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Abstract 

 

INTRODUCTION: Subjective memory decline (SMD), defined as a self-perceived change in 

memory function without objective impairment, has been identified as a potential early marker of 

cognitive decline and other Alzheimer’s disease (AD) related outcomes. A standard approach to 

SMD assessment includes two facets: memory complaints and memory concerns. We previously 

developed a four-facet model of SMD which encompassed the two standard facets, plus two 

additional facets: memory compensation and memory self-efficacy. In this study, we assembled a 

distribution of memory aging trajectories, classified into separate change-related classes, and 

tested SMD facets, sex and vascular health for class discrimination. We then examined the 

potential roles of SMD and additional AD risk factors (sex, APOE) in moderating pulse pressure 

and memory trajectory predictions.    

METHODS: The accelerated longitudinal design featured individualized memory trajectories 

across a 40-year band (55-95 years) of non-demented aging (n = 580; M age at baseline = 70.2 

years; 65% female) from the Victoria Longitudinal Study. We established two research goals, 

each with two parts, to examine prediction patterns for memory trajectories. For our first 

research goal, we used latent class growth analyses (LCGA) to identify distinct classes (based on 

an algorithm of level and slope) of episodic memory trajectories. Then, the four SMD facets, sex, 

and pulse pressure were tested as predictors of class membership. For our second research goal, 

we used a conditional latent growth model (CLGM) to test the independent effect of pulse 

pressure on memory change. In parallel, we utilized LCGA to identify latent classes for all four 

SMD facets. The SMD facet class membership results (for all four facets) were used as 

stratification variables in order to test SMD moderation of pulse pressure predictions on memory 
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trajectories. We then examined two-way interactions by further stratifying the analyses by: (1) 

SMD facet class and sex, and (2) SMD facet class and APOE genetic risk.  

RESULTS: First, the LCGA produced four distinguishable and interpretable classes of memory 

trajectories. The classes were characterized as: (1) stable memory aging (SMA), (2) typical 

memory aging (TMA), (3) slowly declining memory aging (SDMA) and (4) rapidly declining 

memory aging (RDMA). Being male, having more memory concerns and higher pulse pressure 

was predictive of membership to at least one of the declining classes when using the SMA class 

as a benchmark. For the second research goal, after first determining that higher pulse pressure 

predicted lower memory level and steeper decline, our subsequent results revealed that memory 

complaints and memory concerns class membership significantly moderated these predictions. 

For females only, we observed significant sex and SMD class moderation for all four facets. For 

ε4- individuals only, we observed significant APOE and memory complaints class membership 

moderation as well as APOE and memory self-efficacy class membership moderation.  

DISCUSSION: For the prediction of memory trajectory class membership, memory concerns 

was the only SMD facet predicting membership to the RDMA (lowest) as compared to the SMA 

(highest) class. Sex also differentiated the SMA class from more rapidly declining classes (e.g., 

RDMA). Pulse pressure predicted membership to the SDMA class as compared to the SMA 

class. For the moderated pulse pressure predictions of individualized memory trajectories, the 

two standard SMD facets demonstrated significant moderation. When stratified by sex groups, 

class membership for all four SMD facets demonstrated moderation selectively for females. 

When stratified by APOE genetic risk, membership to memory complaints and memory self-

efficacy classes significantly moderated pulse pressure predictions of memory trajectories for ε4- 

individuals. These findings elucidate SMD prediction patterns in a number of at-risk groups, thus 
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identifying potential precision targets prior to the onset of pathological and clinical 

neurodegeneration associated with exacerbated memory decline.  

Keywords: Subjective memory decline, pulse pressure, vascular health, sex, APOE genetic risk, 

Victoria Longitudinal Study 
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Introduction 

Subjective cognitive decline (SCD) is described as a self-perceived aging-related decline 

in cognitive function without accompanying objective impairment as observed with validated 

measures (Jessen et al., 2014a). As research in this area has continued to grow immensely in 

recent decades, more evidence has emerged in support of SCD presenting as an early indicator of 

non-normal changes in cognition. Indeed, research has shown that subjective complaints are 

associated with increased risk of progression to a clinical status of Mild Cognitive Impairment 

(MCI), Alzheimer’s disease (AD) (Jessen et al., 2010), and incident decline in objective 

cognitive performance (Dufouil, Fuhrer & Alperovitch, 2005; Hohman, Beason-Held, Lamar & 

Resnick, 2011). 

Nested within SCD exists a more precise perception of change in memory function. 

Coined as subjective memory decline (SMD), this perception has been shown to be specifically 

associated with an added risk of AD dementia (Jessen et al., 2014a). Although the SMD 

literature remains less developed than that of the neighbouring SCD area, the former concept 

may hold similar promise as an early signal of memory-related decline in performance, 

especially in everyday memory-demanding situations. 

The main goal of this study was to investigate SMD in the context of a network of known 

and potential AD risk markers (vascular health, genetic risk, and sex) and their associations with 

actual memory change. Latent class growth analyses (LCGA) and conditional latent growth 

models (CLGM) in Mplus (8.2) were utilized to test independent and interactive effects of 

vascular health and SMD on actual memory trajectories over a 40-year band of aging. These 

analyses allowed us to estimate and test predictors of inter-individual variability and within-

person memory trajectories. Two research goals, each with two parts, were stipulated. For the 
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first part of our first research goal, distinct classes in memory trajectories were identified using 

data-driven LCGA. The second part of our first research goal consisted of testing SMD facet, 

pulse pressure and sex predictions of episodic memory latent class membership. For the first part 

of our second research goal, we confirmed previously established pulse pressure-memory 

trajectory predictions. In parallel, we tested the moderating effect of SMD facet class 

membership on these predictions. For the second part of this research goal, these models were 

further stratified by sex and genetic risk to test differential effects with SMD facet classes on 

pulse pressure and memory trajectory predictions within these Alzheimer’s disease (AD) risk 

groups (i.e., females and APOE ε4+ individuals).  

Background 

Subjective Memory Decline 

With a greying global population, dementia prevalence has continued to grow. In Canada 

alone, it is estimated that the incidence rates of dementia will increase more than two-fold by 

2038 while the cumulative direct health costs for dementia cases are expected to reach $500 

billion by that same time (Alzheimer Society of Canada, 2008). Globally, total economic costs 

are estimated to reach $2 trillion by 2030 (Prince, Wimo, Guerchet, Ali, Wu & Prina, 2015). 

Spurred by a growing dementia burden, the development and implementation of preventative 

protocols in at-risk individuals prior to the onset of non-normative changes has occupied greater 

importance in recent brain and cognitive aging and dementia research (Anstey, Eramudugolia, 

Hosking, Lautenschlager & Dixon, 2015). Key to the development of prevention is the early 

detection of markers signaling transitions from healthier brain aging to a pre-prodromal phase of 

AD. Objectively, a detectable decline in episodic memory has been postulated to precede MCI 

and AD in what has been characterized as a lengthy preclinical phase (Bäckman, Small & 
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Fratiglioni, 2001). Early markers or predictors of future changes in objective cognition are 

accordingly imperative to the primary prevention of dementia and AD. Such markers may be 

objective, subjective, or a combination. There is mounting evidence that subjective perceptions 

of cognitive or memory health may present as a harbinger of future objective decline and clinical 

transitions into MCI and/or AD (Jessen et al., 2014a). These perceptions, in cognition or 

memory, may represent early stages of cognitive transitions into impairment which are not yet 

detectable using objective measures in research or clinical settings. 

Interestingly, concerns or worries about one’s perceived cognitive decline have been reported 

to better predict objective decline than the perception alone (Jessen et al., 2014b; Wolfsgruber et 

al., 2016), with the risk of AD comparable to those in early MCI (Jessen et al., 2014b). These 

concerns are also featured in the additional criteria for individuals to meet a classification of 

SCD Plus, which is associated with increased risk of dementia (Jessen et al., 2014a). This 

boosted risk classification includes perceived changes in the specific domain of memory within 

cognitive function as a whole, suggesting that subtle and noticeable changes in memory 

performance specifically (versus overall cognition), may be more indicative of AD-type 

pathological changes (e.g., rapid decline in memory). 

Indeed, studies examining changes in memory beliefs specifically (i.e., SMD) have also 

shown strong predictions of future objective memory decline, associations with AD biomarkers, 

or increased risk of AD. SMD has been shown to be associated with both incident dementia 

(Buckley et al., 2016; Geerlings, Jonker, Bouter, Ader, & Schmand B, 1999; Mitchell, 

Beaumont, Ferguson, Yadegarfar, & Stubbs, 2014; Wang et al., 2004; Wolfsgruber et al, 2016) 

and cognitive decline (Glodzik-Sobanska, Reisberg, De Santi, Babb, Pirraglia, Rich & de Leon, 

2007; Snitz et al., 2015b). Compared to cognitively normal adults with no memory complaints, 
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older adults with reported memory complaints experienced steeper decline and lower baseline 

levels of verbal recall (Koppara et al., 2015). This decline was especially marked in individuals 

with concerns accompanying their subjective complaints, as compared to those with complaints 

alone (Koppara et al., 2015). Memory complaints have also been reported to be associated with 

increased risk of dementia in cognitively normal individuals, but not in individuals with 

concurrent objective cognitive impairment (Tsutsumimoto et al., 2017).  

There continues to be growing evidence that perceptions of memory decline are 

associated with non-normal changes in memory prior to the detectable onset of these changes. 

However, investigations of subjective memory measures specifically remain limited. Typically, 

SMD is represented by a single item (e.g., “Do you feel like your memory is becoming worse?”) 

or multiple items encompassing this facet and that of concerns about perceived and reported 

change (Jessen et al., 2014b). A recent review of SCD self-report measures used in various 

international studies noted that more than half of the examined items were related to memory, 

emphasizing the significant overlap in the use of SCD and SMD (Rabin et al., 2015). These 

items were subdivided to capture SCD and SMD in two main categories: ability/disability-

impairment (i.e., the perception of the presence/absence of memory problems) and change (i.e., 

the perception of change in memory abilities); both of which tap into the domains of memory 

complaints or concerns (Rabin et al., 2015). However, subjective perceptions of memory 

performance are not solely comprised of perceptions of impairment or change, and other 

incipient aspects of SMD and their associations with memory trajectories warrant thorough 

investigation.  

With this in mind, we consulted neighbouring literatures in cognitive aging concerned 

with memory beliefs, affect, strategies, knowledge and compensation (de Frias, Dixon, & 
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Bäckman, 2003; Dixon, de Frias, & Bäckman, 2001; Dixon & de Frias, 2004; Dixon, Hopp, 

Cohen, de Frias & Bäckman, 2003; Hertzog, Dixon & Hultsch, 1990a; Hertzog, Dixon & 

Hultsch, 1990b; Hertzog, McFall, Small & Dixon, 2019; Ryan, 1992). From this review, we 

inferred that the two standard SMD facets could be supplemented by selected facets shown to be 

relevant in related memory and aging literature. We specifically developed a multi-facet concept 

of SMD which encompassed both memory complaints and memory concerns, as well as two 

novel facets: memory compensation and memory self-efficacy. Using items from the established 

Metamemory in Adulthood (MIA) (Hertzog et al., 1990a) and Memory Compensation 

Questionnaire (MCQ) (Dixon & de Frias, 2007), these four complementary but not previously 

differentiated facets of SMD were tested. This four-facet model of SMD was found to be 

selectively predictive of objective longitudinal change in memory performance (Drouin, Fu, 

McFall & Dixon, 2018). The four SMD facets can be described as follows:  

Memory Complaints (Facet 1): This standard SMD facet is typically represented by a 

single item (e.g., “Do you feel like your memory is becoming worse?”; Jessen et al., 2014a). 

Specifically, the memory complaints facet reflects whether one believes that episodic memory 

has declined with time.  

