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Abstract

In this thesis we study some aspects of ‘Airy structures’ first proposed

in [39], as an algebraic reformulation of the Chekhov-Eynard-Orantin (CEO)

topological recursion initiated in [22] and [23] in order to study the large N

expansion of matrix models.

Our primary goal is to engineer new examples of Airy structures taking

inspiration from the representation theory of vertex operator algebras. In

particular, we construct a highest weight state of a W−N−1/2(sp2N)-algebra

module as a partition function of an Airy structure, following the approach

developed in [9]. We do this with the help of an orbifold construction from

symplectic fermions that was developed in [18]. Our second key result is the

construction of certain Ishibashi boundary states related to affine vertex al-

gebra modules from partition functions of Airy structures. We make use of

the Wakimoto free field realizations of affine Lie algebras for this purpose. A

novel aspect of both of these examples is that zero modes of the Heisenberg

algebra are realized as derivatives instead of variables, and hence the partition

functions are vectors that lie in infinite indecomposable extensions of Fock

modules of free field algebras.

On the other hand, we also give an alternate formulation of Airy structures

as left ideals of ℏ-adic completions of Rees Weyl algebras. In particular, we

obtain a different proof of the existence and uniqueness of partition functions

of Airy structures by realizing ‘Airy ideals’ as homomorphic images of canoni-
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cal left ideals generated by derivatives obtained via certain automorphisms of

the Rees Weyl algebra called ‘transvections’.

The thesis contains joint work done with V. Bouchard and T. Creutzig.
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Preface

All the chapters in this thesis is joint work with Vincent Bouchard and Thomas

Creutzig. In particular, Chapter 4 and Chapter 5 has been submitted for

publication. The reference [12] is a preprint of this article and is available

online at:

https://arxiv.org/abs/2207.04336

The versions of Chapter 4 and Chapter 5 printed here are almost identical

to [12] with the exception of Section 4.I which is not present in the preprint.
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Chapter 1

Introduction

One of the biggest success of 20th century physics and mathematics is probably

quantum field theory (QFT): a mathematical framework to describe much of

the natural physical world from the microscopic to cosmological scales. While,

the Lagrangian approach to QFT offers a powerful and simple way to describe

physical observable and permits a perturbative analysis in powers of the re-

duced Planck’s constant ℏ for a large class of models, it is not sufficient to

explain all phenomena. Non-perturbative effects such as instantons and elec-

tric charge confinement emerge through elegant explanations using abstract

purely mathematical objects.

In fact, interactions between mathematics and physics have always been

fruitful and mathematical symmetry as a guiding principle to discover new

physical laws has lead to discoveries such as Maxwell’s laws of electromag-

netism and Einstein’s theory of relativity. However starting in the 1980s, the

discovery of string theory as an attempt to quantize 4d gravity lead to an

unprecedented flurry of new ideas in diverse fields of pure mathematics such
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as algebraic geometry and topology, representation theory, and modular forms.

One such example is the link between 2d quantum gravity and intersection

theory on the compactified moduli space of Riemann surfaces Mg,n . Two

models of 2d quantum gravity were proposed by physicists - the first one is

described by the hermitian matrix model and computes an enumeration of

triangulations on Riemann surfaces, and the second model that of ‘topologi-

cal gravity’ has a cohomological description as an intersection theory on the

compactified moduli space of complex curves. In [44], Witten conjectured

the equivalence of two models of 2d quantum gravity. Kontsevich proved this

conjecture by expressing these intersection numbers in terms of a ‘partition

function’ of a different matrix model. Such functions are governed by an infi-

nite set of differential equations called the KdV equations or equivalently by

Virasoro constraints. Such exchanges between physics and mathematics con-

tinue to be very fruitful and can be considered a whole new discpline by itself.

Another set of examples are QFTs in two dimensions with conformal sym-

metries i.e. conformal field theories (CFTs). These have played a crucial role

in enhancing our knowledge of the non-perturbative aspects of QFT and string

theory (with the two-dimensional space-time playing the role of a string world

sheet parameterizing the string evolution). A closely-related algebraic object,

the vertex operator algebra (VOA), can be thought of as the symmetry algebra

of a CFT. However, the notion of vertex operator algebras (VOAs) was first

introduced by Borcherds as the proper formulation for the moonshine module

construction for the Monster group. In addition its rich algebraic structure has

deepened our understanding of not only conformal field theory but also other
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purely algebraic fields such as representation theory of the affine Kac-Moody

algebras, and ribbon and tensory category theory. On the physics side, it has

applications to areas such as condensed matter physics, statistical physics and

superstring theory.

In a large number of cases, most of the information of a QFT can be

encoded in a single object called it’s partition function. While computing

partition functions could be a difficult task, sometimes they can be expressed

as large N limits of matrix models and can be computed quite explicitly.

The area now known as topological recursion was first proposed by Chekhov-

Eynard-Orantin (CEO) in [22] and [23] as a means to encode the mathemati-

cal structures of matrix models. The ‘conventional’ CEO topological recursion

produces a collection of meromorphic polydifferentials ωg,n on a spectral curve

Σ starting with the “initial data” ω0,1, ω0,2. However, it has also found many

other applications in enumerative geometry, integrable systems, quantization

problems, two-dimensional conformal field theory, and in knot theory (See [8]

for a partial reference list for related applications). The list of applications is

dauntingly vast, but one of the more impressive use-case of topological recur-

sion is in the field of topological string theory and mirror symmetry. In [14],

the authors compute recursively all the open and closed B-model amplitudes

in closed form, at all genus.

In [39], the authors proposed an algebraic reformulation of this approach

in terms of collections of differential operators called Airy structures. More

abstractly, Airy structures were constructed as graded deformation quantiza-

tion modules corresponding to a certain quadratic Lagrangian subvariety in
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an infinite-dimensional symplectic vector space. This thesis is primarily con-

cerned with deepening our understanding of Airy structures but from a fresh

point of view (inspired by the theory of VOAs) building on the work initiated

in [9] and [8].

The unexpected power of topological recursion and Airy structures to de-

scribe an almost inexhaustible list of mathematical objects as quite simple

recursive formulas is very attractive, and could be a powerful tool in under-

standing old geometric and quantum phenomena and also probe for new ones.

In this thesis, we strive to find new examples of collection of differential op-

erators that satisfy the properties to be an Airy structure. In particular we

obtain two quite surprising new examples - one from the field of W-algebras

of type C, and another from boundary conformal field theory. In the next

section, we give an overview of the organization of the thesis and also a quick

summary of the original results contained in this cases.

1.A Overview of the thesis

In chapter 2 we give a brief survey of basic results in the theory of VOAs and

in particular those relating to the representation theory of W-algebras.

In chapter 3, we begin by presenting the essential ideas behind CEO topo-

logical recursion, and a formulation of the notion of ‘Higher Airy structures’ as

originally presented in [9]. The goal of this chapter is to present the traditional

viewpoint of Airy structures. In rest of the thesis, we will actually present and

use a slightly different approach, that in terms of certain left ideals of the Rees
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Weyl algebra. This is the topic of Chapter 4.

Chapters 4 and 5 are contents of the preprint [12] and is joint work with

Vincent Bouchard and Thomas Creutzig. In Chapter 4, we propose an alter-

nate way of defining and understanding Airy structures, as ideals of ℏ-adic

completions of Rees Weyl algebras. The Rees construction (also used in alge-

braic geometry) is a general construction to convert ‘filtered’ rings and mod-

ules to ‘graded’ objects. The motivation to apply this construction is that

Z-grading on the Weyl algebra used in [9] appears more simply through pow-

ers of a parameter ℏ. We first reformulate the notion of Airy structures as

‘Airy ideals’, i.e. left ideals generated by certain collections of differential op-

erators in the ℏ-adic completion of the Rees Weyl algebra, which we denote

by ˆ︁Dℏ
A. We introduce automorphisms ϕ of ˆ︁Dℏ

A called as transvections and first

introduced in [7]. A transvection ϕ is essentially conjugation by an exponential

of a power series and acts on ˆ︁Dℏ
A as ϕ : (ℏ, ℏxa, ℏ∂a) ↦→ (ℏ, ℏxa, H̄a), for all

a ∈ A, with

H̄a = ℏ∂a +
∞∑︂
n=0

ℏn∂aq(n+1)(xA) (1.1)

for some polynomials q(n+1)(xA) of degree ≤ n+ 1. We say that it is stable if

q(1) = q(2) = 0. The main theorem of Chapter 4 is Theorem 4.E.3. It states

that given an Airy ideal I, there always exists a stable transvection ϕ such

that I is isomorphic to ϕ(Ican), where Ican is the left ideal generated by all the

derivatives ℏ∂xa . A consequence is that the quotient of the completed Rees

Weyl algebra by an Airy ideal I is canonically isomorphic to the completed

Rees polynomial module twisted by a ’transvection’ automorphism ϕ, which in

turn implies the existence of a unique exponential solution Z to the equations
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I · Z = 0 after imposing a suitable initial condition. This is precisely the

existence and uniqueness statement of partition functions of Airy structures,

first proved in [39] from a conceptually different point of view. In the latter

part of this chapter we explore how free field realizations of VOAs (such as the

Heisenberg) provide a way to construct Rees Weyl algebras through the univer-

sal enveloping algebra of modes. A novelty in this chapter is the construction

of Airy ideals in which zero modes act as derivatives, instead of multiplication

by a variable (which is usually the case). In this case, the partition function

has an interpretation as lying in an infinite length indecomposable extension

of the Fock module.

In Chapter 5, we present a new Airy ideal constructed from the W(sp2N)-

algebra at level −N − 1/2. Our starting point is the orbifold construction

of this W-algebra from symplectic fermions first proposed in [18]. We use

the boson-fermion correspondence to realize the generators in terms of N free

bosons. In the spirit of [9], we change to the diagonal basis and perform an

automorphism on the Rees Weyl algebra given by a pair of ‘dilaton shifts’.

The main result (Theorem 5.C.8) is the construction of an Airy ideal where

the collection of differential operators are actually infinite linear combination

of the generators of the underlying VOA in this case. Interestingly, it also

turns out that the partition function lies in an extension of a Fock module,

which could play a role in its geometric interpretation.

In Chapter 6, we introduce some concepts from boundary conformal field

theory, a fascinating area of physics which has found crucial applications in

areas such superstring theory and condensed matter physics! The main result
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of this chapter is a proof of the existence and uniqueness of Ishibashi states

in the ‘bulk Hilbert space’. Ishibashi states are states in the completion of

the Bulk Hilbert space that encode the data of certain ’gluing’ conditions on

the boundary of the Riemann surface, and can be used to compute correlation

functions in the boundary CFT in terms of objects in the bulk CFT. However

explicitly computing these is often very hard, and we propose that maybe Airy

ideals could be one way to make progress here.

Chapter 7 starts with a brief survey of the construction of free field realiza-

tions of modules of affine vertex algebras called Wakimoto modules in terms of

pairs of symplectic bosons and a Heisenberg VOA. Our original contribution to

this chapter appears in Section 7.E. In this section, we use tensor products of

Wakimoto modules with its dual to construct new Airy ideals. The partition

function of the Airy ideal can be understood as computing Ishibashi states in

a boundary CFT described by an infinite extension of Wakimoto modules.

Finally in Chapter 8, we conclude the thesis by giving the reader further

food for thought by presenting several interesting open problems, that have

emerged during our studies. During the writing of this thesis, we have discov-

ered several curious objects that have a very good chance to be of immense

interest in theoretical physics and geometry. Hence, we implore the reader to

pursue these directions.
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Chapter 2

Vertex operator algebras

We start by introducing some basic objects in the theory of vertex operator

algebras (VOAs). We then present an array of examples that will be essential

to the rest of the thesis. This is a very deep and technical subject, and a good

reference for the material in this chapter is [2].

2.A Preliminary background

Definition 2.A.1. A vertex algebra is a vector space V with a distinguished

vector 1 ∈ V (vacuum vector), together with a linear map,

Y (·, z) : V ↦→ End(V )[[z, z−1]] (2.1)

also known as the state-field correspondence. Thus we can write,

Y (a, z) =
∑︂
n∈Z

a(n)z
−n−1, a(n) ∈ End(V ) (2.2)
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where the RHS is a formal power series which involves only finitely many

negative powers of z when applied to any vector. The vacuum vector satisfies

the following properties,

a(−1)1 = 1(−1)a = a, a(n)1 = 0, n ≥ 0. (2.3)

The main axiom is the “Borcherds identity” satisfied by the modes,

∞∑︂
j=0

(−1)j
(︃
n

j

)︃(︁
am+n−j(b(k+j)c)− (−1)nb(k+n−j)(a(m+j)c)

)︁
(2.4)

=
∞∑︂
j=0

(︃
m

j

)︃
(a(n+j)b)(k+m−j)c

where a, b, c ∈ V . A vertex algebra V is said to be strongly generated by a

subset S ⊂ V if V is linearly spanned by the vacuum 1 and all elements of the

form,

a1,n1 . . . ar,nr1, where r ≥ 1, ai ∈ S, ni < 0. (2.5)

In addition, V is said to be freely generated if the above spanning set is a basis

for the underlying vector space V .

Remark 2.A.2. This definition can be easily generalized to its supersymmet-

ric analogue when we have a Z+ graded super vector space V . The crucial

difference being that (2.4) acquires extra negative signs depending on the par-

ity of the chosen elements.

An important subclass consist of the vertex operator algerbas (VOAs).

Definition 2.A.3. A vertex operator algebra (VOA) is a graded vertex alge-

bra V =
⨆︁

n∈Z Vn such that dimVn < ∞ and Vn = 0 for n sufficiently small
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and a distinguished vector ω ∈ V2 (conformal vector) satisfying the following

conditions,

[Ln, Lm] = (m− n)Lm+n +
1

12
(m3 −m)δm+n,0c (2.6)

for m,n ∈ Z and some constant c, where Ln are the modes of ω

Y (ω, z) =
∑︂
n∈Z

Lnz
−n−2 (2.7)

and,

L0v = nv := (wt v)v, for v ∈ Vn (2.8)

d

dz
Y (v, z) = Y (L−1v, z). (2.9)

In conformal field theory, a field a(z) is thought of as an operator associ-

ated to a fixed point z in the 2d complex plane. The limit of two operators

approaching each other is described by operator product expansions (OPEs).

The following is a consequence of the Borcherds identity (see [36] for further

details):

Lemma 2.A.4. Let V be a vertex algebra and a, b ∈ V . Then,

a(z)b(w) =
N−1∑︂
j=0

(︃
ιz,w

1

(z − w)j+1

)︃
cj(w)+ : a(z)b(w) : (2.10)

where cj(w) ∈ EndV [[w,w−1]], ιz,wR(z, w) is the power series expansion of a

rational function R(z, w) with poles only at z = 0, w = 0 and |z| = |w| in the

domain |z| > |w| and N ≥ 1 is an integer. Finally the colons : α(z) : denotes
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normal ordering, that is we put all annihilation operators αn for n > 0 to the

right of all creation operators αn for n < 0.

The singular part of (2.10) (called the OPE) encodes the brackets between

all the modes of the fields a(z) and b(z) and is sometimes denotes as follows,

a(z)b(w) ∼
N−1∑︂
j=0

cj(w)

(z − w)j+1
(2.11)

Definition 2.A.5. The VOA of symplectic bosons is generated by pairs of

even fields aα(z), a∗β(z) for α, β ∈ S of conformal dimension of 1 and 0 respec-

tively and satisfy the OPE,

aα(z)a∗β(w) ∼ δα,β
z − w

. (2.12)

Hence we have the commutation relations,

[aα,n, a
∗
β,m] = δα,βδn,−m1, [aα,n, aβ,m] = 0, [a∗α,n, a

∗
β,m] = 0 (2.13)

where α, β ∈ S lies in some index set S, n,m ∈ Z and 1 is a central element.

We define a representation of this VOA later in Chapter 7.

Definition 2.A.6. Another example of a free field algebra is the Heisenberg

algebra. Let a be a finite-dimensional linear space with a scalar product (·, ·)

with a choice of basis vi, i = 1, 2, . . . , N . The Heisenberg Lie algebra ˆ︁a has

generators bi,n, i = 1, 2, . . . , N, n ∈ Z and 1 with commutation relations,

[bi,n, bj,m] = n(vi, vj)δm+n,01, [1, bi,n] = 0. (2.14)
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Hence the OPE of the generating fields is given by,

bi(z)bj(w) ∼ (vi, vj)

(z − w)2
. (2.15)

The Fock representation πν
λ of ˆ︁a is a module freely generated by bi,n, i =

1, 2 . . . , N, n < 0 from a vector vλ defined by,

bi,nvλ = 0, n > 0; bi,0vλ = λ(vi)vλ, λ ∈ a∗ (2.16)

so that the zero modes bi(0) act like the character λ and the central element

1 acts as ν times the identity. In particular, the vacuum module πν
0 carries

a vertex algebra structure and this is precisely what’s called the Heisenberg

VOA.

In the following sections we are primarily concerned about twisted modules

of W-algebras. For every finite order automorphism σ of a vertex algebra V ,

we can construct a twisted V -module Mσ, such that when restricted to the

σ-invariant subalgebra V σ ⊂ V , Mσ becomes an untwisted module for V σ. A

module of a vertex algebra V is a vector space M with a linear map,

YM(·, z) : V ↦→ End (M)((z)) (2.17)

such that the Borcherds identity (2.4) holds for a, b ∈ V and c ∈ M . The

notion of a twisted-module is a generalization that allows non-integral powers

of z in the map Y (·, z).

Definition 2.A.7. Let σ be an automorphism of a VOA V of a finite order h

so that it preserves the vacuum and the conformal vector. A σ-twisted module
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M of V is a vector space with a linear map Y (·, z) : V ↦→ End(M)[[z−1/h, z1/h]]

such that,

Y (a, z) =
∑︂

n∈p+Z

a(n)z
−n−1, if σa = exp−2π

√
−1p a, p ∈ 1

h
Z (2.18)

where a(n) ∈ End(M). In other words, the monodromy around z = 0 is given

by the action of σ:

Y (σa, z) = Y (a, exp2π
√
−1 z), a = V. (2.19)

In addition the modes satisfy the same Borcherds identity stated in (2.4).

We briefly mention the idea of contragredient modules first introduced

in [28]. This will be used in Chapter 6 to construct objects in a boundary

conformal field theory. Let (M,Y ) be a module for a VOA V with grading,

M =
⨆︂
n∈Q

M(n) (2.20)

and let M ′ be the graded dual space,

M ′ =
⨆︂
n∈Q

M∗
(n). (2.21)

Let ⟨·, ·⟩ : M ′ × M ↦→ C denote the canonical pairing. The adjoint vertex

operator Y ′(v, z) ∈ End (M ′)[[z, z−1]] is defined by the condition,

⟨Y ′(v, z)m′,m⟩ = ⟨m′, Y (ezL1(−z2)L0v, z−1)m⟩ (2.22)

for v ∈ V,m′ ∈M ′,m ∈ W . The result that was proved in [28] is that (M ′, Y ′)

13



carries the structure of a V -module.

In the rest of the chapter we give further important examples of vertex

operator algebras (VOAs). In particular we discuss lattice VOAs associated to

integral lattices andW-algebras. Lattice VOAs were some of the first examples

of VOAs in math literature but more recently, lattice VOAs have also made an

appearance in relation to the fractional quantum hall effect such as in [16]. On

the other hand, W-algebras were introduced as non-linear extensions of the

Virasoro algebra by Alexander Zamolodchikov. We briefly review the different

constructions of W-algebras in 2.D.

2.B Lattice vertex algebras

We introduce the notion of a lattice vertex algebra associated to an integral

lattice Q of rank l. The interested reader can refer to [5] for a nice review

on this topic. We will follow their exposition closely in this section. Let

the bilinear form on Q be denoted by (·, ·) and we also use the same symbol

to denote its extension to the complexification h := C ⊗Z Q. We define a

bimultiplicative function

ϵ(α, α) = (−1)|α
2|(|α2+1|/2), α ∈ Q. (2.23)

The twisted group algebra Cϵ[Q] is spanned by {eα}α∈Q with the multiplication

rule,

eαeβ = ϵ(α, β)eα+β, α, β ∈ Q. (2.24)
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Let ĥ = h[t, t−1]⊕ CK be the Heisenberg current algebra defined by the com-

mutation relations

[htm, h′tn] = mδm,−n(h|h′)K, [htm,K] = 0, h, h′ ∈ h. (2.25)

It has a unique irreducible representation of level 1 (i.e., with K = 1) on the

Fock space S = S(h[t−1]t−1) such that h[t−1]t−1 acts by multiplication and

h[t]1 = 0. This representation extends to the space VQ = S ⊗ Cϵ[Q] by

(htm)(s⊗ eα) =
(︁
htm + δm,0(h|α)

)︁
s⊗ eα for m ≥ 0. (2.26)

The left multiplication

eγ(s⊗ eα) = ϵ(γ, α)s⊗ eα+γ (2.27)

gives rise to a representation in VQ of the Z2-graded associative algebra U(ĥ)⊗

Cϵ[Q]. This induces a Z2 grading on VQ given by the formula,

p(s⊗ eα) = |α|2 mod 2Z (2.28)

For α ∈ Q, the so-called vertex operator is given by,

Yα(z) = eα : exp

∫︂
α(z) :

≡ eαzα exp
(︂∑︂
n<0

(αtn)
z−n

−n

)︂
exp
(︂∑︂
n>0

(αtn)
z−n

−n

)︂. (2.29)

It’s parity is given by |α|2 mod 2Z. The vertex operator Yα(z) is a field on
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VQ, and it is local with respect to h(z) because

[h(z), Yα(w)] = (h|α)Yα(w)δ(z − w), h ∈ h, α ∈ Q. (2.30)

In addition it can be checked that the fields Yα(z) are local among themselves.

The vertex algebra structure on VQ is given by the following theorem:

Theorem 2.B.1. The fields Y (ht−1, z) = h(z) (h ∈ h), of parity 0, and

Y (eα, z) = Yα(z) (α ∈ Q), of parity p(eα) = |α|2 mod 2Z, generate a vertex

algebra structure on VQ = S ⊗ Cϵ[Q] with the vacuum vector 1 ⊗ 1 and the

operator T defined by

[T, htm] = −mhtm−1, T eα = (αt−1)eα, h ∈ h, α ∈ Q. (2.31)

This vertex algebra is conformal of central charge l := rankQ with the confor-

mal vector

ν =
1

2

l∑︂
i=1

(ait−1)(bit−1), (2.32)

where {ai}, {bi} are dual bases of h.

We now describe another fundamental example of VOAs, those constructed

from affine Lie algebras (also sometimes known as affine Kac-Moody algebras).

This is an important example due to its connections to classical Lie algebras,

and to the theory of W-algebras via the quantum Sokolov-Drinfeld reduction.

For further information on these objects relevant to this thesis, the reader can

refer to [8] and the references presented there. In the next two sections we

adopt and follow the notation and presentation of [8].
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2.C Affine vertex algebras

Let g be a simple basic complex Lie superalgebra and ⟨·, ·⟩ : g × g → C a

non-degenerate invariant bilinear form on g, ⟨·, ·⟩ normalized such that long

roots have norm 2. Let

ˆ︁g = g⊗C C[t±1]⊕ C.K⊕ C.d

be the affinization of g. Here K is central and d is a derivation. For x ∈ g,

denote x⊗ tn by xn. Then the commutation relations are

∀m,n ∈ Z, ∀x, y ∈ g, [xm, yn] = [x, y]m+n + δm+n,0mκ(x, y)K.

Let k ∈ C and ˆ︁gk be the Lie superalgebra obtained from ˆ︁g by setting K = k

for some constant k. Let ˆ︁g±k the subalgebras generated by the positive (resp.

negative) modes. The subalgebra of zero-modes is identified with g (ignoring

the derivation). The universal enveloping algebras of ˆ︁gk, ˆ︁g±k and ˆ︁g±k ⊕ g are

denoted by A,A±,A≥0,A≤0.

Let B be a basis of g. For k ∈ C, the universal affine vertex superalgebra

V k(g) of g at level k is generated by fields {Xx(z) =
∑︁
n∈Z

xnz
−n−1 | x ∈ g} with

OPE

Xx(z)Xy(w) ∼ kκ(x, y)

(z − w)2
+
X [x,y](w)

(z − w)

where the bilinear form is now chosen to be the (appropriately normalized)

Killing form, denoted by κ. In addition, the set {Xx | x ∈ B} strongly and

freely generates V k(g).
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As ˆ︁gk-modules we have V k(g) ∼= A⊗A≥0
C. |0⟩, i.e. it is the Verma module

induced from the trivial representation C. |0⟩ of A≥0. More generally if ρ is a

representation of g, then ρ induces an A≥0-module by letting A+ act trivially.

The Verma module of V k(g) with top level ρ is then

V k(ρ) = A⊗A≥0
ρ.

Let g = g−⊕ h⊕ g+ be as usual a triangular decomposition of g into a Cartan

subalgebra h and positive and negative part. A highest-weight vector v is an

eigenvector of h that is annihilated by g+. If ρ is an irreducible highest-weight

representation of g of highest weight λ, we write V k(λ) for V k(ρ). In this case

the conformal weight of the top level when k + h∨ ̸= 0 is given by

hλ =
(λ, λ+ 2ρ)

2(k + h∨)
,

with ρ the Weyl vector and h∨ the dual Coxeter number of g.

2.D W-algebras from the quantum Drinfeld-

Sokolov reduction

The theory of W-algebras can be approached from several directions. One

point of view is as follows: given a semisimple Lie algebra g with a chosen

nilpotent element e, the associated W-algebra is an associative algebra which

lies between the algebras U(g) and Z(g), in other words a subquotient of U(g).

This construction is the quantum analogue of the classical Drinfeld-Sokolov re-
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duction of Poisson varieties. For a nilpotent element e, let Oe := G · e denote

the the nilpotent orbit in the Lie group G := Lie(g). It has a natural trans-

verse slice called the Slodowy slice that can be expressed as the Hamiltonian

reduction of g∗ of a certain unipotent algebraic group. FinallyW-algebras can

be interpreted as the quantization of the ring of functions on the Slodowy slice.

The general algebraic construction of W-algebras is due to [37]. We sketch it

briefly in the special case of a semi-simple Lie algebra g.

Let (f, h, e) be an sl2-triple in g. Here the Cartan subalgebra element h

is normalized such that [h, e] = e and [h, f ] = −f . Then g is 1
2
Z-graded by

h-eigenvalues.

There exists a free field vertex superalgebra C(g, f) depending on g and

f and the zero-mode df of an odd field in C(g, f, k) = V k(g) ⊗ C(g, f), such

that (C(g, f, k), df ) is a complex whose homology is a vertex superalgebra, the

W-algebra of g at level k associated to f :

Wk(g, f) := H∗
(︁
C(g, f, k), df

)︁
.

The complex has a Z-grading described by the so-called ghost number. One

of the main results is that all homologies vanish except in degree zero. Secondly

they also prove that as graded vector space, Wk(g, f) ∼= V (gf ). Furthermore,

a set of strong and free generators is associated to a homogeneous basis {gn}

of the centralizer of f (denoted by gf ). The conformal weight of a generator

Jgn(z) corresponding to a homogeneous element gn(z) of h-eigenvalue n is 1−n.

The homology

M k(λ, f) = H∗
(︁
C(g, f)⊗ V k(λ), df

)︁
19



is a module forWk(g, f), and it is in fact a Verma module. Thus the quantum

reduction construction yields a functor from the category of ĝ-modules to

Wk(g, f) modules.

2.D.1 Principal W-algebras at the self-dual level

If f is principal nilpotent, then the W-algebras thus obtained are called prin-

cipal W-algebras. In this section we give further structural results when the

level is chosen to be the so called self-dual level, this appears to be special from

the point of view of representation theory and also enumerative geometry.

Let g be a semi-simple Lie algebra of type ADE. An important construc-

tion of principal W-algebras is given by the coset construction. Let us formu-

late this result precisely. Let Vk(g) be the universal affine vertex algebra asso-

ciated to g at level k, and denote by Lk(g) the unique simple graded quotient

of Vk(g). Suppose that k is an admissible level so that Lk(g) is an admissible

representation. Consider the tensor product vertex algebra Lk(g)⊗L1(g). We

define the commutant subalgebra of a sub-VOA U ⊂ V by,

Com(U, V ) := {a ∈ V |a(i)v = 0,∀v ∈ U, i ≥ 0}. (2.33)

Then in [3], the authors proved that

Wk(g) ∼= Com(V ℓ(g), V ℓ−1(g)⊗ L1(g))
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where k and ℓ are related by the formula

1

k + h∨
+

1

ℓ+ h∨
= 1,

with h∨ the dual Coxeter number of g. The large level limits, that is k → ∞

yields orbifolds. More precisely, we have

W−h∨+1(g) ∼= L1(g)G,

with G the compact Lie group whose Lie algebra is g. This implies that

W−h∨+1(g) is in fact a subalgebra of the Heisenberg subalgebra of L1(g). An-

other fascinating result for principal W-algebras of ADE type called Feigin-

Frenkel duality states that,

Wk(g) ∼=Wℓ(g)

where (k+h∨)(ℓ+h∨) = 1. Thus if ℓ = −h∨ +1 then ℓ is at the Feigin–Frenkel

self-dual level.

We denote by R and Q the set of roots and the root lattice respectively

of some simple Lie algebra g. Then the principal W-algebras at the self-dual

level can also be described as the intersection of the Fock space F ⊂ VQ and

the kernels of all screening operators

eα(0) = ReszY (eα, z) , α ∈ R .

From this point of view it’s clear that W-algebras are realized as subalgebras
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of a Heisenberg vertex algebra of the same rank as the corresponding Lie al-

gebra. The construction for the general level and arbitrary choice of nilpotent

element is carried out in [33].

In this thesis we will actually be interested inW-algebras not of ADE type.

In particular for type C, the universal principalW-algebra of type CN at level

−N − 1/2 is isomorphic to the orbifold of N -pairs of symplectic fermions, the

reason is that the coset Com(V k(sp2N), V k(osp1|2N)) is isomorphic toWℓ(sp2N)

for generic ℓ with ℓ and k realted via (ℓ + N + 1)−1 + (k + N + 1)−1 = 2 by

[20, Thm. 4.1]. The limit k → ∞ makes sense and in this limit the coset

becomes an orbifold of a free field algebra [19, Thm. 6.10] which in this case

is the Sp(2N)-orbifold A(N)Sp(2N) of N -pairs of symplectic fermions A(N).

This fact will be used in Chapter 5 to construct new Airy structures.

From the coset construction it is evident that the subgroup of G that re-

stricts to automorphisms of the Heisenberg subalgebra leaves the W-algebra

invariant. Thus twisted modules for the Heisenberg algebra restrict to un-

twisted W-modules.
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Chapter 3

Topological recursion and Airy

structures

In this chapter, we change our bearing towards enumerative geometry by in-

troducing the notions of ‘topological recursion’ and ‘Airy structures’, the de-

velopment in these fields have been motivated and influenced by a rich history

of interactions between physics and mathematics. The topological recursion

formalism was first developed by Eynard and Orantin in [22] as a means to en-

code the general underlying structure in the solution of various matrix models

such as Kontsevich’s matrix models. We first introduce Eynard and Orantin’s

formalism below.

3.A Topological recursion

The formalism of topological recursion takes as input a compact Riemann sur-

face and outputs some differential forms that are related to various enumera-

tive geometry invariants, some examples include (r-spin) intersection theory on
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the moduli space of curves, semi-simple cohomological field theories (CohFTs),

Gromov-Witten theory on toric Calabi-Yau threefolds and the (weighted) pro-

jective line, Hurwitz theory, random matrix theory and knot theory.

