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Abstract

G-structures on fusion categories have been shown to be an important tool to

understand orbifolds of vertex operator algebras [24][30][20]. We continue to develop

this idea by generalizing Eilenberg-Maclane’s notion of an Abelian 3-cocycle to de-

scribe G-structures on fusion categories as G-(crossed, ribbon) Abelian 3-cocycles on

an algebra H. In particular, we show that a G-(crossed, ribbon) Abelian 3-cocycle on

H will induce a G-(crossed braided, ribbon) tensor structure on its category of mod-

ules Mod(H). We then prove that every G-(crossed braided, ribbon) fusion category

C will be equivalent to the category of modules of some finite dimensional algebra

H with G-structure induced from a G-(crossed, ribbon) Abelian 3-cocycle. We call

this G-reconstruction.

Lastly, we prove that a G-ribbon Abelian 3-cocycle Γ on H allows us to describe

the equivariantization (Mod(H))G as the category of modules of a ribbon (weak)

quasi Hopf algebra H#ΓC[G]. We call this the Hopf equivariantization theorem.

By G-reconstruction this shows that if V is a strongly rational vertex operator

algebra where G acts faithfully on V such that VG is also strongly rational, then

there is an equivalence of modular fusion categories:

Mod VG ∼= Mod(H#ΓC[G]) (0.1)

for some finite dimensional algebra H with a G-ribbon Abelian 3-cocycle Γ. This

provides a proof of the Dijkgraaf-Witten conjecture, and generalizes it as far as

possible in the semi-simple setting.
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Chapter 1

Introduction

1.1 Overview

Humans are really only good at linear algebra and counting. As such, an important

principle in much of mathematics is to reduce complicated problems to linear algebra.

For example, differentiation in analysis and representations in group theory.

Another area where this principle is important is in tensor categories. Tensor

categories are a mathematical tool that gives us a uniform way to understand a wide

array of mathematical structures. Essentially a tensor category is the categorification

of a ring with a unit. That is a tensor category is a category C where you can

add objects, there is a zero object, you can multiply objects through an operation

⊗ : C×C → C called the tensor product, ⊗ has a unit object, and it is associative up

to natural isomorphism. If a non-zero object in a tensor category has no non-trivial

sub-objects we say it is simple. In this thesis we will only be working with tensor

categories where every object is isomorphic to a sum of simple objects. Such tensor

categories are called fusion categories. Using the categorification analogy, think of

them as semi-simple rings.

To make this categorification analogy even more precise, one can associate to

every fusion category C something called a fusion ring, denoted by K0(C). This is

defined by letting O be the set of isomorphism classes of simple objects in C and then
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taking the free Z-module generated by O. Multiplication on elements [X], [Y ] ∈ O
is given by writing [X ⊗C Y ] as the direct sum of simple objects.

The simplest example of a fusion category is the category of finite dimensional

vector spaces over C, which we denote by Vect. The tensor product is the usual

tensor product of vector spaces, and the unit object is C. As every finite dimensional

vector space V is isomorphic to Cn for some n ∈ N we see that C is the only

simple object of Vect. Therefore, K0(Vect) ∼= Z. For this reason Vect is called the

trivial fusion category. Throughout this thesis all groups G are assumed to be finite.

Two examples that will be particularly important for this thesis are the category of

representations of a group G, and the category of G-graded vector spaces. Denote

the former by Rep(G). Objects of Rep(G) are tuples (V, ρV ) where V is a finite

dimensional vector space over C, and ρV : G → GL(V ) is a group homomorphism.

The tensor product of Rep(G) is defined for two objects (V, ρV ), (W, ρW ) as (V ⊗C

W, ρV⊗W ) where ρV⊗W (g) := ρV (g) ⊗ ρW (g) for g ∈ G. A morphisms in Rep(G)

between (V, ρV ), (W, ρW ) is a linear map f : V → W such that for all g ∈ G:

ρW (g) ◦ f = f ◦ ρV (g) (1.1)

such a morphism called an intertwiner. The fusion ring of Rep(G) is isomorphic to

ring of characters onG. The category ofG-graded vector spaces is the category whose

objects are finite dimensional vector spaces V =
⨁︁

g∈G Vg graded by G. Morphisms

f : V → W in VectG are linear maps such that for every g ∈ G f(Vg) ⊂ Wg. The

tensor product is defined as (
⨁︁

g∈G Vg)⊗ (
⨁︁

g∈GWg) =
⨁︁

g∈G(V ⊗C W )g where:

(V ⊗C W )g :=
⨁︂
r,k∈G
rk=g

Vr ⊗Wk (1.2)

The unit object will be the vector space (C)e whose g-th component is the zero

vector space except when g = e in which case it is C. The set of simple objects of

VectG are the vector spaces (C)g for g ∈ G, where (C)g is defined in a similar way as

(C)e. From this one sees then that the set of simple objects, up to isomorphism, of
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VectG is G and the tensor product on the simple objects is just the group operation.

Therefore, K0(VectG) ∼= Z[G]. For this reason VectG is an instance of what is called

a categorical group. In general a categorical group is a fusion category whose set of

simples form a group. That is the fusion ring is a group algebra.

Just as fusion categories are the categorification of unital rings, braided fusion

categories are the categorification of commutative unital rings. In [22] Joyal and

Street proved that all possible braidings on a categorical group with group of simples

G are give by tuples (ω, c) called Abelian 3-cocycles on G. In short an Abelian 3-

cocycle is a 3-cocycle ω on G with an ω-twisted G bi-character. For the details we

refer the reader to Appendix A.6.1. Just as in usual group cohomology one can

define when two Abelian 3-cocycles on G are equivalent. Quotienting out by this

relation one obtains the Abelian cohomology group H3
Ab(G,C×) and this will be in

bijection with equivalence classes of braided structures on categorical groups with

underlying group G. One of the goals of this thesis is showing that G-structures on

fusion categories are completely described through a similar cohomological story.

An important example of a G-structure on a fusion category is a categorical group

action. Using the ring analogy, a categorical group action is the categorification of

a group acting on a ring as ring automorphisms. Another important type of G-

structure is a G-crossed braided fusion categories. To motivate this it is best to look

at what a G-crossed braided structure is on a categorical group. This was done by

Naidu in [31]. In this case if C is a categorical group with underlying group K, then

a G-crossed structure on C is essentially the categorification of a crossed module

(K,G, ∂), that is G acts on K as group automorphisms and ∂ : K → G is a group

homomorphism such that for all g ∈ G, k1, k2 ∈ K

∂(gk1) = g∂(k1)g
−1 (1.3)

∂(k1)k2 = k1k2k
−1
1 (1.4)

The categorification of a crossed module includes a piece of data called a quasi-

Abelian 3-cocycle Γ and this consists of a tuple of cocycles defined on K,G. When

G = {e} this recovers the usual definition of an Abelian 3-cocycle hence the name.
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In general a G-crossed braided fusion category C will have a G-grading C =⨁︁
g∈G Cg and a collection of natural isomorphisms for every X ∈ Cg, Y ∈ C

cX,Y : X ⊗ Y → Tg(Y )⊗X (1.5)

among many other conditions. This was first defined by Müger in [30] in relation to

orbifolds of conformal nets, something that we will explain later. Notice that when

C is a categorical group this just means that Tg(Y ) ∼= X ⊗ Y ⊗X−1 which is one of

the crossed axioms. A major result of this thesis is giving a cohomological descrip-

tion of G-crossed braided fusion categories similar to Naidu’s but for all G-crossed

braided fusion categories. Additionally, we provide a cohomological description of

all G-ribbon fusion categories, these are G-crossed braided fusion categories with the

categorical version of a G-equivariant quadratic form.

Joyal and Street’s classification of braided structures on categorical groups, and

Naidu’s classification of crossed braided structures on categorical groups are both

examples of the principle of reduction to linear algebra being applied to fusion cat-

egories. Another example of this principle in action, that is fundamental to theory

developed in this thesis, is the idea of a quasi-triangular weak quasi Hopf algebra.

As a quick reminder, a Hopf algebra H is a unital associative C-algebra with a

co-multiplication ∆ : H → H ⊗ H, co-unit ϵ : H → C and antipode S : H → H.

The co-multiplication is required to be co-associative:

(IdH ⊗∆) ◦∆ = (∆⊗ IdH) ◦∆ (1.6)

and the co-unit must satisfy:

(ϵ⊗ IdH) ◦∆ = (IdH ⊗ ϵ) ◦∆ = IdH (1.7)

Furthermore, ∆, ϵ must be unital algebra homomorphisms. The reason we want such

a structure is it allows us to endow Mod(H) with the structure of a tensor category by

defining the tensor product of two finite dimensional representations (V, ρV ), (W, ρW )

4



as:

(V, ρV )⊗ (W, ρW ) = (V ⊗C W, (ρV ⊗ ρW ) ◦∆) (1.8)

Furthermore, ϵ makes C a H-module and this will be the tensor unit with this mul-

tiplication. Because of Equation 1.6 the tensor product will be associative. Another

piece of data included in a Hopf algebra is an anti-pode, this is anti-automorphisms

of H and is needed so we can define dual objects in Mod(H). When H is semi-simple

Mod(H) will be a fusion category that is purely defined through linear algebra. An

important example to keep in mind is C[G] where the co-product defined for g ∈ G

as ∆(g) = g⊗g, the co-unit is ϵ(g) = δg,e and antipode is S(g) = g−1. Unfortunately,

to apply this technique to all fusion categories we need a more the general notion of

a weak quasi Hopf algebra.

Weak quasi Hopf algebras, or wqhfs for short, were first introduced by Drinfeld

in [11]. Endowing a unital C-algebra H with the structure of a wqhf will induce

tensor category structure on Mod(H), and essentially reduces the intricacies of ten-

sor categories to linear algebra. When H is semi-simple one should think of H as

representing the fusion ring of Mod(H). The details of a wqhf will be covered in

Chapter 2, but briefly a wqhf is a Hopf algebra H with an (partially) invertible

element Φ ∈ H ⊗ H ⊗ H called the Drinfeld Associator such that Equation (1.6)

holds up to conjugation by this element. Φ is required to satisfy some “cohomolog-

ical” conditions with respect to the co-multiplication ∆ and so in some sense is a

generalization of 3-cocycles to fusion rings that aren’t just group algebras. To give

Mod(H) the structure of a braided tensor category one needs to endow the wqhf

H with a quaitriangular structure, qt structure for short. This is an (partially) in-

vertible element R ∈ H ⊗H called the R-matrix and and the R-matrix R will be a

sort of “twisted bicharacter” with respect to Φ. As with a wqhf structure, a qt wqhf

structure on H reduces the intricacies of braided tensor categories to linear algebra.

Furthermore, one can define when two qt wqhfs are similar through something called

twist equivalences (see Section 2.7) and it can be shown that two qt wqhf structures

on H are twist equivalent if and only if the induced braided tensor category struc-

tures on Mod(H) are equivalent. For these reasons, one can think of the tuple (Φ, R)
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as generalizing an Abelian 3-cocycle to a fusion ring. Indeed letting H = CG be the

algebra of functions on G, one recovers the definition of an Abelian 3-cocycles.

In Chapter 3 we introduce three types of G 3-cocycles on a unital C-algebra H:

1. G Abelian 3-cocycles: These are wqhf structures on H with a compatible

“projective” group action of G on H, along with some cocycles defined on

H. We show that every G Abelian 3-cocycle on H endows Mod(H) with the

structure of a tensor category and a categorical G-action.

2. G-crossed Abelian 3-cocycles: These are G Abelian 3-cocycles with an element

c ∈ H ⊗ H called the G-crossed R-matrix. We show that every G-crossed

Abelian 3-cocycle endows Mod(H) with the structure of a G-crossed braided

tensor category.

3. G-ribbon Abelian 3-cocycles: These areG-crossed 3-cocycles with aG-equivariant

ribbon element ν ∈ H. We show that every G-ribbon Abelian 3-cocycle endows

Mod(H) with the structure of a G-ribbon tensor category.

We also define when such 3-cocycles are equivalent, and hence obtain the set of

equivalence classes H3
G−Ab(H), H3

G−Crssd(H), H3
G−Rbbn(H). We prove that equivalent

3-cocycles induce equivalent G-structure on Mod(H). In the case that H := CG

we recover Naidu’s definition of a quasi-Abelian 3-cocycle, and hence an Abelian

3-cocycle. Therefore, the material in Chapter 3 is a generalization of Eilenberg-

Maclane’s Abelian 3-cocycles and Naidu’s quasi-Abelian 3-cocycles.

The main reason we have chosen to develop this this story for wqhf is that every

(braided) fusion category is equivalent to the category of modules of some (qt) wqhf.

This was shown in [21] by Häring, and is an example of a reconstruction result.

Essentially reconstruction is the process of determining an algebraic object (up to

isomorphism) by it category modules. For example, if you have a Hopf algebra H,

then there is a forgetful functor Forg : Mod(H) → Vect. One can show that the set

of natural transformations of the functor Nat(Forg) will be a Hopf algebra and is

isomorphic to H. In general if one has a nice fusion category C and a fiber functor

(F, JF , ϕF ) : C → Vect, then one can show that H := Nat(F ) is a Hopf algebra and
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there is an equivalence of fusion categories C ∼= Mod(H). Think of a fiber functor

as the categorical version of a ring homomorphism to Z. In general it is not always

possible to find a fiber functor for every fusion category, and instead one must settle

for a weak quasi fiber functor (F, JF , ϕF ) : C → Vect. The details of what a weak

quasi fiber functor are explained in Section 2.8. In this case H := Nat(F ) will instead

be a wqhf. As explained in [21], if C is a fusion category with set of simples O, then

one way to construct a weak quasi fiber functor is by assigning for ever X ∈ O a

natural number D(X) in a way that is weakly compatible with the tensor structure

of C. From this assignment you can create a weak quasi fiber functor by sending

F (X) to CD(X) for simple X and extending by linearity to an arbitrary object. Such

a function is called a weak dimension function on C. Häring proved that every

(braided) fusion category has a weak dimension function, hence a weak quasi fiber

functor and therefore is equivalent to the category of modules of some (qt) wqhf.

In Chapter 4 we prove a G-reconstruction result. That is we show every G-

(ribbon,crossed braided) structure on a fusion category is equivalent to the category

of modules of some wqhf H with G-structure induced by some G-(ribbon,crossed)

Abelian 3-cocycle. Furthermore we show that equivalent G-(ribbon, crossed braided)

fusion categories induce equivalent G-(ribbon,crossed) Abelian 3-cocycles on H. The

main technical tool we introduce for this is the concept of a weak quasi G-equivariant

fiber functor. This is a weak quasi fiber functor F : C → Vect such that the functor

is G-equivariant up to natural isomorphism. The G-reconstruction theorem implies

that G-(ribbon,crossed) Abelian 3-cocycles on a finite dimensional algebra H com-

pletely describe all fusion categories with G-(ribbon,crossed) structures. Therefore,

the material in Chapter 4 can be thought of as a vast generalization of Joyal and

Street’s classification to all G-structure on fusion categories.

Just as a categorical group action is the categorification of a group action, equiv-

ariantization is the categorical version of taking the fixed points. Understanding the

equivariantization of G-(ribbon,crossed braided) fusion categories has large implica-

tions for understanding orbifolds of vertex operator algebras.

Vertex operator algebras, or VOAs for short, were first defined by Borcherd’s

in [3]. Being very loose with the details, a VOA is an infinite dimensional vector
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space V , with an infinite collection of multiplications packaged together in a map

Y : V ⊗C V → V [[z]] called the state-field correspondence. Here V [[z]] denote the

formal power series in z, z−1 with coefficients in V . Despite their complicated nature,

VOAs play a fundamental role in describing the mathematical structure of a special

type of quantum field theories called conformal field theories. Due to this, VOAs has

been a very active area of study for the past 30+ years.

Another reason from a mathematical standpoint is there a natural definition of

a module of a VOA V , and so one can consider the category Mod V . When V is

strongly rational Mod V will be something called a modular fusion category. Using

the categorifictaion analogy a modular fusion category is a commutative ring with

an action of the modular group PSL(2,Z) on it. There is a conjecture [18] that

all modular fusion categories are the category of modules of some strongly rational

VOA. This is called the Reconstruction Conjecture for VOAs, and slowly progress

towards solving this conjecture has been made [15].

For this reason among many others it would be extremely valuable to understand

the categorical structure of a large family of VOAs called orbifolds. An orbifold VOA

is a VOA V with a group G acting on it, we won’t define what it means for a group

to act on a VOA but see [26] for details, one can take the fixed points VG and this

will again be a VOA which we call an orbifold. A large amount of work has been

done by the VOA community to understand specific cases of the general problem:

Give a strongly rational VOA V with a finite group G acting on it. Can

you determine the categorical structure of Mod VG from Mod V and the

action of G?

The most famous conjecture of this form is the 25+ year old Dijkgraaf-Witten con-

jecture that says if V is a strongly rational VOA with a finite group G acting faith-

fully on it and Mod V ∼= Vect then there exists a 3-cocycle ω on G such that

Mod VG ∼= Mod Dω(G) [8]. We won’t go into detail of what Dω(G) is and instead

reference the interested reader to [7], but essentially it is a quasi Hopf algebra with

vector space CG ⊗ C[G].
Returning to the tensor categorical side, it is known that if C is a G-(ribbon,
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crossed braided) fusion category then the equivariantization CG will be a (ribbon,

braided) fusion category. In Chapter 5 we show that if H is a unital C-algebra and

Γ is a G-(ribbon,crossed) Abelian 3-cocycle on H, then the equivariantization of

(Mod(H))G will be equivalent as a (ribbon, braided) fusion category to the category

of modules of H#ΓC[G]. Here H#ΓC[G] is a (ribbon, qt) wqhf defined through

the G-(ribbon,crossed) Abelian 3-cocycle Γ on H. In particular, the underlying

vector space will be H ⊗C C[G]. We call this the Hopf equivariantizatio theorem.

Combining this with the G-reconstruction theorem from Chapter 4 we obtain a

linear algebraic description of the equivariantization of all G-(ribbon,crossed braided)

fusion categories. As we will discuss in more detail in the next section this provide a

uniform categorical description of all strongly rational VOA orbifolds. In particular

the Dijkgraaf-Witten theorem is a special case of this description.

Lastly, it should be noted that while the result that every fusion category is

equivalent to Mod(H) for some wqhf H is important, finding the particular finite

dimensional algebra H corresponding to a fusion category C and determining the

wqhf structure requires intimate knowledge of C’s fusion ring. When C = ⊕g∈GCg is

a G-crossed braided fusion category it is often possible to determine this data simply

from Ce and the action of G[14][1]. We believe that for this reason G-(crossed,ribbon)

Abelian 3-cocycles could be a useful tool to understand a wide array of fusion cate-

gories.

For the readers convenience we have included a concise description of the thesis.

Chapters 1, 2 are background, while Chapter 3, 4, 5 are completely original.

� Chapter 1: We review the needed G-structures namely, G-tensor categories,

G-crossed braided tensor categories and G-ribbon tensor categories. We prove

that these structures can be transported along adjoint equivalences.

� Chapter 2: We review the various types of wqhf structure on H and how they

induce categorical structures on Mod(H).

� Chapter 3: We define various G Abelian 3-cocycles on a unital C-algebra H.

Namely:
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1. G Abelian 3-cocycles

2. G-Crossed Abelian 3-cocycles

3. G-Ribbon Abelian 3-cocycles

We show that a G Abelian 3-cocycle induces a G-tensor category structure

on Mod(H) and a G-(crossed, ribbon) Abelian 3-cocycle on H will induce a

G-(crossed braided, ribbon) structure on Mod(H).

� Chapter 4: We prove G-reconstruction for fusion categories. That is if C is a

fusion category with one of the previously mentioned G-structures, then there

exists a finite dimensional algebra H and corresponding G 3-cocycle ΓC such

that C is equivalent to Mod(H) with G-structure induced by ΓC.

� Chapter 5: We prove the Hopf equivariantization theorem. That is if H

is a unital C-algebra with G-(crossed, ribbon) Abelian 3-cocycle Γ, then we

define a (qt, ribbon) wqhf H#ΓC[G] and we show that there is a equivalence

of (braided,ribbon) tensor categories:

(Mod(H))G ∼= Mod(H#ΓC[G]) (1.9)

where (Mod(H))G denotes the equivariantization of Mod(H). In particular by

the previous chapter this provides a description of the equivariantization of all

G-(crossed braided, ribbon) fusion categories.

If the reader only wants to understand the results from Chapter 5 and does not

care about the details, they should skip Chapter 4. Lastly, as the details of some

proofs get quite complicated we have moved a majority of the straightforward proofs

to the appendix so as to not impede the flow of reading. When a detail has been

moved to the appendix the specific section will be referenced.
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1.2 Further Discussion and Related Work

While the previous section was pedagogical in this section we discuss in detail the

implications the results of this thesis has to the area of VOAs and tensor categories,

hence we assume the reader to be knowledgeable in these areas.

As previously stated, the pinnacle of this thesis is forming the following theorem

about VOA orbifolds:

Theorem 1.2.1. Let V be a strongly rational VOA, and assume that a finite group

acts on V such that VG is rational. Then there exists a semi-simple finite dimensional

C-algebra H with a G-ribbon 3-cocycle Γ on it such that there is an equivalence of

modular fusion categories:

Mod VG ∼= Mod(H#ΓC[G]) (1.10)

This follows from the main theorem of Chapter 5, Theorem 6.2.2, and utilizes

the idea of the “Orbifold Triangle” which we now briefly recall. If V , G are as as in

Theorem 1.2.1 then there are three important actors: Mod V ,Mod VG,TwModG(V).
Here TwModG(V) denotes the category of direct sums of g-twisted V-modules for

g ∈ G. By [29] TwModG V will be a G-ribbon fusion category. These actors will be

the vertices of the triangle, are and related to one another through various processes

as illustrated below:

Mod V TwModGV

Mod VG

G-Crossed Braided Extension

Equiv.

De-Equiv.

G-Fixed Points

Figure 1.1: The Group Orbifold Triangle

Here Equiv. stands for equivariantization and De-Equiv. stands for de-equivariantization.

Think of equivariantization as a restriction functor and de-equivariantization as in-
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duction functor. The main principle of the orbifold triangle is that if we already

know one of the vertices it is possible to determine or say a lot about the others.

For example, if we know what Mod V is and how G acts on it, then we can say

a lot about the G-ribbon structure of TwModG V , and therefore the ribbon fusion

category Mod VG. It should also be noted that under the assumption of Theorem

1.2.1 we can apply G-reconstruction to the twisted modules to obtain an equivalence

of G-ribbon fusion categories TwModG V ∼= Mod(H). The proof of Theorem 1.2.1

follows from Theorem 6.2.2 combined with the fact proven in [24] that:

(TwModG V)G ∼= Mod VG (1.11)

One can think of H as an algebra representing the fusion ring of TwModG V , and
so Theorem 1.2.1 highlights the role the G-twisted modules play in determining

the categorical structure of Mod VG. A related idea to the orbifold triangle is a

generalization called the hypergroup obrifold triangle, which we now briefly explain.

A recent idea in physics has been the idea of a non-invertible symmetries of

quantum field theories [16]. Mathematically a non-invertible symmetry is just a

fusion ring acting on a quantum field theory. As a VOA describes the chiral half of

a conformal field theory there should be a notion of a fusion ring acting on a VOA.

The precise mathematical description of what it means for a fusion ring to act on a

VOA is currently in development by the author and Terry Gannon [19]. In [32] the

author was able to show that for sufficiently nice VOA extension W ⊂ V there exists

a fusion ring K (also called a hypergroup) “acting” on V such that W = VK . We

say “acting” as the fusion ring action is defined purely through categorical means

instead of through the VOA structure of V . One can think of taking the fixed

points of a fusion ring as a generalized orbifold, and just as in the group obrifold

case there should be a corresponding hypergroup orbifold triangle with the same

actors but generalized to the hypergroup setting. The reason we mention this is

that the hypergroup orbifold triangle may play a big role in solving Gannon’s VOA

reconstruction conjecture. For if it is possible to define what it means for a fusion

category to act on VOA then if C acts on a holomorphic VOA V , and we can show the
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fixed points VC is strongly rational, there will be an equivalence of modular fusion

categories Mod VC ∼= Z(C). Here Z(C) denotes the Drinfeld double of C. For a more

detailed and complete discussion of both the group and hypergroup orbifold triangles

see [20][32].

In the categorical direction, Theorem 6.2.2 generalizes the work of Naidu in [31]

to all G-crossed fusion categories. More specifically in [31, Definition 3.4] the author

defines quasi-Abelian 3-cocycles on a crossed module, and when they are equivalent.

After accounting for different conventions, the definition of a G-crossed 3-cocycle

Definition 4.2.2 and when they are equivalent Definition 4.2.3 generalizes Naidu’s

notions to all G-crossed braided fusion categories. Furthermore, one of the main re-

sults in [31] is that all G-crossed pointed categories are determined up to equivalence

by the cohomology group of quasi-Abelian 3-cocycles [31, Theorem 4.4]. This is a

special case of G-reconstruction that we prove in Chapter 4. Lastly, Naidu describes

the equivaiantization of all G-crossed pointed categories through a quasi-Hopf alge-

bra. The weak quasi Hopf algebra H#ΓC[G] and Theorem 6.2.2 recovers this result

as a special case.

As mentioned in the last section the Theorem 1.2.1 provides a proof of the

Dijkgraaf-Witten conjecture, which concerns holomorphic VOAs. Examples of holo-

morphic VOAs include lattice VOAs VL where the lattice L is self-dual. For example,

take the Leech lattice or the E6, E8 root lattices. In general, if one has a lattice VOA

its category of modules Mod VL will be a categorical group, VOAs whose category

of modules are a categorical group we call pointed VOAs. A more general conjecture

then the Dijkgraaf-Witten is the Mason-Ng conjecture. The Mason-Ng conjecture

essentially gives a quasi Hopf algebra description for a special type of orbifolds of

pointed VOAs. For the details of what the conjectures says we refer the reader to

[28]. The detailed proof of the Mason-Ng conjecture is given in [20], but essentially

the proof comes down to first showing the category of G-twisted modules is pointed,

applying Naidu’s equivariantization description and then showing that Mason-Ng’s

quasi-Hopf algebra in [28] is the same as Naidu’s quasi-Hopf algebra in [31]. The last

step is a technical issue that comes up because Mason-Ng [28] uses right G-actions

while Naidu [31] uses left G-actions. Since Naidu’s equivariantization description is
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a special case of Theorem 6.2.2, we see that Theorem 6.2.2 proves the Mason-Ng

conjecture and hence the Dijkgraaf-Witten conjecture.

In the case that V is strongly rational and its category of modules is pointed with

group of simples A, Theorem 1.2.1 can be thought of generalizing the Dijkgraaf-

Witten conjecture to as far as possible in the semi-simple case. For one can show in

this case that the finite dimensional H in Theorem 1.2.1 can be chosen so that:

H ∼= ⊕g∈GMat([A : Ag])⊕|Ag | (1.12)

Here Ag := {a ∈ A : g · a = a} and [A : Ag] is the index. In the case that V is

holomorphic, that is A = {e}, one sees that the right hand side of reduces to CG and

so indeed Theorem 1.2.1 is a generalization of the Dijkgraaf-Witten conjecture.

In [10], Dong and Yamskulna introduced for every finite group G acting on a

strongly rational VOA V an associative algebra Aα(G,S) = CS ⊗ C[G], where S
is a G-invariant subset of all inequivalent irreducible G-twisted modules of V and

α ∈ Z2(G, (CS)×). It is not difficult to show that H#ΓC[G] in this case will contain

a sub-algebra H[S]#ΓC[G] that is almost identical to Aα(G,S) except that we have
expanded CS to matrix algebras indexed by S. Therefore, in this sense H[S]#ΓC[G]
is a generalization of Aα(G,S). The advantage H#ΓC[G] has over Aα(G,S) is it

is possible to access the fusion rules of VG by defining a co-product on H#ΓC[G],
while it is not possible to define a co-product on Aα(G,S) in general. This suggests

that H#ΓC[G] is the correct algebraic object that should be studied, not Aα(G,S)
Lastly, it is the authors hope that Theorem 1.2.1 will turn out to be a useful tool

for calculating the form of the modular data of Mod VG when working with specific

VOAs. This should be possible through the following process:

1. Determine the fusion ring of TwModG V by using [2], and determine the G-

action on the set of simples,

2. Find a small G-equivariant dimension function D.

3. Finding D allows you to determine H as a C-algebra. Furthermore, one can

calculate the co-product on H by using the fusion ring data.
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4. Using the co-product and product from the previous step it should be possible

to parametrize all possible G-ribbon Abelian 3-cocycles on H.

5. Combing this parametrization with the G-action from step 1 we can determine

the simple objects of H#ΓC[G] and its modular data.

In the case that Mod V is pointed with group of simples A, we have calculated the

fusion ring of TwModG V . The simple objects are parametrized by simple characters

of inertia subgroups Ag. Furthermore, one can show the fusion rules N τ
γ,ξ for γ ∈ˆ︂Ag, ξ ∈ ˆ︂Ak τ ∈ˆ︃Agk are given by

N τ
γ,ξ =

⎧⎪⎨⎪⎩
|Ag∩Ak|

√
|A|√

|Agk|·|Ag |·|Ak|
if ResA

gk

Ag∩Ak(τ) = γ · ξ

0 otherwise
(1.13)

Note we are simplifying things for the sake of brevity, for the precise statement we

refer the reader to [33]. One can also choose also choose in the this case the weak

dimension function given by d(X) = |A|
|Ag | for simple X ∈ TwModg V . In future work

we plan to show how to complete steps 3, 4, 5 for specific VOA orbifolds.

In summary, the results in this thesis provides a uniform description of all strongly

rational VOA orbifolds. The results generalize all of Naidu’s results in [31], and pro-

vides a cohomological description of all G-crossed braided fusion categories and their

equivariantizations. Theorem 6.2.2 proves the Mason-Ng conjecture and Dijkgraaf-

Witten conjecture [28][9][20], and provide an extension of the conjectures to all

pointed VOA orbifolds. The weak quasi Hopf algebras presented in Theorem 1.2.1

also generalize an important object of Dong [10] and suggest that the algebra they

have been studying is the incorrect one. Lastly, it seems that it should be possible

to use the results to calculate specific examples giving a powerful tool for people

interested in understanding orbifold VOAs.
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Chapter 2

G-Structures on Tensor Categories

We assume that the reader is familiar with the basics of tensor categories given

in [13], and if one is not we briefly review the material in Appendix A. We make

the convention that our associators are natural isomorphisms from (X ⊗ Y )⊗ Z to

X⊗ (Y ⊗Z), and monoidal functors (F, JF , ϕF ) will be strong with tensor structures

isomorphisms JF defined from F (X) ⊗ F (Y ) to F (X ⊗ Y ), and ϕF defined from 1

to F (1). All groups are assumed to be finite.

In this chapter we review the G-structures on tensor categories that will be used

extensively throughout the thesis. The first section covers categorical group actions

on tensor categories, or G-tensor categories for short, and their associated functors

and natural transformations. In the second section we review the notion of a G-

crossed braided tensor category and G-ribbon tensor category, their associated func-

tors and equivalences. Section 3 recalls equivariantization and de-equivariantization

and we provide a proof that the equivariantization of a G-ribbon tensor category is

a ribbon tensor category. For a more detailed overview of the material we refer the

reader to the papers [30][23][12][17][13].
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2.1 G-Tensor Categories

Just as a group can act on sets, a group can act on a tensor category. In particular,

we can consider a category G such that its objects are elements of G and the only

morphisms are scalar multiplies of the identity morphisms. The group structure

of G naturally endows G with a strict tensor structure. If C is a tensor category,

then the category of tensor endofuctors End⊗(C) is also a tensor category,ecall, see

Example A.2.3 for details. If we restrict ourselves to the full sub-category of tensor

auto-equivalences Aut⊗(C) we obtain a tensor sub-category.

Definition 2.1.1. G-Tensor Category

Let G be a group. A G-tensor category is a tensor category C together with a

tensor functor:

(ψ, γ, ψ0) : G→ Aut⊗(C) (2.1)

where ψ : G → Aut⊗(C) is a functor and (γ, ψ0) is the tensor functor structure.

Writing this out explicitly this means for every g ∈ G, ψ(g) = (Tg, µg, ϕ
g) Tg : C → C

is a tensor functor and (µg, ϕ
g) is the tensor structure of Tg. We denote a G-tensor

category by a tuple (C, (ψ, γ, ψ0)). If every ψ(g) is a unital tensor functor and ψ

itself is a unital tensor functor we say the G-action is unital, or normalized.

See Definition A.2.2 for the definition of a unital tensor functor. From now on

we will fix the group G. If (C, (ψ, γ, ψ0)) is a G-tensor category, we will sometimes

refer to the tensor functor (ψ, γ, ψ0) as the G-tensor structure on C.

