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Abstract

Cognates are words in related languages that have originated from the same word in

an ancestor language, such as the English/German word pair father/Vater. Cognate

information is critical in the field of historical linguistics, where it is used to deter-

mine the relationships between languages and to construct the ancestor languages

they originated from. Most recent work in cognate identification focuses on the task

of clustering cognates within lists of words each having an identical definition. In

that task, only orthographic or phonetic information about a word is utilized when

making cognate judgments. We present a system for the more challenging task of

identifying cognate sets across dictionaries of related languages. The likelihood of

a cognate relationship is calculated on the basis of a rich set of features that capture

both phonetic and semantic similarity, as well as the presence of regular sound cor-

respondences. The pairwise similarity scores are combined with an average-score

clustering algorithm to create sets of words from different languages that may orig-

inate from a common proto-word. When tested on the Algonquian language family,

our system detects 63% of cognate sets while maintaining cluster purity of 70%.
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Chapter 1

Introduction

Cognates are words in related languages that have originated from the same word
in an ancestor language. An example is the English/German word pair father/Vater.
In this example, the words look similar and have identical definitions; however, it
is possible for cognates to have differing appearances and meanings due to gradual
phonetic and semantic shifts over the years. Consider the English/French cognate
pair father/père, which no longer share obvious orthographic similarities. Alterna-
tively, the English/German pair starve/sterben (where sterben means “to die”) no
longer share a meaning. On average, however, cognates display more phonetic and
semantic similarity than random word pairs between languages (Kondrak, 2012).

1.1 Motivation
Cognate information between languages is critical to the field of historical and
comparative linguistics, where it plays a central role in determining the relations
and structures of language families (Trask, 1996). Finding sets of cognate words
between a set of languages is the first step in what is known as the comparative
method, one of the main approaches historical linguists have at their disposal. The
comparative method is built on the assumption that phonological changes in lan-
guages occur regularly. This means that as a sound changes into another sound
within a language, this change occurs across the entire language, not just in ran-
dom words (Trask, 1996). This assumption allows us to find patterns between re-
lated languages, where a sound in one language generally corresponds to a sound
in another language. These patterns are known as regular sound correspondences,
or simply correspondences. As an example, consider Table 1.1, which contains a
correspondence, Sardinian k- : Italian tS- : Romansch ts- : French s- : Spanish
T-, as well as example words where this correspondence can be seen. This corre-
spondence can be found in many words throughout these languages; indeed this is
what makes it a regular correspondence and not simply a coincidence for the words
shown in the table. When languages share many such correspondences, we take
this as evidence that they are genetically related. In this case, all of these languages
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Sardinian Italian Romansch French Spanish
Correspondence k- tS- ts- s- T-

“100” kEntu tSEnto tsjEnt sã Tjen
“sky” kElu tSelo tsil sjEl Tjelo
“stag” kErbu tSErvo tsErf sER Tjerbo
“wax” kEra tSera tsaira siR Tera

Table 1.1: Example Romance language regular sound correspondence (Trask, 1996,
p. 254).

are Romance languages, meaning they descended from Latin. The words meaning
“sky,” for example, originated from the Latin word caelum (also meaning “sky”),
making them cognates. Since there are written records of Latin, we can verify
each Romance language correspondence and determine the original sound; how-
ever, even when no such ancient data exist, we can use regular correspondences
to determine what the ancestor language must have sounded like. This is called
comparative reconstruction and is a main outcome of the comparative method.

Identifying such regular correspondences between languages is central to the
comparative method, and to identify these, linguists must first have sets of cog-
nates (like the “sky” example above) to work with. Moreover, the method can be
thought of as an iterative process, as regular correspondences help to identify more
cognates, which in turn, can be used to identify even more correspondences. But
while information regarding cognates is of the utmost importance to linguists, it
is not always readily available. The languages that are the least well studied, and
hence the ones that historical linguists are most interested in, are often lacking an-
notated cognate information. This means that linguists need to go through the effort
of manually annotating cognate sets from hundreds, if not thousands, of words be-
tween various languages, which can take immense amounts of time. For this reason,
there has been interest within the field of computational linguists to automate the
methods of historical linguistics, and in particular, the task of cognate identifica-
tion. Systems that can automatically find and identify cognates can greatly reduce
the amount of time needed to perform the comparative method and give objective,
reproducible results. One can even consider automated cognate identification sys-
tems as a supplement to aid expert linguists. The task for a linguist is thus reduced
from analyzing all possible word pairs between language dictionaries, to annotating
sets of proposed cognates.

1.2 Cognate Identification Tasks
In general, the task of automatic cognate identification can be classified according
to two questions: (1) are pairs of words being classified as cognates, or are groups
of words being clustered together into cognate sets? (2) are cognate classifications
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made based on only orthographic/phonetic information, or do they also take into
account semantic information? This in turn leads to four main task variations:

1. Classify word pairs as cognate or not based on orthographic/phonetic infor-
mation (Mulloni, 2007; Bergsma and Kondrak, 2007; Ciobanu and Dinu,
2013; Rama, 2015).

2. Cluster words that have identical definitions into cognate sets based on or-
thographic/phonetic information (Hauer and Kondrak, 2011; List, 2012; List
and Moran, 2013; Bouchard-Côté et al., 2013; List et al., 2016).

3. Classify word pairs as cognate or not based on orthographic/phonetic infor-
mation, as well as semantic information (Kondrak, 2004; Wang and Sitbon,
2014).

4. Cluster word pairs into cognate sets based on orthographic/phonetic informa-
tion, as well as semantic information, where cognate sets can include words
with different meanings (Kondrak et al., 2007; Steiner et al., 2011).

Figures 1.1-1.4 provide visual examples of these four tasks, and we refer to them
as the Form-Pairs, Form-Sets, Word-Pairs, and Word-Sets tasks, respectively. Here,
the term form represents that a task involves classifying cognates based on the or-
thographic or phonetic forms of words, whereas the term word represents that a task
involves classifying cognates based on both the orthographic or phonetic forms of
a words along with their definitions.

The Form-Pairs and Form-Sets tasks have received a majority of the attention in
the cognate literature, while the Word-Pairs and Word-Sets tasks remain relatively
understudied. In this thesis, we focus on the Word-Sets task, and the goal of our
work can be described with the following claim:

It is possible to construct an automated system that takes language
dictionaries from related languages as input and identifies a majority
of the cognate sets between these languages.

As a metaphor, imagine leafing through several physical language dictionaries in
search of cognates, where each dictionary is organized as lists of word forms and
their corresponding definitions.

This problem is more difficult than the Form-Sets task because one must take
into account the semantic similarity of non-identical definitions when making deci-
sions, and therefore, there are exponentially more pairwise cognate classifications
to determine. Figure 1.4 shows examples of Algonquian cognate sets including
word forms and definitions, where we can see that cognates need not have identical
definitions. And unlike the Word-Pairs task, where only pairwise classifications are
required, we must also consider how to cluster words into sets. Due to the tran-
sitive nature of cognation, all words within an outputted cognate set are deemed
to be cognate with each other. Organizing words into cognate sets adds a level of
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complexity to the Word-Sets task that is not present in the Word-Pairs task. In the
following section, we describe the assumptions that we make about our task and the
steps that we took in order to achieve our end goal.

1.3 Our Work
One can analyze orthographic (how a word is written), or phonetic (how a word
sounds) representations when determining cognate relationships. In our work, we
focus on phonetic representations, as the string-similarity between two phonetic
shapes is not dependent on the spelling or writing systems of the given languages.
For example, the words displayed in Table 1.1, are written in the International Pho-
netic Alphabet (IPA), a standardized phonetic representation. This allows for the
underlying sound of a word to be easily detected. And if language data is pre-
sented in orthographic form, it can be mapped into a phonetic representation while
preserving much if not all of the similarity.

The term cognate is sometimes used within computational linguistics to denote
words that simply have similar meanings and sound similar (Mulloni, 2007; Nakov
and Tiedemann, 2012; Beinborn et al., 2013). This definition would encompass
words such as proper names or lexical borrowings (when one language adopts a
word from another language) but leave out true cognates that do not sound simi-
lar or have similar meanings. These non-cognates that have similar meanings and
phonetic forms are sometimes referred to as false cognates. False cognates can
prove difficult for an automated system to detect, and in practice, an expert linguist
would be able to discern them from actual cognates within proposed cognate sets;
however, we work under the technical definition of cognate, and hence attempt to
find clusters of words with a common historical origin. One mechanism that helps
discriminate false cognates from genuine cognates is the detection of regular sound
correspondences. The regularity displayed by such correspondences across two lan-
guages need not be apparent in a one-off borrowing or chance resemblance. For an
example of false cognates, consider the Turkish word haber and the Swahili word
habari, both meaning “news.” The reason that these two words are so similar is be-
cause they both originated from an Arabic borrowing, hundreds of years ago (Trask,
1996).

Gold data is a term commonly used in Natural Language Processing literature,
which refers to labelled input data. In the context of cognate identification, gold
data could include example word pairs and a corresponding label indicating whether
each word pair are cognates or not. In our task, we do not assume the existence of
any gold cognate data for the language family that we are analyzing, making this an
unsupervised task. However, while our task is unsupervised in nature, our approach
is still able to utilize supervised learning techniques from machine learning by em-
ploying gold cognate data from a completely unrelated language family. This means
that we can use cognate knowledge gained from language families that are already
well studied to inform our decisions on a language family that little is known about.
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English think
German denken

Portuguese torre
French tour

English beef
German Rindfleisch

Cognates

Cognates

Non-Cognates

Figure 1.1: Example of cognate pair identification using forms: Form-Pairs

Our main machine learning classifier uses a variety of features based on both
phonetic and semantic information. We also derive pairwise models for each lan-
guage pair that are aimed at exploiting regular sound correspondences. The pairwise
models utilize the substring features of Bergsma and Kondrak (2007), which learn
which substrings of one language are often aligned with substrings of another lan-
guage. Then, the scores from both the main and pairwise models are combined to
leverage general cognate information with language-pair-specific knowledge. This
combined score is provided to an average similarity clustering algorithm to con-
struct the proposed cognate sets.

Several metrics have been used to evaluate cognate identification systems; we
investigate these metrics in detail and demonstrate that the commonly used B-
Cubed metric is unsuitable for evaluating a cognate clustering task across dictionar-
ies. We argue that the total number of sets found by a system is the most important
measure of a system’s recall and balance this measure with cluster purity, which is
a measure of precision. When tested on the Algonquian language family, our sys-
tem is able to find 63.1% of gold cognate sets while maintaining a cluster purity of
70.3%.

This thesis begins with a discussion of previous work on cognate identification
in Chapter 2. In Chapter 3, we describe the data sets that we are using in our exper-
iments. In Chapter 4, we explain our methods and approach to this task. Chapter
5 contains a discussion on attempted methods that were surpassed by our current
system. We analyze various possible evaluation metrics for this task in Chapter 6.
In Chapter 7, we explain the experimental set-ups and discuss the results and errors
made by our system. Finally, Chapter 8 contains an overview of what we achieved
and possible avenues for future work.
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French           mari
Polish mąż
Russian муж
Slovak muž
Portuguese    marido
Welsh   gwr

Welsh gwr

French  mari
Portuguese marido

Polish mąż
Russian муж
Slovak muž

(husband)

French jaune
Polish żółty
Russian жёлтый
Slovak žltý
Portuguese   amarelo
Welsh melyn

(yellow)

Welsh melyn

French jaune

Portuguese amarelo

Polish żółty
Russian жёлтый
Slovak žltý

Figure 1.2: Example of cognate set identification using forms: Form-Sets

Cree      ispaːskweːyaːw it is high wood
Ojibwa        išpaːkkweːyaː     there are high trees

Cree maskeːk swamp
Fox maškoteːwi prairie

Menominee kepoːhkan dew falls
Ojibwa kipoːkkat be damp

Cognates

Cognates

Non-Cognates

Figure 1.3: Example of cognate pair identification using words: Word-Pairs
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Cree                  kaːskipiteːw he pulls him scraping
Menominee       kaːskeponæːw he scratches him
Ojibwa              kaːškipin scrape, claw

Cree       kaːskipiteːw he pulls him scraping
Cree       mihkweːkin red cloth
Cree       okistatoːwaːn grizzly bear
…

Fox      ahkawaːpiwa he watches
Fox       meškweːkenwi red woolen handcloth
Fox       yoːwe earlier, before
…

Fox            ahkawaːpiwa he watches
Ojibwa       akkawaːpi stand guard

Ojibwa       akkawaːpi stand guard
Ojibwa       kaːškipin scrape, claw
Ojibwa       miskweːkin red cloth
…

Menominee      iːnekænok they are so big, tall
Menominee      kaːskeponæːw he scratches him
Menominee      mæhkiːkan red flannel
…

Cree                 mihkweːkin red cloth
Fox     meškweːkenwi red woolen handcloth
Menominee      mæhkiːkan red flannel
Ojibwa             miskweːkin red cloth

Figure 1.4: Example of cognate set identification using words: Word-Sets
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Chapter 2

Related Work

As described in Chapter 1, work in automated cognate identification can broadly be
classified into four tasks. In this chapter we discuss the recent work within each of
these tasks.

