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Abstract 

A large portion of mathematics education research focuses on elementary and middle 

year’s content with professional development about how to teach mathematics often focused 

using specific tasks to teach certain topics.  This kind of professional development makes it 

difficult for teachers to develop research based pedagogy that can be applied to the entire 

mathematics curriculum.  The purpose of this paper is to explore the theories that influence the 

use of variation pedagogy in the teaching of mathematics.  Through the use of intentional and 

structured variation, teachers can design lessons to enhance their students’ mathematical 

understanding while also developing their own mathematical content knowledge.   
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Theories that Inform the Use of Variation in Mathematics Pedagogy 

 

Research in mathematics education is a growing field with extensive work being written 

about how students learn and understand mathematics as well as how teachers can effectively 

teach mathematics.  While there is much written about teaching and unpacking elementary and 

secondary mathematics concepts, there is limited research that explicitly targets how to 

effectively teach mathematical concepts found in high school mathematics courses, such as pre-

calculus and calculus.  As a high school math teacher, when I attend conferences and 

professional development sessions I am often disappointed at the lack of resources that target 

effectively teaching high school mathematics.  I believe effective teaching of high school 

mathematics involves guiding students to use mathematical skills fluently as well as develop a 

deeper understanding of concepts being taught.  This will allow students to develop knowledge 

retention as well as enhance their ability to problem solve and think critically.  Professional 

development opportunities generally focus on elementary mathematical concepts or target very 

specific high school concepts, using what are often described as a “rich mathematical tasks,” 

with little attention given to how this can be applied to the program of studies as a whole.  Rich 

mathematical tasks can provide effective learning opportunities for students, but can be 

challenging for many teachers to create or replicate on their own.  Searching for rich tasks that 

align with a content heavy program of studies is extremely time consuming and does not always 

produce successful results. 

 In Alberta, our current certification system accredits secondary teachers that have taken a 

minimum number of subject specific advanced courses (Alberta Education, 2020).  This means 

that a mathematics specialist teacher will be certified for having taken advanced mathematics 
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courses such as calculus, linear algebra, and geometry in university.  Begle (as cited in Ball & 

Bass, 2003) investigated the relationship between numbers of courses teachers had taken beyond 

calculus with how well their own students performed.  He found that “taking advanced 

mathematics courses produced positive main effects on students’ achievement in only 10% of the 

cases … and negative main effects in 8%” (Ball & Bass, 2003, p. 3).  Ball & Bass (2003) link 

these negative effects to the need for teachers to be able to unpack content knowledge, where as 

highly skilled mathematicians are used to compressing knowledge.  Mathematics teachers who 

take high level math courses may have experienced more conventional approaches to teaching 

mathematics and are used to certain “pedagogical images and habits” (p. 3) that may not be 

effective with young students.   

Teachers’ knowledge of mathematics involves linking content with pedagogy and having 

a fundamental and profound understanding of mathematics concepts and connections (Ball & 

Bass, 2003; Davis, 2012).  Referred to as specialized content knowledge (Ball & Bass, 2003) or 

mathematical content knowledge (Charalambos, 2019), this specific knowledge refers to the deep 

understanding of the concepts specific to mathematics curriculum taught in schools.  Ball & Bass 

(2003) extend the idea of specialized knowledge of mathematics into pedagogical content 

knowledge, which “is a unique kind of knowledge that intertwines content with aspects of 

teaching and learning” (p. 4).  While many teacher education programs in North America 

separate the teaching of disciplinary knowledge and instructional knowledge (Davis & Simmt, 

2006) teachers are often left to develop pedagogical content knowledge through experience and 

professional development.   

 High school mathematics teachers often rely on resources, such as approved textbooks, to 

guide their teaching practice.  Textbook resources available for high school mathematics courses 
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that follow the Mathematics Grade 10 to 12 Program of Studies (Alberta Education, 2008) 

generally follow a similar blocking pattern that involves chunking content together by showing 

examples of work followed by arbitrarily grouped practice questions.  Experienced mathematics 

teachers who recognize the missed opportunities to make connections within the material spend 

more time creating new materials to better meet the needs of their students.  Although 

exceptional teachers can have different personalities and use many different strategies to engage 

and interact with students in the classroom, I argue that despite the classroom design, the 

teaching of mathematics is most effective with purposefully chosen examples, questions and 

tasks.  

