girlfriend, Yijia Yu, for her

company and support during the writing of this thesis.

vi

Contents

1 Learning with Artificial Neural Networks 1

1.1 Importance of Artificial Neural Networks 1

1.2 Online Cross-validation . 2

1.3 An Evaluation of Experience Replay 3

1.4 Outline . 4

2 Background and Related Work 5

2.1 An Example of Back-propagation 5

2.2 Over-fitting in Neural Networks 8

2.3 Elements of Reinforcement Learning 11

2.4 Value Functions . 12

2.5 Q-Learning . 14

2.6 Experience Replay . 16

2.7 Linear Function Approximation with Tile Coding 17

2.8 Nonlinear Function Approximation with Networks 19

2.9 Gradient-based Hyper-parameter Optimization 21

3 The Cross-propagation Algorithms 25

3.1 Towards Learning Features Stably 25

3.2 Derivation of the Cross-propagation Algorithms 27

3.3 Experimental Results . 36

3.3.1 Experiment 1: Online Learning of Related Tasks 39

vii

3.3.2 Experiment 2: Off-line Supervised Learning 44

3.4 Weakness of the Cross-propagation Algorithms 47

4 Evaluation of Experience Replay 49

4.1 Open Questions . 49

4.2 Combined Experience Replay 50

4.3 Evaluation Setup . 51

4.4 Experiment 1: Tabular Function Representation 58

4.5 Experiment 2: Linear Function Approximation 60

4.6 Experiment 3: Nonlinear Function Approximation 60

4.7 There Is No Universal Rule to Set the Memory Size 64

5 Conclusions and Extensions 69

5.1 Cross-propagation Is A Promising Technique 69

5.2 The Memory Size Is A New Trouble 70

5.3 More Combinations of Cross-propagation and Neural Networks 70

5.4 Cross-propagation in Reinforcement Learning 71

References 73

viii

List of Tables

3.1 Performance gap between cross-propagation and back-propagation

in the GEOFF task . 47

ix

List of Figures

2.1 The classical reinforcement learning setting 11

3.1 A network fragment to elaborate the issue with back-propagation 26

3.2 The learning curves of cross-propagation and back-propagation

for the online GEOFF task . 43

3.3 The learning curves of cross-propagation and back-propagation

for the online MNIST task . 45

4.1 Testbeds for experience replay 57

4.2 Learning curves of agents with tabular function representation

in the grid world . 61

4.3 Learning curves of agents with linear function representation in

the grid world . 62

4.4 Learning curves of agents with nonlinear function representation

in the grid world . 65

4.5 Learning curves of agents with nonlinear function representation

in Lunar Lander . 66

4.6 Learning curves of agents with nonlinear function representation

in Pong . 67

x

Chapter 1

Learning with Artificial Neural

Networks

This chapter serves as a brief introduction to the thesis. We first present

the importance of neural networks, after which we make two contributions in

learning with neural networks. Then we show the outline of the rest of this

thesis.

1.1 Importance of Artificial Neural Networks

In machine learning, features are usually used as a proxy of raw inputs to feed

a learning algorithm. Manually designing those features for each algorithm

was the norm and has enjoyed great success. However, hard-coded features

are usually task-dependent and cannot easily scale to large problems. To ease

human beings from designing complicated features for each task and each al-

gorithm, neural networks (McCulloch & Pitts ,1943) are used for automatic

feature representation learning. Recently, neural networks are shown to be

able to handle pretty large and hard problems. And learning feature represen-

tations with neural networks in an end-to-end system has enjoyed great success

in various challenging domains, for example, defending top human players in

the Go game (Silver et al., 2016), outperforming human control in various

Atari games (Hessel et al., 2017), classifying or recognizing objects from nat-

1

ural scene images (He, Gkioxari, Dollar, & Girshick, 2017), and automatically

translating text and speeches (Vaswani et al., 2017).

The algorithm to train neural networks behind the great success is stochas-

tic gradient descent. Back-propagation (Rumelhart, Hinton, & Williams,

1985) is an efficient way to implement stochastic gradient descent for neu-

ral networks. In this thesis, we use the term back-propagation to refer to a

family of algorithms that minimize the current training error via stochastic

gradient descent w.r.t. the current weights of a network, where this training

error flows backwards through the network layer by layer according to the

chain rule.

1.2 Online Cross-validation

Our first contribution is a new technique named cross-propagation that does

cross-validation online to update parameters of an algorithm. We propose

three cross-propagation-based algorithms to train neural networks and show

the merits of the three algorithms empirically in both online and off-line learn-

ing.

Cross-validation is a common method in off-line supervised learning to tune

hyper-parameters (e.g., step size) of a learning system. In cross-validation,

training data is divided into several folds. Some folds are used to train the

learning system, and the remaining folds (aka validation set) are used to mea-

sure the performance. The error of the learning system on the validation

set is a generalization error, which measures how well the learning system

can generalize what it has learned from training examples to unseen exam-

ples. Hyper-parameters are adjusted according to this generalization error

to avoid over-fitting, a phenomenon that a learning system performs well in

training examples but fails the unseen examples. In cross-propagation, we do

cross-validation online by treating each newly coming training example as a

2

validation set. And the error on this new training example is interpreted as

a generalization error, instead of a training error like back-propagation. We

update the current parameters of the learning system via measuring how the

parameters at all time steps influence this generalization error.

We propose three cross-propagation-based algorithms to train a single hid-

den layer network. The three algorithms compute the gradients of the gener-

alization error w.r.t. the weights of the network at all time steps. In contrast,

back-propagation computes the gradients of the training error w.r.t. the cur-

rent weights. We show the merits of the three algorithms empirically in both

online learning of related tasks and off-line supervised learning.

1.3 An Evaluation of Experience Replay

Our second contribution is a systematic evaluation of experience replay. We

rethink the utility of experience replay. It introduces a new task-dependent

hyper-parameter, the memory size, which needs careful tuning.

Modern deep reinforcement learning (RL) systems usually use neural net-

works for function approximation. One common problem introduced by a

neural network function approximator is that when the network is trained on

recent transitions, it tends to forget what it has learned from earlier transi-

tions. When the neural network experiences previous states again, it fails to

produce accurate control or prediction. One possible approach to this issue is

to remind the network of earlier transitions frequently. This is what experience

replay does. In a learning system with experience replay, the current transi-

tion is stored into a memory with a predefined size. And some transitions are

sampled from the memory to train the agent. In this thesis, we show that the

memory size is a task-dependent hyper-parameter, which needs careful tuning.

An improper memory size (e.g., too small or too large) leads to a significant

performance drop. However, the defect of a large memory is now hidden by

3

the complexity of modern deep RL systems, and to our best knowledge, no

previous work has pointed this out.

Furthermore, we propose a simple new experience replay method, where we

train the agent with not only the sampled transitions but also the transition at

the current time step. We name this new method combined experience replay

(CER). CER only requires little extra computation while making the learning

system more robust to the selection of the memory size compared with the

original experience replay.

1.4 Outline

Here we present a brief outline of the rest of this thesis. In Chapter 2, we

present some basics of reinforcement learning and neural networks. These

basics are necessary to explain our contributions in the following chapters.

In Chapter 3, we elaborate our first contribution by showing the derivation

of the cross-propagation-based algorithms and some experimental results in

both online setting and off-line setting. In Chapter 4, we elaborate our second

contribution. We present our evaluation results of the original experience

replay and our proposed combined experience replay. Lastly, in Chapter 5, we

present some possible directions for future research.

4

Chapter 2

Background and Related Work

This chapter introduces some basics which are necessary to understand the

contributions of this thesis. We start with basics about neural networks, after

which we talk about core concepts of reinforcement learning. Finally, we dis-

cuss some hyper-parameter optimization techniques, which are related to our

contribution.

2.1 An Example of Back-propagation

In this section we present the derivation of back-propagation algorithms for a

single hidden layer network in online setting. We start with a scalar regression

task. At time step t, the agent receives an observation xt ∈ R
n, the agent

tries to predict the target value y∗t ∈ R. The prediction yt is computed by a

learnable function f : Rn → R,

yt = f(xt)

We compute the current loss lt as the squared error,

lt
.
= l(yt, y

∗

t)
.
=

1

2
(yt − y

∗

t)
2

We parameterize f as a single hidden layer network which consists ofm hidden

units, the incoming weight matrixU ∈ R
n×m and the outgoing weightw ∈ R

m.

For notational simplicity, we do not treat bias units separately throughout this

5

thesis. Instead, we assume bias units are included in U and w. In the rest

of this thesis, we use wj to denote the element indexed by j in w and uij

to denote the element indexed by (i, j) in U. And we use g to denote the

nonlinear function over the hidden units. The prediction at time step t is

yt =
m
∑

j=1

φj,twj,t

where φj,t is the j-th feature in the hidden layer, in other words,

φj,t = g(
n

∑

i=1

xi,tuij,t) (2.1)

where xi,t is the i-the element in xt. In the rest of this thesis, we use ψj,t to

denote
∑n

i=1
xi,tuij,t.

Back-propagation computes the update of wj,t as

∂lt
∂wj,t

= δt
∂yt
∂wj,t

= δt
∂φj,twj,t
∂wj,t

= δtφj,t

(2.2)

where δt = yt − y
∗

t . So we have

wj,t+1

.
= wj,t − αδtφj,t (2.3)

The update of uij,t is

∂lt
∂uij,t

= δt
∂lt
∂φj,t

∂φj,t
∂uij,t

= δtwj,t
∂φj,t
∂ψj,t

xi,t

(2.4)

So we have

uij,t+1

.
= uij,t − αδtwj,txi,t

∂φj,t
∂ψj,t

(2.5)

Note that once the nonlinearity g is determined,
∂φj,t
∂ψj,t

is in a closed form. For

instance, if a sigmoid function is used, in other words,

φj,t =
1

1 + eψj,t

6

then

∂φj,t
∂ψj,t

= (1− φj,t)φj,t

If a tanh function is used, in other words,

φj,t =
e2ψj,t − 1

e2ψj,t + 1

then

∂φj,t
∂ψj,t

= 1− φ2

j,t

If a rectified linear function is used, in other words,

φj,t = ψj,tIψj,t>0

then

∂φj,t
∂ψj,t

= Iφj,t>0

where IS is an indicator function, it is valued 1 if the statement S is true oth-

erwise 0. To summarize, Equations (2.3) and (2.5) form the back-propagation

algorithm for the single hidden layer network in the online scalar regression

task. In this thesis, we name this algorithm Reg-BP.

Now we consider a classification task of d classes. At time step t, the agent

receives an observation xt ∈ R
n. The agent tires to predict the target label

p∗

t ∈ {0, 1}
d, where p∗

t is a one-hot vector of length d encoding a class label.

We use xi,t and p
∗

i,t to denote the i-th element of xt and p∗

t respectively. The

prediction pt ∈ [0, 1]d is a probability distribution of the d class labels and is

computed via a learnable function f : Rn → [0, 1]d. We use the cross-entropy

loss to measure the prediction error lt at time step t,

lt
.
= l(pt,p

∗

t)
.
= −

d
∑

k=1

p∗k,t log pk,t

We parameterize the learnable function f as a neural network, which consists

of m hidden units, the incoming weight matrix U ∈ R
n×m, and the outgoing

7

weight matrix W ∈ R
m×d. We apply a nonlinear function g over the hidden

units and a softmax operation over the output units. The prediction at time

step t is

pt = softmax(yt)

in other words,

pk,t =
eyk,t

∑d

j=1
eyj,t

where

yk,t =
m
∑

j=1

φj,twjk,t

where φj,t is the j-th feature in the hidden layer as defined before. Note we

have

∂pk,t
∂yj,t

= pk,t(Ij=k − pj,t) (2.6)

and

δk,t
.
=

∂lt
∂yk,t

= pk,t − p
∗

k,t (2.7)

The back-propagation algorithm, referred to as Cls-BP in this thesis, for the

single hidden layer network in this classification task is

wjk,t+1

.
= wjk,t − αδk,tφj,t (2.8)

uij,t+1

.
= uij,t − αxi,t

∂φj,t
∂ψj,t

d
∑

k=1

δk,twjk,t (2.9)

2.2 Over-fitting in Neural Networks

Under certain circumstance, a neural network may reach a reasonable per-

formance level on training data but still perform poorly on unseen examples.

This phenomenon is usually referred to as over-fitting.

