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Abstract 

Capture-mark-recapture (CMR) data is widely used to estimate a range of 

population parameters including abundance and density. Closed population 

estimators have gained wide acceptance and have become increasingly 

sophisticated. More recently, spatially explicit capture-recapture (SECR) models 

implemented have gained popularity. Although model accuracy has been tested 

via simulation studies there have been few empirical tests of either method. I took 

advantage of a fully enumerated population of red squirrels (Tamiasciurus 

hudsonicus) to test the accuracy of closed population abundance estimator and the 

maximum likelihood SECR density estimator. I found abundance estimates were 

positively biased by 45%, largely due to trapping grid edge effects. Adjusting for 

edge effects via the boundary strip method decreased bias to -22%. With the 

addition of inter-trap movements, SECR models produced density estimates that 

were negatively biased by only 4.6%. These empirical validations support the use 

of SECR models for density estimates or derived population abundance.
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CHAPTER I: General Introduction 

One of the most fundamental measures required in ecology, especially 

population ecology, is a species’ population size (Otis et al. 1978, Parmenter et al. 

2003, Amstrup et al. 2005). This measure is preferably taken within a defined area 

for a value of density that may be compared across time and space or between 

species (Parmenter et al. 2003, Efford 2004). However, counting all individuals 

within a given area is rarely possible except for stationary or sessile organisms. 

Mobile organisms must be sampled by direct observation, capture-mark-

recapture, or removal methods (Williams et al. 2002, Parmenter et al. 2003). 

Statistical estimators have been developed to derive estimates of population size 

or density for species that cannot be enumerated in nature.  

Statistical estimators have long been used to estimate the size of a 

population. In 1786, Laplace was one of the first people to use a simple estimator 

to predict the human population living in France (Williams et al. 2002). Since 

then, there has been a proliferation of estimators used to quantify the abundance 

of wildlife populations. Peterson developed a simple two sample method for 

estimating population abundance for tagged fish in 1894 (LeCren 1965). Lincoln 

used the same method to estimate duck populations in North America, hence the 

method is called the Lincoln-Peterson estimator (Williams et al. 2002). In 1938, 

Schnabel developed an estimator using more than two sampling occasions when 

tagging fish in a closed lake system (Schnabel 1938). In 1952 and 1958, Chapman 

and Darroch further developed the Schnabel method respectively, by recognizing 

that assumptions of random sampling and constant population are approximations 
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and may be violated (Seber 1986). To account for these violations authors like 

Otis, Burnham, White and Anderson have developed a further suite of models to 

accommodate capture probability as it varies across sampling occasions, between 

individuals, or within individuals when initial capture alters the behaviour of the 

animals (Otis et al. 1978). These additional models were first released in the 

program CAPTURE, which also ranks the models by maximum likelihood to 

identify the optimal model. Later, Chao implemented the full hierarchy of eight 

models that is now broadly available (Seber 1986). Though limited in model 

complexity, this program has long been acknowledged as being straightforward 

and requiring little training to operate (Pacheco et al. 2013).  

Closed population estimators use data collected over a short duration of 

sampling, typically 5 to 10 days is viewed as acceptable (Otis et al. 1978, Lettink 

and Armstrong 2003, Rees et al. 2011). These estimators have become 

increasingly sophisticated, but all are used to estimate local population abundance 

(Cooch and White 2011). The assumptions of the closed estimators are that the 

population size is constant (i.e. not increasing or decreasing), and therefore no 

recruitment, death, immigration, or emigration is allowed during the sampling 

period (Williams et al. 2002, Amstrup et al. 2005).  

Open population models, first developed as Jolly-Seber and Cormack-Jolly-

Seber models, require more data over a longer time period to measure survival 

estimates and rates of population growth or decline (Cormack 1964, Jolly 1965, 

Seber 1965). These models are more complex due to the need to model the 

recruitment, mortality and movement of the population. The open estimator does 
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not require the population to be geographically or demographically closed over 

the period of data collection. The model is not, however, robust to heterogeneity 

of capture (i.e. trap happy or shy individuals), consequently there is an added 

assumption of equal capture probability between all individuals.  

The more recent development of the robust design model type combines the 

abilities of the closed and open population estimators and allows for the 

estimation of abundance as well as survival of the population (Kendall and 

Nichols 1995, Kendall et al. 1997). This model type is suited to long-term 

population monitoring programs where data collection occurs annually and over 

multiple years. However, the abundance estimates produced with this model 

require more sampling periods and are less accurate and precise when compared 

to closed population models (Lettink and Armstrong 2003).  

Choosing to use a closed versus open population estimator has a strong 

influence on study design as the data required are typically mutually exclusive 

due to the extra data needed by open population models (Otis et al. 1978). Due to 

the infrequent ability to meet these assumptions, Otis et al. (1978) suggests closed 

population abundance estimates rarely perform well. If abundance estimates are 

required and the population is closed to recruitment, death, immigration and 

emigration, the closed population estimators should be used. Conversely, if 

demographic estimates of survival or recruitment rate are needed and individuals 

exhibit equal trappability, then open population estimators should be used. 

Program CAPTURE has since been superseded by program MARK (White 

and Burnham 1999), due to the implementation of advances that model 
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heterogeneity found in natural systems. There is increased flexibility of input 

requirements to allow for varying experimental design, which increases the 

number of field designs capable of calculating estimates (Lettink and Armstrong 

2003). The ability to use Akaike’s Information Criterion (AIC) model selection or 

the Bayesian statistical framework as well as estimate survival rate and simulate 

data to test models under different trapping regimes has made the program a 

major contribution to the field of abundance estimation (White 2008).  

Another major development in population enumeration estimators is the 

introduction of spatially explicit models implemented by Murray Efford in the 

program DENSITY (Efford et al. 2004). These models require the spatial layout 

of the detectors (i.e. traps) in addition to the capture history with detector location 

for each capture event. Using a hierarchical model, the program uses the inter-trap 

movement distances and the probability of detecting an animal at each trap to 

derive the density of animals irrespective of trapping grid (Efford 2004). The 

spatially explicit capture-recapture (SECR) models are now available by 

simulated inverse-prediction, maximum-likelihood, and Bayesian frameworks 

within the user-friendly GUI program DENSITY or the R package secr (Efford et 

al. 2004, Efford et al. 2009, Royle et al. 2009a). Inverse-prediction estimates have 

been compared against enumerated wild populations and were found to have a 

small negative bias (-17.2%; Efford et al. 2005). Maximum-likelihood estimators 

were found to produce adequate estimates when compared to inverse-prediction 

models using empirical data and Bayesian models have been found to produce 

estimates similar to maximum-likelihood estimates (Borchers and Efford 2008, 
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Gopalaswamy et al. 2012). Thus, all estimators have been validated via computer 

simulation, but only inverse prediction has been directly compared in a wild 

enumerated population.  

With many new estimators available for population enumeration there are 

promising signs for increased flexibility in study design and a high level of 

accuracy and precision. Though many of these estimators involve complex 

algorithms, user-friendly GUIs have been developed to limit the amount of 

statistical and technical training users require before implementing these methods. 

However, the gap in research currently resides in the lack of empirical validation 

of these models. The objective of this thesis is to validate two commonly used 

models. The first test will be on the closed population estimator in program 

MARK and the second test will focus on the maximum likelihood spatially 

explicit capture-recapture (ML SECR) estimator in program DENSITY. Each test 

will compare the estimate to the values derived from an enumerated wild 

population of red squirrels (Tamiasciurus hudsonicus) to determine the bias and 

precision of the estimators. 

Study Species 

The North American red squirrel (Tamiasciurus hudsonicus) is a small 

diurnal and arboreal rodent that is active year round. The range distribution of the 

red squirrel covers most of the mixed and coniferous forests of Canada, 

continuing down the Rocky Mountains and the Northeastern United States (Steele 

1998).  



    

 6 

Both males and females defend exclusive food-based territories typically 

centered on a food cache, called a midden (Smith 1968). Cones are cached after 

they ripen in the fall and cone production within the territory is negatively related 

to its size (LaMontagne and Boutin 2007). A midden is traditional in nature and 

there is often rapid replacement after a midden owner dies, typically the new 

owner defends an area similar to the previous territory delineation (Price et al. 

1986). Conspecific intruders are expelled in order to defend the territory against 

pilfering, which is important due to the relationship between the amount of cones 

in the midden and over-winter survival of the individual (Larivée et al. 2010, 

Donald and Boutin 2011). Red squirrels efficiently defend their territory using 

vocalizations called rattles, and physical confrontations are rare (Smith 1978). It 

has been found that 35% of individuals will rattle within 3 minutes of observation, 

thus behavioural observation is an efficient method for territory mapping (Gorrell 

et al. 2010, Shonfield et al. 2012).   

The mating system in red squirrels is male scramble competition, whereby 

multiple males compete for females when they come into estrus once a year (Lane 

et al. 2010). There is no paternal care in this species and females nurse the young 

until weaning at 70 days of age (McAdam and Boutin 2004). Juvenile survival is 

low due to the need for juveniles to disperse off their natal-territory and acquire a 

territory to survive the winter (Smith 1968). Females have been found to bequeath 

their territory, which increases juvenile over-winter survival and is thus a form of 

parental investment (Berteaux and Boutin 2000).  
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Red squirrels are ideal for population level studies because of their 

reliance on stored food, their aggressive vocal territorial defense, and their high 

trappability. This makes it feasible to enumerate all individual squirrels within a 

study site. In areas of high cone production, squirrels live in relatively high 

density, which allows for appropriate sample size in population studies. 