Definition 2.1.2. G-Tensor Functors

Let (C, (ψ1, γ1, ψ1
0)), (D, (ψ2, γ2, ψ2

0)) be G-tensor categories, where ψ
1(g) = (T 1

g , µ
1
g, ϕ

g
1)

and ψ2(g) = (T 2
g , µ

2
g, ϕ

g
2). A G-tensor functor from (C, (ψ1, γ1, ψ1

0)) to (D, (ψ2, γ2, ψ2
0))

is a tensor functor (F, JF , ϕF ) : C → D and a collection of C-linear monoidal natural

isomorphisms τg : T
2
g ◦ F → F ◦ T 1

g such that:

τe(−) = F ((ψ1
0)(−)) ◦ (ψ2

0)
−1
F (−) (2.2)
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and for all X ∈ C, g, h ∈ G:

τgh(X) ◦ γ2g,h(F (X)) = F (γ1g,h(X)) ◦ τg(T 1
h (X)) ◦ T 2

g (τh(X)) (2.3)

Gathering all the information, we denote aG-tensor functor by ((F, JF , ϕF ), {τg}g∈G).
We refer to {τg} as the G-functor structure of (F, JF , ϕF ). When the tensor structure

of F is clear we simply denote a G-tensor functor by (F, {τg}g∈G)

Definition 2.1.3. Natural Transformation of G-Tensor Functors

Let (F, {τg}g∈G), (K, {βg}g∈G) be G-tensor functors from (C, (ψ1, γ1, (ψ1)0)) to

(D, (ψ2, γ2, (ψ2)0)), where ψ1(g) = (T 1
g , µ

1
g, ϕ

g
1) and ψ2(g) = (T 2

g , µ
2
g, ϕ

g
2). A natu-

ral transformation from (F, {τg}g∈G) to (K, {βg}g∈G) is a C-linear monoidal natural

transformation φ : F → K such that:

φT 1
g (X) ◦ τg(X) = βg(X) ◦ T 2

g (φX) (2.4)

Two G-tensor categories are equivalent if there exists a G-tensor functor between

them that is an equivalence of categories.

Definition 2.1.4. G-Fusion Category

A G-fusion category is a fusion category C that is also G-tensor category.

We will need to transport G-tensor structures across adjoint equivalences.

Proposition 2.1.1. Let (C,⊗C, α
C, 1C, ℓ

C, rC), (D,⊗D, α
D, 1D, ℓ

D, rD) be tensor cate-

gories, with G-tensor structures (ψ, γ, ψ0) on C where ψ(g) = (Tg, µg, ϕ
g). Suppose

that (L,K, η, ϵ) gives an adjoint tensor equivalence where L : C → D, K : D → C
are tensor functors, and η : 1C → K ◦ L, ϵ : L ◦ K → 1D are the unit and co-unit

respectively. L will induce a G-tensor structure on D (ψ̃, γ̃, (ψ̃) : G → Aut⊗(D),

where ψ̃(g) := (T̃ , µ̃g, ϕ
g̃) is defined by:

Tg̃(X) := (L ◦ Tg ◦K)(X) Tg̃(f) := (L ◦ Tg ◦K)(f) (Group Action)

µ̃g(X, Y ) := (L(Tg(J
K
X,Y ))) ◦ L(µg(K(X), K(Y ))) ◦ JL

Tg(K(X)),Tg(K(Y ))

(Tensor Structure 1)
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ϕg̃ := L(Tg(ϕ
K) ◦ ϕg) ◦ ϕL (Tensor Structure 2)

γ̃g,h(X) := L(γg,h(K(X))) ◦ L(Tg(η−1
Th(K(X)))) (Group Action Structure 1)

ψ̃0 := L((ψ0)K(−)) ◦ ϵ−1
− (Group Action Structure 2)

Furthermore, denote the tensor structure of L,K as (JL, ϕL), (JK , ϕK) respectively.

The tensor functors (L, JL, ϕL), (K, JK , ϕK) can be upgraded to G-tensor functors

from (C, (ψ, γ, ψ0)) to (D, (ψ̃, γ̃, ψ0̃)) with G-functor structure given by:

τLg (X) := (L ◦ Tg)(η−1
X ) (2.5)

τKg (X) := η−1
(Tg◦K)(X) (2.6)

The unit, and co-unit will be natural isomorphisms of G-tensor functors.

Proof. The proof of this is straightforward but tedious, and so we leave it to the

studious reader.

Proposition 2.1.2. Every G-tensor category is equivalent to a skeletal a G-tensor

category such that the left and right unitors are trivial.

Proof. This is a consequence of the fact that every tensor category is equivalent to a

skeletal tensor category with trivial unitors, see Propositions A.3.1 for details, and

Proposition 2.1.1.

The following result was proven in [17]

Proposition 2.1.3. [17, Proposition 3.1]

Let (C, (ψ, γ, ψ0)) be a G-tensor category. Then there exists a unital G-tensor

structure (C, (ψ′, γ′, ψ′
0)) such that (Id, Id, Id, {βg}g∈G) : (C, (ψ, γ, ψ0)) → (C, (ψ′, γ′, ψ′

0))

is equivalence of G-tensor categories.

Due to this proposition we assume without loss of generality that all G-tensor

categories are normalized.
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2.2 G-Crossed Braided Tensor Categories and G-

Ribbon Tensor Categories

Definition 2.2.1. G-Grading

Let C be a tensor category. A G-grading on C is a decomposition into Abelian

categories C =
⨁︁

g∈G Cg such that for all g, h ∈ G:

X ∈ Cg, Y ∈ Ch ⇒ X ⊗ Y ∈ Cgh (2.7)

X ∈ Cg ⇒ X∗ ∈ Cg−1 (2.8)

We will be assuming that all our G-gradings are faithful. That is for every g ∈ G,

Cg is non-trivial.

The following was first defined by Müger in [30].

Definition 2.2.2. G-Crossed Braided Tensor Category

A G-crossed braided tensor category is a tensor category C, with a G-grading C =⨁︁
g∈G Cg, and a G-tensor structure (ψ, γ, ψ0) : G→ Aut⊗(C) where ψg = (Tg, µg, ψ

g).

With the additional requirement that:

1. Tg(Ch) ⊂ Cghg−1

2. There is a natural collection of isomorphisms referred to as the G-braiding for

X ∈ Cg, Y ∈ C:
cX,Y : X ⊗ Y → Tg(Y )⊗X (2.9)

Furthermore, the following diagrams must commute:

For all g, h ∈ G and X ∈ Ch, Y ∈ C:
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Tg(X)⊗ Tg(Y ) Tghg−1(Tg(Y ))⊗ Tg(X)

Tg(X ⊗ Y ) Tgh(Y )⊗ Tg(X)

Tg(Th(Y )⊗X) Tg(Th(Y ))⊗ Tg(X)

cTg(X),Tg(Y )

(µg(X,Y ))−1

Tg(cX,Y )

(µg(Th(Y ),X))−1

(γg,h(Y ))⊗IdTg(X)

(γghg−1,g(Y ))⊗IdTg(X)

Figure 2.1: Crossed Braiding Axiom I

For all g ∈ G, X ∈ Cg, Y, Z ∈ C:

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z) (Tg(Y )⊗X)⊗ Z

Tg(Y ⊗ Z)⊗X Tg(Y )⊗ (X ⊗ Z)

(Tg(Y )⊗ Tg(Z))⊗X Tg(Y )⊗ (Tg(Z)⊗ Z)

αX,Y,Z cX,Y ⊗IdZ

cX,Y ⊗Z

(µg(Y,Z))−1⊗IdX

αTg(Y ),X,Z

αTg(Y ),Tg(Z),X

IdTg(Y )⊗cX,Z

Figure 2.2: Crossed Braiding Axiom II

For all g, h ∈ G and X ∈ Cg, Y ∈ Ch, Z ∈ C:
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X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z X ⊗ (Th(Z)⊗ Y )

Tgh(Z)⊗ (X ⊗ Y ) Tg(Y )⊗ (X ⊗ Z)

(Tg ◦ Th)(Z)⊗ (X ⊗ Y ) ((Tg ◦ Th)(Z)⊗X)⊗ Y

αX,Y,Z IdX⊗cY,Z

cX⊗Y,Z α−1
X,Th(Z),Y

(γg,h)
−1
Z ⊗IdX⊗Y cX,Th(Z)⊗IdY

α(Tg◦Th)(Z),X,Y
−1

Figure 2.3: Crossed Braiding Axiom III

If C is a G-crossed braided tensor category we denote the structure by the tuple

(C, (ψ, γ, ψ0), c).

Definition 2.2.3. G-Crossed Braided Fusion Category

A G-crossed braided tensor category that is in addition a fusion category is called

a G-crossed braided fusion category.

Definition 2.2.4. G-crossed Braided Functor

Let (C, (ψ1, γ1, ψ1
0), c

1), (D, (ψ2, γ2, ψ2
0), c

2) be G-crossed braided tensor categories.

A G-crossed braided functor F : (C, (ψ, γ, ψ0), c) → (D, (ψ, γ, ψ0), c) is a G-tensor

functor (F, JF , ϕF , {τg}g∈G) such that the following diagram commutes for all g ∈ G,

X ∈ Cg, Y ∈ C:
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F (X ⊗ Y ) F (T 1
g (Y )⊗X)

F (X)⊗ F (Y ) F (T 1
g (Y ))⊗ F (X)

T 2
g (F (Y ))⊗ F (X)

JF
X,Y

c2
F (X),F (Y )

τg(Y )⊗IdF (X)

JF
T1
g (Y ),X

F (c1X,Y )

Figure 2.4: G-Crossed Braided Functor Condition I

Additionally, we require that:

F (Cg) ⊂ Dg (2.10)

If (F, JF , ϕF , {τg}g∈G) : C → D is a G-crossed braided functor such that F induces

an equivalence of categories we say that the G-crossed braided fusion categories C
and D are equivalent.

Remark 2.2.1. Notice that if we set G = Id with trivial action, then we recover the

notion of a braided fusion category and a braided functor.

The following was first defined in [23]:

Definition 2.2.5. G-Ribbon Tensor Category

A G-ribbon tensor category (C, (ψ, γ, ψ0), c) is a G-crossed braided tensor category

such that there exists a natural collection of isomorphisms called the G-ribbon twist:

θX : X → Tg(X) X ∈ Cg (2.11)
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Such that they satisfy the following axioms. For all g, h ∈ G,X ∈ Cg, Y ∈ Ch

θX⊗Y = µg(X, Y ) ◦ (γ(gh)g(gh)−1,(gh)g−1(X)⊗ γghg−1,g(Y )) ◦ (θTghg−1 (X) ⊗ θTg(Y )) ◦ cTg(Y ),X ◦ cX,Y

(2.12)

For all g ∈ G,X ∈ Cg

θX∗ = Tg−1(θ∗X ◦ dTg

X ) ◦ γg−1,g(X
∗)−1 ◦ (ψ0)X∗ (2.13)

Here d
Tg

X : Tg(X
∗) → Tg(X)∗ is the canonical isomorphism preserving the dual struc-

ture, see section A.4 for details.

For all g, h ∈ G,X ∈ Ch:

γghg−1,g(X) ◦ θTg(X) = γg,h(X) ◦ Tg(θX) (2.14)

We denote the structure of a G-ribbon tensor category by (C, (ψ, γ, ψ0), c, θ).

Definition 2.2.6. G-Ribbon Functor

Let (C, (ψ1, γ1, ψ1
0), c

1, θ1), (D, (ψ2, γ2, ψ2
0), c

2, θ2) be G-ribbon tensor categories.

A G-ribbon functor from C to D is a G-crossed braided functor (F, JF , ϕF , {τg}g∈G)
such that for all g ∈ G,X ∈ Cg:

τg ◦ θ2F (X) = F (θ1X) (2.15)

We say twoG-ribbon tensor categories are equivalent if there is aG-ribbon functor

that is also an equivalence. A natural transformations of G-ribbon functors is simply

a natural transformation of G-crossed braided functors.

Definition 2.2.7. G-Ribbon Fusion Category

A G-ribbon fusion category is a G-tensor category that is also a fusion category.

As with all of the other structures, G-ribbon structures can be transported along

adjoint tensor equivalences.

Proposition 2.2.1. Let (C, (ψ, γ, ψ0), c, θ) be a G-ribbon tensor categories, and D a

tensor category. Suppose there is an adjoint equivalence of tensor categories (L,K, η, ϵ)
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where L : C → D, K : D → C are tensor functors, η : 1C → K ◦ L, ϵ : L ◦K → 1D

are the unit and co-unit respectively. Then D can be induced with a G-ribbon tensor

category structure given as follows.

1. The G-tensor structure (ψ̃, γ̃, ψ0̃) is the one induced from Proposition 2.1.1.

2. The G-grading is defined by setting:

Dg := {X ∈ D : X ∼= L(Y ) where Y ∈ Cg} (2.16)

3. The G-crossed braiding is given for X ∈ Dg, Y ∈ D by:

c̃X,Y := (IdT̃ g(Y ) ⊗ ϵX) ◦ JL
Tg(K(Y )),K(X) ◦ L(cK(X),K(Y )) ◦ L((JK

X,Y )
−1) ◦ (ϵX⊗Y )

−1

(2.17)

4. The G-ribbon twist is given for X ∈ Dg by:

θ̃X := L(θK(X)) ◦ ϵ−1
X (2.18)

Furthermore, L,K can be upgraded to G-ribbon functors.

Proof. This is straightforward, but tedious and so we leave it to the reader.

Proposition 2.2.2. Every G-ribbon tensor category is equivalent as a G-ribbon ten-

sor category to skeletal a G-ribbon tensor category such that the left and right unitors

are trivial, and the G-action is unital.

Proof. This is a consequence of the fact that every tensor category is equivalent to

a skeletal tensor category with trivial unitors in combination with Proposition 2.2.1

and Proposition 2.1.3.

2.3 Equivariantization and De-Equivarianitzation

One of the main goals of this thesis is to describe the modular fusion category of an

oribfold VOA. In this section we will review the categorical techniques that allow us
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to do this: equivariantization and de-dquivariantization.

2.3.1 De-Equivariantization

Definition 2.3.1. C-Algebras
Let C be a ribbon tensor category. A commutative C-algebra is a tuple (A, µ, ι)

where A is an object in C, µ : A ⊗C A → A and ι : 1C → A are maps such that the

following hold

µ ◦ (IdA ⊗ µ) ◦ αA,A,A = µ ◦ (µ⊗ IdA) (Associativity)

µ ◦ (ι⊗ IdA) ◦ (ℓA)−1 = µ ◦ (IdA ⊗ ι) ◦ (rA)−1 = IdA (Unital)

µ ◦ cA,A = µ (Commutative)

Definition 2.3.2. C-Algebra Modules

Let (A, µA, ιA) be a C-algebra. An A-module is an object M ∈ C, and a morphism

µM : A⊗M →M such that the following holds:

µM ◦ (µA ⊗ IdM) = µM ◦ (IdA ⊗ µM) ◦ αA,A,M (Associativity)

µM ◦ (ιA ⊗ IdM) ◦ (ℓM)−1 = IdM (Unital)

We denote a module by (M,µM) and when the module structure is clear from context

just as M . A morphism of A-modules f : (M,µM) → (N,µN) is a morphism f :

M → N such that

f ◦ µM = µN ◦ (IdA ⊗ f) (2.19)

If (M,µM), (N,µN) are A-modules we denote the set of A-modules morphisms as

HomA((M,µM), (N,µN)) (2.20)

With these notions, we can consider the category of A-modules and denote it by

RepCA. This will have a tensor product structure since the details of this are not

necessary for this thesis we refer the interested reader to [25].
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Theorem 2.3.1. De-Equivariantization

Let C be a ribbon tensor category, with a ribbon embedding F : Rep(G) → C.
Let CG denote the algebra of functions on G. Then CG is a Rep(G)-algebra, and

so A := F(CG) is a C-algebra. RepC(A) will be a G-ribbon tensor category, and is

referred to as the de-equivariantization of C.

Proof. This was proven in [12] and [24].

2.3.2 Equivariantization

Equivariantization is the categorical version of taking the fixed points of a group

action.

Definition 2.3.3. Equivariantization

Let (C, (ψ, γ, ψ0), c, θ) be a G-ribbon tensor category where ψg := (Tg, µg, ψ
g). The

equivariantization CG is the following category:

1. Objects are pairs (X, {ug}g∈G) where X ∈ C, and ug : Tg(X) → X are a

collection of isomorphisms such that:

ugh ◦ γg,h(X) = ug ◦ Tg(uh) (2.21)

2. Morphisms f : (X, {ug}g∈G) → (Y, {vg}g∈G) are morphisms f : X → Y in C
such that:

f ◦ ug = vg ◦ Tg(f) (2.22)

This category will form a ribbon tensor category with tensor structure given by:

(X, {ug}g∈G)⊗ (Y, {vg}g∈G) := (X ⊗ Y, {(ug ⊗ vg) ◦ (µg)
−1}g∈G) (2.23)

α(X,{ug}),(Y,{vg}),(Z,{wg}) := αX,Y,Z (2.24)

1CG := (1C, {(ϕg)−1}g∈G) (2.25)

ℓ(X,{ug}g∈G) := ℓX r(X,{ug}g∈G) := rX (2.26)

27



The left duals will be defined by:

(X, {ug}g∈G)∗ := (X∗, {(u−1
g )∗ ◦ dTg

X }g∈G) (2.27)

Where d
Tg

X : Tg(X
∗) → Tg(X)∗ is the canonical isomorphism between left duals of

Tg(X). Similarly one can define right duals.

The braiding of (X, {ug})g∈G, (Y, {vg})g∈G is defined as the composition of the

following morphisms

X⊗Y → (
⨁︂
g∈G

Xg)⊗Y =
⨁︂
g∈G

Xg⊗Y
cX,Y−−→

⨁︂
g∈G

Tg(Y )⊗Xg

⊕vg⊗IdXg−−−−−−→
⨁︂
g∈G

Y⊗Xg → Y⊗X

(2.28)

The ribbon twist θ(X,{ug}g∈G) of (X, {ug}g∈G) is defined as the composition of the

following morphisms:

X →
⨁︂
g∈G

Xg

⊕θXg−−−→
⨁︂
g∈G

Tg(Xg)
⊕ug−−→

⨁︂
g∈G

Xg → X (2.29)

Notice that in the definition of the ribbon twist we use the fact thatX ∼=
⨁︁

g∈GXg

implies that every uk :
⨁︁

g∈G Tk(Xg) →
⨁︁

g∈GXg splits up to a direct sum of iso-

morphisms (uk)g : Tk(Xg) → Xkgk−1 . In particular this implies that for every g ∈ G

ug induces an isomorphism (ug)g : Tg(Xg) → Xg. We use the short hand ug in the

definition to avoid cumbersome notation.

Now notice if C is as in Theorem 2.3.1, then RepC(A) will be a G-ribbon tensor

category, and so we can take the equivariantization (RepC(A))
G. If D is another

G-ribbon tensor category such that D is equivalent to RepC(A), then it will be true

that DG is equivalent to (RepC(A))
G as a ribbon tensor category.

Theorem 2.3.2. Reduction To G-Ribbon Fusion Categories

If D is a G-ribbon tensor category such that D is equivalent to CG, then DG ∼= C
as a ribbon tensor category.

Proof. This was essentially proved by Kirillov in [24] and Drinfeld et. al in [12]. The

only thing we need to verify is that the equivariantization of G-ribbon tensor equiv-
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alence will be a ribbon equivalence. To that end suppose that (C, (ψ1, γ1, ψ1
0), c

1, θ1),

(D, (ψ2, γ2, ψ2
0), c

2, θ2) are G-ribbon tensor categories, and (F, JF , ϕF , {τg}) is a G-

ribbon tensor equivalence. For the sake of brevity we denote the induced functor

(F, JF , ϕF , {τg})G simply by FG. On the level of objects we have:

FG(X, {ug}g∈G) := (F (X), {F (ug) ◦ (τg)X}g∈G) (2.30)

On the level of morphisms we have:

FG(f) := F (f) where f : (X, {ug}g∈G) → (Y, {vg}g∈G) (2.31)

Well by definition the twist of (F (X), {F (ug) ◦ (τg)X}g∈G) is the composition of the

following morphisms:

F (X) →
⨁︂
g∈G

F (Xg)
⊕θ2

F (Xg)−−−−−→
⨁︂
g∈G

(T 2
g ◦ F )(Xg)

⊕(F (ug)◦(τg)Xg )−−−−−−−−−−→
⨁︂
g∈G

Xg → X (2.32)

Since F is a G-ribbon functor we have that τXg ◦ θ2F (Xg)
= F (θ1Xg

). In particular this

implies by functorality that:

FG(θ1(X,{ug})) = θ2FG(X,{ug}) (2.33)

Therefore, FG will be a ribbon functor. This completes the proof.
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Chapter 3

Weak Quasi Hopf Algebras

There is a saying that humans are really only good at linear algebra, and because

of this we translate everything into linear algebra. For example, differentiation in

analysis and representations of groups. One way to understand fusion categories

through linear algebra is by looking at representations of Hopf algebras and their

variants. In this chapter we will review the definitions and related concepts from

Hopf algebra theory that will be needed in this thesis, and explain how they can be

used to describe fusion categories. We do this by starting with the simplest definition,

a bi-algebra, and add more structure until we arrive at the definition of ribbon weak

quasi Hopf algebras, which we will use later to describe all G-(ribbon,crossed braided)

fusion categories. The source material of this chapter is from [13] [5][21][4].

3.1 Bi-algebras

We denote the structure of a unital C-algebra by a tuple (H, ·, 1H) where · denotes
the multiplication and 1H is the multiplicative identity.

If (H, ·, 1H) is a unital C-algebra we know that its categories of finite-dimensional

modules Mod(H) will form an Abelian category. To equip Mod(H) with a monoidal

structure we need a bi-algebra structure on H:

Definition 3.1.1. Bi-Algebra
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Let (H, ·, 1H) be a unital C-algebra. A bi-algebra structure on H is a tuple (∆, ϵ)

where ∆ : H → H ⊗C H and ϵ : R → C are unital C-algebra morphisms such that:

αVect
H,H,H ◦ (IdH ⊗∆) ◦∆ = (∆⊗ IdR) ◦∆ (3.1)

rVectH ◦ (IdH ⊗ ϵ) ◦∆ = ℓVectH ◦ (ϵ⊗ IdH) ◦∆ = IdH (3.2)

The map ∆ is called the comultiplication, and ϵ is called the counit.

Here αVect, ℓVect, rVect denote the associator, left unitor and right unitor of Vect

respectively.

Remark 3.1.1. Notice here that H ⊗C H is equipped with the C-algebra structure

given by (r ⊗ s) · (t⊗ k) := (r · t)⊗ (s · k) and unit (η ⊗C η) ◦ (ℓVectC )−1.

We denote a bi-algebra by a tuple (H, ·, η,∆, ϵ).

Proposition 3.1.1. Monoidal Structure Induced by a Bi-algebra

Let (H, ·, η,∆, ϵ) be a bi-algebra. Denote an object of Mod(H) by a tuple (M,ρV )

where ρV : H → EndC(V ) is the module structure. Mod(H) can be given the structure

of a monoidal category by defining:

(M,ρM)⊗ (N, ρN) := (M ⊗C N, (ρM ⊗ ρN) ◦∆) (3.3)

The tensor product of morphisms is just the tensor product of linear maps. The

associator of this tensor product is just the associator from Vect, Equation 3.1 guar-

antees that the associator is an H-module isomorphism. C is given the structure of

an H-module through ϵ, and C will be the tensor unit. The left unitor is defined by:

ℓ
Mod(H)
(V,ρV ) := ℓVectV ◦ (ϵ⊗ IdV ) (3.4)

Due to Equation 3.2 this will be an H-module isomorphism. Similarly, the right

unitor is defined by:

r
Mod(H)
(V,µV ) := rVectV ◦ (IdV ⊗ ϵ) (3.5)

For the same reasons as the left unitor this will be an H-module isomorphism.
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Example 3.1.1. Let G be a finite group. C[G] is a unital C-algebra in the obvious

way. This will be a bi-algebra with comultiplication ∆ : C[G] → C[G]⊗CC[G] defined
by ∆(g) := g ⊗ g and co-unit defined by ϵ(g) := δe,g.

If H has a structure of a bi-algebra, then H∗ := HomC(H,C) will also have the

structure of a bi-algebra. This gives a way to produce new monoidal categories. For

example, let CG denote (C[G])∗, it is not hard to show that as a monoidal category

that Mod(CG) is equivalent to VectG.

Notation. Sweedler Notation

Let (H, ·, 1H ,∆, ϵ) be a bi-algebra. When writing formulas for bi-algebras it is

often convenient to denote co-multiplication as follows. Let c ∈ H, then there exists

ci(1), c
i
(2) ∈ R for a finite number of i such that:

∆(c) :=
∑︂
i

ci(1) ⊗ ci(2) (3.6)

Sweedler notation is denoting this simply as:

∆(c) = c(1) ⊗ c(2) (3.7)

Sweedler notation allows us to re-write Equation 3.1 as:

c(1) ⊗ ((c2)(1) ⊗ (c2)(2)) = ((c(1))(1) ⊗ (c(1))(2))⊗ c(2) (3.8)

Notice that we have suppressed the associator.

3.2 Hopf Algebra

To equip Mod(H) with a rigid monoidal structured, and hence a tensor structure,

we need a way to define a module structure on the vector space dual of a module.

This is done through a Hopf algebra structure:

Definition 3.2.1. Hopf Algebra
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A Hopf algebra is a tuple (H, ·, 1H ,∆, ϵ, S). Where (H, ·, 1H ,∆, ϵ) is a bi-algebra

and S : H → H is a C-antiautomorphism such that for all h ∈ H:

S(h(1))h(2) = h(1)S(h(2)) = ϵ(h) (3.9)

When the Hopf algebra structure is clear from context we denote it simply by H.

Proposition 3.2.1. Rigid Structure Induced by a Hopf Algebra[13]

Let H be a Hopf algebra. Then Mod(H) will be a rigid monoidal structure with

left duals defined by:

(V, ρV )
∗ := (V ∗, ρV ∗) ρV ∗ := (ρV ◦ S)∗ (3.10)

The left evaluation and co-evaluation maps will just be the induced ones from Vect.

Similarly, if one assumes that S is invertible, which we always will, then one can

define a notion of right duals by:

∗(v, ρV ) := (V ∗, ρ∗V ) ρ∗V := (ρV ◦ S−1)∗ (3.11)

The right evaluation and co-evaluation maps will just be the induced ones from Vect.

Example 3.2.1. If G is a finite group, then C[G] will have an anti-pode given by

S(g) := g−1 and extended linearly to all of C[G]. In fact, one should think of anti-

podes on Hopf algebras as being some form of inversion.

3.3 Quasitriangular and Ribbon Hopf Algebras

Fix a Hopf algebra H for this section. To get a braiding on Mod(H) we need a notion

of an R-matrix, or equivalently a quasitriangular structure.

Notation. In the next few chapters we will use the area standard notation exten-

sively. This was first explained to us in [5]. Let n ∈ N, a = a1 ⊗ · · · ⊗ an ∈ H⊗n, if
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σ is a permutation of n, then we use the following notation:

aσ(1)···σ(n) := aσ−1(1) ⊗ · · · aσ−1(1) (3.12)

If a = a1 ⊗ · · · ⊗ ak ∈ H⊗k, k < n, and σ : {1, · · · , k} → {1, · · · , n}, then let a ∈ Hn

be the pure tensor given by tensoring with the unit of H on the right n − k times.

Let σ ∈ Sn be any the extension of σ. We use the following notation:

aσ := aσ (3.13)

By linearity we extend these notations to all elements of H⊗n, H⊗k.

Example 3.3.1. If R =
∑︁

iR
i
1 ⊗ Ri

2 ∈ H ⊗ H, then R21 =
∑︁

iR
i
2 ⊗ Ri

1. If Φ =∑︁
i x

i
1 ⊗ xi2 ⊗ xi3 ∈ H⊗3, then:

Φ312 =
∑︂
i

xi2 ⊗ xi3 ⊗ xi1 (3.14)

If R =
∑︁

iR
i
1 ⊗Ri

2 ∈ H⊗2,Φ ∈ H⊗3, then:

R13 · Φ = (
∑︂
i

Ri
1 ⊗ 1H ⊗Ri

2) · Φ (3.15)

Definition 3.3.1. Quasitriangular Hopf Algebra

Let H be a Hopf algebra a quasitriangular Hopf algebra is a pair (H,R) where R

is an invertible element R ∈ H ⊗H such that the following relations hold:

(∆⊗ Id)(R) = R13R23 (3.16)

(Id⊗∆)(R) = R13R12 (3.17)

For all h ∈ H we have:

∆op(h) = R∆(h)R−1 (3.18)

where ∆op = cVectH,H ◦ ∆ and cVectH⊗H : H ⊗ H → H ⊗ H is defined for x, y ∈ H as

cVectH,H(x⊗ y) = y ⊗ x.
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Proposition 3.3.1. Braiding Induced by a Quasitriangular Hopf Algebra

Let (H,R) be a quasitriangular Hopf algebra. Mod(H) will be a braided tensor

category with braiding defined for (V, ρV ), (W, ρW ) as:

c(V,ρV ),(W,ρW ) := cVectV,W ◦ (ρV ⊗ ρW )(R) (3.19)

where cVectV,W : V ⊗C W → W ⊗C V is the standard braiding on Vect.

Assume now that (H,R) is a quasitriangular Hopf algebra. To get a ribbon

structure on Mod(H) we need the notion of a ribbon Hopf algebra.

Definition 3.3.2. Ribbon Hopf Algebra

A ribbon Hopf algebra is a quasitriangular Hopf algebra (H,R) with an element

v ∈ H such that v is in the centre of H, and:

∆(ν) = (ν ⊗ ν)(R21R) (3.20)

S(ν) = ν (3.21)

In this case ν ∈ H is called the ribbon element.

Proposition 3.3.2. Ribbon Structure Induced by a Ribbon Hopf Algebra

Let (H,R, ν) be a ribbon Hopf algebra. Then Mod(H) has a ribbon structure

defined for (V, ρV ), v ∈ V as:

θ(V,ρV )(v) := ρV (ν)(v) (3.22)

Ribbon Hopf algebras will describe all tensor categories with something called a

fiber functor:

Definition 3.3.3. fiber Functor

Let C be a ribbon tensor category. A fiber functor is a tensor functor (F, JF , ϕF )cC →
Vect that is faithful, and F (1C) = C, ϕF = IdC.

Basically fiber functors allow you to represent objects in your category by vector

spaces.

35



As pointed out in [13, Chapter 5], having a fiber functor is a very strict condition.

For example, VectωG will have a fiber functor if and only if ω is equivalent to the trivial

3-cocycle.

fiber functors give us the first reconstruction result. As this proposition will be

described in much greater detail later we briefly state it:

Theorem 3.3.1. Ribbon Hopf Algebra Reconstruction [13, Proposition 8.11.2]

Let (C, F ) be a ribbon tensor category and a fiber functor. The space H := End(F )

will have the structure of a ribbon Hopf algebra. Furthermore, F will induce an

equivalence of ribbon tensor categories (L, JL, ϕL) : C → Mod(H).

3.4 Weak Quasi Bi-Algebra

Most fusion categories won’t have a fiber functor, and so to prove a Hopf algebra

reconstruction result for all fusion categories we need the notion of a weak quasi

bi-algebra.

Definition 3.4.1. Partially Invertible Element [5]

Let B be an algebra. Define a linear category whose objects are idempotents

p, q of B, and (p, q) := {T ∈ B : qT = T = Tp}. If T ∈ (p, q) then D(T ) :=

p,R(T ) := q. An element T of B is said to be partially invertible if it is invertible

with D(T ) = p,R(T ) = q if T ∈ (p, q) and there exists a T−1 ∈ (q, p) such that

T−1T = p, TT−1 = q. T−1 is called the partial inverse.

Notice by restricting to this linear category we have uniqueness of partial inverses

by the usual arguments.

Definition 3.4.2. Weak Quasi Bi-Algebra

Let (H, ·, 1H) be a unital C-algebra. A weak quasi bi-algebra is a tuple (H, ·, 1H ,∆, ϵ,Φ):

1. Coproduct: A C-algebra homomorphism (not assumed to be unital) ∆ : H →
H ⊗C H
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2. Counit: A C-algebra homomorphism ϵ : H → C such that:

(ϵ⊗ 1) ◦∆ = 1 = (1⊗ ϵ) ◦∆ (3.23)

3. Associator: A partially invertible element Φ ∈ H ⊗H ⊗H satisfying:

D(Φ) = (∆⊗ IdH) ◦∆(1), R(Φ) = (IdH ⊗∆) ◦∆(1) (3.24)

Φ · (∆⊗ IdH)(∆(h)) = (IdH ⊗∆)(∆(h)) · Φ, h ∈ H (3.25)

(IdH⊗ IdH⊗∆)(Φ) · (∆⊗ IdH⊗ IdH)(Φ) = (1⊗Φ) · (IdH⊗∆⊗ IdH)(Φ) · (Φ⊗1)

(3.26)

(IdH ⊗ ϵ⊗ IdH)(Φ) = (IdH ⊗ IdH ⊗ ϵ)(Φ) = (IdH ⊗ IdH ⊗ ϵ)(Φ) = ∆(1) (3.27)

Proposition 3.4.1. Monoidal Structure Induced by a Weak Quasi Bi-Algebra

Let (H, ·, 1H ,∆, ϵ,Φ) be a weak quasi bi-algebra. Suppose that (V, ρV ), (W, ρV ) ∈
Mod(H). There is an induced monoidal structure defined for objects as:

(V, ρV )⊗ (W, ρW ) := ((ρV ⊗ ρW )(∆(1H))(V ⊗C W ), (ρV ⊗ ρW ) ◦∆) (3.28)

To distinguish (ρV (1(1))⊗ρW (1(2)))(V ⊗CW ) from the usual tensor product of vector

spaces we refer to (ρV ⊗ ρW )(∆(1))(V ⊗CW ) as the representation space of V ⊗W .

An important idea we will use throughout this thesis is that a linear map f : V ⊗C

W → V ⊗C W that commutes with (ρV ⊗ ρW )(∆(1)) will restrict to a linear map

on the representation space of V ⊗ W . The tensor product of H-intertwiners is

given by taking the usual tensor product of linear maps and then restricting to the

corresponding representation spaces. The associator for (V, ρV ), (W, ρW ), (U, ρU) ∈
Mod(H) is given by considering the linear map:

(ρV ⊗ ρW ⊗ ρU)(Φ) (3.29)

and then restricting to the representation spaces. C is given the structure of a H-

module through the counit, and this will be the tensor unit. The left and right unitors
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are the same as in Proposition 3.1.1.