 The pedagogy of variation within mathematical tasks and lessons has existed as part of 

the Chinese teaching model for many years (Mok, 2017) becoming increasingly popular among 

mathematical teaching pedagogy internationally (Pang et al., 2017).  While all teachers use some 

sort of variation and invariance within their teaching, it is how variation can be applied 

systematically that has become a prominent research focus for effective teaching and learning, 

especially in mathematics education (Marton & Pang, 2006).  Mason (2017) uses the term 

variation-pedagogy to refer to “pedagogic actions used to exploit variation” (p. 430), meaning 

that even with textbooks and resources constructed using variation principles, it requires an 

“awakening of teacher awareness” (p. 413) to make appropriate pedagogical choices. 

 Recent studies have demonstrated how using systematic variation to structure 

mathematical tasks can enhance a teacher’s own mathematical understanding (Kullberg et al., 

2017) and cause teachers to “engage differently with the content” (Metz et al., 2016, p. 1256).  It 

is my goal that as teachers learn about how systematic variation can be applied to mathematical 

examples, questions and tasks, their interaction and engagement with mathematical content will 
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continue to develop.  In this paper I will explore the theories that inform a practice of variation 

pedagogy within the mathematics classroom. 

 

Personal Connection and Positionality 

 As a high school mathematics teacher, I have always been motivated to do better.  I strive 

to constantly improve my teaching in order to help improve my students’ understanding and 

achievement.  My focus was often on using teaching strategies and activities I could do in the 

classroom to engage students.  Not all of my students found math as exciting as I did, so I looked 

for activities to make math fun and help them enjoy being in class.  I would find or create 

activities that made doing math feel like a game or encourage students to collaborate and speak 

to each other about math.  Through my experiences, I created a tool box of activities that seemed 

to engage students in working with mathematics.  As I used these activities more, I noticed how 

the different questions I selected within a task could incite particular understandings from my 

students.  I became aware that the questions I used and the order I used them in directed students 

to notice patterns and build their own connections.  I started watching for those AHA! moments 

among my students as well as attending to how my own understanding of the mathematics was 

changing.  As I began my graduate work in University, I was introduced to Marton’s (2015) 

variation theory of learning and began investigating what it meant to have a deeper mathematical 

understanding for both teachers and students.  I recognized that my work of purposefully 

choosing questions and examples to make up mathematical tasks largely related to research 

around the use of variation as part of effective teaching and learning of mathematics.    

It took me a decade of teaching secondary mathematics to understand the power of well-

chosen tasks and examples.  Further research, encouraged by University graduate courses, taught 
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me to continue experimenting with how I structured examples and questions to create effective 

mathematical tasks and in turn allowed me to realize connections that existed within the program 

of studies I was teaching.  Reading and working with Marton’s (2015) variation theory of 

learning opened the door to my own understanding of the different ways systematic variation can 

be applied to mathematical topics.  As will be explored further throughout this paper, there is not 

a “right way” of using variation, but it is the act of observation and awareness by teachers that 

allows for learning opportunities to be had when a systematic, planned form of variation is 

applied to teaching mathematics.  When a teacher focuses their attention on what the intended 

learning is, they are put in a position where it is necessary to consider their own mathematical 

understanding and unpack the mathematical content they are hoping to teach to their students.  

Reflecting on student learning through purposefully structured examples, questions and tasks, 

possibly through learning studies or professional communities of practice, forces attention onto 

that mathematical understanding.   

I believe that using systematic variation to purposefully choose effective examples and 

tasks can be applied to all mathematics classrooms, but especially effective in a high school 

mathematics program of studies.  This focus can help connect a high school mathematics 

teacher’s strong mathematical content knowledge with their pedagogical knowledge, 

transforming their own mathematical understanding.  Effectively attending to the use of 

structured variation can be applied to the teaching of all the content within a high school program 

of studies. 

Literature Review 

 In this review I will explore theories that influence the use of purposeful, systematic 

variation within the mathematics classroom.  I invite you to engage in the Taxicab geometry 
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exercise written by Krause (as cited in Watson & Mason, 2006) shown in Figure 1 as a way of 

experiencing the power of structured variation.  We will refer back to this example throughout 

the review. 

  

Teaching with Variation: Two Frameworks 

As previously noted, most teachers already use some form of variation within their 

teaching.  Explicit variation pedagogy has been part of the Chinese teaching model for many 

years, while it has been in the past couple of decades that research around the use of variation 

has become more prominent in European and North American literature.  Two groups of 

Figure 1 

Taxicab Geometry Exercise 

  ,Dt P A  is the shortest distance from P to A on a two-dimensional coordinate grid, using 

horizontal and vertical movement only.  We call it the taxicab distance. 

