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Abstract
Multiple data types should be used simultaneously to improve resource estimation models. The

multivariate relationship between the data is required. One common approach involves using decor-

relation transformation techniques to simplify complex relationships, but this method relies on

having collocated data. With heterotopic data, these techniques cannot be applied.

A Data Error Model (DEM) is developed as a solution to the challenge of using multiple data

types that are not sampled at the same location. This model quantifies relationships between

different types of data, even if they are not collocated. The workflow of DEM involves pairing

analysis to understand the relationships between variables at different locations. The parameters of

the DEM account for errors and biases in different data types. The DEM describes the relationships

that emerge in pairing analysis with primary and secondary data types. Applying the DEM to

simulated primary data produces collocated secondary data distributions. This allows us to obtain

the relationships between two variables.

The thesis proposes a method to improve the accuracy of resource estimation models by facili-

tating the use of multiple data types. The DEM is used to infer the relationships between different

types of data, even if they are not collocated. The relationship inferred from DEM can be expressed

as a Gaussian Mixture Model (GMM), which underlies the conditional distribution needed to impute

collocated primary or error-free values. Imputation allows for the creation of estimation models con-

ditioning to primary variable and secondary variable data. A case study using data from a Nevada

gold mine demonstrates the improved estimates.
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Chapter 1

Introduction
1.1 Spatial Estimation Modeling

The resources industry relies on the collection and analysis of geological data to predict spatial

variations. In this context, variables refer to geological properties that exhibit spatial variability

and can be quantitatively measured (Houlding, 1994). Primary variables are those that offer the

most accurate and valuable information for geological prediction, obtained through careful collec-

tion methods, and treated as error-free. On the other hand, secondary variables are quickly and

economically sampled, considered to be less accurate and less reliable. These secondary variables

serve as auxiliary data to complement the primary variable and enhance the accuracy of geological

estimation models.

Kriging, originally proposed by Krige (1951) and developed by Matheron (1963), is a widely

utilized method for estimating at unsampled locations based on a minimum error-variance estimation

algorithm. There are different types of kriging. Simple kriging (SK) minimizes the error variance

without imposing any constraints on the weights. The mean, inferred from available samples, is

considered a known constant for the entire domain. Ordinary kriging (OK) implicitly re-estimates

the mean as a constant within each search neighborhood. In kriging practice, OK is often preferred

over SK because it estimates a more robust local mean rather than relying on the global mean. This

can lead to lower mean squared error (MSE) estimates (J. Deutsch & Deutsch, 2012).

Stochastic simulation, employing conditional cumulative distribution functions and Monte Carlo

algorithms, provides a numerical and visual representation of spatial uncertainty. Simulation offers

an advantage over kriging by allowing the assessment of uncertainty. Conditional simulation was

initially developed to address the smoothing effect observed in maps generated by kriging. This

smoothing effect reduces spatial variability, resulting in varying degrees of smoothing across different

regions and potentially introducing artificial structures. The estimation map generated by kriging

is suitable for illustrating global trends, while conditionally simulated maps are more appropriate

for studies focused on local variability patterns (C. V. Deutsch & Journel, 1998).

1.2 Problem Motivation

Multiple data types or variables from different locations, including different sampling vintages, dif-

ferent drilling types and drill hole sizes, and relatively cost-effective chip or channel samples, are

used as data sources to create spatial geographic estimation models. Typically, the primary variable

is associated with drill holes (exploration data) and the secondary variable is associated with blast
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1. Introduction

holes (production samples). When multiple variables are measured at the same locations, known

as homotopic data, kriging can be employed to estimate each variable individually. Alternatively,

decorrelation techniques, such as Principal Component Analysis (Davis & Greenes, 1983), Projection

Pursuit Multivariate Transform (Barnett, Manchuk, & Deutsch, 2014), Min/Max Autocorrelation

Factors (Desbarats & Dimitrakopoulos, 2000), and Stepwise Conditional Transform (Leuangthong

& Deutsch, 2003), can facilitate the simulation of homotopic data. These multivariate geostatistical

workflows rely on multivariate transformations to capture the relationships within the data.

However, primary and secondary variables are unequally sampled, resulting in heterotopic data.

This issue imposes practical limitations on identifying meaningful multivariate relationships between

geological variables. Advancing estimation modeling with multiple data types requires an approach

to infer relationships between variables at different locations. Understanding the connections be-

tween heterotopic data is a crucial process to establish a comprehensive understanding of their

relationships. The inference of relationships between heterotopic data allows for the convenient

utilization of data imputation techniques, which, in turn, enhances the accuracy of estimation mod-

els. Moreover, the ability to infer relationships facilitates simulation processes that were historically

challenging due to the constraints of multivariate transformations when dealing with heterotopic

data. This thesis proposes a method for establishing the relationship between heterotopic data and

seeks to improve the estimation model of multiple data types using multiple imputation with the

inferred relationship.

1.3 Thesis Statement and Research Contribution

This thesis introduces a novel Data Error Model (DEM) workflow that addresses the challenges

posed by heterotopic data, thereby enhancing the accuracy of estimation models. The DEM frame-

work enables the inference of relationships between heterotopic variables by simulating hypothetical

collocated data, even in cases where variables have not been equally sampled. Through the applica-

tion of multiple imputation (MI), which utilizes the inferred relationships, the missing data of the

error-free primary variable can be imputed, leading to improved accuracy in the estimation model.

MI is a well-established probabilistic approach that quantifies the conditional distribution of miss-

ing data based on the observed data. However, obtaining reliable relationships can be challenging

in heterotopic scenarios where no data is available at the same location. To overcome this challenge,

the DEM approach has been developed to infer relationships between primary and secondary vari-

ables by identifying errors and biases within the secondary variables. The DEM workflow involves

conducting a pairing analysis of primary and secondary variables to compare correlations and mean

differences of pairs, enabling the identification of inferred relationships even in the absence of col-

located data. The primary data simulated by a DEM that causes the primary data to have errors

and biases of the secondary variable will mimic the secondary data distribution. This facilitates

2



1. Introduction

the identification of inferred relationships between the primary variable and the DEM-applied data.

With the conditional distribution from them, MI can be performed even in heterotopic situations.

In conclusion, the mining industry generates a wealth of heterotopic data from multiple variables,

presenting significant challenges in analysis and interpretation. The DEM approach offers a valuable

tool for inferring relationships between primary and secondary variables in heterotopic situations. By

incorporating a DEM into the analysis of heterotopic data, more accurate and reliable estimations

at unsampled locations can be made.

1.4 Thesis Outline

Chapter 2: Background Concepts

This chapter provides an overview of the fundamental concepts needed in the thesis. The first sec-

tion summarizes covariance, correlation coefficient, and variogram, highlighting their significance in

geostatistics. The second section explores the Linear Model of Coregionalization (LMC), discussing

its application in capturing the relationships between variables. Lastly, the third section introduces

the Gaussian Mixture Model (GMM), shedding light on its relevance in analyzing complex spatial

distributions.

Chapter 3: Prototype of Alternative Techniques

In this chapter, alternative techniques for building estimation models for heterotopic data are

explored. The first section delves into cokriging, emphasizing the utilization of covariance between

variables. The second section presents the Intrinsic Correlation Model (ICM) as a simplified version

of the LMC. It showcases examples of cokriging using LMC and ICM, followed by a comprehensive

comparison of their effectiveness in the third section.

Chapter 4: Data Error Model (DEM)

This chapter introduces the DEM framework and its associated workflows. The first section

introduces an approach to the basic error model, which serves as the foundation for the Data Error

Model (DEM) formula. The second section provides insight into the development of DEM and

presents the underlying mathematical model. The third section demonstrates the impact of varying

DEM parameters on the resulting DEM-applied data. Additionally, the fourth section describes

pairing analysis, a crucial component of the DEM workflow, and summarizes a comprehensive process

for obtaining an optimal DEM. The last section explores factors that influence the accuracy of an

inferred DEM.

Chapter 5: Multiple and Mixed Data Type Imputation

This chapter focuses on multiple imputation (MI), a methodology that enhances the accuracy

of estimation models and enables uncertainty analysis. It presents the theoretical foundations of

3



1. Introduction

imputation and provides a synthetic MI example incorporating DEM workflows.

Chapter 6: Case Study: Application of DEM Workflow and MI for Multiple Data Types at Rain

Mine

In this chapter, a case study is conducted to apply MI using DEM to real data from the Rain

Mine data provided by Newmont for CCG training purposes. The DEM and MI are applied to

actual data, and the results are discussed and analyzed.

4



Chapter 2

Background Concepts
This chapter reviews geostatistical techniques for integrating multivariate relationships in space,

which is the basis of this thesis. Basic geostatistical concepts are discussed in many books such as

Geostatistics: Modeling Spatial Uncertainty by Chiles and Delfiner (2012) or Geostatistical Reservoir

Modeling by Pyrcz and Deutsch (2014). Geostatistics Lessons (http://geostatisticslessons

.com) also provide a wealth of geostatistical knowledge with easy-to-understand examples.

2.1 Covariance, Correlation coefficient, and Variogram

Covariance is a statistical measure that quantifies the relationship between two random variables

(RVs) (Rice, 2006). It indicates the extent to which changes in one variable are associated with

changes in another variable. The covariance between two variables Z and Y can be calculated using

the following formula (Park & Park, 2018):

C(Z, Y ) = E[(Z − E[Z])(Y − E[Y ])] = E[ZY ] − E[Z]E[Y ] (2.1)

In the formula, Z and Y represent two variables, and E[Z] and E[Y ] represent the means of Z

and Y , respectively. The covariance can be positive, negative, or zero, indicating the direction and

strength of the relationship between the variables (Bonamente, 2017). A positive covariance suggests

that when one variable increases, the other tends to increase as well, while a negative covariance

indicates an inverse relationship, where one variable tends to decrease as the other increases. A

covariance of zero suggests no linear relationship between the variables. However, covariance alone

does not provide a standardized measure of the strength of the relationship, making it challenging to

compare relationships between different variable pairs. For this purpose, the correlation coefficient

is commonly used (Rodgers & Nicewander, 1988).

