
Approximation Schemes for Capacitated Vehicle
Routing on Graphs of Bounded Treewidth, Bounded

Doubling, or Highway Dimension

by

Aditya Jayaprakash

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Aditya Jayaprakash, 2021

Abstract

In this thesis, we present Approximation Schemes for Capacitated Vehicle

Routing Problem (CVRP) on several classes of graphs. In CVRP, introduced

by Dantzig and Ramser in 1959 [16], we are given a graph G = (V,E) with

metric edges costs, a depot r ∈ V , and a vehicle of bounded capacity Q.

The goal is to find a minimum cost collection of tours for the vehicle that

return to the depot, each visiting at most Q nodes, such that they cover all

the nodes. This generalizes the classic travelling salesman problem (TSP) and

has been studied extensively. In the more general setting, each node v has a

demand dv and the total demand of each tour must be no more than Q. Either

the demand of each node must be served by one tour (unsplittable) or can be

served by multiple tour (splittable). The best known approximation algorithm

for general graphs has ratio α + 2(1 − ϵ) (for the unsplittable) and α + 1 − ϵ

(for the splittable) for some fixed ϵ > 1
3000

, where α is the best approximation

for TSP. Even for the case of trees, the best approximation ratio is 4/3 [6]

and it has been an open question if there is an approximation scheme for this

simple class of graphs. Das and Mathieu [17] presented an approximation

scheme with time nlogO(1/ϵ) n for Euclidean plane R2. No other approximation

scheme is known for any other class of metrics (without further restrictions

on Q). In this thesis, we make significant progress on this classic problem

by presenting Quasi-Polynomial Time Approximation Schemes (QPTAS) for

graphs of bounded treewidth, graphs of bounded highway dimensions, and

graphs of bounded doubling dimensions. For comparison, our result implies

ii

an approximation scheme for Euclidean plane with run time nO(log6 n/ϵ5).

iii

To Amma and Appa

iv

You take 100% of the shots you miss.

– Wayne Gretzky.

v

Acknowledgements

First and foremost, I would like to thank my advisor, Mohammad R Salavatipour

for his support during my graduate program. Mohammad has always patiently

guided me throughout this thesis, and I am very fortunate to have received

his mentorship. He is an all-around fantastic and everything I could hope for

in an advisor.

I would like to thank Zachary Friggstad and Guohui Lin for serving on my

thesis committee. Their feedback was instrumental in improving this thesis. I

am grateful to have worked and learned from Zach during the group project.

My graduate school experience would not have been the same without my

Theory group lab mates - Ramin Mousavi, Haozhou Pang, Brandon Fuller

and Maryam Mahboub. I would like to thank them for making the lab a fun

place to work. Ramin has been a great friend and I would like to thank Ramin

for his help and advice when I started at Alberta. I would like to thank Bran-

don for being a great friend and for going above and beyond to help me when

I was job searching.

I am very happy to have met Archit Sakhadeo, Taivanbat (TK) Badamdorj,

Shivam Garg, Parash Rahman and Soumyadeep Pal during my time at Al-

berta. Archit has been a great friend, and I have thoroughly enjoyed our

conversations about life, politics, and food. Archit is someone I can always

rely on for advice. TK was an amazing roommate and I am fortunate to have

shared his company during the pandemic. I will miss our conversations about

all-things-random at the kitchen. Shivam, Parash and Soumyadeep were won-

vi

derful to hangout with and codenames was always fun with their company.

Life would not be the same without my friends from undergrad in Waterloo

- Milap Sheth, Yaron Koller, Aayush Shah, Nihal Pednekar and Rwitaban

(Ray) Banerjee. Milap has always been a great friend, and has helped me get

through many difficult times - he is like an older brother to me, and I very

grateful to him. Yaron is an all-around fantastic friend, and I would like to

thank him in particular for picking me up at the airport in February, 2020.

I met Aayush during an intership early in my undergrad and he has been an

incredible friend ever since, and someone I can always count on. I would like

to thank Nihal for being a great friend, and for helping me through my job-

search phase. I have enjoyed our long conversations very much. I would like

to thank Ray for the banter and for his friendship during our trips to Japan

and Montreal.

Back to my undergraduate days at Waterloo - I would not have gone to grad-

uate school without the help and support of Naomi Nishimura. I would like to

thank her immensely for giving me a chance to work with her. I got excited

about theoretical computer science only after taking a course on the theory of

computation taught by Eric Blais. His enthusiasm for theory was contagious,

and I would like to thank him for that. I would like to thank Lap Chi Lau for

being a great instructor. I learned a tremendous amount from his graduate

course on randomized algorithms and it prepared me well for graduate school.

Going back even further, I would like to thank my high-school mathematics

tutor B. Rajkumar for keeping me excited about math.

I would like to thank Nivasini Ananthakrishnan for her constant support.

Her presence in my life makes everything more enjoyable; she helped me get

through the pandemic. I would like to thank my parents - Jayaprakash and

Duniya. They have always been my backbone and have supported me through-

out, in numerous ways. They always encouraged me to pursue my interests.

vii

This thesis is dedicated to them. Life would not be the same without my cat,

Misty. She is a constant source of joy and love and makes me smile throughout

the day. Adopting her was one of the best decisions I ever made and I am

grateful to her.

viii

Contents

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Graphs and Metrics . 3
1.1.2 Optimization Problems and Approximation Algorithms 5
1.1.3 Metric Embeddings . 9
1.1.4 Concentration Inequalities 10

1.2 Problems Considered . 10
1.3 Related Work . 11
1.4 New Results . 13
1.5 General Assumptions . 15

1.5.1 Total number of tokens and tours 15
1.5.2 Poly(n) bounded edge weights 16

2 QPTAS for CVRP in Trees 19
2.1 Problem Overview . 19

2.1.1 Our Results . 19
2.2 Structure Theorem . 20

2.2.1 Overview of the ideas 20
2.2.2 Changing OPT to a near optimum structured solution 25

2.3 Dynamic Program . 34
2.3.1 Checking Consistency 37
2.3.2 Time Complexity . 38

2.4 Extension to Splittable CVRP 39
2.5 Height reduction . 40

2.5.1 Creating a new tree . 42
2.5.2 Analysis . 44

3 QPTAS for CVRP in Bounded Treewidth Graphs 46
3.1 Problem Overview . 46

3.1.1 Our Results . 47
3.2 Structure Theorem . 48

3.2.1 Changing OPT to a near-optimum structured solution 49
3.3 Dynamic Program . 56

3.3.1 Checking Consistency 59
3.4 Extension to Splittable CVRP 63

4 Extension to Other Graphs Metrics 64
4.1 Embedding Lemma for CVRP 64
4.2 QPTAS for Graphs of Bounded Doubling Dimension 65
4.3 QPTAS for Graphs of Bounded Highway Dimension 67

5 Conclusion and Open Problems 68

ix

References 71

x

List of Figures

2.1 An example of a tree before and after applying labels to nodes 42
2.2 A tree before an up-push (top) and after (bottom) with reduced

height. The blue edge connecting ai and ai+1 has weight w =
wp + wq + ws + wt . 43

3.1 Blue edges represent one such edge set for a particular tour ts 62

xi

Chapter 1

Introduction

Numerous problems that arise in industrial and consumer applications can be

viewed as an instance of the problem of routing a vehicle along a road network

to provide a service at different locations. We refer to these problems as vehicle

routing problems. Some of the well-known vehicle routing problems are:

• The Travelling Salesman Problem (TSP): Given a set of points and a

starting point, find the shortest route that visits every location.

• The Capacitated Vehicle Routing Problem (CVRP): Given a set of points,

a depot, and a vehicle with capacity Q, find a minimum length collection

of tours, each starting from the depot and visiting at most Q customers,

and whose union covers all the customers.

• The Orienteering Problem: Find a route of bounded length that reaches

as many locations as possible.

• The Travelling Repairman Problem: Find a route that reaches every

location, minimizing the average wait time.

• The School Bus Problem: Find the smallest number of tours such that

every location is visited within a given time.

The Travelling Salesman Problem (TSP) appears in industrial applications,

where we wish to minimize the amount of time a tool or machine spends

moving between its required positions. In 1962, Proctor & Gamble famously

ran a contest, offering $10,000 for the shortest tour through 33 cities in the US

1

12. The Capacitated Vehicle Routing Problem (CVRP), Orienteering Problem

and Travelling Repairman Problems commonly appear in scheduling package

deliveries.

All the problems mentioned above are in general NP-Hard. In this thesis,

we consider algorithms that produce an approximate solution; that is, the

solution found is at most α times worse than the exact (optimal) value for

either some α ∈ R+ > 0 or α, a function of the size of the input instance.

Although we generally like to find polynomial time algorithms, we sometimes

settle for algorithms that run in time nO(logc n) for some constant c > 0. We

refer to an algorithm that run in time nO(logc n) as a quasi-polynomial time

algorithm where n is the size of the instance. It is believed that NP-Hard

problems do not have quasi-polynomial algorithms. Also, a quasi-polynomial

time approximation algorithm suggests that it might be possible to find similar

approximation algorithms in polynomial time.

The Capacitated Vehicle Routing Problem is APX-hard in general metric

spaces, meaning that unless P = NP, the problem would not have a (1 + ϵ0)-

approximation, for some fixed ϵ0 > 0. So a natural research focus has been

on structured metric spaces. We will give approximation algorithms for the

Capacitated Vehicle Routing Problem in various graph classes. We first begin

with an introduction to the terminology and concepts used in this thesis,

followed by an overview of the problems we consider. We will then discuss

related work in the literature, and the results we obtain.

1.1 Preliminaries

We start by formalizing the terminology used throughout this thesis. The

definitions given here are adapted from [31], [29], [14], and [32].

1http://www.math.uwaterloo.ca/tsp/us/history.html
2http://www.math.uwaterloo.ca/tsp/us/img/car54.jpg

2

http://www.math.uwaterloo.ca/tsp/us/history.html
http://www.math.uwaterloo.ca/tsp/us/img/car54.jpg

1.1.1 Graphs and Metrics

Graphs. We only consider simple graphs in this thesis, and use the term

graph in this thesis to mean an undirected graph. A graph G is defined by

its edge set E(G) = {e1, e2, . . . , em} and vertex set V (G) = {v1, v2, . . . , vn},

where each edge e ∈ E(G) is an unordered pair of vertices in V (G). To sim-

plify notation, we will drop the parameters V (G) and E(G) where the graph

is clear from context and denote G = (V,E).

For an edge e = uv ∈ E(G), we say u and v are adjacent and e is inci-

dent to u and v. The neighbours of a vertex v is the set of vertices u such that

u and v are adjacent, denoted by NG(v), or simply N(v) when G is clear from

context.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆

E(G). We write H ⊆ G and say that G contains H.

A path is a simple graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list. A cycle is a graph with

an equal number of vertices and edges whose vertices can be placed around a

circle so that two vertices are adjacent if and only if they appear consecutively

along the circle. A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such

that, for 1 ≤ i ≤ k , the edge ei has endpoints vi−1 and vi. An acyclic graph

is a graph that does not contain any cycle as a subgraph. A connected graph

is a graph G where for every pair of vertices u, v ∈ V (G), there is a path in

G from u to v. A tree is an acyclic, connected graph. A complete graph is a

graph whose vertices are pairwise-adjacent.

A tree decomposition of a graph G is a pair (T, {Bt}t∈V (T)), where T is a

tree whose every node t is assigned a vertex subset Bt ⊆ V (G), called a bag,

such that the following three conditions hold:

1. ∪t∈V (T)Bt = V (G). In other words, every vertex of G is in at least one

3

bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Bt contains

both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Bt}, i.e., the set of

nodes whose corresponding bags contain u, induces a connected subtree

of T .

The width of a tree decomposition is one less than the maximum bag size of

that decomposition. The treewidth of a graph G is the minimum k such that

there exists a tree decomposition T of G with bags of size at most k+ 1. Note

that trees have treewidth 1.

Weighted graphs and metrics. A weighted graph is a graph with nu-

merical edge labels. We will assume throughout this thesis that these labels

are non-negative, and refer to them as edge costs or weights, denoted by w(e)

or wuv. A metric space (X, dX) consists of a set of points X and a distance

function dX : X ×X → R≥0 which satisfies the following properties:

1. For every x, y ∈ X, dX(x, y) ≥ 0.

2. For every x ∈ X, dX(x, x) = 0.

3. For every x, y ∈ X, dX(x, y) = dX(y, x). This property is referred to as

symmetry.

4. For every x, y, z ∈ X, dX(x, z) ≤ dX(x, y) + dX(y, z). This is referred to

as triangle inequality.

Metrics can be equivalently defined as a complete weighted graph whose edge

costs satisfy the triangle inequality. Any metric (V, d) can be converted into

a graph G by letting V (G) = V , and wuv = dG(u, v). We define the dis-

tance dG(u, v) between two vertices u and v in a graph G as the minimum

cost of a u-v path in G; if no such path exists, the distance is undefined. Let

dmax = max
u,v∈V (G),u ̸=v

dG(u, v), dmin = min
u,v∈V (G),u̸=v

dG(u, v) and we will denote the

4

aspect ratio by ∆ = dmax

dmin
.

For a metric space (X, d), the (closed) ball of radius r around a point x ∈ X

is Br(x) = {y ∈ X : d(y, x) ≤ r}. We say Y ⊆ X is bounded if it is contained

within a ball of finite radius. The doubling dimension of X is the smallest

k ∈ R such that for any given x ∈ X, r > 0, we have Br(x) ⊆ ∪y∈YBr/2(y) for

some Y ⊆ X satisfying |Y | ≤ 2k. The doubling dimension is a measure of how

fast the volume of a metric space is growing.

Abraham et al [1], [2] formally defined the notion of highway dimension to

model transportation networks. The highway dimension of a graph G is the

smallest integer k such that, for some universal constant c ≥ 4, for every

r ∈ R+, v ∈ V (G), and every ball Bcr(v) of radius cr, there are at most k

vertices in Bcr(v) hitting all shortest paths in Bcr(v) of length more than r.

As noted in [18], Abraham et al [2] chose c = 4 and notes that this choice

is somewhat arbitrary. Similar to the work of [18], we will allow the flexibility

of being able to choose a slightly larger value of c. We will let λ = c− 4 and

call it the violation.

1.1.2 Optimization Problems and Approximation Algo-
rithms

Decision problem and NP. A decision problem is a problem that can be

answered with either ”yes” or ”no”. We view decision problems as languages

over the binary alphabet {0, 1}∗; the language L corresponding to some deci-

sion problem is the set of all strings that encode a ”yes” to the problem.

A Turing machine M is a polynomial-time verifier if for all input pairs

(x, y) ∈ {0, 1}∗ it reads, M halts after p(|x|) steps where p is a polynomial

function. A language is decidable by M if for all x ∈ {0, 1}∗, the following

holds,

5

• If x ∈ L, there exists y ∈ {0, 1}p(|x|) such that M accepts (x, y).

• If x /∈ L, for every y ∈ {0, 1}∗, M rejects (x, y).

The class NP is all languages L decided by a polynomial-time verifier. Let

L1 and L2 be two languages in NP. L1 reduces to L2 if there is a Turing

machine that, given a string x ∈ {0, 1}∗, outputs a string y ∈ L2 if and only if

x ∈ L1 and does so in poly(|x|) steps. A language L is NP-Hard if for every

language L′ ∈ NP, L′ reduces to L. A language is NP-complete if both L is

NP-Hard and L ∈ NP.

Optimization problems. The size of an instance I, written |I| is the number

of bits needed to describe it. An NP-optimization problem Π consists of:

• A set of valid instances DΠ, where we can determine if some instance

I ∈ DΠ in time poly(|I|). We assume all instances I ∈ DΠ can be

expressed as finite binary strings; this implies that all numeric values

must be integer or rational.

• A set of feasible solutions SΠ(I) for each instance I ∈ DΠ, where we can

determine is s ∈ SΠ(I) in time poly(|I|). The length of each solution

must be poly(|I|).

• An objective function objΠ that assigns each instance-solution pair (I, s)

a non-negative value, computable in time poly(|I|).

We also specify whether Π is a minimization problem or a maximization prob-

lem. For a minimization/maximization problem Π and instances I ∈ DΠ, an

optimal solution is a feasible solution s ∈ SΠ(I) that minimizes/maximizes

the value of objΠ; that is, argmin
s∈SΠ

objΠ(I, s) or argmax
s∈SΠ

objΠ(I, s). We denote

such a solution as OPTΠ(I), or simply OPT if the problem and instance are

clear from the context. The objective value of optimum solution is denoted by

opt.

An NP optimization problem Π gives rise to a class of NP decision prob-

lems, by asking if a feasible solution of at most or at least some objective

6

value exists (for minimization/maximization problems).

For the optimization problems we consider in this thesis, the decision ver-

sions have been shown to be NP-Hard, and so we say that the optimization

problems are also NP-Hard. Unless P = NP, there is no efficient algorithm

that be used to solve an NP-Hard problem exactly. A different strategy is to

find a time-efficient algorithm that returns a solution that is never more than

a given factor worse than the optimal solution. We call these approximation

algorithms.

Approximation algorithms. Let Π be a minimization (maximization) prob-

lem, and let α : Z+ → Q+ be a function such that α ≥ 1 for all inputs. An algo-

rithm A is an α-approximation for Π if, for all instances I, A returns a feasible

solution s ∈ SΠ(I) such that objΠ(I, s) ≤ α(|I|) · optΠ(I), and the running

time is bounded by poly(|I|). The function α is called the approximation ratio

of A.

It is sometimes difficult to obtain an algorithm that meets this definition ex-

actly. We might need to relax the running time constraint, for example to a

quasi-polynomial factor. Or, the algorithm makes random choices, and so the

approximation ratio only holds in expectation over all random choices. We

still refer to these as approximation algorithms, although we will state such

relaxation explicitly.

An algorithm A is an approximation scheme for the minimization (maxi-

mization) problem Π if for the valid instance I and error parameter ϵ > 0,

it returns a feasible solution s such that objΠ(I, s) ≤ (1 + ϵ)optΠ(I) (or

objΠ(I, s) ≥ (1 − ϵ)optΠ(I) if it is a maximization problem). We call A to

be a polynomial time approximation scheme (PTAS) if its running time is

poly(|I|) for each fixed ϵ. We call A a fully polynomial time approximation

scheme (FPTAS) if its running time is poly(|I|, 1/ϵ) for each fixed ϵ. We call

A a quasi-polynomial time approximation scheme (QPTAS) if its running time

7

is |I|O(logc |I|) for each fixed ϵ for some absolute constant c > 0.

Let Π and Π′ be two optimization problems. Π PTAS-reduces to Π′ if there

exists an algorithm A and function c : R+ → R, where for each valid instance

I of Π and for each fixed ϵ > 0,

• Algorithm A returns an instance I ′ = A(I, ϵ) of Π′ in time poly(|I|),

such that if I is feasible, then I ′ is feasible.

• Given any feasible solution s′ ∈ SΠ′(I ′), there exists a feasible solu-

tion s ∈ SΠ(I) such that if objΠ′(I ′, s′) ≤ (1 + c(ϵ))optΠ′(I ′), then

objΠ(I, s) ≤ (1 + ϵ) · optΠ(I).

The problem Π is said to be in class APX if it admits any constant approxi-

mation. An optimization problem Π is said to be APX-hard if for every other

problem Π′ ∈ APX, Π′ PTAS-reduces to Π. If in addition Π ∈ APX, then Π

is said to be APX-complete.

Let L be a language in NP, and Π be a minimization (maximization) problem.