 For this exercise  2, 1A    .  Mark A on a coordinate grid.  For each point P in (a) to (h) 

below calculate  ,Dt P A  and mark P on the grid (in the original, they are in a single column so 

there is no temptation to work across rows instead of in order down the columns): 

 

Note. This figure contains a description of Krause’s task as cited in “Seeing an exercise as a single 
mathematical object: Using variation to structure sense making,” by A. Watson & J. Mason, 2006, 
Mathematical Thinking and Learning, 8(2), p. 95.    
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researchers have developed separate frameworks around the use of variation and invariance 

while analyzing mathematics classroom practices (Pang, et al., 2017).   

In Sweden and Hong Kong, Ference Marton led a group of researchers to develop the 

variation theory of learning (Pang et al., 2017).  Originating from “a phenomenological interest 

in differences in how various phenomena appear to people” (Marton & Haggstrom, 2017, p. 

383), variation theory focuses on how people identify novel meanings by discerning differences 

among things that are otherwise the same.  For example, if trying to learn about a circle as being 

a geometric figure, one would need to experience other geometric figures that are not circles and 

begin to discern how a circle is different. While many analyses and studies using the variation 

theory framework focus on mathematics education, according to Pang et al., (2017) variation 

theory “is intended to be a general theory about how people experience and learn to handle 

certain phenomena” (p. 46).  Numerous studies have demonstrated how variation theory can be 

applied to different subjects and educational levels (Pang & Marton, 2003, 2005, 2013; Lo et al., 

2006; Ko, 2013).   

Researchers based out of Shanghai, led by Gu Ling-yuan, formalized the use of variation 

into a theory known as bianshi jiaoxue, meaning teaching with variation (Pang et al., 2017). 

While Marton’s (2015) variation theory is focused on teaching “ways of seeing” across different 

subjects, the bianshi teaching framework is designed to theorize the “effective mathematics 

teaching practices in Chinese classrooms and extend the Chinese theory of bianshi” (Pang et al., 

2017, p. 46; Gu, 1991).  The bianshi teaching framework follows a clearly defined system of 

instructional principles.  Contrary to variation theory, bianshi focuses on highlighting essential 

features by differing the non-essential features.  Using the previously mentioned example to 

teach about circles, when using the bianshi framework, a teacher would show students many 
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different circles with various features such as different colours and sizes, helping students to 

determine the essence of the concept of a circle.  Bianshi teaching also distinguishes between 

conceptual variation, which is “concerned with understanding concepts from multiple 

perspectives” (Mok, 2017, p. 190) and procedural variation which focuses on how these concepts 

are built upon and developed.  Gu describes conceptual variation (as cited in Pang et al., 2017) as 

allowing students to “learn mathematical concepts from multiple examples highlighting essential 

features and clarifying the connotation of concepts by initially excluding (and later including) the 

interference of background and non-essential features of objects” (p. 47).  Procedural variation 

then dictates how mathematical activities progressively unfold to form new concepts and 

enhance the experience of doing these activities.  Procedural variation applied to problem solving 

activities would “include variation on the problem, different solutions to a problem and one 

solution applied to different problems” (Pang et al., 2017, p. 47).  The bianshi framework guides 

the structure and design of the entire mathematics lesson. 

When thinking back to the taxicab distance exercise introduced earlier, consider the 

points for P that were given and the order they were presented in.  Watson & Mason (2006) have 

used this task in an informal study on both teachers and students and noticed that the variation in 

the list of points prompts two generalizations from learners after plotting the first 4 points.  First 

the distance appears to always equal 3 and second, the new points appear to form a straight line, 

as shown in Figure 2.  The straight line generalization assists learners with plotting the fractional 

points, 
1 1

, 1
2 2

  
 

 and 
1 1

1 , 3
2 2

   
 

.  The purpose of  0,0  followed by  2,2 is to break the 
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pattern from the straight line to guide learners into understanding the true shape of the locus 

being formed.   

 

The structure of this task exemplifies how procedural variation as described in the 

bianshi framework, can be applied.  Scaffolding the points so that learners create patterns to 

assist them and then breaking those patterns to engage learners in new understandings, creates a 

specific, problem solving experience.  The learners studied by Watson & Mason (2006) took 

different approaches to plotting the points and determining distance, but the study showed that, 

despite prior knowledge or giftedness, most learners reached a similar understanding in the end.   

Teachers employing the principles from the bianshi framework would likely extend this 

lesson to include more problems with similar characteristics, such as maintaining a pattern of the 

Figure 2 

Straight line Generalization and Pattern Breaking of the Taxicab Distance Exercise 
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points initially forming a line, and beginning to differ non-essential features, such as changing 

the distance of 3 to be something else.  A systematic form of variation would continue to be 

applied within a single problem, but procedural variation would guide the lesson, drawing 

attention to the different ways of working through a single problem. 