The correlation coefficient is a standardized version of the covariance and measures the strength

and direction of the linear relationship between two variables (Taylor, 1990). The most widely used

correlation coefficient is Pearson’s correlation coefficient, denoted as ρ (rho). It is calculated by

dividing the covariance between Z and Y by the product of their standard deviations:

ρZY =
C(Z, Y )

σZ · σY

(2.2)

Here, C(Z, Y ) represents the covariance between Z and Y , and σZ and σY represent the standard

deviations of Z and Y , respectively. The correlation coefficient ρ ranges from -1 to 1. A value of +1

indicates a perfect direct linear relationship, -1 indicates a perfect inverse linear relationship, and 0

indicates no linear relationship between the variables. It is important to note that the correlation

5



2. Background Concepts

coefficient measures only linear relationships and may not capture other types of relationships, such

as nonlinear or causal relationships (Schober, Boer, & Schwarte, 2018).

Both the covariance and correlation coefficient are useful tools for analyzing relationships between

variables, but the correlation coefficient provides a standardized measure that is often easier to

interpret and comparable across different variable pairs.

Assuming stationarity, the variogram employed in geostatistics is closely linked to the covariance

function, as both serve as measures of statistical correlation strength with respect to distance. They

quantify the spatial dependence between two data points (Pyrcz & Deutsch, 2014). Stationarity

implies that the statistical properties of the data remain constant across the study area. In such

cases, the following equations hold true:

E
[

Z(u)
]

= E
[

Z(u + h)
]

= m, Var
(

Z(u)
)

= Var
(

Z(u + h)
)

= σ2, ∀ u, u + h ∈ A

where u is location vector and h denoted distance or lag vector.

The (semi-)variogram, denoted by γ(h), is computed by taking half of the difference in variance

between pairs of data points at varying spatial locations. It measures how the variance of the data

changes as a function of distance.

2γ(h) = Var
(

Z(u) − Z(u + h)
)

= E
[

(

Z(u) − Z(u + h)
)2

]

(2.3)

The spatial covariance function, denoted by C(h), represents the covariance between two data

points at a given spatial lag vector h.

C(h) = cov
(

Z(u), Z(u + h)
)

= E
[

Z(u)Z(u + h)
]

− E
[

Z(u)
]

E
[

Z(u + h)
]

(2.4)

The covariance C(h) is zero if the data separated by h are not linearly correlated. At h = 0, the

stationary covariance C(0) equals the stationary variance σ2.

C(0) = E
[

Z(u)Z(u + 0)
]

− E
[

Z(u)
]

E
[

Z(u + 0)
]

= E
[

Z(u)2
]

− E
[

Z(u)
]2

= Var
(

Z(u)
)

= σ2

The relationship between the variogram and covariance is important in variogram interpretation

and in providing covariances to kriging equations. This relation depends on the model decision that

the mean and variance are constant and independent of location (Rossi & Deutsch, 2014). The
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2. Background Concepts

following equations show the relationship between variogram and covariance.

2γ(h) = Var
(

Z(u + h) − Z(u)
)

= E
[

Z(u + h)2
]

+ E
[

Z(u)2
]

− 2E
[

Z(u + h)Z(u)
]

= Var
(

Z(u + h)
)

+ E
[

Z(u + h)
]2

+ Var
(

Z(u)
)

+ E
[

Z(u)
]2

− 2 cov
(

Z(u + h), Z(u)
)

− 2E
[

Z(u)
]

E
[

Z(u + h)
]

= 2C(0) − 2C(h)

=⇒ γ(h) = C(0) − C(h)

= C(0)
(

1 − ρ(h)
)

(2.5)

The covariance function evaluates data similarity over distance, while the variogram represents

dissimilarity, that is, γ(h) = σ2 − C(h), as shown in Equation 2.5. Positive correlation is indicated

when the semi-variogram is less than the variance, no correlation when they are equal, and negative

correlation when the semi-variogram exceeds the variance.

The cross-covariance function Cij(h) of a set of N random functions Zi(u) is defined in the

framework of a joint second order stationarity hypothesis (Wackernagel, 2003).

E
[

Zi(u)
]

= mi ∀ u ∈ A; i = 1, ..., N

Cij(h) = E
[

(Zi(u) − mi)(Zj(u + h) − mj)
]

∀ u, u + h ∈ A; i, j = 1, ..., N (2.6)

The cross-variogram γij(h) is defined in the context of a joint intrinsic hypothesis for N random

functions. With the same conditions as the cross-covariance equation 2.6, the cross-variogram is

expressed as:

γij(h) =
1

2
E

[

(Zi(u) − Zi(u + h))(Zj(u) − Zj(u + h))
]

(2.7)

The function representing the relationship between cross-variogram and cross-covariance is expressed

as follows, assuming that Cij(h) = Cji(h)

γij(h) = Cij(0) − Cij(h) (2.8)

Both cross-covariance and cross-variogram depend only on the separation vector h, and the co-

variance function must be positive definite. Both functions are explained in more detail with the

following LMC describing the coregionalization of multivariate.

2.2 Linear Model of Coregionalization (LMC)

The Linear Model of Coregionalization (LMC) is the most commonly used method for analyzing

and interpreting the spatial continuity of multiple variables (Goulard & Voltz, 1992). The LMC

builds each random function Zk(u) as a linear combination of independent standard factors Yi(u)
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with i = 0 corresponding to no spatial structure (C. V. Deutsch, 2021; Journel & Huijbregts, 1976).

Zk(u) = mk +
nst
∑

i=0

ak,iYi(u) k = 1, ..., K (2.9)

with

• E
[

Zk(u)
]

= mk

• E
[

Yi(u)
]

= 0 ∀ i

• C
(

Yi(u), Yi′(u + h)
)

= ci(h) if i = i′ , otherwise 0.

The cross-covariance between any two RVs Zk(u) and Zk′(u + h) can be expressed as a linear

combination of cross-covariances between any two RVs Yi(u) and Yi′(u + h). Also, the random

functions Yi(u) are mutually independent, and cross-covariance models of them can be defined

LMC as follows(Goovaerts, 1997):

Ckk′(h) = cov
(

Zk(u), Zk′(u + h)
)

=

nst
∑

i=0

ak,iak′,ici(h)

=

nst
∑

i=0

bk,k′ci(h) ∀ i, k, k′

(2.10)

where the sill bk,k′ of the basic covariance model ci(h) is

bk,k′ =

nst
∑

i=0

ak,iak′,i (2.11)

and the variance-covariance matrices B = [bk,k′ ] must satisfy

bk,k × bk′,k′ ≥ bk,k′ × bk′,k ∀ k, k′

By construction, the coefficients bk,k′ and bk′,k are identical, hence the two cross-covariance models

Ckk′(h) and Ck′k(h) are the same. Furthermore, the (nst + 1) coregionalization matrices are all

positive semi-definite.

Variograms can also be developed from the LMC using the same process as above. The cross-

variogram models γkk′(h) defined by LMC is expressed as:

γkk′(h) =
nst
∑

i=0

bkk′Γi(h) ∀ k, k′ (2.12)

where each function Γi(h) is a permissible semi-variogram model and has the relationship ci(h) = 1−

Γi(h) when variograms are standardized. The (nst+1) matrices of the coefficients bkk′ corresponding

to the sill of the model Γi(h) are all positive semi-definite.
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2.3 Gaussian Mixture Model (GMM)

Gaussian Mixture Models (GMMs) and the LMC are both used in multivariable or multiple data

type modeling. GMMs offer a powerful framework for modeling complex non-Gaussian multivariate

relationships among collocated variables (de Souza et al., 2022). This allows complex dependencies

to be quantified, making it a useful tool for multivariate modeling when decorrelation techniques

are needed, eliminating the need for an LMC approach. This section highlights how GMMs serve

as an alternative for capturing multivariate relationships without relying on the assumptions of the

LMC method.

A GMM is a probabilistic density function that can be expressed as a weighted sum of Gaussian

component densities. Mathematically, a GMM is represented as (Reynolds et al., 2009):

p(x | Ψ) =

M
∑

i=1

wig
(

x | µi, Σi

)

(2.13)

In this equation, x represents a D-dimensional continuous-valued data vector (i.e., measurement or

features), wi (for i = 1, ..., M) are the mixture weights, and g
(

x | µi, Σi

)

denotes the Gaussian

components characterized by their mean µi and covariance matrix Σi. The parameter set Ψ com-

prises all the component parameters, including the weights, means, and covariance matrices for each

Gaussian component.

GMMs are not constrained by a single parametric form and are not purely data-driven. They offer

a flexible and semi-parametric approach for smoothly modeling complex data patterns. Estimating

the parameters of GMMs typically involves using the iterative Expectation-Maximization (EM)

algorithm (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 2007).

The implementation of GMMs requires determining the appropriate number of Gaussian compo-

nents for fitting the data. It is important to strike a balance between over-fitting and under-fitting

to ensure that the GMM accurately captures the distribution of the mixed model. Generally, using

a smaller number of components is preferred to avoid over-fitting (Gomes, Boisvert, & Deutsch,

2022).

GMMs are particularly well-suited for modeling complex and high-dimensional geostatistic data

sets, as they can effectively represent intricate univariate or multivariate distributions (Sarkar, Mel-

nykov, & Zheng, 2020). The GMM can be used for clustering, density estimation, and data gener-

ation (Zhang et al., 2021). In this thesis, GMMs produce reasonable conditional distributions for

use in multiple imputation purposes for missing data variables. Using GMMs for imputation not

only improves the accuracy of the imputed values but also provides computational advantages over

alternative methods such as kernel density estimation (D. S. Silva & Deutsch, 2018). Figure 2.1 ex-

plains how the GMM looks for multivariate data. GMM shows clusters by showing the relationship

between the two variables in a diagram.
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Figure 2.1: Example of a Gaussian mixture model (GMM) representation. It shows a mixture model
created for three variables using GMM component value 2. The GMM provides a flexible and smooth model
for fitting complex distributions.
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Chapter 3

Prototype of Alternative Techniques
This chapter focuses on cokriging, a technique employed to enhance the accuracy of predictive models

by incorporating secondary variables that are not located at the same location as the primary

variable. The chapter also addresses the challenge associated with conventional cokriging using

LMC and introduces the Intrinsic Correlation Model (ICM) as an alternative method. Additionally,

a synthetic example is shown comparing the cokriging process using LMC and ICM and the results

are discussed.