Memory Concerns (Facet 2): The second standard SMD facet reflects the extent to which 

one is concerned about one’s decline in memory performance and the potential heightened or 

chronic level of worry about one’s memory decline (Jessen et al., 2014b). This facet could 

include low-level (pre-clinical) memory anxiety. A typical item would follow-up reported 

memory complaints with the possibility to indicate that the feeling of memory change is 

worrying (or not).  
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Memory Compensation (Facet 3): This SMD facet refers to an alternative scenario of the 

above facets. Specifically, awareness of memory failures may lead to memory concerns and, 

differentially across older adults, to efforts to compensate for memory deficits and decline. The 

SMD memory compensation facet refers to the use of everyday compensation techniques to 

enhance memory performance that is perceived to be declining (de Frias & Dixon, 2005; Dixon 

& de Frias, 2007; Dixon et al., 2001). 

Memory Self-Efficacy (Facet 4): This SMD facet refers to adults’ beliefs about their 

overall mastery of everyday memory performance decline or about their specific ability to 

manage memory change and continue effectively using their memory in various situations 

(Hertzog et al., 1990b; Valentijn et al., 2006).  

Using this four-faceted approach, we found that worse SMD (with all facets combined) 

was associated with lower level and steeper decline in episodic memory in females only (Drouin 

et al., 2018). When episodic memory level and slope were regressed on the intercept of each of 

the four facets in a CLGM, we observed facet-specific and sex-specific results. More memory 

complaints and memory concerns were both predictive of steeper objective decline in females, 

while worse memory self-efficacy was similarly predictive for males. As the SMD prediction 

patterns differed by sex, it is possible that other AD and memory aging risk factors could 

moderate these trajectory patterns. Specifically, both AD genetic risk (Apolipoprotien E, APOE) 

and vascular health (ie. pulse pressure, a robust proxy for aging arterial stiffness) have been 

linked independently and interactively with steeper memory decline and maintenance (McFall et 

al., 2015; McFall et al., 2019a; McFall, McDermott & Dixon, 2019b).   
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Genetic Risk 

Apolipoprotein E (APOE) is a well-established risk factor for sporadic AD (Bertram, 

McQueen, Mullin, Blacker, & Tanzi, 2007), mild cognitive impairment (Brainerd, Reyna, 

Petersen, Smith, & Taub, 2011; Dixon et al., 2014), and longitudinal cognitive decline (Bretsky, 

Guralnik, Launer, Albert & Seeman, 2003). APOE consists of three isoforms, ApoE2, ApoE3, 

and ApoE4, and the corresponding ε2, ε3, and ε4 alleles (McFall et al., 2015). The ε3 allele is the 

most common, with the ε3/ε3 genotype being the most prevalent (McFall et al., 2015). Whereas 

the ε3 allele is considered neutral with respect to neurodegenerative disease, the ε2 allele is often 

noted as protective and has been previously found to be associated with lower risk of AD and 

dementia (Lim et al., 2017) and better cognitive functioning (Wisdom et al., 2011). APOE ε2+ 

carriers have also demonstrated protection from memory decline despite poor vascular health in 

a Victoria Longitudinal Study (VLS) sample (McFall et al., 2015; McFall et al., 2019a; McFall et 

al, 2019b). Conversely, the ε4 allele is the most salient genetic risk factor for sporadic AD, MCI 

and objective cognitive decline (Bertram et al., 2007; Bretsky et al., 2003; Laukka et al., 2013; 

McFall et al., 2019a). Associations with cognitive decline have been especially pronounced 

when ε4+ individuals have poorer vascular health (Ferencz et al., 2013; Yasuno et al., 2012). As 

the ε4 allele has been indicated as a criterion for a SCD Plus classification (Jessen et al., 2014a), 

it is additionally an important consideration within the SMD framework. The ε4 allele has been 

reported to be more prevalent in individuals with memory complaints compared to matched 

controls (Laws, 2002). In regard to SCD/SMD and objective decline, accelerated cognitive 

decline for ε4+ individuals with memory and cognitive complaints has been previously observed 

(Dik et al., 2001; Samieri et al., 2014). Memory complaints have also been reported to be 

associated with high amyloid burden in cognitively healthy ε4+ individuals (Zwan et al., 2016). 
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Vascular Health 

Vascular health presents as an established modifiable factor which affects cognition and 

memory in aging (McFall et al, 2015; McFall, Sapkota, McDermott & Dixon, 2016). For 

example, maintenance of cognition has been observed for individuals without hypertension 

(Yaffe et al., 2009). Similarly, increased arterial stiffening, which is associated with increased 

risk of adverse cardiovascular events, also has recognized associations with poorer cognitive 

function in older adults (McFall et al., 2015; McFall et al., 2016). Pulse pressure, a proxy for 

arterial stiffness, is calculated by subtracting diastolic blood pressure from systolic blood 

pressure. Poorer vascular health is indicated by higher pulse pressure, which typically increases 

with age (McFall et al., 2015). Considered a better predictor of vascular health than systolic or 

diastolic pressure alone (Raz, Dahle, Rodrigue, Kennedy & Land, 2011), higher pulse pressure 

has been previously associated with memory deficits (Waldstein et al., 2008), AD-type 

neuropathology (Hughes et al., 2013; Nation et al., 2013; Rodrigue et al., 2013), plasma 

amyloid-B transport function (Jiang et al., 2018), cognitive decline and brain atrophy (Nation et 

al., 2016), functional decline (Werhane, Thomas, & Edmonds, 2018), and increased risk of AD 

or related dementias (Peters et al., 2013; Qiu, Winblad, Viitanen, & Fratiglioni, 2003). Notably, 

decline in some cognitive functions (e.g., visuospatial organization) have been found to be 

particularly pronounced among APOE ε4 carriers with vascular dysfunction (Nation et al., 2016). 

Specific to memory, sex-specific protective effects of APOE ε2 have been reported in episodic 

memory associations with pulse pressure (McFall et al., 2019a). Previous research on vascular 

dysfunction and SMD has been limited. While weak associations between vascular risk factors 

and subjective memory complaints were found cross-sectionally (Paradise, Glozier, Naismith, 

Davenport & Hickie, 2011), no longitudinal associations have been reported as of yet.  



9 
 

Sex Differences 

Sex differences in AD incidence, prevalence and etiology have been widely reported 

(Carter, Resnick, Mallampalli & Kalbarczyk, 2012; Mielke, Vemuri, & Rocca, 2014; Schmidt et 

al., 2008; Tierney et al., 2017). Previous VLS research has shown female sex to be predictive of 

successful memory aging, but not of decline (McFall et al., 2019b). Other studies have reported 

more rapid decline in a number of cognitive functions for males (Gerstorf et al., 2011; McCarrey, 

An, Kitner-Triolo, Ferrucci & Resnick, 2016). Certainly, there has been a pattern of findings 

suggesting sex differences in a variety of normal and neurodegenerative functions (Tierney et al., 

2017). It has been repeatedly established that, paradoxically, females are both ‘better off’ and 

‘worse off’ as they age: although females live longer and are less likely to experience declines in 

memory (Lin et al., 2017; McFall et al., 2019b; Vassilaki et al., 2015), they also show greater 

rates of AD dementia longitudinally, suffer worse post-diagnosis outcomes (Dumas, 2017), and 

demonstrate greater rates of disability in older age (La Croix, Newton, Leveille & Wallace, 

1997). These existing sex differences may be a result of a number of factors (e.g., lifestyle, 

hormonal), acting independently or interactively (Li, Cui & Shen, 2014; Mielke et al., 2014).  

Sex-specific effects in relation to the associations between vascular health and cognition 

have also been reported. For example, deficits in episodic memory have been associated with 

hypertension in men (Elias, Elias, Sullivan, Wolf & D’Agostino, 2003; Saxby, Harrington, 

McKeith, Wesnes, & Ford, 2003). Specific to the SCD framework, baseline SCD has been 

recently reported to be more strongly associated with subsequent dementia diagnosis in females 

than in males (Heser et al., 2019). However, reported sex-specific vascular associations with 

SMD or SCD have been limited. Increased arterial stiffness (assessed by pulse wave velocity) 

has been reported to be associated with memory impairment in men with subjective memory 
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complaints (Kearney-Schwartz et al., 2009). To our knowledge, this is the only study examining 

the effect of vascular health on cognitive performance in individuals with subjective memory 

complaints. These findings highlight the importance of examining genetic and sex-specific 

associations within possible interactions between vascular health and subjective decline in 

memory. SMD may reflect sensitivity to multiple “doses” of AD risk, as evidenced by increasing 

memory failures and pulse pressure dysfunction, moderated by the precision factors of sex and 

genetic risk. 

Research Goals 

Building on the previously established findings of sex-specific SMD associations, this 

study aimed to integrate additional AD risk biomarkers (vascular dysfunction and AD genetic 

risk) in longitudinal analyses of dynamic networks of SMD and memory aging trajectories. 

Three-wave longitudinal data from the VLS covering a 40-year band of aging (53-95 years) were 

used to investigate two research goals. The first research goal was comprised of two parts. 

Research goal 1a involved the analysis of episodic memory trajectories for the identification of 

distinct latent classes of interindividual variability and change. Research goal 1b examined sex, 

SMD facets, and vascular health (i.e., pulse pressure) as predictors of episodic memory trajectory 

latent class. After testing pulse pressure predictions of memory trajectories, the second research 

goal also encompassed two sequential parts. Research goal 2a consisted of the identification of 

distinct classes of level and change in all four SMD facets in order to subsequently use class 

membership as a moderator in the prediction model. Research goal 2b examined whether this 

moderation occurs differentially by sex or APOE genetic risk.  
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Methods 

Sample 

 

Participants were community-dwelling older adults (initially aged 53-95 years) from the 

VLS, a large-scale longitudinal sequential study of biomedical and cognitive aging (Dixon & de 

Frias, 2004). Written consent was provided by all participants and data collection procedures 

were certified by prevailing ethics guidelines and boards. Longitudinal data were assembled 

from three VLS samples using standard procedures (e.g., Dixon, Small, MacDonald, & McArdle, 

2012; McFall et al., 2015; McFall et al., 2019b), each with three available waves of data 

collected from 2002 onwards. In the present study, the first wave of each sample formed Wave 1 

(W1), the second formed Wave 2 (W2) and the third Wave 3 (W3). Age coded as a continuous 

variable was used as the metric of longitudinal change. This allowed for the examination of level 

and change based on individual-varying age instead of wave. The resulting data set was an 

accelerated longitudinal design producing a distribution of trajectories spanning 40 years. 

Due to the necessity of genetic data for this study’s APOE moderation analysis, a source 

sample was defined by longitudinal genotyped participants with baseline data collected since 

2002 (n = 652). The following exclusionary criteria were then applied: (1) a diagnosis or 

indication of Alzheimer’s disease or any other dementia (n = 4), (2) a Mini-Mental Status Exam 

score of less than 24 (n = 1), (3) a self-report of “severe” for potential comorbid conditions (e.g., 

epilepsy, head injury, depression, alcohol dependence) (n = 60), (4) use of anti-psychotic 

medication (n = 2), and (5) a self-report of “severe” or “moderate” for potential comorbid 

diseases such as neurological conditions (e.g., stroke, Parkinson’s disease) (n = 5). After 

exclusions, the final sample for this study consisted of 580 non-demented older adults. 

Participant demographic information for this study sample is presented in Table 1. 
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Measures 

  
Episodic Memory. Three episodic memory tasks were used to extract four manifest 

variables for use in confirming the previously established memory latent variable (Drouin et al., 

2018).  

VLS word recall. This task consisted of immediate free recall of two structurally 

equivalent lists of 30 English words (Dixon et al., 2004). Each list consisted of 6 words from five 

taxonomic categories, typed on a single page in unblocked order. To eliminate content-related 

practice effects, a rotated design was used for test administration. All tasks were administered in 

all waves and no participant saw the same list twice. Participants were given 2 minutes to study 

each list and 5 minutes to write as many words as they could recall. The number of correctly 

recalled words averaged across the two lists was used for analysis. 