Conflicting Frameworks 

Although Marton’s (2015) variation theory of learning may appear to contradict Gu’s 

(1991) theory of bianshi teaching, multiple analyses of lessons using both frameworks (Pang et 

al., 2017; Marton & Haggstrom, 2017) show that while the intended practices differ in how they 

emphasize sameness and difference, the enacted practices look quite similar. Pang et al. (2017) 

examined a lesson of adding 3 digit numbers that was designed based on the bianshi framework, 

providing an understanding and rationale of the instructional design.  The same lesson was then 

analyzed based on the topics using the variation theory framework.  Pang et al. noticed that while 

differences existed between how examples were used, with bianshi emphasizing seeing sameness 

and variation theory emphasizing seeing differences, the two frameworks are actually highly 

compatible. While bianshi provides a focus on the design of instructional tasks, variation theory 

explains how teaching can support learning through the use of patterns of variation and 

invariance.  Pang et al. determined the bianshi and variation theory frameworks to be mutually 

exclusive and “useful in developing a collective understanding” (p. 66).   

 Marton & Haggstrom (2017) compared two lessons, one from Sweden containing 

elements of the variation theory framework and one from Shanghai which was more 

representative of the bianshi teaching framework.  The lessons were analyzed paying attention to 

what dimensions of variation were opened up and how opportunities to notice critical aspects 

were provided to students. Marton & Haggstrom found that in both lessons opportunities of 
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discernment were made available, demonstrating the patterns of variation in accordance with the 

variation theory of learning framework.  According to Marton & Haggstrom, both frameworks 

“agree on the principle that novel and essential aspects of the object of learning in mathematics 

can only be appropriated by the learners by means of separating those essential aspects from 

non-essential aspects” (p. 404). 

Both Marton’s (2015) variation theory of learning and Gu’s (1991) theory of bianshi 

teaching provide not only comparable, but complementary frameworks of how systematic 

variation can be used within the teaching of mathematics.  Mason (2017) conjectures that there is 

no “best sequence” for how and when to apply variation in teaching and Watson & Mason 

(2006) best explain that “Marton’s focus on variation gives us a language” (p. 101) to describe 

what is possible to be learned.  As Marton’s (2015) variation theory of learning is frequently 

cited in studies attempting to demonstrate effective mathematical teaching practices, I feel it is 

important to further elaborate on the language and terminology used within his variation theory 

framework.  

Variation Theory of Learning 

 The general framework of variation theory “envisages that for learning to occur, some 

critical aspects of the object of learning must vary while other aspects remain constant” (Cheng, 

2016, p. 284).  There are two aspects of the object of learning, the direct and indirect (Marton & 

Pang, 2006).  The direct object of learning focuses on the content, often a concept that students 

find difficult, while “the indirect object of learning is the capability that we expect the students to 

develop” (Marton & Pang, 2006, p. 197).  The indirect object of learning is focused on not only 

students having knowledge, but seeing with that knowledge.  “Learning to see something in a 

certain way amounts to discerning certain critical features of that phenomenon and focusing on 
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them simultaneously” (Guo & Pang, 2011).  It is through the experience of variation and 

invariance of particular features that learning and understanding can occur.  

 Noticing and attending to a feature requires experiencing situations that amount to 

discernment of that feature.  Discernment requires experiencing variation.  In order to know what 

something is, there must be an experience of what it is not.  When a critical aspect is varied 

while other aspects remain the same, the critical aspect is able to be separated and discerned.  For 

example, Marton & Haggstrom (2017) discuss a learner encountering a small, blue circle.  The 

learner must be aware of the features “small”, “blue” and “circle” in order to separate and then 

discern their dimensions of variation. 

Marton & Pang (2006) identify four necessary conditions for learning, also known as 

patterns of variation and invariance, which will allow for discernment of critical aspects.  

Contrast requires seeing what something is not in order to identify what it is, similar to the use of 

counter examples in mathematical proofs.  As a result of seeing contrast, separation occurs when 

a learner is able to discern a certain aspect from the other aspects that remain invariant.  Marton 

(2015) views separation as a resulting characteristic of contrast or as Mok (2017) states 

“discernment implies separation” (p. 189) and therefore separation is not always mentioned as a 

necessary condition of learning.  Guo & Pang (2011) provide the example of experiencing the 

colour black.  A learner can start to discern the colour black by seeing other colours, such as red 

or white.  The aspect of colour will be separated from other aspects that are kept invariant, such 

as maintaining the same size, shape or height of an object while only varying colour.  Fusion 

takes place when the learner is able to discern multiple critical aspects simultaneously, such as 

distinguishing between black circles and red squares.  The learner would need to discern between 
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the colours and the shapes.  Generalization occurs when previous discernments can then be 

applied to multiple and various examples or contexts.  