The utilization of secondary data, such as geological trends, seismic data, and production data,

can improve the estimation model for the primary variable. However, the complex nature of the

multi-dimensional distributions comprising diverse measurements poses significant challenges to re-

source estimation. To predict the conditional distribution of uncertainty at unsampled locations,

a multivariate distribution between the unsampled location and available sample data within a

defined search distance is necessary. Therefore, establishing multivariate relationships is vital in

constructing simulation and uncertainty analysis.

Defining these multivariate distributions in a non-parametric manner becomes impractical due

to the unique configuration of locations for each unsampled point. As a result, the parametric

multivariate Gaussian (MG) distribution is widely adopted (Ortiz & Deutsch, 2022). Geostatistical

techniques such as Principal Component Analysis (PCA) (Davis & Greenes, 1983) and Min/Max

Autocorrelation Factors (MAF) (Desbarats & Dimitrakopoulos, 2000) are commonly employed for

decorrelation transformations, enabling the creation of multivariate Gaussian distributions by trans-

forming collocated data. These methods assume the existence of sufficient collocated data points

for each variable to accurately represent their characteristics.

However, in practice, collocated data among multiple data types is not common. Cokriging

provides a means to enhance the predictive accuracy of primary data models by incorporating

secondary data, even when both data types are not available at the same location.

3.1 Cokriging

Cokriging is a method that utilizes the cross-correlation between a primary variable and a secondary

variable to minimize the variance of the estimation error. To simplify the process, all variables are

standardized to have a mean of zero and a standard deviation of one (Rossi & Deutsch, 2014). Af-

ter all computations are completed, the standardized values are reverted to the original units by

multiplying by the standard deviation and adding the mean. The Standardized Ordinary Cokrig-
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ing Estimator (SOCK) employs standardized variables, ensuring that the mean values of both the

primary and secondary variables are equal. SOCK is designed as a complement to ordinary kriging

by constraining the sum of all weights to 1, thereby reducing the dependence on the assumption of

stationarity (Isaaks & Srivastava, 1989). At a specific location u0, the SOCK can be expressed by

the following equation, assuming the mean values of the two variables, Z and Y , are mZ and mY ,

respectively (Goovaerts, 1998).

ZSOCK (u0) − mZ

σZ

=

n1
∑

α=1

λα (u0)

[

Z (uα) − mZ

σZ

]

+

n2
∑

β=1

λ′

β (u0)







Y
(

u
′

β

)

− mY

σY






(3.1)

The cokriging weights λα and λ′

β are constrained as follows.
n1
∑

α=1

λα (uα) +

n2
∑

β=1

λ′

β

(

u
′

β

)

= 1

When analyzing and interpreting multivariate spatial information, it is necessary to model the

coregionalization inferred from direct and cross-covariances. The calculation principles for cross-

variograms and cross-covariances are as explained in Chapter 2. Let’s consider a primary variable

Z(u) and a secondary variable Y (u). The direct variogram and cross-variogram can be calculated

as follows.

2γZ(h) = E
[

(Z(u) − Z(u + h))2
]

, 2γY (h) = E
[

(Y (u) − Y (u + h))2
]

(3.2)

2γZ,Y (h) = E
[

(Z(u) − Z(u + h))(Y (u) − Y (u + h))
]

(3.3)

In order to calculate the cross-variogram, the variables Z and Y must be located at the same

location. However, in practical situations, secondary data are not collocated with the primary data,

resulting in unequally sampled data or heterotopic data. Consequently, the cross-variogram cannot

be directly computed when multiple data are unequally sampled. In such cases, the cross-variogram

can be inferred by leveraging the relationship between covariance and variogram (C. V. Deutsch,

2021). This approach allows for the calculation of cross-covariance without the requirement of

collocated data points.

CZ,Y (h) = E[Z(u)Y (u)] − E[Z(u)]E[Y (u + h)] (3.4)

γZ,Y (h) = CZ,Y (0) − CZ,Y (h) (3.5)

Unfortunately, the collocated correlation, the cross-variogram sill (CZ,Y (0)), which represents the

cross-covariance of the two variables at lag zero, cannot be directly calculated from unequally sam-

pled data. To estimate CZ,Y (0), an extrapolation method is employed using the experimental cross-

covariance. The extrapolation intersects the y-axis, followed by the inclusion of the cross-nugget

effect. The nugget effect represents the degree of short-scale variability shared among the variables,

and in most cases, the cross-nugget effect is less than or equal to the direct variogram models be-

cause of positive definite condition. However, unlike direct variogram models, the cross-variogram’s
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nugget effect is never used, as the independence of nugget components in random variables means

their cross-covariance does not impact the nugget effect of the cross-variogram (Goovaerts, 1997).

Figure 3.1: Cross-variogram is inferred by extrapolating from the experimental cross-covariance (Wawruch
et al., 2002)

3.2 Intrinsic Correlation Model (ICM)

Implementing cokriging through the Linear Model of Coregionalization (LMC) involves calculating

the direct and cross-covariances of all variables and fitting them to ensure positive definiteness.

However, a major challenge in cokriging lies in the time-consuming and tedious task of fitting all

direct and cross-variograms to achieve positive definiteness. Cokriging methods utilizing the LMC

are constrained by the requirement that the contribution matrix of the nested structure variogram

model must have a positive determinant, as illustrated by Equation 2.12. As the number of variables

increases, finding a model that satisfies positive definiteness becomes more challenging.

To address this challenge, the intrinsic model can offer a potential solution. The Intrinsic Cor-

relation Model (ICM) simplifies the process of multivariate covariance modeling by assuming that

the spatial covariance function C(h) is the product of a variance-covariance matrix V , representing

the relationship between variables, and a spatial correlation function ρ(h) (Wackernagel, 2003).

C(h) = V ρ(h) (3.6)

Note that the spatial correlation function remains the same for all variables. Consequently, all direct

and cross-covariance functions can be obtained as scaled versions of the same fundamental spatial

correlation function:

Cij(h) = bijρ(h) ∀ i, j (3.7)

Where the coefficient bij represents the variance when i and j are equal and the covariance when

they are different. The concept of intrinsic coregionalization extends this approach by expressing all

variograms within the ICM framework as the product of a coregionalization matrix B of coefficients
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bij , satisfying positive definiteness, and a direct variogram γ(h) (Chiles & Delfiner, 2012).

Γ(h) = Bγ(h) (3.8)

In the case of two variables, Z and Y , the cross-variogram and the direct variogram under the ICM

can be obtained as follows:

γZ,Y (h) = CZ,Y (0)γZ,Z(h)

γY,Y (h) = CY,Y (0)γZ,Z(h)
(3.9)

In the B matrix, as in the V matrix, the covariance CZ,Y (0) is used to calculate the cross-variogram,

and the variance CY,Y (0) is used to determine the direct-variogram. For heterotopic variables, cross-

covariance at the same location, CZ,Y (0), can be obtained by extrapolation as depicted in Figure

3.1.

ICM can be considered as a subset of LMC. However, since ICM ensures proportionality to the

main variogram model that satisfies positive definiteness, there is no need for the cumbersome process

of model fitting. Additionally, unlike LMC, which requires calculating direct and cross-variograms

for all variables, ICM only necessitates the determination of variance, collocated cross-covariance

from extrapolation, and a representative variogram. Therefore, cokriging with ICM reduces the time

to fit the positive definite requirement of the LMC. This advantage becomes more prominent as the

number of variables increases.

3.3 Synthetic Example of Cokriging Using LMC and ICM

The following example demonstrates the practicality and convenience of cokriging using the ICM

compared to cokriging based on the LMC. Additionally, ordinary kriging of the primary variable is

conducted to assess the impact of incorporating the secondary dataset on estimation accuracy and

to compare it with other cokriging results. The example is based on an unconditionally simulated

dataset on a regular grid with no outliers.

The reference data consists of a simulated model exhibiting a lognormal distribution with a mean

of 1.39 and a standard deviation of 2.62 over a 256m x 256m area with a 1m x 1m resolution. The

primary variable, denoted as Z, is sampled at a 20m x 20m square grid spacing within the reference

model. These 169 sampled data points represent carefully selected and high-quality data treated as

true values. Figures 3.2a and 3.2b depict the sampled locations and the histogram of the primary

variable, respectively. On the other hand, the secondary variable, denoted as Y , is sampled from

the reference model at a 10m x 10m interval, which is closer than the interval of the primary data.

Moreover, the secondary variable is intentionally adjusted for bias and error by modifying its mean

and variance. The relative error is generated by multiplying the transformed normal score unit

value by the relative error magnitude by a random normal value. The reason for converting to a

normal score unit is that the sampling data follows a logarithmic distribution, but the error follows

14



3. Prototype of Alternative Techniques

a Gaussian distribution. Methods for giving errors and biases are provided in detail in later Chapter

4.1. Figure 3.2c and 3.2d display the sampled locations and the histogram of the secondary variable.

(a) Primary data location (b) Primary data histogram

(c) Secondary data location (d) Secondary data histogram

Figure 3.2: Location of primary data spaced 20mX20m (a), and histogram of primary data (b). Secondary
data is more densely with spaced 10mX10m (c) and has wider range of value and higher mean (d).