Definition 3.A.1. A spectral curve is a triple (Σ, x, y) where Σ is a Torelli 1

marked compact Riemann surface and x and y are meromorphic functions on

Σ, such that zeroes of dx do not coincide with the zeroes of dy. Hence they

must satisfy an irreducible polynomial equation P (x, y) = 0.

An example is the “Airy curve” defined by y2 = x in C2 and this is precisely

the curve connected to the Kontsevich matrix model. Another important

object is the Bergmann kernel.

Definition 3.A.2. The Bergmann kernel B(z1, z2) is the unique (after normal-

ization over the A-cycles) symmetric bilinear differential on Σ2 with a double

pole along the diagonal z1 = z2, with leading order term

B(z1, z2)→
dz1dz2

(z1 − z2)2
+ . . . (3.1)

In this section we will confine ourselves to spectral curves with simple ram-

ification. The generalization to higher ramification was done in [13] and looks

a bit more complicated. The essence of topological recursion (TR) is a recur-

sive structure that underlines the loop equations of matrix models. We get as

output an infinite set of symmetric meromorphic differentials ωg,n(p1, . . . , pn)

on Σn for g, n ∈ N.

Definition 3.A.3. Let (Σ, x, y) be a spectral curve with simple ramification,

and π : Σ ↦→ P1 a branched covering given by the meromorphic function x,

1A Torelli marked compact Riemann surface is a genus g Riemann surface with a choice
of symplectic basis of cycles (A1, . . . , Ag, B1, . . . , Bg) ∈ H1(Σ,Z).
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and R ⊂ Σ the set of ramification points of π. The initial data is given by,

ω0,1(p) := y(p)dx(p), ω0,2(p1, p2) := B(p1, p2) (3.2)

for P = {p1, . . . , pn} ∈ Σn. For n ≥ 0, g ≥ 0 and 2g − 2 + n ≥ 0, we uniquely

construct symmetric meromorphic differentials ωg,n on Σn with poles along R

via the formula,

ωg,n+1(p0;P ) =
∑︂
a∈R

Resp=a

(︃ ∫︁ p

α
B(·, p0)

ω0,1(p)− ω0,1(ιa(p))
Rg,n(p, ια(p);P )

)︃
, (3.3)

where α is an arbitrary base point on Σ and ια is the locally defined involution

around the branch point a. The symbol Rg,n encodes the recursive structure

and is defined as,

Rg,n(q1, q2;P ) := ωg−1,n+2(q1, q2;P )+
′∑︂

g1+g2=g
R1∪R2=P

ωg1,|R1|+1(q1;R1)ωg2,|R2|+1(q2;R2)

(3.4)

for g1, g2 ∈ N and the ′ denotes that we omit the cases (g1, r1) = (0, ϕ) and

(g2, r2) = (0, ϕ).

The topological recursion formalism (for arbitrary ramification) lets us

compute higher genus data for a large number of enumerative invariants such

as Gromov-witten invariants of toric CY threefolds, Hurwitz numbers, r-spin

numbers, Weyl-Petersson volumes starting from a choice of a spectral curve

and genus 0 data. We give below an example of non-simply ramified spectral

curves, that are relevant to the contents of this thesis. We do not treat this

point of view any further in this thesis, the interested reader can refer to [9]

and [8] for recent work in this area. Consider the family of spectral curves
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indexed by (r, s) with r ∈ Zr≥2 and s = {1, . . . , r + 1} for r = ±1 mod s and

parameterised by the equations,

x =
zr

r
, y = − 1

zr−s
. (3.5)

These curves are related to examples of Higher Airy structures constructed

in [9]. Higher Airy structures are an algebraic reformulation of topological

recursion. We will now discuss this in the next section. We abbreviate the

topological recursion of Eynard-Orantin discussed above as TR in the following

sections.

3.B Higher Airy structures

In [39], Kontsevich and Soibelman sought an algebraic description of the

Eynard-Orantin topological recursion, the initial data for which is a set of

atmost quadratic differential operators on a vector space V which gives as

ouput a formal series of function on V that are simultaenously annihilated

by these operators. When V is infinite dimensional we have convergence is-

sues that need to be examined by imposing filtrations or a topology on V .

We ignore these technicalities for now and will discuss them in the next sec-

tion. This was generalized to differential operators of order higher than just

quadratic order in [9] to ‘Higher Airy structures’. We will state some results

of this paper below as a starting point of our study. In Chapter 4 we present

an alternate approach to defining and studying Airy structures -as left ideals

of graded Rees Weyl algebras obtained as images of certain automorphisms

called ‘transvections’. However, we first present the conventional approach in
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existing literature for clarity and completeness.

Let E be an infinite-dimensional C-vector space indexed by a set A. Let

(ea)a∈A be a basis of E and let (xa)a∈A be the corresponding dual basis of

the dual space E∗ =
⨁︁

k>0C⟨xk⟩ indexed by the set E and ℏ be a formal

parameter. We make some essential definitions.

Definition 3.B.1. Let Dℏ
A
∼= C[[ℏ, (xa)a∈A, (ℏ∂xa)a∈A]] be a certain comple-

tion of the algebra of differential operators. We define an algebra grading by

assigning,

deg(xl) = deg(ℏ∂xl
) = 1, deg(ℏ) = 2. (3.6)

Remark 3.B.2. Firstly, we remark that the ℏ-parameter and grading will be

introduced in a different way in Chapter 4, and this new convention will be

used in rest of the thesis, hence the reader should be careful of not confusing

the two notations. We start here by making the more conventional definition

appearing in existing literature. The exact relation between the two conven-

tions is outlined in Remark 4.B.8. Secondly, we will define completions of the

Weyl Algebra mentioned above more precisely in the next chapter.

We reproduce the definition of a Higher Airy structure introduced in [9]:

Definition 3.B.3. A higher quantum Airy structure on E in the normal form

is a family of differential operators (Hk)k∈A of the form,

1.

Hk = ℏ∂xk
− Pk, (3.7)

where Pk ∈ Dℏ
A is a sum of terms of degree ≥ 2.
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2. Moreover, we require that the left Dℏ
A-ideal generated by the Hk’s forms

a graded Lie subalgebra i.e. there exists gk3k1,k2 ∈ D
ℏ such that,

[Hk1 , Hk2 ] = ℏ
∑︂
k3∈A

gk3k1,k2Hk3 . (3.8)

The properties in the above definition are chosen precisely so that the

following holds true.

Theorem 3.B.4. [39] Let E be a finite-dimensional vector space. Given a

higher Airy structure (Hk)k∈A in the normal form, the system of equations,

∀k ∈ A, Hk · Z = 0, (3.9)

has a unique solution of the form,

Z = exp

⎛⎜⎝ ∑︂
g≥0,n≥1

2g−2+n≥0

ℏg−1

n!
Fg,n

⎞⎟⎠ , Fg,n ∈ Symn(E∗). (3.10)

The formal power series Z is also referred to as the partition function of the

Airy structure.

Remark 3.B.5. The above theorem provides a recursive relation on the Fg,n

with initial data given by certain coefficients of the operators (Hi)i∈A. The

correspondence between the Fg,n’s computed from a higher Airy structure and

ωg,n’s of Eynard-Orantin topological can be understood as follows. Given a

spectral curve with ramification points in the set ri ∈ R, we can expand the

ωg,n’s around the ramification points in a local basis of meromorphic differ-

entials {ζki,ri}ki∈N,ri∈R, to get the scalars Fg,n as coefficients. Relevant results
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and proofs can be found in [9].

A large number of examples of higher Airy structures can be constructed

using free field realizations of modules of W-algebras. The partition functions

of these are known to be generating functions of enumerative geomety invari-

ants such as Gromov-Witten invariants, r-spin intersection numbers, Hurwitz

numbers etc and some of these can also be obtained as partition functions of

matrix models. We give below one such example.

Definition 3.B.6. Let {J−
2n}n∈Z and {J2n+1}n∈Z be generators of two Heisen-

berg algerbas respectively. Consider the set of operators {H2
k , H

3
k}k∈Z≥0

,

H2
k = J2k+1 −

1

2

(︄ ∑︂
a+b=k−1

: J−
2aJ

−
2b : + : J2a−1J2b+1 :

)︄
− ℏ

8
δk,1 (3.11)

H3
k = J−

2(k+1) + 2
∑︂

k1+k2=k−1

J2k1+1J
−
2k2
− 1

3

∑︂
a+b+k2=k−2

J−
2aJ

−
2bJ

−
2k2

(3.12)

+
∑︂

a+b+k2=k−1

J2a−1J2b+1J
−
2k2

+
ℏ
4
J−
2(k−2).

We identify negative indexed modes with variables, J−
−2n := x2n, J−2n+1 :=

x2n−1 for n > 0 and J0 := ℏ1/2q for some complex constant q. The operators

form an Airy structure acting on the vector space E :=
⨁︁

k C⟨xk⟩.

We remark on the connections toW-algebras, matrix models, and enumer-

ative geometry as promised. The interested reader can refer to [9] for further

details.

1. The operators {H2
k , H

3
k} form a representation of the W(sl3) algebra.

2. The partition function Z is that of the Kontsevich-Penner matrix model
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described by the integral,

Z =

∫︂
[dB] exp Tr

(︃
−B

3

3
+ ΛB + klogB

)︃
(3.13)

and the time variables,

tn = TrΛ−n/3 n ≥ 1 (3.14)

such that the time tn ∝ xn. The matrix of integration B is an M ×

M Hermitian matrix and the measure [dB] is the Lebesgue measure

given by the product of the Lebesgue measures of all real components

of the matrix B. It is assumed that its size M tends to infinity, and the

parameter of deformation k is completely independent of B.

3. The partition function annihilated by the Airy structure constraints gen-

erate certain intersection numbers on the moduli space of open Riemann

surfaces known as the extended open partition function,

τo = exp
(︁
ℏ2g+b−2qbF(g,b),n

)︁
. (3.15)

where F(g,b),n are intersection numbers of the open analogues of the ψ

classes on the moduli space of Riemann surfaces of genus g with n marked

points and b boundaries.

4. In [15], it was proved that τ0 satisfy the ”open KdV integrable hierarchy”.

It is an interesting problem to understand the relationship between different

enumerative invariants. For instance, the dualities between open and closed

string are central in physics. In [32], Gaiotto and Rastelli prove a correspon-
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dence between the Kontsevich matrix model and open string field theory. This

inspires the following problem.

Problem 3.B.7. Let Zc and Zo be the partition function of closed and open

intersection numbers respectively. These are known to be partition functions

of Airy structures coming from certain modules of W(gl2) and W(sl3) respec-

tively. Consider the embedding,

W(sl3) ↪→W(gl2)⊗W(gl1) ⊂ H3 (3.16)

where H3 is a twisted module of a rank 3 Heisenberg algebra. Is there an

operator A on H3 such that,

A(Zc) = Zo. (3.17)

We have some preliminary results with V. Bouchard and T. Creutzig to-

wards such a correpondence, but a definite proof has not been obtained yet.

However, this is not the topic of this thesis and we will not discuss it any

further.

Remark 3.B.8. Symmetry under the change of integration variables of the

matrix integral (3.13) yield an infinite set of differential equations satisfied by

Z, named the Schwinger-Dyson (SD) constraints of the matrix model. We have

explicitly checked that these SD constraints are indeed the same as the Airy

structures coming from twisted modules of the W(sl3) and W(sl4) algebras

after a re-scaling of the coordinates.

Remark 3.B.9. In [9], the authors construct Airy structures from certain

modules of W(g)-algebra for g = gln, so2n, en that is W-algebras of the A-D-
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E type. The general method can be summarized as follows: Let g be a Lie

algebra and σ an element of the Weyl group of g. Let W(g) be the principal

W-algerba of g at the self-dual level k = −h∨+1 (where h∨ is the dual Coxeter

number of g.

1. Construct a σ- twisted module of the Heisenberg vertex operator alge-

bra. The positive and negative modes of the generators {Jn}n∈Z can be

realized as the differential operators that act as derivatives and multipli-

cation by variables respectively on the space on formal series.

2. Upon restriction to W(g), we get an untwisted W(g)-module.

3. Pick a subset of modes generating a left ideal which is a graded Lie

subalgebra of the algebra of modes.

4. Conjugate these modes by an operator of the form exp(Js
sℏ ) for s > 0, to

bring them in the form of a higher quantum Airy structure.

The exposition in this section sweeps a lot of subtle nuances under the rug.

For starters, when considering Weyl algebra in an infinite number of variables

one quickly stumbles into issues of convergence of infinite sums. Hence one is

forced to define objects such as the Weyl algebra and formal power series more

precisely as completions of ‘finite variable’ objects. Secondly, the ℏ parameter

and the associated grading was introduced in an ad-hoc way, which could be a

bit puzzling. Finally, the insistence of (3.8) in the definition and its role in the

proof of existence and uniqueness of partition functions if a bit opaque. We

propose resolutions of these issues in the following chapter by a more technical

but precise presentation. In particular we resort to the ’Rees construction’

of algebraic geometry to introduce the parameter ℏ. More interestingly, we
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give an alternate definition of the notion of Airy structures as left ideals in

a completion of the Rees Weyl algebra (called ‘Airy ideals’) and obtain a

alternative proof of the uniqueness and existence of partition functions. As

explained in Chapter 1, the crux of the proof is the realization of Airy ideals

as images of canonical left ideals obtained by a family of automorphisms called

‘transvections’ . This is done with the goal of making the essential features in

the definition of Airy structures perhaps more transparent.
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Chapter 4

Airy ideals and transvections of

Rees algebras

In this chapter we propose a different point of view on the definition of Airy

structures, as explained in the introduction. Contents of this chapter are

almost identical to [12] except for section 4.I.

4.A Preliminaries

4.A.1 Cyclic modules and twisted modules

We first review basic concepts in the theory of modules that will be needed

later on. Let D be an associative algebra over C,1 and M a left D-module.

We write r ·m ∈M for the action of r ∈ D on m ∈M.

Definition 4.A.1. The annihilator of an element v ∈ M, which is denoted

1We could work over any field K of characteristic zero instead of C.
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by AnnD(v), is defined as

AnnD(v) = {P ∈ D | P · v = 0}. (4.1)

It is naturally a left ideal in D.

Definition 4.A.2. A left D-module M is cyclic if it is generated by a single

element v ∈M.

It is easy to show that a cyclic left D-module M generated by v ∈ M is

canonically isomorphic to D/AnnD(v).

We will also need the notion of a twisted module with respect to an auto-

morphism ϕ : D → D.

Definition 4.A.3. Let ϕ : D → D be an automorphism, and M a left D-

module. The twisted module Mϕ is given by the same vector space as M,

but with the new operation

r ·ϕ m = ϕ−1(r) ·m. (4.2)

It is easy to show that, ifM is a cyclic left D-module generated by v ∈M,

then the twisted module ϕM is also cyclic and generated by v. Furthermore,

the annihilator of v ∈ ϕM, which we denote by ϕAnnD(v) to avoid confusion

with the annihilator AnnD(v) of v in M, is:

ϕAnnD(v) = ϕ (AnnD(v)) . (4.3)

It then follows that ϕM is canonically isomorphic to D/ϕ (AnnD(v)).
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4.A.2 Filtrations, Rees algebras and Rees modules

We now review the Rees construction for filtered algebras and modules. We

write N for the set of non-negative integers, and N∗ for the set of positive

integers.

Definition 4.A.4. An exhaustive ascending filtration on D is an increasing

sequence of subspaces FiD ⊆ D, for i ∈ N:

{0} ⊆ F0D ⊆ F1D ⊆ F2D ⊆ . . . ⊆ D, (4.4)

such that ∪i∈NFiD = D and FiD ·FjD ⊆ Fi+jD for all i, j ∈ N. An algebra D

with such a filtration is called a filtered algebra.

Filtered modules are defined in a similar way.

Definition 4.A.5. Let M be a left D-module. An exhaustive ascending fil-

tration on M is given by an increasing sequence of subspace FiM ⊂ M for

i ∈ N:

{0} ⊆ F0M⊆ F1M⊆ F2M⊆ . . . ⊆M, (4.5)

such that ∪i∈NFiM = M and FiD · FjM ⊆ Fi+jM for all i, j ∈ N. A left

D-module M with such a filtration is called a filtered module.

From a filtered algebra, we can construct a graded algebra in a natural way:

this is the Rees construction. Note that this construction is different from the

standard associated graded algebra Gr(D) =
⨁︁∞

n=1 Gn with Gn = FnD/Fn−1D.

Definition 4.A.6. Given a filtered algebra D, we define the Rees algebra Dℏ

as:

Dℏ =
⨁︂
n∈N

ℏnFnD. (4.6)
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It is a graded algebra, graded by ℏ (with deg(ℏ) = 1). When needed, we write

Dℏ
n := ℏnFnD for the subspace of homomegeneous elements of degree n.

It will be very important for us to consider not only Rees algebras, but

also their completions with respect to the ℏ-adic topology.

Definition 4.A.7. We define the completed Rees algebra ˆ︁Dℏ as

ˆ︁Dℏ =
∏︂
n∈N

ℏnFnD, (4.7)

which is the completion with respect to the ℏ-adic topology. Explicitly, an

element P ∈ ˆ︁Dℏ can be written as a formal power series in ℏ:

P =
∞∑︂
n=0

ℏnPn, (4.8)

for some Pn ∈ FnD.

The same Rees construction can be applied to filtered modules.

Definition 4.A.8. Given a filtered D-module M, we define the Rees module

Mℏ as

Mℏ =
⨁︂
n∈N

ℏnFnM. (4.9)

It is a graded left Dℏ-module, and we write Mℏ
n = ℏnFnM for the subspace

of homogeneous elements. We define the completed Rees module ˆ︂Mℏ as

ˆ︂Mℏ =
∏︂
n∈N

ℏnFnM, (4.10)

which is the completion with respect to the ℏ-adic topology.
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4.B Rees Weyl algebra

We now apply the Rees construction to the Weyl algebra (in either a finite

or countably infinite number of variables). Generalization to infinite number

of variables requires us to define suitable completions. A brief survey of the

categorical notion of completions is undertaken in Appendix A and examples

related to the Weyl algebra are expounded on in B.

Let A be an index subset, either finite or countably infinite. We write

xA = {xa}a∈A for the set of variables xa with a ∈ A, and ∂A = {∂a}a∈A for the

set of partial derivatives ∂a with respect to the variables xa.

Definition 4.B.1. If A is a finite index set, we define the Weyl algebra DA =

C[xA]⟨∂A⟩ to be the algebra of differential operators over the polynomial ring

C[xA] in the variables xA. DA is the free associative algebra over C generated

by {xA, ∂A} modulo the commutation relations

[xa, xb] = 0, [∂a, ∂b] = 0, [∂a, xb] = δab, ∀a, b ∈ A. (4.11)

In the case where A is countably infinite, we define DA to be a particular

completion of the Weyl algebra C[xA]⟨∂A⟩.

Definition 4.B.2. If A is a countably infinite index set, we define the com-

pleted Weyl algebra DA to be the completion of the Weyl algebra C[xA]⟨∂A⟩

that contains potentially infinite sums in the derivatives, but with polynomial

coefficients. Elements of DA remain of finite order as differential operators.

(A more precise definition appears in Example (B.1) of Appendix (A))2

2This completion should not be confused with the ℏ-adic completion of Rees algebras
and modules discussed in the previous section.
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In other words, we can write an element P ∈ DA uniquely as

P =
M∑︂

m=0

∑︂
a1,...,am∈A

pa1···am(xA)∂a1 · · · ∂am , (4.12)

for some M ∈ N, where the pa1···am(xA) are polynomials in the variables xA.

If A is a countably infinite index set, we see that the sums over the indices ai

can be infinite, but the coefficients are always polynomial (they cannot include

infinite sums of monomials). For example, what this means is that an operator

like
∑︁

a∈A ∂a is in DA, while
∑︁

a∈A xa is not.

There is a natural exhaustive ascending filtration on DA called the filtra-

tion. To construct it, we give degree one to the variables xa and the partial

derivatives ∂a, and define the subspaces FiDA as containing all operators in

DA of degree ≤ i. More precisely:

Definition 4.B.3. The Bernstein filtration on DA is defined by

FiDA =

⎧⎪⎨⎪⎩
∑︂

m,k∈N
m+k=i

∑︂
a1,...,am∈A

p(k)a1···am(xA)∂a1 · · · ∂am

⎫⎪⎬⎪⎭ , (4.13)

where the p
(k)
a1···am(xA) are polynomials of degree ≤ k. Here, F0DA = C.

From the definition of DA and its Bernstein filtration, it is clear that

[FmDA, FnDA] ⊆ Fm+n−2DA. (4.14)

As in the previous section, we construct the Rees algebra associated to the

filtered algebra DA with the Bernstein filtration. (See also Example (B.2) in

the Appendix)
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Definition 4.B.4. The Rees Weyl algebra Dℏ
A associated to DA with the

Bernstein filtration is

Dℏ
A =

⨁︂
n∈N

ℏnFnDA, (4.15)

which is a graded algebra, graded by ℏ with deg(ℏ) = 1. We write Dℏ
A,n =

ℏnFnDA for homogeneous elements of degree n. We define its ℏ-adic comple-

tion, as in Definition 4.A.7:

ˆ︁Dℏ
A =

∏︂
n∈N

ℏnFnDA, (4.16)

From (4.14) we get that

[ ˆ︁Dℏ
A,m, ˆ︁Dℏ

A,n] ⊆ ℏ2 ˆ︁Dℏ
A,m+n−2. (4.17)

Remark 4.B.5. The Rees Weyl algebra Dℏ
A ⊂ ˆ︁Dℏ

A is the subalgebra consisting

of differential operators that are polynomials in ℏ. Note that we can also think

of the Rees Weyl algebra Dℏ
A as the free associative algebra over C generated

by {ℏ, ℏxA, ℏ∂A}, where ℏ is a central element, and the other generators satisfy

the commutation relations

[ℏxa, ℏxb] = 0, [ℏ∂a, ℏ∂b] = 0, [ℏ∂a, ℏxb] = ℏ2δab, ∀a, b ∈ A.

(4.18)

Example 4.B.6. To clarify the notation, an operator P ∈ ˆ︁Dℏ
A can be written

as

P =
∑︂
n∈N

ℏn
∑︂

m,k∈N
m+k=n

∑︂
a1,...,am∈A

p(n,k)a1···am(xA)∂a1 · · · ∂am , (4.19)

where the p
(n,k)
a1···am(xA) are polynomials of degree ≤ k.
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Because of the subtelties arising due to infinite sums when A is a countably

infinite index set, we need to define a particular property for collections of

operators in ˆ︁Dℏ
A, which we call boundedness (this condition is called “filtered

family of operators” in [10] – see Section 2.1.2).

Definition 4.B.7. Let I be a finite or countably infinite index set, and {Pi}i∈I

be a collection of operators Pi ∈ ˆ︁Dℏ
A of the form

Pi =
∑︂
n∈N

ℏn
∑︂

m,k∈N
m+k=n

∑︂
a1,...,am∈A

p
(n,k)
i;a1···am(xA)∂a1 · · · ∂am , (4.20)

We say that the collection of operators {Pi}i∈I is bounded if, for all fixed choice

of indices a1, . . . , am, n, and k, the polynomials p
(n,k)
i;a1···am(xA) vanish for all but

finitely many indices i ∈ I. We note that the condition is trivially satisfied if

I is a finite index set.

There is a fundamental reason why we consider bounded collection of dif-

ferential operators. In the following we will study left ideals I in ˆ︁Dℏ
A consisting

of all ˆ︁Dℏ
A-linear combinations of a collection of operators {Pi}i∈I ; that is, any

Q ∈ I can be written as

Q =
∑︂
i∈I

ciPi (4.21)

for some ci ∈ ˆ︁Dℏ
A . If I is a finite index set, this is the left ideal generated by the

collection of operators {Pi}i∈I . However, if I is a countably infinite index set,

we will want our ideal I to contain not only finite ˆ︁Dℏ
A-linear combinations of the

Pi, but also infinite ones.3 But if {Pi}i∈I is an arbitrary collection of operators,

3We will often abuse notation and still say that this ideal is “generated” by the Pi, even
though an ideal generated by a set only contains finite linear combination of the elements
in the set, regardless of whether the set is finite or countably infinite. For us, we always
include both finite and infinite linear combinations when the generating set is countably
infinite.
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infinite ˆ︁Dℏ
A-linear combinations of the Pi may give rise to divergent infinite

sums, or to operators whose coefficients are not polynomials in the variables

xA (they may contain infinite sums of monomials). However, if the collection

{Pi}i∈I is bounded, this cannot happen; in this case, it is straightforward to

show that infinite ˆ︁Dℏ
A-linear combinations of the Pi are always well defined

operators whose coefficients are polynomials in the variables xA (since they

are finite sums of polynomials), and therefore in ˆ︁Dℏ
A. This is the key reason

why we consider bounded collection of operators in ˆ︁Dℏ
A.

Remark 4.B.8. As mentioned in remark (3.B.2), for the readers familiar with

the literature on Airy structures, a word of caution is required at this stage.

Our ℏ differs from the usual ℏ in the literature on Airy structures. More pre-

cisely, as should become clear later, to connect the two approaches, one should

start with the traditional definition of Airy structures (for instance in [39, 9]),

rescale the variables as xi ↦→ ℏ1/2xi, and then redefine ℏ ↦→ ℏ2. With this

transformation, the grading defined in [39, 9] becomes the natural ℏ-grading

on the Rees algebra that we introduce here, with deg(ℏ) = 1.

We could also introduce ℏ as in the traditional literature on Airy structures

using the Rees construction. What we would need to do then is consider a

different filtration on the Weyl algebra, namely the “order filtration” instead

of the Bernstein filtration, which is defined by

FiDA =

{︄
i∑︂

m=0

∑︂
a1,...,am∈A

pa1···am(xA)∂a1 · · · ∂am

}︄
, (4.22)

where the polynomials pa1···am(xA) have arbitrary degree. In other words,

FiDA consists of differential operators of order at most i, but with polynomial
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coefficients of arbitrary degree (it corresponds to giving degree one to the

partial derivatives ∂a, but degree zero to the variables xa). We could then

define the corresponding Rees algebra; the result would be the standard ℏ-

dependent Weyl algebra considered in the literature on Airy structures.

Although the two approaches are ultimately equivalent, we find the intro-

duction of ℏ via the Bernstein filtration instead of the order filtration more

natural and transparent, as, among other things, it allows us to work with the

Rees polynomial module (i.e. we also introduce ℏ for a Dℏ
A-module via the

Rees construction), and we don’t need to deal with formal power series in the

variables xA, as will become clear later – we only need to consider the ℏ-adic

completions for the Weyl algebra and its polynomial module.

4.C Left ˆ︁Dℏ
A-modules

4.C.1 Polynomial DA-module

A natural left DA-module is the polynomial algebra MA = C[xA], where the

action is given by the standard action of differential operators on polynomials.

In the case where A is countably infinite, one should be a little bit careful here,

since our algebra DA is the completion of the Weyl algebra, which includes

potentially infinite sums over the derivatives. However, sinceMA is a polyno-

mial algebra, the action of differential operators in DA on polynomials always

collapses the infinite sums to finite sums, and so the action is well defined.4

4For instance, we need to be careful that we don’t encounter situations like the differ-
ential operator

∑︁
a∈A ∂a acting on

∑︁
b∈A xb, since

∑︁
a∈A ∂a

(︁∑︁
b∈B xb

)︁
=
∑︁

a∈A 1 which is
of course divergent. But, while

∑︁
a∈A ∂a is in DA,

∑︁
b∈A xb is not in MA since it is not

a polynomial. We never run into this kind of issues because all infinite sums collapse to
finite sums, since all elements ofMA are polynomials, even if we work with infinitely many
variables.
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The polynomial module MA is a cyclic left DA-module, generated by 1 ∈

MA. Moreover, the annihilator of 1 is

AnnDA
(1) =

{︄∑︂
a∈A

ca∂a | ca ∈ DA

}︄
, (4.23)

which is the left ideal consisting of DA-linear combinations of the derivatives.

It is clear that MA is canonically isomorphic to DA/AnnDA
(1).

4.C.2 Rees polynomial ˆ︁Dℏ
A-module

Let us now apply the Rees construction to the polynomial DA-module. We can

define many filtrations on the polynomial algebraMA that are compatible with

the Bernstein filtration on DA. We will use the following standard filtration.

Definition 4.C.1. We define the degree filtration on MA as:

FiMA = {polynomials of degree ≤ i}. (4.24)

It is easy to check that MA with this filtration is a filtered DA-module.

We then apply the Rees construction for filtered modules.

Definition 4.C.2. We define the Rees polynomial module associated to the

degree filtration and its ℏ-adic completion:

Mℏ
A =

⨁︂
n∈N

ℏnFnMA, ˆ︂Mℏ
A =

∏︂
n∈N

ℏnFnMA. (4.25)

Both are graded left Dℏ
A-modules, and the completed module ˆ︂Mℏ

A is also a leftˆ︁Dℏ
A-module.
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Example 4.C.3. To clarify the notation, an element f ∈ ˆ︂Mℏ
A is a formal

ℏ-power series

f =
∞∑︂
n=0

ℏnf (n)(xA) (4.26)

where the f (n)(xA) are polynomials in the variables xA of degree ≤ n.

In the following we will mostly be interested in the completed module ˆ︂Mℏ
A,

realized as a left ˆ︁Dℏ
A-module. It is easy to show that it is a cyclic module,

generated by 1 ∈ ˆ︂Mℏ
A. The annihilator of 1 is:

Ann ˆ︁Dℏ
A

(1) =

{︄∑︂
a∈A

caℏ∂a | ca ∈ ˆ︁Dℏ
A

}︄
=: Ican, (4.27)

which is the left ideal consisting of ˆ︁Dℏ
A-linear combinations of the derivatives

ℏ∂a. As we will refer to this canonical left ideal many times in the following,

we introduce the shorthand notation Ican. ˆ︂Mℏ
A is canonically isomorphic toˆ︁Dℏ

A/Ican, which is easy to see.

Since we are working with the Weyl algebra, we can also think of this as

solving differential equations. The statement above is that Z = 1 ∈ ˆ︂Mℏ
A is

a solution to the differential equations Ican · Z = 0. That is, ℏ∂a(1) = 0 for

all a ∈ A, which is obvious. In fact, it is the unique solution to the system

Ican ·Z = 0 if we impose the initial condition Z
⃓⃓
xA=0

= 1. We call this unique

solution Z = 1 the partition function associated to the left ideal Ican.

4.C.3 ˆ︁Dℏ
A-modules of exponential type

As explained above, the completed Rees polynomial ˆ︁Dℏ
A-module ˆ︂Mℏ

A is cyclic

and generated by 1. In the following we will consider a more general class ofˆ︁Dℏ
A-modules, which we call “of exponential type”.
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Definition 4.C.4. Let

Z = exp

(︄
∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
(4.28)

for some polynomials q(n+1)(xA) of degree ≤ n+ 1. We define ˆ︂Mℏ
AZ to be the

cyclic left ˆ︁Dℏ
A-module generated by Z, where the action of ˆ︁Dℏ

A on ˆ︂Mℏ
AZ is the

standard action of differential operators on polynomials and exponentials of

polynomials. It is clear that it is a well defined ˆ︁Dℏ
A-module, because of the de-

gree condition on the polynomials q(n+1). We call such modules of exponential

type.5

Note that given a ˆ︁Dℏ
A-module of exponential type, we can always uniquely

choose the generator Z to satisfy the property that Z
⃓⃓
xA=0

= 1, i.e. q(n+1)(0) =

0.