Rey auditory verbal learning. This task assesses verbal learning and memory (Lezak, 

1983; Vakil & Blachstein, 1993). Fifteen nouns were read aloud to the participant and immediate 

recall was required. This was repeated for 5 trials with the same list (A1–A5), followed by a 

second list of 15 unrelated nouns (REYB1 [free recall]). Finally, the participants were asked to 

recall the first list (REYA6). Two indicators were used for analysis: (1) the number of nouns 

recalled from List B1 was used to measure free recall and (2) the number of nouns recalled from 

list A6 was used to measure recall after interference (REYA6 [recall after interference]). 

Benton facial recognition. This task is designed to assess facial recognition capabilities, 

an ability that is associated with nonverbal episodic memory (Benton, Sivan, Hamsher, Varney 

& Spreen, 1978). Participants were presented with a target picture and asked to choose the target 

individual from six test faces presented with the target picture. Both male and female faces are 
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used. There are no time constraints for this task. The computed overall score, in which a low 

score indicates severe impairment, was used for analysis. 

Subjective Memory Decline. We assembled a SMD inventory using items from the MIA 

and MCQ. The MIA is a 108-item instrument measuring eight facets of metamemory in aging 

(Hertzog et al., 1990a). The MCQ is a 45-item instrument which measures awareness and use of 

everyday memory techniques used by older adults (e.g., Dixon & de Frias, 2007). Items from the 

MIA (17) and MCQ (2) were previously selected based on past research on SCD and SMD and 

each item’s relevance to the facet (Table A1). Selection of candidate items to reflect each facet 

was performed by three independent researchers. Using confirmatory factor analysis, the items 

were assembled to create a four-factor latent variable, which included four related (but distinct) 

facets: (1) memory complaints, (2) memory concerns, (3) memory compensation, and (4) 

memory self-efficacy (Drouin et al., 2018). Items representing each facet were coded in a 

direction in which a lower score indicated less SMD (i.e., fewer memory complaints, less 

memory concerns, lower reported memory compensation efforts, and more memory self-

efficacy). For the latter two facets, we hypothesize that high compensation, if successful, may 

reflect more SMD through the use of techniques in order to address perceived performance 

deficits in everyday life, thereby reflecting efforts to forestall perceived memory decline. More 

memory self-efficacy reflects less SMD as this facet refers to the concept that beliefs about one’s 

own memory abilities and decline (and the extent to which memory aging may be controlled) 

play an important role in one’s confidence and effort to perform well in everyday memory tasks. 

Items representing each facet are presented in Table A1. Three items from the MIA 

formed the complaints construct. The memory concerns facet was formed using seven items 
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from the MIA. Three items from the MIA and two items from the MCQ formed the memory 

compensation facet. Four items from the MIA formed the memory-self efficacy facet. 

 Genetic Risk. Saliva samples were collected to all recommended practices according to 

Oragene DNA Genotek technology protocol, including collection, preparation and stabilization 

(see McFall et al., 2013). Saliva was stored at room temperature until manual DNA extraction 

from 0.8 ml of saliva sample mix using the manufacturer’s protocol with adjusted reagent 

volumes. A PCR-RFLP strategy was used to analyze the allelic status for APOE (determined by 

the combination of the SNPs rs429358 and rs7412). To examine the moderating effect of genetic 

risk, we used two groups in stratification analyses. First, a “lesser risk” group of APOE ɛ4- 

individuals characterized by the absence of a ɛ4 allele. Specifically, this group consisted of the 

following genotypes: ɛ2/ɛ2, ɛ2/ɛ3, and ɛ3/ɛ3. Second, an “at-risk” group of APOE ɛ4+ 

individuals characterized by the presence of at least one ɛ4 allele. Specifically, this group 

consisted of the following genotypes: ɛ3/ɛ4 and ɛ4/ɛ4. Individuals with APOE ɛ2/ɛ4 were 

removed from genetic analyses due to the relatively unknown effect of a protective and risk 

alleles in combination (McFall et al., 2015; McFall et al., 2019a). We considered parallel 

stratification by APOE ɛ2+/ɛ2- in order to investigate potential protective effects of APOE 

genetic risk. However, this was not possible due to small cell sizes involving ɛ2+ individuals in 

most of the stratified groups used in these analyses.  

Vascular Health. Pulse pressure is a reliable proxy of arterial stiffness (McFall et al., 

2015). We calculated this functional biomarker by subtracting average diastolic blood pressure 

from systolic blood pressure readings. Greater pulse pressure indicates worse vascular health. 

For all analyses, pulse pressure was used as a continuous variable and centered at the sample 

mean of 51.9 mm Hg.  
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Statistical Analyses 

 
Structural equation modeling was conducted using Mplus 8.2 (Muthén & Muthén, 1998-

2017). Confirmatory factor analyses were used to first confirm latent variable models of episodic 

memory and SMD. Model fit was determined using standard fit indices: (1) a non-significant χ2  

indicating a good fit, (2) comparative fit index (CFI) where ≥ .95 is a good fit and values 

between .90 and .94 demonstrate adequate fit, (3) root mean square error of approximation 

(RMSEA), where a value ≤ .05 would be considered good fit and between .06 and .08 would be 

considered adequate fit, and (4) standardized root-mean-square residual (SRMR) for which a 

value of ≤ .08 is considered good fit (Kline, 2011).  

Longitudinal measurement invariance was tested using a chi-square based likelihood ratio 

test (measured as difference in χ2). As this test is sensitive to reporting invariance in large sample 

sizes, recommended differences in CFI (0.01) and the above-mentioned standard fit indices 

were also used to confirm measurement invariance (Little, 2013). Longitudinal measurement 

invariance is essential to establish construct equivalence across time prior to examining 

performance and change characteristics (Little, 2013). We confirmed longitudinal measurement 

invariance for episodic memory, the four-factor SMD variable, and each confirmed SMD facet. 

Configural invariance was first tested to establish whether the same indicators represented the 

latent variables at each wave of data collection. Second, factor loadings were constrained to be 

equal in order to test metric invariance. Third, indicator intercepts were constrained to be equal 

in order to test for scalar invariance. Fourth, indicator residuals were constrained to be equal 

accounting for error variability to test for residual invariance. Factor scores were computed from 

the best fitting model and used in all subsequent growth models. Due to the nature of CLGM, 
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only one wave of data for all participants is required. There was no use of listwise deletion in the 

CLGM analyses as all participants contributed to at least one wave of data.  

For the episodic memory latent variable, four indicators (word recall, REYB1 [free 

recall], REYA6 [recall after interference], Benton) were used to confirm a one-factor model of 

episodic memory. Longitudinal invariance of this model was also confirmed as per the 

procedures outlined above.   

To confirm the four-factor latent SMD variable, we first performed psychometric 

analyses to estimate reliability for each facet of the expected model. Internal consistency of the 

scales (or facets) were considered acceptable with a Cronbach’s alpha of ≥ 0.7 (George & 

Mallery, 2003). Second, the nineteen indicators were used to confirm a four-factor model of 

SMD using confirmatory factor analysis. Factor loadings of >0.4 were considered to be ideal, 

especially in the case of lower internal reliability (Little, 2013). Third, we tested re-test reliability 

for each facet at the scale level. We then tested longitudinal invariance of the four-factor SMD 

model as per the standard fit indices described above.  

 Analyses for RG1. For the first part of the first research goal, data-driven latent class 

growth analyses (LCGA) were utilized to clarify the episodic memory trajectory data. The 

previously established baseline growth model for episodic memory (random intercept, random 

slope) represents the best single-group representation of change (Ram & Grimm, 2009). See 

Table 2 for growth model fit indices for the single-group solution. As three waves of data were 

used, only linear growth patterns were investigated. For these analyses, multiple models were run 

with random starting values in order to avoid local optima solutions. First, an unconditional 

latent class growth model with up to k = 5 classes was specified. Related past findings suggested 

up to four trajectory classes of memory aging (McFall et al., 2019b; Olaya, Bobak, Haro, & 
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Demakakos, 2017). Therefore, a maximum of a five-class solution model was run in accordance 

with the guideline that researchers test one more class than expected from theory or previous 

empirical findings (Jung & Wickrama, 2008). Beyond this, non-convergence, non-replication of 

the log-likelihood value or small class prevalence (<5%) were also used as determining factors of 

the highest k-class model run (Jung & Wickrama, 2008). LCGA involves the specification of a 

latent class growth model, which assumes no within-class variability (McFall et al., 2019b). 

Compared to the baseline growth model, these models assume that individual growth parameters 

are drawn from subpopulations instead of one homogeneous population (Jung & Wickrama, 

2008). LCGA models specify that the covariances for the growth factors within each specified 

class are fixed at zero (Jung & Wickrama, 2008) and assume that all interindividual variability in 

growth factor estimates and covariances are explained by class membership (Petras & Masyn, 

2010).  

Following the specification of LCGAs, we applied growth mixture models (GMMs) to 

the trajectory data as this is a recommended follow-up in relevant mixture modeling literature 

(Jung & Wickrama, 2008; Petras & Masyn, 2010; Ram & Grimm, 2009). GMM modeling allows 

for the examination of the differences in variances and covariances across classes in addition to 

the mean change function for the different classes (Ram & Grimm, 2009). Specifically, as 

compared to LCGAs, GMMs account for the possibility that classes of episodic memory may not 

be completely homogeneous in regard to the spread of intercept and slope; some classes may 

show differing variability in these estimated parameters. We note that in cognitively normal 

(asymptomatic) older adults, there is considerable variability in episodic memory function and 

change (Figure 1). It is thus possible that within-class variability also exists. In order to specify 

the GMM models, classes were assumed to have freely estimated variances of intercept and/or 
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slope. Intercept and slope variances were first constrained to be equal across classes but not fixed 

to be zero. Next, variances were allowed to be freely estimated so that they differ across classes.  

In order to select the optimal number of classes for both the GMM and LCGA 

specifications, we assessed model fit using standard criteria: (1) Akaike information criterion 

(AIC), (2) Bayesian information criterion (BIC), and (3) sample-size adjusted BIC (SABIC). 

Lower AIC, BIC and SABIC values indicate better model fit. Models with high values of 

entropy (>.80) were preferred in the case of similar relative fit indices between candidate models. 

Model selection for both the optimal number of classes and variability specifications (i.e., LCGA 

or GMM) were based on parsimony, relative fit indices, entropy, and the interpretability of the 

class means, variability, and proportions based on the literature (Ram & Grimm, 2009). 

For the second part of the first research goal, baseline SMD facets, pulse pressure, and 

sex were assessed as predictors of episodic memory latent class membership using multinomial 

logistic regression. The three-step approach (R3STEP) in Mplus (8.2) was utilized for this 

purpose in order to include these predictors simultaneously as auxiliary variables (Asparouhov & 

Muthén, 2014). This three-step approach first estimates the latent class model to create a most 

likely class variable using the posterior distribution (obtained through EM iterations). The most 

likely class variable is then regressed on selected predictor variables (Jung & Wickrama, 2008). 

Including predictor variables in the model specification takes into account misclassification error 

that occurs in the creation of the most likely class variable (Jung & Wickrama, 2008). These 

analyses allowed us to determine the increased odds of membership to a class compared to a 

reference class as a selected predictor variable increases by one unit (with the other included 

predictor variables remaining constant). Due to the inclusion of multiple predictor variables, 

false discovery rate (10%) was controlled for using the Benjamini-Hochberg procedure 
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(Benjamini & Hochberg, 1995). This sequential procedure controls for the proportion of false 

positives (Benjamini & Hochberg, 1995; Thissen, Steinberg & Kuang, 2002). Less conservative 

than the widely used Bonferroni correction, the Benjamini-Hochberg procedure offers greater 

statistical power as the number of comparisons increase (Thissen et al., 2002). This approach 

consists of ranking p-values for all test results and comparing each value to a critical Benjamini-

Hochberg value to determine significance (Thissen et al., 2002).  

