
Machine Learning Driven Software Test Case Selection

by

Victor Cheruiyot

A project report submitted in conformity with the requirements
for the degree of Master of Science in Information Technology

Department of Mathematical and Physical Sciences
Faculty of Graduate Studies

Concordia University of Edmonton

© Copyright 2021 by Victor Cheruiyot

MACHINE LEARNING DRIVEN SOFTWARE TEST CASE

SELECTION

VICTOR CHERUIYOT

Approved:

Supervisor: Saha Baidya Date

Committee Member: Date

Dean of Graduate Studies: Rorritza Marinova, Ph.D. Date

Machine Learning Driven Software Test Case Selection

Victor Cheruiyot
Master of Science in Information Technology

Department of Mathematical and Physical Sciences
Concordia University of Edmonton

2021

Abstract

After each software is developed, tests are carried out to identify defects that are sub-

sequently deleted. But testing a non-trivial software completely is a really complex

endeavor. Therefore, testing the software using critical test cases is important. Thus

test case selection aims to minimize unnecessary test data, which is important for de-

termining testing methods. In this study, we have created an approach for regression

testing based on machine learning software tests. We initially clean the data and pre-

process it in order to construct the approach. The category data is then converted to

its numerical value. To generate a bag of characteristics for text features such as test

case title, we apply natural language processing. For test cases selection we evaluate

various machine learning models. The results of the experiments show that machine

learning-based models can eliminate the need for domain experts to select test cases

manually.

Keywords

Machine learning, classifiers, confusion matrix, test case selection.

i

Contents

1 Introduction 2

1.1 Introduction . 2

1.2 Background . 2

1.3 Problem Statement . 3

1.3.1 Previous works . 3

1.4 Contribution of this thesis . 4

1.5 Organization of this thesis . 4

2 Literature Review 5

2.1 Ant colony optimization . 5

2.2 Genetic Algorithm . 6

2.3 Machine learning approach . 7

2.4 Test suite minimization . 8

2.5 Regression testing technique . 8

3 Proposed Methodology 10

3.1 Proposed Architecture . 10

3.2 Dataset Preparation . 10

3.2.1 Removal of unwanted features 12

3.3 Natural Language Processing . 12

3.3.1 Text Preprocessing . 13

3.3.2 Text Feature Generation . 13

3.3.2.1 Context encoder . 13

3.3.2.2 N-gram . 14

3.3.2.3 Skip-gram model . 15

3.3.2.4 Continous bag of words 16

3.4 Machine Learning . 17

3.4.1 Clustering . 17

3.4.2 Cross Validation . 17

ii

CONTENTS CONTENTS

3.4.3 Hyperparameter optimazation 17

3.4.4 Models(supervised collection) 17

3.4.4.1 Logistic Regression 17

3.4.4.2 Gaussian Naive Bayes 17

3.4.4.3 Multinomial Naive Bayes 17

3.4.4.4 Gradient Boosting 18

3.4.4.5 K-Nearest Neighbors 18

3.4.4.6 Decision Tree . 18

3.4.4.7 Gaussian Process . 18

3.4.4.8 Bagging Classifier 18

3.4.4.9 Random forest . 18

3.4.4.10 Neural Network . 19

3.4.5 Semi-supervised classification 19

3.4.6 Recurrent Neural Network . 19

3.4.6.1 Long short term memory 19

3.4.6.2 Convolution Neural Network 20

3.4.7 Text Feature Selection . 21

3.4.8 Filter based . 21

3.4.8.1 Information Gain . 21

3.4.8.2 ANOVA f-test . 21

3.4.8.3 Fisher’s Score . 21

3.4.8.4 Chi-Square Test . 22

3.4.8.5 Variance Threshold 22

3.4.9 Wrapper Methods . 22

3.4.9.1 Recursive Feature Elimination 22

3.4.9.2 Forward Feature Selection 22

3.4.9.3 Backward Feature Selection 22

3.4.10 Model Evaluation . 22

4 Results and Discussions 24

4.1 Results . 24

4.1.1 Text feature selection . 24

4.1.1.1 Fliter based method 24

4.1.1.2 Wrapper methods 26

4.1.2 Clustering . 28

4.1.3 Confusion matrix results for the classifiers 28

4.2 Model performance . 35

iii

CONTENTS CONTENTS

5 Conclusion and Future works 39

Bibliography 40

iv

List of Tables

3.1 Confusion Matrix . 23

4.1 Text classification . 36

4.2 Supervised classifier performance analysis 36

4.3 Semi Supervised classifier performance analysis 37

4.4 Comparison classifier performance analysis 38

4.5 Deep Learning . 38

v

List of Figures

3.1 proposed architecture for machine learning test case selection 11

3.2 Context encoder . 14

3.3 N-gram . 15

3.4 Skip-gram . 16

3.5 Continous bag of words . 16

3.6 RNN . 19

3.7 LSTM . 20

3.8 CNN . 21

4.1 Information gain . 25

4.2 Anova F-test . 25

4.3 Fisher‘s score . 25

4.4 Variance threshold . 26

4.5 Chi-square test . 26

4.6 Recursive feature elimination . 27

4.7 Forward feature selection . 27

4.8 Backward feature selection . 28

4.9 Clustering . 28

4.10 Logistic regression . 30

4.11 Gaussian Naive Bayes . 30

4.12 Multinomial Naive Bayes . 31

4.13 Gradient Boosting . 31

4.14 K - Nearest Neighbors . 32

4.15 Decision Tree . 32

4.16 Gaussian Process . 33

4.17 Bagging Classifier . 33

4.18 Random Forest . 34

4.19 Neural Network . 34

vi

LIST OF FIGURES LIST OF FIGURES

4.20 Decision Tree . 35

vii

LIST OF FIGURES LIST OF FIGURES

1

Chapter 1

Introduction

1.1 Introduction

Software testing is a quality control activity that concentrates on detecting defects

and then they are removed. During software or web development or at its completion

different test cases are conducted. These tests are essential to assess the effectiveness

of the software. However, it is impossible to completely test any nontrivial module or

system because it suffers from both theoretical and practical perspectives. Theoreti-

cally, it suffers from a halting problem: it’s impossible to write a program that tests

whether every program halts in a finite amount of time. Practically, executing all test

cases involves enormous time and cost. Hence, it’s crucial to create a test suite that

is a subset of test cases for testing. To facilitate a smooth test case selection process,

test case prioritization is employed, in this technique, each test case is assigned a

priority. Priority is set according to some criterion and test cases with the highest

priority are scheduled first which are important from the user’s perspective based on

the frequency of usage, criticality, and probability of failure. This research work is

limited to develop a machine learning-based test case selection strategy for regression

testing. Regression testing retests software that has been changed or extended by

new features during software development.