2.1 Pairwise Cognate Identification Without Seman-
tic Information

The simplest of the cognate identification tasks is pairwise classification based on
orthographic or phonetic information only (the Form-Pairs task). In this section, we
provide an overview of recent work done on this task.

Turchin et al. (2010) identify the ratio of cognate pairs to non cognate pairs in
basic vocabulary lists between languages in an effort to determine the likelihood
that they are related. Pairwise cognate identification is not their primary goal, but
it is an important part of their system. Their method groups consonant sounds into
9 distinct classes and uses these classes to make cognate judgments. They show
that their method gives expected results when determining the widely accepted re-
lationships of the Indo-European languages and go on to provide evidence for the
relatedness of the Altaic languages. A possible criticism of their approach is that
the cognate judgments are based on a very simplistic heuristic, which only con-
siders the first two consonants within words, rather than using more sophisticated
string similarity methods or attempting to utilize sound correspondences between
languages.

Ciobanu and Dinu (2013) propose a method for finding cognate pairs by using
dictionaries with etymological information. Their method starts by looking up a
given word in a dictionary that includes information on etymology and ancestor
words. Next they translate this word using Google Translate into a target language
to find a possible cognate candidate. If the candidate has the same etymology as
the source word, then the words are considered cognate. They use this approach
on a Romanian corpus of transcribed parliamentary debates to identify cognates in
both French and Italian. They also investigate several string similarity metrics at
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various thresholds and determine that edit distance scores the highest accuracy for
both French and Italian. A main critique of this paper is that they assume the exis-
tence of detailed information regarding ancestor words, which is often not available,
especially in language families that are not well known and hence where cognate
identification is most useful.

Rama (2015) experiment with features motivated by string kernels for pairwise
classification. They use an SVM classifier to implement the subsequence feature
vector and compares against a classifier trained with a set of state-of-the-art string
similarity features. They test their method on the Comparative Indo-European
Database and show that it outperforms the model trained on classical similarity
features.

2.2 Cognate Clustering Without Semantic Informa-
tion

While the work in the preceding section focuses on identifying or classifying pairs
of words as cognates, the work in this section goes one step further. On top of mak-
ing pairwise cognate classifications, these systems must also decide on a method
for clustering words into cognate sets, where each word in the set is cognate with
all others (the Form-Sets task). Much of the work in this area begins with words
organized into semantically aligned word lists, or just word lists. These are groups
of words all having an identical definition, like the Swadesh lists, commonly used
in historical linguistics (Swadesh, 1952).

Hauer and Kondrak (2011) start with such word lists and use an SVM classifier
with a variety of string similarity features, such as edit distance, longest common
prefix, the number of common bigrams, and the difference in word lengths, to make
pairwise cognate classifications. On top of the string similarity features, they also
include a binary language-pair feature, which attempts to gain cognate information
across an entire language pair. To utilize this language pair feature, they perform
self-training, where the output of their system without the language pair feature be-
comes part of the input for a second pass. They run their classifier on all word pairs
within word lists, and the resulting classifications are combined with an average
score clustering algorithm. They test their approach on the Comparative Indo Euro-
pean Database, as well as on the Automated Similarity Judgment Program (ASJP)
and achieve F-Score results in the mid 60% to low 70% range.

Hall and Klein (2010; 2011) propose a method for identifying cognate sets in
a large number of related languages. In essence, their task can be considered clus-
tering cognates within word lists, since they do not allow for cognate relationships
between words with non-identical definitions. The method is based on two gen-
erative models, each describing the evolution of words along a phylogeny accord-
ing to automatically learned sound laws in the form of parametric edit distances.
Their model, PARSIM, uses Markov processes to allow for mutations and innova-
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tions along the phylogeny and is inspired by the parsimony principle from biology.
PARSIM has parameters for mutation, innovation, and a global language model for
generating new words which must be learned. They test their approach on the For-
mosan and Oceanic subfamilies of Austronesian, using data from the Austronesian
Basic Vocabulary Database. Their main result is a pairwise recall of 62.1% and
cluster purity score of 91.8% on the Oceanic subfamily.

List (2012) and List and Moran (2013) attempt an automated approach to the
comparative method for finding cognate sets within word lists. Word pairs are first
converted into sound classes and then aligned to find residue pairs, i.e. those seg-
ments that are aligned in the same column. They compare the alignments between
words with the same meaning against alignments between words with different
meanings in order to calculate language-specific distance scores between residue
pairs. The idea is that residue pairs between words with the same meaning are more
likely to signify cognation, while residue pairs between words with different mean-
ings represent chance alignments. Distance scores are then calculated for word
pairs themselves, based on the residue pair scores of their corresponding align-
ment. Finally, they use an average score clustering algorithm to cluster cognates
within word lists based on word pair distance scores. While their system is de-
signed for the Form-Sets task and can only create clusters of words with identical
definitions, we apply it to the Word-Sets task and compare its output against our
results.

List et al. (2016) extend their work to a similar task of clustering partial cog-
nates in word lists. In this task, they take input word lists, but they output judg-
ments about the cognation of morphemes, rather than whole words. They test an
average score clustering technique against Markov clustering and InfoMap (Ros-
vall and Bergstrom, 2008), a heuristic algorithm designed for finding communities
in networks, showing that InfoMap yields good results.

2.3 Pairwise Cognate Identification With Semantic
Information

Using semantic information to inform cognate decisions is a relatively understudied
concept. The systems described in the previous sections make pairwise or multiwise
decisions on cognation based on the orthographic or phonetic form of words and
hence only allow cognate judgments between words with identical meanings. In
this section, we discuss work that attempts to harness semantic information to help
inform pairwise cognate classifications (the Word-Pairs task).

Kondrak (2004) proposes a system for identifying cognate pairs between lan-
guage dictionaries. The method is based on combining evidence of phonetic simi-
larity, complex multi-phoneme correspondences, and semantic information. Their
main result is an average 11-point Interpolated Precision of 66% on a subset of the
Algonquian data under their best configuration. Possible criticisms of their work
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are that their feature scores are combined by hand-tuning, and that they make no
use of machine learning techniques. While the end goal of our system is to create
cognate sets, it can also be applied to the pairwise task; we compare our pairwise
classifier with Kondrak’s results in section 7.2.

Wang and Sitbon (2014) propose a method for the identification of cognates in
a given text of a target language with those in a source language, to be used in the
aid of language learners. The method is based on word sense disambiguation using
BabelNet combined with classic string similarity measures. They test their method
on six English web sources from different genres, in an attempt to identify words
with French cognates which could be useful for a French learner who is learning
English. A possible criticism of their approach is that it assumes the existence of a
multilingual sense based lexicon such as BabelNet, and relies on having a way of
translating from the target language to the source language.

2.4 Cognate Clustering With Semantic Information
Finally, we come to the most difficult version of automatic cognate identification,
where sets of cognates are created using orthographic or phonetic information along
with semantic information (the Word-Sets task).

Kondrak et al. (2007) extend the work of Kondrak (2004) in an attempt to create
cognate sets from language dictionaries. They utilize the phonetic and correspon-
dence scores from Kondrak (2004), combined with a simple semantic score based
on the first words of definitions or the entire definitions being identical. Cognate
sets are formed by using graph-based algorithms on connected components. They
apply their method on a subset of Totonacan languages, and have an expert linguist
evaluate their results. Of the 430 possible cognate sets proposed by their system,
89% were deemed to be true cognate sets. A possible criticism of their approach
is that their measure of semantic similarity is a fairly simple heuristic, which can-
not take into account slight semantic drift or variations in definition construction.
As there is no complete gold annotation available for this language data, a direct
comparison with our system is not possible.

Steiner et al. (2011) attempt a fully automated approach to the comparative
method, including cognate set identification and language phylogeny construction.
Since they allow cognate sets across non-identical definitions, the cognate cluster-
ing stage of their pipeline can be considered as the Word-Sets task. They combine
a pairwise scorer inspired by the dynamic programming algorithms of bioinfor-
matics with a graph based clustering approach. Clusters are then filtered based on
semantic similarity and regular sound correspondences. They test their approach
on the Tsezic and Mataco-Guaicura language families and report that their output
phylogenies are consistent with the opinion of most experts. However, they do not
quantitatively analyze their proposed cognate sets and instead rely on the manual
inspection of an expert linguist. A possible criticism of their approach is that their
semantic similarity is based on statistics of how often certain definitions correspond
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to certain word forms and makes no use of the actual content of the definitions them-
selves. They also use several hand-tuned thresholds throughout their pipeline rather
than leveraging any machine learning techniques on training or development sets.
Their system is not available for download, and the data sets they test on have no
corresponding gold cognate annotations; therefore, we are unable to make a mean-
ingful comparison with their system.

12



Chapter 3

Data Sets

Our experiments involve three different language families: Algonquian, Polynesian,
and Totonacan. In this chapter, we describe these language families, the data sets
that we are working with, and the pre-processing done by our system on the data.

3.1 Language Families
Algonquian is a subfamily of Native American languages, which consists of around
30 languages. Our first data set was compiled by Hewson (1993) and normalized by
Kondrak (2002). The data set consists of four dictionary lists and is fully annotated
with gold cognate information. Hewson used this data set to reconstruct thousands
of Proto-Algonquian words. The fact that the dictionaries are fully annotated allows
us to evaluate the effectiveness of our system on the Algonquian data set.

The second data set corresponds to a version of POLLEX, a large-scale com-
parative dictionary of over 60 Polynesian languages (Greenhill and Clark, 2011).
The POLLEX project began over fifty years ago, with the goals of recreating Proto-
Polynesian and generating insights into Polynesian prehistory with knowledge gained
through historical linguistics. Unlike the Algonquian data set, the POLLEX data set
is organized strictly as cognate sets, not as fully annotated dictionaries. Therefore,
this data set is useful for training models and learning cognate relationships, but it
cannot be used as a testing set for our full system.

The final data set consists of 10 language dictionaries from the Totonacan lan-
guage family spoken in Mexico. No complete gold cognate annotation exists for
this data set. And unlike in the other two data sets, where the definitions are writ-
ten (primarily) in English, the definitions in the Totonacan data set are written in
Spanish. Our system is applicable to definitions written in any language 1, provided
that all definitions within a given language family are written in the same language.
Since the Totonacan data is yet to be fully analyzed by linguistic experts, it provides
an important motivation for developing our system.

1In the event that a data set contains definitions written in a low-resource language, certain fea-
tures of our system would need to be turned off. The overall system, however, would still function.
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Family Languages Entries Cognate Sets Unique Definitions
Algonquian 4 26,985 3661 22,747
Polynesian 62 26,699 3690 17,138
Totonacan 10 43,073 ? 33,118

Table 3.1: Data set statistics.

Language Word Definition
Niuean utu pull up taro
Rennell utu harvest; get food
Samoan utu dig up; as yams and arrowroot
Tongan utu reap; harvest yams

Table 3.2: Example Polynesian cognate set.

In general, it is difficult to find data sets suitable to the task of clustering cog-
nate sets across language dictionaries (the Word-Sets task). The data sets used for
clustering cognate sets within word lists (the Form-Sets task) often contain only a
couple hundred unique definitions, whereas our data sets of interest contain thou-
sands (see Table 3.1). For example, the Indo-European Lexical Cognacy Database2

contains over 34,000 words from 163 languages, but is limited to only 225 word
meanings. Cognate relationships are therefore restricted to fall within a limited
number of word lists of short, simple concepts, such as FOOT, ONE, or RUN. This
is in contrast to the three data sets that we are using, where one cognate set can be
composed of various definitions. Table 3.2 shows one such cognate set from the
POLLEX data set.