Study Area 

The Kluane Red Squirrel Project (KRSP) has observed several 

subpopulations of red squirrels in southwestern Yukon, since 1987 (McAdam et 

al. 2007). Regular and systematic trapping of all territories within the study sites 

allows for the tagging and enumeration of all individuals with a territory within 

the site boundaries. Squirrels are fitted with ear tags and unique combinations of 

coloured wires for identification of individuals from a distance. This allows for 

behavioural observations of the animals and provides a secondary source of 

information on territory ownership. The locations from these trapping and 

behaviour records are used to complete a census of all individuals defending a 

territory within the study sites.  

The reproductive status of each female is monitored with regular trapping 

to determine the parturition date and locate the nest using radio telemetry for 

further data collection on the pups. After the pups are weaned they begin making 

exploratory forays in order to disperse to a territory of their own (Larsen and 

Boutin 1994). In years of food abundance, females will more often exhibit 

territory bequeathal and this change in the population in addition to recruitment is 

quantified by second annual census of the population. The main features of this 
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red squirrel system that are important to my project are the large sample size of 

individuals and the location of all active middens and their owners, making it 

possible to determine the abundance and density of the squirrels on the study grid.     

Thesis Goals and Overview 

In chapter II “An empirical validation of closed population abundance 

estimates using a censused wild population”, I tested closed population estimates 

of abundance against censused values of abundance. To quantify the performance 

of the closed population estimators I calculated accuracy and precision of the 

abundance estimates. In chapter III “An empirical validation of spatially explicit 

capture-recapture (SECR) estimates using a censused wild population”, I tested 

spatially explicit methods of estimating density of a local population and again 

derived the accuracy and precision of the estimates. Chapter IV is a summary of 

the major findings of the data chapters and suggests future directions for research 

given the current status of the field.  
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CHAPTER II: An Empirical Validation of Closed Population Abundance 

Estimates using a Censused Wild Population 

Introduction 

Estimation of population size is fundamental to population ecology and 

applied aspects of biology such as evaluating wildlife management strategies for 

conservation and harvesting. Due to the cost and effort required to fully 

enumerate a wild population, capture-mark-recapture (CMR) trapping methods 

were developed and the models produced to evaluate the trapping data have 

increased in sophistication. However, all of the models are built on a set of 

assumptions that must be met for the model to perform well. When using 

empirical data, the degree to which assumptions are upheld in the wild population 

will determine the models’ accuracy. Estimators must be robust against both false 

negatives, when individuals are rarely encountered due to camouflage, elusive 

behaviour or trap shyness, as well as false positives, when individuals are 

encountered too often due to trap happiness, high mobility, or a baiting effect. 

Computer simulation has been used for validation of these models, nevertheless 

empirical validation remains essential for ground-truthing the validity of these 

assumptions. Without empirical validation there is a risk of using abundance 

estimates with either positive or negative bias. Both situations are problematic, for 

example, a positive bias when trapping a species at risk could jeopardize 

conservation efforts by overestimating the number of individuals (Sunarto et al. 

2013). Conversely, a negative bias could foster poor resource allocation by 
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requiring more effort than is needed to protect a population to a set abundance 

target (Zhan et al. 2009). 

Program MARK has made a major contribution to abundance estimation by 

combining many popular estimators within one software program and allows for 

the ability to choose Akaike’s Information Criterion (AIC) model selection or the 

Bayesian statistical framework as well as simulate data to test models under 

different trapping regimes (White 2008). Newly implemented algorithms included 

in the program are routinely validated with computer simulation and numerous 

studies have focused on bias in statistical or methodological techniques (Wiewel 

et al. 2009, Ivan et al. 2013a). However, with over 65 types of models, model 

development has out-paced empirical validation and few field studies have the 

requirements to evaluate the accuracy of even the most basic and commonly used 

models (Rodda and Campbell 2002, White 2008, Krebs et al. 2011). Available 

empirical studies are limited in their conclusions by the use of enclosed or 

laboratory-reared populations (Edwards and Eberhard 1967, Davis et al. 2003, 

Parmenter et al. 2003, Conn et al. 2006), small sample sizes (Manning et al. 1995, 

Katano 2010), or the use of non-censused populations (Rosenberg et al. 1995, 

Tioli et al. 2009, Krebs et al. 2011, Pacheco et al. 2013).  

When using closed population estimators the population is assumed to be 

closed to recruitment, death, immigration, and emigration for the short period 

during data collection. The estimator does not allow for local or within territory 

movement of animals and it is common for empirical studies to add a boundary 

strip around the outer capture points to derive an estimate of the effective area 
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trapped (Royle and Young 2008, Ivan et al. 2013a). The boundary strip 

incorporates the average distance moved by the animals during each session in an 

attempt to correct for the effective trapping area beyond the edges of the grid 

(Otis et al. 1978). Typically, the distance moved between traps during each 

session is used to calculate the trap revealed mean maximum distance moved 

(MMDM) or the trap revealed asymptotic range length (ARL). Then full or half 

measures (i.e. MMDM/2) are used to set boundary strip width, with current 

literature suggesting the use of the full measures (Parmenter et al. 2003, Efford et 

al. 2009, Krebs et al. 2011). Due to resource constraints, investigations into the 

most effective boundary strip width assessments have been limited to simulation 

studies or empirical studies using enclosures, or only partially enumerated 

populations (Parmenter et al. 2003, Tioli et al. 2009, Krebs et al. 2011).  

To increase accuracy of CMR estimates it is generally suggested that efforts 

be made to increase capture probability, which requires knowledge of life-history 

traits in the population to be sampled (Chao 1967, Krebs and Boonstra 1984, 

Lettink and Armstrong 2003). For example, the breeding season is an effective 

period to sample songbird populations because territories tend to be distinct and 

males defending their territory are easier to detect and capture (Bibby et al. 2000). 

Alternatively, the breeding season is to be avoided when trapping small mammals 

due to increased off-territory movements that will significantly change the 

distance moved and capture probability between the sexes (Bisi et al. 2011). 

Increasing capture probability may involve starting a sampling occasion during 

the most active period of the day or may require the sessions to be done when 
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animals are least likely to show heterogeneous or trap avoidance behaviours 

(Lettink and Armstrong 2003).  

In addition to the accuracy of abundance estimates, it is important to 

consider the precision of the estimates (i.e. the standard error) to produce exact 

values. To reduce the standard error of an estimate, more trapping occasions are 

added with the assumption that after enough sampling, the estimate will plateau 

due to inclusion of all animals from the area at which point the standard error 

should be negligible (Rees et al. 2011). Therefore precision increases in response 

to trapping occasions, but this response has typically been tested in simulation 

studies and has resulted in suggestions for minimum trapping occasions ranging 

from 5 to 12 occasions (Rosenberg et al. 1995, Wiewel et al. 2009, Rees et al. 

2011). 

In this chapter, I compared abundance estimates from closed population 

estimators in MARK to a fully enumerated population of individuals occupying a 

trapping grid from a long-term project in the Yukon Territory. The Kluane Red 

Squirrel Project (KRSP) has maintained intensive trapping and observation of 

several subpopulations of North American red squirrels (Tamiasciurus 

hudsonicus) in the Yukon Territory, Canada for over 25 years. Red squirrel life 

history lends itself to a complete census of the local population, primarily through 

high trappability, diurnal behavior, and high sight fidelity. Using KRSP census 

values I evaluate the accuracy and precision of abundance estimates as produced 

by program MARK. I asked 3 principle questions: Are the abundance estimates 

closely related to the censused abundance over a range of densities? Is there any 
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bias and if so, what is the cause? How does precision of the estimates increase 

with trap effort? 

Methods 

Site Description and Study Species 

The KRSP has monitored a wild population of North American red squirrels 

in the Shakwak Trench system of southwestern Yukon (61°N, 138°W) since 1987 

(for more details, see Berteaux and Boutin 2000). Each of the 6 study sites are 

located in open-canopied boreal forest dominated by white spruce (Picea glauca) 

with a sparse understory of willow (Salix spp.), forbs, and mosses. Study sites are 

~36 ha grids marked with grid stakes at 30 m intervals. Three of the study sites 

have experimentally increased densities due to regular systematic food addition in 

winter to each midden (for details see Dantzer et al. 2013). 

Red squirrels in the boreal forest are active year-round and defend 

individual-based territories centered on a primary food cache, called a midden. 

Without an exclusive territory squirrels are unable to survive the winter due to 

their reliance on hoarded cones (Larsen and Boutin 1994). Squirrel territories 

have distinct boundaries that are defended by territorial calls to expel intruders. 

Individuals do make occasional forays off-territory to search for mates (males) or 

to occasionally forage, though off-territory forays are rare (83% of behaviour 

observations are within territory, unpublished data; also see 1984, Krebs et al. 

2001, Boon et al. 2008, Lane et al. 2010). High midden fidelity causes few 

dispersal events outside of when juveniles disperse from their natal territory 
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(Boutin et al. 1993). Average territory diameter in this population is 65.8 m with 

95% confidence intervals from 61.8 m to 68.6 m (LaMontagne et al. 2013).  