Let’s re-examine the taxicab distance exercise through the lens of Marton’s (2015) 

variation theory of learning.  Point A is kept constant as well as the distance from point P 

remaining 3, allowing for other critical aspects to be discerned.  Through patterning, learners can 

accept the distance to be 3 and are now able to discern how determining distance using fractional 

points is possible.  Developing the pattern of the points forming a straight line then introduces 

the opportunity for points  0,0  and  2,2  to be different.  This contrast now allows learners to 

discern the shape formed around the locus point A.  Allowing learners to think of other points 

that maintain a fixed distance of 3 from point A can lead to generalization around the idea of 

locus points.  Fusion would require extending the activity to then vary the location of point A or 

the distance from point A and allow further generalization to be made about locus points. 

Kullberg et al. (2017) consider the example of linear functions and their equation in the 

form y mx b   to demonstrate the role of contrast, fusion and generalization.  If slope is 

identified as a dimension of variation, a teacher might demonstrate how slopes can affect the 

linear function by varying the m-value in the equation and keeping the b-value invariant. This 

would show contrast and separation of the effect of the m-value on the slope of the linear 

function. Similarly, contrast and separation of the y-intercept can be demonstrated by varying the 

b-value and keeping the slope invariant.  Students may then be allowed to generalize their 

understanding of how changing the m-value or b-value will impact the linear function.  In order 

to fully understand the effect of the equation on a linear function, there must be simultaneous 

discernment of several critical aspects, meaning students must experience changes in both the m-

value and b-value, for fusion to take place.  While many teachers likely teach about the equations 
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and graphs of linear functions by varying the slope and y-intercept in some way, effective 

systematic variation requires purposeful selection of values with teachers drawing attention to 

what students are noticing.   

Variation theory asserts that “learning implies seeing or experiencing critical aspects of an 

object of learning” (Kullberg et al., 2017, p. 560).  Kullberg et al. (2017) explain how the object 

of learning should answer the question “what is to be learned?” by defining the content, the 

educational objective and identifying the critical aspects. Guo & Pang (2011) emphasize that 

“both the disciplinary knowledge and the students’ understanding should be taken into account 

when identifying the critical aspects of an object of learning” (p. 298).  Kullberg et al. (2017) 

state that “when guided by variation theory in planning for learning, the teacher must be aware of 

not just what the critical aspects might be, but how to open then up as dimensions of variation 

and to determine what values in those dimensions would be critical” (p. 561).  Lesson design 

involves anticipating how students currently view critical aspects and how variation will change 

students’ understanding. 

Marton & Pang (2006) describe 3 forms of the object of learning: the intended, the enacted 

and the lived.  This process of deciding what should be learned represents the intended object of 

learning while considering the students’ current way of seeing, the lived object of learning 

(Marton, 2015).  It is necessary that through the lesson the teacher draws attention to the patterns 

of variation and invariance as this is what can either make learning possible or constrain it 

(Kullberg et al., 2017; Marton & Pang, 2006).  Mason (2017) emphasizes that “teaching is about 

directing learner attention appropriately” (p. 410).  The result of these acts of teaching is the 

enacted object of learning (Marton, 2015).  Finally, the outcome of the lesson, what the students 

have learned, then re-establishes the new lived object of learning.   
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When considering the object of learning in the taxicab distance exercise, Watson & Mason 

(2006) emphasize the need for discussion in order to allow learners to affirm and consolidate 

their experience, or what I would argue enhances the fusion and generalization of a learning 

experience.  Watson & Mason claim the enacted object of learning requires the teacher to say 

“look at this” or recognize what the student is looking or thinking about, noting that “teachers 

can … aim to constrain the number and nature of the differences they present to learners and thus 

increase the likelihood that attention will be focused on mathematically crucial variables” (p. 

102).  The important role of the teacher when enhancing learning through the use of structured 

variation cannot be overlooked. 

