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ABSTRACT
. . u
Let G be a locally compact group, H a closed 'subgroup, and

G/H the homogeneous space of left cosets of H in G wioh the usual
quotient-tooology; Let ‘Lm(G/H,v). be the Banach space of all essenxialiy
.boomded,measurable functions on .G/H with the essential suﬁremum norm;
where v 1is a qmasi-invariantwmeasure-on ‘G/H. Let F be a gorm
'closed,-conjugate closed éubspace of Lm(G/H,v)‘ containing the constants.
A linear functional m on F with m(1) = Imll = 1 is called a mean.

If F is left invariant, then a mean m on F -is a left invariant
~mean [LIM] if m(GgElf) = m(f) for all ge G, fe F. If F is .
topologically ieft invariant, then a mean m on F is topologically
left invariant if m(¢Cf) = m(f) for all. f e F, ¢ € P(G). G acts
amenably 65 the eoset'space G/H if fhere is a LIM on Lw(G/H,v). G-is
amemable if there -is a LIM on Lw(G). The notion of amenable action on
coset space is-due to F. Greenleef and has been studied extensively by,
among others, F.uGreenieaf and P. Eymard.' In this thesis, we examine

4

some addltlonal consequences of the amenable action of G on G/H.

The first part of the the51s deals w1th a number of character-
izations of the existence of a LIM on L (G/H,v). Analogues of
Dlxmler sﬂcrlterla, a theorem of M. Day, Day's fixed point theorem, and
Sllverman s éxtension theorem are glven It is proved that the amenable
aotlon of G on G/B is equivalent to two G-inveriant complemented
subspace‘properties. fhese theorems heve been proved by A. Lau for the
case of amenable groups A new proof of a theorem of P. Eymard that the .

Relter Gllcksberg geometrlc property is equivalent to the ex1stence of

i )



a LIM on Lm(G/H,v) is presented. Also given in this chapter is a
‘ [N

éartial generalization of a characterization of amenable groups due to
| - W. Emerson. |
In the second parﬁ of the theéis, we establish the existence of
,a unique LIM on the space WAP(G/H) of all weakly almost periodic
functions dﬁk'G/H and‘tﬁen on AP(G/H), the space of ail glmost
periédic functions on G/H.

In the last part of the thesis, we'give.a new proéf of a
characterization of permanently positive sets, essentiallf due to
W. Rudin, based on some ideas af D. Stafne}. We apply this rgsult to
prove'a'well known result, proved independently by E..Graniréf ana
W. Ru&in, that if G 1is a non discrete locally compact gfbup which is
amenable as a discrete group, then there is a LIM on Lw(G) which

is not topologically left invariant. A similar theorem has been proved

by D. Stafney for a non discrete se;ond'countable locally compact

abelian‘group.‘
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CHAPTER I

INTRODUCTION

.. Let G be a locally compact group, H a closed subgroup, and

“Athe hbmogénepus space of left cosets of H _in G with the usual

nt topoldgy. Let Lm(G/H,v) be thg'Banach space of all

2 Supremum nbrm, where v 1is a quasi-invariant measure on G/H. Let F
be a norm closed, conjugate closed subspace of L” fG/H v)  which contains
the constant functions. A linear functional m on F with m(l)

Iml = 1 is called a meaﬁ. If F 1is left translation invariant, then
a mean m on F is a left invariant mean [LIM] if m(sgtlf) = m(f)
for all ge G, £ e F. If F is tépologically left invariant, thed a
mean m on F is a topologlcal 1eft 1nvarlant mean 1f m(¢tlf) = m(£f)
for all feF, ¢ ¢ P(G). G acts amenably on the coset space G/H,
or, the homogeneous space C/Hf is amenable, if there is a LIM 'on
Lm(G/H,v).. G . is called amenable if there is a LIM oﬁ ‘Lw(G). If G
isAamenable when it has'the'discrete topology, then G is amenable as
a discrete group. The mnotion of amenable actions: of a locally compact
group G on coset space G/H 1is due to F. Greenleaf [20] and has been
studied extenéively by, among othéré, F. Greenleaf in [20] and P. Eymard
in {13]. In this thesis, we- examine some‘additional consequences of the
amenable actionbéf G on 'G/H
The second chapter contains a summary of the deflnltlons and
" notations used throughout the thesis. The main contrlbutlon of our

work is contained in Chapters_lILT—l¥7‘and V. Each of these chapters



\
“begins with an introduction which briefly describes ‘the contents of the

chapter. 3
In Chapter III, we obtain some new characterizations of the
amenable action of G on G/H. In partlcukar, we‘prove analogues of
~a thebrem of J. Dixmier f22, Theorem.17.4], a theorem of M. Day [22,
Theorem'17.15], ﬁEy'stfixed point theorem [6, Theorem 4], and Silverman's
extension theormn [41, Theorem 151. Our fixed point theorem is an
1mprovement of a theorem of P. Eymard [13 p 12]. - A. ‘Lau proveo in:
[26] that_a locally compact group G 1is amenable if and only if any
dual Banach space has the weak*G 1nvar1ant complemented subspace property
[26, Theorem 4.1] and that this is equivalent to the 1nvar1ant1y com-
plemented Subspace property ) [26 Theorem 4.3]. We‘glve generallza-
tions of these two results A new proof of an interesting theorem of ~
P. Eymard {13, p. 29] that the Reiter- Gllcksberg geometric property is
‘ equlvalent to the existence of a LIM on L (G/H,v), and a partlal
generallzatlon of a theorem of W. Emerson [12 Theorem 1.7] ‘involving
geomﬁ}rlc and algebraic propertles are also presented. The last section
contains a number of well known examples of amenable homogeneous spaces
and a summary of important results of thls chapter. : \

—_

. In Chapter IV, we establlsh ‘the ex1stence of a unique LIM on
' L

the space WAP(G/H) of all weakly almost periodic functlons on G/H
and hence on the space. AP(G/H) of all almost per10d1c functlons on
G/H. The necessary background material for thls éhapter can be found '
. at the beglnnlng of Section 4.2. A

In Chapter V, we give a proof of a result. of W. Rudin [39,

Theorem 2.4] ‘based on some ‘ideas of D. Stafney [42, Section 3] that a

e



o-compact locally compact nondlscrete gfoup contalns a permanently
positive set of finite measure whose complement is also permanently
positive. We discuss the relations between permanently positive sets.
E<:G and left invariant means on L7(G) for a locally compect non-

v dlscrete group which 1s amenable as a dlscrete group, and then apply
these reeuits to prove a well known result of E. Granlrer [18] and

W. Rudin [39] that if 6 is a nondlscrete locally compact group which
is amenable as a discrete group, then there is a left invariant mean

"

. on L (G) whlch is not ‘a topological left invariant mean.

[



'iCHAPTER II

PRELIMINARIES AND NOTATIONS

“ -

2.1 Functions on coset spaces and actions

Let G be a locally compéct Hausdorff group, H a closed, sub-
group, and G/H the homogeneous space of left cosets of H in G with
the usudl quotient topology. Let w be the natural mapping from G
to G/H sé that w(g) = gH. Let AG, AH‘ be fixed left Haaf measﬁres'

on G, H, respectively, and AG’ A,, denote the corresponding modular

H
functions. We write dxc(g) = dg,» dAH(h) = dh fo? brevity. Let
COO(G/H), Coo(G) be the spaces-ofadontinuous functipns with compact
support, CO(G/H), CO(G) the spaces of contihuous‘functions vanishing

at infinity, and M(G/H) » C_(G/H)*, M(G) ;;CO(G)* the Banach spaces of

bounded regular Borel measures with the total variation norm. A Borel

measure’ v on G/H is called quasi-tnvariant if Vv(E) = 0 implies )

‘ v{(gE) 0 for every measurable subset E of G/H and for every g in

G. A Borel measure v on G/H is ‘nvariant if v(E) = v(gE) for
every measurable subset E of G/H and for every g in G. Let v
be a quasi-invariant regular measure on G/H determined by a locally

A.-integrable everywhere positive function p on G which satisfies

«G
the following relation: -

o(gh) = o(g)ag(h 1)ay(h) for all ge G, h e H.

4

Thus,

[ dv(g)[ f£(gh)dh = £(e)p(g)de, £ e C (G)
G/H H G :



Such a measure always exists aﬁd is unique up to equivalenc¢ of null
‘sets in the sense that any two quasi-invariant measures on G/H are
absolufely continuoué with respect to each other. G/H Supports an in-
variant measure if and only if AG|H = by AIf H = {e}, we always take
v = XG. For more details on qua;i-invariant and invariant measures see
[15, p. 257-270], [22, p. 203-215] and [28, p. 237-246].

Let CB(G/H)[CB(G)] denote the Banach space.of bounded contindous
complex valued functions on G/H [G] with the supremum norm bt . L;t
LW(G/H,v)[Lm(G)] be the Banach space bf all essgntially bouﬂded Borel
measurable complex valued functions on G/H [G] with the essential
Ssupremum norm H-Hv’mtﬂ-ﬂm]; L'(G/H,v)[L'(G)] will denote the Banacﬂy
spacé of integrable Borel functions on G/H [G] with the L'-norm
u’”v,l["'ul]’ The usual action of G on‘ G/H inducés actions of G .

and M(G) on certain function spaces on G/H. The action of M(G) on

CB(G/H) 1is defined by

o ,
pof(g) = fG £f(ge)du(g), - e M(G), £ ¢ CB(G/H) (1)

(see [20, p.296]). The usual action M(G) x M(G/H) - M(G/H) 1is given

by

Swrmf>s @D < ne ), kM), neM(E/), FeCE/.
X H ' ’

Then we haye

- p—re—

(ul*uz)*n s ul*(uz*n),

Tusnll < Dl lnl R (2)



and M(G/H) is a Banach module over M(G). Furthermore, L'(G/H,v)
becomes a closed M(G)-submodule if we embed L'(G/H,v) in M(G/H) (see
[21, p. 151-173]). The action M(G) x L'(G/H,v) + L'(G/H,v) induces

an action of M(G) on Lm(G/H,v) given by

<uOE,$>=<f,u*¢>, peM(G), feL (G/H,v), ¢eL'(G/H,v). (3)

It is shown in [20, p. 298] fhat formulae (1), (3) are compatible when
we embed CB(G/H) in _Lé(G/H,v) via the canonical injection

j : CB(G/H) ~ Lm(G/H{v) and that if £ e L (G/H,v) then thlf(£)= f(ge)
locally v almost éverywhere (a.e.) for each g.e¢ G, where &, is the

o

point mass at g € G. The following pfoperties can be easily verified:
o .

(ulfuz) Of = u,0(, 065,
o £l < Iyl I€l_," £ e CB(G/H), , (4)

hwo £ < luh BEL £ e LT(G/H,Y)

2

A function f € CB(G/H) is called bounded left unifbrmly

continuous if the map g ~ 6, af fgom G to (CB(G/H),M-Hm) is.

g
continuous. Let UCBl(G/H) denote all such functions. Then UCBE(G/H)

includes C_(G/H) (sec [20, p. 299]).

2.2 Invariant means on subspaces of Lm(G/H,v)

(
. '

Let .X be a norm closed cbnjugate closed.linear subspace of
Lm(G/H,v) which contains the constant functions. Then a linear

functional m on X is called a mean if



(a) m(f) = m(f) for all f e X

(b)).ess'inf f < m(f) < ess sup £ for all real—vélued feX
If X < CB(G/H) then‘ (b) may.befreplaced by

(b") iﬁf f E_m(f)ri_sup f fof all real-valued f e X.

Note that the condition (b) [(b")] is.equiﬁalent to:

(e) [(c")] £ >0 loc. v- a.e. implies m(f) > 0 and m(l) =1

[f >0 implies m(f) >0 and m(1l) = 1].

v

If X c CB(G/H), then each & e G/H gives a mean P, on X

o

defined by

Pg(f) = £(8), fek

I ~2

A mean p of the form p = ¢iPg > where &, € G/H, c; > 0, and
i .

i=1

) c; =1 is called 2 finite mean. Denote the set of all finite means
on X by gz(X). The next proposition is easily proved by slightly
" modifying the arguments in [34, p. 23-27]. ‘ : o ///

Proposition 2.2.1. Let G bea locally compact group, H a closed sghL

'group, and X a norm closed, conjugate closed linear subspace of
L™ (G/H,v) which.contaihs the constant functions. Then a linear

| f;nctional' m on X is a mean if and only if m(l) = HmH’= 1-.32(X)
is a weak*;compact convex set in X*, ‘Let P(v) = {¢¢ Lf(G/H,v):¢3:0,

"¢"v 1 - 1}. Then the means corresponding to P(v) form a weak*-dense

»

convex subset of r(X). Also the finite means on X are whak*-dense in

;o

/

El



/

/

£(X) if- X < CB(G/H).

A subspace X of L (G/H,v) is called left-invariant if
Ggfif e X for ;1}. geG, felX. X. is called top?Z;gicaZZy left
invartant if ¢D\f\\e X fo;' all f ¢ X, ¢ € P(G) = {¢ e L'(G):¢ >0,
Iljpll1 = 1}. The subgpaces‘ CBR(G/H), UCBE(G/H) are sup. norm
hélbsed, conjugate closed containing the constant functions. Also
L'ﬁG)IJLm(G/H,v) S_UCB;(F/H) (see [20, p. 306])7 For each g € G

we define the left [right] - tion operator zg[rg] on L7(G) by

\\
\

by £(2) = £(ga) [r, £(a) = £(ag)].

A linear éubspace X of L7(G) is left (right) invariant if

zg f € X [I‘gf € X] for all g € G’,k fke X.

Definition 2.2.2. Lét X be a norm closed conjugate closéd'left
invariant:subspace of /Lw(G/H,Q) #hich confains the constant functions.
A mean m  on X is a left inmvariant mean [LIM] if. h(6g§?f) = m(f)
for all g ¢ G, £ e X. If X is a norm closed, conjugate clogéd~\
topologicallf invarian;'éubspéce of-’Lm(G/H,v) which’contains the

constant functions, then a mean m on X is a topological left invar-

iant mean  [TLIM] ~if m(60f) = m(f) for all ¢ € P(G), f € X.

Remark 2.2.3. (i) The notion of topological invariance was first
introduced by A. Hulanicki iﬁ [23]: In [20], P. Greenleaf introduced
topological left invariant mean$ on subspaces of L7(G/H,v).

(i1) If H = {e}, then ¢0f = (]<AG) $*f for ¢ e P(G), f£e L (G),
_where § is defined by $(g) = 4g1), g € 6. Since (1/8,)% € P(6)

for each ¢ ¢ P(G), (see [46, p. 352]), X 1is topologically left



invariant if and only if ¢« f € X for all ¢ ¢ P(G), f ¢ X, as de-

74

fined in [19, p.24].

Theorem 2.2.4 (Greenléaf [20]). Let G be a locally compact group, H

a closed subgroup. Then the following six statements are equivalent’

1. [1A] There exists a LIM[TLIM] on UCBQ(G/H)
2. [2A] There exists a LIM[TLIM] on CB(G/H)

3. [3A] There exists a LIM[TLIM] on L”(G/H,v).