Let g : {0, 1}∗ → DΠ be a function computable in polynomial time that maps

yes and no instances of L to instances of Π. We say g is a gap-introducing

reduction from L to instances of Π if a polynomial-time computable function

h : DΠ → R+ and constant α exist where

• If x is a yes-instance of L, then for a minimization problem, optΠ(g(x)) ≤

h(g(x)) and for a maximization problem, optΠ(g(x)) ≥ h(g(x)), and

• If x is a no-instance of L, then for a minimization problem optΠ(g(x)) >

αh(g(x)) and for a maximization problem, optΠ(g(x)) < h(g(x))/α.

The constant α is called the gap size.

Hardness of approximation. A hardness proof shows that a certain opti-

mization problem cannot be approximated better than some threshold assum-

ing certain complexity theoretic assumption. It was shown that approximating

8

Max-3SAT better than (1 + ϵ0) for some absolute ϵ0 > 0 is NP-Hard, ruling

out a PTAS assuming P ̸= NP [29]. Since this problem is also APX-complete,

a consequence of this is that any APX-hard optimization problem Π does not

have a PTAS unless P = NP.

1.1.3 Metric Embeddings

The definitions given here are adapted from [26]. The main motivation behind

metric embedding is to map a complicated metric space into a simpler metric

space which is easier to work with. A common theme in devising an approxi-

mation algorithm for general metrics is by mapping shortest path metrics on

general graphs to tree metrics and being able to use algorithms that work on

trees (but not on general graphs).

Ideally, the mapping we consider needs to preserve the structure of the original

metric space. The ideal mapping are the following form.

Definition 1 (Isometric Embedding) A mapping f : X → Y of a metric

space (X, dX) to a metric space (Y, dY) is an isometric embedding if for every

two points x1, x2 ∈ X, we have

dY (f(x1), f(x2)) = dX(x1, x2)

Isometric embeddings are those that preserve the distances between points

exactly. However, in many cases, isometric embeddings do not exist. In-

stead, there is a notion of an approximate embedding which is captured by

the following definition that allows the distances to change slightly while still

approximately preserving the structure of the original metric space.

Definition 2 (Distortion of an embedding) A mapping f : X → Y of a

metric space (X, dX) to a metric space (Y, dY) is an embedding with distortion

α if there exists a constant r > 0 such that for every x1, x2 ∈ X,

r · dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ αr · dX(x1, x2)

9

1.1.4 Concentration Inequalities

The Chernoff Bound [27] gives exponentially decreasing bounds on tail dis-

tributions of sums of independent random variables. There are many forms

(inequalities) of Chernoff bounds, but in this thesis, we will use the following

two simplified versions.

Theorem 1 [27] Let Y =
∑︁n

i=1 Yi where Yi = 1 with probability pi and 0 with

probability 1 − pi, and all Yi’s are independent. With µ = E[Y], P[Y > 2µ] ≤

e−µ/3 and P
[︁
Y < µ

2

]︁
≤ e−µ/8.

1.2 Problems Considered

Capacitated Vehicle Routing Problem (CVRP) : The classic Capaci-

tated Vehicle Routing Problem was introduced by Dantzig and Ramser in 1959

[16]. In CVRP, we are given as input the locations of n customers and a depot

r, along with a vehicle of capacity Q, and wish to compute a minimum length

collection of tours, each starting and ending at the depot and visiting at most

Q customers, and whose union covers all the customers. We can also view the

problem in the following way: given a graph G = (V,E) with a depot r ∈ V ,

edge cost (or weight) w : E → Z≥0, a demand function d : V → Z≥0 and

Q > 0, the objective of CVRP is to find a set of tours of minimum total cost

each of which includes r such that the union of the tours covers the demand

at every client and every tour covers at most Q demand. The following are

the three common variants of CVRP that have been studied:

• Unsplittable CVRP: In this variant of CVRP, the entire demand of a

client must be delivered by a single tour.

• Unit Demand CVRP: This variant of CVRP is a special case of un-

splittable CVRP where every client has demand one and the demand of

a client must be delivered by a single tour.

• Splittable CVRP: In this variant of CVRP, the demand of a client

could be delivered using multiple tours.

10

CVRP has also been referred to as the k-tours problem [4], [5].

1.3 Related Work

For general metrics, Haimovich et al. [20] gave a (1+(1−1/Q)α)-approximation

for splittable CVRP, and a (2 + (1 − 2/Q)α)-approximation for unsplittable

CVRP where α is the approximation ratio of TSP. Recently, Blauth et al.

[11] showed that given a TSP approximation α, there is an ϵ > 0 such that

there is an (α + 2 · (1 − ϵ))-approximation algorithm for CVRP. For α = 3/2,

they showed ϵ > 1/3000. They also showed a (α + 1 − ϵ)-approximation algo-

rithm for unit demand CVRP and splittable CVRP. For α = 3/2, they showed

ϵ > 1/3000.

For the case of trees, Labbé et al. [25] showed splittable CVRP is NP-hard

and Golden et al. [19] showed unsplittable CVRP is APX-hard and hard to

approximate better than 1.5. For splittable CVRP in trees, Hamaguchi et al.

[21] defined the following lower bound for the cost of the optimal solution. For

an edge e, let d(e) denote the total demand across all nodes in the subtree

rooted at e and let w(e) denote the cost or weight of edge e. Any feasible

solution covering demands of nodes in the subtree rooted at e requires at least⌈︃
d(e)

Q

⌉︃
tours to pass through e.

LB(e) = 2 · w(e) ·
⌈︃
d(e)

Q

⌉︃
LB =

∑︂
e∈E

LB(e) = 2
∑︂
e∈E

w(e) ·
⌈︃
d(e)

Q

⌉︃
Let opt be the cost of an optimal solution to the instance. Clearly,

LB ≤ opt. A 1.5 approximation with respect to the lower bound was shown

by [21]. Asano et al. [5] improved the approximation to (
√

41 − 1)/4 with

respect to the lower bound and also showed the existence of instances whose

optimal cost is exactly 4/3 times the lower bound. Becker and Paul [6] gave

a 4/3-approximation with respect to the lower bound, making it tight with

respect to the lower bound. Becker and Paul [10] showed a (1, 1 + ϵ)-bicriteria

11

polynomial-time approximation scheme for splittable CVRP in trees i.e. an

algorithm that has cost no more than an optimal solution, but each tour covers

at most (1 + ϵ)Q nodes. At the time of writing this, these are the best known

results for CVRP on trees.

The results above hold for arbitrary Q. For fixed capacity Q ≥ 3, CVRP is

APX-hard in general metrics. When Q is fixed, CVRP is polynomial-time solv-

able in trees. There exists a polynomial-time approximation scheme (PTAS)

for CVRP in the Euclidean plane (R2) when Q is fixed as shown by Khachay et

al. [22]. For arbitrary Q, Das and Mathieu [17] gave a quasi-polynomial-time

approximation scheme (QPTAS) for CVRP in the Euclidean plane (R2) with

running time nlogO(1/ϵ) n. A PTAS when Q is O(log n/ log log n) or Q is Ω(n)

was shown by Asano et al. [5]. A PTAS for Euclidean plane (R2) for all mod-

erately large values of Q ≤ 2logδ n, where δ = δ(ϵ) was shown by Adamaszek et

al [3], building on the work of Das and Mathieu [17], and using it as a subrou-

tine. For high dimensional Euclidean spaces Rd, Khachay et al. [22] showed

a PTAS when Q is O(log1/d n). For graphs of bounded doubling dimension,

Khachay et al. [23] gave a QPTAS when the number of tours is polylog(n)

and Khachay et al. [24] gave a QPTAS when Q is polylog(n).

There is a rich literature for CVRP when Q is fixed. A PTAS for planar

graphs was shown by Becker et al. [9]. A QPTAS for planar and bounded-

genus graphs was shown by Becker et al. [7]. A PTAS for graphs of bounded

highway dimension and an exact algorithm for graphs with treewidth with run-

ning time O(ntwQ) was shown by Becker et al [8]. A PTAS is an efficient PTAS

(an EPTAS) if its running time is bounded by a polynomial nc whose degree

c does not depend on ϵ. Cohen-Addad et al. [13] showed an efficient PTAS

for the graphs of bounded-treewidth, an efficient PTAS for bounded highway

dimension, an efficient PTAS for bounded genus metrics and a QPTAS for

minor-free metrics.

12

1.4 New Results

A major open question has been to design approximation schemes for other

classes of graphs. Even for the case of tree metrics, the best approximation

algorithms are constant factor. In this thesis, we make progress by presenting

approximation schemes for several classes of graphs and improving previously

known results. The main contributions of this thesis are the following.

The Capacitated Vehicle Routing Problem in Trees. In Chapter 2,

we prove a theorem that characterizes structural properties of a near-optimal

set of tours and use dynamic programming to compute such a solution in

quasi-polynomial time to show the following:

Theorem 2 For any ϵ > 0, there is an algorithm that, for any instance of the

Unit Demand CVRP in trees (T,Q) where T is a tree with n vertices, outputs

a (1 + ϵ)-approximate solution in time nO(log4 n/ϵ3).

We will then show how we can extend our dynamic program to also compute

a near-optimal solution for Splittable CVRP in trees when Q = nO(logc n) to

get the following Corollary.

Corollary 1 For any ϵ > 0, there is an algorithm that, for any instance of

the splittable capacitated vehicle routing problem on trees (T,Q) where T is a

tree with n vertices, output a (1 + ϵ)-approximate solution in time nO(log2c+4 n)

when Q = nO(logc n).

The Capacitated Vehicle Routing Problem in Graphs of Bounded

Treewidth. In Chapter 3, we will extend our structure theorem for the case

of trees to graphs having bounded treewidth. We will compute a near-optimum

solution in quasi-polynomial time by showing the following:

Theorem 3 For any ϵ > 0, there is an algorithm that, for any instance of

Unit Demand CVRP on bounded treewidth graphs (G,Q) where G is a graph

with n vertices and treewidth k, outputs a solution of expected cost (1+ϵ) times

the optimal solution in time nO(k2 log3 n/ϵ2)

13

We will then show how we can extend our dynamic program to also compute

a near-optimal solution for Splittable CVRP in graphs of bounded treewdith

when Q = nO(logc n) to get the following corollary.

Corollary 2 Let ϵ > 0, there is an algorithm that, for any instance of the

splittable capacitated vehicle routing problem on bounded treewidth graphs (G,Q)

where G is a graph with n vertices, treewidth k and when Q = nO(logc n), out-

puts a solution of expected cost (1 + ϵ) times the optimal solution in time

nO(k2 log2c+3 n/ϵ2)

The Capacitated Vehicle Routing Problem in Graphs of Bounded

Doubling Dimension. In Chapter 4, we will use a Lemma of [28] to em-

bed a graph of doubling dimension D into a graph having treewidth at most

2O(D)
(︁
8D log∆

ϵ

)︁D
with expected distortion 1 + ϵ where ∆ is the aspect ratio.

We will then use our algorithm for graphs of bounded treewidth from Chapter

3 as a black box to derive a quasi-polynomial time approximation scheme for

Splittable CVRP for graphs of bounded doubling dimension.

Theorem 4 For any ϵ > 0 and D > 0, there is a an algorithm that, given

an instance of Splittable CVRP with capacity Q = nO(logc n) and if the graph

has doubling dimension D with an optimal solution having cost opt, finds a

solution whose cost is at most (1 + ϵ)opt in time nO(DD log2c+D+3 n/ϵD+2).

As an immediate corollary, this implies an approximation scheme for CVRP

on Euclidean metrics on R2 in time nO(log6 n/ϵ5) which improves on the run time

of nlogO(1/ϵ) n of QPTAS of [17].

The Capacitated Vehicle Routing Problem in Graphs of Bounded

Highway Dimension. In Chapter 4, we will use a Lemma of [18] to embed a

graph of highway dimension D and violation λ into a graph having treewidth

at most (log ∆)O(log2(D
ϵλ

)/λ) with expected distortion 1 + ϵ where ∆ is the as-

pect ratio. We will then use our algorithm for graphs of bounded treewidth

from Chapter 3 to derive a quasi-polynomial time approximation scheme for

Splittable CVRP for graphs of bounded highway dimension.

14

Theorem 5 For any ϵ > 0, λ > 0 and D > 0, there is a an algorithm that,

given an instance of the splittable CVRP with capacity Q = nlogc n and if

the graph has highway dimension D with violation λ with an optimla solu-

tion of cost opt, finds a solution whose cost is at most (1 + ϵ)opt in time

nO(log2c+3+log2(D
ϵλ

)· 1
λ n/ϵ2).

1.5 General Assumptions

An instance I to CVRP is a graph G = (V,E), where w(e) is the cost or

weight of edge e ∈ E and Q is the capacity of the vehicle. We will use weight

and cost interchangeably. Each tour T is a walk over some nodes of G. We

say T ”covers” node v if it serves the demand at node v. It is easier to think

of the demand of each node v as being a token on v that must be picked up

by a tour. We will use tokens and demand interchangeably. In Unit Demand

CVRP, we assume each node v has a single token and for Splittable CVRP, we

assume each node v can have multiple tokens and the total number of tokens a

tour can pick is most Q (possibly from the same or different locations). Note

that each tour might visit vertices without picking any token there. The goal

is to find a collection of tours of minimum total cost such that each token is

picked up (or say covered) by some tour. We use OPT(G) or simply OPT to

refer to an optimum solution of G, and opt to denote the value of it.

1.5.1 Total number of tokens and tours

Given an instance for Splittable CVRP with n nodes and capacity Q, it is

possible that the demand d(v) > Q for some node v. In order to achieve a

running time of quasi-polynomial (as we will see later), it is important that

the instance we solve has the property that d(v) < poly(n) ·poly(Q). From the

work of Adamaszek et al [3], we will show how we can assume that the demand

at each node v, d(v), is integral and satisfies 1 ≤ d(v) < nQ. Adamaszek et al

[3] defined a trivial tour to be a tour which picks up tokens from a single node

in T and a tour is non-trivial if the tour picks up tokens from at least two

nodes in T . They defined a cycle of tours to be a set of tours t1, . . . , tm(m ≥ 2)

15

and a set of nodes l1, l2, . . . , lm, lm+1 = l1 such that each tour ti covers loca-

tions li and li+1 and the origin is not considered as a node in l1, . . . , lm. They

showed in Lemma 1 of [3] that there is an optimal solution in which there are

no cycles of tours. Since there are no 2-cycles, there are no two tours which

cover the same pair of nodes. Since there are n nodes and we cannot have a

cycle of non-trivial tours, there is an optimal solution such that there are at

most n− 1 non-trivial tours. If there are more non-trivial tours, then there is

a cycle of tours, as argued in [3]. So putting aside trivial tours (each picking

up Q tokens at a node), we can assume we have a total of at most nQ tokens

and in particular, each node has at most this many tokens. Without loss of

generality, we assume we have removed all trivial tours and so there is a total

of at most nQ demand.

We can also assume there is at most one tour in OPT covering at most Q/2

demand. If there are at least two tours T1 and T2 covering less than Q/2 de-

mand, they can be merged into a single tour called T and T forms a capacity

respecting tour since it covers at most Q demand at no additional cost. Since

the total demand is at most nQ, the total number of tours in the optimal

solution is at most nQ/(Q/2) = 2n.

1.5.2 Poly(n) bounded edge weights

Fix an optimal solution OPT. Without loss of generality, we can assume that

each tour in OPT traverses an edge e at most once in each direction. Suppose

there is a solution where some tour T traverses an edge multiple times, we

can short-cut the solution at no additional cost such that T traverses the edge

only once in each direction. For an edge e, let f(e) denote the number of tours

traversing through edge e in either direction in OPT; so opt =
∑︁

ew(e) ·f(e).

Now, we scale edge weights to be polynomially bounded at a small loss. Sup-

pose we have guessed the largest edge weight that belong to OPT (by enumer-

ating over all possible such guesses) and have removed any edge with weight

16

larger. Let W = max
e∈E

w(e) be the largest (guessed) edge in OPT. We will

create a new instance G′ by rounding up the cost of every edge to be at least

ϵW
4n3 . Let w′(e) be the extra cost added to each edge when we round up its

cost. Recall opt =
∑︁

e∈E w(e) · f(e). We will use the fact that f(e) ≤ 4n

since there are at most 2n tours in OPT. Note that |E| < n2 and W ≤ opt.

Let opt′ denote the cost of the optimal solution to the new instance G′.

opt′ ≤
∑︂
e∈E

(w(e) + w′(e)) · f(e)

≤
∑︂
e∈E

w(e) · f(e) +
∑︂
e∈E

ϵW

4n3
f(e)

≤ opt +
∑︂
e∈E

ϵW

4n3
· 4n

< opt +
ϵW

4n3
· 4n · n2

= opt + ϵW

≤ (1 + ϵ)opt.

We showed that by rescaling the edge cost, the total cost of the solution

increases by at most ϵ · opt. Note that for any edge e,

ϵW

4n3
≤ w(e) + w′(e) ≤ W.

The ratio between the maximum edge cost in G′ and the minimum edge cost

in G′ is at most 4n3

ϵ
, so we can rescale the weights so the the weight of an edge

is between 1/ϵ and 4n3/ϵ2. However, the weights of the edges in G′ might not

be integral. We will create a new instance G′′ and show we can assume the

weights are integral and in the range [1/ϵ, 4n3/ϵ2] at a small loss of ϵ times

the cost of the optimal solution. We will create a new instance G′′ where we

round-up the weight of the edge to the nearest integer. Notice that since the

minimum weight of an edge is 1/ϵ, the maximum additional cost of rounding-

up the weight of an edge to the nearest integer is at most ϵ fraction of the

weight of an edge i.e. wG′′(e) ≤ (1 + ϵ)wG′(e). For any tour T , let costT (G′′)

denote the cost of T in instance G′′. Since wG′′(e) ≤ (1 + ϵ)wG′(e), we have

that

costT (G′′) =
∑︂
e∈T

wG′′(e) ≤ (1 + ϵ)
∑︂
e∈T

wG′(e) = (1 + ϵ)costT (G′)

17

Let opt′′ denote the cost of the optimal solution in instance G′′. Let OPT′

and OPT′′ denote the optimal solution to instances G′ and G′′. We have that

opt′′ =
∑︂

T ∈OPT′′

costT (G′′) ≤
∑︂

T ∈OPT′

costT (G′′)

≤ (1 + ϵ)
∑︂

T ∈OPT′

costT (G′)

= (1 + ϵ)opt′

We showed that we can find an instance G′′ such that edges in G′′ are

integral in the range [1/ϵ, 4n3/ϵ2] and has the property that the cost of the set

of optimal set of tours in G′′ lifted to G would have cost (1 + ϵ)2opt.

Recall we denoted the aspect ratio by ∆ = dmax

dmin
. Since the edge costs are

are integral and between[1/ϵ, 4n3/ϵ2] , ∆ = 4n3

ϵ
and log ∆ ≤ 12 log

(︁
n
ϵ

)︁
.

18

Chapter 2

QPTAS for CVRP in Trees

We first consider the Capacitated Vehicle Routing Problem (CVRP) in trees.

2.1 Problem Overview

Given an instance of CVRP where the graph is a tree, we will assume the

depot is located at the root of the tree. For the case of Unit Demand CVRP,

we will assume the demand at every node is 1 and the entire demand at a node

must be delivered by a single vehicle. For the case of Splittable CVRP, we will

assume each node has a demand dv satisfying 0 ≤ dv < nQ. The demand at a

node could be delivered using multiple vehicles.

2.1.1 Our Results

We will prove a structure theorem which describes structural properties of a

near-optimal solution. We will leverage these structural properties and use

dynamic programming to compute a near-optimum solution. We will state

Theorem 2 and Corollary 1 for convenience.