4.D Transvections, twisted ˆ︁Dℏ
A-modules, andˆ︁Dℏ

A-modules of exponential type

4.D.1 Transvections

We now define an important class of automorphisms of ˆ︁Dℏ
A, which we call

“transvections”.6 Those will play a key role in the story of Airy ideals.

5We note here that the argument of the exponential is not in ˆ︂Mℏ
A, since the degree of the

polynomials is two more than the power of ℏ. But this is fine, as after acting with differential
operators on Z using the standard action of differential operators, we get polynomials inˆ︂Mℏ

A times Z, as stated.
6The name “transvection” comes from Section 4 of [7], suitably generalized to completed

Rees Weyl algebras.
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Definition 4.D.1. Define the map ϕ that acts on ˆ︁Dℏ
A as ϕ : (ℏ, ℏxa, ℏ∂a) ↦→

(ℏ, ℏxa, H̄a), for all a ∈ A, with

H̄a = ℏ∂a +
∞∑︂
n=0

ℏn∂aq(n+1)(xA) (4.29)

for some polynomials q(n+1)(xA) of degree ≤ n + 1. We call ϕ a transvection.

We say that it is stable if q(1) = q(2) = 0.

Remark 4.D.2. We note here that ∂aq
(n+1)(xA) in (4.29) means the derivative

of the polynomial q(n+1)(xA) with respect to the variable xa, not the product

of ∂a and q(n+1)(xA) in the Weyl algebra. Equivalently, we could write H̄a as

H̄a = ℏ∂a +
∞∑︂
n=0

ℏn[∂a, q
(n+1)(xA)], (4.30)

where on the right-hand-side we now mean the commutator with respect to

the product in the Weyl algebra.

Lemma 4.D.3. ϕ is an automorphism of ˆ︁Dℏ
A.

Proof. For any P ∈ ˆ︁Dℏ
A, it is clear that ϕ(P ) ∈ ˆ︁Dℏ

A. Furthermore, the map ϕ

preserves the commutation relations between the generators of the Rees Weyl

algebra, since [H̄a, ℏxb] = ℏ2δab and

[H̄a, H̄b] =

[︄
ℏ∂a +

∞∑︂
n=0

ℏn∂aq(n+1)(xA), ℏ∂b +
∞∑︂
n=0

ℏn∂bq(n+1)(xA)

]︄

=
∞∑︂
n=0

ℏn+1
(︁
∂a∂bq

(n+1)(xA)− ∂b∂aq(n+1)(xA)
)︁

=0.

(4.31)
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We can think of transvections as conjugations. Indeed, for any P ∈ ˆ︁Dℏ
A,

we can think of ϕ(P ) as being given by

ϕ(P ) = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
P exp

(︄
∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
, (4.32)

where multiplication here is understood as multiplication in the Rees Weyl

algebra (after formally expanding the exponentials). Using standard properties

of derivatives of exponentials, it is clear that this is equivalent to the map

specified above.7

4.D.2 Twisted polynomial ˆ︁Dℏ
A-modules

Now consider the Rees polynomial ˆ︁Dℏ
A-module ˆ︂Mℏ

A. Given a transvection

ϕ : ˆ︁Dℏ
A → ˆ︁Dℏ

A, we can construct a twisted left ˆ︁Dℏ
A-module

ϕˆ︂Mℏ
A. Thinking of

the transvection as a conjugation, the action on the twisted module is given

by

P ·ϕ v =ϕ−1(P ) · v

= exp

(︄
∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
P exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
· v. (4.33)

Since ˆ︂Mℏ
A is a cyclic ˆ︁Dℏ

A-module generated by 1, we know that the twisted

module
ϕˆ︂Mℏ

A is also cyclic and generated by 1.

Furthermore, the annihilator of 1 in the twisted module is

ϕAnn ˆ︁Dℏ
A

(1) = ϕ
(︂

Ann ˆ︁Dℏ
A

(1)
)︂

= ϕ(Ican), (4.34)

7As in footnote 5, we note here that the argument of the exponential is not in ˆ︂Mℏ
A, but

this is not a problem.
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where we used (4.27) for the annihilator of 1 in the polynomial module. In

other words, it is the image of the canonical left ideal generated by the deriva-

tives ℏ∂a under the automorphism ϕ. From the definition of transvections

(Definition 4.D.1), we obtain that

ϕAnn ˆ︁Dℏ
A

(1) = ϕ(Ican) =

{︄∑︂
a∈A

caH̄a | ca ∈ ˆ︁Dℏ
A

}︄
, (4.35)

with the H̄a defined in (4.29). If we denote this ideal by I, we conclude that

the twisted module
ϕˆ︂Mℏ

A is canonically isomorphic to ˆ︁Dℏ
A/I.

We can summarize these statements in the following Lemma.

Lemma 4.D.4. Let I ⊂ ˆ︁Dℏ
A be the left ideal I =

{︂∑︁
a∈A caH̄a | ca ∈ ˆ︁Dℏ

A

}︂
,

where

H̄a = ℏ∂a +
∞∑︂
n=0

ℏn∂aq(n+1)(xA) (4.36)

for some polynomials q(n+1)(xA) of degree ≤ n+ 1. Then ˆ︁Dℏ
A/I is a cyclic left

module canonically isomorphic to the twisted module
ϕˆ︂Mℏ

A, where ϕ : ˆ︁Dℏ
A →ˆ︁Dℏ

A is the transvection ϕ : (ℏ, ℏxa, ℏ∂a) ↦→ (ℏ, ℏxa, H̄a).

4.D.3 ˆ︁Dℏ
A-modules of exponential type

As usual, we can think of this result from the point of view of differential

equations. The left ideal I =
{︂∑︁

a∈A caH̄a | ca ∈ ˆ︁Dℏ
A

}︂
is the annihilator of

1 in the twisted module
ϕˆ︂Mℏ

A. In other words, Z ′ = 1 is a solution to the

equations I ·ϕ Z ′ = 0. In fact, as before, it is the unique solution if we impose

the initial condition Z ′
⃓⃓
xA=0

= 1.

However, from the viewpoint of differential equations, this is not so nice,

because the action of I on Z ′ here is the twisted action ·ϕ, not the standard
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action of differential operators. Fortunately, since ϕ is a transvection, we can

think of it as conjugation, and the action can be written as in (4.33). This

means that, instead of thinking of ˆ︁Dℏ
A/I as the cyclic twisted module

ϕˆ︂Mℏ
A,

we can think of it as the unique (untwisted) ˆ︁Dℏ
A-module of exponential typeˆ︂Mℏ

AZ generated by

Z = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
. (4.37)

Furthermore, imposing Z
⃓⃓
xA=0

= 1, we can uniquely choose the generator with

q(n+1)(0) = 0. I is of course the annihilator of Z.

In other words, what we have shown is that the Z in (4.37) with q(n+1)(0) =

0 is the unique exponential solution to the differential equations I · Z = 0

satisfying the initial condition Z
⃓⃓
xA=0

= 1. This is summarized in the following

lemma.

Lemma 4.D.5. Let I ⊂ ˆ︁Dℏ
A be the left ideal I =

{︂∑︁
a∈A caH̄a | ca ∈ ˆ︁Dℏ

A

}︂
,

where

H̄a = ℏ∂a +
∞∑︂
n=0

ℏn∂aq(n+1)(xA) (4.38)

for some polynomials q(n+1)(xA) of degree ≤ n+ 1. Then ˆ︁Dℏ
A/I is canonically

isomorphic to the module of exponential type ˆ︂Mℏ
AZ with

Z = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
. (4.39)

In other words, Z is a solution to the differential equations I · Z = 0, and if

we set q(n+1)(0) = 0, it is the unique solution satisfying the initial condition

Z
⃓⃓
xA=0

= 1. We call Z the partition function associated to the left ideal I.
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This is of course a rather trivial statement here as the differential equations

are straightforward to solve; it may look like we rewrote something very easy

in a very complicated way (but isn’t it part of the fun of doing mathematics?).

In any case, this result will play an important role in the following, which is

why we highlight it.

This can also be interpreted from the point of view of integrability. In

classical mechanics, we say that a classical system is “integrable” if there ex-

ists a complete set of Poisson commuting observables; in the quantum world

this becomes a complete set of commuting operators. Here, we consider a left

ideal I generated by a complete set of commuting first-order differential oper-

ators H̄a. Integrable systems are interesting because they can in principle be

solved; similarly, we found that there always exists a solution to the differen-

tial equations I · Z = 0, and it is unique after imposing an initial condition.

The fundamental reason here is because the H̄a are related to the ℏ∂a by an

automorphism of the completed Rees Weyl algebra (a transvection).

4.E Airy ideals, Airy modules, and partition

functions

In the previous section we saw that, given a transvection ϕ on ˆ︁Dℏ
A, we can

construct a twisted polynomial module
ϕˆ︂Mℏ

A, which is canonical isomorphic

to ˆ︁Dℏ
A/I where I is the ideal generated by a completed set of commuting

first-order differential operators of the form (4.29). From the point of view of

differential equations, we can instead think of ˆ︁Dℏ
A/I as a module of exponential

type ˆ︂Mℏ
AZ, with Z the unique exponential solution ((4.37)) to the differential
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equations I · Z = 0 after imposing a suitable initial condition.

This is nice, but in the end, at least from the point of view of differential

equations, this is rather trivial; after all, solving the system of equations H̄a ·

Z = 0 with H̄a of the form (4.29) is obvious, and it is clear that (4.37) is

the unique solution with Z
⃓⃓
xA=0

= 1. We do not need the fancy ideas of

transvections, twisted modules, and modules of exponential type to show this!

The power of the formalism however becomes apparent when we introduce

Airy ideals. The idea here is that we introduce a more general class of left

ideals I ⊂ ˆ︁Dℏ
A, which we call Airy ideals (traditionally called “Airy structures”

in the literature). Then, we show that if I is an Airy ideal, then it is equal

to the image of the canonical left ideal Ican generated by the derivatives ℏ∂a

for some stable transvection ϕ. This is rather striking, and far from obvious

a priori. As a result, Lemmas 4.D.4 and 4.D.5 apply; ˆ︁Dℏ
A/I is isomorphic to

a twisted polynomial module or a module of exponential type, depending on

the viewpoint. As a result, there exists a unique solution to the differential

equations I · Z = 0 after imposing a suitable initial condition.

We remark that it is absolutely key that we work in the ℏ-adic completion

of the Rees Weyl algebra here, since the transvection ϕ will generally involve

operators H̄a that are formal power series in ℏ. Working within the ℏ-adic

completion enables us to relate Airy ideals to twisted polynomial modules and

modules of exponential types.

4.E.1 Airy ideals

Let us now define the concept of an Airy ideal in ˆ︁Dℏ
A.

Definition 4.E.1. Let I ⊂ ˆ︁Dℏ
A be a left ideal. We say that it is an Airy ideal
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(also called Airy structure in the literature) if there exists operators Ha ∈ ˆ︁Dℏ
A,

for all a ∈ A, such that:

1. The collection of operators {Ha}a∈A is bounded (see Definition 4.B.7).

2. The left ideal I can be written as

I =

{︄∑︂
a∈A

caHa | ca ∈ ˆ︁Dℏ
A

}︄
, (4.40)

which consists as usual of finite and infinite (if A is countably infinite)ˆ︁Dℏ
A-linear combinations of the Ha.

3. The operators Ha take the form

Ha = ℏ∂a +O(ℏ2). (4.41)

4. The left ideal I satisfies the property:

[I, I] ⊆ ℏ2I. (4.42)

Remark 4.E.2. Before we move on, we remark that Condition (4) is non-

trivial. First, remark that, trivially, any left ideal I ⊆ ˆ︁Dℏ
A satisfies

[I, I] ⊆ I, (4.43)

since PQ−QP ∈ I for all P,Q ∈ I. Furthermore, from (4.17), any left ideal

I ⊆ ˆ︁Dℏ
A satisfies

[I, I] ⊆ ℏ2 ˆ︁Dℏ
A. (4.44)
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Combining the two statements, we conclude that the commutator of any two

elements in an arbitrary left ideal I is an element of the ideal I that starts at

O(ℏ2). However, this does not mean that it is equal to ℏ2 times an element of

the ideal I. That it must be so is the content of Condition (4).

As an example, let A = {1, 2}, and consider the left ideal I generated by

H1 = ℏ∂1 andH2 = ℏ∂2+ℏ2x1. The commutator ofH1 andH2 is [H1, H2] = ℏ3.

It is true that ℏ3 ∈ I, since

ℏ3 = ℏ∂1(ℏ∂2 + ℏ2x1)− (ℏ∂2 + ℏ2x1)(ℏ∂1). (4.45)

If we single out a power of ℏ2 on the right-hand-side of the commutator, it is

also true that ℏ ∈ ˆ︁Dℏ
A. However, ℏ /∈ I, as is easy to check. Thus this ideal

does not satisfy Condition (4).

4.E.2 Airy ideals, transvections and twisted modules

Since I ⊂ ˆ︁Dℏ
A is a left ideal, it is clear that ˆ︁Dℏ

A/I is a cyclic left ˆ︁Dℏ
A-module.

What is not clear however is how it relates to the Rees polynomial ˆ︁Dℏ
A-moduleˆ︂Mℏ

A. This connection is the fundamental theorem in the theory of Airy ideals.

Theorem 4.E.3. Let I ⊂ ˆ︁Dℏ
A be an Airy ideal. There there exists a stable

transvection ϕ : ˆ︁Dℏ
A → ˆ︁Dℏ

A (see Definition 4.D.1) such that I = ϕ(Ican), where

Ican is the left ideal generated by the derivatives ℏ∂a. As a result, ˆ︁Dℏ
A/I is

a cyclic left module canonically isomorphic to the twisted polynomial module

ϕˆ︂Mℏ
A.

This is a powerful theorem. What it means is that we can find a complete
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set of commuting first-order differential operators H̄a of the form

H̄a = ℏ∂a +
∞∑︂
n=2

ℏn∂aq(n+1)(xA), (4.46)

for some polynomials q(n+1)(xA) of degree ≤ n+ 1, such that the Airy ideal I

can be rewritten as

I =

{︄∑︂
a∈A

caH̄a | ca ∈ ˆ︁Dℏ
A

}︄
. (4.47)

This is highly non-trivial, as the original Airy ideal I will not usually be pre-

sented in this form.

To prove Theorem 4.E.3 we will first prove a series of lemmas. The first

three lemmas do not require Condition (4) in the definition of Airy ideals Defi-

nition 4.E.1. The fourth lemma highlights the crucial role played by Condition

(4).

Lemma 4.E.4. Let I ⊂ ˆ︁Dℏ
A be a left ideal satisfying conditions (1)–(3) of

Definition 4.E.1. Then for any P ∈ ˆ︁Dℏ
A, we can write

P =
∞∑︂
n=0

ℏnp(n)(xA) +Q (4.48)

for some polynomials p(n)(xA) of degree ≤ n and some Q ∈ I.

Proof. Let P ∈ ˆ︁Dℏ
A. We can write

P = p(0,0)+ℏ

(︄
p(1,1) +

∑︂
b∈A

p
(1,0)
b ∂b

)︄
+ℏ2

(︄
p(2,2) +

∑︂
b∈A

p
(2,1)
b ∂b +

∑︂
b,c∈A

p
(2,0)
bc ∂b∂c

)︄
+O(ℏ3),

(4.49)

where the p
(m,k)
··· are polynomials of degree ≤ k (we removed the dependence
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in xA for clarity).

The idea is simple. Since I is an Airy ideal, it is generated by a bounded

collection of operators {Ha}a∈A of the form Ha = ℏ∂a+O(ℏ2). So for each term

in P that is not polynomial, we can replace the right-most derivative ℏ∂a by

Ha, up to higher order terms in ℏ. Applying this procedure recursively order

by order in ℏ, we will end up rewriting P as a polynomial plus an operator

in the ideal I. We see here that it is key that we are working in the ℏ-adic

completion of the Rees Weyl algebra, otherwise we would not be allowed to

keep going order by order in ℏ forever.

More precisely, we start at O(ℏ). We use ℏ∂b = Hb +O(ℏ2) to rewrite

ℏ

(︄
p(1,1) +

∑︂
b∈A

p
(1,0)
b ∂b

)︄
= ℏp(1,1) +

∑︂
b∈A

p
(1,0)
b Hb +O(ℏ2). (4.50)

The first term is a polynomial term, and the second term is in I. The procedure

however created new terms at the next order, O(ℏ2), which we must study

further. If we write Ha as

Ha = ℏ∂a + ℏ2
(︄
g(2,2)a +

∑︂
b∈A

g
(2,1)
a;b ∂b +

∑︂
b,c∈A

g
(2,0)
a;bc ∂b∂c

)︄
+O(ℏ3), (4.51)

where the g
(2,i)
··· (xA) are polynomials of degree ≤ i, then the terms of O(ℏ2)

created by the procedure above take the form

− ℏ2
(︄∑︂

b∈A

p
(1,0)
b g

(2,2)
b +

∑︂
b,c∈A

p
(1,0)
b g

(2,1)
b;c ∂c +

∑︂
b,c,d∈A

p
(1,0)
b g

(2,0)
b;cd ∂c∂d

)︄
. (4.52)

When the index set A is countably infinite, we need to make sure that the

terms in brackets do not involve infinite divergent sums, and are all in F2DA
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(with respect to the Bernstein filtration, see Definition 4.B.3). We note that

because the collection of operators {Ha}a∈A is bounded, all polynomials g
(2,k)
a;···

vanish for all but finitely many a ∈ A. Therefore, the sums over b ∈ A

collapse to finite sums and are well defined. The remaining sums over c, d ∈ A

are potentially infinite, but they come with derivatives in these indices, and

hence all terms in brackets in (4.52) are in DA. Furthermore, looking at the

degree of the terms with respect to the Bernstein filtration, we see that they

are all in F2DA.

Now repeat the procedure for all terms at O(ℏ2), including the newly

obtained terms, keeping the polynomial terms and replacing the right-most

derivatives in the other terms by H’s up to terms of higher order in ℏ. The

result will be a polynomial term at O(ℏ2), plus a term that is in the ideal I,

plus corrections at higher order. The argument above shows that the correc-

tions are well defined. Then keep applying this procedure recursively, order

by order in ℏ. In the end, all that remains are polynomial terms plus terms in

the ideal I. That is, we conclude that we can write

P =
∞∑︂
n=0

ℏnp(n)(xA) +Q (4.53)

for some polynomials p(n)(xA) of degree ≤ n and some Q ∈ I. For instance,

p(0) = p(0,0), p(1) = p(1,1), p(2) = p(2,2) −
∑︂
b∈A

p
(1,0)
b g

(2,2)
b , (4.54)

and so on and so forth.

Lemma 4.E.5. Let I ⊂ ˆ︁Dℏ
A be a left ideal satisfying conditions (1)–(3) of

Definition 4.E.1. Then there exist operators H̄a ∈ I, for all a ∈ A, of the
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form

H̄a = ℏ∂a +
∞∑︂
n=2

ℏnp(n)a (xA) (4.55)

for polynomials p
(n)
a (xA) of degree ≤ n. Furthermore, the collection of opera-

tors {H̄a}a∈A is bounded.

Proof. We know that Ha = ℏ∂a+Pa for some Pa ∈ ˆ︁Dℏ
A of O(ℏ2). From Lemma

4.E.4, we can write

Ha = ℏ∂a +
∞∑︂
n=2

ℏnp(n)a (xA) +Qa (4.56)

for some polynomials p
(n)
a (xA) of degree ≤ n and some Qa ∈ I. We define

H̄a = Ha −Qa = ℏ∂a +
∞∑︂
n=2

ℏnp(n)a (xA). (4.57)

Clearly, H̄a ∈ I. Furthermore, since the collection {Ha}a∈A is bounded, the

polynomials p
(n)
a (xA) must vanish for all but finitely many a ∈ A, and hence

the collection {H̄a}a∈A is also bounded.

Lemma 4.E.6. Let I ⊂ ˆ︁Dℏ
A be a left ideal satisfying conditions (1)–(3) of

Definition 4.E.1, and Ī ⊆ I be the left ideal generated by the H̄a of Lemma

4.E.5. Then Ī = I.

In other words, we can think of I as being generated by the H̄a instead of

the Ha: I = {
∑︁

a∈A caH̄a | ca ∈ ˆ︁Dℏ
A}.

Proof. By definition, H̄a = Ha − Qa for some Qa ∈ I. We can write Qa =∑︁
b∈A pabHb for some pab ∈ ˆ︁Dℏ

A . In fact, from the proof of Lemma 4.E.5, we

know that pab = O(ℏ).
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We can write

H̄a = Ha −
∑︂
b∈A

pabHb (4.58)

But then, Hb = H̄b +Qb = H̄b +
∑︁

c∈A pbcHc, and thus we get

H̄a = Ha −
∑︂
b∈A

pabH̄b −
∑︂
b,c∈A

pabpbcHc. (4.59)

We note here that since both {Ha}a∈A and {H̄a}a∈A are bounded, the collection

{Qa}a∈A is also bounded, and hence the sum over b ∈ A in the third term on the

right-hand-side is well defined. Furthermore, since pab = O(ℏ), pabpbc = O(ℏ2).

Continuing this process recursively, we end up with the statement that

H̄a = Ha − Q̄a (4.60)

where Q̄a is an infinite sum of terms that are linear combinations of the H̄b with

coefficients starting at higher and higher order in ℏ. Thus, for a finite power

of ℏ, only a finite number of terms contribute, and the result is that Q̄a ∈ Ī.

It follows that Ha ∈ Ī, and hence I ⊆ Ī. We conclude that I = Ī.

So far we have not used at all Condition (4) in the definition of Airy ideals

Definition 4.E.1. This condition is crucial; imposing Condition (4) implies that

there are no non-zero polynomials in an Airy ideal I. In particular, it implies

that the operators H̄a commute with each other, which in turn implies the

existence of a stable transvection that relates I to the canonical left ideal Ican,

as we will see.

Lemma 4.E.7. Let I ⊂ ˆ︁Dℏ
A be an Airy ideal. Then there are no non-zero

polynomials in I.
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Proof. By Lemma 4.E.6, we think of I as I = {
∑︁

a∈A caH̄a | ca ∈ ˆ︁Dℏ
A}, with

H̄a of the form

H̄a = ℏ∂a +
∞∑︂
n=2

ℏnp(n)a (xA). (4.61)

We prove the Lemma by induction on the power of ℏ. Let N ≥ 2 be a

positive integer. The induction hypothesis is that all polynomials in I start

at least at O(ℏN). Then we show that it implies that they must start at least

at order O(ℏN+1). By induction on N , this means that all polynomials in I

must vanish.

The base case for the induction is obvious. We need to show that all

polynomials in I must start at least at O(ℏ2). But since I is generated by

H̄a of the form (4.61), it is clearly impossible to get a polynomial with a ℏ0

constant term or a ℏ1 linear term as a linear combination of H̄a’s.

Now assume that all polynomials in I start at least at O(ℏN). The com-

mutator of the H̄a is:

[H̄a, H̄b] =

[︄
ℏ∂a +

∞∑︂
n=2

ℏnp(n)a (xA), ℏ∂b +
∞∑︂
n=2

ℏnp(n)b (xA)

]︄

=ℏ2
∞∑︂
n=2

ℏn−1
(︂
∂ap

(n)
b (xA)− ∂bp(n)a (xA)

)︂
. (4.62)

By Condition (4) of Definition 4.E.1, we know that

∞∑︂
n=2

ℏn−1
(︂
∂ap

(n)
b (xA)− ∂bp(n)a (xA)

)︂
∈ I. (4.63)

By assumption, this must start at least at O(ℏN), so we must have that

∂ap
(n)
b (xA) = ∂bp

(n)
a (xA), for all a, b ∈ A and n = 2, . . . , N . (4.64)

60



Assuming first that A is a finite index set, by Poincare’s lemma we conclude

that there exists polynomials q(n+1)(xA) of degree ≤ n+ 1 such that

p(n)a (xA) = ∂aq
(n+1)(xA), for all a ∈ A and n = 2, . . . , N . (4.65)

Moreover, if we require that q(n+1)(0) = 0, then the polynomials are uniquely

fixed.

If A is a countably infinite index set, then Poincare’s lemma still holds,

but the q(n+1)(xA), which will still be of degree ≤ n+ 1, could a priori involve

infinite linear combinations of monomials of the same degree. However, since

the collection of operators {H̄a}a∈A is bounded, we know that for a fixed n,

the polynomials p
(n)
a (xA) vanish for all but finitely many a ∈ A. This means

that for each n the conditions (4.64) become a finite system in a finite numbers

of variables, and thus we conclude by Poincare’s lemma that the q(n+1)(xA)

will be polynomials.

As result, we conclude that we can write

H̄a = ℏ∂a +
N∑︂

n=2

ℏn∂aq(n+1)(xA) +
∞∑︂

n=N+1

ℏnpn(xA). (4.66)

Now let

ϕN : (ℏ, ℏxa, ℏ∂a) ↦→ (ℏ, ℏxa, ℏ∂a −
N∑︂

n=2

ℏn∂aq(n+1)(xA)). (4.67)

It is a stable transvection, and

ϕN(H̄a) = ℏ∂a +
∞∑︂

n=N+1

ℏnpn(xA). (4.68)
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Under this automorphism, the ideal I is mapped to the ideal ϕN(I) generated

by the ϕN(H̄a) above. Now suppose that P is a polynomial in I. By definition

of the transvection, ϕN(P ) = P , and thus P must also be in ϕN(I). But

looking at the form of the generators ϕN(H̄a) in (4.68), it is clear that any

polynomial in ϕN(I) must start at least at O(ℏN+1). Therefore, P must start

at least at O(ℏN+1), which completes the induction.

With these four lemmas under our belt, the proof of Theorem 4.E.3 is

straightforward.

Proof of Theorem 4.E.3. By Lemma 4.E.6, we can write I as I = {
∑︁

a∈A caH̄a | ca ∈ˆ︁Dℏ
A} for some operators H̄a ∈ I of the form

H̄a = ℏ∂a +
∞∑︂
n=2

ℏnp(n)a (xA), (4.69)

with the p
(n)
a (xA) polynomials of degree ≤ n. Since there are no non-zero

polynomials in I (Lemma 4.E.7), and that the commutator [H̄a, H̄b] ∈ I is a

polynomial, we must have

[H̄a, H̄b] = 0 for all a, b ∈ A. (4.70)

Using Poincare’s Lemma as in the proof of Lemma 4.E.7, we conclude that we

can rewrite the differential operators as

H̄a = ℏ∂a +
∞∑︂
n=2

ℏn∂aq(n+1)(xA), (4.71)

for polynomials q(n+1)(xA) of degree ≤ n+ 1 with q(n+1)(0) = 0. We have thus
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shown that I is the image of Ican =
{︂∑︁

a∈A caℏ∂a | ca ∈ ˆ︁Dℏ
A

}︂
under the stable

transvection ϕ : (ℏ, ℏxa, ℏ∂a) ↦→ (ℏ, ℏxa, H̄a). By Lemma 4.D.4, it follows thatˆ︁Dℏ
A/I is a cyclic left module canonically isomorphic to the twisted polynomial

module
ϕˆ︂Mℏ

A.

4.E.3 Partition function

As usual, we can reformulate Theorem 4.E.3 in the language of differential

equations. Lemma 4.D.5 directly implies the following corollary, which is the

existence and uniqueness theorem at the foundation of the theory of Airy ideals

(or Airy structures), first proved by Kontsevich and Soibelman in [39].

Corollary 4.E.8. Let I ⊂ ˆ︁Dℏ
A be an Airy ideal. Then there exists a unique

module of exponential type ˆ︂Mℏ
AZ that is canonically isomorphic to ˆ︁Dℏ

A/I. Fur-

thermore, if we impose the initial condition Z
⃓⃓
xA=0

= 1 on the generator, then

it is uniquely fixed and takes the form

Z = exp

⎛⎜⎜⎝ ∑︂
g∈ 1

2
N,n∈N∗

2g−2+n>0

ℏ2g−2+nFg,n(xA)

⎞⎟⎟⎠ (4.72)

for some polynomials Fg,n(xA) homogeneous of degree n with Fg,n(0) = 0.8 In

other words, Z is the unique solution to the differential equations I · Z = 0

satisfying the initial condition Z
⃓⃓
xA=0

= 1. We call Z the partition function

of the Airy ideal I.

8The use of homogeneous polynomials Fg,n(xA) of degree n instead of the polyno-
mials q(k+1)(xA) of degree ≤ k + 1 previously used in Lemma 4.D.5 is simply to con-
nect with the existing literature on the topic, but it is straightforward to show that
it is equivalent: the polynomials q(k+1)(xA) of degree ≤ k + 1 are reconstructed as
q(k+1)(xA) =

∑︁
g∈ 1

2N,n∈N∗

2g−1+n=k

Fg,n(xA).
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Equivalently, Z is the unique solution to the differential equationsHaZ = 0,

for all a ∈ A, where the Ha generated the Airy ideal I.

Remark 4.E.9. We note here that we could have proven existence and unique-

ness of the partition function directly from the definition of Airy ideals; the

proof is fairly straightforward, and goes by induction on ℏ. This is what is

done in [39] (see also [11]). However, our approach of relating Airy ideals to

transvections, twisted modules, and modules of exponential type may shed

light on what an Airy ideal really is, and why there always exists a unique

partition function annihilated by an Airy ideal.

4.E.4 Airy modules

Given an Airy ideal I ⊂ ˆ︁Dℏ
A, we have shown that ˆ︁Dℏ

A/I is a cyclic left module

canonically isomorphic to the twisted polynomial module
ϕˆ︂Mℏ

A. Turning this

around, we can define the notion of an Airy left ˆ︁Dℏ
A-module.

Definition 4.E.10. We say that a cyclic left ˆ︁Dℏ
A-module is Airy if it is gen-

erated by an element v whose annihilator Ann ˆ︁Dℏ
A

(v) is an Airy ideal.

It is easy to show that all modules of exponential type (see Definition 4.C.4)

are Airy modules.

Lemma 4.E.11. Let ˆ︂Mℏ
AZ be a left ˆ︁Dℏ

A-module of exponential type, with

generator

Z = exp

(︄
∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
(4.73)

for some polynomials q(n+1)(xA) of degree ≤ n + 1. Then ˆ︂Mℏ
AZ is an Airy

module.
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Proof. This is clear. As we have seen in Lemma 4.D.5, the module of expo-

nential type ˆ︂Mℏ
AZ is canonically isomorphic to ˆ︁Dℏ

A/I, where

I =

{︄∑︂
a∈A

caH̄a | ca ∈ ˆ︁Dℏ
A

}︄
, (4.74)

with

H̄a = ℏ∂a −
∞∑︂
n=0

ℏn∂aq(n+1)(xA). (4.75)

Since [H̄a, H̄b] = 0 for all a, b ∈ A, it is easy to show that I satisfies the four

conditions in the definition of Airy ideals (Definition 4.E.1).

Similarly, all twisted modules
ϕˆ︂Mℏ

A obtained from a transvection ϕ of the

completed Rees Weyl algebra are Airy modules.

Lemma 4.E.12. Let ϕ : ˆ︁Dℏ
A → ˆ︁Dℏ

A be a transvection, and
ϕˆ︂Mℏ

A the ϕ-twisted

polynomial module. Then
ϕˆ︂Mℏ

A is an Airy module.

Proof. Same argument as in the proof of the previous Lemma.