1.2 Background

Machine learning has paved the way for great inventions, among those areas that have

benefited from machine learning agility are test case selection and prioritization. The

ability to train and test data using machine learning has provided the ability to train

and test, test case data makes it achieve good results over time. Apart from that

their many classifiers to implement each with different performance accuracy.Retecs

2

CHAPTER 1. INTRODUCTION 1.3. PROBLEM STATEMENT

by Spieker, Gotlieb, and Mossige, a new approach for automatically learning test case

selection and prioritizing in Continuous Integration (CI) that leverages reinforcement

learning, is one of the ways that use machine learning. [1]. Based on supervised

machine learning, Lachmann and Schulze proposed a novel technique for test case

prioritizing for human system-level regression testing.[2]. Tonella, Avesani, and Susi

presented case-based ranking, a test case prioritizing technique that leverages user

expertise through a machine learning algorithm. (CBR) [3]. Among other studies

that have been conducted. Thus it is evident that machine learning is the game-

changer in test case selection and prioritization.

1.3 Problem Statement

To explore the efficacy of software test case selection using machine learning and deep

learning algorithms. Thus shedding light to the fact that test case selection can be

achieved using machine learning, not only through manual selction of cases but also

through automation of test case selection.

1.3.1 Previous works

Several algorithms based on different techniques have been proposed for test case

selection and prioritization. These techniques are placed into different categorize

based on the method applied. The different methods are highlighted. Ant colony

optimization is a technique for solving computational problems which can be reduced

to finding good paths through graphs. Solanki, Singh, and Sandeep applied M-ACO

(Modified Ant Colony Optimization) for test case prioritization [4]. Chen and Zhang

adopted ant colony optimization (ACO) to build this prioritized pairwise interaction

test suite (PITS) [5]. Panwar, Pradeep, and Singh suggested a Cuckoo Search (CS)

algorithm followed by Modified Ant Colony Optimization (M-ACO) algorithm to

conclude the test cases in an optimized order in a time-constrained environment [6].

A genetic algorithm is a technique used in optimization and search problems by

relying on biologically inspired operators such as mutation, crossover, and selection.

Nucci, Panichella, and Zaidman proposed a Hypervolume-based Genetic Algorithm,

namely HGA, to solve the Test Case Prioritization problem when using multiple

test coverage criteria [7]. Kumar and Sandip in their paper presented a technique

that is based on Genetic algorithms (GA) for test case prioritization [8]. Machine

learning approaches are methods that employ different machine learning techniques

for test case selection and prioritization. Tonella, Avesani, and Susi In their paper

proposed a test case prioritization technique that takes advantage of user knowledge

3

1.4. CONTRIBUTION OF THIS THESIS CHAPTER 1. INTRODUCTION

through a machine learning algorithm, case-based ranking (CBR) [3]. Moghadam

used model-free reinforcement learning to build a self-adaptive autonomous stress

testing framework [9]. Test suite minimization aims to reduce the size of test suites

by removing redundant test cases. Jeffrey and Gupta proposed a new approach

for test suite reduction. They said that as test suite minimization reduces fault

detection effectiveness increases [10]. The regression testing technique is rerunning

functional and non-functional tests to ensure that previously developed and tested

software still performs after a change. Zengkai and Jianjun implemented Apros, a

test case prioritization tool, and perform an empirical study on two real, non-trivial

Java programs [11].

1.4 Contribution of this thesis

This study is based on a machine learning technique on test case selection.

� We conducted an extensive study for machine learning-based text case selection

which allows choosing the best classifier for test case selection that offers state-

of-the-art performance.

� The approach of this study of using natural language processing combining with

classifier models to fit trained and tested, test case data paves the way to further

study on this approach. With the results discussed the approach could help ease

the process of test case selection.

1.5 Organization of this thesis

This thesis is organized into five chapters. Chapter 1 introduces the study topic.

Chapter 2 reviews past studies through paper citations related to the topic in dis-

cussion. While chapter 3 explains the proposed architecture and expounds more on

data, data cleaning, and textual classification. In chapter 4 results of classifier models

considered are discussed along with model evaluation. The final chapter discusses the

conclusion and future. And the last part of the paper highlights a bibliography of the

cited papers.

4

Chapter 2

Literature Review

Numerous studies have been performed by researchers on test case prioritization and

selection methods. These methods were categorized into several domains according

to the nature of the study conducted by the researchers. In this paper, a couple of

those research findings have been highlighted to shed light on the whole idea on the

topic. The main aim of this is to gear towards a minimal or error-free process of

prioritization and selection.

2.1 Ant colony optimization

M-ACO (Modified Ant Colony Optimization) determines the best test suite prior-

itization solution by altering the phenomenon utilized by natural ants to find and

pick food sources. In their study, Solanki, Singh, and Sandeep proposed to compare

and contrast the suggested m-ACO technique for test case prioritization with several

current meta-heuristic strategies [4].

Suri et al. collaborated on the development of a hybrid test case selection tech-

nique. They offered a new strategy to lower the cost of regression testing by reducing

the test case suite in their article. Their proposed method is based on BCO and GA

ideas. The technique chooses a collection of test cases from the given test suite that

will cover all of the previously found errors in the shortest amount of time[12].

To address the problem of test case prioritizing, Chen and Zhang designed and

developed the Weighted Density Algorithm, a biassed covering array (WDA). To

come up with a better method, they used ant colony optimization (ACO) to create

this prioritized pairwise interaction test suite in their article (PITS). They presented

four concrete test generation algorithms based on Ant System [5].

In their paper, Panwar, Pradeep, and Singh developed a Cuckoo Search (CS)

algorithm followed by a Modified Ant Colony Optimization (M-ACO) algorithm to

5

2.2. GENETIC ALGORITHM CHAPTER 2. LITERATURE REVIEW

finish the test cases in an enhanced order in a time-constrained environment. The

CS algorithm was inspired by some species of cuckoos that exhibit constrained brood

lethargy and lay their eggs in the nests of other host birds[6].

2.2 Genetic Algorithm

In their paper, Nucci, Panichella, and Zaidman discovered that AUC metrics are a

bi-dimensional (simplified) version of the hypervolume metric, which is widely used

in many-objective optimization. In order to solve the Test Case Prioritization prob-

lem while applying multiple test coverage criteria, they proposed a Hypervolume-

based Genetic Algorithm or HGA. Analysis of techniques revealed that HGA is more

cost-effective, improves Test Case Prioritization efficiency, and has a higher selective

pressure when dealing with more than three criteria[7].