Marton (2015) discusses how the use of learning studies, a combination of a traditional 

Japanese lesson study and design research, demonstrate the impact on teaching by drawing 

teachers’ attention to their use of variation within teaching.  Learning studies involve a team of 

teachers collaborating to “systematically plan, enact, analyze and revise a lesson in order to help 

the students learn the intended object of learning” (Kullberg et al., 2017, p. 562) by using a 

specific theory as a guiding framework.  It is by observing and analyzing a lesson being taught 

that the enacted object of learning becomes evident. That is, what aspects of variation and 

invariance did the teacher bring awareness too and did students become aware of it?   

Learning studies are commonly used to demonstrate how variation theory can be applied 

to classroom teaching and learning as well as how teachers understanding of the object of 

learning is impacted (Andersson et al., 2018; Carlgren, 2018; Gunnarsoon et al., 2019; Lindberg 

et al., 2018; Pang & Ling, 2012; Runesson & Kullberg, 2017).  Examples of the use of variation 

within mathematics may be highlighted through a learning study, but due to the extensive nature 

of the topic, details about how a learning study is enacted will not be covered in this review. 
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Use of Systematic Variation in the Teaching and Learning of Mathematics  

 There are numerous studies that demonstrate and re-iterate terminology and techniques of 

both Marton’s (2015) variation theory framework and Gu’s (1991) bianshi framework (Guo & 

Pang, 2011; Han et al, 2017; Koichu et al., 2015; Pang et al., 2016; Wong et al., 2009). Though, 

as Mason (2017) points out when discussing how the issues in variation theory inform 

pedagogical choices, there is no “single pedagogic-recipe…because effective teaching depends 

very much on the students and the situation” (p. 422).  Rather than focus on studies that continue 

to reinforce the previously described theories, I have chosen to elaborate on the study by Watson 

& Mason (2006) that uses the taxicab distance task to demonstrate how a group of exercises can 

be treated as a singular mathematical object.  I will then examine two studies that demonstrate 

the impact that the use of variation and invariance can have on the teaching and learning of 

mathematics. 

 Watson & Mason (2006) claim that “tasks that carefully display constrained variation are 

generally likely to result in progress in ways that unstructured sets of tasks do not” (p. 92).  

Recall the thoughts, ideas, and awareness that resulted from the taxicab distance exercise.  

Would the same engagement have occurred while performing a task involving plotting and 

determining distances between these seemingly random points?  In their study using the taxicab 

distance exercise, Watson & Mason (2006) found that the variation used in the exercise spurred 

curiosity among participants and “evoked their natural propensity to look for similarities and to 

make conjectures” (p. 96).  Participants reported being “jolted into thinking mathematically by 

being offered points that broke their current sense of pattern” (p. 97).  Through patterning, the 

acting of using variation and invariance, learners were motivated but also developed a consistent 

and similar understanding, despite approaching the task in different ways.   
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While Marton’s (2015) object of learning may be construed as representing a single 

aspect of a concept, Watson & Mason (2006) treat the structure of the mathematical exercise, be 

it the group of questions or tasks, as a singular mathematical object, using the word object to 

mean “that which is the focus of attention” (p. 100).  They also elaborate on how generalization 

can be interpreted as “sensing the possible variation in a relationship” (p. 94) expanding that into 

abstraction, where relationships that were seen in a specific situation now have the potential to 

be seen in similar situations.  Considering the previously mentioned example on linear functions 

and their equations, I interpret the generalization learners might make about the b-value and y-

intercept could become an abstraction as learners experience the idea of the constant value on 

any equation of a polynomial function as also representing the y-intercept.  

 Kullberg et al. (2017) studied the changes in practice of teachers that had participated in a 

series of learning studies.  Teachers were involved in studies over three semesters which 

involved a collaborative cycle of planning lessons using ideas from the variation theory 

framework, teaching, then analyzing the lesson and making revisions.  In order to examine the 

effects on teaching practice, Kullberg et al. also analyzed a separate lesson from each teacher 

before participating in the learning studies and compared it with a similar lesson taught after.   

Kullberg et al. (2017) analyzed examples used by the teacher using Marton’s (2015) 

variation theory framework to discover not only had the intended and enacted object of learning 

changed, but the teacher’s philosophy about teaching to solve linear equations had changed.  In 

the original lesson, the teacher’s object of learning was focused on the method and procedure for 

solving a linear equation.  In the follow up lesson, after participating in the learning studies, the 

teacher’s object of learning had changed to be about understanding the structure of the equation.  
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The teacher’s philosophy had shifted from teaching a method resulting in a solution to a 

philosophy of developing a foundational understanding of an equation in order to then solve it.  