4.E.5 ℏ-polynomial and ℏ-finite Airy ideals

The existence of a partition function becomes particularly interesting when

the operators Ha live in the subalgebra Dℏ
A; that is, the Ha are polynomials

(instead of formal series) in ℏ. Even more interesting is when all Ha are

polynomials of degree less than a certain fixed positive integer N . We thus

formulate the following definition.

Definition 4.E.13. Let I ⊂ ˆ︁Dℏ
A be an Airy ideal. We say that it is ℏ-

polynomial if there exists Ha ∈ Dℏ
A for all a ∈ A (i.e., they are polynomials in
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ℏ) satisfying the conditions of Definition 4.E.1.

We say that I is ℏ-finite if it is ℏ-polynomial, and there exists a positive

integer N such that all Ha are polynomials in ℏ of degree ≤ N . We call the

smallest such N the ℏ-degree of I.

We also say that an Airy left ˆ︁Dℏ
A-module is ℏ-polynomial (resp. ℏ-finite)

if it is generated by an element v whose annihilator is ℏ-polynomial (resp.

ℏ-finite).

For example, an Airy ideal generated by a collection of operators {Ha}a∈N∗

that are polynomials of degree 2 in ℏ is ℏ-finite, and has ℏ-degree 2. However,

an Airy ideal generated by a collection of operators {Ha}a∈N∗ that are poly-

nomials of degree a in ℏ is ℏ-polynomial, but not ℏ-finite (as the ℏ-degree of

the Ha keeps increasing as a increases).

Why are ℏ-finite Airy ideals particularly interesting? We saw in Lemma

4.E.11 that all left ˆ︁Dℏ
A-modules of exponential type ˆ︂Mℏ

AZ are Airy modules.

In other words, any exponential of the form

Z = exp

⎛⎜⎜⎝ ∑︂
g∈ 1

2
N,n∈N∗

2g−2+n>0

ℏ2g−2+nFg,n(xA)

⎞⎟⎟⎠ (4.76)

is the partition function for some Airy ideal. Indeed, the Airy ideal is given

by

I =

{︄∑︂
a∈A

caH̄a | ca ∈ ˆ︁Dℏ
A

}︄
, (4.77)

with

H̄a = ℏ∂a −
∑︂

g∈ 1
2
N,n∈N∗

2g−2+n>0

ℏ2g−1+n∂aFg,n(xA). (4.78)
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This is a rather trivial statement.

But are all Z of the form (4.76) partition functions for Airy ideals that

are ℏ-finite? In other words, can we always rewrite the Airy ideal I above

as an ideal generated by operators Ha that are ℏ-polynomials of degree ≤ N

for some N? Equivalently, which partition functions of the form (4.76) satisfy

differential equations HaZ = 0 for ℏ-polynomial operators Ha of degree ≤ N

for some N that generate an Airy ideal?

This is a very interesting question. The existence of such operators Ha

implies a recursive structure for the polynomials Fg,n(xA), which is the foun-

dation of the story of topological recursion reformulated in the language of

Airy structures. See [39, 1, 9] for more on this recursive structure. Tradition-

ally, the usual topological recursion formula is obtained directly by applying

the differential operators Ha on the partition function Z, and setting the result

to 0. This gives a recursion for the polynomials Fg,n(xA) (or their coefficients)

if the operators Ha are ℏ-polynomials of degree ≤ N for some N . From our

point of view, this recursive structure is encapsulated in the recursive con-

struction of the commuting first-order operators H̄a from the Ha. When the

Ha are polynomials in ℏ, the infinite set of polynomials (order by order in ℏ) in

the operators H̄a will be constructed out of a finite set (in ℏ) of polynomials in

the Ha, and hence will satisfy some recursive structure determined by initial

conditions. The two recursions are of course equivalent, as is easy to show.

4.F Constructing Airy ideals

We are interested in constructing Airy ideals I ⊂ ˆ︁Dℏ
A, because as we saw in

Corollary 4.E.8 there exists a unique partition function Z such that I ·Z = 0.
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More often than not, what we will be interested in is the partition function Z,

which may be a generating series for some enumerative invariants. Conversely,

if the generating series for a particular set of enumerative invariants takes the

form of a partition function for a (ℏ-finite) Airy ideal, then what this means is

that it satisfies a set of differential constraints that uniquely fix the generating

series, such as Virasoro constraints, W-constraints, etc.

How can we construct Airy ideals? We need to construct a left ideal I ⊂ ˆ︁Dℏ
A

that satisfies the properties of Definition 4.E.1. So what we do is construct a

collection of differential operators {Ha}a∈A with Ha ∈ ˆ︁Dℏ
A. To show that the

left ideal generated by the Ha is an Airy ideal, what we need to show is:

1. The collection {Ha}a∈A is bounded;

2. Ha = ℏ∂a +O(ℏ2);

3. [Ha, Hb] = ℏ2
∑︁

c∈A fabcHc for some fabc ∈ ˆ︁Dℏ
A.

It is easy to show that the third condition is equivalent to requiring that

[I, I] ⊆ ℏ2I, Condition (4) in Definition 4.E.1.

Concretely, sometimes we may construct a collection of operators Ha ∈ ˆ︁Dℏ
A

that do not satisfy the condition Ha = ℏ∂a +O(ℏ2), but that satisfy the other

two conditions. Does that mean that they do not generate an Airy ideal?

Not necessarily. For instance, if I and A are two finite index sets of the same

length, then any two collections of differential operators {Gi}i∈I and {Ha}a∈A

related by an invertible C-linear transformation generate the same left ideal inˆ︁Dℏ
A. This can be generalized to the infinite context as follows (see Definition

2.3 in [10]).
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Lemma 4.F.1. Let I, A be either finite or countably infinite index sets. Let

{Hi}i∈I be a collection of operators Hi ∈ ˆ︁Dℏ
A such that:

1. The collection {Hi}i∈I is bounded;

2. [Hi, Hj] = ℏ2
∑︁

k∈I fijkHk for some fijk ∈ ˆ︁Dℏ
A;

3.

Hi =
∑︂
a∈A

Miaℏ∂a +O(ℏ2), (4.79)

where the Mia are complex numbers such that for all fixed a ∈ A, the

Mia vanish for all but finitely many i ∈ I.

4. There exists complex numbers Nbj, with b ∈ A and j ∈ I, such that for

all fixed j ∈ I, they vanish for all but finitely many b ∈ A, and

∑︂
i∈I

NbiMia = δab ∀a, b ∈ A and
∑︂
a∈A

MiaNaj = δij ∀i, j ∈ I.

(4.80)

Then the left ideal I = {
∑︁

i∈I ciHi | ci ∈ ˆ︁Dℏ
A} ⊂ ˆ︁Dℏ

A is an Airy ideal.

Moreover, I can also be written as I = {
∑︁

a∈A caH̃a | ca ∈ ˆ︁Dℏ
A}, where the

H̃a are defined by

H̃a =
∑︂
i∈I

NaiHi ∈ ˆ︁Dℏ
A, (4.81)

and satisfy H̃a = ℏ∂a +O(ℏ2).

Proof. First, we note that the conditions in (4.80) are well defined, since be-

cause of the constraints on the coefficients Nbj and Mia both sums collapse to

finite sums.

Now, by condition (2) it is clear that I satisfies condition (2) of Definition

4.E.1. Moreover, because of condition (1), it is clear that the H̃a are well
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defined operators in ˆ︁Dℏ
A. It is also clear from the properties of the complex

numbers Mia and Nbj that

H̃a =
∑︂
i∈I

NaiHi (4.82)

=
∑︂
i∈I

Nai

(︄∑︂
b∈A

Mibℏ∂b

)︄
+O(ℏ2) (4.83)

=
∑︂
b∈A

(︄∑︂
i∈I

NaiMib

)︄
ℏ∂b +O(ℏ2) (4.84)

=ℏ∂a +O(ℏ2), (4.85)

where in the third line we could exchange the order of the sums since the Mib

are such that for all fixed b ∈ A, they vanish for all but finitely many i ∈ I.

Therefore, to show that I is an Airy ideal, all that we have to show is that

the ideals I = {
∑︁

i∈I ciHi | ci ∈ ˆ︁Dℏ
A} and J = {

∑︁
a∈A caH̃a | ca ∈ ˆ︁Dℏ

A} are

the same.

First, we note that we can invert the relation between the H̃a and the Hi.

As H̃a =
∑︁

i∈I NaiHi, we have

∑︂
a∈A

MiaH̃a =
∑︂
a∈A

Mia

(︄∑︂
j∈I

NajHj

)︄
=
∑︂
j∈I

(︄∑︂
a∈A

MiaNaj

)︄
Hj = Hi, (4.86)

where we could exchange the order of the sums since the Naj are such that for

all fixed j ∈ I, they vanish for all but finitely many a ∈ A.

Now suppose that P ∈ I. Then we can write

P =
∑︂
i∈I

fiHi (4.87)
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for some fi ∈ ˆ︁Dℏ
A. But then

P =
∑︂
i∈I

fiHi =
∑︂
i∈I

fi

(︄∑︂
a∈A

MiaH̃a

)︄
=
∑︂
a∈A

(︄∑︂
i∈I

fiMia

)︄
H̃a. (4.88)

Since the Mia are such that for all fixed a ∈ A, they vanish for all but finitely

many i ∈ I, the sums
∑︁

i∈I fiMia are finite, and hence certainly produce well

defined operators in ˆ︁Dℏ
A. Therefore P ∈ J , and hence I ⊆ J .

Conversely, suppose that Q ∈ J . Then we can write

Q =
∑︂
a∈A

gaH̃a =
∑︂
a∈A

ga

(︄∑︂
i∈I

NaiHi

)︄
=
∑︂
i∈I

(︄∑︂
a∈A

gaNai

)︄
Hi, (4.89)

for some ga ∈ ˆ︁Dℏ
A. Again, since the Nai are such that for all fixed i ∈ I,

they vanish for all but finitely many a ∈ A, the sums
∑︁

a∈A gaNai are finite

and hence produce well defined operators in ˆ︁Dℏ
A. Therefore Q ∈ I, and hence

J ⊆ I. We conclude that I = J .

Remark 4.F.2. In [10], the authors define “Airy structures in normal form”

as being given by collections of differential operators (Ha)a∈A satisfying the

condition Ha = ℏ∂a + O(ℏ2), and “Airy structures” as being given by collec-

tions of differential operators related to Airy structures in normal forms by

transformations as in Lemma 4.F.1. From our point of view, since we define

an Airy structure (or rather an Airy ideal) as being the left ideal itself, we do

not need to make such a distinction.
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4.G Two special cases

We now look at two special cases of the construction, which will be necessary

to connect with the Heisenberg algebra in the next section.

Consider the Weyl algebra DA = C[xA]⟨∂A⟩. Let I ⊂ A be a subset of the

index set A, and let J = A \ I ⊂ A. There are two subalgebras that can be

constructed easily:

1. D(xJ , ∂A) := C[xJ ]⟨∂A⟩ ⊂ DA, which is the subalgebra of differential

operators whose coefficients do not depend on the variables xI ;

2. D(xA, ∂J) := C[xA]⟨∂J⟩ ⊂ DA, which is the subalgebra of differential

operators in which the derivatives ∂I do not appear.

It is clear that both of those are subalgebras of the Weyl algebra DA. In fact,

in the second case, we can think of the subalgebra D(xA, ∂J) as being the Weyl

algebra DJ but over the polynomial ring C[xA]. We will however not take this

point of view here, since we want the extra variables xI to be included in the

Bernstein filtration, so it makes perhaps more sense to view D(xA, ∂J) as a

subalgebra of DA.

The Bernstein filtration can be defined on the subalgebras as well, and we

can construct the Rees Weyl subalgebras Dℏ(xJ , ∂A) and Dℏ(xA, ∂J) and their

ℏ-adic completions ˆ︁Dℏ(xJ , ∂A) and ˆ︁Dℏ(xA, ∂J), which are subalgebras of ˆ︁Dℏ
A.

The construction of transvections, twisted modules, modules of exponential

types, and Airy ideals also goes through the subalgebras. Let us be a bit more

precise.
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4.G.1 The subalgebra ˆ︁Dℏ(xA, ∂J)

We consider differential operators in ˆ︁Dℏ
A whose coefficients are polynomials in

all the variables xA, but that only involve derivatives in ∂J . Then the Rees

polynomial algebra ˆ︂Mℏ
A is a left ˆ︁Dℏ(xA, ∂J)-module.

We highlight a few simple statements here, which follow from the construc-

tion of the previous sections:

1. Let

Ican(xA, ∂J) :=

{︄∑︂
j∈J

cjℏ∂j | cj ∈ ˆ︁Dℏ(xA, ∂J).

}︄
. (4.90)

Then Ican(xA, ∂J) is the annihilator of 1 ∈ ˆ︂Mℏ
A, and the Rees polynomial

module ˆ︂Mℏ
A is canonically isomorphic to ˆ︁Dℏ(xA, ∂J)/Ican(xA, ∂J).

2. We can define transvections as in Definition 4.D.1, with non-trivial action

only on the derivatives ℏ∂J , but with polynomials p
(n+1)
a = ∂aq

(n+1) that

depend on all variables xA. Those transvections are automorphisms of

the subalgebra ˆ︁Dℏ(xA, ∂J). Then, if we define the left ideal

I =

{︄∑︂
j∈J

cjH̄j | cj ∈ ˆ︁Dℏ(xA, ∂J)

}︄
(4.91)

with the H̄j defined as in Definition 4.D.1, it is clear that ˆ︁Dℏ(xA, ∂J)/I

is a cyclic left ˆ︁Dℏ(xA, ∂J)-module canonically isomorphic to the twisted

module
ϕˆ︂Mℏ

A.

3. We can also rephrase the statement in terms of modules of exponential

type. We get that ˆ︁Dℏ(xA, ∂J)/I is canonically isomorphic to the module
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of exponential type ˆ︂Mℏ
AZ with

Z = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(xA)

)︄
, (4.92)

where the q(n+1)(xJ) are degree ≤ n + 1 in the variables xA as usual.

In terms of differential equations, what this says is that Z is a solution

to the differential equations I · Z = 0. A subtelty arises however in the

uniqueness statement. Indeed, there are many choices of polynomials

q(n+1)(xA) that give rise to the same transvection, since the transvection

only involves the derivatives ∂jq
(n+1)(xA) with respect to the variables

∂j ∈ ∂J . In other words, any two q(n+1)(xA) that differ by a polynomial

p(n+1)(xI) in the variables xI give rise to the same transvection in the

subalgebra ˆ︁Dℏ(xA, ∂J). As a result, we can state the uniqueness result

as saying that there is a unique solution to the differential equation

I · Z = 0 with Z
⃓⃓
xJ=0

, which basically amounts to not only requiring

that the q(n+1)(0) = 0 but also that they do not depend at all on the

variables xI . Or, we could give up on uniqueness, and state that we can

construct families of solutions of the form (4.92) parametrized by the

variables xI . The unique solution above would then pick the origin of

this family.

As usual, we can define Airy ideals as in Definition 4.E.1, but requiring

that the ideal I ⊂ ˆ︁Dℏ(xA, ∂J). That is, we only have differential operators

Hj = ℏ∂j +O(ℏ2) for j ∈ J ⊂ A. Then everything goes through, and Theorem

4.E.3 holds. Corollary 4.E.8 also holds, with the caveat about uniqueness

mentioned in point (3) above.

More precisely, if I ⊂ ˆ︁Dℏ(xA, ∂J) is an Airy ideal, then ˆ︁Dℏ(xA, ∂J)/I is
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canonically isomorphic to the twisted module
ϕˆ︂Mℏ

A for some stable transvec-

tion ϕ of ˆ︁Dℏ(xA, ∂J), and also canonically isomorphic to a module of exponen-

tial type ˆ︂Mℏ
JZ with Z of the form of (4.92) with q(1)(xA) = q(2)(xA) = 0.

From the point of view of differential equations, we conclude that we can

construct families of solutions to the differential equations I ·Z, parametrized

by the extra variables xI , of the form

Z = exp

⎛⎜⎜⎝ ∑︂
g∈ 1

2
N,n∈N∗

2g−2+n>0

ℏ2g−2+nFg,n(xA)

⎞⎟⎟⎠ , (4.93)

for some polynomials Fg,n(xA) homogeneous of degree n with Fg,n(0) = 0.

We can also state that there is a unique such solution satisfying the initial

condition Z
⃓⃓
xJ=0

= 1, which amounts to imposing that the polynomials Fg,n

do not depend on the variables xI (this is the origin in the family of solutions

parametrized by the xI).

4.G.2 The subalgebra ˆ︁Dℏ(xJ , ∂A)

In this case, we consider differential operators in ˆ︁Dℏ
A whose coefficients are

polynomials but only in the variables xJ ⊂ xA. Let ˆ︂Mℏ
J be the ℏ-adic com-

pletion of the Rees polynomial module in the variables xJ . It is clearly a leftˆ︁Dℏ(xJ , ∂A)-module, where the derivatives ∂I act trivially.

1. Let

Ican(xJ , ∂A) :=

{︄∑︂
a∈A

caℏ∂a | ca ∈ ˆ︁Dℏ(xJ , ∂A).

}︄
. (4.94)

Then Ican(xJ , ∂A) is the annihilator of 1 ∈ ˆ︂Mℏ
J , and the Rees polynomial

module ˆ︂Mℏ
J is canonically isomorphic to ˆ︁Dℏ(xJ , ∂A)/Ican(xJ , ∂A).
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2. We can define transvections as in Definition 4.D.1, but with the poly-

nomials p
(n+1)
a = ∂aq

(n+1) depending only on the variables xJ . Those

transvections are automorphisms of the subalgebra ˆ︁Dℏ(xJ , ∂A). Then, if

we define the left ideal

I =

{︄∑︂
a∈A

caH̄a | ca ∈ ˆ︁Dℏ(xJ , ∂A)

}︄
(4.95)

with the H̄a defined as in Definition 4.D.1, it is clear that ˆ︁Dℏ(xJ , ∂A)/I

is a cyclic left ˆ︁Dℏ(xJ , ∂A)-module canonically isomorphic to the twisted

module
ϕˆ︂Mℏ

J .

3. We can also rephrase the statement in terms of modules of exponential

type as usual, but we need to be a little bit careful here. While the

polynomials p
(n+1)
a = ∂aq

(n+1) do not depend on the variables xI , this

does not mean that the polynomials q(n+1) do not depend on the xI .

What it means is that they can be written as

q(n+1)(xJ) + s(n+1)(xI) (4.96)

for linear polynomials s(n+1)(xI) in the variables xI . (Here we extend

the action of the differential operators on the module by the natural

action on the variables xI .) In other words, we get that ˆ︁Dℏ(xJ , ∂A)/I is

canonically isomorphic to the module of exponential type ˆ︂Mℏ
JZ with

Z = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(xJ)−
∞∑︂
n=0

ℏn−1s(n+1)(xI)

)︄
, (4.97)

where the q(n+1)(xJ) are degree ≤ n + 1 in the variables xJ as usual,
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but the s(n+1)(xI) are linear polynomials in the variables xI . In terms

of differential equations, what this says is that Z is a solution to the

differential equations I·Z = 0, and if we set q(n+1)(0) = 0 and s(n+1)(0) =

0, it is the unique solution satisfying Z
⃓⃓
xA=0

= 1.

Then, we can define Airy ideals as in Definition 4.E.1, but requiring that

the ideal I ⊂ ˆ︁Dℏ(xJ , ∂A). That is, the Ha are differential operators with

coefficients that do not depend on the xI . Then everything goes through, and

Theorem 4.E.3 holds, with the transvection ϕ being of the form above (i.e. not

involving the variables xI). Corollary 4.E.8 also holds, with the caveat that

the partition function takes the form (4.97).

More precisely, if I ⊂ ˆ︁Dℏ(xJ , ∂A) is an Airy ideal, then ˆ︁Dℏ(xJ , ∂A)/I is

canonically isomorphic to the twisted module
ϕˆ︂Mℏ

J for some stable transvec-

tion ϕ of the form above, and also canonically isomorphic to a module of

exponential type ˆ︂Mℏ
JZ with Z of the form of (4.97) with q(1)(xJ) = q(2)(xJ) =

s(1)(xI) = s(2)(xI) = 0. Using the standard notation in the literature on Airy

structures, we conclude that the unique exponential solution to the differential

equations I · Z with initial condition Z
⃓⃓
xA=0

takes the form

Z = exp

⎛⎜⎜⎝ ∑︂
g∈ 1

2
N,n∈N∗

2g−2+n>0

ℏ2g−2+nFg,n(xJ) +
∑︂

g∈ 1
2
N∗

ℏ2g−1Fg,1(xI)

⎞⎟⎟⎠ , (4.98)

for some polynomials Fg,n homogeneous of degree n in the respective variables,

with Fg,n(0) = 0.

To connect further with standard notation in the literature, it is customary
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to write down the following expansions for the homogeneous piolynomials Fg,n:

Fg,n(xJ) =
1

n!

∑︂
j1,...,jn∈J

Fg,n[j1, . . . , jn]xj1 · · ·xjn , (4.99)

where the Fg,n[j1, . . . , jn] ∈ C are coefficients symmetric under permutations

of the entries. What (5.107) says is that, if we were to define the coefficients

above for all entries aj ∈ A and write down a general partition function, then

the coefficients Fg,n[a1, . . . , an] would vanish whenever n ≥ 2 and at least one

of the entries is in I.

4.H Airy ideals and the Heisenberg algebra

The Weyl algebra is obviously closely connected to the universal enveloping

algebra of the Heisenberg algebra. Thus, not surprisingly, many Airy ideals

can be constructed from this vantage point. We now review this construction.

4.H.1 The Heisenberg algebra

Let h be the Heisenberg Lie algebra with basis {Jn}n∈Z ∪ {c} and Lie bracket

[Jm, Jn] = mδm,−nc, [Jm, c] = 0, ∀m,n ∈ Z. (4.100)

Abusing notation a little bit, we will write U(h) for the quotient of its universal

enveloping algebra by the ideal c = 1. It is the free associative algebra over C

generated by {Jm}m∈Z modulo the commutation relations

[Jm, Jn] = mδm,−n, ∀m,n ∈ Z. (4.101)
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It is the algebra of modes of the rank one free boson vertex operator algebra

(VOA), often denoted by π. For future use, we define U+(h) as being the

subalgebra generated by the positive modes, U≥0(h) as being the subalgebra

generated by the non-negative modes, U−(h) as being the subalgebra generated

by the negative modes, and U0(h) as being the subalgebra generated by the

zero mode.

Simple modules of the free boson VOA (or Heisenberg VOA) are Fock

modules πλ, parameterized by a complex weight label λ. They are generated

by a highest-weight state |λ⟩ satisfying

Jn|λ⟩ = 0 for n > 0, J0|λ⟩ = λ|λ⟩ (4.102)

and the negative modes act freely on the highest-weight state. In particular

as a vector space πλ coincides with the polynomial ring in the negative modes.

Not every module of the Heisenberg VOA is completely reducible and in fact

there are infinite length indecomposable modules constructed as follows. Con-

sider the polynomial ring C[y] in one variable. It becomes a module for the

abelian Lie algebra CJ0 generated by J0 under

ρλ : CJ0 → C[y], J0 ↦→
d

dy
+ λ. (4.103)

The module will be denoted by ρλ and it induces firstly to a module of the

non-negative modes by demanding that the positive modes act as zero and

then to a module πρλ of the free boson VOA by letting all negative modes act
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freely. In formulas, the induced module is

πρλ = Ind
U(h)
U≥0(h)

ρλ. (4.104)

πρλ has the Fock module πλ as submodule while the quotient is isomorphic to

πρλ itself, that is it satisfies the non-split exact sequence

0→ πλ → πρλ → πρλ → 0. (4.105)

As a vector space πρλ is isomorphic to the polynomial ring in the negative

modes together with the extra variable y on which the zero-mode acts as

d
dy

+ λ.

We also want to think of J0 as a variable. For this consider the represen-

tation of CJ0

κλ : CJ0 → C[y], J0 ↦→ y + λ (4.106)

and the induced module

πκλ
= Ind

U(h)
U≥0(h)

κλ. (4.107)

πκλ
has the Fock module πλ as homomorphic image (mapping y to zero) while

the kernel is isomorphic to πκλ
itself, that is it satisfies the non-split exact

sequence

0→ πκλ
→ πκλ

→ πλ → 0. (4.108)

As a vector space πκλ
is isomorphic to the polynomial ring in the negative

modes together with the extra variable y on which the zero-mode acts via

multiplication by y + λ. Both modules πρλ and πκλ
are naturally modules of

a slightly larger algebra that we will discuss now.
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4.H.2 Adding a conjugate zero-mode

U(h) is almost the Weyl algebra DN∗ under the identification

Jm = ∂m, J−m = mxm, m ∈ N∗, (4.109)

but not quite: the zero mode J0 is missing. The zero mode is central, as it

commutes with all other modes Jm. To take into account the zero mode J0, we

introduce a conjugate zero mode J̃0 that satisfies the commutation relationsz

[Jm, J̃0] = ±δm,0. (4.110)

The choice of sign here will be dictated by our interpretation of the zero mode

J0 and its conjugate J̃0. We then consider the free associative algebra over C

generated by the {Jm}m∈Z and J̃0, which is isomorphic to U(h)⊗CC[J̃0]. Now

we have two choices to map the resulting algebra to the Weyl algebra. We set

the parameters of the modules of the previous section to y = x0 and λ = 0.

(πκ0) The case πκ0 corresponds to a minus sign in (4.110), and, as opera-

tors on πκ0 , J0 = x0 is a variable, and J̃0 = ∂0 is a derivative. Via

the identification (4.109) we see that πκ0 is C[x0, x1, . . . ] the polynomial

ring in infinitely many variables including x0. Modes of fields of the

Heisenberg vertex algebra are infinite sums of monomials in the deriva-

tives, excluding ∂0, whose coefficients are polynomials, that is elements

of C[x0, x1, . . . ]. This means that πκ0 carries an action of DN and the

algebra of modes of the Heisenberg VOA is contained in the subalgebra

D(xN, ∂N∗) ⊂ DN (a special case of the type of subalgebras considered in

Section 4.G.1).
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(πρ0) The case πρ0 corresponds to a plus sign in (4.110), and J0 = ∂0 acts

as a derivative, and J̃0 = x0 as a variable. The module πρ0 then is

also intepreted as C[x0, x1, . . . ] and so it again carries an action of DN,

but this time the modes of fields of the Heisenberg vertex algebra are

infinite sums of monomials in the derivatives, including ∂0, but with

polynomial coefficients in C[x1, . . . ]. The conjugate zero-mode J̃0 = x0

doesn’t appear. This means the algebra of modes of the Heisenberg VOA

is now contained in the subalgebra D(xN∗ , ∂N) ⊂ DN (a special case of

the type of subalgebras considered in Section 4.G.2).

In both cases, we identify a completion of the universal enveloping algebra

U(h) with a subalgebra of the Weyl algebra DN. Note that as modules for DN

our two modules πκ0 and πρ0 are isomorphic and are highest-weight modules

generated by a highest-weight vector |x0⟩ on which all positive modes act as

zero and all non-negative ones act freely. Let us call this DN module M .

Finally, we introduce ℏ. In both cases, we implement the Rees construction

with respect to the filtration on U(h)⊗C C[J̃0] defined by

Fi

(︂
U(h)⊗C C[J̃0]

)︂
= {polynomials of degree ≤ i in the modes Jm, J̃0}.

(4.111)

This is of course mapped to the Bernstein filtration as required. We then

introduce ℏ via the Rees construction. Ultimately, the result is the free asso-

ciative algebra over C generated by ℏ, ℏJ̃0 and the {ℏJm}m∈Z modulo their

commutation relations, which is isomorphic to the Rees Weyl algebra Dℏ
N (see

Remark 4.B.5). Finally, we consider the ℏ-adic completion, which is mapped

to ˆ︁Dℏ
N.

As a result of all this, we have identified the ℏ-adic completion of the
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Rees universal enveloping algebra, which we denote by ˆ︁Uℏ(h), with either the

subalgebra ˆ︁Dℏ(xN, ∂N∗), or the subalgebra ˆ︁Dℏ(xN∗ , ∂N), depending on the choice

of intepretation for the central zero mode J0, i.e. the choice of module πκ0 or

πρ0 .

Because of this identification, all the results summarized in Section 4.G.1

and 4.G.2 apply. Let us summarize their meaning in the context of the Heisen-

berg algebra.

4.H.3 Identifying ˆ︁Uℏ(h) with ˆ︁Dℏ(xN, ∂N∗)

The three results highlighted in Section 4.G.1 then have the following inter-

pretation in the case of πκ0 , i.e. J0 = x0 is a variable:

1. Let Ican be the left ideal in ˆ︁Uℏ(h) generated by the positive modes Jm,

m ∈ N∗. Then ˆ︁Uℏ(h)/Ican is canonically isomorphic to the (ℏ-adic com-

pletion of the Rees) module M generated by |x0⟩, which is clear.

2. We define transvections as usual, they take the form ϕ : (ℏ, ℏJ−m, ℏJ0, ℏJm) ↦→

(ℏ, ℏJ−m, ℏJ0, H̄m), with

H̄m = ℏJm +
∞∑︂
n=0

ℏn[Jm, q
(n+1)(J0, J−1, J−2, . . .)], m ∈ N∗, (4.112)

where the q(n+1) are polynomials of degree ≤ n + 1 in the non-positive

modes. Then, if we define I to be the left ideal generated by the H̄m,ˆ︁Uℏ(h)/I is canonically isomorphic to the (ℏ-adic completion of the Rees)

module M twisted by the automorphism ϕ.

3. Rephrasing in terms of modules of exponential type, we get that ˆ︁Uℏ(h)/I

83



is canonically isomorphic to the module generated by the state

Z|x0⟩ = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(J0, J−1, J−2, . . .)

)︄
|x0⟩. (4.113)

This is of course a family of Fock modules πx0 , parametrized by the

choice of highest weight x0. There is a unique choice if we impose that

the highest weight is x0 = 0 (in other words, we set the zero mode J0 to

zero) and the polynomials satisfy q(n+1)(0) = 0.

The interesting statements however are for Airy ideals in ˆ︁Uℏ(h). To con-

struct an Airy ideal, we need to construct a collection of operators {Hj}j∈N∗

in ˆ︁Uℏ(h) of the form

Hj = ℏJj +O(ℏ2), (4.114)

and satisfying the properties of Definition 4.E.1. Such collections will nat-

urally arise, for instance, from the modes of the strong generators of some

algebras, such as W-algebras, which can be constructed as sub-VOAs of the

Heisenberg VOA. If we are given such an Airy ideal I, then we know thatˆ︁Uℏ(h)/I is canonically isomorphic to a twisted module as above for some sta-

ble transvection ϕ, and also canonically isomorphic to a module of exponential

type generated by a state as in (4.113) with q(1) = q(2) = 0.

In particular, since q(1) = q(2) = 0 the argument of the exponential starts

at O(ℏ), and expanding the exponential we can think of the state Z|x0⟩ as

living in the ℏ-adic completion of the Rees module M generated by |x0⟩.9

To summarize, given any Airy ideal, we showed that ˆ︁Uℏ(h)/I is canonically

9To be precise, we would need to define the Rees Fock module slightly more generally
here, since if we expand the exponential the polynomial coefficients will be 3 times the
ℏ-degree, but this can be done easily without complication.
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isomorphic to a cyclic left module generated by a state in the ℏ-adic completion

of the Rees Fock module.