Remark 2.2.5. Any TLIM on X isa LIM on X for X = L7 (G/H,v),

CB(G/H), UCB, (G/H) and any LIM on FUCBZ(G/H) is a TLIM (see
[20, p.303]). A LIM on a larger space need not be a TLIM (see

Section 5.3).

Definition 2.2.6. A net {¢a}c P(v) eCitherges wéakly [strongly] to

left invariance if (% *¢a - ¢a converges to zero for each g ¢ G, in
the c(Lm(G/H,v)*,“Lm(G/H,v))-topology [H-val-topology]. It is weakly
[strongly] comvergent to topological left invariance if ¢ » ¢a -4,

converges to zero, in the o(Lm(G/H,v)*, Lm(G/H,v)-topology :

[H-Hv l—topology], for each ¢ ¢ P(G).

2

The next three results -are stated in\[20, p.307] and can be
proved exactly as in [19, Sections2.4 and 3.2]. For the sake of

completeness we give the proofs here.

Q

——— 1

Lemma 2.2.7. Let G be a locally-compact group, H a closed subgroup.
" Then there is a net in  P(v) weakiy coﬁvergent to [gopological] left

invariance if and only if there is a net in P(V) strongly convergent



10
to. [topological] left invariance.

Proof: If a net in P(v) converges sfréngly to t§pologica1 left in-
variance, then trivially it converges weakl}wto opblogicai left
invariance. \\

Conversely, if {¢a}c P(v) conv;;Les weaklf;to topological
left invariance, following an idea of Namioka 532],\1et
-~ E = w{L'(G/H,v) : 4 e P(G)} be the locally convex pro?uct space with
.the product‘of norm topologies. Define the linear ﬁap
T:L'(G/H,v) - E by

Tf(¢) = ¢ + £ - £ for all ¢ ¢ P(C), f e Lm(G/H,v).

"Now the weak topology on E 1is the product of weak topologies on

L' (G/H,v), (see [24, p.léQj). Since ¢ = ¢a - ¢u converges to zeTo
in‘the weak*-topology of ‘L'(G/H,v) for each ¢ e P(G), zero lies in
the weak closure of T(P(Q)) < E. Since E is locally convex and
T(P(v)) 1is a convex set; the weak and norn closures of T(P(v))
coincide. Therefore, there is some net {wB}C P(v) such that T(wsl
converges to zero in E. Th;t is, I ¢ * wB "Ws”v,1 converges to
zero for all ¢ e P(G).

The other version is similar. o 0

Theorem 2.2.8. Let G be a locally compact group, ﬁ a closed sub-

group. There is a net in P(v) weakly convergent to [topological]
left invariance if and only if there is a {topological] left in-

variant mean on Lm(G/H,v).

Proof: If {¢a}<:P(v) converges weakly to left invariance, {¢a} 1ies

within the weak* compact~convek set & of all means on Lw(G/H,v).



We may assume, taking a subnet if necessary, that {¢a} converges to
a mean m in the weak*-topology. But then m is a left invariant

- mean, since <m,§ Of>-<m,f>= 1lim<¢ ,8 Of>- lim<¢ ,f>=
. g a o a a

g
1&m<<6g * ¢a - ¢a,f3>= 0 for all g e G. On the other hand, if m
is any left invariant mean on Lm(G/H,v), by Proposition 2.Z.1, there
is: a net {¢a}c P(v) sucﬂ that {¢a} converges to m in the weak*-

topblogy. Now if f ¢ Lm(G/H,v) and gie'G we have <<m,6g of>=

<m,f>, so

1&m<§g * 6 - ¢a’f> l&m<6g * ¢a,f>—. lc];i.m<¢a’f>

1im<¢ ,6 Of>- 1im<¢ ,£>
o a’ g a o]

<mAng>—<mf> \

<m,f>-<m,f>

= 0.

Thus the net {¢a} converges wéakly to left invariance. The

topological version can be proved in a similar way. 0

Corollary 2.2.9. Let G be a locally ﬁompact group, H a closed
subgroup. If. {¢a}<:P(v) convergeé weakly to [topological] left in-
variancé, then any.weak*—limit point of {¢a} in the set I of all
means on Lm(G/H,v) is a [topological] left invariant mean on

L™ (G/H,v) . , - . 0

Theorem 2.2.10. Let G be a locally compéct group, H a closed sub-

group. Then there is a net in P(v) str?ngly convergent to [topolog-
ical] left invariance if and only if there is a [topological] left

invariant mean on L (G/H,v).

11
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Proof: Follows from Lemma 2.2.7 and Theorem 2.2.8. a

We close this section with a genmeralization of a result of

H. Reiter [35, p.697]. We need the following definition.

Definition 2.2.11. Let G be a locally compact group, H a closed

subgroup. We say that the pair (G :H) satisfies Reiter's condition
(Pl) if given any ¢ > 0 and a compact set K< G then there is some

$ e P(v) such that "6g * ¢ - ¢Hv L <¢ forall ge K.

" The following theorem is stated in [20, b.307] without proof.

Our proof follows an idea of A. Hulanicki [23, p.95-97].

Theorem 2.2.1.. Let G be a locally compact group, H a closed subgroup.

" Then there is a LIM' on Lm(G/H,v) if and only if the pair (G:H)

has propefty (Pl).

Proof: If the pair (G :H) has property (Pl), let D = {a=(K,e):
K is a compact set in G and ¢ > 0}. Direct D so that
‘(K,e) > (K',e') if K E_K} and 0 < e < e'. For each a = (K,¢€)

choose ¢ € P(v) such that

ﬂdg * ¢a - ¢a"v ] <€ for all g ¢ K.

>

Then the net {¢a} clearly converges strongly to left invériance and
hence, by Theorem 2.2.10, there is a LIM on L7 (G/H,v) .

Conve?sely, if there is a LIM on ‘Lm(G/H,v), by Theorems 2.2.4
and 2.2f10, there is a net {¢a} < P(v) strongly convergent to topolog-

ical left invariance. Let e > 0 and compact set K<G be given and
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let B be a fixed element in P(G). Then there exists a compact

neighbourhdod E of the identity element e in G such that

H¢E* R™ - 8”1 < ¢ and

: (1)
lng* B - 8"1 < ¢ for all g ¢ E,

where ¢E ¢ P(G) 1is the normalized characteristic function of E (see

[22, Theorems 20.4 and 20.27]). Now choose {gl,...,gN}C G so that

N
Kc u gE and set ¢, = ¢ [= 8
k=1 K ko TgE

g = e). Since {“l} converges strongly to topological left invariance

g * ¢E] for k=1,...,N (assume

there exists some ¢ such that

oy * 6, -0 0, 1 <€ for k =1,...,N -and
(2)
fig = 0q ~ ¢a”v 1€ €

Let ¢ = B‘* ¢a. Then cleafly ¢ € P(v). We claim that ¢ is the

elem;nt we need in '(Pl). We will show Hégit* ¢ - ¢“v,1 < 5¢ for

i=1,...,N and t ¢ E. For t ¢ E we have,

AN ‘ .
_II¢E*¢ - ¢t*¢uv,1 < Ilq;E*cp - ¢!Iv’1 + e - 5t*¢llv’1

log = (Bro ) = (Brs )1, | = 1(Bxa.) - 6, * (Brg )1
< lggx8 - 8l + 18 - § 8l by (2), Section 2.1

2¢, by ().

This implies that if t ¢ E and i = 1,...,N, then



ho - x¢ - 8§
g;E

‘ Therefore,

Hsgit * ¢ - ¢Hv’1

g.t

A

| A

| A

« ¢Hv ]

b

"dgi * C¢Ef¢) -‘Ggi * (ﬁt*¢)"v’1

log * ¢ = 6, * ol ;. < 2e.

ndgit * ¢ - ¢giE * ¢“V,l + “¢giE * ¢ - ¢"V,1

2¢ + |
€ ¢g

iE * ¢ - ¢”v,l
4

2e + "¢giE # (Bxo ) = (Bre N 4

+

2€' ”¢giE % (B*¢a) - ¢giE * ¢a”V,l

+

n¢giEA* by - byl y * Moy - B e b

2e + 218 = Oq ~ ¢a"\):l + Ilq;giE * oy - ¢a”\),1
~ \
Se, by (2). : 0

14



CHAPTER III

AMENABLE ACTIONS OF LOCALLY COMPACT GROUPS ON COSET SPACES

© 3.1 Introduction

In this chapter, we deal with some of the characterizations of
amenable actions of iocally compact groups on coset spaces:. We begin
with some basic characterizations of the eXiseence of a LIM on
Lm‘CG/H,v).. Theorems similar to 17.4 and 17415 of [22, p.231 and p.235]
are proved in Section 3.2. Also ootaihed in this section isﬂa partial
.extension of a result of W. Emerson [12, Theorem 1.7]. In Section 3.3,
we.prove an analogue of Day's fixed point theomem [6 ‘Theorem 4]-,‘in
Section 3.4, an analogue of Sllverman s extension theorem [41,

Theorem 15] 1is proved. Section 3.5 deals W1th 1nvar1ant1y complemented
subspaces of Lw(G/H,y) relating to the amenable action of G on
G/H. The results obtained in this section are -due to A Lau [26] for
the case of amenable locally compact groups. In Section 3.6, we give
" a new proof of e theorem of-P, Eymardr[ls,'é.21—39]'that the Reiter- |

, : 2
Glicksberg property is equivaient to the existence of a LIM on
Lm(G/H,v). Thevlast section contains a number owaerl known examples

of amenable homogeneous spaces and a summary of the results that we

obtained in Sections 3.2 through 3.6.

P

3.2 Invariant means on Lm(G/H,v)

Definition 3.2.1. Let G be a locally compact-group, H a closed

subgroup. We say G acts .amenably on the coset spacg -G/H, or

following [34, p.364], G/H s amenable;_if there is a left invariant

15
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. meén on L%(G/H,v). \Thus G/H 1is amenable if and only if aﬁy one of
thé‘six statements of Theorem 2.2.4 holds. G is called amenable if
G/{e}l is amenable.. G is amenable as a discrete group if G 1is
amenabie when G’"hag the discrete topology. By Remark 2.2.3(ii),/G
is amenable if énd onlylif any one of the five properties of [19,

Theorem 2.2.1] isbsatisfied.

‘Proposition 3.2.2. Let G be a locally compact group, H 2 closed
o ‘

subgroup, and X a conjugate closed subspace of .i (G/H,v). Then

the following statements are equivalent. ‘

(i) There is a.mean m on Lm(G/H,v) such that m(X) = 0.
(ii) ess inf-h 5_0 for all reai—Valued “h e X
(iii) dist(1,X) = 1.

5

Proof: (i) = (ii): If m is a mean on L”(G/H,v) such that

m(X) = 0, then 0 = m(h) > ess inf h . for all Teal-valued h e X.

&

(ii) = (iii): If .dist(1,X) <1, there is an £ ¢ X such

that .Ill--fll\)‘Clo < 1. Then Hl-ﬁRef"v o < 1. On the other hand;

3 ’

. Hl-—Reva , = es. sup |1-Ref| > ess sup(l-Ref) =1 - ess inf Ref > 1,

. as ‘Ref € X. This contradiction proves (iii). 0

, S U
(iii) => (i): By the Hahn Banach theorem th:?e exists
)

S M € Lé(G?ﬁ,v)* such that m(l)‘= Iimh =.1, and m(

- . ‘ N - ) .
Proposition 2.2.1, m is the required mean. ' \ 0

"= 0. Then, by
-

Definition 3.2.3n Lét G be a locally compact group, H a closed’
supgroup. "6[“1]' will denote the subspace of Qw(G/H,v) spanned by -

(8,0 f - f:geG, fe L (G/H,vW)][{¢0F - £:¢ ejP(G), fe L (G/H,v)}].-
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"

Corollary 3.2.4. Let G be a locally compact group, H a closed
subgroup. Then the following statements arevequivalent
(1) There is a [topological]'left invariant mean on L7 (G/H,v) .
tii), ess inf h < 0 for allyreal valued h € wo[wl].
(iii)' dist(l,7) = 1 [disf(l,ni); 1]. \

V2

Theorem 3.2.5. Let G be a locally éompact group, H a closed sub-
grbup. ‘Then there is a [topological] left invariant mean on

?L*(G/H,v) if and only if “o["i]\ is not uniformly dense in L (G/H,v) .

EIQEEF If there is a left invariant mean on L (G/H,v), then by
Corollary 3.2.4, dist(l,noj,= i, so m, is not/uniformly dense in
L™(6/H,0) .

Conversely;-if. T ~is not\uniformly dense in Lé(G/H,v);:then
by the Hahn Banach theorem théfe exist ¢ ¢ L°(G/H. < and

fo e L”(G/H,v) such that ¢(fo) =1, ¢(vo)'= 0. vFoIlowing an ‘idea of

Lau'[26, p;ZSO]} let ¢ = 1/2(¢ + ¢*) Awhere p*(£) = ¢(£) for -

“f e Lm(G/H,v).‘ Then @ is non-zéro (since ¢(fo)‘; 1), self adjoint,
and left translation invariant. Write ¢ = ¢+,- v, Myl = H¢+H + Iy
uﬂiquely (see [44, Theorem 4.2]). Then for each - a e‘G, 6;w+ and
S;w- are non-negative and have the same norm as ¢ and ¢~
resp)ctiVely. Conséquently, assuﬁing withouf loss of generality, that
_w+ # 0, let m =lf/¢+(1). Note ﬁhaf ¢+(1) £0 éince w+(fo)_i
¢+(Hfoﬂ;’;l) = Hfoﬂv’; v 4Theﬁ m is-a left invariant mean on

L”(G/H,v) since ¢+ = 5;w+ for each a‘'¢ G. Similar arguments apply .

to the topological version. » : O

Remark 3.2.6. (i) The above-results remain true for the spaces




18

U

UCB, (G/H) CB(G/H) with ess inf. replaced by "inf.
(ii) The equivalence of : (i) and _(ii) of Proposition‘3.2.2 is due
to W. Emerson [12, Proposition 2.{j for the case when H = {g}. Thé
equivalence of (i) and (ii) of Corollary 3.2.4 is an analo&ue of the
von Neumann-Dixmier criteria‘for amenable groups (see [19, p.ZSj).
Corollary 3.2.4 and Theorem 3.2.5 can bekfound in [22, Theorem 17.4
and Theorem 17.15] for tAe case when H = {el an&iiG" £as the discrete
topology. Theorem 17.15 is due’to M. Day (see [22, p.245]).

The remainder of this chapter is esseﬂtially due to W. Emerson -

[12] for the case when H = {e}. Our methods of proofs also follow

ideas of his.

'Proposition 3.2.7. Let G be a locally compact group, H a closed

subgroup. Then Lm(G/H,v) "has a subspace m satisfying the following
two properties if and only if there is a [topological] left invariant

v )
mean on L (G/H,v).