In typical off-line supervised learning, a neural network is trained on train-

ing data with multiple sweeps. We expect the neural network to generalize

8

the knowledge learned from the training data to unseen test examples. How-

ever, sometimes a neural network may only memorize the training data rather

than learn from the training data and perform poorly on unseen test exam-

ples. Intuitively, if a neural network is complicated enough, memorizing all the

training data may be easier compared with learning knowledge from the train-

ing data. Then over-fitting is likely to happen. If a neural network is simple,

however, it is impossible to memorize all the training data. So the training

algorithm (e.g., stochastic gradient descent) forces the neural network to learn

some knowledge from the data to minimize the training loss, and the network

is likely to generalize well to unseen data. In practice, a complicated neural

network (e.g., a neural network with many layers) usually requires more data

to avoid over-fitting than a simple neural network.

Although increasing training examples is an effective approach to address

over-fitting, in many tasks, especially supervised learning, it is impractical

as obtaining labelled data tends to be expensive. To approach over-fitting

without increasing training data, many regularization methods are proposed,

where prior knowledge is introduced to constrict the distribution of the weights

of a network. The most commonly used regularization methods are ridge

regularization (Hoerl & Kennard, 1970) and lasso regularization (Tibshirani,

1996), where an extra penalty is added to the original loss based on the L2

norm and L1 norm of the parameters respectively. Although these methods can

improve generalization and reduce variance, they often introduce extra bias.

So there is a bias-variance trade-off. There are also techniques during the

training time to avoid over-fitting. Dropout (Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014) is a commonly used technique and has

gained great success. When training a neural network with dropout, some

units are randomly disabled at each forward pass. A possible hypothesis is that

dropout increases the sparsity of the weights and implements model ensemble

9

implicitly. Besides dropout, some nonlinear activation functions are also be

able to increase the sparsity of the weights, for example, Rectified Linear Unit

(ReLU, Nair & Hinton, 2010).

The cross-validation technique is also used to avoid over-fitting in off-line

supervised learning. The training data is divided into several folds. Some

random folds are selected to form a training set, and the remaining folds

are used as a validation set. Hyper-parameters of an algorithm are tuned

according to the performance of the algorithm on the validation set. Although

cross-validation has enjoyed great success in off-line learning, it is still not

clear how to apply cross-validation in online learning.

Catastrophic forgetting refers to the phenomena that a neural network

does perform well on new examples after training on old examples, but fails to

preserve the knowledge learned from old examples. So the network performs

poorly when it experiences old examples again. Catastrophic forgetting is also

another form of over-fitting. A neural network over-fits new examples and

forgets what it has learned from old examples.

There are various methods to address catastrophic forgetting. Kirkpatrick

et al. (2017) introduced extra loss based on the difference between the current

weights and the optimal weights for old tasks to preserve the learned knowledge

from old tasks. Li & Hoiem (2017) proposed joint training of old tasks and

new tasks. Shin, Lee, Kim, & Kim (2017) exploited Generative Adversarial

Nets (GAN, Goodfellow et al., 2014) to generate similar data to old tasks

when training a neural network on new tasks. Despite the success of those

methods on specific domains, there is still no universal framework to address

catastrophic forgetting.

10

dynamics of an MDP. The discount factor γ determines how the agent trades

off between short-term rewards and long-term rewards.

At time step t, the agent is at state St ∈ S, it takes an action At ∈

A according to its policy π : A × S → [0, 1], which defines a probability

distribution over the action space A at state St,

π(a | s)
.
= Pr{At = a | St = s}

The environment then leads the agent to a new state St+1 according to p(· |

St, At) and gives a reward signal Rt+1. The goal for an agent is to maximize

the return, which is defined to be the sum of the discounted future rewards.

We use Gt to denote the return at time step t,

Gt
.
=

T
∑

i=t+1

γi−t−1Ri

where T is the time step that the episode ends. We can see here if γ is 0, the

agent only cares the immediate reward. However, if γ is 1, the agent treats all

the future rewards with same importance.

In a reinforcement learning problem, the state transition function p and

the reward function r are usually unknown to the agent. The agent has to

learn its policy from interactions with the environment, in other words, the

agent has to adjust the policy according to the reward signal.

2.4 Value Functions

In reinforcement learning, we have state value function and action value func-

tion. State value function describes the utility of a state. The most powerful

method to learn state value function is the Temporal-Difference methods (TD,

Sutton, 1988). The fundamental idea of TD methods is bootstrapping. We

learn the utility of a state based on our estimation of the utility of its successor.

12

We use vπ to denote the state value function under policy π. The state

value function vπ is defined to be the expected discounted return starting from

state s following policy π,

vπ(s)
.
= Eπ

[

T
∑

i=t+1

γi−t−1Ri | St = s

]

The value function vπ satisfies the Bellman equation (Bellman, 2013),

vπ(s) =
∑

a

π(a|s)
∑

s′

p(s′|s, a)
(

r(s, a) + γvπ(s
′)
)

We use V to denote our estimation of the state value function vπ. Following

the simplest TD method, 1-step TD(0), we update our estimation of the value

of St as

V (St)← V (St) + α
(

Rt+1 + γV (St+1)− V (St)
)

where α is a step size. Here Rt+1+γV (St+1) is our estimation of Gt. We learn

our estimation of vπ(St) from another estimation of Gt. This is the key idea

of TD learning.

Similar to state value function, we use action value function qπ(s, a) to

measures the utility of an action a at state s,

qπ(s, a)
.
= Eπ

[

T
∑

i=t+1

γi−t−1Ri | St = s, At = a

]

The two value functions, vπ and qπ, are connected via the policy π,

vπ(s) =
∑

a

π(a|s)qπ(s, a)

We also have the Bellman equation for the action value function qπ,

qπ(s, a) =
∑

s′

p(s′|s, a)
(

r(s, a) + γ
∑

a′

π(a′|s′)qπ(s
′, a′)

)

We use Q to denote our estimation of the action value function qπ. Similar

to TD methods, we have 1-step SARSA(0) (Rummery & Niranjan, 1994) to

learn the Q function,

Q(St, At)← Q(St, At) + α
(

Rt+1 + γQ(St+1, At+1)−Q(St, At)
)

13

With tabular function representation, TD methods converge to the optimal

state value function v∗, which is defined as

v∗(s)
.
= max

π
vπ(s)

SARSA methods converge to the optimal action value function q∗(s, a), which

is defined as

q∗(s, a)
.
= max

π
qπ(s, a)

We have corresponding Bellman optimality equation (Bellman, 2013),

v∗(s) = max
a

∑

s′

p(s′|s, a)
(

r(s, a) + γv∗(s
′)
)

q∗(s, a) =
∑

s′

p(s′|s, a)
(

r(s, a) + γmax
a′

q∗(s
′, a′)

)

And the optimal state value function is related to the optimal state action

value function as

v∗(s) = max
a
q∗(s, a)

The two different value functions usually serve different purposes. Action

value function is usually used for control, as it describes which action is better

directly by giving the utility of that action. However, it is often difficult to

use state value function for control, as to determine the utility of an action

via the state value function, the agent has to know the dynamics (i.e., p and

r) of the environment. Having access to the dynamics is often impractical in

typical reinforcement learning problems. In general, state value function often

serves policy evaluation, a setting where we want to know how good a policy

is.

2.5 Q-Learning

The TD methods and SARSA methods are both on-policy methods, where

the behavior policy and the target policy are the same. Here we use the term

14

behavior policy to denote the policy that the agent is following when it chooses

actions, while the term target policy refers to the policy that the agent wants

to learn. In general, we use π to denote the target policy and µ to indicate

the behavior policy.

It is common the case that the target policy is different from the behavior

policy, where we need off-policy methods. Q-learning (Watkins, 1989) is a

commonly used off-policy algorithm. Q-learning updates our estimation Q as

Q(St)← Q(St) + α
(

Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)

)

(2.10)

The learned estimationQ always converges to the optimal action value function

q∗ in tabular case, independent with the behavior policy that is being followed

by the agent. In practice, a ε-greedy policy is often used as a behavior policy.

The agent takes a random action with probability ε and takes a greedy action

w.r.t. to the current action value with probability 1 − ε. This algorithm is

elaborated in Algorithm 1.

Algorithm 1: Q-learning with with ε-greedy exploration.

Initialize the action value function Q
while not converged do

Initialize S
while S is not terminal do

Choose A from S using the policy derived from Q (ε-greedy)
Take action A, observe S ′ and R
Q(S,A)← Q(S,A) + α

(

R + γmaxaQ(S
′, a)−Q(S,A)

)

S ← S ′

end

end

The difference between Q-learning and SARSA is elaborated in the Cliff

Grid World example (Sutton & Barto, 1998), where the Q-learning agent

learned the optimal policy, while the SARSA agent learned the safe policy.

Q-learning is the simplest importance-sampling-free off-policy method. It is

an instance of off-policy expected SARSA (Van Seijen, Van Hasselt, White-

15

son, & Wiering, 2009), which is a special case of the Tree Backup algorithm

(Precup, Sutton, & Singh, 2000). There are also various importance sampling

based off-policy methods, which are out of the scope of this thesis.

2.6 Experience Replay

Experience replay was first introduced by Lin (1992) and then adapted by

Mnih et al. (2015). The key idea of experience replay is to train an agent

with previously experienced transitions. Lin (1992) used experience replay

in off-line training. After an episode ends, the trajectory of this episode is

stored into a memory, and several trajectories are sampled from the memory

under certain sampling strategy to train the agent. Mnih et al. (2015) used

experience replay in online learning. At each time step, the current transition

St, At → Rt+1, St+1 is stored into a memory (named replay buffer) with a pre-

defined size as an entry. If the memory is full, the oldest entry will be removed.

Some transitions are then sampled uniformly from the memory to train the

agent. It is important to note that the current transition is not used for training

the agent immediately. Algorithm 2 shows the skeleton of the experience replay

proposed by Mnih et al. (2015). This experience replay method for online

learning is then further used in Deep Deterministic Policy Gradient (DDPG,

Lillicrap et al., 2015) and off-policy actor-critic methods (ACER, Wang et al.,

2016). In the rest of this thesis, we use the term experience replay to denote

the exact experience replay method used by Mnih et al. (2015). We may also

refer to this experience replay method as the original experience replay when

we need to distinguish it from our proposed new experience replay method.

Instead of a uniform sampling policy, prioritized sampling is another com-

mon strategy (Schaul, Quan, Antonoglou, & Silver, 2015). To be more specific,

each transition stored in the memory is associated with a priority. The prior-

itized experience replay (PER) then computes a probability distribution over

16

all the stored transitions based on the priorities. This probability distribution

is used to sample transitions from the memory. There are various methods to

determine the priority of a transition. The most successful one is to use the

TD error of a transition as the priority. The intuition is that the TD error

describes how ‘surprising’ a transition is. Schaul et al. (2015) also proposed to

set the priority of the current transition to the maximal priority value of all

the transitions in the memory to increase its opportunity to be replayed. PER

significantly speeds up learning compared with the original experience replay.

However, PER always introduces some complicated data structures (e.g., a

sum-tree), and the required extra computation has a logarithmic growth with

the increase of the memory size.

Algorithm 2: The experience replay framework.

Initialize the replay buffer
while not converged do

for each time step in the episode do. . .
Store the current transition (S,A,R, S ′) into the memory
. . .
Sample a batch of transitions uniformly from the memory
Train the agent with the sampled transitions
. . .

end

end

2.7 Linear Function Approximation with Tile

Coding

The method to represent a value function in a parameterized function form

is named function approximation (Sutton, 1996). The simplest function ap-

proximation method is linear function approximation, where value function

is represented by a linear combination of the features of a state. Formally

17

speaking, a value function is parameterized by a vector w ∈ R
d. And we use

v̂(s,w)
.
= wTx(s)

and

q̂(s, a,w)
.
= wTx(s, a)

to represent our approximation of the true state value function vπ(s) and the

true state action value function qπ(s, a). Here we abuse the symbol x to denote

the feature vector of both a state s and a state action pair (s, a). To be more

specific, x(s)
.
=

(

x1(s), . . . , xd(s)
)T

where xi : S → R is a feature function for

the state s, and x(s, a)
.
=

(

x1(s, a), . . . , xd(s, a)
)T

where xi : S × A → R is

a feature function for the state action pair (s, a). wTx represents the inner

product of the two vector w and x, in other words, wTx
.
=

∑d

i=1
wixi.