Theorem 2 For any ϵ > 0, there is an algorithm that, for any instance of the

Unit Demand CVRP in trees (T,Q) where T is a tree with n vertices, outputs

a (1 + ϵ)-approximate solution in time nO(log4 n/ϵ3).

We will then show how we can extend our dynamic program to also compute

a near-optimal solution for Splittable CVRP in trees when Q = nO(logc n) to

get the following corollary.

19

Corollary 1 For any ϵ > 0, there is an algorithm that, for any instance of

the splittable capacitated vehicle routing problem on trees (T,Q) where T is a

tree with n vertices, output a (1 + ϵ)-approximate solution in time nO(log2c+4 n)

when Q = nO(logc n).

We will first prove the structure theorem.

2.2 Structure Theorem

Our goal in this section is to show the existence of a near optimum solution

(i.e. one with cost (1 +O(ϵ))opt) with certain properties which makes it easy

to find one using dynamic programming. More specifically we show we can

modify the instance I to instance I ′ on the same tree T where each node has

≥ 1 tokens (so possibly more than 1) and change OPT to a solution OPT′ on

I ′ where cost of OPT′ is at most (1 + O(ϵ))opt. Clearly the tours of OPT′

form a capacity respecting solution of I as well (of no more cost).

A starting point in our structure theorem is to show that given input tree

T , for any ϵ > 0, we can build another tree T ′ of height O(log2 n/ϵ) such that

the cost of an optimum solution in T ′ is within 1 + ϵ factor of the optimum

solution to T . We can lift a near-optimum solution to T ′ into a near-optimum

solution of T . We will show the following in Subsection 2.5

Theorem 6 Given a tree T as an instance of CVRP and for any fixed ϵ > 0,

one can build a tree T ′ with height δ log2 n/ϵ, for some fixed δ > 0, such that

opt(T ′) ≤ opt(T) ≤ (1 + ϵ)opt(T ′).

So for the rest of this section we assume our input tree has height O(log2 n/ϵ)

at a loss of (yet another) 1 + ϵ in approximation ratio.

2.2.1 Overview of the ideas

Before diving right into the details of Structure theorem, we will first motivate

our core idea by starting from a simpler task of developing a bi-criteria ap-

proximation scheme 1. In our case, a (1 + ϵ)-bi-criteria approximation scheme

1Note that [10] already presents a bicriteria PTAS for CVRP on trees.

20

is an algorithm that given an instance I for CVRP with optimal solution opt,

returns a solution of cost at most opt such that the demand delivered by each

tour is at most (1 + ϵ)Q.

Let T be a tour in OPT and v be a node in T . The coverage of T with

respect to v is the number of tokens picked by T in the subtree Tv. Suppose

a tour T visits node v. We refer to the subtour of T in Tv (subtree rooted at

v) as a partial tour.

A Bicriteria QPTAS: For simplicity, assume T is binary (this is not crucial

in the design of the DP). A subproblem would be based on a node v ∈ T and

the structure of partial tours going into Tv to pick up tokens in Tv at minimum

cost. In other words, if one looks at the sections of tours of an optimum solu-

tion that cover tokens of Tv, what are the capacity profiles of those sections?

For a vector t⃗ with Q entries, where t⃗i (for each 1 ≤ i ≤ Q) is the number

of partial tours going down Tv which pick i tokens (or their capacity for that

portion is i), entry A[v, t⃗] would store the minimum cost of covering Tv with

(partial) tours whose capacity profile is given by t⃗. It is not hard to fill this

table’s entries using a simple recursion based on the entries of children of v. So

one can solve the CVRP problem ”exactly” in time O(nQ+1). We can reduce

the time complexity by storing ”approximate” sizes of the partial tours for

each Tv. So let us ”round” the capacities of the tours into O(logQ/ϵ) buckets,

where bucket i represents capacities that are in [(1 + ϵ)i−1, (1 + ϵ)i). More

precisely, consider threshold-sizes S = {σ1, . . . , στ} where: for 1 ≤ i ≤ 1/ϵ,

σi = i, and for each value i > 1/ϵ: σi = σi−1(1 + ϵ) and στ = Q. Note that

|S| = O(logQ/ϵ) = O(log n/ϵ). Suppose we allow each tour to pick up to

(1 + ϵ)Q tokens. If it was the case that each partial tour for Tv (i.e. part

of a tour that enters/exits Tv) has a capacity that is also threshold-size (this

may not be true!) then the DP table entries would be based on vectors t⃗ of

size O(log n/ϵ), and the run time would be quasi-polynomial. One has to note

that for each subproblem of the optimum at a node v with children u,w, even

if the tour sizes going down Tv were of threshold-sizes, the partial tours at Tu

21

and Tw do not necessarily satisfy this property.

To extend this to a proper bicriteria (1 + ϵ)-approximation we can de-

fine the thresholds based on powers of 1 + ϵ′ where ϵ′ = ϵ2

log2 n
instead: let

S = {σ1, . . . , στ} where σi = i for 1 ≤ i ≤ 1/ϵ′, and for i > 1/ϵ′ we have

σi = σi−1(1 + ϵ′), and στ = Q. So now |S| = O(log2 n · logQ/ϵ) = O(log3 n/ϵ2)

when Q = poly(n). For each vector t⃗ of size τ , where 0 ≤ ti ≤ n is the number

of partial tours with coverage/capacity σi, let A[v, t⃗] store the minimum cost

of a collection of (partial) tours covering all the tokens in Tv whose capacity

profile is t⃗, i.e. the number of tours of size in [σi, σi+1) is t⃗i. To compute the

solution for A[v, t⃗], given all the solutions for its two children u,w we can do

the following: consider two partial solutions, A[u, t⃗u] and A[w, t⃗w]. One can

combine some partial tours of A[u, t⃗u] with some partial tours of A[w, t⃗w], i.e.

if Tu is a (partial) tour of class i for Tu and Tw is a partial tour of class j

for Tw then either these two tours are in fact part of the same tour for Tv, or

not. In the former case, the partial tour for Tv obtained by the combination

of the two tours will have cost w(Tu) +w(Tw) + 2w(vu) + 2w(vw) and capacity

ti + tj (or possibly ti + tj + 1 if this tour is to cover v as well). In the latter

case, each of Tu and Tw extend (by adding edges vu and vw, respectively) into

partial tours for Tv of weights w(Tu) + 2w(vu) and w(Tw) + 2w(vw) (respec-

tively) and capacities ti and tj (or perhaps ti + 1 or tj + 1 if one of them is

to cover v as well). In the former case, since ti + tj is not a threshold-size, we

can round it (down) to the nearest threshold-size. We say partial solutions for

Tv, Tu and Tw are consistent if one can obtain the partial solution for Tv by

combining the solutions for Tv and Tw. Given A[v, t⃗], we consider all possible

subproblems A[u, t⃗u] and A[w, t⃗w] that are consistent and take the minimum

cost among all possible ways to combine them to compute A[v, t⃗]. Note that

whenever we combine two solutions, we might be rounding the partial tour

sizes down to a threshold-size, so we ”under-estimate” the actual tour size by

a factor of 1 + ϵ′ in each subproblem calculation. Since the height of the tree

is h = O(log2 n/ϵ), the actual error in the tour sizes computed at the root is

at most (1 + ϵ′)h = (1 +O(ϵ)), so each tour will have size at most (1 +O(ϵ))Q.

The time to compute each entry A[v, t⃗] can be upper bounded by nO(log3 n/ϵ2)

22

and since there are nO(log3 n/ϵ2) subproblems, the total running time of the al-

gorithm will be nO(log3 n/ϵ2). We can handle the setting where the tree is not

binary (i.e. each node v has more than two children) by doing an inner DP,

like a knapsack problem over children of v (we skip the details here as we will

explain the details for the actual QPTAS instead).

Going from a Bicriteria to a true QPTAS: Our main tool to obtain

a true approximation scheme for CVRP in trees is to show the existence of a

near-optimum solution where the partial solutions for each Tv have sizes that

can be grouped into polyogarithmic many buckets as in the case of bi-criteria

solution. Roughly speaking, starting from an optimum solution OPT, we fol-

low a bottom-up scheme and modify OPT by changing the solution at each Tv:

at each node v, we change the structure of the tours going down Tv (by adding

a few extra tours from the depot) and also adding some extra tokens at v so

that the partial tours that visit Tv all have a size from one of polyogarithmic

many possible sizes (buckets) while increasing the number and the cost of the

tours by a small factor. We do this by duplicating some of the tours that visit

Tv while changing parts of them that go down in Tv and adding some extra

tokens at v: each tour still picks up at most a total of Q tokens and the size

(i.e. the number of tokens picked) for each partial tour in the subtree Tv is

one of O(log4 n/ϵ2) many possible values, while the total cost of the solution

is at most (1 + O(ϵ))opt.

Suppose T has height h (where h = δ log2 n/ϵ). Let Vℓ (for 1 ≤ ℓ ≤ h) be

the set of vertices at level ℓ of the tree where V1 = {r} and for each ℓ ≥ 2,

Vℓ are those vertices whose parent is in level ℓ − 1. For every tour T and

every level ℓ, the top part of T w.r.t. ℓ (denoted by T top
ℓ), is the part of T

induced by the vertices in V1 ∪ . . . ∪ Vℓ−1 and the bottom part of T are the

partial tours of T in the subtrees rooted at a vertex in Vℓ. Note that if we

replace each partial tour of the bottom part of a tour T with a partial tour

of a smaller capacity, the tour remains a capacity respecting tour. Consider a

node v (which is at some level ℓ) and suppose we have nv partial tours covering

Tv. Let the nv tours in increasing order of their coverage be t1, . . . , tnv . Let

23

|ti| be the coverage of tour ti (so |ti| ≤ |ti+1|). For a value g (to be specified

later), we add enough empty tours to the beginning of this list so that the

number of tours is a multiple of g. Then, we will put these tours into groups

Gv
1, . . . , G

v
g of equal sizes by placing the i’th nv/g partial tours into Gv

i . Let

hv,max
i (hv,min

i) refer to the maximum (minimum) size of the tours in Gv
i . This

grouping is similar to the grouping in the asymptotic PTAS for the classic

bin-packing problem. Note that hv,max
i ≤ hv,min

i+1 .

Consider a mapping f where it maps each partial tour in Gv
i to one in Gv

i−1

in the same order, i.e. the largest partial tour in Gv
i is mapped to the largest

in Gv
i−1, the 2nd largest to the 2nd largest and so on, for i > 1 (suppose f(.)

maps all the tours of Gv
1 to empty tours). Now suppose we modify OPT to

OPT′ in the following way: for each tour T that has a partial tour t ∈ Gv
i ,

replace the bottom part of T at v from t to f(t) (which is in Gv
i−1). Note that

by this change, the size of any tour like T can only decrease. Also, if instead

of f(t) we had replaced t with a partial tour of size hv,max
i−1 , it would still form a

capacity respecting solution with the rest of T , because hv,max
i−1 ≤ hv,min

i ≤ |t|.

The only problem is that those tokens in Tv that were picked by the partial

tours in Gv
g are not covered by any tours; we call these orphant tokens. For

now, assume that we add a few extra tours to OPT at low cost such that they

cover all the orphant tokens of Tv. If we have done this change for all vertices

v ∈ Vℓ, then for every tour like T , the partial tours of T going down each Tv

(for v ∈ Vℓ) are replaced with partial tours from a group one index smaller.

This means that, after these changes, for each tour T and its (new) partial

tour t ∈ Gv
i , if we add hv,max

i − |t| extra tokens at v to be picked up by t then

each partial tour has size exactly the same as the maximum size of its group

without violating the capacities. This helps us store a compact ”sketch” for

partial solutions at each node v with the property that the partial solution

can be extended to a near optimum one.

How to handle the case of orphant tokens (those picked by the tours in the

the last groups Gv
g before the swap)? We will show that if nv is sufficiently

large (at least polylogarithmic) then if we sample a small fraction of the tours

of the optimum at random and add two copies of them (as extra tours), they

24

can be used to cover the orphant tokens. So overall, we show how one can

modify OPT by adding some extra tours to it at a cost of at most ϵ · opt

such that: each node v has ≥ 1 tokens and the sketch of the partial tours at

each node v is compact (only polyogarithmic many possible sizes) while the

dropped tokens overall can be covered by the extra tours.

2.2.2 Changing OPT to a near optimum structured so-
lution

We will show how to modify the optimal solution OPT to a near-optimum

solution OPT′ for a new instance I ′ which has ≥ 1 token at each node with

certain properties. We start from ℓ = h and let OPT′ = OPTℓ = OPT

and for decreasing values of ℓ, we will show how to modify OPTℓ+1 to obtain

OPTℓ. To obtain OPTℓ from OPTℓ+1 we keep the partial tours at levels ≥ ℓ

the same as OPTℓ+1 but we change the top parts of the tours and how the

top parts can be matched to the partial tours at level ℓ so that together they

form capacity respecting solutions (tours of capacity at most Q) at low cost.

First, we assume that OPT has at least d log n many tours for some suf-

ficiently large d. Otherwise, if there are at most D = d log n many tours in

OPT we can do a simple DP to compute OPT: for each node v, we have a

sub problem A[v, T v
1 , . . . , T

v
D] which stores the minimum cost solution if T v

i is

the number of vertices the i’th tour is covering in the subtree Tv. It is easy to

fill this table in time O(nD) having computed the solutions for its children.

Definition 3 Let threshold values be {σ1, . . . , στ} where σi = i for 1 ≤

i ≤ ⌈1/ϵ⌉, and for i > ⌈1/ϵ⌉ we have σi = ⌈σi−1(1 + ϵ)⌉, and στ = Q. So

τ = O(logQ/ϵ).

We consider the vertices of T level by level, starting from nodes in level

Vℓ=h−1 and going up, modifying the solution OPTℓ+1 to obtain OPTℓ.

Definition 4 For a node v, the i-th bucket, bi, contains the number of tours

of OPTℓ having coverage between [σi, σi+1) tokens in Tv where σi is the i-th

threshold value. We will denote a node and bucket by a pair (v, bi). Let nv,i be

the number of tours in bucket bi of v.

25

Definition 5 A bucket b is small if the number of tours in b is at most

α log3 n/ϵ2 and is big otherwise, for a constant α ≥ max{1, 12δ}.

Note that for every node v and bucket bi and for any two partial tours in

bi, the ratio of their size (coverage) is at most (1 + ϵ). We will use this fact

crucially later on. While giving the high level idea earlier in this section, we

mentioned that we can cover the orphant tokens at low cost by using a few

extra tours at low cost. For this to work, we need to assume that the ratio of

the maximum size tour to the minimum size tour in all groups Gv
1, . . . , G

v
g is

at most (1 + ϵ). To have this property, we need to do the grouping described

for each vertex-bucket pair (v, bi) that is big.

For each v ∈ Vℓ, let (v, bi) be a vertex-bucket pair. If bi is a small bucket,

we do not modify the partial tours in it. If bi is a big bucket, we create groups

Gv
i,1, . . . , G

v
i,g of equal sizes (by adding null/empty tours if needed to Gv

i,1 to

have equal size groups), for g = (2δ log n)/ϵ2; so |Gv
i,j| = ⌈nv,i/g⌉. We also

consider a mapping f (as before) which maps (in the same order) the tours

t ∈ Gv
i,j to the tours in Gv

i,j−1 for all 1 < j ≤ g. We assume the mapping maps

tours of Gv
i,1 to empty tours. Let the size of the smallest (largest) partial tour

in Gv
i,j be hv,min

i,j (hv,max
i,j). Note that hv,max

i,j−1 ≤ hv,min
i,j . Consider the set Tℓ of all

the tours T in OPTℓ that visit a vertex in one of the lower levels V≥ℓ. Consider

an arbitrary such tour T that has a partial tour t in a big vertex/bucket pair

(v, bi), suppose t belongs to group Gv
i,j. We replace t with f(t) in T . Note that

for T , the partial tour at Tv now has a size between hv,min
i,j−1 and hv,max

i,j−1 . Now,

add some extra tokens at v to be picked up by T so that the size of the partial

tour of T at Tv is exactly hv,max
i,j−1 ; note that since hv,max

i,j−1 ≤ |t|, the new partial

tour at v can pick up the extra tokens without violating the capacity of T . If

we make this change for all tours T ∈ Tℓ, each partial tour of them at level

ℓ that was in a group j < g of a big vertex/bucket pair (v, i) is replaced with

a smaller partial tour from group j − 1 of the same big vertex/bucket pair;

after adding extra tokens at v (if needed) the size is the maximum size from

group j − 1. All other partial tours (from small vertex/bucket pairs) remain

unchanged. Also, the total cost of the tours has not increased (in fact some

26

now have partial tours that are empty). However, the tokens that were picked

by partial tours from Gv
i,g for a big vertex/bucket pair (v, bi) are now orphant.

We describe how to cover them with some new tours.

One important observation is that when we make these changes, for any

partial tours at vertices at lower levels (V>ℓ) their size remains the same. It

is only the tour sizes going down a vertex at level ℓ that we are adjusting (by

adding extra tokens). All other lower level partial tours remain unchanged

(only their top parts may get swapped). This property holds inductively as

we go up the tree and ensure that the lower level partial tours have one of

polylogarithmic many sizes. More precisely, as we go up levels to compute

OPTℓ, for any vertex v′ ∈ Vℓ′ (where ℓ′ > ℓ) and any partial tour T ′ visiting

Tv′ , either |T ′| belongs to a small vertex bucket pair (v′, bi′) (and so has one

of O(log3 n/ϵ) many possible values) or if it belongs to a big vertex bucket

pair (v′, bi′) then its size is equal to hv′,max
i′,j′ for some group j′ and hence one of

O((logQ log n)/ϵ2) possible values.

To handle (cover) orphant nodes, we are going to (randomly) select a subset

of tours of OPT as ”extra tours” and add them to OPT′ and modify them

such that they cover all the tokens that are now orphant (i.e. those that were

covered by partial tours of Gv
i,g for all big vertex/bucket pairs at level ℓ).

Suppose we select each tour T of OPT with probability ϵ. We make two

copies of the extra tour and we designate both extra copies to one of the levels

Vℓ that it visits with equal probability. We call these the extra tours.

Lemma 1 The cost of extra tours selected is at most 4ϵ · opt w.h.p.

Proof. Recall that f(e) denotes the number of tours passing through e in

OPT. The contribution of edge e to the optimal solution is 2 ·w(e) · f(e) and

we can write opt =
∑︁

e∈E 2 · w(e) · f(e). Let e be the parent edge of a node

in v ∈ Vℓ. Suppose an extra tour is designated to level ℓ, we will only use it

to cover orphant tokens from big buckets from nodes in Vℓ. A node v would

use an extra tour to cover orphant tokens only if one of v’s buckets is a big

bucket. From now on, we will assume the extra tours only pass through an

edge e if f(e) ≥ α log3 n/ϵ2 (we can shortcut it otherwise).

27

For an edge e, let f ′(e) denote the number of sampled tours passing through

e and since we use two copies of each sampled tour, 2f ′(e) is the number of

extra tours passing through e in OPT′. We can write opt′ =
∑︁

e∈E 2 · w(e) ·

(f(e) + 2f ′(e)) and the cost of extra tours is
∑︁

e∈E 2 · w(e) · 2f ′(e). While

modifying OPT to OPT′, each tour in the optimal solution is sampled with

probability ϵ. Let e be an edge with f(e) tours Te,1, . . . , Te,f(e) passing through

it. Let Ye,i be a random variable which is 1 if tour Te,i is sampled and 0

otherwise.