(1) 8,0f - fen forall fel (4w, geC.
[(i') ¢Of - fenm for all £ e L (G/H,v), ¢ € P(G)].
(ii) ess inf f < 0 for all real-valued f e .

o

Proof: If there is a LIM on LW(G/H,v),‘let ™

ker m = e

(f ¢ L“(G/H,v) :m(f) = 0}. Then, s_’ince m(s, O f) = m(f) for all geG,
f ¢ LT(G/H,v), we have m(agflf-f) = 0 and consequently Ggflf-f E'ﬁf
Moreover, if £ ; 1 1s real-valued thén ess ipf f <m(f) = |

. Conversely, assume that there is a supspace T satisfying (1)

and (ii). Since (i) gives LA wh11e (11) guarantees that

ess inf h < 0 " for all real- valued h ¢ L there is a LIM on



Lm(G/H,v) by Corollary 3.2.4. The topological version is similar. [J

Definition 3.2.8. Let G be a logally compact group, H a closed

subgroup. Let TTp(G/H; = {f ¢ Lm(G/H,\)) : inf{ll@ﬂfllv,
Thus, f ¢ Trp(G/H) if a'nd_ only if zero lies in the norm (weak):
closure of the conv}ex set P(G)Of. Let TTP(G) =

(£ e L°(G) : inf{lo » £I_: ¢ € P(G)} = 0} = {f & L7(G) : inf{lp O £I_:

4 ¢ P(G)} = 0} by Remark 2.2.3(ii).

Prdposition 3.2.9. Let G be a locally compact group, H a closed

subgroup. Then nP(G/H) is closed under multiplication and satisfies

'
i

criteria (i) and (ii) of Proposition 3.2.7.

-

Proof: First the closure of nP(G/H) under scalar multiplication
is trivial since |40 (cf)uvh = |c[||¢c1 f|[‘v o Moreover, if

f ¢ L®(G/H,y) and. & = ess inf £ > 0, then for any ¢ e P(G)

¢ o £(g) = IG ¢ (g)£(ge)dg z_fG s(g)sdg = § - so

inf{ll¢a f"v L0« P(G)} > 8§ >0, verifying (ii).

b

Finally, for any fixed positive int‘eger, n, a e G, ;md any subset E

of G of finite positive Haa} measure )\G‘(E), let "¢ = -
. ,

—_— 1 k., where 1

n A G(E) K21 @ E A

and consider fn = ‘an (Gamf - f)-.- Then,

AORNIENGICEEREACL

n

[ e, () (f(age) - £(gg))dg
G .

19

1o e P(G)} = O).

is the characteristic function of AcG
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1

= T P (O] kz /k (f(agg) - f(g&:))dg

1 a

1.
Sty e f(890 - [ogfle)de),

since f f(agg)dg = f f(gg)dg. Therefore, "fn"v oo,'5_(2/n)llfllv o’
E N aE "3 b 3

so 1imlIfl =0. Hence & Of - f e m_(G/H) and (i) is also
T nv,® a p

I. 2

verified. 0

Corollary 3;2.10. ‘The'coset space G/H 1is amenable if np(G/H) is

closed under addition.

Remark 3.2.11. By proposition 3.2.2, Lm(G/H,v) has a conjugate closed

subspace T ,satlsfylng (i) -[(i")] and (ii) of Proposition 3.2.7 if

and only if there is a [topologlcal] left invariant mean 'm on

L™ (G/H,v) such that m(n) . Thus, since 'np(G/H) is conjugate
o , .

closed, there is TIM ‘m on L”(G/H,v) such that m(np(G/F)) =0 if »

np(G/H) is closed under addition.

Definition 3.2.12. Let G be a locally compact group, H a closed

»subgroup{ The pair (G :H) 1is said to have the property (B): if
: d(¢1*P(v)’¢2 * P(v)) = inf{ll¢; * ¥; - “’2*‘”2"\,,1 Phpsby e POVE = 0
for any ¢1,¢2 e P(G). If H = {e}, prope?ty‘(B) becomes
d(?l* P(G),¢2* P(G)) = inf{u¢1‘*wl -9, * wzﬂlzwl,wz e P(G)} = 0 for

any - ¢1:¢2 € P(G).

Prdpositioh 3.2.13. If G/H is amehable,’then the_pqir (G:H) has

property (B).
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-
Proof: If G/H 1is amenable, then by Theorem 2.2.10, there is a net
{wa} in P(v) strongl convergent to topological left invariance.
This implies that lém”¢1 * by -9, *wa“v,l = 0 for any ¢l,¢2 e P(G),
S0 d(¢i * P(v),¢2 * P(v)) = 0. That-is, (G:H) has the property (B). -
a

Proposition 3.2.14. Let G be a locally compact group, H a closed

subgroup. If d(¢1 * P(G),¢2 * P(G)) = 0 for any /¢1,¢2 ¢ P(G), then

WP(G/H)' is closed under addition.

np—

e P(G) (i=1,2)

‘ ¢
Proof: Fix fl’ f2 € nP(G/H) and choose ¢i,n

- such that n¢i nC fi" < 1l/n (i = 1,2)" for each posftive integer n.
v . ‘ .

2 3

Next choose Y1 g and wzbn in P(G) such that

I < 1l/n.’

67 0 * ¥1,n "~ 92,0 " ¥2,aly 1

Let ¢, = ¢1,n * wl,n' Then, o, € P(G) and

1]

o 0 (£ +£)) (d>'1,n_* wl,n) o (£, +£,) -

(61 0" ¥, 0 0% * (‘pl,n* vy ) O,

"

V1,00 (01,0 E) ¥ gy 206y q O E)
(see Equations 4, Section 2.1). Therefore,

0,0 (Fp+£)) =y 0oy o)+ (01 n*¥1,n $2,n* %20 05

* by oo (¢2’n0f2)7

(2+ U, ). Thus, Llim llo o (£ + £ =0,

1
So, e o (f+ £ <% ’ ’
' Nn->co

b

and conseﬁgg;tly £+ fé evnp(G/H). o -
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Theorem 3.2.15 (Emerson [12]. If G is a locally compact group, then

the following statements are equivaient.

(a) G is amenable.
(b) 'np(G) is closed under addition.-
(c) d(é; * P(G),4, » P(G)) =0 for any 41,6, € P(G). That is, G

has-propérty (B).

Proof: (¢) => (b) is Proposition 3.2.14;, (b) = (a) 1is Corollary
—_ .

3.2.10; and (a) = (c) 1is Proposition 3.2.13. ‘ O

\

Remark 3.2.16. (i) We do notvknow if the converse of Proposition 3.2.13
or Corollary 3.2.10 is true when H # {e}l.

(i1) ‘Results 3.2.7 throﬁgh 3.2.15 remain true for the spaces

UCB, (G/H), CB(G/H) ‘with ess inf replaced by inf etc. .
(iii) Let S be the subspace of ‘Lm(G/H,v) consisting of all simple
functions on G/H, and né the subspape spanned by {GgCJf i'f; g € G,

f e S}. Then any LIM on S has an extension to g. LIM on L (G/H,v).
Thus by Proposition 3.2.2, there is a ‘LIM on L (G/H,v) if and only

if ess inf h < 0 for all real-valued h ¢ né. Therefore, Proposition
.3.2.7 remains true even if we consider a subspace m of S instead of
a ‘subspace of Lm(G/H,v). This implies that the results which follow
Proposition 3.2.7 remain valid if we define wp(G/H) =

{fe$S :inf{Hq:EJ'flIv,°° :¢ €-P(G)} = 0}. However, we cannot replace -

ess inf by inf in Propbsition 3.2.7 as in [12, Propositional 1.1],
éince we identify two measurable functions when they coinéide off a

locally null set.

\
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3.3 Fixed point property

Definition §i3.1. Let G be a locally compact group, H a closed
subgroup, and S a topological space. We say that G acts on S if

‘there is a map: G x S ~ S, denoted by (g,s) ~ g -s,‘sucﬁ that

(1) g1 -(gz +5) = (glgz)- s for all gl, gze G, s € S. |
(ii) if e 1is the identity element of G, then e-s =s for each
s € S.

(iii) the map s - g-+s of S into itself is continuous for each

i
|

g € G.
Note that g + ges is a homeomorphism of S ‘into S for each g ¢ G.
By a fixed point for G[H] we mean a point So € S such that
g*s, = S, for each g € Gh 'So>= s, for each h ¢ H]. If S lis a
convex subset of a locally convex linear topological space [1 cc-s],
we say G acts affinely on S if G acts on S 'and the map. s ~g-s
is affine for .each g ¢ G. |

The fixed point theorem of P. Eymard [13, p.12] and Theorem 2.2.4

imply amenability of a coset spacel G/H 1is equivalent to each of the

‘following fixed point properties.

(Fl): if whenever G acts affiné1y~op a convex compact set S, in é
l-c+s E with the map (g,s) > g-°s jointly continuous and there is
a fixed pOint for H then there is a fixed point for G.

(Fz): 'if whenever G acts affinely on a convex compact set S in a

lece+s E with the map (g,s) ~g-s sébarately continuou; and there
is.a fixed-ptint for H, then there is'a fixed .point forr Gﬁ

The following theorem is an analogue of Day's fixed point

theorem [6, Theorem 4].
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Theorem 3.3.2. A coset space G/H 1is amenable if and only if the

pair . (G:H) has the fixed point property (FS): if whenever G acts
affinely on a compact convex set S ina l-c-s E and there is a
fixed point S, € S for H with the map g + ¢ " S, continuous, then

there is a fixed point for G.

Proof: If the pair (G : H) has the fixed point property (FS)’ then

it has the fixed point property' (Fl). Hence G/H is amenable.
Conyersely, if G acts affinely on a compact convex set S 1in

a l-c+s E and there ié a fixed point S, € S for H with the map

g>g°s, continuous, let m be any mean on CB(G/H). Let A(S)

be the Banach space of all affine continuous functions on S. Thus

{¢| t o o€ E*},S-A(S)' For each ¢ e A(S), define a map f¢: G/H > C

S
by

f¢(gH) =<¢, g+5,>

Then clearly f¢ is continous. Since S 1s compact f&' is bounded

Next define a function m(so) on A(S) by

<m(s)),4>=<mE >, b < ALS).

Let a, B e C, ¢, ¢ € A(S). " Then, (gH) =<ad + BY,g * so>> =

£
ad+BY
a<¢,8 5>+ 8<Y,g s, >= (af Bf,) (). Thus, fopray =

af¢ + Bflb" Thefefore <m(so),a¢ + Bw>=<m,fa¢+8w>=<m,af¢ + Bf\b>=
a<m,f¢>+ B<m’f1p>= a<m(50),¢>+ B<m(50),¢{>, SO m(so) is linear.
Also ‘|<m(s ),>| = | <m,f > | < sup |£ (gH) | = sup |<¢,g's'>l <
o] ) — ¢ 0 —
geG geG

sup |<¢,s>| < = as S compact. Hence m(so) is bounded. Therefore
seS . :
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the restriction map m(so)IE* is i E**. Let Q be the cannonical
mapping of E into E** given by Q(x)(¢) =<¢,x>,x € E, ¢ € E*.

First yg sh_ow that there exists Soo € S such that Q(soo) = m(so) IE* .

O

Then we will prove that Soo is a fixed point for G if we take m to

N
be a 1left invariant mean on CB(G/H). Let p = [ c;P be a finite
\ i=1 Y84 -
mean, where ¢, = g.He G/H, c. >0 and I c, = 1. Then Xp(s ),4>=
i i i = . i ) .
i=1 v
' . N N N
<p,f> =<1 c,p, ,E£>= ¢ c.f (g:H) =-L c.<¢,8,°s > =
¢ T R T I A 5 T 1o
N ‘ '
<¢, I c;g; 50> for each ¢ ¢ A(S). Hence, if ¢ € E*,.then
i=1 N N ‘
</P(50)’¢>= < ¢,' 1§lclg1' SO>=<Q(1£1 Cigi’S),¢> SO p(so) IE* =

N
Q( £ c.g.»s ) € Q(SY. Let {p.} be a net of finite means converging
to m in the weak* topology. Such a net exists by Proposition 2.2.1.

Then for each j there exists 55 ¢ S such that P; (s,) IE* =
Q(SJ.')ve Q(S). We may assumé, passing through a subﬁet if necessary, that
{Sj} converges to some Soo € S, as S is compact. Then <m(so),¢> =

< m,f¢>= l;m<pj,f¢>= 1;m<pj(so) ,\¢>= 1§m<¢’sj>=<¢’soo>=

< Q(soo),¢>for all ¢ € A(S), in particular for all. ¢ € E*. Thus
Q(soo') = m(so)IE*. If ¢ € E* write ¢OQa(s) =<¢,a-s> for ""s € S,
'aeG. Then ¢Oa is clearly in A(S). For each ¢ € A(S), a € G

we -have (gH) =<¢0a, g+s_>=<¢, (ag) -so>=Af¢(agH) =

f¢ma

= Ga of. Thus, if m 4is a LIM, then <¢,g;so >=

5amf(gH)', [{e} o

f¢Da

< ¢Dg,soo>=<m(so),¢>0g>=<m,f >=<m,6gD f¢>=<m,f >,=

¢0g ¢
< m(so),¢>=<Q(sb),¢>=<¢,soo> for all g e G, ¢ ¢ E*. Hence,

g5,y = Soo for each g ¢ G, so Soo 1S .a fixed point for G 0



5.4 Hahn Banach Extension Property

Definition 3.4.1. Let G be a locally compact group, H a closed

subgroup. A repreéentation T of G on a vector space E 1is a
homomorphism of G into the semigroup of linear transformations on E.
An anti representation T of G on E is an anti homomorphism of G
into the semigroup of linear transformations on E. We usually denote
a representation or an aﬁti representation by its imagé {Tg:‘g e GI.

The pair (G:H) 1is said to have tﬁe Hahn Banach Extension
Property (HBEP) if whenever.{T = Tg :g ¢ G} 1is an anti representation

of G on a vector space E, p a seminorm of E, F a subspace of E,

‘and ¢ a linear functional on F such that

(1) TéF c F for each g e G |

(ii) p(Tg x) j_p(ﬁ) for all é e G, x ¢ E
(ii1) o (T, ¥) = 4(y) forall yeF, geG

(iv) e < p(y) for each y ¢ F |

(v) ¢ has an extension to a linear functional ¢ on E such that
lw(x)| j_p(x)‘ for each x ¢ E, w(Th(x)) = y(x) for all x e E, h e H,
and the function Vo :G/H > € defined by wx(gH) = w(Tg x) is
continuous for each x ¢ E then ¢ has an extension to a linear
functional ¢ on E such that (a) [¢(x)]| < p(x) for each x ¢ E
(b) ¢(Tg x) = 9(x) for all g e‘G} x € E.

The following theorem is-an analogue of a result of R.J.

Silverman [41, Theorem 15]. - For a generalizea version of Silvermén's

extension theorem see [14, Theorem 3.2.3].

Theorem 3.4.2. Let G be a locally comﬁact group, H a closed subgroup.