This is particularly interesting if the modes Hj that generate the Airy ideal

actually are a subset of the modes (such as the positive modes) of the strong

generators of a sub-VOA, such as a W-algebra. In this case, what we have a

constructed is a state Z|x0⟩ in the ℏ-adic completion of the Rees Fock module

for ˆ︁Uℏ(h) that is annihilated by all the modes Hj in this subset. Considering

the action of the other modes of the sub-VOA on this state, we obtain a cyclic

module for this sub-VOA, which is generated by the state Z|x0⟩. Depending

on the subset of modes considered, this may be a highest weight module, or a

Whittaker module, for the sub-VOA [9, 8].

4.H.4 Identifying ˆ︁Uℏ(h) with ˆ︁Dℏ(xN∗, ∂N)

The three highlighted results have the following interpretation in the case of

πρ0 , i.e. J0 = ∂0 is a derivative:

1. Let Ican be the left ideal in ˆ︁Uℏ(h) generated by the non-negative modes

Jm, m ∈ N. Then ˆ︁Uℏ(h)/Ican is canonically isomorphic to the (ℏ-adic

completion of the Rees) ˆ︁Dℏ(xN∗ , ∂N) submodule of M generated by |x0⟩,

which is clear.

2. We define transvections as usual, they take the form ϕ : (ℏ, ℏJ−m, ℏJ0, ℏJm) ↦→

(ℏ, ℏJ−m, H̄0, H̄m), with

H̄m = ℏJm +
∞∑︂
n=0

ℏn[Jm, q
(n+1)(J−1, J−2, . . .)], m ∈ N, (4.115)

where the q(n+1) are polynomials of degree ≤ n+1 in the negative modes.

85



Then, if we define I to be the left ideal generated by the H̄m, ˆ︁Uℏ(h)/I is

canonically isomorphic to the (ℏ-adic completion of the Rees) submodule

of M generated by |x0⟩ and twisted by the automorphism ϕ.

3. Rephrasing in terms of modules of exponential type, we get that ˆ︁Uℏ(h)/I

is canonically isomorphic to the submodule of M generated by the state

Z|x0⟩ = exp

(︄
−

∞∑︂
n=0

ℏn−1q(n+1)(J−1, J−2, . . .)−
∞∑︂
n=0

ℏn−1s(n+1)(J̃0)

)︄
|x0⟩,

(4.116)

where the s(n+1)(J̃0) are linear polynomials in the conjugate zero mode

J̃0, which acts on |x0⟩ as J̃0|x0⟩ = x0|x0⟩. There is a unique choice of gen-

erator if we impose that the polynomials satisfy q(n+1)(0) = s(n+1)(0) = 0.

We can proceed and study Airy ideals in ˆ︁Uℏ(h) as usual. To construct an

Airy ideal, we need to construct a collection of operators {Ha}j∈N in ˆ︁Uℏ(h) of

the form

Ha = ℏJa +O(ℏ2), (4.117)

and satisfying the properties of Definition 4.E.1. Note that there is a H0

associated to the zero mode J0 here. Such collections again naturally arise form

sub-VOAs such as W-algebras. If we are given an Airy ideal I, then we know

that ˆ︁Uℏ(h)/I is canonically isomorphic to the submodule of M generated by

|x0⟩ as above but twisted by some stable transvection ϕ. It is also canonically

isomorphic to a module of exponential type generated by a state as in (4.116)

with q(1) = q(2) = s(1) = s(2) = 0.

What is really interesting here is the appearance of the conjugate zero

modes J̃0 in the exponential in (4.116). Again, for an Airy ideal we must have

q(1) = q(2) = s(1) = s(2) = 0, so that the argument of the exponential starts
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at O(ℏ). We can expand the exponential, but the resulting state does not

live in the ℏ-adic completion of the Rees Fock module generated by |x0⟩ overˆ︁Uℏ(h), because of the appearance of the conjugate modes J̃0. It instead lives

in the submodule of M generated by |x0⟩ over the ℏ-adic completion of the

Rees algebra associated to U(h) ⊗C C[J̃0]. This is a key distinction between

this scenario and the previous one.

In particular, if the Ha form a subset of modes of the strong generators of a

sub-VOA, such as a W-algebra, we once again constructed a state Z|x0⟩ that

is annihilated by all the modes Ha in this subset, and this states generates

a cyclic module for the sub-VOA, which could be a highest weight module,

or a Whittaker module, depending on the subset of modes. However, the

state Z|x0⟩ is not anymore in a Fock module over U(h) (suitably ℏ-adically

completed), but rather in the larger module M = πρ0 .

Remark 4.H.1. We note that in some cases, Z|x0⟩ may still live in the ℏ-

adic completion of the Rees Fock module generated by |x0⟩ over ˆ︁Uℏ(h). This

will happen if all the linear polynomials s(n+1)(J̃0) vanish. In turn, this will

happen if the transvection ϕ does not act on ℏJ0, that is, H̄0 = ℏJ0. From the

point of view of Airy ideals, this means that the operator H0 is simply equal

to H0 = ℏJ0. This was the case for instance in some of the constructions in

[9].

In this particular case, it does not matter what scenario we use to interpret

the zero mode. On the one hand, if we think of J0 as a variable x0, then since

H0 = ℏJ0 must kill Z|x0⟩, we must have x0 = 0, i.e. we set the zero mode to

zero. On the other hand, if we think of J0 as a derivative, then Z|x0⟩ does

not include the conjugate modes J̃0 because the s(n+1)(J̃0) vanish, and hence
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H0 = ℏJ0 naturally kills Z|x0⟩, i.e. we can simply set J0 to zero as before. In

both cases the state Z|x0⟩ is the same, lives in the Fock module, and we can

simply set the zero mode to zero, which is what was done in [9].

However, this is a very particular case; for general Airy ideals, there is no

reason why the operator H0 = ℏJ0 + O(ℏ2) that starts with the zero mode

should not have terms of O(ℏ2) or higher. We will see an example of that in

the next sections when considering W (sp2N)-algebras.

Remark 4.H.2. We note that even if the operator H0 = ℏJ0 + O(ℏ2) has

higher order terms, it does not mean that the linear polynomials s(n+1)(J̃0)

will be non-zero. H0 could still be special enough such that all s(n+1)(J̃0) = 0,

in which case Z|x0⟩ would live in the ℏ-adic completion of the Rees module

generated by |x0⟩ over ˆ︁Uℏ(h). It appears to be not so easy to determine whether

a given Airy ideal will be such that all s(n+1)(J̃0) = 0; however, what is easy to

show is that, if H0 has polynomial terms at O(ℏ2), then the linear polynomials

s(n+1)(J̃0) do not all vanish. So this gives a simple criteria to determine when

Z involves the conjugate zero modes J̃0.

4.H.5 The rank N free boson πN

In this section we simply note that the construction of the previous section con-

tinue to hold if we consider direct sums of Heisenberg algebra h :=
⨁︁N

i=1 h
(i),

with basis {J i
n}i∈{1,...,N},n∈Z ∪ {c} and Lie bracket

[J i
m, J

j
n] = mδm,−nδi,jc, [J i

m, c] = 0, ∀m,n ∈ Z, i, j ∈ {1, . . . , N}.

(4.118)
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The universal enveloping algebra is constructed as usual, quotienting by the

ideal c = 1. It is the free associative algebra generated by the modes J
(i)
m

modulo their commutation relations. It is the algebra of modes for the rank

N free boson VOA πN .

The only difference with the previous section is that we now have N zero

modes J i
0. We thus introduce N conjugate zero modes J̃

i

0, and proceed as

before with the identification with the Weyl algebraDA, where we now consider

the multi-index set A = {(i, n) | i ∈ {1, . . . , N}, n ∈ N}.

In principle, for each zero mode we can make a choice between the two

scenarios of the previous section, i.e. whether we consider J i
0 as a variable or a

derivative. It is usually more meaningful to make the same choice for all zero

modes. Then we proceed as before, and the results are very similar, so there

is no need to re-state them here.

4.H.6 The VOA viewpoint

The last few sections can also be reformulated from the viewpoint of VOAs,

which is how the construction of Airy ideals naturally arises. Recall that a

VOA is given by the data of a vector space of states V , and a state-field corre-

spondence Y : V → End(V )[[z±1]], which satisfies a number of defining axioms.

Given a vector v ∈ V , we call Y (v, z) =
∑︁

n∈Z vnz
−n−1 the corresponding field,

and the endomorphisms vn its modes.

A VOA module is another space M , with a maps YM : V → End(M)[[z±1]].

It realizes the modes of YM(v, z) as endomorphisms of the space M .

The rank one free boson VOA is generated by a single state χ ∈ V , with

corresponding field Y (χ, z) =
∑︁

n∈Z Jnz
−n−1. Its modes Jn satisfy the com-
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mutation relations of the Heisenberg algebra h with c = 1:

[Jm, Jn] = mδm,−n. (4.119)

The associative algebra of modes is the universal enveloping algebra U(h).

To map to ˆ︁Dℏ
N and ˆ︂Mℏ

N as in the previous sections, we think of the Rees

polynomial algebra ˆ︂Mℏ
N as a VOA module, with map Y ℏ : V → End(M)[[z±1]]

acting on the generating state χ ∈ V as

Y ℏ(χ, z) =
∑︂
n∈Z

ℏJnz−n−1. (4.120)

We also impose that the module satisfies the property

Y ℏ(Tv, z) = ℏ∂zY ℏ(v, z) (4.121)

for all v ∈ V , where T is the translation endomorphism on V . This turns the

algebra of modes into the Rees graded algebra with respect to Li’s filtration

by conformal weight on the algebra of modes of the free boson [41]. It allows

us to identify the algebra of modes with a subalgebra of the Rees Weyl algebraˆ︁Dℏ
N (as in Sections 4.H.3 or 4.H.4, depending on the interpretation of the zero

mode J0), which acts on the module M = ˆ︂Mℏ
N (which is also, of course, a left

module for the algebra of modes).

Introducing ℏ in this way is in fact very simple. Since it turns the algebra

of modes into the Rees graded algebra associated to the filtration by conformal

weight, we can simply introduce ℏ at the end of a calculation. Indeed, if v ∈ V

is a state of conformal weight m, then we know that its field in the ℏ-deformed
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module will be given by

Y ℏ(v, z) = ℏmY (v, z). (4.122)

The rank N free boson VOA is constructed similarly by taking an N -fold

tensor product of the rank one free boson VOA. It is generated by n states

χi ∈ V , i = 0, . . . , N − 1, with corresponding fields Y (χi, z) =
∑︁

n∈Z J
i
nz

−n−1.

The modes satisfy the commutation relations

[J i
m, J

j
n] = mδm,−nδi,j, (4.123)

as in the previous section with c = 1. The algebra of modes is the correspond-

ing universal enveloping algebra, and everything goes through as before.

4.H.7 Twisted modules for the rank N free boson VOA

In many application, the starting point is not quite the algebra of modes of

the rank N free boson VOA as in the previous section, but rather the algebra

of modes of a twisted module for the rank N free boson VOA.

Roughly speaking, if σ is an automorphism of a VOA V of finite order

r, then a σ-twisted VOA module is another space M and a map Yσ : V →

End(M)[[z±1/r]]. The difference of course is that fractional powers of z appear.

In this paper we will only consider the case of the rank N free boson VOA,

which is generated by states χi ∈ V , i = 0, . . . , N − 1, with the automorphism

σ that cyclically permutes the N states:

σ : χ0 → χ1 → . . .→ χN−1 → χ0. (4.124)
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In this case, we can define a diagonal basis va ∈ V , a = 0, . . . , N − 1, with

va =
N−1∑︂
j=0

θ−ajχj, (4.125)

with θ = e2πi/N . The inverse relation is

χi =
1

N

N−1∑︂
a=0

θiava. (4.126)

In this diagonal basis, the automorphism σ acts by multiplication by roots of

unity:

σ : va ↦→ θava, a = 0, . . . , N − 1. (4.127)

The map Yσ : V → End(M)[[z±1/r]] takes the simpler form

Yσ(va, z) =
∑︂

k∈ a
N
+Z

JkNz
−k−1, (4.128)

with the modes satisfying the commutation relations

[JmN , JnN ] = Nmδm,−n. (4.129)

In the end, what we found is that, after redefining indices mN ↦→ k, the

algebra of modes of the σ-twisted module is nothing but the universal envelop-

ing algebra of the Heisenberg algebra h with c = 1 already studied in Section

4.H.1, which is the algebra of modes for the rank one free boson. It has only

one zero mode J0, not N zero modes as in the untwisted rank N case studied

in the previous section.

As the algebra of modes of the twisted modules is identified with the univer-
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sal enveloping algebra of the Heisenberg algebra h, all the results of Sections

4.H.3 and 4.H.4 apply, depending on a choice of interpretation for the zero

mode.

While we only need to consider the fully cyclic automorphism σ in the

rest of the paper, we note that more general automorphisms can certainly be

considered, see for instance [9, 10, 6]. For an automorphism σ in the sym-

metric group SN that corresponds to a permutation of the N free bosons, the

construction works pretty much the same as explained here, applied indepen-

dently to each cycle in the permutation (see [10, 6]). More precisely, in the

end one obtains a set of bosonic modes for each cycle of the permutation σ.

The resulting algebra of modes is then naturally identified with the algebra of

modes of the untwisted rank M free boson as in the previous section, with M

being the number of cycles in σ. It has M distinct zero modes, one for each

cycle in the permutation σ.

4.H.8 Boundedness in the VOA setting

Condition (1) in the definition of Airy ideals, see Definition 4.E.1, states that

the collection of operators {Ha}a∈A must be bounded. If the Airy ideal is

generated by a subset of modes of the strong and free generators of a VOA

realized as a sub-VOA of the Heisenberg VOA, then the boundedness condition

is automatically satisfied. This is what we prove in this section.

Consider a VOA W , that is freely and strongly generated by N -fields

W 1, . . . ,WN and that allows for an embedding in the rank N Heisenberg

algebra πN . Let H be the Virasoro zero-mode of the usual Virasoro field of
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the Heisenberg algebra. Let

Wm(z) =
∑︂
k∈Z

Wm
k z

−k−1 (4.130)

be the mode expansion of the field Wm(z) and we require that Wm has weight

∆m ∈ Z>0 in the sense that

[H,Wm
k ] = (∆m − k − 1)Wm

k (4.131)

for all k. Let

Wm
k =

∑︂
0≤a1≤···≤at

i1,...,it∈{0,...,N}

Ai1,...,iN
a1,...,at

(m, k)J i1
a1
. . . J it

at (4.132)

where the Ai1,...,iN
a1,...,at

(m, k) are polynomials in the negative modes. Then the

boundedness condition in the VOA setting for the non-negative modes Wm
k is

that for any set 0 ≤ a1 ≤ · · · ≤ at one has Ai1,...,iN
a1,...,at

(m, k) = 0 for all but finitely

non-negative modes Wm
k . Interpreting the modes of the Heisenberg algebra as

variables and derivatives as before immediately translates to the boundedness

condition in the Weyl algebra setting.

Lemma 4.H.3. The boundedness condtion for non-negative modes Wm
k holds

on modules of πN .

Proof. Note that [H, J i
k] = −kJ i

k for the Heisenberg modes.

Let I = {(i1, k1), . . . , (ir, kr)} be an ordered index set of length r, that is

i1, . . . , ir ∈ {1, . . . , N} and k1, . . . , kr ∈ Z with ka ≥ ka−1 and if ka = ka−1 then

ia ≥a−1. Set pI = J i1
k1
. . . J ir

kr
and kI = k1 + · · · + kr so that [H, pI ] = −kIpI .
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Let I be the set of all such index sets of any length. Then Wm
k is of the form

Wm
k =

∑︂
I∈I

kI=k+1−∆m

aIpI (4.133)

for certain coefficients aI . We are interested in the boundedness conditions in

the VOA setting. This means for a given ordered monomial J is
ks
. . . J ir

kr
with

ks ≥ 0 (and hence all ki ≥ 0) we wonder if there exists {(i1, k1), . . . , (is−1, ks−1)},

such that aI ̸= 0 for I = {(i1, k1), . . . , (ir, kr)}. We have that kI ≤ ks + · · ·+kr

and so we necessarily have aI = 0 if k + 1−∆m > ks + · · ·+ kr. In particular

there are only finitely many pairs (m, k) such that aI can be non-zero, i.e. the

boundedness condition holds.

Let σ be a finite order automorphism of the Heisenberg algebra that leaves

W and H invariant. Then the σ-twisted module is still a module for W and

still graded by H. Note that with the set-up of the previous setting the twisted

modes JkN have H eigenvalue −k. As an operator on a σ-twisted module

Wm
k =

∑︂
0≤a1≤···≤at

Aσ
a1,...,at

(m, k)Ja1 . . . Jat (4.134)

with Aσ
a1,...,at

(m, k) polynomials in the negative modes.

Lemma 4.H.4. The boundedness condtion for non-negative modes Wm
k holds

on σ-twisted modules after any possible shift of negative modes.

Proof. The argument is the same as the previous Lemma: Ja1 . . . Jat has H-

eigenvalue −(a1 + · · · + at)/N and so Aa1,...,at(m, k) = 0 if k + 1 − ∆m >

a1 + · · · + at)/N , that is for all but finitely many pairs (m, k). Any possible

shift of negative modes is nothing but a homomorphism on polynomials in the
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negative modes and so if Aa1,...,at(m, k) = 0 then the same remains true after

any possible shift of negative modes.

Remark 4.H.5. The boundedness condition of course holds for subsets of

non-negative modes as well. In some cases, see [9], one also wants to include

some negative modes Wm
k . The argument for boundedness is still exacly the

same. Therefore, the collections of modes considered in [9, 8] are all bounded,

and the Airy ideals constructed in these papers are indeed well defined.

4.I Graded Lie subalgebras from modes of W-

algebra

In Chapter 3, we mentioned that Airy ideals can be constructed from modules

of W-algebras. This is because subalgebras of collection of modes {W i
m}m∈N

of the strong generators of W-algebra generate ideals I that satisfy the con-

dition [I, I] ⊆ ℏ2I. In this section we expound on this example, by sketching

the relevant results first proved in [9]. The authors construct a number of left

ideals from mode algebras of an arbitrary vertex operator algebra with finitely

many strong and free generate, that satisfy the condition [I, I] ⊆ ℏ2I of being

an Airy ideal and then one is left with the task to check that the other two

conditions are satisfied as well. Further technical details of this construction

can also be found in Section 3 of [8]. We will use some results of this section

in Chapter 5 to construct new Airy ideals.

Let W be a vertex operator algebra with finitely many strong and free

generators W 1, . . . ,W n of conformal weights ∆1, . . . ,∆n, and let A be the

96



suitably completed algebra (also known as the current algebra) of modes of

W .

Let FpW be the subspace of W spanned by elements W i1
−n1
· · ·W is

−ns
|0⟩ with

∆i1+· · ·+∆is ≤ p, that is “Li’s filtration”. The algebra of modes A is a filtered

Lie algebra with respect to the commutator [·, ·], with a filtration FpA induced

from FpW . Let ˆ︁Aℏ be its ℏ-adic completion,

ˆ︁Aℏ =
∏︂
n∈N

ℏnFnA. (4.135)

Let S be a given subset of the modes of the strong generators W 1, . . . ,W n

of W , and ˆ︁Aℏ ·S ∈ ˆ︁Aℏ be the left ˆ︁Aℏ-ideal generated by S. We say that ˆ︁Aℏ ·S

is a graded Lie subalgebra of ˆ︁Aℏ if

[ ˆ︁Aℏ · S, ˆ︁Aℏ · S] ⊆ ℏ2 ˆ︁Aℏ · S. (4.136)

For notational convenience, we define an ordering such that a mode in S is

always greater than a mode not in S. We say that elements of the ideal ˆ︁Aℏ ·S

are good with respect to S. In particular, γ is good if the right-most term of

every ordered monomial of γ is in S. We first state a basic observation, that

is easily checked.

Lemma 4.I.1. The left ˆ︁Aℏ-ideal generated by the modes in S is a graded Lie

subalgebra of ˆ︁Aℏ if and only if for any two modes W i
m,W

j
n ∈ S, one has that

[W i
m,W

j
n] ∈ ℏ2F∆i+∆j−2

ˆ︁Aℏ is good with respect to S.

The starting point of construction is a moduleMλ generated by a highest

weight vector |λ⟩ and such that this highest weight vector is annihilated by

a mode if and only if this mode is a good mode. Subsequently one needs to
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check that the commutator of two modes in S is still good by showing that a

basis of Mλ is given by all the ordered monomials that are not good.

We now list two examples of graded Lie subalgebras that exist for all W-

algebras at the self dual level. However, one can usually expand this list to

further examples depending on the choice of Lie algebra g. The reader is re-

quested to refer to Section 3 of [9] for the proofs.

Our first example is that of the left ideal generated by all modes of the

strong generators of a W algebra that annihilate the vacuum state |0⟩.

Proposition 4.I.2. Consider a vertex operator algebra W freely strongly gen-

erated by homogeneous states W i ∈ W indexed by i ∈ I (where I is a finite

set), with respective conformal weights ∆i ∈ Z. Let ˆ︁Aℏ be the suitably com-

pleted graded algebra of modes of W . Let S = {W i
k}i∈I,k≥0, and consider the

left ideal ˆ︁Aℏ
≥0 := ˆ︁Aℏ · S. Then, ˆ︁Aℏ

≥0 is a graded Lie subalgebra of ˆ︁Aℏ.

A second example is given by a subset of the vacuum algebra with the

starting mode index determined by the conformal weight.

Proposition 4.I.3. Consider a vertex operator algebra W strongly generated

by homogeneous states W i ∈ W indexed by i ∈ I where I is a finite set, with

respective conformal weights ∆i ∈ Z. Let ˆ︁Aℏ denote the suitably completed

algebra of modes. Let S = {W i
k}i∈I,k≥∆i−1, and consider the left ideal ˆ︁Aℏ

∆ :=ˆ︁Aℏ · S. Then ˆ︁Aℏ
∆ is a graded Lie subalgebra of ˆ︁Aℏ.
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Chapter 5

An Airy structure for W(sp2n)

As stated in 3.B.9, Airy structures (ideals) fromW-algebras of type ADE have

already been constructed in literature. However, constructions for non-simply

laced type Lie algebras still remain to be done. In this chapter, we fill this gap

by constructing Airy structures of type C. The starting point for out approach

is the orbifold construction for W-algebras at self-dual level as described in

2.D.1. In the process, we exemplify some aspects of Airy structures that were

presented in the previous chapter. The contents of this chapter also appear in

our preprint [12].

More precisely, we will consider Airy ideals that are generated by the non-

negative modes of the strong generators of the principal W-algebra of sp2N

at level −N − 1/2, which we denote by W−N−1/2(sp2N). To do so, we need

to realize the W−N−1/2(sp2N)-algebras as sub-VOAs of the rank N free boson

VOA. In this section we review background notions on the W−N−1/2(sp2N)-

algebras, how they can be realized within the rank N free boson VOA, and

how we can construct modules for them from twisted modules for the rank N
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free boson VOA.

5.A Generators of W(sp2N)

We consider the universal principal W-algebra of type CN at level −N − 1/2.

This algebra is isomorphic to the orbifold of N -pairs of symplectic fermions;

the reason is that the coset Com
(︁
V k(sp2N), V k(osp1|2N)

)︁
is isomorphic to

Wℓ(sp2N) for generic ℓ with ℓ and k related via (ℓ+N+1)−1+(k+N+1)−1 = 2,

by [20, Thm. 4.1] as well as [17, Thm. 3.2]. The limit k →∞ makes sense; in

this limit, the coset becomes an orbifold of a free field algebra [19, Thm. 6.10],

which in this case is the Sp(2N)-orbifold A(N)Sp(2N) of N -pairs of symplectic

fermions A(N). For clarity, we write:

W(sp2N) := A(N)Sp(2N) ∼=W−N−1/2(sp2N). (5.1)

Let us be a little more precise. The symplectic fermion algebra of rank

N , A(N), is strongly and freely generated by N pairs of symplectic fermions

{ei(z), f i(z)}i=1,2,...,N by . Their OPEs are given by

ei(z)f j(w) ∼ δij
(z − w)2

. (5.2)

Proposition 5.A.1 ([18]). Let {ei, f i}i=1,...,N be symplectic fermions. Then

W(sp2N) is freely generated by fields W 2,W 4, . . . ,W 2N of conformal weights

2, 4, . . . , 2N respectively that have the following free field description:

Wm(z) =
1

(m− 2)!

N∑︂
i=1

(︁
: ei(z)∂m−2

z f i(z) : + : ∂m−2
z ei(z)f i(z) :

)︁
, (5.3)
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for m = 2, 4, . . . , 2N.

We can express the above result in terms of free bosonic fields after making

use of the boson-fermion correspondence [29]. Let Y (·, z) denote the state-

operator map for the integral lattice VOA VZN generated by an orthonormal

basis {χ0, χ1, . . . , χN−1}, and

χi(z) =
∑︂
n∈Z

χi
nz

−n−1 (5.4)

be the free bosonic fields, which satisfy the OPE:

χi(z)χj(w) ∼ δij
(z − w)2

. (5.5)

Recall that the free fermion OPE is generated by a pair of odd fields

ψ(z), ψ∗(w) with OPE

ψ(z)ψ∗(w) ∼ 1

z − w
. (5.6)

The boson-fermion correspondence gives a pair of free fermions:

ψi(z) := Y (eχi , z), ψ∗
i (z) := Y (e−χi , z), (5.7)

where

Y (eχi , z) = zχ
i
0Uχi exp

(︂ ∑︂
n∈Z<0

χi
n

z−n

n

)︂
exp
(︂ ∑︂
n∈Z>0

χi
n

z−n

n

)︂
, (5.8)

and the shift operators Uχi satisfy

[χi
m, Uχi ] = δm,0 Uχi , m ∈ Z. (5.9)
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The fields

ei(z) := ψi(z), f i(z) := ∂zψ
∗
i (z) (5.10)

generate a VOA isomorphic to A(N).

Proposition 5.A.2. Let {Wm(z)}m=2,...,2N be the fields defined in (5.3), and

define the states:

νm := [eχ
i

−1e
−χi

−m + eχ
i

−m+1e
−χi

−2 ]1. (5.11)

Then

Wm(z) =
N−1∑︂
i=0

Y (νm, z). (5.12)

Proof. Translation covariance implies the formula

f i(z) = Y (e−χi

−2 1, z). (5.13)

The result then follows directly from (5.7) and application of the reconstruction

theorem (See [27, Theorem 4.4.1]) to the VOA A(N).

This Proposition gives us an expression for the strong generating fields of

W(sp2N) within the rank N free boson VOA, which is the starting point to

study whether subsets of modes (such as non-negative modes) of the generators

of W(sp2N) generate an Airy ideal.

5.B Twisted module

In fact, to construct an Airy ideal generated by the modes of the generators

ofW(sp2N), we will need to start with a σ-twisted module for the rank N free
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boson VOA (see Section 5.B). Upon reduction to the W(sp2N) sub-VOA, it

will become a normal, untwisted, module for W(sp2N).

Let us first review basic properties of twisted modules (studied in detail

in [5]) and prove some important formulas. Let Q be an integral lattice with

bilinear form (·, ·), σ an automorphism of Q, and VQ be the lattice VOA of Q.

The bilinear form can be linearly extended to C⊗Z Q. Let M be a σ-twisted

VQ module.

We use the same notation as in Section 5.B. We consider the rank N free

boson VOA. Let χ0, χ1, . . . χN−1 be an orthonormal basis for Q. We consider

the cyclic automorphism σ : χ0 ↦→ χ1 ↦→ · · · ↦→ χN−1 ↦→ χ0, and the corre-

sponding σ-twisted module with map Yσ. Let v0, v1, . . . , vN−1 be the diagonal

basis defined in (4.125), with inverse relation (4.126). The twisted fields are

as in (4.128), which we reproduce here for convenience:

Yσ(va, z) =
∑︂

k∈ a
N
+Z

JkNz
−k−1. (5.14)

Using the inverse relation (4.128), we get the twisted fields associated to the

original generators χi:

Yσ(χi, z) =
1

N

∑︂
m∈ 1

N
Z

θimNJmNz
−m−1 (5.15)

=
1

N

∑︂
m∈Z

N−1∑︂
a=0

θiaJa+Nmz
− a

N
−m−1, (5.16)

where θ = e2πi/N .

Our goal is to construct the twisted fields Wm
σ (z) associated to theW(sp2N)

generators Wm(z). From Proposition 5.A.2, we know that this involves cal-
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culating the twisted fields for products of elements of the form eχ
i

−ae
−χi

−b for

a, b > 0. The following two formulas do exactly that.

Lemma 5.B.1. Let d ≥ 1, ϵ ∈ {1,−1} and {χi}i=0,1,...,N−1 be an orthonormal

basis of CN . Then

− Yσ(eϵχ
i

−de
−ϵχi

−1 , z) =
d∑︂

k=0

ck
zk
Sd−k(ϵχi, z) (5.17)

where ck is the k-th coefficient in the Taylor expansion of the function

g(x) =
1

N
x

1−N
2N

N−1∏︂
k=1

(x1/N − θk) (5.18)

at x = 1. In particular, ck is independent of the basis vectors χi and ϵ, and

c0 = 1, c1 = 0. Moreover, the Sℏ
k are the Faà di Bruno polynomials defined by

Sn(χi, z) :=
1

n!

(︁
∂z + Yσ(χi, z)

)︁n · 1. (5.19)

Proof. The proof is exactly analogous to the proof of Lemma 3.7 in [?]. One

can check that, g′(1) = 0 and thus c1 = 0.

Remark 5.B.2. From (5.10) and the anticommutativity of free fermions it

follows that

Yσ(eχ
i

−1e
−χi

−d ) = −Yσ(e−χi

−d eχ
i

−1). (5.20)

Lemma 5.B.3. Let a, b ∈ V be elements of a VOA and T be the translation

operator. Then

∂zYσ(a−mb−n1, z) = Yσ(a−m−1b−n1, z) + Yσ(a−mb−n−11, z). (5.21)
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Proof. From [5, equation 3.14] (see also (4.121) in Section 4.H.6),

∂zYσ(v, z) = Yσ(Tv, z). (5.22)

In addition we know that

Tv = v−21. (5.23)

Applying the above two formulas to the vector v = a−mb−n1 yields (5.21).

Lemmas (5.17) and (5.B.3), in conjunction with Proposition 5.A.2, allow

us to write down explicit expressions for the twisted fields Wm
σ (z) associated

to the strong generators of W(sp2N). At this stage, we now introduce ℏ in

our twisted module as in Section 4.H.6. It turns the algebra of modes into

the graded Rees algebra associated to Li’s filtration by conformal weight. Put

simply, since the strong generators Wm
σ (z) have conformal weights m, it simply

rescales them by ℏm.

We summarize the result in the following lemma.

Lemma 5.B.4. Let {χi}i=0,1,...,N−1 be states generating the rank N free boson

VOA and σ the fully cyclic automorphism. Then the twisted fields Wm
σ,ℏ(z),

m = 2, 4, . . . , 2N corresponding to the strong generators of W(sp2N) in the

ℏ-deformed σ-twisted module read:

Wm
σ,ℏ(z) = ℏm

N−1∑︂
i=0

[︄
m∑︂
k=0

ck
zk
(︁
Sm−k(−χi, z) + Sm−k(χi, z)

)︁
+

m−1∑︂
k=1

kck
zk+1

Sm−1−k(χi, z)−
m−1∑︂
k=0

ck
zk
∂zSm−1−k(χi, z)

]︄
m = 2, 4, . . . , 2N.