Analyses for RG2. For the first part of the second research goal, conditional latent growth 

models (CLGM) were used to investigate pulse pressure predictions of the full trajectory 

distribution of episodic memory level and change. Next, in parallel analyses, we used LCGA to 

conduct class analyses for the trajectory distributions for each SMD facet. Thus, four such 

analyses were conducted. The purpose was to transform the SMD facet latent variable from a 

continuous latent variable to a categorical latent variable. Subsequently, class membership was 

used as a stratification variable in CLGMs testing pulse pressure predictions of memory. We 

determined the optimal number of classes for each SMD facet as per the procedure outlined for 

the first research goal. Specifically, we used AIC, BIC, SABIC as well as class proportions and 

means to determine the selected final models. Next, each individual was assigned to their most 

likely class based on the selected optimal number of classes for each facet. For each SMD facet, 

we stratified CLGMs by class membership to test SMD facet moderation on the prediction of 

episodic memory by pulse pressure.  

For the second part of the second research goal, these same models were tested in 

additional stratifications with SMD facet class: sex and an APOE genetic risk dichotomous 

classification (APOE ɛ4+/ɛ4-). These stratifications were tested in order to investigate potential 

two-way moderating effects of sex and genetic risk with SMD on the episodic memory 
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trajectories predictions by pulse pressure. For both parts of the second research goal, all 

moderation effects were tested using the D statistic between constrained and unconstrained 

models. For the former model, groups were constrained to be equal across intercept and slope.  

Results 

Confirmation of EM and SMD latent variable models 

We confirmed that a one-factor model of episodic memory, consisting of four indicators, 

fit the data well (RMSEA = 0.04, CFI = 0.98, SRMR = 0.06) (see Table 3). We confirmed support 

of partial scalar invariance for Benton (Table 3). This indicates that the one-factor model 

measured the same construct longitudinally, but the word recall and the Rey auditory learning 

task manifest variables demonstrated mean differences across time. Establishing and confirming 

partial scalar invariance allowed us to use this latent variable model to subsequently make 

comparisons across time using factor scores. 

For the four-factor SMD latent variable model, we found satisfactory internal reliability 

as measured by Cronbach’s alpha for three of the four facets. Specifically, the memory 

complaints facet (α = .78), the memory anxiety/concerns facet (α =.83) and the memory self-

efficacy facet (α = .71) demonstrated acceptable internal reliability. The memory compensation 

facet demonstrated somewhat lower reliability (α = .60). However, using confirmatory factor 

analysis, we confirmed that the four-factor model of SMD fit the data well (RMSEA = 0.03, CFI 

= 0.91, SRMR = 0.06). See Table 4 for factor correlations. The SMD latent variable also 

demonstrated satisfactory indicator variable loadings onto the four facets (ranging from 0.37-

0.89), providing excellent evidence for psychometric validity of the latent variable model of 

SMD. Re-test reliability (W1-W2, W2-W3) for all four facets ranged from r = 0.58 to r = 0.89. 

We also confirmed support of residual (strict) invariance for the four-factor model of SMD 
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(Table 3), indicating that: (1) the same indicators represent SMD facets at each data collection 

wave, (2) the measurement model remained the same across time (i.e., factor loadings were 

invariant), (3) item intercepts were equivalent across time, and (4) residual error was invariant 

across time.  

RG1a 

The aim of research goal 1a was to use LCGA or GMM for the identification of distinct 

latent classes of interindividual variability and change of episodic memory trajectories. Fit 

statistics for all tested LCGA models are presented in Table 5. Fit statistics for all tested GMM 

models are presented in Table 6.   

We computed LCGA models for two-, three-, four- and five-class solutions. These 

models showed improvements in AIC, BIC and SABIC from the baseline model (Table 5). The 

five-class LCGA model was removed from consideration due to a small latent class prevalence 

(<5%). Entropy values for the three-class (0.84) and four-class (0.85) LCGA models were 

consistent with Muthén and Muthén’s (1998-2017) recommendation which indicates a relatively 

low misclassification rate. Following this, we tested GMMs with up to four classes. All GMMs 

were removed from consideration after thorough examination of entropy values, relative fit 

indices and class mean and variance interpretations, suggesting that accounting for within-class 

variability worsened model interpretation (Table 6). Following this, we considered the LCGAs 

exclusively as candidate models. 

Thus, the four-class LCGA model was chosen as the optimal and final model, as this 

solution has the lowest AIC, BIC and SABIC values (see Table 5), satisfactory entropy (0.85), as 

well as interpretable class means consistent with previous literature (McFall et al., 2019b). 

Characteristics for each class, such as the intercept and slope means and class proportions are 
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reported in Table 7. Figure 2 displays the raw trajectory data for each individual and their 

estimated class membership (colour-coded).  

The first class was labeled as stable memory agers (SMA), characterized by the highest 

level and maintenance of memory performance over time (n = 79 [13.6%], intercept = 4.77, 

95% CI 4.54, 5.0], slope = -0.02, 95% CI [-0.038, <0.001]). The second class was labeled as 

typical memory agers (TMA), characterized by mid-high level and slow decline (n = 222 

[38.3%], intercept = 1.61, 95% CI [1.48, 1.74], slope = -0.05, 95% CI [-0.064, -0.038]). The 

third class was labeled as slowly declining memory agers (SDMA), characterized by mid-low 

level and moderately faster decline than typical agers (n = 198 [34.0%], intercept = -1.68, 

95% CI [-1.80, -1.56], slope = -0.12, 95% CI [-0.135, -0.106]). The fourth class was labeled as 

rapidly declining memory agers (RDMA), characterized by the lowest level and the steepest 

decline (n = 81 [13.9%], intercept = -5.31, 95% CI [-5.45, -5.16], slope = -0.19, 95% CI [-0.212, 

-0.170]). 

RG1b 

Following the selection and interpretation of a four-class model of episodic memory 

change, research goal 1b tested the prediction of latent class membership using six baseline 

predictors as auxiliary variables: four subjective memory decline facets, sex, and pulse pressure. 

Tables 8 and 9 show the estimates and odds ratios for the included predictors for both the SMA 

and RDMA classes as reference classes. 

An increase in reported memory concerns was associated with over a three-fold increase 

in the odds of being in RDMA (OR = 3.39, p = 0.005) and over a two-fold increase in the odds 

of being in SDMA (OR = 2.41, p = 0.021), as compared to the SMA class.  
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For sex, the odds of being in the three classes with faster decline, TMA (OR = 4.66, p = 

0.006), SDMA (OR = 12.06, p < 0.001), and RDMA (OR =15.80, p < 0.001), as compared to the 

SMA class, were higher for males than for females when other predictors were held constant. 

The odds of being in the SMA (OR = 0.06, p < 0.001) or TMA (OR = 0.29, p < 0.001) classes, as 

compared to the RDMA class, were lower for males than for females when other predictors were 

held constant. However, males were not more likely to be in SDMA versus the RDMA class (OR 

= 0.76, p = 0.403).  

The multinomial logistic regression results also indicated that pulse pressure predicted 

episodic memory class membership. The odds of being in the SDMA class relative to the SMA 

class increased by 1.6 times as pulse pressure increased (i.e., worsened) by 10 mm Hg (OR = 

1.60, p = 0.012). Pulse pressure did not significantly predict membership to any other class. 

RG2a 

Prior to the moderation analyses for our second research goal, we confirmed that higher 

pulse pressure was associated with both lower level (b = -0.09, p < 0.001) and steeper decline in 

episodic memory (b = -0.004, p < 0.001). For research goal 2a, we tested the moderating role of 

SMD facet class on the prediction of episodic memory trajectories by pulse pressure. 

Specifically, we used SMD facet class membership to stratify CLGMs testing prediction of 

memory trajectories by pulse pressure. Relative fit indices and entropy values for all k-class 

models for each facet are reported in Tables 10 (memory complaints), 12 (memory concerns), 14 

(memory compensation) and 16 (memory self-efficacy). Class means for the selected models are 

presented in Table 11 (memory complaints), 13 (memory concerns), 15 (memory compensation) 

and 17 (memory self-efficacy). Goodness of fit indices for the CLGM of pulse pressure 

predicting memory as stratified by the aforementioned classes are presented in Table 18. 
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Memory Complaints. For this facet, we tested models with up to five classes, as the 

inclusion of additional classes resulted in the non-replication of the log-likelihood value. The 4-

class model was selected as the optimal model from all candidate models. Despite the 5-class 

model presenting a lower AIC and SABIC, the 4-class model had a lower BIC and higher 

entropy value. Additionally, the gains from the additional class can be considered negligible as 

supported by the ‘elbow’ dip in Figure 3, also known as a point of diminishing returns (Nylund, 

Asparouhov & Muthén, 2007).  The four classes were labeled as follows: (1) a group with the 

lowest memory complaints, and a slight increase over time (lowest complaints); (2) a group with 

low complaints and a more noticeable increase over time (low complaints); (3) a group with 

moderate complaints, showing a slight increase over time (moderate complaints); and (4) a group 

with the highest level of complaints, and showing slight increase over time (highest complaints). 

Figure 4 displays the raw memory complaints trajectory data for each individual and their 

estimated class membership (colour-coded). LCGMs stratified by these four classes revealed that 

pulse pressure was not predictive of episodic memory level or decline for the two most extreme 

classes (i.e., the lowest complaints and highest complaints classes). On the other hand, higher 

pulse pressure predicted lower level and decline in memory for both the low complaints class (bi 

= -0.16, bs =-0.01) and the moderate complaints class (bi =-0.09, bs =-0.01). The model was 

constrained in order to test whether stratification by memory complaints class provided a better 

model, which was confirmed to be true (Δχ2 = 33.2, Δdf = 18, p = 0.02). This finding indicates 

that memory complaints class is a significant moderator of predictions of episodic memory 

trajectories by pulse pressure. 

In sum, we identified four statistically distinct classes of memory complaints trajectories. 

For individuals belonging to the two middle classes (i.e., low complaints and moderate 
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complaints), worse pulse pressure was associated with lower level and steeper decline in 

memory. On the other hand, increasing pulse pressure did not have a significant effect on 

memory trajectories (level or change) for individuals belonging to the lowest complaints 

(indicating potential protection conferred by low SMD) and highest complaints classes 

(indicating a potential threshold where, with progressing SMD, pulse pressure has a limited 

impact on memory trajectories). 

Memory Concerns. For this facet, we computed LCGA models with up to five classes 

due to the non-replication of the log-likelihood value in higher-order models. These models 

showed improvements in AIC, BIC and SABIC from the baseline model (Table 12). The 5-class 

model exhibited one class with small class prevalence (3%) and was thus removed from 

consideration. The 4-class model was selected as the final model as it had the lowest relative fit 

indices as well as satisfactory entropy. The four classes were labeled similarly to the memory 

complaints classes: (1) a group with the lowest memory concerns, and little (non-significant) 

change over time (lowest concerns); (2) a group with low concerns and a slight increase over 

time (low concerns); (3) a group with moderate concerns, exhibiting little (non-significant) 

change over time (moderate concerns); and (4) a group with the highest level of concerns, 

exhibiting a decrease in concerns over time (highest concerns). Figure 5 displays the raw 

memory concerns trajectory data for each individual and their estimated class membership 

(colour-coded). Stratification by class analyses revealed that higher pulse pressure predicted 

lower memory level and steeper decline in all memory concerns classes except for the highest 

concerns class. For the lowest concerns class, higher pulse pressure predicted lower memory 

level (b = -0.11, p = 0.01) and steeper decline (b = -0.01, p = 0.006). For the low concerns class, 

higher pulse pressure similarly predicted lower memory level (b = -0.9, p = 0.04) and steeper 
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decline (b = -0.004, p = 0.03). Finally, for the moderate concerns class, higher pulse pressure 

also predicted lower memory level (b = -0.11, p = 0.03) and steeper decline (b = -0.006, p = 

0.02). The stratified CLGM by memory concerns class was confirmed to be a better model (Δχ2 

= 30.1, Δdf = 18, p = 0.04), indicating that memory concerns class moderated episodic memory 

trajectory predictions by pulse pressure. 

In sum, we identified four statistically distinct trajectory classes for memory concerns. 