Then the coset space G/H is amenable if and only if the pair (G :H)b



27

has the property (HBEP).

Proof: If G/H is qmenable,'let m be a left invariant mean on
CB(G/H). Let E be‘é vector space, p a seminorm on E, TH= {Tg: ge 9}
an anti répresentation of qv on E, F a subspace-and ¢ a linear
functional on F such that conditions (i)-(v) of Definition 3.4.1'h01d.
Let E#. be the algebraic dual Qf E. Le£ L= {y e E# :wl = 9, '
[w(x)l < p(x) for each x ¢ E}. Then I 1is nonempty by (5), aﬁd is a
convex U(E#,E)—compact set in E# (see [b, V.4.1]). Define g-y

so g yp(x) =<w,Tg_l x>, pei, ge G, xe E. Then G x I +‘Z is

an affine action. Let VY ¢ E# satisfy the hypothesis (v). For each.

h ¢ H we have h < ¥(x) =<v¥,T ,1X>'= ¥(x), 59 ¥ e £ is a fixed point
fpr"H. If {ga} is a net inh G' converging to .g in G then

< g, ° \P,x>=<;\l’,Tga_1x> , and loitm<\l/,Tg. _1,x>=<W,Tg_1x>=

<g-¥,x> for each x € E by ). Henge th; map g+ g-V¥ 1is

continuous. Therefore, by Theorem 3.3.2, there exists ¢ € I such that

g+d=2¢ for each g e G. Hence ¢ 1is an extension of ¢ such that

(a) |e(x)| < p(x)  for each x ¢ E.

(b) ¢(Té x) = ¢(x) for all g ¢ G, x € E.

Conversely, if the pair (G:H) has the property (HBEP), let

E=CB(G/H), F={al:a e C}, T-= {6g :g € G}, and p = ll-ll_. Define

a linear functional ¢ on E by ¢(a1) «. Let ¢ be the linear

functional on E defined by ¢(f) = £(g) for £ ¢ E, where g, = H.
Then ¢ extends ¢, Myl = ol = ¢(1) - 1, and <w,6h of >=<y,>

for all- h e H, f ¢ E. If {ga} is a net in G converging to g in

G, then wf(gaHS = w(sg of) = Gg

0f(g) = £(g,5,) and lim £(g B ) =
a a .

~



f(ggo) =<iw,dgtlf>?= wf(gH) for f ¢ E. Thus the mapping wf is
continuous for each £ ¢ E. Thus, the conditions (i) through (v) of
the . (HBEP) are satisfied. Therefore, ¢ extends to a linear

1

_functional & on E such that [e(f)] < I£l for each f e E and

¢(6gC1f) o(f) for all ge G, f e E. Then ¢ is a left invariant

1]

mean on E = CB(G/H), so G/H 1is amenable. ' 0

Remark 3.4.3. Let E be a véctor space, p a seminorm on E,

T = {T : g € G} an anti representation of G on E, F a subspace of

g
E and ¢ a linear functional on F such that the conditions of the

(HBEP) are satisfied.

(i)‘ If E is a linear topological space and p is continuous; then @
is continuous. | |
(ii) If E 4is a normed linear spaée and p(i) = l¢Mxl for all - x ¢ E,
then there exists a linear extension ¢ of ¢ .such~that Nl = Ul -~

_-and ,¢(Tg X) = ¢(x)~ﬁggfﬂall x € E, g eG.

3.5 Invariantl;NEomplemented subspace property \

pefinition 3.5.1. Let G be a locally compact group, H a closed sub-

<

group. - Let A be a closed left invariant-subspace of Lm(G/H,v) and
. R

X a weak*-closed left invariant subspace of Lm(G/H,v) contained in

A. We say X is H-imvariantly complemented in A if there exists a

continuous projection P from A onto X such that PGh = GhP for

‘each h e H. X is ‘mvariantly complemented if Pég = SgP for each

g e G. _ ‘ »

H. Rosenthal proved in [38, Theorem 1.1] that if G is abelian



and X 1is complemented in Lm(G), then X 1s invariantly complemented.
\ . .

Actually, Rosenthal's proof is valid for any locally compactigroup

which is amenable as a discrete group. Recently A. Lau extended this

result to a large class of locally compact groups in [26, Theorem 4.3]

The next theorem is a generalization of Lau's result.

Theorem 3.5.2. Let G be a 1dcaily compact group, H a closed subgroup.
Then G/H is‘amenable«if and only if the pair (G: Hf has the - |
folloﬁing property_ (C) . Whenever T = {Tg :g ¢ G} 1is a represent-
“ation of G as weak*-weak* continuous linear isometries from a dual
Banach space E onto. E and A is a closed left invariant subépace

of E such that the map (g,x)‘3-Tg X is a continuous linear map of
the product subspace G x A 1into A; if X 1is a weak*-closed left
invariant subspace of E contained in A aﬁd,}f there exists a
continuous projection Q %rom A onto X sqch\tha; QTh = ThQ for
each h ¢ H witﬁ tQl s_a,'then there is a continuous projection P

from A onto X such that vPTg = TgP for each g ¢ G with ~MPH < a.

~
~

-EIEQE’ If the coset space G(H is amenable, let m be‘allef;.in-
variant meaﬁ on CB(G/H): Let T =I{Tg.:g ¢ G} be a represeﬁiation-
of G as weak*-weak* contingous linear isometries from a dual Banach
space E -onto itself and A a closed left invariant subspace of E

such that the map (g,x) = T  x 1is a continuous linear map of the

g
product subspace G x A into A. Let X be a we k*-closed left in-
variant subspace of E contained in A and Q a continuous projection

from A onto X such that QT, = T,Q for each h ¢ H with QI < a.

Let E, be'é fixed predual of E.. Now fix x e E. Define 'a mapping
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N

N

-~

fx,¢ : G/H - (IZ by _fx,¢(gH) =<TgQTg_1x,¢ - for each ¢ e E,.” Then
fx,¢>' is c»learly bounded ‘since l.fx,¢>(gH) | il < TgQTg_l.x,¢> | <
allxtligl. Let {ga} be a net in G converging to g in G. Then

lim Iﬁx,q(gaH) - fx’(ﬁ(gH){ < Mol 1im IITgaQTga_lx - TgQTg_vixll = 0. So

fx o is qontinuoué, ‘and therefore fx'q) e CB(G/H). Now, for o, B € C,

= . ] . < i
¢, ¥ € E, we have fx,a¢>’+8w afx’q) + B‘fx,tp Thus ¢ ~+ m,fx,¢)>' is
a bounded linear functional on E,, of norm < allxll. Hence, there is

a unique Px ¢ E such that <Px,¢> =.<m,fx,¢> for all x ¢ A, ¢ € E,.
P is a bounded linear operator from A info E wiﬁh IPI' < a. To
show that P 1is a projection from A onto X -it suffices to shéw
.that (1) range p < X, and that \(ii) if x ¢ X, then Px = x. (i) range

{¢ ¢ E, :<¢,x>= 0 for all’ x € X Then (Xl)'L =

1]

PecX: Let X
= L
{x ¢ E :<-¢,x>=‘0 for each ¢ « Xl} = X, since X 1is weak*-closed.

Suppose ¢ € Xl. Then fX,cp = 0, as ’I‘g‘QTg_lrx e X for all ge G,

x € X. Thus < P)lc,q>>.‘= 0 for each ¢ € Xl, so Px e X. (ii) Px = x

It i . iy . ' 4 = . P = =
"%f x e X If x € X, ;hen TgQTg_lx x Hence', <Px,¢> <m,fx,¢>\
<m,<¢,x>1>=<¢,x> for all ¢ ¢ E,. Thus Px = x. To show - P is
invariant, fix g € G, x e A, 9 ¢ E_. Since 'I‘g is weak*-weak*
continuous, there is a bounded linear oper_at'or Sg from E, into

itself such that T, = s,* (see [42, Lemma 5.141). <T,Px,$>=
<Px,Sg¢> , SO ,{Tng,¢> =<‘m’fx,Sg¢> . “But fx’qu).(aH) =<TaQTa_1x,Sg¢>=
<T.TQr .x,6>=<T_QT  _ (T x),6>=<T QT

g av, 1 ga a 1g 1'g : ga (ga)
(aH). Therefore, by the invariance of m, .<Tg‘Px,¢>=

§ af .
g 'Tx,
g ¢ : _ v
<m,fx,sg¢>=’<m,6g o ngX,‘b > =<m,ngk’$-?=<PTgx, d>>,so_1F’Tg =‘ TgP for

all g ¢°G.
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Conversely, if the pair (G : H) has the property ), .

consider the representation . = (s :g € G} of G on L7 (G/H,v)

g-1
and the closed subspaces A = UCBQ(G/H),X = {Al: X e C}. Let {ga}

be a net in G converging to g € G, and {fa} a net in UCBQ(G/H)
: . i

i : . i of - 6 oOfll =
converging to f € UCBQ(G/H) Then, 1&mﬂdga fa dg I

1i o - o of -8 O 14 - f
I&mﬂdga fa Gga f + Gga f Gg me i.lém"fa Hm‘+

1&m"6ga[3f - GgFlme = 0.. Hence A an% X satisfy the conditioné of
(C). Let Q be the projection of A onto X defined by Q(f) =
'f(Eo)l,-where go = H. Then- iQf = 1 and th = GhQ’ for each h ¢ H.
- Hence theré ié a continuous projection % from UCB (G/H? onto X
b%ommu;ing with each Vdg, g ¢ G, and Pl < 1. Define m(f) = P(f)(g;)
for each £ ¢ UCB (6/H). Then, (1) = Inl = 1 and m(s,0 ) = m(£y

for all f ¢ A, ge G. Thus G/H is amenable by Theorem 2.2.4. O

Corollary 3.5. 3. Let G be a locally compact group, H a closed sub-

group. Then G/H is'amenable if and only if every weak* closed left

invariant subspace of N (G/H,v) which is contained and H-invariantly

" complemented in UCBQ(G/H) is invariantly complemented in UCBZ(G/H).

L8

Def1n1t10n 3.5.4. Let E bea dual Banac% space with a fixed

predual E,. We say that E has the weak* G—tnvaraant complemented

‘subspace property wzth respect to H 1f the follow1ng property holds

Whenver, >T -{Tg g e G} 1is a representatlon ofy G as llnear
isometries from E onto E “suqh that the map (g,x) =~ Tg X ;s a
separately continuéus map from G x E ifto E -when E has the weak*
topolégy if X is a weak*-closed left invariant subspace of E and
"if there exists a ¥ 1'*-;«veak* contiﬁudus projection Q* form E onto

/

Y

v, . ' )
{ ,



w
o

X such that QTh = ThQ for each he H with QW< a, then there

exists a contipuous projection P of E onto X such that PTg = TéP

=

<

for each g ¢ G with [Pl < a.

. : \ 2
The following theorem is due to A. Txw[26, Theorem 4.1] for the

case-when H = {e}.

Theorem 3.5.5. Let G he a locally compact-group, H a closed sub-

group. If the coset space G/H 1is amenable, then any dual Banach
space has the weak* G-invariant complemented subspace property with
respect to H. Conversely, if Lw(G/H,v) has the weak* G-invariant
complemented subspace property with respect to H and there ié‘a

¢ € P(v) such that 5, ¢ = ¢ for each h ¢ H, then G/H 1is

h

amenable.

Proof: If G/H is amenable, let m be a LIM on CB(G/H). Let

b .
B,

o . : : : :
T = {Tg : g G} be a representation of G as linear isometries from

: £ T .
a dual Banach space E onto itself such that the Q%p‘ (g,x) -~ Té X
is a separately continuous linear map when E has the Qeak*-toﬁblqu.
Let X be a weak*-closed left invariant subspacé of E ;ﬁnd' Q a

weak*-weak* continuous projection'of E .onto X such that QTh = ThQ .
(‘:’}4

Y . : . L.
for each h e H with [Qll <a. Fix x e E. For each ¢ ¢ E, define

the mapping fx :G/H~+C by f_  (gH) =<(TgQTg_lx,¢>>, Then f

> X9

X,4
(g)| = |<TQT, jx,4> | < alxllel. ’

is clearly bounded since |f

X5¢
. Let ¢:G x B+ B be the mapping given by (g,Y) +7Tg y, where

B={yecE:lyl <alxll}. Since ¢ is separately continuous and B
is weak*Fcompact, by Ellis' theorem [11, TheOrem i], ¢ is jointly

continuous. If {ga} ijs a net in G- converging'to g in G, then



{QTg 1x} ijs a net in B converging in the weak*-topology to QTé';
0 .
in B. Thus, (T T x} converges to T QT x 1in the weak*-
.gQg-l & -gQg-l

o a

topology also. Hence is in CB(G/H). The function

fzwb

$ +~<m,f is a bounded linear functional on E,_, of norm < allxi.

X‘,<b>
The remainder of the prodf is exacfly'the same as Theorem 3.5.2. We
safely omit.the details.

Coﬁversely, if Lm(G/H,v) has~£he weak* G-invariant complemented
subspace property with respecf to H and there is a ¢ € P(v) such
th- - Gh * ¢:; ¢. for egch- h e H, let E = Lm(G/H,v), T = {Gg_lz g e G},
and X = {Al:% ¢ ©}. Let Q be the projection of E onto X defined
by Q(f) =(Zf¢b>‘: Then Q is weak*-weak* continuous, §hQ = dGh for
each h e H and lQll = 1. Hence there exists a continuous prbjection
‘P from Lm(G}H,v) onto X such that Pég = ng‘ for each g ¢ G with
IPI < 1. Define <m,£>=<P(£),6> for each f e L"(G/H,v). Then
m(1) = Iml = 1, and m(8,0F) = m(f) for all g ¢ G, fe L™ (G/H,v).

Hence G/H is amenable.

A weak*-closed subspace X of Lw(G/H,v) is weak* complemented

if there exists a weak*-weak* con:inuous projection from -Lm(G/H,v)

»

onto X.

Corollary 3.5.6. Let G be a locally compact group, H a closed sub-
-
group. If the coset space G/H is amenable, then any H-invariantly

weak* complemented left invariant subspace of .Lm(G/H,v) is invariantly
complemfnted. The converse 1is alsp ttue, if there is a ¢ ¢ P(v) such

that Gh * 4 = ¢ for each h ¢ H.

\



Remark 3.5.7. (i) If G/HV supports an invariant measure, then the

converse of Theorem 3.5.5 or Corollary 3.5.6 1s true.

(ii) We could use ﬂheor¢£>3.3.2 to prove the‘above.resulgs exactly
the same way as in [26, Theorem 4.1 and Theorem 4.3].

(iii) A. Lau proved in [26, Theorem 3.3] that G 1is amenable if and
only if every left invariant W*—subalgeb;a of ‘Lm(G) is complemented.
We do not know if G/H is amenable whether a weak* ciosed-self adjoint
subalgebra which contains the constant funcfions is necessarily com-
plemented for the case when H # {el. ﬁowever,vthe converse is true.
Lau's proof works in our case. ' |

(iv) A. Lau and V. Loseft recently proved in [27, Coroliary 2] that
G 1is amenable if and only if every weak*-closed complemented invariant

sﬁbépaée of Lm(G/H,v), H is a closed subgroup of G, is the range of -

a projection on Lw(G/H,v) which commutes with translations.

