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Abstract

It is desirable to introduce heat into the production system of a horizontal well
and the adjacent heavy oil reservoir. An increase in temperature can remove
thermally alterable skin effects, which inhibit production, decrease oil viscosity to
increase the productive length of the well, improve pumping efficiency, and reduce
the energy requirements to lift the oil to surface. One way to create the heat is to
use electricity.

The objective of this thesis is to solve the heat transfer problem for a
horizontal well producing from a heavy oil reservoir where both the wellbore and
reservoir are heated using low frequency electromagnetic energy. A semi-analytic
model is thus developed that can be used to estimate the temperature distribution
along the length of the horizontal well.

The problem consists of simultaneously solving for the effects of several
concurrent heat transfer mechanisms occurring in different regions of the wellbore
and reservoir. Electrical current flowing in the reservoir produces heat there because
of the resistance of the reservoir. Significant heat is also generated as current flows
in the horizontal well as a result of hysteresis and eddy current losses. As well, heat
is produced from the reservoir with the fluids that flow into the wellbore and heat is
conducted away from the well by thermal conduction. Thus, the heat transfer
problem has to account for linear and non-linear electrical heat sources in several
regions and heat transfer by thermal conduction and convection.

The horizontal well is constructed from commercial grade carbon steel pipe
which is an electrically conducting ferromagnetic material. The hysteresis and eddy
current losses in the steel pipe are determined using a finite difference time domain
solution of Maxwell’s equations. This numerical model, herein called the EM Pipe
Loss model, is programmed to account for the non-linear magnetization process of
the material using hysteresis loops. The hysteresis and eddy current losses in the
pipe are calculated for a range of current values. A general polynomial is then fit to
the calculated data so that the electrical losses can be interpolated for any value of

current. The numerically derived polynomial is then incorporated into the equations




that describe the heat transfer problem, for which an analytic solution is then
obtained.

It was found that for a long horizontal well, heat transfer to the adjacent
reservoir by thermal conduction from the heated wellbore has a greater effect on the
temperature achieved in the reservoir than heat transfer by convection and electrical
heating by current flow in the reservoir. Also, it is shown that hysteresis and eddy
current losses in the steel pipe cannot be ignored as was done previously [1], [2], and
[3]. For a given current, hysteresis effects can more than triple the total power losses
in the horizontal wellbore and other sections of the production system when
compared to the power losses that would be present if hysteresis effects are ignored.
This limits the magnitude and extent of electrical heating in the reservoir adjacent
to the wellbore that can be achieved. The results obtained show that a significant
volume of the reservoir and length of the horizontal well can be heated, which can

substantially contribute to enhanced production rates from the reservoir.
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production rate of @; = 5.0 m3/day, and after 30 days of heating. The
current is adjusted to maintain a maximum operating temperature of
100 °C. . . o e e e
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3.25

3.26

3.27

Run 5. Comparison of the numerically calculated temperature distrib-
ution along the length of a 100-meter long horizontal well for constant
and temperature dependent o, (T) with a constant total current of 500
A RMS, for same regional thermal properties, moderate fluid produc-
tion rate of Q; = 5.0m?/day, and after 30 days of heating. . . .. ..
Run 10. Comparison of the normalized temperature distribution for
variable and constant o,(T'), along the length of a 1,000-meter long
horizontal well, calculated using numerical simulation, with the same
regional thermal properties, moderate fluid production rate of Q, =
25.0m>/day, and after 30 days of heating. . . .............
Run 10. Comparison of the temperature distribution for variable and
constant o,(T'), along the length of a 1,000-meter long horizontal well,
calculated using numerical simulation and the axial semi-analytic model
(constant o,.(T') only), with the same regional thermal properties, mod-
erate fluid production rate of Q; = 25.0 m®/day, and after 30 days of
heating. . . . . ... ..
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Nomenclature

T(r, s) Laplace transform of T(r,t)

a;y biy c;y d; i** coefficient in the finite difference time domain equation , see

equation (2.16), page 26
A, surface area of a cross section of the casing, [m?
B magnetic induction vector, [Tesla], see equation (2.1), page 20

d(B) distance factor as a function of the magnetic field strength, [Tesla] , see
equation (2.31), page 39

dy, d2 upper and lower end point distance factors used in the construction of

general hysteresis loops, [Tesla] , see equation (2.31), page 39
E electric field strength vector, [V/m], see equation (2.1), page 20
E; electric field strength at grid i, [V/m], see equation (2.26), page 33
E. electric field strength in the z direction, [V//m], see equation (2.9), page 22
Erms RMS value of the electric field strength, [V/m)]
H magnetic field strength vector, [A/m], see equation (2.1), page 20
H; magnetic field strength in the ¢ direction, [A/m)], see equation (2.10), page 22
H; magnetic field strength at node i, [A/m], see equation (2.13), page 25
H.ny RMS value of the magnetic field strength, [4/m]
¢t node location index
I; total current in the casing or pipe, [A]
Irms RMS value of the current, [A]
ks wave number in steel, [m™!] , see equation (2.50), page 46

L length of the pipe, [meter]



[ length of the horizontal well, [meter]

n time level index , see equation (2.14), page 25

P, hysteresis power losses, (W] , see equation (2.48), page 45
FP.. eddy current power losses, [W] , see equation (2.46), page 45
Q: total fluid production rate, [m3/day]

r radial coordinate, [meter]

r; inside radius of the pipe, [meter]

r; radius to node 1, [meter]

rw outside radius of the pipe, [m]

S normal surface vector, [m?], see equation (2.11), page 23
T period of a sinusoidal wave, [second]

t time, [second)

Tb initial temperature, [°C]

u; coefficients of the n** order polynomial fitted to a plot of resistivity versus

current, see equation (2.66), page 88
V volume, [m?]
Vims RMS value of the voltage, [V]
z z coordinate, [meter]

¢2(z) hysteresis and eddy current losses in the casing, [W/m? , see equation (2.67),

page 88

gs(r) electrical heating in the reservoir, [W/m?), see equation (3.21), page 128




Greek

¢ skin depth, [meter] , see equation (2.69), page 92

AP Poynting power flow, [W/m?] , see equation (2.45), page 44
Ar size of the grid block, [meter] , see equation (2.13), page 25
At size of the time step, [second] , see equation (2.14), page 25
AV elemental volume, [m3)

As thermal conductivity of the fluid, [W/(m°C)]

Ar thermal conductivity of the reservoir, [W/(m°C)]

As thermal conductivity of the steel, [W/(m°C)]

p magnetic permeability, [N/A?], see equation (2.10), page 22
pr relative permeability

w radian frequency, [sec™!]

¢ angular coordinate

pr resistivity of the reservoir, [Q - m]

ps resistivity of the steel, [ - m]

pCs heat capacity of the fluid, [J/(m3°C))

pCr heat capacity of the reservoir, [J/(m3°C)]

pCs heat capacity of the steel, [J/(m3°C)]

o electrical conductivity, [S/m]

€ permittivity, [farad/m]




Chapter 1

Introduction

1.1 Overview

Using electrical heating in a long horizontal oil well can enhance the recovery
of bitumen and heavy oil from the reservoir. Bitumen is a very viscous hydrocarbon
with a specific gravity equal to or less than that of water. The oil viscosity is from
200,000 to 10,000,000 centipoise, which is much greater than the viscosity of water,
which is one centipoise. Without the introduction of heat into the reservoir to lower
the viscosity of the bitumen, the oil is immobile and cannot be recovered. Heavy oil
has a specific gravity that is less than water but less than 22 °API (the specific
gravity of water measured on the American Petroleum Institute scale is 10 °API).
The oil can normally be produced from the reservoir without the aid of thermal
stimulation. However, the introduction of heat can increase the productivity and
recovery of oil from the reservoir.

The National Task Force on Qil Sands Strategies of the Alberta Chamber of
Resources in their comprehensive report (1995), The Oil Sands: A New Energy
Vision for Canada, Reference [4], stated that

Time is running out for our domestic conventional light and medium
crude oil and something has to be done to make up the shortfall. There
is only one major, relatively untapped source of petroleum left on the

North American continent, the Alberta bitumen [sic/ sands, [4].



The resource base for bitumen and heavy oil is immense. The Alberta Energy
and Utilities Board estimates the total in place reserves for bitumen reservoirs at 1.7
trillion barrels with 300 billion barrels of these reserves estimated as being
recoverable. The heavy oil reserves in the Western Canadian Sedimentary Basin of
Alberta and Saskatchewan are estimated at 120 billion barrels, of which 5 to 8% is
considered recoverable using present recovery methods. In comparison, the total
remaining established conventionel crude oil reserves in Western Canada are less
than 4 billion barrels. At the present time, Canadian consumption averages 2.0
million barrels per day. The recoverable Alberta bitumen and heavy oil reserves can
fulfil Canada’s energy requirements for more than 160 years.

The task force recognizes the importance of horizontal well technology for the

economic exploitation of bitumen and heavy oil reserves:

New Canadian technologies that use horizontal well in situ recovery
processes are now being used commercially and are expected to more

than double recovery rates, [4].
The task force also recognizes:

The direct benefit of a suitable technology for the exploitation of hard to
recover bitumen and heavy oil resources will create additional
employment opportunities and new prosperity unmatched by any

business opportunity in Canada, [4].

The number of horizontal wells drilled in Western Canada has increased
exponentially each year since 1988. Between 1988 and 1992 more than 500
horizontal wells were drilled in Alberta and Saskatchewan [5], with over 1,500
additional horizontal wells drilled from 1992 to 1994, {6]. For oil companies,
horizontal well technology has become the primary exploitation strategy for heavy
oil reservoirs. For example, in the Pelican Lake heavy oil area, located about 280
km north of Edmonton, Alberta, every oil well drilled since 1987 has been a
horizontal well. Horizontal well technology has enabled economic viability for many
heavy oil reservoirs where vertical well development was uneconomic, [7], [8]-

The combined use of steam and horizontal well technology has greatly
advanced the single and dual well steam-assisted gravity drainage process (SAGD),
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(9], [10], [11], [12], [13], [14], and [15]. The SAGD technology was originally intended
for tar sand reservoirs where primary production of fluids from the reservoir is not
possible without first lowering the viscosity of fluids by heating. Recently SAGD
has been applied to many heavy oil reservoirs, where there is primary production at
initial reservoir conditions [16], [17], [18], [19], [20], [21], [22], [23], and [24].

In some instances steam is circulated to heat just the horizontal wellbore, as
discussed by Best et. al. [25]. Best et. al. concluded that the transfer of heat away
from the wellbore by thermal conduction is sufficient to thermally stimulate the
reservoir, remove any thermally alterable skin effects, increase pump capacity, and
reduce the viscosity of the oil in the wellbore to justify the incremental cost of
steamn injection facilities, lost oil production revenues during steaming, and
increased operating costs. It is proposed in this thesis that a similar heating of the
wellbore and reservoir can be accomplished using electrical energy. Electrical
heating has the added advantages of direct heating in the reservoir, reduced total
fluid handling requirements (thus reduced facilities costs), and simultaneous
production of fluids and heating resulting in no lost oil revenues.

Additionally, it has been suggested that the use of electrical heating in
bitumen reservoirs may be an effective way to thermally pre-condition the reservoir
prior to implementation of SAGD, [26]. SAGD requires that a channel is established
between two parallel horizontal wells of sufficient temperature that the oil is mobile
within the channel. This is called the thermal channel. Once the thermal channel is
established oil production can commence. Therefore it is desirable to establish the
thermal channel as quickly as possible.

With conventional SAGD the thermal channel is formed as a result of thermal
conduction into the reservoir while high temperature steam is circulated in the
wellbore. This is a slow process and depending on the distance between the
horizontal wells, may take up to a year to establish the thermal channel, [18].
Passing electrical current between the SAGD horizontal well pair can reduce the
time it takes to establish the thermal channel. As current passes through the
reservoir, electrical energy is converted to thermal energy by ohmic losses in
accordance with the electrical properties of the reservoir. This heating process is

independent of the mobility of the bitumen. As the horizontal well casing heats up




due to eddy current and hysteresis losses, the heat from the well is transferred to
the reservoir by thermal conduction in a similar fashion as by circulating steam in
the wellbore. Preliminary calculations indicate that the time to establish a thermal
channel between a horizontal well pair in the presence of current passing through the
reservoir between the wells, can be reduced from 12 months to three months, [26].

Electrical heating in SAGD processes may also allow the horizontal wells to be
spaced farther apart, thus increasing the ultimate oil recovered from the reservoir.
The reduction in time to pre-heat the reservoir and the potential for greater
recovery of oil by increasing the distance between the wells are two factors that
contribute significantly to the economic viability of a combined electrical heating
and SAGD technology.

To properly determine the feasibility of using electrical heating technology in

combination with horizontal wells requires a fundamental analysis of:

1. The electromagnetic problem associated with large currents conducted in the
lossy ferromagnetic material used in the manufacture of the casing of the
horizontal well. This problem requires the solution of the non-linear
magnetization process of the ferromagnetic casing under the action of a
sinusoidally varying excitation as governed by the hysteresis loops which are

experimentally determined for the material,
2. The electrical current and fluid flow in the oil reservoir, and

3. The heat transfer dynamics between the regions consisting of the wellbore,

casing, and reservoir and the resulting thermal response of the system.

This fundamental analysis of electrical heating technology for use with horizontal
wells is the topic of this thesis.




Previous theoretical studies have ignored the combined hysteresis and eddy
current losses in the casing and assumed that enormous currents can be used to
heat the reservoir, (3], [27], [2], and [28]. In these studies, currents as large as 5,000
A RMS are passed through the reservoir from the horizontal well assuming no
electrical losses in the casing. The fundamental determination of the electrical losses
developed in this thesis indicates that currents of the order of 5,000 A RMS will
cause the casing to overheat to unacceptable levels in minutes.

These previous studies determine the temperature rise in the reservoir from
electrical heating using numerical simulation. The reported size of the grid block
containing the horizontal well is of the order of several meters. Since the heat source
distribution in the reservoir away from a horizontal well decreases as 1/r?, at a
distance of less than one meter (for a typical well), the power density (watt/m?3) has
been reduced by over 100 times from its value at the wellbore. To capture the
electrical heating distribution in the reservoir, the size of the grid blocks near the
well should be of the order of centimetres.

Other studies have developed models for the electrical losses in the casing and
tubing that account only for the eddy current losses [1], and use indirectly related
experimental data to account for the hysteresis losses, [29] and [30]. These studies
have assumed that at lower currents, less than 250 A RMS, hysteresis losses are
negligible and can be accounted for by an equivalent and linear magnetic
permeability for the steel, [1]. The fundamental analysis of the hysteresis and eddy
current losses developed in this thesis indicates that hysteresis losses can account for
up to 80 % of the total losses at currents of 250 A RMS. The analysis also shows
that the hysteresis effect on the eddy current distribution can result in total power
losses that are three times greater than when hysteresis is not accounted for.

The thesis is organized as shown on Figure 1.1. The combined eddy current
and hysteresis losses of the horizontal well are determined in Chapter Two. This is
accomplished with a finite difference time domain solution of Maxwell’s equations
that incorporates the magnetization process of the casing using hysteresis loops.
The numerical model which calculates the combined losses is called the EM Pipe
Loss model. The model is validated using analytic, numerical, and experimental

techniques.
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A general polynomial function describing the relationship between the
excitation current and the sum of the hysteresis and eddy current losses is then
produced from the EM Pipe Loss model. The polynomial is in a suitable form that
it can serve to describe a heat source term in the heat transfer problem, which is
then solved, using analytic methods. This is accomplished in Chapter Three. In that
chapter, the heat transfer problem between the wellbore, the casing, and the
reservoir is solved. This is accomplished by taking the Laplace transform of the
simultaneous partial differential equations that arise, and by subsequent numerical
inversion of the Laplace transform solution into the time domain. The heat transfer
problem accounts for the electrical losses in the casing characterized in Chapter Two
and the electrical losses produced by current flow in the reservoir. Also accounted
for are heat transfers by thermal conduction and convection.

The scope of the thesis is limited to the fundamental analysis of the
electromagnetic, as well as the heat transfer problem, for the horizontal wellbore.
Empbhasis is placed on the validation of the analytic and numerical models
developed in the thesis using experimental, analytic, and numerical approaches. The
production performance of an electrically stimulated horizontal wellbore is not

investigated here.

1.2 Background on Low Frequency Electrical

Heating of Oil Reservoirs

This work is limited to electrical heating using low frequency, i.e. frequencies
less than or equal to 60 Hz. Several publications involving high frequency methods,
from several thousand to millions of Hz, are available in the literature, [31], [32],
[33], [34], (35], [36], {37], [38], [39], [40], [41], [42], and [43].

Using electricity to increase the oil production rate from a well is not new
technology. The oldest known means of using electricity to stimulate the oil
production from a reservoir is the down-hole electric heater patented in 1865 under
the patent, Heating Oil Wells by Electricity, [44]. Since then, there have been
several reported applications of electrical heating designed to stimulate oil
producing wells, [38], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],




[37], [57], [301.[58], {40}, [59], [60}, [61), (3], (62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], (73], (74], (75}, [27).[76], {2],28],[77], [78], (79], [80}, [81], (82], (83], [84],

The productivity increase of an electrically heated well can be substantial and

is due to the

1.