In their paper, Kumar and Sandip presented a technique for the priority of test

cases based on genetic algorithms (GA). A genetic algorithm is a generative technique

that takes natural evolution to find an optimal solution. In their study, a unique Ge-

netic algorithm was employed for regression testing, that leverages the statement

coverage technique to rank test cases. The results improve the effectiveness of algo-

rithms by using the Average Percentage of Statement Coverage (APSC) metric. This

prioritization technique produces the best results for prioritizing the test case[8].

In their paper Zhang, Wei and Huisen combined genetic algorithm with the cover-

age with test points to accomplish specific contributions in the field of prioritization

of test cases, in particular for functional tests. First of all, APTC and its APRC C

improvement presented two new test case priorities appraisals. Later, proposed a test

case priority method based on the genetic algorithm which is designed for black-box

test, representation, selection, crossover, and mutation. The experimental proposed

method suggested can achieve results.[13].

In their paper, Yiling, Hao, and Zhang proposed a novel test-case prioritization

approach for software evolution that first simulates real faults in software evolution

using mutation faults on the difference between the early version and the later version,

and then schedules the execution order of the test cases based on their fault-detection

capability. They presented two models that are based upon statistics and likelihood

models for the computation of fault detection. Experimental results show statistical

model surpasses the probability one[14].

6

CHAPTER 2. LITERATURE REVIEW 2.3. MACHINE LEARNING APPROACH

2.3 Machine learning approach

Alexandre, Aurora, and Vergilio emphasised that structural and fault-based criteria

provide general measures for assessing test sets. Thus, in their work, they present

an approach based on machine learning techniques for connecting test results from

different testing techniques. The method divides test data into functional clusters.

Following that, it generates classifiers (rules) relying on the tester’s goals, that can be

used for a range of functions, including test case selection and prioritisation. The pa-

per also presents experimental evaluation results and illustrates such applications[16].

Susi, Avesani, and Tonella In their work developed a test case prioritizing method

called case-based ranking, which uses a machine-learning algorithm to take advantage

of human expertise (CBR). In the form of pairwise test case comparisons, CBR obtains

only relative priority information from the user. In an iterative process, user input is

combined with many prioritization indexes to enhance the test case ordering. As per

preliminary results from such a case study, CBR outperforms earlier approaches[3].

In his research, Moghadam used model-free reinforcement learning to create a self-

adaptive autonomous stress testing framework capable of learning the optimal policy

for stress test case generation without the need for a model of the system under test.

The experiment results indicated that the proposed smart framework can efficiently

and adaptively generate stress test conditions for varied software systems without

access to performance models.[9].

In their work, Spieker, Gotlieb, and Mossige describe Retecs, a new method for

automatically learning test case selection and prioritizing in Continuous Integration

(CI) to shorten the length between code changes and developer feedback on failed

test cases. The Retecs technique employs reinforcement learning. It learns to prior-

itize error-prone test cases higher in a constantly changing environment where new

test cases are created and obsolete test cases are deleted. Results demonstrate that

reinforcement learning enables automatic adaptive test case selection and prioritiza-

tion[1].

Schulze and Lachmann presented a unique supervised machine learning-based tech-

nique for test case prioritization for manual system-level regression testing in their

research. They investigated their approach using two subject systems and measured

the quality of prioritizing using the machine learning algorithm SVM Rank. In con-

trast to random order, the findings showed that the technique significantly improves

the failure detection rate. Additionally, it can outperform a test expert’s test case

order. Also, adopting natural language descriptions improves the rate of finding de-

fects[2].

7

2.4. TEST SUITE MINIMIZATION CHAPTER 2. LITERATURE REVIEW

2.4 Test suite minimization

Jeffrey and Gupta developed a new test suite reduction strategy. They argue that as

test suite minimization decreases, fault detection efficacy increases. As a result, their

approach employs additional coverage information about test cases, resulting in the

retention of a few more test cases in the reduced test suite. The findings demonstrate

that defect identification enhances reduced test suites without placing the size of the

test suite at stake [10].

To enhance the test suite’s defect detection rate, Kumar and Vivek introduced an

integrated test case prioritizing approach. To rank test cases, three major parameters

are considered: program change level (PCL), test suite change level (TCL), and test

suite size (TS). The proposed method is tested on a variety of internal programs to

ensure its accuracy. When contrasted to optimal prioritizing strategies, which always

result in an upper bound of APFD values, the model findings are found to be very

effective [17].

2.5 Regression testing technique

In their study, Salehie, Li, and Moore attempt to prioritize requirements-based regres-

sion test cases. To that aim, system-level testing in industrial environments focuses

on two practical issues, addressing numerous goals in terms of quality, cost, and effort

in a project, and employing non-code metrics in some instances due to the lack of

precise code metrics. This study described Research In Motion’s (RIM) goal-driven

approach to prioritizing requirements-based test cases for these challenges. In order

to identify metrics for prioritization, the Goal-Question-Metric (GQM) approach is

used. Afterward, they reviewed the skills learned from using the goal-driven approach

and conducting experiments, as well as a few research directions for the future[18].

Chauhan and Gupta worked to develop a hybrid approach to priority test cases.

They, therefore, proposed a new hybrid technique. In the present paper clustering,

the test cases and setting clusters first on the basis of the priorities of the requirements

of clusters and the series of selections and priorities of test case levels decreased the

number of test cases to a level that is manageable[19].

Jianjun Zengkai In their work, they proposed a new technique to priority test

priority setting based on a study of the program structure to improve the rate of

severe fault detection both for regression tests and non-regression tests. The approach

is to assess the importance of testing for each module covered by test cases. As a

concept proof, they implement Apros, a tool for prioritizing test cases, to study two

true, non-trivial Java programs. The experimental results show their approach to

8

CHAPTER 2. LITERATURE REVIEW 2.5. REGRESSION TESTING TECHNIQUE

improve the rates of serious failure detection as a feasible technique[11].

Kim and Porter proposed the history-based test case selection and prioritization

technique. This technique selects the test cases that should be conducted for the new

version of the software based on information from earlier testing cycles. This method

selects a subset of a test suite, and the test cases should be chosen based on historical

data; it is commonly referred to as a ”regression test selection approach [21]”

9

Chapter 3

Proposed Methodology

This chapter talks about the proposed machine learning test case selection architec-

ture, it describes the process from data collection, data preprocessing to classifiers

evaluation.

3.1 Proposed Architecture

The figure 3.1 below gives a detailed description of the whole process from collection

of data, data processing, cross validation and finally evaluation of the classifiers.

� Data preparation preceeds this study the dataset for the study contains several

features that can be used to determine the test cases to be executed.

� Data preprocessing involves feature selection through removal of unwanted fea-

tures, not all features contained in the data is considered in test case selection.

Thus redundant features are removed. Only five categorical features and one

textual feature remain afte the process.