~
~

3.6 Reiter-Glicksberg property

s

Definition 3.6.1. Let G be a locally compact group, H a ciosed sgb-
group, and let E,E be normed linéar spaces; o a»nofm decreasing
linear mapping of E into F, and T = {Tg :g e G} an anfi represent-
ation of G on E with HTgH <1 for each g ¢ G. .Let Cx be the
closed convex hull of {ong X: g € G} in F for each .f ¢ E, and J
the closed subspace of E spanned by {Tg X - X:1ge€ G, xe E}. T ig
l‘sai{ to be continuous [weakly continuous] if the map g - T.g x 1is
continuous [weakly continuous] for each k ¢ E. We say that the pair

(G : H) has the Reiter-Glicksberg Property (RG)[(RGS)] if whénever E,F

are normed linear spaces, o a norm decreasing liuear mapping of E



into F, and T = {Tg : g € G} a continuous [weakly confinuous] anti

1 for each g ¢ G and

| A

representagion'of G on E such that HTgH

| A

distE(x,J) for each

OoTh = g for each h ¢ H, then dlstF(O,CX)

x ¢ E.

P. Eymard proved in {13, p. 21-25] using his fixed point-theorem
that if-there is a LIM on UCBQ(G/H) [CB(G/H], then the pair (G : H)
has the Reiter-Glicksberg property (RG)[(RGS)]. We give a new proof of

‘this result here. The next lemma 'is originally due to H.\Reiter [35,

Lemma B] for the case when H = {e}.

Lemma 3.6.2. Let G/H be an ameﬁable homogeneous space, and let E,F
be normed linear spaces, T = ng g ¢ G} a weakly continuous anti
rep?eséntation of G on E with HTgH <.1. for every g e G, and

a norm decreasing linear mapping of E into F such that oo Th =g
for each h ¢ H. ~ff x ¢ E satisfies distFtO,Cx) = 6 > 0, then there

s(y) for all geG,

il

exists ¢ e E* such that gl <1, ¢(Tg Y)
y ¢ E, and Re<¢,x>> 6% In addition, if o 1is an isometry of E

iﬁto F, then ¢ also satisfies Tl = 1; and <¢,x>= 8§

Proof: Let m be a LIM on CB(G/H). By the Hahn Banach theorenm,

there exists ¢ ¢ F* such that

Re<y,y>> & for each y e C_ and
- | * (0
Iyl =1 (see [35, Lemma A])

For each vy e.E, define;the function 'fy: G/H ~ C by

. fy (gH) =<y,00Tg y>

o
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For y ¢ E, we have |fy(gH)l = [<w_,c<3Tg y>| < lyl, so fy is
bounded. Also fy is continuous, as the mapping g - Tg y is
continuous when E has the weak topologx. Hence, fy € CB(G/H). Now,
foty+82 = afy + sz for y,z € E, a, B ¢ T, and ||fy1|m < lyl. There-

fore, the mapping Yy +<m,fy> defines a bounded linear functional

on CB(G/H). Hence, there exists ¢ ¢ E* such that

<¢,y>=<m,fy> for every y € E, and [l¢ll <1 (2)

. =< o = o > =
For a € G, y. € E, we have fTay(gH) ¥,0 Tg(Tay)> <y,o Tagy

= a ! = = O =
fy(agH) 8, fy(gH) . Hence, < ¢,Tay> <m’fTa)’> <m,<Sa \ fy>
<m,fy>=<¢-,y> for all ae G, y € E, so ¢ 1is invariant. Let Q

be the closed convex hull of {Tg x:ge Gl in E. If yeQ, then
ong‘ y € C, for eachv g e G, so lyl > |<¢,y> [ > Re<¢,y-}= Re<m,fy>=
<m, Re fy>_>_ 8 ~ by (1) and (2). If o is an isometry, tﬁen

aQ, = C,, sO Iyl can be arbitrarily close to 6, while <¢,y> is

gonstant on' Q- It follows that |<¢é,y>| = Re<¢,y>= & for

y € Q and iQl = 1. This completes the proof of the lemma since
xeQ- ’ - ~ ’ o a

Corollary 3.6.3. If G/H 1is an amenable homogeneous space, then the

pair (G :H) has property (RGS). ‘

Prboof: Let E,F be normed linear space, T = {Tg :g € G} a weakly
continuous anti representation of G on E with lng I <1 for every
g € G, and o a norm decreasing linear mapping of -E into F such

that goT, =0 for each h € H. By the previous lemma, choose ¢ € E*

h
so that ol -< 1, 'cp(Tg y) = ¢(y) for all g e G, y ¢ E. Then for
\ e} . .



“x ¢ E, distE(x,J) = inf lIx -yl > inf |<¢>,x—y>'| = [ <¢p,x>| >
i : yeJ yed

distp(0,C). | 0

Remark 3.6.4. Suppose the conditions of Corollary 3.6.3 hold. Then

equality holds in the Reiter-Glicksberg condition in the following
cases (i) o 1is an isometry: since Cx c a(x) + o(J), we have
.dlstF(O,Cx) i_dlstF(o(x),o(J))‘= dlstE(x,J)t

(ii) F = E/N, where N is a subspace of E contained in *J and

the natural mapping from E to F (see [13, p.25]).

L'(G/H,v), and define o :E - F

Remark 3.6.5. Let E = L'(G), F

by of(gH) = [ BBl dn for fe L'(G). For fe L'(G), g € G,

H p(gh)
let Tgf = f * Gg. Then
(1) ol < 1.
(ii) coTh = g for every h € H.

. \N
(iii) T = {T_:g e G} is a continuous anti representation of G on

L'(G) with HTgH =1 for every g ¢ G (see [13, p.31-34]).
CSUR T L

The following lemma is in [13, p.32].

Lemma 3.6.6. Let G be a locally compact group, H a closed subgroup.
Suppose the pair (G :H) satisfies the Reiter-Glicksberg property?(RG)
+ Let fl,...,fN

Then, for any ¢ > 0, there are finitely many numbers c, > 0, with

e L'(G) satisfy [, fj(g)dg =0 for j =1,...,N.

e, = 1, and elements g E.G such that flo (i cifj * Ggi)"v,l < ¢ for

a

j=1,...,N. -
P.. Eymard ﬁtilized Lemma 3.6.6 to show that if the pair (G: H)

~ has property (RG), then it has property (P It follows then that

1). .-
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the converse of Corollary 3.6.3 is also true (see‘the diagram in (13,

p-291). As a consequence of ‘Lemma 3.6.6, we have the following corollary.

Corollary 3.6.7. Let G be a locaily compact group, H a closed sub-

group. If the pair (G : H) has property (RG), then there is a net

in P(v) strongly convergent to left invariance.

proof: Let D = {a = (gl,...,gN;é) ie > 0, g; <G and N < o}.

~Direct D so a > a' if {gi} > {gi} and 0 < g < ¢'. Fix

¢ ¢ P(G). Then, for each o ¢ D, since <(§g * ¢ - ¢,1>=0 for
v i
i=1,...,N, by Lemma 3.6.6, there exist finitely many numbers cj > 0,

. = - * _ * : i
with ch 1, and elements aj e G such that Hc(;(Ggi - 9) 6aj)“v,l<
e, 1 <i <N. Let g = o(Z cj¢ * 6, ). .Then {¢a} converges strongly

. o j
to left invariance sinée §_ * = rc.(8_* * 8 for each
. 8y T by = o j8g ™ @) a)

. ) J
g e G (see [21, p.167]). . d

We now summarize the main results of this section in the next

theorem.

Theorem 3.6.8. Let G be a locally compact group, H a closed subgroup

Then the following statements are equivalent

(i) G/H 1is amenable
(ii)' (G: H) has property (RG)

(iii) (G :H) has property (RG;),

3.7 Examples and Summary

In this section, we give a number of well known examples of

amenable homogeneous spaces and a summary of important results which



are either derived in Sections 3.2 through 3.6, or are well known.

Some open problems are also stated.

Examples 3.7.A: 1. [13, p.15]. Let G be.a locally compact group
¢ . .

and H,K closed subgroups with K < H.- Then *

. .
(a) If the coset space G/K 1is amenable, so is G/H: KLet m, be a
LIM on CB(G/K). Define‘bw : CB(G/H) » CB(G/K) by y(£) (gKk) = f(gH),
£ ¢ CB(G/H). If glK.= g,k then gilgz ¢ KcH, so gH=gyH Thus
y(f) 1is a well defined function ?n CB(G/X). Next define-a‘function
m: CB(G/H) - C by <m,f>=<ml,‘¥(f)> for f'e CB(G/H). Then m 1is
a LIM on CB(G/H). : ’ 0

-(b) If the coset-éﬁaces H/K and G/H are amenable, tHen G/K 1is
amenable: ‘ |
Let m, ,m, be left invariant méans on CB(H/K), CB(G/H), respectively.
Define V¥ :CB(G/K) + CB(G/H) by ¥(f)(gH) =<m1,(agmf)|H/K>,'

f e CB(G/K)f. 1f ng = g2H then g, = glh for some 'h e H. Thus
<m1,(<sg2"mf)IH/K>=<m1,(5g,1hm ) > = <mps (6, © (5, 2 ) |y =

>, for f e CB(G/K) by left invariance of my. Hence,

H/K
¥y is well defined. Next define m:CB(G/K) ~ C by <m,f>=

<ml(<sgl af) |

<m2,W(f)3>, £ ¢ CB(G/K). Then m is a LIM on CB(G/H). . 0

2 (a). [20, p.306]. A locally compact group G is amenable if and
only if G acts amenably on every'éoset space G/H, where H 1is a

l

closed subgroup:

If G 1is amenable, then by Example 1(a) G acts amenably on

G/H. The converse is trivial. I - a



(b) Let H bea closed subgroup of a locally compact group G. Then
H is amenable and G acts amenably on G/H if and only if G

is amenable:

If G acts amenably on G/H and H is amenable then by
Example 1(b) G 1is amenable. The converse follows from Example 2(a)

and [19, Theorem 2.3.2].

/31 [34, p.112]. Any compact group G is amenable. The normalized
Haar ‘measure is the unique TLIM on L”(G). Also it is "the unique
LIM on CB(G).

\
4. [13, p.17]. - Let G be a locally compact group, and H a closed

subgroup with G/H compact. If AG‘H = by then G/H supports a
(unique) normalized invariant measure v . This measure is the unique

TLIM [LIM] on L7(G/H,v) [CB(G/H)].

»

5. [19, p.5]. Any abelian group is amenable as a discrete group.
in fact, every solvable group is‘?menable as a discrete group by
' : b

- Example 2(b) (see also [19,\p.9])ﬂ

6. A group which contains a free subgroup on two generators is not’

amenable as a discrete group (see [19, p-9]).

7. A locally compact group which 'is amenable as a discrete group is

amenable. The converse is not true:

The orthogonal group SO(3,R) contains a free subgroup on
two generators, SO SO(3,R) 1is not amenable as a discrete group (see

[19, p.6 and p.9-12])..

40
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However, since SO(3,R) is cdmpact in the usual topology, it is
amenable by Example 3.

. 2
8. [20, p.304]. Let G = SO(3,R) with its usual topology, Z = S

the unit sphere in ]23. Fix a point x in Z, and let H = {g e G:

gx = x} where G has the usual action as proper rotations of Z.

Then H is a closed subgroup of G. Since G is-amenable, G acts

amenably on G/H. In fact, G/H is homeomorphic to Z and G/H

supporgs a finite invariant measure (see [15, p-269]1).

9. The linear groups SL(2,0) %nd‘.SL(Z,ll) wifh the usual.topology

are nonamenable since they admit a discrete (closed)_free subgroup

on two generators (see [34, p.125]). Since there is a finite invariant

measure on SL(2,R) /SL(2,Z ), SL(2,R) acts améﬁably on SL(2,R)/SL(2,Z).

Nc " SL(2,Z) 1is not amenablé/by Example 2(b) (see [13; p.18-19]).
for more examples on locally coempact amen?ble groups we refer the

reader to [34, Chapter 3].

14

Lot

3.7B  Summary -

Let G be avlocally compact group, and H a closed subgroup.E
We give a summary of important results relating to the existence of a
LIM on Lm(G/H,v) here for the reader's convenience.

Each of the following statements is equivaient to the amenable
action of G on .G/H tDefinition 3.2.1).
; . .

1. [1A] Ess inf h < 0 for all real valued h e wo[nl] (Corollary

3.2.4).



2. [2A] no[nl] is not uniformly dense in Lé(G/H,v) (Theorem 3.2.5).

3. [3A] Lw(G/H,v) contains a subspace w ‘satisfying the following

: ) .
two properties:

\

(i) 6,0f -fem for all f e L (G/H,v), g ¢ G.
[(1) ¢ OFf - £ n forall ¢ e PG, fe L7 (G/H,v)]

(ii) ess inf £ < 0 feor all real valued f ¢ m (Proposition 3.2.7).

4. [4A] There is a net in P(v) strongly convergent to [topological]

left invariance (Theorem 2.2.10).
5. The pair (G :H) satisfies Reiter's condition'(Pl),,(Theorem 2.2.12).

6. [6A, 6B] The pair (G :HQ has the fixed point property FS[FZ,Flj

(Theorem 3.3.2, see also [13, p.12]).

7. The pair (G:H) has the Hahn-Banach extension property (HBEP)

(Theorem 3.4.2).

]
8. The pair (G:H) has the invariantly complemented subspace property

(C) (Theorem 3.5.2).

9. [9A] The pair (G:H) has the Reiter-Glicksberg property RG[RGS]

(Theorem 3.6.8; see also [13, p.21-29].

If G acts amenably on G/H th.. the following statements are

N

true.
10. Tﬁe pair (G :H) has property (B) (Proposition 3.2.13).

11. Any dual Banach space has the#G-invarianf weak* complemented

R

1

1



subépace property with respect to H (Theorem 3.5.5).

Each of the followingsstatements implies the amenable action

of G on G/H.
12. w (6/H) s closed under addition (Corollary 3.2.10).

13. Every left invariant W=*-subalgebra of Lm(G/H,v) is invariantly

“complemented (Remark 3.5:6 (iii)). .

14. (Converse of 11). G/H supports an invariant measure v and
Lm(G/H;v) has the G-invariant weak* complemented subspace property

with.respect to H (Theorem 3.5.5).

3.7C Some open problems

\ ~
- ' .
Let G be a locally compact group, H a closed subgroup. Does

—_——

the amenable action of G on G/H imply any of the follawing

a9

statements?

1. mp(G/ﬁ) is closed under addition.

2. - Every left jnvariant W*-subalgebra of Lw(G/H,v) is invariantlyb'

complemented. _ ' U
Is the amenable action of G on G/H implied by any of the

following statements?