Removal of thermally alterable skin effects that are an obstacle to the flow of

oil,

Reduction of the oil viscosity in the vicinity of the wellbore,

. Reduced total pressure drop in the horizontal wellbore needed to produce the

reservoir fluids, and

Improved efficiency of the down-hole pumping equipment in the well at the

lowered oil viscosity.

Attractive features of the process are:

. Electrical heating is operated as a continuous, not a cyclic process. Thus the

heating occurs simultaneously with production of reservoir fluids as opposed
to the single well cyclic steam stimulation process where the oil production
from the well must be deferred until a predetermined volume of steam has

been injected into the reservoir.

All the down-hole equipment to heat a well can be contained within a single
wellbore. This allows for efficient use of rig and work-over time and generally
reduces costs. Also, the capital costs of the electrical equipment and power

supply are small compared to the capital costs for steam injection facilities.

. There is no need to inject fluids into the reservoir, which can cause damage to

the formation and reduce the preferential flow of oil in the reservoir.

The heavy oil reservoir consists of sand, oil, water, and gas. The sand matrix

is electrically non-conductive. The reservoir derives the ability to conduct current

from the conductive electrolytic connate water that partially fills the pore volume in

the sand matrix. The pores are interconnected through the sand matrix by pore



throats. The connate water phase in the reservoir must be continuous if electrical
current is to be pass through the formation.

The conductivity of the reservoir is determined by:

1. Shape, size, and number of the interstitial pore volumes and of the

interconnecting passages,
2. Concentration of the dissolved electrolytes in the connate water,
3. Saturation of the water phase in the pore space, and
4. Temperature.

Figure 1.2 shows a simplified but representative example of an electrical
heating system that uses combined horizontal and vertical wellbores. Several
vertical wells are connected in series and all the current flowing from the vertical
wells is collected at the horizontal well. This figure is extracted from References [83]
and (81}, which present the results of a recent field test by Tezaco Canada
Petroleum Inc. and the Alberta Department of Energy.

The production system consists of a tubing string concentrically located in a
casing string. The tubing string extends to the pump and is used to facilitate the
production of fluids. The pump is used to lift fluids from the reservoir to the
surface. The casing string provides structural integrity in the vertical and horizontal
sections of the wellbore. The horizontal portion of the wellbore is typically the
vertical casing continuing on horizontally.

The current path is as follows. Electrical current flows from the
power-conditioning unit to several vertical wells via power cables. In this example,
current is conducted to the electrode using the tubing string. The tubing string is
electrically isolated from the casing using non-conducting centralizers. Current flows

from the electrodes in the vertical wells and into the reservoir.
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Figure 1.2: An electrically heated horizontal well.
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The reservoir near the electrode is heated as a result of ohmic losses in the
formation. From there, the current spreads out into the over- and under-burden,
taking the path of least resistance to the horizontal well. At the horizontal well,
current flows from the surrounding formation and is assumed to collect uniformly
along the entire length of the casing. The current accumulates in the casing of the
horizontal section of well and is conducted back to the surface by the centralized
tubing in the vertical section of the wellbore. From here, current is returned to the
power-conditioning unit via long cables on the surface.

The maximum allowable operating temperature of the system limits the
amount of power that can be used to stimulate the well. The operating temperature
of the system is determined by the interplay of fluid production rate and power
losses in the tubulars. Fluids flow towards the well and increase in temperature
since the formation temperature is higher near the well than elsewhere. As the
production rate increases, more electrical power must be supplied to compensate for
the increased rate of energy withdrawal from the formation by the produced fluids
so that a desired temperature in the reservoir may be maintained. Power losses in
the electrical conducting tubulars of the production system, such as the tubing and
casing, will result in an increase in temperature. Depending on the cooling
mechanism available at the location where these power losses are generated,
excessive temperatures may limit the magnitude of the allowable current, and hence
the power, that can be used to electrically heat the reservoir.

The goal of this thesis is to derive the mathematical models that can be used
to determine the electromagnetic power losses in the conducting tubulars and to
achieve the solution of the overall heat transfer problem so that the input power

that can be used for electrical heating can be derived.

1.3 Introduction to Magnetic Materials

This section provides general background on the properties of magnetic
materials. Specific details on the magnetization process for the casing and tubing

are presented in Chapter Two.
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Ferromagnetic material is characterized by a high magnetic permeability and
by a non-linear and multi-valued relationship between the magnetic induction, B,
and magnetic field strength, H. A basic measure of the magnetic properties of the
material is the hysteresis loop. This shows the instantaneous relationship between
the magnetic induction and the magnetic field strength over a complete cycle of
operation. Each hysteresis loop has at its tips extremum values of magnetic
induction and magnetic field strength. A plot of the extremum values of B and H is
called the normal or peak magnetization curve. This curve then passes through the
tips of a succession of B-H loops covering the range of magnetic induction such as

shown in Figure 1.3
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Figure 1.3: Example of hysteresis loops over a range of different magnetic field
strengths.

Energy is dissipated in the magnetic material each time the material is
subjected to one cycle of its B-H loop. The energy loss is separated into an
eddy-current loss and hysteresis loss. The eddy-current loss is manifested by the
I?R loss due to currents that circulate in the steel pipe. The hysteresis loss is a

manifestation of the energy expended in aligning the magnetic domains of the
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material with the direction of the magnetic field strength. The losses depend upon
the constituent components of the material, particularly the amount of silicon that
is present, the frequency of excitation, the thickness of the material in a plane
normal to the magnetic field strength, and the maximum magnetic induction, [85].
Most sheet-steel materials used in electro-magnetic circuits are manufactured
to have preferred directions of magnetization so that the core loss is low and the
magnetic permeability is high. Such materials are termed grain-oriented steel. By a
suitable manufacturing technique, the grains are aligned in the rolling direction to
make it the favoured direction of magnetization. When the direction of the
magnetic field strength is parallel to the direction of the magnetic domains then
these materials will have lower hysteresis losses than non-oriented steels, {85].
Silicon steel used to manufacture steel pipe has the desirable properties of low
cost, high electrical conductivity, and high strength. However, the material is not
optimized in the manufacturing process to minimize hysteresis losses. Therefore,
hysteresis losses can and do contribute significantly to the total losses in an oil
production systemn that utilizes electrical heating technology. Since hysteresis losses
are generally significant in oil production tubulars, they must be accounted for in
the thermal response of a well that is used for electrical heating. This can be done

using the models developed in the thesis.
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Chapter 2

Numerical Analysis of the
Hysteresis and Eddy Current
Losses in the Horizontal Well

This chapter presents a one-dimensional numerical solution in cylindrical
coordinates of the electromagnetic field in a ferromagnetic electrically conducting
cylindrical steel pipe. The solution uses hysteresis loops to account for variable
magnetic permeability. Once the magnetic and electric field strengths kave been
obtained the combined eddy current and hysteresis power losses can be calculated.
For the case with constant magnetic properties, (constant p), the numerical model
is compared to a simple analytic model. The numerical model is also compared to a
similar numerical model that is solved in the Cartesian coordinate system.
Validation of the numerical method with experimental data is presented.

The model is used to determine the losses in the steel pipe as a function of the
magnetic excitation. The combined hysteresis and eddy current losses are then used
to generate a polynomial expression for the effective resistivity as a function of
current. This expression will then be used in Chapter 3 for the solution of the heat
transfer problem.
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2.1 Introduction

The goal of this chapter is to derive a numerical model that can calculate the
power losses for an electrically heated horizontal well. The numerical model is called
the EM Pipe Loss model and is formulated to take into account both hysteresis and
eddy current losses in pipe formed from ferromagnetic steel. Figure 2.1 shows the
vertical and horizontal sections of the horizontal wellbore where the power losses are
calculated. The power losses in the vertical section of the wellbore are associated
with current flowing in the tubing string and the currents induced on the casing
string. The power losses in the horizontal section of the wellbore are associated with

current flow in the horizontal casing.

Centralized Tubing
Ungrounded Casing

Vertical section of the horizontal well.

Grounded Casing

Contactor

Horizontal section of the horizontal well.

Figure 2.1: Electrically heated horizontal well showing the pipe configuration in the
vertical and horizontal sections of the well.

Figure 2.2 shows the two pipe configurations considered here: 1) the
casing-tubing pair in the vertical section of the wellbore and 2) the casing in the

horizontal section of the wellbore (the dimensions for the pipes shown on the figure
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are for the samples used to experimentally verify the numerical model). In the
vertical section of the wellbore, current flows in the tubing and is distributed in the
tubing as shown. This current produces a time varying magnetic field, which in turn
induces current flow in the ungrounded casing. The current flows in a closed path
around the length of the casing, in one direction on the interior surface and the
opposite direction on the exterior surface, and is distributed within the casing as
shown. Also shown is the current distribution in the horizontal well casing.

To determine the fraction of electrical power lost in the power delivery system
and the temperature distribution along the length of the horizontal well requires a

numerical model capable of calculating both the eddy current and hysteresis losses

in the steel pipe.
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Figure 2.2: The pipe configurations for the vertical and horizontal sections of the
horizontal wellbore.

The relative magnitudes of the eddy current and hysteresis losses depend on

the frequency of the applied current. These losses can be of equal magnitude. It is
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possible to measure the combined losses experimentally as in Reference [29].
However, analytical or numerical methods appear more practical given the
uniqueness of each installation and variability of the magnetic properties in different
pipe samples [29].

An analytical treatment of the calculation of the eddy current losses in steel
pipe of constant relative permeability is documented by Loga [1]. Analytical
determination of hysteresis losses in steel tubulars is not possible because of the
extremely non-linear relationship between B and H as defined by hysteresis loops.
The only approach to simultaneously calculate the eddy current and hysteresis
losses in the conducting magnetic material is to solve Maxwells equations directly
using numerical methods.

The finite difference time domain numerical method is used in this thesis. This
method is capable of dealing with the transitory response of the magnetization
process and also the fact that the steady state magnetization of the steel pipe is
highly dependent on the history of magnetization from initial conditions [86].

The numerical solution presented here generally follows the work of Zakrzewsk:

and Peitras. [86]. There are significant differences, however. These are:

1. The EM Pipe Loss model is developed for the cylindrical coordinate system

rather than for the Cartesian coordinate system.

2. The method of geometrically constructing a family of hysteresis loops that is
used in this thesis requires only a single experimentally derived hysteresis loop
and the peak magnetization curve, rather than requiring extrapolation
between data points of several experimentally derived hysteresis loops, as

carried out in the work of Zakrzewski and Peitras, [86).

3. The electric field strength in the interior of the material is calculated using an
integral form of Maxwell’s equations rather than the point form of these
equations. Rather than using a polynomial fit to the electric field strength in
the interior to determine surface values by extrapolation, the surface values of

the electric field strength are then calculated directly.

Figure 2.3 shows the magnetic and electric field strengths for an element of the

casing in the vertical section of the wellbore. The current conducted in the
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centralized tubing, Iy, is replaced by a current source located at r = 0. The interior
and exterior surfaces of the casing are located at radii r.; and r.,, respectively. For

simplicity in the work that follows, r.; and r.,, are replaced by r; and r,.
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Element of the ungrounded
@ casing in the vertical section
of the wellbore.
\_/
Figure 2.3: Description of the electromagnetic problem in the vertical section of the
casing leading to the horizontal wellbore.

With reference to Figure 2.3, the following assumptions are made:

1. The pipe is sufficiently long so that end effects can be neglected.

2. The frequency of the excitation is sufficiently low that wavelength effects are
negligible. From 1 it follows that there is no variation of any field quantity

along the axial direction [1].

3. The magnetic field strength on the inner and outer boundaries of the casing is
induced by an alternating current source centered on the axis of the casing. In
the vertical section of the wellbore this is the tubing string. This assumption

eliminates any variation of the field quantities in the ¢ direction.
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4. The steel pipe is magnetically homogeneous along the length of the pipe.

3. The electrical conductivity of the pipe is constant.

The magnetic field strength, Hy(r), is tangent to the inner and outer walls of
the casing pipe and is in the negative ¢ direction. The electric field strength, E.(r),
is in a direction parallel to the axial direction and is perpendicular to the magnetic
field strength along the length of the pipe. Within the pipe, both the magnetic and
electric field strengths vary in amplitude and phase in the radial direction. The
Poynting vectors, S.(r;) and S,(ry), are in the directions of E x H, and are directed
into the pipe on both the interior and exterior surfaces. The magnetic field
strengths on the interior and exterior surfaces of the pipe are obtained from
Ampere’s Law as shown in Figure 2.3.

Once a solution for the electric and magnetic field strengths has been derived,
it is possible to use the values of these field qualities at the pipe surface to calculate
the total power losses using Poynting’s theorem. Separate values of the eddy current
and hysteresis losses can be obtained using the equations, which are developed, in

the next section.

2.2 Finite Difference Time Domain Solution

The finite difference time domain method is used to obtain the numerical
solution of the magnetic field strength equation, which is a partial differential
equation in terms of Hy(r) only, and is derived from Maxwell’s Equations. Finite
differencing techniques are applied to the derivatives appearing in this equation, and
the non-linear relationship between B and H is defined using hysteresis loops. The
appropriate boundary conditions are invoked and the solution for the magnetic field
strength is obtained. Then, using Amperes Law, the electric field strength is derived

from the magnetic field strength.
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2.2.1 Partial differential equation for the magnetic field
strength
All the information necessary to completely define the magnetic field strength

as a function of time and space is contained within the differential form of

Maxwell’s equations. These equations are:

8B _ 4fHH
ot ot

V xE= (2.1)

-

v xﬁ:e%—?-}-aﬁ (2.2)
The term, f (ﬁ), on the right hand side of Equation 2.1 is contained within
the partial derivative. This term cannot be directly removed from within the partial
derivative since it is a function of H, which in turn is a function of time, t. Using
the chain rule, the partial derivative can be rewritten as follows (the vector form of

the variable is replaced by the scalar equivalent),

Of(HYH OB(H) dB(H)dH
ot - 8t ~ dH at

(2.3)

Now define

d B(H)

wH) = —

(2.4)

and directly substitute Equations 2.3 and 2.4 into Equation 2.1.
At low frequencies, less than 60 Hz, the magnitude of the conduction current

is much greater than the magnitude of the displacement current, as indicated by
o
— > L

Ew

Therefore the term,
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in Equation 2.2 is eliminated. Equations 2.1 and 2.2 are rewritten as follows,

o sf}

v xﬁ=—y(ﬁ)a

7
©
(%))

t

-

VxH=0E (2.6)

Consider in detail the expanded form of Equation 2.6.

(_1_8H, _ 3H¢> i+
r 0¢ dz "

(BH,- 3Hz) ~
—_— a¢+

0z or
;< ;r‘”— a¢) i, =cE (2.7)

Based on the geometry and assumptions of the problem the electric field
strength vector is in the axial or d; direction. Thus the coefficients of 4; and dy
must be zero. The current source is located on the axis of the cylindrical casing and
therefore H, is independent of ¢ and any derivatives with respect to ¢ are zero.

Based on the simplified geometry of the problem, Equation 2.7 becomes

19rHs _ g (2.8)
r Or
Similarly, Equation 2.5 reduces to,
0E. 9H,
ar 7 ot (2.9)

Now substitute E, from 2.8 directly into 2.9 to finally obtain the partial
differential equation describing the magnetic field strength in the steel pipe,

0°Hy 180Hs Hy _
g2 Trar e - oHHe)

LA
at

(2.10)

Equation 2.10 is a diffusion type equation and describes the penetration of the
magnetic field strength into the pipe. Equation 2.10 is discretized and numerically

solved. Specification of the magnetic field strength at the boundaries determines
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whether the solution is for the vertical section of the wellbore (tubing or
ungrounded casing) or the horizontal section of the wellbore (grounded casing).

Once the magnetic field strength Hy is defined, the electric field strength E,
can be derived directly from Equation 2.8. This is the approach used in the
Zakrzewski-Peitras numerical model, [86]. Numerically however, it may be desirable
to use an integral approach to determine the electric field strength [87]. Thus

Ampere’s law is used to determine the electric field in the steel pipe,
$A-d= / oF - d§ (2.11)
c s

2.2.2 Discretization of the partial differential equation for
the magnetic field strength

The partial differential equation 2.10 is solved numerically. The independent
variables are discretized so that a solution can be found at nodes in space and at
specific intervals of time. Figure 2.4 shows the solution space, which consists of the
pipe volume between r; and r,, represented by a number of finite nodes.
Fundamental to an accurate representation of the entire solution space are the
choices for the size and number of time and space nodes. Often, the best techniques
available for choosing the appropriate time and space increments rely on a trial and
error approach, [88].

The method of discretizing the partial differential equation in both time and
space, on a grid such as shown in Figure 2.4, is called the finite difference time
domain method. The grid is designed so that there are calculations on the
boundaries of the grid blocks, called node points and in the center of the grid
blocks, called grid points. This is necessary since the grid for calculating the
magnetic field strength at the node points is different from the grid required to
calculate the electric field strength at the grid points when using Ampere’s law.

Ideally the grid block size distribution can be designed according to the
electromagnetic field distribution. Smaller grid blocks are used in regions near the
source where the electromagnetic field changes rapidly in space, with larger grid

blocks towards the interior of the pipe, where the electromagnetic field is attenuated
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Figure 2.4: Grid system, consisting of node and grid points, adopted for the finite
difference time domain numerical calculations.

and does not change rapidly in space. If a uniform grid distribution is used, it is
important to ensure that the grids are sufficiently small so that the electromagnetic
field is accurately calculated in all the regions. Otherwise the calculation of the
electric field strength and of the power that is dissipated will be inaccurate. The
computer program for solving the finite difference equations is programmed using a
uniform grid distribution.