Squirrels are live-trapped from March through August. All squirrels are 

marked with metal ear tags (National Tag and Band Co.) and given unique colour 

combinations of wires or disks for visual identification. Most are tagged as 

juveniles in the nest at 25 days of age. High trappability is observed within this 

system as 77% of attempts to trap the midden owners are successful in the first 

day of targeting the midden, 9% of attempts are successful on the second day and 

14% require 3 or more days of trapping before the owner is caught (S. Boutin, A. 

McAdam & M. Humphries, unpublished data). The midden fidelity, high 

trappability, and vocal nature of squirrels allows target trapping and behavioural 

observations to be a successful means of documenting all individuals defending a 

midden in the study site (McAdam and Boutin 2003). 

Female squirrels are trapped at regular intervals as often as every 3-5 days 

to biweekly depending on their reproductive status; males are trapped at least 

once per month. As an indication of the effort involved in core data collection, an 

average of 5 person hours per day, from March to August, on each grid was spent 

in 2012 giving a total of 6375 trapping records and 4139 behavioural observations 

on 611 total squirrels (S. Boutin, A. McAdam & M. Humphries, unpublished 

data). I am confident that all squirrels on the study areas are enumerated as only 

471 of 10833 (4%) behavioural observations (including consecutive records, 

likely on the same squirrel) and 383 of 12863 (3%) trapping records are of 

individuals not previously tagged. When an untagged squirrel is observed, 
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additional effort in trapping and behavioural observation is spent to determine if 

the squirrel will claim an existing midden on the study site. However, in most 

cases the squirrel is never seen again indicating he/she is not part of the territorial 

population.  

Census  

Beginning in March, all middens are visited and trapped to confirm the 

presence of a squirrel and its identity. Midden ownership is established by 

recording the identity of squirrels giving territorial calls on the midden, regular 

trapping of the individual on the midden and behavioural observation of 

individuals feeding on the midden. On the rare occasion a new midden is 

established, its location is recorded and it is monitored as long as it is active. 

During continuous monitoring between March and August, changes in midden 

ownership are noted as they occur but a full census occurs in mid-May and mid-

August to record all squirrels defending a midden on the study sites.  

Capture-Mark-Recapture Trapping  

All CMR trapping sessions, hereafter referred to as sessions, were 

completed on a 300 m × 300 m array of 50 traps within one of the six 600 m × 

600 m study sites (see Appendix A for a schematic diagram). Tomahawk live 

traps were placed at alternating grid stakes at least 24 hours before trapping 

rounds and were pre-baited with peanut butter. Each session was conducted over 

two days and included six trap checks with 1.5 hours of trap exposure between 

each check; a trapping occasion is the interval when the animals are exposed to 

capture (Borchers and Efford 2008). The short duration of trapping occasions was 
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necessary to prevent squirrel mortality from exposure. Tag numbers, grid 

coordinates, sex, and trap-check round were recorded at every capture. One 

exception to the above trapping protocol was in March 2012 where trap placement 

was permitted to deviate from the grid stake by a maximum of 10 m in order to 

target runways that are easily visible in the snow. This deviation from the protocol 

allowed for increased trappability in winter conditions, which were lower due to 

cold temperatures.  

Trapping sessions began on one study site in 2006 and occurred biannually 

in spring (range of start dates: May 20 to June 6) and late summer (range of start 

dates: July 27 to August 7) through 2008, with one additional session in spring 

2011. Additional sessions were conducted in early and late summer of 2011 on all 

6 study sites. Finally, in March 2012 four of the study sites were trapped entirely 

by subdividing the study grid into 4 trapping grids, though two sessions were 

discarded due to poor weather. A total of 34 sessions took place between 2006 

and 2012. 

Closed Population Estimation 

I used the Huggins full heterogeneity closed population estimator within the 

R (R Core Team 2013) package RMark (Laake et al. 2012) to build models within 

program MARK, version 7.1 (White and Burnham 1999). Specifically, I produced 

estimates of abundance, capture probability and recapture probability (White and 

Burnham 1999). The Huggins estimator allows for a behavioural response to 

capture by estimating an initial capture probability in addition to the recapture 

probability (White 2008). It is also capable of modeling a Pledger mixture effect 
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that allows different levels of capture probability to account for potentially trap 

happy and trap shy groups of individuals (Pledger 2000). The advantage of this 

closed population estimator is the ability to produce all eight models originally 

described by Otis et al. (1978). Therefore the full model set included: null model 

(M0, restricting all capture heterogeneity), time varying capture probability model 

(Mt), behavioural trap response model (Mb), Pledger individual heterogeneity 

model (Mh), and all combinations of these factors including the full heterogeneity 

model (Mtbh, accounting for time, behavioural and individual heterogeneity; see 

Appendix B for full model set). I used the full a priori model set and model 

averaged the estimates based on their AIC weight (Boulanger and Krebs 1996, 

Pledger 2005, Conn et al. 2006). No covariates were included so the study design 

remains widely applicable to other systems with limited information.  

I evaluated each model of the model set for fit to the data by assessing the 

abundance, capture probability, and recapture probability estimates based on 

values that would be biologically probable (White G. personal communication, 

2012). Models were rejected if abundance estimates were larger than 1000 

individuals ( >1000) or estimates were smaller or equal to the number of 

animals marked (  ≤ Mt+1). If capture probability and recapture probability 

estimates approached 1 or if they were a thousandth of a decimal, the model was 

excluded. Any derived estimate with a standard error larger than the estimate 

itself ( (SE) > ) was also removed from the model set. Rejected models were 

deleted from the model set and only the remaining models were included in the 

model-averaged estimate.  

N̂

N̂

N̂ N̂
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The model set applied to each session was unique based on the data for each 

session. The model averaged abundance estimate, standard error, and the upper 

and lower 95% confidence intervals were derived for each session. Any session 

with a confidence interval range of more than 70 was removed (n = 4) due to low 

precision of these estimates; this had little effect on the relationship between the 

estimated and censused abundance. Consequently a total of 30 sessions were 

analysed.  

Evaluation of Estimates 

Statistical analysis was completed in the R statistical environment, version 

3.0 (R Core Team 2013). To compare the number of censused individuals 

defending a midden within the trapping grid to the abundance estimates produced 

in MARK, I tallied all individuals recorded in the census as defending a midden 

within the boundaries of the trapping grid; I hereafter refer to these individuals as 

residents. All juveniles without a defended midden were removed from the CMR 

trapping data. Thus, each abundance estimate ( ) was compared to the number 

of residents (N) recorded in the closest available biannual census. 

Typically the trapping occasions occurred within a month of the closest 

census, with the maximum time being 2 months in the case of the March trapping 

sessions. I justified comparing the March estimates against the May census 

because 91% of the residents in May were also midden owners from the previous 

August 2011 census (S. Boutin, A. McAdam & M. Humphries, unpublished data). 

This consistency coupled with the tendency for strong midden fidelity means it is 

likely the individuals were present through the winter. The majority of new 

N̂
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residents in the May census were young-of-the-year, which must have claimed a 

midden the previous fall, after the August census, for them to have survived the 

winter.  

The number of residents defending a midden within the bounds of the 

trapping grid were considered to be the censused resident population that were 

compared to CMR abundance estimates to determine the relative bias (RB) and 

whether or not the census value fell within the 95% confidence interval for the 

CMR estimate (confidence interval coverage; referred to as coverage for short) 

The relative bias was calculated as a percentage given by 

RB =   
[ −   N]  

N   ×  100 

where  is the population abundance estimate and N is the censused number of 

residents with middens in the trapping grid. Precision of the estimates was 

calculated by the percent coefficient of variation (CV), computed as 

CV   =   
(SE)

  ×  100  

where (SE) is the standard error of the population abundance estimate. To 

determine how estimates compared to census values, I regressed the estimated 

abundance against the censused abundance and assessed the intercept, slope, and 

R2 of the regression line. If the estimates perfectly predict the censused abundance 

I expect the intercept to be 0, the slope to be 1, and the R2 to be 1. For the 

estimates to be highly accurate and precise, I expect all confidence intervals to 

achieve coverage of the census value and CV to approach 0%.  

N̂

N̂

N̂

N̂

N̂
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I added a boundary strip to account for the potential positive bias created by 

individuals with only a portion of their territory in the trapping grid (Otis et al. 

1978). Literature suggests the use of the full mean maximum distance moved as 

the boundary strip width, which attempts to quantify the average range of animal 

movement (Parmenter et al. 2003). Red squirrels of KRSP regularly patrol the 

edge of their territory, thus the average range of movement within a trapping 

session may best be approximated by using the known territory width of the 

KRSP population; this was the measure used for the boundary strip. The squirrels 

defending a midden within a territory width (65.8 m; LaMontagne et al. 2013) of 

the trapping grid will henceforth be called boundary individuals. The number of 

boundary individuals was added to the number of trapping grid residents to find 

the boundary-adjusted census abundance. This adjusted census value was 

compared to the estimated abundance to find the RB, confidence interval 

coverage, CV and the linear regression analysis in the same manner as above. Any 

further discrepancy between the estimate and census abundance was investigated 

by performing an analysis of variance (ANOVA) on the residuals of the estimates 

to the regression line and variables that may explain the observed variation. 