Remark 3.4.1. Throughout this thesis we will be dealing with linear maps on rep-

resentation spaces. For the sake of brevity we usually define linear maps on the

vector space tensor product with the understanding that they should be restricted to

the corresponding representation spaces.

3.5 Weak Quasi Hopf Algebras

To make the category of modules of a weak quasi bi-algebra a rigid monoidal category

we need an anti-pode structure.

Remark 3.5.1. Sweedler-esque Notation

If h ∈ H⊗n for some n, then write h =
∑︁

i h
i
1 ⊗ hi2 ⊗ hi3. Throughout this thesis

we will use the shorthand given by suppressing the summation and index. Therefore,

we would write h as:

h = h1 ⊗ h2 ⊗ h3 (3.30)

.

Definition 3.5.1. Weak Quasi Hopf Algebra

A weak quasi Hopf algebra is a tuple (H, ·, 1H ,∆, ϵ,Φ, S, α, β), where (H, ·, 1H ,∆, ϵ,Φ)
is a weak quasi bi-algebra, S : H → H is an anti-automorphism and α, β ∈ H are

such that the following hold for all h ∈ H:

S(h(1))αh(2) = ϵ(h)α, h(1)βS(h(2)) = ϵ(h)β (3.31)

x1βS(x2)αx3 = 1H = S(X1)αX2βS(X3) (3.32)

where

Φ = x1 ⊗ x2 ⊗ x3 Φ−1 = X1 ⊗X2 ⊗X3 (3.33)

Proposition 3.5.1. Rigid Structure Induced by a Weak Quasi Hopf Algebra
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Let (H, ·, 1H ,∆, ϵ,Φ, S, α, β) be a weak quasi Hopf algebra. Mod(H) will have a

rigid monoidal structure given as follows. A left dual of (V, ρV ) is defined as follows:

(V, ρV )
∗ := (V ∗, (ρV ◦ S)∗) (3.34)

with left evaluation defined as:

ev
Mod(H)
(V,ρV ) (f ⊗ v) := f(ρV (α)(v)) (3.35)

Following [13], let
∑︁

i vi ⊗ fi be the element of V ⊗ V ∗ corresponding to the identity

map of V through the canonical isomorphism V ∗ ⊗ V → EndC(V ). The left co-

evaluation is defined as:

coev
Mod(H)
(V,ρV ) (1) :=

∑︂
i

ρV (β)(vi)⊗ fi (3.36)

If S is invertible, then right duals can be defined in the same way as described in

Proposition 3.2.1 and the right evaluation and co-evaluations morphisms similar to

how the left evaluation and co-evaluation morphisms were defined.

For the sake of brevity we refer to a weak quasi Hopf algebra as a wqhf.

3.6 Quasitriangular and Ribbon Weak Quasi Hopf

Algebras

Let H be a wqhf. To give Mod(H) a braiding we need the notion of a quasitriangular

wqhf.

Definition 3.6.1. Quasitriangular WQHF

A quasitriangular wqhf is a tuple (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R) where (H, ·, 1H ,∆, ϵ,Φ, S, α, β)
is a wqhf and R ∈ H ⊗H is a partially invertible element such that:

D(R) := ∆(1H) R(R) := ∆op(1H) (3.37)

39



∆op(a) = R∆(a)R−1 (3.38)

(∆⊗ Id)(R) = Φ312R13Φ
−1
132R23Φ123 (3.39)

(Id⊗∆)(R) = Φ−1
231R13Φ213R12Φ

−1
123 (3.40)

Remark 3.6.1. Just as in the quasi Hopf algebra case [4, Section 10.1], one can

apply (ϵ ⊗ ϵ ⊗ Id) to Equation (3.39) and obtain that (Id ⊗ ϵ)(R) = 1H . Similarly,

by applying (ϵ⊗ ϵ⊗ Id) to Equation (3.40) one sees that (ϵ⊗ Id)(R) = 1H .

Proposition 3.6.1. Braiding Induced by a Quasitriangular WQHF

Let (H, ·, η,∆, ϵ,Φ, S, α, β,R) be a quasitriangular wqhf. Mod(H) will have the

structure of a braided monoidal category. The braiding on the level of objects is

defined by first consider the linear map defined on (V, ρV ), (W, ρW ) as:

c
Mod(H)
(V,ρV ),(W,ρW ) := cVectV,W ◦ (ρV ⊗ ρW )(R) (3.41)

Where σ is as in Definition 3.3.1. This will then restrict down to an H-intertwiner

on the corresponding representation spaces. Similarly the braiding on the level of

morphisms is given by sending (f ⊗ g) ↦→ (g ⊗ f) and then restricting to the repre-

sentation spaces.

Definition 3.6.2. Ribbon WQHF

A ribbon wqhf is a tuple (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R, ν) where (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R)
is a quasitriangular wqhf and v ∈ H is an invertible central element such that the

following holds:

∆(ν) = (ν ⊗ ν)R21R (3.42)

S(ν) = ν (3.43)

In this case ν is called the ribbon element.

Remark 3.6.2. Just as in the quasi Hopf algebra case [4, Remark 13.27], by applying

(ϵ⊗ ϵ) to Equation (3.42) one obtains that ϵ(ν) = 1.

Proposition 3.6.2. Ribbon Structure Induced by a Ribbon WQHF
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Let (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R, ν) be a ribbon wqhf. Mod(H) will have the struc-

ture of a ribbon tensor category with ribbon structure defined for (V, ρV ) ∈ Mod(H)

as:

θ(V,ρV ) := ρV (ν) (3.44)

3.7 Twist Equivalences

As we have seen, given a finite dimensional unit algebra (H, ·, 1H) a ribbon wqhf

structure (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R, ν) will induce a ribbon tensor structure on Mod(H).

A natural question is when are these ribbon tensor structures equivalent? The answer

is given by looking at twists:

Definition 3.7.1. Weak Quasi Bi-Algebra Twists [5, Definition 5.8]

Let (H, ·, 1H ,∆, ϵ,Φ) be a weak quasi bi-algebra. A twist is a pair J, J−1 ∈ H⊗H
such that J is partially left invertible:

J−1J = ∆(1) (3.45)

Furthermore, J must satisfy the following:

(ϵ⊗ IdH)(J) = (IdH ⊗ ϵ)(J) = 1H (3.46)

Proposition 3.7.1. Twists Give Equivalent Structure [13]

Let (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R, ν) be a ribbon wqhf, and J a twist. This will induce

a new ribbon wqhf (H, ·, 1H ,∆, ϵ,Φ, S, α, β,R, ν)J = (H, ·, 1H ,∆J , ϵ,ΦJ , S, αJ , βJ , RJ , ν)

where:

∆J(a) := J∆(a)J−1 (3.47)

ΦJ := (1H ⊗ J) · (Id⊗∆)(J) · Φ(∆⊗ Id)(J−1) · (J−1 ⊗ 1H) (3.48)

αJ := S(J−1
1 )αJ−1

2 βJ := (J)1βS((J)2) (3.49)

RJ := J21 ·R · J−1 (3.50)
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Here we use the shorthand J = J1 ⊗ J2. Denote this new structure by HJ , as a

ribbon tensor category Mod(H) is equivalent to Mod(HJ). Conversely, if two ribbon

wqhf structure induce the same ribbon tensor category, up to equivalence, then they

are twist related.

Remark 3.7.1. Note that the definition of a twist depends on the weak quasi-

bialgebra, which is why twist equivalent structures define an equivalence relation de-

spite only being left invertible.

3.8 Reconstruction

Definition 3.8.1. Weak Quasi fiber Functor

Let C be a tensor category. A weak quasi fiber functor is a faithful C-linear functor
F : C → Vect and a natural collection of epimorphisms:

JF
X,Y : F (X)⊗C F (Y ) → F (X ⊗C Y ) (3.51)

such that there is an isomorphism ϕF : C → F (1C) where for all X ∈ C:

JF
1C ,X

◦ (ϕF ⊗C IdF (X)) = F (ℓCX)
−1 ◦ ℓVectF (X) (3.52)

JF
X,1C

◦ (IdF (X) ⊗C ϕ
F ) = F (rCX)

−1 ◦ rVectF (X) (3.53)

Furthermore, there must exist a natural collection of isomorphisms:

dX : F (X∗) ∼= F (X)∗Vect (3.54)

An important concept related to weak quasi fiber functors is that of a weak

dimension function.

Definition 3.8.2. Weak Dimension Function

Let C be a fusion category. Denote the isomorphism classes of simple objects by

O(C). A weak dimension function is a function D : O(C) → N such that for all
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X, Y ∈ C:
D(1C) = 1 D(X) = D(X∗) (3.55)

D(X)D(Y ) ≥
∑︂

Z∈O(C)

NZ
X,YD(Z) (3.56)

The following were proven in [21].

Proposition 3.8.1. A weak dimension function D on a function category C induces

a weak quasi fiber functor (F, JF , ϕF ) as follows.

On the level of objects:

F (X) :=
⨁︂

Y ∈O(C)

HomC(Y,X)⊗C CD(Y ) (3.57)

On the level of morphisms if f : X → Z is in C then for all Y ∈ O(C), gY ∈
HomC(X, Y ), vY ∈ CD(Y ):

F (f)(⊕Y ∈CgY ⊗ vY ) := ⊕Y ∈C(f ◦ gY )⊗ vY (3.58)

The tensor structure JF is defined by choosing for every X, Y ∈ O(C) an epimor-

phisms:

JF
X,Y : CD(X) ⊗ CD(Y ) →

⨁︂
Z∈O(C)

HomC(Z,X ⊗C Y )⊗ CD(z) (3.59)

and then extending by linearity to all objects of C. The unit object is defined by

identifying HomC(1C, 1C) with C and then using the left unitor in Vect.

Proposition 3.8.2. [21]

Every fusion category admits a weak dimension function D defined by:

D(X) :=
∑︂
Y,Z

NZ
X,Y D(1C) := 1 (3.60)

Now that we have all of the definitions we can recall the main reconstruction

argument we will need.
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Theorem 3.8.1. [21, Theorem 16]

Let C be a ribbon fusion category, and (F, JF , ϕF ) : C → VectC a weak quasi fiber

functor. Denote the associator of C by ϕ. Choose a right inverse of JF , and denote

it by (JF )−1. The following defines a ribbon wqhf:

1. H := Nat(F, F ) = {hX ∈ EndC(F (X)) : ∀f ∈ HomC(X, Y ), hY ◦ f = f ◦ hX}
has the structure of a unital associative algebra, with multiplication defined

pointwise as (h · r)X := hX ◦ rx, and the unit being the trivial natural transfor-

mation.

2. Using the canonical algebra isomorphism EndC(F (X)⊗CF (Y )) ∼= EndC(F (X))⊗C

EndC(F (Y )), the co-product is defined component wise by

∆(h)X,Y := (JF
X,Y )

−1 ◦ hX⊗CY ◦ JF
X,Y (3.61)

3. The co-unit is given by ϵ(h) := h1C

4. The associator is given by

ΦX,Y,Z := (Id⊗ (JF
Y,Z)

−1)◦ (JF
X,Y⊗Z)

−1 ◦F (ϕX,Y,Z)◦JF
X⊗Y,Z ◦ (JF

X,Y ⊗ Id) (3.62)

5. The anti-pode structure is given by*:

(Sh)X := d∗X ◦ (hX∗)∗ ◦ (d∗X)−1 (3.63)

Where dX : F (X)∗ → F (X∗) is the canonical natural transformation, and

d∗X : F (X∗)∗ → F (X) is the dual map combined with the canonical isomorphism

F (X)∗∗ ∼= F (x) for finite dimensional vector spaces. The elements α, β are

given component wise by:

αX := (Id⊗ evRep
ρX

) ◦ (coevVectF (X) ⊗ Id) (3.64)

βX := (Id⊗ evV ect
F (X)) ◦ (coevRep

ρX
⊗ Id) (3.65)
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Where

evRep
ρX

:= F (evX) ◦ JF
X∗,X ◦ (dX ⊗ Id) (3.66)

coevRep
ρX

:= (Id⊗ d−1
X ) ◦ J−1

X,X∗ ◦ F (coevX) (3.67)

6. The quasitriangular structure is given by the R-matrix defined for all X, Y ∈ C
by:

RX,Y := (cV ect
F (X),F (Y ))

−1 ◦ (JF
Y,X)

−1 ◦ F (cCX,Y ) ◦ JF
X,Y (3.68)

7. The ribbon element ν ∈ H is defined component-wise for X ∈ C:

νX := F (θCX) (3.69)

This will induce a tensor equivalence (L, JF , ϕF ) : C → Mod(H) given by L(X) :=

(F (X), ρX) where the H-action is defined for h ∈ H as ρX(h) = hX .

Remark 3.8.1. Notice the associator we presented here is different then the one in

[21]. This is because of a difference in convention. In [21] the associator is a map

X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z, while our convention is the other way.

Corollary 3.8.1. Ribbon WQHF Reconstruction

Every ribbon fusion category is equivalent as a ribbon fusion category to the cat-

egory of modules of some ribbon WQHF.

We generalize this reconstruction result for G-fusion categories and describe their

equivariantizations.
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Chapter 4

G Abelian 3-cocycles and Their

Variants

In [11] Drinfeld defined quasi Hopf-algebras, and showed that they would give exam-

ples of non-strict monoidal categories. We follow a similar approach in this chapter by

defining three types of cocycles on a fixed unital algebra H to define a corresponding

G-structure:

1. G Abelian 3-cocycles ⇒ G-tensor structures on Mod(H)

2. G-Crossed Abelian 3-cocycles⇒G-crossed braided tensor structures on Mod(H)

3. G-Ribbon Abelian 3-cocycles ⇒ G-ribbon tensor structures on Mod(H)

We denote the set of all such G 3-cocycles by Z3
G−Ab(H), Z3

G−Crd(H), Z3
G−Rb(H) re-

spectively. Similar to how twists give a notion of equivalence on the set of all wqhf

structures on H, we can define when these G 3-cocycles are equivalent and therefore

form equivalence classes: H3
G−Ad(H), H3

G−Crd(H), H3
G−Rb(H). We then show that

equivalent G-(ribbon, crossed) Abelian 3-cocycles will induce equivalent G-(ribbon,

crossed braided) tensor structures.
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4.1 G Abelian 3-Cocycles

Fix throughout this section a unital C-algebra (H, ·, 1H). The following definition of

a non-Abelian 2-cocycle will be needed for our description.

Definition 4.1.1. Non-Abelian 2 Cocycles

A non-abelian 2 cocycle on a group G with coefficients in H is a tuple (Ψ, γ)

� Ψ : G→ AutC−alg(H)

� γ : G×G→ H×

Such that they satisfy the following conditions for all g1, g2, g3 ∈ G:

Ψ(e) = IdK (4.1)

Ψ(g1g2) = Ad(γ
g1,g2

) ◦Ψ(g1) ◦Ψ(g2) (4.2)

(γ
g1,g2g3

) ·Ψ(g1)(γ g2,g3
) = γ

g1g2,g3
· γ

g1,g2
(4.3)

If γ
e,g

= γ
g,e

= 1H for all g ∈ G, then we say that (Ψ, γ) is normalized.

Notation. Let n ∈ N, and B a set. Then Cn(G,B) is the set of all functions

from
∏︁n

i=1G → B. For the sake of brevity we also use the following notation. Let

Γ ∈ H⊗n, and g1, · · · , gn ∈ G. Then:

Γ(g1,··· ,gn) := (Ψ(g−1
1 )⊗ · · · ⊗Ψ(g−1

n ))(Γ) (4.4)

Definition 4.1.2. G Abelian 3-cocycle

A G Abelian 3-cocycle on (H, ·, 1H) is a tuple (ϵ,∆,Φ, S, α, β, Ψ, γ, µ) where:

Ψ : G→ AutC−alg(H), γ ∈ C2(G,H×), µ ∈ C1(G,H ⊗H) (4.5)

and (H, ·, 1H ,∆, ϵ,Φ, S, α, β) is a weak quasi Hopf algebra. We require the following

conditions to be satisfied:
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1. The pair (Ψ, γ) is a normalized non-Abelian 2-cocycle on G with coefficients in

H such that for all g ∈ G:

ϵ = ϵ ◦Ψ(g) (4.6)

2. For all g ∈ G, µg is partially invertible with:

D(µg) = ∆(1H)
(g,g) R(µg) = ∆(1H) (4.7)

That is:

∆(1H) · µg = µg = µg ·∆(1H)
(g,g) (4.8)

and there exists a µ −1
g ∈ H⊗2 such that:

∆(1H)
(g,g) · µ −1

g = µ −1
g = µ −1

g ·∆(1H) (4.9)

and:

µ −1
g · µg = ∆(1)(g,g) µg · µ −1

g = ∆(1) (4.10)

3. The following equations must hold for all g ∈ G:

µe = ∆(1H) (4.11)

Ad(µg)(∆
(g,g)) = ∆ ◦Ψ(g−1) (4.12)

(Id⊗∆)(µg) · (1H ⊗ µg) · Φ(g,g,g) = Φ · (∆⊗ Id)(µg) · (µg ⊗ 1H) (4.13)

(ϵ⊗ Id)(µg) = (Id⊗ ϵ)(µg) = 1H (4.14)

4. The follow equation must hold for µ, γ g, k ∈ G:

(γ
k−1,g−1 ⊗ γ

k−1,g−1) = (µgk)
−1 ·∆(γ

k−1,g−1) · µk ·Ψ(k−1)⊗2(µg) (4.15)

Denote the set of G Abelian 3-cocycles by Z3
G−Ab(H).

Remark 4.1.1. By applying ϵ⊗ ϵ to Equation (4.15) one obtains that for g, k ∈ G
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ϵ(γ
k−1,g−1)

2 = ϵ(γ
k−1,g−1). Since γ

k−1,g−1 ∈ H× this implies that ϵ(γ
k−1,g−1) ̸= 0.

Therefore, for all g, h ∈ G ϵ(γ
k−1,g−1) = 1, or equivalently for all g, k ∈ G ϵ(γ

g,k
) =

1.

Definition 4.1.3. Equivalent G Abelian 3-cocycles

Two G Abelian 3-cocycles (∆, ϵ,Φ, S, α, β,Ψ, γ, µ), (∆′, ϵ′,Φ′, S ′, α′, β′,Ψ′, γ′, µ′)

are equivalent if there is a twist J, J−1 and τ ∈ C1(G,H×) such that:

ΦJ = Φ′ ∆J = ∆′ ϵ = ϵ′ (S, α, β)J = (S ′, α′, β′) (4.16)

(recall Definition 3.7.1) and the following equations hold for all g, k ∈ G:

τe = 1H (4.17)

Ad(τg)(Ψ
′(g)) = Ψ(g) (4.18)

∆(τg−1) · µg · (τg−1 ⊗ τg−1)−1 = µ
′

g (4.19)

τgk · γ′ g,k
= γ

g,k
· (Ψ(k)(τg · τk)) (4.20)

It is straightforward to check that Definition 4.1.3 defines an equivalence relation.

We denote the set of equivalence class of G-Abelian 3-cocycles on a C-algebra H by

H3
G−Ab(H)

Proposition 4.1.1. If (∆, ϵ, S, α, β,Φ,Ψ, γ, µ) is a G Abelian 3-cocycle, then there

is an induced G-tensor structure on Mod(H). The induced G-tensor structure will

be normalized in the sense of Definition 2.1.1. Furthermore, equivalent G Abelian

3-cocycles induce equivalent G-tensor category structures in the sense of Definition

2.1.2.

Proof. This proof is straightforward, but since it is illustrative of many of the ideas

in this chapter we go through the translation between the cohomological data and

the categorical data step by step.

Define a categorical group action (ψ, γ, ψ0) : G→ Aut⊗(Mod(H)) as follows:

ψg = (Tg, µg, IdC) (4.21)
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where the functor Tg is given by:

Tg(V, ρV ) := (V, ρV ◦Ψ(g−1)) Tg(f) = f (4.22)

The tensor structure µg : Tg(V, ρV )⊗Tg(W, ρW ) → Tg((V, ρV )⊗(W, ρW )) is defined by

considering the linear map µg := (ρV ⊗ρW )(µg) and restricting to the representation

spaces. Notice by Equation (4.6) that (C, ϵ) = Tg(C, ϵ). Since as a linear map

Tg(ℓ
Mod(H)
(V,ρV ) ) = ℓVectV we see that the triangle axioms for (V, ρV ) ∈ Mod(H) reduce to:

(ϵ⊗ ρV )(µg) = IdV (4.23)

(ρV ⊗ ϵ)(µg) ◦ (IdV ⊗ ϕg
0) = IdV (4.24)

By Equation (4.14) we see that:

(IdH ⊗ ϵ)(µg) = (ϵ⊗ IdH)(µg)IdH (4.25)

So indeed the triangle axioms will be satisfied. Therefore, we see for each g that

ψg ∈ Aut⊗(Mod(H)).

We define γ for g, k ∈ G as:

γg,k(V, ρV ) : (V, ρV ◦Ψ(k−1)◦Ψ(g−1)) → (V, ρV ◦Ψ((gk)−1)) γg,k(V, ρV )(v) := ρV (γ k−1,g−1)(v)

(4.26)

By Equation (4.2) we see that for all g, k ∈ G, h ∈ H:

Ψ((gk)−1)(h) · γ
k−1,g−1 = γ

k−1,g−1 · (Ψ(k−1) ◦Ψ(g−1))(h) (4.27)

So indeed γg,k will be a H-intertwiner, and therefore a natural isomorphism from

Tg ◦ Tk → Tgk. To verify that γg,k gives (ψ, γ, ψ0) a tensor functor structure we must

have:

γg1g2,g3 ◦ γg1,g2(Tg3) = γg1,g2g3 ◦ Tg1(γg2,g3) (4.28)
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Since γ satisfies Equation 4.3 we see that for all g1, g2, g3 ∈ G:

γ
g−1
3 ,g−1

2 g−1
1

·Ψ(g−1
3 )(γ

g−1
2 ,g−1

1

) = γ
g−1
3 g−1

2 ,g−1
1

· γ
g−1
3 ,g−1

2

(4.29)

Expanding we see this is just Equation (4.28). Lastly, since the non-Abelian 2-cocycle

is normalized the unitor ψ0 will just be the identity transformation. Evidently, this

G-tensor structure will be unital.

Suppose now that we have two equivalentGAbelian 3-cocycles ((∆, ϵ,Φ, S, α, β,Ψ, γ, µ),

(∆′, ϵ′,Φ′, S ′, α′, β′,Ψ′, γ′, µ′) with equivalence given by (J, J−1, τ). Denote the G-

tensor structures by (Ψ, γ, ψ0) and (Ψ′, γ′, ψ′
0) respectively. I claim that this will

induce a G-tensor functor that is also an equivalence of tensor categories. Let

(Id, (ρ− ⊗ ρ−)(J), IdC) denote the identity functor with tensor structure induced

from the twist J . It is routine to verify that this will have the structure of a tensor

functor. We give (Id, J, IdC) the structure of a G-tensor functor by defining:

τ̃ g(V, ρV ) := ρV (τg−1) (4.30)

To check that (Id, J, IdC, {τ̃ g}g∈G) defines a G-tensor functor we need to verify that:

1. τ̃ g is an H-intertwiner from T ′
g(V, ρV ) to Tg(V, ρV ).

2. τ̃ g will be a monoidal natural transformation in Mod(H).

3. τ̃ e = (ψ0)− ◦ (ψ′
0)−

4. For all g, k ∈ G: τ̃ gk(V, ρV )◦γ′g,k(V, ρV ) = γg,k(V, ρV )◦τ̃ g(Tk(V, ρV ))◦T ′
g(τ̃ k(V, ρV ))

τ̃ g will be an H-intertwiner by Equation (4.18). τ̃ g will be a natural transformation

since for H-intertwiners f : (V, ρV ) → (W, ρW ) f ◦ρV (τg−1) = ρW (τg−1)◦f . It will be
a monoidal natural transformation by Equation (4.19). Since ψ0 = ψ′

0 = Id τ̃ e = Id

we see it will satisfy the third condition. The last condition follows from Equation

(4.20).
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4.2 G-Crossed Abelian 3-Cocycles

As before we fix a C-algebra (H, ·, 1H).

Notation. If G is a finite group, let CG denote the algebra of functions on G. This

will be an algebra with pointwise multiplication and the unit being the constant 1-

function. For g ∈ G let δg denote the function from G to C that is zero everywhere

except at g where it is one. CG will be a Hopf algebra with co-multiplication given

by:

∆(δg) :=
∑︂
r,k∈G
rk=g

δr ⊗ δk (4.31)

co-unit given by:

ϵ(δg) = δg,e (4.32)

where δg,e is the Kronecker delta, and antipode given by:

S(δg) = δg−1 (4.33)

If H is an algebra, then Z(H) := {h ∈ H : ∀r ∈ H rh = hr}.

Definition 4.2.1. Weak Morphism of WQHFs

Let (H, ·, 1H ,∆1,Φ1, S1, α1, β1), (K, ·, 1K ,∆2,Φ2, S2, α2, β2) be wqhfs. A weak

morphism of wqfhs is a unital algebra homomorphism f : H → K such that:

∆2 ◦ f = (f ⊗ f) ◦∆ (4.34)

S2 ◦ f = f ◦ S1 (4.35)

If it additionally satisfies:

(f ⊗ f ⊗ f)(Φ1) = Φ2 f(α1) = α2, f(β1) = β2 (4.36)

we say it is just a morphism of wqhfs.

The idea of weak morphisms is we want to look at wqhfs whose fusion rings are
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isomorphic, but they are not necessarily equivalent as fusion categories. For example,

VectG,Vect
ω
G. To give a G-crossed braided tensor structure on Mod(H) we need a

G-tensor action with a compatible G-grading and a G-crossed braiding. These two

extra requirements motivates the following:

Definition 4.2.2. G-Crossed Abelian 3-Cocycle

A G-crossed Abelian 3-cocycle is a tuple (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂) where

(∆, ϵ,Φ, S, α, β,Ψ, γ, µ) ∈ Z3
G−Ab(H) (4.37)

∂ : CG → Z(H) is a linear map, and c ∈ H ⊗H is partially invertible such that:

D(c) = ∆(1H) R(c) = (∆op(1H))
(e,g) (4.38)

Furthermore, (Ψ, γ, µ, c) must satisfy the following conditions:

1. ∂ is an injective weak morphism of wqhfs.

2. For all k, g ∈ G we have:

ψ(k)(∂(δg)) = ∂(δkgk−1) (4.39)

3. The following equations must hold for µ, γ, c, and for all g ∈ G h ∈ H:

c ·∆(h) · c −1 · (∂(δg))1 = (∆op(h))(e,g) · (∂(δg))1 (4.40)

For all g, k ∈ G:

(γ
g−1,gk−1g−1)2 · c(g,g) · (µg)

−1 · (∂(δk))1 = (γ
k−1,g−1)2 · ((µg)

−1)
(e,k)
21 · c · (∂(δk))1 (4.41)

(µg
−1)23 · (IdH ⊗∆)(c) · (∂(δg))1 = (Φ−1

231)
(e,g,g) ·c13 ·Φ(e,g,e)

213 ·c12 ·Φ−1
123 · (∂(δg))1 (4.42)
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(∆⊗Id)(c)·(∂(δg)⊗∂(δk))12 = (Φ312)
(e,e,gk)·(γg,k)3·c

(e,e,k)
13 ·(Φ−1

132)
(e,e,k)·c23·Φ123·(∂(δg)⊗∂(δk))12

(4.43)

Denote the set of G-crossed Abelian 3-cocycles by Z3
G−Crsd(H).

Notice that when G = {e} these axioms will reduce to the axioms of a quasi-

triangular wqhf in Definition 3.6.1. In particular Equation (4.40) reduces to Equation

(3.38), and Equations (4.42), (4.43) reduce to Equations (3.39), (3.40) respectively.

Therefore, it is useful to think of these as the G-twisted analogue of a quasitriangular

structure.

Remark 4.2.1. By setting g = k = e in Equation (4.43) and then applying (ϵ⊗ϵ⊗Id)

one obtains that (ϵ ⊗ IdH)(c) = 1H . Similarly, applying (ϵ ⊗ ϵ ⊗ IdH) to Equation

(4.42) we obtain that (IdH ⊗ ϵ)(c) = 1H .

Definition 4.2.3. Equivalence of G-crossed Abelian 3-cocycles

Two G-crossed Abelian 3-cocycles (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂), (∆′, ϵ′,Φ′, S ′, α′, β′,Ψ′, γ′, µ′, c′, ∂
′
)

are equivalent if there exists a twist J, J−1 and a τ ∈ C1(G,H×) that induces an

equivalence of the underlying G Abelian 3-cocycles and for all g ∈ G:

∂ = ∂
′

(4.44)

c · J · (1H ⊗ ∂(δg)) = (J21)
(e,g) · (1H ⊗ τg) · c′ · (1H ⊗ ∂(δg)) (4.45)

It is straightforward to show that Definition 4.2.3 defines an equivalence relation

on Z3
G−Crsd(H). Denote the set of equivalence classes by H3

G−Crsd(H).

Proposition 4.2.1. If (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂) is a G-crossed Abelian 3-cocycle,

then there is an induced G-crossed braided tensor category structure on Mod(H).

Furthermore, equivalent G-crossed Abelian 3-cocycles induce equivalent G-crossed

braided tensor categories in the sense of Definition 2.2.4.

Proof. Define the g-th component Mod(H)g as all H-modules (V, ρV ) ∈ Mod(H)

such that:

ρV (∂(δg)) = IdV (4.46)
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This will be an Abelian subcategory of Mod(H). Notice that if (V, ρV ) ∈ Mod(H),

then since ∂ is a central embedding for every g ∈ G (V, ρV )g := ρV (∂(δg))(V ) will be

a H-submodule of (V, ρV ) in Mod(H)g. It is easy to see that for distinct g, k ∈ G

(V, ρV )g ∩ (V ρV )k = {0}. From ∑︂
g∈G

∂(δg) = 1H (4.47)

we see that (V, ρV ) =
⨁︁

g∈G(V, ρV )g, and hence Mod(H) =
⨁︁

g∈GMod(H)g. We

now need to check that this G-grading on Mod(H) is compatible with the tensor

structure.

Suppose now that for g, k ∈ H (V, ρV ) ∈ Mod(H)g, (W, ρW ) ∈ Mod(H)k, to verify

the G-grading is compatible with tensor category structure we need to first verify

that:

(V, ρV )⊗ (W, ρW ) ∈ Mod(H)gk (4.48)

To that end recall that since ∂ is a morphism of wqhf we have for all r ∈ G:

(∆ ◦ ∂)(δr) = ((∂ ⊗ ∂) ◦∆)(δr) =
∑︂
t,ℓ∈G
tℓ=r

∂(δt)⊗ ∂(δℓ) (4.49)

Therefore, if v ∈ V,w ∈ W , then:

(ρV ⊗ ρW )(∆ ◦ ∂(δgk))(v ⊗ w) =
∑︂
t,ℓ∈G
tℓ=gk

ρV (∂(δt))(v)⊗ ρW (∂(δℓ))(w)

= ρV (∂(δg))(v)⊗ ρW (∂(δk))(w) = v ⊗ w

(4.50)

Thus, we have verified the first condition. For the second we need to check that

if (V, ρV ) ∈ Mod(H)g, then (V, ρV )
∗ ∈ Mod(H)g−1 . Well we know that S(∂(δg)) =

∂(S(δg)) = ∂(δg−1). Since (V, ρV )
∗ := (V ∗, (ρV ◦ S)∗) we see then that if v∗ is the
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dual pair to v ∈ V then:

(ρV (S(∂(δg−1))))∗(v∗) = (ρV (∂(δg))(v))
∗ = v∗ (4.51)

so indeed (V, ρV )
∗ ∈ Mod(H)g−1 . The last condition on the G-grading we need to

check is that if (V, ρV ) ∈ Mod(H)g, then Tk(V, ρV ) ∈ Mod(H)kgk−1 . Well Tk(V, ρV ) :=

(V, ρV ◦Ψ(k−1)) and by Equation (4.39) we see that for v ∈ V :

ρV (Ψ(k−1)(∂(δkgk−1)))(v) = ρV (∂(δg)(v) = v (4.52)

Therefore, we have a compatible grading.

For the G-crossed braiding define for (V, ρV ), (W, ρW ) ∈ Mod(H) a linear map

c(V,ρV ),(W,ρW ) by:

c(V,ρV ),(W,ρW )(v ⊗ w) := (ρW ⊗ ρV )(c21)(w ⊗ v) (4.53)

Verifying that c will indeed define a G-crossed braiding is tedious, and so we refer the

interested reader to Appendix B.1 for their verification. In broad strokes if (V, ρV ) ∈
Mod(H)g, then by Equation (4.40) this will be an H-intertwiner. Therefore, we

can restrict to the representation space and we have a H-intertwiner c(V,ρV ),(W,ρW ) :

(V, ρV )⊗ (W, ρW ) → Tg(W, ρW )⊗ (V, ρW ). This is clearly a natural transformation.

To verify the axioms given in Figure 2.1, 2.2, 2.3 simply expand the equations and

notice that they follow from Equations (4.41), (4.42), (4.43) respectively.