Poorer vascular health did not have a significant effect on memory trajectories for individuals 

belonging to the highest concerns class. However, increasing pulse pressure predicted lower 

level and steeper decline in memory for individuals belonging to the three classes reporting less 

memory concerns. Similar to memory complaints, this may be due to a potential pulse pressure 

effect threshold that accompanies increasing and progressing SMD. 

Memory Compensation. We computed LCGA models with up to four classes due to the 

non-replication of the log-likelihood value in higher-order models. The 3-class model was 

chosen to proceed in subsequent analyses as it revealed the lowest AIC, BIC and SABIC values 

and had the highest value of entropy. The three classes were characterized as follows: (1) a group 

with the lowest use of memory compensation, and a slight decrease in compensation over time 

(lowest compensation); (2) a group with low use of memory compensation and little (non-

significant) change in compensation over time (low compensation); and (3) a group with higher 

use of memory compensation, showing little (non-significant) change in compensation over time 

(high compensation). Figure 6 displays the raw memory compensation trajectory data and 

estimated class membership (colour-coded). Stratification by class analyses revealed that pulse 

pressure predicted level and change in episodic memory for the low compensation and high 

compensation classes. For the low compensation class, higher pulse pressure predicted lower 
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memory level (b = -0.08, p = 0.03) and steeper decline (b = -0.004, p = 0.02). For the high 

compensation class, higher pulse pressure predicted both lower memory level (b = -0.12, p = 

0.002) and steeper decline (b = -0.005, p < 0.001). Pulse pressure did not predict memory level 

or change for the lowest compensation class. The constrained stratified model did not show 

worse fit than the unconstrained model (Δχ2 = 9.42, Δdf = 12, p = 0.67), indicating that memory 

compensation class membership did not significantly moderate pulse pressure predictions of 

memory trajectories. 

In sum, we identified three statistically distinct classes of memory compensation. 

Individuals belonging to the two classes reporting higher memory compensation exhibited lower 

level and steeper memory decline as pulse pressure increased; however, this trend was not 

statistically significant.  

Memory Self-Efficacy. For this facet, we computed LCGA for 2-, 3- and 4-class models 

due to non-convergence occurring with additional classes. Due to low class prevalence in one 

class (3%) of the 4-class model, this model was excluded from the candidate models. The 3-class 

model showed the lowest AIC, BIC and SABIC values. Thus, the 3-class model was retained as 

the final model for subsequent analyses. The three classes were labelled as follows: (1) a group 

with the lowest self-efficacy and a slight decrease over time (lowest memory self-efficacy); (2) a 

group with low self-efficacy and a slight decrease over time (low memory self-efficacy); and (3) 

a group with the highest memory self-efficacy and a slight decrease over time (high memory 

self-efficacy). Figure 7 displays the raw memory self-efficacy trajectory data and estimated class 

membership (colour-coded). Stratification by class analyses revealed that pulse pressure 

predicted level and change in memory for the high memory self-efficacy and low memory self-

efficacy classes. For the high memory self-efficacy class, higher pulse pressure also predicted 
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lower memory level (b = -0.08, p = 0.01) and steeper decline (b = -0.004, p = 0.002). For the low 

memory self-efficacy class, higher pulse pressure predicted lower memory level (b = -0.11, p = 

0.01) and steeper decline (b = -0.005, p = 0.002). Pulse pressure did not predict memory level or 

change for the lowest memory self-efficacy class. Similar to the memory compensation facet, the 

constrained model did not show worse fit than the unconstrained model (Δχ2 = 8.03, Δdf = 12, p 

= 0.78). Therefore, membership to memory self-efficacy class did not significantly moderate 

pulse pressure predictions of memory trajectories.  

In sum, we identified three distinct classes of memory self-efficacy. Membership to the 

two classes reporting higher memory self-efficacy was associated with lower level and steeper 

memory decline as pulse pressure increases; however, this trend was not statistically significant.  

RG2b  

The main aim of research goal 2b was to test whether differential effects of SMD 

moderation occur by sex or APOE genetic risk groups. In order to test this aim, we further 

stratified the CLGMs for each facet by sex and APOE ε4+/-. The results are presented for each 

SMD facet, first by facet and sex stratifications, followed by facet and APOE ε4+/- 

stratifications.  

Memory Complaints. Stratification by memory complaints class and sex revealed that 

pulse pressure predictions of memory level and change retained the previous pattern for memory 

complaints, but remained significant only for females. That is, higher pulse pressure predicted 

lower level and steeper decline in episodic memory selectively for females belonging to low 

complaints (bi = -0.20, bs =-0.01) and moderate complaints (bi = -0.12, bs =-0.01) classes. There 

were no significant pulse pressure predictions for males belonging to any class. The CLGM to 

predict memory was constrained in order to test whether stratification by memory complaints 
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class and sex provided a better model, which was confirmed to be true (Δχ2 = 155.40, Δdf = 40, p 

< 0.001). Therefore, memory complaints and sex interactively moderated pulse pressure 

predictions of memory trajectories selectively for females. 

In order to stratify by memory complaints class and APOE ε4+/-, the highest complaints 

class was removed as the prevalence of ε4+ individuals was too small for the model to converge. 

For APOE ε4- individuals in the low complaints class, higher pulse pressure was associated with 

lower memory level (b = -0.15, p = 0.01), but not decline. For individuals with no risk allele 

belonging to the moderate complaints class, higher pulse pressure was associated with steeper 

decline in memory (b = -0.005, p = 0.01), but not memory level. Pulse pressure did not 

significantly predict level or change in episodic memory for ε4+ individuals belonging to any 

memory complaints class, or ε4- individuals in the lowest and highest memory complaints 

classes. The constrained CLGM stratified by class and APOE ε4+/- was a worse fit (Δχ2 = 55.93, 

Δdf = 35, p < 0.01) than the unconstrained model. This indicates that for there was a significant 

moderation effect of memory complaints and APOE genetic risk on pulse pressure-memory 

predictions which was selective to ε4- individuals.  

In sum, the sex and memory complaints results extend on findings from the previous 

memory complaints class stratification. With increasing pulse pressure, individuals belonging to 

the two middle memory complaints classes (i.e., low complaints and moderate complaints) 

exhibited lower level and steeper decline in memory. Stratification by APOE and memory 

complaints class revealed that membership to these middle classes and poorer vascular health 

was predictive of lower level and steeper decline only for individuals without a risk allele. 

Memory Concerns. Stratification by memory concerns class and sex revealed a selective 

effect for females. Specifically, females belonging to the lowest concerns class with higher pulse 
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pressure demonstrated lower level (b = -0.15, p = 0.02) and steeper decline (b = -0.005, p = 

0.03). Females in the low concerns class also exhibited more memory decline as pulse pressure 

increased (b = -0.004, p =0.048), but did not show any significant differences in level. There 

were no significant pulse pressure predictions for males in any class, or for females in the 

moderate concerns and highest concerns classes. The constrained model was confirmed to be a 

better model (Δχ2 = 195.54, Δdf = 49, p < 0.001) than the unconstrained model, providing 

evidence for a significant moderation effect of memory concerns facet and sex on pulse pressure 

predictions of memory trajectories for females. 

In order to stratify by memory concerns class and APOE ε4+/-, the highest concerns class 

was removed from stratification analyses due to the small number of individuals with an ε4 allele 

in this group. For ε4- individuals in the lowest concerns class only, higher pulse pressure was 

associated with lower level (b = -0.11, p = 0.03) and steeper decline (b = -0.005, p = 0.003). 

Pulse pressure did not significantly predict level or change in episodic memory for ε4+ 

individuals belonging to any memory concerns class. The CLGM was constrained in order to test 

whether stratification by class and APOE ε4+/- provided a better model. The constrained model 

did not show worse fit (Δχ2 = 33.85, Δdf = 35, p = 0.50) than the unconstrained model, 

suggesting the memory concerns and APOE interaction with pulse pressure was not a significant 

moderation. 

In sum, higher pulse pressure predicted lower level and decline in females belonging to 

the lowest concerns class, and lower level in females belonging to the low concerns class. There 

were no significant pulse pressure predictions for males in any class. Unlike the class 

stratification analyses on their own, there were no significant pulse pressure effects for males or 

females in the moderate concerns class. APOE and memory concerns class stratification revealed 
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that vascular health for ε4- individuals in the lowest concerns class had a non-significant effect 

on memory.  

Memory Compensation. Stratification by memory compensation class and sex revealed 

that pulse pressure predicted memory level and change selectively for females in the high 

compensation class. For females in this class, higher pulse pressure was associated with lower 

level (b = -0.13, p = 0.01) and steeper decline (b = -0.005, p = 0.001) in memory. For males in all 

classes, no memory compensation class moderation effects were observed. The stratified CLGM 

was confirmed to provide better fit (Δχ2 = 134.754, Δdf = 35, p < 0.001), indicating a significant 

sex and memory compensation class moderation in females. 

In order to stratify by memory compensation class and APOE ε4+/-, the lowest 

compensation class was removed from stratification analyses due to the small number of ε4+ 

individuals in this class. For ε4- individuals in high compensation class only, higher pulse 

pressure was associated with lower level (b = -0.11, p = 0.03) and steeper decline (b = -0.005, p 

= 0.003) in memory. Pulse pressure did not significantly predict level or change in episodic 

memory for ε4+ individuals belonging to any memory compensation class. This CLGM was also 

constrained in order to test whether stratification by class and APOE ε4+/- provided a better 

model. The constrained model did not show worse fit (Δχ2 = 18.92, Δdf = 21, p = 0.59) than the 

unconstrained model, revealing a non-significant moderation effect of APOE and memory 

compensation class on pulse pressure predictions of memory trajectories.  

In sum, we identified a significant moderation effect whereby higher pulse pressure 

predicted lower level and decline in females belonging to the high compensation class only. 

APOE and memory concerns class stratification revealed that vascular health in ε4- individuals 

in the high compensation class had a non-significant effect on memory.  
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Memory Self-Efficacy. Stratification by memory self-efficacy class and sex revealed 

pulse pressure predicted memory level and change selectively for females in the high memory 

self-efficacy class. For females in this class, higher pulse pressure was associated with both 

lower level (b = -0.01, p = 0.008) and steeper decline (b = -0.004, p = 0.004). For males in all 

classes, no memory self-efficacy class moderation effects were observed. The CLGM to predict 

memory trajectories was constrained in order to test whether stratification by class and sex 

provided a better model, which was confirmed to be true (Δχ2 = 132.90, Δdf = 35, p < 0.001). 

This suggests that sex and memory self-efficacy class are significant interactive moderators of 

pulse pressure predictions of episodic memory trajectories (selective effects for females). 

In order to stratify by memory compensation class and APOE ε4+/-, the lowest memory 

self-efficacy class was removed from stratification analyses due to the small number of ε4+ 

individuals in this class. In individuals with no ε4 allele, higher pulse pressure was associated 

with steeper decline and lower level in those in the low memory self-efficacy class (bi = -0.11, bs 

=-0.01) and the high memory self-efficacy class (bi = -0.08, bs =-0.004). Pulse pressure did not 

significantly predict level or change in episodic memory for ε4+ individuals belonging to any 

memory self-efficacy class. Membership to memory self-efficacy class and APOE demonstrated 

significant moderation of episodic memory predictions by pulse pressure in ε4- individuals, as 

the unconstrained CLGM provided better fit than the constrained model (Δχ2 = 35.68, Δdf = 21, 

p = 0.02). 

In sum, higher pulse pressure predicted lower level and decline in females belonging to 

the high memory self-efficacy class only. APOE and memory self-efficacy class stratification 

revealed that for individuals without an ε4 allele, poorer vascular health for individuals in both 
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the low memory self-efficacy and high memory self-efficacy classes were predictive of lower 

memory level and steeper decline.  

Discussion 

The overall goal of this study was to explore associations of SMD facets, pulse pressure, 

sex, and APOE genetic risk and their independent and interactive effects on episodic memory 

trajectories. We utilized two distinct quantitative modeling approaches: (1) data-driven 

discrimination of memory and SMD facet trajectory classes, and (2) conditional latent growth 

modeling to test prediction and moderation of the above-mentioned risk factors on episodic 

memory level and change.  