E[Ye,i] = P[Te,i is sampled] = ϵ.

Let f ′(e) = Ye =
∑︁f(e)

i=1 Ye,i. By linearity of expectations, we have

E[f ′(e)] = E[Ye] =

f(e)∑︂
i=1

E[Ye,i] =

f(e)∑︂
i=1

ϵ = ϵ · f(e).

Our goal is to show P[Ye > 2E[Ye]] is very low. Using Chernoff bound with

µ = E[Ye] = ϵ · f(e) ≥ α log3 n/ϵ ≥ 6 log n.

P[Ye > 2E[Ye]] ≤ e−(2 logn) =
1

n2

The above concentration bound holds for a single edge e. Using the union

bound, we can show this hold with high probability over all edges,∑︂
e∈E

P[Ye > 2E[Ye]] ≤
1

n
.

We showed f ′(e) ≤ 2ϵ·f(e) with high probability. Hence, with high probability,

the cost of the extra tours is at most∑︂
e∈E

2 · w(e) · 2f ′(e) ≤
∑︂
e∈E

2 · w(e) · 4ϵ · f(e) = 4ϵ
∑︂
e∈E

2 · w(e) · f(e) = 4ϵ · opt.

Therefore, we can assume that the cost of all the extra tours added is at

most 4ϵ·opt. Let Xℓ be the set of extra tours designated to level ℓ. We assume

we add Xℓ when we are building OPTℓ (it is only for the sake of analysis). For

each v ∈ Vℓ and vertex/bucket pair (v, bi), let Xv,i be those in Xℓ whose partial

tour in Tv has a size in bucket bi. Each extra tour in Xℓ will not be picking

28

any of the tokens in levels V<ℓ (as they will be covered by the tours already in

OPTℓ); they are used to cover the orphant tokens created by partial tours of

Gv
i,g for each big vertex/bucket pair (v, bi) with v ∈ Vℓ; as described below.

Lemma 2 For each level Vℓ, each vertex v ∈ Vℓ and big vertex/bucket pair

(v, bi), w.h.p. |Xv,i| ≥ ϵ2

δ log2 n
· nv,i.

Proof. Suppose (v, bi) is a big vertex/bucket pair at some level Vℓ. Let

p1, . . . , pnv,i
be the partial tours in vertex/bucket pair (v, bi). Let the tour in

OPT corresponding to pi be T . Two copies of tour pi are assigned to bi if

both of the following events are true:

• Let Ai be the event where tour T is sampled as an extra tour. Since

each tour is sampled with probability ϵ, we have P[Ai] = ϵ.

• Let Bi be the event where tour T is assigned to level ℓ. There are

h = δ log2 n/ϵ many levels and since T (if sampled) is assigned to any

one of its levels, P[Bi] ≥ 1/h ≥ ϵ/(δ log2 n).

Let Yi be a random variable which is 1 if pi is an extra tour in (v, bi) and 0

otherwise.

E[Yi] = P[Yi = 1] = P[Ai ∧Bi] = P[Ai] · P[Bi] ≥ ϵ2/(δ log2 n).

Let Yv,i =
∑︁nv,i

i=1 Yi be the random variable keeping track of the number of

sampled tours in (v, bi). The number of extra tours, |Xv,i| = 2Yv,i since we

add two copies of a sampled tour to Xv,i. By linearity of expectation, we have

E[|Xv,i|] = 2E[Yv,i] = 2

nv,i∑︂
i=1

E[Yi] ≥
2ϵ2

δ log2 n
· nv,i.

We want to show that |Xv,i| ≥ E[|Xv,i|]
2

≥ ϵ2

δ log2 n
·nv,i with high probability over

all vertex-bucket pairs.

Using Chernoff Bound with µ = E[|Xv,i|] ≥ 2ϵ2

δ log2 n
· nv,i ≥ 24 log n since

nv,i ≥ α log3 n/ϵ2 and α ≥ 12δ.

P
[︃
|Xv,i| <

E[|Xv,i|]
2

]︃
≤ e−(3 logn) =

1

n3

29

Note that the above equation only shows the concentration bound for a single

vertex/bucket pair. There are n nodes and each node has up to τ = log n/ϵ

buckets, so the total number of vertex/bucket pairs is at most n log n/ϵ. Sup-

pose we do a union bound over all buckets, we get∑︂
all (v,bi) pairs

P
[︃
|Xv,i| <

E[|Xv,i|]
2

]︃
≤ 1

n
.

We showed that for each vertex/bucket pair v, bi, |Xv,i| ≥ ϵ2

δ log2 n
nv,i holds with

high probability.

Lemma 3 Consider all v ∈ Vℓ, big vertex/bucket pairs (v, bi) and partial tours

in Gv
i,g. We can modify the tours in Xv,i (without increasing the cost) and

adding some extra tokens at v (if needed) so that:

1. The tokens picked up by partial tours in Gv
i,g are covered by some tour

in Xv,i, and

2. The new partial tours that pick up the orphant tokens in Gv
i,g have size

exactly hv,max
i,g and all tours still have size at most Q.

3. For each (new) partial tour of Xv,i and every level ℓ′ > ℓ, the size of

partial tours of Xv,i at a vertex at level ℓ′ is also one of O(logQ log3 n/ϵ3)

many sizes.

Proof. Our goal is to use the extra tours in Xv,i to cover tokens picked up by

partial tours of Gv
i,g and we want each extra tour in Xv,i to cover exactly hv,max

i,g

tokens. The tours in the last group, Gv
i,g, cover

∑︁
t∈Gv

i,g
|t| many tokens. Since

we want each tour in Xv,i to cover hv,max
i,g tokens, we will add

∑︁
t∈Gv

i,g
(hv,max

i,g −

|t|) extra tokens at v for each vertex/bucket pair (v, bi) so that there are hv,max
i,g

tokens for each partial tour in Gv
i,g. From now on, we will assume each partial

tour in a last group Gv
i,g covers hv,max

i,g tokens.

We know |Gv
i,g| = nv,i/g = ϵ2

2δ logn
· nv,i. Using Lemma 2, we know with

high probability that |Xv,i| ≥ ϵ2

δ log2 n
· nv,i = 2|Gv

i,g|, so |Xv,i|/|Gv
i,g| ≥ 2. Recall

OPT′ includes tours in OPT plus the extra tours in OPT that were sampled.

Let Yv,i denote the number of tours in vertex/bucket pair (v, bi) that were

30

sampled, so |Xv,i| = 2|Yv,i| since we made two extra copies of each sampled

tour and |Yv,i| ≥ |Gv
i,g| with high probability. We will start by creating a one-

to-one mapping s : Gv
i,g → Yv,i which maps each tour in Gv

i,g to a sampled tour

in Yv,i. We know such a one-to-one mapping exists since |Yv,i| ≥ |Gv
i,g|.

Let T be a sampled tour in Yv,i with two extra copies of it, T1 and T2 in

Xv,i. Let the partial tours of T at the bottom part in Vℓ be p1, . . . , pm. We

know |T | ≥
∑︁m

i=1 |pi|. Since s is one-to-one, one partial tour from rk ∈ Gv
i,g

maps to pj or no tour maps to pj. If no tour maps to pj, we consider the

load assigned to pj to be zero. If s(rk) = pj where rk ∈ Gv
i,g, since we added

extra tokens to make each partial tour rk ∈ Gv
i,g have hv,max

i,g tokens, the load

assigned to pj would be hv,max
i,g .

Suppose we think of r1, . . . , rm as items and T1 and T2 as bins of size Q. We

know each ri fits into a bin of size Q. Recall that for the tour rj assigned to

pj, we know |rj| ≤ (1 + ϵ)|pj| since both rj and pj are in the same group Gv
i,g.

We might not be able to fit all items r1, . . . , rm into a bin of size Q because∑︁m
i=1 |ri| ≤ (1 + ϵ)

∑︁m
i=1 |pi| ≤ (1 + ϵ)|T | ≤ (1 + ϵ)Q. However, if we used two

bins of size Q, we can pack the items into both bins without exceeding the

capacity of either bin such that each item ri is completely in one bin. Since T1

and T2 are not assigned to any lower level, they have not been used to cover

any tokens so far in our algorithm and they both have unused capacity Q.

Using the bin packing analogy, we could split r1, . . . , rm between T1 and T2.

We could assign r1, . . . , rj (for the maximum j) to T1 such that
∑︁j

i=1 |ri| ≤ Q

and the rest, rj+1, . . . , rm to T2. Since
∑︁m

i=1 |ri| ≤ (1 + ϵ)Q, we can ensure we

can distribute the tokens in ri’s amongst T1 and T2 such that both T1 and T2

cover at most Q tokens. Although there are two copies of each partial tour pi

in Xv,i, according to our approach, we are using at most one of them (their

coverage would be zero if they are not used). If the coverage of one of the

extra partial tours is non-zero, we also showed that if it picks up tokens from

a partial tour in Gv
i,g, it would pick up exactly hv,max

i,g tokens, proving the 2nd

property of the Lemma.

Also, note that for each partial tour rk ∈ Gv
i,g and for each level ℓ′ > ℓ if rk

visits a vertex v′ ∈ Vℓ′ , then the partial tour of rk at Tv′ already satisfies the

31

properties that: either its size belongs to a small vertex-bucket pair (v′, bi) (so

has one of O(log3 n/ϵ) many possible values) or if it belongs to a big vertex

bucket pair (v′, bi′) then its size is equal to hv′,max
i′,j′ for some group j′ and hence

one of O((logQ log n)/ϵ2) possible values. This implies that for the extra tours

of Xv,i, after we reassign partial tours of Gv
i,g to them (to cover the orphant

nodes), each will have a size exactly equal to hv,max
i,g at level ℓ and at lower levels

V>ℓ, the tours either belong to a small or a big bucket. Since a partial tour in

a big vertex-bucket pair has one of g = (2δ log n)/ϵ2 many sizes and a partial

tour in small vertex-bucket pair has one of O(log3 n/ϵ) tour sizes. Each tour

in a vertex-bucket pair could have at most max{O(log n/ϵ2), O(log3 n/ϵ)} =

O(log3 n/ϵ2) many tour sizes and since there are O(logQ/ϵ) many buckets, the

size of partial tours of Xv,i at a vertex at level ℓ′ > ℓ is one of O(logQ log3 n/ϵ3)

many possible sizes. This establishes the 3rd property of the lemma.

Therefore, using Lemma 3, all the tokens of Tv remain covered by partial

tours; those partial tours in Gv
i,j (for 1 ≤ j < g) are tied to the top parts of

the tours from group Gv
i,j+1 and the partial tours of Gv

i,g will be tied to extra

tours designated to level ℓ. We also add extra tokens at v to be picked up by

the partial tours of Tv so that each partial tour has a size exactly equal to the

maximum size of a group. All in all, the extra cost paid to build OPTℓ (from

OPTℓ+1) is for the extra tours designated to level ℓ.

Theorem 7 (Structure Theorem) Let opt be the cost of the optimal solu-

tion to instance I. We can build an instance I ′ on the same tree T such that

each node has ≥ 1 tokens and there exists a near-optimal solution OPT′ for I ′

having cost (1+4ϵ)opt w.h.p with the following property. The partial tours go-

ing down subtree Tv for every node v in OPT′ has one of O((logQ log3 n)/ϵ3)

possible sizes. More specifically, suppose (v, bi) is a bucket pair for OPT′.

Then either:

• bi is a small bucket and hence there are at most α log3 n/ϵ2 many partial

tours of Tv whose size is in bucket bi, or

• bi is a big bucket; in this case there are g = (2δ log n)/ϵ2 many group

32

sizes in bi: σi ≤ hv,max
i,1 ≤ . . . ≤ hv,max

i,g < σi+1 and every tour of bucket i

has one of these sizes.

Proof. We will show how to modify OPT to a near-optimal solution

OPT′. We start from ℓ = h and let OPTℓ = OPT. For decreasing values of ℓ

we show, for each ℓ how to modify OPTl+1 to obtain OPTℓ. We do this in the

following manner: we do not modify partial tours in small buckets. However,

for tours in big buckets, in each vertex/bucket pair (v, bi) in level ℓ − 1, we

place them into g groups Gv
1, . . . , G

v
g of equal sizes by placing the i’th nv/g

partial tours into Gv
i . We have a mapping f from each partial tour in Gv

i−1 to

one in Gv
i for i ∈ {2, . . . , g}. We modify OPTℓ to OPTℓ+1 in the following

way: for each tour T that has a partial tour t ∈ Gv
i , replace the bottom part

of T at v from t to f(t) (which is in Gv
i−1). For each tour t ∈ Gv

i−1, we will

add hv,max
i−1 − |t| many extra tokens at v. Note that by this change, the size of

any tour such as T can only decrease and we are not violating feasibility of

the tour because hv,max
i−1 ≤ hv,min

i . However, the tokens in Tv picked up by the

partial tours in Gv
i,g are not covered by any tours. We can use Lemma 3 to

show how we can use extra tours to cover the partial tours in Gv
i,g such that

the new partial tours have size exactly hv,max
i,g .

We will inductively repeat this for levels ℓ − 2, ℓ − 3, . . . , 1 and obtain

OPT1 = OPT′. Note that by adding extra tokens hv,max
i−1 − |t| for a tour

t ∈ Gv
i−1, we are enforcing that the coverage of each tour is the maximum size

of tours in its group. In a big bucket, there are g = (2δ log n)/ϵ2 many group

sizes, so there are O(log n/ϵ2) possible sizes for tours in big buckets at a node.

In a small bucket, there can be at most α log3 n/ϵ2 many tours and since there

are τ = O(logQ/ϵ) many buckets, there can be at most O((logQ log3 n)/ϵ3)

many tour sizes covering Tv.

Using Lemma 1, we know the cost of the extra tours is at most 4ϵ · opt

with high probability, so the cost of opt′ ≤ (1 + 4ϵ)opt.

33

2.3 Dynamic Program

In this section we complete the proof of Theorem 2. We will describe how we

can compute a solution of cost at most (1 + 4ϵ)opt using dynamic program-

ming and based on the existence of a near-optimum solution guaranteed using

the structure theorem. For each vertex/bucket pair, we do not know if the

bucket is small or big, so we will consider subproblems corresponding to both

possibilities. Informally, we will have a vector n⃗ ∈ [n]τ where if i < 1/ϵ, ni

keeps track of the exact number of tours of size i and for i ≥ 1/ϵ, n⃗i keeps

track of the number of tours in bucket bi, or tours covering between [σi, σi+1)

tokens. Let ov denote the total number of tokens to be picked up across all

nodes in the subtree Tv. Since each node has at least one token, ov ≥ |V (Tv)|.

We will keep track of three other pieces of information conditioned on whether

bi is a small or big bucket. If bi is a small bucket, we will store all the tour sizes

exactly. Since the number of tours in a small bucket is at most γ = α log3 n/ϵ2,

we will use a vector t⃗
i ∈ [n]γ to represent the tours of a small bucket where

t⃗
i

j represents the size of j-th tour in bucket bi. Suppose bi is a big bucket,

there are g = (2δ log n)/ϵ2 many tour sizes in the bucket corresponding to ng

possibilities. For each big bucket bi at node v, we need to keep track of the

following information,

• h⃗
i

v ∈ [n]g is a vector where h⃗
i

v,j = hv,max
i,j , which is the size of the maximum

tour in group j of bucket i at node v.

• l⃗
i

v ∈ [n]g is a vector where l⃗
i

v,j denotes the number of partial tours cov-

ering hv,max
i,j tokens which lies in group j of bucket i at node v.

Let y⃗v denote a configuration of tours across all buckets of v.

y⃗v = [ov, n⃗v, (t⃗
1

v, h⃗
1

v, l⃗
1

v), (t⃗
2

v, h⃗
2

v, l⃗
2

v), . . . , (t⃗
τ

v , h⃗
τ

v , l⃗
τ

v)].

Note that a bucket bi is either small or big and cannot be both, hence given

(t⃗
i

v, h⃗
i

v, l⃗
i

v), it cannot be the case that t⃗
i

v ̸= 0⃗, h⃗
i

v ̸= 0⃗ and l⃗
i

v ̸= 0⃗. The sub-

problem A[v, y⃗] is supposed to be the minimum cost collection of partial tours

going down Tv (to cover the tokens in Tv) and the cost of using the parent

34

edge of v having tour profile corresponding to y⃗. Our dynamic program heavily

relies on the properties of the near-optimal solution in the structure theorem.

Let v be a node. We will compute A[·, ·] in a bottom-up manner, computing

A[v, y⃗v] after we have computed the entries for the children of v.

The final answer is obtained by looking at the various entries of A[r, ·] and

taking the smallest one. First, we argue why this will correspond to a solution

of cost no more than opt′. We will compute our solution in a bottom-up

manner.

For the base case, we consider leaf nodes. A leaf node v with parent edge e

could have ov ≥ 1 tokens at v. We will set A[v, y⃗v] = 2·w(e)·mv where mv is the

number of tours in y⃗v if the total sum of tokens picked up by the partial tours

in y⃗v is exactly ov. Recall that f(e) is the load on (i.e. number of tours using)

edge e. From our structure theorem, we know there exists a near optimum

solution such that each partial tour of Tv has one of O((logQ log3 n)/ϵ3) tour

sizes and for each small bucket, there are at most α log3 n/ϵ2 partial tours in

it. For every big bucket, there are g = (2δ log n)/ϵ2 many group sizes and

every tour of bucket i has one of these sizes. The base case follows directly

from the structure theorem.

To compute cell A[v, y⃗v], we would need to use another auxiliary table B.

Suppose v has k children u1, . . . , uk and assume we have already calculated

A[uj, y⃗] for every 1 ≤ j ≤ k and for all vectors y⃗. Then we define a cell

in our auxiliary table B[v, y⃗′v, j] for each 1 ≤ j ≤ k where B[v, y⃗′v, j] is the

minimum cost of covering Tu1 ∪ . . . ∪ Tuj
where y⃗′v is the tour profile for the

union of subtrees Tu1 ∪ . . .∪ Tuj
. In other words, B[v, y⃗′v, j] is what A[v, y⃗v] is

supposed to capture when restricted only to the first j children of v. We will set

A[v, y⃗v] = B[v, y⃗′v, k]+2 ·w(e) ·mv where mv is the number of different tours in

y⃗′v. We will assume the parent edge of the depot has weight 0. Suppose Tui
has

oi tokens, then the number of tokens in Tv is at least 1 +
∑︁k

i=1 oi. To compute

entries of B[v, ·, ·], we use both A and B entries for smaller subproblems of v

in the following way:

Case 1: j = 1: This is the case when we restrict the coverage to only the

35

first child of v, u1.

B[v, y⃗′v, 1] = min
y⃗′

{︁
A[u1, y⃗

′]
}︁

We will find the minimum cost configurations y⃗′ such that y⃗′v and y⃗′ are con-

sistent with each other. We say y⃗′v and y⃗′ are consistent if a tour in y⃗′v either

only covers tokens at v and does not visit any node below v or y⃗′v consists of

a tour from y⃗′ plus zero or more extra tokens picked up at v. Moreover, every

tour in y⃗′ is part of some tour in y⃗′v.

Case 2: 2 ≤ j ≤ k. We will assume we have computed B[v, y⃗′, j − 1] and

A[uj, y⃗
′′] and we have

B[v, y⃗′v, j] = min
y⃗′,y⃗′′

{B[v, y⃗′, j − 1] + A[uj, y⃗
′′]}.

There are four possibilities for each partial tour tv at node v going down Tv

covering tokens for subtrees rooted at children u1, . . . , uk .