3. The pair (G:H) has propefty (B).

4. Any dual Banach space has the G-invariant weak* complemented sub-

épace property with respect to H (see 3.7C:14).

~

-S5. Is the amenable action of G on G/H characterized by the following



property? Every weak* closed left izvariant H-invariantly complemented

subspace of Lm(G/H,vﬁ is invariantl} complemented.

6., Does the following local property ijply the existence of a

L

fopological left invariant mean on i“Lm /H,v)? For each f in Lw(G/H,v)

n

‘there is a mean me in Lm(G/H;v)* h that mf(¢D f) = mf(f) for

'

all ¢ -in P(G) (see [12, Theorem 2.3] an Theorém 5.2]).



CHAPTER 1V

WEAKLY ALMOST PERIODIC FUNCTIONS ON COSET SPACES

4.1 Introduction

A function f e CB(G/H) 1is almost-pefiodic [weakly almost
pefiodic].if the orbit OL(f) is relatively compact infthe norm (}
[weak] topology of CB(G/H). . AP(G/H) [WAP(G/H)] -is the space of all
'almosf periodic [weakly almost periodic] functions on G/H.

In this chapter, we prove that WAP(G/H)CUCB (G/H) and that
if H 1s\;ompact than CO(G/H) c WAP(G/H). A characterlzatlon of
weakly almost periodic functions on G/ﬁ is obtained. Finally, we.'

establish the existence of a unique left invariant mean on WAP(G/H)L

and then on AP(G/ﬁ).

4.2 Invariant means on'weakly almost periodic functions on coset Spaces

Let G be a 1oca11y compact group; H a closed subgroup A
function f € CB(G) is called almost periodic [weakly almost periodic]
1§>the left orbit O (f) {2 f:ge G} is relatively compact in the
norm [weak] topology of CB(G). We denote ;he corresponding classes of
functioﬁs by AP(Gj, WAP(G). A gunction f on G i said to be left
(right) ﬁnifbrmly continuous if for.each € > 0, there is a nelghbourhood
U of the identity element e in G such that ]f(g) - f(ga)['< € |
[|£(g) - f(ag)] < €] for all ace U, g ¢ G. We denote the spaée of
1eft fright] uniformly continuous functions on C by aUCﬁg(G)<
[UCBr(G)]. Note that our definition of'yUCBz(G/H) coincides with the °
definition of UCB_, (G) when H = {e} (éee footnote in (20, ?.299]).

UCB(G) UCB (G).n UCB (G) 15 called the space'of uniformly continuous

IV 45



’{&is a unique two-sided invariant mean on WAP(G) and hence on AP(G)’

46

functions on G.

As is well known, the orbit OL(f) is relatively norm [weak]
compact in CB(G) if and only if the right orbit OR(f) = {rgf: g e G}
iS'relat}yely norm [weak] compact in CB(G). .Furthermore, AP(G),

WAP (G) ;;; norm clpSed,conjugate ciosed two sided invariant [thét is,

both left and right] subalgebras of CB(G)  (see [22, Theorem 18.1] and

[2, Corollary 1.1.1]), and CO(G); AP (G) E&WAP(G) c UCB(G) (see [7,

" Section 5] or [10, Sections 10-16]). It is also well knmown that there

=

J. von Neumann driginally established the existence of a unique

. invariant mean on AP(G) in [45]. Ryll-Nardzewski proved the

existence of a unique invariant mean on WAP(G) wusing his fixed point

theorem in [40]. There are many proofs for Ryli?Nardzewski's fixed |

point theorem. His original proof was probabilistic, using the Martingale

Convergence Theorem (see [40]). A geometric proof given by Aspiund—
Namioka is givén in [19, p.97-99]. -We refer the reader to a proof of

Namioka [33] and a very recent proof of Dugundji and Andrzej Granas [8].

Definition 4.2.1. Let G be a locally compact group, H 'a closed sub-

group. A“functéon 'f ¢ CB(G/H) is called almost periodic (veakly almost
periodic) if the 6rbit OL(f) = {Ggllf :g‘e G} 1is relatively compact in

‘. i:'\ ¢ ’
the norm [weak] topology of CB(G/H). We denote the space of all almost

periodic [weakly almost periodic] functions on G/H by AP(G/H)

[WAP (G/H)]

:fLemma 4:2.2. .Let G be a localiy compact group, H d,closed.subgroup.

vxg :
Q‘,;"Lb
v

g¥

VB gL s
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Then AP(G/H) is a norm closed conjugate closed left translation in-

variant subalgebra of CB(G/H) which contains the constant functions.

Proof: Left translation invariance follows from the fact that OL(f) =
OL(GaElf) for all - f e CB(G/H), a ¢ G. Clearly AP(G/H) contains the

constant functions. If f € AP(G/H), then f e AP(G/Hj since the

mapping f ~+ f is norm continuous and OL(f) = OL(f) = {GgD f:ge G}.

Let fl’f2 e AP(G/H). If {an} is a sequence in G, choose a sup-"

N

sequence f{a_ } < {a_} and F ,F, e CB(G/H) such that i
ny n 1’72 v

lim 15, oOf, - B Il =0, 1lim #s, oOf, .- F,I = 0. Then,

k+°° aﬂk 1 ] = Koo ank 2 2 o . .

lim H6an' o (f1+ f2) - (F1+FZ..)II°° = Q, and 1lim "Gan a (flfz) - Fleﬂm <

ko k ko k .

i . D - N i o - =
ilm Udan f1 Flllwlle°° + lim ”Gan f2 FZHmHFIHm 0. Hencg
00 k koo k .
£, + £, £, ¢ AP(G/H).

. Woo» _
~To see that AP(G/H) 1is norm closed, let {fn} be a sequence

in AP(G/H) ‘converging to f e CB(G/H). If {am} is a sequence in C,
by the diagonal process, choose a subsequence {a_ } ¢ {am} such that
{5am u| fi} converges for_each i, say to Fi ¢ CB(G/H). Then for '

j>1, HFj - ‘iﬂw i_ﬂéamktlfi - Fill°° + Ilfi - fjﬂ& + H6amkD fj - Fj“m'm

This implies, since {f } is norm Cauchy in (3(G/7), that {F} is
Cauchy in CB(G/H). Therefore, there exists F . 7. ¢ H) such that
1im §F_ - F} = 0. Now, for any i, we have, ., of - Fl

n - o . dp.
N k

il'camkafi - Foi + U, - Fjj_+ ||aamkmf -8 mkD fium‘, This imp : that

_1lim )&, oOf - Fl_ =0, so f ¢ AP(G/H). This finishes the proof of (::
. “&m, © .

koo - Qe k '

the lemma. . , 0
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Lemma 4.2.3. Let G be a locally compact group, H a closed subgroup.
Then WAP(G/H) 1is a norm closed conjugate closed left translation

invariant subalgebra of CB(G/H) containing AP (G/H) .

Ezggf: Left translation invariance foilows from the fact that OL(f) =
0 (8 O f) for all a e G, fe “CB(G/H). Trivially AP(G/H) < WAP(G/H).
If f e WAP(G/H), then "? e WAP(G/H) »as. £ > F is“(norm) continuous )
“and OLtf) = 6;??7. Let fl,fz-e WAP(G/H). If ;an} is a ééquence in

G, choose a subsequence {a_} < {a } and F_,F, ¢ CB(G/H) such that
: R n n 1°°2
e

lim § of, ¥ F, weakly and 1lim § of. = F, weakly (see [9, V.6.1]).
a an 2 .

koo My 101 ko Tk -2
Then, lim éan o (f14~f2) = F1 + F2 weakly? SO fl + f2 € WAP(Q/H). To

. k- k ,
‘show flfz ¢ WAP'(G/H), write CB(G/H) = C(9), where @ is the spectrum

of the C*—algebfa CB(G/H). Note that Q is compact as CB(G/H) 1is

unital."{dan Cl(flfz)} is clearly uniformly bounded by Hflﬂwﬂfdﬂw.

k

We will show that {dan n| (flfz)} converges pointwise to .Fle. Then,
“an, | ]

since weak sequential éonvergence in C(Q) is equivalent to pointwise
convergence :and uniform boundedness (see [10, Theorem 1.3]); it follows’
that flfz é WAP(G/H). But pointwise convergence of {Gan El(flfz)}

k

follows immediately from the fact that both {Gad Elfl} and {6an,CLf2}
’ k k

converge pointwise to FI;F2 respectively. Next, let {fn} be a
sequencé in WAP(G/H) converging to f ¢ CB(G/H) in the norm topology.

CIf {am} is a sequence in G, by the diagonal process, we can find a

’

ko

subsequence {amk} c {am} .such that lim 8, Of, =F, € CB(G/H)

weakly, say, for each i. Then, for j > i,
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IbF, - F.I = sup | <¢,F.>-<¢,F, >|
>t Noh <1 ] '

$eCB(G/H) *

= sup - [lim | <¢,8 o0f,>-<¢,5, 0F >]]

ol <1 koo ame ™ T

$eCB(G/H)*

= If, - £.0 .
B I A

Therefore, since {fn} 4is sup norm Cauchy, so is {Fn}. Hence, there

exists F e CB(G/H) such that 1lim IIFn - F"oo = 0. Now, for each 1

-0
and ¢ e CB(G/H)*, [¢(8y OF) - o(F)| < [o(F) - ¢(Fi).l +
k ’ ' .
|¢(Fi) - ¢(5amkc:fi)| + ‘¢(éamit\fi) - ¢(5amkg £)] < lolllf, - fju°° +

hoMIF, - FI_ + |6 (F) - ¢(Gamkufi)[. This implies that {damknf}

converges weakly to F in CB(G/H), so by [9, V.6.1] f ¢ WAP (G/H) .

* Hence, we have the lemma. ' . a

Lemma 4.2.4. Let G be a locally compact group; H a closed subgroup.
Then ~.WAP(G/H) < UCBQ‘(G/H) .

_P_;:gqi: L;et&} e WAP(G/H). We first show that the map g -~ GgG f

is confinuous when ‘CB(G/H) h;s the weak tépology. If {aa} is a

net in G | convergin‘g to  a in G,, then {'csz"lc»L O f} wconverges pointwise
to '55'6 "f-.'..' H\.er}.ce‘,&t‘he net "{Gaa U\f} has at most one weak (norm)
‘cluster poinf 858 f.‘:'}ﬁy' the rel;itive weak compactness of OL(f)

thi§ net mﬁst convefge wegkly to GaD f, and consequen.tly the mapping

g » Ggm f 1is weakly continuous. Now, by a result of Lay (see_»thc;:
propo‘éitﬁion in [25, p.151]), the mapping gv—» 'agm f_ is norm continuous,

and consequently f € UCBQ(G/H). For the sake of completeness we give

details of this fact.



Following. an idea of Mitchell in {31, Theorem 1], let I bé the
weak* compact convéx set of all means on WAP(G/H). .Define d-+.m so
<a - m,f>==<nn6a_1 of> for ace C, £ é WAP(G/H), m € g. The mapping
(a,m) +‘a- m is separately continuous when WAP(G/H)* has the weak* -
topology ahd hence Ellis' result Tll, Theorem 1] implies that the map
(a,m)‘+ a-m is jointly continuous. Suppose f ¢ UCBR(G/H). Then
theré exist & > 0 and nets {aa}, {bd} with {éa} converging to a
ig 7G such that lf(aabaﬁ) - f(abaH)| > § for each a. Choose a

} converges to m in the

subnet {Gb H} of {6b H}' such that {Gb H
8 a S B8 ,
weak* topology. Hence, 0 < § < lém |<<Sb q s of>-<8, H,§an>| =
| } g %8 8
lém | < z%_l GbBH,f>-<af16bBH, £>| =0, a éohtradiction.' So»
£ e UCBQ(G/H)‘ and hence WAP(G/H) < UCB (G/H). ' 0

Lemma 4.2.5. Let G be a locally compact group; H a closed subgroup,
and w:G - G/H the natural map. If T :CB(Qéﬁ) + CB(G) is the \
induced map given by %(f) = forn for fe CB(G/H), then %(AP(G/Hi< =

AP(G) n T(CB(G/H)), T(WAP(G/H)) = WAP(G) n T(CB(G/H)). '

Proof: T is an order preserving isomeyry which preserves the constant
functions.’ %(datlf) é’za%(f)  for all a e G, f € CB(G/H), so ?(OL(f)) =
%({Gatlf: ae G}) = {zéx(f): a e G} = OL(¥(f)).' Also & is norm-norm
continuous and hence weak-weak continuous. If f ¢ AP (G/H) [WAP(G/H) ],

let {an} be a sequence in G. Then we can find a subsequence {an }

_and F e CB(G/H) such that ’{Gan of} converges to F e CB(G/H) in
T - . . k .
the norm {weak) topology. 'Hence,'{%(éan af)} ='{2an T(f)} converges

k k

to n(F) € CB(G) in the norm (weak).topology. Therefore,



%(f) € AP(G)[WAP(GE-%(CB(G/H)) is a norm closgd subspace of CB(G).
Hence, the weak topology on %(CB(G/H)) is the relative weak topology
of CB(G).. Therefore, by considering w1, #(CB(G/H)) + CB(G), a

similar argument as above shows that if f e CB(G/H), then

T(f) e AP(G) [WAP(G)] iﬁplies f ¢ AP(G/H) [WAP(G/H)]. 'Hénce T(AP(G/H)) =

AP(G) n W(CB(G/H)), W(WAP(G/H)) = WAP(G) n T(CB(G/H)). 0

The following two Tesu.ts were suggested by B. Forrest (personal
communications). Our proofs are different from his and employ Lemma
4.2.5. His methods of proof follow'ideas from [2, Theorem 3.6] and

[1, Theorem 8.2], and do not need any of the properties of WAP (G) .

Lemma 4.2.6. Let G be a locally éaﬁpact group, H a compact subgroup.

Then cocc/a) < WAP (G/H).

Bzggg:.,Let‘ f e CO(G/H) and ¢ > O. Thep there is a compact subset
K < G/H-“such that [f(E)] < ¢ fof(all £ ¢ G/H\ K. n_l(K) is
compact in G (see [22, p.39]) and [T(£)(g)| < e for all

g G\r l(K), so F(£) € C(G). But C,(G) < WAP(G), hence

T(f) € WAP(G). Therefore, by the above lemma £ & WAP(G/H). Hence,

C_(G/H) < WAP(G/H). : o -

Proposition 4.2.7. - Let G be a locally compact group, H a closed

subgroup, and f € CB(G/H). Then f e WAP(G/H) if and only if

I;m lim f(anbmH) = I;m 1;m f(anbmﬁ) whenever {an},r{bm} are sequences

in G such that all relevant limits exist.