3.2 Data Processing
Entries in the data include a word form and a corresponding definition. Definitions
undergo cleaning between the raw data and our system. First, any part of a definition
within parentheses are removed since this is often just a source of the data entry, a
clarification, or a grammatical note. For example, the Menominee word anæ:m has
the definition “dog (archaic vocative),” which after cleaning simply becomes “dog.”
Dashes, forward-slashes, and back-slashes that occur within a word in a definition
are replaced by spaces. Consider the Algonquian word “onakekkokamik,” whose
definition “bark-lodge” is cleaned to become “bark lodge.” In the last steps of our
definition cleaning, punctuation is removed, any leading or trailing white spaces are
stripped, and any occurrences of multiple white spaces in a row are truncated into a
single space. Note that all data cleaning is automated and reproducible.

The Polynesian data set undergoes further cleaning. The small number of entries

2http://ielex.mpi.nl/
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with definitions written in French are discarded, since our system is only capable of
comparing two definitions written in the same language. Word forms that contain
a parenthesis or a space are ignored, while any characters after a forward slash in
a form are discarded. All forms that contain a dash as the first or last character are
considered to be an affix, and any set with at least one affix is discarded.
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Chapter 4

Methods

In this chapter, we explain the approach of our system. Section 4.1 introduces su-
pervised classifiers and support vector machines, and in the following two sections,
we describe the features used in our general and language-specific models, respec-
tively. Following this, we describe our clustering approach, which uses the pairwise
scores from the classifiers to create cognate sets, the end goal of our system.

4.1 Support Vector Machines
Our system makes use of pairwise classifiers to make cognate judgments between
word pairs. We employ a support vector machine (SVM), which is a machine learn-
ing tool commonly used in the realm of natural language processing. SVMs utilize
supervised learning, that is, they require labelled training data and learn a model
that can predict the label of previously unseen data. The training data consists of
positive and negative examples, i.e. input that exhibit or do not exhibit the clas-
sification in question. In our case, the SVM receives as input pairs of words and
definitions labelled as cognates and pairs of words and definitions labelled as non-
cognates. Once the model is learned, a new pair can be given to the model and a
prediction on whether or not these two words are cognates, along with a confidence
score, is produced.

SVMs work by mapping examples into a high dimensional space based on de-
fined features. They learn a maximum margin hyper-plane in this space in an at-
tempt to create a large gap between the positive and negative examples on either
side of the hyper-plane. New examples are first mapped into this same high dimen-
sional space and then classified based on which side of the hyper-plane they fall
into. We make use of the software package SVM-Light to implement our classifiers
(Joachims, 1999).
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Language Word ASJP Definition
Cree isiyi:hka:te:w isiyihkatew he names him so
Fox išitehka:tamwa iSitehkatamwa he names it so

Ojibwa išinikka:n iSinikkan call, name someone thus

Table 4.1: Example Algonquian words. Used to help illustrate the model features.

4.2 General Classifier
In this section, we describe the features of our general classifier, which are based on
the definitions and phonetic structures of the words being compared. We call it the
general classifier because the features learned are not specific to the two languages
that the pair of words belong to. The model can be learned from any two related
languages and used to classify words from a different pair of languages, even from
another language family.

The full list of features can be seen in Table 4.2 and are described in the follow-
ing two sub-sections. To help illustrate the features, we use the three Algonquian
words and definitions from Table 4.1 as a running example.

4.2.1 Phonetic Based Features
The first category of features are based on the phonetic shape of the words be-
ing compared. To deal with the phonetic structure of a word, we convert words into
ASJP format, a phonetic representation which can be viewed as a simplified version
of the IPA (Brown et al., 2008). A phonetic representation enables word compar-
isons to be done between the underlying sounds of the words, rather than between
the orthographic representations. ASJP has 41 possible characters, whereas the
IPA itself has over 150. This reduced character set lends itself better to use with
traditional all-or-nothing string similarity metrics, such as Edit Distance. An IPA
encoding may not be able to determine the overall similarity between two words
that a broader ASJP encoding can pick up on. Consider the IPA symbol :, which
denotes that the previous vowel is long, and leads, for example, to e and e: being
considered different vowels under an IPA representation. ASJP lacks this subtle
distinction and would consider both vowels to be e, allowing their similarity to be
immediately visible to any string similarity metric. Table 4.1 displays the ASJP
representation of the three words, which will be used throughout this section.

Edit distance, also known as Levenshtein distance, is a metric of string similar-
ity that measures how many insertions, deletions, and replacements it takes to trans-
form one string into another. (Levenshtein, 1965). This metric has been historically
used in the task of cognate identification. For an example, consider transforming
isiyihkatew into into iSitehkatamwa. The edit distance is six, using the following
steps from left to right: (1) replace s with S; (2) replace y with t; (3) replace i with
e; (4) replace e with a; (5) insert an m; (6) insert an a. Note that we can also think
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of transforming iSitehkatamwa into isiyihkatew instead, and the edit distance would
remain as six, but with the opposite operations.

This leads us to the first of our phonetic features, Normalized edit distance.
Normalized edit distance (NED) divides edit distance by the length of the longer
string and inverts this score by subtracting it from 1. The reason for inversion
is mainly conceptual; we choose the convention that a higher score for a feature
indicates that a word pair has higher similarity. We divide by the length of the
longer word so that words are not punished simply for being long. For example, cat
and dog have an edit distance of 3, as do support and supportive, but it is clear that
the second pair display more similarity. The NED of these pairs are 1 - (3/3) = 0 and
1 - (3/10) = 0.7, respectively, indicating that the first pair are completely different
words, while the second pair are not so different. Looking again at isiyihkatew and
iSitehkatamwa: they have an edit distance of six, and the longer iSitehkatamwa has
a length of 13. This leads to an Normalized edit distance between them of 1 - (6/13)
= 0.54.

Our next feature is based on common subsequences between the two words.
A subsequence can be created from a string by deleting certain characters and
leaving the order of the remaining characters unchanged. Therefore, a common
subsequence can detect similarity between two words even if the words have lost
or gained phonemes over time. LCSR, the longest common subsequence ratio
(Melamed, 1995), measures the ratio of the longest common subsequence of the
words versus the length of the longer one and is our next phonetic based feature.
The longest common common subsequence between isiyihkatew and iSitehkatamwa
is iihkatw, leading to an LCSR feature value of 7/13 = 0.54.

As words change over time, consonants are more stable than vowels. Therefore,
words that have a consonant in the same position are more likely to have originated
from the same word. To determine the number of aligned consonants between
words, we first align them using the ALINE phonetic aligner (Kondrak, 2002). Our
feature, Consonant match returns the number of aligned consonants normalized by
the maximum number of consonants in either word. In the case of iSitehkatamwa
and iSinikkan, we get the aligned consonant pairs S-S, t-n, k-k, t-k, and m-n, yielding
a feature value of 5/7 = 0.71. Note that the ALINE phonetic aligner technically
uses its own phonetic representation, not ASJP, but for simplicity, the alignment
was shown in ASJP.

Along with creating a phonetic alignment, ALINE provides an Alignment score,
reflecting the overall phonetic similarity between the two words. This score is used
as the final phonetic feature of the model. ALINE is able to detect phonetic simi-
larity between similar phonemes, even if the phonemes are not identical. This is in
contrast to measures such NED or LCSR, which depend on exact phoneme matches.
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Normalized edit distance
LCSR
Consonant match
Alignment score
Definition match
Definition content match
Normalized word-level edit distance
Content overlap
Synonym overlap
Content inflectional overlap
Content inflectional Synonym overlap
Content inflectional hyperonym overlap
Content inflectional hyperonym overlap
Average word vector cosine similarity
Content average word vector cosine similarity

Table 4.2: General model features. Phonetic features are above the horizontal line,
while semantic features are below.

4.2.2 Semantic Based Features
In this section, we explain the various semantic features that are based on the def-
initions of the words being compared. Several of the semantic features are binary,
meaning they receive a value of 1 or 0 depending on whether they occur or not. A
feature receiving the value of 1 is also sometimes referred to as that feature firing.
We use the three definitions listed in Table 4.1 to help demonstrate some of the
features.

The first of our semantic features, Definition match, fires if any of the definitions
of one word is an exact match with any of the definitions of the other word. Defini-
tions are split on semi colons and commas, and each part of the split is treated as a
separate definition for the word. In our example, this feature does not fire between
any of the three definitions.

Stop words are words that are removed before performing certain natural lan-
guage processing tasks. The words chosen to be part of the stop word list can
vary depending on the task being performed, but they generally include “function”
words, i.e. words that do not carry semantic meaning in themselves, and the lan-
guage’s most common words. The idea is that these stop words add little to a sen-
tence’s overall meaning and therefore do not help discriminate between sentences.
For this reason, words that are not stop words are often referred to as content words.

Our second semantic feature, Definition content match, will fire if any definition
of one word is an exact match of any definition of the other word when only con-
sidering content words, i.e. once stop words have been removed. After removing
stop words, “he names him so” and “he names it so” simply become “names.” The
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two parts of “call, name someone thus”, split on the comma, become “call” and
“name.” This is because “he,” “him,” “so,” “it,” “someone,” and “thus” are stop
words. Definition content match fires between “he names him so” an “he names it
so”.

Next, we use the maximum Normalized word-level edit distance between the
definitions as a feature. This is similar to the phonetic feature, normalized edit dis-
tance, described in section 4.2.1; however, by word-level, we mean that the words
of the definitions themselves can be replaced, inserted, or deleted, rather than the
characters making up the entire definitions. To see how this feature is calculated,
consider transforming “he names him so” into “he names it so”. The transformation
requires only the word-level replacement of “him” into “it.” This edit distance of
1 is normalized by the length of the longer definition, 4, and then finally inverted
to yield a normalized word-level edit distance of 0.75. When a definition, such as
“call, name someone thus”, contains multiple parts, we choose the maximum score
between any of the parts and another definition.

Our next feature, Content overlap, fires if two definitions have at least one con-
tent word in common. Due to the common content word “names,” this feature fires
between “he names him so” and “he names it so”, but it does not fire between “call,
name someone thus” and either of the others.

The semantic features described thus far are able to detect similarities between
definitions if they resemble each other on the surface, such as by having words in
common. We would also like to detect connections between definitions even if no
obvious similarities are present. To find such relationships, we must consider the ac-
tual meanings of the definitions and their constituent words. In an attempt to detect
these deeper semantic similarities between definitions, our next set of semantic fea-
tures utilize WordNet (Fellbaum, 1998). WordNet is a large, open-source database
containing information about tens of thousands of words and their relations be-
tween each other. The main relation contained in WordNet is synonymy: when two
words share exactly or nearly the same meaning. Word synonyms are grouped into
what WordNet refers to as synsets. e.g. {sword, blade, brand, steel} compose one
such synset. WordNet also contains information between synsets. Hyponymy (also
called hyperonymy), is the most frequent relation which WordNet encodes between
synsets. This relation links general synsets to increasingly specific ones and repre-
sents an “is a” relationship. For example, WordNet tells us that a rapier is a sword,
which is itself a weapon. Another relation encoded in WordNet which is useful
for our task is that of related inflectional form. Given the word jump, for example,
we can search WordNet and find the related inflectional forms: jumped, jumping,
and jumps. With WordNet at our disposal, we create several other features, which
indicate the level of semantic similarity between two definitions.

The first of these features is Content inflectional overlap, which determines if
one definition contains a content word that is an inflectional variant of a content
word in the other definition. This feature fires between “he names him so” and
“call, name someone thus” as well as between “he names it so” and “call, name
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someone thus”, due to fact that “names” is an inflectional variant of “name.”
Content synonym overlap indicates when one definition has a content word that,

according to WordNet, is a synonym of a content word in the other definition. In
our example, none of the definition pairs fire this feature since “names” is not a
synonym of itself, or with “name” or “call.”

Note that “call” and “name” are indeed synonyms, but the inflectional s on
“names” stops Content synonym overlap from firing. Our next semantic feature,
Content inflectional synonym overlap, makes up for this limitation. It fires if the
synonym of an inflectional form of a content word in a definition is a synonym
of an inflectional form of a keyword in a definition of the other word. Therefore
this feature fires between “he names him so” and “call, name someone thus” and
between “he names it so” and “call, name someone thus”.

The next two semantic features, Content hyperonym overlap and Content inflec-
tional hyperonym overlap, are analogous to the previous synonym-based features
but with hyperonym relationships instead. In the case of our examples, these fea-
tures do not fire between any of the definitions. Content inflectional hyperonym
overlap would fire between two definitions if one contained the word “sword” and
the other contained the word “weapons,” for example.