To arrive at the finite difference form of the partial differential equation, the
common approach is to use a Taylor series expansion about an arbitrary node point

t. Thus, the first and second order spatial derivatives can be written as follows [89];

OH,| _ Hip — Hioy ,

5| = a0 (ar) (2.12)
62H¢ _ H.,—-2H;+ H;, 2 9
ar? |, Ar? +0o(ar) (2:13)

The first order derivative, shown in Equation 2.12, is derived using the average
of the forward and backward finite differences. This is referred to as the central
finite difference and has the advantage of reduced error (second order truncation
error) over the forward or backward finite difference. The overall truncation error

for the spatial derivatives is second order, O(Ar?).
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The time derivative is obtained by a Taylor series expansion about time level
n+1,

0H, HM! — HP
TS = T+O(At) (2.14)

n41

Equation 2.14 uses the backward finite difference rather than a central finite
difference technique which could require two initial conditions. As well, a central
difference technique in the time domain would be unconditionally unstable, ??. The
order of truncation error is first order in time. However, a method will be used to
diminish the size of the truncation error so that it is second order in time.

The finite difference representations of the continuous derivatives are

substituted directly into Equation 2.10 with the following result,

a;H., +b:H} + ct'Hi?-f-l =d'H} — dF HT*! (2.15)
where,
1 1
aG = — —
Ar?  2r;Ar
1 2
by = —— - =
t 2 2
i Ar (2.16)
.1 1
« = Ar? = 2r;Ar
_ o
@i = At

A discrete time level needs to be assigned for which the magnetic field
strength on the left hand side of Equation 2.15 is calculated. If the current time
level n is used, the magnetic field strength is known at every node and the magnetic
field strength at the next time level, n + 1, is obtained directly using the following

equation:

1

= (2.17)

b;
HM! = (1 -~ -d—n-) H! — (aiH?—l + c"H?‘H)

This is known as the ezplicit scheme.




If the future time level n + 1 is used Equation 2.15 becomes
a; HPH' + (bi + d7) HYY' + o HIY = P HT (2.18)

The magnetic field strength at every node is unknown and therefore the solution is
obtained indirectly or implicitly from the known magnetic field strength at the
previous timestep. This is known as the implicit scheme. As indicated in 2.18, the
terms are rearranged so that the unknown magnetic field strength at time level

n + 1 is on the left hand side of the equation and the known magnetic field strength
at time level n is on the right hand side of the equation. Equation 2.18 is the basic
structure that is adopted in this thesis for the development of the implicit numerical
approximation of Equation 2.10.

The implicit scheme was chosen over the explicit scheme for reasons of
efficiency, stability, and ease of computer programming. Although an explicit
scheme apparently requires less effort to solve since it can be solved directly, the
scheme suffers from the restriction that %: < % for stability. For typical properties
of steel and a reasonable Ar of 1 mm this may require a time step of less than 0.1
@ sec to ensure stability. This renders the technique cumbersome and impractical.
Furthermore, it is impossible to know the maximum value of d? throughout a
computation since it depends on the slope of the hysteresis loop at the value of the
magnetic field strength. The slope can vary from 10 to 10,000 over a single cycle of
the hysteresis loop and therefore dramatically influence the size of the timestep
required to obtain a stable solution. Therefore, some form of time step selection
control would have to be programmed so that the explicit scheme remains stable
throughout an entire calculation. On the other hand, the implicit scheme is
unconditionally stable, for all values of At and Ar.

For the fully implicit scheme, it would seem that any value of At or Ar will
result in a numerical solution. This is not the case. It is accepted that for given
practical values of At and Ar, there will be a difference between the exact and
numerical solution. This is known as the discretization error. The finite difference
scheme is said to converge if the discretization error goes to zero as At and Ar
approach zero. A practical approach to investigate the convergence of the numerical

solution is to continuously reduce At and Ar and monitor changes in the numerical
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solution. If reductions in At and Ar result in minor changes in the numerical
solution, it is reasonable to conclude that the solution has converged to a value
within the discretization error [89].

The accuracy (discretization error) to which the solution converges can be
estimated from the truncation error. The truncation error is the difference between
the partial differential equation and its finite difference representations. The
truncation errors have been indicated in Equations 2.12 and 2.13 by the notation
O(Ar?) and O(At), describing a second order truncation error in space and a first
order truncation error in time. Greater accuracy in the numerical solution is implied
if the truncation error is of higher order. If the truncation error tends to zero as At
and Ar tend to zero, and the solution is stable, then convergence of the solution is
also implied.

Up to this point, the finite difference equations have a truncation error that is
O(At + Ar?). It is desirable to increase the order of the truncation error of the time
variable so that it is of the same order as that of the spatial variable. Incorporation
of the Crank-Nicholson method into the finite difference equation achieves this
objective. Basically, the Crank-Nicholson equation is developed by alternately
applying the explicit and implicit equations at different time levels. The final finite
difference formulation remains unconditionally stable.

To develop the Crank-Nicholson method for this specific problem, consider
again the implicit method shown in 2.18 and advance the time level of the entire

equation by a single time step,
a;H?_*iz <+ (b‘ + d,) HF+2 + C{H?:;z = d?H;—"*'l (219)

For the term H!*! in the above equation, substitute H**' from equation 2.17.
The size of the time step between the known and unknown magnetic field strengths
is now increased by a factor of two. To reduce the difference to a single time step,
the Crank-Nicholson method decreases the size of the time step by a factor of two
and shifts the time level for the magnetic field strength in 2.19 from n + 2 to n + 1.
The resulting form of the Crank-Nicholson method is as follows
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a; PN + (b +2d7) HI'Y + cHIY =
—a;HY ) +(2d7 — b)) HY — :H,y  (2.20)

The Crank-Nicholson equation has a truncation error of O(At? + Ar?). The
method is also unconditionally stable and has the advantage of a significant gain in
accuracy over other methods. Hence the time step size can be increased so that the
total computation time is reduced.

In Equation 2.20 d; depends on the value of the relative permeability, y;,
which in turn is calculated from the magnetic field strength as defined by Equation
2.4. To this point it is assumed that d; is calculated using values for the known
magnetic field strength at time level n. The simplest procedure is to retain the
Crank-Nicholson method and use H? to calculate d? and assume d} does not vary
rapidly between time steps. However, there are several schemes, such as the
DuFort-Frankel scheme [89], which attempts to manipulate equation 2.20 so that
H;,"*% is used to determine d?+%. These are classified as predictor-corrector or
hopscotch methods and for multi-dimensional problems these methods can improve
the accuracy of the numerical method. However, numerical tests have shown that
the Crank-Nicholson method is marginally better for one-dimensional non-linear
problems with consideration for the selection of Ar and At than methods which use
the predictor corrector modification [89]. For extension to two-dimensional
problems, this may not be the case. The approach used in this thesis is to simply
use the Crank-Nicholson method and ensure that d7, or u;, do not vary rapidly
between time steps by suitable selection of the size of At.

Equation 2.20 is applied to every node within the spatial domain, excluding
the boundary nodes. What results is a matrix of coefficients A, a solution matrix x,

and a matrix of known quantities b, also referred to as the forcing matrix,

A" . x"tl =b" (2.21)




The goal is to determine x™*!, the solution matrix, using

x"t = (A" . b" (2.22)
The time level is shown to indicate at what time each of these matrices is
calculated. It is important to note that the forcing matrix is calculated at time level
n + 1 only at the boundaries. Closer inspection of A is instructional for
understanding the solution procedure. A is the matrix of coefficients and in terms

of Equation 2.20 is as follows,

by +2d3 c; 0 0 0 0 0

as bs 4+ 2d3 c3 0 0 0 0

0 a4 by +2d; ¢4 0 0 0

0 0 aiy1 . Cit1 0 0

0 0 0 an-3 byn_3+2dy_; cn-3 0

0 0 0 0 aN—2 bn-2+2d%_, cN-2

0 0 0 0 0 an-1 bn-1 +2d%_,

(2.23)
The first row shows the finite difference equation applied to the second node,

the second row applies to the third node, and so on to the N-1 * node. The
equation is not applied to nodes 1 and N since these are the boundary nodes and
the value of the magnetic field strength is specified there. The a;, b;, ¢;, and d;
coeflicients are defined in equation 2.16. The subscripts that appear in the
coeflicients apply to the node number.

The matrix is a special case of a system of linear equations that is tridiagonal
and appears frequently in the solution of one-dimensional finite difference problems.
Using the Thomas algorithm for solving tridiagonal systems of equations, the
necessary computer code is only a few lines long and the solution matrix x is

calculated very efficiently.
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The forcing matrix b is as follows

—ay- (HY + HT*') +(2d3 = &) - H} — ¢, - H3
—a3- H} 4+ (2d3 — b3) - H} —c3- H}
—aq - H} +(2dy — bs) - H} —cq- H?
: (2.24)
—ares Hiroy + (2055 — b-s) - Hyoa = en-s- Hiros
—an-2- Hi_3 + (2dy_, — bN-Z) “HEY_; —en—2- Hy_;
—an-1- Hy_p + (2dy_y = bv-1) - HYy oy — enea - (HR + HY)

The magnetic field strengths at nodes 1 and N are specified by the boundary
conditions and can be any general function of time. In this thesis, a sinusoidal
function, Hy - sin(wt), defines the magnetic field strength at the inner and outer
boundaries. Therefore, at ¢ = 0, the field within the steel pipe and the field at the
boundaries are conveniently zero. This results in an initial condition, Hy(r,0) =0
for r; < r < ry, which is of fundamental importance to the solution of the problem.
Since the solution of the problem depends on the magnetization process of the
material as characterized by hysteresis loops, the history of the magnetization of the
material must be preserved in order to advance the solution in time. The steady
state solution of the magnetic field strength therefore depends on the magnetization
process from initial conditions.

Up to this point, the appropriate partial differential equation that describes
the magnetic field strength in a magnetic conducting steel pipe has been derived

directly from Maxwell’s equations. The property u has been defined as

dBy

dHy,
and is a function of the magnetic field strength. Finally, the partial differential
equation has been formulated into a finite difference equation and modified so that
the Crank-Nicholson method can be used to solve for the magnetic field strength in
the steel pipe.

A computer program called the EM Pipe Loss model was developed to solve

the numerical problem. In the program, the magnetic field strength is initially set to
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zero and the initial value of u, is set to the initial relative permeability of the
material. The matrix of coefficients is calculated at time level n and the forcing
matrix is then calculated at time level n and at time level n + 1 at the boundary
nodes. Using the Thomas algorithm for solving tridiagonal systems of equations, the
solution matrix is solved thus updating the magnetic field strength. Using the
updated value of the magnetic field strength, u? is appropriately updated and the
coefficient matrix and forcing matrix are also updated. At the end of the specified
calculation time, the electric field strength and magnetic induction are calculated
from the magnetic field strength. The magnetic induction at each node is calculated
directly using the equation B(r,t)s = uH(r,t)s. Once all the electromagnetic fields
are known, the power losses in the magnetic material can be determined.

The following sections describe in detail the numerical methods used to
determine the electric field strength, the magnetization process and determination
of p;, and the eddy current and hysteresis power losses. These methods are

programmed into the EM Pipe Loss model.

2.2.3 Numerical determination of the electric field strength

Calculation of the electric field strength is achieved using Ampere’s Law. This
approach can be used directly because of cylindrical symmetry. Consider Ampere’s

law applied at the inner boundary of the steel tube, r = r;,
}{ H . dl =1 (2.25)

Now apply Ampere’s law at the next node inside the steel pipe,

27 Ry

fH;+1 . df: I+a’/ / E3/2n+11"d7' do (2.26)
m

0
Directly substitute Equation 2.25 into Equation 2.26, carry out the

integration, and solve for the electric field strength to obtain

2 (HM*'R, — HP''R,)
o- (R} - R})

Eyp"t = — (2.27)
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Continue this process until the electric field strength is calculated at each grid

point. The general equation for determining the electric field strength is

et _2(HIS Ry — HTVIR)
AT (R - B

1<i<N-1 (2.28)

The electric field strength at the inner and outer boundary nodes can be

calculated using
n 1 n n
aﬂ=§@gy-@y) (2.29)
113 1 n n
EN.:-II = 5 (3ENt11/2 - ENt13/2) (2.30)

2.2.4 The magnetization process for the steel pipe

This section describes the magnetization process for the magnetic material
used in the steel pipe. Consider the periodic magnetization process for the magnetic
material. It is assumed that the thickness (Ar;) of material is sufficiently small so
that the magnetization process is uniform within Ar;. Therefore, within Ar;, the
material is assumed to be magnetized according to a static hysteresis loop such as
shown in Figure 2.5.

The presence of eddy currents will attenuate the electromagnetic wave in the
material and as a result the magnetic field strength, Hy, is not uniform throughout
the steel pipe. Thus, at each node position r; within the magnetic material, a unique
hysteresis loop to describe the magnetization process within Ar; is required. At
steady state conditions, Npod.s hysteresis loops will be necessary to describe the
magnetization of the steel pipe at every grid node.

Initially, it is assumed that the material is demagnetized and the magnetic
field strength, Hy(r), is zero everywhere. This corresponds to the point of initial
conditions as shown on Figure 2.5. Hy(r) = 0 is an essential initial condition since
the magnetization of each grid cell depends on the history of magnetization.
Therefore a transient period is necessary to define the magnetization characteristics

of a grid cell at steady state.
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Figure 2.5: Characteristics of the magnetization process within a grid cell.

As the magnetic field strength increases with increasing time, the
magnetization initially follows the peak magnetization curve as shown in Figure 2.5.
This curve is referred to as the peak magnetization curve since the end points or tips
of symmetric hysteresis loops of different magnitudes lie on the curve. When the
magnetic field strength reaches a maximum, demagnetization occurs along the curve
called the downer loop. The point where the magnetic field strength peaks at a
positive maximum is called the downer turn around point and is defined numerically
by the condition H ;‘fl < H}. The term downer is used to emphasize that the
magnetic field strength is decreasing and the magnetization process proceeds down
the hysteresis loop. Similar reasoning is used to explain the use of the term upper.

The demagnetization process continues along the downer loop. When the
magnetic field strength is reduced to zero a residual magnetic induction, B,
remains in the magnetic steel pipe. The coercive magnetic field strength, H, is the

value of the magnetic field strength necessary to reduce the magnetic induction in
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the material to zero and is shown on Figure 2.5 at the intersection of the downer
loop and the H axis.

The demagnetization process continues along the downer loop until the
magnetic field strength reaches a minimum. This point is called the upper turn
around point and is defined numerically by the condition, H;'_'“ > H3.
Re-magnetization of the material occurs along the upper loop until the downer turn
around point is reached again, completing a single cycle of magnetization. The
magnetization process continues along the downer and upper loops for each cycle of
the applied magnetic field strength. Magnetization along the peak magnetization
curve only occurs once from the initial condition of zero magnetization.

During the transient period, the magnitudes of B and H at the upper turn
around point and downer turn around point are usually different. At steady state,
the magnitudes of B and H are the same and the downer loop and upper loop are
symmetrical. For the model developed here, the upper turn around point and
downer turn around point always lie on the peak magnetization curve once steady
state is reached.

The process just described is repeated several times until steady state is
reached. The transient period exists for four to five cycles of the periodic magnetic
field strength. This is exemplified in Figure 2.6. This figure shows the transient
period of magnetization calculated for a grid cell using the EM Pipe Loss model and
ten cycles of the applied magnetic field strength. As the figure shows, the transients
disappear after about four cycles of magnetization.

To determine the magnetization for each grid cell requires a general method of
generating hysteresis loops, so that for any value of the peak magnetic field strength
a corresponding hysteresis loop describing the magnetization can be defined. The

method for constructing hysteresis loops is described in the next section.

2.2.5 Distance factor method for constructing the

hysteresis loops

This section presents the procedure for constructing the general hysteresis
loops needed for the solution of Equation 2.10. The method is an extension of a

method developed by Talukdar and Bailey, [90]. They developed a procedure to
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Figure 2.6: The magnetization process during the transient period.

scale a maximum hysteresis loop using a distance factor so that a hysteresis loop
can be constructed for any applied magnetic field strength.

The Talukdar and Bailey method is described first. Then the extensions to
their method developed in this thesis are presented. Using this approach to describe
the distance factor method will illustrate the method and explain the differences
between the two approaches.

The distance factor approach requires a maximum hysteresis loop for the
magnetic material which is usually obtained experimentally. For the Talukdar and
Bailey approach the maximum hysteresis loop must extend to the saturation points,
as shown in Figure 2.7. This condition is not necessary for the distance factor
method developed in this thesis. Our only requirement is that the extremum of the
maximum hysteresis loop be greater than the maximum value of the applied
magnetic field strength. It will be demonstrated in a following section that the
ability to use a maximum hysteresis loop that closely follows the applied magnetic
field strength results in a more accurate solution of the electromagnetic problem.
This is especially true if the maximum applied magnetic field strength is much less
than the magnetic field strength at saturation conditions.
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Figure 2.7: Talukdar and Bailey method for constructing hysteresis loops.