� Preprocessed data further undergoes more processing through natural language

processing(NLP). NLP encompasses two processes text preprocessing and text

feature generation.

� Machine learning proceeds NLP it encompasses two main processes, text feature

selection, and cross-validation which is further divided into three more processes.

Model generation, hyperparameter optimization, and model evaluation.

3.2 Dataset Preparation

For this study data related to test cases and Natural Language test case description

is considered as an input to classification learning models to predict the selection

10

CHAPTER 3. PROPOSED METHODOLOGY 3.2. DATASET PREPARATION

F
ig

u
re

3.
1
:

p
ro

p
o
se

d
a
rc

h
it

ec
tu

re
fo

r
m

a
ch

in
e

le
a
rn

in
g

te
st

ca
se

se
le

ct
io

n

11

3.3. NATURAL LANGUAGE PROCESSING CHAPTER 3. PROPOSED METHODOLOGY

of test cases. For this proof of concept authorization, microservice test cases across

four release cycles are considered as the test Data. This microservice is based on

the Oauth2 standard which is widely used in the industry for authorization across

systems/microservices.

3.2.1 Removal of unwanted features

The dataset contains several features to be considered in test case selection. The

features include:

i Unique Identifier of Records.

ii Release Identification number.

iii Type of Test Case.

iv TestCaseTitle

v TestCaseDescription.

vi Error-Prone Test Cases.

vii Automation Status.

viii Any Defect

ix Bug ID.

x Bug Description.

xi GIT Commit Message

xii Target: binary classification of test

case selection.

But not all these features are considered in the study, some of the features present

in the dataset are redundant for the process of test case selection. These features are

dropped during feature selection. Upon removal of unwanted features the dataset will

consist of one textual feature TestCaseTitle and five categorical features:

i Release Identification number.

ii TestCaseDescription.

iii Error-Prone Test Cases.

iv Automation Status.

v Any Defect

All of this retained features are related to the selection of test cases i.e. ’Target’

variable. This features will be utilized for training classifier models.

3.3 Natural Language Processing

Natural language processing (NLP) refers to computer systems that analyze, attempt

to understand or produce one or more human languages [24]. NLP consists of two

main processes, text preprocessing, and text feature generation.

12

CHAPTER 3. PROPOSED METHODOLOGY 3.3. NATURAL LANGUAGE PROCESSING

3.3.1 Text Preprocessing

This process involves conversion of the textual feature (TestCaseTitle) into a sparse

matrix of numerical features to create a corpus. The following NLP-based prepro-

cessing tasks are carried out to create a corpus that is compatible with classifier

models.

i Remove unwanted words: Remove irrelevant characters and words such as special

characters and numbers to get a clean text for further processing.

ii Uppercase to lowercase transformation: Transform all uppercase letters to lower-

case because upper and lower case letters have different ASCII codes.

iii Remove stopwords: Stopwords are usually the most common words in a language

and are irrelevant in predicting the response variables.

iv Stemming words: Stemming is the process of reducing words to their stem, base,

or root form. It is used to reduce the dimensions of Bag of Words features. Bag of

Words (BoW) describes the occurrence of words within a document which involves

a vocabulary of known words and a measure of the presence of known words.

3.3.2 Text Feature Generation

This process mainly involves the generation of statistical text features, which are

discussed below.

3.3.2.1 Context encoder

Based on some context words, the algorithm attempts to predict the target word

between them. This is achieved by first computing the sum of the embeddings of the

context words by selecting the appropriate rows from W0.

W0,W1,∈ RN×d (3.1)

t ∈ RK+1 (3.2)

13

3.3. NATURAL LANGUAGE PROCESSING CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.2: Context encoder

3.3.2.2 N-gram

N-gram modeling is used to identify features and analyze them, It is a contiguous

sequence of items with length n. N-gram figure 3.3, shows words that are common

for the test case selection process, whether appearing alone as 1-gram, 2-gram up to

n-gram. This narrows down the understanding on how test cases are selected and

which are the keywords in the process.

14

CHAPTER 3. PROPOSED METHODOLOGY 3.3. NATURAL LANGUAGE PROCESSING

Figure 3.3: N-gram

3.3.2.3 Skip-gram model

Skip-gram uses word representations to predict words in a sentence, given a sequence

of training words the objective of the Skip-gram model is to maximize the average

log probability.

1

T

T∑
t=1

∑
−c≥j≥c,j6=0

logp (wt+j | wt) (3.3)

[26]. In figure 3.4 summation of weights of the collection of words in a test case

dataset show how the words play a bigger role in how test are selected.

15

3.3. NATURAL LANGUAGE PROCESSING CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.4: Skip-gram

3.3.2.4 Continous bag of words

A continuous bag of words is to use embeddings to train a neural network where the

context is represented by multiple words for given target words [27]. In this approach,

context words are used as inputs of a neural network and try to predict the target

word. After training, the input weights are the final word embeddings in figure 3.5.

Figure 3.5: Continous bag of words

16

CHAPTER 3. PROPOSED METHODOLOGY 3.4. MACHINE LEARNING

3.4 Machine Learning

Machine learning is an evolving branch of computational algorithms that are designed

to emulate human intelligence by learning from the surrounding environment [9]. ML

has to main processes text feature selection and cross-validation.

3.4.1 Clustering

Clustering is dividing data into many groups (clusters) such that data in the same

clusters are more similar to other data in the same clusters than those in other clusters.

The aim is to segregate clusters with similar traits and assign them into clusters.

3.4.2 Cross Validation

Cross-validation is a resampling procedure used to evaluate machine learning models

on a limited data sample. Cross-validation is divided into three parts training data

60%, validation data 20%, and testing data 20%.

3.4.3 Hyperparameter optimazation

Hyperparameters are all the parameters that can be arbitrarily set before training

data.Tuning of these hyperparameters through optimization can lead to finding the

right combination of their values which can help find either the minimum (eg. loss)

or the maximum (eg. accuracy) of a function.

3.4.4 Models(supervised collection)

3.4.4.1 Logistic Regression

This is a statistical model that uses a logistic function to model a binary dependent

variable. It is used to determine if an independent variable affects a binary dependent

variable. Has two potential outcomes.

3.4.4.2 Gaussian Naive Bayes

It conforms to a Gaussian normal distribution and deals with continuous data where

continuous values related to each class are distributed according to Gaussian distri-

bution.

3.4.4.3 Multinomial Naive Bayes

it is suitable for classification with discrete features. With a multinomial model,

samples represent the frequencies with which certain events have been generated by

17

3.4. MACHINE LEARNING CHAPTER 3. PROPOSED METHODOLOGY

a multinomial (p1,, pn) where pi is the probability that event i occurs.