Suppose (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂), (∆′, ϵ′,Φ′, S ′, α′, β′,Ψ′, γ′, µ′, c′, ∂
′
) are two

equivalent G-crossed Abelian 3-cocycles with the equivalence given by (J, J−1, τ). To

verify that this induces an equivalence of G-crossed braided tensor categories we only

need to verify that theG-functor (Id, J, Id0, {τ̃ g}g∈G) given in the proof of Proposition

4.1.1 satisfies the additional axiom that for (V, ρV ) ∈ Mod(H)g, (W, ρW ) ∈ Mod(H):

JTg(W,ρW ),(V,ρV )◦(τ̃ g(W, ρW )⊗ Id)◦c′(V,ρV ),(W,ρW ) = c(V,ρV ),(W,ρW )◦J(V,ρV ),(W,ρW ) (4.54)
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Expanding out the left hand side we obtain:

cVectV,W ◦ (ρV ⊗ ρW )((J21)
(e,g) · (1H ⊗ τg−1) · c′) (4.55)

By Equation (4.45) we see this equals cVectV,W ◦ (ρV ⊗ ρW )(c · J). Here we used the fact

that ρV (∂(δg)) = IdV . This completes the proof.

4.3 G-Ribbon Abelian 3-Cocycles

As before we fix a unital C-algebra (H, ·, 1H). Let (F, JF , ϕF ) : Mod(H) → Mod(H)

be a tensor functor. If (V, ρV ) ∈ Mod(H), then F ((V, ρV )
∗) can be endowed with the

structure of a left dual with evaluation and coevaluation given respectively by:

evF(V,ρV ) = (ϕF )−1 ◦ F (ev(V,ρV )) ◦ JF
(V,ρV )∗,(V,ρV ) (4.56)

coevF(V,ρV ) := J−1
(V,ρV ),(V,ρV )∗ ◦ F (coev(V,ρV )) ◦ ϕF (4.57)

By uniqueness of left duals there exists a unique isomorphism dF(V,ρV ) : F ((V, ρV )
∗) →

F (V, ρV )
∗ such that:

evF(V,ρV ) = evF (V,ρV ) ◦ (dF ⊗ IdV ) (4.58)

(Id⊗ dF ) ◦ coevF(V,ρV ) = coevF (V,ρV ) (4.59)

It is not difficult to show that dF (V, ρV ) can be given explicitly as [13, Section 2.10]:

ℓF (V,ρV )∗◦(evF(V,ρV )⊗IdF (V,ρV )∗)◦ϕ−1
F ((V,ρV )∗),F (V,ρV ),F (V,ρV )∗◦(IdF ((V,ρV )∗)⊗coevF (V,ρV ))◦(rF ((V,ρV )∗))

−1

(4.60)

Here ℓ, r denote the left and right unitors of Mod(H) respectively, and ϕ is the

associator of Mod(H) induced from the Drinfeld associator Φ.

Suppose now that we have a G Abelian 3-cocycle (∆, ϵ,Φ, S, α, β,Ψ, γ, µ) on

(H, ·, 1H). By Proposition 4.1.1 this will induce a categorical G-action (ψ, γ, Id)

where ψg := (Tg, µg, 1). Write the Drinfeld associator and its partial inverse with the
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shorthand:

Φ = x1 ⊗ x2 ⊗ x3 Φ−1 = X1 ⊗X2 ⊗X3 (4.61)

The corresponding rigidity isomorphism dTg can be written as multiplication by a

single element, as it is quite complicated we use the following shorthand:

dg := S(Ψ(g−1)(X(1)))·S((µg)(1))·α·(µg)(2)·(Ψ(g−1)(X2·β))·Ψ(g−1)(S(X(3))) (4.62)

Notice that the rigidity axioms for a wqhf are captured by Equations (3.31) (3.32)

and when you set g = 1 you recover these axioms. Therefore, it is best to think of

dg as the g-twisted version of these equations.

Lemma 4.3.1. Let (∆, ϵ,Φ,Ψ, γ, µ) be a G Abelian 3-cocycle on H. Then for

(V, ρV ) ∈ Mod(H) we have:

(dTg)(V, ρV ) = (ρV (d
g))∗ (4.63)

Proof. Let v∗ ∈ Tg((V, ρV )
∗). Evaluating IdTg(V ∗) ⊗ coevTg(X) ◦ (rTg(X)∗)

−1(v) we

obtain:∑︂
i

v∗ ⊗ (ρTg(V,ρV )(β))(vi)⊗ fi) =
∑︂
i

v∗ ⊗ (ρV (Ψ(g−1(β)))(vi)⊗ fi) (4.64)

Where {vi}dim(V )
i=1 is a basis of Tg(V ) and fi is the dual basis. Applying ϕ

−1
Tg((V,ρV )∗),Tg(V,ρV ),Tg(V,ρV )∗

to Equation (4.64) we obtain:

∑︂
i

(ρV ∗(Ψ(g−1)(X(1)))(v
∗)⊗ ρV (Ψ(g−1)(X(2) · β))(vi))⊗ ρTg(V )∗(X(3))(fi) =∑︂

i

(ρV (S(Ψ(g−1)(X(1))))
∗(v∗)⊗ρV (Ψ(g−1)(X(2)·β))(vi))⊗ρV (Ψ(g−1)(S(X(3))))

∗(fi)

(4.65)

Applying ev
Tg

(X) ⊗ Id to Equation (4.65) we obtain:
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∑︂
i

(ρV (S((µg)(1)·Ψ(g−1)(X(1))))
∗(v∗)

(︁
ρV (α · (µg)(2) ·Ψ(g−1)(X(2) · β))(vi))

)︁
·ρV (Ψ(g−1)(S(X(3))))

∗(fi) =∑︂
i

v∗
(︁
ρV (S((µg)(1) ·Ψ(g−1)(X(1)) · α · (µg)(2) ·Ψ(g−1)(X(2) · β))(vi))

)︁
·ρV (Ψ(g−1)(S(X(3))))

∗(fi)

(4.66)

To finish this proof, we use the fact that if L,K are linear maps of V , then:∑︂
i

v∗(L(vi))K
∗(fi) = (L ◦K)∗(v∗) (4.67)

Therefore, we see that Equation (4.66) simplifies to:

(︁
ρV (S((µg)(1) ·Ψ(g−1)(X(1)) · α · (µg)(2) ·Ψ(g−1)(X(2) · β) ·Ψ(g−1)(S(X(3))))

)︁∗
(v∗)

(4.68)

This equals (ρV (d
g))∗(v∗), and we are done.

To give Mod(H) the structure of a G-crossed ribbon tensor category we need a

G-ribbon twist.

Definition 4.3.1. G-Ribbon Abelian 3-cocycle

A G-Ribbon Abelian 3-cocycle is a tuple (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν) such that:

(∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂) ∈ Z3
G−Crsd(H) (4.69)

is a G-crossed Abelian 3-cocycle, and ν satisfies the following for all g ∈ G, h ∈ H

ν · h · ∂(δg) = Ψ(g−1)(h) · ν · ∂(δg) (4.70)

For all g, k ∈ G:

µ −1
gk ·∆(ν)·(∂(δg)⊗∂(δk)) = (γ

gk−1g−1,(gk)g−1(gk)−1⊗γ g−1,gk−1g−1)·(ν⊗2)(gkg
−1,g)·(c21)(e,g)·c·(∂(δg)⊗∂(δk))

(4.71)

S(ν) · ∂(δg) = S(γ−1

g−1,g
) · dg · ν · ∂(δg) (4.72)

γ
g−1,gk−1g−1 ·Ψ(g−1)(ν) · ∂(δk) = γ

k−1,g−1 · ν · ∂(δk) (4.73)
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Denote the set of G-ribbon Abelian 3-cocycles on H by Z3
G−Rb(H).

Remark 4.3.1. By applying ϵ⊗ ϵ to Equation (4.71) one obtains that ϵ(ν) = 1.

Definition 4.3.2. Equivalent G-ribbon Abelian 3-cocycles

Two G-ribbon Abelian 3-cocycles

(∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν) (∆′, ϵ′,Φ′, S ′, α′, β′,Ψ′, γ′, µ′, c′, ∂
′
, ν ′)

are said to be equivalent if the corresponding G-crossed Abelian 3-cocycles are equiv-

alent through a twist J, J−1 and τ ∈ C1(G,H×) such that for all g ∈ G:

ν ′ · ∂(δg) = τg−1 · ν · ∂(δg) (4.74)

It is straightforward to show that Definition 4.3.2 defines an equivalence relation

on Z3
G−Rb(H). Denote the set of equivalence classes by H3

G−Rb(H).

Proposition 4.3.1. A G-ribbon Abelian 3-cocycle (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν) in-

duces a G-ribbon tensor category structure on Mod(H). Furthermore, equivalent G-

ribbon Abelian 3-cocycles induce equivalent G-ribbon tensor category structures in the

sense of Definition 2.2.6.

Proof. We know from Proposition 4.2.1 that (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂) endows

Mod(H) with the structure of a G-crossed braided tensor category. Let (V, ρV ) ∈
Mod(H)g define a G-ribbon twist for v ∈ V by:

θ(V,ρV )(v) := ρV (ν)(v) (4.75)

Equation (4.70) guarantees that θ(V,ρV ) is an H-intertwiner, and therefore a nat-

ural isomorphism. The first G-ribbon axiom, Equation (2.12), will be satisfied

due to Equation (4.71). The second G-ribbon axiom, Equation (2.13) will be sat-

isfied because of Equation (4.72), and the fact that the canonical isomorphism

dTg : Tg((V, ρV )
∗) → Tg(V, ρV )

∗ for v ∈ V equals dTg(v) = (ρV (d
g))∗(v). The third G-

ribbon axiom, Equation (2.14), will be satisfied due to Equation (4.73). For detailed

verifications of these conditions see Appendix B.2.
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Suppose now that (∆, ϵ,Φ,Ψ, γ, µ, c, ∂, ν) (∆′, ϵ′,Φ′,Ψ′, γ′, µ′, c′, ∂
′
, ν ′) are equiv-

alent G-ribbon Abelian 3-cocycles through (J, J−1, {τg}g∈G). From Proposition 4.2.1

we know that (Id, (ρ− ⊗ ρ−)(J), Id, {τ̃ g}) will induce an equivalence of G-crossed

braided tensor functors, so we just need to verify that it is also ribbon. That is we

need to check Equation (2.15). Well to that end notice that if (V, ρV ) ∈ Mod(H)g

then for all v ∈ V we have ρV (∂(δ)g)(v) = v. Therefore, we have τg ◦ θ(V,ρV )(v) =

ρV (τg−1 ·ν)(v) = ρV (ν
′)(v) = θ′(V,ρV )(v). So indeed it is a G-ribbon tensor equivalence

and we are done.
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Chapter 5

G-Reconstruction and

G-Equivariant Dimension

Functions

In the previous chapter we defined various G 3-cocycles and showed that they define

corresponding G-structures. In this chapter we reverse this process by providing a

G-reconstruction argument. The main result of this chapter is the following:

Theorem 5.0.1. G-Reconstruction

Every G-(ribbon,crossed braided) fusion category C is equivalent to the category

of modules of some wqhf H with G-structure induced by a G-(ribbon,crossed) Abelian

3-cocycle ΓC. Furthermore, the sets H3
G−Ab(H), H3

G−Crssd(H), H3
G−Rbn(H) are in bi-

jections with the equivalence class of the corresponding G-structures.

To prove this we first define the notion of a weak quasi G-equivariant fiber functor

and show the following more general result:

Theorem 5.0.2. The maps

(C, F ) ↦→ (H := Nat(F ),ΓC,F ) (H,Γ) ↦→ (Mod(H),Forg) (5.1)

are inverses between: (1) The equivalence classes of finite G-(ribbon,crossed braided)
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tensor categories and weak G-equivariant fiber functors. (2) The equivalence classes

of pairs of finite-dimensional unital algebras H and G-(ribbon,crossed) Abelian 3-

cocycle on H.

Notice that this result hold not just for fusion categories, but for all finite tensor

categories. If we restrict to fusion categories we get a similar correspondence with

semi-simple finite dimensional algebras. We also prove in Lemma 5.1.1 that every

G-(ribbon, crossed braided) tensor category with a weak quasi G-equivariant fiber

functor is equivalent to the category of modules of some algebra H with a G-(ribbon,

crossed) Abelian 3-cocycle.

Theorem 5.0.2 reduces the proof of G-reconstruction for fusion categories to show-

ing that every G-(ribbon, crossed braided) fusion category has a weak quasi G-

equivariant fiber functor. To that end we define weak G-equivariant dimension func-

tions, and show that these will induce weak quasi G-equivariant fiber functors. Con-

versely, every weak quasi G-equivariant fiber functor induces a weak G-equivariant

dimension function. We then prove that every G-(ribbon, crossed braided) fusion

category will have a weak G-equivariant dimension function which completes the

proof of G-reconstruction.

As the wqhf given in Theorem 5.0.2 depends on the chosen fiber functor, and

hence the weak G-equivariant dimension function we give a few examples of relatively

small weak G-equivariant dimension functions at the end of the chapter.

5.1 G-Reconstruction

Let (C, (ψ, γ, ψ0), c, θ) be a G-ribbon tensor category. By Proposition 2.2.2 we can

assume without loss of generality that C is skeletal with trivial left/right unitors and

(ψ, γ, ψ0) is unital. We make this assumption throughout the chapter. Furthermore,

it should be noted that since C is G-graded there exists natural transformations

πg : C → C such that for simple X ∈ Cg , πg(X) = IdX , πk(X) = 0 for k ̸= g. These

will satisfy the relations πg ◦ πk = δg,kπg and
∑︁

g∈G πg = IdC.

Definition 5.1.1. (weak quasi) G-Equivariant Fiber Functors
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Let (C, (ψ, γ, ψ0), c, θ) be a G-ribbon tensor category. We say that (F, JF , ϕF , {Rg}g∈G)
is a weak quasi G-equivariant fiber functor if (F, JF , ϕF ) is a weak quasi fiber and

functor, and there exists a collection of natural isomorphisms for g ∈ G:

Rg : F → F ◦ Tg (5.2)

such that Re = Id and R1C
g = IdF (1C) for every g ∈ G.

The first step to provingG-reconstruction is proving that weak quasiG-equivariant

fiber functors define a G-(ribbon, crossed) Abelian 3-cocycle.

Proposition 5.1.1. Let (C, (ψ, γ, ψ0), c, θ) be a G-ribbon tensor category. A weak

quasi G-equivariant fiber functor (F, JF , ϕF , {Rg}g∈G) defines a G-ribbon Abelian 3-

cocycle (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν) on H := Nat(F ):

1. (∆, ϵ,Φ, S, α) is as described in Theorem 3.8.1.

2. Ψ : G→ Aut(H) is defined for g ∈ G and h ∈ H,X ∈ C as:

(Ψ(g)(h))X := (RX
g−1)−1 ◦ hTg−1 (X) ◦RX

g−1 (5.3)

3. For g, k ∈ G we have:

γ
g,k

:= (R(gk)−1)−1 ◦ F (γk−1,g−1) ◦RTg−1

k−1 ◦Rk−1 (5.4)

4. For g ∈ G:

µg := (JF )−1 ◦ (Rg)
−1 ◦ F (µg) ◦ JF

Tg ,Tg
◦ (Rg ⊗Rg) (5.5)

5. Define ∂ : CG → H for g ∈ G by:

∂(δg) = F (πg) (5.6)
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6. For X ∈ Cg, Y ∈ C define:

cX,Y := cVectF (Y ),F (X) ◦ ((RY
g )

−1 ⊗ IdX) ◦ (JF
Tg(Y ),X)

−1 ◦ F (cX,Y ) ◦ JF
X,Y (5.7)

7. For X ∈ Cg define:

νX := (RX
g )

−1 ◦ F (θX) (5.8)

Proof. By Theorem 3.8.1 we know that (H, ·, η,∆, ϵ,Φ, S, α, β) is a weak quasi Hopf

algebra, this proof will hold for tensor categories as well. The proof that the G-ribbon

Abelian 3-cocycle axioms are satisfied is straightforward but very tedious, and so we

refer the reader to Appendix D for the verifications.

For readability we split the proof of Theorem 5.0.2 into several lemmas.

Lemma 5.1.1. Let (C, (ψ, γ, ψ0), c, θ) be a G-ribbon tensor category with a weak

quasi G-equivariant fiber functor (F, JF , ϕF , {Rg}g∈G). Denote the G-ribbon Abelian

3-cocycle given in Proposition 5.1.1 by Γ(C,F ). Then the G-ribbon structure induced

by Γ(C,F ) on Mod(H) is equivalent to (C, (ψ, γ, ψ0), c, θ).

Proof. By [6] and Theorem 3.8.1 we know that there is an equivalence of fusion

categories categories1:

(L, JF , ϕF ) : C → Mod(H) (5.9)

Denote theG-ribbon structure on Mod(H) induced by ΓC,F as (Mod(H), (ψ1, γ1, ψ1
0), c

1, θ1)

where ψ1
g := (T 1

g , µ
1
g, (ϕ

1)g0). To show that L can be upgraded to a G-ribbon equiva-

lence we need to construct for every g ∈ G natural isomorphisms:

τg : T
1
g ◦ L→ L ◦ Tg (5.10)

1It is straightforward to show that if we one knows that L : C → Mod(H) is an equivalence of
C-linear locally finite Abelian categories, induced by F , then a weak quasi fibre functor structure
on F induces a tensor functor structure on L. By [6, Proposition 2.14] any weak quasi fibre functor
will induce an equivalence of Abelian categories and hence tensor categories. Hence Theorem 3.8.1
will hold also for tensor categories.
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such that (L, JF , ϕF , {τg}g∈G) is a G-ribbon equivalence. Well let X ∈ C, then

L(X) = (F (X), ρX) where the H-action is defined for h ∈ H as: ρX(h) = hX .

Therefore,

(T 1
g ◦L)(X) = (F (X), ρX◦Ψ(g−1)) ⇒ (ρX◦Ψ(g−1))(h) = (RX

g )
−1◦hTg(X)◦RX

g (5.11)

While on the other hand:

ρTg(x)(h) = hTg(X) (5.12)

Therefore, let τg = Rg. We have just proven that it is an H-intertwiner and so τg is a

collection of natural isomorphisms. Furthermore, verifying that (L, JF , ϕF , {Rg}g∈G)
is a G-ribbon equivalence follows from the fact that Γ(C,JF ) is defined by conjugating

the structure of ((ψ, γ, ψ0), c, θ) by Rg.

Lemma 5.1.2. Let H be a finite dimensional unital C-algebra and Γ ∈ Z3
G−Rb(H).

Then the forgetful functor Forg : Mod(H) → Vect is a weak quasi G-equivariant fiber

functor with structure given by J(V,ρV ),(W,ρW ) = (ρV ⊗ρW )(∆(1H)), ϕ
Forg = IdC, Rg =

Id. Furthermore, the G-ribbon Abelian 3-cocycle induced by (Forg, J, ϕ, {Rg}g∈G)
equals Γ on the nose.

Proof. It is easy to check that (Forg, J, ϕ) is a weak quasi-fiber functor. Denote Γ as

(∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν). To see that Rg = Id will give a natural transforma-

tion from Forg → Forg ◦ Tg recall that Tg(V, ρV ) = (V, ρV ◦ Ψ(g−1)) and Tg(f) = f

as a linear map, so indeed Forg ◦ Tg = Forg on the nose.

Let ΓForg,H denote the 3-cocycle induced by (Forg, J, IdC, {Rg}g∈G). Note that

we know Nat(Forg) ∼= H through the isomorphisms for h ∈ H, k ∈ Nat(Forg),

(V, ρV ) ∈ Mod(H):

f : H → Nat(Forg) f(h)(V,ρV ) = ρV (h) (5.13)

f−1 : Nat(Forg) → H f−1(k) := kH(1H) (5.14)

From [21] we know that f will induce an isomorphism of wqhfs, and so we only need
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to verify that:

Ad(f)(ΨForg) = Ψ (5.15)

f−1 ◦ γForg ◦ f = γ (5.16)

(f−1 ⊗ f−1) ◦ µForg ◦ (f ⊗ f) = µ (5.17)

(f−1 ⊗ f−1) ◦ cForg ◦ (f ⊗ f) = c (5.18)

f−1 ◦ ∂Forg = ∂ (5.19)

f−1 ◦ νForg ◦ f = ν (5.20)

Verifying this is straightforward but tedious, and so we leave the proof to the studious

reader.

Definition 5.1.2. Equivalent Weak Quasi G-Equivariant Fiber Functors

Let (C, (F, JF , ϕF , {Rg}g∈G)), (D, (K, JK , ϕK , {R1
g}g∈G)) be two G-tensor categories

with weak quasi G-equivariant fiber functors. We say that the two weak quasi G-

equivariant fiber functors are equivalent if there exists a G-functor (L, JL, ϕL, {τg}g∈G)
such that L : C → D is an equivalence of categories, and there is a natural isomor-

phism κ : F → K ◦ L

Similarly, one can define equivalence of weak quasi G-equivariant fiber functors on

G-crossed braided tensor categories and G-ribbon tensor categories. When we want

to be brief we will denote a weak quasiG-equivariant fiber functor (C, (F, JF , ϕF , {Rg}g∈G))
simply by (C, F ).

Definition 5.1.3. If (H,Γ1), (R,Γ2) are pairs of finite dimensional algebras with

G-(ribbon,crossed) Abelian 3-cocycles we say that they are equivalent if there exists

a unital algebra isomorphism f : H → R such that f(Γ2) is equivalent to Γ2. Here

f(Γ2) denotes the G-(ribbon,crossed) Abelian 3-cocycle on H defined by pulling back

Γ2 through f .

Theorem 5.0.2. The maps

(C, F ) ↦→ (H := Nat(F ),ΓC,F ) (H,Γ) ↦→ (Mod(H),Forg) (5.21)
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are inverses between: (1) The equivalence classes of finite G-(ribbon,crossed braided)

tensor categories and weak G-equivariant fiber functors. (2) The equivalence classes

of pairs of finite dimensional unital algebras H and G-(ribbon,crossed) Abelian 3-

cocycle on H.

Proof. By Lemmas 5.1.1, 5.1.2 we only need to show that the maps are well-defined

on equivalence classes.

Suppose that (H,Γ1), (R,Γ2) are equivalent with equivalence given by f : H → R.

This implies that there exists a twist J, J−1 ∈ H ⊗H and ξ ∈ C1(G,H×) realizing

the equivalence of Γ1, f(Γ2). Define a functor L : Mod(H) → Mod(R) by L(V, ρV ) :=

(V, ρV ◦ f−1), L(f) = f . Evidently this will be an equivalence of G-categories when

Mod(H) has the G-structure induced from f(Γ2) and Mod(R) has the G-structure

induced from Γ2. We can choose κ to simply be the identity natural transformation.

It suffices to show then that Mod(H) endowed the G-structure induced from Γ1 is

equivalent to Mod(H) endowed with the G-structured induced from f(Γ2). It can

be checked that (Id, (ρ− ⊗ ρ−)(J), 1, {τg}g∈G) : (Mod(H),Γ1) → (Mod(H), f(Γ2))

where τg(V, ρV )) := ρV (ξg) will define a G-equivalence and we leave the details to

the interested reader. For the same reasons as before we can also choose the natural

isomorphism to be the identity in this case.

First, suppose that (C, (F1, J
F1 , ϕF1 , {R1

g}g∈G)) (D, (F2, J
F2 , ϕF2 , {R2

g}g∈G)) are

equivalent with equivalence realized by a natural isomorphism κ : F1 → F2 ◦ L
and an adjoint G-(ribbon,crossed braided) tensor equivalence

((L, JL, ϕL
0 , {τ 1g }g∈G), (E, JE, ϕE

0 , {τ 2g }g∈G), η, ε) (5.22)

where η : IdC → E ◦ L, ε : L ◦ E → IdD are the unit and co-unit respectively. Let

H := Nat(F1), R := Nat(F2). Then we have an isomorphism of unital C-algebras
f : H → R given for h ∈ H, by:

f(h) := Ad(F2(ε) ◦ κE(−))(hE(−)) (5.23)

Using the fact that (L,E, η, ε) are an adjoint equivalence it is easy to check that this
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will have an inverse for r ∈ R:

f−1(r) := Ad(κ−1)(rL(−)) (5.24)

Evidently f is a unital C-algebra isomorphism. It suffices to show that ΓC,F1 is

equivalent to f(ΓD,F2). Well to that end let:

J = (κ−1 ⊗ κ−1) ◦ (JF2

L(−),L(−))
−1 ◦ F2((J

L)−1) ◦ κ−⊗− ◦ JF1 (5.25)

J−1 = (JF1)−1 ◦ κ−1
−⊗− ◦ F2(J

L) ◦ JF2

L(−),L(−) ◦ (κ⊗ κ) (5.26)

One can check that this is a twist of (H,ΓC,F1). For every g ∈ G define:

τg = R1
g ◦ κ−1 ◦ F2(τ

1
g ) ◦ ((R2

g)
L(−))−1 ◦ κ (5.27)

This will be an invertible element of H and so τ ∈ C1(G,H×). It is straightforward,

but tedious to verify that (J, τ) makes (H,ΓC,F1), (H, f(ΓD,F2)) equivalent and so we

leave it to the studious reader.

5.2 Weak G-Equivariant Dimension Functions

Fix a G-ribbon fusion category (C, (ψ, γ, ψ0), c, θ). As mentioned at the start of

the chapter we may assume without loss of generality that C is skeletal with trivial

unitors and that the categorical G-action is unital. The key ingredient to proving

reconstruction for fusion categories is the notion of a dimension function. For G-

fusion categories we will need a similar notion except that it is compatible with the

G-action.

Definition 5.2.1. Weak G-Equivariant Dimension

For the sake of brevity we denote the set of simples of C as ∇. A weak G-

equivariant dimension function D : ∇ → N, is a function such that

D(1C) = 1, D(X∗) = D(X), D(Tg(X)) = D(X) ∀g ∈ G (5.28)
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D(X)D(Y ) ≥
∑︂
Z∈∇

NZ
X,YD(Z) (5.29)

Proposition 5.2.1. Every fusion category with a categorical G-action has a G-

equivariant weak dimension function.

Proof. Recall from [21] that every fusion category will have a weak dimension func-

tion given by:

D(1) = 1, D(X) =
∑︂
i,j

N j
i,X (5.30)

I claim that this will also be G-equivariant. To see this, notice that we have:

D(Tg(X)) =
∑︂
i,j

N j
i,Tg(X) =

∑︂
i′,j′

N
Tg(j′)
Tg(i′),Tg(X)

since Tg is a monoidal autoequivalence. On the other hand we know that Tg induces a

linear isomorphism from Hom(i′⊗X, j′) to HomC(Tg(i
′⊗X), Tg(j

′)) ∼= HomC(Tg(i
′)⊗

Tg(X), Tg(j
′)). This implies that N

Tg(j′)
Tg(i′),Tg(X) = N j′

i′,X , and so indeed D(Tg(X)) =

D(X).

This result is crucial to prove G-reconstruction, but unfortunately the weak G-

equivariant dimension function will in general give very large numbers making the

associated weak quasi-Hopf algebra unusable.

In the case that C is a G-crossed braided fusion category there are many weak

G-equivariant dimensions

Lemma 5.2.1. Let C be a G-crossed braided fusion category and suppose that ℓ :

R → R is a function such that ℓ(r) ≥ 1 for r ≥ 1 and ℓ(1) = 1. If ℓ is weakly

multiplicative, that is for all r, k ∈ R:

ℓ(r · k) ≤ ℓ(r)ℓ(k) (5.31)

and ℓ(FPdim(X)) ∈ N for all X ∈ C, then:

D(X) := ℓ(FPdim(X)) (5.32)
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is a weak G-equivariant dimension function.

Proof. Note that FPdim(X∗) = FPdim(X) and since we are in a G-crossed braided

fusion category we know for each Y ∈ Cg and X ∈ C that Y ⊗ X ∼= Tg(X) ⊗ Y .

Therefore, FPdim(Tg(X)) = FPdim(X). The rest follows immediately.

Example 5.2.1. Define for x ∈ R:

⌈x⌉ := min{n ∈ N : n ≥ x} (5.33)

This will be weakly multiplicative and so:

D(X) = ⌈FPdim(X)⌉ (5.34)

is a weak G-equivariant dimension function.

Under slightly more restrictive conditions on a G-crossed braided fusion category

there is a much nicer weak dimension function.

Definition 5.2.2. Weakly Integral Fusion Category

A fusion category C is called weakly integral if:

FPdim(C) :=
∑︂
X∈∇

FPdim(X)2 ∈ Z (5.35)

Proposition 5.2.2. Let C be a weakly integral G-crossed braided fusion category.

Then

D(X) := FPdim(X)2 (5.36)

defines a weak G-equivariant dimension function.

Proof. Since C is assumed to be weakly integral we know from [13, Proposition 9.6.9

(i)] that D(X) ∈ N. Lemma 5.2.1 then implies the rest.

Proposition 5.2.3. Let C be a G-(ribbon,crossed braided) fusion category with weak

G-equivariant dimension function D. By Theorem 3.8.1 we know that this will induce
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a weak quasi fiber functor (F, JF , ϕF ). For every g,∈ G Y ∈ C define a C-linear map

RY
g : F (Y ) → (F ◦ Tg)(Y ) defined for hX ∈ HomC(X, Y ), vX ∈ CD(X) by:

RY
g

(︄⨁︂
X∈∇

hX ⊗ vX

)︄
:=
⨁︂
X∈∇

Tg(hTg−1 (X))⊗ vTg−1 (X) (5.37)

The following properties will hold:

R−
g ∈ Nat(F, F ◦ Tg) (5.38)

RX
e = IdF (X) (5.39)

R1C
g = IdF (1C) (5.40)

Therefore, (F, JF , ϕF , {Rg}g∈G) is a weak quasi G-equivariant fiber functor.

Proof. Since Tg(hTg−1 (X)) ∈ HomC((Tg ◦ Tg−1)(X), Tg(Y )) = HomC(X,Tg(Y )) we see

that RY
g is indeed a map from F (Y ) to (F ◦Tg)(Y ). To see that R−

g ∈ Nat(F, F ◦Tg)
let Y, Z ∈ C and f : Y → Z, then it is straightforward to calculate that for all

X ∈ ∇, hX ∈ HomC(X, Y ), vX ∈ CD(X):

(RZ
g ◦ F (f)) (⊕X∈∇hX ⊗ vX) = ⊕X∈∇Tg(f ◦ hTg−1 (X))⊗ vTg−1(X)

(5.41)

((F ◦ Tg)(f) ◦RY
g )(⊕X∈∇hX ⊗ vX) = ⊕X∈∇Tg(f) ◦ Tg(hTg−1 (X))⊗ vTg−1 (X) (5.42)

Since Tg is a functor we see that indeed RZ
g ◦ F (f) = (F ◦ Tg)(f) ◦RY

g .

For the second condition notice that since our G-action is normalized we have

Te = IdC, and so RX
e = IdF (X).

For the third condition, note that since we are in the skeletal normalized setting

Tg(1C) = 1C and so indeed R1C
g = IdF (1C)

Corollary 5.2.1. For every G-ribbon fusion category C there exists a finite dimen-

sional C-algebra H and a G-ribbon Abelian 3-cocycle Γ such that C is equivalent as

a G-ribbon fusion category to Mod(H) with the G-ribbon structure induced by Γ.
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Proof. This follows from Proposition 5.2.1 and Theorem 5.0.2.
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Chapter 6

The Hopf Equivariantizaztion

Theorem

In the final chapter of this thesis we use the G-(ribbon, crossed) Abelian 3-cocycle

story to describe the equivariantization of any G-(ribbon, crossed braided) fusion

category C as the modules of some ribbon qt wqhf H#ΓC[G]. In fact, it will describe

the equivariantzation of any finite G-(ribbon, crossed braided) tensor category with

a weak quasi G-equivariant fiber functor.

The first step in this chapter is a technical result we need to prove that H#ΓC[G]
is a wqhf. The reader uninterested in the technical details can skip this section. After

this we define H#ΓC[G] and prove the Hopf equivariantization theorem. That is if Γ

is a G-(ribbon, crossed) Abelian 3-cocycle then the equivariantization (Mod(H))G of

the corresponding G-structure on Mod(H) will be equivalent as a (ribbon, braided)

tensor category to Mod(H#ΓC[G]). Combined with the G-reconstruction result for

fusion categories this provides a way to describe the equivariantzation of all fusion

categories with one of aforementioned G-structures.

As outlined in the introduction, this gives a uniform categorical description of

the category of representations of all strongly rational orbifold VOAs and proves the

Dijkgraaf-Witten conjecture as a special case.
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6.1 A Technical Result

Let (H, ·, 1H , ϵ,∆,Φ, S, α, β) be a wqhf so that Mod(H) has the structure of a tensor

category. By Lemma 4.3.1 we know that (ρV (d
g))∗ : Tg((V, ρV )

∗) → Tg(V, ρV )
∗ is an

H-intertwiner, and so setting V = H we see that for all h ∈ H we have:

(S ◦Ψ(g−1))(h) · dg = dg · (Ψ(g−1) ◦ S)(h) (6.1)

Proposition 6.1.1. Let (∆, ϵ,Φ, S, α, β, Ψ, γ, µ) be a G Abelian 3-cocycle, then the

following equations hold:

dg ·Ψ(g−1)(α) = S((µg)1) · α · (µg)2 (6.2)

Ψ(g−1)(β) · dg = (µ −1
g )1 · β · S((µ −1

g )2) (6.3)

dgk = S(γ−1

k−1,g−1) · dk ·Ψ(k−1)(dg) · (γ−1

k−1,g−1) (6.4)

Proof. Recalling that for (V, ρV ), (W, ρW ) ∈ Mod(H) the tensor structure of Tg is

defined as µg((V, ρ), (W, ρW )) = (ρV ⊗ρW )(µg), with trivial unit isomorphism. Recall

the shorthand µg = (µg)1 ⊗ (µg)2. Expanding ev
Tg

(V,ρV ) for f ∈ V ∗, v ∈ V we obtain:

ev
Tg

(V,ρV )((ρV ∗ ⊗ ρV )(∆(1H)
(g,g))(f ⊗ v)) = ev(V,ρV )((ρV ∗ ⊗ ρV )(µg ·∆(1H)

(g,g))(f ⊗ v)) =

(6.5)

ev(V,ρV )((ρV ∗ ⊗ ρV )(µg)(f ⊗ v)) = ev(V,ρV )(ρV ∗((µg)1)(f)⊗ ρV ((µg)2)(v)) =

(6.6)

(ρV ∗((µg)1)(f))(ρV (α · (µg)2)(v)) = f(ρV (S((µg)1) · α · (µg)2)(v)) (6.7)

On the other hand expanding we know this equals evTg(V,ρV )◦(dTg⊗Id) and expanding

for f ∈ V ∗, v ∈ V we obtain:

(evTg(V,ρV ) ◦ (dTg ⊗ Id))((ρV ∗ ⊗ ρV )(∆(1)(g,g))(f ⊗ v)) = (6.8)

(evTg(V,ρV ) ◦ ((ρV (dg))∗ ⊗ Id))((ρV ∗ ⊗ ρV )(∆(1)(g,g))(f ⊗ v)) = (6.9)
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((ρV (S(Ψ(g−1(1(1))) · dg))∗)(f)(ρV (Ψ(g−1)(α) ·Ψ(g−1)(1(2)))(v)) = (6.10)

f(ρV (S(Ψ(g−1(1(1))) · dg ·Ψ(g−1)(α · 1(2))))(v)) (6.11)

But, we know that S(Ψ(g−1)(1(1))) · dg = dg · Ψ(g−1)(S(1(1))) by Equation (6.3).