• tv could be a tour that only picks up tokens at v and does not pick up

tokens from subtrees Tu1 ∪ . . . ∪ Tuj
.

• tv could be a tour that picks up tokens at v and picks up tokens only

from subtrees Tu1 ∪ . . . ∪ Tuj−1
.

• tv could be a tour that picks up tokens at v and picks up tokens only

from subtree Tuj
.

• tv could be a tour that picks up tokens at v and picks up tokens from

subtrees Tu1 ∪ . . . ∪ Tuj
.

We would find the minimum cost over all configurations y⃗′v, y⃗
′ and y⃗′′ as long

as y⃗′v, y⃗
′ and y⃗′′ are consistent. We say tours y⃗′v, y⃗

′ and y⃗′′ are consistent if

there is a way to combine partial tours from y⃗′ and y⃗′′ to form a partial tour

in y⃗′v while also picking up extra tokens at node v. We will define consistency

more rigorously in the next section.

36

2.3.1 Checking Consistency

In our dynamic program, for the inner DP, we are given three vector y⃗′v, y⃗
′, y⃗′′

where v is a node having children u1, . . . , uj. y⃗′ represents the configuration of

tours in Tu1 ∪ . . . ∪ Tj−1 and y⃗′′ represents the configuration of tours covering

Tuj
. For the case of checking consistency for case 1, we will assume y⃗′′ = 0⃗.

Suppose we are given ov (for node v), ou for children u1, . . . , uj−1, and ow for

uj, we can infer that there are o′v = ov − ou − ow extra tokens that need to be

picked at v. o′v tokens need to be distributed amongst tours in y⃗v. There are

four possibilities for each tour tv in y⃗′v.

• tv could be a tour that picks up extra tokens at v and picks up tokens

only from subtrees Tu1 ∪ . . . ∪ Tuj−1
.

• tv could be a tour that picks up extra tokens at v and picks up tokens

only from subtree Tuj
.

• tv could be a tour that picks up extra tokens at v and picks up tokens

from subtrees Tu1 ∪ . . . ∪ Tuj
.

For simplicity, we will refer to a tour picking up tokens in Tu1 ∪ . . . ∪ Tuj−1
to

be tu and a tour picking up tokens from Tuj
to be tw.

Definition 6 We say configurations y⃗′v, y⃗
′ and y⃗′′ are consistent if the fol-

lowing holds:

• Every tour in y⃗′ maps to some tour in y⃗′v.

• Every tour in y⃗′′ maps to some tour in y⃗′v.

• Every tour in y⃗′v has at most two tours mapping to it and both tours

cannot be from y⃗′ or y⃗′′.

• Suppose only one tour (tu) maps to a tour tv in y⃗′v. The number of extra

tokens picked up by tour tv at v is |tv| − |tu|.

• Suppose tv, a tour in y⃗′v has two tours: tu in y⃗′ and tw in y⃗′′ mapped to it,

then the number of extra tokens picked up by tour tv at v is |tv|−|tu|−|tw|.
37

• The extra tokens at v, o′v = ov − ou − ow, are picked up by the tours in

y⃗′v.

Consistency ensures that we can patch up tours from subproblems and combine

them into new tours in a correct manner while also picking up extra tokens at

v. Now we will describe how we can compute consistency. Let z⃗ be a vector

containing a subset of information contained in y⃗.

z⃗v = [n⃗v, (t⃗
1

v, h⃗
1

v, l⃗
1

v), (t⃗
2

v, h⃗
2

v, l⃗
2

v), . . . , (t⃗
τ

v , h⃗
τ

v , l⃗
τ

v)].

From now on, we will choose to not write n⃗v explicitly since we can figure

out the entries of the vector from l⃗. Suppose |tv| is the length of a tour in

z⃗′v. Let z⃗′v − tv refer to the configuration z⃗′v having one less tour of size |tv|.

Let C[o′v, z⃗
′
v, z⃗

′, z⃗′′] = True if it is consistent and False otherwise. For the base

case, C[0, 0⃗, 0⃗, 0⃗] =True. For the recurrence, we will look at all possible ways

of combining z⃗′ and z⃗′′ into z⃗′v while also picking up extra tokens o′v. Note that

tv is always non-zero, but both or one of tu or tw could be zero.

C[o′v, z⃗
′
v, z⃗

′, z⃗′′] =
⋁︂

tv ,tu,tw
|tv |=|tu|+|tw|+oc

C[o′v − oc, z⃗
′
v − tv, z⃗

′ − tu, z⃗
′′ − tw].

2.3.2 Time Complexity

We will work bottom-up and assume we have already pre-computed our con-

sistency table. Computing B[·, ·, ·] requires looking at previously computed

B[·, ·, ·] and A[·, ·]. Given y⃗′v, y⃗
′ and y⃗′′ which are all consistent, computing the

cost of y⃗′v using y⃗′ and y⃗′′ takes O(1) time. Each y⃗′v consists of

1. n⃗ has nO(logn/ϵ) possibilities.

2. Each t⃗
i

has nO(log3 n/ϵ2) possibilities since there are O(log3 n/ϵ) tours in

a small bucket.

3. Each h⃗ and l⃗ have nO(g) possibilities. Recall that g = (2δ log n)/ϵ2, so

each h⃗ and l⃗ have nO(logn/ϵ2) possibilities.

4. Each triple (t⃗
i
, h⃗

i
, l⃗

i
) has nO(log3 n/ϵ2) possibilities.

38

5. (t⃗
1
, h⃗

1
, l⃗

1
), (t⃗

2
, h⃗

2
, l⃗

2
), . . . , (t⃗

τ
, h⃗

τ
, l⃗

τ
) have nO(τ log3 n/ϵ2) = nO((logQ log3 n)/ϵ3)

possibilities since τ = O(logQ/ϵ).

In total, each y⃗′v has nO((logQ log3 n)/ϵ3) possibilities. For each y⃗′v, we will have

nO((logQ log3 n)/ϵ3) possibilities for y⃗u and y⃗w. Since there are nO((logQ log3 n)/ϵ3)

possibilities for y⃗′v, the cost of computing the DP entries for a single node v

would be nO((logQ log3 n)/ϵ3) and since there are n nodes in the tree, the total time

of computing the DP table assuming the consistency table is precomputed is

nO((logQ log3 n)/ϵ3).

Before we compute our DP, we will first compute the consistency table

C[·, ·, ·, ·]. Similar to our DP table, each entry of the consistency table has

nO((logQ log3 n)/ϵ3) possibilities. Assuming we have already precomputed smaller

entries of C , there are nO((logQ log3 n)/ϵ3) ways of picking tv, tu and tw. For a

fixed y⃗v, y⃗u, y⃗w and o′v, computing C[o′v, z⃗
′
v, z⃗

′, z⃗′′] takes nO((logQ log3 n)/ϵ3) time.

Since there are only nO((logQ log3 n)/ϵ3) possibilities for z⃗′v, z⃗
′ and z⃗′′, the cost of

computing all entries of the consistency table is nO((logQ log3 n)/ϵ3).

The time for computing both the DP table and consistency table is nO((logQ log3 n)/ϵ3),

so the total time taken by our algorithm is nO((logQ log3 n)/ϵ3). For the unit de-

mand case, since Q ≤ n, the runtime of our algorithm is nO(log4 n/ϵ3).

2.4 Extension to Splittable CVRP

We can extend our algorithm for unit demand CVRP in trees and show how

we can get a QPTAS for splittable CVRP as long as the demands are quasi-

polynomially bounded (Corollary 1). In our algorithm for unit demand CVRP,

we viewed the demand of each node as a token placed at the node. For

splittable CVRP, we could assume each node has 1 ≤ d(v) < nQ tokens

and we can use the same structure theorem as before by modifying tours such

that there are at most O((logQ log3 n)/ϵ3) different tour sizes for partial tours

at a node. We can use the same DP to compute the solution. Each y⃗v consists

of:

1. n⃗ which has (nQ)O(logn/ϵ) possibilities.

39

2. Each t⃗
i

has (nQ)O(log3 n/ϵ2) possibilities since there are O(log3 n/ϵ) tours

in a small bucket.

3. Each h⃗ and l⃗ have (nQ)O(g) possibilities. Recall that g = (2δ log n)/ϵ2,

so each h⃗ and l⃗ have (nQ)O(logn/ϵ2) possibilities.

4. Each triple (t⃗
i
, h⃗

i
, l⃗

i
) has (nQ)O(log3 n/ϵ2) possibilities.

5. (t⃗
1
, h⃗

1
, l⃗

1
), (t⃗

2
, h⃗

2
, l⃗

2
), . . . , (t⃗

τ
, h⃗

τ
, l⃗

τ
) have (nQ)O(τ log3 n/ϵ2) = (nQ)O((logQ log3 n)/ϵ3)

possibilities since τ = O(logQ/ϵ).

Similar to the analysis of the runtime of the unit demand case, the time com-

plexity of computing the entries of DP tables A,B, and the consistency table

C is, (nQ)O((logQ log3 n)/ϵ3). Suppose Q = nO(logc n), then the runtime of our

algorithm is nO(log2c+4 n/ϵ3).

2.5 Height reduction

In this section, we will prove Theorem 6. The first goal is to decompose

the edge set of the tree T into edge-disjoint paths. We will do so using the

following lemma, similar to Lemma 5 from Cygan et al. [15] to obtain such a

decomposition in polynomial-time for a different problem.

Lemma 4 There exists a decomposition of the edge set of T into edge-disjoint

paths which can be grouped into s = O(log n) collections (called levels) L1, . . . , Ls

such that the following hold:

1. A root-to-leaf path P in T can be written as P = Q0Q1 . . . Qs where Qi

is either a path in Li or it is empty.

2. P would use a path from a lower level Li before using a path from a

higher level, Lj where i < j.

Proof. Given a tree T , a D-path of T is a root-to-leaf path P = v1v2 . . . vk such

that vi+1 is the child of vi with the largest number of nodes in the tree rooted

at Tvi+1
. If there are multiple children with the same number of descendants,

40

break ties arbitrarily. Let P be a D-path. All the nodes in D-path P receive

label 1. Let T1, . . . , Tc be the set of trees obtained from T − P . Let Pi be the

D-path for Ti. We will label all nodes in Pi to be 2. We will repeat this process

recursively by finding D-paths for trees resulting from Ti − Pi and labelling

every node in the D-path with value corresponding to the depth of recursion.

Each step involves finding a D-path, labelling the nodes of the path, deleting

the path and recursively repeating the process for the resulting trees (with the

value of the label increased by 1). Nodes of D-paths of trees at depth ℓ in

the recursion receive labels ℓ. We will terminate this process when all nodes

have been labelled. Let Lj denote the collection of all D-paths whose nodes

received the label j (see Figure 2.1).

Note that after the first step, the trees T1, . . . , Tc satisfy the property that

|V (Ti)| ≤ |V (T)|
2

i.e., each tree is at most half of the original tree. This is

because we pick the child with the largest number of nodes in the subtree

rooted at it. After each step, the size of the new components formed is at

most half the size of the previous component, hence we would use at most

log n labels to label all nodes in the tree.

The following is an example of such labelling where each color represents

a level.

41

(a) A tree before labelling. (b) Blue edges are level 1, red edges
are level 2 and green edges are level

3.

Figure 2.1: An example of a tree before and after applying labels to nodes

2.5.1 Creating a new tree

Given a tree T , we can use Lemma 4 to decompose the tree into edge-disjoint

paths. Next, we describe an algorithm to modify the tree recursively into a

low height tree. The first step is to look at all the paths in L1. L1 is a special

case since there is only one path in L1 which goes from the depot to a leaf

node. All the other levels Li could have multiple disjoint paths. Let P be the

path in L1 and let l(P) be the number of edges in path P . If l(P) ≤ δ logn
ϵ

for

a δ > 0 to be specified, then we are done for L1.

However, if l(P) > δ logn
ϵ

, we will compress the path into a low height one.

We will do a sequence of what is called up-pushes. We will pick s ≤ δ log l(P)
ϵ

points to be anchor points. Let us call the anchor points a1, . . . , as where

a1 is the anchor point closest to the root and as is closest to the leaf. We will

later show how to find these anchor points.

42

Figure 2.2: A tree before an up-push (top) and after (bottom) with reduced
height. The blue edge connecting ai and ai+1 has weight w = wp+wq +ws+wt

wpw1

wqw2 w3

ws w4 w5

wt w6

ai

p T1

s T2 T3

t T4 T5

ai+1 T6

0 0 0 w w1 w2 w3 w4 w5 w6

ai

p s t ai+1 T1 T2 T3 T4 T5 T6

Each up-push acts on nodes in P between two consecutive anchor points

ai, ai+1 of the path P . During an up-push, we take all nodes in P that lie

between ai and ai+1, which we will call P ′, and make each node in P ′ a child

of ai with the edge connecting them to ai having weight 0. Suppose there is a

child subtree Tj, which is a child of a node in P ′ with edge connection cost wj,

the subtree Tj will become a child of ai with the edge connecting them having

cost wj (see Figure 2.2). Once we have completed up-pushes for all paths in

L1, we will find anchor points and perform up-pushes for each path in L2. We

will repeat this for paths in Li after our algorithm has finished up-pushes for

paths in Li−1.

We will now describe how we can find the anchor points. We will first

describe what we would like to achieve from anchor points. We want the cost

associated with a path in Li for some tour to differ by at most O(ϵ) in our new

tree compared to the the original tree. Suppose P is a path in Li and a tour

t is travelling P down to node u which is between ai and ai+1. Then the cost

of the portion of the tour from root of P to ai is the same in the original tree

and the new tree; however the cost to travel from ai to u is zero. We would

43

like this cost in the original tree to be a small factor of the cost from the root

of P to ai.

Our algorithm works as follows from top to bottom. For any path P in Li,

we will set the top node of the path to be a1 and its child in P to be a2. Our

goal is to pick ai and ai+1 for i > 2 such that w(ai, ai+1) > ϵ · w(a1, ai) and

w(ai, v) ≤ ϵ ·w(a1, ai) where v is the last vertex on ai, ai+1 path before ai+1. If

there is no ai+1 such that w(ai, ai+1) > ϵ · w(a1, ai), then we set the last node

of P to be ai+1. So, we pick ai+1 to be the farthest vertex from ai in P such

that w(ai, v) ≤ ϵ · w(a1, ai) where v is the last node before ai+1. This in turn

would imply that w(a1, ai+1) > (1 + ϵ)w(a1, ai), except if ai+1 is the last node

of the path. Hence, w(a1, ai) > (1 + ϵ)i−2w(a1, a2) > (1 + ϵ)i−2. Since edge

weights are at most 2n3/ϵ2, the number of anchor points are at most δ logn
ϵ

for

some constant δ > 0

2.5.2 Analysis

In the last section, we showed that every path in some level Li can be made

to have at most O
(︁
logn
ϵ

)︁
nodes.

Lemma 5 The height of the new tree is O
(︂

log2 n
ϵ

)︂
.

Proof. In our algorithm, we first decomposed the tree into a set of edge-

disjoint paths. The decomposition guarantees that one would first visit a

lower level node in any root-to-leaf path before visiting one with a higher

level. Since there are at most O(log n) different levels, any root-to-leaf path

will be a disjoint union of paths from levels L1, . . . , Ls and there can be at

most one path from each level. Since the height of a path in any level, Li is at

most O
(︁
logn
ϵ

)︁
, and there are at most O(log n) different levels, the maximum

height in our new tree is at most O
(︂

log2 n
ϵ

)︂
Suppose we take a path P at some level Lc. Let us fix a tour in an optimal

solution and let the farthest point in P the tour travels to be between anchor

points [ai,ai+1). We use [ai,ai+1) denote that the tour crosses ai but will not

cross ai+1. Let T be the original tree and let T ′ be the new tree with reduced

height. A tour in the optimal solution for T ′ can visit nodes lying between ai

44

and ai+i at no additional cost after visiting ai. Suppose the cost of traversing

the edges of P in T ′ is denoted by d, then the cost of traversing the edges of P

in T is going to be at most (1 + O(ϵ))d. This is because the cost of the edges

between ai and the vertex before ai+1 sum to at most O(ϵ)w(r, ai). Hence, the

additional cost to cover them in T is only going to be at most an ϵ fraction

more.

Lemma 6 Let T be the original tree, T ′ be the new tree, opt be the cost of

the optimal set of tours covering T , and opt′ be the cost of the optimal set of

tours covering T ′. Then,

opt′ ≤ opt ≤ (1 + ϵ)opt′.

Proof. Let us fix an optimal set of tours covering tree T with cost opt.

Suppose we pick a tour t and decompose this tour into paths each of which is

entirely within one level Li. Suppose P is a path of t in some level Lc. Let the

farthest point in P the tour travels to be between anchor points [ai,ai+1). In

our construction, the cost to visit any point lying between the root of P and

ai is the same in both T and T ′. However, in T ′, the tour can visit any node

lying between ai and ai+1 for free, but the tour would have an additional cost

to traverse these edges in tree T . Hence, for any path such P , the cost of a

tour t to traverse edges in P is less in T ′ compared to T . Since any tour costs

no more in instance T ′, we have opt′ ≤ opt.

Conversely, the extra cost of covering points lying between ai and ai+1 in

T is at most O(ϵ) times the cost of path P (based on the property of anchor

points). So the cost of using a path like P is at most an ϵ factor more in T

compared to T ′. Thus, the cost of any tour t in T is at most 1 + ϵ times the

cost of the same tour in T ′ and hence opt ≤ (1 + ϵ)opt′

Instead of T , we can solve the instance on T ′ with height O(log2 n/ϵ) and

lift the solution for T ′ back to a solution for T . We obtain a solution for T

with cost at most (1 + ϵ)opt.

45

Chapter 3

QPTAS for CVRP in Bounded
Treewidth Graphs

In this chapter, we will use ideas from QPTAS for CVRP in trees and extend

it to obtain a QPTAS for CVRP in Bounded Treewidth graphs.

3.1 Problem Overview

Given a graph G = (V,E) with treewidth k, we will assume we are given a

tree decomposition T = (V ′, E ′). We will refer to G as the graph and T as the

tree. We will refer to vertices in V by nodes and vertices in V ′ by bags. We

will refer to edges in E by edges and edges in E ′ by superedges. Recall the

definition of a tree decomposition,

A tree decomposition of a graph G is a pair (T, {Bt}t∈V (T)), where T is

a tree whose every node t ∈ V ′ is assigned a vertex subset Bt ⊆ V (G), called

a bag, such that the following three conditions hold:

1. ∪t∈V (T)Bt = V (G). In other words, every vertex of G is in at least one

bag.

2. For every uv ∈ E(G), there exists a node t of T such that bag Bt contains

both u and v.

3. For every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Bt}, i.e., the set of

nodes whose corresponding bags contain u, induces a connected subtree

46

of T .

For a bag s, let Cs denote the union of nodes in bags below s including s. Bag s

forms a boundary or border between nodes in Cs and V (G)\Cs. We will assume

an arbitrary bag containing the depot to be root of the tree decomposition. Let

k be the treewidth of our graph G. We will assume that following properties

hold for our tree decomposition T of G from the work of Boedlander and

Hagerup [12],

• T is binary.

• T has depth O(log n).

• The width of T is at most k′ = 3k + 2.

To simplify notation, by replacing k′ with k we will assume T has height δ log n

for some fixed δ > 0 and each bag has width k. From the third property of a

tree decomposition, we know that for every u ∈ V (G), the set Tu = {t ∈ V (T) :

u ∈ Xt} i.e., the set of nodes whose corresponding bags contain u, induces a

connected subtree of T . Since the bags associated with a node u ∈ V (G)

correspond to a subtree in T , we will place the demand/tokens of u at the root

bag of the tree Tu i.e. the bag containing u closest to the root bag of T . Since

Tu is a tree, we are guaranteed a unique root bag of Tu exists. We are doing

this to ensure that the demand of a client is delivered exactly once.