(5.24)
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Proof. Using Proposition 5.A.2 we can write,

Wm
σ (z) =

N−1∑︂
i=0

(︁
Yσ(eχi

−1e
−χi
−m1) + Yσ(eχi

−m+1e
−χi
−2 1)

)︁
. (5.25)

The first term in the sum above can be commuted directly from lemma (5.B.1)

with ϵ = −1 and is given by,

Yσ(eχi
−1e

−χi
−m1) =

m∑︂
k=0

ck
zk
Sm−k(−χi, z) (5.26)

where the cks are as in Lemma 5.B.1. The second term in (5.25) is given by

an application of Lemma (5.B.3) followed by Lemma (5.B.1):

Yσ(eχi
−m+1e

−χi
−2 1) = ∂zYσ(eχi

−m+1e
−χi
−1 1, z)− Yσ(eχi

−me
−χi
−1 , z)

=
m−1∑︂
k=0

kck
zk+1

Sm−1−k(χi, z)−
m−1∑︂
k=0

ck
zk
∂zSm−1−k(χi, z) +

m∑︂
k=0

ck
zk
Sm−k(χi, z).

(5.27)

Adding the above two formulas gives Wm
σ (z). Finally, since Wm

σ (z) has con-

formal weight m, we get Wm
σ,ℏ(z) = ℏmWm

σ (z), which yields (5.24).

Remark 5.B.5. Note that only terms invariant under the automorphism σ

will survive after summing over the index i in the above formulas, and hence

the expressions will simplify considerably.

5.C Constructing Airy ideals for W(sp2N)

In the previous section we obtained twisted fields Wm
σ,ℏ(z) for the strong gener-

ators ofW(sp2N) in a ℏ-deformed σ-twisted module for the rank N free boson
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VOA. Our goal is to show that the non-negative modes of these fields generate

an Airy ideal I in the ℏ-completed Rees algebra of bosonic modes ˆ︁Uℏ(h). More

precisely, this will not be true for the twisted fields Wm
σ,ℏ(z) directly. What we

will do is construct an automorphism of ˆ︁Uℏ(h), which is usually called “dilaton

shift” (and is very similar to the transvections studied in Section 4.D.1), such

that he image of the fields Wm
σ,ℏ(z) under this automorphism are such that

their non-negative modes generate an Airy ideal.

As explained in Section 4.H, to construct an Airy ideal we need to choose

a scenario to map ˆ︁Uℏ(h) into the Rees Weyl algebra: we need to make a choice

for the action of the zero mode. In the case of W(sp2N), only one choice

works: we need to make the zero mode acts as a derivative, and hence we find

ourselves in the scenario explored in Section 4.H.4. As far as we are aware,

this is the first example of aW-algebra explored in the literature that involves

this scenario.

We present first the calculations for the special case of W(sp6), since the

calculations are more explicit. We then move on to the general case.

5.C.1 An Airy ideal for W(sp6)

The strong generators

We use the notation in Section 4.H.6 and Section 5.B. We consider the rank 3

free boson VOA, generated by states {χ0, χ1, χ2}. We consider the fully cyclic

automorphism σ, and the corresponding σ-twisted module with map Yσ. Let

v0, v1, v2 be the diagonal basis. For clarity, we write

χi(z) := Yσ(χi, z), vi(z) = Yσ(vi, z), i = 0, 1, 2. (5.28)
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We index the modes of the twisted fields in the diagonal basis as usual:

v0(z) =
∑︂
n∈Z

J3nz
−n−1,

v1(z) =
∑︂
n∈Z

J3n+1z
−n−4/3,

v2(z) =
∑︂
n∈Z

J3n+2z
−n−5/3. (5.29)

We introduce ℏ in our module as in Section 4.H.6, which turns the algebra of

modes into the graded Rees algebra associated to Li’s filtration by conformal

weight.

We obtained the twisted fields Wm
σ,ℏ(z) for the strong generators ofW(sp6)

in our ℏ-deformed σ-twisted module in Lemma 5.B.4. For clarity, we now drop

the subscripts σ, ℏ on the generators, and denote them simply by Wm(z). In

the case of sp6, we have three such generators, W 2(z),W 4(z),W 6(z). We

define the modes of the strong generators as

Wm(z) =
∑︂
k∈Z

Wm
k z

−k−1. (5.30)

From Lemma 5.B.4 it is easy to see that each of these modes takes the

form

Wm
k = ℏmpmk (Ja), (5.31)

where pmk (Ja) is a polynomial (a sum of normal ordered monomials) in the

bosonic modes Ja of degree ≤ m. As such, the non-negative modes Wm
k with

k ≥ 0 certainly do not generate an Airy ideal (see Definition 4.E.1 and Lemma

4.F.1), as they are homogeneous of degree m in ℏ, and m > 1. This is not

surprising, since ℏ was introduced via Li’s filtration by conformal weight, and
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the fields Wm(z) have conformal weight m.

To obtain an Airy ideal we somehow need to break the ℏ homogeneity

of the strong generators of W(sp6). In order to do this, we introduce an

automorphism of the Rees algebra of bosonic modes ˆ︁Uℏ(h) called “dilaton

shift”.

Definition 5.C.1. Let ϕ : ˆ︁Uℏ(h)→ ˆ︁Uℏ(h) be the automorphism given by

ϕ : (ℏ, ℏJm) ↦→ (ℏ, ℏJm + δm,−3 + δm,−4). (5.32)

In other words, it simply shifts the modes ℏJ−3 ↦→ ℏJ−3 + 1 and ℏJ−4 ↦→

ℏJ−4 + 1. It can be understood as acting by conjugation; for any P ∈ ˆ︁Uℏ(h),

we can think of ϕ(P ) as being given by

ϕ(P ) = exp

(︃
J3
3ℏ

+
J4
4ℏ

)︃
P exp

(︃
−J3

3ℏ
− J4

4ℏ

)︃
. (5.33)

This is very similar to the transvections studied in Section 4.D.1, except that

now the non-trivial action is on the coordinates (on the negative modes J−3

and J−4) instead of the derivatives.

This is an automorphism of the Rees algebra of bosonic modes. The strong

generators Wm(z) of W(sp6) are mapped to new fields ϕ(Wm(z)) under this

automorphism. We introduce the following notation for the image fields and

their modes:

Hm(z) :=
3m−1m!

2
ϕ(Wm(z)), Hm

k :=
3m−1m!

2
ϕ(Wm

k ). (5.34)

The rescaling of the generators here is simply for convenience.
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Clearly, the action of ϕ breaks homogeneity in ℏ, which is what we want.

Our goal is to show that the non-negative modes Hm
k , k ≥ 0, generate an Airy

ideal in ˆ︁Uℏ(h). To do so, we need to prove Conditions (1)–(4) in Lemma 4.F.1.

We first focus on Condition (3), which amounts to studying the O(ℏ0) and

O(ℏ1) terms in the Hm
k .

Lemma 5.C.2. The modes Hm
k satisfy, for k ≥ 0:

H2
k =ℏ(2J3k + 2J3k+1) +O(ℏ2), (5.35)

H4
k =ℏ(4J3k + 12J3k+1 + 12J3k+2 + 4J3k+3) +O(ℏ2), (5.36)

H6
k =ℏ(6J3k + 30J3k+1 + 60J3k+2 + 60J3k+3 + 30J3k+4 + 6J3k+5) +O(ℏ2).

(5.37)

Proof. We start with Lemma 5.B.4 for the strong generators Wm(z), m =

2, 4, 6. We mentioned before that the modes take the form

Wm
k = ℏmpmk (Ja), (5.38)

where pmk (Ja) is a polynomial in the bosonic modes of degree ≤ m. We note

that the automorphism ϕ acts as ℏJ−3 ↦→ ℏJ−3 + 1 and ℏJ−4 ↦→ ℏJ−4 + 1. As

such, it can decrease the order in ℏ. We are interested in resulting terms of

order O(ℏ0) and O(ℏ1). Clearly, only the monomials of degree m and m − 1

in the polynomials pmk (Ja) can give rise to terms of order O(ℏ0) and O(ℏ1)

following the action of ϕ. So we are only interested in these higher degree

terms.
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From Lemma 5.B.4, we get:

W 2(z) = ℏ2
2∑︂

i=0

(︃
χi(z)2 − ∂zχi(z) +

1

27z2

)︃
, (5.39)

W 4(z) = ℏ4
2∑︂

i=0

(︃
2

4!
χi(z)4 − 1

3!
∂zχ

i(z)3 + lower degree

)︃
, (5.40)

W 6(z) = ℏ6
2∑︂

i=0

(︃
2

6!
χi(z)6 − 1

5!
∂zχ

i(z)5 + lower degree

)︃
, (5.41)

where “lower degree” means polynomial terms of degree ≤ m−2 in the bosonic

modes.

These expressions are in terms of the bosonic fields χi(z). We need to

rewrite them in terms of the twisted fields vi(z) in the diagonal basis, since

the bosonic modes Ja are defined for the twisted fields vi(z) (see (5.29)). Recall

that

χi(z) =
1

3

2∑︂
a=0

θiava(z), (5.42)

where θ = e2πi/3.

We consider first the highest degree terms in the fields Wm(z), of degree

m in the bosonic modes. In terms of the fields vi(z), the highest degree terms
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read:

3

ℏ2
W 2(z) = (v0(z))2 + 2v1(z)v2(z) + . . . (5.43)

4!33

2ℏ4
W 4(z) = (v0(z))4 + 4v0(z)(v1(z))3 + 4v0(z)(v2(z))3 + 12(v0(z))2v1(z)v2(z)

+ 6(v1(z))2(v2(z))2 + . . . (5.44)

6!35

2ℏ6
W 6(z) = (v0(z))6 + (v1(z))6 + (v2(z))6 + 20(v0(z))3(v2(z))3 + 20(v0(z))3(v1(z))3

+ 20(v1(z))3(v2(z))3 + 30v0(z)v1(z)(v2(z))4 + 30(v0(z))4v1(z)v2(z)

+ 30v0(z)(v1(z))4v2(z) + 90(v0(z))2(v1(z))2(v2(z))2 + . . .

(5.45)

We can write a general formula as:

m!3m−1

2ℏm
Wm(z) =

∑︂
α1+2α2|3

α0+α1+α2=m

m!

α0!α1!α2!
(v0(z))α0(v1(z))α1(v2(z))α2+lower degree.

(5.46)

In terms of the modes, we get:

m!3m−1

2ℏm
Wm

k =
∑︂

α1+2α2|3,α0+α1+α2=m∑︁
p,q,r β

0
p+β1

q+β2
r=3k+3−3m

m!

α0!α1!α2!

α0∏︂
i=1

: Jβ0
i

:

α1∏︂
i=1

: Jβ1
i

:

α2∏︂
i=1

: Jβ2
i

:

(5.47)

+ lower degree,

where βj
i ≡ j (mod 3).

With these formulae, we can implement the automorphism ϕ from Defi-

nition 5.C.1 (the dilaton shift) on the highest degree terms. We see that for

the non-negative modes, k ≥ 0, we obtain precisely the O(ℏ1) terms in the
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statement of the Lemma, and no terms of O(ℏ0).

Next we look at the terms of degree m−1 in the bosonic modes in the fields

Wm(z). Those could potentially contribute terms of O(ℏ1) after applying the

automorphism ϕ. In terms of the fields vi(z), the degree m− 1 terms read:

− 1

ℏ2
W 2(z) = ∂zv

0(z) + . . . (5.48)

−3!32

ℏ4
W 4(z) = ∂z[(v

0(z))3 + (v1(z))3 + (v2(z))3 + 6v0(z)v1(z)v2(z)] + . . .

(5.49)

−5!34

ℏ6
W 6(z) = ∂z [ (v0(z))5 + 10(v0(z))2(v2(z))3 + 20(v0(z))3v1(z)v2(z)

+ 5(v1(z))4v2(z) + 30v0(z)(v1(z))2(v2(z))2 + 10(v0(z))2(v2(z))5

+ 5v1(z)(v2(z))4 ] + . . .

The action of the automorphism ϕ from Definition 5.C.1 on these degree m−1

terms does give rise to O(ℏ1) terms in the image fields Hm(z). Those terms

take the form:

H2(z) = 0 + . . . (5.50)

H4(z) = −6ℏ + . . . (5.51)

H6(z) = −90ℏ + . . . , (5.52)

where we singled out the O(ℏ) terms that arise from applying ϕ to the degree

m− 1 terms in the Wm(z). What is key is that these terms are constants, i.e.

do not come with powers of z. As a result, they only appear in the modes H4
−1

and H6
−1, and hence do not contribute to the non-negative modes Hm

k with

k ≥ 0. This concludes the proof of the Lemma.
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The Airy ideal

We now prove that the left ideal generated by the modes {H2
k , H

4
k , H

6
k} with

k ≥ 0 in ˆ︁Uℏ(h) is an Airy ideal. We find ourselves in the scenario of Section

4.H.4, where the zero mode J0 of the field v0(z) (which is the only zero mode,

see (5.29)) acts as a derivative ∂0.

Theorem 5.C.3. Let I be the left ideal in ˆ︁Uℏ(h) generated by the {H2
k , H

4
k , H

6
k}

with k ≥ 0. Then I is an Airy ideal.

Proof. To prove that I is an Airy ideal, we need to check that Conditions

(1)–(4) in Lemma 4.F.1 are satisfied.

Condition (1). The boundedness condition is automatically satisfied for

the modes of the fields of a VOA (see Lemma 4.H.4).

Condition (2). It is always satisfied for the subset of non-negative modes

of the strong generators of a VOA (see Lemma 4.I.2, also Proposition 3.14 in

[9]).

Condition (3). For simplicity, let us re-index our operators Hm
k , i = 2, 4, 6,

as

Hm
k =: L3k+m

2
−1. (5.53)

Then the operators are indexed by {Li}i∈I with I = A = N. We want to

determine whether

Li =
∑︂
a∈N

MiaℏJa +O(ℏ2) (5.54)

for some coefficients Mia such that for all fixed a ∈ N, they vanish for all but
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finitely many i ∈ N. But we have shown in Lemma 5.C.2 that

H2
k =L3k = ℏ(2J3k + 2J3k+1) +O(ℏ2), (5.55)

H4
k =L3k+1 = ℏ(4J3k + 12J3k+1 + 12J3k+2 + 4J3k+3) +O(ℏ2), (5.56)

H6
k =L3k+2 = ℏ(6J3k + 30J3k+1 + 60J3k+2 + 60J3k+3 + 30J3k+4 + 6J3k+5) +O(ℏ2).

(5.57)

As a result, we see that for a fixed a = 3k + b with b ∈ {0, 1, 2}, the only

non-vanishing coefficients Mia are for i ≤ 3k + 2. In particular, for all a ∈ N

they vanish for all but finitely many i ∈ N, as required.

Condition (4). We need to show that there exists coefficients Nbj such that

∑︂
i∈N

NbiMia = δab,
∑︂
a∈N

MiaNaj = δij, (5.58)

and such that for all fixed j ∈ N, the coefficients Nbj vanish for all but finitely

many b ∈ N. Equivalently, we need to show that we can invert the relations

(5.55)–(5.57) to get ∑︂
i∈N

NbiLi = ℏJb +O(ℏ2), (5.59)

with the coefficients such that for all fixed i ∈ N they vanish for all but finitely

many b ∈ N.

Let Jk := ℏ

⎛⎜⎜⎜⎜⎝
J3k

J3k+1

J3k+2

⎞⎟⎟⎟⎟⎠, Kk :=

⎛⎜⎜⎜⎜⎝
L3k

L3k+1 − 4ℏJ3k+3

L3k+2 − 60ℏJ3k+3 − 30ℏJ3k+4 − 6ℏJ3k+5

⎞⎟⎟⎟⎟⎠

and M =

⎛⎜⎜⎜⎜⎝
2 2 0

4 12 12

6 30 60

⎞⎟⎟⎟⎟⎠ for all k ≥ 0. From (5.55) – (5.57), we have the matrix
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equations

MJk +O(ℏ2) = Kk, ∀k ≥ 0. (5.60)

As M is invertible, we can invert the above relation to get

ℏJ3k +O(ℏ2) =
15

16
L3k −

5

16
L3k+1 +

1

16
L3k+2 −

5

2
ℏJ3k+3 −

15

8
ℏJ3k+4 −

3

8
ℏJ3k+5

(5.61)

ℏJ3k+1 +O(ℏ2) = − 7

16
L3k +

5

16
L3k+1 −

1

16
L3k+2 +

5

2
ℏJ3k+3 +

15

8
ℏJ3k+4 +

3

8
ℏJ3k+5

(5.62)

ℏJ3k+2 +O(ℏ2) =
1

8
L3k −

1

8
L3k+1 +

1

24
L3k+2 − 2ℏJ3k+3 −

5

4
ℏJ3k+4 −

1

24
ℏJ3k+5

(5.63)

Substituting back the formulas for ℏJ3k+3, ℏJ3k+4, and ℏJ3k+5 recursively we

can write

ℏJ3k+i +O(ℏ2) =
∑︂
m∈N

N3k+i,mLm (5.64)

for k ≥ 0 and i ∈ {0, 1, 2} and where all N3k+i,m = 0 for m < 3k. Equivalently,

for any fixed m ∈ N, the only non-vanishing coefficients are N3k+i,m with

3k ≤ m. In particular, for all fixed m ∈ N the coefficients vanish for all but

finitely many 3k + i ∈ N, and the condition is satisfied.

As all conditions of Lemma 4.F.1 are satisfied, we conclude that the left

ideal I generated by the {H2
k , H

4
k , H

6
k}, k ≥ 0, is an Airy ideal. Furthermore,

from the calculation above we see that we can also think left ideal I as being
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generated by the differential operators (k ≥ 0, i ∈ {0, 1, 2}):

L̃3k+i =
∑︂
m∈N

N3k+i,mLm = ℏJ3k+i +O(ℏ2). (5.65)

In particular, we notice that we have an operator L̃0 = ℏJ0 + O(ℏ2) (and

in fact, one can show that the O(ℏ2) contributions are non-vanishing for this

operator). Therefore, we find ourselves in the scenario of Section 4.H.4, where

the map from the algebra of modes ˆ︁Uℏ(h) to the Rees Weyl algebra goes to the

subalgebra ˆ︁Dℏ(xN∗ , ∂N) – we need to interpret the zero mode J0 as a derivative

in the Weyl algebra.

Now that we know that the left ideal I generated by the modes of the strong

generators ofW(sp6) is an Airy ideal, we obtain an immediate Corollary from

Theorem 4.E.3 (see also Section 4.H.4).

Corollary 5.C.4. Let I be the left ideal in ˆ︁Uℏ(h) generated by the non-negative

modes {H2
k , H

4
k , H

6
k}, with k ≥ 0. Then ˆ︁Uℏ(h)/I is a cyclic left module canon-

ically isomorphic to the (ℏ-adically completed) submodule of M (see Section

4.H.4) for the rank 3 free boson VOA generated by |x0⟩, but twisted by some

stable transvection on ˆ︁Uℏ(h).ˆ︁Uℏ(h)/I is also canonically isomorphic to a module of exponential type

generated by a state

v := Z|x0⟩ = exp

⎛⎜⎜⎝ ∑︂
g∈ 1

2
N,n∈N∗

2g−2+n>0

ℏ2g−2+nFg,n(J−1, J−2, . . .) +
∑︂

g∈ 1
2
N∗

ℏ2g−1Fg,1(J̃0)

⎞⎟⎟⎠ |x0⟩,
(5.66)
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for some polynomials Fg,n homogeneous of degree n in the respective modes,

with Fg,n(0) = 0. Here the J̃0 are the modes conjugate to the zero modes J0.

Furthermore, by construction the state v is annihilated by all non-negative

modes {H2
k , H

4
k , H

6
k}, with k ≥ 0:

Hm
k v = 0, m = 2, 4, 6, k ∈ N. (5.67)

Therefore, the action of the negative modes Hm
k , k < 0 on v generates a (ℏ-

adically completed) Fock module for W(sp6).

Remark 5.C.5. What is particularly interesting here is that the state v does

not live in the ℏ-completion of the Fock module generated by |x0⟩; indeed, the

conjugate modes J̃0 appear in v. This is a direct consequence of the fact that

we need to interpret the zero mode J0 as a derivative instead of a variable –

see Section 4.H, and in particular Section 4.H.4.

5.C.2 Airy ideals for W(sp2N)

In this section we generalize the above construction for all N ≥ 3. We follow

closely the methods and logic of the previous section.

The strong generators

We use the notation in Section 4.H.6 and Section 5.B. We consider the rank

N free boson VOA, generated by states {χ0, χ1, . . . , χN−1}. We consider the

fully cyclic automorphism σ, and the corresponding σ-twisted module with

map Yσ. Let v0, v1, . . . , vN−1 be the diagonal basis. For clarity, we write

χi(z) := Yσ(χi, z), vi(z) = Yσ(vi, z), i = 0, 1, . . . , N − 1. (5.68)
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We index the modes of the twisted fields in the diagonal basis as usual:

vk(z) =
∑︂
n∈Z

JNn+kz
−n−1−k/N , k = 0, 1, . . . , N − 1 (5.69)

We introduce ℏ in our module as usual, which turns the algebra of modes into

the graded Rees algebra associated to the filtration by conformal weight.

We obtained the twisted fields Wm
σ,ℏ(z) for the strong generators ofW(sp2N)

in our ℏ-deformed σ-twisted module in Lemma 5.B.4. As before, for clarity we

drop the subscripts σ, ℏ on the generators, and denote them simply by Wm(z).

We define the modes of the strong generators as

Wm(z) =
∑︂
k∈Z

Wm
k z

−k−1. (5.70)

From Lemma 5.B.4 it is easy to see that each of these modes takes the

form

Wm
k = ℏmpmk (Ja), (5.71)

where pmk l(Ja) is a polynomial (a sum of normal ordered monomials) in the

bosonic modes Ja of degree ≤ m. As for the N = 3 case, the modes Wm
k

with k ≥ 0 certainly do not generate an Airy ideal as they are homogeneous

of degree m in ℏ, and m > 1. To obtain an Airy ideal we introduce an

automorphism of ˆ︁Uℏ(h) (dilaton shift) that breaks the ℏ-homogeneity.

Definition 5.C.6. Let ϕ : ˆ︁Uℏ(h)→ ˆ︁Uℏ(h) be the automorphism given by

ϕ : (ℏ, ℏJm) ↦→ (ℏ, ℏJm + δm,−N + δm,−N−1). (5.72)

In other words, it simply shifts the modes ℏJ−N ↦→ ℏJ−N + 1 and ℏJ−N−1 ↦→
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ℏJ−N−1+1. It can be understood as acting by conjugation; for any P ∈ ˆ︁Uℏ(h),

we can think of ϕ(P ) as being given by

ϕ(P ) = exp

(︃
JN
Nℏ

+
JN+1

(N + 1)ℏ

)︃
P exp

(︃
− JN
Nℏ
− JN

(N + 1)ℏ

)︃
. (5.73)

This is of course a natural generalization of the dilaton shift Definition 5.C.1

for N = 3.

The strong generatorsWm(z) ofW(sp2N) are mapped to new fields ϕ(Wm(z))

under this automorphism. We introduce the following notation for the image

fields and their modes:

Hm(z) :=
Nm−1m!

2
ϕ(Wm(z)), Hm

k :=
Nm−1m!

2
ϕ(Wm

k ). (5.74)

Clearly, the action of ϕ breaks homogeneity in ℏ, which is what we want.

Our goal is to show that the non-negative modes Hm
k , k ≥ 0, generate an Airy

ideal in ˆ︁Uℏ(h). As in the N = 3 case, we need to prove Conditions (1)–(4)

in Lemma 4.F.1. We first focus on Condition (3), which amounts to studying

the O(ℏ0) and O(ℏ1) terms in the Hm
k .

Lemma 5.C.7. The modes Hm
k satisfy, for k ≥ 0 and m = 2, 4, 6, . . . , 2N :

Hm
k = ℏ

m−1∑︂
i=0

m!

(m− i− 1)!i!
JNk+i +O(ℏ2). (5.75)

Proof. We start with Lemma 5.B.4 for the strong generators Wm(z). We

mentioned before, the modes take the form

Wm
k = ℏmpmk (Ja), (5.76)
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where pmk (Ja) is a polynomial in the bosonic modes of degree ≤ m. As in the

proof of Lemma 5.C.2 for N = 3, to study the O(ℏ0) and O(ℏ1) terms in the

modes Hm
k we are only interested in the monomials of degree m and m− 1 in

the polynomials pmk (Ja).

First, Lemma 5.B.4 implies that

1

ℏm
Wm(z) =

N−1∑︂
i=0

[︃
2 : χi(z)m :

m!
− 1

(m− 1)!
∂z : χi(z)m−1 :

]︃
+ lower degree,

(5.77)

where “lower degree” stands for terms of degree ≤ m−2 in the bosonic modes.

These expressions are in terms of the bosonic fields χi(z). We need to

rewrite them in terms of the twisted fields vi(z) in the diagonal basis. Recall

that

χi(z) =
1

N

N−1∑︂
a=0

θiava(z), (5.78)

where θ = e2πi/N .

We consider the degree m terms in the fields Wm(z). They read:

m!Nm−1

2ℏm
Wm(z) =

∑︂
∑︁N−1

i=0 iαi|N∑︁N−1
i=0 αi=m

m!

α0!α1! . . . αN−1!

N−1∏︂
p=0

vp(z)αp + lower degree.

(5.79)

In terms of the modes, we get:

m!Nm−1

2ℏm
Wm

k =
∑︂

∑︁N−1
i=0 iαi|N∑︁N−1
i=0 αi=m

m!

α0!α1! . . . αN−1!

α0∏︂
i=1

: Jβ0
i

:

α1∏︂
i=1

: Jβ1
i

: . . .

αN−1∏︂
i=1

: JβN−1
i

:

(5.80)

+ lower degree
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where βj
i ≡ j (mod N) for all i and

∑︁N−1
j=0

∑︁αj

i=1 β
j
i = N(k + 1−m).

Now we want to implement the dilaton shift (the automorphism ϕ of Defi-

nition 5.C.6 on these highest degree terms. From (5.80), the O(ℏ0) terms can

only come from a term proportional to (J−N)m, but these terms only come up

in the mode expansion of Wm
−1. Therefore the dilaton shift does not produce

O(ℏ0) terms in the non-negative modes.

As for the O(ℏ1) terms, they are essentially determined by the conditions:

N−1∑︂
i=0

iαi|N,
N−1∑︂
i=0

αi = m. (5.81)

To get a O(ℏ1) term we have to shift all modes except for one in the mode

expansion given by (5.80), hence we only need to consider terms with αi = 0

for i = 1, 2, . . . , N − 2 or αi = 1 for some i = 1, 2, . . . , N − 2. For a term of the

form
∏︁

i Jγi we recall that the modes add up as follows,

∑︂
i

γ = N(k + 1−m). (5.82)

The lowest and highest index of the O(ℏ1) terms produced in Hm
k are due to

the terms with α0 = m and αN−1 = m − 1 respectively, that is terms of the

form

: JNk(J−N)m−1 :, bm,k : JNk+m−1(J−(N+1))
m−1 :, (5.83)

and are given by

mJNk, dn,kJNk+m−1, (5.84)
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respectively, where

bm,k = 1, if m− 1 ≡ N − 1 (mod N) (5.85)

bm,k = m, otherwise (5.86)

and dm,k = m. In between these two extreme cases we have terms of the form,

m!

(m− a− 1)!a!
: JNk+a(J−N)m−a−1(J−N−1)

a :, a = 1, 2, . . . ,m− 2, (5.87)

and after the dilaton shift these yield the following O(ℏ1) terms:

m!

(m− a− 1)!a!
JNk+a. (5.88)

Finally, we look at the sub-leading degree m−1 terms in the fields Wm(z),

which may contribute O(ℏ1) terms after dilaton shift. From (5.77) the degree

m− 1 term in 1
ℏmW

m(z) is proportional to

N−1∑︂
i=0

∂z : (χi(z))m−1 : . (5.89)

After changing to the diagonal basis only terms of the form

∂z : (v0(z))m−1 :, ∂z : (vN−1(z))m−1 : δN |m−1, ∂z : (v0(z))m−1−a(vN−1(z))a : δN |a,

(5.90)

can yield O(ℏ1) corrections, where o < a < m − 1. Note that these are

terms that are firstly invariant under σ and secondly have as factors only the

dilaton shifted fields v0(z) and vN−1(z). After performing the dilaton shifts

ℏJ−N ↦→ J−N + 1 and ℏJ−N−1 ↦→ ℏJ−N−1 + 1 it is easy to check that O(ℏ)
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corrections are only produced for negative modes, and are zero for all non-

negative modes, as in the N = 3 case. The easiest way to see this is to

reformulate the dilaton shift as,

v0(z) ↦→ v0(z) +
1

ℏ
, (5.91)

vN−1(z) ↦→ vN−1(z) +
z1/N

ℏ
. (5.92)

Then the O(ℏ) terms produced by each of the terms mentioned in (5.90) in

the operators Wm(z) from this dilaton shift are respectively of the form,

ℏ∂z(z0), ℏ∂z(z
m−1
N ), ℏ∂z(z

a
N ). (5.93)

As the powers of z in the above expressions are non-negative, the result follows.

The Airy ideal

We now prove that the left ideal generated by the modes {Hm
k }m=2,4,...,2N with

k ≥ 0 in ˆ︁Uℏ(h) is an Airy ideal. We find ourselves in the scenario of Section

4.H.4, where the zero mode J0 of the field v0(z) (which is the only zero mode,

see (5.29)) acts as a derivative ∂0.

Theorem 5.C.8. Let I be the left ideal in ˆ︁Uℏ(h) generated by the {Hm
k }m=2,4,...,2N

with k ≥ 0. Then I is an Airy ideal.

Proof. To prove that I is an Airy ideal, we need to check that Conditions

(1)–(4) in Lemma 4.F.1 are satisfied.

Condition (1). The boundedness condition is automatically satisfied for

the modes of the fields of a VOA (see Lemma 4.H.4).
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Condition (2). It is always satisfied for the subset of non-negative modes

of the strong generators of a VOA (see Lemma 4.I.2 and also Proposition 3.14

in [9]).

Condition (3). For simplicity, let us re-index our operators Hm
k , i =

2, 4, . . . , 2N , as

Hm
k =: LNk+m

2
−1. (5.94)

Then the operators are indexed by {Li}i∈I with I = A = N. We want to

determine whether

Li =
∑︂
a∈N

MiaℏJa +O(ℏ2) (5.95)

for some coefficients Mia such that for all fixed a ∈ N, they vanish for all but

finitely many i ∈ N. But we showed in Lemma 5.C.7 that

Hm
k = LNk+m

2
−1 = ℏ

m−1∑︂
i=0

m!

(m− i− 1)!i!
JNk+i +O(ℏ2). (5.96)

In particular, we can write (for k ≥ 0 and n ∈ {0, 1, . . . , N − 1})

LNk+n =
∑︂
a∈N

MNk+n,aℏJa +O(ℏ2), (5.97)

with MNk+n,a = 0 for all a < Nk. In other words, for a fixed a, the only non-

vanishing coefficients MNk+m,a are for Nk ≤ a. In particular, for any fixed

a ∈ N, the coefficients Mia vanish for all but finitely many i ∈ N, as required.

Condition (4). We need to show that there exists coefficients Nbj such that

∑︂
i∈N

NbiMia = δab,
∑︂
a∈N

MiaNaj = δij, (5.98)

and such that for all fixed j ∈ N, the coefficients Nbj vanish for all but finitely
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many b ∈ N. Equivalently, we need to show that we can invert the relation

(5.95) to get ∑︂
i∈N

NbiLi = ℏJb +O(ℏ2) (5.99)

with the coefficients such that for all fixed i ∈ N they vanish for all but finitely

many b ∈ N.