Therefore, we may simplify Equation (6.11) to:

f(ρV (d
g ·Ψ(g−1)(S(1(1)) · α · 1(2))))(v)) = f(ρV (d

g ·Ψ(g−1)(α))(v)) (6.12)

as S(1(1))α · 1(2) = ϵ(1H) · α. Comparing Equation (6.7) to Equation (6.12) we see

that indeed dg ·Ψ(g−1)(α) = S((µg)1) · α · (µg)2.

The proof that Ψ(g−1)(β) ·dg = (µ −1
g )1 · β ·S((µ −1

g )2) follows similarly by using

the fact that (Id⊗ d
Tg

(V,ρV )) ◦ coev
Tg

(V,ρV ) = coevTg(V,ρV ), and so we omit the proof.

Fpr similar reasons, to prove Equation (6.4) it suffices to show that for all

(V, ρV ) ∈ Mod(H):

(dTgk)(V, ρV ) = (γg,k(V, ρV )
−1)∗◦dTg

Tk(V,ρV )◦Tg((d
Tk)(V, ρV ))◦(γg,k((V, ρV )∗))−1 (6.13)

This follows from the fact that dTg◦Tk = d
Tg

Tk(V,ρV ) ◦ Tg(dTk(V, ρV )) and that since

γg,k : Tg ◦ Tk → Tgk is a natural isomorphism of tensor functors by a general fact of

tensor functors (See Proposition A.4.3) we have:

(γg,k(V, ρV ))
∗ ◦ dTgk(V, ρV ) ◦ γg,k((V, ρV )∗) = dTg◦Tk(V, ρV ) (6.14)

This completes the proof.

6.2 (Weak Quasi) Hopf Algebra Description of Equiv-

ariantization

Let (C, (ψ, γ, ψ0), c, θ) be a finiteG-ribbon tensor category, and fix a weakG-equivariant

fiber functor (F, JF , ϕF , {Rg}g∈G). As we know from the previous chapter this will

induce a finite dimensional unital algebra H and a G-ribbon Abelian 3-cocycle Γ(C,F ),
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let (Mod(H),Γ(C,F )) denote the induced G-ribbon structure on Mod(H). We know

that (C, (ψ, γ, ψ0), c, θ) will be equivalent to (Mod(H),Γ(C,F )) as a G-ribbon tensor

category. By Theorem 2.3.2 we know that equivariantization will send G-ribbon ten-

sor equivalences to ribbon tensor equivalences. Therefore, to describe CG it suffices

to describe (Mod(H))G.

Notation. Denote Γ(C,F ) = (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν).

For ease of notation we will use the following for g, k ∈ G:

γg,k := γ
k−1,g−1 (6.15)

Proposition 6.2.1. Equivariantization of Mod(H):

With everything as above, an object of (Mod(H))G is an H-module (V, ρV ) such

that:

1. V is a G-module with G-action ug : V → V such that as linear maps:

ugh ◦ ρV (γg,h) = ug ◦ uh (6.16)

2. Each linear map ug : V → V is an H-intertwiner isomorphism from (V, ρV ◦
Ψ(g−1)) to (V, ρV ). That is for all h ∈ H:

ug ◦ ρV (Ψ(g−1)(h)) = ρV (h) ◦ ug (6.17)

We denote an object of (Mod(H))G as a tuple ((V, ρV ), {ug}g∈G)

A morphism f((V, ρV ), {ug}g∈G) → ((W, ρV ), {vg}g∈G) is a H-intertwiner f :

(V, ρV ) → (W, ρW ) that preserves the G-action:

f ◦ ug = vg ◦ f (6.18)
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The tensor product is given by:

((V, ρV ), {ug}g∈G)⊗((WρW ), {wg}g∈G) := ((V, ρV )⊗(W, ρW ), {(ug⊗wg)◦(ρV⊗ρW )(µg
−1)}g∈G)

(6.19)

The unit object is ((C, ε), {1}g∈G) where {1}g∈G is the trivial G-action. The asso-

ciator of (Mod(H))G is just the associator of Mod(H), and the left/right unitors

of (Mod(H))G are just the associators of Mod(H). The braiding of (Mod(H))G is

defined for ((V, ρV ), {ug}g∈G), ((W, ρW ), {vg}g∈G) by restricting the following map to

the representation spaces:

x⊗ y ↦→ cVectV,W (
∑︂
g∈G

(Id⊗ vg) ◦ (ρV ⊗ ρW )(c · (∂(g)⊗ IdH))(x⊗ y)) (6.20)

The dual structure of (Mod(H))G is given by:

((V, ρV ), {ug}g∈G)∗ = ((V ∗, (ρV ◦ S)∗), {(ρV (dg · γ−1
g−1,g)) ◦ ug−1)∗}g∈G) (6.21)

The evaluation and co-evaluation maps are just the ones from Mod(H).

The ribbon twist is defined for ((V, ρV ), {ug}g∈G) by:

v ↦→
∑︂
g∈G

ug(ρV (θ · ∂(δg))(v)) (6.22)

Proof. The proof of this is just substituting in the G-structure define in Chapter 3,

and recalling the details of equivariantization (Definition 2.3.3) . The only non-trivial

component is the dual structure, which we prove.

First, notice that since we have a choose a normalized G-structure on C we have

that:

γe,g = (Rg)
−1 ◦ F (γe,g) ◦RTg

e ◦Rg = 1H (6.23)

Therefore, if ((V, ρV ), {ug}g∈G) ∈ (Mod(H))G, then we see that for all g ∈ G:

ug ◦ ρV (γe,g) = ug = ue ◦ ug ⇒ ue = IdV (6.24)
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This also implies that:

ue ◦ ρV (γg−1,g) = ug−1 ◦ ug = ρV (γg−1,g) ⇒ (ug)
−1 = ρV (γ

−1
g−1,g) ◦ ug−1 (6.25)

From Definition 2.3.3 we see that:

((V, ρV ), {ug}g∈G)∗ := ((V ∗, (ρV ◦ S)∗), {((ug)−1)∗ ◦ dTg(V, ρV )}g∈G) (6.26)

From Lemma 4.3.1 we know that dTg(V, ρV ) = (ρV (d
g))∗. Combing all of these

observations we see that

((V, ρV ), {ug}g∈G)∗ := ((V ∗, (ρV ◦ S)∗), {(ρV (γ−1
g−1,g) ◦ ug−1)∗ ◦ (ρV )(dg))∗)}g∈G) =

((V ∗, (ρV ◦ S)∗), {(ρV (dg · γ−1
g−1,g) ◦ ug−1)∗))}g∈G)

(6.27)

This completes the proof.

Proposition 6.2.2. Let H be a unital C-algebra, and Γ := (∆H , ϵH ,ΦH ,Ψ, γ, µ, c, ∂, ν)

a G-ribbon Abelian 3-cocycle. Then define a ribbon wqhf H#ΓC[G] as follows:
As a vector space H#ΓC[G] is H ⊗C C[G].

1. For r, h ∈ H, g, k ∈ G the product and unit are defined as:

(r ⊗ g) · (h⊗ k) := (γg,k · (Ψ(k−1)(r) · h))⊗ gk (6.28)

1H#ΓC[G] := 1H ⊗ e (6.29)

2. For every r ∈ H, g ∈ G the co-product and co-unit are defined as:

∆H#ΓC[G](r ⊗ g) := ((µ −1
g )1 · r(1) ⊗ g)⊗ ((µ −1

g )2 · r(2) ⊗ g) (6.30)

ϵH#ΓC[G](r ⊗ g) := ϵH(r) (6.31)
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3. The associator is defined as:

ΦH#ΓC[G] = (x1 ⊗ Id)⊗ (x2 ⊗ Id)⊗ (x3 ⊗ Id) (6.32)

where we use Sweedler notation Φ = x1 ⊗ x2 ⊗ x3

4. The R-matrix is defined as:

RH#ΓC[G] :=
∑︂
g∈G

((c)1 · ∂(δg)⊗ e)⊗ ((c)2 ⊗ g) (6.33)

R−1
H#ΓC[G] :=

∑︂
g∈G

((c −1)1 · ∂(δg)⊗ e)⊗ (Ψ(g)((c −1)2) · (γg,g−1) −1⊗ g−1) (6.34)

5. The antipode structure is defined for r ∈ H, g ∈ G as:

SH#ΓC[G](r ⊗ g) := Ψ(g)(S(r) · dg · (γg−1,g)
−1)⊗ g−1 (6.35)

αH#ΓC[G] := αH ⊗ e βH#ΓC[G] := βH ⊗ e (6.36)

6. The ribbon element of H#ΓC[G] is defined as:

νH#ΓC[G] :=
∑︂
g∈G

(ν · ∂(δg))⊗ g (6.37)

Proof. Checking that this does indeed form a ribbon wqhf is straight forward but

extremely tedious. Therefore, we refer the reader to Appendix D.

Remark 6.2.1. If H is a unital C-algebra and Γ a G-ribbon Abelian 3-cocycle, then

there exists an embedding of a wqhf ιH,Γ : H → H#ΓC[G] given by ιH(h) := h ⊗ e.

This induces a forgetful functor. When it is clear from context the particular G-ribbon

Abelian 3-cocycle we are working with we denote this forgetful functor by:

Λ : Mod(H#ΓC[G]) → Mod(H) (6.38)

Theorem 6.2.1. The Hopf Equivariantion Theorem
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Let H be a unital C-algebra with a G-ribbon Abelian 3-cocycle Γ. By Proposi-

tion 4.3.1 we know that this induced a G-ribbon structure on Mod(H). There is an

equivalence of ribbon tensor categories given by:

(F , JF , ϕF) : Mod(H#ΓC[G]) → (Mod(H))G (6.39)

F(V, ρV ) := (Λ(V, ρV ), {ρV (1H ⊗ g)}g∈G) F(f) := f (6.40)

JF := Id ϕF = Id (6.41)

Proof. First, we check that F is well-defined. Let (V, ρV ) ∈ Mod(H#ΓC[G]). By

Proposition 6.2.1 to show that (Λ(V, ρV ), {ρV (1H ⊗ g)}g∈G) ∈ (Mod(H))G it suffices

to show that {ρV (1H ⊗ g)}g∈G satisfies Equations (6.16), (6.17). To that end let

v ∈ V, g, k ∈ G then:

ρV (1H⊗g)(ρV (1H⊗k)(v)) = ρV ((1H⊗g)·(1H⊗k))(v) = ρV (γg,k⊗gk)(v) = ρV (γg,k⊗e)(ρV (1H⊗gk)(v))
(6.42)

Here we have used the identity that (γg,k ⊗ gk) = (IdH ⊗ gk) · (γg,k ⊗ e). Therefore,

Equation (6.16) will be satisfied. To show that Equation (6.17) is satisfied let g ∈
G, h ∈ H then:

ρV (1H⊗g)◦ρV (Ψ(g−1)(h)⊗e) = ρ((1H⊗g)·(Ψ(g−1)(h)⊗e)) = ρV (Ψ(g−1)(h)⊗g) =

ρV ((h⊗ e) · (1H ⊗ g)) = ρV (h⊗ e) ◦ ρV (1H ⊗ g)

(6.43)

Therefore, Equation (6.17) will be satisfied, and so we see that F(V, ρV ) ∈ (Mod(H))G.

Suppose now that f : (V, ρV ) → (W, ρW ) is a H#ΓC[G]-intertwiner, then for h ∈
G, g ∈ G:

f ◦ ρV (h⊗ e) = ρW (h⊗ e) ◦ f f ◦ ρV (1H ⊗ g) = ρW (1H ⊗ g) ◦ f (6.44)

Therefore, f will be a morphism in (Mod(H))G, and indeed F is well defined. It is

clear that F is an additive functor and C-linear. Let’s verify that (F , JF , ϕF) is a
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tensor functor. Let (V, ρV ), (W, ρW ) ∈ Mod(H#ΓC[G]) then:

F((V, ρV ))⊗F((W, ρW )) =

(6.45)

(Λ(V, ρV )⊗ Λ(W, ρW ), {ρV ((1H ⊗ g) · ((µ −1
g )1 ⊗ e))⊗ ρW ((1H ⊗ g) · ((µ −1

g )2 ⊗ e))}g∈G) =
(6.46)

(Λ(V, ρV )⊗ Λ(W, ρW ), {(ρV ⊗ ρW )(((µ −1
g )1 ⊗ g)⊗ ((µ −1

g )2 ⊗ g))}g∈G) (6.47)

On the other hand,

F((V, ρV )⊗ (W, ρW )) =

(6.48)

F((ρV ⊗ ρW )(∆H#ΓC[G](1))(W ⊗ V ), (ρV ⊗ ρW ) ◦∆H#ΓC[G]) =

(6.49)

(Λ((ρV ⊗ ρW )(∆H#ΓC[G](1))(W ⊗ V ), (ρV ⊗ ρW ) ◦∆H#ΓC[G]), {(ρV ⊗ ρW ) ◦∆H#ΓC[G](1H ⊗ g)}g∈G)
(6.50)

Since ιH,Γ : H → H#ΓC[G] is a morphism of weak quasi Hopf algebras we see that

for h ∈ H:

∆H#ΓC[G](h⊗ e) = (h(1) ⊗ e)⊗ (h(2) ⊗ e) (6.51)

Therefore,

Λ((ρV ⊗ ρW )(∆H#ΓC[G](1))(W ⊗ V )) = Λ(V, ρV )⊗ Λ(W, ρW ) (6.52)

Evaluating (ρV ⊗ ρW ) ◦∆H#ΓC[G](1H ⊗ g) for g ∈ G we obtain:

(ρV ⊗ ρW )(((µ −1
g )1 · (1H)(1) ⊗ g)⊗ ((µ −1

g )2 · (1H)(2) ⊗ g)) (6.53)

Since µ −1
g · ∆(1H) = µ −1

g we see this coincides with (ρV ⊗ ρW )(((µ −1
g )1 ⊗ g) ⊗

((µ −1
g )2 ⊗ g)).

The coherence conditions for JF follows from the fact that H is a wqhf, and we
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have an embedding ιΓ : H → H#ΓC[G] of wqhfs. For the unit isomorphism, notice

that Λ(C, ϵH#ΓC[G]) = (C, ϵH) since ιH,Γ is a morphism of wqhfs. For all g ∈ G we

have ϵH#ΓC[G](1H ⊗ g) = 1, this shows that:

F(C, ϵH#ΓC[G]) = ((C, ϵH), {IdC}g∈G) (6.54)

Therefore, one can choose ϕF = IdC. This will satisfy the required coherence condi-

tions. We have proven that (F , JF , ϕF) is a tensor functor.

Denote the braiding of Mod(H#ΓC[G]) by c1 and the braiding of (Mod(H))G

by c2. To verify that F is a braided tensor functor we need to verify that for

(V, ρV ), (W, ρW ) ∈ Mod(H) as linear maps we have:

c2F(V,ρV ),F(W,ρW ) = c1(V,ρV ),(W,ρW ) (6.55)

Let v ∈ V,w ∈ W then the braiding c2 is given by restricting the following map to

the representation spaces.

c1(V,ρV ),(W,ρW ) := cVectV,W◦(ρV⊗ρW )(RH#ΓC[H]) = cVectV,W◦
∑︂
g∈G

(ρV⊗ρW )((c1·∂(δg)⊗e)⊗(c2⊗g))

(6.56)

On the other hand, we know that the braiding c2 is given by restricting the following

map to the representation spaces.

c2F(V,ρV ),F(W,ρW ) =
∑︂
g∈G

(IdW⊗ρV (∂(δg))◦(ρW (1⊗g)⊗IdV )◦cVectV,W◦(ρV⊗ρW )((ι⊗2
H,Γ)(c))◦(ρV (∂(δg))⊗Id)

(6.57)

Evaluating Equation (6.57) we see that:

c1(V,ρV ),(W,ρW ) = F(c2F(V,ρV ),F(W,ρW )) (6.58)

Therefore, (F , Id, Id) will be braided. To verify that it is ribbon denote the ribbon

twist on Mod(H#ΓC[G]) by θ1 and the ribbon twist on (Mod(H))G by θ2. Notice
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that:

F(θ1(V,ρV )) = F(ρV (νH#ΓC[G])) = F(
∑︂
g∈G

(νH · ∂(δg)⊗ g)) (6.59)

On the other hand we know that:

θ2F(V,ρV ) =
∑︂
g∈G

ρV ((∂(δg)⊗ e) · (1H ⊗ g) · (νH ⊗ e) · (∂(δg)⊗ e)) = (6.60)∑︂
g∈G

ρV (Ψ(g−1)(νH) · ∂(δg)⊗ g) (6.61)

By Equation (4.73) we have:

Ψ(g−1)(νH) · ∂(δg) = νH · ∂(δg) (6.62)

Therefore, we see that:

F(θ1(V,ρV )) = θ2F(V,ρV ) (6.63)

The last thing we need to prove is that F is an equivalence. To that end it is

obvious that F will be faithful. To verify that it is full let

f : F(V, ρV ) → F(W, ρW ) (6.64)

be a morphism in (Mod(H))G. By definition we must have for all g ∈ G, h ∈ H:

ρW (1H ⊗ g) ◦ f = f ◦ ρV (1H ⊗ g) ρW (h⊗ e) ◦ f = f ◦ ρV (h⊗ e) (6.65)

In particular this implies that:

ρW (h⊗ g) ◦ f = ρV (h⊗ g) ◦ f (6.66)

Therefore, f will be an H#ΓC[G]-intertwiner and so F is full.

Lastly, to show that F is isomorphism dense let ((M,ρHM), {ug}g∈G) ∈ (Mod(H))G.
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Define a (H#ΓC[G])-module (M,ρ
H#ΓC[G]
M ) for g ∈ G, h ∈ H by:

ρ
H#ΓC[G]
M (h⊗ g) := ug ◦ ρHM(h) (6.67)

To verify that (M,ρ
H#ΓC[G]
M ) is a (H#ΓC[G])-module notice that ue = IdM , ρ

H
M(1H) =

IdM , so ρ
H#ΓC[G]
M (1H ⊗ e) = IdM . If h, r ∈ H, g, k ∈ G, then:

ρ
H#ΓC[G]
M ((h⊗ g) · (r ⊗ k)) = (6.68)

ρ
H#ΓC[G]
M ((γg,k ·Ψ(k−1)(h) · r)⊗ gk) = (6.69)

ugk ◦ ρHM(γg,k ·Ψ(k−1)(h) · r) = ugk ◦ ρHM(γg,k) ◦ ρHM(Ψ(k−1)(h)) ◦ ρHM(r) = (6.70)

ug ◦ uk ◦ ρHM(Ψ(k−1)(h)) ◦ ρHM(r) = (6.71)

ug ◦ ρHM(h) ◦ uk ◦ ρHM(r) = (6.72)

ρ
H#ΓC[G]
M (h⊗ g) ◦ ρH#ΓC[G]

M (r ⊗ k) (6.73)

Since:

ρ
H#ΓC[G]
M (h⊗ e) = ue ◦ ρHM(h) = ρHM(h) (6.74)

ρ
H#ΓC[G]
M (1H ⊗ g) = ug (6.75)

we see that F((M,ρ
H#ΓC[G]
M )) = ((M,ρHM), {ug}g∈G) right on the nose. This proves

that F will be isomorphism dense and so an equivalence.

This theorem allows us to prove the main result of the thesis:

Theorem 6.2.2. For every G-ribbon tensor category C with a weak quasi G-equivariant

fibre functor F there exists a C-algebra H with a G-ribbon Abelian 3-cocycle Γ such

that:

CG ∼= Mod(H#ΓC[G]) (6.76)

as ribbon tensor categories. In particular if C is a finite G-ribbon tensor category

then H can be assumed to be finite dimensional.

Corollary 6.2.1. Let C be a G-ribbon fusion category. Then there exists a finite
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dimensional semi-simple C-algebra H with a G-ribbon Abelian 3-cocycle such that:

CG ∼= Mod(H#ΓC[G]) (6.77)

In particular if D is a weak G-equivariant dimension function on the set of isomor-

phism classes of simples of C, denoted by ∇. Then H is isomorphic to:

H ∼=
⨁︂
X∈∇

Mat(D(X),C) (6.78)

As we saw at the end of Chapter 4, there are many weak G-equivariant dimension

functions we can choose from, some that are relatively small. It is the authors hope

that for this reason that in specific cases all of the G-ribbon Abelian 3-cocycles on a

fusion ring that admits categroification can be calculated explicitly.
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Appendix A

Category Theory

The material in this appendix will follow the contents of [13].

A.1 Monoidal Categories

Let C be a category. A monoidal category is a category with a way to multiply things

through a tensor product in a coherent way. More precisely:

Definition A.1.1. Monoidal Category

A monoidal category is a sextuple (C,⊗, α, 1C, ℓ, r) such that there is a functor

called the tensor product

⊗ : C × C → C (A.1)

and there is a natural isomorphism called the associator

α : ⊗ ◦ (⊗× Id) → ⊗ ◦ (Id×⊗) (A.2)
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such that the Pentagon Axiom is satisfied:

(X ⊗ Y )⊗ (W ⊗ Z)

((X ⊗ Y )⊗W )⊗ Z X ⊗ (Y ⊗ (W ⊗ Z))

(X ⊗ (Y ⊗W ))⊗ Z X ⊗ ((Y ⊗W )⊗ Z)

αX,Y,W⊗IdZ

αX,Y ⊗W,Z

IdX⊗αY,W,Z

αX⊗Y,W,Z αX,Y,W⊗Z

Figure A.1: Pentagon Axiom

In addition we require that there is a unit object 1C with natural isomorphisms:

ℓX : 1C ⊗X → X rX : X ⊗ 1C → X (A.3)

such that the triangle axiom holds:

(X ⊗ 1C)⊗ Y X ⊗ (1C ⊗ Y )

X ⊗ Y

rX⊗IdY IdX⊗ℓY

αX,1C ,Y

Figure A.2: Triangle Axiom

Definition A.1.2. Sub-Monoidal Category

Let (C,⊗, α, 1C, ℓ, r) be a monoidal category and D ⊂ C a full sub-category of
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C. If 1C is an object of D, and D is closed under the tensor product we say that

(D,⊗|D×3 , α|D×3 , 1C, ℓ|D, r|D) is a sub-monoidal category.

The functor ⊗ is referred to as the tensor product, and the natural isomorphisms

ℓ, r are called the left and right unitor respectively. When it is clear from context we

will usually refer to a monoidal structure (C,⊗, α, 1C, ℓ, r) simply as C. Essentially

a monoidal category is a category where you can multiply together in an associative

manner, and there is a unit with respect to this unit. The reason the pentagon axiom

is required is we don’t want any ambiguity when changing brackets. As illustrated by

the axiom there are two ways to re-bracket ((X⊗Y )⊗W )⊗Z to X⊗(Y ⊗(W ⊗Z)),

and the pentagon axiom guarantees that these will be the same.

Example A.1.1. Vector Spaces

Let C be the category of finite dimensional vector spaces over C. This will form

a monoidal category with tensor product given by:

⊗(V,W ) := V ⊗C W, ⊗(f, g) := f ⊗C g (A.4)

The associator α is the linear isomorphism induced from the associativity of the

Cartesian product of vector spaces, the left unitor is the linear isomorphism induced

from the bi-linear form (c, v) ↦→ c · v, and similarly for the right unitor. Denote this

monoidal category simply as Vect

Another example which will be of great interest in this thesis are graded vector

spaces

Example A.1.2. Graded Vector Space
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Let G be a finite group, define the category of G-graded vector spaces VectG to

be vector spaces V that are the direct sum of vector spaces labelled by G. That is

V =
⨁︁

g∈G Vg. We refer to Vg as the g-th component of V for g ∈ g. This inherits a

monoidal structure from Example A.1.1 with the g-th component of the tensor product

defined as:

(V ⊗W )g :=
⨁︂
h,k∈G
h·k=g

Vh ⊗C Wk (A.5)

The unital object is defined to be C with a G-grading given by

(C)g :=

⎧⎪⎪⎨⎪⎪⎩
C if g = e

0 else

(A.6)

The unitors are the ones induced from Example A.1.1.

Example A.1.3. Twisted Graded Vector Spaces

Let G be a group as before. Recall that a 3-cocycle on G with coefficients in C×

is a function ω : G×G×G→ C× such that:

ω(g · h, k, r)ω(g, h, k · r) = ω(h, k, r)ω(g, h · k, r)ω(g, h, k) (A.7)

We define VectωG to be the category VectG with the same tensor product, unit object

and unitors, but the associator is twisted by ω. Namely, if V,W,U are G-graded

vector spaces and v ∈ Vg, w ∈ Wh, u ∈ Uk then:

αV,W,U((v ⊗ w)⊗ u) = ω(g, h, k) · (v ⊗ (w ⊗ u)) (A.8)
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One can check that Eq. A.7 ensures the pentagon axiom will hold.

Example A.1.3 suggests that we should think of an associator as some 3-cocycle.

This analogy can be useful, but it is limited.

Example A.1.4. Representations of Finite Group

Let G be a group, and consider the category of all representations of a group

Rep(G) over C. We denote representations by a tuple (V, ρV ) where ρV : G→ GL(V )

is a group homomorphism. This will be a monoidal category with tensor product

defined by:

(V, ρV )⊗ (W, ρW ) := (V ⊗C W, (ρV ⊗C ρW ) ◦∆) (A.9)

Here ∆ : G → G × G denotes the diagonal morphism ∆(g) = g ⊗ g. Notice we are

abusing notation, this will be justified in a later chapter, but just ignore it for now.

The unital object is the trivial representation (C, 1) where 1(g) = IdC. The left and

right unitors from Example A.1.1 will be G-intertwiners, and so these will give the

left and right unitors of Rep(G).

A.2 Monoidal Functors

Definition A.2.1. Monoidal Functor

Let (C,⊗, α, 1C, ℓ, r), (D,⊗′, α′, 1D, ℓ
′, r′) be a monoidal categories. A monoidal

functor from C to D is a tuple (F, J, ϕ) where F : C → D is a functor, J : ⊗◦F×F →

F ◦ ⊗ is a natural isomorphism, and ϕ : 1D → F (1C) is an isomorphism such that

the following diagram commutes:
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(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z))

α′
F (X),F (Y ),F (Z)

JX,Y ⊗′IdF (Z)

JX⊗Y,Z

F (αX,Y,Z)

JX,Y ⊗Z

IdF (X)⊗JY,Z

We also require that:

J1C ,X ◦ (ϕ⊗′ IdF (X)) = F (ℓX)
−1 ◦ ℓ′F (X) (A.10)

JX,1C ◦ (IdF (X) ⊗′ ϕ) = F (rX)
−1 ◦ r′F (X) (A.11)

(J, ϕ) is referred to as the monoidal structure of F .

Remark A.2.1. Definition A.2.1 is usually referred to as a strong monoidal functor,

but in this thesis we will only consider strong monoidal functors and so simply refer

to them as monoidal functors.

Definition A.2.2. Unital Monoidal Functor

Let (F, J, ϕ) : C → D be a monoidal functor. We say it is unital if ϕ = IdD.

Notice if (F, JF , ϕF ) : C → D, (G, JG, ϕG) : D → F are monoidal functors, then

(G ◦ F, JG ∗ JF , ϕG ∗ ϕF ) is monoidal functor where the isomorphism:

(JG ∗ JF )X,Y : (G ◦ F )(X)⊗F (G ◦ F )(Y ) → (G ◦ F )(X ⊗C Y ) (A.12)
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is defined by:

(JG ∗ JF )X,Y := G(JF
X,Y ) ◦ JG

F (X),F (Y ) (A.13)

and

ϕG ∗ ϕF : 1F → (G ◦ F )(1C) (A.14)

is defined by:

ϕG ∗ ϕF := G(ϕF ) ◦ ϕG (A.15)

We will also need the notion of natural transformations of monoidal functors.

Definition A.2.3. Natural Transformation of Monoidal Functors

Let C,D be monoidal categories as in Definition A.2.1. Also, let (F, JF , ϕF ), (G, JG, ϕG)

be monoidal functors from C to D. A natural transformation of monoidal fucntors

τ : (F, JF , ϕF ) → (G, JG, ϕG) is a natural transformation τ : F → G such that the

following diagrams commute:

F (X)⊗′ F (Y ) F (X ⊗ Y )

G(X)⊗′ G(Y ) G(X ⊗ Y )

JF
X,Y

JG
X,Y

τX⊗′τY τ ′X⊗Y

1D

F (1C) G(1C)

ϕF ϕG

ϵ1C

Definition A.2.4. Equivalence of Monoidal Categories
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Let C,D be as before. We say that C,D are equivalent as monoidal categories

if there exist monoidal functors (F, JF , ϕF ) : C → D, (G, JG, ϕG) : D → C such

that (G ◦ F, JG ∗ JF , ϕG ∗ ϕF ) is naturally isomorphic as a monoidal functor to

(IdC, Id, Id1C) and (F ◦ G, JF ∗ JG, ϕF ∗ ϕG) is naturally isomorphic as a monoidal

functor to (IdD, Id, Id1D)

The following is claimed in [13, Remark 2.4.10], and we provide a proof for the

reader’s convenience.

Proposition A.2.1. Let C,D be monoidal categories, and (F, JF , ϕF ) : C → D a

monoidal functor such that F : C → D gives an equivalence of categories. Then

(F, JF , ϕF ) gives an equivalence of monoidal categories.

Proof. By assumption there exists an adjoint equivalence (F,G, η, ϵ) with unit η :

IdC → G ◦ F and co-unit ϵ : F ◦G→ IdD. Define:

JG
X,Y := (ηG(X)⊗G(Y ) ◦G(JF

G(X),G(Y )) ◦G(ϵX ⊗ ϵY ))
−1 : G(X)⊗G(Y ) → G(X ⊗ Y )

(A.16)

ϕG := (ϵ1C ◦G(ϕF ))−1 : 1C → G(1D) (A.17)

One can check that this defines a monoidal structure onG such that (F, JF , ϕF ), (G, JG, ϕG)

gives an adjoint monoidal equivalence. Checking this is straightforward and so we

leave it to the interested reader.

Example A.2.1. Let C = VectωG,D = Vectω
′

G be as in Example A.1.3 where ω, ω′

are 3-cocycles on G, not necessarily the same. Forgetting the monoidal structure, the

categories C,D are the exact same, so we have the identity functor Id : C → D. It is
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not difficult to show that there exists a monoidal functor structure on Id if and only

if ω, ω′ are co-homologous 3-cocycles on G.

Example A.2.2. Let G,H be groups and f : G→ H a group homomorphism. This

induces a functor F : Rep(H) → Rep(G) given by F (V, ρV ) := (V, ρV ◦ f), F (f) := f

for H-intertwiners f : (V, ρV ) → (W, ρW ). We see that F is a monoidal functor with

monoidal functor structure given by (Id, IdC).

Example A.2.3. Category of Monoidal Endofunctors

Let C be a monoidal functor. Define the category of endofucntors of C as the

category End⊗(C) whose objects are monoidal functors (F, J) from C to C, and mor-

phisms are natural transformations of monoidal functors. End⊗(C) will be a monoidal

category with tensor product given by composition of monoidal functors. Since com-

position is associative, the associator of the End⊗(C) is just the identity, the unit

object is the identity functor and the unitors are just the identity.

A.3 Strict and Skeletal Monoidal Categories

Example A.2.3 is a special example of what is called a strict category

Definition A.3.1. Strict Monoidal Category

Let (C,⊗, α, 1C, ℓ, r) be a monoidal category. We say that it is strict if

1. X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z for all X, Y, Z ∈ C, and α = Id

2. X ⊗ 1C = 1C ⊗X = X for all X ∈ C, and ℓX = rX = IdX
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Essentially, strict categories are monoidal categories where the tensor product is

associative on the nose, and we don’t have to worry about natural transformations.

The following theorem says that every monoidal category is equivalent to a strict

one:

Theorem A.3.1. The MacLane Strictness Theorem

Every monoidal category is equivalent to a strict monoidal category

Proof. The proof of this is well-known and so we refer the interested reader to [27].

Due to this equivalence any statement that can be proven for strict monoidal

categories will be true for all monoidal categories. This will be useful when we want

to verify identities which otherwise would become cumbersome in the non-strict

case. The process of passing from a monoidal category to a strict monoidal category

is called strictfying.