With reference to Figure 2.7, the Talukdar and Bailey approach for
constructing a hysteresis loop for an arbitrary value of the applied magnetic field

strength is described as follows:

1. The downer turn around point is defined by the coordinate, (HF, Bf) and is
located on the peak magnetization curve. When the magnetic field strength
reaches the downer turn around point, determine the vertical distance from
the mazimum douwner loop to the downer turn around point. This distance is

d, and is equal to Bp — Bf.

2. For any value of the magnetic field strength decreasing from the downer turn
around point, the constructed downer loop is derived by translating the
mazimum douwner loop by a variable displacement that is defined by d(B).
The relationship for d that is used by Talukdar and Bailey is to make d vary
linearly from d(Bj}) = d, to d(B;) = 0. This relationship is then used to

define the constructed downer loop.
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3. Talukdar and Bailey assume symmetry between the constructed downer loop
and constructed upper loop, so that the constructed upper loop is derived using
the previous two steps beginning at the upper turn around point which they

define by the coordinate, (—Hf, —B7).

The distance factor resulting from the second step of the above procedure and

which is used to determine the constructed downer loop is,

B-B;

d(B) =d; ﬂ

(2.31)

The approach used in this thesis is similar to the approach of Talukdar and
Bailey except for the relationship defining d(B). In this approach, d is made to vary
linearly from d(B7F) = d, to d(B7) = d2. The distance d; is determined at the upper
turn around point. The upper turn around point is defined by the coordinate,
(Hr, BT), as shown on Figure 2.8. Thus, the distance d; between the mazimum
downer loop and the constructed downer loop is equal to B — By. To distinguish
between the two turn around points, the distance d, is defined slightly differently
than was defined by Talukdar and Bailey and is equal to Bf — B}. In this thesis,
B}, is not restricted to the saturation hysteresis loop.

Note that both d; and d, are always positive when defined as the distance
from the mazimum downer loop to the constructed downer loop. The distances d;
and d; have exactly the same meaning for determining the constructed upper loop.
However, so that the same equation can be used to define the variable displacement
for the upper loops, d; and d; are redefined as the distance from the constructed
upper loop to the mazimum upper loop so that they are also always positive. This
results in the following equation for the distance factor, d(B), which can be used for

determining both the constructed downer loop and constructed upper loop,

L ) (2.32)
— BT

d(B)=d

The constructed downer loop is calculated for decreasing values of magnetic

field strength from the downer turn around point and is

B.a(H) = Ba(H) - d(B)
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Figure 2.8: Method for constructing hysteresis loops used in this thesis and pro-
grammed into the EM Pipe Loss model. Note that the very first turn around point
lies on the peak magnetization curve but subsequent turn around points generally do
not until steady state is reached.

where B.y(H) is the magnetic induction for the constructed downer loop and B4(H )
is the magnetic induction corresponding to the mazimum downer loop. The distance
factor is determined from Equation 2.32.

Similarly, the constructed upper loop is calculated for increasing values of

magnetic field strength from the upper turn around point and is
B..,(H) = B4(H) + d(B)

where B, (H) is the magnetic induction for the constructed upper loop and B,(H) is
the magnetic induction corresponding to the mazimum upper loop. The distance
factor is determined from Equation 2.32 just as in the previous case.

It is important to note that the condition for symmetry required by the
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Talukdar and Bailey approach is relaxed with the introduction of d; at the upper
turn around point. Therefore, (Hr, Br) # (—H{,—Bf) and the magnetization
process through the transient period can be properly modeled. Otherwise, the
hysteresis loops are forced to be symmetrical upon completion of the first cycle of
the applied magnetic field strength, which is normally associated with a steady state
condition.

As previously mentioned, an advantage of using the distance factor method
developed in this thesis, is that it is not necessary to obtain a maximum hysteresis
loop that extends to the magnetic saturation of the material. This is an important
experimental consideration since magnetic saturation for oil-field steel tubulars
typically occur at very large magnetic field strengths. Also, practical values for the
applied magnetic field strength are much less than at saturation conditions. Since it
is desirable to use a maximum hysteresis loop that is close to the applied magnetic
field strength to improve on the accuracy of the electromagnetic field calculations,
the distance factor method used in this thesis was developed.

There are other methods for constructing hysteresis loops as summarized by
Macki et. al., Reference [91]. Many of these methods are based on an approach
called Preisach’s theory [92], [93]. Using the Preisach approach it is possible to
expand the characterization of the magnetization process to include magnetization
paths that are not restricted to the peak magnetization curve and include hysteresis
loops that are asymmetrical. The hysteresis loops for the oil-field steel tubulars used
in the experimental phase of this thesis are symmetrical and the magnetization
process closely follows the peak magnetization curve. These criteria being met, the
distance factor method is capable of accurately constructing hysteresis loops for the
electromagnetic problem solved in this thesis.

In summary, a general approach is introduced to construct a family of
hysteresis loops that define the relationship between the magnetic field strength and
magnetic induction for a magnetic material. It is now possible to solve the numerical
problem and determine the electromagnetic fields in the steel pipe. Once the electric
and magnetic field strengths are determined, the power losses can be calculated

directly. The determination of the power losses is the topic of the next section.
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2.2.6 Determination of the power losses

The total electromagnetic power flow into the pipe can be obtained from
Poynting’s vector, which is valid despite the highly non-linear response of the
ferromagnetic material. Poynting’s theorem can be derived from Maxwell’s
equations (Equations 2.1 and 2.2). Maxwell’s equations, in a good conductor,

assuming negligible displacement currents, are restated as follows,

- Ou()H _ 9B

V x E= ot = —W (2.33)
VxH=0¢E (2.34)
Using the equivalence of vector operations,
V(ExH=H-VxE-E-VxH (2.35)
and applying this to Equations 2.33 and 2.34 results in
v-(Exﬁ)=—ﬁ-6a—lt3—aE.E (2.36)
Equation 2.36 is integrated throughout volume V/,
B = =
v (ExH)dV:/ -2 1E-E| av (2.37)
v v at
The divergence theorem states that
-/v-(Exﬁ)dv=_}{(Exﬁ)-d“s (2.38)
v s
Thus Equation 2.37 can be restated as follows,
= d 4 ot aﬁ — -
—f(ExH)-dS: H - —+0cE-E| dV (2.39)
s v ot
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Equation 2.39 is Poynting's theorem. This is a general equation that applies to
any conducting material since no assumptions are necessary with respect to the
linearity of the material [94]. The units of Equation 2.39 are in watts. The Poynting

vector, E x H, represents the rate of energy flow or power across a surface (W/m?).

The term H - %?— represents the time rate of increase of the stored energy in the
magnetic field strength and, when integrated over one cycle, determines the
hysteresis losses, and o E - E represents the eddy-current losses.

Given that the electric and magnetic field strengths are solved for in the time

domain, the time average power flow outward toward surface S, over one cycle, is

% }{ / ' (E() x H(t)dt ) -dS (2.40)
SJo

If the magnetic field strength exists on the interior and exterior surfaces of the
pipe, then the time average power that flows into the pipe through the interior

surface of the pipe at r =r; is

A131-=r,- =

_ T
2”;:L / E. (rst) Hy (ri,t) dt (2.41)
o]

where L is the length of the pipe. At r = r,, the time average power that flows into

the pipe through the exterior surface of the pipe is

T
2nry L / E, (ro,t) Hy (ru,t) dt (2.42)

APr:rw = T o

The numerical equivalent to Equation 2.41 is

N .
At Zﬂme EZQ,n-H H¢o,n+1 + Ezo.n Héo,n
APrer, = 2mri L S 2 (2.43)

where Niim. is the number of time steps per cycle of the wave and both E. and Hy
are calculated on the surface node of the grid.
The numerical equivalent to Equation 2.42 is

Nei
At < EzNgrida+2-"+l Hé"noden""'l + EzNyﬂ'dl"‘z'" HéNnodeu" (

APy, = —2mry Lo > 5

n=0

2.44)
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Since the direction of power flow, as defined by Poynting’s vector, is into the
pipe at both the inner and outer surfaces for the general problem solved in this

thesis, the total time average input power (losses) is given by,
AP = APr:r.— - A})1'=r';., (2'45)

When the magnetic field strength is present only on the outer boundary of the
steel pipe, (the condition for the horizontal section of the wellbore), the power flow
determined from Poynting’s vector is zero at the inner boundary and Equation 2.45
remains valid.

The only losses assumed in the steel pipe are eddy-current and hysteresis
losses. The total power losses, Equation 2.45, must equal the sum of these losses.

The time averaged eddy-current losses are calculated using
rw pT
P.. = %/ / o E*(r,t) rdrdt (2.46)
ri 0

and are determined numerically using

gndx Ntime

P.. = —T£ > { rPa =) Y EfmAt] (2.47)

=1 n=0

The time averaged hysteresis losses over a cycle of the applied magnetic field

strength within a volume of steel pipe is calculated using

By(T)
P, = ﬁ/ f Hy(r, By) dByrdr (2.48)
By(0)

and is determined numerically using

L — - -
Ph = T Z ™ (7‘.?+1 - 7‘;2) Z (Bd,‘.'n“ — Bd,‘.‘") H¢i,n+1 (2.49)

=1 n=0

Ngrtdl [ Ng.’me

where Hy, . and By, , are the magnetic field strength and magnetic induction at the
grid point at time level n. These are calculated averages using adjacent node points

at the same time level. N¢ime is the number of time steps per cycle.
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In summary, the total power flow into the pipe, per unit area, is derived using
Poynting’s vector(Equation 2.40). Then the power losses due to eddy- currents are
calculated using Equation 2.49. Finally, the power losses due to hysteresis effects
are calculated using Equation 2.48. As a test of the numerical model, the sum of the
eddy-current and hysteresis losses must equal the total power flow into the pipe

volume calculated from Poynting’s vector.

2.3 Analytic and Numerical Validations of the
EM Pipe Loss Model.

In this section, the EM Pipe Loss model is validated using an analytical
solution of the magnetic and electric field strengths in a cylindrical pipe for the
special case where the steel has a constant relative permeability u,, [1]. Validation
is also obtained by comparing results from the EM Pipe Loss model with results

obtained from a numerical model solved in the Cartesian coordinate system [86].

2.3.1 Validation using the Loga analytic model

Loga solves Maxwell’s equations to obtain analytical solutions for the electric
and magnetic field strengths in steel pipe without magnetic hysteresis (constant
relative permeability u,.). The detailed derivation of these solutions can be obtained

from Reference [1]. The equation for the electric field strength is
E.(r) = AHP(k,r) + BHY (K, 1) (2.50)

and the equation for the magnetic field strength is

Hy(r) = _j”; H (k,r) — }% H{Y(k, r) (2.51)

S

where the wave number is denoted by k,, and for o, >> we, may be approximated
by the expression, k, = /—jwpu,0,. Similarly,

Ny & /jwl‘r
3 Us .
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The subscript s is used to signify that the properties are for steel pipe. Thus k, and
n, are the wave number and intrinsic impedance of the steel pipe.

Hgl)(k, r) and H((f)(k, r) are zero order Hankel functions of the first and
second kind, and H(ll) (ks ) and H(lz)(k, r) are first order Hankel functions. The
constants A and B are determined from the boundary conditions of the problem.

In order to compare the analytical and finite difference methods, it is
important that the finite difference solution reach steady state. This is
accomplished by running the solution through several cycles of the applied magnetic
field strength. It is noted that although the analytical solution is exact in theory,
the actual calculations of the Hankel functions are approximated and are therefore

subject to minor numerical error.

Data Symbol  Value Units
Inner radius T 83.185 mm
Outer radius To 89.345 mm
Frequency f 60.0 H:z
Current I 300.0 A
Electrical conductivity o, 7,300,000 S/m
Relative permeability Lr 200
Relative dielectric constant Es 1
Calculated Constants
Wave Number, k, 427 — 5 427
Intrinsic Impedance, 1, (1.1+3j11)-10™

Table 2.1: The input data for the steel pipe used in the validation of the EM Pipe
Loss model with the Loga Analytic Model.

Table 2.1 summarizes the base case input data used in the comparison. Figure
2.9 compares the steady state calculations of the magnetic field strength distribution
in the steel pipe made of a linear magnetic material using Loga’s analytic model and
the results produced from the EM Pipe Loss model. The two different calculation
methods yield almost identical results. Also shown on the graph is the percentage
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difference between the calculations, which is given by the following equation,

- 100 (2.52)

600 . EM Pipe Loss Model + 1.0
= L ! . :
3 * %\ | Loga Analytical Model A
< 4g0l % - ... % Difference S lo8
= : / ! B
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Figure 2.9: Comparison of the magnetic field strength, Hy(r,t), calculated using the
EM Pipe Loss model and the Loga Analytic Model.

At the boundaries of the problem there is no error since the boundary
conditions determine the magnetic field strength there a priori. However, for
calculations of the magnetic field strength in the interior of the pipe, there is an
accumulation of error. This is expected since the calculation of the field at riy;
away from the boundary depends on the calculation of the field at r; and the
numerical error at r; feeds into the calculation at r;;;. This accumulation of error is
referred to as numerical dispersion and is common in the numerical solution of
many physical problems. The percentage difference £ does not exceed 0.4%.

Figure 2.10 compares the calculations of the electric field strength in the steel
pipe between Loga’s analytic model and the EM Pipe Loss model. Again, the two
different calculation methods yield almost identical results.

Since the electric field strength is determined using an integral method that
computes the difference of adjacent magnetic field strengths (see Equation 2.28), the

error in the electric field strength is smoothed and subtracted out, and numerical
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Figure 2.10: Comparison of the electric field strength, E.(r,t), calculated using the
EM Pipe Loss model and Loga Analytic Model.

dispersion is not evident in the error. The magnitude of the maximum error is less
than the numerical error for the calculation of the magnetic field strength by nearly
a factor of two, thus demonstrating the benefit of using an integral approach to

calculate the electric field strength.

2.3.2 Validation using the Zakrzewski-Peitras numerical

model

This section validates the EM Pipe Loss model by comparing results obtained
with it with the model developed by Zakrzewski and Peitras. They present a
numerical model for calculating the one-dimensional electromagnetic field in
conducting magnetic material in the Cartesian coordinate system, (Reference [86]).
Like the model developed in this thesis, their model considers the magnetic non-
linearity of the material using hysteresis loops. The equation they solve is

0*H, OH.
g = oHHE:) 5

(2.53)
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which is equivalent to the equation solved in this thesis,

OH,
= Uﬂ(He)—a;g (2.54)

O*H, 10H, Hs

or? r Or r2

As r = oo in Equation 2.54, Equation 2.54 approaches Equation 2.53 and the
results obtained with the two numerical methods can be compared.

Data for the family of experimentally obtained hysteresis loops presented in
the Zakrzewski and Peitras paper are obtained from Figure 4 of Reference [86] and
are input into the EM Pipe Loss model. The family of hysteresis loops for the
material used by Zakrzewski and Peitras are reproduced in Figure 2.11. Some error
is unavoidable when the graphical data of Zakrzewski and Peitras are used to derive
numerical values, and this error will be reflected when comparing our results to

those obtained with the Zakrzewski-Peitras numerical model.

0.8 b

o
S

o
o

Magnetic Induction [Tesla]
b
™

500 Nm Loop

600 -400 -200 0 200 400 600
Magnetic Field Strength [A/m]

Figure 2.11: Hysteresis loops for the magnetic material reproduced from Figure 4 of
Zakrzewski and Peitras, Reference [86].

For the validation, the radius r is set to 500 mm, a value much greater than
the 3.875 mm thickness of the steel sample used in the calculation. The magnitude
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of the current is selected so that the magnetic field strength at the surface of the
iron is sinusoidal with a peak amplitude of 410 A/m. The values of Ar and At are
set to 0.125 mm and 83 us, as in the paper by Zakrzewski and Peitras.

The EM Pipe Loss model has an optional provision so that the maximum
value of the relative permeability that will occur during the calculation can be
limited to a value set in the input data set. The relative permeability calculated
from the hysteresis loops, ., is compared to the desired maximum value. If it is
greater, the maximum value of the relative permeability is set to u, and used in
subsequent calculations. The maximum value of the relative permeability is
generally approximated from the experimentally determined hysteresis loop
corresponding to the magnetic field strength at the boundary of the problem
(location of the maximum magnetic field strength). For this example, the maximum
magnetic field strength corresponds to a peak value of 410 A/m. From the
hysteresis loops on Figure 4 of Reference [86], the maximum g, is about 4,000.

For this problem, the magnetic field strength impinges from one side onto the
surface of the steel plate. The thickness of the plate is much greater than the skin
depth so that the outer boundary condition can be set to Hy(r,) = 0.0 A/m.
Additional input data are summarized in Table 2.2.

Data Symbol  Value  Units
Inner radius T; 500.000 mm
Outer radius T 503.875 mm
Frequency f 50.0 H:z

Magnitude of sinusoidal

Magnetic field strength H, 410.0 Al/m
Electrical conductivity o, 5,440,000 S/m
Maximum dB/(udH) 4000

Table 2.2: The input data for the steel pipe used in the validation of the EM Pipe
Loss model with the Zakrzewski-Peitras numerical model.

Before comparing results of the calculations between the two models, it is

noted that the Zakrzewski-Peitras numerical model calculates the electric field at
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the nodes using the point form of Ampere’s Law,

_l_H?+1 — H?

Ei= o Az

(2.55)

Once the electric field strengths at the interior nodes are calculated, a
polynomial expression is fit to the data to obtain extrapolated values for the electric
field strength on the surface of the steel. In this thesis, the electric field strength is
calculated using the integral form of Ampere’s Law as stated in Equation 2.28 and
the field on the surface is calculated directly using Equations 2.29 and 2.30.