Similar to TD methods in tabular case, we have semi-gradient TD methods

(Sutton & Barto, 2018) for function approximation. Particularly for linear

function approximation, we update the weight vector w as

wt+1

.
= wt + α

(

Rt+1 + γwT

t x(St+1)−wT

t x(St)
)

x(St)

For linear semi-gradient SARSA, we have

wt+1

.
= wt + α

(

Rt+1 + γwT

t x(St+1, At+1)−wT

t x(St, At)
)

x(St, At)

And for linear semi-gradient Q-learning, we have

wt+1

.
= wt + α

(

Rt+1 + γmax
a

wT

t x(St+1, a)−wT

t x(St, At)
)

x(St, At)

There are various methods to build a feature function, for example, poly-

nomial basis, Fourier basis (Konidaris, Osentoski, & Thomas, 2011) and coarse

coding (Hinton, McClelland, & Rumelhart, 1986). The most powerful one is

tile coding, which is a special case of coarse coding and is designed for multi-

dimensional continuous state space (e.g., Rd). In tile coding, the whole state

18

space is partitioned into many groups. We usually use many different par-

tition strategies, resulting in many partitions. Each such partition is called

a tiling. Each group in a tiling (partition) is named a tile. In practice, we

usually use multiple overlapped tilings. A state (i.e., an n-dimensional point)

is represented by active tiles (i.e., tiles that happen to cover that state). A

binary vector is used to encode those active tiles.

Tile coding and its variants have made great success in solving challenging

reinforcement learning tasks (Stone, Sutton, & Kuhlmann, 2005).

2.8 Nonlinear Function Approximation with

Networks

Although linear function approximation has enjoyed great success in reinforce-

ment learning, designing features for linear methods requires non-negligible

human effort, especially for raw pixel inputs (Liang, Machado, Talvitie, &

Bowling, 2016). Inspired by the success of convolutional neural networks in

computer vision (Krizhevsky, Sutskever, & Hinton, 2012), Mnih et al. (2015)

proposed the Deep-Q-Network (DQN), an end-to-end learning system that

learns the feature and the value function simultaneously. DQN used a deep

neural network with multiple convolutional layers to approximate the state-

action value function and achieved human-level control on various Atari games

with raw pixels as input.

We use w to represent the vector of the weights of the deep neural network

used by DQN. The update that DQN makes is

wt+1

.
= wt + α

(

Rt+1 + γmax
a
q̃(St+1, a,wt)− q̂(St, At,wt)

)

∇
w
q̂(St, At,wt)

(2.11)

where q̃ is the target network which will be explained soon. This is similar to

the update rule of the semi-gradient Q-learning (Sutton & Barto, 2018).

19

The function approximator in DQN is a deep convolutional network, which

is extremely hard to train. Typically to train a neural network, data with i.i.d.

property is necessary. However, in the online data stream of a reinforcement

learning system, the data is highly temporally correlated. During the online

training, the neural network function approximator tends to over-fit recent

transitions, which only covers a small portion of the whole state space. As a

result, the network fails to produce accurate control or prediction when it ex-

periences old states again. To reduce the negative influence of the correlation

in the online data stream, Mnih et al. (2015) incorporated experience replay

into semi-gradient Q-learning. The current transition is stored into the mem-

ory directly, and only the uniformly sampled transitions from the memory are

used to train the network. In other words, the quadruple (St, At, Rt, St+1) in

Equation (2.11) is no longer the current transition. Instead, it is the transition

sampled from the memory. Mnih et al. (2016) also proposed multiple work-

ers to gain temporally uncorrelated data. The reinforcement learning system

starts several agents simultaneously, and each agent interacts with its own

environment instance to collect data. Then the network update is based on

the data from all the agents. Although this method has gained great success

in practice, it is cheating. In the original problem, there is only one environ-

ment, however, this method requires multiple independent instances of this

environment.

Another significant contribution of DQN is the target network q̃, which

allows a stable training target. The target network q̃ is a copy of the learning

network q̂ and is synced with the learning network periodically.

Due to the success of DQN in Atari games, deep neural networks are now

widely used as nonlinear function approximators. And following DQN, many

deep reinforcement learning systems use experience replay to stabilize the

training of the neural network function approximator (Lillicrap et al., 2015;

20

Andrychowicz et al., 2017).

2.9 Gradient-based Hyper-parameter Optimiza-

tion

Back-propagation applies gradient descent to optimize parameters of a learning

system (e.g., weights of a neural network). There are also methods optimizing

hyper-parameters (e.g., a step size) by gradient descent.

We first present some online gradient-based hyper-parameter optimization

methods. Sutton (1992a) proposed the Incremental Delta-Bar-Delta (IDBD)

algorithm, which is a stochastic meta-gradient descent algorithm and aimed

to solve the problem of step size selection. To be more specific, in IDBD

each weight of a network is associated with its own step size, and the system

optimizes the step size via stochastic gradient descent based on the received

error signal.

We consider the same online learning setting as Section 2.1. At time step

t, the agent receives an observation xt ∈ R
n. The agent tries to predict the

target value y∗t ∈ R. The prediction yt is computed by a learnable function

f : Rn → R,

yt = f(xt)

We compute the current loss lt as the squared error,

lt
.
= l(yt, y

∗

t)
.
=

1

2
(yt − y

∗

t)
2

We then parameterize the learnable function f : Rn → R via a vector w ∈ R
n.

We use wi to denote the i-th element of w, and the prediction for the example

xt is

yt =
n

∑

i=1

wi,txi,t

21

In a traditional back-propagation algorithm (c.f. Reg-BP in Section 2.1),

we update wi as

wi,t+1

.
= wi,t − αδtxi,t

where α is a step size and δt = yt − y∗t as defined in Section 2.1. However,

in IDBD, each weight wi is associated with its own learning rate αi, and the

update rule for wi is

wi,t+1

.
= wi,t − αi,t+1δtxi,t (2.12)

Here we use t+ 1 rather than t to index αi to indicate that the update for αi

occurs before the update for wi. In IDBD, each learning rate αi has the form

αi,t = eβi,t

The incremental update for βi,t is
∂lt
∂βi

. This partial derivative measures the

sensitivity of the loss at the current time step lt to a small change of βi at all

time steps. Similar techniques are used by Williams & Zipser (1989) for the

analysis of recurrent neural networks. We further expand ∂lt
∂βi

as

∂lt
∂βi

= δt
∂δt
∂βi

(2.13)

= δt
∂yt
∂βi

(2.14)

= δt
∑

j

∂yt
∂wj,t

∂wj,t
∂βi

(2.15)

(The primary influence of βi on the loss is through wi)

(2.16)

≈ δt
∂yt
∂wi,t

∂wi,t
βi

(2.17)

= δtxi,thi,t (2.18)

where we define

hi,t
.
=
∂wi,t
∂βi

22

Finally, the update rule for βi,t is

βi,t+1

.
= βi,t − θδtxi,thi,t (2.19)

where θ is a meta learning rate. The update for hi,t can also be done incre-

mentally,

hi,t+1 =
∂wi,t+1

∂βi
(2.20)

=
∂(wi,t − αi,t+1δtxi,t)

∂βi
Plug in Equation (2.12)

(2.21)

= hi,t − xi,t
∂eβi,t+1δt
∂βi

(2.22)

= hi,t − xi,t
∂eβi,t+1

∂βi
δt − xi,te

βi,t+1
∂δt
∂βi

Product rule of calculus

(2.23)

= hi,t − xi,t
∂eβi,t+1

∂βi,t+1

δt − xi,te
βi,t+1

∂δt
∂βi

(2.24)

= hi,t − xi,te
βi,t+1δt − xi,te

βi,t+1
∂δt
∂βi

(2.25)

= hi,t − xi,tαi,t+1δt − xi,tαi,t+1

∂yt
∂βi

(2.26)

= hi,t − xi,tαi,t+1δt − xi,tαi,t+1

n
∑

j=1

∂yt
∂wj,t

∂wj,t
∂βi

(2.27)

(The primary influence of βi on the prediction yt is through wi,t)

≈ hi,t − xi,tαi,t+1δt − xi,tαi,t+1

∂yt
∂wi,t

∂wi,t
∂βi

(2.28)

= hi,t − xi,tαi,t+1δt − xi,tαi,t+1xi,thi,t (2.29)

= hi,t(1− αi,t+1x
2

i,t)− αi,t+1δtxi,t (2.30)

After adding a positive bounding operation, we obtain the update rule for hi,t,

hi,t+1 = hi,t[1− αi,t+1x
2

i,t]
+ − αi,t+1δtxi,t (2.31)

where [x]+
.
= xIx>0. Equations (2.12), (2.19) and (2.31) together form the

IDBD algorithm.

23

Inspired by IDBD, Sutton (1992b) further proposed K1 and K2 algorithms

for online step size adaptation, and Schraudolph (1999) generalized K1 and

IDBD via the Stochastic Meta Gradient (SMD) algorithm.

Besides IDBD and its extensions, there is another line of works that do

gradient-based hyper-parameter optimization in off-line setting. This line of

works shares the similar idea with IDBD but mainly focuses on off-line learn-

ing. This line started from Bengio (2000), where the gradient of a model selec-

tion criterion (e.g., the error of the trained model on a validation set) is used to

update hyper-parameters. And Do, Foo, & Ng (2008) used a similar technique

to learn weights of regularizer terms for a model. Later on, Domke (2012)

applied the similar idea to the training of energy models and showed improve-

ments in image labelling and denoising. More recently, Maclaurin, Duvenaud,

& Adams (2015) applied gradient-based hyper-parameter optimization in opti-

mizing various huge amount of hyper-parameters, for example, neural network

weight initialization and training data augmentation procedure. Luketina,

Berglund, Greff, & Raiko (2016) proposed a scalable gradient-based approach

to optimize both parameters and hyper-parameters simultaneously. Pedregosa

(2016) proposed an approximate gradient in gradient-based hyper-parameter

optimization to speed up training. And Franceschi, Donini, Frasconi, & Pontil

(2017) proposed a real-time approach for gradient-based hyper-parameter op-

timization. More recently, Franceschi, Frasconi, Salzo, & Pontil (2018) unified

gradient-based hyper-parameter optimization and meta learning with bilevel

programming.

The proposed cross-propagation technique in this thesis is related to the

gradient-based hyper-parameter optimization algorithms in this section, and

we will detail the similarity and difference in Section 3.1.

24

Chapter 3

The Cross-propagation

Algorithms

This chapter elaborates the first contribution of this thesis in detail. We first

show a possible defect of back-propagation. Then we present the three cross-

propagation-based algorithms for training a neural network. And we show the

merits of the three algorithms empirically in both online and off-line setting.

3.1 Towards Learning Features Stably

In a neural network, we usually interpret the output of the second last layer as

features of the input. We now present a possible defect of back-propagation.

Back-propagation makes the smallest change to the weights of a neural network

to minimize the training error. This update tends to change the most used fea-

ture more than the less used features. Although back-propagation has enjoyed

great success in various domains, this update may be a possible defect of back-

propagation. We clarify this possible defect by a small example introduced by

Sutton (1986). As shown in Figure 3.1, we consider a simple network with 3

hidden units A, B and C. They represent 3 learned features. D is the output

unit. According to the weights of the connections AD, BD and CD, C is the

most used feature as it has the largest outgoing weight 10. Back-propagation

updates the weight of CE 10 times more than the weight of BE. Although this

25

parameters influence the current loss. In this way, we achieve cross-validation

online. This technique is inspired by the IDBD algorithm, where the cur-

rent hyper-parameters (e.g., step size) are updated based on how their history

values influence the current loss. Cross-propagation is also related to the off-

line gradient-based hyper-parameter optimization methods discussed in Sec-

tion 2.9. However, there are two main differences between cross-propagation

and those works. First, those works focused on off-line learning, and there has

not been a successful application of those works in online learning. Second,

those works use generalization loss to tune hyper-parameters, while cross-

propagation uses generalization loss to tune parameters.

In this thesis, we propose to do online cross-validation to update the fea-

ture layer (i.e., the first layer) of a single hidden layer network, resulting in

three cross-propagation-based algorithms. To be more specific, we update the

feature layer by measuring how its previous weights influence the current loss.

In this way, the update for the feature layer at the current time step is likely

to compromise with all previous examples, and the frequently used features

are more likely to be well preserved than back-propagation.

3.2 Derivation of the Cross-propagation Algo-

rithms

In this section, we first show the derivation of two cross-propagation-based al-

gorithms for scalar regression tasks, after which we present a cross-propagation-

based algorithm for classification tasks.