3.4.4.4 Gradient Boosting

Gradient boosting is a machine learning technique for regression and classification

problems that produce a prediction model in the form of a set of weak prediction

models.

3.4.4.5 K-Nearest Neighbors

KNN is a non-parametric classification that uses both classification and regression to

solve problems where the output depends if it is used for classification or regression.

3.4.4.6 Decision Tree

Supervised Machine Learning works by splitting data according to some parameter.

It uses a tree-like model where the branches to conclusions about the item’s target

value are represented in the leaves.

it consists of :

i Nodes: Test for the value of a certain attribute.

ii Branch: Correspond to the outcome of a test and connect to the next node or

leaf.

iii Leaf nodes: Terminal nodes that predict the outcome represent class labels or

class distribution.

3.4.4.7 Gaussian Process

It is a stochastic process that follows Gaussian probability distribution and can be

used for non-parametric machine learning algorithms for classification and regression.

3.4.4.8 Bagging Classifier

Is a statistical and regression classification method that works through redistribution

of the training set randomly.

3.4.4.9 Random forest

The random forest is a learning method for classification and regression. It employs

randomness, works by combing individual decision trees to form a forest, this combi-

nation is more accurate than an individual tree.

18

CHAPTER 3. PROPOSED METHODOLOGY 3.4. MACHINE LEARNING

3.4.4.10 Neural Network

A neural network works like a human brain, with its algorithms it tries to identify

the relationship in the dataset using artificial neurons.

3.4.5 Semi-supervised classification

This is machine learning an approach that combines a small amount of labeled data

with a large amount of unlabeled data during training.

3.4.6 Recurrent Neural Network

Type of neural networks where connections between nodes form a directed graph

along a temporal sequence.

ht = σh(Whxt + Uhht−1 + bh) (3.4)

yt = σy(Wyht + by) (3.5)

Figure 3.6: RNN

3.4.6.1 Long short term memory

This is a deep learning type of neural network with ability to learn the order of

dependence in sequence prediction problems.The first step in constructing an LSTM

network is identifying information that is redundant and will be dropped from the

cell in that step. This process is decided by the sigmoid function.

ft = σ(Wf [ht−1, Xt] + bf) (3.6)

19

3.4. MACHINE LEARNING CHAPTER 3. PROPOSED METHODOLOGY

it = σ(Wi[ht−1, Xt] + bi) (3.7)

Nt = tanh(Wn[ht−1, Xt] + bn) (3.8)

Ct = Ct−1ft +Ntit (3.9)

Figure 3.7: LSTM

3.4.6.2 Convolution Neural Network

A type of neural network that contains a layer of nodes, containing an input layer,

hidden layers, and an output layer. Each node connects to another. It works through

node activation, for a node to be activated there is a threshold to has to be surpassed

if this achieved data is sent and anything below that threshold means no passing of

data.

20

CHAPTER 3. PROPOSED METHODOLOGY 3.4. MACHINE LEARNING

Figure 3.8: CNN

3.4.7 Text Feature Selection

Feature selection is the process of identifying and choosing a subset of variables that

are most relevant to the target variable. This technique is subdivided into different

categories

3.4.8 Filter based

These methods use statistical techniques to evaluate the relationship between each

input variable and the target variable, evalution is based on scores are used as the

basis to choose those input variables that will be used in the model.

3.4.8.1 Information Gain

It is a feature selection technique that deals with entropy reduction from the dataset

through transformation.

3.4.8.2 ANOVA f-test

ANOVA is a statistical approach to feature selection, which deals with comparison

of two or means of samples of data to deduce if they are of the same distribution or

not. In this approach features nor related to target variable are omitted.

3.4.8.3 Fisher’s Score

Is a statistical form of text feature selection which deals with maximum likelihood

occurence of text fetures.

21

3.4. MACHINE LEARNING CHAPTER 3. PROPOSED METHODOLOGY

3.4.8.4 Chi-Square Test

This type of feature selection deals with categorical features in a dataset. Desired

results are obtained through the best Chi-square scores.

3.4.8.5 Variance Threshold

In this type of technique, a threshold is set and if the variance of the features does

not meet the threshold they are omitted among other removed features are those with

zero variance.

3.4.9 Wrapper Methods

Deals with feature subset of features use machine learning algorithm to search for the

best performing subset.

3.4.9.1 Recursive Feature Elimination

(RFE) is a feature selection method based on the strength of the features, features

are selected based on their strength weakest features are omitted until results are

obtained.

3.4.9.2 Forward Feature Selection

This method works exactly opposite to the Forward Feature Selection method. Here,

we start with all the features available and build a model. Next, we the variable from

the model which gives the best evaluation measure value. This process is continued

until the preset criterion is achieved.

3.4.9.3 Backward Feature Selection

This method is the opposite of the Forward Feature Selection, the model is built and

it is selected based on performance, it’s a continuous process. .

3.4.10 Model Evaluation

Finally, the predicted output results of the classifiers are put on a performance scale.

This is achieved using a classification report outlining the following performance mea-

sures.

Recall

This is the fraction of relevant instances that were retrieved. It is calculated by

dividing the total number of true positives by the sum of true positives and false

negatives.

22

CHAPTER 3. PROPOSED METHODOLOGY 3.4. MACHINE LEARNING

Recall =
TP

TP + FN
(3.10)

Precision

This is the fraction of relevant instances among the retrieved instances. It is calcu-

lated by dividing the total number of true positives by the sum of true positives and

false positives.

Precision =
TP

TP + FP
(3.11)

F-score

This is a measure of a test’s accuracy, calculated from the precision and recall of

the test.

Fscore =
2× Precision×Recall
Precision+Recall

(3.12)

Confusion matrix

Which is formed from the four outcomes produced as a result of binary classification,

predicts all data instances of a test dataset as either positive or negative. This

prediction) produces four outcomes which are defined as follows.

i True positive (TP): correct positive

prediction

ii False positive (FP): incorrect positive

prediction

iii True negative (TN): correct negative

prediction

iv False negative (FN): incorrect nega-

tive prediction

A confusion matrix for binary classification as demonstrated is a two by two table

constructed by counting of the number of the four outcomes of a binary classifier

which are denoted as TP, FP, TN, and FN. The table 3.1 illustrates the confusion

matrix.

Predicted

Positive Negative

Positive TP(of TPs) FN(of FNs)

Observed

Negative FP(of FPs) TN(of TNs)

Table 3.1: Confusion Matrix

23

Chapter 4

Results and Discussions

This chapter describes and discusses the results obtained from the study, the results

from various parts of the study are presented in this chapter through visualization and

in table form. The results discussed here are those of text feature selection, confusion

matrix, and clustering. The last part of the chapter highlights the performance of

the classifier models.