Figure 2.12 shows a comparison between the electric field strength calculated
-with the EM Pipe Loss model and the electric field strength calculated with the
Zakrzewski-Peitras numerical model. The two calculations show good agreement.
The difference in the calculated peak value of the electric field strength obtained
with the Zakrzewski-Peitras numerical model and that obtained with EM Pipe Loss
model is 9.3%. The difference between the electrical field calculated using the EM
Pipe Loss model and the peak value of the electrical field measured by Zakrzewsk:
and Peitras is 16.8 %.

The phase angle between the magnetic and the electric field strength is 0.55
radians (the electric field strength leading the magnetic field strength), calculated
using the Zakrzewski-Peitras numerical model. The EM Pipe Loss model calculates
a phase angle of 0.54 radians, resulting in a difference of less than .01 radians in the
phase angles. The numerical data for the Zakrzewski-Peitras numerical model and
their experimental data are reproduced from graphical figures in their paper. This
procedure is subject to an inherent error of as much as 5.0%.

By adjusting the maximum value of u, that is allowed to occur in the
numerical calculations, a closer match between the EM Pipe Loss model
calculations and those of Zakrzewski-Peitras numerical model can be obtained.
Figure 2.13 shows a comparison of the EM Pipe Loss model to the Zakrzewsk: and
Peitras data with the adjustments. A good match was achieved with u,=2,000. The
difference in the calculated peak value of the electric field strength obtained from
the Zakrzewski-Peitras numerical model and the calculated peak value of the
electric field strength from the EM Pipe Loss model is 4.1%. The difference between
the peak value obtained from the EM Pipe Loss model and the peak value from the
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Figure 2.12: Comparison of the electric field strength at the surface of the ferro-
magnetic plate calculated using the EM Pipe Loss model, the Zakrzewski-Peitras
Numerical numerical model, and their experimental data, [86]-

Zakrzewski-Peitras experimental data is 4.2 %. It is also observed on Figures 2.12
and 2.13 that the shape of the electric field strength calculated using the EM Pipe
Loss model more closely follows the experimental data than that of the electrical
field strength calculated with the Zakrzewski-Peitras numerical model. The peak
values are placed closer to each other and the distortions in the sinusoidal curves are
more congruent.

The value for the maximum u, can be used as a history matching parameter
to scale the calculation of the non-linear magnetic hysteresis loops so that the
calculation of the electric field strength matches observed data. This is a convenient
feature since determining derivatives from experimental data, which is necessary for
the calculation of u,, can result in large variations in the calculation if proper care is
not taken to ensure good data. This practical approach is a simple way of ensuring
the calculations can be matched with actual results. However, since the maximum
K- is usually associated with hysteresis loops near the boundaries, error in
calculating the input power can result.

Figure 2.14 shows the hysteresis loops at various depths from the surface of
the steel sample, as calculated with the EM Pipe Loss model. This figure represents
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Figure 2.13: Comparison of the electric field strength at the surface of the metal plate
calculated using the EM Pipe Loss model, the Zakrzewski-Peitras numerical model
and their experimental data, (Figure 5 of Reference [86]), with the maximum g, in
the EM Pipe Loss model adjusted to match the measured electric field strength data.

the process of magnetization within the steel at steady state conditions. From the
surface, the magnetic field strength decreases with increasing depth. For example,
at a depth of 0.75 mm the amplitude of the time varying magnetic field strength is
185 A/m, and as a result the corresponding hysteresis loop encloses a much smaller
area than the loop at the surface of the steel.

Figure 2.15 shows the electric field strength at various depths from the surface
of the steel. The figure shows that as the electromagnetic wave penetrates into the
steel, the electric field strength is attenuated (and thus the eddy-currents) and the
peak value of the electric field strength occurs at later times than at the surface.
The shape of the electric field strength is distorted by the non-linear magnetization
characteristics of the steel. The distortion increases with depth and is controlled by
the shape of the hysteresis loops throughout the material.

As a final validation of the EM Pipe Loss model, the calculation of the eddy
current, hysteresis, and total power losses using the EM Pipe Loss model are
compared to the corresponding values calculated with the Zakrzewsk:-Peiiras

numerical model. For these calculations, the maximum g, is set to the maximum
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Figure 2.14: Hysteresis loops at various depths from the surface of the solid steel
sample calculated using the EM Pipe Loss model.

value as estimated from the Zakrzewski and Peitras hysteresis loops, which is about
4,000. It is noted that using this value does not exactly match the surface electric
field as shown in Figure 2.12. The interpretation of the hysteresis loop data from
the figures in Reference [86] likely contributes significantly to the differences. The
results are summarized in Table 2.3.

Note that in Table 2.3 the sum of the eddy-current and hysteresis losses does
not equal the total power losses. The total power losses are calculated using
Poynting’s vector. The eddy current and hysteresis losses are calculated separately.
The total power calculated from Poynting’s vector for the EM Power Loss model is

22.41 W/m? which is within 2.2 % of the sum of the hysteresis and eddy current
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Figure 2.15: The electric field strength at various depths from the surface of the solid
steel sample calculated using the EM Pipe Loss model.

losses calculated by Zakrzewski and Peitras.

Zakrzewski and Peitras do not calculate the hysteresis and eddy current losses
simultaneously while hysteresis is taken into account, and this is clearly stated in
their paper. First, they determine the eddy current losses without the effects of
hysteresis. Then they use their model to determine the total power loss from
Poynting’s vector. From these total power losses they subtract the eddy current
losses to obtain an estimate of the losses that are due to hysteresis effects.

Since hysteresis has a strong influence on the distribution of the eddy currents,
their approach is only approximately valid. The EM Pipe Loss model determines

both the hysteresis and eddy current losses while hysteresis effects are accounted
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Data EM Power Loss Model Zakrzewski-Peitras Units

Total power losses 22.41 20.20 W/m?
Eddy current losses 13.05 15.00 W/m?
Hysteresis losses 8.87 5.20 W/m?
Fraction eddy current losses 59.43 67.00 percent
Fraction hysteresis losses 40.46 33.00 percent

Table 2.3: Comparison of the numerical power flow calculations carried out with the
EM Pipe Loss model and the Zakrzewski-Peitras numerical model. The input data
are summarized in Table 2.2

for. The different approaches produce different results as indicated in Table 2.3.
The EM Pipe Loss model calculates that the hysteresis losses are actually 7%
greater and the eddy current losses are 7% less than estimated by the
Zakrzewski-Peitras numerical model.

The EM Power Loss model has been compared to the numerical model
developed by Zakrzewski and Peitras (Reference [86]). The results obtained with
these two models demonstrate the sensitivity of the calculations to the hysteresis
loops used for the material. Hysteresis can make a major contribution to the total
power losses. The next section compares and validates the EM Pipe Loss model to

data obtained from experiments that were conducted as part of this thesis.

2.4 Experimental Validation of the EM Pipe
Loss model

In this section the EM Pipe Loss model is validated using data obtained from
experiments that were conducted during the course of this thesis. The validation
consists of two components. For the first validation, the electrical field strength
measured at the interior and exterior surfaces are compared to the electric field
strength and phase angle calculations determined with the numerical model. For the
second validation, the power losses in the casing as a function of the excitation are
experimentally determined from the thermal response of the system. These power

losses are compared to the total hysteresis and eddy current losses calculated using
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the EM Pipe Loss model.

The second validation is consistent with the purpose of the numerical model,
which is to determine the power losses in a pipe made from lossy ferromagnetic
material conducting current. Thus, the second approach is a direct validation of the
numerical model with regards to the capability of the model to reasonably determine
the power losses in the pipe taking into account all power loss mechanisms.

This section is organized as follows: the test procedure, experimental
determination of the electrical properties of the pipe, and finally the validation of
the EM Pipe Loss model using electric field strength measurements and the thermal

response of the system.

2.4.1 Test setup and procedure

The equipment used in the test is illustrated in Figures 2.16 and 2.17. Figure
2.16 shows the end and overall system view and Figure 2.17 shows the side view and
dimension details. A photo of the test set-up is shown in Figure 2.18

The tubing and casing are both oilfield tubular type K-55 and were donated to
the Applied Electromagnetics Laboratory by Tezaco Canada Petroleum Inc. The
physical dimensions of the casing and tubing are summarized in Table 2.4, and are

the precise dimensions used in all associated numerical calculations.

Dimension Value

Casing Dimensions
Inside Radius, R; 83.185 [mm]
Outside Radius R,  89.345 [mm)]
Length L 4.007 [m]

Tubing Dimensions
Inside Radius Rt; 38.100 [mm)]
Outside Radius Rt,, 44.260 [mm]
Length L 4.988 [m]

Table 2.4: Physical dimensions of the casing and tubing used in the experiment.
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Thermal Annulus

Insulation Jacket Centralized Tubing
Casing 4;5’ for Conducting Current
Cold Water iniet Valve
Weld Seam
Cable Connect Terminal
(same on both ends)
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! 3 “0000" Cable
Tubing Cap 7 in Parallel
Water Hose > Water Discharge
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To 220 VAC
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= High Current Variable Voltage
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—E'—i [ Transformer
Data Logger
End and System View

Figure 2.16: End and system view of the equipment used in the thermal response
test.

The tubing was centralized in the casing using a centralizer stub at both ends
of the tubing string. The centralizer stub was manufactured so that the location of
the tubing was concentric within the casing with a high degree of precision. The
length of the centralizer stub was limited to approximately 7.5 cm to minimize any
interference with the heat transfer mechanisms along the axial length of the casing
and tubing.

As a result of the process used to manufacture the pipe, a weld seam is
produced along the axial length of the tubing and casing. This is shown on Figure
2.16. The impact of the weld seam on the results was minor. However, it is noted

for completeness.
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Figure 2.17: Side view of the equipment used in the thermal response test showing
detailed dimensions.

Cable connect terminals with uniform circumferential contact on the tubing
(at both ends of the tubing) were used so that the current uniformly entered and
exited the pipe. The tubing was also fitted with low pressure end caps and valves to
accommodate a cooling system so that the system could be efficiently cooled down
at the end of a thermal test. Also, during a thermal test, the tubing was filled with
water and the temperature of the water was closely monitored. If the temperature
reached 90 °C the test was terminated.

Thermal insulation of the casing was necessary so that the temperature
response could be related to the total electromagnetic power losses in the casing.
Fiberglass insulation was placed around the exterior of the casing for this purpose.
The fiberglass insulation had a rating of R-40, which was adequate for the purposes
of this experiment. The annular region between the tubing and the casing was filled
with stagnant air, which has a thermal conductivity of less than 0.09 W/(m°C).
Since the tubing was increasing in temperature at approximately the same rate as

the casing, convection currents were minimized and thermal insulation was
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Figure 2.18: The test apparatus as assembled in the Applied Electromagnetic Labo-
ratory.

effectively provided at the interior casing wall by the annular region filled with air.

The power system consisted of a variable voltage transformer connected to a
water-cooled high current transformer. A composite cable consisting of three OOOO
cables in parallel was connected to both ends of the centralized tubing. This large
cable was used to minimize the resistance of the system and thus maximize the
current that could be delivered by the transformer. The three No. 4 cables
connected in parallel have a maximum current capacity in air of 1,300 A (National
Electrical Code) [95].

The purpose of the variable voltage transformer is to step down and control
the voltage input to the high current transformer. The small combined resistance of
the cable and tubing connected to the output of the high current transformer
requires that the voltage is stepped down to limit the current to a range of
predetermined values. The variable turns ratio feature of the voltage transformer
made it possible for the current transformer to be set to a constant turns ratio for

convenient and safe operation.




The input of the variable voltage transformer was connected to the 220 VAC
single phase electrical service in the Electrical Engineering building. The
transformer was equipped with a stepper control module designed specifically for
the experiment. The control module was designed so that the turns ratio of the
transformer could be changed in very small increments, thus allowing accurate
regulation of the current flow into the system to within +0.1 A.

The high current transformer was custom manufactured by Madis Engineering
Limited of Calgary, Alberta, Canada, and was lent to the Applied Electromagnetics
Laboratory for the duration of the experiments. It was modified so that cooling of
the output windings using a cold water circulation system was possible. The
modified transformer was capable of a continuous output current of 1,000 A RMS.

The RMS value of the axial electric field strength was measured on the
interior and exterior surfaces of the casing at eight equally spaced locations around
the circumference of the pipe as shown on Figure 2.16 and in more detail on Figure
2.23. Twisted wires were used to connect the measurement points to the data logger
to minimize any electromagnetic interference with measurements. The axial
distance between the measurement points was 2.84 meters and the distance from
the measurement points to either end of the casing was 0.58 meters. This distance is
equivalent to seven radii of the casing and is of sufficient length that end effects are
not noted [29]. It was desirable to have the axial measurement points as far apart as
possible so that a maximum voltage was measured and the measurement error was
kept to a minimum. The RMS value of the electric field strength is the RMS
potential drop between the measurement points divided by the distance between
them.

The temperature responses of the casing, the annular region between the
tubing and casing, and the tubing were measured at three equally spaced locations
along the length of the tubing-casing apparatus as shown in Figure 2.16. The
thermocouples in the casing and tubing were attached so that any thermal contact
resistance between the thermocouples and the tubing was minimized. An adjustable
metal band was used to hold the thermocouples firmly in place. The thermocouples
were located sufficiently far from the ends of the casing and tubing so that end

effects were not noted.
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The procedure for conducting the experiment is as follows:

. Fill the tubing string with water.

Connect the water cooling system to the high current transformer and power

up the system at minimum voltage and current levels.

Using the stepper controller for the variable voltage transformer, adjust the
output current from the high current transformer to the desired operating

level.

. Turn on the data logger and begin recording the electrical and temperature

data.

. Monitor the temperature of the water in the tubing string. When the

temperature reaches 90 °C or when the system has reached a thermal steady
state so that there is no further increase in temperature (the latter will occur

for currents less than 200 A RMS), terminate power to the system.

. Cool the system down by flowing cold water through the tubing. Once the

temperature of the system has decreased to approximately room temperature,

repeat the test at a different current level.

The data was monitored continuously using a computer controlled data logger.

The current and voltages were all measured using true RMS meters. Table 2.5

summarizes the data measurement details.

2.4.2 Modifications of the test for collection of electrical

data in the vicinity of strong electromagnetic fields

The test setup and procedure just described were designed to collect both

electrical and temperature data simultaneously for subsequent analysis. A review of

the electrical data indicated that the proximity of the transformer and the location

of the equipment relative to the electrical distribution panels and cables that supply
power to the laboratory resulted in excessive electromagnetic interference with the

voltage that is measured along the length of the casing. It was necessary to have the
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Measurement Points

Comments

Casing Axial
Electric Field

Tubing, Casing,
and Annulus
Temperature

Water Temperature
in the tubing

Current Transformer

V-I Output

Current Transformer
Temperature

Measured on the casing. Voltage sensors 2.84 m

apart and circumferentially place around the casing every
7 /4 radians. Twisted wire used to reduce EM
interference. Data recorded by data logger.

Three thermocouples (T/C) placed 1.00 m apart axially,
one in the middle and the others at one meter to either side.
Sensors set and held firmly in place with adjustable

straps. Data recorded by data logger.

Thermocouple placed in a thermowell in contact with the
water. Data recorded by data logger.

Output current measured with current probe connected to
true RM'S DVM. Current value recorded by hand. Output
voltage recorded by data logger.

Thermocouple placed into transformer core and input to
a portable thermocouple meter. Data recorded by hand.

Table 2.5: Sampled data and measurement details for the thermal response test.

high current transformer located near the tubing, since using longer cables

introduced additional resistance that severely compromised the output current

capacity of the transformer. As a practical matter, the space allocated for the test

was not sufficient to configure both the variable output voltage transformer and

high current transformer, as well as the test equipment, in a manner such that the

proximity effects could be satisfactorily reduced. To solve the proximity problem,

the test equipment was re-located away from the electrical service distribution

system to a distance that proved to be satisfactory. A smaller transformer was then

used and located two meters from the test equipment and positioned so that the

leakage of magnetic field strength from the transformer core had minimum

interference with the test. Longer cables of the same capacity were connected to the

ends of the tubing and positioned to minimize interference.

The trade off in relocating the test equipment and using a smaller transformer

in order to obtain more accurate electrical data was that the maximum magnitude
of the current was reduced from 1,000 A to 275 A RMS. The impact of limited
current capacity on the test results was minimal. The relative hysteresis effects at

275 A RMS are of a similar magnitude as at 1,000 A, and thus adequate test data
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was obtained to validate the EM Pipe Loss model.

2.4.3 Magnetic properties of the casing and tubing

The casing used in the experiment is type K-55 with an inner radius of 83.185
mm and outer radius of 89.345 mm, commonly referred to as 7 casing. The
thickness of the pipe is 6.160 mm. The density of the steel is 7.66 g/cm3. A sample
of the casing and tubing pipe, commonly referred to as 3.5” tubing was sent to LDJ
Electronics, Inc. in Troy, Michigan, USA, for hysteresigraph testing. The purpose of
the hysteresigraph test is to obtain several maximum hysteresis loops that can be
used to construct general hysteresis loops using the distance factor method
described in Section 2.2.5. Both AC and DC measurements were taken although
only the DC data is needed for the numerical model.

Table 2.6 summarizes the hysteresigraph tests performed by LDJ Electronics

Inc. on the casing and tubing.