 Previous research identified SMD as a possible subjective harbinger of objective 

cognitive decline and increased dementia risk (Buckley et al., 2016; Jessen et al., 2014a; Snitz et 

al., 2015b; Wolfsgruber et al, 2016). Early markers (both objective and subjective) of rapidly 

declining memory function are of considerable interest for current research on (1) the origins of 

differential memory aging and (2) the identification of individuals with elevated risk for 

exacerbated memory decline. The latter could lead to new targets for dementia prevention efforts 

and promotion of healthier brain and cognitive aging. Accounting for precision moderators (e.g., 

sex) of objective decline and AD is of additional importance as these early markers have been 

shown to be differentially predictive of longitudinal memory trajectories (Drouin et al., 2018). 

For example, our previous findings revealed memory self-efficacy to be exclusively predictive of 

episodic memory change and level in males, whereas memory complaints and memory concerns 

demonstrated female-specific predictive value. Thus, we hypothesized that SMD interactions 

with other AD risk factors, such as sex and APOE genetic risk, may also differentially impact 

pulse pressure predictions of memory trajectories.  
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Discussion: RG1 

For the first part of our first research goal, we used data-driven modelling technology as 

applied to a relatively large distribution of memory trajectories to identify distinct latent classes 

of change patterns, based on an algorithm of level and slope.  

With a growing emphasis on heterogeneity in cognitive aging, an increasing number of 

studies have explored data-driven class trajectories of cognition in older adults, instead of 

grouping individuals based on outcome change cut-offs (e.g., score decrease in MMSE) (Melis, 

Haaksma, & Muniz-Terrera, 2019). Most commonly, trajectories of general functional markers 

and cognitive outcome variables (e.g., clinical rating scales score, MMSE), especially in clinical 

samples, have been explored (Baker et al., 2017; Haaksma, Calderon-Larranaga, Olde Rikkert, 

Melis, & Leoutsakos, 2018; Melis et al., 2019; Tampubolon & Pendleton, 2017). A limited 

number of studies have focused on memory trajectories specifically in cognitively normal older 

adults. Of non-VLS studies (McFall et al., 2019b), these studies either explored different types of 

memory (i.e., semantic) (Teipal et al., 2018) or utilized composite or manifest episodic memory 

variables (Ding et al., 2019; Olaya et al., 2017; Pietrzak et al., 2015). 

Using a latent variable model of episodic memory, our results revealed that cognitively 

normal older adults can be objectively classified into four distinct and interpretable classes of 

memory aging trajectories. We observed variability in both initial level and change across a 

broad range of older adults, which was captured by four distinct groups: (1) a group performing 

above average at the age of 75, and showing maintenance of memory function (stable memory 

aging; SMA), (2) a group performing at an average level and exhibiting minimal decline (typical 

memory aging; TMA), (3) a group demonstrating mid-low level and moderate decline (slowly 

declining memory aging; SDMA) and (4) a group performing the worst at age 75 and declining 
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fairly rapidly over time (rapidly declining memory aging; RDMA). This finding was similar to a 

previous VLS study in which three classes with distinct longitudinal patterns of level and slope 

were observed. These previously observed classes were characterized as “stable memory aging”, 

“normal memory aging” and “declining memory aging” (McFall et al., 2019b). Our 

interpretation of the present four-class model class differences was concordant with the previous 

findings for non-demented adults and memory. The concordances included a similar pattern of 

memory trajectory subgroups (stable, typical, declining): a class with sustained memory 

trajectories, a class with limited decline, and two classes (SDMA, RDMA) exhibiting more 

accelerated decline. A few differences were as follows. For the previous 3-class model, the 

middle class was characterized by mid-range to low factor scores (under zero). For the present 

model, we observed two separable middle classes: (1) the TMA class representing an ‘upper-

middle’ with level factor scores remaining above zero and decline being limited, and (2) the 

SDMA class representing a ‘lower-middle’ with factors scores well below zero and increasingly 

steeper decline. The present 4-class model also revealed smaller class sizes compared to the 

previously observed model. Notably, the SMA class is significantly smaller in the present model 

(13.6% versus 31%). We also observed near-identical sized RDMA and SMA classes, indicating 

that there are a similar number of individuals in the classes presenting with the most extreme 

level and change values. In addition, our four trajectory classes closely resembled findings in an 

older group of adults (aged 65-79 years) in which four trajectories groups of verbal episodic 

memory were identified (Olaya et al., 2017). Class proportions were also comparable in size and 

characterization (Olaya et al., 2017). 

Specific to the declining classes, the RDMA class trajectory is also consistent with 

previous findings of a cognitively normal subgroup who exhibited decline at a non-normal rapid 
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rate within a larger sample of older adults with heterogeneous memory trajectories (Mungas et 

al., 2010). As rapid decline in episodic memory is often an early cognitive hallmark of 

preclinical AD (Bäckman et al., 2001; Hodges, 1998), it is possible that membership to these 

declining episodic memory classes (i.e., RDMA) is associated with a number of important risk 

factors of neurodegeneration. Likewise, membership to stable classes (i.e., SMA) may be 

associated with protective factors predicting sustained and higher levels of cognitive 

performance with aging. Although examining predictions of class membership beyond pulse 

pressure, sex and SMD was outside the scope of this study, the consideration of additional risk 

factors as possible predictors would be an important consideration in future research (e.g., 

Josefsson, de Luna, Pudas, Nilsson, & Nyberg, 2012; McFall et al., 2019a).  

As a second part to our first research goal, we tested class discrimination by risk 

predictors, including sex, SMD facets and pulse pressure. Previous research has shown that older 

females often perform at higher levels and decline less in episodic memory than males of the 

same age (Herlitz, Nilsson & Bäckman, 1997; Herlitz & Rehnman, 2008; McFall et al., 2019b). 

Results of the current study further support these findings, as being female was associated with 

decreased odds of being in the TMA, RDMA and SDMA class as compared to the SMA class. 

As this study included two declining classes, the absence of a significant prediction by sex of 

membership to SDMA class when compared to the RDMA class is a novel finding in the context 

of a latent episodic memory variable. In these two declining groups, males and females were 

indistinguishable in their memory decline patterns. Previously, Olaya and colleagues (2017) 

found that sex was not associated with the low and declining verbal memory class as compared 

to the very low and declining class in an older age group of adults (65-79 years). As supported 

by these findings, sex conceivably plays a limited role in differentiating membership between 
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two declining classes. It is possible that female sex is initially protective of decline in memory, 

but that this protection is attenuated as memory decline begins to occur. In the context of 

cognitive aging and dementia prevention research, sex should be explored in a way that accounts 

for the possibility of diminishing importance as a risk/protective factor with progressing memory 

dysfunction in asymptomatic adults.   

Predictions of memory trajectory class membership by SMD facets revealed that the 

memory concerns facet was a significant predictor of membership to the more steeply declining 

classes relative to the SMA class. Previously, using individualized trajectories instead of class 

membership, we found that more memory complaints, more memory concerns and less memory 

compensation were predictive of steeper decline in our entire sample (Drouin et al., 2018). As 

only baseline SMD facets were considered as predictors in the present study, it is likely that the 

consideration of baseline-only subjective memory diminishes the predictive value of this facet as 

compared to using the facets at all available waves. Additionally, while we previously found that 

other SMD facets (e.g., memory self-efficacy) predicted individual memory trajectories, these 

predictions were sex-specific (Drouin et al., 2018). As the current four memory trajectory classes 

were created using the entire sample (i.e., not stratified by sex), previously sex-specific facets 

would likely not be indicative of membership to declining classes for both males and females. 

The results of the current study suggest that the specific facet of memory concerns is particularly 

predictive of non-normal memory trajectories, as an increase in reported memory concerns was 

associated with increased odds of being in the SDMA or RDMA classes as compared to the 

SMA class. It is likely that increased memory concerns may be more revealing of everyday 

memory challenges and future declines in memory than the three other SMD facets. This may be 

due to the fact that concerns about memory change imply both an awareness of ongoing memory 
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decline, and the resulting negative impact (i.e., concerns and anxiety) resulting from this 

perceived change (Jessen et al., 2014a). As has been found in other SCD and SMD studies, these 

findings suggest that memory concerns present as a more severe form of memory complaints 

(Jessen et al., 2014b).  

We also found pulse pressure to be predictive of memory trajectory latent class 

membership. Interestingly, when using the SMA as a reference category, an increase in pulse 

pressure increased the odds of being in the SDMA class, but not the RDMA class. As individuals 

in the RDMA class also demonstrate much lower levels of episodic memory than all other 

classes, it is possible that membership in this class is only partially captured by pulse pressure, 

perhaps due to the confounding effects of pre-existing memory decline. That is, higher pulse 

pressure may negatively impact memory performance to a certain threshold, but this impact may 

diminish once a particular amount of decline has occurred. Indeed, pulse pressure may be 

particularly predictive of cognitive decline in earlier, but not later (i.e., when the decline is more 

rapid), stages. Some studies have found that higher pulse pressure in the oldest-old (85 years and 

older) is associated with less cognitive decline (Molander, Gustafson, Loveheim, 2010; Sabayan 

et al., 2012). Sabayan and colleagues (2012) hypothesized that age may be confounded by 

already present cognitive decline. In addition, longitudinal findings suggest that blood pressure 

decreased three years prior to a dementia diagnosis, but this change was not present more than 3 

years and up to 6 years prior to diagnosis (Qiu, von Strauss, Winblad & Fratiglioni, 2004). It is 

thus possible that higher pulse pressure (similarly linked to cardiovascular risk) is also predictive 

of some decline in memory, but not of a more rapid and exacerbated decline that often presents 

as a harbinger to MCI or dementia. It is likely, then, that membership to the RDMA class is 

associated with more robust biomarkers of cognitive decline and clinical neurodegeneration.  
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In sum, for our first research goal, we used LCGA to identify four distinct classes of 

memory aging trajectories. These classes were consistent with previous findings in this research 

area demonstrating the existence of distinguishable subgroups of memory performance change 

across a 40-year band of aging. The objectively determined subgroups represented a full range of 

memory aging trajectories from 55 to 95 years of age. The identified subgroups included a class 

of relatively high and sustained memory change and another of relatively low and rapidly 

declining memory change. Male sex, more memory concerns and higher pulse pressure were 

predictive of membership to more rapidly declining classes. These factors demonstrate a clear 

importance within the framework of dementia risk management and healthier cognitive aging as 

they are associated with undesirable and possible non-normal changes in memory function.  

Discussion: RG2 

The first part of our second research goal consisted of investigating pulse pressure 

associations with episodic memory trajectories as moderated by SMD facets. We first established 

a significant inverse association between initial pulse pressure and memory change, whereby 

higher (worse) PP was associated with lower and steeper memory decline. In the second part of 

the second research goal, we tested possible moderation of this association by SMD facets. For 

each of the SMD facets, we used LCGA to identify distinct latent trajectory classes based on an 

algorithm of level and slope. We found distinguishable classes for each of the SMD facets. We 

identified four classes for the memory complaints and memory concerns facets, and three classes 

for the memory compensation and memory self-efficacy facets. An individual’s most likely 

class, as determined by posterior probabilities (see Asparouhov & Muthén, 2014), was used as a 

stratification variable to investigate moderation by SMD facet classes on pulse pressure 

predictions of memory level and change. 
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Overall, we found selectively significant moderation effects of SMD facets. Notably, 

moderation by SMD was specific to the memory complaints and memory concerns facets. For 

the memory complaints facet, higher pulse pressure was associated with lower level and steeper 

decline selectively for two of the classes, the low complaints and moderate complaints 

subgroups. For the memory concerns facet, higher pulse pressure was similarly associated with 

lower level and steeper decline only for the lowest concerns, low concerns and moderate 

concerns classes.  