Explanatory variables were chosen by literature recommendations for covariates 

that explain heterogeneity in capture probability and accessibility of the 

measurement. The explanatory variables included: probability of capture (Krebs 

and Boonstra 1984), mean maximum distance moved (MMDM; Stickel 1954), 

and sex ratio of individuals captured in each session (Davis et al. 2003, Pledger 
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2005). In each case, I expect slope of 0 and a low R2 if the explanatory variable 

had no influence on the residual of the estimate. 

Additionally, I tested the effect of boundary strip width on the RB by 

finding the RB that results from different fractions of the territory used as the 

boundary strip. To do this I found the number of squirrels defending a midden in 

boundary strips that increased by eighths of a territory (8.2 m) up to a full territory 

width beyond the edge of the trapping grid. The number of censused individuals 

defending a midden in each incrementally larger boundary strip was added to the 

residents within the trapping grid to find the total number of individuals defending 

a midden within effective trapping areas. I regressed the percent territory included 

in the boundary strip against the average RB from using the number of individuals 

in each effective trapping area and derived the percentage of territory required to 

reduce RB to 0%.  

Finally, I examined how the precision of CMR estimates varied with the 

number of trapping occasions required to increase precision. To do this I combine 

the capture histories from the July and August sessions collected from the same 

locations on 6 grids and sequentially eliminated the last trapping occasion from 

the capture histories to rerun the same model set in RMark (Laake et al. 2012). A 

total of 6 sessions with 12 trapping occasions resulted. I had to make the 

assumption that the sampled part of the population remained the same during each 

of the trapping sessions. However, it is biologically reasonable to assume that 

between July and August 2011, little death, recruitment, or territory changes 

occurred within the trapping grids. The individuals caught in both sessions had 
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their capture histories concatenated while individuals caught only during July or 

August had the last or first 6 trap checks filled with zeros. Thus, six sessions with 

12 capture histories were run in RMark according to the above protocol. This 

procedure was repeated after stripping the last capture history to produce a series 

of datasets varying length from 3 to 12 capture occasions; thus, each grid (n = 6) 

was evaluated at each length of capture history (n = 10) giving a total of 60 

estimates. Assessment of model fit differed from the previous protocol because 

this analysis evaluates the effect of number of trapping occasions on the precision 

of the estimates. Therefore, I only removed models from the model set if the  

was larger than 1000 or the standard error of  was larger than the estimate 

itself. This allowed more models to stay in the model set and react to the 

decreasing amount of information on which to base the estimate. To show the 

relationship between the precision and number of trapping occasions I regressed 

the coefficient of variation against the number of trapping occasions used to 

derive the estimates.  

Results 

Performance of Closed Population Estimators 

No individual model within the model set was consistently weighted as the 

top AIC ranked model and the top model did not reliably have the smallest 

standard error or bias (Table B.1; Appendix B). CMR estimates were successfully 

derived from 30 sessions that included a total of 1766 captures of 770 unique 

individuals (Table 2-1). For these sessions, census abundances ranged from 4 to 

38 individuals and on average 70% of the trapping grid residents were caught at 

N̂
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least once (range 19% - 100%). Overall, estimated abundances compared poorly 

to the census values (Spearman’s 𝜌 = 0.60; Table 2-1) and there was an average 

relative bias of 45% (Figure 2-1). All but 5 estimates showed positive bias and 

only 1 estimate came within 5% of the censused value. The 95% confidence 

intervals included the censused abundance value in 16 of the 30 estimates (53% 

achieved confidence interval coverage), while the precision as shown by the 

percent coefficient of variation was 22%. The average probability of capture, from 

model averaged estimates within program MARK, was 0.4 with a range from 0.07 

to 0.69. Using a linear regression analysis, I confirmed the positive bias from the 

regression of the estimated abundances as the intercept was larger than 0 

(intercept = 8.6) and the correlation was poor (R2 = 0.37). I found bias was stable 

across the range of censused abundance as shown by a slope of 0.98, which was 

not significantly different from 1 based on a significance level of p = 0.05  

(F1,28 = 0.01, p = 0.9). Thus it was not significantly different from the slope of the 

line indicating equality between estimated and censused abundance. 

When the effective trapping area was adjusted by adding the boundary strip 

individuals, the mean relative bias of the CMR estimates dropped from +45% to  

-22%, but the confidence interval coverage also dropped from 53% to 43%. Using 

a linear regression analysis, I found the intercept decreased to 2.37, slope 

decreased to 0.71, and R2 of the regression line increased to 0.4 (Figure 2-2). The 

slope of the regression was almost statistically different from 1 (F1,28 = 3.6,  

p = 0.068), indicating the negative bias decreased over the range of censused 

abundance. Using ANOVA, I found there was no significant effect of capture 
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probability (F1,28 = 0.16, p = 0.7), MMDM (F1,28 = 0.01, p = 0.9), or sex ratio 

(F1,28 = 0.24, p = 0.6) on the residuals from the estimates to the regression of 

estimated and censused abundance. 

Using a sensitivity analysis of boundary strip width I found that 61% of a 

territory width (40.1 m) adjusts the boundary strip for there to be negligible bias 

on average (Figure 2-3 and Table B2 in Appendix B). Though the range between 

the upper and lower quartiles shows there is a large variation between estimators 

at a given boundary strip width. 

The linear regression of the number of trapping occasions against the 

coefficient of variation showed a significant negative relationship  

(y = 30.4 – 1.7x, p = 0.004, R2 = 0.63) indicating that increased trapping 

occasions improves precision of the abundance estimate. Coefficient of variation 

(CV) drops below 20% after 5 trapping occasions and it drops below ~10% after 

11 trapping occasions (Figure 2-4).  

Discussion 

Estimator Accuracy 

Using a wild population I assessed if closed population abundance estimates 

are accurate compared to census values. My protocol is typical of many small 

mammal trapping regimes.  I had relatively high capture probability (p = 0.4) and 

caught an average of 70% of the residents within the trapping grid; with these 

values one would expect closed population estimators to perform well. However, I 

conclude the closed population abundance estimator performed poorly: the 

estimates had a 45% positive bias on average, though this level of bias was 
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constant across almost tenfold range of censused abundance. This bias is partially 

due to failing to account for the effective trapping area because nonresidents 

located adjacent to the trapping grid were often caught and thus influenced the 

estimates (see below). Previous studies using enclosures have reported a negative 

bias for estimates, but the fence prevents animal movements from outside the 

trapping grid, a situation that the estimator should account for (Stickel 1954, 

Edwards and Eberhard 1967, Carothers 1973, Davis et al. 2003, Parmenter et al. 

2003, Conn et al. 2006). Although enclosure studies do give informative 

conclusions, they do not provide effective techniques to account for animal 

movements when trapping a wild population and there is potential for large bias. 

The present study is more comparable to previous simulation studies, which found 

positive bias ranging from +10% to +100% (Rosenberg et al. 1995, Boulanger and 

Krebs 1996, Rees et al. 2011).  

Current literature suggests using the mean distance moved within a trapping 

session (i.e. mean maximum distance moved, MMDM, or asymptotic range 

length, ARL) as a boundary strip to adjust the area of animals exposed to traps 

(Tioli et al. 2009, Krebs et al. 2011). After making a boundary strip adjustment 

the correlation between estimated and censused abundance increased, however the 

resulting negative bias of the abundance estimates indicates this boundary strip 

width was too large. There was also a gradual trend for increasing negative bias 

with larger censused abundance values. This may be explained by the density 

dependence of the average movements of the animal. Parmenter et al. (2003) 

noted an analogous trend as animals in low density areas tend to travel farther, 
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thus requiring larger boundary strips, than animals in high density area, which 

require small boundary strips. This behavioural change in animal movement leads 

to overestimates of abundance at low density and underestimates of abundance at 

high density. Many previous studies have documented bias when applying a static 

boundary strip to trapping occasions taking place in different places or times, 

however the alternatives include the use of MMDM as a boundary strip or 

concurrently conducting home-range mapping via radio telemetry (Stickel 1954, 

Gurnell and Gipps 1989, Parmenter et al. 2003, Tioli et al. 2009, Ivan et al. 

2013a). Neither alternative is highly attractive due to additional assumptions, as 

well the estimation of MMDM assumes an adequate sample of inter-trap distance 

measures and radio telemetry necessitates increased sampling effort. 

To further investigate the low correlation between estimated and censused 

abundance I used an ANOVA with several explanatory variables previously cited 

as potential causes for poor estimator performance. It is common knowledge that 

estimators perform better when the probability of capture is high and Parmenter et 

al. (2003) gave an empirical example of decreased bias with increased capture 

probability. Interestingly, I found the capture probability did not significantly 

explain the residuals taken from the adjusted boundary strip regression. There was 

also no significant relationship between the residuals over the range of MMDM 

measures of distance from each session. Finally, the sex ratio of each session also 

did not hold a statistically significant relationship with the residuals. These 

explanatory variables are generally thought to be the key metrics for heterogeneity 

of capture that cause estimators to poorly model the number of animals in the 



    

 31 

sampled population. I am not concluding that these factors may not be important 

in other populations, nevertheless after adjustment for effective trapping area as 

given from previous literature, the residual variation in the estimates did not have 

a significant relationship with any of these factors.   