A related concept is that of a skeletal category:

Definition A.3.2. Skeletal Category

A skeletal category is a category where isomorphic objects are equal.

Since things are rarely equal on the nose in nature skeletal is a unnatural con-

dition, but as we will see it can be useful concept when dealing with some group

actions on categories. The following will be crucial to many of the results in this

paper, and so we provide a proof despite its elementary nature.

Proposition A.3.1. Let (C,⊗, α, 1C, ℓ, r) be a monoidal category. Suppose D is a

category and there is an adjoint equivalence F : C → D, G : D → C with unit
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η : 1C → G ◦ F and co-unit ϵ : F ◦ G → 1D. There is a monoidal structure on D

given by:

X⊗Y := F (G(X)⊗G(Y )) X, Y ∈ D (A.18)

f⊗g := F (G(f)⊗G(g)) f : X → Y, g : W → Z (A.19)

αX,Y,Z := F ((IdG(X) ⊗ ηG(Y )⊗G(Z)) ◦ αG(X),G(Y ),G(Z) ◦ (η−1
G(X)⊗G(Y ) ⊗ IdG(Z))) (A.20)

The unit object is F (1C), with unitors:

ℓX := ϵX ◦ F (ℓG(X) ◦ (η−1
1C

⊗ IdG(X))) (A.21)

rX := ϵX ◦ F (rG(X) ◦ (IdG(X) ⊗ η−1
1C
)) (A.22)

This will upgrade F,G to monoidal functors such that η, ϵ are natural transformations

of monoidal functors.

Proof. This proof is straightforward, but very tedious. We leave the details to the

reader.

Proposition A.3.2. Every monoidal category C is equivalent to a skeletal monoidal

category C0 such that ℓX = IdX , rx = IdX for all objects in X ∈ C0.

Proof. Following the hint from [13, Exercise 2.8.8] we let I denote the set of isomor-

phism classes of objects of C. For each isomoprhism class i ∈ I choose a representative

object Xi ∈ C such that X1 = 1C and for every two isomorphism classes i, j choose

isomorphisms µi,j : Xi ⊗ Xj → Xi·j so that µ1,j = ℓXj
, µi,1 = rXi

. Let C0 be the

full-subcategory of C with objects given by {Xi}i∈I . Define a tensor product on C0
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by:

Xi⊗Xj := Xi·j (A.23)

and if f : Xi → Xj, g : Xℓ → Xr, then

f⊗g = µj,r ◦ (f ⊗ g) ◦ µ−1
i,ℓ (A.24)

This makes ⊗ : C0 × C0 → C0 a functor. Define the associator by:

αXi,Xj ,Xk
:= µi,j·k ◦ (IdXi

⊗ µj,k) ◦ αXi,Xj ,Xk
◦ (µ−1

i,j ⊗ IdXk
) ◦ µ−1

i·j,k (A.25)

C0 will have the same unit 1C, with left unitor ℓX = IdX and right unitor rX =

IdX . Consider the functor F : C0 → C defined by F (Xi) = Xi and F (f) = f .

This will evidently be an equivalence. To see that it is a monoidal equivalence, let

JF
Xi,Xj

= µi,j : Xi ⊗ Xj → F (Xi⊗Xj). This will be a natural transformation for if

f : Xi → Xj, g : Xℓ → Xr are morphisms in C0, then

JF
Xj ,Xr

◦ (f ⊗ g) = µj,r ◦ (f ⊗ g) ◦ µ−1
i,ℓ ◦ µi,ℓ = (f⊗g) ◦ µi,ℓ = (f⊗g) ◦ JF

Xi,Xℓ
(A.26)

Lastly, let ϕF = Id1C . By design (JF , ϕF ) will make F a monoidal functor, and so

we are done.

For a monoidal category we call the process of passing to an equivalent skeletal

monoidal category as skeletinzation. Also, it is important to note that while we

can strictify and skeletinize a monoidal category, we cannot necessarily produce an
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equivalent monoidal category that is both skeletal and strict. In other words, you

need to make a choice of which process you will use when proving something.

A.4 Rigid Monoidal Categories

Let (C,⊗, α, 1C, ℓ, r) be a monoidal category.

Definition A.4.1. Left Duals

If X ∈ C, then a left dual of X is a tuple (X∗, evX , coevX) where X
∗ ∈ C and

evX : X∗ ⊗X → 1C coevX : 1C → X ⊗X∗ (A.27)

are morphisms in C such that the zig-zag relations hold:

rX ◦ (IdX ⊗ evX) ◦ αX,X∗,X ◦ (coevX ⊗ IdX) ◦ ℓ−1
X = IdX (A.28)

ℓX ◦ (evX ⊗ IdX) ◦ α−1
X∗,X,X∗ ◦ (IdX∗ ⊗ coevX) ◦ r−1

X∗ = IdX∗ (A.29)

Similarly one can define right dual of an object of X

Definition A.4.2. Right Duals

If X ∈ C, then a right dual of X is a tuple (∗X, ev′X , coev
′
X) where

∗X ∈ C and

ev′X : X ⊗ ∗X → 1C coev′X : 1C → ∗X ⊗X (A.30)
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are morphisms in C such that the zig-zag relations hold:

ℓX ◦ (ev′X ⊗ IdX) ◦ (α−1
X,∗X,X ◦ (IdX ⊗ coev′X) ◦ r−1

X = IdX (A.31)

r∗X ◦ (IdX ⊗ ev′X) ◦ (α∗X,X,∗X ◦ (coev′X ⊗ Id∗X) ◦ ℓ−1
∗X = IdX (A.32)

As one would expect left/right duals will be universal objects:

Proposition A.4.1. Uniqueness of Duals

Let X ∈ C, and suppose (Y, ev1X , coev
1
X), (Z, ev

2
x, coev

2
X) are left duals of X. Then

there exists a unique isomorphism f : Y → Z such that evY = evZ ◦ (f ⊗ IdX), and

(IdX ⊗ f) ◦ coevY = coevZ. In particular, this isomorphism is:

f := ℓZ ◦ (ev1X ⊗ IdZ) ◦ α−1
Y,X,Z ◦ (IdY ⊗ coev2Y ) ◦ r−1

Y (A.33)

A similar statement will hold for right duals.

Proof. See [13, Proposition 2.10.5] for the proof.

Definition A.4.3. Rigid Monoidal Category

A monoidal category C is called rigid, if every object has a left and right dual.

For the cases we care about left and right duals will more or less be the same

thing, and so from now on we only focus on the left dual case.

Definition A.4.4. Left Dual of a Morphism

Let f : X → Y be a morphism in C, the left dual map f ∗ : Y ∗ → X∗ is defined
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by:

f ∗ := ℓX∗ ◦ (evY ⊗ Id) ◦α−1
Y ∗,Y,X∗ ◦ (IdY ∗ ⊗ (f ⊗ IdX∗)) ◦ (IdY ∗ ⊗ coevX) ◦ r−1

Y ∗ (A.34)

One can show that in a rigid monoidal category C we have a functor (−)∗∗ : C → C

given by taking the double dual.

Proposition A.4.2. Let (C,⊗C, α
C, 1C, ℓ

C, rC), (D,⊗D, α
D, 1D, ℓ

D, rD) be rigid monoidal

categories and (F, J, ϕF ) : C → D a monoidal functor. Then F (X∗) is a left dual of

X with evaluation and coevaluation given respectively by:

evFX := (ϕF )−1 ◦ F (evX) ◦ JX∗,X (A.35)

coevFX := J−1
X,X∗ ◦ F (coevX) ◦ ϕF (A.36)

With the same setting as in Proposition A.4.2, by uniqueness of left duals there ex-

ists a unique isomorphism dFX : F (X∗) → F (X)∗ for every tensor functor (F, JF , ϕF )

such that:

evFX = evF (X) ◦ (dFX ⊗ Id) (A.37)

(Id⊗ dFX) ◦ coevFX = ◦coevF (X) (A.38)

These isomorphisms will also be compatible with monoidal natural isomorphisms as

the next proposition illustrates:

Proposition A.4.3. Let (C,⊗C, α
C, 1C, ℓ

C, rC), (D,⊗D, α
D, 1D, ℓ

D, rD) be rigid monoidal

categories and (F, JF , ϕF ), (K, JK , ϕK) : C → D monidal functors. If there exists a
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monoidal natural isomorphism τ : K → F then:

(τX)
∗ ◦ dFX ◦ τX∗ = dKX (A.39)

Proof. Without loss of generality we may assume that we are in a strict monoidal

category.If we can show that:

evKX = evK(X) ◦ ((τX)∗ ◦ dFX ◦ τX∗)⊗ Id (A.40)

then this implies that:

((τX)
∗ ◦ dFX ◦ τX∗)⊗ Id) ◦ coevKX = coevK(X) (A.41)

To see this denote for the sake of brevity f = (τX)
∗ ◦ dFX ◦ τX∗). Then note that:

(evKX ⊗ Id) ◦ (Id⊗ coevK(X)) = (evK(X) ⊗ Id) ◦ (f ⊗ Id) ◦ (Id⊗ coevK(X)) = (A.42)

(evK(X) ⊗ Id) ◦ (Id⊗ coevK(X)) ◦ f = f (A.43)

Therefore, this implies that:

(Id⊗ f) ◦ coevKX = (Id⊗ evKX ⊗ Id) ◦ (Id⊗ Id⊗ coevK(X)) ◦ coevKX = (A.44)

(Id⊗ evKX ⊗ Id) ◦ (coevKX ⊗ Id) ◦ coevK(X) = coevK(X) (A.45)

By uniqueness of isomorphisms this means to prove the Proposition we only need

to show that Equation (A.40) will hold. Well to that end since we are in a strict
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category note that:

(τX)
∗ = (evF (X) ⊗ Id) ◦ (Id⊗ τX ⊗ Id) ◦ (Id⊗ coevK(X)) (A.46)

so we have that evK(X) ◦ (f ⊗ Id) equals:

evK(X) ◦ ((evF (X) ⊗ Id⊗ Id) ◦ (Id⊗ τX ⊗ Id⊗ Id) ◦ (Id⊗ coevK(X))⊗ Id) ◦ (dFX ⊗ Id) ◦ (τX∗ ⊗ Id) =

(A.47)

evK(X) ◦ ((evFX ⊗ Id⊗ Id) ◦ (Id⊗ τX ⊗ Id⊗ Id) ◦ (Id⊗ coevK(X) ⊗ Id) ◦ (τX∗ ⊗ Id)

(A.48)

Notice that

evFX ◦ (Id⊗ τX) = (ϕF )−1 ◦ F (evX) ◦ JF
X∗,X ◦ (Id⊗ τX) = (A.49)

(ϕF )−1 ◦ F (evX) ◦ τX∗⊗X ◦ JK
X∗,X ◦ (τ−1

X∗ ⊗ Id) = (A.50)

(ϕF )−1 ◦ τ1 ◦K(evX) ◦ ◦JK
X∗,X ◦ (τ−1

X∗ ⊗ Id) = (A.51)

(ϕK)−1 ◦K(evX) ◦ ◦JK
X∗,X ◦ (τ−1

X∗ ⊗ Id) = evKX ◦ (τ−1
X∗ ⊗ Id) (A.52)

Combing Equation (A.52) with Equation (A.48) we obtain:

evK(X) ◦ (evKX ⊗ Id⊗ Id) ◦ (Id⊗ coevK(X) ⊗ Id) = evKX ◦ (Id⊗ Id⊗ evK(X)) ◦ (Id⊗ coevK(X) ⊗ Id) = evKX

(A.53)

Completing the proof.
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A.5 Finite Tensor Categories and Fusion Cate-

gories

The monoidal categories we will be interested are finite tensor categories over C:

Definition A.5.1. Finite Tensor Category [13, Definition 1.8.6, Definition 4.1.1]

A finite tensor category (C,⊗, α, 1C, ℓ, r), is a monoidal category such that:

1. C is a C-linear Abelian category.

2. For every X, Y ∈ C, HomC(X, Y ) is a finite dimensional vector space over C.

3. Every X ∈ C has a composition series. That is there exists some n ∈ N and

objects X0, · · · , Xn such that each Xi is a sub-object of Xi+1 for 0 ≤ i ≤ n− 1,

X0 = 0, X = Xn, and for each 0 ≤ i ≤ n− 1, Xi+1/Xi is simple.

4. For every simple object X there exists a projective object P and an epimorphism

p : P → X. That is every simple object has a projective cover.

5. There are finitely many simple objects up to isomorphism.

6. The tensor product is C-bilinear on morphisms.

7. (C,⊗, α, 1C, ℓ, r) is a rigid monoidal category.

8. There is an isomorphism of vector spaces EndC(1) ∼= C.

If a monoidal category only satisfies conditions 1, 2, 3, 6, 7, 8 then we say it is a tensor

category.

107



Definition A.5.2. Fusion Category

If (C,⊗, α, 1C, ℓ, r) is a finite tensor category, such that every object is isomorphic

to the direct sum of simple objects, then we say it is a fusion category.

A useful way to think of these definitions is that just as a monoidal category is

the categorification of a monoid, a finite tensor category is the categorificcation of a

finite dimensional unital C-algebra, and a fusion category is the categorification of a

finite dimensional semi-simple unital C-algebra.

Definition A.5.3. Tensor Functor

Let C,D be finite tensor categories. A tensor functor (F, JF , ϕF ) : C → D is a

monoidal functor that is also C-linear and additive. If there exists a tensor functor

that is also an equivalence of categories we say that C,D are equivalent as finite

tensor categories.

All of the results from Section A.1 to A.4 will hold for finite tensor categories

when the appropriate adjustments are made.

Notation. If C is a finite tensor category and X, Y, Z ∈ C such that Z is simple then

let NZ
X,Y denote the number of times Z occurs in a composition series of a X ⊗C Y .

Note that the Jordan-Hölder theorem will hold for Abelian categories, and so

NZ
X,Y is well-defined. Furthermore, if C is a fusion category then

NZ
X,Y = dimC Hom(X ⊗C Y, Z) (A.54)

Definition A.5.4. Gorthendieck Ring of a Finite Tensor Category
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Let C be a finite tensor category. If X ∈ C let [X] denote the isomorphism class of

X. The Gorthendieck ring of C is the finite dimensional C-algebra K0(C) := C[O(C)]

where multiplication is defined on objects as:

[X] · [Y ] :=
∑︂

[Z]∈O(C)

NZ
X,Y [Z] (A.55)

and extended by linearity to K0(C). K0(C) will be a unital associative algebra with

this operation.

In the case that C is a fusion category, the Gorthendieck ring is also called the

fusion ring of C. We need the following to defined Frobenius-Perron Dimension

Proposition A.5.1. [13, Theorem 3.2.1]

Let A be a square matrix with non-negative real entries. If A has strictly positive

entries, then there exists a largest positive eigenvalue λ(A).

Definition A.5.5. Frobenius-Perron Dimension

Let C be a fusion category. Choose a set of representatives from the isomor-

phism classes in O(C) X1, · · · , Xr. For X ∈ C the Frobenius-Perron dimension of X

denoted by FPdim(X) is defined to be the largest positive eigenvalue of the matrix:

(N
Xj

X,Xi
)ri,j=1 (A.56)
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A.6 Braided Monoidal Categories

Just as a monoidal category is the categorification of a monoid, a braided monoidal

category is the categorification of an Abelian monoid.

Definition A.6.1. Braided Monoidal Category

Let (C,⊗, α, 1C, ℓ, r) be a monoidal category. A braiding on C is a natural iso-

morphism

c : ⊗ → ⊗op (A.57)

where ⊗op is the functor with inputs switched, in other words ⊗op(X, Y ) = Y ⊗ X

for all X, Y ∈ C and similarly with morphisms. The braiding is required to satisfy

the Hexagon Axioms:

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗ Z)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

αX,Y,Z

cX,Y ⊗Z

αY,Z,X

IdY ⊗cX,Z

αY,X,Z

cX,Y ⊗IdZ

Figure A.3: Hexagon Axiom 1
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(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

α−1
X,Y,Z

cX⊗Y,Z

α−1
Z,X,Y

cX,Z⊗IdY

α−1
X,Z,Y

IdX⊗cY,Z

Figure A.4: Hexagon Axiom 2

When the monoidal structure of a braided category is clear we will simply denote

it by the tuple (C, c).

Definition A.6.2. Braided Monoidal Functor

Let (C,⊗C, αC, 1C, ℓ
C, rC, c1), (D,⊗D, αD, 1D, ℓ

D, rD, c2) be braided monoidal cate-

gories. A monoidal functor (F, JF , ϕF ) from C to D is a braided monoidal functor

if:

JF
Y,X ◦ c2F (X),F (Y ) = F (c1X,Y ) ◦ JF

X,Y (A.58)

Two braided monoidal categories are equivalent if there is a braided monoidal

functor that induces an equivalence of categories.

As expected, if we have two monoidal categories C,D such that C is braided, and

there is an adjoint monoidal equivalence F : C → D, then D can be endowed with

a braided monoidal structure such that F is a braided equivalence. Since this result

will be a special case of a more general proposition, we omit it.
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Definition A.6.3. Braided Tensor Category

A braided monoidal category that is also a tensor category is called a braided

tensor category. Finite braided tensor categories, and braided fusion categories are

defined similarly.

Definition A.6.4. Braided Tensor Functors

If (F, JF , ϕF ) : C → D is a tensor functor between tenor categories that is also a

braided monoidal functor, then we say it is a braided tensor functor.

A.6.1 Braidings on VectωG and Abelian 3-cocycles

An key component of this thesis is describing certain categorical structure in linear

algebraic terms. Braidings on VectωG and Abelian 3-cocycles will be a very special

case of this description, and so following [13, 8.4] we review this in the hope that it

will make the general result more digestible.

As mentioned in Example A.1.3 a finite group G and a 3-cocycle ω will form

a fusion category by considering the finite dimensional vector spaces graded by G,

taking the usual tensor product and letting the associator be twisted by ω. It is easy

to show that

O(VectωG) = {[Cg] : g ∈ G} (A.59)

where Cg is the one-dimensional vector space with G grading:

(Cg)k :=

⎧⎪⎪⎨⎪⎪⎩
C if g = k

0 otherwise

(A.60)
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By taking a skeleton of VectωG we can find an equivalent monoidal category C whose

simple objects are {δg : g ∈ G} and we have:

δg ⊗ δh = δgh (A.61)

for all g, h ∈ G. From now on, whenever we say VectωG we will be referring to such a

skeleton. Notice that if VectωG has a braiding on it, then necessarily G is an Abelian

group.

Since EndC(δg) ∼= CIdδg , we see that any braiding is determines a complex func-

tion c : G×G→ C× such that it satisfies the following equations for all g1, g2, g3 ∈ G:

ω(g2, g3, g1)c(g1, g2g3)ω(g1, g2, g3) = c(g1, g3)ω(g2, g1, g3)c(g1, g2) (A.62)

ω(g3, g1, g2)
−1c(g1g2, g3)ω(g1, g2, g3)

−1 = c(g1, g3)ω(g1, g3, g2)
−1c(g2, g3) (A.63)

Any pair of functions (ω, c) that satisfy Equations A.7, A.62, A.63 are called a Abelian

3-cocycle. Denote the set of all such pairs as Z3
Ab(G,C×). This will form an Abelian

group by multiplication.

We say an Abelian 3-cocycle (ω, c) is an Abelian coboundary if there exists a

function k : G×G→ C× such that for all g1, g2, g3 ∈ G:

ω(g1, g2, g3) :=
k(g2, g3)k(g1, g2g3)

k(g1g2, g3)k(g1, g2)
(A.64)

c(g1, g2) =
k(g1, g2)

k(g2, g1)
(A.65)
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We denote the set of Abelian coboundaries by B3
ab(G,C×) and this will be a subgroup

of Z3
ab(G,C×). The quotient group H3

ab(G,C×) :=
Z3
ab(G,C×)

B3
ab(G,C×)

is called the Abelian 3-

Cohomology group of G.

Theorem A.6.1. Elements of H3
ab(G,C×) are in bijection with equivalence classes

of braided monoidal structures on the category of G-graded vector spaces.

Proof. See [13, Theorem 8.4.9] for the proof.

A.7 Ribbon Categories, Spherical Structures and

Trace

Definition A.7.1. Ribbon Twist

Let C be a braided tensor category. A ribbon twist is a monoidal natural isomor-

phism θ : IdC → IdC such that the following hold for all X, Y ∈ C:

θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y (A.66)

(θX)
∗ = θX∗ (A.67)

If a braided tensor category C has a ribbon structure, we refer to C as a ribbon

tensor category.

Definition A.7.2. [22]

Let (C, θ), (D, θ′) be ribbon tensor categories. We say that a braided tensor functor
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F : C → D is ribbon if:

F (θ) = θ′ (A.68)

We say that two ribbon tensor categories are equivalent if there exists a braided

ribbon tensor functor between them that is also an equivalence of categories.

Example A.7.1. Let C = Vect
(ω,c)
G where (ω, c) is an Abelian 3-cocycle. We can

define a ribbon twist on simple δg ∈ C by:

θδg := (c(g, g))2Idδg (A.69)

and extend by linearity to all of C.

Definition A.7.3. Trace [13]

Let C be a rigid monoidal category, X ∈ C and f : X → X∗∗, the trace of f is

defined as:

Tr(f) := evX∗ ◦ (f ⊗ Id) ◦ coevV (A.70)

Notice that we can consider Tr(f) ∈ C by using the identity EndC(1C) = C1C.

For finite dimensional vector spaces there is a canonical isomorphism from a vector

space to its double dual. The generalization of this to braided tensor categories is

called a pivotal structure:

Definition A.7.4. Pivotal Structure

A pivotal structure is a monoidal natural isomorphism δ : IdC → (−)∗∗.

We will call a fusion category with a pivotal structure a pivotal fusion category.
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Definition A.7.5. Categorical Dimension

Let C be a pivotal tensor category with pivotal structure δ. The categorical di-

mension of X ∈ C is:

dimC(X) := Tr(δX) (A.71)

Definition A.7.6. Spherical Structure

A pivotal structure such that for every X ∈ C we have:

dimC(X) = dimC(X
∗) (A.72)

is called a spherical structure. A spherical tensor category is a tensor category

equipped with a spherical structure. Spherical finite tensor categories and spherical

fusion categories are similarly defined.

Definition A.7.7. Quantum Trace

Let C be a spherical tensor category, and δ the spherical structure. If X ∈ C and

f : X → X is a morphism, then the trace of f with respect to the pivotal structure δ

is defined as:

Tr(f) := Tr(δX ◦ f) (A.73)

Lastly, a ribbon twist on a braided rigid tensor category will induce a spherical

structure:

Proposition A.7.1. [13, Proposition 8.10.12]

Let C be a ribbon fusion category, with ribbon structure θ. Then C is also a
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spherical fusion category with spherical structure:

δX := θX ◦ rX ◦ (IdX ⊗ evX∗) ◦ (IdX ⊗ c−1
X∗∗,X∗) ◦αX∗,X,X∗∗ ◦ (coevX ⊗ IdX∗∗) ◦ (ℓX∗∗)−1

(A.74)

A.8 Modular Fusion Categories

Definition A.8.1. S-matrix

Let C be a ribbon fusion category. Choose representatives X1, · · · , Xr from each

isomorphism class in O(C). The S-matrix of C is:

S := (sXi,Xj
)ri,j=1 sXi,Xj

:= Tr(cXj ,Xi
◦ cXi,Xj

) (A.75)

Definition A.8.2. Modular Fusion Category

A modular fusion category is a ribbon fusion category with non-degenerate S-

matrix.

For the sake of brevity we will denote modular fusion category by MFC.

Definition A.8.3. Modular Data of a Modular Fusion Category

Let C be a MFC. The modular data of C are:

1. The set of representatives of isomorphism classes in O(C) X1, · · · , Xr.

2. The S-matrix.
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3. The T -matrix defined for 1 ≤ i, j ≤ r:

Ti,j = δi,jθ
−1
Xi

(A.76)

The modular data of a MFC will be an invariant.
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Appendix B

G-Crossed Cocycles: The Proofs

B.1 Verifying The Crossed Braiding Axioms In-

duced by a G-crossed Abelian 3-cocycle

Notation. For g, k ∈ G:

γg,k := γ
k−1,g−1 (B.1)

If τ ∈ Sn let στ denote the map defined on V1 ⊗ · · · ⊗ Vn by στ (v1 ⊗ · · · ⊗ vn) =

vτ(1) ⊗ · · · ⊗ vτ(n).

Let’s verify the first equation for the crossed braiding axioms. We need to check

that if (V, ρV ) ∈ Mod(H)g, (W, ρW ) ∈ Mod(H), then σ ◦ (ρV ⊗ ρW )(c) is an H-

intertwiner from (V, ρV )⊗ (W, ρW ) to (W, ρW ◦Ψ(g−1))⊗ (V, ρV ). Let h ∈ H. Then:

σ ◦ (ρV ⊗ ρW )(c) ◦ (ρV ⊗ ρW )(∆(h)) = (B.2)
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σ ◦ (ρV ⊗ ρW )(c) ◦ (ρV ⊗ ρW )(∆(h) · (∂(δg)⊗ 1H)) = (B.3)

σ ◦ (ρV ⊗ ρW )(c ·∆(h) · (∂(δg)⊗ 1H)) (B.4)

By Equation (4.40) we can simplify Equation (B.4) to:

σ ◦ (ρV ⊗ ρW )((Id⊗Ψ(g−1))(∆op(h)) · c · (∂(δg)⊗ 1H)) = (B.5)

σ ◦ (ρV ⊗ ρTg(W,ρW ))(∆
op(h)) ◦ (ρV ⊗ ρW )(c · (∂(δg)⊗ 1H)) = (B.6)

(ρTg(W,ρW ) ⊗ ρV )(∆(h)) ◦ σ ◦ (ρV ⊗ ρW (c · (∂(δg)⊗ 1H)) = (B.7)

(ρTg(W,ρW ) ⊗ ρV )(∆(h)) ◦ σ ◦ (ρV ⊗ ρW )(c) (B.8)

Therefore, it is indeed an H-intertwiner.

Next, we need to verify the first crossed braiding axiom. That is we need to show

Figure 2.1 will hold. Writing this out explicitly we need to show that if g, k ∈ G

(V, ρV ) ∈ Mod(H)k, (W, ρW ) ∈ Mod(H), then:

(γg,k(W, ρW )⊗ IdTg(V,ρ)) ◦ (µg(Th(W, ρW ), (V, ρV )))
−1 ◦ Tg(c(V,ρV ),(W,ρW )) = (B.9)

(γgkg−1,g(W, ρW )⊗ IdTg(V,ρV )) ◦ cTg(V,ρV ),Tg(W,ρW ) ◦ (µg((V, ρV ), (W, ρW )))−1 (B.10)

To that end we expand Equation (B.9) to obtain:

(ρW ⊗ ρV )(γg,k ⊗ 1H) ◦ (ρTk(W,ρW ) ⊗ ρV )((µg)
−1) ◦ σ ◦ (ρV ⊗ ρW )(c) = (B.11)

(ρW ⊗ ρV )((γg,k ⊗ 1H) · (Ψ(k−1)⊗ IdH)(µg)
−1) ◦ σ(ρV ⊗ ρW )(c · (∂(δk))⊗ 1H)) = (B.12)

σ ◦ (ρV ⊗ ρW )((1H ⊗ γg,k) · (IdH ⊗Ψ(k−1))(µg)
−1
21 · c · (∂(δk))⊗ 1H)) = (B.13)
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σ ◦ (ρV ⊗ ρW )((γg,k)2 · ((µg)
−1)

(e,k)
21 · c · (∂(δk))1) (B.14)

By Equation (4.41) we can simplify Equation (B.14) to:

σ ◦ (ρV ⊗ ρW )((γgkg−1,g)2 · c(g,g) · (µg)
−1 · (∂(δk))1) =

(B.15)

(ρW ⊗ ρV )((γgkg−1,g)1) ◦ σ ◦ (ρV ⊗ ρW )(c(g,g)) ◦ (ρV ⊗ ρW )((µg)
−1 · (∂(δk))1) =

(B.16)

(ρW ⊗ ρV )((γgkg−1,g)1) ◦ σ ◦ (ρTg(V,ρV ) ⊗ ρTg(W,ρW ))(c) ◦ (ρV ⊗ ρW )((µg)
−1 · (∂(δk))1) =

(B.17)

(ρW ⊗ ρV )((γgkg−1,g)1) ◦ σ ◦ (ρTg(V,ρV ) ⊗ ρTg(W,ρW ))(c) ◦ (ρV ⊗ ρW )((µg)
−1) (B.18)

But, Equation (B.10) is just the expanded version of Eqnation B.9. Therefore, we

see the first corssed braiding axiom will hold.

Next, we need to verify the second crossed braiding axiom. That is we need to

show that Figure 2.2 will hold. Writing this out explicitly we need to show that if

g ∈ G, (V, ρV ) ∈ Mod(H)g (W, ρV ), (U, ρV ) ∈ Mod(H), then:

αTg(W,ρW ),Tg(U,ρU ),(V,ρV ) ◦ (µg((W, ρW ), (U, ρU)))
−1 ⊗ Id(V,ρV ) ◦ · · ·

· · · c(V,ρV ),(W,ρW )⊗(U,ρU ) ◦ α(V,ρV ),(W,ρW ),(U,ρU ) =

(B.19)

(IdTg(W,ρW ) ⊗ c(V,ρV ),(U,ρU )) ◦ αTg(W,ρW ),(V,ρV ),(U,ρU ) ◦ (c(V,ρV ),(W,ρW ) ⊗ Id(U,ρU )) (B.20)
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Expanding Equation (B.19) we obtain:

(ρTg(W,ρW ) ⊗ ρTg(U,ρU ) ⊗ ρV )(Φ) ◦ (ρW ⊗ ρU ⊗ ρV )((µg)
−1
12 ) ◦ σ(132) · · ·

· · · ◦ (ρV ⊗ ρ(W,ρW )⊗(U,ρU ))(c) ◦ (ρV ⊗ ρW ⊗ ρU)(Φ) =

(B.21)

(ρW ⊗ ρU ⊗ ρV )(Φ
(g,g,e) · (µg)

−1
12 ) ◦ σ(132) ◦ (ρV ⊗ ρ(W,ρW )⊗(U,ρU ))(c) ◦ (ρV ⊗ ρW ⊗ ρU)(Φ) =

(B.22)

(ρW ⊗ ρU ⊗ ρV )(Φ
(g,g,e) · (µg)

−1
12 ) ◦ σ(132) ◦ (ρV ⊗ ρW ⊗ ρU)((Id⊗∆)(c) · Φ) =

(B.23)

σ(132) ◦ (ρV ⊗ ρW ⊗ ρU)(Φ
(e,g,g)
231 · (µg)

−1
23 · (Id⊗∆)(c) · Φ) (B.24)

Notice that on the representation space Φ and µg will be invertible. Furthermore,

since (V, ρV ) ∈ Mod(H)g we have that ρV (∂(δg)) = IdV . Therefore, restricting to the

representation space see that by Equation (4.42) we can simplify Equation (B.24)

to:

σ(132) ◦ (ρV ⊗ ρW ⊗ ρU)(c13 · Φ(e,g,e)
213 · c12) = (B.25)

σ(23) ◦ σ(12) ◦ (ρV ⊗ ρW ⊗ ρU)(c13 · Φ(e,g,e)
213 · c12) = (B.26)

σ(23) ◦ (ρW ⊗ ρV ⊗ ρU)(c23) ◦ (ρW ⊗ ρV ⊗ ρU)(Φ
(g,e,e)
123 ) ◦ σ(12) ◦ (ρV ⊗ ρW ⊗ ρU)(c12) (B.27)

But, Equation (B.27) is just the expanded form of Equation (B.20). Therefore, the

second crossed braiding axiom will indeed hold.

Lastly, we need to verify that the third crossed braiding axiom will hold. That

is we need to show Figure 2.3 will hold. Writing this out explicitly we need to show
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if g, k ∈ G (V, ρV ) ∈ Mod(H)g, (W, ρW ) ∈ Mod(H)k, (U, ρU) ∈ Mod(H), then:

α−1
(Tg◦Tk)(U,ρU ),(V,ρV ),(W,ρW ) ◦ (γg,k(U, ρU)

−1 ⊗ Id) ◦ c(V,ρV )⊗(W,ρW ),(U,ρU ) = (B.28)

(c(V,ρV ),Tk(U,ρU ) ⊗ Id) ◦ α−1
(V,ρV ),Tk(U,ρU ),(W,ρW ) ◦ (Id⊗ c(W,ρW ),(U,ρU )) ◦ α(V,ρV ),(W,ρW ),(U,ρU ) (B.29)

Expanding Equation (B.28) we obtain:

(ρ(Tg◦Tk)(U,ρU ) ⊗ ρV ⊗ ρW )(Φ−1) ◦ (ρU ⊗ ρV ⊗ ρW )((γg,k)
−1
1 ) ◦ · · ·

· · ·σ(123) ◦ (ρ(V,ρV )⊗(W,ρW ) ⊗ ρU)(c) =

(B.30)

(ρU ⊗ ρV ⊗ ρW )((γg,k)1 · (Φ−1)(gk,e,e)) ◦ σ(123) ◦ (ρV ⊗ ρW ⊗ ρU)((∆⊗ Id)(c)) (B.31)

Notice that we obtained Equation (B.31) by using the fact that:

Ψ((gk)−1) = Ad(γg,k)(Ψ(k−1) ◦Ψ(g−1)) (B.32)

We can simplify Equation (B.31) to:

σ(123) ◦ (ρV ⊗ ρW ⊗ ρU)((γg,k)
−1
3 (Φ−1)

(e,e,gk)
312 · (∆⊗ Id)(c)) (B.33)

Since (V, ρV ) ∈ Mod(H)g, (W, ρW ) ∈ Mod(H)k we have that (ρV ⊗ ρW )(∂(δg) ⊗

∂(δk)) = Id. Furthermore, γg,k and Φ will be invertible on the representation spaces.