Proof: Letk T CB(G/H) - CB(G) be as in Lemma 4.2.5. Then
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T(£) € WAP(G) @ 2nd only if £ WAP(G/H). But, by [1, Theorem 8.2],
T(f) € WAP(G) if and only if whenever {an}, {bm}’ are sequences 'in G

such that‘all relevant limits in 1im lim %(f)(anbm) and
i 'm n '

lim lim %(f)(anbm) exist then they are equal. Since
n m

. - . . ‘ . L L

lém 1;m n(f)(anbm) = 1im lim f(ahbmH) and 1%m I;m n(f)(anbm) =

lim 1im f(anbmH), the proof of the proposition follows immediately. d
n m

Remark 4.2.8. (i) Lemma 4.2.4 could be deduced from Lemma 4.2.5

using the fact WAP(G) < UCB(G):

Let f . WAP(G/H). Then Tw(f) e WAP(G) ¢ UCB(G). If {a } 1is.

a net in G converging to a ¢ G, then lim 1§, of - GaEJfH =
o o «©

lim g 7 (f) - g 7(£)4 =0, so
¢ a a e

lém I%(s, B - 6,960
a .

£ ¢ UCB, (G/H). . : P
. "!L.?, :',

(ii) We do not know if C_(G/H) c WAP(G/H) when H is a closed non

compact subgroup.

The next lemma is in [2, p.-36] for the case where' H = {e}.
This is originally proved by W.F. Eberlein in [10] for an abelian |

locally compact group.

Lemma 4.2.9. Let G be a locally compact group, H a closed subgroup,
and T = {Tg: g e G} a weakly continuous anti representation of G

on a normed linear space E with HTgllf_l for each g e G. If

{Tg x:g e G} 1is relatively norm [weak].compact in E for some x ¢ E

and ¢ ¢ E* satisfies <<I>,Th y>=<¢,y> for all y ¢ E, h ¢ H, then

the function f£:G/H - € defined by £(gH) =<e,T, x> is almost

-



periodic [weakly almost periodic].

Proof: Let O(x) = {Té x:g e G}. Define a linear transformation

¥ : E +~ CB(G/H) .by ¥y (gH) =<i¢,1g y> for y ¢ E. Then, ¥ is a
bounded linear transformation, of norm < Treli. Therefore Y 1is also
weak-weak continuous. Hence, if O0(x) is relatively norm [weak]
compact in E, then ¥(0(x)) 1s relatively norm [weak] dompact in
CB(G/H); But y(0(x)) = {aH »ﬂ<¢,Tga X > g.etg} = {aH » dgtjf(aH):
g e G} = {6gl3f :g ¢ G}. ~ Hence, if 0(x) isL;zlatively norm [weak]
compact, then f 1is almost periodic [weakly almost periodic]. Hence

we have the lemma.. - : a .
l R

We now state and prove the main theorem of this chapter. The
proofs below were suggested by A. Lau. They are much easier than our

original proof. See Remark 4.2.12 for our original proof.

Theorem 4.2.10. Let G be a locally compact group, H a closed

subgroup. Tﬁén there is a unique LIM on WAP (G/H).

Proof: Let T CB(G/H)‘+ CB(G) be as in Lemma 4.2.5. Let 'm be the
invariant (two-sided) mean on WAP(G).i_Define a function my on |
WAP (G/H) by é»ml,f>=<m,r1\r'(f)>, £ ¢ WAP(G/H). Then m, is a LIM

2 is another LIM on WAP(G/H), consider the
representation T = {2 ' 8¢ Gl on the subspace %(WAP(G/H)) of

on WAP(G/H). If m

WAP(G). Then by the usual Hahn Banach Theorem, m, eXtends to a mean
¥ on WAP(G). By Lemma 4.2.9, the function ¥, : G+>C defined by

Wf(g) =<:Wf,2 1 f> is weakly almost periodic. Hence, the conditions
g7t ‘
(i) through (iv) of (HBEP2) of [14, Definition 3.2.1] are satisfied.
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Therefore, by [14, Theorem 3.2.3]‘,{m2 extends to a LIMm' on
WAP(G). Therefore, m' = m, by the uniqueneés of m. In particular,

we have m = my. Hence, the theorem follows. O

Theorem 4.2.11. Let G be a locally compact group, H a closed

subgroup. Then there is a unique LIM on AP (G/H).

Proof: The existence immediately follows from Theorem 4.2}10. The

uniqueness can be proved exactly as above. We safely omit the details.

Remark 4.2.12. We give our original proof of Theoremsl4.2.10 and

4.2.11 here.

Let £ WAP(G/H). Let 7: CB(G/H) - CB(G) be as in
Lemma 4.2.5. Then %(CL(f)) = cL(%(f)), where C (£), cL(%(f)) denote
the (weak) closed convex hulls of the orbits OL(f), OL(%(f))- ,
respectively, as T is an isometry. The weak closure CL(%(f)) of
the convex hull of the orbit OL(%gfj) is weakly cqmpéct tsee {9,

V.6.4]); Define g-«F =4 _.F for geG,F eclﬁ%(f)), Then

g-1
G x CL(%(f)).& CL(%(f)) is an affine distal action. Therefore, by

the Ryll-ﬁardzewski's fixed point theorem [19, Theorem 3.1.1],

c,(¥(£)) has a fixed|point, say \(¥(£)), for G. Then, A(W(£)) isa
. unique constant function in CL(k(f)), (see [19, p.39-42]). Hence,

CL(f) has a uniq;e constant function, say p(f), so that #(ucf)) =
A(¥(£)). Define a function m on WAP(G/H) by m(f) = w(£) (H) =
.A(}(f])(e); f ¢ WAP(G/H). ‘Then m is a left invariant ﬁean on WAP(G/H).
Let m bé-another T.IM. on WAP(G/H)ﬂ Since CL(f) is the norm

closure of OL(f), we can find a net Sa(f) of finite convex sums of

A v
L

left translates of such that
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Lim IS_(£) - w()I, =0 (1)
Q

so, |m(£) - w(f) (W] = 1in m(s, (£) - mu(N] < Lim IS (£) - w(HI_ =0,
since m is a LIM.. Hence, a(f) = p(f)(H)}= m(f). This finishes

the proof of Theorem 4.2.10. Ekistence of a LIM on AP(G/H) is
trivial as 'AP(G/H) S_WAP(G/H). Uniqueness follows from (1). Hence,

we have Theorem 4.2.11.

problem 4.2.13. Let G be a locally compact group, H a closed subgroup

Is it true that CO(G/H) < WAP(G/H)? (See Lemma 4.2.6.)
,‘l'?"' ’ " .

B



CHAPTER V
INVARIANT MEANS ON L7(G) FOR A LOCALLY COMPACT NONDISCRETE
GROUP WHICH IS AMENABLE AS A DISCRETE GROUP

.

5.1 Introduction

/
A Borel measurable set E« G 1is permanently positive {f
< .
n gk is not locally AG—null for any finite subset {gl,...,gN}
i=1 . .o

In Section 5.2, we prove that if -G 1is a nondiscrete o-to
" ST e

locally compact group then it contains a permanently positivé“gégxd'
' ’ - Q5 "

finite measure whose complement is also permanently positive.

Lo

proof uses ideas from [42,;Section 3].
. In Section 5.3, we prove that if G 1is a nondiscrete locally'_ 
éompact group which is aﬁenable'as a discrete gﬁoup and X 1is a
conjugate closed subspace of Lw(G), then there is a 1eft invariant
mean m oR Lm(G) éugh that m(X) = 0 if and only if dist(l,X) = 1.
The proof of this thedrem follows an idea of D. stafney.[42,tLemma 3.2]7.
As a corollary we obtain a result-of W. Rudin [39] thatlifv G 1is a
‘locally compact nondiscrete group thch is amenable as a discrete

group, then a Bogsgxset_ E<G 1is permanently posiﬁive if and only if
fhere is a left iﬁv;riant mean m on Lm(G) such’that. m(lE)'= 1.

A consequence of this corollary is a well known result of W. Rudin [39]
and E. Granirer.[IS] that if G 1is a nopdiscrete group, theﬁ thére

is a left in;ariant mean on Lm(G) which is not topologically leff

invariant.

56
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5.2 Permanently positive sets

W. Rudin introduced permanently positive sets in [39, Seét;on I1]

|

-

and proved that every infinite compact group contains a permanently
positive set whose complement is also permanently pq§itive.: Later

J. Rosenblatt proved in [36, Proposition 3.4] that a nondiscrete
o—compact locally compact group contains a strictly positive'set éf
finite measure whose complement is also strictly p051t1ve »Nearly ten-
years before Rudin's paper, D. Stafney proved in [42 Theorem 3 13] that
if "G is a nondiscrete abelian second countable locally compact group,
then Borel subseté E of G such that AG(E) < » and both E"and its
'complemgnt g¢ satisfy a weaker form of the notion of strict positiveness
(seé [42, Lemma 3.21) 2Ty numerous. In this section, we adapt‘his
argumedts in [42, Section 3] to show that if G is a nondiscrete
oicoﬁpact locally compact group fhén it contaiﬁé a Borel subset E of

. ) c - .
finite measure so that both E and E~ are permanently positive 1n G.

Definition 5.2.1. Let ‘G -be a locally compact group. A Borel set

. N ‘
E c G is permanently positive [PP] if n giE is not locally
. i=1
AG-nuil for any finite subset {gl,...,gN}'c G. A Borel set E< G 1is
v N
strictly positive if n g.En V is not locally AG—nuli for any non-
- =l »

empty open set V and finite subset ‘{gl,...,gN} c G. Thus a strictly
posifive set is always.' PP and dense open sets are strictly positive.

.

If G .is compact a Borel set E c G is strictly positive if and only
if. E is PF If G is non-compact then there are permanently positive
open sets which are not strictly positive (see [36, Lemma 3.31).

-

Let G be a locally compact group. For eacﬁ pair A,B of Borel
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measurable sets in G, define the equlvalence relatlon A v B to mean
A (A A B) = 0. Let M be the collectlon of all equlvalence classes
of Borel measurable subsets of G, metrized by ‘p(A,B) = arc 'tan AG(A;:B),
A, B ¢ M. Then (M,p) is a complete metTric space' (see [9, III.T]).
Let N denote the sets-(eqﬁivaleﬁce classes) of.finite*measure. Then
N .is_a closed subset of M and therefore (M;p) 1is also a complete
metric space. Fix a.compactwset D and.an open set V of finite
positive measure. For each Borel measurable set E and each u =
(gl,...,gm) e Dx ... x D, the direct product of D, m times, whefe m

I8 .

is a positive integer, let

H (u,E) =& g;E n V) and

[7p]
~
[~

j

K (E) = inf(H (WE) i u €D x .. x D}.

Lemma 5.2.2. Let G be a locally compact group. Then the mépping

¢

E ~ Km(E) from M to R is continuous.

Proof: We first show that if E,F are Borel measurable sets in G

and u = (gl,...,gm)e Dx ... x D, then

)

i, (6,E) - Ho(w,P)| < m(sup(ag(e Y 0 (ENF)) :g <D}

¢ supligle Vo F\E) rge DD (1)

! : " eex . .
For- any measurable sets A and B of finite measure we have,

hg(A) - Ag(BY| < Ag(A 0 BY) + AG(B A A |

-
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m m

Hence, IHm(u,E) - Hm(u;F)[ < }G((igl giE n V) n (jgl (ng n V)C))v. (2)
. e C
+ AG ((.T ng n V) n.(-g (giE nVv)"))
j=1 i=1

Considering the first term of the right hand side of (2) we have

i

m - m ' m m : :
A((n gEnV)n ( (g:Fa®)) =a.(u ((ngEnV)n (g.Fn VY
et =1t Glya1 31 % I
mo , c
<Al (AT 0 (gFn V%)

i_mAG((ngf1V)'n (ngn V)) for some

1<j=<m

y
u l
mg(g; Vo (E \ F)

i}

The 1nequa11ty (1) now follows by applylng the same argument to the
second term of the rlght hand 51de of (2). It follows from (1) that
if {E } is a sequence of elements from M converglng té E € M

4
converges to H (u,E) unlformly for u e D X .. %D,

then H (u Ek)
so K (Ek) converges: to Km(E).\ Hence, the mapplng E -~ Km(E) is
continuous. i v - o

Lemma 5.2.3.1 Let G be a locally compact group,'A, B 'Borel measuréble
sets, and B have finite measure. Then the mebpings .g.+‘AG(Bl1(A‘VgA))

and g -+ AG(B n (gA \ A)) from: G to R are continuous. S

Proof: B n (AN gA)'= (B n A) \({B n A) n gA). Now,"lG((BfwA)rng) =



.*
'

1 * 1 (2) .is the convolution of an L'(G)-function and an
BhA -1 | - _

'L®(G) -function, and therefore the mapping g AG((BruA) n ghA) 1s

continuous (see [19, Lemma 2.12]). KG(BT1(A \ gA)) = AG(B n A) -

AG((BrxA) n gA). Heﬁce,'the maﬁping g~ AG(B n (gA \ A)) 1is continuous.

LN
ot

A similar argument shows the mapping g ~+ XG(B n (A \ gA)) is
d

continuous.

-

Lemna 5.2.4.. Let G be a locally compact group. Then the mappingv

u - Hm(ﬁ,E)‘Wfrom Dx ... xD to R is continuous, where E 1is a
Borel measurahle subset of G. g \

Proof: Let u = (gl,..;,g;)-;and. v = (al;...,am) - be elements ‘in

D x ... x D. Then, - . | 4
S ST I . ‘m . “ m e
|H (u,E). - H (v,E)| < A.(Cn (g,En V))'n (v (a;EnV)7))
m SoTme A (i 1 . i :
. : i i=1 : j=1 . -
W K% .
o ‘ R Soomoe : m c
AN Lt AgCn (a.En V) n (u (gEn V)
: . s e j. . it
Lo j=1 N - i=1 R
‘v N Q . . ] . s
K%E@{M\(%EOVD)J
v ‘ :- ‘,I\S'\:“ _ ; . .:’)v‘ .
g P
Ea¥) \ (g5E 0 V)))

S

SR e t S . - t\* -7 > ' i d 3

R B cr - . . . .
.8

PRI S IS S o : | . A
Since - g}xy has'{inite Q§q§ureéfor j=1,2,...,m it follows from . .~

-,



we give the proof.