In the teacher’s first lesson, the dimensions of variation used involved the meaning of the 

equal sign, representing equations symbolically and numerically, then showing non-solvable 

equations, followed by solving equations in a context or word problem. In the follow up lesson 

after the lesson studies, the teacher’s design changed.  He now created 4 tasks focused on 

understanding equality and mathematical operations, keeping base equations invariant while 

systematically using variation to demonstrate the effects of different operations.  As shown in 

Figure 3, one of the teacher’s tasks is designed to demonstrate properties of equality. He kept the 

equation 3 4 7  invariant while the different operations applied on both sides of the equal sign 

are varied.  This makes it possible for students to discern how the same operation needs to occur 

on both sides in order to maintain equality. 

 

Figure 3 

Properties of Equality Task 

 

Note.  This task shows how systematic variation was used to demonstrate properties of equality.  
From “What is made possible to learn when using the variation theory of learning in teaching 
mathematics?” by Kullberg, R., Runesson Kempe, U., & Marton, F, 2017, ZDM Mathematics 
Education, 49, p. 563.  
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While Kullberg et al. (2017) are unable to conclude how critical this change in lesson philosophy 

was on student learning, they emphasize that how a teacher decides to attend to the object of 

learning by incorporating patterns of variation and invariance as well as drawing attention to 

those patterns can change what is made possible to learn.  

 Preciado-Babb et al. (2019) demonstrate how variation can be used in mathematics 

classrooms through their Math Minds Initiative.  They consider the use of systematic variation 

essential in creating and adapting lessons as well as informing in-the moment teaching decisions.  

Continuous assessment during a lesson as well as teacher’s responding appropriately to that 

feedback is necessary and requires teachers to have a deep mathematical understanding. 

 The framework for Preciado-Babb et al.’s (2019) lesson design requires the use of four 

key teaching strategies they have termed raveling, prompting, interpreting, and deciding.  

Raveling involves identifying the critical discernment and decomposition of a concept.  The use 

of macro-raveling involves the long range planning of discernments while micro-ravelling 

focuses on discernments within an individual lesson, connecting with similar ideas found in 

bianshi teaching (Mok, 2017; Pang et al., 2017).  The act of decomposing the concepts links 

back to the need for teachers to be able to unpack mathematical content (Ball & Bass, 2003).  

Prompting involves engaging students and drawing attention to each discernment, similar to 

Mason’s (2017) emphasis on teacher awareness when using variation.  Interpreting involves 

sensing the lived object of learning (Marton, 2015) of each student and finally deciding is when 

the teacher “chooses between stepping back, lingering, or pressing on” (Preciado-Babb et al., 

2019, p. 348).  Drawing on Watson & Mason’s (2006) use of variation, a well-designed set of 

tasks will allow for similar understandings to be had as well as allowing for ways to extend the 

task and provide further challenges as learning goals are met. 
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 Through the Math Minds Initiative, Preciado-Babb et al. (2019) have witnessed not only 

significant improvement in student performance but also improvements in lesson plans and 

teaching approaches of teachers involved in the study.  The teaching strategies used in their 

lesson design demonstrates how critical teacher’s pedagogical content knowledge (Ball & Bass, 

2003) is for planning tasks as well as responding to students’ needs and abilities effectively.  

Metz et al. (2016) notes that teachers who engage in professional development as part of the 

Math Minds Initiative “engage differently with the content” (p. 1256) when it is offered using 

clearly structured variation.  Effective resources that involve purposeful, systematic variation as 

well as teacher awareness to understand the object of learning and effectively draw attention to it 

within the classroom have a valuable impact on student engagement and achievement. 

Teachers’ Choice of Examples in the Mathematics Classroom 

 Zodik & Zaslavsky (2008) studied five experienced secondary mathematics teachers, 

analyzing their choice and use of examples within the mathematics classroom.  “Three aspects of 

teacher knowledge strongly relate to exemplification in mathematics education: knowledge of 

mathematics, knowledge of students’ learning, and pedagogical content knowledge” (p. 3).  This 

impacts the decision-making involved in teaching, both in the pre-planned aspects as well as the 

classroom interactions, or as Mason & Spence (as cited in Zodik & Zaslavsky, 2008) refer to as 

knowing to act in the moment.  While there has been increasing research into the mathematical 

knowledge needed for teaching (Bass & Ball, 2003) and “the critical and multifaceted roles of 

examples in learning and teaching mathematics” (Zodik & Zaslavsky, 2008, p. 168), Zodik and 

Zaslavsky focus on teacher knowledge and their use of examples. 