The memory complaints and memory concerns facets represent the typical items which are 

usually used to encompass SMD or SCD, and are criteria for an SCD Plus Classification (Jessen 

et al., 2014a). As such, these two facets may be considered at the core of SMD. It is possible that 

moderation by memory complaints and memory concerns was significant as these two facets 

represent more typical and common presentations of SMD. In addition, both the memory 

compensation and memory self-efficacy facets had fewer latent trajectory classes (i.e., 3 versus 

4). Thus, differences between the extreme classes for these facets may be less pronounced than 

for memory complaints or concerns, and accordingly making effects more difficult to detect.  

Our next step consisted of investigating whether this SMD moderation persisted or differed 

when accounting for sex or APOE genetic risk. We found that the sex and SMD facet interaction 

significantly moderated pulse pressure predictions of episodic memory trajectories for all four 

SMD facets. In the case of memory complaints, only females belonging to the low complaints 

and moderate complaints classes demonstrated lower level and steeper decline in memory with 

increasing pulse pressure. There were no pulse pressure effects on episodic memory trajectories 

for males in any class, or for females belonging to the lowest complaints and highest complaints 

classes. For females belonging to the highest complaints class, it is possible that the absence of a 
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pulse pressure effect is due to accurate perceptions of memory decline. Indeed, we previously 

established longitudinal associations between subjective memory complaints and objective 

decline in females (Drouin et al., 2018). Notably, females with higher memory complaints 

demonstrated lower memory level and declined faster over time than those reporting low 

complaints (Drouin et al., 2018). Previous studies on subjective complaints in healthy older 

adults also report that individuals with complaints are accurately perceiving objectively 

undetectable changes in cognitive function (Reisberg, Shulman, Torossian, Len & Zhu, 2010; St 

John & Montgomery, 2002), an effect that is especially strong for females (Heser et al., 2019). It 

is conceivable that females with increased memory complaints are accurately perceiving their 

memory decline. As such, females belonging to the highest complaints memory class would be 

experiencing declining memory function, which may no longer be affected by vascular 

dysfunction. As was the case with the RDMA class in our first research goal and with individuals 

in preclinical AD stages (Qiu et al., 2004), this further suggests that the effects of pulse pressure 

on memory are diminished when memory decline has already begun to occur. 

 Similarly, females with the lowest complaints may also be accurately perceiving memory 

changes (i.e., no change). Females belonging to this class, then, may not demonstrate the typical 

effects of poor vascular health, as they are likely not experiencing the same extent of ‘normal’ 

age-related decline as those perceiving low to moderate memory complaints. For the memory 

concerns facet, there were no pulse pressure effects on memory change for females in the highest 

concerns class. As memory concerns were also previously found to be indicative of memory 

decline (Jessen et al., 2014b; Wolfsgruber et al, 2016), specifically in females (Drouin et al., 

2018), this finding similarly supports the possibility that pulse pressure no longer acts as an 

accurate marker of cognitive decline for females already exhibiting substantial decline.  
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For the memory compensation facet, stratification by SMD class alone did not significantly 

improve the model. This indicates that memory compensation class membership does not 

moderate pulse pressure and memory trajectory associations. However, the addition of sex in the 

two-way stratification analyses revealed significant effects for females belonging to one memory 

compensation class. Notably, in females with the highest use of memory compensation, higher 

pulse pressure predicted both lower level and steeper decline. Although we initially hypothesized 

greater use of compensatory techniques to be representative of worse SMD, it is also possible 

that low use of memory compensation may actually indicate a form of worse SMD. That is, the 

use of compensatory techniques, if successful, may cause less memory change to be perceived. 

With this directionality in mind, there would be no observed pulse pressure effects on memory 

for females with worse SMD for this facet (i.e., less reported memory compensation), similarly 

reflecting results found for the memory complaints and memory concerns facets.  

For memory self-efficacy, class stratification on its own did not reveal significant 

moderation effects. Our results demonstrated that higher pulse pressure predicted both lower 

level and steeper decline in memory for females belonging to the class with high reported 

memory self-efficacy. This result is especially interesting as memory self-efficacy was 

previously found to be significantly predictive of objective decline in males only (Drouin et al., 

2018). This suggests that predictions of objective decline by pulse pressure moderated by 

memory self-efficacy show different associations with sex than SMD associations alone.  

The addition of vascular health and sex in the present study further supports and extends 

previous findings in two ways. First, the multi-faceted SMD findings demonstrate that vascular 

dysfunction interactions with early and accurate memory perception changes are facet-specific 

and occur in females only. SMD facets and pulse pressure may be early independent and 
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interactive predictors of cognitive decline in females, but have not been shown to be interactively 

involved in early prediction patterns for males. Second, it is likely that poor vascular health 

diminishes in importance as an AD risk factor once memory decline progresses. Indeed, as 

supported by our previous work demonstrating SMD-related memory trajectory predictions for 

females, the current results suggest that females belonging to classes which represent more SMD 

are likely already experiencing memory decline, and, in turn, their vascular health no longer has 

a significant effect on their memory decline. The results from the first research goal also support 

this finding, with those in the RDMA class not demonstrating pulse pressure effects.  

Stratification of the memory trajectories prediction model by SMD facet classes and 

APOE ε4+/ε4- revealed significant moderation effects for both the memory complaints and 

memory self-efficacy facets. For these stratifications, pulse pressure associations with episodic 

memory were only found in APOE ε4- individuals. It is thus possible that these vascular effects 

are primarily driven by the larger number of ε3/ε3 individuals. While poor vascular health has 

been found to be particularly more predictive of decline in ε4 carriers (Ferencz et al., 2013; 

Yasuno et al., 2012), the results of this study suggest that this association does not occur 

interactively with SMD.  

Limitations and Strengths  

There are several limitations to this study. First, VLS participants are relatively healthy and 

free of neurodegenerative disease at intake and only asymptomatic participants were selected for 

this study. Therefore, this sample is not entirely representative of a broad population of older 

adults, as certain risk-reducing influences (e.g., higher education levels) are typical 

characteristics of these participants. However, present VLS sample characteristics may reflect a 

growing and independent subset of older adults in developed nations; therefore, the potential 
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range of generalizability may extend to older adults in these regions. Second, the analysis used 

(i.e., LCGA) for our second research goal to identify SMD facet classes and stratify our models 

by these classes may have introduced downward-estimate bias. The technique used is known as 

the “classify-analyze” approach, which assumes that classification is true class membership 

without entirely accounting for measurement error (Bray, Lanza & Tan, 2015). However, there 

are a number of reasons why this was the best available analytic approach. Using SMD as a 

stratification variable allowed for a thorough examination of potential SMD moderation effects, 

as latent variable interactions are often difficult to detect and interpret (Maslowsky, Jager & 

Hemken, 2015). In addition, for the memory complaints and memory concerns facets, we can be 

relatively confident that classification accuracy is satisfactory due to the high value of entropy. 

Moreover, any potential bias introduced by the classify-analyze approach leads to an attenuation 

of estimates (Bray et al., 2015), suggesting that stronger SMD moderation effects than those 

found in this study may actually be present. Of course, it is important to note that for both the 

memory compensation and memory self-efficacy facets, more caution is required in the 

interpretation of these predictions as sub-standard values of entropy may indicate inadequate 

delineation of classes (Celeux & Soromenho, 1996). Third, the study of the APOE moderation 

(in RG2b) was limited due to restricted number of APOE ε4+ individuals belonging to those 

classes. However, we were still able to proceed with the moderation analyses for all four SMD 

facets. 

There were also several notable strengths to this study. First, our sample was reasonably 

large (W1 n = 580). Second, we used age (as a continuous variable) instead of wave as the metric 

of change with participants contributing up to 9 years of data spanning a 40-year band of aging. 

This accelerated longitudinal design allowed longitudinal analyses to be conducted across a wide 
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range of ages and avoid the common pitfalls that accompany simple cohort longitudinal or, 

especially, cross-sectional designs. Third, LCGA account for heterogeneity present in the data. 

As older adults are known to be a widely heterogeneous group (Lowsky, Olshanky, Bhattacharya 

& Holdman, 2013), especially in asymptomatic or early preclinical dementia stages, this 

methodology allows for more accurate capturing of the population of interest (Masyn, 2013). 

Fourth, the inclusion of auxiliary variables directly in the model (R3STEP approach) for our first 

research goal is the current standard in mixture modeling techniques as it takes into account 

possible misclassification (Asparouhov & Muthén, 2014).  

Conclusion 

Previous findings suggest a network of mechanisms connecting SMD with differential cognitive 

and memory trajectories and clinical outcomes (Buckley et al., 2016; Geerlings et al., 1999; 

Mitchell et al., 2014; Tsutsumimoto et al., 2017; Wang et al., 2004; Wolfsgruber et al, 2016). 

Among these potential differentiating predictors are vascular health, sex, and APOE genetic risk. 

To date, vascular associations with SMD and these potential moderators of memory change 

trajectories remain vastly understudied. The identification of significant predictors (including 

pulse pressure) of episodic memory latent class membership provides further understanding of 

early markers and their interactions in predicting distinct memory-related trajectories. In 

addition, the present study detected SMD facet-specific interactions with sex and APOE genetic 

risk that moderate the effect of aging vascular dysfunction on memory trajectories differentially. 

The investigation of independent and interactive effects of vascular and other key AD risk 

factors (e.g., APOE, sex) and SMD in the prediction of differential changes in memory aging 

also provides insight into the precision nature of some of the associations (e.g., females only) and 

potential directions for personalized intervention. Accordingly, this could lead to the detection of 
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precision targets in at-risk groups prior to the onset of clinical neurodegeneration associated with 

accelerated memory decline. 
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Tables 

Table 1. Participant characteristics by wave (W1-W3). 

 

Characteristics W1 W2 W3 

n 580 474 392 

Age, years (SD) 70.2 (8.60) 74.3 (8.50) 77.8 (8.10) 

Gender (% females) 65 64.6 64.8 

Education, years (SD) 15.3 (3.0) 15.4 (3.0) 15.4 (3.2) 

Pulse Pressure, mmHG 51.92 (10.11)   

APOE, n (%)    

         ɛ2/ɛ2 33 (5.7)   

         ɛ2/ɛ3 37 (6.4)   

         ɛ2/ɛ4 29 (5.0)   

         ɛ3/ɛ3 345 (59.5)   

        ɛ3/ɛ4 125 (21.6)   

         ɛ4/ɛ4 11 (1.9)   

MMSE 28.7 (1.21) 28.4 (1.75) 28.14 (2.6) 

CES-D  7.0 (5.4)   

NEO-Anxiety 21.5 (4.5)   

 

Table 2. Single-group latent growth model of EM. 

Model -2LL AIC BIC D df 

Fixed intercept  7712.92           7720.92 7738.37   

Random intercept  5593.61           5603.61 5635.43 2119.31 1 

Random intercept Fixed slope  5580.65           5592.65 5618.83 12.96 1 

Random intercept Random slope  4728.71           4744.71 4779.61 856.94 2 
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Table 3. Confirmatory factor analyses and invariance testing for SMD and EM. 
Model AIC BIC 2 df p RMSEA CFI SRMR 2 df 

SMD-

Configural 

59619.06 60901.79 2374.15 1416 0.000 0.03 0.91 

 

0.06 

 
  

SMD-Metric 59611.58 60763.42 2426.66 1446 0.000 0.03 0.91 0.06 52.51 30 

SMD-Scalar 59626.26 60612.31 2517.34 1484 0.000 0.04 0.91 0.06 90.68 38 

SMD-Residual 59600.65 60421.10 2567.73 1522 0.000 0.03 0.91 0.06 50.39 38 

 

EM-

Configural 

 

21420.06 

 

21642.58 

 

43.38 

 

39 

 

0.000 

 

0.01 

 

0.99 

 

 

0.03 

 

 

 

 

EM-Metric 21435.39 21631.73 70.71 45 0.000 0.03 0.99 0.05 27.33 6 

EM-Scalara 21442.61 21630.22 81.92 47 0.000 0.04 0.98 0.06 11.21 2 

 
 

Table 4. Correlations between SMD facets (four-factor model) at wave 1. 