Once the two variables have been established, they undergo standardization before subsequent

steps. Direct variogram models for both variables can be obtained through experimental variogram

calculations. However, given that the variables Z and Y are not collocated data, this cross-variogram

necessitates the calculation of the experimental cross-covariance and subsequent extrapolation to

obtain CZY (0), which represents the sill of the cross-variogram. Figure 3.3 illustrates the ex-

trapolated value of CZY (0) as 0.73. Subsequently, the cross-variogram is derived by performing

CZY (0) − CZY (h).

For cokriging, direct variogram models and a cross-variogram model for the two variables are

required. The LMC method necessitates iterative fitting to ensure positive definiteness of the covari-

ance matrix and the variogram model. In contrast, ICM simplifies the process by directly multiplying
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Figure 3.3: The CZY (0) inferred by extrapolation is 0.73.

the variogram of the primary variable by each sill, and since the value is already standardized, the

sill of the direct variogram becomes 1, making it simpler. Therefore, obtaining all cross-variograms

becomes straightforward, as long as covariance values at zero lag distance are available. Figure 3.4

shows the direct and cross-variogram models obtained through LMC and ICM for the two variables,

Z and Y .

The final step involves creating estimation models using the obtained variogram models. Or-

dinary kriging (OK) of the primary variable is performed to evaluate whether incorporating the

secondary variable through cokriging improves estimation results compared to using only the pri-

mary variable. Additionally, cokriging based on LMC and ICM is conducted to compare their

respective results. Figure 3.5 displays the results of these three cases, along with the root mean

square error (RMSE) values as a comparative measure. The RMSE value between the reference

model (true value) and OK is 1.830. Comparing the estimation maps of ordinary cokriging (OCK)

using LMC and the intrinsic model ordinary cokriging (ICOK), both models exhibit similar esti-

mation patterns and yield comparable results. The RMSE values compared to the reference model

are 1.775 (OCK) and 1.766 (IOCK), with a difference of only 0.09. Also, the correlation coefficient

between the two estimation models is very high at 0.986 (Figure 3.6).

Valid LMC requires covariance matrices to be semi-positive definite, necessitating efforts to find

direct and cross-variogram models that satisfy this condition for cokriging. The intrinsic model

simplifies the cokriging process by assuming that all variograms share the same shape scaled to each

sill. Although creating a variogram model for LMC requires more time and effort compared to ICM,
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Figure 3.4: The variogram of linear model of coregionalization (top graphs) and the variogram of intrinsic
coregionalization model (bottom graphs) about sampling data set.

the estimated results from the two cokriging models demonstrate no significant differences. Hence,

ICM can serve as an efficient and reliable alternative to LMC in cokriging involving multiple data

types.

It is important to note that in this cokriging example, the results of cokriging with ICM yielded

better estimations compared to LMC. However, this does not imply that ICM is universally superior

to LMC. The effectiveness of each method depends on the accuracy of the variogram models for

the primary and secondary variables, as well as the accuracy of cross-variogram extrapolation at

zero lag distance. In general, the accuracy of cokriging with LMC is better because LMC provides a

more flexible variogram model that better fits the experimental cross-variograms. ICM is convenient,

but less flexible than LMC. Therefore, if the cross-variogram of ICM deviates significantly from the

experimental cross-variogram, LMC should be employed, even if it requires more time and effort.
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Figure 3.5: Ordinary kriging result with map and comparison with reference model (top), LMC with
ordinary cokriging (middle), ICM with ordinary cokriging (bottom).
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Figure 3.6: The cokriging results of LMC and ICM have high correlation.
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Chapter 4

Data Error Model (DEM)

The mining industry generates vast amounts of heterotopic multiple data collected from different

sources, vintage, and quality. However, decorrelation transformations aimed at obtaining multivari-

ate relationships are dependent on the availability of collocated data, which inevitably restricts their

effectiveness in uncovering relationships within heterotopic data sets.

To address this practical challenge, the Data Error Model (DEM) has been developed as a

mathematical model to characterize relationships between primary and secondary variables in the

context of heterotopic data. The DEM exhibits flexibility by accommodating errors and biases

in the input data. Through an iterative pairing analysis, the DEM effectively tracks the errors

and biases associated with a secondary variable, ultimately leading to the identification of suitable

relationships.

By employing an optimized DEM, it becomes possible to transform the distribution of primary

variables to accurately replicate the distribution of secondary variables and enhance the under-

standing of complex relationships within spatially heterotopic data. This approach contributes to

advancing knowledge in fields that rely on the analysis of multiple data types, such as the mining

industry.

4.1 Approach to Error Models

This section is the basis for developing the DEM and explains how to express measured values by

dividing them into error or bias and error-free values. In the process of sampling and analyzing

measured data, errors are inevitable and cannot be completely eliminated (Gy, 2012). Gaussian-

based techniques are well-suited for error modeling, because of efficient calculations in statistical

analysis. To apply these techniques effectively, the data must be transformed into normal score

units. Consequently, if errors exist in the data, they should also be transformed into normal score

units.

The sampled data contains errors in the original units and the data are affected by the sampling

error variance (σ2
e). For a given set of samples generated under consistent conditions and influenced

by the same error variance, the measured value at location u can be expressed as a function of the

error magnitude A and the true error-free value Zef (u).

Z (u) = Zef (u) + ε ∗ A ∗ Zef (u) (4.1)

Where Z (u) is the observation value with error, Zef (u) is the true value, ε is a random normal
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value following N(0, 1), and A is the relative error magnitude.

However, it is not possible to directly convert the relative errors of the original units to normal

score units because negative values are physically meaningless. Therefore, in Equation 4.1, a more

appropriate representation can be achieved by expressing it in terms of the transformed real value

Yef (u) and the absolute error magnitude B, as demonstrated in Equation 4.2 (Victor M. Silva &

Deutsch, 2019).

Y (u) = Yef (u) + ε ∗ B (4.2)

Where Y (u) is the observation in normal score units and Yef (u) is the real value in normal score

units.

The DEM is designed to account for both absolute and relative errors, as well as relative and

absolute biases. Relative biases (C) and absolute biases (D) can be expressed as:

Z(u) = Zef (u) + C ∗ Zef (u) (4.3)

Z(u) = Zef (u) + D (4.4)

Where Z(u) is measurement data and Zef (u) is error-free reference data.

Relative error and absolute error are both experimental errors that can occur in the measurement

process. Errors and biases often occur together (Pitard, 2019). Understanding and catching errors

and biases can reduce uncertainty in the simulation process.

4.2 Introduction to DEM

The measurement data obtained in various units, such as %metals, gram/ton, ppm, or ppb, often

exhibit a distribution that follows either a Poisson or logarithmic distribution (Pitard, 2019). In

order to incorporate the errors associated with the sampling data which has a normal distribution,

a log transformation of the measured values is necessary.

Given the comprehensive occurrence of errors and biases in sampling, it is crucial to employ a

model that can capture both precision and accuracy simultaneously. The DEM provides a framework

that accommodates these factors, enabling a more comprehensive analysis of the measurement data.

Consider, Z (u) denotes the input variable at location u, and Y (u) represents the DEM output.

The DEM is represented by the formula:

Y (u) = e

{

ln Z(u)+ε(a ln Z(u)+b)
}

+ cZ (u) + d (4.5)

Here, ε represents the standard error that follows a distribution with a mean of 0 and variance of

1. In the DEM, the term ‘a’ (a ≥ 0) signifies relative error, ‘b’ (b ≥ 0) refers to absolute error, ‘c’

(c ∈ Real numbers) presents relative bias, and ‘d’ (d ∈ Real numbers) indicates absolute bias. Each

parameter can be adjusted to match a data set with specific errors and biases.
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4.3 Flexibility of DEM

Figures 4.1 to 4.4 depict the influence of individual parameters on the DEM through scatter plots

that compare the input values (x-axis) to the corresponding values obtained after applying the DEM

(y-axis). Parameters that are not being adjusted are set to zero to isolate the independent effect

of each parameter on the output of the DEM. The input data utilized in these figures follows a

log-normal distribution and the output data incorporates error or bias based on the magnitude of

the respective parameter. This approach allows for a systematic examination of how variations in

parameter values affect the resulting DEM output, providing a clearer understanding of the model’s

behavior and the impact of each parameter on the transformation process.

The parameters ‘a’ and ‘b’ play a role in inputting errors within the DEM. However, ‘a’ has a

more significant effect on the correlation coefficient compared to ‘b’. This disparity arises because

‘a’ can induce substantial errors when the input value is large, even if both ‘a’ and ‘b’ are set to

the same value. On the other hand, the bias parameters ‘c’ and ‘d’ do not have an impact on the

correlation coefficient, independently.

The DEM offers flexibility in expressing desired levels of error and bias by adjusting these pa-

rameters. Error contributes to the variance of the data distribution, while bias affects the mean. To

manipulate the variance and mean of the DEM-applied data distribution, ‘a’ and ‘b’ can be used

as variance adjustment components, while ‘c’ and ‘d’ can be used as mean adjustment components.

The relative and absolute error terms, ‘a’ and ‘b’, are partially interchangeable. They do capture

some slightly different characteristics of error. This interchangeability allows for the fine-tuning of

errors to meet specific requirements and achieve the desired data distribution characteristics within

the DEM framework.
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Figure 4.1: ‘a’ is a relative error parameter. It gives larger errors for larger input values. Also, the higher
the ‘a’ value, the larger the mean of the output values and the smaller the correlation between the input
and output values.

Figure 4.2: ‘b’ is the absolute error parameter. Adds a fixed error independent of the input value. ‘b’ has
a weaker effect than ‘a’ on the mean and correlation.
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Figure 4.3: ‘c’ is the relative bias parameter. It is biased to a ‘c’ multiple of the input value. Negative
output values due to a negative ‘c’ are considered zero.

Figure 4.4: ‘d’ is the absolute bias parameter. All input values are biased with the same ‘d’ value. Negative
output values due to a negative ‘d’ are considered zero.
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4.4 Workflow to Get a Suitable DEM

To obtain a DEM, it is essential to have a primary reference data and the ability to generate reliable

simulated primary data at the same locations as the secondary variable by simulation. The simulated

primary data is utilized as input data for the DEM. The data applied to the DEM represent inferred

secondary data at the same location as the actual secondary data and may contain errors and biases

through the DEM.