 Through observations and interviews with the teachers, Zodik and Zaslavsky (2008) 

categorized the examples used in class as pre-planned or spontaneous.  Pre-planned examples 
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often came from resources such as textbooks, whereas “spontaneous examples were often 

generated in response to students’ queries or claims” (p. 172).   Examples were also classified 

into considerations that teachers employed when choosing or constructing the examples.  These 

considerations sometimes reflected pedagogical content knowledge or were sensitive to the 

needs of their students, but in all cases their choice “relied to a large extent on sound 

mathematical knowledge of the relevant topics” (p. 173). 

 The most common consideration in choosing examples was to “start with a simple or 

familiar case” (Zodik & Zaslavsky, 2008, p. 173) followed by attending to common student 

errors or difficulties.  Teachers also considered how to “draw attention to relevant features” (p. 

175) in an attempt to reduce, what Skemp (as cited in Zodik & Zaslavsky, 2008) terms as the 

noise that obstructs the ability to form a concept.  Although teachers involved “claimed that they 

had never articulated how to select and generate examples” (Zodik & Zaslavsky, 2008, p. 173), 

by choosing examples with the intent of noticing relevant features demonstrates how experienced 

teachers use aspects of variation, similar to principles of Marton’s (2015) variation theory or 

Watson and Mason’s (2006) use of structured variation, within their teaching.  Zodik & 

Zaslavsky (2008) noted that “they [the teachers] had never explicitly thought about these issues.  

Thus, by asking them to reflect on their work and examine what principles or rules of thumb 

guide them, they became more aware of their planning and in-the-moment actions” (p. 173).  

This demonstrates how through experience, teachers develop skills and principles that closely 

align with aspects of systematic variation.  I conjecture that by educating mathematics teachers 

on the use of systematic variation in teaching mathematics and encouraging reflection on their 

own teaching practice, teachers will not only enhance their use of purposeful examples within 

the classroom but learn to articulate their own practice in a professional way.  



24 
 

Conclusion 

 In this paper I have explored the frameworks of bianshi teaching and variation theory to 

support how a purposeful form of systematic variation can be applied to the teaching of 

mathematics.  The bianshi teaching framework guides the use of variation through the entire 

lesson allowing learners to experience the essence of a concept.  Key features of concepts are 

kept constant while background features are intentionally introduced and varied. Procedural 

variation is also applied in the types and progression of examples used throughout the lesson.  

Variation theory of learning (Marton, 2015), on the other hand, focuses on the need to discern 

critical aspects of the object of learning.  Learners focus on contrast by seeing how something is 

different or changes, which leads to the ability to fuse multiple aspects and generalize topics.  

While these two frameworks seem to advise different ways to apply variation to mathematics 

teaching, elements from both frameworks can work to complement each other in guiding 

teachers to create mathematical lessons and enhance the mathematical understanding of the 

learners.   

The taxicab distance exercise has demonstrated how powerful intentionally structuring a 

task by attending to how the progression of the task varies can be.  A task where learners were 

given random points would reinforce the skills involved in plotting points on a grid and 

determining distance, but would not engage learners in making connections to locus points or 

reaffirm a learner’s ability to determine distance when plotting fractional points.  If on the other 

hand, a teacher chose to describe geometric shapes and identify the locus points for students, 

there is the potential for learning to occur, but at risk of less student engagement and retention 

when compared to performing the taxicab distance exercise.     
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The systematic use of variation can be a powerful tool for teachers that can be applied to 

all mathematical topics within a program of studies.  The process of incorporating structured 

variation into mathematical lessons requires teachers to make intentional choices when 

developing sets of examples, questions and tasks as well as being aware of what learners should 

attend to while doing the mathematics. This involves teachers recognizing what the intended 

object of learning is and keeping that focus throughout the pre-planning of examples to be used 

in the lesson.  Teachers must also be prepared to respond to the enacted object of learning and 

create spontaneous examples within the learning environment and involve learners in discussion, 

giving them the opportunity to make their own connections.  Finally, teachers must reflect on 

what learning has occurred in a lesson in order to guide the next learning opportunity. It is 

through this process of in-depth engagement with the mathematics and consideration of how 

learners interact with the mathematics that teachers will bridge the gap between their own 

mathematical knowledge and their pedagogical knowledge.   

I believe using elements variation to guide the practice of teaching mathematics provides 

teachers the opportunity to develop more consistently meaningful examples and tasks as well as 

enhance the learning opportunities available to students.  Teachers already use some form of 

variation within their teaching.  Exploring the theories and research related to the use of variation 

provides teachers with the language to explain their teaching practice as well as guidelines to 

continue to make their use of variation more consistently effective.  This will ultimately enhance 

the learning and understanding in the mathematics classroom for both students and teachers.  
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