 Memory 

Complaints 

Memory 

Concerns 

Memory 

Compensation 

Memory Self-

Efficacy 

Memory Complaints - 0.50 0.56 0.15 

Memory Concerns 0.50 - 0.37 -0.05 

Memory Compensation 0.56 0.37 - -0.07 

Memory Self-Efficacy 0.15 -0.05 -0.07 - 

 

Table 5. Fit statistics and class proportions for tested unconditional LCGA models of EM. 

k Class Proportions AIC BIC SABIC Entropy 

1 - 7446.50 7468.32 7452.45 - 

2  0.46 / 0.53 6781.07 6815.98 6790.58 0.79 

3  0.44 / 0.38 / 0.17 6442.91 6490.90 6455.98 0.84 

4*  0.13 / 0.13 / 0.34 / 0.38 6167.70 6228.77 6184.33 0.85 

5 0.16 / 0.04 / 0.11 / 0.34 / 0.32 5973.90 6048.07 5994.11 0.88 
*Selected final model 

 

Table 6. Fit statistics and class proportions for tested unconditional GMM models of EM. 

k Class Proportions AIC BIC SABIC Entropy 

1 - 7446.50 7468.32 7452.45 - 

2  0.86/0.14 4635.16 4683.16 4648.24 0.78 

3  0.06/0.15/0.78 4561.57 4622.65 4578.21 0.83 

4  0.06/0.19/0.04/0.69 4536.95 4611.12 4557.15 0.79 

 
Table 7. Parameter estimates (means) for the selected 4-class EM model. 

Class 1: SMA 

(13.6%) 

Class 2: TMA 

(38.3%) 

Class 3: SDMA 

(34.0%) 

Class 4: RDMA 

(13.9%) 

i: 4.77 

s: -0.02 

i: 1.61 

s: -0.05 

i: -1.68 

s: -0.12 

i: -5.31 

s: -0.19 
*LCGA: variances were fixed at 0 and are not reported 
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Table 8. Estimates, odds ratios for predictors using SMA as reference class. 
 

 Sex1 Memory 

Complaints 

Memory 

Concerns 

Memory 

Compensation 

Memory Self-

Efficacy 

Vascular Health 

k Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

TMA 1.54* 4.66 0.01 1.01 0.34 1.41 1.49 4.44 0.34 1.40 0.25 1.28 

SDMA 2.49* 12.06 0.09 1.09 0.88* 2.41 2.19 8.94 0.47 1.60 0.47* 1.60 

RDMA 2.76* 15.80 0.45 1.57 1.22* 3.39 0.28 1.32 1.01 2.75 0.41 1.51 

1Reference category for sex is female. 

*significant after Benjamini-Hochberg FDR (10%) correction 
 

Table 9. Estimates, odds ratios for predictors using RDMA as reference class. 
 

 Sex1 Memory Complaints Memory 

Concerns 

Memory 

Compensation 

Memory Self-

Efficacy 

Vascular Health 

k Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

Estimate Odds 

Ratio 

SMA -2.76* 0.06 -0.45 0.64 -1.22* 0.30 -0.28 0.76 -1.01 0.36 -0.41 0.66 

TMA -1.22* 0.29 -0.44 0.64 -0.87* 0.42 1.21 3.35 -0.67 0.51 -0.16 0.85 

SDMA -0.27 0.76 -0.36 0.70 -0.33 0.72 1.92 .15 -.54 0.58 0.05 1.05 

1Reference category for sex is female. 

*significant after Benjamini-Hochberg FDR (10%) correction 

 
Table 10. Fit statistics and class proportions for tested unconditional LCGA models of memory 

complaints. 

k Class Proportions AIC BIC SABIC Entropy 

2  0.64/0.36 1564.28 1599.19 1573.79 0.86 

3  0.23/.45/0.32 1387.57 1435.65 1400.64 0.77 

4*  0.20/0.45/0.09/0.26 1255.43 1216.52 1272.07 0.80 

5 0.08/0.20/0.13/0.20/0.39 1208.81 1282.98 1229.01 0.74 
*Selected final model 

 

Table 11. Parameter estimates (means) for the 4-class memory complaints model. 

Class 1: 

Lowest 

Complaints 

(20.3%) 

Class 2:  

Low 

Complaints 

(25.9%) 

Class 3:  

Moderate 

Complaints 

(44.8%) 

Class 4: 

Highest 

Complains 

(8.9%) 

i: -0.75 

s: 0.007 

i: -0.21 

s: 0.013 

i: 0.32 

s: 0.006 

i: 0.83 

s: 0.007 
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Table 12. Fit statistics and class proportions for tested unconditional LCGA models of memory concerns. 

k Class Proportions AIC BIC SABIC Entropy 

2  0.65/0.35 1392.22 1427.13 1401.73 0.87 

3  0.17/0.32/0.51 1028.92 1076.91 1041.99 0.86 

4*  0.301/0.32/0.23/0.14 857.99 919.08 874.63 0.81 

5 0.03/0.40/0.12/0.19/0.26 735.53 809.69 755.73 0.85 
*Selected final model 

 

Table 13. Parameter estimates (means) for the 4-class memory concerns model. 

Class 1: 

Lowest 

Concerns 

(30.7%) 

Class 2:  

Low 

Concerns 

(32.3%) 

Class 3:  

Moderate 

Concerns 

(23.4%) 

Class 4: 

Highest 

Concerns 

(13.6%) 

i: -0.55 

s: 0.003 

i: -0.15 

s: 0.004 

i: 0.36 

s: -0.001 

i: 0.95 

s: -0.008 
 

 

Table 14. Fit statistics and class proportions for tested unconditional LCGA models of memory 

compensation. 

k Class Proportions AIC BIC SABIC Entropy 

2  0.40/0.60 -2082.69 -2047.78 -2073.18 0.71 

3* 0.49/0.12/0.39 -2403.68 -2355.69 -2390.61 0.73 

4  0.20/0.29/0.40/0.10 -2590.41 -2529.33 -2573.77 0.71 
*Selected final model 

 

Table 15. Parameter estimates (means) for the 4-class memory compensation model. 

Class 1:  

Lowest Compensation 

(12.7%) 

Class 2:  

Low Compensation 

(48.8%) 

Class 3:  

Moderate Compensation 

(38.5%) 

i: -0.27 

s: -0.003 

i: -0.047 

s: -0.001 

i: 0.15 

s < 0.001 
 

 

Table 16. Fit statistics and class proportions for tested unconditional LCGA models of memory self-

efficacy. 

k Class Proportions AIC BIC SABIC Entropy 

2  0.72/0.28 463.76 498.66 473.27 0.78 

3* 0.31/0.09/0.60 402.88 450.88 415.95 0.73 

4  0.06/0.27/0.03/0.63 351.14 412.23 267.78 0.85 
*Selected final model 

 
Table 17. Parameter estimates (means) for the 4-class memory self-efficacy model. 

Class 1:  

Lowest Memory Self-

Efficacy (8.9%) 

Class 2:  

Low Memory Self-Efficacy 

(30.5%) 

Class 3:  

High Memory Self-Efficacy 

(60.6%) 

i: 0.620 

s: 0.009 

i: 0.205 

s: 0.009 

i: -0.180 

s: 0.005 
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Table 18. Goodness of fit indices for conditional latent growth models of pulse pressure predicting EM.  

Model AIC BIC -2LL D p 

Stratified by memory complaints 15001.04 15261.56 14881.03 - - 
Stratified by memory complaints 

(constrained) 
14998.19 15180.56 14914.19 33.14 0.02 

Stratified by memory complaints and sex 14947.42 15468.48 14707.42 - - 
Stratified by memory complaints and sex 

(constrained) 
15004.82 15313.11 14862.82 155.39 <0.001 

Stratified by memory complaints and APOE  12958.73 1336.78 12778.73 - - 
Stratified by memory complaints and APOE 

(constrained) 
12944.66 13175.69 12834.66 55.93 0.01 

Stratified by memory concerns 15013.04 15273.57 14893.05 - - 
Stratified by memory concerns 

(constrained) 
15007.09 15189.47 14923.10 30.05 0.04 

Stratified by memory concerns and sex 14902.44 15423.49 14662.44 - - 
Stratified by memory concerns and sex 

(constrained) 
14999.98 15308.27 14857.98 195.54 <0.001 

Stratified by memory concerns and APOE  12432.92 12805.51 12252.92 - - 

Stratified by memory concerns and APOE 

(constrained) 
12396.77 12624.46 12286.77 33.85 0.5 

Stratified by memory compensation 15006.31 15201.71 14916.31 - - 

Stratified by memory compensation 

(constrained) 
14991.73 15135.02 14925.72 9.42 0.67 

Stratified by memory compensation and sex 14966.71 15357.50 14786.71 - - 

Stratified by memory compensation and sex 

(constrained) 
15011.46 15250.28 14901.46 134.75 <0.001 

Stratified by memory compensation and APOE  12576.21 12826.76 12456.21 - - 

Stratified by memory compensation and APOE 

(constrained) 
12553.13 12715.99 12475.13 18.92 0.59 

Stratified by memory self-efficacy 15018.82 15214.21 14928.82 - - 

Stratified by memory self-efficacy 

(constrained) 
15002.85 15146.14 14936.85 8.04 0.78 

Stratified by memory self-efficacy and sex 14931.21 15322.01 14751.21 - - 

Stratified by memory self-efficacy and sex 

(constrained) 
14994.09 15232.91 14884.10 132.88 <0.001 

Stratified by memory self-efficacy and APOE  13040.43 13293.07 12920.43 - - 

Stratified by memory self-efficacy and APOE 

(constrained) 
13014.11 13178.32 12936.11 35.68 0.02 
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Figures 

 

Figure 1. Individualized raw trajectories of EM. 

  
 

 

Figure 2. Individualized raw trajectories of EM (colour-coded class membership).  
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Figure 3. Elbow Plot for Memory Complaints LCGA. 

 

 

 

 

 

 

 

 

Figure 4. Individualized raw trajectories of memory complaints (colour-coded class 

membership).  
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Figure 5. Individualized raw trajectories of memory concerns (colour-coded class membership).  

 

Figure 6. Individualized raw trajectories of memory compensation (colour-coded class 

membership). 
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Figure 7. Individualized raw trajectories of memory self-efficacy (colour-coded class 

membership).  
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           Appendix A 

Table A1. Selected Items in the Metamemory in Adulthood and Memory Compensation Questionnaire. 
 

 

 

 

 

 

 

 

Memory 

Complaints 

Memory 

Concerns 

Memory  

Anxiety 

Memory 

Compensation 

Memory  

Self-Efficacy 

My memory has 

declined greatly in the 

last 10 years 

It bothers me when 

others notice my memory 

failures 

I get anxious when I am 

asked to remember 

something 

 Do you use such aids 

for memory as 

notebooks or putting 

things in certain places 

more or less often today 

compared to 5-10 years 

ago? 

 I think a good memory 

comes mostly from 

working at it 

I’m less efficient at 

remembering things 

now than I used to be 

I get tense and anxious 

when I feel my memory 

is not as good as other 

peoples’ 

I am usually uneasy 

when I attempt a 

problem that requires 

me to use my memory 

Do you post reminders 

of things you need to 

do in a prominent 

place, such as bulletin 

boards or note boards? 

It’s up to me to keep 

my remembering 

abilities from 

deteriorating 

The older I get the 

harder it is to 

remember clearly  

I get upset when I cannot 

remember something 

I would feel on edge 

right now if I had to 

take a memory test or 

something similar 

 Do you use memory 

tricks such as repeating 

things to yourself or 

grouping things in 

categories more or less 

often today compared 

to 5-10 years ago? 

If I were to work on my 

memory I could 

improve it 

   I do not get flustered 

when I am put on the 

spot to remember new 

things  

 Do you ask other 

people to remind you of 

something? 

No matter how hard a 

person works on his 

memory, it cannot be 

improved very much 

    Do you write yourself 

reminder notes? 

 