The features based on information from WordNet can detect deeper semantic
relationships than those simply based on word-level similarity; however, they fail
when there is not an obvious synonym or inflectional variant in common between
definitions. These features are dependent on WordNet’s database, which, while
extensive, can never be absolute. Semantic similarities that these features cannot
detect include derivational variants, such as “wise” and “wisdom,” or paraphrases.
To extract these non-obvious similarities, our final two semantic features take ad-
vantage of advances in word vector technology. Word2Vec, the word vector im-
plementation of Mikolov et al. (2013), uses a neural network to map words into a
high dimensional real-numbered vector space based on the context of the words in
a large corpus. Words that appear in similar contexts in the corpus are mapped to
vectors with close proximity in the vector space. For English, we use word vec-
tors of dimension 300 that were pre-trained on almost 100 billion words and made
freely available by Mikolov et al. (2013). Word2Vec includes functions for deter-
mining the cosine similarity between two vectors, which in turn relays information
about how similar the underlying words are. One can even determine the similarity
between groups of words; this is calculated by first averaging the vectors for each
group and then finding the cosine similarity between these two average vectors. In
order to calculate this score, we use the package gensim (Řehůřek and Sojka, 2010),
which provides a Python wrapper for Word2Vec.

The first word vector feature in our model is the average cosine similarity be-
tween all words in the definitions, and the second feature is similar but only con-
siders the content words of the definitions. We call these features Average cosine
similarity and Content average cosine similarity, respectively. “he names him so”
and “he names it so” receive an average cosine similarity of 0.93 considering all
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words, and a full 1.0, when considering only content words (indeed, they each
contain the same content word, so a maximum cosine similarity is expected). “he
names him so” obtains an average cosine similarity of 0.51 with the first part of
“call, name someone thus”, i.e. “call,” and an average cosine similarity of 0.78 with
the second part, i.e. “name someone thus.” We select the maximum value of 0.78
for the feature value. This score of 0.78 is a high cosine similarity, which shows that
word vectors are able to pick up on the semantic similarity between two definitions,
even when such definitions have no words in common.

4.3 Regular Sound Correspondences
The features described above are language independent in the sense that features
indicating that two words or two definitions share similarities can work to identify
cognate relationships between any pair of languages. We will even show that such
a model can be trained on one language family and used to classify cognates in a
completely unrelated language family. However, we would also like to take into
account cognate information that is specific to pairs of languages, namely regular
sound correspondences, as described in Chapter 1. For example, th/d is a corre-
spondence between English and German, occurring in words such as think/denken
and leather/Leder. A model trained on another language family would not be able
to learn that a corresponding d and th is an important indicator of cognation in
German/English pairs.

For each language pair, we derive a specific model by implementing the ap-
proach of Bergsma and Kondrak (2007). The features of this model are pairs of
substrings, with one part of the pair coming from each word being compared. If
a given substring pair occurs often between cognate words in two languages, then
the model is able to learn that that substring pair correlates with cognation between
those languages.

The features are created by first appending boundary characters, ^ and $, to
signify the beginning and end of each word and then aligning the words using the
alignment induced by edit distance. A substitution cost of two is used for edit dis-
tance, following Bergsma and Kondrak (2007), which means that a replacement
costs twice as much as an addition or subtraction. Two types of features are cre-
ated. The first type, phrase pairs, are substring pairs that are consistent with the
alignment, up to a given maximum substring length. For a substring pair to be con-
sistent with the alignment means that if an aligned character from one of the words
belongs to the substring pair then that character’s aligned partner from the other
word must also belong to the substring pair. Including non-aligned characters to a
substring pair does not make that pair inconsistent. We restrict the size of the phrase
features to be at most three. Bergsma and Kondrak (2007) found that a substring
size of three allows for important correspondences to be found, while keeping the
calculation of features tractable. The second type, mismatch pairs, allow the model
to learn mismatching segments between cognates that are longer than the maximum
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^"k"i"s"t"i"s"i"w"$

^"k"e"h"t"e"s"i"w"a"$"

Figure 4.1: Example alignment induced by edit distance. Used to determine the
substring-based features of the specific models.

substring length. They contain all of the unaligned characters between two aligned
end points. Two types of mismatch features are created: one including the aligned
end characters, and one including just the unaligned characters.

For an example, consider the Cree word kistisiw, meaning “he is great, impor-
tant,” and the Fox word kehtesiwa, meaning “he is big, old,” which are a cognate
pair. The alignment produced by edit distance for this pair is shown in Figure 4.1.
This alignment leads to phrase pair features such as ^ki-^ke, st-hte, t-t, and iw-iw,
and mismatch features such as kist-keht, is-eh, tis-tes, is-es, w$-wa$, and -a. These
features could be created using the IPA or ASJP representation; in development it
was seen that both ways produce similar results, so we default to the richer IPA.

In order to train the specific models, we need a substantial number of cog-
nate pairs, which are not initially available in our unsupervised setting. We use
a heuristic method to overcome this limitation. We create sets of words that satisfy
the following two constraints: (1) identical dictionary definition, and (2) identical
first phoneme. For example, the Cree and Menominee cognates ni:pa:tipisk and
ni:pa:tepæh, both meaning “at night,” will be placed together, while their Ojibwan
cognate ni:pa:tipikk will be missed due to its full definition being “at night, during
the night.” The resulting word sets are mutually exclusive, and contain mostly cog-
nates (in fact, we use this method as our baseline in our experiments). We explored
using the heuristic that two words are considered cognates if their LCSR is greater
than or equal to 0.58, a threshold used in the cognate literature (Bergsma and Kon-
drak, 2007). However, a LCSR threshold is not a transitive relationship; one word
could exceed this LCSR threshold with two other words that do not exceed the
threshold with each other. Therefore, there is no simple way to use this measure
as part of a heuristic clustering. Conversely, the identical first letter constraint does
not come with this added complication.

We extract positive training examples from these high-precision sets, and create
negative examples by sampling random entries from the language dictionaries. A
separate specific model is learned for each language pair to capture regular sound
correspondences. For example, there is a model with features for Cree-Menominee
and another model for Fox-Ojibwa, etc. Note that the specific models disregard
semantic information.
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4.4 Cognate Clustering
The first step in our clustering approach is to use the general model from Section
4.2 to score pairs of words across languages. Featurizing all possible pairs of words
from all languages is very time consuming, so we first filter out dissimilar word
pairs that obtain a normalized ALINE score below 0.35. This threshold allows the
system to run in a reasonable amount of time, while, in development experiments,
we observed that over 95% of cognate pairs exceed this threshold. Next, we use the
appropriate specific model to classify all word pairs that were positively classified
by the general model. The final pairwise score is an average of the score given by
the two models. This allows for words to be clustered that have a high likelihood
of being related, as judged by the correspondences learned from the specific model,
even if their similarity determined by the general model is not as high. Theoreti-
cally, the weight of each model score could be tuned; however, we elect to default
to an equal weight for each model score in order to keep our system robust and to
prevent over-tuning on a specific data set.

Once pairwise scores have been computed, we cluster words into sets with a
version of the UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
clustering algorithm (Sokal and Michener, 1958), which has been used in previ-
ous work on cognate clustering (Hauer and Kondrak, 2011; List, 2012; List et al.,
2016). First, each word is placed into their own cluster. The score between clusters
is computed as the average of all pairwise scores between the words within those
clusters. In each iteration, the two clusters with the highest average score are se-
lected to be merged, and the scores between the merged cluster and all others are
re-calculated. The algorithm terminates when no two clusters have a positive av-
erage score. In order for the system to run with a reasonable amount of memory
usage, only positive scores are included in the pairwise similarity matrix. In effect,
merges are only allowed between clusters where all pairwise scores between them
are positive, making it a more conservative clustering approach.
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Chapter 5

Discontinued Methods

Chapter 4 explained our final system for producing cognate sets, which combines
a pairwise score with an average-score based clustering algorithm. In this chapter,
we discuss previous approaches that we attempted. The results of these methods
were surpassed by the system described in Chapter 4, but it is interesting to present
them as negative results and to see where they went wrong.

Our previous method involved the use of the general and specific classifiers of
Sections 4.2 and 4.3, but used a very different strategy in creating cognate sets
than that of Section 4.4. We used a pipeline constructed of three stages to create
proposed cognate sets. The first stage assembled words into preliminary nucleus
sets of presumed cognates. The second stage added remaining words from the
language dictionaries into these nucleus sets based on the general model. Finally,
the third stage added even more words to the nucleus sets based on the specific
models. We also experimented with an alternative approach of learning regular
sound correspondences and using them to generate proposed cognates.

Note that the following chapters of this thesis do not depend on the methods
described in this chapter, and as such, it is possible for the reader to omit this chapter
without hindering their understanding of the remainder of our work.

5.1 Nucleus Sets
The first stage involves creating nucleus sets of proposed cognates. These sets are
created via two approaches, which ostensibly result in high-precision cognate sets
as a starting point.

Heuristic Sets: Our first approach to creating nucleus sets uses the heuristic
that words with identical first letters and identical definitions are grouped together.
This is the same heuristic used in Section 4.3 in order to create training data for the
specific models.

Double-Match Sets: To create additional nucleus sets, we apply the general
classifier described in Section 4.2 to pairs of words that have not been placed into a
nucleus set by the heuristic. Similarly to the clustering method described in Section
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4.4, words must pass a 0.35 ALINE threshold to be classified. We use the pairwise
classifications to inform our next approach at creating nucleus sets. Our method
assigns two words to a new nucleus set if the pair receives a positive score from the
model and are a double-match, that is, they are each other’s respective top scoring
word. Moreover, their definitions must also have a content word or inflectional
variant of a content word in common.

5.2 General Model Additions
The next stage of the pipeline begins by constructing a proto-word for each Stage
1 set, which can be thought of as the proposed etymon, or ancestor word, in which
each cognate originated from. Each word in the set is converted into ASJP format,
and then aligned using a multi-alignment algorithm inspired by techniques used
in bioinformatics. From the alignment, we select the most common letter in each
position (possibly NULL) and combine these letters to give us the proto-word. In
the event that there is a tie for the most common letter in a position, we choose the
one that occurs most frequently throughout the language dictionaries.

For nucleus sets constructed via the heuristic approach, the definition assigned
to the proto-word is simply the shared common definition of all words in its set
(the heuristic assures that all words have the same definition). For the Stage 1 sets
constructed using double-match words, there is an additional step in determining the
proto-word’s definition, since the definitions of the two words need not be identical
in this case. We create the proto-word definition using all common words between
the two double-match definitions. Additionally, the double-match pairs also may
contain words with inflectional variants in common; in these cases, the lemma of
these word forms is added to the proto-word definition. For example, the definitions
“it blows ashore” and “is blown ashore” are intersected to create the new definition
“blow ashore.” Notice that “blow” is the lemma of “blows” and “blown.”

Once we have these proposed proto-words, our next strategy is to analyze the
remaining words and to add them to a nucleus set when applicable. To achieve this,
the words that are not part of any nucleus set are classified against each created
proto-word by using the general model (an ALINE threshold of 0.35 is used as
usual). In this way, the proto-words are used as a representative for each set. A
word is added to the set represented by the highest scoring proto-word, assuming
the pair has a positive classification. At the end of General Model Additions, we
have the heuristic and double-match nucleus sets, along with any additions to these
sets based on the general model scores.

5.3 Specific Model Additions
The third stage is similar to the second stage, in that additional words are added to
an already-created cognate set. Starting from the output sets of stage two, we next
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compare the as-of-yet unplaced dictionary words against the words belonging to a
set. We do not compare a word for a specific set if that set already contains a word
from the same language. Once more we use the ALINE threshold of 0.35 to de-
termine which word pairs are considered by the model. All word pairs passing this
threshold are classified using the corresponding specific model for that language
pair. To determine which words are added, we calculate the average score between
the dictionary word and all words in a given set. A word is added to the set with the
highest average score, as long as that score is greater than 0.

5.4 Analysis of the Stages
The pipeline approach, as outlined above, was able to find some cognate sets; how-
ever, the results were surpassed by the methods described in Chapter 4. One ex-
planation is that using proto-words, while linguistically appealing, is an implicitly
information-losing process. The proto-word is created to act as a representative for
each cognate set, but in doing so, we lose information about the individual words
making up each proposed cognate set. In double-match sets, the proto-word defini-
tion may end up different from either of the definitions of the words in those sets,
and in both kinds of Nucleus Sets sets, the constructed ASJP representation of the
proto-word, by nature of its creation, cannot contain the phonetic information of all
words in its set. The average score based clustering approach described in Section
4.4, leverages the pairwise scores between all word pairs, so is not susceptible to
this information loss.