DC Loop Tests

Sample Hysteresis Loop Coercive Saturation Relative Permeability

Peak Field Force Induction Winitial Kmaz
Alm Afm Tesla

31" Tubing 1,000 481 1.152

31" Tubing 8,000 575 1.747 416 1,233

7" Casing 1,000 452 1.092

7" Casing 500 9274 0.392

7" Casing 8,000 564 1.747 477 1,699

AC Loop Tests at 60 Hz
Sample Peak Induction Core Loss
Tesla W/kg
31" Tubing 1.0 60
7" Casing 1.0 59

Table 2.6: Summary of the LDJ Electronics Inc. tests.
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Figure 2.19: Hysteresis data for the 7" casing obtained using a hysteresigraph test as
received from LDJ Electronics Inc.

Figure 2.19 shows the hysteresis loops for the 7" casing. The hysteresis loops
are virtually symmetrical and very little correction to make them symmetrical is
required. The minor corrections that are required are to ensure that the upper
mazimum loop and downer mazimum loop are exactly symmetrical about the origin,
that the ends or peaks of the loops coincide with the peak magnetization curve, and
the peak magnetization curve begins at the origin and is also symmetrical.

The data must be filtered to ensure that the magnetic inducticn is
monotonically increasing for the upper loop and monotonically decreasing for the
downer loop. Otherwise the numerical calculation of u, may be negative which is
physically unrealistic. For the 500 A/m loop, the sample is far from saturation and
as shown in Figure 2.19 the loop is very asymmetrical about the origin and the peaks
of the loop do not follow the peak magnetization curve. This loop was discarded.

Notable characteristics of the raw data are
1. All but the 500 A/m curves are approximately symmetrical about the origin.
2. The 500 A/m is not symmetrical, since according to LDJ Electronics Inc. at
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500 A/m the test is conducted so far from the magnetic saturation of the
material that the casing is cycling in a minor loop and is likely in error. The

500 A/m data are not used in the construction of general hysteresis loops for
the EM Pipe Loss model.

. The end points or peaks of the 1,000 A/m loop do not lie on the peak

magnetization curve for the material. The data is scaled a minor amount so
that the end points of the loop exactly coincide with the peak magnetization

curve.

The peak magnetization curve does not begin exactly at the origin. The data
is shifted upwards a small amount so that the initial data point is located

exactly at the origin.

Although not visible on Figure 2.19, several of the adjacent data points are

not all either monotonically increasing or decreasing. These data are filtered.

. Also not visible on Figure 2.19 is that the loops do not lie entirely between the

maximum and minimum magnetic field strength for the loop. The loops are

scaled a minor amount so that the peaks exactly correspond to the peak
values of the field.

In summary then, the following modifications to the raw data were done so

that the curves can be used by the distance factor method to generate a hysteresis

loop for any applied magnetic field strength.

L.

Filter the data for the peak magnetization curve, downer loops, and the upper
loops to eliminate any magnetic induction data that is not increasing or

decreasing with increasing or decreasing magnetic field strength.

Shift the 1,000 and 8,000 A/m loops by the necessary +AB and +AH so that
they are symmetrical about the origin.

. Shift the peak magnetization curve by the necessary magnetic induction, B so

that the curve intersects the origin at H =0 A/m.

Scale the 1,000 A/m data so that the end points or peaks of the hysteresis

loop coincide with the peak magnetization curve at H =1,000 A/m.
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5. Finally, smooth the data using cubic spline interpolation so that the
derivatives between adjacent data points are smooth and the B — H data can
be used for small values of AH.
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Figure 2.20: Modification to the LDJ Electronics Inc. hysteresis data for the 7
diameter casing.

Since the magnetic field strength in our experiment at no time exceeded
2,000 A/m, a 3,000 A/m loop was constructed from the 8,000 A/m data using the
distance factor method described in Section 2.2.5. This reduced the number of data
points needed to define the hysteresis loops in the model.

The modified 3,000 A/m and 1,000 A/m hysteresis loops are input into the
EM Pipe Loss model and are used to construct a hysteresis loop for any value of the
magnetic field strength using the methods described in Section 2.2.5. A comparison
of the corrected hysteresis loops and the raw data for the casing are shown in Figure
2.20. It is evident from the figure that very little correction of the raw data was
necessary.

Several hysteresis loops for the casing constructed using the distance factor
method are shown in Figure 2.21. The constructed loops range in value from 250
A/m to 3,000 A/m.
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Figure 2.21: Several constructed hysteresis loops for the casing based on the LDJ
Electronics Inc. tests and calculated using the distance factor method.

The need to filter and adjust the raw data can be demonstrated by comparing
the relative permeability y, determined using raw data and the same raw data after
it has been appropriately modified. Figure 2.22 shows this comparison for the 1,000
A/m hysteresis loop.

It is evident that unless care is taken to modify the raw data, it cannot be
used in the numerical program. Since the adjustments made to the raw data are

minimal, they do not undermine the integrity of the calculated results.

2.4.4 Determination of the electrical conductivity of the
casing
The electrical conductivity of the casing is too large to measure using direct
methods. Alternatively, the electric field strength on the surface of the casing is

measured and the electrical conductivity is indirectly calculated using the Loga
analytic model which is described by Equations 2.50 and 2.51, [1].
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Figure 2.22: Comparison of the relative permeability u, calculated using raw and
modified data.

The electric field strength on the surface of the casing is intentionally kept
small so that hysteresis effects are negligible. Under these conditions, the fields are
linear and the Loga analytic model can be used to determine the electromagnetic
response of the pipe under sinusoidal excitation. The electrical conductivity is
adjusted until the calculated electric field strength equals the electric field strength
measured on the surfaces of the pipe. When the fields match, the electrical
conductivity for the steel pipe has been determined indirectly. Figure 2.23 shows
the locations where the electric field strength is measured.

The electric field strengths and phase angles with respect to the sinusoidal
excitation on the interior and exterior surfaces are measured at eight locations
circamferentially around the perimeter of the pipe as shown in Figure 2.23. The
measured data are summarized on Figures 2.24 and 2.25 for currents of 25 and 50 A
RMS.
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Figure 2.23: Measurement locations of the surface electric field strengths and phase
angles at various locations on the interior and exterior surfaces of the casing.

The data shows that the electric field strength is not uniform around the
perimeter of the casing as might be expected for a steel pipe with homogeneous
electrical properties. It is conceivable that the variation of the electric field strength
may be a result of non-homogeneous electrical properties created by the
manufacturing process for the steel pipe. Also, electromagnetic interference from
the transformer and power distribution system may affect the uniformity of the
electromagnetic field distribution in the pipe.

The pipe is fabricated from a large steel sheet that is rolled at high
temperature and welded along a seam to form a closed cylinder. Along the welded
seam, the electrical conductivity is expected to be different than elsewhere due to
the introduction of different materials to form the welding process. The location
where the minimum electric field strength on the outside surface and maximum on
the interior surface is measured, as shown on Figures 2.24 and 2.25, consistently

coincides with the location of the welded seam (Point 2).
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Figure 2.24: Measurement of the surface electric field strengths, (mV/m), and phase
angles, (degrees) at various locations on the interior and exterior surfaces of the 7"
casing for a sinusoidal excitation of 25 A (RMS) conducted in the centralized tubing.

For both the 25 and 50 amp RMS sinusoidal excitation, the average values of
the electric field strength on the interior and exterior surfaces are matched
respectively to the analytic model, one average electric field strength at a time, by
adjusting two respective electrical conductivities, o; and 0. Specifically, the
electrical conductivity o; is calculated to match the electric field strengths measured
on the interior surface of the pipe, and o,, is calculated to match the measurements
on the outside surface. An average electrical conductivity for the steel pipe is
obtained from the average of o; and o,,. The average values of the electrical
conductivity are shown in Table 2.7.

The relative permeability for the casing, y., used in the matching procedure
was measured by LDJ Electronics Inc. and is 269. This value of y, is larger than
the measured values for similar steel pipe published by Stroemich et. al. and Chute
and Vermeulen, [29] and [96]. However, it is generally observed that the magnetic
properties of the steel can vary between samples by as much as 200 to 300% , [29].

From Table 2.7 the electrical conductivity for the steel casing is between
6.46 - 10® and 7.31 - 106 S/m. The electrical conductivity measured at the two

different currents is not the same. The lower conductivity at 50 A could be a result
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Figure 2.25: Measurement of the surface electric field strengths (mV/m), and phase
angles, (degrees) at various locations on the interior and exterior surfaces of the casing
for a sinusoidal excitation of 50 A (RMS) conducted in the centralized tubing.

Low Current Tests
Current Average Measured E-Field Calculated o Average ¢

I E(R.) E(R:) o(Ry) o(R:) o

A RMS mV/m mV/m S/m S/m S/m
25 5.87 6.51 7.57-10° 7.05-10° 7.31-10°
50 12.56 14.12 6.76 - 10° 6.16-10° 6.46 - 10°

Table 2.7: Data used to determine the electrical conductivity of the 7" casing.

of non-linear magnetic effects in the steel pipe that are more significant at higher
currents and are not accounted for in the analytic model used to determine the
electrical conductivity. A value of 7.3 - 10° S/m was used as the bulk electrical
conductivity for the steel pipe since at the lower current, the effect of non-linear
hysteresis is minimal. This value is similar to the electrical conductivity for K-35

type pipe measured by Stroemich et. al. of 5.6 - 10° S/m, Reference [29].
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2.4.5 Validation of the EM Pipe Loss model using the
Electromagnetic Response Method

Figure 2.26 shows the measured electric field strengths and phase angles for
currents of 100, 200 and 275 A RMS conducted in the centralized tubing. Also
shown are the electric field strengths and phase angles calculated using the EM Pipe
Loss model. The 1000 A/m hysteresis loop was used as the maximum hysteresis
loop for the calculations. Additional input data are summarized in Table 2.8.

The measurement locations are indicated on Figure 2.26. The location
indicated by Point 2 coincides with the weld along the axial length of the pipe,
which is a result of the manufacturing process. This location consistently shows the

greatest variance in the measured data.

Data Symbol Value Units
Pipe Properties
Inner radius r; 83.185 mm
Outer radius Tw 89.345 mm
Length L, 4.010 m
Initial relative permeability Uy 269.00
Electrical conductivity Oy 7.30  10° S/m
Run Time Data
RMS excitation current I, 100 A
I 200 A
I 275 A
Frequency f 60.00 H:z
Size of time step AT  34.7220 pusec
Size of grid block Ar 0.1027 mm
Number of grid nodes Nrodes 61
Time steps per cycle N 480

Table 2.8: Pipe properties and input data for the FM Pipe Loss model used in the
electromagnetic validation.
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Figure 2.26: Comparison of the measured surface electric field strength, (mV/m),
and phase angles, (degrees) at various locations on the interior and exterior surfaces

of the 7" casing for currents of 100, 200 and 275 A (RMS) in the centralized tubing
to calculated values using the EM Pipe Loss model.
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Eta.l%urrent Measured E-Field Calculated E-Field % Difference

I, E(R,) E(R) E.(R.) E.R) & &
A RMS mV/m mV/m mV/im mV/m €w &

25 5.87 6.51 5.00 6.38 -2.16 +2.06
50 12.56 13.12 11.00 12.76 +4.49 +2.78
100 27.64 31.72 26.78 28.80 +3.08 +9.21
200 69.23 82.35 73.27 81.54 -5.85 +0.98
275 114.04 137.59  121.57 13239 -6.60 +3.78

Table 2.9: Comparison of the measured surface electric field strengths in mV/m with
the electric field strengths calculated by the EM Pipe Loss model.

RMS Current Measured 4 Calculated 4 % Difference

A O(R.) O(R:;) 0. R.) 0.(R) €& &
50 4471 45.12 43.25 4350 +3.27 +3.60
100 4099 42.88 41.00 41.00 -2.04 +2.04
200 34.79 35.98 37.50 3825 -7.80 -6.32
275 32.39 3258 33.75 3450 -4.21 -5.91

Table 2.10: Comparison of the measured surface phase angle § in degrees with calcu-
lated values of 8 by the EM Pipe Loss model.

Overall, there is good agreement between the measured and numerical data for
electric field strengths and phase angles. Tables 2.9 and 2.10 summarize the results
for the electromagnetic validation shown in Figure 2.26. The results obtained with
the EM Pipe Loss model differ by less than 4° from the measured surface electric
field strength or phase angle data.

2.4.6 Validation of the EM Pipe Loss model using the
Thermal Response Method

In this section the power losses calculated using the EM Pipe Loss model are

compared to the power losses that are derived from the measured thermal response
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of the casing. This approach is called the thermal response method for determining
the power losses. The approach follows the work of Stroemich et. al., [29]. They
measure the time rate of change of temperature of a current carrying thermally
insulated casing and determine from it the power that is absorbed to generate the
measured temperature response.

Stroemich et. al. compared the results obtained from the thermal response
method to the power calculated indirectly from the measured electric and magnetic
field strengths and demonstrated that the results from the two methods compare to
within 5% of each other. The thermal response method is preferred over the indirect
method for calculating power from measured electric and magnetic field strengths
because the measurements that are conducted are less likely to be affected by
electrical interference. Also, the purpose of the EM Pipe Loss model is to determine
the power losses in the pipe. Since the thermal response method is a direct measure
of the conversion of electrical energy to heat, it is important that the calculations
made using the EM Pipe Loss model agree with the losses that are determined
experimentally.

During the initial heating of the casing while its temperature is very close to
room temperature, heat transfer from the thermally insulated casing by conduction
and natural convection is assumed negligible and the thermal response may be

defined by the following equation,

T
P = pC, AVa— (2.56)
at
In Equation 2.56 P is the power loss in volume AV of the pipe and must be
equal to the power flow into the pipe through the interior and exterior surfaces

determined using Poynting’s Theorem,

P

ZZ = rms(ri) Lims 603(0;') + Erms(rw) I, Cos(ow) (257)

In Equation 2.57, I, is the current flowing in the centralized tubing and is
measured using a true RMS meter. The heat capacity, pC,, of the steel 7" casing is
obtained from Reference [97] and is 3.7 - 108 J/(m? °C). The rate of temperaturz T

orT

rise, — is approximated from the slope of the temperature versus time data, A7

T ot
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during the early time region of the experimental data as shown in Figure 2.27. Once

the slope is known, P can be calculated directly from Equation 2.56 and compared

to the calculation of the power losses calculated using the EM Pipe Loss model.
The slope of the temperature versus time data, —— is determined from the

At

experimental data as follows:

1. The initial measured temperatures at the three thermocouples located on the
casing are averaged to provide an estimate of the initial temperature of the

casing, T, = (Tleft + Teentre + Tright)/3'

2. The three temperature data are averaged at each sample time. The several
averaged sampled data from ¢ = 0 to t = t; are then fit to a linear equation
T(t) =T, + mt using a least squares method and a value for m is determined.

AT

The slope m is the time rate of temperature rise R

3. The value of ¢; is decreased (the number of samples fit to the linear equation

are reduced) until a reduction in ¢; does not change the value of m.

4. The smallest value of ¢; obtained in the previous step defines the early time
region since the temperature response during 0 < ¢ < t; can be defined by

Equation 2.56. During this period =~ m and the power converted to heat

' 9t

can be calculated directly and compared to the power losses calculated using
the EM Pipe Loss model.

Figure 2.28 summarizes the measured rate of temperature rise in the 7" casing
for the range of currents used in the experiment. The data for Figure 2.28 was
determined using the above procedure.

It was observed that the temperature response of the thermocouples is highly
dependent on the integrity of the contact of the thermocouple at the point of
measurement. When 2 small pressure was applied to the theralso themocouple it
was observed that the measured temperature increased by as much as 5 to 10 °C.
This can be seen in Figure 2.27 where the right thermocouple is in poor contact at
the point of measurement. In most of the calculations the right thermocouple data
could not be used.

Additionally, it is possible to compare electric fields deduced from the

measured power losses with numerically calculated values. This is not a true
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Figure 2.27: Illustration of the Thermal Response Method using the temperature
response of the 7" casing for a current of 500 A (RMS) in the centralized tubing.
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Figure 2.28: Measured rate of temperature rise in the 7" casing as a function of the
RMS current conducted in the centralized tubing.

validation of the numerical model since the electric field strengths thus deduced are
not measured directly but are derived from the measured power losses using

Equation 2.57 and approximations for the value of the phase angles, 6; and 6,,.
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The surface electric field strengths are determined from the measured power
losses as follows. Once the power is calculated the unknowns in Equation 2.57 are
Erms(ri)y Erms(Tw), i, and 8,,. For a linear magnetic material, Loga’s analytic
model (Reference [1]) shows that,

T

Erma(rw) =~ Erma(ri)‘;_ (258)

w

Also, the phase angle between the magnetic and electric field strengths on the
interior and exterior surfaces, 4; and 0., are approximately the same so 6,, = ;.
Values for §; are obtained from measured data for a similar sample of pipe published
by Stroemich et. al., [29]. This combined with Equation 2.58 leads to an
approximate value for the electric field strength,

P w(r? —-r?

P ,. 2.
Erms(r ) 1+ .rlull. I, cost; ( 59)

Values for both the experimentally measured power and for the electric field
strengths obtained using Equations 2.56 and 2.59 respectively are compared to
values calculated using the EM Pipe Loss model. In the numerical calculations, the
1,000 A/m hysteresis loop is used when the magnetic field strength is less than
1,000 A/m, and for values of the magnetic field strength greater than 1,000 A/m
the 8,000 A/m hysteresis loop is used. This approach was recommended by
technical specialists at LDJ Electronics Inc., the firm engaged to obtain the
hysteresis loop data [98].