4.1 Results

This section puts into categories and discusses the various results collected from the

study. Text feature selection and the confusion matrix are discussed in different

subsections of this section.

4.1.1 Text feature selection

Results of the two methods, filter-based and wrapper are visualized graphically here.

4.1.1.1 Fliter based method

Filter-based presents different categories results, the graphs used to visualize the

results show how cases are selected based on filters of the most common words that

are chosen in the test case selection. From the results, it can be noted that words

like token, verifi, and client api play a vital role in the selection of test cases due

to their frequency as presented in the results.

Based on fisher‘s score where more than one text is used in the selection, we see

a combination of text verifi token shows a higher frequency of features selected

compared to the phrase with more than two words thus we can conclude that these

two words play a bigger role in test case selection.

24

CHAPTER 4. RESULTS AND DISCUSSIONS 4.1. RESULTS

Figure 4.1: Information gain

Figure 4.2: Anova F-test

Figure 4.3: Fisher‘s score

25

4.1. RESULTS CHAPTER 4. RESULTS AND DISCUSSIONS

Figure 4.4: Variance threshold

Figure 4.5: Chi-square test

4.1.1.2 Wrapper methods

On the other hand, wrapper methods present a different approach in text selection

features, it concentrates on the number of features and performance. Where the

best performance is close to 0.9 and the lowest is around 0.75. Recursive feature

elimination unlike other wrapper methods presents a graph of cross-validation score

of the number of selected features against the number of selected features and exhibits

a stationary time series-like distribution, with the highest cross-validation score of just

above 0.8 and lowest at 0.77.

26

CHAPTER 4. RESULTS AND DISCUSSIONS 4.1. RESULTS

Figure 4.6: Recursive feature elimination

Figure 4.7: Forward feature selection

27

4.1. RESULTS CHAPTER 4. RESULTS AND DISCUSSIONS

Figure 4.8: Backward feature selection

4.1.2 Clustering

Creating clusters improves the performance metrics of the test data, this means it

helps improve accuracy from the figure 4.9 below, we can see the changes in the

metrics, an increase in all metrics for every new cluster.

Figure 4.9: Clustering

4.1.3 Confusion matrix results for the classifiers

The confusion matrix of 10 classifier models results is present in this section as seaborn

heatmaps. The heatmaps show a two-by-two table of binary classification. There are

two possible predictions YES and NO. since we are predicting test selection. YES

28

CHAPTER 4. RESULTS AND DISCUSSIONS 4.1. RESULTS

means the test was selected, and NO means the test was not selected. The classifier

made a total of 133 predictions. Meaning 133 cases were being considered. Different

classifiers have different prediction results. The prediction is interpreted as below:

� TP, are selected cases which were predicted YES and it’s true they were

� TN, are cases that were not selected and was predicted NO, which is a true

prediction because they were not selected.

� FP, are cases that were predicted YES but in reality they were not selected.

� FN, are cases that were predicted NO but in reality they were selected cases

With the information above, the best-performing classifier model is the Decision tree.

Out of 133 predictions, 98 were true positives, which means it predicted that these

cases were selected and it’s true they were selected. 34 were true negatives which

means the classifier predicted the cases were not selected and it’s true the cases were

not selected. 0 false positives and only 1 false negative, a situation where it predicted

case not to be selected but it was selected.

On the other hand poor-performing classifier is Gaussian Näıve Bayes. Out of

133 predictions, 70 (the lowest of all the classifiers considered for the study) were

true positives, which means it predicted that these cases were selected and it’s true

they were selected. 34 were true negatives which means the classifier predicted the

cases were not selected and it’s true the cases were not selected. 0 false positives and

29 false negatives (the highest of all the classifiers considered for the study), which

means it predicted that the cases were not selected but it was selected.

29

4.1. RESULTS CHAPTER 4. RESULTS AND DISCUSSIONS

Figure 4.10: Logistic regression

Figure 4.11: Gaussian Naive Bayes

30

CHAPTER 4. RESULTS AND DISCUSSIONS 4.1. RESULTS

Figure 4.12: Multinomial Naive Bayes

Figure 4.13: Gradient Boosting

31

4.1. RESULTS CHAPTER 4. RESULTS AND DISCUSSIONS

Figure 4.14: K - Nearest Neighbors

Figure 4.15: Decision Tree

32

CHAPTER 4. RESULTS AND DISCUSSIONS 4.1. RESULTS

Figure 4.16: Gaussian Process

Figure 4.17: Bagging Classifier

33

4.1. RESULTS CHAPTER 4. RESULTS AND DISCUSSIONS

Figure 4.18: Random Forest

Figure 4.19: Neural Network

34

CHAPTER 4. RESULTS AND DISCUSSIONS 4.2. MODEL PERFORMANCE

Figure 4.20: Decision Tree

4.2 Model performance

This section discusses the different performance metrics used to appraise the classifiers

considered in this study. Among the metrics considered are classification reports and

how classifiers perform in text classification.

Table 4.1 shows the performance of classifiers in terms of text classification. Gaus-

sian Näıve Bayes performance across text classification metrics puts it as the best

model compared to other models while Gradient Boosting is the underperforming

model across all the metrics compared to other models.

35

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS AND DISCUSSIONS

Models Count

Vectors

WordLevel

TF-IDF
N-Gram CharLevel

Logistic Regression 0.815 0.780 0.780 0.805

Multinomial NB 0.840 0.810 0.835 0.815

Bagging classifier 0.765 0.765

Neural network 0.765

Gaussian NB 0.861 0.849 0.759 0.855

Gradient boosting 0.783 0.746 0.765 0.765

Table 4.1: Text classification

Performance metrics help bring more understanding on the performance of each

classifier, a classification report was generated for analysis showing the weighted mean

of precision, recall, and f-score, and the average of these three metrics gives the ac-

curacy of the classifiers which evaluates their effectiveness. Kappa on the other hand

compares an observed accuracy with an expected Accuracy. This is done for both su-

pervised and semi supervised classification. For supervised classification Multinomial

Naive Bayes is by far is the best classifier with an accuracy of 0.855 and a kappa

of 0.643. on the other hand Random Forest shows rather low metrics compared to

other classifiers, with an accuracy of 0.789 and a kappa of 0.000.