Another key difference is that our final method is able to utilize the general and
specific models while composing the cognate sets, but General Model Additions
and Specific Model Additions use these models in a post-hoc fashion to add to al-
ready constructed sets. Moreover, the pipeline approach is not able to merge or
partition the Nucleus Sets sets once they have been created, so any errors get propa-
gated through each stage of the system without a chance for correction. Conversely,
our final clustering method does not require any nucleus sets and by its very nature
allows merging of cognate sets during construction.

5.5 Regular Sound Correspondences Through Align-
ment

This section outlines an alternative attempt to extract and apply regular sound cor-
respondences, without using the substring features of the specific models. This
method was designed to closely emulate the comparative method. We use the out-
put of General Model Additions as a starting point, so this procedure can be thought
of as an alternative to Specific Model Additions.

For the sake of this method, we assume the system is being used as a tool for
an expert linguist. The cognate sets proposed by General Model Additions are
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manually annotated by the expert linguist, partitioning each proposed set into true
cognate sets. If there are more than one word from a given language, a word is
chosen randomly from that language, so that each cognate set contains at most one
word per language.

These annotated sets are then converted into ASJP format and aligned using the
same multi-alignment algorithm used to create proto-words. From the aligned sets,
we determine regular sound correspondences. For each position in the alignment
we create a correspondence, where the correspondence contains a letter for each
language in the set. When a language does not belong to a given cognate set, then
the correspondences produced by that set will not represent that missing language.
A correspondence can also be multiple characters long if those characters are either
all vowels or all consonants for each language represented in the correspondence.
Figure 5.1 provides an example Algonquian annotated cognate set along with the
correspondences created from the set in this fashion. The “*” characters within
each correspondence signify that no Fox word belongs to this set.

The correspondences from all such cognate sets are then clustered together
based on pairwise similarity. The similarity between two correspondences is de-
termined by adding a score for each language in the data set. If a correspondence
contains the same characters for a given language, then a score of 1 is added to the
similarity. If the correspondence differs for a given language, then a score of -1
is added to the similarity. And finally, if either correspondence does not represent
a given language, then similarity is not affected. We use the same average-score-
based clustering algorithm for correspondences as is used in the cognate clustering
of our final method, described in Section 4.4. The goals of clustering are: (1) to
associate correspondences that do not represent a given language with ones that
do represent that language; (2) to reduce noise from correspondences that are not
common throughout the cognate sets.

For each cluster, a summary correspondence is created based on the frequencies
of characters in each correspondence within the cluster. From the summaries, we
create regular expressions, which are then used to find missing cognates from sets
that do not contain a given language. For example, there is no Fox cognate in the
example set shown in Figure 5.1. We start with the first correspondence, c1, and
look up its cluster, C1. This cluster contains other correspondences from various
cognate sets, such as “Cree:n Fox:n Menominee:n Ojibwa:n,” and “Cree:n Fox:nw
Menominee:n Ojibwa:*,” and many others. The summary correspondence from
C1 is “Cree:(n|t|m) Fox:(n|nw) Menominee:(n|m) Ojibwa:n.” This means that in
all the correspondences contained within C1, the characters representing Fox that
occurred with a non-negligible frequency are n, and nw. Therefore, the regular
expression provided by this cluster is (n|nw). Following this procedure for each
correspondence yields an overall regular expression of (n|nw)(e|i)(ht)(a)(m|mw),
and we predict that the missing Fox cognate matches this pattern. If the regular
expression matches with a word in the Fox language dictionary, then that word is
added to the cognate set. In this case, no such word exists in the Fox dictionary,
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Language ASJP Definition
Cree nistam first
Menominee nEqtam first in time, before, earliest
Ojibwa nittam first, for the first time

Correspondence Cree Fox Menominee Ojibwa
c1 n * n n
c2 i * E i
c3 st * qt tt
c4 a * a a
c5 m * m m

Fox regular expression: (n|nw)(e|i)(ht)(a)(m|mw)

Figure 5.1: Top: An example Algonquian cognate set. Middle: The correspon-
dences produced by a multi-alignment. Bottom: The regular expression for the
missing Fox cognate.

so no additional word is added to the cognate set. Coincidentally, the gold cognate
set for this example does not actually contain a Fox word, but this did not affect
whether a prediction was created and found or not.

Unfortunately, this method was unable to find many cognates. One probable
reason for this is that the method used to create predictions is very “brittle.” That is,
if even one character of the regular expression is incorrect, then the prediction will
not be found in the language dictionaries. There is no mechanism to compare the
similarity of a prediction to words that actually exist in the dictionaries. Another
downside to this method is that when every correspondence within a cluster does
not represent a given language, then no prediction is possible from the correspon-
dences involved in that cluster. Finally, this procedure could only be used in an
attempt to add missing words to a pre-existing cognate set. The approach of our
final system uses information regarding regular sound correspondences to inform
clustering decisions, rather than in a post-hoc manner.
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Chapter 6

Evaluation Metrics

One key consideration for this project is how to evaluate the output cognate sets.
None of the previous work on the Word-Sets task, which we are working on, sys-
tematically and quantitatively evaluated their outputted cognate sets, and there-
fore, there is no precedent (Kondrak et al., 2007; Steiner et al., 2011). There are,
however, several metrics that have been proposed for evaluating cognate cluster-
ing within word lists (the Form-Sets task) and clustering in general. Indeed, the
question of how to evaluate a general clustering is not conclusively answered, even
without taking cognation into account. In this chapter we explore several possi-
ble clustering metrics and analyze their applicability to cognate clustering across
language dictionaries. While we consider many evaluation metrics, we argue that
the number of found sets, balanced with cluster purity, provides a good criteria for
evaluating cognate clusterings.

In pairwise cognate identification (the Form-Pairs and Word-Pairs tasks), sys-
tem output is generally evaluated by determining the recall, precision, and F-Score.
Recall is defined as the number of true cognate pairs that are correctly identified as
cognates. Precision measures how many of a system’s predictions are true positives,
i.e., how many times did a system claim a pair are cognates when they actually are.
In general, a system’s performance is a trade-off between recall and precision. A
system that proposes all pairs as cognates would trivially receive a recall score of
100%, while its precision score would be near zero. On the other hand, a system
that only predicts that one pair are actually cognates and gets this prediction correct
would achieve a precision score of 100% but a recall of just one over the number
of actual cognate pairs. Clearly, a system will need to sacrifice some precision to
improve recall and vice versa. To quantify this balancing act and get a measure
of a system’s overall performance, the metric known as F-Score is often used. A
common version of F-Score is defined as

F-Score =
2 ∗ P ∗R
(P +R)

, (6.1)

which is the harmonic mean of precision (P) and recall (R).
These measures cannot be immediately applied to our task of cognate cluster-

ing. Some thought needs to go into the question of what constitutes the recall and
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precision of a clustering, and whether these measures make intuitive sense when
evaluating the quality of a clustering. In the following sections, we discuss some
metrics that can be considered when evaluating cognate clusterings. The chapter
concludes with an in depth example, which analyzes multiple clusterings and their
performance according to the various metrics. We define a cluster to be a single
set of words (all deemed to be cognate with each other), whereas a clustering is the
total partitioning of all words into various clusters.

6.1 Pairwise Metrics
The first metric we consider when evaluating cognate clusterings is pairwise preci-
sion and recall. This metric has seen some use in the cognate literature (Hall and
Klein, 2011; List, 2012; List and Moran, 2013). Each cluster induces a set of pairs,
with each pairwise combination of elements within that cluster contributing a pair.
The pairwise recall of a proposed clustering C is the percentage of pairs induced
by the gold clusters that are also induced by the clusters of C. Similarly, the pair-
wise precision of C is the percentage of pairs induced by C that are also induced
by the gold clustering. By considering all the induced pairs in this way, we relate
the problem of evaluating clusters back to the identification evaluation versions of
recall and precision, i.e. a list of pairs of words to be evaluated. Let pairs(C) be a
function that takes a clustering and returns the set of all pairs induced by it, and let
G represent the gold clustering. Then formally:

Pairwise-Recall(C,G) =
|(pairs(C) ∩ pairs(G)|

| pairs(G)|
(6.2)

Pairwise-Precision(C,G) =
| pairs(C) ∩ pairs(G)|

| pairs(C)|
(6.3)

As an example, suppose a gold clustering G = {a1, a2}, {b1, b2, b3}, and a
proposed clustering C = {a1, a2, b2}, {b1, b3}. Then pairs(G) = {a1a2, b1b2, b1b3,
b2b3}, and pairs(C) = {a1a2, a1b2, a2b2, b1b3}. We can see that pairs(C)∩pairs(G)
= {a1a2, b1b3}, leading to a pairwise recall of 2/4 = 50% and a pairwise precision
of 2/4 = 50%.

A downside to using pairwise metrics when evaluating cognate clusterings is
that they are biased towards larger sets, as the number of induced pairs grows
quadratically with the size of a set. For example, a set containing 10 words will
induce 45 pairs and hence contribute as much as 45 two-word cognate sets to the
final scores. A cognate clustering system that correctly identifies 45 such clusters,
while missing the 10-word cluster, will only achieve 50% pairwise recall for this
portion, even though intuitively the “recall” of such a system appears much higher.
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6.2 MUC
Another metric that could be used to evaluate a cognate clustering system is MUC
(from the Message Understanding Conference) (Vilain et al., 1995). MUC was
originally designed to score co-reference algorithms but could be used to evaluate
other kinds of clusterings, such as in our task. MUC assigns precision, recall and
F-Score based on the number of links created in the proposed clusters versus the
links created by the gold clusters.

Following Vilain et al. (1995), but in the context of our cognate task, let S be a
cognate set in the gold G, and let C be a proposed clustering. Next, define c(S) to
be the number of correct links needed to connect S. We can see that c(S) = |S|−1,
by simply linking one element with the next. Now let p(C, S) be the intersection
of S with all sets in C containing at least one element of S. Vilain et al. (1995)
refer to p(C, S) as the partition of S relative to the proposed clustering C. We
can then think of the number of links of S missing from C as the number of links
required to reunite the sets of p(C, S). Hence, the missing links of S, m(C, S), can
be calculated as m(C, S) = |p(C, S)| − 1. To get the MUC recall of a clustering
relative to a single gold cluster, we have the equation:

MUC-Recall(C, S) =
c(S)−m(C, S)

c(S)

=
(|S| − 1)− (|p(C, S)| − 1)

|S| − 1

=
|S| − |p(C, S)|

|S| − 1

(6.4)

Finally, to extend this notion of recall to the entire gold clustering, it is sufficient
to sum the numerator and denominator for each cluster. Put another way, the MUC
recall of a clustering C is the total number of links necessary to generate all sets of
G found by C. And more formally:

MUC-Recall(C,G) =

∑
Si∈G(|Si| − |p(C, Si)|)∑

Si∈G(|Si| − 1)
(6.5)

To make this more concrete, consider an example where G = {a1, a2}, {b1, b2,
b3}, {c1}, and C = {a1, a2, b2}, {b1, b3, c1}. MUC-Recall = ((2 − 1) + (3 − 2) +
(1− 1))/((2− 1) + (3− 1) + (1− 1)) = 2/3 = 66.6%.

We can use this example to explore the notion of MUC precision. In general,
precision is the notion of how often a system’s output is correct when it proposes
a desired outcome. With MUC, we are considering links, and therefore, precision
is how many links proposed by a clustering are actual links within the gold. In the
example, b2 is erroneously linked with a1 and a2 in the proposed clustering, and c1
is linked with b1 and b3 in error. The links between a1 and a2 and between b1 and a3
are found in the gold, so can be deemed correct. Therefore the total MUC precision
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is 2/4 = 50%. With some thought, we can see that to calculate the MUC Precision
of a proposed clustering, it is sufficient to swap the roles of the clustering and the
gold in the MUC-Recall formula.

A critique of MUC, illuminated by Bagga and Baldwin (1998), is that it will
award the same precision for words placed incorrectly into a small cluster as words
placed incorrectly into a large cluster, while intuitively, the second error is more
detrimental. For example, consider a gold clustering G = {a1, a2, a3, a4, a5}, {b1,
b2}, {c1, c2, c3, c4, c5}, and two proposed clusterings: C1 = {a1, a2, a3, a4, a5}, {b1,
b2, c1, c2, c3, c4, c5} and C2 = {b1, b2}, {a1, a2, a3, a4, a5, c1, c2, c3, c4, c5}. At a
glance, C2 looks like a much worse clustering; all of the ai elements are grouped
with all of the cj elements, indicating many false pairwise associations. Perhaps
counter-intuitively, both C1 and C2 receive a MUC-Precision score of 90%.