To derive the cross-propagation algorithms for scalar regression tasks, we

use the same online scalar regression task and corresponding function param-

eterization as described in Section 2.1. At time step t, the agent receives an

observation xt ∈ R
n. It tries to predict the target value y∗t ∈ R. Its prediction

27

yt is computed by a learnable function f : Rn → R,

yt = f(xt)

We compute the current loss lt as the squared error,

lt
.
= l(yt, y

∗

t)
.
=

1

2
(yt − y

∗

t)
2

We parameterize f as a single hidden layer network which consists ofm hidden

units, the incoming weight matrixU ∈ R
n×m and the outgoing weightw ∈ R

m.

We use φj,t to indicate the j-th feature (i.e., the value of the j-th hidden unit)

and ψj,t to indicate the value of the j-th hidden unit before the non-linear

function g at time t as in Section 2.1. We also use δt to indicate the difference

between the prediction and the target. To be more specific, we have

yt =
m
∑

j=1

φj,twj,t (3.1)

φj,t = g(ψj,t) (3.2)

ψj,t =
n

∑

i=1

xi,tuij,t (3.3)

δt = yt − y
∗

t (3.4)

The update rule for the outgoing weight w is the same as back-propagation

(i.e., Equation (2.3)). When updating uij,t, however, we use ∂lt
∂uij

instead of

∂lt
∂uij,t

. This partial derivative with respect to uij measures the sensitivity of

the loss at current time step lt to a small change of uij at all time steps.

Similar techniques are used in Williams & Zipser (1989) and Sutton (1992a).

We further expand ∂lt
∂uij

as

∂lt
∂uij

= δt
∂yt
∂uij

(3.5)

∂yt
∂uij

=
∑

k

∂yt
∂wk,t

∂wk,t
∂uij

(3.6)

28

(The primary effect of the input weight uij will be through the corresponding
output weight wj,t)

≈
∂yt
∂wj,t

∂wj,t
∂uij

(3.7)

= φj,thij,t (3.8)

where we define

hij,t
.
=
∂wj,t
∂uij

According to Equations (3.5) and (3.8), the update rule for uij,t is

uij,t+1

.
= uij,t − αδtφj,thij,t (3.9)

And we update hij,t incrementally as

hij,t+1 =
∂wj,t+1

∂uij
(3.10)

=
∂(wj,t − αδtφj,t)

∂uij
Equation (2.3) (3.11)

= hij,t − α
∂δtφj,t
∂uij

(3.12)

= hij,t − αφj,t
∂δt
∂uij

− αδt
∂φj,t
∂uij

Product rule of calculus (3.13)

= hij,t − αφj,t
∂yt
∂uij

− αδt
∂φj,t
∂uij

(3.14)

= hij,t − αφj,tφj,thij,t − αδt
∂φj,t
∂uij

Plug in Equation (3.8) (3.15)

= hij,t − αφj,tφj,thij,t − αδt
∂φj,t
∂ψj,t

∂ψj,t
∂uij

(3.16)

(We take approximation by only considering the influence of a samll change
of uij at the time step t rather than all time steps.)

≈ (1− αφ2

j,t)hij,t − αδt
∂φj,t
∂ψj,t

∂ψj,t
∂uij,t

(3.17)

= (1− αφ2

j,t)hij,t − αδtxi,t
∂φj,t
∂ψj,t

(3.18)

Note that as mentioned in Section 2.1, once the nonlinearity over the hidden

units g is determined,
∂φj,t
∂ψj,t

is in a closed form.

29

Equations (2.3), (3.9) and (3.18) form the cross-propagation algorithm for

regression, named Reg-CP. To summarize,

wj,t+1 = wj,t − αδtφj,t

uij,t+1 = uij,t − αδtφj,thij,t

hij,t+1 = (1− αφ2

j,t)hij,t − αδtxi,t
∂φj,t
∂ψj,t

Reg-CP is further elaborated in Algorithm 3 (with a sigmoid function as the

nonlinearity).

Algorithm 3: Reg-CP with sigmoid

input: α: step size
n: input dimension
m: amount of hidden units

Initialize hij to 0
Initialize wj and uij as desired where i = 1, . . . , n and j = 1, . . . ,m
for each new training example (xt, y

∗

t) do
φj,t ← sigmoid(

∑

i uij,txi,t)
yt ←

∑

j wj,tφj,t
δt ← yt − y

∗

t

for i = 1, . . . , n do

for j = 1, . . . ,m do
uij,t+1 ← uij,t − αδtφj,thij,t
hij,t+1 ← (1− αφ2

j,t)hij,t − αδt(1− φj,t)φj,txi,t
end

wj,t+1 ← wj,t − αδtφj,t
end

end

In Reg-CP, we use an additional memory H = {hij}i=1,...,n j=1,...,m to do

gradient descent at all time steps to minimize the generalization loss at the

current time step. The update at time step t has to compromise with all

previous training examples. As a result, the network is less likely to over-fit

recent examples and more likely to learn features in a stable manner than

back-propagation. We have to note that here we use an n × m matrix H,

which is computationally inefficient as it involves n × m updates per time

30

step. We also need to note that Reg-CP is derived under a scalar regression

task, where our neural network only has one output unit. The extension to

a vector regression task, where we need multiple output units (e.g., k output

units), is straightforward. However, then the additional memory will become

a 3D tensor of size n×m× k. To decrease the extra computation, we derived

another cross-propagation algorithm which needs only m extra updates per

time step for our scalar regression task.

To derive this new cross-propagation algorithm for regression, we first ex-

pand the back-propagation update ∂lt
∂uij,t

for uij,t as

∂lt
∂uij,t

=
∂lt
∂φj,t

∂φj,t
∂uij,t

(3.19)

We propose to do cross-validation at the feature level directly. We replace the

first gradient term ∂lt
∂φj,t

in Equation (3.19) by ∂lt
∂φj

. This new gradient term

measures the sensitivity of the current loss lt to a small change of φj at all

time steps. Now our update for uij,t is

∆uij,t
.
=

∂lt
∂φj

∂φj,t
∂uij,t

(3.20)

= δt
∂yt
∂φj

xi,t
∂φj,t
∂ψj,t

(3.21)

= δtxi,t
∂φj,t
∂ψj,t

∑

k

∂yt
∂wk,t

∂wk,t
∂φj

(3.22)

(The primary influence of the j-th feature on the output yt is through wj,t)

≈ δtxi,t
∂φj,t
∂ψj,t

∂yt
∂wj,t

∂wj,t
∂φj

(3.23)

= δtxi,tφj,thj,t
∂φj,t
∂ψj,t

(3.24)

where we define

hj,t
.
=
∂wj,t
∂φj

Finally, we have our update rule for uij,t as

uij,t+1

.
= uij,t − αδtφj,thj,txi,t

∂φj,t
∂ψj,t

(3.25)

31

We update hj,t incrementally as

hj,t+1 =
∂wj,t+1

∂φj
(3.26)

=
∂(wj,t − αδtφj,t)

∂φj
Equation (2.3) (3.27)

= hj,t − α
∂δtφj,t
∂φj

(3.28)

= hj,t − αφj,t
∂δt
∂φj
− αδt

∂φj,t
∂φj

Product rule of calculus

(3.29)

= hj,t − αφj,t
∂yt
∂φj
− αδt

∂φj,t
∂φj

(3.30)

= hj,t − αφj,t
∑

k

∂yt
∂wk,t

∂wk,t
∂φj

− αδt
∂φj,t
∂φj

(3.31)

(The primary influence of the j-th feature φj on the loss should be through
the weight wj)

≈ hij,t − αφj,t
∂yt
∂wj,t

∂wj,t
∂φj

− αδt
∂φj,t
∂φj

(3.32)

(We take approximation by only considering the influence of a small change
of the j-th feature at the current time step rather than all the time steps.)

≈ hj,t − αφ
2

j,thj,t − αδt
∂φj,t
∂φj,t

(3.33)

= (1− αφ2

j,t)hj,t − αδt (3.34)

Now we have our update rule for hj,t,

hj,t+1 = (1− αφ2

j,t)hj,t − αδt (3.35)

Equations (2.3), (3.25) and (3.35) together form anther cross-propagation

algorithm for regression, named Reg-CP-Alt. To summarize,

wj,t+1 = wj,t − αδtφj,t

uij,t+1 = uij,t − αδtφj,thj,txi,t
∂φj,t
∂ψj,t

hj,t+1 = (1− αφ2

j,t)hj,t − αδt

Reg-CP-Alt is further elaborated in Algorithm 4 (with a sigmoid function as

the nonlinearity).

32

Algorithm 4: Reg-CP-Alt with sigmoid

input: α: step size
n: input dimension
m: amount of hidden units

Initialize hj to 0
Initialize wj and uij as desired where i = 1, . . . , n and j = 1, . . . ,m
for each new training example (xt, y

∗

t) do
φj,t ← sigmoid(

∑

i uij,txi,t)
yt ←

∑

j wj,tφj,t
δt ← yt − y

∗

t

for i = 1, . . . , n do

for j = 1, . . . ,m do

uij,t+1 ← uij,t − αδtφ
2
j,thj,t(1− φj,t)xi,t

end

wj,t+1 ← wj,t − αδtφj,t
end

for j = 1, . . . ,m do

hj,t+1 ← (1− αφ2
j,t)hj,t − αδt

end

end

Here Reg-CP-Alt is derived under a scalar regression task where we only

have one output unit. We need m extra updates per time step. The extension

of Reg-CP-Alt to multiple output units (e.g., k output units) is straightfor-

ward. However, we then need m× k extra updates per time step. Reg-CP-Alt

reduces the required memory and computation compared with Reg-CP, and

our preliminary experiments showed that Reg-CP-Alt almost always had sim-

ilar learning curves as Reg-CP.

In the rest of this section, we derive the cross-propagation algorithm for

classification tasks similar to Reg-CP-Alt. We consider the same online clas-

sification task and corresponding function parameterization as described in

Section 2.1. At time step t, the agent receives an observation xt ∈ R
n. It tires

to predict the target label p∗

t ∈ {0, 1}
d, where p∗

t is a one-hot vector of length

d encoding a class label. We use xi,t and p
∗

i,t to denote the i-th element of xt

and p∗

t respectively. Our prediction pt ∈ [0, 1]d is a probability distribution of

33

the d class labels and is computed via a learnable function f : Rn → [0, 1]d.

We use cross-entropy loss to measure the prediction error lt at time step t,

lt
.
= l(pt,p

∗

t)
.
= −

d
∑

k=1

p∗k,t log pk,t

We parameterize the learnable function f as a neural network, which consists

ofm hidden units, the incoming weight matrix U ∈ R
n×m, the outgoing weight

matrix W ∈ R
m×d. We apply a nonlinear function g over the hidden units

and a softmax operation over the output units. Our prediction at time step t

is

pt = softmax(yt)

in other words,

pk,t =
eyk,t

∑d

j=1
eyj,t

where

yk,t =
m
∑

j=1

φj,twjk,t

where φj,t is the j-th feature in the hidden layer as defined in Equation (3.2).

We still use ψj,t to denote the value of the j-th hidden unit before applying

the non-linear function g as defined in Equation (3.3).

We update wjk,t in the same way as Cls-BP, in other words,

wjk,t+1

.
= wjk,t − αδk,tφj,t (3.36)

To update uij,t, we first expand the back-propagation update ∂lt
∂uij,t

as

∂lt
∂uij,t

=
∂lt
∂φj,t

∂φj,t
∂uij,t

(3.37)

Similar to Reg-CP-Alt, we replace ∂lt
∂φj,t

by ∂lt
∂φj

to do cross-validation at feature

level. This new gradient term measures the sensitivity of the current loss lt to

34

a small change of φj at all time steps. Now our update for uij,t is

∆uij,t
.
=

∂lt
∂φj

∂φj,t
∂uij,t

(3.38)

=
∂φj,t
∂uij,t

d
∑

k=1

∂lt
∂yk,t

∂yk,t
∂φj

(3.39)

= xi,t
∂φj,t
∂ψj,t

d
∑

k=1

δk,t
∂yk,t
∂φj

Plug in Equation (2.7) (3.40)

= xi,t
∂φj,t
∂ψj,t

d
∑

k=1

δk,t

m
∑

s=1

∂yk,t
∂wsk,t

∂wsk,t
∂φj

(3.41)

(The primary influence of the j-the feature on the yk,t is through wjk,t)

≈ xi,t
∂φj,t
∂ψj,t

d
∑

k=1

δk,t
∂yk,t
∂wjk,t

∂wjk,t
∂φj

(3.42)

= xi,t
∂φj,t
∂ψj,t

d
∑

k=1

δk,tφj,thjk,t (3.43)

where we define

hjk,t
.
=
∂wjk,t
∂φj

Finally, we have our update rule for uij,t as

uij,t+1

.
= uij,t − αφj,txi,t

∂φj,t
∂ψj,t

d
∑

k=1

δk,thjk,t (3.44)

We update hjk,t incrementally as

hjk,t+1 =
∂wjk,t+1

∂φj
(3.45)

=
∂(wjk,t − αδk,tφj,t)

∂φj
(3.46)

= hjk,t − α
∂δk,t
∂φj

φj,t − αδk,t
∂φj,t
∂φj

(3.47)

= hjk,t − α
∂pk,t
∂φj

φj,t − αδk,t
∂φj,t
∂φj

(3.48)

= hjk,t − α
d

∑

s=1

∂pk,t
∂ys,t

∂ys,t
∂φj

φj,t − αδk,t
∂φj,t
∂φj

(3.49)

= hjk,t − α
d

∑

s=1

pk,t(Ik=s − ps,t)
∂ys,t
∂φj

φj,t − αδk,t
∂φj,t
∂φj

Equation (2.6)

(3.50)

35

(We take approximation by only considering the influence of a small change
of the j-th feature at the current time step rather than all the time steps.)