DEMs make the identification and quantification of errors and biases present in the secondary

variable through iterative pairing analysis. Pairing analysis assesses the pairwise correlation and

mean difference between the two variables. Pairing analysis enables the detection of spatial relation-

ships between pairs of variables within a defined search radius, even when dealing with heterotopic

data.

During the experimental pairing analysis, the inferred secondary data is paired with the primary

data, and the results are compared to the true pairing analysis between the true secondary data and

primary data. The DEM parameters are adjusted iteratively to ensure that the adjusted experimen-

tal pairing analysis by DEM update aligns with the correlation and mean difference observed in the

true pairing analysis between the true primary and secondary variables. The suitability of the DEM

is evaluated by comparing the pairing analysis results using the updated DEM with the true pairing

analysis results. This iterative process continues until the updated analysis fits well with the true

pairing analysis, indicating a robust and accurate estimation of the error and bias of the secondary

variable. The following list presents steps to find the optimal DEM.

1. Get simulated primary data at secondary data locations and set DEM parameters

2. Do pairing analysis (1) with the primary data and secondary data

3. Apply the simulated primary data to the DEM

4. Do paring analysis (2) with DEM-applied data and the primary data

5. Assess the pairing analysis results (1) and (2) and update DEM parameters to fit (1)

6. Iterate steps 3∼5 until (2) fits well with (1)

If the parameters of DEM change, it affects the result of the pairing analysis. The next figures

explain how the DEM‐applied data changes in pairing analysis when the DEM parameters are

changed. Assuming that there are two variables Z and Y with the same value at the same location

(Z = Y ), Figure 4.5 shows the correlation and mean difference of pairs according to search radius

when pairing analysis is performed with these two variables. Naturally, the correlation between pairs

of values decreases as the search radius increases, which means that the error increases. A mean

difference fixed at 0 means that there is no bias in the means between the pairs. Figure 4.6 shows
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the result of pairing analysis between variable Z and DEM‐applied data when DEM is applied to

variable Y . In order to find out what effect the DEM parameters have, pairing analysis is performed

by setting the same search radius to 15m and adjusting each parameter. ‘a’ and ‘b’ give errors to the

input value, affect the correlation in pairing analysis and show a more sensitive response to ‘a’ than

‘b’. Also, increasing the error parameters increases the mean difference between pairs. ‘c’ and ‘d’ do

not affect the correlation but shift the mean difference graph in parallel depending on the degree

of bias of the DEM‐applied data. Figure 4.7 shows how to find a suitable DEM through pairing

analysis. The pairing analysis result between DEM-applied data and primary data should have the

same correlation and mean difference of pairs that came from true pairing analysis between the true

primary and secondary data.

Figure 4.5: When Z = Y , scatter plots and correlation coefficient (right), mean difference (left) according
to pairing distance.
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Figure 4.6: Scatter plots and mean difference graphs according to the values of DEM’s parameters when
the two variables are exactly collocated.

An optimal DEM reproduces the error and bias of the secondary data. This equation can reveal

the relationship between the variables by allowing the primary variable to estimate the expected

distribution of the secondary data. Through simulation applying the primary data to the DEM,

the expected distribution of the secondary data can be obtained if the primary and secondary

variables are at the same location. The relationship between two variables can be expressed through

a Gaussian mixture model (GMM).
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Figure 4.7: A suitable DEM is obtained by iteratively adjusting the DEM parameters until the result of
the pairing analysis is close to the mean difference and the correlation coefficient of the true pairing analysis.

4.5 Factors Affecting DEM Accuracy

The accuracy of a DEM can be influenced by various factors, and one critical factor is the search

radius used in pairing analysis. The search radius defines the spatial extent within which primary

and secondary data are paired. Selecting an appropriate search radius is essential, as it depends on

the spatial characteristics of the data, such as the variogram and distance between data of different

variables. If the search radius is too small, the DEM may yield noisy and unstable results, failing to

represent the entire modeling area adequately. Conversely, a search radius that is too large may lead

to the combination of uncorrelated data situated far apart, introducing inaccuracies in the DEM.

To illustrate the impact of the search radius on the DEM, Figure 4.8 presents a practical example.

The study employs 100 error-free primary data and 210 secondary data, with no overlapping locations

between two variables. The secondary variable is intentionally manipulated to include errors and

biases based on a reference DEM where a = 0.25 and c = 0.25. The graph showing the result is the

average value obtained through 3 random samplings of the secondary variable and 50 simulations for

each sampling. Through many implementations, the effect of data sampling location and randomness

of error is reduced. The results of all experiments in this section are performed in the same way and

represent average values. The DEM is obtained for each search radius in increments of 5m.
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In this experiment to examine the effect of the search radius, comparing the true pairing analysis

results with the DEM-applied pairing analysis results, the smallest difference is shown at the search

radius of 25m. The difference in correlation showing a U‐shaped parabola explains the importance

of setting the search radius that is neither too close nor too far. The difference between the true

secondary variable distribution and the DEM-applied data distribution means that the DEM shows

an acceptable imitation mean and variance at 25 m or more. However, in the pairing analysis, as the

search radius exceeds 25 m, the difference in pairwise correlation increases, which means that the

uncertainty of the DEM increases. This observation highlights the importance of carefully selecting

an appropriate search radius to achieve the most accurate DEM.

Figure 4.8: The location map shows the primary data location and the region of interest for the secondary
data sampling used in the experiment. The first graph shows the parameters of the DEM obtained for each
search radius, the second graph shows the difference between the pairing analysis of the DEM‐applied data
and the pairing analysis of the actual data, and the third graph shows the difference between the distribution
of the DEM‐applied data and the actual secondary data distribution. The DEM that shows the smallest
difference in pairing analysis and at the same time well described the distribution of the actual secondary
variable is obtained at a search radius of 25m.

Another factor that can have an impact on the accuracy of the DEM is the variance of secondary

data. When there is higher variance in the secondary data, it can be challenging to identify the

model’s representative error parameter and the distribution may deviate further from that of the

primary data, ultimately reducing the accuracy of the DEM. This is true even when the DEM is

applied to collocated simulated primary data. Unfortunately, adjusting the variance of secondary

data may not always be possible in real-world scenarios, but it’s important to be aware that higher

variance can lead to less accurate outcomes when using DEM.
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In the provided example, 210 secondary data are randomly sampled from the region of interest,

as shown in the location map of Figure 4.8. Three data sets are created with different variances

based on three different reference DEMs. The first reference DEM had parameters a = 0.05 and

c = 0.25, the second reference DEM had parameters a = 0.35 and c = 0.25, and the third reference

DEM had parameters a = 0.55 and c = 0.25. As the ‘a’ parameter of the primary DEM increased,

so did the variance of the secondary data. The pairing analysis is conducted using a fixed search

radius of 25 meters.

Figure 4.9 illustrates the impact of the variance of the secondary data on DEM accuracy. Al-

though the DEM follows the results of the pairing analysis better when the variance of the secondary

variable is High case than when it is Low case, the graph representing the difference in data dis-

tribution shows that the ability of the DEM in describing the target distribution diminishes as the

variance of the secondary variable increases.

Figure 4.9: In the (right) graph comparing the distribution of true secondary data and the distribution of
DEM‐applied data, it can be seen that the standard deviation difference between the two data sets increases
as the variance of the secondary variable increases.

Lastly, the number of secondary data can also affect the accuracy of the DEM. Insufficient

data may lead to an unstable DEM. On the other hand, a larger number of data can lead to a more

accurate DEM that better predicts the relationship between the variables. Therefore, it is important

to carefully consider the number of secondary data used in the analysis and ensure that they are

sufficient to obtain reliable results.

To investigate the impact of the number of secondary data on DEM accuracy, 840 secondary data

are sampled without overlapping with the primary variable, and errors are given using a reference

DEM with parameters a = 0.25 and c = 0.25. From this 840 sampled data set, 4 additional data

sets with 52, 105, 210, and 420 data are generated through random sampling.

Figure 4.10 demonstrates that the more data, the closer the DEM‐applied data converges to the

distribution of the true secondary data and the pairing analysis results of the true variables. This

represents that a larger number of secondary data can enhance the accuracy of the DEM and better

describe the relationship between the primary and secondary variables.
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Figure 4.10: The larger the number of data, the more accurate the DEM. The difference in correlation
coefficient between the pairing with the true variable and the pairing of the DEM‐applied data and the
primary data decrease as the number of secondary data increase (middle graph). This phenomenon is also
shown in a graph showing how well the DEM describes the secondary variable (right graph).

In summary, if the search radius is either too close or too far, if the variance of the secondary

data is high, or if the number of secondary data points is insufficient, the DEM may fail to effectively

capture errors and biases in the secondary data.

To obtain an accurate DEM, it is important to perform the process with different search radii and

carefully examine the results to determine the optimal one. Additionally, the accuracy of the DEM

can be enhanced by taking steps such as removing outliers. Furthermore, increasing the overlapping

area where the primary and secondary data coexist can contribute to more accurate DEM results

as the secondary and primary data can make more pairs.

The parameters of the DEM obtained through simulation may not precisely align with the

reference DEM provided in the original secondary data. Errors are applied indiscriminately and

lack uniqueness. Moreover, when DEM parameters interact, they can influence and obscure each

other’s effects. For instance, the ‘c’ parameter in the DEM introduces a relative bias, but when

combined with an error parameter, it does not result in a linear bias. This interplay of parameters

has significant implications when determining the final DEM parameters.
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Chapter 5

Multiple and Mixed Data Type
Imputation
Multiple imputation (MI) is a statistical technique that has gained widespread use for handling

missing data in various fields including geostatistics. Missing data in geostatistical data sets may

arise due to a variety of reasons such as equipment failure, environmental conditions, costs, or

sampling errors. MI addresses the missing data problem by generating multiple plausible values

for each missing data point based on a statistical model that considers the relationships between

variables (Yuan, 2010).