Bagga and Baldwin (1998) also remark that MUC does not give any credit for a
proposed clustering correctly separating out singletons, i.e. those elements that do
not belong in a set with any others. However, this appears to be an artifact from the
conventions of co-reference chain evaluation, which MUC was originally designed
for. In a clustering task, it is straightforward to see that MUC-Precision will be
higher for a clustering that correctly places a singleton element into its own set (or
equivalently, does not place it into a set at all). For example, imagine that c1 was
placed correctly into its own set in the first example from this section. Then there
would be one fewer incorrect link, and precision would rise to 2/3 = 66.6%.

6.3 B-Cubed
B-Cubed is a further metric originally created for co-reference scoring, in response
to the downsides of MUC (Bagga and Baldwin, 1998). B-Cubed looks at the recall
and precision of each element relative to its own set, and the final statistic is an
average of all of these individual scores. This metric has previously been used to
evaluate cognate clusterings (Hauer and Kondrak, 2011; List et al., 2016).

Consider an element i that belongs to the gold cluster Gi and has been placed
into the proposed cluster Ci. The element-wise recall and precision of i are com-
puted as follows:

B-Cubed-Recall(i, C,G) =
|Gi| ∩ |Ci|

|Gi|
(6.6)

and

B-Cubed-Precision(i, C,G) =
|Gi| ∩ |Ci|

|Ci|
(6.7)

Then the final metrics for the entire clustering are:

B-Cubed-Recall(C,G) =
N∑
i=1

wi ∗ B-Cubed-Recall(i, C,G) (6.8)
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and

B-Cubed-Precision(C,G) =
N∑
i=1

wi ∗ B-Cubed-Precision(i, C,G), (6.9)

where N is the total number of elements, and wi is the weight assigned to element
i. Bagga and Baldwin (1998) note that different weighting schemes can be used to
tailor the metric to a specific task; however, the use of B-Cubed to evaluate cognate
clustering has so far only considered the case of equal weights for all elements
(Hauer and Kondrak, 2011; List et al., 2016).

Amigó et al. (2009) provide an extensive analysis on various evaluation metrics
for clustering. They show that B-Cubed satisfies their four constraints for a sensible
clustering metric. These constraints are as follows:

1. Cluster Homogeneity: A metric should reward a system for splitting up a
cluster with elements from multiple gold sets into multiple clusters each con-
taining only elements from the same gold set.

2. Cluster Completeness: A metric should reward a system for merging two
clusters which contain only elements from the same gold set.

3. Rag Bag: A metric should reward a system for placing an outlier element into
a cluster which already contains elements from various gold sets, rather than
placing that element into a clean cluster which only contains elements from
one gold set. The intuition of this constraint is that “introducing disorder
into a disordered cluster is less harmful than introducing disorder into a clean
cluster.” (Amigó et al., 2009)

4. Clusters size vs. quantity: A metric should reward a system for making a
small error in a large cluster as opposed to making a small error in multiple
small clusters.

The first two constraints are very intuitive. It seems that any clustering evalua-
tion metric should satisfy these constraints. In fact, Amigó et al. (2009) performed
an empirical study on human participants, where the participants were shown clus-
tering pairs specifically designed to highlight a specific one of the four constraints,
and at least 90% of the participants preferred a clustering where the first two con-
straints were upheld. Perhaps surprisingly, the participants showed even stronger
support for the second two constraints.

After assessing the empirical “validity” of their constraints, Amigó et al. (2009)
then went on to use them as a meta analysis for various clustering metrics. They
found that B-Cubed is the only metric that satisfies all four of their constraints. It
was this evidence that first lead Hauer and Kondrak (2011) to apply B-Cubed as
their metric of choice to the word list cognate clustering task.

A downside of the B-Cubed metric is that it awards an element-wise recall and
precision for an element i for each element of Gi, including i itself. This means that
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an element will always be awarded recall and precision points for “finding itself,”
even if that element does not belong to a cognate set with any other word, or even
if it is not placed into a cluster with any other word in the proposed clustering.
For example, consider the gold clustering G = {a1, a2}, {b1}, {c1} and a proposed
clustering C = {a1}, {a2}, {b1}, {c1}. C is a clustering where no words have been
proposed as cognates, and yet its recall is calculated as 1

4
∗ 1

2
+ 1

4
∗ 1

2
+ 1

4
∗ 1

1
+ 1

4
∗ 1

1
=

75%. Moreover, the precision of this proposed clustering is 1
4
∗ 1

1
+ 1

4
∗ 1

1
+ 1

4
∗ 1

1
+

1
4
∗ 1

1
= 100%. Intuitively, a clustering that proposes no cognate sets should not be

rewarded with high scores like this.
For cognate evaluation, a weighting scheme that gives singleton elements zero

weight seems to make more sense. If a word does not belong to a cognate set, then
it should not provide positive recall to the overall score. Under a zero-weight for
singletons scheme, the same example as above now scores a recall of 1

2
∗ 1

2
+ 1

2
∗

1
2
+ 0 ∗ 1

1
+ 0 ∗ 1

1
= 50%. Precision is not changed. The recall score is now lower,

although it can still be considered counter-intuitive that a clustering that proposes
no cognate sets has a reported recall of 50%.

6.4 Found Sets
While the above-mentioned metrics can be used to evaluate clusterings in general,
we believe that a more appropriate measure of the utility of a cognate identification
system is to count the total number of found sets. The main purpose of an automatic
cognate clustering system is to aid an expert linguistic in the comparative method,
or to assist automated systems in the creation of language phylogenies (Bouchard-
Côté et al., 2013). In this regard, having a large number of identified cognate sets,
even with a certain degree of false positives, is the desired outcome. For an expert
linguist to filter out false positives from proposed cognate sets is still far less time
consuming than for the linguist to have to discover cognate sets “from scratch.”

We consider a set to be found if any of the words within the set are clustered
together by a system. A distinction can also be made between partially and com-
pletely found sets. Arguably, the number of partially found sets is more important,
as it is easier for a human expert to extend a found set to other languages than to
discover the set in the first place. In fact, a discovery of a single pair of cross-lingual
cognates demonstrates the existence of a corresponding proto-word in the ancestor
language, which is likely to have descendant words in the other languages of the
family.

Our proposed found sets measure, which roughly corresponds to recall, must,
however, be balanced against precision. For example, a trivial strategy that clusters
all words together would be considered 100% accurate according to the number of
found sets. We argue that reporting the number of found sets along with a metric of
precision is an effective way of measuring the quality of a cognate clustering.
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6.5 Cluster Purity
Purity is precision metric that has been used to evaluate cognate clusterings (Hall
and Klein, 2011; Bouchard-Côté et al., 2013). Each word in a given cluster is
assigned to a gold set based on which gold set the majority of that cluster’s words
belong to. Then purity is calculated as the fraction of total words assigned to the
correct gold cluster. Put another way, a given cluster’s purity corresponds to the
largest possible overlap between that cluster and any gold cluster. More formally, let
G = {G1, G2, ..., Gg} be a gold clustering and C = {C1, C2, ..., Cc} be a proposed
clustering. Then

purity(C,G) =
1

N

c∑
i=1

max
j

|Gj ∩ Ci|, (6.10)

where N is the total number of elements. For example, consider the gold clustering
G = {a1, a2}, {b1, b2, b3}, {c1}, and the proposed clustering C = {a1, a2, b2}, {b1,
b3, c1}. purity(C,G) = 1

6
∗(2+2) = 4/6 = 66.6%. In this case, the largest overlap

is achieved by intersecting the first cluster of C with the first cluster of G and the
second cluster of C with the second cluster of G. This purity score of 66% makes
nice intuitive sense, since each cluster in C has two out of three words belonging to
the same set in G.

Purity is not perfect as a stand-alone measure for determining the overall quality
of a clustering. Amigó et al. (2009) note in their study of various cluster metrics,
that purity does not reward merging clusters composed of elements from the same
gold cluster. Consider the simple example where G = {a1, a2, a3, a4} and C = {a1,
a2}, {a3, a4}. This clustering achieves a purity score of 100%, while it is clear that
the clustering would benefit from merging its two proposed clusters. Since purity is
a measure of precision, it must always be reported along side a measure of recall.

6.6 Toy Example
Next, we present a toy example with evaluation scores for the metrics discussed
in this chapter. Multiple clustering variations are shown in table 6.1. The gold
clustering is shown in the first row, representing how the elements should actually
be clustered. Each si represents a singleton element, and for all other elements,
those with the same letter belong to the same cluster in the gold. The different
proposed clusterings are described below:

• Max Recall: This naive clustering places all elements into a single cluster.

• Max Precision: This naive clustering places (almost) all elements into their
own cluster. c4 and c5 are placed into the same cluster for convenience; sev-
eral of the metrics would have divide-by-zero problems if every element is
assigned its own set.

• Decent: The decent clustering finds all gold sets but is noisy.
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Clustering Sets
Gold {s1}, {s2}, ..., {s8}, {a1, a2}, {b1, b2, b3}, {c1, c2, c3, c4, c5}

Max Recall {s1, s2, ..., s8, a1, a2, b1, b2, b3, c1, c2, c3, c4, c5}
Max Precision {s1}, {s2}, ..., {s8}, {a1}, {a2}, ..., {c3}, {c4, c5}

Decent {a1, a2, s1, s2, b1}, {b2, b3}, {c1, c2, c3, s3, s4, s5}
Good {a1, a2, s1}, {b1, b2, b3, s4}, {c1, c2, c3, s2, s3}

Table 6.1: Example of various clusterings of a given gold clustering.

Clustering Pairwise MUC B3 B3 − 0W
Max Recall 16.8 58.0 24.9 34.9

Max Precision 13.3 25.0 77.6 50.7
Decent 25.0 47.0 66.0 61.7
Good 42.4 62.5 75.8 72.9

Table 6.2: F-Score values of the example clusterings.

• Good: The good clustering also finds all gold sets but even more gold ele-
ments and is less noisy than the Decent clustering.

Table 6.2 contains F-Score results for the various metrics on the different clus-
terings. Based on our intuition, we would hope that the Good clustering is given a
high score, which is higher than all other clusterings, by a possible metric. How-
ever, we see that this is not always the case.

Stunningly, B-Cubed prefers the Max Precision clustering over the Good clus-
tering. In fact, the Max Precision clustering, which does not place any cognates
together, receives a B-Cubed F-Score of close to 80%. This can be attributed in
part to B-Cubed giving “free” recall for every element identifying itself as a cog-
nate. For example, no matter where a singleton element is placed in a clustering, it
will receive an element-wise recall of 100%. Moreover, placing an element into its
own cluster guarantees an element-wise precision of 100%. These facts combine to
produce overly generous B-Cubed results, and this problem would only get worse
for a gold clustering with more singletons. B-Cubed with zero-weighted singletons
gets a somewhat more reasonable score of 50.7% for the Max Precision clustering,
but this is still highly unintuitive. We take this as strong evidence that B-Cubed,
while receiving use in the cognate clustering literature, is not the appropriate metric
to evaluate our task.

A glaring problem with the evaluations given by MUC, is that the Max Recall
clustering, which places all words into one cluster, receives an F-Score of 58%,
only 4.5% lower than the Good clustering. This means that a naive clustering,
which does nothing to identify cognates, receives a relatively high score. For this
reason, we discard MUC as a viable metric.

Pairwise F-Score does rank the proposed clusterings in a reasonable fashion;
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Clustering Purity Found Sets
Max Recall 27.8 100.0 (100.0)

Max Precision 100.0 33.3 (0.0)
Decent 66.7 100.0 (33.0)
Good 77.8 100.0 (66.6)

Table 6.3: The percentage of found sets and cluster purity of the example cluster-
ings. The percentage of complete found sets are in parentheses.

however, the Good clustering only receives a score of 42.4%. Even though the
Good Clustering correctly identifies all of the ai and bi cognates and three of the
five ci cognates, it only receives a Pairwise Recall of 50%. This highlights the
fact, mentioned in Section 6.1, that Pairwise metrics are biased towards larger sets,
whereas in a cognate clustering task, the total number of found sets is arguably
more useful. The low scores given by Pairwise F-Score do not accurately reflect
the end goal of a cognate clustering system, and therefore we choose not to use this
metric to evaluate our methods.