 To find an appropriate boundary strip width, I followed up with a 

sensitivity analysis that incrementally increased the percentage of territory width 

included as a boundary strip until I obtained a measure that extended the effective 

trapping area to account for individuals beyond the trapping grid that were still 

exposed to traps. The best measure was found to be 61% of the territory width, 

which more closely follows the use of a boundary strip equaling half the territory 

width, as suggested by Dice (1938). Therefore, this post hoc assessment to find 

ideal boundary strip width still had a quartile range from 15 to -20% RB, which 

highlights the problem of using a static boundary strip adjusting for movements 

that are temporally and spatially variable. 

Estimator Precision 

I found the confidence intervals of the abundance estimates achieve poor 

coverage as only 53% of the confidence intervals overlapped the censused 

abundance value and this decreased to 43% with the boundary strip adjustment. In 

many cases the overlap was due to estimates with high coefficient of variation, 

with few precise estimates successfully overlapping the censused abundance. This 

is substantially different from Parmenter et al. (2003) who found that all models 

achieved ≥ 90% coverage when using the full MMDM adjustment in an enclosure 

study. Simulating an ‘ideal’ population conforming to all assumptions of CMR, 
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Rees et al. (2011) found the precision increased such that after 20 trapping 

occasions the 95% confidence interval still did not overlap the true abundance. 

Rosenberg et al. (1995) previously concluded closed population estimators are not 

adequate in precision or accuracy until at least 12 or more trapping occasions. 

Due to the thorough data collection at KRSP, I was able to determine that 

all residents of the CMR trapping grids present in July 2011 were still present in 

August, therefore the CMR trapping sessions in July were sampling the same 

population of individuals as the August sessions. This allowed me to combine 

trapping occasions from July and August in order to assess the precision of the 

estimates as trapping occasions increase from 3 to 12 occasions. Though Rees et 

al. (2011) used the simplistic Schnabel estimator in their simulations, my findings 

agree that there is a sharp increase of precision from 3 to 5 trapping occasions and 

after 10 to 11 occasions the increase in precision levels off.  Abadi et al. (2010) 

simulated small datasets not capable of producing survival estimates separately 

and reported increased precision when data were analysed simultaneously, even if 

data independence was violated. Similarly, Conn et al. (2006) simultaneously 

analysed simulated low abundance populations for a satisfactory result when 

individually the models failed to produce adequate results. This empirical 

evaluation helps to confirm the trends predicted by the simulation studies.  

Conclusion 

Requiring prior knowledge of territory size or many recaptures for 

estimating MMDM could be a point of weakness for sampling novel populations 

(Tioli et al. 2009). When this situation arises determining the width of the 
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boundary strip may depend on whether more harm will be done by under or 

overestimating the number of individuals. If it is riskier to overestimate the 

population, for example, when setting tag limits for game species, it would 

advisable to use the full territory width as a boundary strip for a conservatively 

small density estimate. Conversely, if underestimating the number of individuals 

could have hazardous impacts, for example, when monitoring an invasive species, 

using half the territory width would give a conservative overestimate of the 

population (Tioli et al. 2009). In the KRSP, if the effective trapping area is 

adjusted with half the territory width boundary strip, on average the estimates had 

little bias. This finding is dependent on the heterogeneity of capture and 

movements of the squirrels during the trapping sessions and may not be accurate 

when applied to other populations or species (Tioli et al. 2009, Krebs et al. 2011, 

Pacheco et al. 2013). Even if the abundance estimates are accurate, I question the 

utility of an estimator that requires extensive knowledge of population movements 

for accurate adjustment of the abundance estimate. Future research will 

investigate spatially explicit mark-recapture techniques that use capture location 

data to estimate animal movements and the individual detection; this estimator is 

theoretically more rigorous, has proven robust in simulation studies thus far and is 

gaining in popularity (Efford et al. 2004, Efford 2011, Borchers 2012, Efford and 

Fewster 2013) 

My main conclusion is that CMR estimates are often positively biased when 

sampling wild populations, thus the boundary strip adjustment of the effective 

trapping area is essential to account for animal movements in natural systems. The 
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poor accuracy of the estimator was found to have no significant relationship 

across a range of capture probability, MMDM, or sex ratio. The optimal size of 

the boundary strip was found to be just over half the territory width; however, this 

will likely vary between populations with different movement patterns. It is then 

necessary to have prior knowledge of the territory width or have sufficient 

number of recaptures to estimate the mean maximum distance moved between 

capture locations to make an appropriate boundary strip adjustment. I found the 

closed population estimator had poor precision since fewer than half the 95% 

confidence intervals included the censused value of abundance. I was able to 

confirm the influence of number of trapping occasions on the precision of the 

estimate. I conclude that at least 5 trapping occasions, but preferably 11 occasions 

be sampled for dependable levels of precision. There are few empirical studies in 

the validation of CMR estimation techniques and although enclosure and 

simulation studies greatly benefit model development, further work is needed to 

evaluate the effectiveness of these models in wild enumerated populations.  
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Table 2-1. Comparison of censused abundance (N) with model-averaged 
abundance estimates (N) and corresponding 95% confidence intervals (95% CI) 
from Huggins full heterogeneity closed population estimator within program 
MARK. Summary statistics include relative bias (RB) and coefficient of variation 
(CV) as described in the methods. All estimates derived from CMR live trapping 
on 6 grids in the KRSP, 2006-12. 

Session 
number N  95% CI RB (%) CV (%) 

1 27 39.7 36.6 - 42.9 47.2 4.1 
2 25 38.8 31.1 - 46.6 55.4 10.2 
3 27 47.3 38.9 - 55.7 75.1 9.0 
4 14 15.5 13.5 - 17.4 10.4 6.4 
5 16 28.4 24.5 - 32.3 77.6 7.0 
6 20 17.9 14.3 - 21.4 -10.6 10.1 
7 25 13.2 11.4 - 14.9 -47.3 6.8 
8 16 39.0 26.1 - 51.8 143.5 16.8 
9 21 30.1 22.1 - 38.2 43.5 13.6 
10 19 22.4 18.8 - 26.1 18.1 8.4 
11 20 28.8 12.0 - 45.7 44.1 29.8 
12 20 26.3 24.5 - 28.1 31.6 3.4 
13 38 56.4 45.8 - 67.0 48.3 9.6 
14 26 39.5 22.7 - 56.4 52.1 21.7 
15 38 46.2 40.9 - 51.5 21.5 5.9 
16 24 20.1 -7.3 - 47.5 -16.3 69.6 
17 27 12.5 1.6 - 23.4 -53.6 44.4 
18 26 45.1 32.4 - 57.7 73.3 14.3 
19 26 30.0 25.9 - 34.0 15.2 6.8 
20 24 38.8 20.5 - 57.2 61.9 24.1 
21 16 30.8 8.7 - 52.8 92.2 36.6 
22 27 44.4 24.7 - 64.2 64.5 22.7 
23 15 27.1 -2.4 - 56.6 80.8 55.5 
24 33 38.2 32.5 - 43.9 15.7 7.6 
25 33 30.8 17.9 - 43.7 -6.6 21.3 
26 21 32.1 24.9 - 39.3 52.8 11.5 
27 21 27.8 24.6 - 30.9 32.2 5.8 
28 17 24.6 8.3 - 41.0 44.9 33.9 
29 13 13.6 -8.7 - 35.9 4.7 83.7 
30 4 14.8 -1.2 - 30.7 268.9 55.0 

Mean  22  30       45% 22% 
 
 

N̂
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Figure 2-1. Relationship between census abundance and estimated abundance 
from closed population abundance estimators with 95% confidence intervals as 
calculated in program MARK (dashed line; R2 = 0.37). The solid line represents 
equality between estimated and censused abundance. 
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Figure 2-2. Relationship between census abundance from the effective trapping 
area adjusted by a boundary strip equivalent to average territory diameter (65.8m) 
and estimated abundance with 95% confidence intervals (dashed line;  
p = 0.00001, R2 = 0.41). The solid line represents equality between estimated and 
censused abundance. 
 

0 10 20 30 40 50 60 70

0
20

40
60

80

Censused Abundance with Boundary Strip Individuals

Es
tim

at
ed

 A
bu

nd
an

ce



    

 38 

 
Figure 2-3.  The mean relative bias (showing the upper 75th and lower 25th 
quartiles for n = 30 estimates) resulting from varying levels of territory width 
included in the boundary strip. A fitted linear regression (dotted line) interpolates 
the relative bias to be null (indicated by the solid line) when 61% of the territory 
width is included in the boundary strip.  
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Figure 2-4. Coefficient of variation as the number of trapping occasions increases 
from 3 trapping rounds to 12 trapping rounds, showing a significant increase in 
precision (y = 30.4 – 1.7x, p = 0.004, R2 = 0.63). The mean number of models (n) 
included in the model set are given at each point. 
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CHAPTER III: An Empirical Validation Of Spatially Explicit Capture-

Recapture Estimates (SECR) Using A Censused Wild Population 

Introduction 

Density of animals within a landscape is an essential component of 

understanding the ecology of a population and the larger natural system. There are 

a variety ways to derive an estimate of density and many studies have been 

devoted to finding an estimator that is both precise, unbiased and requires a 

minimum amount of information to successfully compute estimates. The 

numerous approaches developed to adjust closed capture abundance estimates to 

calculate density by estimating effective trapping area have generally been found 

to perform poorly due to the requirement of large amounts of animal movement 

information (Parmenter et al. 2003, Ivan et al. 2013b). Non-spatial estimators 

were found to have a higher bias than estimators with a spatial component in even 

if geographic closure was satisfied by trapping an entire island (Efford and 

Fewster 2013). Trapping webs based on the principles of distance sampling were 

found to be positively biased for small mammal density estimates due to the 

increased trappability of highly mobile animals in the center of the grid (Efford et 

al. 2005). The recently developed TELEM method within program MARK (Ivan 

et al. 2013a;b) uses a traditional closed mark-recapture abundance estimate with 

additional telemetry information to derive the proportion of time animals spend 

within the trapping grid to compensate for animals living outside of the trapping 

grid. As well the Bayesian SECR analysis implemented through R (Royle et al. 