Classifier Accuracy Precision Recall F1 Kappa

Nearest Neighbors 0.822 0.825 0.822 0.823 0.474

LogisticRegression 0.807 0.813 0.807 0.810 0.438

Decision Tree 0.825 0.868 0.825 0.836 0.558

Random Forest 0.789 0.622 0.789 0.696 0.000

MLP 0.807 0.815 0.807 0.810 0.444

AdaBoost 0.819 0.833 0.819 0.825 0.494

GaussianNB 0.831 0.859 0.831 0.840 0.553

LinearDiscriminant 0.807 0.820 0.807 0.812 0.454

QuadraticDiscriminant 0.668 0.725 0.668 0.690 0.162

GradientBoost 0.801 0.793 0.801 0.796 0.376

MultinomialNB 0.855 0.904 0.855 0.865 0.643

SGD 0.798 0.797 0.798 0.797 0.390

LGBM 0.819 0.827 0.819 0.822 0.478

Gradient Process 0.804 0.803 0.804 0.803 0.408

SVM 1 0.816 0.815 0.816 0.815 0.444

SVM2 0.795 0.777 0.795 0.783 0.320

Table 4.2: Supervised classifier performance analysis

For semi supervised learning, Multinomial Naive Bayes is by far is the best

36

CHAPTER 4. RESULTS AND DISCUSSIONS 4.2. MODEL PERFORMANCE

classifier with an accuracy of 0.872 and a kappa of 0.706. on the other hand

Random Forest shows rather low metrics compared to other classifiers, with an

accuracy of 0.745 and a kappa of 0.000. Compared to supervised classification

there is a drop in metrics, which helps to effectiveness of supervised classification.

Classifier Accuracy Precision Recall F1 Kappa

Nearest Neighbors 0.827 0.825 0.827 0.826 0.539

LogisticRegression 0.790 0.784 0.790 0.786 0.428

Decision Tree 0.854 0.881 0.854 0.860 0.657

Random Forest 0.745 0.555 0.745 0.636 0.000

MLP 0.790 0.777 0.790 0.780 0.399

AdaBoost 0.836 0.840 0.836 0.838 0.578

GaussianNB 0.854 0.874 0.854 0.859 0.649

LinearDiscriminant 0.800 0.800 0.800 0.800 0.472

QuadraticDiscriminant 0.681 0.685 0.681 0.683 0.171

GradientBoost 0.790 0.775 0.790 0.776 0.383

MultinomialNB 0.872 0.906 0.872 0.878 0.706

SGD 0.809 0.806 0.809 0.807 0.490

LGBM 0.827 0.829 0.827 0.828 0.550

Gradient Process 0.781 0.772 0.781 0.776 0.396

SVM 1 0.800 0.791 0.800 0.794 0.446

SVM 2 0.790 0.773 0.790 0.766 0.349

Table 4.3: Semi Supervised classifier performance analysis

In another performance appraisal, we take a look at the train, test scores of the

classifiers. And further, look at semi supervised metrics of both scores. This means

helps narrow down classifier performance so that an excellent classifier is singled out

after all parameters have been considered. In terms of train score, some classifiers

like Logistic regression and Gradient boost scored a 0.9 which was the highest score,

while Random forest scored 0.768 the lowest score. In test score Multinomial näıve

Bayes outperformed the rest of the classifiers with a score of 0.855. Random forest

registered the lowest score of 0.785. on the other hand, semi supervised metrics of

both scores puts Multinomial näıve Bayes as the best classifier with the scores of

0.853 and 0.872 for train and test scores respectively. The Random forest has the

lowest of the same metrics, 0.785 and 0.745 for training and testing respectively

which makes it the lowest overall performing classifier.

37

4.2. MODEL PERFORMANCE CHAPTER 4. RESULTS AND DISCUSSIONS

classifier
train

score

test

score
semi supervised

train score

semi supervised

test score

Nearest Neighbors 0.897 0.822 0.866 0.827

LogisticRegression 0.900 0.807 0.866 0.790

Decision Tree 0.864 0.825 0.842 0.854

Random Forest 0.768 0.789 0.785 0.745

MLP 0.900 0.807 0.866 0.790

AdaBoost 0.900 0.819 0.864 0.836

GaussianNB 0.882 0.831 0.857 0.854

LinearDiscriminant 0.900 0.807 0.864 0.800

QuadraticDiscriminant 0.870 0.668 0.787 0.681

GradientBoost 0.900 0.801 0.859 0.790

MultinomialNB 0.858 0.855 0.853 0.872

SGD 0.879 0.798 0.855 0.809

LGBM 0.894 0.819 0.862 0.827

Gradient Process 0.891 0.804 0.861 0.781

SVM 1 0.891 0.816 0.864 0.800

SVM 2 0.900 0.795 0.859 0.790

Table 4.4: Comparison classifier performance analysis

Table 4.5 is a classification report of a Deep learning showing its performance of

two classifiers CNN and DNN with accuracy of 0.74 nd 0.77 respectively, which puts

Deep Neural Network as best performing classifier.

Classifier Precision Recall F1 Accuracy
Train

score

Test

score

Convolution

Neural Network
0.69 0.74 0.66 0.74 0.79 0.76

Deep Neural

Network
0.75 0.77 0.75 0.77 0.86 0.81

Table 4.5: Deep Learning

38

Chapter 5

Conclusion and Future works

Regression testing is conducted after updating any software components. This re-

search demonstrates that machine learning-based approach can reduce the bias and

manual labour of domain expert for software regression testing. Prediction perfor-

mance could be improved if large amount ofd training of data can be increased by

adding more releases data. In future, we would like to explore novel ensemble based

feature selection strategy for text feature selection and adapted deep learning algo-

rithms for imbalance dataset available for test case selection.

39

Bibliography

[1] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement learning for automatic

test case prioritization and selection in continuous integration,” in Proceedings of the 26th

ACM SIGSOFT International Symposium on Software Testing and Analysis, 2017, pp. 12–22.

[2] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and I. Schaefer, “System-level test case prior-

itization using machine learning,” in 2016 15th IEEE International Conference on Machine

Learning and Applications (ICMLA), IEEE, 2016, pp. 361–368.

[3] P. Tonella, P. Avesani, and A. Susi, “Using the case-based ranking methodology for test case

prioritization,” in 2006 22nd IEEE International Conference on Software Maintenance, 2006,

pp. 123–133. doi: 10.1109/ICSM.2006.74.

[4] K. Solanki, Y. Singh, and S. Dalal, “Experimental analysis of m-aco technique for regression

testing,” Indian Journal of Science and Technology, vol. 9, no. 30, pp. 1–7, 2016.

[5] X. Chen, Q. Gu, X. Zhang, and D. Chen, “Building prioritized pairwise interaction test suites

with ant colony optimization,” in 2009 Ninth International Conference on Quality Software,

2009, pp. 347–352. doi: 10.1109/QSIC.2009.52.

[6] D. Panwar, P. Tomar, and V. Singh, “Hybridization of cuckoo-aco algorithm for test case

prioritization,” Journal of Statistics and Management Systems, vol. 21, no. 4, pp. 539–546,

2018.