Cluster purity and the percentage of found sets are shown in Table 6.3. Since
cluster purity only measures precision, it can not be used in isolation. This is evi-
dent by the Max Precision clustering receiving a purity score of 100%. Purity does,
however, rank the rest of the clusterings in an intuitive order. When we combine
purity with the number of found Sets, a clearer picture emerges. For example, the
Max Precision clustering only finds a third of the cognate sets and fully finds zero
of the sets. On the other hand, the Max Recall clustering fully finds 100.0% of cog-
nate sets, but its cluster purity lags behind that of other clusterings. Note that as the
number of cognate sets increases, the Max Recall clustering’s purity and the Max
Precision clustering’s found sets would approach zero; their non-negligible purity
and found sets, respectively, are strictly due to the small overall size of the current
toy example. Based on the measures displayed in Table 6.3, namely purity and the
percentage of found sets, one can determine how well each clustering performs,
both relatively and absolutely. It is clear that the Good clustering performs well
and is in fact better than all others. The Max Precision and Max Recall clusterings
are shown to be useless by the found sets and purity metrics, respectively, and the
Good clustering outperforms the Decent clustering in all regards, as expected. The
Good clustering at least partially finds all cognate sets, while at the same time main-
taining a cluster purity of close to 80%. We argue that the description provided by
purity in conjunction with the number of found sets gives a more accurate represen-
tation of the quality of clusterings than any of the F-Score measures shown in Table
6.2. Moreover, these two metrics cover each other’s weaknesses; purity is biased
towards placing each word into their own cluster, and the number of found sets is
biased towards placing all words into the same cluster. This balancing act is rem-
iniscent of the precision/recall trade-off described in the beginning of this chapter.
Finally, an added bonus to using the number of found sets and cluster purity is that
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they are relatively easy to interpret compared to other metrics. For these reasons,
we choose to report these two metrics when evaluating our system’s output in the
next chapter.
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Chapter 7

Experiments

In this chapter, we explain our experimental setups, and discuss our results. In
the first section, we explain how we train our general model. In the next section,
we present our first experiment, where we test our general and specific classifiers
against a state-of-the-art Word-Pairs system. After this, we move on to our main
experiment: testing our full system on the Algonquian language dictionaries and
evaluating our proposed cognate sets. Finally, we discuss our full system results
and analyze the errors made by our system.

7.1 Training the General Model
As described in Chapter 3, we have three data sets at our disposal: for the Algo-
nquian, Polynesian, and Totonacan language families. Since the Algonquian data
set is fully annotated with gold cognate data, we use it to evaluate the effectiveness
of our system. Therefore, in development, we chose to train our general model on
the Polynesian data and test it on the Totonacan data. By doing this, we were able
to determine which features were beneficial without over-tuning on the Algonquian
testing data. Also, this was our first experiment to determine if a model trained on
one language family is able to properly classify a completely unrelated language
family.

The Totonacan dictionaries lack full cognate annotation; however, preliminary
output of our system while in development was annotated by a Totonacan expert,
providing us with several hundred annotated cognate sets. From these annotations,
we created a pairwise development set, including all possible 6755 cognate pairs
and 67,550 randomly selected non-cognate pairs. This development set was used
to experiment with the features of the general model by evaluating a general model
that was trained on the Polynesian data.

To create a training set from the Polynesian data, we randomly selected 25,000
cognate and 250,000 non-cognate word pairs. When creating cognate pairs, we
take into account information about the relatedness of the languages within the
POLLEX data set. Similar languages, as defined as being in the same subfamily,
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are not used to construct cognate examples. This is because words in the same
cognate set from similar languages were observed to often have very similar, if
not identical, forms and definitions. By disregarding similar language word pairs,
we attempt to remove “easy” pairs from the training data. While the examples are
chosen randomly, the system will assure that each cognate set in the POLLEX data
is used at least once to create a cognate pair, as long as that set does not contain
only similar language pairs. We also experimented in development with using an
ALINE score threshold on example negative pairs in an attempt to make them more
competitive (Bergsma and Kondrak, 2007); however, this was shown to actually
slightly decrease performance on the development test set when compared with not
using any threshold for negative examples. The procedure explained here is the
same one used to train the general model in our full system setup.

When testing our final Polynesian-trained general model on the Totonacan de-
velopment set, it achieved a pairwise F-Score of 88.4%. This finding is highly
promising, since it shows that a cognate classification model need not be trained on
the same language family that it is classifying. This is useful since the language
families of interest to historical linguists generally do not have annotated gold data
to train on (indeed the goal of an automated cognate identification system is to help
produce such annotation). Moreover, this result confirmed that our system can func-
tion on data sets where definitions are written in a language other than English (in
this case Spanish), even when the model was trained on a data set where definitions
are written in English.

7.2 Pairwise Classification
While the end goal of our system is to take input language dictionaries and produce
cognate sets as output (the Word-Sets task), a subset of our full system, namely the
general and specific classifiers, can be applied to the Word-Pairs task as well.

In our first experiment, we compare the effectiveness of our pairwise classifiers
against the system of Kondrak (2004), which was designed to process one language
pair at a time. Following Kondrak (2004), we classify the noun subset of the Algo-
nquian data. As their system contains no machine learning component, it requires
no training data, but the Cree-Ojibwa noun pair was used for development and tun-
ing. We train two versions of our general model: one trained on the Cree-Ojibwa
noun subset, and another on the POLLEX data set. We also train a specific model
for each language pair, using the method described in Section 4.3.

After we classify the pairs, they are outputted in order of confidence at being
cognates. This output is evaluated using 11-point interpolated precision. Starting
from the top of the list (the word pairs deemed most likely to be cognates by the
classifier), the precision is recorded at different recall thresholds. At each recall
threshold in 0, 0.1, 0.2, ..., 1.0, the corresponding precision is recorded. The preci-
sion scores are interpolated, which means that the precision at recall level r is set to
be the highest possible precision for any recall level r′ where r′ >= r. Interpola-
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Language Pair Kon2004 FullSystem-CreeOjibwa FullSystem-Polynesian
Cree Ojibwa 78.7 84.8 82.3

Cree Fox 69.8 77.8 76.6
Cree Menomini 61.8 78.4 80.5
Fox Menomini 65.2 81.7 81.8

Fox Ojibwa 69.5 83.3 79.3
Menomini Ojibwa 64.1 80.3 81.7

Average on Test Sets 66.1 80.3 80.0

Table 7.1: System results: 11-Point interpolated precision on Algonquian noun
pairs.

Language Pair GeneralModel-CreeOjibwa GeneralModel-Polynesian Specific-Model
Average on Test Sets 79.4 77.0 45.9

Table 7.2: System ablation: 11-Point interpolated precision on Algonquian noun
pairs.

tion is motivated by the fact that if precision can be increased while also increasing
recall, there is no reason not to move on to the higher recall level. In effect, interpo-
lation ensures that the precision-recall curve is monotonically decreasing. Finally,
these eleven precision values are averaged to give one summative metric detailing
how well the system classified the pairs at different levels of recall. By definition,
we set the precision at recall of 0% to be 100% and the precision at a recall of 100%
to be 0% (Kondrak, 2004).

7.2.1 System Comparison
Table 7.1 contains the 11-point precision results, with each row containing the score
for a given language pair. As a baseline, Kon2004 displays the results reported by
Kondrak (2004). To make a direct comparison, we follow Kondrak (2004) when
reporting the average results on the testing language pairs by simply taking the
arithmetic mean of the five scores.1 FullSystem-CreeOjibwa displays the results
when combining the score of the general model, trained on Cree-Ojibwa noun
pairs, and the scores of the specific models, trained on the respective language
pairs. FullSystem-CreeOjibwa outperforms Kon2004 on every language pair, for
an average improvement of 14.2% and an error reduction of 41.9% on the test sets.
This improvement is most likely attributable to the richness of our feature set and to
the use of machine learning in our system, as opposed to Kon2004, which applies a

1Technically it may make more sense to combine the output for each language pair into one file
to determine the overall score across all language pairs; however, this distinction results in a less
than one percent difference in average score for each of our system configurations.
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manual tuning of weights based on the training set.
While it is nice to see such positive results when training on the Cree-Ojibwa

noun pairs, it is not a fully realistic scenario to have gold cognate data to train on
in the same language family that we are classifying. It is perhaps more interesting
to see what kind of results are achievable when training the model on a completely
unrelated language family. It is a fair assumption to make that we have this kind of
gold data available and does not go against the unsupervised categorization of our
task.

FullSystem-Polynesian shows the results of combining the scores of the general
model trained on Polynesian and the specific models. As expected, the results are
not as good when training the general model on Polynesian as compared to training
on Cree-Ojibwa (since the Cree-Ojibwa data is from the same language family and
same original source); however, the scores are still higher than Kon2004 for all
language pairs and by an average of 13.9% on the testing sets. In fact, FullSystem-
Polynesian even surpasses Kon2004 on Cree-Ojibwa itself, which is impressive
since Kon2004 was tuned on this language pair. These results are more evidence
that a model trained on one language family can still achieve impressive results
when classifying cognates in a completely unrelated language family. Moreover,
when both general models are combined with the specific models, the one trained
on Polynesian was able to score on average on the test sets within 0.3% of the model
trained on Cree-Ojibwa.

7.2.2 System Ablation
In Table 7.2, we report the average 11 point interpolated precision on the noun
test sets when only using the general model or only using the specific models in
isolation.

GeneralModel-CreeOjibwa displays the results of only using the score from
the general model trained on the Cree-Ojibwa noun pairs. The average result on
the test sets of 79.4% is 0.9 percent lower than when combining with the specific
model scores in the full system (as shown in Table 7.1). GeneralModel-Polynesian
reports the results of using the general model, trained on Polynesian data, without
information from the specific models. This result shows that the specific model
is able to increase the score of the general Polynesian model by three percent on
average on the test sets. Both cases provide evidence that correspondence-based
language-specific knowledge can be leveraged to aid a general model. It is per-
haps intuitive that the specific models do more to assist GeneralModel-Polynesian
than GeneralModel-CreeOjibwa, since the latter may already be biased towards the
Algonquian family.

Finally, Table 7.2 shows that the specific models, when used in isolation, do not
fare as well. In fact, the average specific model score on the test sets is 20.2% lower
than Kon2004. These system ablation results indicate that a combination of the
general model with the specific models leads to a pairwise classifier that is better
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than either model on its own.
We have shown that our classifiers combine to form a state-of-art pairwise cog-

nate identification system when considering phonetic and semantic information (the
Word-Pairs task).

7.3 Cognate Set Identification
In our main experiment, we apply our full system to the task of creating cognate sets
from the entire Algonquian dictionaries (the Word-Sets task). We train the general
model on the Polynesian data set, according to the description provided in Section
7.1, and follow the clustering methods outlined in Section 4.4.

We run our system on a 3.5GHz machine with 12 CPUs and 32GB of memory.
Featurizing and training the general Polynesian model and the specific models takes
only a few minutes. Featurizing and classifying all dictionary pairs with the general
and specific models takes a matter of hours. Finally, cognate clustering is completed
in under an hour.

We report results for four configurations of our system, based on two parame-
ters: (1) whether the pairwise scores are calculated solely by the general model or
combined with the specific model scores; (2) whether the system allows proposed
cognate sets with multiple words per language or restricts each set to one word per
language.

To get a measure of how well our full system performs, we need something to
compare it against. Limited work has been done on the task of clustering cognates
across definitions (Kondrak et al., 2007; Steiner et al., 2011); however, no direct
comparison is possible due to the lack of gold annotation on the data sets used
and system code being unavailable for download. As a baseline, we compare our
system against the heuristic sets of Section 4.3. These sets are created following
the two heuristics: (1) words must have an identical definition; (2) words must
have an identical first letter. We also report the results obtained with LEXSTAT

(List, 2012).2 While this system was designed for clustering cognates within word
lists (the Form-Sets task), we apply it to language dictionaries in part to observe
how well a state-of-the-art word list system performs on this task, and to serve as
another baseline to compare our system against. LEXSTAT has no capability to
propose cognates with distinct definitions, so we first group together the words that
have identical definitions and provide these as its input.