≈ hjk,t − α
d

∑

s=1

pk,t(Ik=s − ps,t)
∂ys,t
∂φj

φj,t − αδk,t
∂φj,t
∂φj,t

(3.51)

(The primary influence of φj on the ys,t is mainly through wjs,t)

≈ hjk,t − α
d

∑

s=1

pk,t(Ik=s − ps,t)
∂ys,t
∂wjs,t

∂wjs,t
∂φj

φj,t − αδk,t (3.52)

= hjk,t − α
d

∑

s=1

pk,t(Ik=s − ps,t)φj,thjs,tφj,t − αδk,t (3.53)

= hjk,t − αφ
2

j,t

d
∑

s=1

pk,t(Ik=s − ps,t)hjs,t − αδk,t (3.54)

Finally, the update rule for hjk,t is

hjk,t+1 = hjk,t − αφ
2

j,t

d
∑

s=1

pk,t(Ik=s − ps,t)hjs,t − αδk,t (3.55)

Equations (3.36), (3.44) and (3.55) together form the cross-propagation

algorithm for classification, named Cls-CP. To summarize,

wjk,t+1 = wjk,t − αδk,tφj,t

uij,t+1 = uij,t − αφj,txi,t
∂φj,t
∂ψj,t

d
∑

k=1

δk,thjk,t

hjk,t+1 = hjk,t − αφ
2

j,t

d
∑

s=1

pk,t(Ik=s − ps,t)hjs,t − αδk,t

Cls-CP is further elaborated in Algorithm 5 (with a sigmoid function as the

nonlinearity).

3.3 Experimental Results

In this section, we present some experimental results of the three cross-propagation

algorithms in both online setting and off-line setting. We start with an intro-

duction to our testbeds.

We consider two tasks as our testbeds: the GEneric Online Feature Finding

(GEOFF) task and the MNIST dataset. GEOFF task was first introduced by

36

Algorithm 5: Cls-CP with sigmoid

input: α: step size
n: input dimension
m: number of hidden units
d: number of labels

Initialize hjk to 0
Initialize wij and uij as desired where i = 1, . . . , n, j = 1, . . . ,m and
k = 1, . . . , d
for each new training example (xt,p

∗

t) do
φj,t ← sigmoid(

∑

i uij,txi,t)
yk,t ←

∑

j wjk,tφj,t
pt = softmax(yt)
δt ← pt − p∗

t

for i = 1, . . . , n do

for j = 1, . . . ,m do

uij,t+1 ← uij,t − αφ
2
j,t(1− φj,t)xi,t

∑d

k=1
δk,thjk,t

end

end

for j = 1, . . . ,m do

for k = 1, . . . , d do
wjk,t+1 ← wjk,t − αδk,tφj,t
hjk,t+1 ← hjk,t − αφ

2
j,t

∑d

s=1
pk,t(Ik=s − ps,t)hjs,t − αδk,t

end

end

end

37

Sutton (2014) as a generic, synthetic, feature-finding testbed for evaluating

different representation learning algorithms. The primary advantage of this

testbed is that infinitely many supervised-learning training examples can be

generated without any experimenter bias. One GEOFF task consists of a

single hidden layer neural network (named the GEOFF target network) with

n input units, m hidden units and one output units. Each input example

xt ∈ {0, 1}
n is an n-dimensional binary input vector where each element in the

vector can take a value of 0 or 1. The incoming weights of the GEOFF target

network is U∗ ∈ {−1,+1}n×m, and the outgoing weights of the GEOFF target

network is w∗ ∈ {−1, 0,+1}m. Each element u∗ij and w
∗

j is chosen randomly

and remains fixed after initialization. The hidden layer of the GEOFF target

network consists of m Linear Threshold Units (LTUs) and is denoted as φ∗ ∈

{0, 1}m. This particular form of network is adapted from Sutton & Whitehead

(1993). Each feature φ∗

j,t is computed as φ∗

j,t

.
= Iψ∗

j,t>θj
, where θj is a threshold

parameter and ψ∗

j,t

.
=

∑n

i=1
xi,tu

∗

ij. Each unit φ∗

j has an input pattern that

maximizes ψ∗

j . Sutton & Whitehead (1993) named this pattern the prototype

of the feature φ∗

j . We set θj in such a way that the j-th feature φ∗

j is valued 1

only when at least β proportion of the input bits matches the prototype of the

feature. This can be achieved by setting the threshold as θj
.
= nβ − Sj, where

Sj is the number of input weights with a value of −1 connected to the j-th

feature (Sutton & Whitehead, 1993). For each input vector xt, the GEOFF

target network is used to produce a scalar target output y∗t =
∑m

i=1
φ∗

i,tw
∗

i + εt,

where εt ∼ N (0, 1) is a random Gaussian noise. For our experiments, we

always set n = 20, m = 1000 and β = 0.6 for the GEOFF target network.

The MNIST dataset of handwritten digits was introduced by LeCun (1998).

Though the MNIST dataset is old, it is still viewed as a standard supervised

learning benchmark task for testing out new learning algorithms (Sironi, Tekin,

Rigamonti, Lepetit, & Fua, 2015; Papernot et al., 2016). The dataset consists

38

of grayscale images each with 28× 28 dimensions. These images are obtained

from handwritten digits, and their corresponding labels denote the supervised

learning target for a given image. The objective of a learning system in an

MNIST task is to learn a mapping function that maps each of these images to

a label.

3.3.1 Experiment 1: Online Learning of Related Tasks

We now present our experimental results in online setting. The experiments

were designed from a continual learning perspective where a learning system

experiences examples generated by a sequence of related tasks, and learning

one task helps learn other similar tasks. In this section, we use capitals A, B

and C to index our tasks.

We first show the results of the GEOFF task. For our experiments, we first

created a GEOFF target network. Then we generated a dataset by feeding

5,000 randomly generated input vectors to the GEOFF target network. The

5,000 input vectors and corresponding targets computed by the GEOFF target

network formed Task A. Then we produced a new GEOFF target network by

randomly choosing and regenerating 50% of the outgoing weights w∗ of the

GEOFF target network used in Task A. This new GEOFF target network was

used to compute targets for another 5,000 randomly generated input vectors.

These new 5,000 examples formed Task B. Similarly, Task C was produced by

regenerating 50% of the outgoing weights of the GEOFF target network used

in Task B. It is important to point out here that all these tasks share the same

feature representation (i.e., the weight U∗ remains fixed throughout). We

presented our evaluated learning system with a sequence of the three tasks,

{Task A, Task B, Task C}, in an online manner. To be more specific, the

5000 × 3 = 15000 examples in the three tasks were presented to the learning

system one by one. Each example was seen by the learning system only once

39

and then discarded.

The learning network of our evaluated learning system was a single hidden

layer neural network with a single output unit. It had 20 input units and 1,000

hidden units with a sigmoid activation function. Note that all the GEOFF

target networks also have 1,000 features. So the learning system can solve

all the tasks with one feature representation. The squared error was used for

learning the parameters of this network. The weights of the learning network

were initialized via a Gaussian distribution N (0, 1.0). We used 4 algorithms to

train the network: Reg-BP (defined in Section 2.1), Reg-BP with fixed features

(i.e., the incoming weight U remains fixed during the training, only w is

updated), Reg-CP (Algorithm 3) and Reg-CP-Alt (Algorithm 4). We selected

the best step size from {1.0, 0.5, 0.1, . . . , 10−4} for each algorithm based on the

mean error of the last 1,000 examples in Task C.

Figure 3.2(a) shows the training progression. In the first stage (Task A),

Reg-BP with fixed features learned fastest. It is within expectation as the learn-

ing network had 1,000 hidden units, so it might already contain some good

features immediately after the initialization. Learning the outgoing weights

w may be enough to achieve a reasonable performance level. Reg-BP also

learned faster than the two cross-propagation algorithms, as Reg-BP was di-

rectly minimizing the mean squared error while the cross-propagation algo-

rithms did cross-validation. This phenomenon is similar to what we usually

observe in off-line supervised learning. If we want to achieve better perfor-

mance at a validation set, we may have to sacrifice the performance at the

training set. When we switched to Task B and Task C, the learning speed

of the two cross-propagation algorithms caught up with Reg-BP. And Reg-CP

was even slightly faster than Reg-BP. We hypothesize that this is because

cross-validation helped the cross-propagation algorithms avoid the over-fitting

of features. The cross-propagation algorithms learned the features in a more

40

stable way than back-propagation. And features learned from Task A helped

the learning of Task B and Task C more in the cross-propagation algorithms

than Reg-BP.

To verify this hypothesis, we plot the weight change of the learning network

during the training. To be more specific, after processing the t-th training ex-

ample, we compute the L2 distance between the current weights Ut and initial

weights U0, then we normalize this L2 distance by the learning rate and the

number of elements in the weight matrix. We plot this normalized L2 distance

of the incoming weights U against the training examples in Figure 3.2(b). We

show the change of the outgoing weightsw in the same manner in Figure 3.2(c).

In the plots, the curves show the normalized absolute weight change, and the

slope shows the rate of weight changing. From Figure 3.2(b), we can see at

the very beginning of the learning, Reg-BP changed the feature layer (i.e., U)

rapidly, while the two cross-propagation algorithms were learning features in a

stable way (i.e., the slope is almost constant). The behavior of the two cross-

propagation algorithms seems to make more sense than Reg-BP in our online

learning of related tasks because as indicated by the learning curve of Reg-

BP with fixed features, there might be some good features immediately after

initialization. So it may be better for an algorithm to take advantage of the

initialization rather than change the feature layer rapidly. From Figure 3.2(c),

we can see that there was nothing special for Reg-BP at task switch, while the

curves for the two cross-propagation algorithms show a clear pattern at task

switch. This phenomena also seems to make sense in our online learning of

related tasks. Because all the tasks can be solved by one feature representa-

tion, the most important thing to do at task switch may be to relearn how to

combine the features (i.e., to adjust the second layer).

Although a good algorithm should learn features in a stable way in our con-

tinual learning experiments, learning feature stably is not sufficient to guaran-

41

tee a good performance. There are many trivial ways to achieve a stable learn-

ing of features (e.g., freezing the feature layer like Reg-BP with fixed features

or two-time scale learning), but the cross-propagation algorithms achieved this

in a non-trivial way.

It is also interesting to see that Reg-CP outperformed Reg-CP-Alt in terms

of the learning speed. We hypothesize there is a trade-off between space and

performance. Reg-CP does cross-validation at the weight level. It measures

how a single weight uij influences the loss. While Reg-CP-Alt does cross-

validation at the feature level, it measures how a single feature φj, which is

influenced by a set of input weights {u1j, . . . , unj}, influences the loss. This is

the reason why Reg-CP-Alt requires less memory. However, this did hurt the

performance according to the empirical results.

Similar to our online GEOFF tasks, we performed experiments on the

MNIST dataset. We built three tasks {Task A, Task B, Task C} upon the

MNIST dataset. In each task, the label for the training images was shifted

by one. For example, Task A used the standard MNIST training images and

their labels. Task B used the same training examples as Task A, but the labels

got shifted by one. Similarly, for Task C the labels for the training examples

got further shifted by one from labels of Task B. In this way, the three tasks

share a common feature representation, the only thing to learn when switching

tasks is the way to combine the features. Each task consisted of 5,000 images

and corresponding labels. We presented the learning system with a sequence

of the three tasks, {Task A, Task B, Task C}, in an online manner. We used

3 algorithms: Cls-BP (defined in Section 2.1), Cls-BP with fixed features(i.e.,

the incoming weight U remains fixed during training, only w is updated) and

Cls-CP (Algorithm 5), and the step size for each algorithm was selected in the

same manner as the online GEOFF experiments.