[7] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “A test case prioritization genetic

algorithm guided by the hypervolume indicator,” IEEE Transactions on Software Engineering,

vol. 46, no. 6, pp. 674–696, 2020. doi: 10.1109/TSE.2018.2868082.

[8] D. K. Yadav and S. Dutta, “Regression test case prioritization technique using genetic algo-

rithm,” in Advances in computational intelligence, Springer, 2017, pp. 133–140.

[9] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper, “Machine learning to

guide performance testing: An autonomous test framework,” in 2019 IEEE International Con-

ference on Software Testing, Verification and Validation Workshops (ICSTW), IEEE, 2019,

pp. 164–167.

[10] D. Jeffrey and N. Gupta, “Improving fault detection capability by selectively retaining test

cases during test suite reduction,” IEEE Transactions on Software Engineering, vol. 33, no. 2,

pp. 108–123, 2007. doi: 10.1109/TSE.2007.18.

40

https://doi.org/10.1109/ICSM.2006.74
https://doi.org/10.1109/QSIC.2009.52
https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1109/TSE.2007.18

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Z. Ma and J. Zhao, “Test case prioritization based on analysis of program structure,” in 2008

15th Asia-Pacific Software Engineering Conference, 2008, pp. 471–478. doi: 10.1109/APSEC.

2008.63.

[12] B. Suri, I. Mangal, and V. Srivastava, “Regression test suite reduction using an hybrid tech-

nique based on bco and genetic algorithm,” Special Issue of International Journal of Computer

Science & Informatics (IJCSI), ISSN (PRINT), pp. 2231–5292, 2011.

[13] W. Zhang, B. Wei, and H. Du, “Test case prioritization based on genetic algorithm and test-

points coverage,” in International Conference on Algorithms and Architectures for Parallel

Processing, Springer, 2014, pp. 644–654.

[14] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in software evolution,”

in 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),

2015, pp. 46–57. doi: 10.1109/ISSRE.2015.7381798.

[15] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “A test case prioritization genetic

algorithm guided by the hypervolume indicator,” IEEE Transactions on Software Engineering,

vol. 46, no. 6, pp. 674–696, 2018.

[16] A. R. Lenz, A. Pozo, and S. R. Vergilio, “Linking software testing results with a machine learn-

ing approach,” Engineering Applications of Artificial Intelligence, vol. 26, no. 5-6, pp. 1631–

1640, 2013.

[17] A. K. Pandey and V. Shrivastava, “Early fault detection model using integrated and cost-

effective test case prioritization,” International Journal of System Assurance Engineering and

Management, vol. 2, no. 1, pp. 41–47, 2011.

[18] M. Salehie, S. Li, L. Tahvildari, R. Dara, S. Li, and M. Moore, “Prioritizing requirements-based

regression test cases: A goal-driven practice,” in 2011 15th European Conference on Software

Maintenance and Reengineering, 2011, pp. 329–332. doi: 10.1109/CSMR.2011.46.

[19] V. Gupta and D. Chauhan, “Hybrid regression testing technique: A multi layered approach,”

in 2011 Annual IEEE India Conference, 2011, pp. 1–5. doi: 10.1109/INDCON.2011.6139363.

[20] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases for regression testing,” IEEE

Trans. Softw. Eng., vol. 27, no. 10, pp. 929–948, Oct. 2001. doi: 10.1109/32.962562. [Online].

Available: https://doi.org/10.1109/32.962562.

[21] J.-M. Kim and A. Porter, “A history-based test prioritization technique for regression testing

in resource constrained environments,” in Proceedings of the 24th international conference on

software engineering, 2002, pp. 119–129.

[22] C. Indumathi and K. Selvamani, “Test cases prioritization using open dependency structure

algorithm,” Procedia Computer Science, vol. 48, pp. 250–255, 2015.

[23] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization of new and regression

test cases,” in 2005 International Symposium on Empirical Software Engineering, 2005., 2005,

10 pp.-. doi: 10.1109/ISESE.2005.1541815.

[24] J. F. Allen, “Natural language processing,” in Encyclopedia of computer science, 2003, pp. 1218–

1222.

41

https://doi.org/10.1109/APSEC.2008.63
https://doi.org/10.1109/APSEC.2008.63
https://doi.org/10.1109/ISSRE.2015.7381798
https://doi.org/10.1109/CSMR.2011.46
https://doi.org/10.1109/INDCON.2011.6139363
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/ISESE.2005.1541815

BIBLIOGRAPHY BIBLIOGRAPHY

[25] O. Melamud, J. Goldberger, and I. Dagan, “Context2vec: Learning generic context embedding

with bidirectional lstm,” in Proceedings of the 20th SIGNLL conference on computational

natural language learning, 2016, pp. 51–61.

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” in Advances in neural information processing

systems, 2013, pp. 3111–3119.

[27] D. Qiu, H. Jiang, and S. Chen, “Fuzzy information retrieval based on continuous bag-of-words

model,” Symmetry, vol. 12, no. 2, 2020. doi: 10.3390/sym12020225. [Online]. Available:

https://www.mdpi.com/2073-8994/12/2/225.

42

https://doi.org/10.3390/sym12020225
https://www.mdpi.com/2073-8994/12/2/225

	Introduction
	Introduction
	Background
	Problem Statement
	Previous works

	Contribution of this thesis
	Organization of this thesis

	Literature Review
	Ant colony optimization
	Genetic Algorithm
	Machine learning approach
	Test suite minimization
	Regression testing technique

	Proposed Methodology
	Proposed Architecture
	Dataset Preparation
	Removal of unwanted features

	Natural Language Processing
	Text Preprocessing
	Text Feature Generation
	Context encoder
	N-gram
	Skip-gram model
	Continous bag of words

	Machine Learning
	Clustering
	Cross Validation
	Hyperparameter optimazation
	Models(supervised collection)
	Logistic Regression
	Gaussian Naive Bayes
	Multinomial Naive Bayes
	Gradient Boosting
	K-Nearest Neighbors
	Decision Tree
	Gaussian Process
	Bagging Classifier
	Random forest
	Neural Network

	Semi-supervised classification
	Recurrent Neural Network
	Long short term memory
	Convolution Neural Network

	Text Feature Selection
	Filter based
	Information Gain
	ANOVA f-test
	Fisher's Score
	Chi-Square Test
	Variance Threshold

	Wrapper Methods
	Recursive Feature Elimination
	Forward Feature Selection
	Backward Feature Selection

	Model Evaluation

	Results and Discussions
	Results
	Text feature selection
	Fliter based method
	Wrapper methods

	Clustering
	Confusion matrix results for the classifiers

	Model performance

	Conclusion and Future works
	Bibliography