7.4 Results
In Chapter 6, we discussed various possible metrics that could be used for eval-
uation. The B-Cubed metric has been used recently to evaluate cognate cluster-
ing within word lists (Hauer and Kondrak, 2011; List and Moran, 2013; List et

2We use the code from http://lingpy.org with default parameters.
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System Found Sets Purity
Heuristic Baseline 18.9 (9.9) 96.4

LEXSTAT 19.6 (10.5) 97.1
General (1 Word Per Language) 66.2 (51.3) 66.5

General + Specific (1 Word Per Language) 63.1 (48.2) 70.3
General 71.6 (57.9) 52.1

General + Specific 67.9 (53.6) 57.7

Table 7.3: System results: The percentage of found sets and cluster purity for the
Algonquian language dictionaries. The number of fully found sets is shown in
parenthesis.

al., 2016), but we argued that this metric is not appropriate to measure cluster-
ings across language dictionaries, since it produces highly unintuitive results. To
verify this claim, we evaluate the Max Precision clustering, which was introduced
in Chapter 6, on the Algonquian language dictionaries. Recall that this clustering
places all words into their own cluster, in effect, identifying zero cognate relation-
ships. Max Precision achieves a B-Cubed F-Score of 89.6% on this data set. To
emphasize: a clustering that does nothing to find cognates is awarded with an ex-
tremely high score by B-Cubed. This result is strong evidence supporting our claim
that B-Cubed is not the proper metric to evaluate this task. We argue that the total
number of sets found by a system (a measure of recall), balanced by the cluster
purity (a measure of precision), provides an accurate depiction of how well a sys-
tem identifies cognate sets. Table 7.3 displays the number of found sets and cluster
purity for the baselines and system configurations.

The Heuristic Baseline is able to find 18.9% of gold cognate sets while scoring
96.4% for cluster purity. The high purity score is partially attributable to the number
of words placed into their own cluster. However, even just counting the clusters
that contain multiple words still yields an average cluster purity of 69%. LEXSTAT

performs slightly better than the Heuristic Baseline, but the number of sets found
by LEXSTAT is still limited by the fact that it cannot propose cognates between
words with varying definitions. In fact, in the Algonquian data set, only 21.4% of
all gold cognate sets contain at least two words with identical definitions, making
this an upper bound on the number of found sets possible for any word list cognate
identification system.

Moving next to our system configurations: All four configurations are able to
find more than three times as many cognate sets as the baselines. By allowing
more than one word for a given language in a cluster, the number of found sets
predictably rises, but at a cost of purity. Combining the scores of the general model
with the specific models lowers the percentage of found sets while increasing purity.
The choice of which configuration to use comes down to whether one values recall
(the number of found sets) or precision (cluster purity) more. For optimal recall, a
configuration composed of the general model for pairwise scores and a clustering
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method that allows multiple words per language works best, finding 71.6% of total
sets (57.9% being completely found). This configuration still maintains a cluster
purity of 52.1%, meaning that on average, just over half of each proposed cluster
actually belong to the same cognate set in the annotated data. To maximize preci-
sion (while still finding a large number of cognate sets, unlike the baselines), we
use the specific model scores in conjunction with the general model and only allow
one word per language per cluster. This configuration is able to find 63.1% of total
cognate sets and achieve a cluster purity of 70.3%. Regardless of the exact con-
figuration chosen, our system is able to find a majority of true cognate sets while
keeping cluster purity at a relatively high level.

7.5 Discussion
Including the specific model scores leads to system configurations that have higher
purity than those that only use the general model scores. This shows that the regu-
lar correspondences learned by the specific models help to discriminate some non-
cognates that the general model, due to phonetic or semantic similarity, believes
to be cognates. These non-cognates could include false cognates such as lexical
borrowings or chance resemblances. However, while purity increases by including
the specific models, the overall improvement is somewhat negligible. One possible
explanation is that the Algonquian languages are in general quite similar to each
other, and therefore, the general model is able to discern most cognate relationships
alone. For example, the specific models learn regular correspondences such as s:s or
hk:kk, which the general model is already able to determine are similar phonemes.
It is possible that for a more distantly-related language family, the specific mod-
els would provide more utility to the system. On the other hand, in the pairwise
experiment of Section 7.2, it was seen that the specific models were able to help
the Polynesian general model, so the problem could actually be due to how the two
scores are combined in the full system. Due to memory constraints, only positive
scores from the general or specific models are allowed into the similarity matrix
before clustering (see Section 4.4), so word pairs that receive a negative score from
one of the two models cannot be clustered together regardless of the other model’s
score. For example, Table 7.4 shows a cognate set with three words found by the
system but with one cognate missing. The missing Menominee word “ehkuah” is
given a negative score with the other words by the specific models and therefore is
placed alone. If the system were able to include negative scores while clustering,
then this missing cognate would likely be included in the proper clustering due to
the high general model scores.

Table 7.4 also displays another type of error made by the system, again in regard
to the specific models. They are trained on the heuristic sets where all words must
begin with identical first letters, and this leads them to prefer words with the same
first letter, to a fault. As mentioned in Section 4.3, the first letter heuristic is useful
in that it is transitive, simple, and leads to high-precision training sets; however, it

46



Language Word Definition
Cree ihkwa louse

Found Set Fox ihkwa louse
Ojibwa ikkw louse

Missing Word Menominee ehkuah louse

Table 7.4: Example system error due to the specific model.

Language Word Definition

Found Set
Cree wisakisiwin bitterness, pain
Ojibwa wissakisiwin bitterness

Missing Word Menominee weqsakæsen sickness

Table 7.5: Example system error due to semantic drift.

is not perfect. In this example, the first-letter bias stops a cognate from being found
by the system.

Another category of error made by our system occurs when large semantic drift
has taken place between cognates. An example of such error is shown in Table 7.5,
where the definition “sickness” no longer shares a similar meaning with “bitterness”
or “pain.” It is possible that this word could have been identified through regular
sound correspondences, but in this case, the general model score was negative,
prohibiting the clustering.

It should be noted that while semantic drift can lead to errors in our system, there
are many instances where our system identifies such occurrences. Found cognates
of this nature are due in large part to the word vector features of our model. Table
7.6 provides several examples of cognate sets found by our system that would have
been extremely difficult to identify without word vector technology. The table in-
cludes cognates that have undergone small or large semantic drift, such as between
“he is angry” and “he is nauseated” or “he is in mourning” and “she is widowed.”
And it also includes cognates that have similar meanings but a connection that is
not obvious to simpler measures of semantic similarity, such as “he is in bits” and
“he is ground up.”

Another type of error made by our system originates from the complex mor-
phology of the Algonquian language family. Due to its polysynthetic morphology,
a single Algonquian word can express a meaning that would take several words to
express in English. This manifests itself in the data set as distinct cognate sets that
only slightly differ in their overall definitions and phonetic forms. These similar
sets prove very difficult for our system to correctly cluster. For example, consider
the example shown in Table 7.7. The Menominee word a:kuaqtæ:hsen, meaning “he
is in the shade,” has been placed into a cluster with two similar Cree and Ojibwa
words (shown above the horizontal line); however, it should have been placed with
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Language Word Definition
Cree wana:tisiw he is inconsistent
Menominee wana:tesew he is uneasy
Cree ma:ya:čite:he:w he is angry
Menominee miana:četæhæ:w he is nauseated
Cree pistahtam he eats it by mistake
Ojibwa pittanta:n bite something accidentally
Cree wi:htiko:w gigantic man eating monster, windigo
Fox wi:teko:wa owl
Cree pi:sisiw he is in bits
Ojibwa pi:ssisi he is ground up
Cree ayiwiskawe:w he is taller than someone else
Ojibwa aniwiškaw precede, surpass someone
Cree si:ka:wiw he is in mourning
Menominee se:kawew she is widowed

Table 7.6: Example cognates found with the assistance of word vector information.

Language Word Definition
Cree a:kawa:ste:simo:w he lies down in the shade
Menominee a:kuaqtæ:hsen he is in the shade
Ojibwa a:kawa:tte:ššimo:n be in the shadow
Ojibwa a:kawa:tte:ššin make shadow with one’s body

Table 7.7: Example system error due to morphology.

the Ojibwa word a:kawa:tte:ššin, meaning “make shadow with one’s body” (shown
below the horizontal line). All the phonetic shapes and definitions in this example
display high levels of similarity, making the true cognate relationships difficult to
discern. It could be argued that these similar morphological variants are technically
cognates by definition; none the less, the gold annotations make cognate distinc-
tions based on morphology, and this contributes to a large amount of our system
errors.

Another type of system error comes from clusters of likely cognates that do
not actually appear in the gold annotation. These outputs decrease cluster purity,
perhaps pessimistically. Some examples of this type of error are shown in Table 7.8.
Any cognate identification system could be forgiven for making mistakes when the
word forms and definitions share such striking similarity. It is possible that they
are missing in error from the gold annotation. On the other hand, these may be
examples of false cognates.

Finally, some errors made by our system are attributable to the ALINE thresh-
old used to decide which pairs are classified. This constraint, as explained in Sec-
tion 4.4, is needed to allow the system to run in a reasonable amount of time, but it
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Language Word Definition
Menominee pekuač growing wild
Ojibwa pekwači growing wild
Cree niso:te:w twin
Ojibwa ni:šo:te:nq twin

Table 7.8: Examples of proposed cognate sets that are not found in the gold data.

comes with the price of not classifying some true cognates. However, this problem
is mainly evident in the versions of the system that allow multiple words per lan-
guage per cluster. There is a higher likelihood of words below the ALINE threshold
preventing a desired cluster merge in the larger clusters created by these versions.
Overall, this does not seem to contribute to many of the system errors.
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Chapter 8

Conclusion

In this final chapter, we provide a summary of our work and findings. We also men-
tion possible paths for future exploration and conclude with some final thoughts.

8.1 Summary
Identifying and clustering cognate sets within a family of related languages is a
complicated problem with application in historical linguistics. Up to this point,
most research has only considered the problem of clustering cognates within groups
of words having identical definitions. In that task, semantic information from defi-
nitions is not critical, as cognate relationships are constrained to words with identi-
cal definitions. In our work, we explored the under-studied problem of finding and
clustering cognate sets across entire dictionaries of related languages. This task nec-
essarily requires the use of semantic information from the definitions themselves,
since cognate sets need not be formed from words having identical definitions. This
assumption is more realistic and requires less pre-processing when dealing with
large language dictionaries containing thousands of unique definitions.

We have presented a machine learning model capable of learning cognate re-
lationships based on a set of rich phonetic and semantic features. We also imple-
mented a language-pair-specific model based on substrings of given words, in an
attempt to extract regular sound correspondences. The model scores are combined
with an average-score-based clustering algorithm to produce proposed cognate sets.

We investigated several evaluation metrics and have shown that B-Cubed, which
has been used to evaluate cognate clusterings within word lists, is not suitable to
evaluate cognate clusterings across entire language dictionaries. We argue that the
total number of found cognate sets provides an important measure of the utility of
a system, and we balance this metric with cluster purity.

In a pairwise cognate identification task, our models surpassed the state-of-the-
art, with an error reduction of 41.9%. When applying our full system to the Al-
gonquian language family, a majority of the true cognate sets were found, while
maintaining a relatively high cluster purity.
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Our work is the first to apply machine learning techniques to the task of cognate
clustering across language dictionaries and the first, to the best of our knowledge,
to apply advances in word vector technology to cognate identification in general.

8.2 Future Work
In the future, we would like to apply our full system to the Totonacan language
family. This family has yet to be fully analyzed by an expert linguist, and as such,
provides motivation for an automated system such as ours. Our system can be used
as a tool to provide prospective cognate sets to a Totonacan expert, since manual
annotation of proposed cognate sets requires far less work than analyzing entire
language dictionaries by hand.

A possible approach to removing the first-letter bias from the specific models
would be to use an iterative process. We could run the system with only the general
model scores, and use these preliminary output sets as training data for the specific
models. This procedure would mimic the comparative method, and could possibly
lead to improvements in identifying regular sound correspondences.

Another direction for future work would be to use morphological information to
guide cognate classifications, as our current system’s inability to do so contributes
to a large number of its errors.

8.3 Final Thoughts
A main insight from our work is that a cognate classification model can be trained
on one language family and achieve impressive results when classifying a com-
pletely unrelated language family. This fact allows cognate information from a
high-resource language family to guide cognate identification between languages
that little is known about. In effect, this allows us to use supervised learning tech-
niques on an unsupervised problem.

There are aspects of cognate identification that will most likely always require
a language expert, such as the detection of cognates that have undergone both pho-
netic and semantic change or the detection of large-scale borrowing between lan-
guages. However, we believe that our system has made a large step in the field
of automated cognate identification and can prove useful as a tool in the hands of
expert linguists.
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