In the context of multivariate, which consists of primary and secondary data obtained from

different locations, creating an appropriate imputation model can be challenging because it is difficult

to determine the relationship between heterotopic data. However, the use of DEM can help establish

the relationship of heterotopic data and facilitate the implementation of MI. Consequently, even if

the data is not at the same location, the MI process can be effectively performed using the DEM,

so the accuracy of the estimation model using the imputed data can be improved.

5.1 Concept of Multiple Imputation (MI)

Imputation replaces each missing value with acceptable values representing the distribution of possi-

bilities (Barnett & Deutsch, 2013). Multiple imputation (MI) process performs multiple realizations

of the imputation process to create completed data sets. There are several steps involved in dealing

with missing data in MI. The first step is identifying which variables have missing values. Secondly,

it is necessary to explore the relationships between the variables that already have available data.

With a better understanding of the data, the next step is to create conditional distributions of the

empty data locations to generate multiple plausible values for each missing data point. Finally,

these completed data sets can then be used for geostatistical analyses. Multiple imputed data sets

reflect uncertainty and can be combined into a single data set representing the MI outcome through

averaging.

A key process in the imputation framework is constructing conditional distributions for all lo-

cations where data replacement is needed. The observed values of variable Z are labeled as Zobs

while the missing values are labeled as Zmis. A conditional probability density function, denoted

as f(Zmis|Zobs), is generated for the missing values using a prior model and the available observed

data. These conditional distributions are utilized in simulations to create multiple realizations of

data. This allows for the imputation of missing values (Barnett & Deutsch, 2012). Figure 5.1 demon-
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strates how to create conditional distributions at missing data locations. The following workflow is

used to make conditional distributions at the locations with missing data.

1. Order locations and variables in decreasing order of information.

2. Establish conditional distribution 1 based on collocated data.

3. Establish conditional distribution 2 based on spatial data.

4. Merge the conditional distribution.

5. Sample merged distribution and continue this loop

Figure 5.1: Schematic illustration of the process of creating a conditional distribution at missing data
locations (Resource_Modeling_Solutions_Ltd, 2022).

Techniques for building f(Zmis|Zobs) in these works include nearest neighbor, universal kriging,

kernel density estimation, and neural networks (Barnett & Deutsch, 2015). Among them, Kernel

density estimation (KDE) (Scott, 2015) with Gibbs sampler (Gelfand & Smith, 1990) which iter-

atively creates and samples from the missing value distribution is a common method to construct

conditional distribution. However, this can be computationally expensive depending on the number

of dimensions and data observations (D. S. F. Silva & Deutsch, 2015).

To address these challenges, D. S. Silva and Deutsch (2018) introduced multiple imputation

using Gaussian Mixture Models (GMMs) which is based on the expectation maximization (EM)

algorithm. The GMM serves as an estimate of the multivariate probability density function and

significantly improves computational efficiency. It also allows for quick assessment of any marginal

and conditional distributions required for the non-parametric data imputation workflow (D. S. Silva

& Deutsch, 2018). A review of GMMs can be found in Chapter 2.3.

MI is one of the powerful methods that can greatly enhance the accuracy and precision of

geostatistical estimation models by reducing bias and increasing the sample size. However, it is

essential to acknowledge that the quality of the statistical model used for imputation and the extent

of missing data influence the accuracy of MI estimates (Rubin, 2004). To obtain reliable results, it
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is crucial to ensure accurate variograms and multivariate relationships, making a thorough review

of the procedures for obtaining these input parameters necessary.

5.2 Synthetic Example of MI Using DEM

To execute MI, a variogram of the targeted variable for imputation and GMMs that expresses the

relationship between all variables are required. However, when the data are heterotopic, imputation

can be challenging as it is not possible to obtain a GMM based on collocated data.

A DEM is a tool that can be used to infer the relationship between heterotopic data by detecting

errors and biases in the secondary variable relative to the primary variable, which is assumed to

be error‐free. DEMs become particularly advantageous when dealing with heterotopic data, where

developing imputation models can be challenging. By using DEMs to capture relationships between

heterotopic data, more accurate imputation models can be created, resulting in improved estimation

models that benefit from a larger data set featuring the primary variable.

In this section, the synthetic example shows multiple imputation using DEM when multiple data

types have heterotopic data. The reference model used in the experiment has an isotropic variogram

of 45m, a mean of 2.05, and a standard deviation of 0.7 in an area of 256m*256m in size. The

reference model provides a benchmark to evaluate the accuracy of the final estimation model.

The data sampled from this reference model is divided into a primary variable and a secondary

variable. The primary variable is 100 error‐free data spread widely in the reference model. The sec-

ondary variable collected in specific areas is adjusted to have errors and biases using the parameters

a = 0.20, b = 0.05, c = 0.10, and d = 0.05 of the reference DEM. Primary and secondary variables

do not have data at the same location. Location maps and histograms of the reference model and

two variables are shown in Figure 5.2.

To represent the error and bias of secondary data from primary data using DEM, primary data

at the location of secondary data are needed. Simulation of the primary variable provides possible

values with properties of the primary variable at the location of the secondary variable. Simulations

reproduce the original variability observed in the data and allow an assessment of uncertainty (Rossi

& Deutsch, 2014). Thus, DEMs made from realizations generated through simulation have the

advantage over those made using a kriging model in that they know the probability distributions of

the DEM parameters and can allow uncertainty assessments.

Since multiple simulations and transformations are in progress, validation is recommended at

each step to check uncertainties and finally obtain more accurate results. The goal of the simulation

is to reproduce the input histogram and variogram (Rossi & Deutsch, 2014). Figure 5.3 shows

the histogram and variogram reproduction plots of the simulation using the primary variable. If

acceptable simulation results are obtained, extract values from the same location as the secondary

variable in the simulation model so that the DEM can find the error and bias of the secondary

34



5. Multiple and Mixed Data Type Imputation

Figure 5.2: The primary variable (b) and secondary variable (c) are sampled from the reference model (a).
The secondary variable is adjusted to have errors and biases.
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Figure 5.3: Validation is necessary to ensure the accuracy of input data for the DEM process. The
histogram and variogram reproductions of simulation results demonstrate that the results closely resemble
the original primary data.

variable in each realization.

The process of identifying suitable DEMs involves conducting pairing analysis and adjusting the

parameters of the DEM. The goal is to match the correlation coefficient and mean difference of

the pairing analysis results between the primary and DEM-applied data to those obtained from the

true secondary and primary data. This matching is done within an appropriate search radius to

minimize noise and pair related data. By fine-tuning the DEM parameters to mimic the results of

true data pairing analysis, the DEM-applied data can better account for errors in the secondary

variable. The average DEM of DEMs obtained from all realizations is then taken as the optimal

DEM representative of a given modeling region. This optimal DEM is essentially a mathematical

model that transforms the distribution of the primary variable into the distribution of the secondary

variable within the region of interest.

In this example, the optimal DEM has a = 0.23882, b = 0.05069, c = 0.18526, and d = 0.05009

with a search radius of 5m. The pairing analysis results of the data that underwent DEM-applied

data and the primary data exhibit an average difference of 0.35% in correlation coefficient and 0.01%

in the mean difference of pairs when compared to the pairing results of the true variables. The

difference in pairing analysis results is an indicator of how well the DEM represents the relationship

between primary and secondary variables.

In addition, it is important to assess whether the DEM-applied data accurately adheres to the

distribution of the secondary variable. Figure 5.4 illustrates the distribution of the simulated data

from the primary variable at the location of the secondary data, the data distribution after applying

the DEM, and the distribution of the original secondary variable data. The comparison shows that

the DEM-applied data aligns well with the distribution of the secondary data after being transformed
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from its original distribution, with a mean difference of 1.46% and a standard deviation difference of

22.37%. This shows a better depiction of the secondary variable distribution than DEMs obtained

from different search radii, demonstrating a reasonable DEM.

Figure 5.4: After applying DEM to the simulated data (blue), the result (red) more closely follows the
distribution of the secondary variable (black).

Simulation is used to obtain the distribution of the possible data as a secondary variable (output

data) at the same location when the DEM (mathematical model) is applied to the primary variable

(input data). The simulation method produces a more continuous distribution of outputs from the

discrete, sparsely dense primary variable through iterative random sampling of the input variable’s

distribution and model application processing. This is useful for analyzing uncertain scenarios and

providing probabilistic analysis for different situations (Raychaudhuri, 2008). The distribution of

inferred secondary variables obtained through simulation by applying the true primary data to the

DEM is shown in Figure 5.5. The relationship between the two variables can be inferred as a

multivariate GMM using the EM algorithm (Biernacki, Celeux, & Govaert, 2003). Figure 5.6 is the

GMM and cross plots obtained based on the simulation results.

As a result, DEMs can overcome the challenge of finding relationships between heterotopic data.

The DEM makes it possible to infer the distribution of secondary variables by identifying errors and

biases in the secondary variables through simulated primary data and pairing analysis. Through

simulation, the inferred relationship that appears if each other exists at the same location can

be expressed through GMM, this has been instrumental in enabling multiple imputation (MI) of

multiple data types.

The goal of the MI process in this experiment is to increase the accuracy of the estimation

model with more primary data by adding imputation values to empty secondary data locations in
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Figure 5.5: The graph shows the distribution of the primary variable and inferred collocated secondary
variable obtained using the simulations (10,000 trials) with the optimal DEM as the mathematical model.

the primary data set. Performing MI requires individual models that describe the variability of the

variables targeted for imputation, and models that capture the relationships between the variables,

such as variogram models and GMM. The variogram model of primary data, which is the object of

imputation, can be obtained with experiment variograms. The relationship between primary data

and secondary data that do not exist at the same location is solved through DEM.