Figure 2.29 compares the total power losses in the pipe obtained
experimentally from Equation 2.56 with the power losses calculated by the EM Pipe
Loss model. Figure 2.30 shows the percent of the losses shown in Figure 2.29 that
are attributed to hysteresis losses, as calculated using the EM Pipe Loss model. The
results compare favourably as indicated by the percentage difference ranging from
just less than 1.0% to about 6.0%.

Figure 2.29 suggests closer agreement between the two calculations at higher
current levels. This may be due to two factors. At the higher current levels the
early time slope of the temperature versus time data can be obtained in a shorter

period of time, reducing the influence of heat losses through the thermal insulation.
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Figure 2.29: Comparison of the experimental data and numerical calculation of the
losses for the 4.0 meter long section of 7 casing used in the test as a function of the
RMS current in the centralized tubing.

As well, the accuracy of the numerical model may improve at the higher currents
since more data points are used to define the hysteresis loops at greater values of
the magnetic field strength.

The results shown in Figure 2.30 show that the portion of the losses attributed
to hysteresis achieves a maximum at relatively low currents. This result is not
intuitively obvious. Previous studies have ignored the effects of hysteresis on the
basis that the current in the pipe was sufficiently small, [1], [29]. A method to
determine at what maximum magnitude the current had to be for which hysteresis
effects could be ignored was never quantified until now. Figure 2.30 shows that for
the sample of pipe used in this thesis, the effects of hysteresis should not be ignored
for total currents greater than 100 A RMS.

As a final confirmation, Equation 2.59 is used to compare the surface electric
fields derived from the test data with those calculated using the EM Pipe Loss
model. This is not a validation of the model for reasons already stated, but it does
provide an indication of the consistency of the numerical model. The comparison is
shown Figure 2.31.

The results shown in Figure 2.29 experimentally validate the EM Pipe Loss
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Figure 2.30: Percent hysteresis losses for the power losses shown in Figure 2.29 de-
termined using the EM Pipe Loss model.
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Figure 2.31: Comparison between the surface electric field strength derived from the
test data and Equation 2.59 and calculated using the EM Pipe Loss model.

t

model as a tool for determining the combined hysteresis and eddy current losses in
pipe made of non-linear magnetic material. Up to this point, the EM Pipe Loss
model has been successfully validated using an analytic model, {1], and by

comparison to the Zakrzewski-Peitras numerical model which is a similar problem in

78




the Cartesian coordinate system, [86], and finally by using experimental data from
the test conducted as part of this thesis. The following section uses the EM Pipe
Loss model to generate the power loss function that is needed in the next chapter to

solve the heat transfer probiem for an electrically heated horizontal well.

2.5 Power Loss Interpolation Function for the

Horizontal Wellbore

For the heat transfer problems that are solved in the next chapter, an energy
source must be developed as a function of z, the axial coordinate along the length of
the horizontal well, that accounts for both eddy current and hysteresis losses. The
primary goal of the EM Pipe Loss model is to assemble the information required to
define such an energy source function for the pipe. This function is constructed in
terms of the power losses per unit volume and is defined as g2(z), where the
subscript 2 indicates Region 2, and the dot over the ¢ indicates a rate of energy
consumption, i.e., power. Region 2 refers to the cylindrical region occupied by the
steel of the horizontal casing, and is so designated for later convenience in
conducting the work described in Chapter 3 of this thesis. For a more detailed
description of the regions please refer to Figure 3.1 in Chapter 3.

The approach used in this thesis to arrive at a suitable ¢z(z) is similar to that
developed by Stroemich et. al., [29]. They experimentally obtain the effective
impedance as a function of the current flowing in the casing. The significant
difference between the work of Stroemich et. al. and the work described in this
thesis is that the effective impedance of the casing is not constant along the length
of the casing but varies with axial position on the casing. This is due to the
non-uniform axial distribution of current that flows in the casing.

It is important to characterize the electromagnetic problem for the casing in
the horizontal section of the wellbore in order to appreciate the development of
g2(2z). The casing in the horizontal section of the wellbore is a long, single, and
continuous piece of pipe that is in direct contact with the reservoir over a length of
several hundred meters, as shown in Figure 2.1. The current source is located in the

reservoir a large distance from the horizontal wellbore, and current is assumed to
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collect uniformly on the surface of the horizontal pipe. For brevity, we now replace
T and r., shown for the casing in Figure 2.2 by r; and r,,. Since there are no
current sources in the interior of the pipe, and since there is cylindrical symmetry,
then from Ampere’s law, the magnetic field strength on the interior surface at r = r;
is Hy(ri,z,t) = 0.0. The magnetic field strength at the outer surface is determined
by the current flowing axially in the casing and from Ampere’s law is

Hy(ry,2,t) = I(z)/(27ry), where I(z) is the axial current in the casing at location
z. The origin, z = 0, is located at the far end of the horizontal well, away from the
vertical casing. Since current from the reservoir is assumed to collect uniformly on
the casing, I(z) = I;(z/l), where [ is the length of the horizontal casing. These two
boundary conditions for the magnetic field strength,

Hy(r;,z,t) =0.0
I z (2.60)

Ho(rw,2,t) = 277y |

are used in the EM Pipe Loss model to determine the effective impedance of the
pipe from the calculated surface electric field strength.

Following Stroemich’s approach, the effective pipe impedance per unit length
is defined using the surface electric field strength as

Erms(2) 00 [©
Z= I—m% ) [-m—] (2.61)
where E,., is the RMS phasor magnitude of the z-directed electric field calculated
at the outer surface of the casing, and I m,(z) is the RMS magnitude of the
excitation current flowing in the casing at z. Here I ;m,(z) = 271, Hrms(z) where
H,.mms(z) is the ¢ directed magnetic field strength at the outer surface of the casing.
The angle 8 represents the phase angle by which the electric field strength leads the
magnetic field strength. Values for E.,(2), Hrms(2), and 8(z) are calculated by use
of the EM Pipe Loss model.

The effective impedance can be represented by an effective series resistance, R,

and series reactance, X. In terms of the RMS values of the electric field strength
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and current these are expressed as,

Erms(2)

R(z) = cos (z)
Iims(2)
x(z) = ZmeZ) 00y (20
- [rms(z)

Using the approach adopted by Stroemich, the effective resistance, R, of the

casing yields the power losses per meter of pipe from
P(z) = Ipms(2)? R(2) (2.63)

In this thesis the power losses in the casing, ¢,(z) = P(z)/V;, are expressed in
terms of losses per cubic meter of pipe material, V;. The effective resistance can be
expressed in terms of an effective resistivity, p,. Equations 2.62 and 2.63 now lead

to an expression for the power losses per m? of casing material as a function of z,

a@(z) = p,['L;(z—z)— (2.64)

V4
[
and A, is the the cross-sectional area of the casing.

where I.m,(z) = I;—, and [ is the total rms current flowing in the casing at z = {,

To describe the non-linear dependence of the resistivity on current requires
that p, be expressed as a function of the current flowing in the pipe at z. Thus, the

definition of the heat source term in Equation 2.64 must be restated as

Irms (2)?

42(2) = ps([rms(z)) A2

= p.(Z)i—?3 G)Z

A plot of p, versus I m, is generated using the EM Pipe Loss model. An n'?

(2.65)

order polynomial is then fitted to the plot of p, versus I.,, to generate a suitable

pa(Irma)- Since I,.m,(z) = It%

independent variable and determine a general polynomial curve fit for the

, it is possible to directly substitute z as the
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resistivity, p,(z), as follows

Ps(Irms(2)) = ps (L%)

ps(z) = Zn:u‘ (1‘) X (2.66)

1=0

where u; are the coefficients of the nt* order polynomial fitted to a plot of resistivity
versus current.
Substituting Equation 2.66 into Equation 2.65 results in an equation for the

electrical losses in the pipe

g (2) = rms(z) Z ( ) i

=0

1 (I L\ ;

o (" 1) 5= () 2.67)
1 n It 142 ir2
= 32 Z (T) 2"

s i=0

Equation 2.67 conveniently expresses the non-linear relationship between
current and electrical losses. All that is necessary is to determine the dependence of
the effective resistivity on current, which is a linear function of z. Then, using a
curve fitting method, the coefficients u; can be determined.

A plot of resistivity versus the RMS current for the sample of 7" K-55 casing
is shown in Figure 2.32. The input data to the EM Pipe Loss model are
summarized in Table 2.11. The data calculated using the EM Pipe Loss model have
been fitted to a third order polynomial.

Finally, the u; coefficients are obtained using the Marquardt-Levenberg
algorithm packaged in the mathematical graphing program called Gnuplot and are,

uo = 0.393886

u; = 0.00350495

u; = —2.15843 - 107°
usz = —3.15483 - 1071°

(2.68)

Any positive order polynomial may be used. However, Figure 2.32 shows that
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Figure 2.32: Resistivity as a function of the RMS current for the 7 K-55 steel casing,
used in the horizontal wellbore.

the third order polynomial provides adequate interpolation of the data.

The effect of temperature on the resistivity is not accounted for in the
calculation of ¢3(z). To include temperature effects will result in a non-linear heat
transfer equation that cannot be solved analytically. Stroemich et. al., [29],
observed that the overall increase in power dissipation due to temperature effects for
oil field tubulars was minimal. With constant current, an increase in temperature of
50 °C in the pipe resulted in an increase in power dissipation of only 12.0%. Thus,
the EM Pipe Loss model will calculate a slightly conservative ¢;(z) for a given
operating current. The polynomial equation defined by the coefficients of Equation
2.68 will be employed in solving the heat transfer problems addressed in Chapter 3.

2.6 Analysis using the FM Pipe Loss Model

In this final section the EM Pipe Loss Model is used as a numerical tool to
analyse various electromagnetic problems. Some of the problems that can be
analysed using the EM Pipe Loss Model are:

1. The impact of hysteresis on the distribution of the electromagnetic fields and

power losses in steel pipe.
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Data Symbol  Value Units

Pipe Properties

Inner radius r; 83.185 mm

Outer radius Ty 89.345 mm

Length L, 4.007 m

Initial relative permeability Ly 269.00

Electrical conductivity Oy 7.30 105 S/m
Run Time Data

Peak excitation current I, variable A

Peak magnetic field strength. Hy(r,) variable A/m
Hy(r;) 0.0 A/m

Frequency f 60.00 H:z
Size of time step AT 34.7222 usec
Size of grid block Ar 0.1027 mm
Number of grid nodes Nnodes 61
Time steps per cycle N 480

Table 2.11: Input data for the EM Pipe Loss model which is used to determine p,(z).

2. The significance of hysteresis losses in the casing in relation to the resistive

losses as a function of the current conducted in the centralized tubing.

3. The effect of the electrical conductivity of the steel pipe on the significance of

hysteresis losses in relation to the resistive losses.

4. The impact of the hysteresis loop data on the calculation of the

electromagnetic response of the steel pipe.
5. The calculation of the effective pipe resistance for the casing.

Unless otherwise specified the example problems that are considered below are
for the ungrounded casing in the vertical section that supplies power to the
horizontal wellbore. Also, only the 8000 A/m hysteresis loop data are used in these
examples. This means that a large range of the excitation magnetic field strengths
can be accommodated and that the complexity of the problem is minimized since
only the data for a single experimentally measured hysteresis loop is utilized. In a

following subsection, the impact of using different hysteresis loop data for the same
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material will be analysed.

2.6.1 Impact of hysteresis on the distribution of the

electromagnetic fields and power losses in steel pipe

The effects of hysteresis on the distribution of eddy currents and losses in the
casing in the vertical section of the wellbore are analysed. The input data for the
problem are summarized in Table 2.12. The current in the centralized tubing is 500
A RMS. The current produces Hy(r;) = 1, 352.88 sin(wt) on the interior surface of
the pipe and Hy(r,) = 1,259.60 sin(wt) on the exterior surface of the pipe.

Data Symbol Value Units
Pipe Properties
Inner radius T 83.185 mm
Outer radius Tw 89.345 mm
Length L, 4.007 m
Initial relative permeability Ur 269.00
Electrical conductivity 05 7.30 108 S/m
Run Time Data
Peak excitation current I, 707.11 A
Peak magnetic field strength. Hy(r;) 1352.88 A/m
Frequency f 60.00 Hz
Size of time step At 34.7222  pusec
Size of grid block Ar 0.2053 mm
Number of grid nodes Niodes 31
Time steps per cycle N 480

Table 2.12: Pipe properties and runtime data for the EM Pipe Loss model.

Figures 2.33 and 2.34 compare the RMS values of electric and magnetic field
strengths in the 7" casing with and without hysteresis effects. Tables 2.13 and 2.14
summarize the results of the calculations.

The redistribution of the electric field strength towards the interior and
exterior surfaces when hysteresis is present results in an eddy current loss that is
nearly twice as large as when no hysteresis is present. In addition, the magnitude of

the hysteresis loss is comparable to the eddy current loss in the pipe when hysteresis
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Figure 2.33: The effect of hysteresis on the distribution of the electric field strength

for the 7" steel casing for the case when the current in the centralized tubing is 500
A RMS at 60 H=.

is not considered. Thus, for this typical example, where the current in the
centralized tubing is 500 A RMS the overall impact of hysteresis is to increase the
total power losses by a factor of about three.

As shown in Figure 2.33, hysteresis forces the current to flow near the surfaces
through a smaller effective area and therefore the current density, J, and losses are
greater than when hysteresis is not present. The effective area depends on the depth
of penetration of the electromagnetic fields, termed the skin depth 8. The skin
depth is the distance the electromagnetic wave penetrates into the material before
being attenuated in magnitude by a factor equal to e~!. For a plane wave it is given

by the equation,

F . S (2.69)

VT e poos
where f is the frequency, . is the relative permeability, u, is 47 - 107 and o, is
the electrical conductivity of the steel. The units for § are meters.
The skin depth & for the cylindrical 7" casing, for the case with no hysteresis,
is estimated from Figures 2.33 and 2.34 and is 1.54 mm. The value calculated for a

plane wave from Equation 2.69 is 1.47 mm. The skin depth when hysteresis is

86




1000 —— - = e - e ——

' . With Hyéteresis - -
900 - No Hysteresis = ‘ '

800 - . -
700
600
500
400 -
300 ’L . - 1
200 - . A 5
100 - T - 7

0! . ‘ . . . j
83 84 85 86 87 88 89 90

Radial Distance [mm]

1

Magnetic Field Strength [A/m)

Figure 2.34: The effect of hysteresis on the distribution of the magnetic field strength
for the 7" casing for the case when the current in the centralized tubing is 500 A RMS
at 60 Hz.

present is approximately 0.54 mm. Using this value of skin depth in Equation 2.69
an effective relative permeability p, of the magnetic material can be calculated.
Here p, is the value of relative permeability that a fictitious material which does not
possess hysteresis would have to exhibit to lead to the same skin depth as that
shown by the actual steel of the pipe. For a skin depth of 0.54 mm, ., for the
material is 2,421.

Referring to Tables 2.13 and 2.14, the power loss for the case with hysteresis is
approximately three times greater than when hysteresis is not present (exactly 2.75
times). This example calculation clearly demonstrates that hysteresis effects cannot
be overlooked in the design of an electrical heating system for oil field or

environmental applications when calculating the power losses.

2.6.2 The hysteresis losses as a function of the current
conducted in the centralized tubing

The purpose of this section is to analyse the relative importance of hysteresis
as a function of current magnitude and thus indirectly as a function of the magnetic

field strength. Figures 2.35 and 2.36 show the losses and phase angles as a function
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Data Symbol  Value Units

Power Calculations

Poynting Power P(r;) 46.58 (W/m]

P(ry) 44.20 (W/m]
Total Poynting Power P, 90.78 [W/m]
Eddy Current Losses P,. 89.34 [W/m]
Hysteresis Losses Py 0.00 [W/m]
P.. + P losses P.in 89.34 [W/m]
Percent Hysteresis Losses 0.00 Percent

Electro-Magnetic Calculations

RMS Electric Field E.(ri) 127.4640 [mV/m]
E.(r.) 119.8634 [mV/m)]

Skin Depth ) 1.53 [mm)]

Phase Angle 0(r:) 42.75  [degrees]

6(rv) 42.00 [degrees]

Table 2.13: Results for the 7" casing for the case without hysteresis when the current
in the centralized tubing is 500 A RMS at 60 Hz.

of current magnitude. Also plotted on each of the figures are the contributions of
the hysteresis losses to the total losses as a function of current magnitude.