We proceed as for the N = 3 case. We rewrite (5.96) as

LNk+m
2
−1 =

m−1∑︂
i=0

cmi ℏJNk+i +O(ℏ2), cmi =
m!

(m− i− 1)!i!
. (5.100)

Let Jk := ℏ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

JNk

JNk+1

...

JNk+N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Kk :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

LNk −
∑︁

m>Nk+N+1 c
2
mℏJNk+m

LNk+1 −
∑︁

m>Nk+N+1 c
4
mℏJNk+m

...

LNk+N−1 −
∑︁

m>Nk+N+1 c
2N
m ℏJNk+m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

(M)ij =

⎧⎪⎪⎨⎪⎪⎩
0, j > 2i

c2ij−1, otherwise

(5.101)

for 1 ≤ i, j ≤ N . From (5.100) we get matrix equations

MJk +O(ℏ2) = Kk, k ≥ 0. (5.102)

One can see that M is invertible. This can be shown in various ways, such as

converting to an upper/lower triangular matrix using Gaussian elimination or
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LU decomposition. Note that dividing the ith row by i gives a matrix,

(M)ij =

⎧⎪⎪⎨⎪⎪⎩
0, j > 2i(︁
2i
j

)︁
, otherwise

(5.103)

which is a submatrix of the infinite ‘Pascal matrix’. Submatrices of the Pascal

matrix with non-zero diagonal entries are invertible, as proved in [38].

As M is invertible, we can invert the matrix equations to get (for k ≥ 0

and i ∈ {0, 1, . . . , N − 1}):

ℏJNk+i +O(ℏ2) =
N∑︂
j=1

δjLNk+j−1 +
2N−1∑︂
j=N

ϵjℏJNk+j (5.104)

for some constants δj, ϵj ∈ Q. Substituting back recursively the formulae for

ℏJNk+j, we end up with

ℏJNk+i +O(ℏ2) =
∑︂
m∈N

NNk+i,mπ
≤1(Lm), (5.105)

for k ≥ 0 and i ∈ {0, 1, 2, N − 1} and where all NNk+i,m = 0 for m < Nk.

Equivalently, for any fixed m ∈ N, the only non-vanishing coefficients are

NNk+i,m with Nk ≤ m. In particular, for all fixed m ∈ N the coefficients

vanish for all but finitely many Nk + i ∈ N, and the condition is satisfied.

As all conditions of Lemma 4.F.1 are satisfied, we conclude that the left

ideal I generated by the {Hm
k }, k ≥ 0, m ∈ {2, 4, . . . , 2N} is an Airy structure.

Furthermore, from the calculation above we see that we can also think of

the left ideal as being generated by the differential operators (k ≥ 0, i ∈
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{0, 1, 2, . . . , N − 1}):

L̃Nk+i =
∑︂
m∈N

NNk+i,mLm = ℏJNk+i +O(ℏ2). (5.106)

In particular, as in the N = 3 case we have an operator L̃0 = ℏJ0 + O(ℏ2).

Therefore, we are again in the scenario of Section 4.H.4, where we need to

intepret the zero mode J0 as a derivative in the Weyl algebra.

Now that we know that the left ideal I generated by the modes of the strong

generators ofW(sp2N) is an Airy ideal, we obtain an immediate Corollary from

Theorem 4.E.3 (see also Section 4.H.4).

Corollary 5.C.9. Let I be the left ideal in ˆ︁Uℏ(h) generated by the non-negative

modes {Hm
k }m=2,4,...,2N , with k ≥ 0. Then ˆ︁Uℏ(h)/I is a cyclic left module

canonically isomorphic to the (ℏ-adically completed) submodule of M (see Sec-

tion 4.H.4) for the rank N free boson VOA generated by |x0⟩, but twisted by

some stable transvection on ˆ︁Uℏ(h).

ˆ︁Uℏ(h)/I is also canonically isomorphic to a module of exponential type

generated by a state

v := Z|0⟩ = exp

⎛⎜⎜⎝ ∑︂
g∈ 1

2
N,n∈N∗

2g−2+n>0

ℏ2g−2+nFg,n(J−1, J−2, . . .) +
∑︂

g∈ 1
2
N∗

ℏ2g−1Fg,1(J̃0)

⎞⎟⎟⎠ |0⟩,
(5.107)

for some polynomials Fg,n homogeneous of degree n in the respective modes,

with Fg,n(0) = 0. Here the J̃0 are the modes conjugate to the zero modes J0.

Furthermore, by construction the state v is annihilated by all non-negative
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modes {Hm
k }m=2,4,...,2N , with k ≥ 0:

Hm
k v = 0, m = 2, 4, . . . , 2N k ∈ N. (5.108)

Therefore, the action of the negative modes Hm
k , k < 0 on v generates a (ℏ-

adically completed) Fock module for W(sp2N).

Remark 5.C.10. As in the N = 3 case, the state v does not live in the

ℏ-completion of the Fock module generated by |x0⟩ for the free boson VOA;

indeed, the conjugate modes J̃0 appear in v. This is a direct consequence of

the fact that we need to interpret the zero mode J0 as a derivative instead of

a variable – see Section 4.H, and in particular Section 4.H.4.
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Chapter 6

Boundary states

The classical equation of a closed string is described by a conformal field theory

(CFT) (i.e. a conformally invariant non-linear sigma model) on the sphere.

In terms of the path integral formulation the space of solutions for the theory

factorizes into two ‘chiral’ halves, each of which can be studied independently

as chiral algebras. Instead of a sphere, in this chapter we briefly introduce

the main defining data of a CFT on an open Riemann surface also known as

‘open conformal field theory’. In this case, the two chiral halves are no longer

independent. Some of the defining data can be encoded into ‘boundary states’

that are defined abstractly in terms of the so-called ‘Ishibashi states’. The

main motivation for this comes from string theory in which ends of open strings

give rise to boundaries of the string world sheet. In addition, non-perturbative

sectors of string theory called D-branes are a slight generalisation of this setup

(See for example [42] and [32]). In the next chapter, we will use the formalism

of Airy ideals to construct boundary states associated to affine Lie algebras.

The main references for the current chapter are [42] and [35].
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6.A Boundary conformal field theory

The starting point for the data of a genus 0 conformal field theory (CFT) are

two vertex operator algebras WL,WR, which we assume to be the same WL =

WR =W in the rest of this chapter. We assume that the associated state space

H(P ) (where the superscript P is used for a CFT on the plane) decomposes

into a sum of W ⊗W irreducible representations denoted by Hi⊗Hī so that,

H(P ) =
⨁︂
i∈I

Hi ⊗Hī. (6.1)

for some indexing set I. However the modules in the sum above cannot be ar-

bitrary. Various additional constraints are required for a CFT to be consistent.

In particular we wish that the partition function given by,

Z(τ) :=
∑︂
i∈I

χHi
(τ)χHī

(−τ̄) (6.2)

be invariant under the action of SL2(Z) where χ denotes trace of e2πiτ(L0− c
24)

Secondly we also require that the OPEs close in H(P ).

An attempt to generalize these notions to a CFT on a Riemann surface with

boundary yields significant insights into the global properties of a CFT. The

requirement that the CFT should retain all the symmetries required (such as

conformal transformations on the boundary) influence global properties (such

as the state space) and are encoded as ‘gluing conditions’ on the boundary and

the value of coefficients of one-point functions in the bulk (as these no longer

vanish). Conformal symmetries that preserve the boundary can be formulated
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as the gluing condition,

T (z) = T̄ (z̄), z = z̄. (6.3)

One may also impose extra gluing conditions on the other strong generators

Wi,

Wi(z) = Ω(W̄ )(z̄), z = z̄ (6.4)

where Ω : W ↦→ W is a local (conformal) automorphism. In addition to the

gluing conditions, we need additional data to fix the boundary CFT associated

to a given bulk CFT uniquely. As translational invariance is broken, the one-

point functions ⟨ϕi(z, z̄)⟩ do not vanish but are given by,

⟨ϕi,ī(z, z̄)⟩α =
Aα,iī

|z − z̄|hi+hī
δī,ω−1(i+) (6.5)

where i+ denotes the module that is contragredient dual to i, ω is the auto-

morphism induced on the index set I from Ω and Aα,iī is a map ,

Aα,iī : H(0)

ī
↦→ H(0)

i (6.6)

between the grade 0 part of the respective modules.

Let us denote the choice of these coefficients by a continuous label α. Hence

the data of a boundary CFT is given by the pair (Ω, α).
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6.B Boundary states

In order to compute correlators, and bulk-boundary OPEs of the boundary

theory in terms of objects in the bulk theory, Cardy and Ishibashi among

other introduced the boundary state formalism. One definition is given in

terms of finite temperature correlators of bulk fields in the upper half plane

(See Section 4.3.1 of [42]). We give below an equivalent definition in terms of

zero-temperature correlators. Consider the change of coordinates,

ζ =
1− iz
1 + iz

, ζ̄ =
1 + iz̄

1− iz̄
(6.7)

that maps the half-plane to the complement of the unit disk in the ζ-plane.

The boundary state ||α⟩⟩ for a boundary data (Ω, α) is defined by,

⟨0|ϕ(P )
i (ζ1, ζ1̄) . . . ϕ

(P )
N (ζN , ζ̄N)||α⟩⟩Ω = J (ζ, z)⟨ϕ(H)

1 (z1, z̄1) . . . ϕ
(H)
n (zN , z̄N)⟩α

(6.8)

where |0⟩ is the vaccum of the CFT on the full plane, J is the product of

Jacobians of the z− ζ transformation and the subscripts (P ) and (H) indicate

objects on the full plane and half plane respectively. Let ||α⟩⟩ω be the boundary

state for the CFT with boundary data (Ω, α). As (6.3) and (6.4) hold between

arbitrary correlators, it implies the relations,

(︂
L(P )
n − L̄(P )

−n

)︂
||α⟩⟩ω = 0, (6.9)(︂

W (P )
n − (−1)hW ΩW̄

(P )
−n

)︂
||α⟩⟩ω = 0 (6.10)
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where hW is the conformal weight of W . Boundary states can usually be con-

structed explicitly in terms of certain generalized coherent states associated

with the bulk theory (See Section 6.D for some explicit examples). First dis-

covered by Ishibashi in [35], and hence named Ishibashi, the main result is an

existence theorem of certain infinite linear combinations for every irreducible

representation present in the bulk Hilbert space.

6.C Existence of Ishibashi states

We now prove that (6.9)-(6.10) have an explicit solution in terms of objects

in the bulk CFT H(P ). First we introduce some preliminary notation and

concepts. Let M be a module of a vertex algebra V (usually a W-algebra),

M ′ be it’s contragredient dual and Ω be an automorphism (that preserves the

conformal element). We can denote elements of m ∈ M by the ket |m⟩ and

the canonical dual in M ′ as ⟨m|.

Remark 6.C.1. In this section we assume that M and M ′ have countable

dimension as vector spaces, but it is easy to generalize the results below for

uncountable dimensions (in fact, they are independent of a choice of basis).

Let {|va⟩}a∈N and {|v′a⟩}a′∈N be orthonormal bases of M and M ′ respectively

and ⟨va| and ⟨v′b| be the canonical dual vectors to |va⟩ and |v′b⟩ respectively.

We can abbreviate the twisted contragredient dual module by,

˜︂M := Ω∗(M ′) (6.11)
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The action on ˜︂M is defined by,

V × ˜︂M ↦→ ˜︂M : x · Ω∗(m′) = Ω∗(Ω−1(x) ·m′), m′ ∈M ′, x ∈ V. (6.12)

We remark that there exists an anti-Lie algebra involution on the algebra of

modes θ (See [2, Proposition 3.9.1]). This induces an anti-linear map,

U : M ↦→M ′ (6.13)

such that,

UWn = (−1)hW W̄−nU. (6.14)

and,

[Ω∗, U ] = 0 (6.15)

Our goal is to construct Ishibashi states I ∈ H(B) that satisfy the con-

straints,

(Ln − L̄−n)I = 0 (6.16)

(Wn − (−1)hW ΩW̄−n)I = 0 (6.17)

where we have used barred variables to denote the ‘right moving copy’ of the

generators of ˜︂M . As a matter of fact, in [35] it was shown that there exists

a Ishibashi state for every irreducible module Hi, i ∈ I appearing in the bulk
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Hilbert space decomposition,

H(P ) =
⨁︂
i∈I

Hi ⊗Hī. (6.18)

Proposition 6.C.2. There exists a vector IMj inMj⊗˜︂Mj ⊆ H(P ) :=
⨁︁

j∈J Mj⊗˜︂Mj for every j ∈ J that satisfies (6.16)-(6.17). It can be expressed as an infi-

nite sum,

IMj =
∑︂
a∈N

|vMj
a ⟩ ⊗ |Ω∗(U(vMj

a ))⟩ (6.19)

Proof. It is sufficient to prove that for every j ∈ J ,

⟨vMk
a | ⊗ ⟨v

Ml
b |
(︁
Ln − L̄−n

)︁
IMj = 0 (6.20)

⟨vMk
a | ⊗ ⟨v

Ml
b |
(︁
Wn − (−1)hW ΩW̄−n

)︁
IMj = 0 (6.21)

for all a, b ∈ Z and all k, l ∈ J . We now prove (6.21) of which (6.20) is a

special case. Consider the following calculation,

∑︂
a∈N

⟨vMk
c | ⊗ ⟨Ω∗U(vMl

b ))| (Wn − (−1)hW ΩW̄−n) |vMj
a ⟩ ⊗ |Ω∗UvMj

a ⟩ (6.22)

=
∑︂
a∈N

[︁
δl,jδa,b ⟨vMk

c |Wn |vMj
a ⟩ − δk,jδa,c(−1)hW ⟨Ω∗UvMk

c |ΩW̄−n |Ω∗UvMj
a ⟩
]︁

(6.23)

where we have used the orthonormality of our basis. Now observe that for the
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second Dirac sandwich above, we obtain

⟨Ω∗UvMk
c |ΩW̄−nΩ∗U |vMj

a ⟩ = (−1)hW ⟨UvMk
c |UW̄ n |vMj

a ⟩ (6.24)

from (6.12), (6.15) and (6.14). Substituting this in (6.23) completes the proof.

The proof presented above is standard in physics literature and first ap-

peared in [35] (See also [42]). The question of uniqueness of the state given by

(6.19) is more subtle, and it appears that it doesn’t hold in general. We now

prove uniqueness of the Ishibashi state in a special context, those associated

to modules of affine Lie algebras. We will dive deeper into the construction of

such Ishibashi states in Chapter 7 and relate them to the framework of Airy

ideals.

Our starting point is a simple complex Lie algebra, denoted by g. Let M

be an irreducible module of the universal affine vertex superalgebra V k(g) and

let ˜︂M its contragredient dual. Consider two copies of g, one denoted by ḡ so

that g ∼= ḡ. We first fix a choice of simple roots Φ and its image Φ̄ := −ΩΦ for

the two copies g and ḡ respectively. Let {xαi , hj}i∈I,j∈J and {x̄αi , h̄
j}i∈I,j∈J be

the associated Chevalley basis (See 7.A.1 for more on the Chevalley basis) for

g and ˜︁g respectively, where the generators {x̄αi , h̄
j} are the images of {xαi , hj}

under the contragredient duality homomorphism. We also choose an ordering

for the index sets I and J . Then V k(g) is strongly generated by the fields

{xαj(z), hi(z)}. Let IM be the Ishibashi state for the boundary conditions
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given by,

(︁
xαj
n − Ωx̄

αj

−n

)︁
IM = 0, j ∈ J (6.25)(︂

hin − Ωh̄
i
−n

)︂
IM = 0, i ∈ I. (6.26)

for some Lie algebra automorphism Ω.

Proposition 6.C.3. LetM⊗˜︂M be as above. IfM⊗˜︂M is also a highest weight

module with respect to the choices of simple roots Φ, Φ̄, then the Ishibashi state

IM ∈M ⊗ ˜︂M given by (6.19) is unique.

Proof. We denote the tensor product byM := M ⊗˜︂M . It is C×C graded by

conformal weight. We denote the decomposition with respect to this grading

by,

M =
⨁︂
n,m≥0

Mn+∆,m+∆ (6.27)

where ∆ is some constant such as,

Mn,m < 0, for n < ∆ or m < ∆

and M∆,∆ ̸= 0. We first prove that if w is a highest weight state inM and I is

any Ishibashi state satisfying (6.25) and (6.26), then ⟨w|vI⟩ is non-vanishing.

Let

I =
∑︂
n,m

Im+∆,n+∆ (6.28)

where In,m denotes the projection of I into Mn+∆,m+∆.
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We first prove that I∆,∆ ̸= 0. Let n′ and m′ denote constants that are

minimal with respect to the conditions In′+∆,• ̸= 0 and In′+∆,m′+∆ ̸= 0 respec-

tively where the index denoted by • could be arbitrary. Substituting (6.28)

into (6.25) we can write,

xαj
r In′+∆,m′+∆ +

∑︂
(n,m)̸=(n′,m′)

xαj
r In+∆,m+∆ − Ωx̄

αj

−rI = 0, j ∈ J, (6.29)

and for all r > 0. Now note that x
αj

r>0 lowers the conformal weight, while x
αj

−r

raises the conformal weight, and similarly for the ‘right moving’ operators x
˜︁αj
r .

Due to the minimality condition on n′,m′ the above equation can hold true

only if x
αj
r In′+∆,m′+∆ = 0. Similarly, writing the above equation for r < 0, we

can conclude that x̄
αj

−rIn′+∆,m′+∆ = 0 for r < 0. This brings us to the first

intermediate conclusion that I∆,∆ ̸= 0.

As M is also a highest weight module to respect to a choice of roots Φ, Φ̄

we can write a decomposition,

M∆,∆ =
⨁︂
λ′,µ′

M∆,∆,λ′,µ′ . (6.30)

In particular there exist highest weights λ, µ so that,

I∆,∆ =
∑︂

β′,β ′̄∈Q+

Iλ−β′,µ−β ′̄ (6.31)

where Q+ is the Z≤0-span of positive simple roots. Like before we can define

139



a set of extremal indices β, β̄ such that,

Iλ−β,• ̸= 0, Iλ−β+α,• = 0 ∀α ∈ Q+ (6.32)

Iλ−β,µ−β̄ ̸= 0, Iλ−β+α,µ−β̄+ᾱ = 0 ∀α, ᾱ ∈ Q+ (6.33)

We now proceed exactly like in the last paragraph. By substituting (6.31) in

(6.17) and using the extremality of β, β̄ we can conclude that,

Iλ,µ ̸= 0. (6.34)

Finally let I and I ′ be two Ishibashi state in M ⊗ ˜︂M and |w⟩ := Iλ,µ be

the highest weight state of M ⊗ ˜︂M then the combination,

I ′′ := I − ⟨w|I⟩
⟨w|I ′⟩

I ′ (6.35)

is also an Ishibashi state with,

⟨w|I ′′⟩ = 0 (6.36)

which is only possible if I ′′ = 0 and thus I, I ′ are linearly dependent.

Remark 6.C.4. If the top level I∆,∆ is one-dimensional then the first part

of the above proof directly gives us uniqueness of the Ishibashi state. This is

true in the case when M is a Verma module of a W-algebra for example.
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6.D Examples of boundary conditions and Ishibashi

states

We give below a few preliminary examples of boundary conditions and the

associated Ishibashi states.

Example 6.D.1. 1. LetH be the rank 1 Heisenberg VOA generated by the

modes {an}n∈Z and let πλ be the Fock module generated by a vector |λ⟩

so that a0|λ⟩ = λ|λ⟩, λ ∈ C. Let |λ, µ⟩ denote the tensor product |λ⟩ ⊗

|µ⟩, then the Ishibashi states for the Neumann and Dirichlet boundary

conditions (these are the boundary conditions for the compactification

of a free boson) are,

(an ± ā−n)Iλ,µ = 0. (6.37)

It is easy to see that this boundary condition is solved by the ‘canonical

coherent states’,

Iλ,µ = exp(−
∞∑︂
n=1

1

n
a−nā−n)|λ, µ⟩ (6.38)

for the boundary condition with the plus sign (Neumann conditions). We

briefly remark that exactly analogous expressions for boundary condi-

tions in terms of exponentials of the ‘creation operators’ can be obtained

for the free fermion VOA as well.

2. Recall that the N = 2 superconformal algebra has a free field realization

in terms of 4 free fields - 2 free bosons X, Y and 2 free fermions b, c. The
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generators take the form,

J = −Y − ωX− : b̃c̃ : (6.39)

L =
c∂b

2
− ∂Y −XY (6.40)

G− = b̃X + ∂b̃ (6.41)

G+ = 2c̃Y − 2ω∂c̃ (6.42)

There are 2 possible gluing conditions (referred to as A-type and B-

type)given respectively by,

(︁
Ln − L̄−n

)︁
|b⟩ = 0, (6.43)(︁

Jn − J̄−n

)︁
|b⟩ = 0, (6.44)(︂

G+
r + iηG−̄

−r

)︂
|b⟩ = 0, (6.45)(︂

G−
r + iηG+̄

−r

)︂
|b⟩ = 0 (6.46)

and

(︁
Ln − L̄−n

)︁
|b⟩ = 0, (6.47)(︁

Jn + J̄−n

)︁
|b⟩ = 0, (6.48)(︂

G+
r + iηG+̄

−r

)︂
|b⟩ = 0, (6.49)(︂

G−
r + iηG−̄

−r

)︂
|b⟩ = 0 (6.50)

for η = ±1. In [31], the authors construct the most general N = 2

superconformal boundary states from boundary states of the theory of

two free uncompactified bosons and fermions, while the treatment of
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N = 1 boundary states appears in [30].
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Chapter 7

Airy ideals from Wakimoto

modules

Free field realizations of vertex operator algebras (VOAs) are broadly speaking

embeddings of the VOA into Heisenberg or Clifford algebras. Such embeddings

are a ready source of modules from the category O obtained from suitable

Fock representations of the Heisenberg algebra with very explicit formulas for

the generators in terms of free fields. In this chapter, we first present a free

field realization of the affine Kac-Moody algebras ĝ. Physically this yields a

bosonization of the so-called Wess-Zumino-Novikov-Witten (WZNW) model

associated to ĝ. The construction is a generalization of the Borel-Weil-Bott

(BWB) construction of representations of semi-simple Lie algebras. The BWB

theorem gives embeddings of a simple Lie algebra g into a Weyl algebra ob-

tained from the infinitesimal action of g on the flag manifold. This action can

be expressed in terms of differential operators acting on the spaces of global

sections of holomorphic line bundles on the flag manifold. We first recall this

construction in section 7.B. We then present the essential ingredients for the
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generalization to the infinite-dimensional case. In this case, we define an em-

bedding of the loop algebra g((t)) into the Lie algebra of local vector fields

on the formal loop space of the big cell that is then lifted to an embedding

of its central extension ĝ to a subalgebra of the Weyl algebra Ag. Finally we

recast this result as a homomorphism of vertex algebras, and present a family

of ĝ-modules Wk,λ, k ∈ C, λ ∈ h∗. These are the so-called Wakimoto modules

and were first constucted by Wakimoto in [43] for ˆ︂sl2. This construction was

later generalized for all ĝ by Feigin and Frenkel in [24]. We closely follow the

presentation of [26] in this chapter.

A concrete application of free-field realizations of VOAs is the construction

of copious number of examples of Airy ideals, almost all of which promise great

utility in the study of enumerative geometry. In the second part of this chapter,

we propose new examples of Airy ideals by exploiting the Wakimoto realization

for every simple Lie algebra g. The partition functions thus obtained can

be interpreted as representations of a special type Ishibashi states that we

introduced in chapter 6.

7.A Preliminary background

We recall some basic facts and notation on affine Lie algebras and their rep-

resentations.

Let g be a finite-dimensional simple Lie algebra of rank l. The affine Lie

algebra associated to g is the universal central extension of the loop algebra

Lg = g ⊗ C[t, t−1] and denoted by ĝ. We denote the central element of ĝ by
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K. The vacuum representation of level k is defined as,

Vk = U(ĝ)⊗U(g⊗C[t]⊕CK) Ck (7.1)

where Ck stands for the trivial one-dimensional representation of the Lie sub-

algebra g⊗C[t] of ĝ on which K acts by multiplication by k and U(·) denotes

taking the universal enveloping algebra.

The Lie algebra ĝ has a Cartan decomposition,

g = ˜︂n+ ⊕ ˜︁h⊕˜︂n− (7.2)

where ˜︂n± = n± ⊗ C1 ⊕ g ⊗ t±1C[t±] and ˜︁h = h ⊗ C1 ⊕ CK where g =

n+ ⊕ h ⊕ n− is the Cartan decomposition of g. We are especially interested

in modules on which ˜︁n+ acts locally nilpotently and ˜︁h acts semi-simply. This

is known as the category O and all irreducible objects in this category can

be obtained as quotients of Verma modules. Verma modules are defined as

induced representations,

Mλ = U(g)⊗U(˜︁n+⊕˜︁h) Cλ (7.3)

where Cλ is the one-dimensional ˜︁n+ ⊕ ˜︁h-module on which ˜︁n+ acts as zero and˜︁h acts according to the character λ.
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7.A.1 Chevalley basis

In this section we sketch the basic ideas behind the construction of a Chevalley

basis. Let g be a simple Lie algebra with Killing form κ and a root system Φ.

Let h denote a Cartan subalgebra so that dim(h) := l = rank(A) − |Φ|. Let

∆ = {α1, α2, . . . , αl} be a basis of simple roots, so that we have a root space

decomposition,

g = h⊕
⨁︂
α∈Φ

gα. (7.4)

In addition we set tα to be the unique element such that,

α(h) = κ(tα, h) ∀h ∈ h. (7.5)

We define a set of elements (hα)α∈Φ given by,

hα =
2tα

κ(tα, tα)
(7.6)

The starting point of the construction of the Chevalley basis is the following

proposition from [34, Section 25.2].

Proposition 7.A.1. It is possible to choose root vectors xα ∈ gα(α ∈ Φ)

satisfying:

1. [xα, x−α] = hα.

2. If α, β, α + β ∈ Φ, [xα, xβ] = cα,βxα+β then cα,β = −c−α,−β.

We also give below a quick corollary that follows from the symmetry of the

structure constants cα,β described above.
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Corollary 7.A.2. Let Ω : g ↦→ g be the involution given by,

Ω : xα ↦→ −x−α (7.7)

hα ↦→ −hα, (7.8)

then Ω is a Lie algebra automorphism.

The Proposition 7.A.1 is the precursor to construction of a Chevalley basis

(a basis which satisfies the conditions of the above proposition) for g. It turns

out that in this case, all the structure constants are integers (See [34, Section

25.2]).

Theorem 7.A.3. (Chevalley) Let xα, α ∈ Φ, hαi
, 1 ≤ i ≤ l be a Chevalley

basis of g. Then the resulting structure constants lie in Z. More precisely:

1. [hαj
, hαj

] = 0.

2. [hαi
, xα] = ⟨α, αi⟩xα.

3. [xα, x−α] = hα is a Z-linear combination of hα1 , . . . , hαl
.

In the rest of this chapter, we will use a choice of Chevalley basis to con-

struct certain modules of affine Lie algebras called Wakimoto modules, and

subsequently also Airy ideals from tensor products of these Wakimoto mod-

ules.

7.B Finite-dimensional case

Let g be a simple Lie algebra of rank l with Cartan decomposition,

g = n+ ⊕ h⊕ n− (7.9)
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and let,

b± = h⊕ n± (7.10)

be the upper and lower Borel subalgebras. Let G be the simply-connected Lie

group corresponding to g, and N± (resp B±) the upper and lower unipotent

subgroups of G. The homogenous space G/B− is called the associated flag

variety.

Example 7.B.1. For G = SLn, this is the variety of ‘full flags’ of subspaces

of Cn : V1 ⊂ . . . ⊂ Vn−1 ⊂ Cn, dimVi = i. It is easy to check that the group

SLn acts transitively on this variety and the stabilizer of the flag given by

Vi = span(en, . . . , en−i+1) is the subgroup B−.

We are interested in an embedding of g into a Heisenberg algebra, this can

be achieved by the infinitesimal action of g on an open subspace of G/B− that

is isomorphic to an affine space. An example of a dense open subset is the big

cell U .

Definition 7.B.2. Consider the unique open N+-orbit called the big cell

U = N+.[1] ⊂ G/B− which is isomorphic to N+. Since N+ is unipotent it

is isomorphic as a vector space to n+ and hence the algebra FunN+ of regu-

lar functions on N+ is a free polynomial algebra. We can choose coordinates

yα, α ∈ ∆+, where ∆+ is the set of positive roots of g on U , such that yα has

weight α with respect to the action of the Cartan subgroup of G on N+, that

is

h · yα = α(h)yα, h ∈ h. (7.11)

149



Given a ∈ g, consider the one-parameter subgroup γ(ϵ) = exp(ϵa) in G.

We have a Lie algebra homomorphism,

g ↦→ VectN+, a ↦→ ζa (7.12)

where ζa is defined as,

(ζaf)(x) =

(︃
d

dϵ
f(Z+(ϵ))

)︃
|ϵ=0 (7.13)

where Z+(ϵ) is the projection of the subgroup γ(ϵ) onto N+.

Example 7.B.3. Let g = sl2. Then G/B− = P1. We take,

U = {C

⎛⎜⎝ y

−1

⎞⎟⎠} ⊂ CP1. (7.14)

The vector field of (7.13) is simply given by,

(ζa · f)(d) =
d

dϵ
f(exp(−ϵa)y)|ϵ=0. (7.15)

The above formula allows us to compute the following vector field representa-

tion of the standard basis of sl2,

e ↦→ ∂

∂y
, h ↦→ −2y

∂

∂y
, f ↦→ −y2 ∂

∂y
. (7.16)

Let D(U) be the algebra of differential operators on U . This is nothing but
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the Weyl algebra generated by {ya, ∂
∂yα
}α∈∆+ with the relations,

[︃
∂

∂yα
, yβ

]︃
= δα,β,

[︃
∂

∂yβ
,
∂

∂yβ

]︃
= [yα, yβ] = 0 (7.17)

and let {D≤i} be the filtration by the order of the differential operator. We

have an exact sequence,

0 ↦→ Fun U ↦→ D≤1(U) ↦→ Vect U ↦→ 0, (7.18)

where Fun U denotes the ring of regular fections, and Vect U denotes the Lie

algebra of vector fields on U . As H2(Vect U ,D0) = 0, this exact sequence

splits and the map from g ↦→ Vect U can be lifted to a map ϵ : g ↦→ D1.

The canonical splitting is the one where we lift ζ ∈ Vect U to the unique first

order differential operator whose symbol equals ζ and which kills the constant

functions. However, such a lifting is not unique but parameterized by h∗ (See

[26]). Hence we infact obtain a family of embeddings ϵλ : g ↦→ D1 ⊂ D for λ ∈

h∗ and a g-module structure on the space of functions Fun N+ = C[ya]a∈∆+ .