Therefore, by restricting to the representation spaces we can use Equation (4.43) to
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simplify B.33 to:

σ(123) ◦ (ρV ⊗ ρW ⊗ ρU)(c
(e,e,k)
13 · (Φ−1)

(e,e,k)
132 · c23 · Φ) = (B.34)

σ(12) ◦ σ(23) ◦ (ρV ⊗ ρW ⊗ ρU)(c
(e,e,k)
13 · (Φ−1)

(e,e,k)
132 · c23 · Φ) = (B.35)

σ(12) ◦ (ρV ⊗ ρW ⊗ ρU)(c
(e,k,e)
12 ) ◦ (ρV ⊗ ρW ⊗ ρU)((Φ

−1)(e,k,e)) ◦ · · ·

· · ·σ(23) ◦ (ρV ⊗ ρU ⊗ ρV )(c23) ◦ (ρV ⊗ ρU ⊗ ρV )(Φ)

(B.36)

But, Equation (B.36) is just the expanded form of Equation (B.29). Therefore, the

third crossed braiding axiom will indeed hold.

B.2 Verifying the G-Ribbon Axioms Induced by a

G-Ribbon Abelian 3-cocycle

Fix a G-Ribbon Abelian 3-cocycle on H (∆, ϵ,Φ, S, α, β,Ψ, γ, µ, c, ∂, ν). By previous

work we know this will induce a G-crossed braided tensor structure on Mod(H).

Therefore, we only need to check that θ(V,ρV ) = ρV (ν) is a G-ribbon element.

θ is an H-intertwiner

Let g ∈ G, and suppose (V, ρV ) ∈ Mod(H)g. We need to verify that θ(V,ρV ) :

(V, ρV ) → Tg(V, ρV ) is an H-intertwiner. To that end let h ∈ H, then:

ρTg(V,ρV )(h) · θ(V,ρV ) = ρTg(V,ρV )(h) · ρV (ν) = ρV (Ψ(g−1(h) · ν) = ρV (Ψ(g−1)(h) · ν · ∂(δg))

(B.37)
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By Equation (4.70) we can simplify Equation (B.37) to:

ρV (ν · h · ∂(δg)) = ρV (ν · h) = ρV (ν) · ρV (h) = θ(V,ρV ) · ρV (h) (B.38)

Therefore, it is an H-intertwiner.

θ Statisfies Equation (2.12)

Next, we need to verify that for all g, k ∈ G, (V, ρV ) ∈ Mod(H)g, (W, ρW ) ∈ Mod(H)k

θ(V,ρV )⊗(W,ρW ) = (B.39)

µg((V, ρV ), (W, ρV )) ◦ (γ(gk)g(gk)−1,(gk)g−1(V, ρV )⊗ γgkg−1,g(W, ρW )) ◦ · · ·

(θTgkg−1 (V,ρV ) ⊗ θTg(W,ρW )) ◦ cTg(W,ρW ),(V,ρV ) ◦ c(V,ρV ),(W,ρW )

(B.40)

Expanding the right hand side of this equation we obtain:

(ρV ⊗ ρW )(µg) ◦ (ρV (γ gk−1g−1,(gk)g−1(gk)−1)⊗ ρW (γ
g−1,gk−1g

)) ◦ · · ·

(ρTgkg−1 (V,ρV )(ν)⊗ ρTg(W,ρW )(ν)) ◦ cVectW,V ◦ (ρTg(W,ρW ) ⊗ ρV )(c) ◦ cVectV,W ◦ (ρV ⊗ ρW )(c) =

(B.41)

(ρV ⊗ ρW )(µg · (γ gk−1g−1,(gk)g−1(gk)−1 ⊗ γ
g−1,gk−1g

) ◦ (ν⊗2)(gkg
−1,g) · (c(e,g)21 ) · c) =

(B.42)

(ρV ⊗ ρW )(µg · (γ gk−1g−1,(gk)g−1(gk)−1 ⊗ γ
g−1,gk−1g

) ◦ (ν⊗2)(gkg
−1,g) · (c(e,g)21 ) · c · (∂(δg)⊗ ∂(δk)))

(B.43)
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By Equation (4.71), and the fact that µg · µ−1
g = ∆(1H) we see that this reduces to:

(ρV ⊗ ρW )(∆(ν) · (∂(δg)⊗ ∂(δk))) = (ρV ⊗ ρW )(∆(v)) = θ(V,ρV )⊗(W,ρW ) (B.44)

θ Satisfies Equation (2.13)

Next, we need to verify that θ satisfies for all g ∈ G, (V, ρV ) ∈ Mod(H)g:

θ(V,ρV )∗ = Tg−1(θ∗(V,ρV ) ◦ d
Tg

(V,ρV )) ◦ γg−1,g((V, ρV )
∗)−1 (B.45)

Using Lemma 4.3.1 we can expand the right hand side to:

(ρV (ν))
∗ ◦ (ρV (dg))∗ ◦ ρV ∗(γ−1

g−1,g
) = (ρV (ν))

∗ ◦ (ρV (dg))∗ ◦ ρV (S(γ−1

g−1,g
))∗ = (B.46)

(ρV (S(γ
−1

g−1,g
) · dg · ν))∗ = (ρV (S(γ

−1

g−1,g
) · dg · ν · ∂(δg)))∗ (B.47)

By Equation (4.72) this equals:

(ρV (S(ν) · ∂(δg)))∗ = (ρV (S(ν)))
∗ = ρV ∗(ν) = θ(V,ρV )∗ (B.48)

θ Satisfies Equation (2.14)

Next, we need to verify that θ satisfies for all g, k ∈ G, (V, ρV ) ∈ Mod(H)k:

γgkg−1,g(V, ρV ) ◦ θTg(V,ρV ) = γg,k(V, ρV ) ◦ Tg(θ(V,ρV )) (B.49)
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Expanding the left hand side we obtain:

ρV (γ g−1,gk−1g−1 ·Ψ(g−1)(ν)) = ρV (γ g−1,gk−1g−1 ·Ψ(g−1)(ν) · ∂(δk)) (B.50)

By Equation (4.73) this equals:

ρV (γ k−1,g−1 · ν · ∂(δk)) = ρV (γ k−1,g−1 · ν) = γg,k(V, ρV ) ◦ Tg(θ(V,ρV )) (B.51)
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Appendix C

G-Crossed Reconstruction: The

Proofs

C.1 Proof of the Non-Abelian 2-cocycle Condition

To prove the crossed condition, that is Equation 4.2, first recall that:

Ψ(g) = Ad(R−1
g−1)((−)Tg−1 ) (C.1)

In particular, we see that if h ∈ H, then:

Ad((γ
g,k
)(Ψ(g) ◦Ψ(k))(h)) = γ

g,k
(Ψ(g) ◦Ψ(k))(h)(γ

g,k
)−1 = (C.2)

γ
g,k

◦Ψ(g)(R−1
k−1 ◦ hTk−1 ◦Rk−1) ◦ (γ

g,k
)−1 = (C.3)

γ
g,k

◦ (R−1
g−1 ◦ (R

Tg−1

k−1 )−1 ◦ hTk−1◦Tg−1 ◦R
T−1
g

k−1 ◦Rg−1) ◦ (γ
g,k
)−1 (C.4)
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Since:

γ
g,k

:= (R(gk)−1)−1 ◦ F (γk−1,g−1) ◦RTg−1

k−1 ◦Rg−1 (C.5)

Therefore, we may simplify Equation C.4 to:

(R(gk)−1)−1 ◦ F (γk−1,g−1) ◦ hTk−1◦T
g−1

◦ F (γ−1
k−1,g−1) ◦R(gk)−1 = (C.6)

(R(gk)−1)−1 ◦ hT(gk)−1 ◦R(gk)−1 = (C.7)

Ψ(gk)(h) (C.8)

Here we used the fact that F (γk−1,g−1) ◦ hTk−1◦T
g−1

◦ F (γ−1
k−1,g−1) = hT(gk)−1 Next, we

verify the cocycle condition, that is Equation 4.3. In particular, for every g1, g2, g3 ∈

G we need to show that:

γ
g1,g2g3

·Ψ(g1)(γ g2,g3
) = γ

g1g2,g3
· γ

g1,g2
(C.9)

Expanding the left hand side of Equation C.9 and using naturality we obtain:

(︂
(R(g1g2g3)−1)−1 ◦ F (γ(g2g3)−1,g−1

1
) ◦R

T(g1)
−1

(g2g3)−1 ◦R(g1)−1

)︂
◦ · · ·(︃

R−1

g−1
1

◦ (R
T
g−1
1

(g2g3)−1)
−1 ◦ F (γg−1

3 ,g−1
2
(Tg−1

1
)) ◦R

T
g−1
2

◦T
g−1
1

g−1
3

◦R
T
g−1
1

g−1
2

◦Rg−1
1

)︃
=

(C.10)

(R(g1g2g3)−1)−1 ◦ F (γ(g2g3)−1,g−1
1

◦ γg−1
3 ,g−1

2
(Tg−1

1
)) ◦R

T
g−1
2

◦T
g−1
1

g−1
3

◦RT−1
g1

g−1
2

◦Rg−1
1

(C.11)

We know that the following will hold:

γg−1
3 g−1

2 ,g−1
1

◦ γg−1
3 ,g−1

2
(Tg−1

1
) = γg−1

3 ,g−1
2 g−1

1
◦ Tg−1

3
(γg−1

2 ,g−1
1
) (C.12)
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Therefore, using Equation C.12 and naturality we may simplify Equation C.11 to:

(R(g1g2g3)−1)−1 ◦ F (γg−1
3 ,g−1

2 g−1
1

◦ Tg−1
3
(γg−1

2 ,g−1
1
)) ◦R

T
g−1
2

◦T
g−1
1

g−1
3

◦RT−1
g1

g−1
2

◦Rg−1
1

= (C.13)

(R(g1g2g3)−1)−1 ◦ F (γg−1
3 ,g−1

2 g−1
1
) ◦ F (Tg−1

3
(γg−1

2 ,g−1
1
)) ◦R

T
g−1
2

◦T
g−1
1

g−1
3

◦RT−1
g1

g−1
2

◦Rg−1
1

= (C.14)

(R(g1g2g3)−1)−1 ◦ F (γg−1
3 ,g−1

2 g−1
1
) ◦R

T(g1g2)
−1

g−1
3

◦ F (γg−1
2 ,g−1

1
) ◦RT−1

g1

g−1
2

◦Rg−1
1

= (C.15)

(R(g1g2g3)−1)−1 ◦ F (γg−1
3 ,g−1

2 g−1
1
) ◦R

T(g1g2)
−1

g−1
3

◦R(g1g2)−1 ◦ · · ·

◦(R(g1g2)−1)−1 ◦ F (γg−1
2 ,g−1

1
) ◦RT−1

g1

g−1
2

◦Rg−1
1

=

(C.16)

γ
g1g2,g3

· γ
g1,g2

(C.17)

To see that (Ψ, γ) is normalized, note that we have choosen a unital categorical group

action and so for all g ∈ G

γ
e,g

= (Rg−1)−1 ◦ F (γg−1,e) ◦Rg−1 = 1H (C.18)

Similarly we see that γ
g,e

= IdH .

(Ψ, γ) Satisfies Equation (4.6)

Let h ∈ h, g ∈ G. Then:

ϵ(h) = hC, (ϵ ◦Ψ(g))(h) = (Ψ(g))(h)1C = (R1C
g−1)

−1 ◦ hTg−1 (1C) ◦R
1C
g−1 (C.19)

As we have choosen a normalized action we have that Tg(1C) = 1C on the nose, and

note that F (1C) ∼= C. This implies that R1C
g−1 : F (1C) → F (1C) commutes with h1C .
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Therefore, Equation (C.19) reduces to h1C .

C.2 Proof of µg Axioms

Recall that for g ∈ G,X, Y ∈ C we have:

µg(X, Y ) := (JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(Y ) ◦ (RX
g ⊗RY

g ) (C.20)

µg is Partially Invertible

To show that it is partially invertible recall that ∆(1)X,Y = (JF
X,Y )

−1 ◦ JF
X,Y . There-

fore, define for g,X, Y :

(µ −1
g )X,Y := (RX

g ⊗RY
g )

−1 ◦ (JF
Tg(X),Tg(Y ))

−1 ◦ F (µg(X, Y )−1) ◦RX⊗Y
g ◦ JF

X,Y (C.21)

Calculating we see that for X, Y :

∆(1H)X,Y · (µg)X,Y =

(C.22)

(JF
X,Y )

−1 ◦ JF
X,Y ◦ (JF

X,Y )
−1 ◦ (RX⊗Y

g )−1 ◦ F (µg(X, Y )) ◦ JF
X,Y ◦ (RX

g ⊗RY
g ) =

(C.23)

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(Y ) ◦ (RX
g ⊗RY

g ) = µg (C.24)
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as (JF )−1 was chosen to be a left inverse of JF
X,Y . Furthermore,

(µg)X,Y ◦ (∆(1H)
(g,g))X,Y = (C.25)

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(Y ) ◦ · · ·

· · · (RX
g ⊗RY

g ) ◦ (RX
g ⊗RY

g )
−1∆(1H)Tg(X),Tg(Y ) ◦ (RX

g ⊗RY
g )

= (C.26)

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(Y ) · · ·

· · · ◦ (JF
Tg(X),Tg(Y ))

−1 ◦ JF
Tg(X),Tg(y) ◦ (R

X
g ⊗RY

g )

= (C.27)

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(y) ◦ (R
X
g ⊗RY

g ) = (C.28)

(µg)X,Y (C.29)

Similarly, one can check that µ −1
g ·∆(1H) = ∆(1H)

(g,g) · µ −1
g = µ −1

g .

Expanding (µg · µ −1
g )X,Y for X, Y ∈ C we obtain:

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(Y ) ◦ (RX
g ⊗RY

g ) ◦ (RX
g ⊗RY

g )
−1 · · ·

· · · ◦ (JF
Tg(X),Tg(Y ))

−1 ◦ F (µg(X, Y )−1) ◦RX⊗Y
g ◦ JF

X,Y

= (C.30)

(JF
X,Y )

−1 ◦ JF
X,Y = (∆(1H))X,Y (C.31)

This shows that µg · µ −1
g = ∆(1H). Similarly, by expanding µ −1

g · µg one sees

that it equals ∆(1H)
(g,g).

µg Satisfies Equation (4.11)

We need to verify that µe = ∆(1H).This follows immedietly from the fact that µe = Id

and Re = Id.
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µg Satisfies Equation (4.12)

We need to verify that for all h ∈ H

µg ·∆(h)(g,g) · µ −1
g = ∆(Ψ(g−1)(h)) (C.32)

Expanding the left hand side at X, Y ∈ C we obtain:

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ JF

Tg(X),Tg(Y ) ◦ (RX
g ⊗RY

g ) ◦ (RX
g ⊗RY

g )
−1 ◦ · · ·

· · · (JF
Tg(X),Tg(Y ))

−1 ◦ hTg(X)⊗Tg(Y ) ◦ JF
Tg(X),Tg(Y ) ◦ (RX

g ⊗RY
g ) ◦ (RX

g ⊗RY
g )

−1 ◦ · · ·

· · · (JF
Tg(X),Tg(Y ))

−1 ◦ F (µg(X, Y )−1) ◦RX⊗Y
g ◦ JF

X,Y

(C.33)

Cancelling out all the terms we obtain:

(JF
X,Y )

−1 ◦ (RX⊗Y
g )−1 ◦ F (µg(X, Y )) ◦ hTg(X)⊗Tg(Y ) ◦ F (µg(X, Y )−1) ◦RX⊗Y

g ◦ JF
X,Y = (C.34)

(JF
X,Y )

−1 ◦ (RX⊗Y
g ) ◦ hTg(X⊗Y ) ◦RX⊗Y

g ◦ JF
X,Y = ∆(Ψ(g−1)(h))X,Y (C.35)

This proves the desired equality.

µg Satisfies Equation (4.13)

It is easy to show that:

(Φ)(g,g,g) ·((µg)
−1⊗1H)·(∆⊗Id)((µg)

−1) = (1H⊗(µg)
−1)·(Id⊗∆)((µg)

−1)·Φ (C.36)
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is equivalent to Equation (4.13) and so we prove this version. Well, recall that:

ΦX,Y,Z := (Id⊗ (JF
Y,Z)

−1) ◦ (JF
X,Y⊗Z)

−1 ◦ F (ΦX,Y,Z) ◦ JF
X⊗Y,Z ◦ (JF

X,Y ⊗ Id) (C.37)

(µg)
−1 = (R−1

g ⊗R−1
g ) ◦ (JF

Tg ,Tg
)−1 ◦ F (µ−1

g ) ◦Rg ◦ JF (C.38)

Therefore, expanding (Φ)(g,g,g) · ((µg)
−1 ⊗ 1H) at X, Y, Z ∈ C we obtain:

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ (JF
Tg(X),Tg(Y )⊗Tg(Z))

−1 ◦ F (ΦTg(X),Tg(Y ),Tg(Z)) ◦ JF
Tg(X)⊗Tg(Y ),Tg(Z) · · ·

· · · ◦ (JF
Tg(X),Tg(Y ) ⊗ Id) ◦ (RX

g ⊗RY
g ⊗RZ

g ) ◦ ((RX
g )

−1 ⊗ (RY
g )

−1 ⊗ Id) ◦ ((JF
Tg(X),Tg(Y ))

−1 ⊗ Id) ◦ · · ·

(F (µ−1
g (X, Y ))⊗ Id) ◦ (RX⊗Y

g ⊗ Id) ◦ (JF
X,Y ⊗ Id) =

(C.39)

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ (JF
Tg(X),Tg(Y )⊗Tg(Z))

−1 ◦ F (ΦTg(X),Tg(Y ),Tg(Z)) ◦ JF
Tg(X)⊗Tg(Y ),Tg(Z) · · ·

· · · ◦ (Id⊗ Id⊗RZ
g ) ◦ (F (µ−1

g (X, Y ))⊗ Id) ◦ (RX⊗Y
g ⊗ Id) ◦ (JF

X,Y ⊗ Id) =

(C.40)

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ (JF
Tg(X),Tg(Y )⊗Tg(Z))

−1 ◦ F (ΦTg(X),Tg(Y ),Tg(Z) ◦ (µ−1
g (X, Y )⊗ Id))◦ · · ·

· · · JF
Tg(X⊗Y ),Tg(Z) ◦ (Id⊗ Id⊗RZ

g ) ◦ (RX⊗Y
g ⊗ Id) ◦ (JF

X,Y ⊗ Id) =

(C.41)

On the otherhand notice that (∆⊗ Id)((µg)
−1)X,Y,Z equals:

((JF
X,Y )

−1⊗IdZ)◦((RX⊗Y
g )−1⊗(RZ

g )
−1)◦(JF

Tg(X⊗Y ),Tg(Z))
−1◦F (µ−1

g (X⊗Y, Z))◦R(X⊗Y )⊗Z
g ◦JF

X⊗Y,Z◦(JF
X,Y⊗Id)

(C.42)
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Therefore, composing Equation (C.41) we obtain:

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ (JF
Tg(X),Tg(Y )⊗Tg(Z))

−1 ◦ · · ·

· · ·F (ΦTg(X),Tg(Y ),Tg(Z) ◦ (µ−1
g (X, Y )⊗ Id) ◦ µ−1

g (X ⊗ Y, Z)) ◦R(X⊗Y )⊗Z
g ◦ JF

X⊗Y,Z ◦ (JF
X,Y ⊗ Id)

(C.43)

Since µg is a tensor functor we that for all X, Y, Z ∈ C:

ΦTg(X),Tg(Y ),Tg(Z)◦(µ−1
g (X, Y )⊗Id)◦µ−1

g (X⊗Y, Z) = (Id⊗µ−1
g (Y, Z))◦µ−1

g (X, Y⊗Z)◦ΦX,Y,Z

(C.44)

Therefore, we may reduce Equation (C.43) to:

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ (JF
Tg(X),Tg(Y )⊗Tg(Z))

−1 ◦ · · ·

(C.45)

· · ·F ((Id⊗ µ−1
g (Y, Z)) ◦ µ−1

g (X, Y ⊗ Z) ◦ ΦX,Y,Z) ◦R(X⊗Y )⊗Z
g ◦ JF

X⊗Y,Z ◦ (JF
X,Y ⊗ Id) =

(C.46)

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ Id⊗ F (µ−1
g (Y, Z)) ◦ · · ·

(C.47)

· · · (JF
Tg(X),Tg(Y⊗Z))

−1 ◦ F (µ−1
g (X, Y ⊗ Z) ◦ ΦX,Y,Z) ◦R(X⊗Y )⊗Z

g ◦ JF
X⊗Y,Z =

(C.48)

(RX
g ⊗RY

g ⊗RZ
g )

−1 ◦ (Id⊗ (JF
Tg(Y ),Tg(Z))

−1) ◦ Id⊗ F (µ−1
g (Y, Z)) ◦ · · ·

(C.49)
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· · · (JF
Tg(X),Tg(Y⊗Z))

−1 ◦ F (µ−1
g (X, Y ⊗ Z)) ◦RX⊗(Y⊗Z)

g ◦ F (ΦX,Y,Z) ◦ JF
X⊗Y,Z ◦ (JF

X,Y ⊗ Id)

(C.50)

But notice that (Id⊗ (µg)
−1)X,Y,Z equals:

(Id⊗(RY
g )

−1⊗(RZ
g )

−1)◦(Id⊗(JF
Tg(Y ),Tg(Z))

−1)◦(Id⊗F (µ−1
g (Y, Z)))◦(Id⊗RY⊗Z

g )◦(Id⊗JF
Y,Z)

(C.51)

Additionally, (Id⊗∆)((µg)
−1)X,Y,Z equals:

(Id⊗(JF
Y,Z)

−1)◦((RX
g )

−1⊗(RY⊗Z
g )−1)◦(JF

Tg(X),Tg(Y⊗Z))
−1◦F (µ−1

g (X, Y⊗Z))◦RX⊗(Y⊗Z)
g ◦JF

X,Y⊗Z◦(Id⊗JF
Y,Z)

(C.52)

Therefore, we see that that by composing Equations (C.51), (C.52), (C.37) together

we will obtain Equation (C.50). So indeed Equation (C.36) holds.

µg Satisfies Equation (4.14)

We need to verify that:

(ϵ⊗ IdH)(µg) = (IdH ⊗ ϵ)(µg) = 1H (C.53)

Expanding (ϵ⊗ IdH)(µg) we obtain:

(JF
1C ,Y

)−1 ◦ (R1C⊗Y
g )−1 ◦ F (µg(1C, Y )) ◦ JF

1C ,Tg(Y ) ◦ (R1C
g ⊗RY

g ) = (C.54)
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But, JF
1C ,Y

= ℓVectF (Y ) ◦ ((ϕF )−1 ⊗ IdF (Y )), and so we obtain:

(ϕF ⊗ IdF (Y )) ◦ (ℓVectF (Y ))
−1 ◦ (RY

g )
−1 ◦ ℓVectF (Y ) ◦ ((ϕF )−1 ⊗ IdF (Y ))(R

1C
g ⊗RY

g ) = (C.55)

(ϕF ⊗ IdF (Y )) ◦ (IdC ⊗ (RY
g )

−1) ◦ ((ϕF )−1 ⊗ IdF (Y ))(R
1C
g ⊗RY

g ) = (C.56)

(R1C
g ⊗ IdF (Y )) = IdF (1C) ⊗ IdF (Y ) (C.57)

This proves that (ϵ⊗IdH)(µg) = 1H (note we are slightly abusing notation). Similarly,

one can prove that (IdH ⊗ ϵ)(µg) = 1H .

µg, γ Satisfy Equation (4.15)

Recall that We need to verify that for all g, k ∈ G

(γ
k−1,g−1 ⊗ γ

k−1,g−1) = (µgk)
−1 ·∆(γ

k−1,g−1) · µk ·Ψ(k−1)⊗2(µg) (C.58)

Expanding µgk · (γ k−1,g−1 ⊗ γ
k−1,g−1) at X, Y ∈ C we obtain:

(JF
X,Y )

−1 ◦ (RX⊗Y
gk )−1 ◦ F (µgk(X, Y )) ◦ JF

Tgk(X),Tgk(Y ) ◦ (RX
gk ⊗RY

gk)◦

· · · (RX
gk ⊗RY

gk)
−1 ◦ (F (γg,k(X))⊗ F (γg,k(Y ))) ◦ (RTk(X)

g ⊗RTk(Y )
g ) ◦ (RX

k ⊗RY
k ) =

(C.59)

(JF
X,Y )

−1 ◦ (RX⊗Y
gk )−1 ◦ F (µgk(X, Y )) ◦ (γg,k(X)⊗ γg,k(Y ))) ◦ · · ·

· · · JF
(Tg◦Tk)(X),(Tg◦Tk)(Y ) ◦ (RTk(X)

g ⊗RTk(Y )
g ) ◦ (RX

k ⊗RY
k ) =

(C.60)
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Since γg,k : Tg ◦ Tk → Tgk is a monoidal natural isomorphism we have that:

µgk(X, Y ) ◦ (γg,k(X)⊗ γg,k(Y )) = γg,k(X ⊗ Y ) ◦ Tg(µk(X, Y )) ◦ µg(Tk(X), Tk(Y ))

(C.61)

Therefore, we may simplify Equation (C.60) to:

(JF
X,Y )

−1 ◦ (RX⊗Y
gk )−1 ◦ F (γg,k(X ⊗ Y ) ◦ Tg(µk(X, Y )) ◦ µg(Tk(X), Tk(Y ))) ◦ · · ·

· · · JF
(Tg◦Tk)(X),(Tg◦Tk)(Y ) ◦ (RTk(X)

g ⊗RTk(Y )
g ) ◦ (RX

k ⊗RY
k ) =

(C.62)

(JF
X,Y )

−1 ◦ (RX⊗Y
gk )−1 ◦ F (γg,k(X ⊗ Y )) ◦RTk(X⊗Y )

g ◦RX⊗Y
k ◦ · · ·

· · · (RX⊗Y
k )−1 ◦ (RTk(X⊗Y )

g )−1F (Tg(µk(X, Y ))) ◦ F (µg(Tk(X), Tk(Y ))) ◦ · · ·

· · · JF
(Tg◦Tk)(X),(Tg◦Tk)(Y ) ◦ (RTk(X)

g ⊗RTk(Y )
g ) ◦ (RX

k ⊗RY
k ) =

(C.63)

(JF
X,Y )

−1 ◦ (RX⊗Y
gk )−1 ◦ F (γg,k(X ⊗ Y )) ◦RTk(X⊗Y )

g ◦RX⊗Y
k ◦ · · ·

· · · (RX⊗Y
k )−1 ◦ F (µk(X, Y )) ◦ (RTk(X)⊗Tk(Y )

g )−1 ◦ F (µg(Tk(X), Tk(Y ))) ◦ · · ·

· · · JF
(Tg◦Tk)(X),(Tg◦Tk)(Y ) ◦ (RTk(X)

g ⊗RTk(Y )
g ) ◦ (RX

k ⊗RY
k ) =

(C.64)
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(JF
X,Y )

−1 ◦ (RX⊗Y
gk )−1 ◦ F (γg,k(X ⊗ Y )) ◦RTk(X⊗Y )

g ◦RX⊗Y
k ◦ · · ·

· · · (RX⊗Y
k )−1 ◦ F (µk(X, Y )) ◦ JF

Tk(X),Tk(Y ) ◦ (RX
k ⊗RY

k ) ◦ · · ·

· · · (RX
k ⊗RY

k )
−1 ◦ (JF

Tk(X),Tk(Y ))
−1 ◦ (RTk(X)⊗Tk(Y )

g )−1 ◦ · · ·

· · ·F (µg(Tk(X), Tk(Y ))) ◦ JF
(Tg◦Tk)(X),(Tg◦Tk)(Y ) ◦ (RTk(X)

g ⊗RTk(Y )
g ) ◦ (RX

k ⊗RY
k ) =

(C.65)

∆(γ
k−1,g−1)X,Y ◦ (µk)X,Y ((µg)

(k,k))X,Y

(C.66)

Therefore, we are done.

C.3 Verifying G-Crossed Axioms and G-Ribbon

Axioms

As the G-crossed axioms are verified in the exact same way as the last section, we

leave their explicit verification out of this thesis and leave the details to the interested

reader. For the G-ribbon axioms we prove the most technically challenging axiom,

Equation (4.72), and then leave the detailed verifications of the other axioms to the

interested reader.

Recall that for X ∈ Cg

νX := (RX
g )

−1 ◦ F (θX) (C.67)
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ν Satsifies (4.72)

First, it can be checked that for X ∈ Cg:

(dg)X = d∗X ◦ (RX∗

g )∗ ◦ (F ((dTg

X ))∗) ◦ (d∗Tg(X))
−1 ◦RX

g (C.68)

We need to verify that for all g ∈ G

S(ν) · ∂(δg) = S(γ−1

g−1,g
) · dg · ν · ∂(δg) (C.69)

Expanding the left hand side at X ∈ Cg we obtain:

d∗X ◦ F (θX∗)∗ ◦ ((RX∗

g−1)−1)∗ ◦ (d∗X)−1 ◦ F (πg(X)) (C.70)

On the other hand notice that S(γ
g−1,g

)X equals:

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ ((RX∗

g )−1)∗ ◦ (d∗X)−1 (C.71)

Combining this with (dg)X we obtain:

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ ((RX∗

g )−1)∗ ◦ (d∗X)−1 ◦ d∗X ◦ · · ·

· · · (RX∗

g )∗ ◦ (F (dTg

X )∗) ◦ (d∗Tg(X))
−1 ◦ (RX

g ) =

(C.72)

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ (F (dTg

X )∗) ◦ (d∗Tg(X))
−1 ◦ (RX

g ) (C.73)
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Composing this with νX we obtain:

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ (F (dTg

X )∗) ◦ (d∗Tg(X))
−1 ◦ (RX

g ) ◦ (RX
g )

−1 ◦ F (θX) =

(C.74)

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ (F (dTg

X )∗) ◦ (d∗Tg(X))
−1 ◦ F (θX) =

(C.75)

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ (F (dTg

X )∗) ◦ F (θ∗X)∗ ◦ (d∗X)−1 =

(C.76)

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ ((RTg(X∗)

g−1 )−1)∗ ◦ (F (θ∗X ◦ dTg

X )∗) ◦ (d∗X)−1 =

(C.77)

d∗X ◦ F (γg−1,g(X
∗)−1)∗ ◦ F (Tg−1(θ∗X ◦ dTg

X ))∗ ◦ ((RX∗

g−1)−1)∗(d∗X)
−1 =

(C.78)

d∗X ◦ F (Tg−1(θ∗X ◦ dTg

X ) ◦ γg−1,g(X
∗)−1)∗ ◦ ((RX∗

g−1)−1)∗(d∗X)
−1 =

(C.79)

By assumption we have that:

θX∗ = Tg−1(θ∗X ◦ dTg

X ) ◦ γg−1,g(X
∗)−1 (C.80)

Therefore, we may simplify to:

d∗X ◦ ((RX∗

g−1)−1 ◦ F (θX∗))∗ ◦ (d∗X)−1 = S(ν)X (C.81)

for X ∈ Cg. Hence ν will satisfy Equation (4.72).
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Appendix D

The Hopf Equivariantization

Theorem: The Proofs

Notation. For g, k ∈ G:

γg,k := γ
k−1,g−1 (D.1)

Multiplication is Associative and Unital

First, let’s verify that multiplication is associative. Let r, h, t ∈ H, g, k, ℓ ∈ G then:

((r ⊗ g) · (h⊗ k)) · (t⊗ ℓ) = (γg,k ·Ψ(k−1)(r) · h · t⊗ gk) · (t⊗ ℓ) = (D.2)

(γgk,ℓ ·Ψ(ℓ−1)(γg,k ·Ψ(k−1)(r) · h) · t⊗ (gk)ℓ) (D.3)

On the other hand we know from Equation (4.3) that:

γgk,ℓ ·Ψ(ℓ−1)(γg,k) = γg,kℓ · γk,ℓ (D.4)
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Therefore, we may simplify Equation (D.3) to:

((γg,kℓ · γk,ℓ · (Ψ(ℓ−1) ◦Ψ(k−1)(r) ·Ψ(ℓ−1)(h) · t)⊗ (gk)ℓ) (D.5)

By Equation (4.2) we know that:

(Ψ(ℓ−1) ◦Ψ(k−1))(r) = γ−1
k,ℓ · (Ψ((kℓ)−1)(r) · γk,ℓ (D.6)

Therefore, we can simplify Equation (D.5) to:

(γg,kℓ ·Ψ((kℓ)−1)(r) · γk,ℓ ·Ψ(ℓ−1)(h) · t)⊗ (gkℓ) = (D.7)

(r ⊗ g) · (γk,ℓ ·Ψ(ℓ−1)(h) · t)⊗ (kℓ)) = (D.8)

(r ⊗ g) · ((h⊗ k) · (t⊗ ℓ)) (D.9)

Therefore, multiplication is associative. Since we have chosen a normalzied cocycle,

we see that 1H ⊗ e will indeed by the unit with respect to this multiplication.