The learning network was a single hidden layer neural network with 784

42

input units, 1,024 hidden units and 10 output units. The hidden units used

a sigmoid activation function, and the output units used a softmax activation

function. Cross-entropy error was used for training the network. The weights

of the learning networks were initialized via a Gaussian distribution N (0, 1.0).

Figure 3.3(a) shows the training progression. The trend is similar to what

we observed in the online GEOFF tasks. In the first stage (Task A), Cls-BP

with fixed features learned fastest, and Cls-BP outperformed Cls-CP. However,

when we switched to Task B and Task C, Cls-CP learned faster than Cls-BP.

We also plot the change of U and W in the same manner as mentioned before

in Figures 3.3 (b) and (c). From the slope, we can see Cls-CP learned the

features in a more stable way and changed the last layer (i.e., the layer in

charge of how to combine features) faster than Cls-BP.

3.3.2 Experiment 2: Off-line Supervised Learning

Although we derived the three cross-propagation-based algorithms in online

setting, they can also be used in off-line setting. To be more specific, in off-line

setting the network is trained on a training set for multiple sweeps, and we

evaluate the network on an unseen test set when training is done. As discussed

in Section 2.2, if the network has more parameters, it is more complicated and

usually needs more data for training. Otherwise, the network may fall into

over-fitting. In the rest of this section, we present some experimental results,

revealing how the number of training examples and the network complexity

(i.e., the number of parameters) influence the asymptotic performance of the

network for different training algorithms.

Our testbed is still the GEOFF task. Different from the online setting, we

only used one GEOFF target network in offline experiments. We generated

different amounts of training examples (3000, 6000, 15000 and 24000) and

500 test examples respectively from this GEOFF target network. We used

44

three single ReLU hidden layer networks with a different number of hidden

units (100, 500 and 900). We used Reg-CP-Alt (Algorithm 4) and Reg-BP to

train the networks in a supervised learning manner. To be more specific, we

trained the network with the training set for 200 sweeps. Then we evaluated

its performance on the corresponding unseen test dataset. We iterated all the

4×3×2 = 24 combinations of the number of training examples, the number of

hidden units and the training algorithms. For each combination, we selected

the best step size from {2−16, . . . , 2−1} according to the mean prediction error

of the last 5 sweeps during training. All the results were averaged over 30

independent runs.

We use errorcp and errorbp to denote the asymptotic test error (i.e., the

mean prediction error on the test set after 200 sweeps on the training set) of

Reg-CP-Alt and Reg-BP respectively. Table 3.1 shows the value of errorcp −

errorbp. A positive number indicates that Reg-BP performed better than Reg-

CP-Alt, and a negative number indicates that Reg-CP-Alt performed better

than Reg-BP.

From the first row, we can see that with 100 hidden units and 3,000 training

examples, Reg-BP performed better than Reg-CP-Alt. However, when we

increased the number of hidden units to 500, Reg-CP-Alt outperformed Reg-

BP. When we kept increasing the number of hidden units to 900, the difference

got larger. When we increase the number of hidden units, we increase the

network complexity. So we need more data to train the network. However,

the number of training examples is fixed, so the network tends to over-fit

the training data as we increase its complexity, where Reg-CP-Alt started to

outperform Reg-BP. This trend also occurs in the other three rows.

From the second column, we can see that with 500 hidden units and 3,000

training examples, Reg-CP-Alt performed better than Reg-BP. When we in-

creased the number of training examples while keeping the network complexity

46

h
h
h
h

h
h

h
h

h
h
h
h
h
h
h

h
h
h

training examples

hidden units
100 500 900

3000 3.65 -2.44 -6.47
6000 3.96 -1.83 -4.77
15000 5.08 0.02 -1.86
24000 5.36 0.33 -0.77

Table 3.1: Performance gap between cross-propagation and back-propagation
in various combinations in the GEOFF task.

(i.e., the number of hidden units) fixed, Reg-BP started to outperform Reg-

CP-Alt. With more training data, over-fitting is less likely to happen, and

Reg-BP performed better than Reg-CP-Alt. Other two columns also show

similar trends.

It is an interesting observation that when training data was insufficient

compared with network complexity, where over-fitting is likely to happen, the

cross-propagation-based algorithm performed better than the back-propagation

algorithm. However, when we had sufficient training data, the back-propagation

algorithm outperformed the cross-propagation-based algorithm.

3.4 Weakness of the Cross-propagation Algo-

rithms

We applied the cross-propagation technique to train the feature layer of a

single hidden layer neural network and showed its merit empirically in both

online and off-line setting. However, the merit comes at a cost.

The most critical flaw of our three cross-propagation-based algorithms is

that they require more memory than corresponding back-propagation algo-

rithms. And although a naive extension of our three cross-propagation-based

algorithms to deeper networks is straightforward, the required memory will

then increase exponentially according to the increase of the depth of the

network. Until now we do not have an efficient way to extend our cross-

47

propagation-based algorithms to modern deep network architectures.

We should also remind the reader that the results in off-line setting are

sensitive to various factors. We did not see the same phenomena with a tanh

activation function nor on the MNIST dataset. So the exact relationship

behind cross-propagation and over-fitting remains unclear.

48

Chapter 4

Evaluation of Experience Replay

This chapter elaborates the second contribution of this thesis in detail. We

first show some open questions about experience replay, after which we intro-

duce our new experience replay method. Finally, we present our systematic

evaluation of experience replay under various function representations.

4.1 Open Questions

In this section, we describe some open questions about experience replay. In

modern deep RL systems, experience replay is mainly used to stabilize the

training of neural network function approximators. Experience replay also im-

proves data efficiency (Lin, 1992; Wang et al., 2016), which is often a desirable

property as many RL algorithms are pretty hungry for data. Experience re-

play itself was proposed in the early age of reinforcement learning when tabular

methods and linear function approximation dominated the field, but experi-

ence replay did not draw much attention until the success of DQN, after which

experience replay become an essential component in many deep RL algorithms

(Lillicrap et al., 2015; Andrychowicz et al., 2017). There may be some defect

that prevents experience replay from being widely used in the pre-deep-RL

era. However, to our best knowledge, no previous work has pointed out what

is wrong with experience replay.

49

Experience replay introduces a new hyper-parameter, the memory size. As

far as we know, no previous work has systematically studied how this new

hyper-parameter influences the performance. The community seems to have a

default value for the memory size, 106. For instance, Mnih et al. (2015) set the

memory size for DQN to 106 for various Atari games (Bellemare, Naddaf, Ve-

ness, & Bowling, 2013), after which Lillicrap et al. (2015) also set the memory

size for Deep Deterministic Policy Gradient (DDPG) to 106 to address various

Mujoco tasks (Todorov, Erez, & Tassa, 2012). And Andrychowicz et al. (2017)

set the memory size to 106 in their Hindsight Experience Replay (HER) for a

physical robot arm, and Tassa et al. (2018) used a memory of size 106 to solve

the tasks in DeepMind Control Suite. In the aforementioned papers, the tasks

vary from simulation environments to real-world robots, and the function ap-

proximators vary from shallow fully-connected networks to deep convolutional

networks. However, they all used the same memory size. Liu & Zou (2017)

did a theoretical study on how the memory size influences the performance.

However, their analytical study only applies to an ordinary differential equa-

tion model, and their experiments did not handle the episode end by timeout

properly.

In this thesis, we did a systematic evaluation of experience replay, especially

the memory size.

4.2 Combined Experience Replay

Before we present our evaluation, we first introduce a new experience replay

method. In the original experience replay, the transition at the current step

is not used for training the agent immediately. Only sampled transitions from

the memory are used to train the agent at each time step. In this thesis, we

propose to train the agent with both the current transition and the sampled

transitions. We name our proposed new experience replay method combined

50

experience replay (CER). We show that a learning system with CER is more

robust to the selection of the memory size compared with the one with the

original experience replay.

CER is similar to a component of prioritized experience replay (PER,

Schaul et al., 2015). In PER, Schaul et al. (2015) gave the current transi-

tion the largest priority. However, PER is still a stochastic replay method,

which means giving the current transition the largest priority does not guar-

antee the current transition will be replayed immediately. And it is important

to note that PER and CER are aimed to solve different problems. To be more

specific, CER is designed to make a learning system less sensitive to the se-

lection of the memory size, while PER is designed to replay transitions in the

memory more efficiently. If the memory size is set properly, we do not expect

CER can further improve performance. However, PER is always expected to

improve the performance. Although there is a similar part to CER in PER

(giving the largest priority to the current transition), PER never shows how

that part interacts with the memory size and whether that part itself makes

a significant contribution to the whole learning system. Furthermore, with

the increase of the memory size, the required computation of PER increases

logarithmically, while that of CER remains constant. In addition, PER often

introduces some complicated data structures (e.g., a sum-tree), which may

need much engineer effort. CER, however, requires little extra engineer effort.

4.3 Evaluation Setup

Experience replay itself is not a complete learning algorithm. Experience

replay has to be combined with some other off-policy algorithms to form a

learning system. Following Mnih et al. (2015), we consider the combination

of Q-learning and experience replay in our evaluation.

We compared three learning systems, and each learning system had three

51

kinds of function representations (i.e., tabular function representation, linear

function representation, and non-linear function representation). The three

learning systems are Q-Learning with the current transition (referred to as

Online-Q, Algorithms 6, 7, and 8), Q-Learning with the original experience

replay (referred to as Buffer-Q, Algorithms 9, 10, and 11) and Q-Learning

with CER (referred to as Combined-Q, Algorithms 12, 13, and 14). Online-

Q is exactly the primitive Q-Learning, where the current transition at every

time step is used to update the value function immediately. Buffer-Q refers to

DQN-like Q-Learning, where the current transition is not used to update the

value function immediately. Instead, the current transition is stored into the

memory, and only sampled transitions from the memory are used for updating

the value function. Combined-Q uses both the current transition and the

transitions from the memory to update the value function at every time step.

For each of the 9 algorithms, we varied the memory size (if the algorithm

has a memory) in a large range to investigate how the memory size influences

the performance. When varying the memory size of an algorithm, all other

hyper-parameters remained fixed.

Algorithm 6: Online-Q with tabular function representation

Initialize the value function Q
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to an ε-greedy policy derived from
Q
Execute the action A, get the reward R and the next state S ′

Q(S,A)← Q(S,A) + α
(

R + γmaxaQ(S
′, a)−Q(S,A)

)

S ← S ′

end

end

We used three tasks to evaluate the aforementioned algorithms: a grid

world, the Lunar Lander and the Atari game Pong. Figure 4.1 elaborates the

52

Algorithm 7: Online-Q with linear function representation

Input: a state-action feature function x

Initialize the weights w
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to an ε-greedy policy derived from
w

Execute the action A, get the reward R and the next state S ′

w← w+ α
(

R + γmaxaw
Tx(S ′, a)−wTx(S,A)

)

x(S,A)
S ← S ′

end

end

Algorithm 8: Online-Q with non-linear function representation

Initialize the weights w
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to an ε-greedy policy derived from
w and q̂
Execute the action A, get the reward R and the next state S ′

w← w+ α
(

R + γmaxa q̂(S
′, a,w)− q̂(S,A,w)

)

∇
w
q̂(S,A,w)

S ← S ′

end

end

Algorithm 9: Buffer-Q with tabular function representation

Initialize the value function Q
Initialize the replay buffer
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from
Q
Execute the action A, get the reward R and the next state S ′

Store the online transition (S, A, R, S ′) into the memory
Sample a batch of transitions B uniformly from the memory
for each transition (s, a, r, s′) in B do

Q(s, a)← Q(s, a) + α
(

r + γmaxa′ Q(s
′, a′)−Q(s, a)

)

end

S ← S ′

end

end

53

Algorithm 10: Buffer-Q with linear function representation

Input: a state-action feature function x

Initialize the weights w
Initialize the replay buffer
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from
w

Execute the action A, get the reward R and the next state S ′

Store the online transition (S, A, R, S ′) into the memory
Sample a batch of transitions B uniformly from the memory
for each transition (s, a, r, s′) in B do

w← w+ α
(

r + γmaxa′ w
Tx(s′, a′)−wTx(s, a)