A total of 100 MI realizations are conducted, and Figure 5.7 depicts the histogram and variogram

reproduction plots of the MI outcomes. The histograms of the realizations exhibit a slight positive

bias. This is attributed to the MI results following the characteristics of the primary variable, but

generating imputed data with numerous high values. The back-transformation of the histogram into

the original units further confirms this observation.

The black line in the plot represents the histogram of reference values without error or bias in the

region with the secondary variable, and it demonstrates higher values compared to the widespread

true primary data (red line). This disparity in values signifies the impact of the imputation process

and emphasizes the importance of careful interpretation and consideration of the imputed data.

To assess the impact of MI using DEM on the accuracy of the estimation model, three estimation

models are developed using ordinary kriging. The first model uses only primary data for estimation,

while the second model utilizes both primary and secondary data. The third model incorporates the

average data of homotopic data sets generated through MI, encompassing both the original primary

data and the imputed data replaced. This approach checks the performance of the imputed values

obtained from MI using the relationships inferred from the DEM through comparative analysis of

estimation models.

The estimation models are evaluated and compared with the reference model at both global

and local scales. On a global scale (Figure 5.8), the kriging model created using both primary and
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Figure 5.6: The figure shows (a) a cross plot between primary data and DEM applied data after MCS, (b)
the relationship between the two variables in normal scores units, and (c) the GMM summary plot between
them.

secondary variables exhibits a higher correlation with the reference model than the kriging model

created solely with the primary variable. However, the root‐mean‐square‐error (RMSE) is higher

due to errors present in the secondary data. The estimation model created using the average of

data sets generated by MI shows improved accuracy compared to the previous two models, as it

demonstrates high correlation and low RMSE.
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Figure 5.7: After 100 multiple imputations, the histogram and variogram are reproduced to confirm the
validity. The histogram plot of the original units demonstrates that the distribution of the imputed results
is slightly skewed to the right because the imputed data have higher values than the original primary data.

On the local scale (Figure 5.9), where the secondary variable is sampled, the estimation model

using only the original data shows a high RMSE due to the inherent errors in the secondary vari-

able, despite its high correlation. However, upon applying imputation through MI, a significant

improvement in accuracy is observed at the local scale. When using the MI, the estimation of the

region where the secondary variable exists shows a clear enhancement compared to the global scale

estimation.

Indeed, both the global scale and local scale results confirm the validity of the relationship inferred

by the DEM within the framework of MI. The successful application of DEM-based imputation

methods underscores their capability to yield more reliable estimation model results, particularly in

domains where secondary data are present.

Additional experiments are conducted to comprehensively evaluate the effects of the character-

istics of secondary variables and the amount of data on DEM and MI. This rigorous approach

aims to gain deeper insights into their behavior and performance in various scenarios, ultimately

contributing to a more thorough understanding of their impact on data imputation and analysis.

In order to confirm that there is a slight bias in the imputation results depending on the charac-

teristics of the secondary data, the same experiment is repeated by selecting an area with a low value
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Figure 5.8: (a) ρ = 0.692, RMSE = 0.508, (b) ρ = 0.700, RMSE = 0.524, (c) ρ = 0.709, RMSE = 0.498

Figure 5.9: (a) ρ = 0.550, RMSE = 0.543, (b) ρ = 0.819, RMSE = 0.581, (c) ρ = 0.821, RMSE = 0.468

in the same reference model as a place to sample the secondary variable. As shown in Figure 5.10,

the imputed data sets have many lower values than the original primary variable, and the histogram

is skewed to the left. Therefore, it can be said that the MI performs well in these experiments

following the characteristics of the primary variable, which is an error‐free variable.
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Figure 5.10: When the secondary variable is sampled in the low‐value region, the distribution of MI results
is skewed to the left of the original distribution of the primary variable.

Another example is conducted to investigate the potential impact of the amount of data on the

accuracy of the DEM, MI results validity, and estimation model performance. As in the previous

experiment, the data points are not at the same location. However, 507 secondary data are used,

more than before.

The following Figure 5.11 shows the result when the DEM workflow and MI are performed with

more secondary data. Figure 5.11a indicates that the area of overlap between secondary and primary

data is wider than before. The distribution of optimal DEM application data is shown in Figure

5.11b shows that the more secondary data, the more accurate the DEM. When DEM is applied

to simulated data from primary data and compared to the original secondary data, the average

differs by 1.15% and the standard deviation differs by 2.42%. This is an improvement over the main

experimental results performed above. The cross plot in Figure 5.11c compares the kriging results

using only primary data, the kriging results using primary and secondary data, and the kriging

results using imputed data with the reference model in turn. When compared with the reference

model, the estimation model using imputed data shows the best results with a correlation coefficient

of 0.734 and RMSE of 0.478.

The results indicate that the DEM does a better job of transforming the distribution of the

primary variable into that of the secondary variable as the amount of secondary data increases. In

addition, the accuracy of the estimation model from MI using DEM improved.
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(a) Location map with more data

(b) DEM-applied data distribution

(c) Cross-validation

Figure 5.11: The incorporation of more secondary data enhances the ability of the DEM to capture errors
and biases present in the secondary variable. This, in turn, significantly contributes to the improvement of
the estimation model’s accuracy through MI.
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Chapter 6

Case Study: Application of DEM
Workflow and MI for Multiple Data
Types at Rain Mine
The DEM and multiple imputation described in the previous chapters are applied with exploration

data and production data from the Rain Mine. Data is provided by the mine owner, Newmont Gold

Corporation, for study.

6.1 Background

Rain Mine, located in Elko County, Nevada, is a gold mine located within the Carlin Trend Mining

District. The mine employs a combination of surface and underground mining techniques to extract

ore comprising cinnabar, calcite, and kaolinite. The waste material primarily consists of barite. The

ore body itself has a tabular and irregular shape, measuring a thickness of 106 meters (350 feet).

The host rock in this region is shale, formed during the Lower Mississippian epoch approximately

350 million years ago (DiggingsTM, 2023).

Figure 6.1: Location of Rain Mine in Carlin Trend. Taken from Blamey et al. (2017).
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6.2 Data Set

For this experiment, 619 exploration drill holes and 6054 production blast holes are considered in a

part of Rain Mine. Figure 6.2 presents a visual representation of the location of drill and blast holes

within the area of interest. Exploration data is considered error-free and classified as the primary

variable, while production data is assigned as a secondary variable serving as auxiliary data. There

is no data at the same location for both primary and secondary variables. The histogram of these

two variables is depicted in Figure 6.3. Exploration drills are typically conducted densely in areas

where high quality is expected. Therefore, to prevent clustering effects from interfering with the

overall interpretation, declustering weights are applied to the primary variable.

Figure 6.2: Location maps of exploration and production data in Rain Mine.

Figure 6.3: Cumulative density function (CDF) of exploration and production data
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6.3 Optimal DEM

To facilitate the imputation of heterotopic data, DEM workflows provide relationships between

primary and secondary variables. The first step in obtaining a DEM is getting the simulation

models of the primary variable. The variogram model is obtained from the experimental variograms

and the estimation results are obtained by running 50 simulations. Figure 6.4 shows histogram and

variogram reproduction plots to validate this simulation. Since DEMs are created using simulated

data, it is important to obtain valid verification. Upon attaining simulation models aligning with

primary variable characteristics, data is extracted from secondary variable locations to construct

virtual secondary data for DEM application. This process is performed using Simulation Data

Extraction Program (GETSECREAL). Figure 6.5 illustrates the CDF of simulated primary data at

secondary data locations across 50 realizations.

(a) Histogram reproduction of primary data simulation

(b) Variogram reproduction of primary data simulation

Figure 6.4: (a) shows the histogram reproduction in original units and the CDF of the primary variable.
(b) shows the variogram reproduction and the variogram model of the primary variable.

The next step is the pairing analysis between the true primary variable and the true secondary

variable, which is the result of the pairing analysis that the relationship of the pairs between the real

primary data and the DEM-applied data must follow for suitable DEM describing secondary errors
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Figure 6.5: This is CDF of the data extracted from secondary data locations from 50 realizations of the
primary data simulations. The extracted data becomes the input data for finding a DEM suitable for each
realization.

and biases. The DEM parameters are adjusted to ensure that the correlation coefficients and mean

differences obtained from the pairing analysis match the true data. Until convergence to the reference

result, iterative pairing analysis comparison and DEM parameter update are performed through the

Optimal DEM Finder Program (OPTDEM). This workflow assumes the average of the DEM parameters

for each realization as the optimal DEM representative of the model which describes errors and biases

of secondary variable. Utilizing OPTDEM, the optimal DEM for the secondary variable is determined

with a = 0.177, b = 0.746, c = −0.277, and d = 0 within a search region of 30ft. When this optimal

DEM is applied to the simulated primary data, the pairing analysis results show a difference of

12.771% in correlation coefficient and 0.202% in mean difference from the criterion result performed

with actual data. Figure 6.6 shows the distribution of the simulated data shifted towards the

distribution of the real secondary variable after applying the DEM.

The optimized DEM accounts for secondary variable errors and biases relative to the primary

variable. Simulation applies the DEM to primary data to produce the expected distribution of

secondary data at the same location. Through 10,000 trials of the Monte-Carlo method, data from

the primary variable, with declustered weights, is applied to DEM to obtain the expected distribution

of the secondary variable. Figure 6.7 illustrates the distribution of primary and inferred secondary

data derived from Monte-Carlo simulations. Utilizing this distribution, a GMM is constructed, as

shown in Figure 6.8, enabling expression of the inferred relationship between variables required for

subsequent MI steps.
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Figure 6.6: Applying the optimal DEM to the simulated data for the primary variable moved the data
closer to the actual secondary data. For the logarithmic calculation of the DEM, zero-valued data was
replaced by an extreme small number 0.000001.