2009a) or in the program SPACECAP (Gopalaswamy et al. 2012) have shown 
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promising results via simulations or when compared to other density estimators, 

yet these models have not been assessed in a wild population where it possible to 

derive an estimate of true density.  

A significant advance in density estimation has been the spatially explicit 

capture-recapture (SECR) density estimator implemented through the program 

DENSITY GUI or the R package secr (Efford 2004, Efford et al. 2004, Royle and 

Young 2008). These density estimators require the spatial information for each 

capture event of an animal in order to build a probability model of the capture 

histories given the location of each encounter. This probability model has two 

submodels: the distribution model of the home range centres across the landscape 

and the detection submodel of capture probability for an individual in a trap, 

given the distance to animal’s home-range center (Efford 2004, Ivan et al. 2013a). 

The density of animals, irrespective of grid area, can be estimated assuming there 

is a decreasing probability of capture as distance between the home-range centre 

and the trap increases (Efford et al. 2004, Borchers and Efford 2008, Royle et al. 

2009a, Royle et al. 2009b). Therefore the SECR density estimators are 

theoretically more rigorous than the common approach of taking estimated 

abundance (N) over estimated area (A) because they do not rely on ad-hoc 

estimation of effective area trapped. 

SECR density estimators have several additional requirements beyond the 

assumptions of CMR trapping. The distribution model assumes animals occupy a 

static home range for the duration of sampling and home-range centers can be 

modeled as a realization of a homogeneous random spatial point process (Efford 
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2004, Efford et al. 2004). This model also assumes home ranges are symmetrical 

and the trapping process does not affect the probability or location of recapture 

(Efford et al. 2005). One further requirement for the estimator is a minimum 

number of recaptures for proper parameterization of the distribution model 

(Efford 2004). These requirements are reasonable for many moderately abundant 

territorial species. Due to site fidelity, it is common for individuals to keep the 

same home range for at least the duration of a sampling period (Price et al. 1986). 

Similarly, the movement patterns of territorial species are often symmetrical 

around the territory center, barring large landscape features. However, rare or 

elusive species may not meet the necessary number of recaptures for the models 

to perform well.  

Theoretical and empirical tests have shown the inverse prediction SECR 

method produces accurate density estimates with high precision and both the 

maximum likelihood and Bayesian SECR models have been comparable when 

natural populations were sampled (Efford 2004, Efford et al. 2005, Efford et al. 

2009, Efford and Fewster 2013). However, if the trapping process disrupts natural 

movement patterns the models may not perform as predicted.  

Despite recent advances in the development of methods for estimating 

density, few studies have empirically validated these models. In this study, I 

compare density estimates from SECR models with density measured in a 

completely enumerated wild population. Over the last over 25 years, the Kluane 

Red Squirrel Project (KRSP) has maintained an intensive trapping and 

observational study of several subpopulations of North American red squirrels 
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(Tamiasciurus hudsonicus) in the Yukon Territory, Canada. Red squirrels are 

highly trappable, and display diurnal behavior and high sight fidelity, allowing 

complete enumeration of the population. The distinguishing feature of this 

empirical validation is the use of behavioural observations to derive an activity 

range for all animals censused as defending a territory within or around the 

trapping grid. I first investigate if density estimates are accurate and precise and 

then examined the relationship of precision increase with the number of recapture 

events. 

Methods 

Site and Species Description 

See Chapter II for description. 

Census  

See Chapter II for description. 

Calculation of Estimated True Density Using Animal Equivalents 

To determine the estimated true density I first refer to the biannual census, 

which lists all squirrels defending a midden as well as the midden location within 

the study grid. I do not typically determine territory boundaries due to the number 

of behavioral observation locations needed to delineate a territory. Therefore, I 

use an estimate of true density similar to methods described by Boutin (1984) and 

Ivan et al. (2013a). The method involves determining the individuals living within 

the trapping grid and following them to establish the proportion of time they 

spend within the grid. This proportion is known as the ‘animal equivalent’ 

because it is equal to the amount an individual contributes to the density of the 
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grid; for example, if the animal spends half its’ time on grid it is equivalent to 0.5 

of an animal. To find the total density of the grid, the animal equivalent value for 

each resident of the grid is tallied and divided by the area of the grid. I used the 

locations obtained from extensive behavioural observations of the marked 

population to calculate the proportion of time each animal spent within the 

trapping grid. Finally, density was calculated by dividing the sum of animal 

proportions by the minimum convex polygon area of the trapping grid; this will be 

referred to as the animal equivalent density (Boutin 1984, Ivan et al. 2013b;a) and 

be used as the estimated true density (D). 

Capture-Mark-Recapture Trapping  

See Chapter II for description. 

Spatially Explicit Density Estimation 

Due to the minimum number of recaptures needed for proper model 

function (Efford et al. 2004), sessions with less than 10 recaptures were discarded; 

therefore from the available 34 sessions only 20 sessions were used. CMR 

trapping data were analysed using maximum likelihood spatially explicit density 

(ML SECR) estimators as contained in the R (Team 2013) package secr, version 

2.6.1 (Efford 2004, Borchers and Efford 2008, Efford et al. 2009). All default 

settings were maintained for wide applicability to other study systems, thus I 

assumed a 2D Poisson distribution of home range centres, a half-normal detection 

function for detection probability and no starting values were specified. The 

default 100 m buffer was maintained to model the region of integration, which 

encloses the trappable population. The buffer is required to be at least 3 times the 
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spatial scale (σ) and I found the σ to be an average of 30 m based on the distance 

moved from the home-range center to the trap, therefore the buffer satisfies the 

requirements (Efford 2011). I specified 3 candidate models to be applied to the 

data and the resulting density estimates were model averaged based on the AIC 

weight of the model. The 3 candidate models included: the null model (M0), a 

model accounting for a behavioural effect of trapping (Mb) and an individual 

heterogeneity model (Mh). Thus I produced 20 model averaged density estimates 

with their standard errors and 95% confidence intervals. 

Evaluation of Estimates 

All statistical analysis was completed in the statistical environment R, 

version 3.0 (Team 2013). I compared the density estimate (D) for each session 

with the estimated true density (D) via animal equivalents by finding the relative 

bias (RB) using the equation 

RB =   
[D−   D]  

D   ×  100. 

The coefficient of variation (CV) was derived as a percentage by 

CV   =   
  D(SE)
D

  ×  100 

where D(SE) is the standard error of the density estimate. I defined achieved 

confidence interval coverage when the true density estimate fell within the bounds 

of the estimates 95% confidence interval. 

To ascertain if the degree of bias changed across a range of density values, I 

used a linear regression analysis to establish if the regression of the SECR density 

estimates against the estimated true density were significantly different from 1 
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based on a significance level of p = 0.05. I also conducted a pairwise t-test of the 

true density and the SECR estimates to determine if the magnitude of the bias 

significantly different from zero.  

Finally, I regressed the number of recaptures from each session against the 

coefficient of variation for that session to determine the minimum number of 

recaptures needed for a certain level of precision. 

Results 

Estimated True Density 

A total of 6490 behavioural observations were used to derive animal 

equivalent proportions for 783 squirrels defending a midden within and 

immediately surrounding the trapping grid. Therefore an average of 8.3 

observations were used for each individual, which is similar to the 10.4 telemetry 

locations that Ivan et al. (2013a) obtained for use in the TELEM method. The 

estimated true density of the trapping grid was 3.0 animals ha-1 on average (range 

1.5 to 4.8 animals ha-1; Table 1). 

Performance of SECR Density Estimator 

A total of 620 animals were captured in 20 CMR trapping sessions, which 

included 15 to 92 recapture events (Figure 3-1). When density estimates were 

compared to the density via animal equivalents I found an average 4.6% negative 

bias, ranging from -35.7% to 26.7% (Table 3-1). The 95% confidence intervals 

achieved coverage of the animal equivalent density in all 20 sessions (100% 

confidence interval coverage). Finally, I determined the intercept was 0.38 and the 

R2 was 0.76 (Figure 3-2).  
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The linear regression analysis of the estimated density against the density 

via animal equivalents was found to have a slope of 0.95, which is not statistically 

different from 1 (F1,18 = 0.2, p = 0.7). Using a pairwise t-test I found the SECR 

estimates were not significantly different from the estimated true density values 

(t19 = 1.15, p = 0.27).  

When regressing CV against the number of recaptures, I found the 

breakpoint between 51 and 59 recaptures resulted in the highest R2 for the linear 

regression and held a significant negative slope (y = 34.7 – 0.4x, F1,14 = 28.9,  

p = 0.0001, R2= 0.65; Figure 3-3). The linear regression beyond the breakpoint 

did not have a significant slope (y = 20.3 – 0.04x, R2 = -0.24; F1,2 = 0.4, p = 0.6).  