*'Tﬁeq for each ¢ > 0, there exists a dense open.?et' W such that
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Lemma 5.2.3 that Hm(u,E) converges to Hm(v,E) as u tends to v.
Hence,the'mapping u -+ Hm(u,E) from D x ... xD to R 1is
continwous. S : ; - Q

J ‘ : O L -

.”“\ . m\- :

Corollary 5.2.5. Let G be 1 1«€311y compact group. If Hm(u,E) @iseﬁ;;“

o . ;
»\-3 f * <

positive for each u e D x ... X 0. then Km(E) > 0, whero‘bE isa o

Wt
_ 1 ) e {¥
Borel measurable set in G. In partleular if- E "is a derf_ épen set
. ) - : ] B 8 : . \‘: ) .- LT ,“, IO 1 S )
then K Yy >0 for m=1,2,.... I ,:M;\ﬂ' S
el . T "-u ‘_“- R e ;
' ' . ' T o Js , '

4

Proof: Since D'x ... x D is eompathand the maﬁping u > H (u, E)

is continuous, Hm(uJE) -assumes its infimum at some 301nﬁr;n D x ... xD.
. L - u‘?}‘- . o b

. Hence, the-first"@artﬁbf the corolldry.follows. If E 1is dense open,

then H (u, E) >0 for ueDX ... xD and n =1,2,.... Hence,

K (E) >0 for m=1,2,.... - ‘ o

wor 5 ' k)

o \,‘

RS

;;hlhhat follows we assume that G. is a locally compact g?cempa

D = : : . . ’ “‘" N v - N ! ’
nondiscrete group. Let {Dn}»‘be an increasing sequence of compact sets

(2]

,’sgch'fhat G =y Dn; “Let V cbe a fixed nbnempty open set of finite

n=1

‘measure' For each Bofei measurable see E andueech u = (gl,...,gm) €.

v

Dn X ee. X Jn’ m .times, where m,n are positive integers; let

A i . .
id I e

m
n

Ho n(.BE) = ag(n gEn V) and K (E) = inf{H (u E) e D x _;* D }.

j=1
oo . - hvmn
The next lemma is in [18] and {19]. For the sake of completeness

b

Lemma 5.2.6. Let G be a g-compact locallyicompaet nondiscrete group.
—— . . . . p.

I S . " ’:,',' vl ) ﬂg L ":Qw_ <
AG (\w) < e . i . . Cd W . ) : ..f
) ‘ - .. r.f B . * . . .9‘7“67

Lk

o
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L
Proof: Since G 1is not discrete, there exists an open neighbourhood

Un ~of the identity element, such that KG(Un) < 1/n, where n 1is a

N\,

positive intéger. It follow% from [22, Theor = 7.7] that" G ‘has a
compact normal subgroup N such that N c n Un and G/N 1is

' ‘ n=1
separablc. - Let {gi}i=1 be a subset of G with {giN}.l=1 dense in

G/N. Then AG(giN) = AG(N) =0 for each i. Hence, if ¢ > 0, is

given we can find open sets Wi < G such that giN c Wi and

xG(Wi) < 5/21 for each i. Let W = It Wi. Then clearly W 1is
i=1 o

open and AG(W)< ¢ . To see that W is dense in G, let U be open

set in G, and w:G » G/N the natural map Then «(U) 1is open in

G/N, so (W) n {g;N)]_q # ¢ Therefore, Un (U gN) # ¢ - 'x}ghus,
©oi=l1

ﬁaﬁ giN and hence W 1is dense in G. 1 ’ 0
i=1 , 5 - |
Lemma 5.2.7. Let G be a locally compact g-compact nondiscrete group,

E a Borel measurable set of f1n1te measure, and m,n positive integers.

Then, ﬁor each € > 0 there is a closed no wherc dense set F such that
L >

b

o(B,F) < ¢ and Kn mCF) > Q. -

Proof:‘ Let & be a p051t1ve real number with tan 125 < e/3. Byv

Lemma 5.2.6 choose a dense open set. U1 so that l - < § and by

_fegulafity'ofu AG choqse an open set U2 such that xG(E) + 8> AG(UZ)'

and U ‘> E. Let U =‘--U v Uy, Then .U  is a dense openfsét'of finite

2 = , 1 2
measure contaﬁnlng E GJAE) = AG(U).— XG(E) f_AG(Ul) + ;GSUZ)ll
(E) < 28, sé p(E U) < e/3. Also by Cordilary 5,2.5,'we have

-

n mﬁU) > ﬂ .Agaln by. regularity choose an 1ncrea51ng sequence' A, }

of compact sets such that Ak c U and lim A (Ak) = A (U) since {Ak}
- | o koo ,

?Gbnverges to! U in M and K (U) > 0“ by Lemm& 5.2.2, we can flnd
R n,m

..,



C

a compact set A c U (A = Ak for some k) such that Kn m(A) > 0

and p(U;A) < €/3. By Lemma 5.2.6 choose a sequence {Wk} of dense

opeﬁ gﬁ%s in with 1lim AG(Wk) = 0. Then {A‘;Wk} _converges to A
LN k- .

‘Mﬂ ﬁﬁ. Since n m(A) > 0, by Lemma 5.2.2, there is a dense open set

Wo(W = W for some k) of arbitrarily small measure such that

k
p(ANW,A) < ¢/3 amd K _(A\W) > 0. Finally set F = A \ W. Then
R
_F s closed, nSQQEIVAQQQSe Ky ) > 0 and p(E,F) < €. 0
) ) \ C o 9

We are now- in- ﬂ&3051t30n to prove our main theorem of . thls - @

section.

"Theerem 5.2.8., Let G be a locally compact o-compact nondiscrete
[ \

group. jhen there 'is a Borel measurable set Ec G with (E) <

such that both E and - EC are permanently p051t1ve

Proof: For each pair of positive integers m,n, let Q(n,m) =

(EeN :Kn;m(E) -0} and Q'(n,m) = {Ee N :Kn’m(Ec) = 0}. Then

‘Q(n,m) end Q' (n,m) are’the“kernels of the maps E -+ Kn m(E) and

E » Kn m(EC) respectlvely The first map is continuous on M by

’ &
Lemma 5.2.2. The second map is a composition of the flrst map and the
map E - S which is clearly-continuous. Therefore, the sets

Q(n,m) and Q'(n,m) are closed in N. Let hE ¢ N and € > 0. Then,

" by Lemma 5.2.7, there is a closed nowhere dense set F such that

p(E,F) < ¢ and K m(F) > 0. Since ¢ is open and dense, by -

b4

Corollary 5.2.5, we also have (F ) > 0. This 1mp11es that both

L

Q(n,m) and Q'(n,m) have empty interior. Hence, by the Balre category

theorem there is a set E e N such that . E “is not in any of the .

Q(n,m) or Q'(n,m) for m, n=1,2,... . That is, Kg m(E) =
m . ?
m_f{)‘G(jglng nV):u-= (é,...,gm) € bn X ... x Dn} >0 and

% R ’

I .
TRy
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m

Cy _ s Cc o = . x :
Kn,m(E ) —_1nf{AG(j21 ng nV): u (gl,...,gm) e D X o...oX Dn} >0
for m,n = 1,2,... . This implies, 'in particular that both E and
E¢ are PP. gd

Remark 5.2.9. (i) In fact, by Lemma 3.3 in [36], both E and E€

are strlctly positive.

0y

(ii) . By Corollary 5.2.5, Q(n,m) = {E € N: A4 ( a g}E nv) =0 for’

. J=1 m .
some  gys-:s8y € Dn} and Q'(m,m) = {E € N: AG( n1 ngC nv) =0 for
,f¥uéohel g1 ceea By € n} Hence, by the Baire category theorem the

'Borel sets E of finite measure such that both E and ES are
strlctly p051t1ve are dense and second category in N.
(iii) Theorem 5.2. 8 is already known (see [36, Prop051t10n 3.41) and

the proof uses similar types of arguments as above. K v 0

5.3 Invariant meansronr,Lm(G)
. In this section we prove that if G is a locally compact non-

discrete group which is amenable as a discrete group, then there is a

left invdariant mean on L@(G) which is not topologically left invariant.

-

v
& X

Theorem 5.3.1. ”Let G be a locally compact gnoup which is amenable

J . R
Ff X 1is a conjugate'crosedﬁleft‘invariant
/"‘

subspace of L” (G), then the follow1ng statemerits are equ1va1ent

Ls-w— . ,

. 1 '
(i) There is a left 1nvar1ant ‘mean’ m on L (G] Sufh that m(jj 0.
G e e

(ii) ess inf h<0 for all real yalued "h e X.

(iii) dist(1,X) = 1. e

PREEEN

Proof: By Propﬁéiﬁion 3.2.2 we only have to prove (iii) = (ij.

oA .
4 K
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Following an idea of D. Stafney (42, Lemma'3.2], consider the anti

{M: reC}, and

i

representation T = {la: a € G}, the subspace [

the 11near functional ¢ on F given by ¢ (A1)

A, A ¢ €. Define

‘asamnmm p on 1°G) by p(f) = inf{lf-hl_:he X}, fe L”(G).

Then, (i) clearly laF cF for each a.e G.

(ii) p(laf) i_p(f) for all a e¢ G, f e L (G), since X 1is left
invariant.

(1) ¢(e,f) = o(f) for all aeG, feX.

_(iv)ﬁ/|¢(xl)l 5_p(x1) for each Al e F, as dist(1,X) =
By the usual Hahn“Banach theorem - ¢ ertend$>to a linear runctional 'w
on L°(G) such thet |¢(f)[ < p(f) for each f ¢ L, (G). Hence, the
coudltlon (v) of -(HBEP) (see Definirioh 3.4.1) is satisfied when the
group G. has the discrete topology. Therefore, since G is amenable as
discrete, the linear runctional ¢ extends'to a lihear functional m
on L (G) such that | |

(a) m(2,f) = m(f) for all a e G, £ e L7(G)

(b) |m(fj1 < p(f) 'For each £e 7). -

t

It follows then that m is a left invariant mean on L° (G) such that

m(X) = 0. S : : ad

B -

Remark 5.3.2. Let G be a 1ocally compact group, H a closed subgroup,

and G/H support an invariant measure V . Suppose there is a left

invariant mean on B(G/H), the bounded functions on G/H. If X is

a conjugate closed left jnvariant subspace of L”(G/H,v) then the

- L 31 p“# -
following statements are equivalent.

1) There is a LIM m jon Lm(G/H, )} such that m(X) =

(ii) ess inf h < 0 for all'real valued h e X.
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(iii). dist(1,X) = L.

The proof is exactly as abbvé. Note that by the usual Hahn Banach
theorem and by the invariance of v, the condition (v) of (HBEP)

is satisfied. ‘ . d

Corollary 5.3.3. Let G be a locally compact group which’ is amenable

‘as a discrete group. If J is é left invariant ideal in Lw(G) then

there is a LIMm on L°(G) such that m(J) = 0 if and only if
tj
J # L=G).

S
¢ W

proof: If J # I°(G) then there is a multiplicative linear functional

é on _Lw(G) such that ¢(J) = 0. Then dist(l,jjﬁ=¢ri Hence, by

~

Theorem 5.3.1, there is a LIMm on L (G) §uch that® m(J) = 0. The

converse is trivial since 1 ¢ J. . g

.- _Corollary 5.3.4. Let G be a locally compagt group wﬁich is amenable
+ as a discrete group. Then a Borel measurable set E ¢ G is permanently

positive if and only if there is a LIM-m on L”(G) such_thét

m(1g) = L.

. L N . /
Proof: If J={fe L7(G) :f=0 n g.E for some g.,...,8y € G,
—_—’"" : § i=1 oY N
and N < =} then J is a left invariant ideal'in"Lm(G).--E is PP

iR N. .
if and only if n giE is not locally null for any finite subset
o i=1 o

{gl,...,gN} c G. Therefore, E 'is PP is and only if 1 ¢ J, and . \
‘hence if and only if J # L”(G). Now the corollary follows from.
Corollary 5.3.3. ' S u

-

Corollary 5.3.5. Let G be a locally compact group which is amenable




67

as a discrete group. Then a Borél-set E < G is PP if and only if
) : N .
dist(lE,vo) > 1, where " is the linear subspace of Lm(G) spanned

by (2 f-f:raeG, fe L”(6)}.

Proof: If 'E' is PP, thén by Corg}la;y 5.3.4 there exists a left

invariant mean m on L (G) such that m(lp) = 1 M0 dist(lg,m ) > 1.

Conversely, if dist(lE,ﬂo) > 1, by the Hahn ?anach theorem there

exists a linear functional m on Lm(G) such that m(lE) =1,

i

m(no)

m(1g)

0, and lIml < 1. Then m isa LIM on L7(G) with
. :/:

1. Thus E is PP by Corollary 5.3.4. -0

Remark 5.3.6. (i) Let G /'be a g-compact locally compact group. If
qur each pgrmanently positive set E c'G, dist(lE,nO) > 1, then G 1is
amenable as.a discrete group (;ee [3, p-46-50]).

(ii) For a discrete group G, a set Ec G is PP is and only if it
is left thick in the sense of Mitchellx[ZO]; Therefore, Corollary 5.3.4

can be considered as a generaliZatioﬁ_bf his result [30, Theorem 7]

7
b

(see [3, p.49]).
The following theorem was proved independently by W. Rudin [39]

and .E. Granirer [18]. See also Lémma 3.2 of D. Stafney [42]. We

present Rudin's proof here.

-

Theorem 5.3.7. Let G be a locally compact. nondiscrete group which is.

. amenable as a discrete group. Then there is a left invariant mean on

L”(G) which is not topologically'léft invariant.

Proof: Let - e‘P(C).n COO(G). Then by absolute continuity there is

a § >0 ‘such'fhat
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f ¢ (g)dg : 1/2 whenever XG(E)‘< § - (1)

‘Let U-=1{geG: (g) #0}. Then U is open and U is compact. We

assume that U has the identity element e. Let GO be the subgroup

/, o - - - o] -
of G generated by U so that G0 = y (Uwu U 1)n = y (Uudl l)n.

n=1 n=1

Then GO is open (and hence closed). Since 'Goi‘is a'locaily compact,

compactly generated nondiscrete group, by Lemma 5.2.6, GO contains an

open dense set Ao with XG(Ab)< § (see Remarks in [18, p.619]). HWrite

G-+ wu gdGo’ gaG0 n gBGo = ¢ if o # B. Let A= u gaAo' Then
aEwT ’ ael

clearly E = A n A-l is open and dense in G. By Corollary'5.3.4, there

is a LIMm on Lm(G) such that m(lE) =1, as E 1is PP.

Let f=1 - lE. Then, m(f) =0 . (2)
o * £(a) = [ o(g)f(g ta)dg .
G o
"é}» ‘

1= $ ()1, (g "a)dg

. -1 -1
since E =E 7, }E(g a) = laE(g). Thus,
._,:Vz\,",;‘ PR )
Ml
o+ f(@) =1-[ o¢(g)dg.

aE

Since A(G, n 2E) < &, it follows from (1) that ¢"x £(a) > 1/2
for a e G. Therefore, m(¢ * £f) > 1/2, because m 1is a mean. (3)
m 1is not topologiéally left invariant by (2) -and (3). This finishes

the proof. - o : a
-] : _
.

Remark 5.3.8. (i) Let G be a non-discrete o-compact locally compact
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group which is amenable as a discrete group. Then the set of all
left invariant means on Lm(G) which are not topologically left
invariant is not’ nq§$~separab1e (see [36, Theorem 3.6.3]).

(ii) Recall that every abelian and hence solvable group 1is amenable
as a discrete group (see Section 3.7A). Also the orthogonal groups
SO(n,i{), n > 3, are compact and hence amenable. However, since théy
.contain a free subgroup oﬁ two generators, they are not amenable as
discrete groups (see [34, Section 14]), It is known that ﬂ&(G) has

a unique LIM for G = so(n,R), n > 5. (See [29], ~[36] and [43]).

./\

%
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