3.1.1 Our Results

We will restate Theorem 3 and Corollary 2 for convenience.

Theorem 3 For any ϵ > 0, there is an algorithm that, for any instance of

Unit Demand CVRP on bounded treewidth graphs (G,Q) where G is a graph

with n vertices and treewidth k, outputs a solution of expected cost (1+ϵ) times

the optimal solution in time nO(k2 log3 n/ϵ2)

We will then show how we can extend our dynamic program to also compute

a near-optimal solution for Splittable CVRP in graphs of bounded treewdith

when Q = nO(logc n) to get the following corollary.

47

Corollary 2 Let ϵ > 0, there is an algorithm that, for any instance of the

splittable capacitated vehicle routing problem on bounded treewidth graphs (G,Q)

where G is a graph with n vertices, treewidth k and when Q = nO(logc n), out-

puts a solution of expected cost (1 + ϵ) times the optimal solution in time

nO(k2 log2c+3 n/ϵ2)

3.2 Structure Theorem

Similar to how we showed the existence of a near-optimum solution for trees, we

will modify the optimum solution OPT in a bottom-up manner by modifying

the tours covering the set of nodes below bag s, Cs. For each bag s, we change

the structure of the partial tours going down Cs (by adding a few extra tours

from the depot) and also adding some extra tokens for nodes in bag s so that

the partial tours that visit Cs all have a size from one of polyogarithmic many

possible sizes (buckets) while increasing the number and the cost of the tours

by a small factor. Note that although a node can be in different bags, its

initial demand is in one bag and we might add extra tokens to copies of it in

other bags.

Similar to the case of tree, we assume the bags of the tree decomposition

are partitioned into levels V1, . . . , Vh where V1 is the bag containing the depot

and h is the height of T . For every tour T and every level ℓ, we can define the

notion of top and bottom part similar to the case of trees. For every Cs, a tour

T enters Cs through bag s using a node x and exists through node z where

both x and z have to be in s. Note that x and z could be equal if the tour

enters and exists s using the same node. For a bag s, let nx,z
s be the number

of partial tours covering nodes in Cs that enter through x and exit through z

in s. For each bag and entry/exit pair, we will define the notion of a small/big

bucket similar to the case of trees. For a big bucket, we will place the nx,z
s

tours (ordered by increasing size) into groups Gx,z,s
1 , . . . , Gx,z,s

g of equal sizes.

Let hs,x,z,max
i (hs,x,z,min

i) refer to the maximum (minimum) size of the tours in

Gx,z,s
i .

Similar to the case of trees, let f be a mapping from a tour in Gx,z,s
i to

48

one in Gx,z,s
i−1 . Now suppose we modify OPT to OPT′ in the following way:

for each tour T that has a partial tour in t ∈ Gx,z,s
i , replace the bottom part

of T entering through x and exiting through z in s from t to f(t) (which is

in Gx,z,s
i−1). The only problem is that those tokens in Cs that were picked up

by the partial tours in Gx,z,s
g are not covered by any tours and like the case

of trees, these are orphant tokens. For each tour T and its (new) partial tour

t ∈ Gx,z,s
i , if we add hx,z,s,max

i − |t| extra tokens at s to be picked up by t,

then each partial tour has size exactly same as the maximum size of its group

without violating the capacities. Similar to the case of trees, we will show that

if nx,z
s is sufficiently large (at least polylogarithmic), then if we sample a small

fraction of the tours of the optimum at random and add two copies of them

(as extra tours), they can be used to cover the orphant tokens.

3.2.1 Changing OPT to a near-optimum structured so-
lution

Similar to the structure theorem for trees, we will modify the optimal solution

OPT to a near-optimum solution OPT′ having certain properties. We will

start at the last level, and modify partial tours from OPT at level ℓ to obtain

OPTℓ. We will then iteratively obtain OPTℓ−1 by modifying partial tours

from OPTℓ at level ℓ− 1, and iteratively do this for each level until we obtain

OPT1 = OPT′.

Definition 7 For a bag s, the i-th bucket, bi, entering at x and exiting at

z contains the number of tours of OPTℓ having coverage between [σi, σi+1)

tokens in Cs where σi is the i-th threshold value. We will denote this by a

entry/exit-bag-bucket configuration (s, bi, x, z). Let nx,z
s,i be the number of tours

in bucket bi entering through x and exiting through z in bag s.

Definition 8 An entry/exit-bag-bucket configuration (s, bi, x, z) is small if

nx,z
s,i is at most α log2 n/ϵ and is big otherwise, for a constant α ≥ max{1, 20δ}.

Note that for any bag s and entry/exit-bag-bucket configuration (s, bi, x, z),

if (s, bi, x, z) is small, we do not modify the partial tours in it. However, if

49

(s, bi, x, z) is a big bucket, we create groups Gs,x,z
i,1 , . . . , Gs,x,z

i,g of equal sizes, for

g = (2δ log n)/ϵ; so |Gs,x,z
i,j | = ⌈nx,z

s,i /g⌉. We also consider a mapping f (as

before) which maps (in the same order) the tours t ∈ Gs,x,z
i,j to the tours in

Gs,x,z
i,j−1 for all 1 < j ≤ g. Consider set Tℓ of all the tours T in OPTℓ that visit

a bag in one of the lower levels V≥ℓ. Consider an arbitrary such tour T that

has a partial tour t in a big entry/exit-bag-bucket configuration (s, bi, x, z),

suppose t belongs to group Gs,x,z
i,j . We replace t with f(t) in T .

Now, add some extra tokens at x to be picked up by T so that the size

of the partial tour of T at Cs is exactly hs,x,z,max
i,j−1 . If we make this change for

all tours T ∈ Tℓ, each partial tour of them at level ℓ that was in a group

j < g of a big entry/exit-bag-bucket configuration (s, bi, x, z) is replaced with

a smaller partial tour from group j − 1 of the same big entry/exit-bag-bucket

configuration; after adding extra tokens to x at bag s (if needed), the size is

the maximum size from group j − 1. The tokens that were picked by partial

tours from Gs,x,z
i,g for a big entry/exit-bag-bucket configuration (s, bi, x, z) are

now orphant. We are going to (randomly) select a subset of tours of OPT as

”extra tours” and add them to OPT′ and modify them such that they cover

all the tokens that are now orphant (i.e. those that were covered by partial

tours of Gs,x,z
i,g for all big entry/exit-bag-bucket configuration (s, bi, x, z) at level

ℓ). Suppose we select each tour T of OPT with probability ϵ. We make two

copies of the extra tour and we designate both extra copies to bags at one of

the levels Vℓ that it visits with equal probability.

Lemma 7 The expected cost of extra tours selected is 2ϵ · opt.

Proof. Suppose f+(e) and f−(e) denote the number of tours traveling edge e

in each of the two directions. So the contribution of edge e to the optimal solu-

tion is 2 ·w(e) ·(f+(e)+f−(e)); opt =
∑︁

e∈E w(e) ·(f+(e)+f−(e)). Let m+(e)

(m−(e)) denote the number of sampled tours from the tours contributing to

f+(e) (f−(e)). Since we used two extra copies for each sampled tour, the num-

ber of extra tours for an edge e is 2(m+(e)+m−(e)). Let Te,1, . . . , Te,f+(e)+f−(e)

be the tours using e in either directions. Like in the case of trees, it is possible

for a tour to use edge e in both directions. Let Ye,i be a random variable which

50

is 1 if tour Te,i is sampled and 0 otherwise.

E[Ye,i] = P[Te,i is sampled] = ϵ.

Let m+(e) + m−(e) = Ye =
∑︁f+(e)+f−(e)

i=1 Ye,i. By linearity of expectations, we

have

E
[︁
m+(e) + m−(e)

]︁
= E[Ye] =

f+(e)+f−(e)∑︂
i=1

E[Ye,i] =

f+(e)+f−(e)∑︂
i=1

ϵ = ϵ·(f+(e)+f−(e)).

Summing up the extra cost over all edges, the expected cost of the extra tours

is

2
∑︂
e∈E

E
[︁
min(e) + mout(e)

]︁
= 2ϵ ·

∑︂
e∈E

(f+(e) + f−(e)) = 2ϵ · opt.

Therefore, we can assume that the expected cost of all extra tours added

is at most 2ϵ · opt. Let Xℓ be the set of extra tours designated to bags in

level ℓ. We assume we add Xℓ when we are building OPTℓ (it is only for the

sake of analysis). For each bag s ∈ Vℓ and entry/exit-bag-bucket configuration

(s, bi, x, z), let Xs,x,z
i be those in Xℓ whose partial tour in Cs has a size in

bucket bi. Each extra tour in Xℓ will not be picking any of the tokens in

levels V<ℓ (as they will be covered by the tours already in OPTℓ); they are

used to cover the orphant tokens created by partial tours of Gs,x,z
i,g for each

big entry/exit-bag-bucket configuration (s, bi, x, z) with s ∈ Vℓ; as described

below.

Lemma 8 For each level Vℓ, each bag s ∈ Vℓ and big entry/exit-bag-bucket

configuration (s, bi, x, z), w.h.p. |Xs,x,z
i | ≥ ϵ2

δ logn
· nx,z

s,i .

Proof. Suppose (s, bi, x, z) is a big entry/exit-bag-bucket configuration at

some level Vℓ. Let p1, . . . , pnx,z
s,i

be the partial tours in the entry/exit-bag-

bucket configuration (s, bi, x, z). Let the tour in OPT corresponding to pi be

T . Two copies of tour pi are assigned to bi if both of the following events are

true:

• Let Ai be the event where tour T is sampled as an extra tour. Since

each tour is sampled with probability ϵ, we have P[Ai] = ϵ.

51

• Let Bi be the event where tour T is assigned to level ℓ. There are

h = δ log n many levels and since T (if sampled) is assigned to any one

of its levels, P[Bi] ≥ 1/h ≥ 1/(δ log n).

Let Yi be a random variable which is 1 if pi is an extra tour in (v, bi) and 0

otherwise.

E[Yi] = P[Yi = 1] = P[Ai ∧Bi] = P[Ai] · P[Bi] ≥ ϵ/(δ log n).

Let Y s,x,z
i =

∑︁nx,z
s,i

i=1 Yi be the random variable keeping track of the number of

sampled tours in (s, bi, x, z). The number of extra tours, |Xs,x,z
i | = 2Y s,x,z

i since

we add two copies of a sampled tour to Xs,x,z
i . By linearity of expectation, we

have

E[|Xs,x,z
i |] = 2E[Y s,x,z

i] = 2

nx,z
s,i∑︂

i=1

E[Yi] ≥
2ϵ

δ log n
· nx,z

s,i .

We want to show that |Xs,x,z
i | ≥ E[|Xs,x,z

i |]
2

≥ ϵ
δ logn

· nx,z
s,i with high probability

over all vertex-bucket pairs.

Using Chernoff Bound with µ = E[|Xs,x,z
i |] ≥ 2ϵ2

δ log2 n
· nx,z

s,i ≥ 24 log n since

nx,z
s,i ≥ α log2 n/ϵ and α ≥ 20δ.

P
[︃
|Xs,x,z

i | < E[|Xs,x,z
i |]
2

]︃
≤ e−(5 logn) =

1

n5

Note that the above equation only shows the concentration bound for a sin-

gle entry/exit-bag-bucket configuration. For a bag, there are O(k2) many

entry/exit pairs. There are O(kn) bags and τ = O(log n/ϵ) buckets, so the

total number of entry/exit-bag-bucket configuration is at most O(k2n log n/ϵ).

Suppose we do a union bound over all buckets, we get∑︂
all (s,bi,x,z) configurations

P
[︃
|Xs,x,z

i | < E[|Xs,x,z
i |]
2

]︃
≤ 1

n
.

We showed that for every entry/exit-bag-bucket configuration (s, bi, x, z), |Xs,x,z
i | ≥

ϵ
δ logn

nx,z
s,i holds with high probability.

Lemma 9 Consider all bags s ∈ Vℓ, big entry/exit-bag-bucket configuration

(s, bi, x, z) and the partial tours in Gs,x,z
i,g . We can modify the tours in Xs,x,z

i

(without increasing the cost) and adding some extra tokens at nodes in s (if

needed) so that:

52

1. The tokens picked up by partial tours in Gs,x,z
i,g are covered by some tour

in Xs,x,z
i , and

2. The new partial tours that pick up the orphant tokens in Gs,x,z
i,g have size

exactly hs,x,z,max
i,g and all tours still have size at most Q.

3. For each (new) partial tour of Xs,x,z
i and every level ℓ′ > ℓ, the size of par-

tial tours of Xs,x,z
i at a bag s′ at level ℓ′ is also one of O((logQ log2 n)/ϵ2)

many possible sizes.

Proof. Our proof is going to be very similar to Lemma 3 for the case of

trees. Our goal is to use the extra tours in Xs,x,z
i to cover tokens picked up by

partial tours of Gs,x,z
i,g and we want each extra tour in Xs,x,z

i to cover exactly

hs,x,z,max
i,g tokens. The tours in the last group, Gs,x,z

i,g , cover
∑︁

t∈Gs,x,z
i,g

|t| many

tokens. We will add
∑︁

t∈Gs,x,z
i,g

(hs,x,z,max
i,g −|t|) extra tokens in node x at bag s for

each entry/exit-bag-bucket configuration (s, bi, x, z) so that there are hs,x,z,max
i,g

tokens corresponding to each partial tour in Gs,x,z
i,g . From now on, we will

assume each partial tour in a last group Gs,x,z
i,g covers hs,x,z,max

i,g tokens.

Using Lemma 8, we know with high probability that |Xs,x,z
i |/|Gs,x,z

i,g | ≥

2 since |Xs,x,z
i | ≥ ϵ

δ logn
· nx,z

s,i = 2|Gs,x,z
i,g |. Let Y s,x,z

i denote the number of

tours in entry/exit-bag-bucket configuration (s, bi, x, z) that were sampled, so

|Xs,x,z
i | = 2|Y s,x,z

i | and |Y s,x,z
i | ≥ |Gs,x,z

i,g | with high probability. We will start

by creating a one-to-one mapping s : Gs,x,z
i,g → Y s,x,z

i which maps each tour in

Gs,x,z
i,g to a sampled tour in Y s,x,z

i . We know such a one-to-one mapping exists

since |Y s,x,z
i | ≥ |Gs,x,z

i,g |.

Let T be a sampled tour in Y s,x,z
i with two extra copies of it, T1 and T2

in Xs,x,z
i . Let the partial tours of T at the bottom part in Vℓ be p1, . . . , pm.

We know |T | ≥
∑︁m

i=1 |pi|. Like the case for trees, s maps at most one tour

in Gs,x,z
i,g to each pj. If a tour from Gs,x,z

i,g maps to pj, we will assume the load

assigned to pj would be rj = hs,x,z,max
i,g and pj has load 0 if no tour is assigned

to it.

Suppose we think of r1, . . . , rm as items and T1 and T2 as bins of size Q.

We might not be able to fit all items r1, . . . , rm into a bin of size Q because

53

∑︁m
i=1 |ri| ≤ (1 + ϵ)

∑︁m
i=1 |pi| ≤ (1 + ϵ)|T | ≤ (1 + ϵ)Q. Similar to the case of

trees, we can show that we can assign r1, . . . , rj (for the maximum j) to T1

such that
∑︁j

i=1 |ri| ≤ Q and the rest, rj+1, . . . , rm to T2 such that both T1

and T2 cover at most Q tokens and all items r1, . . . , rm are covered by either

T1 or T2. Hence, we have shown that the extra partial tours pick up exactly

hs,x,z,max
i,g while picking up orphant tokens from Gs,x,z

i,g .

Also, the size of the extra tours after this modification at each bag s′ at any

level ℓ′ > ℓ is essentially the same as what each of ri’s were at those levels and

since we go bottom to top in the tree, each of those partial tours ri have a size

that either belongs to a small bucket (and hence has one of α log2 n/ϵ many

sizes) or a big entry/exit-bag bucket (and hence has one of O((logQ log n)/ϵ2)

many sizes). Therefore, the size of partial tours of Xs,x,z
i at any bag s′ at level

ℓ′ > ℓ is one of O((logQ log2 n)/ϵ2) many sizes.

Therefore, using Lemma 9, all the tokens of Cs remain covered by partial

tours; those partial tours in Gs,x,z
i,j (for 1 ≤ j < g) are tied to the top parts

of the tours from group Gs,x,z
i,j+1 and the partial tours of Gs,x,z

i,g will be tied to

extra tours designated to level ℓ. We also add extra tokens at nodes in s to be

picked up by the partial tours of Cs so that each partial tour has a size exactly

equal to the maximum size of a group. All in all, the extra cost paid to build

OPTℓ (from OPTℓ+1) is for the extra tours designated to level ℓ.

Theorem 8 (Structure Theorem) Let opt be the cost of the optimal so-

lution to instance I. We can build an instance I ′ such that each node has

≥ 1 tokens and there exists a near-optimal solution OPT′ for I ′ having ex-

pected cost (1 + 2ϵ)opt with the following property. The partial tours going

down Cs for every bag s in OPT′ has one of O((logQ log2 n)/ϵ2) possible sizes.

More specifically, suppose (s, bi, x, z) is a entry/exit-bag-bucket configuration

for OPT′. Then either:

• bi is a small bucket and hence there are at most α log2 n/ϵ many partial

tours of Cs whose size is in bucket bi, or

• bi is a big bucket; in this case there are g = (2δ log n)/ϵ many group sizes

54

in bi: σi ≤ hs,x,z,max
i,1 ≤ . . . ≤ hs,x,z,max

i,g < σi+1 and every tour of bucket i

has one of these sizes.

Proof. We will show how to modify OPT to a near-optimal solution

OPT′. We start from ℓ = h and let OPTℓ = OPT. For decreasing values of

ℓ we show, for each ℓ how to modify OPTℓ+1 to obtain OPTℓ. We do this in

the following manner: we do not modify partial tours in small entry/exit-bag-

bucket configuration. However, for tours in big entry/exit-bag-bucket config-

uration (s, bi, x, z) in level ℓ− 1, we place them into g groups Gs,x,z
i,1 , . . . , Gs,x,z

i,g

of equal sizes by placing the i’th nx,z
s,i /g partial tours into Gs,x,z

i,j . We have a

mapping f from each partial tour in Gs,x,z
i,j−1 to one in Gs,x,z

i,j for j ∈ {2, . . . , g}.

We modify OPTℓ to OPTl+1 in the following way: for each tour T that has

a partial tour t ∈ Gs,x,z
i,j , replace the bottom part of T at s from t to f(t)

(which is in Gs,x,z
i,j−1). For each tour t ∈ Gs,x,z

i,j−1, we will add hs,x,z,max
i,j−1 − |t| many

extra tokens at x in s. Note that by this change, the size of any tour such as

T can only decrease and we are not violating feasibility of the tour because

hs,x,z,max
i,j−1 ≤ hs,x,z,min

i,j . However, the tokens in Cs picked up by the partial tours

in Gs,x,z
i,g are not covered by any tours. We can use Lemma 9 to show how

we can use extra tours to cover the partial tours in Gs,x,z
i,g such that the new

partial tours have size exactly hs,x,z,max
i,g .