Discussion 

I successfully produced density estimates from 20 CMR trapping sessions 

over a range of true density values (1.5 to 4.8 animals ha-1). This empirical study 

represents the first test of ML SECR estimators in a censused wild population for 

which estimation of true density is possible. I acknowledge that true density 

derived by territory mapping would have been a more thorough approach than the 

present method of finding the proportion of time spent on grid with an average of 

8.7 observed locations. However the effort required by field personnel to fully 

delineate the boundaries of approximately 39 individuals living in and around the 

trapping grid for all 20 sessions analysed is beyond the capabilities of this, and 

most other field projects. Therefore this is the most thorough study capable of 

relating ML SECR density estimates to true density derived by thorough 

observation of the animals in a natural system. 
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Overall I found the ML SECR density estimates had a small negative bias of 

-4.6%, this is not significantly different from the true density values for each 

session. Therefore, there is no statistical difference between the SECR estimates 

and the true value. The small amount of negative bias may be due to unmodeled 

heterogeneity as suggested by Efford et al. (2005). It is encouraging that 100% of 

the trapping sessions achieved confidence interval coverage of the true value. 

Using a rudimentary breakpoint analysis I established that after ~51 recaptures 

there is not a significant increase in precision with additional recaptures. The 

slope of the regression up to the breakpoint was found to be significant, which 

indicates precision will increase significantly with additional recaptures. Although 

I used a minimum cutoff of 10 recaptures, all the remaining CMR datasets 

produced SECR density estimates with reasonable precision of ≤35% CV. 

However, adjusting the experimental design to increase the number of recaptures 

could efficiently increase the precision of the resulting estimates. These findings 

suggest fewer recaptures are needed than previously thought by Efford et al. 

(2004) and Efford et al. (2009). 

The TELEM method employed by Ivan et al. (2013a) has an inherent 

potential for positive bias by capturing animals with more of their home range on 

the grid, thus the estimated proportion of time these animals spend on the grid is 

more likely to be high. This positive bias is potentially cancelled by the reduced 

capture probability of animals with less home-range overlapping the grid. A 

positive bias may still result if the cancelling effect is negated by a high capture 

probability of these individuals. This problem does not affect the animal 
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equivalent metric I employ because I use the census to determine the animals 

defending a midden in and around the trapping grid. As well, the locations of 

behavioural observation are taken opportunistically across the study grid, which is 

four times the size of the CMR trapping grid. Therefore I take behavioural 

observation locations from all individuals and this is reflected in the fact that I 

have an overall negative bias. 

I have shown the ML SECR estimators produce density estimates with 

acceptable levels of bias and precision from mark-recapture data of a wild 

population. This supports previous validations of the method using simulation and 

by comparing the maximum likelihood density estimate with the inverse 

prediction density estimate (Borchers and Efford 2008). The main drawback of 

using the SECR estimator is the necessity for at least 10, but preferably 50 

recaptures to produce estimates with high precision. However, if trapping effort 

can obtain the minimum required recaptures, the estimates will likely be accurate 

and precise without the necessity for additional telemetry information or the need 

to estimate effective area trapped.   
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Table 3-1. Estimated true density via the animal equivalent method and the SECR 
density estimated by maximum likelihood with associated 95% confidence 
intervals (both density values measured in animal ha-1). Summary statistics 
included relative bias (RB) and coefficient of variation (CV) of the SECR 
estimate. 

Session 

Density via 
Animal 

Equivalents 

SECR 
Estimated 
Density 

SECR  
95% Confidence 

Interval RB CV 
1 3.6 3.2 2.3 - 4.5 -10.7 17.2 
2 3.4 3.4 2.4 - 4.8 1.9 17.6 
3 3.6 4.4 3.2 - 6.2 22.7 17.3 
4 1.6 1.0 0.6 - 1.8 -35.7 29.2 
5 2.1 2.2 1.4 - 3.3 4.6 21.4 
6 1.5 1.0 0.6 - 1.8 -31.8 28.6 
7 2.2 2.8 1.9 - 4.0 26.7 19.1 
8 2.8 2.2 1.5 - 3.2 -23.6 19.6 
9 2.4 1.8 1.1 - 2.9 -24.4 24.3 

10 2.3 2.2 1.3 - 3.7 -6.0 28.0 
11 2.4 3.0 1.5 - 5.8 22.9 35.3 
12 4.8 4.4 3.3 - 6.1 -6.6 15.9 
13 3.3 3.2 2.2 - 4.8 -2.6 20.1 
14 4.8 4.6 3.4 - 6.3 -3.1 16.1 
15 3.3 3.5 2.5 - 4.9 7.3 16.8 
16 3.3 2.5 1.7 - 3.7 -23.3 19.8 
17 4.1 3.8 2.8 - 5.3 -5.7 17.0 
18 4.1 3.1 2.2 - 4.5 -23.1 18.5 
19 2.5 3.0 1.9 - 4.9 20.1 24.1 
20 2.5 2.5 1.6 - 3.7 -2.1 21.4 

Mean  3.0  2.9       -4.6% 21.4% 
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Figure 3-1. Frequency distribution of sessions with given number of recaptures 
from the 20 CMR trapping sessions from 6 grids at KRSP, 2006-2011.  
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Figure 3-2. Relationship between density estimated by spatially explicit capture-
recapture (SECR) with 95% confidence intervals (dashed line; R2 = 0.76) and 
estimated true density (both densities are measured as individuals per hectare). 
The solid line represents the equality between SECR estimates and estimates true 
densities.  
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Figure 3-3. Precision of SECR density estimates measured by the coefficient of 
variation (CV(D)%), as a function of the number of recaptures from 20 CMR 
trapping sessions in the KRSP, 2006-2012. The linear regression up to the 
breakpoint at 51 recaptures, had a significant negative slope (y = 34.7 – 0.4x,  
R2 = 0.65; F1,14 = 28.9, p = 0.0001) and beyond the breakpoint was not significant 
(y = 20.3 – 0.04x, R2 = -0.24; F1,2 = 0.4, p = 0.6).  
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CHAPTER IV: General Conclusion 

The focus of my thesis was to validate two population enumeration models 

commonly used today: Huggins closed population abundance model and 

maximum likelihood spatially explicit capture-recapture (ML SECR) density 

model. Simulation studies have provided valuable validations of model 

robustness, however, empirical tests are needed to evaluate if the model 

assumptions apply in wild populations. To do this I used the KRSP as a model 

system to complete a typical capture-mark-recapture (CMR) survey for small 

mammals and produced abundance and density estimates of the population. With 

the extensive knowledge of individuals within the system I was able to determine 

the accuracy and precision of the model estimates by comparing them to the true 

census values. The empirical validation provided by this thesis is a significant 

contribution to current validation studies of closed population estimators and 

SECR estimators due to the absence of assessments using a natural, wild, and 

censused population (Krebs et al. 2011).  

Summary of Findings 

In the validation of closed population abundance estimators (Chapter II) I 

found the estimates to have a large positive bias. This is due to the well-known 

issue of geographic closure, which is ubiquitous for most populations, except in 

whole island surveys or populations with physically delineated edges. The most 

common approach to remedy this problem is to add a boundary strip around the 

trapping grid that adjusts the area effectively trapped, accounting for the 

individuals adjacent to the grid that are exposed to trap. When I added a full 
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territory width boundary strip (Parmenter et al. 2003) the average bias became 

negative indicating too many individuals were included in the effective trapping 

area. I then used a sensitivity analysis to find the optimal a boundary strip width. 

Average bias was reduced to zero when 61% of an average territory width was 

used as a boundary strip, though the suitability of this measure for other 

populations is unknown.  

Even with an appropriate boundary strip there was still a range of biased 

estimates from +15 to -20%. Further, I found no significant relationship between 

the variance of the estimates and the distance mean maximum distance moved 

(MMDM). This may be an artifact of the number of recaptures used to calculate 

the MMDM if the value of MMDM is a poor representation of the true average 

movement rate. I observed a similar lack of relationship between variance of 

estimator accuracy and capture probability as well as sex ratio. This is surprising 

given that previous literature cites these variables as potential sources of error in 

estimates of abundance (Chao 1967, Boulanger and Krebs 1996, Parmenter et al. 

2003, Pledger 2005, Bisi et al. 2011). 

This variation in bias between estimates of the same population illustrates 

the difficulty to determine an appropriate boundary strip adjustment. Based on my 

results I agree with Gurnell and Gipps (1989) that a session specific boundary 

strip may be necessary. A constant boundary strip width may overestimate the 

population when abundance is low and underestimate it when abundance is high 

because of the tendency for animals to move longer distances with lower 

population size, especially if the trend is food driven (Parmenter et al. 2003). In 
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general, this calls into question the utility of an estimator that requires large 

amounts of data to determine the proper adjustment for the estimate produced 

from each sampling session.  

In the final analysis of Chapter II I found the precision of the closed 

population estimates performed poorly with less than half of the 95% confidence 

intervals achieving coverage of the true abundance. Moreover, many of the 

confidence intervals were larger than 30% of the estimated abundance. It becomes 

hard to trust the method when the confidence intervals are found to be this large. 

However, I did confirm that with increased sampling the precision increased and 

after 11 trapping occasions the coefficient of variation was below 10%, which 

would promote confidence in the method.  