Co-multiplication is an Algebra Homomorphism

Next, we need to verify that ∆ is a C-algebra homomorphism. To that end let

h, r ∈ H, g, k ∈ G, then:

∆H#ΓC[G](h⊗ g) ·∆H#ΓC[G](r ⊗ k) =

(D.10)
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((µ −1
g )1 · h(1) ⊗ g)⊗ ((µ −1

g )2 · h(2) ⊗ g) · ((µ −1
k )1 · r(1) ⊗ k)⊗ ((µ −1

k )2 · r(2) ⊗ k) =

(D.11)

(γg,k ·Ψ(k−1)((µ −1
g )1 · h(1)) · (µ −1

k )1 · r(1) ⊗ gk)⊗ (γg,k ·Ψ(k−1)((µ −1
g )2 · h(2)) · (µ −1

k )2 · r(2) ⊗ gk)

(D.12)

On the other hand by Equation (4.12), the fact that ∆ is an algebra homorphism,

and since for all k ∈ G Ψ(k−1) is a unital automorphism that for all k ∈ G, h ∈ H

the following holds:

µk · (Ψ(k−1)⊗2)(∆(h)) = (∆(Ψ(k−1)(h))) · µk ⇒ (D.13)

∆(1) · (Ψ(k−1)⊗2)(∆(h)) · µ −1
k = µ −1

k · (∆(Ψ(k−1)(h))) ·∆(1) ⇒ (D.14)

(Ψ(k−1)⊗2)(∆(h)) · µ −1
k = µ −1

k · (∆(Ψ(k−1)(h))) (D.15)

Therefore, by using Equation (D.15) we may simplify Equation (D.12) to:

(γg,k ·Ψ(k−1)((µ −1
g )1) · (µ −1

k )1 · (Ψ(k−1)(h))(1) · r(1) ⊗ gk)⊗ · · · (D.16)

· · · (γg,k ·Ψ(k−1)((µ −1
g )2) · (µ −1

k )2 · (Ψ(k−1)(h))(2) · r(2) ⊗ gk) (D.17)

By Equation (4.15) we know that for all g, k ∈ G:

(γg,k ⊗ γg,k) = (µgk)
−1 ·∆(γg,k) · µk ·Ψ(k−1)(µg) (D.18)
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We can simplify Equation (D.18) to:

(γg,k ⊗ γg,k) ·Ψ(k−1)((µg)
−1) · (µk)

−1 = (µgk)
−1 ·∆(γg,k) (D.19)

Using Equation (D.19) we may simplify Equation (D.17) to:

((µ −1
gk )1 · (γg,k)(1) · (Ψ(k−1)(h))(1) · r(1) ⊗ gk)⊗ ((µ −1

gk )2 · (γg,k)(2) · (Ψ(k−1)(h))(2) · r(2) ⊗ gk) =

(D.20)

((µ −1
gk )1 · (γg,k · (Ψ(k−1)(h) · r)(1) ⊗ gk)⊗ ((µ −1

gk )2 · (γg,k · (Ψ(k−1)(h)) · r)(2) ⊗ gk) =

(D.21)

∆H#ΓC[G](γg,k · (Ψ(k−1)(h) · r)⊗ gk) = ∆H#ΓC[G]((h⊗ g) · (r ⊗ k))

(D.22)

Therefore, ∆ will indeed by an algebra homomorphism.

Co-unit Axioms

Next, we need to verify that ϵH#ΓC[G] is an algebra-homomorphism. By Remark 4.1.1

we know for g, k ∈ G:

ϵ(γg,k) = 1 (D.23)

Therefore, we see that for g, k ∈ G, h, r ∈ H:

ϵH#ΓC[G]((h⊗ g) · (r ⊗ k)) = ϵH#ΓC[G]((γg,k ·Ψ(k−1)(h) · r)⊗ gk) = (D.24)

ϵH((γg,k ·Ψ(k−1)(h) · r)) = ϵH(Ψ(k−1)(h) · r) = ϵH(Ψ(k−1)(h))ϵH(r) = (D.25)
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ϵH(h)ϵH(r) = ϵH#ΓC[G](h⊗ g)ϵH#ΓC[G](r ⊗ k) (D.26)

Next, we need to verify that:

(ϵH#ΓC[G] ⊗ Id) ◦∆H#ΓC[G] = (Id⊗ ϵH#ΓC[G]) ◦∆H#ΓC[G] = Id (D.27)

To that end let g ∈ G, h ∈ H:

(ϵH#ΓC[G] ⊗ Id) ◦∆H#ΓC[G](h⊗ g) = (D.28)

(ϵH#ΓC[G] ⊗ Id)(((µ −1
g )1 · h(1) ⊗ g)⊗ ((µ −1)2 · h(2) ⊗ g)) = (D.29)

ϵH((µ
−1
g )1 · h(1))((µ −1)2 · h(2) ⊗ g)) = (D.30)

((ϵH((µ
−1
g )1 · h(1))(µ −1)2 · h(2))⊗ g = (D.31)

h⊗ g (D.32)

Notice in the last line we use the fact that (ϵH ⊗ Id) ◦∆H = IdH , and the fact that

we have a normalized 3-cocycle so:

ϵH((µ
−1
g )1)(µ

−1
g )2 = (ϵH((µg)1)(µg)2)

−1 = 1H (D.33)

Similarly, one can check that (Id⊗ ϵH#ΓC[G]) ◦∆H#ΓC[G] = IdH .
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Drinfeld Associator Identities

Now, we need to verify the associator identities. First, notice that we have a wqhf

morphism ιH,Γ : H → H#ΓC[G] given by ιH,Γ(h) = h⊗ e.

The first things to verify is that ΦH#ΓC[G] is partially invertible with:

D(ΦH#ΓC[G]) = (∆H#ΓC[G]⊗Id)◦∆H#ΓC[G](1) R(ΦH#ΓC[G]) = (Id⊗∆H#ΓC[G])◦∆H#ΓC[G](1)

(D.34)

To that end, notice that:

ΦH#ΓC[G] = (ι⊗3
H,Γ)(ΦH) (D.35)

Therefore, let Φ−1
H#ΓC[G] := (ι⊗3

H,Γ)(Φ
−1
H ). Then:

Φ−1
H#ΓC[G] · ΦH#ΓC[G] = (D.36)

(ι⊗3
H,Γ)(Φ

−1
H · ΦH) = (D.37)

(ι⊗3
H,Γ)((∆H ⊗ Id) ◦∆(1H)) (D.38)

Since ιH,Γ is a morphism of weak quasi Hopf algebras we have that this equals:

(∆H#ΓC[G] ⊗ Id) ◦∆H#ΓC[G](1H#ΓC[G]) (D.39)

Similarly, one can check that:

ΦH#ΓC[G] · Φ−1
H#ΓC[G] = (Id⊗∆H#ΓC[G]) ◦∆H#ΓC[G](1H#ΓC[G]) (D.40)
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Next, we need to verify that for all h ∈ H, g ∈ G that:

ΦH#ΓC[G] · (∆H#ΓC[G] ⊗ Id)(∆H#ΓC[G](h⊗ g)) = (Id⊗∆H#ΓC[G])(∆H#ΓC[G](h⊗ g)) · ΦH#ΓC[G]

(D.41)

Expanding the left hand side of Equation (D.41) we obtain:

ΦH#ΓC[G] · ((µ −1
g )1 · ((µ −1

g )1 · r(1))(1) ⊗ g)⊗ ((µ −1
g )2 · ((µ −1

g )1 · r(1))(2) ⊗ g))⊗ · · ·

· · · ⊗ ((µ −1
g )2 · r(2) ⊗ g)

(D.42)

By manipulating Equation (4.13) we know that:

(Ψ(g−1)⊗3)(ΦH)·((µg)
−1⊗1H)·(∆H⊗Id)((µg)

−1) = (1H⊗(µg)
−1)·(Id⊗∆H)((µg)

−1)·ΦH

(D.43)

If we expand ΦH#ΓC[G] in Equation (D.42) and multiply, then ΦH will pick up the

action (Ψ(g−1)⊗3) by definition. Therefore, we may use Equation (D.43) to simplify

Equation (D.42) to:

((µ −1
g )1·x(1)·(r(1))(1)⊗g)⊗((µ −1

g )1·((µ −1
g )2)(1)·x(2)·(r(1))(2)⊗g))⊗((µ −1

g )2·((µ −1
g )2)(2)·x(3)·r(2)⊗g)

(D.44)

By Equation (3.25) we know that:

(x(1) ·(r(1))(1))⊗(x(2) ·(r(1))(2))⊗(x(3) ·r(2)) = (r(1) ·x(1))⊗((r(2))(1) ·x(2))⊗((r(2))(2) ·x(3))

(D.45)
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Therefore, we may simplify Equation (D.44) to:

((µ −1
g )1 · r(1) · x(1) ⊗ g)⊗ ((µ −1

g )1 · ((µ −1
g )2)(1) · (r(2))(1) · x(2) ⊗ g))⊗ · · ·

· · · ((µ −1
g )2 · ((µ −1

g )2)(2) · (r(2))(2) · x(3) ⊗ g) =

(D.46)

((µ −1
g )1 · r(1) · x(1) ⊗ g)⊗ ((µ −1

g )1 · ((µ −1
g )2 · r(2))(1) · x(2) ⊗ g))⊗ · · ·

· · · ((µ −1
g )2 · ((µ −1

g )2 · r(2))(2) · x(3) ⊗ g) =

(D.47)

(Id⊗∆H#ΓC[G]) ◦∆H#ΓC[G](r ⊗ g) · ΦH#ΓC[G] (D.48)

Therefore, Equation (D.41) will hold. The other axioms invovlving the associator,

that is Equations (3.26) (3.27), will follow form the fact that they hold for ΦH and

that ιH,Γ is an embedding of wqhf.

To summarize so far we have shown that for a nomralized G-ribbon Abelian

3-cocycle Γ that H#ΓC[G] is a weak quasi bi-algebra.

Next, we will verify that it is a weak quasi Hopf algebra.

First, we need to verify that for h ∈ H, g ∈ G:

SH#ΓC[G]((h⊗ g)(1)) · αH#ΓC[G] · (h⊗ g)(2) = ϵH#ΓC[G](h⊗ g)αH#ΓC[G] (D.49)

To that end notice that:

(h⊗ g)(1) = ((µ −1
g )1 · h(1))⊗ g (D.50)

(h⊗ g)(2) = ((µ −1
g )2 · h(2))⊗ g (D.51)
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Substituting this in Equation (D.49) and expanding we obtain:

SH#ΓC[G]((µ
−1
g )1 · h(1))⊗ g) · αH#ΓC[G]·)((µ −1

g )2 · h(2))⊗ g) =

(D.52)

(Ψ(g)(S((µ −1
g )1 · h(1)) · dg · (γg−1,g)

−1)⊗ g−1) · (αH ⊗ e) · ((µ −1
g )2 · h(2))⊗ g) =

(D.53)

(Ψ(g)(S((µ −1
g )1 · h(1)) · dg · (γg−1,g)

−1)⊗ g−1) · (Ψ(g−1)(αH) · (µ −1
g )2 · h(2))⊗ g) =

(D.54)

γg−1,g · (Ψ(g−1) ◦Ψ(g))
(︁
S((µ −1

g )1 · h(1)) · dg · (γg−1,g)
−1
)︁
·Ψ(g−1)(αH) · ((µ −1

g )2 · h(2))⊗ e

(D.55)

Since (Ψ(g−1) ◦Ψ(g)) = Ad(γ−1
g−1,g) we see that Equation (D.55) simplifies to:

γg−1,g · γ−1
g−1,g · S((µ

−1
g )1 · h(1)) · dg · (γg−1,g)

−1 · γg−1,g ·Ψ(g−1) (αH) · ((µ −1
g )2 · h(2))⊗ e = (D.56)

S((µ −1
g )1 · h(1)) · dg ·Ψ(g−1) (αH) · ((µ −1

g )2 · h(2))⊗ e = (D.57)

S(h(1)) · S((µ −1
g )1) · dg ·Ψ(g−1)(αH) · (µ −1

g )2 · S(h(2))⊗ e (D.58)

Since we have a rigid G-ribbon 3-cocycle we know that:

dg ·Ψ(g−1)(αH) = S((µg)1) · αH · (µg)2 (D.59)

Therefore, Equation (D.58) simplifies to:

S(h(1)) · S((µ −1
g )1) · S((µg)1) · αH · (µg)2 · (µ −1

g )2 · S(h(2))⊗ e = (D.60)
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S(h(1)) · αH · h(2) ⊗ e = ϵ(h)(αH ⊗ e) = (D.61)

ϵH#ΓC[G](h⊗ g)(αH ⊗ e) (D.62)

Now, we need to check that for h ∈ H, g ∈ G:

(h⊗ g)(1) · βH#ΓC[G] · SH#ΓC[G]((h⊗ g)(2)) = ϵH#ΓC[G](h⊗ g) · βH#ΓC[G] (D.63)

Expanding this we obtain:

((µ −1
g )1 · h(1) ⊗ g) · (βH ⊗ e) · (Ψ(g)(S((µ −1

g )2 · h(2)) · dg · (γ−1
g−1,g))⊗ g−1) = (D.64)

((µ −1
g )1 · h(1) · βH ⊗ g) · (Ψ(g)(S((µ −1

g )2 · h(2)) · dg · (γ−1
g−1,g))⊗ g−1) = (D.65)

γg,g−1 ·Ψ(g)((µ −1
g )1 · h(1) · βH · S((µ −1

g )2 · h(2)) · dg · (γ−1
g−1,g))⊗ e = (D.66)

γg,g−1 ·Ψ(g)((µ −1
g )1 · h(1) · βH · S(h(2)) · S((µ −1

g )2) · dg · (γ−1
g−1,g))⊗ e = (D.67)

γg,g−1Ψ(g)((µ −1
g )1 · ϵ(h)βH · S((µ −1

g )2) · dg · (γ−1
g−1,g))⊗ e = (D.68)

ϵ(h)γg,g−1 ·Ψ(g)(Ψ(g−1)(βH) · γ−1
g−1,g)⊗ e (D.69)

Notice that because of the 2-cocycle relation we have that:

Ψ(g)(γg−1,g) = γg,g−1 (D.70)

This implies that Equation (D.69) reduces to:

ϵH#ΓC[G](h⊗ g) · (βH ⊗ e) (D.71)
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Lastly, to verify that (SH#ΓC[G], αH#ΓC[G], βH#ΓC[G]) satisfies Equation (3.32), simply

notice that ιH,Γ : H → H#ΓC[G] is a wqhf morphism and (ι⊗3
H,Γ)(ΦH) = ΦH#ΓC[G].

Therefore, since Equation(3.32) is satisfied for (SH , αH , βH) we see it will also be

satisfied for H#ΓC[G]. This proves that H#ΓC[G] is a weak quasi Hopf algebra.

D.1 Verifying Quasitriangular Structure

Now, we need to verify that H#ΓC[G] is a quasitriangular wqhf. To that end let us

first verify that:

RH#ΓC[G] :=
∑︂
g∈G

(c1 · ∂(δg)⊗ e)⊗ (c2 ⊗ g) (D.72)

R−1
H#ΓC[G] :=

∑︂
g∈G

((c −1)1 · ∂(δg)⊗ e)⊗ ((Ψ(g)((c −1)2) · γ −1
g,g−1)⊗ g−1) (D.73)

is indeed partially invertible.

To that end we expand R−1
H#ΓC[G] ·RH#ΓC[G] to obtain:

∑︂
g∈G

((c −1)1 · ∂(δg)⊗ e)⊗ ((Ψ(g)((c −1)2) · γ −1
g,g−1)⊗ g−1) · (c1 · ∂(δg)⊗ e)⊗ (c2 ⊗ g) =

(D.74)∑︂
g∈G

((c −1)1 · c1 · ∂(δg)⊗ e)⊗ (γg−1,g · (Ψ(g−1) ◦Ψ(g))
(︁
(c−1)2

)︁
·Ψ(g−1)(γ−1

g,g−1) · c2 ⊗ e) =

(D.75)∑︂
g∈G

((1)(1) · ∂(δg)⊗ e)⊗ (γg−1,g · (Ψ(g−1) ◦Ψ(g))
(︁
(c−1)2

)︁
· γ−1

g−1,g · c2 ⊗ e) =

(D.76)
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∑︂
g∈G

((1)(1) · ∂(δg)⊗ e)⊗ ((c −1)2 · c2 ⊗ e) =

(D.77)

∆H#ΓC[G](1H#ΓC[g]) (D.78)

Here we have used the fact that Ψ(g−1)(γ −1
g,g−1) = γ −1

g−1,g, c
−1 · c = ∆(1H), and

Ad(γg,g−1) ◦Ψ(g) ◦Ψ(g−1) = Id.

Expanding RH#ΓC[G] ·R−1
H#ΓC[G] we obtain:

∑︂
g∈G

(c1 · ∂(δg)⊗ e)⊗ (c2 ⊗ g) · ((c −1)1 · ∂(δg)⊗ e)⊗ ((Ψ(g)((c −1)2) · γ −1
g,g−1)⊗ g−1) = (D.79)

∑︂
g∈G

(c1 · (c −1)1 · ∂(δg)⊗ e)⊗ (γg,g−1 ·Ψ(g)(c2 · (c −1)2) · γ −1
g,g−1 ⊗ e) = (D.80)

∑︂
g∈G

((1)(2) · ∂(δg)⊗ e)⊗ (γg,g−1 · (Ψ(g) ◦Ψ(g−1))((1)(1)) · γ −1
g,g−1 ⊗ e) = (D.81)

∑︂
g∈G

((1)(2) · ∂(δg)⊗ e)⊗ ((1)(1) ⊗ e) = ∆op
H#ΓC[G](1H#ΓC[G]) (D.82)

Here we used the fact that c · c−1 = (Id ⊗ Ψ(g−1))(∆op(1H)), and that Ad(γg,g−1) ◦

Ψ(g) ◦Ψ(g−1) = Id.

Therefore, it will indeed be partially invertible.

Next, we need to verify that for all h ∈ H, g ∈ G that:

∆op
H#ΓC[G](h⊗ g) = RH#ΓC[G] ·∆H#ΓC[G](h⊗ g) ·R−1

H#ΓC[G] (D.83)
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Expanding the right hand side out we obtain:

∑︂
k,t∈G

(c1 · ∂(δk)⊗ e)⊗ (c2 ⊗ k) ·∆H#ΓC[G](h⊗ g) · · ·

· · · ((c −1)1 · ∂(δt)⊗ e)⊗ ((Ψ(t)((c −1)2) · γ −1
t,t−1)⊗ t−1) =

(D.84)∑︂
k,t∈G

(c1 · ∂(δk)⊗ e)⊗ (c2 ⊗ k) · (((µ −1
g )1 · h(1))⊗ g)⊗ ((µ −1

g )2 · h(2))⊗ g) · · ·

· · · ((c −1)1 · ∂(δt)⊗ e)⊗ ((Ψ(t)((c −1)2) · γ −1
t,t−1)⊗ t−1) =

(D.85)∑︂
k,t∈G

(Ψ(g−1)(c1) · (µ −1
g )1 · h(1) · ∂(δg−1kg)⊗ g)⊗ (γk,g ·Ψ(g−1)(c2) · (µ −1

g )2 · h(2))⊗ kg) · · ·

· · · ((c −1)1 · ∂(δt)⊗ e)⊗ ((Ψ(t)((c −1)2) · γ −1
t,t−1)⊗ t−1) =

(D.86)∑︂
k,t∈G

(Ψ(g−1)(c1) · (µ −1
g )1 · h(1) · ∂(δg−1kg) · ∂(δt) · (c −1)1 ⊗ g)⊗

(γkg,t−1 ·Ψ(t)
(︁
γk,g ·Ψ(g−1)(c2) · (µ −1

g )2 · h(2)
)︁
· (Ψ(t)((c −1)2) · γ −1

t,t−1)⊗ kgt−1)

(D.87)

Notice that ∂(δg−1kg) · ∂(δt) = δt,g−1kg∂(δt). Therefore, the non-zero terms will be

indexed by the elements of (t, k) ∈ G2 where k = gtg−1. This means Equation (D.87)

154



equals:

∑︂
t∈G

(Ψ(g−1)(c1) · (µ −1
g )1 · h(1) · ∂(δt) · (c −1)1 ⊗ g)⊗

(γgt,t−1 ·Ψ(t)
(︁
γgtg−1,g ·Ψ(g−1)(c2) · (µ −1

g )2 · h(2)
)︁
· (Ψ(t)((c −1)2) · γ −1

t,t−1)⊗ (gtg−1g)t−1 =

(D.88)

Since we know that:

(γgtg−1,g)2 · (Ψ(g−1)⊗2)(c) · (µg)
−1 · (∂(δt))1 = (γg,t)2 · (Id⊗Ψ(t−1))((µg)21) · c · (∂(δt))1

(D.89)

We can simplify Equation (D.87) to:

∑︂
t∈G

((µ −1
g )2 · c1 · h(1) · (c −1)1 · ∂(δt)⊗ g)⊗

(γgt,t−1 ·Ψ(t)
(︁
γg,t ·Ψ(t−1)((µ−1

g )1) · c2 · h(2) · (c −1)2
)︁
· γ −1

t,t−1)⊗ g)

(D.90)

But by assumption:

c ·∆(h) · c−1 · (∂(δ)t)1 = (Id⊗Ψ(t−1))∆op(h) · (∂(δt))1 (D.91)

Therefore, Equation (D.90) reduces to:

∑︂
t∈G

((µ −1
g )2 · h(2) · ∂(δt)⊗ g)⊗ (γgt,t−1 ·Ψ(t)(γg,t) ·Ψ(t)

(︁
Ψ(t−1)((µ−1

g )1 · h(1))
)︁
· γ −1

t,t−1)⊗ g) =

(D.92)
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∑︂
t∈G

((µ −1
g )2 · h(2) · ∂(δt)⊗ g)⊗ (γt,t−1 ·Ψ(t)

(︁
Ψ(t−1)((µ−1

g )1 · h(1))
)︁
· γ −1

t,t−1)⊗ g) =

(D.93)∑︂
t∈G

((µ −1
g )2 · h(2) · ∂(δt)⊗ g)⊗ ((µ−1

g )1 · h(1))⊗ g) =

(D.94)

∆op
H#ΓC[G](h⊗ g)

(D.95)

Here we used the fact that γgt,t−1 ·Ψ(t)(γg,t) = γt,t−1 .

Next, we need to verify that:

(∆H#ΓC[G]⊗Id)(RH#ΓC[G]) = (ΦH#ΓC[G])312·(RH#ΓC[G])13·(Φ−1
H#ΓC[G])123·(RH#ΓC[G])23·(ΦH#ΓC[G])123

(D.96)

Well to that end notice that:

(∆⊗ Id)(RH#ΓC[G]) =
∑︂
g∈G

(
(︁
(c1)(1) · (∂(δg))(1)

)︁
⊗ e)⊗ (

(︁
(c1)(2) · (∂(δg))(2)

)︁
⊗ e)⊗ (c2 ⊗ g) =

(D.97)∑︂
g,k,t∈G
k·t=g

(
(︁
(c1)(1) · ∂(δk)

)︁
⊗ e)⊗ (

(︁
(c1)(2) · ∂(δt)

)︁
⊗ e)⊗ (c2 ⊗ g)

(D.98)
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On the other hand we know that:

(∆⊗Id)(c)·(∂(δk)⊗∂(δt))12 = (Φ312)
(e,e,kt)·(γk,t)3·c

(e,e,t)
13 ·(Φ−1

132)
(e,e,t)·c23·Φ123·(∂(δk)⊗∂(δt))12

(D.99)

Suppress the double summation for the sake of brevity, then Equation (D.98) equals:

((x2 · c1 ·X1 · x1 · ∂(δk)⊗ e)⊗ (x3 ·X3 · c1 · x2 · ∂(δt)⊗ e) · (Ψ(g−1)(x1) · γk,t ·Ψ(t−1)(c2 ·X2) · c2 · x3 ⊗ g))

(D.100)

Factoring out the multiplication we see this is just:

(ΦH#ΓC[G])312 · ((c1 ·X1 · x1 · ∂(δk)⊗ e)⊗ (X3 · c1 · x2 · ∂(δt)⊗ e) · (γk,t ·Ψ(t−1)(c2 ·X2) · c2 · x3 ⊗ g)) =

(D.101)

(ΦH#ΓC[G])312 · (c1 ⊗ e)⊗ (1H ⊗ e)⊗ (c2 ⊗ k)·

((X3 · x1 · ∂(δk)⊗ e)⊗ (X1 · c1 · x2 · ∂(δt)⊗ e)⊗ (Ψ(t−1)(X2) · c2 · x3 ⊗ t)) =

(D.102)

(ΦH#ΓC[G])312 · (RH#ΓC[G])13·

((X1 · x1 ⊗ e)⊗ (X3 · c1 · x2 · ∂(δt)⊗ e)⊗ (Ψ(t−1)(X2) · c2 · x3 ⊗ t)) =

(D.103)

(ΦH#ΓC[G])312 · (RH#ΓC[G])13 · ((X1 ⊗ e)⊗ (X3 ⊗ e)⊗ (X2 ⊗ e))·

((x1 ⊗ e)⊗ (c1 · x2 · ∂(δt)⊗ e)⊗ (c2 · x3 ⊗ t)) =

(D.104)
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(ΦH#ΓC[G])312 · (RH#ΓC[G])13 · (Φ−1
H#ΓC[G])132·

((x1 ⊗ e)⊗ (c1 · x2 · ∂(δt)⊗ e)⊗ (c2 · x3 ⊗ t)) =

(D.105)

(ΦH#ΓC[G])312 · (RH#ΓC[G])13 · (Φ−1
H#ΓC[G])132 · (RH#ΓC[G])23 · (ΦH#ΓC[G])123

(D.106)

This proves the first braiding axiom for RH#ΓC[G].

Lastly, we need to prove that:

(Id⊗∆)(RH#ΓC[G]) = (Φ−1
H#ΓC[G])231(RH#ΓC[G])13(ΦH#ΓC[G])213(RH#ΓC[G])12(Φ

−1
H#ΓC[G])123

(D.107)

Expanding the left hand side of this we obtain:

∑︂
g∈G

(c1 · ∂(δg)⊗ e)⊗ ((µ −1
g )(1) · (c2)(2) ⊗ g)⊗ ((µ −1

g )(1) · (c2)(2) ⊗ g) (D.108)

On the other hand we know that:

(µg
−1)23 · (IdH ⊗∆)(c) · (∂(δg))1 = (Φ−1

231)
(e,g,g) · c13 · Φ(e,g,e)

213 · c12 · Φ−1
123 · (∂(δg))1 (D.109)

Expanding this out in shorthand we obtain:

(c1 · ∂(δg))⊗ ((µ −1
g )1 · (c2)(1))⊗ ((µ −1

g )2 · (c2)(2)) =

(D.110)

(X3 · c1 · x2 · c1 ·X1 · ∂(δg))⊗ (Ψ(g−1)(X1 · x1) · c2 ·X2)⊗ (Ψ(g−1)(X2) · c2 · x3 ·X3) (D.111)
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Just as in the previous proof, we suppress the summation for the sake of brevity. We

may simplify Equation (D.108) to:

(X3 · c1 · x2 · c1 ·X1 · ∂(δg)⊗ e)⊗ (Ψ(g−1)(X1 · x1) · c2 ·X2 ⊗ g)⊗ (Ψ(g−1)(X2) · c2 · x3 ·X3 ⊗ g) =

(D.112)

(X3 ⊗ e)⊗ (X1 ⊗ e)⊗ (X2 ⊗ e)·

(c1 · x2 · c1 ·X1 · ∂(δg)⊗ e)⊗ (Ψ(g−1)(x1) · c2 ·X2 ⊗ g)⊗ (c2 · x3 ·X3 ⊗ g) =

(D.113)

(Φ−1
H#ΓC[G])231 · ((c1 · ∂(δg)⊗ e)⊗ (1H ⊗ e)⊗ (c2 ⊗ g))·

(x2 · c1 ·X1 ⊗ e)⊗ (Ψ(g−1)(x1) · c2 ·X2 ⊗ g)⊗ (x3 ·X3 ⊗ e) =

(D.114)

(Φ−1
H#ΓC[G])231 · (RH#ΓC[G])13 · ((x2 ⊗ e)⊗ (x1 ⊗ e)⊗ (x3 ⊗ e))

(c1 ·X1 ⊗ e)⊗ (c2 ·X2 ⊗ g)⊗ (X3 ⊗ e) =

(D.115)

(Φ−1
H#ΓC[G])231 · (RH#ΓC[G])13 · (ΦH#ΓC[G])213 · ((c1 ⊗ e)⊗ (c2 ⊗ g)⊗ (1H ⊗ e))·

((X1 ⊗ e)⊗ (X2 ⊗ e)⊗ (X3 ⊗ e)) =

(D.116)

(Φ−1
H#ΓC[G])231 · (RH#ΓC[G])13 · (ΦH#ΓC[G])213 · (RH#ΓC[G])12 · (Φ−1

H#ΓC[G])123

(D.117)

This varifies the last braiding axiom, so indeed RH#ΓC[G] will give a quasitriangular
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structure on H#ΓC[G].

D.2 Verifying Ribbon Structure

First, we need to verify that:

∆H#ΓC[G](ν) = (νH#ΓC[G] ⊗ νH#ΓC[G]) · (RH#ΓC[G])21 ·RH#ΓC[G] (D.118)

Expanding the right hand side we have:

(
∑︂
g,k∈G

(ν · ∂(δg)⊗ g)⊗ (ν · ∂(δk)⊗ k)) · (
∑︂
t∈G

(c2 ⊗ t)⊗ (c1 · ∂(δt)⊗ e)) · (
∑︂
p∈G

(c1 · ∂(δp)⊗ e)⊗ (c2 ⊗ p)) =

(D.119)

(
∑︂
g,k∈G

(ν · ∂(δg)⊗ g)⊗ (ν · ∂(δk)⊗ k)) · (
∑︂
t,p∈G

(c2 · c1 · ∂(δp)⊗ t)⊗ (Ψ(p−1)(c1 · ∂(δt)) · c2 ⊗ p)) =

(D.120)∑︂
g,k,t,p∈G

(γg,t ·Ψ(t−1)
(︁
ν · ∂(δg)

)︁
· c2 · c1 · ∂(δp)⊗ gt)⊗ (γk,p ·Ψ(p−1)

(︁
ν · ∂(δk) · c1 · ∂(δt)

)︁
· c2 ⊗ kp) =

(D.121)∑︂
g,k,p∈G
g=kpk−1

(γg,k ·Ψ(k−1) (ν) · c2 · c1 · ∂(δp)⊗ kp)⊗ (γk,p ·Ψ(p−1) (ν · c1) · ∂(δp−1kp) · c2 ⊗ kp)

(D.122)
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On the otherhand, we know that:

µ −1
kp ·∆(ν)·(∂(δp)⊗∂(δp−1kp)) = (γkpk−1,k⊗γk,p)·(ν⊗2)(k,p)·(c21)(e,p)·c·(∂(δp)⊗∂(δp−1kp))

(D.123)

Therefore, we see that Equation (D.122) will equal:

∑︂
k,p∈G

((µ −1
kp )1 · (ν)(1) · ∂(δp)⊗ kp)⊗ ((µ −1

kp )2 · (ν)(2) · ∂(δp−1kp)⊗ kp) = (D.124)

∑︂
ℓ∈G

∑︂
k,p∈G
kp=ℓ

((µ −1
ℓ )1 · (ν)(1) · ∂(δp)⊗ ℓ)⊗ ((µ −1

ℓ )2 · (ν)(2) · ∂(δp−1kp)⊗ ℓ) = (D.125)

∑︂
ℓ∈G

∆((ν · ∂(δℓ)⊗ ℓ)) = ∆H#ΓC[G](νH#ΓC[G]) (D.126)

The next thing we need to prove is that:

SH#ΓC[G](νH#ΓC[G]) = νH#ΓC[G] (D.127)

To that end we expand the LHS to obtain:

∑︂
g∈G

Ψ(g)
(︂
S(ν · ∂(δg)) · dg · γ −1

g−1,g

)︂
⊗ g−1) = (D.128)

∑︂
g∈G

Ψ(g)
(︂
S(ν) · ∂(δg−1) · dg · γ −1

g−1,g

)︂
⊗ g−1) (D.129)

We know that:

S(ν) · ∂(δg−1) = S(γ −1
g,g−1) · d(g−1) · ν · ∂(δg−1) (D.130)
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Therefore, Equation (D.129) simplifies to:

∑︂
g∈G

Ψ(g)(S(γ −1
g,g−1)) ·Ψ(g)(d(g−1)) ·Ψ(g)(ν) · ∂(δg−1) ·Ψ(g)(dg) ·Ψ(g)(γ−1

g−1,g)⊗ g−1

(D.131)

On the other hand we also know that:

Ψ(g)(ν) · ∂(δg−1) = ν · ∂(δg−1) (D.132)

and for all h ∈ H:

Ψ(g)(h) · ν · ∂(δg−1) = ν · h · ∂(δg−1) (D.133)

Therefore, Equation (D.131) simplifies to:

∑︂
g∈G

ν · ∂(δg−1) · S(γ −1
g,g−1) · d(g−1) ·Ψ(g)(dg) ·Ψ(g)(γ−1

g−1,g)⊗ g−1 (D.134)

Since Ψ(g)(γg−1,g) = γg,g−1 we obtain:

∑︂
g∈G

ν · ∂(δg−1) · S(γ −1
g,g−1) · d(g−1) ·Ψ(g)(dg) · γ−1

g,g−1 ⊗ g−1 (D.135)

But, we our by assumption Γ is rigid, which means:

de = S(γ −1
g,g−1) · d(g−1) ·Ψ(g)(dg) · γ −1

g,g−1 = 1H (D.136)
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Therefore, Equation (D.135) becomes:

∑︂
g∈G

ν · ∂(δg−1)⊗ g−1 = νH#ΓC[G] (D.137)

This confirms that νH#ΓC[G] gives a ribbon structure on H#ΓC[G].
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