We will inductively repeat this for levels ℓ − 2, ℓ − 3, . . . , 1 and obtain

OPT1 = OPT′. Note that by adding extra tokens hs,x,z,max
i,j−1 −|t| for a tour t ∈

Gs,x,z
i,j−1, we are enforcing that the coverage of each tour is the maximum size of

tours in its group. In a big bucket, there are g = (2δ log n)/ϵ many group sizes,

so there are O(log n/ϵ) possible sizes for tours in big entry/exit-bag-bucket

configuration at a node. In a small entry/exit-bag-bucket configuration, there

can be at most α log2 n/ϵ many tours and since there are τ = O(logQ/ϵ) many

buckets, there can be at most O((logQ log2 n)/ϵ2) many tour sizes covering Cb.

Using Lemma 7, we know the expected cost of the extra tours is at most

2ϵ · opt, so the expected cost of opt′ ≤ (1 + 2ϵ)opt.

55

3.3 Dynamic Program

In this section we prove Theorem 3 by presenting a dynamic program that

will compute a near optimum solution guaranteed by the structure theorem

(Theorem 8). For a given bag s, we will estimate the number of tours entering

and exiting s. Informally, we will have a vector n⃗s,x,z ∈ [n]τ where if i < 1/ϵ,

n⃗s,x,z
i keeps track of the exact number of tours covering i tokens in Cs by

entering through x and exiting though z and if i ≥ 1/ϵ, n⃗s,x,z
i keeps track of

the number of tours covering between [σi, σi+1) tokens. Let as denote the total

number of tokens to be picked up from nodes from bags below and including

bag s. Since each bag s has k nodes, we use o⃗s ∈ [n]k to denote the extra

tokens to be picked up from nodes at bag s. If v is a node in bag s, then o⃗s,v

denotes the number of extra tokens to be picked up at v in s. For a given

entry/exit-bag-bucket configuration (s, bi, x, z), we will keep track of other

pieces of information conditional on whether it is small or big. If entry/exit-

bag-bucket configuration (s, bi, x, z) is small, we will store all tour sizes exactly.

Since the number of tours in a small entry/exit-bag-bucket configuration is at

most γ = α log2 n/ϵ, we will use a vector t⃗
s,x,z,i ∈ [n]γ to represent the tours

where t⃗
s,x,z,i

j represents the size of the j-th tour in the i-th bucket of tours

covering Cs entering through x and exiting through z.

If the entry/exit-bag-bucket configuration (s, bi, x, z) is big, there are g =

(2δ log n)/ϵ many tour sizes corresponding to nO(g) possibilities. For each

entry/exit-bag-bucket configuration (s, bi, x, z), we need to keep track of the

following information,

• h⃗
s,x,z,i

∈ [n]g is a vector where h⃗
s,x,z,i

j = hs,x,z,max
i,j , which is the size of the

maximum tour which lies in group Gs,x,z
i,j of bucket i at bag s entering

through x and exiting through z.

• l⃗
s,x,z,i

∈ [n]g is a vector where l⃗
s,x,z,i

j denotes the number of partial tours

covering hs,x,z,max
i,j tokens which lies in group Gs,x,z

i,j of bucket i at bag s

entering through x and exiting through z.

For a bag s and entry/exit pairs, let p⃗s,x,z be a vector containing information

56

about all tours entering and exiting s through x and z across all buckets.

p⃗s,x,z = [n⃗s,x,z, (t⃗
s,x,z,1

, h⃗
s,x,z,1

, l⃗
s,x,z,1

), (t⃗
s,x,z,2

, h⃗
s,x,z,2

, l⃗
s,x,z,2

), . . . , (t⃗
s,x,z,τ

, h⃗
s,x,z,τ

, l⃗
s,x,z,τ

)].

Similar to the case of trees, an entry/exit-bag-bucket configuration (s, bi, x, z)

is either small or big and cannot be both, hence given (t⃗
s,x,z,i

, h⃗
s,x,z,i

, l⃗
s,x,z,i

),

it cannot be the case that t⃗
s,x,z,i ̸= 0⃗, h⃗

s,x,z,i
̸= 0⃗ and l⃗

s,x,z,i
̸= 0⃗. Since a bag s

contains O(k) nodes, then we will let y⃗s denote a configuration of all partial

tours covering tokens in Cs which are entering and exiting s. Let v1, . . . , vd be

the set of all nodes in s, then y⃗s contains information of tours entering and

exiting s through pairs of nodes in {v1, . . . , vd}. Note that a tour can enter

and exit s through the same node.

y⃗s = [as, o⃗s, p⃗s,v1,v1 , p⃗s,v1,v2 , . . . , p⃗s,vd,vd−1
, p⃗s,vd,vd].

The subproblem A[s, y⃗s] is supposed to be the minimum cost collection of par-

tial tours covering Cs having tour profiles corresponding to y⃗s. Our dynamic

program heavily relies on the properties of the near-optimal solution char-

acterized by the structure theorem. We will compute A[·, ·] in a bottom-up

manner, computing A[s, y⃗s] after we have computed entries for the children

bags of s.

The final answer is obtained by looking at various entries of the root bag of

the tree decomposition, denoted by rs. We will take the minimum cost entry

amongst A[rs, y⃗rs] such that y⃗rs is the configuration where all tours enter and

exit rs only through the depot, r. We will compute our solution in a bottom-up

manner.

For any nodes u, v in bag s, if there is no edge between u and v, we can

add an edge between them and the cost of the edge is the shortest path cost

between u and v in G. Similarly, for two adjacent bags, s and s1, if u ∈ s

and v ∈ s1 and if there is no edge between u and v in G, we will add an edge

between them and the cost of the edge is the shortest path cost between u and

v in G. If u = v, then the cost of the edge connecting them can be assumed

to be zero. Let ∥o⃗s∥ =
∑︁

u∈s o⃗s,u.

For the base case, we consider leaf bags. A leaf bag s could have as ≥ 1

tokens where as = ∥o⃗s∥. We will defer how we compute A[s, y⃗s] to the end

57

of this section. Informally, we will set A[s, y⃗s] to be the minimum cost of the

edges between nodes in bag s used for the tours in y⃗s to pick up o⃗s tokens

located at nodes in bag s. The total capacity of the tours in y⃗s should be

exactly as and a token at a node should be picked up by one of the tours in y⃗s.

From our structure theorem, we know there exists a near optimum solution

such that each partial tour has one of O(logQ log2 n/ϵ2) tour sizes and for each

small bucket, there are at most α log2 n/ϵ partial tours in it. For every big

bucket, there are g = (2δ log n)/ϵ many group sizes and every tour of bucket

i has one of those sizes. We are computing all possible A[s, y⃗s] entries and

from our structure theorem, we know one of them has near-optimum expected

cost, so by enumerating all possibilities, our dynamic program finds a near-

optimums solution for the leaf bag, proving the base case.

Recall that the tree T is binary. Suppose bag s has two children in T ,

s1 and s2. To compute cell A[s, y⃗s], we will use the entries of its children,

A[s1, y⃗
′] and A[s2, y⃗

′′]. Suppose Csi has asi tokens, then as = ∥o⃗s∥+ as1 + as2 .

H[o⃗s, y⃗s, y⃗
′, y⃗′′] checks whether the tour profiles y⃗s, y⃗

′ and y⃗′′ are consistent

meaning that all tokens picked up by tours in y⃗′ and y⃗′′ along with tokens in s,

o⃗s are picked up by tours in y⃗s. We will also define I[·, ·, ·, ·] where I[o⃗s, y⃗s, y⃗
′, y⃗′′]

denotes the cost of using the edges in bag s, edges connecting nodes in s and

s1, and edges connecting nodes in s and s2. We can think of I as the cost of

using edges to patch up partial tours covering Cs1 and partial tours covering

Cs2 to create tours covering Cs. We will explain in the next section how H and

I are computed. Recall o⃗s is part of y⃗s. Suppose we have already computed

the entries A[s1, ·] and A[s2, ·], we will compute A[s, ·] in the following way:

A[s, y⃗s] = min
y⃗′,y⃗′′:H[o⃗s,y⃗s,y⃗

′,y⃗′′]=True
{A[s1, y⃗

′] + A[s2, y⃗
′′] + I[o⃗s, y⃗s, y⃗

′, y⃗′′]}.

There are four possibilities for each partial tour t at bag s going down Cs

covering tokens for the subtree rooted at children bags, s1 and s2 while also

picking up extra tokens from nodes in s:

• t could be a tour that picks up tokens from nodes at bag s and does not

visit or pick up tokens in Cs1 ∪ Cs2 .

58

• t could be a tour that picks up tokens from nodes at bag s and picks up

tokens only from Cs1 .

• t could be a tour that picks up tokens from nodes at bag s and picks up

tokens only from Cs2 .

• t could be a tour that picks up tokens from nodes at bag s and picks up

tokens from Cs1 ∪ Cs2 .

We would find the minimum cost over all configurations y⃗s, y⃗
′, y⃗′′ as long as

y⃗s, y⃗
′, y⃗′′ are consistent. We say y⃗s, y⃗

′, y⃗′′ are consistent if there is a way to

write each tour in y⃗s as a combination of at most one tour from y⃗′, at most

one tour from y⃗′′ while also picking up extra tokens from nodes in s. We would

also require that all tokens in y⃗′ and y⃗′′ are picked up by tours in y⃗s.

For a leaf bag s, I[o⃗s, y⃗s, 0⃗, 0⃗] denotes the minimum cost of tours entering

bag s and visiting the nodes in s such that all tokens in s are picked up by

some tour in y⃗s. The last two entries are set to 0⃗ since s is a leaf bag, and

has no children, and there are no other tours (apart from those in y⃗s) entering

or exiting through nodes in bag s. We will set A[s, y⃗s] = I[o⃗s, y⃗s, 0⃗, 0⃗] since

I[o⃗s, y⃗s, 0⃗, 0⃗] computes exactly the minimum cost collection of partial tours

covering Cs = s having tour profiles corresponding to y⃗s. We will explain how

to compute the entries of I[·, ·, ·, ·] in the next section.

3.3.1 Checking Consistency

In our dynamic program, we are given three vectors y⃗s, y⃗
′, y⃗′′ where s is a bag

having child bags s1 and s2. y⃗′ represents the configuration of tours covering

Cs1 and y⃗′′ represents the configuration of tours covering Cs2 . Given a y⃗s, for

each node u in s, there are o⃗s,u many tokens to be picked up at u. We require

the tokens for nodes in s and tokens covered by the partial tours from y⃗′ and

y⃗′′ to be picked up by tours in y⃗s. For simplicity, we will refer to a tour from

y⃗s as ts, y⃗
′ as tu and a tour from y⃗′′ as tw.

Definition 9 We say configurations y⃗s, y⃗
′ and y⃗′′ are consistent if the fol-

lowing holds:

59

• Every tour in y⃗′ maps to some tour in y⃗s.

• Every tour in y⃗′′ maps to some tour in y⃗s.

• Every tour in y⃗s has at most two mapping to it and both cannot be from

y⃗′ or y⃗′′.

• Suppose only one tour tu (tw) maps to a tour ts in y⃗s. The number of

extra tokens (from nodes in s) in total picked up by tour ts from nodes

in bag s is exactly |ts| − |tu| (|ts| − |tw|).

• Suppose ts has two tours: tu in y⃗′ and tw in y⃗′′ mapping to it, then the

number of extra tokens (from nodes in s) picked up by tour ts at s is

exactly |ts| − |tu| − |tw|.

• All tokens of nodes at bag s, o⃗s are picked up tours in y⃗s.

Consistency ensures that we can patch up tours from subproblems and

combine them into new tours in a correct manner while also picking up extra

tokens from nodes in s. We will describe how we can compute consistency.

Instead of using y⃗s, we will use z⃗s which is the same as y⃗s, but excludes

information about the number of tokens in a bag, and only tracks information

about the number of tours passing through bag s.

z⃗s = [p⃗s,v1,v1 , p⃗s,v1,v2 , . . . , p⃗s,vd,vd−1
, p⃗s,vd,vd].

We will similarly define z⃗′ and z⃗′′. Suppose ts,x1,x2 is a tour in s which enters

through x1 and exits through x2, let z⃗s − ts,x1,x2 refers to the configuration z⃗s

having one less tour of size |ts,x1,x2| from tours entering through x1 and exiting

through x2 in s. Recall that o⃗s is the vector of extra tokens at each node in

bag s which need to be covered by tours in z⃗s.

Given z⃗s, z⃗
′, z⃗′′ and o⃗s, we will use the table H to check if z⃗s, z⃗

′, z⃗′′ are

consistent. Let H[o⃗s, z⃗s, z⃗
′, z⃗′′] =True if z⃗s, z⃗

′ and z⃗′′ are consistent and False

otherwise. For the base case, H[0⃗, 0⃗, 0⃗, 0⃗] =True. For the recurrence, we will

look at all possible ways of combining tours from z⃗′ and z⃗′′ into z⃗s while also

picking up extra tokens from bag s. For a tour ts, let o⃗′s,ts be a vector where

60

o⃗′s,ts,u denotes the number of extra tokens picked up by ts at node u in bag

s. Let
⃦⃦
o⃗′s,ts

⃦⃦
=

∑︁
u∈s o⃗

′
s,ts,u count the number of tokens picked up by ts from

nodes in s.

Recall that a tour ts merges with at most one tour tu from z⃗′ and at most

one tour tw from z⃗′′. Similar to the case of trees, we can write the recurrence

of our consistency table as:

H[o⃗s, z⃗s, z⃗
′, z⃗′′] =

⋁︂
ts,tu,tw,o⃗′s,ts

|ts|=|tu|+|tw|+∥o⃗′s,ts∥

H[o⃗s − o⃗′s,ts , z⃗s − ts, z⃗
′ − tu, z⃗

′′ − tw].

Although the above DP lets us check if y⃗s, y⃗
′ and y⃗′′ are consistent, the

entries of H are True/False and does not give us information about the op-

timum order in which tour ts should visit nodes in s or the cost associated

with such an ordering. Suppose the tour ts visited ks nodes in bag s, there

are O(kks) many paths that tour ts can choose to take and each path has a

cost associated with it. Our goal is to find a path having the smallest cost

while also picking up tokens from nodes in bag s. We will next compute the

minimum cost way to visit nodes in s and pick up tokens from them. Recall

the recurrence of our dynamic program for A is the following,

A[s, y⃗s] = min
y⃗′,y⃗′′:H[o⃗s,y⃗s,y⃗

′,y⃗′′]=True
{A[s1, y⃗

′] + A[s2, y⃗
′′] + I[o⃗s, y⃗s, y⃗

′, y⃗′′]}.

The cost of using edges in Cs1 and Cs2 by the partial tours in y⃗′ and y⃗′′ in y⃗s

are accounted for by A[s1, y⃗
′] +A[s2, y⃗

′′]. However, we have not accounted for

the cost of hopping from one node to the other in s and also the cost of going

from nodes in s to nodes in child bags, s1 and s2. Note that a tour ts enters

and exits through each node in s at most once. Note that a tour visits a node

u in s if it either has to pick up tokens at u or if it uses u to enter the child

bag. If a tour ts enters and exist a node two or more times, we can short cut

it so that it enters and exits only once. A tour in ts can visit up to k nodes in

a bag s and it could use one of the nodes to enter a child bag (s1 or s2) and

if so, it would use a node in s to return to the bag s. This means the tour

ts could visit up to k nodes in s. Let Pts be the ordered collection of edges

where either both endpoints are in s or one endpoint is in s and the other is in

61

s1∪ s2. There are O((3k)3k) possible permutations of for Pts and ts could pick

up at most Q tokens from each node that it visits and each permutation has

an associated cost with it. The number of possibilities for Pts characterized by

the the order of visiting nodes and the number of tokens picked up by tour ts

from the k nodes in bag s is at most O(Qk(3k)3k). We will let cost(Pts) denote

the cost of the edges in Pts . The following figure illustrates an example of one

such tour ts (in red) and Pts (in blue).

Figure 3.1: Blue edges represent one such edge set for a particular tour ts

Although H tells us if y⃗s, y⃗
′ and y⃗′′ are consistent, H[o⃗s, z⃗s, z⃗

′, z⃗′′] does

not give us the cost of patching up y⃗′ and y⃗′′ to form y⃗s. We will use H to

compute I. Let I[o⃗s, z⃗s, z⃗
′, z⃗′′] denote the cost of using the edges in bag s, edges

connecting nodes in s and s1, and edges connecting nodes in s and s2. We can

think of I as the cost of using edges to patch up partial tours covering Cs1 ,

z⃗′ and partial tours covering Cs2 , z⃗
′′, to create tours covering Cs, z⃗s. For the

base case, we will set I[0⃗, 0⃗, 0⃗, 0⃗] = 0 and set all other entries to infinity. We

will only compute an entry I[o⃗s, z⃗s, z⃗
′, z⃗′′] if H[o⃗s, z⃗s, z⃗

′, z⃗′′] =True. Along with

all possible values of o⃗′s, ts, tu, tw, we will also look at all possible paths Pts . In

our recurrence, we are taking a tour ts from y⃗s along with maybe a tour tu

from y⃗′, maybe a tour tw from y⃗′′ along with tokens o⃗′s that ts covers at nodes

in bag s. For such a tour ts, there are O(Qk(3k)3k) many possibilities for Pts .

For a fixed Pts , cost(Pts) is the cost of forming ts from patching up tu and tw

while picking up extra tokens from nodes in s. We will enumerate through

62

all possibilities, break the recurrence into subproblems and find a solution of

minimum cost. We can write the recurrence as follows:

I[o⃗s, z⃗s, z⃗
′, z⃗′′] = min

ts,tu,tw,Pts ,o⃗
′
s,ts

|ts|=|tu|+|tw|+∥o⃗′s,ts∥

{︁
cost(Pts) + I[o⃗s − o⃗′s,ts , z⃗s − ts, z⃗

′ − tu, z⃗
′′ − tw]

}︁
.

3.4 Extension to Splittable CVRP

We will extend our algorithm for unit demand CVRP on bounded-treewidth

graphs to the splittable CVRP when demands are quasi-polynomially bounded.

In our algorithm for unit demand CVRP for bounded-treewidth CVRP, we

viewed the unit demand of each node as a token placed at the node. For the

splittable case, we can rescale the demand d(v) such that there are 1 ≤ d(v) <

nQ tokens on a node and we can use the same structure theorem as before by

modifying tours such that there are at most O(logQ log2 n/ϵ2) different tours

for partial tours at a node. We can use the same DP to compute the solution.

Each y⃗s consists of O(k2) different p⃗s,u,v vectors. Each p⃗s,u,v contains τ many

triples (t⃗
s,x,z,i

, h⃗
s,x,z,i

, l⃗
s,x,z,i

).

1. Each t⃗
s,x,z,i

has (nQ)O(log2 n/ϵ2) possibilities since there are at most O(log2 n/ϵ)

tours in a small bucket.

2. Each h⃗
s,x,z,i

and l⃗
s,x,z,i

have (nQ)O(g) possibilities. Recall that g =

(2δ log n)/ϵ2, so each h⃗
s,x,z,i

and l⃗
s,x,z,i

have (nQ)O(logn/ϵ2) possibilities.

3. Each triple (t⃗
s,x,z,i

, h⃗
s,x,z,i

, l⃗
s,x,z,i

) has (nQ)O(log2 n/ϵ) possibilities.

4. Since p⃗s,u,v has τ = O(logQ/ϵ) many such triples, the number of possible

entries for p⃗s,u,v is (nQ)O(τ log2 n/ϵ) = (nQ)O(logQ log2 n/ϵ2).

5. Since y⃗s consists of O(k2) different entries of p⃗, the total number of

possible entries for each y⃗s is (nQ)O(k2 logQ log2 n/ϵ2).