)

x(s, a)
end

S ← S ′

end

end

Algorithm 11: Buffer-Q with non-linear function representation

Initialize the weights w
Initialize the replay buffer
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from q̂
Execute the action A, get the reward R and the next state S ′

Store the online transition (S, A, R, S ′) into the memory
Sample a batch of transitions B uniformly from the memory
for each transition (s, a, r, s′) in B do

w← w+ α
(

r+ γmaxa′ q̃(s
′, a′,w)− q̂(s, a,w)

)

∇
w
q̂(s, a,w)

end

S ← S ′

end

end

54

Algorithm 12: Combined-Q with tabular function representation

Initialize the value function Q
Initialize the replay buffer
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from
Q
Execute the action A, get the reward R and the next state S ′

Sample a batch of transitions B uniformly from the memory
Store the online transition (S, A, R, S ′) into the memory
Add the online transition (S, A, R, S ′) into B
for each transition (s, a, r, s′) in B do

Q(s, a)← Q(s, a) + α
(

r + γmaxa′ Q(s
′, a′)−Q(s, a)

)

end

S ← S ′

end

end

Algorithm 13: Combined-Q with linear function representation

Input: a state-action feature function x

Initialize the weights w
Initialize the replay buffer
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from
w

Execute the action A, get the reward R and the next state S ′

Sample a batch of transitions B uniformly from the memory
Store the online transition (S, A, R, S ′) into the memory
Add the online transition (S, A, R, S ′) into B
for each transition (s, a, r, s′) in B do

w← w+ α
(

r + γmaxa′ w
Tx(s′, a′)−wTx(s, a)

)

x(s, a)
end

S ← S ′

end

end

55

Algorithm 14: Buffer-Q with non-linear function representation

Initialize the weights w
Initialize the replay buffer
while not converged do

Get the initial state S
while S is not the terminal state do

Select an action A according to a ε-greedy policy derived from q̂
Execute the action A, get the reward R and the next state S ′

Sample a batch of transitions B uniformly from the memory
Store the online transition (S, A, R, S ′) into the memory
Add the online transition (S, A, R, S ′) into B
for each transition (s, a, r, s′) in B do

w← w+ α
(

r+ γmaxa′ q̃(s
′, a′,w)− q̂(s, a,w)

)

∇
w
q̂(s, a,w)

end

S ← S ′

end

end

tasks.

Our first task was a 20 × 20 grid world. The agent is placed at the same

location at the beginning of each episode (S in Figure 4.1(a)), and the location

of the goal is fixed (G in Figure 4.1(a)). There are four possible actions {Left,

Right, Up, Down}, and the reward is −1 at every time step, implying the

agent should learn to reach the goal as soon as possible. Some fixed walls

(black blocks in Figure 4.1(a)) are placed in the grid world, and if the agent

bumps into the wall, the agent will remain in the same position.

Our second task was the Lunar Lander task from Box2D. The state space

is R8 with value of each dimension unbounded. Lunar Lander has four discrete

actions. Solving the Lunar Lander task needs careful exploration. Negative

rewards are continually given during landing, so an algorithm can easily get

trapped in a local minima, where the agent avoids negative rewards by doing

nothing after certain steps until the episode ends.

The last task was the Atari game Pong. It is important to note that our

evaluation is aimed to study experience replay, especially the memory size. We

56

the value function, rather than use 0 like some RL systems (e.g., Mnih et al.,

2015). Pardo et al. (2017) showed PEB significantly mitigates the negative

influence of the timeout mechanism.

Different mini-batch size has different computation complexity. Through-

out our evaluation, we did not vary the batch size and used a mini-batch of

fixed size 10 for all the tasks. In other words, we sampled 10 transitions from

the memory at each time step. For Buffer-Q, we only sampled 9 transitions,

and the mini-batch consisted of the sampled 9 transitions and the current

transition. The behavior policy was always a ε-greedy policy with ε = 0.1. We

plot the online training progression for each experiment, in other words, we

plot the episode return against the number of training episodes.

4.4 Experiment 1: Tabular Function Repre-

sentation

In tabular methods, the value function Q is represented by a look-up table.

Among the three tasks, only the grid world is compatible with tabular meth-

ods. We studied Algorithms 6, 9 and 12 with different memory size in this

part. In our experiments, the initial values for all state-action pairs were set to

0, which is an optimistic initialization (Sutton, 1996) to encourage exploration.

The discount factor was 1.0, and the step size was 0.1.

Figures 4.2 (a - c) show the training progression of different algorithms

with different memory size for the grid world task. From Figure 4.2(a), the

Online-Q agent solved the task in about 1, 000 episodes. From Figure 4.2(b),

although all the Buffer-Q agents with different memory size achieved a reason-

able performance level, it is interesting to see that the agent with the smallest

memory performed the best in terms of both learning speed and final perfor-

mance. When we increased the memory size from 102 to 105, the learning

speed kept decreasing. When we kept increasing the memory size to 106, the

58

learning speed caught up but was still slower than the memory size 102. We

did not keep increasing the memory size to a larger value than 106 as in all of

our experiments the total training steps were less than 106. Things are differ-

ent in Figure 4.2(c), where all the Combined-Q agents with different memory

size learned the optimal solution at a similar speed. When we zoom in, we can

find the agents with larger memory learned faster than the agents with smaller

memory. This observation is contrary to what we observed with the Buffer-Q

agents. From Figure 4.2(b), we can learn that in the original experience replay,

a large memory hurt the performance. And from Figure 4.2(c), it is clear that

CER made the agents less sensitive to the selection of the memory size.

Q-learning with a tabular function representation is guaranteed to converge

under any data distribution only if each state-action pair is visited infinitely

many times (together with some other weak conditions). However, the data

distribution does influence the convergence rate. In the original experience

replay, if a large memory is used, a transition is more likely to take effect

later compared with a small memory. We use a simple example to show this.

Assume we have a memory of size m, and we randomly sample 1 transition

from the memory per time step. We assume the memory is full at the current

time step and a new transition comes. We then remove the oldest transition

in the memory and add this new transition into the memory. The probability

that this newly added transition is replayed within next k (k <= m) time

steps is

1− (1−
1

m
)k

This probability is monotonically decreasing as m increases. So with a larger

memory, a transition is likely to take effect later. If that transition happens

to be important (e.g., a transition to the goal state, a transition with a large

reward or a transition to a well-learned state), this delay will further influence

the data collection of the agent in the future. As a result, the overall learning

59

speed slows down. This explains the phenomenon shown in Figure 4.2(b) that

when we increased the memory size from 102 to 105 the learning slowed down.

Note with the memory size 106, the memory never got full, and all transitions

were well preserved. It was a special case. In CER, all the transitions take

effect immediately. As a result, the agents became less sensitive to the selection

of the memory size.

4.5 Experiment 2: Linear Function Approxi-

mation

We studied Algorithms 7, 10 and 13 with different memory size in this part.

We used linear function approximation with tile coding. Among our three

tasks, only the grid world is compatible with tile coding. In our experiments,

tile coding was done via the tile coding software 1 with 8 tilings. We set the

initial weight parameters to 0 to encourage exploration. The discount factor

was 1.0, and the step size was 0.1/8 = 0.125. The results are summarized in

Figure 4.3. Figure 4.3(b) shows that a large memory hurt the learning speed

of the Buffer-Q agents. Comparing Figure 4.3(b) and Figure 4.3(c), it is clear

that CER sped up learning significantly, especially for agents with a large

memory. The results are similar to what we observed in agents with tabular

function representation.

4.6 Experiment 3: Nonlinear Function Approx-

imation

We studied Algorithms 8, 11 and 14 with different memory size in this part. We

used a single hidden layer network as our nonlinear function approximator. We

used the ReLU nonlinearity over the hidden units, and the output units were

linear to produce the state-action value. With a neural network as function

1http://incompleteideas.net/sutton/tiles/tiles3.html

60

approximator, Buffer-Q and Combined-Q are similar to DQN, and we used a

target network to allow stable update targets following DQN. Our preliminary

experiments showed that some other techniques used in DQN (e.g., random

exploration at the beginning stage and a linearly decayed exploration rate) did

not increase the performance in our tasks.

In the grid world task, we used 50 hidden units for the hidden layer, and

for the other tasks, we used 100 hidden units. In the grid world task, we used

a one-hot vector of length 20 × 20 = 400 to encode the current position of

the agent. We used an RMSProp optimizer (Tieleman & Hinton, 2012) for

all the tasks, while the initial step size varied from task to task. To be more

specific, we used 0.01, 0.0005 and 0.0025 as the initial step size for the grid

world, Lunar Lander and the game Pong respectively. All the aforementioned

hyper-parameters were empirically tuned to achieve good performance.

Figure 4.4 shows the learning progression of the agents with various mem-

ory size in the grid world task. We observed that the online Q agent, the

Buffer-Q agent with a memory size 100 and the Combined-Q agent with a

memory size 100 failed to reach a reasonable performance level. This phe-

nomenon is expected, as in those cases the network tended to over-fit recent

transitions thus forgot what it had learned from previous transitions. From

Figure 4.4(a), the Buffer-Q agent with a memory size 104 learned fastest among

all the Buffer-Q agents. This is a medium memory size rather than the smallest

memory size as we observed in Buffer-Q agents with tabular and linear func-

tion representation. We hypothesize that there is a trade-off in the nonlinear

function approximation case. With a small memory, important transitions are

likely to take effect early. However, sampled transitions from the memory tend

to be highly temporally correlated, while training a neural network often needs

i.i.d. data. With a large memory, sampled transitions tend to be more un-

correlated. However, important transitions are usually delayed to take effect.

63

In Figure 4.4(b), the Buffer-Q agents with a huge memory (e.g., 105 and 106)

failed to find the optimal solution. However, in Figure 4.4(c), corresponding

Combined-Q agents did find a reasonable solution. And comparing Figure 4.4

(b) and (c), it is clear that CER significantly sped up learning, especially for

agents with a large memory.

Figure 4.5 shows the learning progression of the agents with various mem-

ory size in Lunar Lander. Different from the grid world task, the Online-Q

agent, the Buffer-Q agent with a memory size 100 and the Combined-Q agent

with a memory size 100 achieved a reasonable performance level. The Online-

Q agent achieved almost the best performance among all the agents. This

suggests that in this task the neural network function approximator may be

less likely to over-fit recent transitions compared with the grid world. From

Figure 4.5(b), the Buffer-Q agent with a medium memory (103) achieved bet-

ter performance than all the other Buffer-Q agents. With a large memory (105

or 106), the Buffer-Q agent failed to solve the task. Comparing Figure 4.5 (b)

and (c), we can see that CER improved the performance of the agents with

a large memory (e.g., 103, 105, and 106). One interesting observation is that

some Buffer-Q agents and Combined-Q agents had a performance drop after

certain time steps. We found this drop occurred even with a decreased initial

step size.

Figure 4.6 shows the learning progression of the agents with various mem-

ory size in the game Pong. We observed similar phenomena as the grid world

task. However, in this task, CER did not provide a performance improvement.

4.7 There Is No Universal Rule to Set the

Memory Size

Although experience replay does help stabilize the training of a neural net-

work function approximator and until now we do not have a better approach

64

than experience replay, we have to note that experience replay introduces a

new hyper-parameter, the memory size. It is time to rethink the utility of

experience replay. There is no universal rule to set the memory size. First, the

memory size is task-dependent. The ‘default’ value, 106, never worked best

in our experiments. Second, the memory size is not orthogonal with function

representation. With tabular and linear function representation, a small mem-

ory worked best. With non-linear function representation, a medium memory

worked best.

We proposed CER that made the learning system less sensitive to the

selection of the memory size compared with the original experience replay.

However, CER is only a workaround. We should focus on developing more

principled solutions to the instability issue of the online training for a neural

network function approximator.

68

Chapter 5

Conclusions and Extensions

This chapter serves as an end of this thesis. We briefly discuss our contribu-

tions, followed by possible directions for future research.

5.1 Cross-propagation Is A Promising Tech-

nique

In this thesis, we proposed the cross-propagation technique that does cross-

validation online to update parameters of an algorithm. The key idea is to

use the newly coming training data as a hold-out validation set and treat

the loss on this training data as a generalization loss. We designed three

cross-propagation-based algorithms to train a single hidden layer network.

We demonstrated the merits of the three cross-propagation-based algorithms

in both online and off-line learning. In online learning setting, the cross-

propagation-based algorithms learned features in a more stable way than back-

propagation. In off-line learning setting, the cross-propagation-based algo-

rithms performed better than back-propagation when training data was not

sufficient compared with the network complexity, where over-fitting was likely

to happen.