Figure 6.7: The figure on the right shows the CDF of 10,000 random sampling of the primary variable,
and the figure on the left shows the CDF of the data where DEM is applied to the sampled data.
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Figure 6.8: The relationship between the two variables can be expressed by creating a GMM through the
distributions inferred from DEM and simulation.
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6. Case Study: Application of DEM Workflow and MI for Multiple Data Types at Rain Mine

6.4 Multiple Imputation

MI targets a primary variable and imputes missing data at the secondary data locations. As a

result, more primary data can be obtained through MI. Figure 6.9 shows histogram and variogram

reproduction plots for 10 MI realizations. Validation confirms that MI results align with the original

primary data. Finally, 3D estimation models using ordinary kriging are constructed, including

models based on only primary data, primary and secondary data, and primary data with imputed

data. 3D figures and cross-sections of these models are visualized in Figure 6.10. A model using

only the primary variable makes it difficult to identify veins. When two variables are used, the

veins can be clearly identified, and when imputed data is used, a lower grade is predicted than when

secondary data is used.

(a) Histogram reproduction of MI results

(b) Variogram reproduction of MI results

Figure 6.9: There are plots for MI validation. (a) shows the histogram reproduction in original units, and
(b) shows the variogram reproduction.
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6. Case Study: Application of DEM Workflow and MI for Multiple Data Types at Rain Mine

(a) Estimation model from primary data

(b) Estimation model from primary data and secondary data

(c) Estimation model from primary data and imputed data

Figure 6.10: There are 3D estimation models for three cases. Ordinary kriging was used for estimation.

6.5 Cross-Validation

Imputation within the primary variable adds data with error-free properties to the location of the

secondary data. Consequently, a more accurate estimation model can be created, substantiated by

cross-validation. After removing 50 data points from the primary data, the estimation model is

reconstructed and the data generated from the removed data locations are compared. Figure 6.11

displays cross-validation plots for the three cases of estimation models, which are OK based on

primary data, primary and secondary data, and primary with imputed data. The estimation model

with imputed data shows the highest correlation and lowest RMSE compared to other models. This

indicates that the relationship between the heterotopic data inferred by the DEM worked well in

the MI and consequently increased the accuracy of the estimation model.
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6. Case Study: Application of DEM Workflow and MI for Multiple Data Types at Rain Mine

(a) Cross-validation of the model using primary data

(b) Cross-validation of the model using primary data and secondary data

(c) Cross-validation of the model using primary data and imputed data

Figure 6.11: The cross-validation results for the three cases. The estimation model based on primary
data and MI results have the highest correlation and lowest RMSE than those using primary data alone or
primary and secondary data.
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Chapter 7

Conclusion
This chapter reviews the motivation and summarizes the contributions to the advancement of esti-

mation models involving multiple data types. Additionally, future research directions are described,

setting the stage for future investigations in this area.

7.1 Review of the Motivation

Integrating multiple data types is presented as a way to increase the accuracy of estimation models.

However, understanding the relationships between heterotopic data remains challenging. While

several geostatistical methodologies utilize collocated data to enable multivariate modeling, the

focus of this study is to consider heterotopic data and utilize novel models to improve modeling.

The main motivation is to create a model that proficiently infers relationships between different

data types to facilitate multiple imputation (MI) as a way to improve estimation models.

7.2 Summary of DEM and Contribution

A data error model (DEM) quantifies relative and absolute errors along with relative and absolute bi-

ases. DEM-based data captures errors and biases in secondary variables by iterative pairing analysis

and DEM parameter updating. Pairing analysis allows interpretation of pairwise relationships such

as correlations and mean differences. This analysis establishes connections between data that exist

at different locations, and pairing analysis between the primary and secondary variables presents

the relationships of DEM-applied data and the primary data that must follow.

The DEM workflow describes the relationship between primary and secondary variables. Inferred

relationships from the DEM can be expressed in the form of a Gaussian mixture model (GMM). The

efficacy of DEM is demonstrated in multiple imputation of heterotopic data.

By providing relationships between heterotopic data, DEMs facilitate imputations that require

relationships between multiple variables that have heterotopic data. MI for the primary variable

makes it possible to create estimation models with more data by replacing secondary data locations

with data that has the characteristics of the primary variable. The examples provided show that as

a result of conducting MI using the inferred relationship obtained by DEM, the estimation model

made using imputed data is more accurate than the estimation model made using only the primary

variable or the primary and secondary variables. In the case study using Nevada gold mine data, the

estimation model created with primary data and the MI result using DEM provided a more accurate

model than the estimation model made with only primary data or primary data and secondary data.
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7. Conclusion

In conclusion, DEM facilitates MI of various data types and the results of MI improve estimation

models.

7.3 Future Work

To improve the reliability of inferences drawn from DEMs, it is important to consider the variations

in parameter values and properties across different geographical subsets. One way to achieve this

is by partitioning the region into subsets and creating localized DEMs for each. These DEMs can

then be subjected to sensitivity assessments to gain a comprehensive understanding of their dynamic

behavior.

It may also be valuable to explore non-stationary conditions, as they can reveal spatial trends

in various aspects. By reflecting on potential non-stationary phenomena, the DEM can better

understand the complexity of geological data.

Expanding the DEM to include scenarios involving three or more data types can be helpful. It

would also be interesting to explore using different scales, distribution shapes, and variable types

within the DEM framework. Research on DEMs that incorporate more variables with more diverse

properties will enable the inference of more complex multivariate relationships.

DEM infers the relationship between error and bias of the primary and secondary variables based

on the primary variable, assuming that there is no error in the primary variable. However, there

may be errors in the primary data. Future research efforts to account for primary variable errors

will contribute to creating more accurate estimate models.

To ensure the integrity of primary data, it is important to account for procedural knowledge and

sampling protocols. Also, by integrating laboratory and sampling processes, more accurate errors

and biases of data can be known.

The presence of extreme values within a data set can have a significant impact on the accuracy of

the DEM. In addition, a GMM created after applying DEM to sample values with a log distribution

and converting them to normal score units tends to have a twisted appearance where small values

exist. Analyzing and understanding these phenomena will more accurately describe DEMs and

suggest more effective work frames.

Finally, the usability of the DEM can be improved by simplifying the MI technique. Efforts

on MI that circumvent complex procedures while yielding accurate estimates instead of providing

multiple simulated values using conditional distributions represent an interesting way to improve

the efficiency of creating an estimation model and evaluation.
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Appendix A

Appendices
Two geostatistical software library (GSLIB)-based programs have been developed to automatically

obtain optimal DEMs. The first program GETSECREAL is applied to extract simulated primary

values that exist at the location of secondary variables in each realization. The second program,

OPTDEM, uses the results from GETSECREAL to provide a DEM for each realization. Both programs

are implemented as standalone programs and follow the GSLIB conventions. This appendix provides

the parameter files and code for both programs.

A.1 GETSECREAL Parameter

1 Parameters for GETSECREAL

2 ***********************

3

4 START OF PARAMETERS:

5 secondary.dat -file with data

6 1 2 3 4 - columns for X,Y,Z,val

7 -1.0 1.0e21 - trimming limits

8 backtr_sgsim.out -file with realizations to extract

9 100 - number of realizations

10 256 0.0 1.0 -nx, xmn, xsiz

11 256 0.0 1.0 -ny, ymn, ysiz

12 1 0.0 0.5 -nz, zmn, zsiz

13 getsecreal.out -file for output

From Line 1 to 3 of the parameter file can be ignored. Line 4 specifies the start of the parameter

file, and it’s crucial to start with the word ‘‘START’’ at the beginning of the line. Line 5 defines the

input data file including the locations to extract from each realization. It would be a secondary data

file in the DEM workflow. Line 6 specifies the XYZ coordinate column and values column for the

input data. Line 7 sets the range of values in the input file and excludes data with values outside the

range from the output values. Line 8 is a sequential Gaussian simulation GSLIB program output file.

Line 9 indicates the number of realizations and Line 10 to 12 defines the simulation grid. Line 13

specifies the name of the output file that contains the XYZ coordinate and values of each realization.

58



A. Appendices

A.2 OPTDEM Parameter

1 Parameters for OPTDEM

2 ********************

3

4 START OF PARAMETERS:

5 primary.dat -file with primary data

6 1 2 3 4 - columns for X,Y,Z,val

7 -1.0 1.0e21 - trimming limits

8 secondary.dat -file with secondary data

9 1 2 3 4 - columns for X,Y,Z,val

10 -1.0 1.0e21 - trimming limits

11 getsecreal.out -file with realizations at secondary

data locations

12 1 2 3 4 - columns for X,Y,Z,val

13 100 -number of realizations

14 optdem.out -file for output

15 3 -number of radii for pairing

16 10.0 20.0 30.0 - radii for pairing

17 1 -Choose the number of radii to apply to

the DEM

18 68516 -random number seed

19 0 1.0 -range for "a" parameter

20 0 0.1 -range for "b" parameter

21 0 1.0 -range for "c" parameter

22 0 0.1 -range for "d" parameter

Line 5 identifies the primary data file. Line 6 sets the XYZ coordinate column and the value

column of the primary data file. Lines 8 to 10 is for secondary data file and has the same meaning

as above. Line 11 identifies the data file extracted from the simulation, which is the output file

of GETSECREAL. Line 12 is for coordinate and value columns of GETSECREAL output file. Line 13

indicates the number of realizations. Line 14 should specify the name of the output file containing

the parameters of the DEM, the differences in correlation coefficients, and the differences in mean

differences from the pairing analysis results. The difference value should be calculated as the dif-

ference between the pairing analysis result of the primary variable and the secondary variable, and

the pairing analysis result of the primary variable and DEM-applied data. Line 15 is the number

of search radii specified. Perform pairing analysis of primary and secondary variables according to
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the search radius entered in Line 16. Line 17 determines which radius to calculate DEM among the

search radius presented in Line 16. Line 18 is the random number for generating random numbers

in the code. Line 19 to 22 is for the range of DEM parameters.
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A.3 DEM Workflow Chart

Figure A.1: DEM Workflow Chart

Data extraction at secondary data locations can be done via GETSECREAL. From pairing analysis

using actual primary and secondary data to iterative DEM parameter updates, OPTDEM can be used.
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