Similar to the analysis of the runtime of the unit demand case, the time com-

plexity of computing the entries of DP tables A and consistency table I is,

(kQ)O(k)(nQ)O(k2 logQ log2 n/ϵ2) = (nQ)O(k2 logQ log2 n/ϵ2) since k ≤ n. Suppose

Q = nO(logc n), then the runtime of our algorithm is nO(k2 log2c+3 n/ϵ2).

63

Chapter 4

Extension to Other Graphs
Metrics

In this section, we will show how we can use our algorithm for CVRP on

bounded-treewidth graphs as a blackbox to obtain a QPTAS for graphs of

bounded doubling metrics and graphs of bounded highway dimension. Before

diving into approximation schemes for graphs of bounded doubling or highway

dimension, we will first proving a lemma about embedding metric spaces from

one to another and its relation to CVRP.

4.1 Embedding Lemma for CVRP

Suppose G is the input graph in an instance for CVRP. Suppose we have a

probabilsitic embedding ϕ : G → H with distortion (1 + ϵ) i.e. for any two

nodes u, v, on expectation

dG(u, v) ≤ dH(u, v) ≤ (1 + ϵ)dG(u, v).

We will refer to H as the host graph. We will show that if we have access to

an algorithm to obtain a near-optimum solution in H, we can embed graph

G into a host graph H, obtain a solution for instance H and lift the solution

back to a solution for G at an ϵ fraction extra cost. We will state this as a

lemma,

Lemma 10 For any ϵ > 0, let ϕ : G → H be a probabilistic embedding with

expected distortion (1+ϵ). For an instance G of Splittable CVRP with optimal

64

solution OPTG, by embedding G into H using ϕ and lifting the solution OPTH

for the host graph H back to G, we can obtain a solution for G of cost at most

(1 + ϵ)optG.

Proof. Suppose T1, . . . , Tc are the set of tours in OPTG, let E(Ti) be the

edges denoting the order in which nodes are visited by Ti. Let costG(Ti) be

the contribution of the tour Ti towards opt in G. We can write costG(Ti) =∑︁
uv∈E(Ti) dG(u, v) and we can write optG =

∑︁c
i=1 costG(Ti) =

∑︁c
i=1

∑︁
uv∈E(Ti) dG(u, v).

Let costG(OPTH) be the cost of using solution OPTH to solve the instance

on graph G. Our goal is to show that costG(OPTH) ≤ (1+ϵ)costG(OPTG) ≤

(1 + ϵ)optG. Using the embedding ϕ, we know that for any two nodes u, v,

on expectation,

dG(u, v) ≤ dH(u, v) ≤ (1 + ϵ)dG(u, v)

Note that the vertices are the same in both H and G, so a solution to an

instance H is a solution in G (and vice versa). Since dG(u, v) ≤ dH(u, v),

we know for any solution OPT, costG(OPT) ≤ costH(OPT). Note that

costH(OPTH) ≤ costH(optG).

costG(OPTH) ≤ costH(OPTH) ≤ costH(OPTG)

=
∑︂

Ti∈OPTG

costH(Ti) =
∑︂

Ti∈OPTG

∑︂
uv∈E(Ti)

dH(u, v)

≤
∑︂

Ti∈OPTG

∑︂
uv∈E(Ti)

(1 + ϵ)dG(u, v)

= (1 + ϵ)
∑︂

Ti∈OPTG

costG(Ti)

= (1 + ϵ)costG(OPTG) = (1 + ϵ)optG

4.2 QPTAS for Graphs of Bounded Doubling

Dimension

In this section, we will prove quasi-polynomial time approximation schemes

for Splittable CVRP in graphs of bounded treewidth when Q = nO(logc n). We

65

will use the following result about emdedding graphs of doubling dimension D

into a bounded-treewidth graph of treewidth k ≤ 2O(D)⌈
(︁
4D log∆

ϵ

)︁D⌉ by Talwar

[28].

Lemma 11 (Theorem 9 in [28]) Let (X, d) be a metric with doubling dimen-

sion D and aspect ratio ∆. For any ϵ > 0, (X, d) can be (1+ϵ) probabilistically

approximated by a family of treewidth k-metrics for k ≤ 2O(D)⌈
(︁
4D log∆

ϵ

)︁D⌉.
The input graph G is embedded into a host graph H of low bounded treewidth

using the embedding given in Lemma 11. The algorithm then finds a (1 + ϵ)-

approximation for CVRP for H, using the dynamic programming solution

from Chapter 3 for graphs of bounded treewidth. The solution for H is then

lifted back to a solution in G. For each tour in the solution for H, a tour in

G will visit nodes in the same order as the tour in H. The embedding also

ensures that H has treewidth small enough that the algorithm runs in quasi-

polynomial time. We will prove the following result and we have restated it

for convenience,

Theorem 4 For any ϵ > 0 and D > 0, there is a an algorithm that, given an

instance of the splittable CVRP with capacity Q = nlogc n and the graph has

doubling dimension D with cost opt, finds a (1 + ϵ)-approximate solution in

time nO(DD log2c+D+3 n/ϵD+2).

Proof. This follows easily from Lemma 11, Lemma 10 and using the algo-

rithm for bounded-treewidth as a blackbox. In place of k, we will substi-

tute k = 2O(D)⌈
(︁
4D log∆

ϵ

)︁D⌉ into the runtime for the algorithm for bounded-

treewidth which is nO(k2 log2c+3 n/ϵ2). Hence, we have an algorithm for graphs of

bounded doubling dimension with runtime nO(DD log2c+D+3 n/ϵD+2).

As an immediate corollary, since R2 has doubling dimension log2 7 [30], the

above theorem implies an approximation scheme for unit demand CVRP on

Euclidean metrics on R2 in time nO(log6 n/ϵ6) which improves on the run time

of nlogO(1/ϵ) n of [17].

66

4.3 QPTAS for Graphs of Bounded Highway

Dimension

In this section, we will prove quasi-polynomial time approximation schemes for

Splittable CVRP in graphs of bounded highway dimension when Q = nO(logc n).

We will use the following result by Feldmann et al. [18] related to graphs of

low highway dimension.

Lemma 12 (Theorem 3 in [18]) Let G be a graph with highway dimension D

of violation λ > 0, and aspect ratio ∆. For any ϵ > 0, there is a polynomial-

time computable probabilistic embedding H of G with treewidth (log ∆)O(log2(D
ϵλ

)/λ)

and expected distortion 1 + ϵ.

The input graph G is embedded into a host graph H of low bounded treewidth

using the embedding given in Lemma 12. The algorithm then finds a (1 + ϵ)-

approximation for CVRP for H, using the dynamic programming solution

from Chapter 3 for graphs of bounded treewidth. The solution for H is then

lifted back to a solution in G. For each tour in the solution for H, a tour in

G will visit nodes in the same order as the tour in H. The embedding also

ensures that H has treewidth small enough that the algorithm runs in quasi-

polynomial time. We will prove the following result and we have restated it

for convenience,

Theorem 5 For any ϵ > 0, λ > 0 and D > 0, there is a an algorithm that,

given an instance of the splittable CVRP with capacity Q = nlogc n and if

the graph has highway dimension D with violation λ with an optimla solu-

tion of cost opt, finds a solution whose cost is at most (1 + ϵ)opt in time

nO(log2c+3+log2(D
ϵλ

)· 1
λ n/ϵ2).

Proof. This follows easily from Lemma 12, Lemma 10 and using the algorithm

for bounded-treewidth as a blackbox. In place of k, we will substitute k =

(log ∆)O(log2(D
ϵλ

)/λ) into the runtime for the algorithm for bounded-treewidth

which is nO(k2 log2c+3 n/ϵ2). Hence, we have an algorithm for graphs of bounded

doubling dimension with runtime nO(log2c+3+log2(D
ϵλ

)· 1
λ n/ϵ2).

67

Chapter 5

Conclusion and Open Problems

In this thesis, we presented QPTAS’s for CVRP on trees, graphs of bounded

treewidths, bounded doubling dimension, and bounded highway dimension.

The immediate questions to consider are whether these approximation schemes

can in fact be turned into PTAS’s. Even for the case of trees, although we can

improve the run time slightly by shaving off one (or maybe two) log factors

from the exponent, it is not clear if it can be turned into a PTAS without

significant new ideas. We will list some concrete open problems related to

CVRP.

1. For the case of trees, in polynomial time, the best approximation ratio

is 4/3. A natural open problem is whether one can obtain a PTAS for

the case of trees.

2. A relaxed version of the above problem is also open: Recall that for an

instance of CVRP on trees, we can solve it exactly in time nO(Q). Is it

possible to obtain a polynomial-time approximation scheme for moder-

ately large values of Q, say Q = O(log n)?

3. Is there a PTAS for CVRP parameterized by the height of the tree? We

proved a height reduction lemma for the case of trees which shows for a

given tree instance T for CVRP with optimal cost opt, we can obtain

an instance T ′ with height δ log2 /ϵ for some constant δ > 0 such that

a solution for T ′ lifted back to T has cost at most (1 + ϵ)opt. Does

there exist a similar height reduction scheme that reduces the height to

68

O(log n/ϵ)?

4. For graphs of bounded doubling or highway dimension, we used the re-

sults of Talwar [28] and Feldmann et al. [18] to embed the input graph

into a graph of treewidth O(logc n) for some constant c dependent on the

highway or doubling dimension. There are two open problems related to

this:

(a) The current embedding is probabilistic and the distortion achieved

only holds in expectation. Is it possible to obtain a deterministic

embedding?

(b) If one is able to achieve a PTAS for bounded-treewidth graphs,

one can still only obtain QTPAS’s using the embeddings from [28]

and [18] since the treewidth is Ω(log n). Is it possible to embed

a graph of bounded highway or doubling dimension into graphs of

O(1) treewidth? Becker et al. [8] showed an embedding from graphs

of bounded highway dimension to graphs of O(1) treewidth when

Q was fixed. Is there such an embedding when Q = O(n)?

5. For the Euclidean (R2) case, Adamaszek et al. [3] used the QPTAS for

Euclidean by Das and Mathieu [17] as a black-box to obtain a PTAS

for Euclidean for moderately large values of Q ≤ 2logδ n, where δ = δ(ϵ).

Can one use similar techniques to the work of Adamaszek et al. [3] and

use our QPTAS for doubling or highway dimension as a black-box to

obtain a PTAS for doubling or highway dimension for moderately large

values of Q?

6. Becker and Paul [10] showed a bicriteria PTAS for the case of CVRP in

trees. An open problem is to design a bicriteria PTAS for the graphs of

bounded treewidth.

7. A major open is to get a PTAS for Euclidean (R2). As discussed in

Adamaszek et al. [3], the difficult case appears to be when Q is polyno-

mial in n (e.g. Q =
√
n).

69

8. Another interesting question is to consider CVRP on planar graphs and

develop approximation schemes for them and, more generally graphs of

bounded genus or minor free graphs.

9. For the splittable case, our algorithm only worked in quasi-polynomial

time when Q = nO(logc n). Similar to how we rounded and rescaled edge

weights/costs to make them polynomially bounded in n, is it possible

to rescale the demands at a node to make the demand polynomially

bounded in n at a small cost of ϵ · opt?

70

References

[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck,
“Vc-dimension and shortest path algorithms,” in Automata, Languages
and Programming, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 690–699.

[2] ——, “Highway dimension and provably efficient shortest path algo-
rithms,” J. ACM, vol. 63, no. 5, Dec. 2016.

[3] A. Adamaszek, A. Czumaj, and A. Lingas, “PTAS for k -tour cover prob-
lem on the plane for moderately large values of k,” in Algorithms and
Computation, 20th International Symposium, ISAAC 2009, Honolulu,
Hawaii, USA, December 16-18, 2009. Proceedings, ser. Lecture Notes in
Computer Science, vol. 5878, Springer, 2009, pp. 994–1003.

[4] S. Arora, “Polynomial time approximation schemes for euclidean trav-
eling salesman and other geometric problems,” J. ACM, vol. 45, no. 5,
pp. 753–782, Sep. 1998.

[5] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama, “Covering points in
the plane by k -tours: Towards a polynomial time approximation scheme
for general k,” in Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997, ACM, 1997, pp. 275–283.

[6] A. Becker, “A tight 4/3 approximation for capacitated vehicle routing
in trees,” in Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/RANDOM 2018, Au-
gust 20-22, 2018 - Princeton, NJ, USA, ser. LIPIcs, vol. 116, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 3:1–3:15.

[7] A. Becker, P. N. Klein, and D. Saulpic, “A quasi-polynomial-time ap-
proximation scheme for vehicle routing on planar and bounded-genus
graphs,” in 25th Annual European Symposium on Algorithms, ESA 2017,
September 4-6, 2017, Vienna, Austria, ser. LIPIcs, vol. 87, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017, 12:1–12:15.

[8] ——, “Polynomial-time approximation schemes for k-center, k-median,
and capacitated vehicle routing in bounded highway dimension,” in 26th
Annual European Symposium on Algorithms, ESA 2018, August 20-22,

71

2018, Helsinki, Finland, ser. LIPIcs, vol. 112, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018, 8:1–8:15.

[9] A. Becker, P. N. Klein, and A. Schild, “A PTAS for bounded-capacity
vehicle routing in planar graphs,” in Algorithms and Data Structures -
16th International Symposium, WADS 2019, Edmonton, AB, Canada,
August 5-7, 2019, Proceedings, ser. Lecture Notes in Computer Science,
vol. 11646, Springer, 2019, pp. 99–111.

[10] A. Becker and A. Paul, “A framework for vehicle routing approximation
schemes in trees,” in Algorithms and Data Structures - 16th Interna-
tional Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7,
2019, Proceedings, ser. Lecture Notes in Computer Science, vol. 11646,
Springer, 2019, pp. 112–125.

[11] J. Blauth, V. Traub, and J. Vygen, “Improving the approximation ra-
tio for capacitated vehicle routing,” CoRR, vol. abs/2011.05235, 2020.
arXiv: 2011.05235.

[12] H. L. Bodlaender and T. Hagerup, “Parallel algorithms with optimal
speedup for bounded treewidth,” in Automata, Languages and Program-
ming, 22nd International Colloquium, ICALP95, Szeged, Hungary, July
10-14, 1995, Proceedings, ser. Lecture Notes in Computer Science, vol. 944,
Springer, 1995, pp. 268–279.

[13] V. Cohen-Addad, A. Filtser, P. N. Klein, and H. Le, “On light spanners,
low-treewidth embeddings and efficient traversing in minor-free graphs,”
in 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, IEEE, 2020,
pp. 589–600.

[14] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, “Treewidth,” in Parameterized Algo-
rithms. Cham: Springer International Publishing, 2015, pp. 151–244.

[15] M. Cygan, F. Grandoni, S. Leonardi, M. Pilipczuk, and P. Sankowski, “A
path-decomposition theorem with applications to pricing and covering on
trees,” in Algorithms - ESA 2012 - 20th Annual European Symposium,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings, ser. Lecture
Notes in Computer Science, vol. 7501, Springer, 2012, pp. 349–360.

[16] J. H. Dantzig G. B.and Ramser, “The truck dispatching problem,” Man-
agement Science, vol. 6, no. 1, pp. 80–91, 1959.

[17] A. Das and C. Mathieu, “A quasipolynomial time approximation scheme
for euclidean capacitated vehicle routing,” Algorithmica, vol. 73, no. 1,
pp. 115–142, 2015.

72

https://arxiv.org/abs/2011.05235

[18] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post, “A (1+ϵ)-
embedding of low highway dimension graphs into bounded treewidth
graphs,” in Automata, Languages, and Programming - 42nd Interna-
tional Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceed-
ings, Part I, ser. Lecture Notes in Computer Science, vol. 9134, Springer,
2015, pp. 469–480.

[19] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[20] M. Haimovich and A. H. G. R. Kan, “Bounds and heuristics for capac-
itated routing problems,” Mathematics of Operations Research, vol. 10,
no. 4, pp. 527–542, 1985.

[21] S.-y. Hamaguchi and N. Katoh, “A capacitated vehicle routing problem
on a tree,” in Algorithms and Computation, Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 399–407.

[22] M. Khachay and R. Dubinin, “PTAS for the euclidean capacitated ve-
hicle routing problem in rd,” in Discrete Optimization and Operations
Research - 9th International Conference, DOOR 2016, Vladivostok, Rus-
sia, September 19-23, 2016, Proceedings, ser. Lecture Notes in Computer
Science, vol. 9869, Springer, 2016, pp. 193–205.

[23] M. Khachay and Y. Ogorodnikov, “QPTAS for the CVRP with a moder-
ate number of routes in a metric space of any fixed doubling dimension,”
in Learning and Intelligent Optimization - 14th International Confer-
ence, LION 14, Athens, Greece, May 24-28, 2020, Revised Selected Pa-
pers, ser. Lecture Notes in Computer Science, vol. 12096, Springer, 2020,
pp. 27–32.

[24] M. Khachay, Y. Ogorodnikov, and D. Khachay, “An extension of the
das and mathieu QPTAS to the case of polylog capacity constrained
CVRP in metric spaces of a fixed doubling dimension,” in Mathemati-
cal Optimization Theory and Operations Research - 19th International
Conference, MOTOR 2020, Novosibirsk, Russia, July 6-10, 2020, Pro-
ceedings, ser. Lecture Notes in Computer Science, vol. 12095, Springer,
2020, pp. 49–68.

[25] M. Labbé, G. Laporte, and H. Mercure, “Capacitated vehicle routing on
trees,” Operations Research, vol. 39, no. 4, pp. 616–622, 1991.

[26] J. Matoušek, “Embedding finite metric spaces into normed spaces,” in
Lectures on Discrete Geometry. New York, NY: Springer New York, 2002,
pp. 355–400.

[27] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis, 2nd.
USA: Cambridge University Press, 2017.

73

[28] K. Talwar, “Bypassing the embedding: Algorithms for low dimensional
metrics,” in Proceedings of the Thirty-Sixth Annual ACM Symposium on
Theory of Computing, ser. STOC ’04, Chicago, IL, USA: Association for
Computing Machinery, 2004, pp. 281–290.

[29] V. Vazirani, Approximation Algorithms. Springer Berlin Heidelberg, 2013.

[30] E. W. Weisstein, “Disk covering problem,” From MathWorld–A Wolfram
Web Resource, 2018.

[31] D. West, Introduction to Graph Theory, ser. Featured Titles for Graph
Theory. Prentice Hall, 2001.

[32] D. P. Williamson and D. B. Shmoys, The Design of Approximation Al-
gorithms. Cambridge University Press, 2011.

74

	Introduction
	Preliminaries
	Graphs and Metrics
	Optimization Problems and Approximation Algorithms
	Metric Embeddings
	Concentration Inequalities

	Problems Considered
	Related Work
	New Results
	General Assumptions
	Total number of tokens and tours
	Poly(n) bounded edge weights

	QPTAS for CVRP in Trees
	Problem Overview
	Our Results

	Structure Theorem
	Overview of the ideas
	Changing OPT to a near optimum structured solution

	Dynamic Program
	Checking Consistency
	Time Complexity

	Extension to Splittable CVRP
	Height reduction
	Creating a new tree
	Analysis

	QPTAS for CVRP in Bounded Treewidth Graphs
	Problem Overview
	Our Results

	Structure Theorem
	Changing OPT to a near-optimum structured solution

	Dynamic Program
	Checking Consistency

	Extension to Splittable CVRP

	Extension to Other Graphs Metrics
	Embedding Lemma for CVRP
	QPTAS for Graphs of Bounded Doubling Dimension
	QPTAS for Graphs of Bounded Highway Dimension

	Conclusion and Open Problems
	References