This is a Fock representation of D generated by yα from a vector v satisfying

∂
∂yα
· v = 0, α ∈ ∆+. This picture can be summarized as follows:

Proposition 7.B.4. The restriction of C[U ] to the image of ϵλ defines a

g-module isomorphic to M∗
λ := Homres

U(b−)(U(g),Cχ) (i.e. the contragredient

Verma module with highest weight χ). Here the subscript U(b−) indicates that

U(g) is considered as a U(b−)-module under the right action, and the super-

script ‘res’ indicates restriction of homomorphisms to U(b−)∗⊗U(n+)∨ where

U(n+)∨ is the restricted dual composed of duals of the degreewise summands

with respect to the grading discussed in 7.B.2.
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Example 7.B.5. The module M∗
λ , λ ∈ C, over sl2 can be realized by,

e =
∂

∂y
, h = −2y

∂

∂y
+ λ, f = −y2 ∂

∂y
+ λy. (7.19)

7.C Setting for the infinite-dimensional case

The generalization to the case of affine Kac-Moody algebras is a lot more

involved for several reasons. Firstly, the definition of formal loop spaces for

general algebraic varieties needs to be treated. Secondly, in an affine algebra

there are many different Borel subalgebras that are not conjugate to each

other. The Lie algebra ĝ has a Cartan decomposition,

g = ˜︂n+ ⊕ ˜︁h⊕˜︂n− (7.20)

where ˜︂n± = n± ⊗C1⊕ g⊗ t±1C[t±] and ˜︁h = h⊗C1⊕CK. However, the one

relevant for geometry is the loop decomposition,

ĝ = ˆ︂n+ ⊕ ˆ︁h⊕ˆ︂n− (7.21)

where ˆ︂n± = n±⊗C[t, t−1], and ˆ︁h = g⊗C[t, t−1]⊕CK. The correponding flag

manifold ˜︁X is the quotient of the loop group LG by the connected component

LB0
− of the loop group of the Borel subgroup B− of G. The big cell ˜︁U is

defined as the orbit of the unit coset under the action of the loop group LN+

and parameterized by a set of coordinates yα(n) := yα ⊗ tn, α ∈ ∆+, n ∈ Z.

The loop algebra acts infinitesimally by vector fields. However , we as we have

an infinite number of variables we need to define the suitable completions for
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Vect ˜︁U and Fun ˜︁U . Concretely, an element of Fun ˜︁U is an infinite series,

∑︂
α∈∆+

∑︂
m≤−M

Pα,myα,m, (7.22)

where P ′
α,ms are polynomials in yα,n, n ∈ Z. The Lie algebra Vect ˜︁U consists

of series of the form,

∑︂
α∈∆+

[︄∑︂
n≥N

Pα,n
∂

∂yα,n
+
∑︂

m≤−M

yα,mVα,m

]︄
(7.23)

where the Pα,n’s are polynomials and the Vα,m’s are polynomial vector fields.

Hence Vect ˜︁U is the completion of the Lie algebra of polynomial vector fields

with respect to the topology given by the basis of open neighbourhoods of 0

formed by linear combinations of vector fields given by each of the terms in the

above formula. Our goal is to realize the algebra of differential operators (and

subsequently vector fields) inside a free field vertex algebra and the space of

functions inside a Fock module M . Let us define these objects and the vertex

algebra structure.

Let Ag be the Weyl algebra with generators,

aα,n =
∂

∂yα,n
, a∗α,n = yα,−n, α ∈ ∆+, n ∈ Z, (7.24)

and relations,

[aα,n, a
∗
β,m] = δα,βδn,−m, [aα,n, aβ,m] = [a∗α,n, a

∗
β,m] = 0. (7.25)
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Their generating series is defined as,

aα(z) =
∑︂
n∈Z

aα,nz
−n−1 (7.26)

a∗α(z) =
∑︂
n∈Z

a∗α,nz
−n. (7.27)

Let Mg be the Fock representation generated by a vector |0⟩ such that,

aα,n|0⟩ = 0, n ≥ 0; a∗α,n|0⟩ = 0, n > 0. (7.28)

Mg carries the structure of a Z+-graded vertex algebra (similar to the Fock

representation of the free bosons) and is usually referred to as the VOA of

symplectic bosons or as alternatively as the βγ system in physics literature.

The completed Weyl algebra ˜︂Ag is the IN,M -adic compeletion of Ag, where

IN,M are left ideas generated by aα,n, n ≥ N and a∗α,m,m ≥ M (See Example

(B.3) in the Appendix A for a definition). Hence it consists of arbitrary series

of the form,

∑︂
n≥N

Pα,naα,n +
∑︂
m≥M

Qα,ma
∗
α,m, Pm, Qm ∈ Ag. (7.29)

Let Ag
0 be the commutative subalgebra of Ag generated by a∗α,n, α ∈ ∆+, n ∈ Z

and ˜︂Ag
0 be its completion. From the definitions it is clear that,

˜︁Ag
0
∼= Fun ˜︁U . (7.30)

Let Ag
≤1 be the subspace of Ag

≤1 spanned by products of elements of Ag
0 and

the generators aα,n and let ˜︃Ag
≤1 be its completion. There is a short exact
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sequence of Lie algebras,

0 ↦→ Fun ˜︁U ↦→ ˜︁Ag
≤1 ↦→ Vect ˜︁U ↦→ 0. (7.31)

Actually we are more interested in ‘local’ subalgebras of the objects in (7.31).

These are elements of the compeleted Weyl algebra that are also obtained as

elements of a completed universal enveloping algebra U(Mg). For example, let

us denote the local version of Ag
0 by D0,loc. This is the subalgebra spanned by

the Fourier co-efficients of all polynomials in the ∂za
∗
α(z), n ≥ 0. Restriction

of (7.31) to the local versions yields an exact sequence (refer to [26] for their

definitions),

0 ↦→ D0,loc ↦→ D1,loc ↦→ Vect ˜︁Uloc ↦→ 0. (7.32)

Like in the finite-dimensional case, the action of Lg on ˜︁U gives an embedding

ϵ : Lg ↦→ Vect ˜︁Uloc (See [26] for more details). We are again interested in lifting

this to a map to D1,loc. However, in constrast to the finite-dimensional case the

exact sequence does not split. This is because that normal ordering distorts

commutation relations of elements of D1,loc and yields an extra term lying in

D0,loc as is apparent from the Wick formula. However, it turns out that it is

possible to lift ϵ to a map from the central extension ĝ of g to D1,loc.

Theorem 7.C.1. [26] There exists a Lie algebra homomorphism g ↦→ D1,loc

which maps K to −h∨, where h∨ is the dual Coxeter number of g. The space

of homomorphisms is parameterized by h⊗ C((z))dz.

The Fock representation Mg thus yields a family of modules called Waki-

moto modules over ĝ of level −h∨ which is called the critical level. We refor-

155



mulate this statement in the language of VOAs in the next section, and give

the generalization to arbitrary levels.

7.D Wakimoto modules

In section (7.B), we obtained a family of Lie algebra homormophisms,

ϵλ : g ↦→ D1, λ ∈ h∗. (7.33)

Let ei, hi, fi, i = 1, 2, . . . , l be a set of Chevalley generators of g for some

choice of simple positive roots ∆+. In the notation of 7.A.1, these are defined

as ei := xαi
and fi := x−αi

. The above representation can be explicitly written

as ,

ϵλ(ei) =
∂

∂yαi

+
∑︂
β∈∆+

P i
β(yα)

∂

∂yβ
(7.34)

ϵλ(hi) = −
∑︂
β∈∆+

β(hi)yβ
∂

∂yβ
+ χ(hi) (7.35)

ϵλ(fi) =
∑︂
β∈∆+

Qi
β(yα)

∂

∂yβ
+ χ(hi)yαi

(7.36)

for some polynomials P i
β, Q

i
β in yα, α ∈ ∆+ and a fixed map β : h ↦→ C. The

corresponding map for ϵλ : ĝ ↦→ Vect ˜︁U maybe obtained by the substitution,

yα ↦→
∑︂
n∈Z

yα,nz
n (7.37)

∂

∂yα
↦→
∑︂
n∈Z

∂

yα,n
z−n−1. (7.38)

Now we are ready to state the main theorem.
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Theorem 7.D.1. There exists a homomorphism of vertex algebras,

wk : Vk(g) ↦→Mg ⊗ πk+h∨

0 (7.39)

such that,

ei(z) ↦→ aαi
(z) +

∑︂
β∈∆+

: P i
β(a∗α(z)) : αβ(z) :, (7.40)

hi(z) ↦→ −
∑︂
β∈∆+

β(hi) : a∗β(z)αβ(z) : +bi(z), (7.41)

fi(z) ↦→
∑︂
β∈∆+

: Qi
β(a∗α(z)aβ(z)) : +(ci + (k + h∨))∂za

∗
αi

(z) + bi(z)a∗αi
(z)

(7.42)

where P i
β is a polynomial of degree α−β (when graded by the positive part Q+

of the root lattice) and ci are some constants.

Any module over the vertex algebra Mg ⊗ πk+h∨

0 becomes a Vk(g)-module

and hence a gk-module (with K acting as 1). Thus,

Wk,λ := Mg ⊗ πk+h∨

λ (7.43)

is a gk-module. This is the so-called Wakimoto module of level k and highest

weight λ and it lies in categoryO as desired. As an example we present the case

of ˆ︂sl3. We temporarily resort to the physics notation in which we denote the

generating fields of a pair symplectic bosons by β(z), γ(z) for better readability

after the identification a(z) ↦→ β(z) and a∗(z) ↦→ γ(z). The following formulas

are reproduced from [25].

Proposition 7.D.2. Let g := sl3, {βi(z), γi(z)}i=1,2,3 be pairs of symplec-
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tic bosons and X(z) := (X1(z), X2(z)) be a pair of free bosons. Let α1 =

1√
2
(1,
√

3), α2 = 1√
2
(1,−

√
3). Then the Wakimoto realization of (7.39) at

level k is given by,

e1(z) = β1(z) (7.44)

e2(z) = β2(z)− γ1(z)β3(z) (7.45)

e3(z) = β3(z) (7.46)

h1(z) = −α1(z) ·X(z) + 2γ1(z)β1(z)− γ2(z)β2(z) + γ3(z)β3(z) (7.47)

h2(z) = −α2(z) ·X(z)− γ1(z)β1(z) + 2γ2(z)β2(z) + γ3(z)β3(z) (7.48)

f 1(z) = α1(z) ·X(z)γ1(z)− k∂γ1(z) + γ3(z)β2(z)− (γ1(z))2β1(z) (7.49)

+ γ1(z)γ2(z)β2(z)− γ1(z)γ3(z)β3(z)

f 2(z) = (α2(z) ·X(z))γ2(z)− (k + 1)∂γ2(z)− γ3(z)β1(z)− γ2(z)γ2(z)β2(z)

(7.50)

f 3(z) = (α1(z) + α2(z)) ·X(z)γ3(z)− α2(z) ·X(z)γ1(z)γ2(z)− k∂γ3(z)

(7.51)

− (k + 1)γ1(z)∂γ2(z)γ1(z)γ3(z)β1(z)− γ2(z)γ3(z)β2(z)

− γ3(z)γ3(z)β3(z)− γ1(z)γ2(z)γ2(z)β2(z)

where products of fields are understood to be normally ordered.

To conclude we have given a functor that maps a module N of the Heisen-

berg Lie algebra ˆ︁h of level k to a module of the Kac-Moody algebra ĝ but of

level shifted by h∨. This is essentially an example of a semi-infinitely induced

module where the module N is extended to a module of ˆ︁b− by 0 and induced

to ĝ. This construction can be generalized replacing the Borel subalgebra ˆ︁b−
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and its Levi quotient ˆ︁h by an arbitrary parabolic subalgebra p and its Levi

quotient m. The resulting ĝ–modules are called the generalized Wakimoto

modules corresponding to p.

We briefly comment on some of the applications of Wakimoto modules.

They have been used to construct chiral correlation functions of the WZW

models, in the study of the Drinfeld-Sokolov reduction andW-algebras and in

the description of the center of the completed enveloping algebra of an affine

Lie algebra. In particular Wakimoto modules can be used to show that, this

center at the critical level is isomorphic to functions on the space of LG–opers

on the formal disc as a Poisson algebra where LG is the Langlands dual of G.

The interested reader can refer to [26] for questions related to generalizations

and applications. Finally Wakimoto models can be used to obtain free field

realizations of W-algebras via the Drinfeld Sokolov reduction of affine Lie

algebras.

7.E Constructing Airy ideals from Wakimoto

modules

Our goal in this section is to give new Airy ideals associated to modules of the

affine Lie algebra ĝ. Let g be a simple Lie algebra and ĝ the corresponding

affine Lie algebra. We denote by {αi}i=1,2,...,d a basis of simple roots of g, and

let {hi}i=1,2,...l be generators of the Cartan subalgebra. Then the universal

affine vertex algebra Vk(g) is strongly generated by a set of ‘Chevalley fields’,

denoted by {ei(z), fj(z), hk(z)} where i, j = 1, 2, . . . , d and k = 1, 2, . . . l. Re-
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call that as before, we have slightly modified the notation of Section 7.A.1 by

setting ei(z) := xαi
(z), fi(z) := x−αi

(z), where xαi
(z) are the affinization of

the generators xαi
.

Wakimoto modules are parameterized by a complex number k called the

level. In this section, we first define another parameter ℏ by setting ℏ2 =

(k + h∨)−1. First we rescale the generators (7.40)-(7.42) by ℏ so that now,

ei(z) ↦→ ℏ2ei(z), hi(z) ↦→ ℏ2hi(z), f i(z) ↦→ ℏ2f i(z). (7.52)

We also rescale generators of the underlying Fock module,

aαi
(z) ↦→ ℏ2aαi

(z), a∗αi
(z) ↦→ a∗αi

(z), bi(z) ↦→ ℏ2bi(z). (7.53)

From now on, we set W ℏ,λ
g := Mg⊗ πk+h∨

λ and ˜︂W ℏ,λ
g be its contragredient dual

where k is understood to be expressed in terms of ℏ.

In order to furnish Airy ideals out of Wakimoto modules, we are actually

forced to consider an infinite extension of these modules as in the case of

W(sp2N). We first define this extension below, and then present our starting

object for the construction. Let πk+h∨
ρλ

denote the Fock module extension of

level k + h∨ defined in (4.104) so that the zero mode acts like a derivative

d
dz

+ λ for some formal variable z. Then the Wakimoto module W ℏ,λ
g admits

an infinite extension, W ℏ,ρλ
g := Mg ⊗ πk+h∨

ρλ
where Mg is the Fock module of

symplectic bosons as before. Finally, consider an involution on the algebra of
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modes given by,

Ω(ein) = −f i
n, Ω(f i

n) = −ein, Ω(hin) = −hin. (7.54)

The foundation of our construction is the tensor product moduleM := W ℏ,ρλ
g ⊗

Ω∗(˜︂W ℏ,ρ−λ
g ).

Consider the set of differential operators {Ai
n, B

j
n, C

k
n} for i, j = 1, 2, . . . , d,

k = 1, 2, . . . l given by,

Ai
n := ein + aif

ī
−n, Bi

n := f i
n + bie

ī
−n, Ci

n := hin + cih
ī
−n (7.55)

where elements of the second factor are denoted by barred variables and

ai, bi, ci ∈ C are some non-zero fixed constants. Note that these are pre-

cisely the boundary conditions we first encountered in (6.25) and (6.26) when

ai = bi = ci = 1 for all i and Ω is set to be the involution defined above

. In order to construct an Airy ideal, we first need to realize the operators

{Ai
n, B

j
n, C

k
n} ∈ M as elements of a completed Rees Weyl algebra ˆ︂Dℏ

A for some

index set A. Hence, we make the following definitions: the derivatives of the

Weyl algebra are identified with certain linear sums of the free fields,

∂xi
n

:= (aαi
)n + ain(a∗̄αi

)−n (7.56)

∂yin := (āαi
)n + bin(a∗αi

)−n (7.57)

∂zin := (bi)n + ci(bī)−n (7.58)

and the corresponding variables are chosen to be combinations of modes that
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satisfy the correct commutation relations with the derivatives defined above.

More precisely we define,

xin :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a∗αi
)−n for n > 0,

−1
ain

(āαi
)n for n < 0

(a∗αi
)0 for n = 0

(7.59)

yin :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ā∗αi
)−n for n > 0,

−1
bin

(aαi
)n for n < 0

(ā∗αi
)0 for n = 0

(7.60)

zn :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

n
(bi)−n for n > 0,

−1
cin

(b̄i)n for n < 0

(7.61)

Let DA be the Weyl algebra generated by {∂xi
n
, ∂yjn , ∂zkn} and {xin, yjn, zkn} for

n ∈ Z. The corresponding (ℏ-graded) Rees Weyl algebra Dℏ
A is defined by,

Dℏ
A =

⨁︂
n∈N

ℏnFnDA (7.62)

where {FnDA}n∈Z is the Berstein filtration of Definition 4.B.3. As before, we

can easily construct ℏ-adic completion, which we denote by ˆ︂Dℏ
A. Then we have
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the following theorem:

Theorem 7.E.1. Let I ⊂ ˆ︂Dℏ
A be the left ideal generated by the collection

{Ai
n, B

j
n, C

k
n} for i, j = 1, 2, . . . , d, k = 1, 2, . . . l and n ∈ Z. Then I is an Airy

ideal.

Proof. We first note that the relations (7.59)-(7.61) can be inverted as follows,

(aαi
)n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂xi

n
− ainyin for n ≥ 0,

−binyin for n < 0

(7.63)

and

(a∗αi
)n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

bin
∂yi−n

+
ai
bi
xi−n for n > 0,

−ainxi−n for n ≤ 0

(7.64)

Similarly for the free boson bi(z),

(bi)n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℏ∂zin + z−n for n > 0,

zi−n for n < 0

Q∂zi0 + λ for n = 0

(7.65)

where Q is a fixed arbitrary complex number. Analogous expressions hold for

the barred variables. For example, the zero mode of the free boson takes the

form

b̄0 =
1

c
[(−Q+ 1)∂zi0 − λ]. (7.66)
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Substituting (7.63)- (7.65) into (7.55) allows us to fully express the constraints

{Ai
n, B

i
n, C

i
n} in terms of the coordinates {xin, yin, zin} and their derivatives. Af-

ter performing this substitution, the operators {Ai
n, B

i
n, C

i
n} ∈ M are realized

inside the completion ˆ︂DA. We now check that each of the three conditions for

being an Airy ideal are satisfied. It is easy to check that the boundedness and

degree 1 conditions are satisfied. In particular, by definition the lowest degree

terms take the form of a derivative for each of the constraints {Ai
n, B

j
n, C

k
n}

and there are no other degree 1 or degree 0 terms. Secondly from (7.55) it

follows that the left ideal generated by {Ai
n, B

j
n, C

k
n} satisfy the ‘graded Lie

subalgebra’ condition due to the scaling performed in (7.52). This completes

the proof.

Remark 7.E.2. Our primary motivation for considering constraints of the

form (7.55) is that they are the defining equations of Ishibashi states in the

Wess-Zumino-Witten (WZW) model once we set ai = bi = ci = 1 for all i (See

also (6.25) and (6.26)). In this case, the partition function of the Airy ideal can

be interpreted as a free field representation of a vector satisfying the chosen

boundary gluing conditions. However as we start with an infinite extension of

Wakimoto modules, the identification to an Ishibashi state IM corresponding

to an irreducible integrable module M , of the affine VOA is more subtle. We

briefly remark on how Ishibashi states appear in the WZW model and some

of their applications such as computation of string amplitudes in Section 7.F.

This is meant to give the reader a taste of some of the contexts in which the

operators we constructed above might play a role.

Remark 7.E.3. Let us denote the Wakimoto module of level k and highest

weight λ by Wk,λ. Denote by Hk,λ, the irreducible module of the affine Lie
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algebra ĝ with highest weight λ and level k. Let IWk,λ and IHk,λ denote the

Ishibashi states associated to each of these modules respectively, for some

choice of gluing conditions. The two modules are related, in particular Hk,λ

is an homomorphic image of Wakimoto modules Wk,λ (See [26, Proposition

6.3.3]). Let ϕk,λ denote this homomorphism, so that ϕk,λ(Wk,λ) = Hk,λ. Since

the boundary conditions are preserved under any homomorphism we have the

following relationship,

ϕk,λ ⊗ ϕk,λ̄(IWk,λ) = IHk,λ (7.67)

where ϕ̄ is the same automorphism on the second factor and λ̄ is the highest

weight of the contragredient dual. Hence computing Ishibashi states for irre-

ducible modules can be obtained from Ishibashi states of Wakimoto modules,

if we can find a explicit representation of ϕ.

7.F D-branes in WZW models

As mentioned in the introduction to the previous chapter, boundary states can

be used to describe D-branes in the worldsheet interpretation of string theory.

A D-brane can be thought of as the locus of end points of open strings in the

target manifold, where the D stands for the ‘Dirichlet’ boundary conditions

that are imposed on the embedding fields in the sigma model. In this section,

we give a brief survey of how amplitudes of strings propagating between D-

branes in WZW models can be computed using Ishibashi states. Finally we

propose some ways in which Airy ideals could help solve some problems in this

field.
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We follow the exposition of [45] in this section. The amplitude for a

string propagating between D-branes with boundary conditions |α⟩ to |β⟩

is given by Zαβ := ⟨α| eHt |β⟩. This can also be interpreted via a modular

S-transformation τ ↦→ − 1
τ

as a partition function of an open string with end-

points on each of these branes. More precisely this duality yields a character

expansion,

Zαβ(q) = ⟨α| q̃H/2 |β⟩ =
∑︂
ν

N ν
αβχv(q) (7.68)

where N0
αβ = δαβ and N ν

αβ ∈ Z+ and ν runs over the set of irreducible repre-

sentations. The integrality conditions on the coefficients are called the Cardy

conditions, and the boundary states |α⟩, |β⟩ are said to be Cardy states. In

particular, some examples of solutions of N ν
αβ are given by certain combina-

tions of S-matrix elements.

Recall that strings propogating on a Lie group G are described by the

Wess-Zumino-Witten (WZW) action (See [25], [45]),

SWZW (g) =
k

16π

∫︂
Σ

tr(g−1∂g)(g−1∂̄g) +
k

24π

∫︂
B

g̃∗χ (7.69)

where g : Σ ↦→ G, B is a 3-manifold with ∂B = Σ, g̃ is an extension of g to

B ↦→ G and χ is a certain 3-form, (refer to [25, equation 15.19] for further

details). String states in this model are constructed as highest weight vectors

in representations of the affine Lie algebra ĝ. In this case, the Hilbert space
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can be decomposed as,

⨁︂
λ∈Pk

Hλ ⊗ ˜︂Hλ (7.70)

where Pk denotes the set of irreducible integral highest weights at level k.

If we wish to compute amplitudes of open strings propagating between

D-branes in the WZW model, we must first study Ishibashi states. Let |Iλ⟩

denote the Ishibashi state associated to the irreducible Hλ. The amplitudes

between two Ishibashi states can be computed explicitly in terms of characters

and is given by (See [45, Section 3.3.2]),

⟨Iλ| qL0+L0̄− c
12 |Iµ⟩ = δλ,µχµ(q2) (7.71)

where χµ is the character of the irreducible representation of highest weight µ.

Secondly we remark that, a representation of Ishibashi states can be used to

write a representation of a Cardy-type boundary state such as the ones defined

by S-matrix coefficients,

|α⟩ =
∑︂
λ

Sλ,α√︁
S0,λ

|Iλ⟩ . (7.72)

Hence knowledge of Ishibashi states can help us compute physical observables

such as the amplitudes of (7.68).

As noted in Remark 7.E.2, the partition functions Z of the Airy ideal

constructed in Theorem 7.E.1 satisfy the gluing conditions of Ishibashi states.

However, they live in an extension of the bulk Hilbert space defined in (7.70),
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and hence can’t quite be used to compute Cardy states or D-brane amplitudes.

On the other hand, as mentioned in (7.E.2), Wakimoto modules are intimately

connected to integrable irreducible representations of affine VOAs and thus

the partition function given by Theorem (7.E.1) could help us compute the

Ishibashi states |λ⟩. Hence, we are left with the following question:

Problem 7.F.1. What is the precise relation between the partition function

Z and D-brane amplitudes of the WZW model?

We don’t have an answer to this question, but we hope that this section

can convince the reader as to why this direction is worth pursuing.
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Chapter 8

Conclusion

This thesis lies at the intersection of two very influential areas of mathematics

- VOAs and enumerative geometry. At this point, it is evident that Airy ideals

hold enormous promise due to rich connections with both these areas. One

might hope that future research motivated from this thesis could be fruitful

due to the inter-disciplinary nature of the subject. We propose below a list

of open problems for future research, that the reader might find interesting to

tackle.

8.A Some open problems

To begin with, the enumerative geometry aspect of this thesis remains largely

unexplored. Hence it is natural to ask:

Problem 8.A.1. Does the partition function of the Airy ideals constructed

in Chapter 5 from modules of the W(sp2N)-algebra have an interpretation as

the generating function of any enumerative geometric invariants? Does it have

a matrix model realization?
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On a similar note:

Problem 8.A.2. Can the partition function of Theorem 7.E.1 be identified

with partition functions coming from string theory such as the partition func-

tion of D-branes in the WZW model? Is there a geometric interpretation in

terms of target space functionals, or perhaps to some kind of enumerative

geometry invariants?

In Section 7.F we gave an example of how Airy ideals could be used to

compute string amplitudes. In particular we discussed that Ishibashi states

in the WZW model are related to characters of modules of affine VOAs (See

(7.71)). This motivates the following question:

Problem 8.A.3. Can Airy ideal partition functions such as the one in Theo-

rem 7.E.1 be used to compute characters of affine Lie algebras or even simple

Lie algebras?

In this thesis we were only concerned with boundary conditions on affine

VOAs, however one could ask:

Problem 8.A.4. Can Airy ideals be constructed from boundary conditions

imposed on generators of other VOAs such as W-algebras?

The questions described above are quite concrete and deal with specific ex-

amples, in other words they are more suitable for mathematicians who consider

themselves to be Dyson’s frogs (described in the essay [21]). Mathematicians

that consider themselves to be birds might find the following questions more

entertaining.
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Problem 8.A.5. Can the notion of Airy ideals and partition functions be

extended to a context beyond Weyl algebras, or to larger completions of the

Weyl algebra?

In this thesis a crucial role was played by the automorphisms of the Weyl

algebra called ‘transvections’. These seem to be very special in the sense

that they somehow capture the essential properties of Airy ideals. However

one could also study ideals obtained from other automorphisms of the Weyl

algebra,

Problem 8.A.6. Can other automorphisms of the Weyl algebra be used to

engineer useful mathematical objects of interest to geometers or algebraists?
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Appendix A

Preliminary background on

completions

In this appendix, we first precisely define what are completions of filtered

objects using the category theoretical concept of ‘inverse limit’. This is a

pure algebraic formulation of completeness which can also be defined in terms

of Cauchy sequences for categories with a topological structure (See [4] for

example). Secondly, we also give two concrete examples of completions for the

Weyl algebra - the Rees Weyl algebra and its ℏ-adic completion. Both of these

examples appear prominently in Chapters 4, 5 and 7.

A Completions of graded algebras

In this section we introduce the notion of completions of graded algebras. We

follow the notation and presentation used in [40].

Definition A.1. Let I be a directed set. For a family of objects Ai, let {f j
i }i∈I
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be a set of morphisms,

f j
i : Aj ↦→ Ai ∀j ≥ i (1.1)

satisfying the relation,

f i
k ◦ f

j
i = f j

k and f i
i = id, (1.2)

if j ≥ i and i ≥ k. Let C be a category of objects (A, fi) with fi : A ↦→ Ai

such that for i, j the following diagram is commutative:

A

⟲

Aj Ai

fj fi

f i
j

A universal object in this category is called the inverse limit of the system

(Ai, f
i
j) and is denoted by A = lim←−Ai.

Example A.2. A directed set can be obtained by imposing a filtration on the

underlying index set. Let A be an index set with an ascending filtration F ,

(FpA)p≥1. Let i ≤ j if j ∈ FpA =⇒ i ∈ FpA for all p. For a family of objects

Ci we call the inverse limit lim←−Ci the completion with respect to the filtration

F if the morphisms f j
i can be defined appropriately. For example, Let E be a

vector space with a choice of a countably infinite ordered basis (e1, e2, . . .). Let

FpE := span(e1, . . . , ep) and f j
i : FjE ↦→ FiE be projection onto FiE. Then

the completion simply consists of infinite sums,

v =
∑︂
i>0

aiei. (1.3)
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In this article the category in question are graded algebras.

Definition A.3. Let A be a graded algebra with an ascending exhaustive

filtration F given by a chain
⋃︁

p>0 FpA = A. Then A is said to be complete if,

lim←−
p

FpA = A. (1.4)

In particular, we are often interested in completions of graded algebras that

have nice behaviour with respect to the grading.

Definition A.4. Let (A,F) be a filtered graded algebra with a Z-grading

A =
⨁︂
d∈Z

A(d)

such that

A(d) · A(e) ⊂ A(d+ e). (1.5)

Let us set,

F ′
pA =

⨁︂
d≤p

A(d) (1.6)

where p is an integer. Then {F ′
pA}p≥1 defines a filtration F ′ called the “asso-

ciated filtration”. If A is degreewise complete, that is, if each Ad is complete

with respect to the filtration F , then A is called a compatible degreewise

complete algebra

B Completions of the Weyl algebra

In this thesis, because we are dealing with infinite sums in an infinite number

of variables, we are required to define suitable completions of the Weyl alge-
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bra, such that the products and module actions are legal. We are primarily

interested in two specific examples.

Example B.1. In Definition (4.B.2) the completed Weyl algebra was defined

as follows: If A is a countably infinite index set, we define the completed Weyl

algebra DA to be the completion of the Weyl algebra C[xA]⟨∂A⟩ that contains

potentially infinite sums in the derivatives, but with polynomial coefficients.

Elements of DA remain of finite order as differential operators. In other words,

we can write an element P ∈ DA uniquely as

P =
M∑︂

m=0

∑︂
a1,...,am∈A

pa1···am(xA)∂a1 · · · ∂am , (1.7)

for some M ∈ N. This can be defined more precisely using Definition (A.1),

let (C[xA]⟨xA⟩,F) be the filtered Weyl algebra with filtration,

FpDA =

⎧⎨⎩
i∑︂

m=0

∑︂
a1,...,am∈FpA

pa1···am(xA)∂a1 · · · ∂am

⎫⎬⎭ , (1.8)

where FpA = {1, 2, . . . , p}. Then the completed Weyl Algebra is the inverse

limit

lim←−FpDA = DA.

The second examples is that of the Rees Weyl algebra and its ℏ-adic com-

pletion, first defined in Definition (4.B.4).

Example B.2. The Rees Weyl algebra Dℏ
A associated toDA with the Bernstein

filtration is

Dℏ
A =

⨁︂
n∈N

ℏnFnDA, (1.9)
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where

FiDA =

⎧⎪⎨⎪⎩
∑︂

m,k∈N
m+k=i

∑︂
a1,...,am∈A

p(k)a1···am(xA)∂a1 · · · ∂am

⎫⎪⎬⎪⎭ , (1.10)

and the p
(k)
a1···am(xA)s are polynomials of degree ≤ k. Finally we also wish to

consider differential operators that are formal sums in powers of ℏ, and hence

we define its ℏ-adic completion (See Definition 4.A.7):

ˆ︁Dℏ
A = lim←− ℏnFnDA. (1.11)

An element P ∈ ˆ︁Dℏ
A can be written as a formal power series in ℏ:

P =
∞∑︂
n=0

ℏnPn, (1.12)

for some Pn ∈ FnDA.

Our final example is more general and is relevant to a variety of contexts

in algebraic geometry and number theory.

Example B.3. Let A be a ring and I an ideal of A. We can put a topology on

A, where the basis of the topology is given by the sets of the form x+ In, x ∈

A, n ∈ N. The I-adic completion of A is by definition,

ˆ︂AI = lim←−A/I
n (1.13)

which is a natural A-algebra. I-adic completions of the Weyl algebra were

used in (7.29) of Chapter 7 while defining Weyl algebras constructed from the

symplectic boson VOA.
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