69

5.2 The Memory Size Is A New Trouble

In this thesis, we presented a systematic study of experience replay, especially

the memory size. We showed that the memory size is a task-dependent hyper-

parameter and is not orthogonal with function representation. There is no

universal rule to set the memory size. The importance of the memory size

has been under-estimated by the community for a long time, and experience

replay is widely used as a standard technique to obtain temporally uncorrelated

transitions. We proposed the Combined Experience Replay (CER). CER made

the learning system more robust to the selection of the memory size compared

with the original experience replay.

5.3 More Combinations of Cross-propagation

and Neural Networks

In this thesis, we applied the cross-propagation technique to train the feature

layer of a single hidden layer network. Future work may involve a deeper

combination of cross-propagation and neural networks, for example, updat-

ing all the layers of a neural network with cross-propagation, applying cross-

propagation to convolutional layers, combining recurrent neural networks with

cross-propagation. We expect that a deeper combination of cross-propagation

and neural networks will help address the over-fitting issue of neural networks.

However, those extensions are non-trivial. The most challenging part is to

reduce the required memory for cross-propagation algorithms. As discussed

in Section 3.4, the memory requirement under a naive extension will increase

exponentially with the increase of the depth of a network. In this thesis, we

proposed two cross-propagation-based algorithms that apply cross-propagation

in the feature level directly, resulting in a reduced memory requirement. How-

ever, new techniques are necessary to reduce the memory requirement further

70

and apply cross-propagation to deeper architectures.

5.4 Cross-propagation in Reinforcement Learn-

ing

Cross-validation is an effective method to avoid over-fitting and is widely used

in off-line supervised learning, where the dataset is predefined. However, re-

inforcement learning systems hardly benefit from cross-validation. The main

reason is that in reinforcement learning problems, we do not have a predefined

dataset. The agent interacts with the environment in an online manner and

adjusts its policy according to the reward signal.

Over-fitting is likely to happen in a reinforcement learning system when a

neural network is used as a non-linear function approximator. Because with a

neural network function approximator, an update to current state value esti-

mation may influence the value estimation of other states too much. This issue

is also known as over-generalization. When a neural network function approx-

imator is only trained on a small portion of the whole state space, due to the

over-generalization issue, the network may focus too much on this small por-

tion of states, and the learned value estimation for other states gets interfered.

When the neural network experiences other states again, it cannot produce an

accurate prediction. This phenomenon usually happens in the online training

of a neural network function approximator, where states for updating the net-

work mainly come from recent transitions. Due to the temporal correlation of

the recent transitions, those states are likely to cover only a small portion of

the whole state space.

Experience replay is widely used to provide temporally uncorrelated tran-

sitions to update a neural network function approximator. In this thesis, we

show experience replay introduces a new task-dependent hyper-parameter, the

memory size, and there is no universal rule to set this new hyper-parameter.

71

Cross-propagation does cross-validation online. This property is a perfect

match with a reinforcement learning system. Future work could involve com-

bining cross-propagation technique with reinforcement learning systems, e.g.,

using cross-propagation-based algorithms to update a neural network func-

tion approximator. This combination is promising in addressing the afore-

mentioned over-generalization issue. And we expect with this combination, a

reinforcement learning system will no longer need experience replay.

72

References

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,
... Zaremba, W. (2017). Hindsight experience replay. In Advances in
Neural Information Processing Systems 30, pp. 5048–5058.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation
by jointly learning to align and translate. In Proceedings of the Third
International Conference on Representations Learning.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Jour-
nal of Artificial Intelligence Research, 47:253–279.

Bellman, R. (2013). Dynamic programming. Courier Corporation.

Bengio, Y. (2000) Gradient-based optimization of hyperparameters. Neural
Computation, 12(8):1889–1900.

Do, C. B., Foo, C. S., & Ng, A. Y. (2008). Efficient multiple hyperparameter
learning for log-linear models. In Advances in Neural Information Pro-
cessing Systems 19, pp. 377–384.

Domke, J. (2012) Generic methods for optimization-based modeling. In Pro-
ceedings of the 2012 International Conference on Artificial Intelligence
and Statistics, pp. 318–326.

Franceschi, L., Donini, M., Frasconi, P., & Pontil, M. (2017). Forward and
reverse gradient-based hyperparameter optimization. In Proceedings of
the Thirty-Fourth International Conference on Machine Learning, pp.
1165–1173.

Franceschi, L., Frasconi, P., Salzo, S., & Pontil, M. (2018). Bilevel program-
ming for hyperparameter optimization and meta-learning. In Proceed-
ings of the Thirty-Fifth International Conference on Machine Learning,
pp. 1563–1572.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., ... Bengio, Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems 27, pp. 2672–2680.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-Cnn. In Pro-
ceedings of the 2017 IEEE International Conference of Compute Vision,
pp. 2980–2988.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,
W., ... Silver, D. (2017). Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed
representations. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, 1(3), 77–109.

73

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1), 55–67.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate
adaptation. Neural Networks, 1(4), 295–307.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
In Proceedings of the Third International Conference on Representation
Learning.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., ... Hassabis, D. (2017). Overcoming catastrophic forgetting in
neural networks. In Proceedings of the National Academy of Sciences,
114(13), 3521–3526.

Klopf, A., & Gose, E. (1969). An evolutionary pattern recognition network.
IEEE Transactions on Systems Science and Cybernetics, 5(3), 247–250.

Konidaris, G., Osentoski, S., & Thomas, P. S. (2011). Value function approxi-
mation in reinforcement learning using the Fourier basis. In Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in Neural Infor-
mation Processing Systems 25, pp. 1097–1105.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of
deep visuomotor policies. Journal of Machine Learning Research, 17(1),
pp. 1334–1373.

Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE Transactions
on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2017.
2773081

Liang, Y., Machado, M. C., Talvitie, E., & Bowling, M. (2016). State of the
art control of Atari games using shallow reinforcement learning. In Pro-
ceedings of the 2016 International Conference on Autonomous Agents
& Multiagent Systems, pp. 485–493.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... Wier-
stra, D. (2015). Continuous control with deep reinforcement learning.
In Proceedings of the Fourth International Conference on Representa-
tion Learning.

Lin, L. J. (1992). Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching. Machine Learning, 8(3-4), pp. 293–321.

Liu, R., & Zou, J. (2017). The effects of memory replay in reinforcement
learning. ArXiv:1710.06574.

Luketina, J., Berglund, M., Greff, K., & Raiko, T. (2016). Scalable gradient-
based tuning of continuous regularization hyperparameters. In Proceed-
ings of the Thirty-Third International Conference on Machine Learning,
pp. 2952–2960.

74

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas imma-
nent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4),
115–133.

Maclaurin, D., Duvenaud, D. K., & Adams, R. P. (2015). Gradient-based hy-
perparameter optimization through reversible learning. In Proceedings
of the Thirty-Second International Conference on Machine Learning,
pp. 2113–2122.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ...
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning. In Proceedings of the Thirty-Third International Conference
on Machine Learning, pp. 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.
G., ... Petersen, S. (2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540), 529.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the Twenty-Seventh Interna-
tional Conference on Machine Learning, pp. 807–814.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami,
A. (2016). The limitations of deep learning in adversarial settings. In
Proceedings of the 2016 IEEE European Symposium on Security and
Privacy, pp. 372–387.

Pardo, F., Tavakoli, A., Levdik, V., & Kormushev, P. (2018). Time limits in
reinforcement learning. In Proceedings of the Thirty-Fifth International
Conference on Machine Learning, pp. 4042–4051.

Pedregosa, F. (2016). Hyperparameter optimization with approximate gra-
dient. In Proceedings of the Thirty-Third International Conference on
Machine Learning, pp. 737–746.

Precup, D., Sutton, R. S., & Singh, S. P. (2000). Eligibility traces for off-policy
policy evaluation. In Proceedings of the Seventeenth International Con-
ference on Machine Learning, pp. 759–766.

Rigamonti, R., Sironi, A., Lepetit, V., & Fua, P. (2013). Learning separable
filters. In Proceedings of the 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 2754–2761.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal
representations by error propagation. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, 1(318), 318–362

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connection-
ist systems. Technical Report CUED/F-INFENG/TR 166. University
of Cambridge, Department of Engineering.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized expe-
rience replay. In Proceedings of the Third International Conference on

75

Learning Representations.

Schraudolph, N. N. (1999). Local gain adaptation in stochastic gradient de-
scent. In Proceedings of the Ninth International Conference on Artificial
Neural Networks, pp. 569–574.

Shin, H., Lee, J. K., Kim, J., & Kim, J. (2017). Continual learning with deep
generative replay. In Advances in Neural Information Processing Sys-
tems 30, pp. 2994–3003.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., ... Dieleman, S. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587), 484–489.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15(1), 1929–1958.

Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3), 165–188.

Sutton, R. S. (1986). Two problems with backpropagation and other steepest-
descent learning procedures for networks. In Proceedings of Eightth An-
nual Conference of the Cognitive Science Society.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differ-
ences. Machine learning, 3(1), 9–44.

Sutton, R. S. (1992a). Adapting bias by gradient descent: An incremental ver-
sion of delta-bar-delta. In Proceedings of the Tenth AAAI Conference
on Artificial Intelligence, pp. 171–176.

Sutton, R. S. (1992b). Gain adaptation beats least squares. In Proceedings
of the Seventh Yale Workshop on Adaptive and Learning Systems, pp.
161–166.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In Advances in Neural Information
Processing Systems 9, pp. 1038–1044.

Sutton, R. S. (2014). Myths of representation learning. Lecture in the Second
International Conference on Representation Learning.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduc-
tion. Cambridge: MIT press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduc-
tion (2nd edition). Cambridge: MIT press.

Sutton, R. S., & Whitehead, S. D. (1993). Online learning with random rep-
resentations. In Proceedings of the Tenth International Conference on
Machine Learning, pp. 314–321.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4,

76

inception-resnet and the impact of residual connections on learning. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. D. L., ... Lilli-
crap, T. (2018). DeepMind control suite. ArXiv:1801.00690.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 267–288.

Tieleman, T., & Hinton, G. (2017). RMSProp: Divide the gradient by a run-
ning average of its recent magnitude. Lecture 6.5 in Neural Networks
for Machine Learning, Coursera.

Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for
model-based control. In Proceedings of the 2012 IEEE International
Conference on Intelligent Robots and Systems, pp. 5026–5033.

Van Seijen, H., Van Hasselt, H., Whiteson, S., & Wiering, M. (2009). A the-
oretical and empirical analysis of expected Sarsa. In Proceedings of the
2009 IEEE Symposium on Adaptive Dynamic Programming and Rein-
forcement Learning, pp. 177–184.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
... Polosukhin, I. (2017). Attention is all you need. In Advances in
Neural Information Processing Systems 30, pp. 6000–6010.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., & de
Freitas, N. (2016). Sample efficient actor-critic with experience replay.
In Proceedings of the Fifth International Conference on Representation
Learning.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Doctoral disser-
tation, King’s College, Cambridge.

Williams, R. J., & Zipser, D. (1989). Experimental analysis of the real-time
recurrent learning algorithm. Connection Science, 1(1), 87–111.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ...
Klingner, J. (2016). Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. ArXiv:1609.08144.

LeCun, Y. (1998). The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist

77

	Learning with Artificial Neural Networks
	Importance of Artificial Neural Networks
	Online Cross-validation
	An Evaluation of Experience Replay
	Outline

	Background and Related Work
	An Example of Back-propagation
	Over-fitting in Neural Networks
	Elements of Reinforcement Learning
	Value Functions
	Q-Learning
	Experience Replay
	Linear Function Approximation with Tile Coding
	Nonlinear Function Approximation with Networks
	Gradient-based Hyper-parameter Optimization

	The Cross-propagation Algorithms
	Towards Learning Features Stably
	Derivation of the Cross-propagation Algorithms
	Experimental Results
	Experiment 1: Online Learning of Related Tasks
	Experiment 2: Off-line Supervised Learning

	Weakness of the Cross-propagation Algorithms

	Evaluation of Experience Replay
	Open Questions
	Combined Experience Replay
	Evaluation Setup
	Experiment 1: Tabular Function Representation
	Experiment 2: Linear Function Approximation
	Experiment 3: Nonlinear Function Approximation
	There Is No Universal Rule to Set the Memory Size

	Conclusions and Extensions
	Cross-propagation Is A Promising Technique
	The Memory Size Is A New Trouble
	More Combinations of Cross-propagation and Neural Networks
	Cross-propagation in Reinforcement Learning

	References