In the validation of spatially explicit capture-recapture density estimators 

(Chapter III) I found the estimator to be remarkably accurate and did not observe 

a significant difference between the SECR estimates and the estimated true 

density. The precision of the SECR estimator also performed well as the 95% 

confidence intervals achieved coverage of true density for all of the sessions. My 

findings support previous simulation studies of the SECR method, and tests of the 

ML estimator when compared to the previously validated inverse prediction 

estimator (Efford et al. 2005, Borchers and Efford 2008).  

For proper parameterization of the SECR models, a minimum of 10 to 20 

recaptures are required. Thus, due to the lower recapture rate in the winter 

trapping sessions, I was not able to produce estimates for 15 of the 35 trapping 

sessions. With careful planning this situation could be avoided in many systems, 
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but when sampling rare or elusive animals with naturally low recapture rates, this 

could be a barrier in the utility of this estimator. If researchers can obtain the 

minimum required recaptures, I have shown the SECR estimator to have the 

capacity to produce accurate and precise estimates without the need for additional 

telemetry information or estimation of effective area trapped.   

Conclusions and Implications 

The dataset of CMR trapping records I used to derive the estimates of 

abundance and density are of high quality as shown by a high capture probability 

(average p = 0.4, compared to p = 0.35 deemed acceptable by Otis et al. (1978)), 

high percentage of residents caught (70% of residents were caught in MARK 

subset of sessions, 80% of residents were caught in the SECR subset of sessions), 

and a realistic number of animals marked in each session (an average of 24 were 

marked and an average of 22 animals lived within the trapping grid, in the SECR 

sessions). Thus, one would expect the resulting estimates to be precise and 

accurate.  

Instead, I found the closed capture abundance estimates were biased, even 

when using a boundary strip adjustment, and estimator precision performed 

poorly as well. Alternatively, with added information of the spatial locations of 

the capture events the SECR estimates produced unbiased and precise estimates 

on average. Therefore, I suggest using the SECR estimator if the spatial 

information is available and there are at lest 10 or more recaptures.  

In summary, this highlights that the estimator works irrespective of the 

trapping grid area when animal movements are modeled and will produce values 
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that more accurately follow the population fluctuations (Efford 2004). This model 

is theoretically more rigorous, has proven robust in simulation studies thus far and 

is gaining in popularity (Efford et al. 2004, Efford 2011, Borchers 2012, Efford 

and Fewster 2013). However, the added requirement of inter-trap movement 

measurements may be limiting, but there is a significant increase in the accuracy 

and precision of the estimator.  

When using any model to approximate a biological system, the quality of 

the results will be heavily dependent on the data on which the model is based. 

This weakness of any estimator becomes a problem when logistical constraints, or 

the population itself, limits the number of individuals captured or number of 

recaptures. Both the closed population estimator and the SECR estimator require a 

reasonable number of recaptures to measure the magnitude of animal movement. 

Therefore effort is best spent in increasing the recaptures so that SECR methods 

may be applied to the data. 

Due to the complexity of higher-level models, there are some studies still 

using program CAPTURE and even minimum number alive (MNA) enumerations 

of the population to avoid the steep learning curve of more advanced models 

(Pacheco et al. 2013). Parmenter et al. (2003) highlighted the analytical problems 

introduced by model complexity and number of decisions required by performing 

a double-blind test with a panel of experts analysing data from an enclosed rodent 

population. The expert analysts produced estimates with an average +53% bias 

(range -2% to 134%) and 50% confidence interval coverage (range 0% to 91%). 

Therefore, future research should aim to provide robust estimators formatted in 
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user-friendly GUIs so that biologists can become comfortable using these more 

theoretically robust estimators. For example, the program SPACECAP 

implements Bayesian SECR estimators in user-friendly format (Gopalaswamy et 

al. 2012). In addition, more empirical evaluations of newly developed methods 

are required to demonstrate these estimators are worth the effort. This will be 

needed for TELEM, the novel density estimator incorporated in program MARK 

(Ivan et al. 2013a;b).  

Population size and density are fundamental measurements in population 

ecology and often required before any further study of a population may take 

place (Williams et al. 2002, Amstrup et al. 2005). Methods for the accurate 

assessment of population size and especially density have been unresolved for 

decades (Otis et al. 1978). A plethora of statistical estimators have been 

developed to fill this need, however both simulation and empirical validations are 

required to test the accuracy and precision of these estimators (Parmenter et al. 

2003, Krebs et al. 2011). Only when sufficient validations have occurred and the 

results are consistent across time, space, and study systems will the development 

of estimators not be required for continued study of biological populations. 
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Appendix A 

 

Figure A.1 Spatial layout of a typical 36 ha study site and a CMR trapping grid 
with 50 traps indicated with x’s at every second and alternating grid stake. The 
entire study grid is delimitated in 30 m intervals with an alpha x-axis and a 
numeric y-axis. Location data is taken to the tenth of a grid stake distance (i.e. 30 
m) therefore locations are recorded to the nearest meter.   
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Appendix B 

Table B.1 Total AIC weights for each model of the complete model-set built in 
RMark and applied to 30 sessions of CMR data. 

Otis et al. 
convention Model description 

Number of times 
model included 

in model set 

Total 
model 
weight 

M0 Null model 30 5.56 
Mb Behaviour model 26 5.20 
Mh Heterogeneity model 17 2.27 
Mt Time model 24 5.50 
Mbh Behaviour and heterogeneity model 15 3.45 
Mtb Time and behaviour model 22 1.80 
Mth Time and heterogeneity model 15 2.78 
Mtbh Full model 15 3.45 
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Table B.2 Relative bias observed for each session with buffer strips increasing by 
an eighth of a territory width (8.2 m). Mean (x) and total (∑) summary statistics 
indicated in bottom rows. 

 

RB 
0% 

Buffer 

RB 
12.5% 
Buffer 

RB 
25% 

Buffer 

RB 
37.5% 
Buffer 

RB 
50% 

Buffer 

RB 
62.5% 
Buffer 

RB 
75% 

Buffer 

RB 
87.5% 
Buffer 

RB 
100% 
Buffer 

1 47.2 42.0 20.4 10.4 4.6 1.9 -9.7 -9.7 -15.4 
2 55.4 43.9 25.3 14.2 5.0 -5.3 -11.7 -17.4 -19.1 
3 75.1 68.9 43.3 31.4 24.4 21.3 7.5 7.5 0.6 
4 10.4 -14.2 -22.7 -26.4 -32.8 -40.6 -40.6 -40.6 -44.8 
5 77.6 42.1 13.7 9.3 5.2 -8.3 -11.2 -11.2 -16.4 
6 -10.6 -10.6 -10.6 -10.6 -36.2 -36.2 -38.4 -38.4 -44.1 
7 -47.3 -47.3 -47.3 -47.3 -62.4 -62.4 -63.4 -63.4 -66.2 
8 143.5 85.5 55.8 49.8 34.3 18.0 18.0 14.6 11.3 
9 43.5 20.5 0.4 -2.8 -5.8 -16.3 -16.3 -20.7 -22.7 

10 18.1 -6.5 -13.7 -16.9 -19.9 -29.9 -29.9 -29.9 -34.0 
11 44.1 37.2 31.0 15.2 -12.7 -15.3 -24.2 -24.2 -26.1 
12 31.6 25.3 19.6 5.3 -20.2 -22.6 -30.7 -30.7 -32.5 
13 48.3 34.2 34.2 22.5 12.7 12.7 6.3 0.6 -6.1 
14 52.1 41.2 16.3 6.9 -1.1 -12.1 -17.6 -19.3 -23.9 
15 21.5 10.0 10.0 0.4 -7.6 -7.6 -12.9 -17.5 -23.0 
16 -16.3 -22.7 -33.0 -39.1 -42.6 -49.8 -53.3 -55.4 -58.1 
17 -53.6 -56.8 -62.0 -64.2 -65.2 -67.9 -67.9 -70.9 -72.1 
18 73.3 50.2 28.7 28.7 21.8 12.6 4.8 4.8 -8.0 
19 15.2 -0.1 -14.4 -14.4 -19.0 -25.1 -30.3 -30.3 -38.9 
20 61.9 61.9 49.4 49.4 43.9 43.9 25.3 25.3 14.3 
21 92.2 80.9 61.9 53.8 23.0 18.3 13.9 2.5 -0.8 
22 64.5 53.2 43.3 30.7 23.4 23.4 20.1 13.9 8.3 
23 80.8 80.8 50.7 42.8 23.3 17.9 17.9 17.9 4.3 
24 15.7 15.7 6.0 0.4 -4.6 -4.6 -11.2 -11.2 -18.8 
25 -6.6 -6.6 -14.4 -18.9 -23.0 -23.0 -28.3 -28.3 -34.4 
26 52.8 33.7 18.8 7.0 -2.8 -8.3 -13.3 -15.6 -25.4 
27 32.2 15.6 2.8 -7.5 -15.9 -20.7 -25.0 -27.0 -35.5 
28 44.9 23.1 7.1 2.6 -8.8 -15.1 -20.6 -23.0 -25.4 
29 4.7 4.7 -2.8 -9.3 -9.3 -14.9 -24.4 -35.2 -40.8 
30 268.9 195.1 110.8 110.8 110.8 110.8 110.8 110.8 34.1 
𝐱 48.5 34.2 18.8 11.2 1.1 -4.2 -9.5 -12.3 -20.1 
∑ 1648.9 1163.6 640.8 380.1 36.2 -144.4 -321.9 -417.2 -684.9 
 

 