Figure 2.19 shows the family of hysteresis loops for the sample of 7" casing
used in the experimental tests. At larger values of magnetic field strength, an
incremental change in the magnetic field strength does not change the area enclosed
by the hysteresis loop as much as the same incremental change at lower values of
magnetic field strength. The area of the hysteresis loop is directly related to the
hysteresis loss. Thus for a given incremental change in magnetic field strength, the
larger changes in hysteresis losses will occur at lower values of the magnetic field
strength. Also, at the higher values of the magnetic field strength, which
corresponds to greater excitation current, the eddy current losses, which are
proportional to the square of the current density, increase at a greater rate than the

hysteresis losses. This is evident on Figure 2.35.
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Data Symbol Value  Units

Power Calculations

Poynting Power P(r;) 125.64 [W/m]
P(ry) 119.56 [W/m]
Total Poynting Power P, 245.20 [W/m]
Eddy Current Losses P.. 164.86 [W/m]
Hysteresis Losses P, 68.84 [W/m]
P.. + P losses Pecpn  233.70 [W/m]
Percent Hysteresis Losses 29.46 Percent
Electro-Magnetic Calculations
RMS Electric Field E.(r;) 281.23 [mV/m]
E.(r.) 267.10 [mV/m]
Skin Depth ) 0.54 [mm]
Phase Angle 8(r;)  23.25 [°]

0(rv) 24.00 [°]

Table 2.14: Results for the 7" casing for the case with hysteresis when the current in
the centralized tubing is 500 A RMS at 60 Hz.

In summary, the relative importance of hysteresis does not always increase
with the strength of the magnetic field strength as might be expected. On the
contrary, the largest contribution of the hysteresis losses to the total power losses
may actually occur at a much lower magnetic field strength than the saturation
magnetic field strength, as shown in Figure 2.35. These results are consistent with
experimental results presented by Stroemich et. al. {29].

The phase angles shown in Figure 2.36 represent the phase angles by which
the electric field leads the magnetic field strength on the interior and exterior
surfaces of the pipe. As the magnetic field strength increases little change in the
phase angle is observed until the percentage of losses due to hysteresis is greater
than 10%. At this point, the phase angle decreases very rapidly, leveling off at
higher values of magnetic field strength. Again, these results are consistent with
experimental results obtained by Stroemich et. al., [29].
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Figure 2.35: Analysis of the aggregate power losses per meter length of the 7" casing
as a function of the magnitude of the current conducted in the tubing.
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Figure 2.36: The phase angles on the interior and exterior surfaces of the 7" casing
as a function of the magnitude of the current conducted in the tubing.

2.6.3 The effect of the electrical conductivity of the pipe on

the power losses in the casing

The effect of the electrical conductivity of the steel on the power losses is

investigated in this section. Three scenarios are presented: casing with low electrical
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conductivity steel, casing with the measured conductivity of the steel (the base
case), and a high conductivity casing. Each incremental change in electrical
conductivity is an order of magnitude, as summarized in Table 2.15. For the high
conductivity case, the size of the grid blocks had to be reduced since the skin depth

is very small. The number of grid nodes was increased from 31 to 61.

Data Symbol  Value Units
Pipe Properties

Inner radius T 83.190 mm

Outer radius Tw 89.340 mm

Length L, 4.007 m

Initial relative permeability Lr 269.00

Electrical conductivity o

Low Case 0.73 108 S/m

Base Case 7.30 106 S/m

High Case 73.00 10° S/m
Run Time Data

Peak excitation current I, Variable A

Peak magnetic field strength. Hy(r;) Variable A/m

Frequency f 60.00 H:

Size of time step AT 34.7222 u sec

Size of grid block Ar 0.1027 mm

Number of grid nodes Niodes 61

Time steps per cycle N 480

Table 2.15: Pipe properties of the 7 casing and input data used for evaluating the
effect of electrical conductivity on the power losses in the casing.

Figure 2.37 shows the relative increase in hysteresis losses as the electrical
conductivity of the material is decreased. The increase in hysteresis losses is
consistent with the increasing depth of penetration of the electromagnetic wave into
the material as the electrical conductivity is decreased. This can be deduced from
the equation for skin depth, Equation 2.69, which states that the depth of
penetration is inversely proportional to the square root of the electrical conductivity.
On the other hand, as the electrical conductivity increases, the penetration of the
wave into the material decreases. Thus, the volume of material that is significantly

exposed to the magnetization process and associated hysteresis losses is diminished.
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Figure 2.37: Hysteresis losses per meter of the 7° casing as a function of the magnitude
of the current conducted in the tubing and for various values of electrical conductivity.
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Figure 2.38: Eddy current losses per meter of the 7" casing as a function of the RMS
current conducted in the 33 tubing and various values of electrical conductivity.

Figure 2.38 shows the increase in eddy current losses as the electrical
conductivity of the material is decreased. This increase is consistent with the

resulting overall increase in resistance of the material, and thus greater losses are
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expected. However, the increase in eddy current losses is not proportional to the
decrease in electrical conductivity, which is especially evident for the higher
conductivity calculations. The argument for limited depth of penetration of the
electromagnetic field into the material is valid for both eddy current and hysteresis
losses. At the higher electrical conductivity, the electric field strength is
concentrated on the two surfaces of the material and, therefore, the current density
and associated losses are greater. Therefore, as shown on Figure 2.38, a ten fold
increase in electrical conductivity, from o, = 7.3 - 10% to o, = 7.3 - 107 results in a

power loss at 1000 A RMS that is diminished to approximately 1/3 or 1/+/10.
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Figure 2.39: Total losses per meter of the 7" casing as a function of the RMS current
conducted in the tubing and various values of electrical conductivity.

Figure 2.39 shows the total power losses as a function of current. The
relationship between total power losses and current is investigated for the three
cases. For a linear material, the total power losses are proportional to the square of
the current, P, o I2. However, the presence of hysteresis in the material changes
the relationship dramatically. The total power loss as a function of current is fit to
the curve P; = a If for values of current where the contribution of hysteresis losses
exceeds 15%. This occurs for I, > 200 A RMS. The curves are fit to the calculations
using the Marquardt-Levenberg algorithm for non-linear least squares curve fitting.

Table 2.16 summarizes the results.
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os [S/m]

7.3-105 P, = 1.54 - (1,)196
7.3-108 P, =0.19 - (I,)!229
7.3 107 Pg ——_-_0.04 . (Ig)1'2768

Table 2.16: Functional relationship for the 7" casing between total power, P,, and
current, [, for I, > 200 A RMS and the three different values of electrical conduc-
tivity.

Referring to Figure 2.39, the plots of the percent hysteresis losses for the three
cases indicate that for the lowest conductivity case the overall contribution of the
hysteresis losses is about 70% greater than hysteresis losses found in the higher
conductivity cases. The results presented here permit an estimate of the power
losses in the casing in the vertical section of the horizontal wellbore to be made.
These losses do not increase as the square of the current as would be the case if

hysteresis were not present.
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Figure 2.40: The RMS value of the electric field strength in the 7" casing for various
values of electrical conductivity and a current of 500 A RMS in the tubing.

The electromagnetic field distributions in the casing for the various values of

electrical conductivity are shown in Figures 2.40 and 2.41. The fields are calculated
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Figure 2.41: The RMS value of the magnetic field strength distribution in the 7°
casing for various values of electrical conductivity and a current of 500 A RMS in the
tubing.

for an excitation current of 500 A RMS conducted in the concentrically located
tubing. These figures show the attenuation of the electromagnetic fields as the
electrical conductivity of the material increases. The depths of penetration as
defined by the skin depth, &, for the three cases are compared to the theoretical
values for the case of no hysteresis, using the value of u, = 269, as measured by LDJ

Electronics Inc., for the casing, and using Equation 2.69. The results are

summarized in Table 2.17.

o, [S/m] Calculated § [mm] Theoretical § [mm] Ratio
With Hysteresis = Without Hysteresis

Kr = 269
7.310° 1.7140 4.6367 2.7052
7.3108 0.5460 1.4662 2.6853
7.3107 0.1829 0.4637 2.5353

Table 2.17: Effect of electrical conductivity on the depth of penetration of the elec-
tromagnetic field into the 7" casing.
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The effect of hysteresis on the distribution of the electromagnetic field in the
material is significant. The distance the wave penetrates into the material is
reduced by a factor of almost three leading to a corresponding redistribution of the
eddy currents.

Tables 2.18, 2.19, and 2.20 summarize the power loss and electro-magnetic
results for the calculations using three different electrical conductivities and a
current of 500 A RMS. The effect of electrical conductivity on the power losses in
the pipe when hysteresis effects are taken into account show that the relationship
between power loss and current is not as predictable as for a magnetically linear
material. The hysteresis losses have to take into account the magnetic properties of

the pipe or extreme errors in the estimate of the losses will result.

Data Symbol Value  Units
Power Calculations
Poynting Power P(r;) 386.09 [W/m]
P(ry) 374.09 [W/m)]
Total Poynting Power P, 760.18 [W/m]
Eddy Current Losses P.. 527.36 [W/m]
Hysteresis Losses Py 230.72 [W/m]
P.. + Py losses P..on 758.08 [W/m]
Percent Hysteresis Losses 30.43 Percent

Electro-Magnetic Calculations

RMS Electric Field E.(r;) 89125 [mV/m]
E.(ry) 859.88 [mV/m]

Skin Depth ] 1.71 [mm]

Phase Angle 6(r;)  24.75 [°]

0(ro)  25.50 ]

Table 2.18: Results for the 7" casing for the case with o, = 7.3 -10° S/m and a
tubing current of I;,,, = 500A.
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Data Symbol \;a.lue Units

Power Calculations

Poynting Power P(r;) 12243 [W/m]

P(ry) 117.17 [W/m]
Total Poynting Power P 239.60 [W/m]
Eddy Current Losses P.. 168.16 [W/m]
Hysteresis Losses Py 68.45 [W/m]
P.. + P, losses Peetn  236.62 [W/m]
Percent Hysteresis Losses 28.93 Percent

Electro-Magnetic Calculations

RMS Electric Field E.(r;) 278.56 [mV/m]
E.(r,) 266.56 [mV/m]

Skin Depth ) 0.54 [mm]

Phase Angle 6(r;) 23.25 °]

6(r.)  24.0 [°]

Table 2.19: Results for the 7" casing for the case with o, = 7.3-10 S/m and a
tubing current of I, = 500A.

2.6.4 Impact of the choice of hysteresis loop data on the
calculation of the electromagnetic response of the
steel pipe

In this example, the impact of the hysteresis loop on the loss calculations is
investigated. Several hysteresis loops were obtained for the 7 casing sample sent to
LDJ Electronics Inc. The first test was for a loop that ranged to the saturation
magnetic field strength of the material, Hjoop = Hset = £8,000 A/m. Then a second
test was done to generate data for a loop that ranged to a magnetic field strength of
Hioop = £1,000 A/m, and the last test was for a loop that ranged to
Hioop = £500 A/m. Only the first two loops provided data that can be used in the
numerical model. These loops and associated peak magnetization curves are

reproduced in Figure 2.42.

97



Data Symga Value  Units

Power Calculations

Poynting Power P(r;) 40.12 [W/m]
P(ry) 37.36 ([W/m]
Total Poynting Power P, 77.48 [W/m]
Eddy Current Losses P.. 50.08 [W/m]
Hysteresis Losses Py 21.74 [W/m]
P.. + P4 losses Py 71.83  [W/m]
Percent Hysteresis Losses 30.27 Percent
Electro-Magnetic Calculations
RMS Electric Field E.(r;) 85.56 [mV/m]
E.(ry) 79.77 [mV/m]
Skin Depth ) 0.18  [mm]
Phase Angle 6(r;)  22.50 [°]

8(ro) 2475  []

Table 2.20: Results for the 7" casing for the case with o, = 7.3-107 S/m and a
tubing current of I.,, = 500A.

Figure 2.42 shows that a difference in the magnetization processes for the
same material, as indicated by the different peak magnetization curves, takes place
for the two tests. Clearly, the first test, which was conducted to the saturation
conditions of the material, altered the magnetic characteristics of the material. This
demonstrates that the history of magnetization for the material is important in
determining the magnetic response of the material to sinusoidal excitation. This is
consistent for a material that exhibits magnetic hysteresis. As a result, the
calculations for power and the electromagnetic response of the material will be
different, depending on which loop is used in the calculation.

The calculations are restricted to a peak excitation current, /,, ranging from
0 < I, < 368A RMS. For currents exceeding this range, the 1,000 A/m data cannot
be used since the distance factor method can only generate hysteresis loops that are
less than the maximum hysteresis loop. Additional input data for the calculations

are summarized in Table 2.21.
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Figure 2.42: The 3,000 A/m and 1,000 A/m loops obtained from LDJ Electronics
Inc. for the 7" diameter casing.

Figures 2.43 and 2.44 show the electric and magnetic field strengths for the
3,000 A/m and 1,000 A/m loop cases. The figures show a noticeable difference in
the electromagnetic response of the material for the two different characterizations
of the magnetization process. Of particular interest are the differences in the
magnitudes of the surface electric field strengths. The surface electric field strength
calculated with the 3,000 A/m loop is about 25% greater than that calculated for
the 1,000 A/m loop. This will have a notable impact on the calculation of the
power losses since the surface electric field strength is used to determine power flow
into the material by application of the Poynting vector.

A comparison between the results of the calculations using the two different
hysteresis loops is summarized in Table 2.22. The greatest differences arise as a
result of the differences in distribution of the electric fields for the two different
loops. Therefore, the eddy current losses and consequently total power losses are
affected significantly.

It is difficult to know what curves should be used in the simulation of the
magnetization process. Experts at LDJ Electronics Inc. recommend the use of the

curves that are obtained near the operating conditions for which the calculation is
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Data S;mbol Value Units

Pipe Properties

Inner radius ri 83.185 mm
Outer radius rw 89.345 mm
Length L, 4.007 m
Initial relative permeability Ly 269.00
Electrical conductivity o, 730 10 S/m
Run Time Data
Peak excitation current I, 520.00 A
Peak magnetic field strength  Hy(r;)  994.90 A/m
Frequency f 60.00 H:z
Size of time step AT 34.7222  usec
Size of grid block Ar 0.1027 mm
Number of grid nodes Nrodes 61
Time steps per cycle N 480

Table 2.21: Pipe properties and runtime input data for comparing the effect of dif-
ferent hysteresis loops using the EM Pipe Loss model.

intended. Thus for current levels less than 520 A (368 A RMS), the 1,000 A/m
loops should be used. Their advice was adhered to in this thesis, and resulted in
good agreement between numerical calculation and experimental results.

This example calculation emphasizes the significant effect that hysteresis loops
have on the results of numerical modeling of the magnetization process. It is
important, therefore, that representative and accurate hysteresis loops are obtained

for a sample, and that the loops are obtained at the operating conditions of interest.

2.6.5 Calculation of the effective pipe resistance for the
casing

Calculation of the effective pipe resistance for the casing in the vertical section
of the horizontal well, or for any pipe in the production system of the horizontal
well, can be carried out using the EM Pipe Loss model.

For the ungrounded casing in the vertical section of the wellbore, the current

circulates up the interior of the casing and down the exterior of the casing in the
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Figure 2.43: The RMS value of the electric field strength in the 7' casing calculated
using the 3,000 A/m and 1,000 A/m hysteresis loops for a tubing current of 367 A
RMS.

same direction as that of the electric field strength. In the center of the casing at

Tw —Ti

Tm = , the electric field strength and current density are equal to zero. Thus
the power losses for the inside section of the casing, r; < r < 7, can be calculated
by integrating E x H over the surface at r;. Similarly, the power losses for the
outside section of the casing can be calculated by integrating E x H over the surface
at ry,. The resistance can be determined directly from the power losses and since
the current is circulating, the interior and exterior resistance, ( R; and R,) are in
series and the effective resistance per meter of casing is the sum of these resistances.

The interior and exterior power losses per meter of casing are thus

13{ = Erms(ri) Irms COS(G,')
Po = Erma(rw) Irms cos(0w)

(2.70)

From Equation 2.70 the interior and exterior resistance per unit length of casing are

determined directly using,

P; P, -
R=p. B=1, (271)
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The total resistance R ssing is thus, Reing = Ri + R..

For example, the total resistance per meter is calculated for a current of 300 A
RMS. For the 300 A RMS case, Eppy(ri) = 142.68 mV/m,

Ermi(ry) = 130.18mV/m, and §; = 6,, = 21°.

Using Equation 2.70, the calculated power losses on the interior are 39.96
W/m and on the exterior are 36.46 W/m. Using Equation 2.71 the interior and
exterior resistance are 444.01 x4 Q/m and 405.11 xQ/m. Thus the total resistance
per meter of ungrounded casing is 849.12 u Q)/m.

It is of interest to compare the calculated resistance with the total effective
resistance obtained experimentally by Stroemich et. al. for a grounded casing of the
same size. In the grounded casing, the current is not circulating but flows on the
interior of the pipe only and thus travels only half the distance it would have in an
ungrounded casing. They obtain a value of 387.07 u Q/m, for K-55 casing, less than
approximately half of that of the ungrounded casing.

These calculations are consistent with expectations since for an ungrounded
casing, the current must flow through twice the distance it has to flow through in
the grounded casing. Also, for the ungrounded casing of the current is confined to
flow closer to the surface of the pipe because the current density must diminish to
zero at r,,. Similar results are presented by Newbold and Perkins, [99] where they
concluded that the power losses in a system using cables inside an ungrounded
casing results in about twice the power losses that would occur if tubing was used to
conduct the current and the casing is grounded.

Plots of the total casing resistance per unit length are shown on Figure 2.45.
The figure compares the total effective resistance per meter obtained using the EM
Pipe Loss model with experimental values obtained by measuring the temperature
rise of the casing with time. As the plot shows, the experimental data coincides
closely with the numerical calculations. The maximum percentage difference in the
results of the calculations is less than 10%. The phase angles 6; and 6, were not
measured during the experiments and are approximated from Stroemich et. al., [29].

This concludes Chapter Two. In this chapter, a finite difference time domain
numerical model, called the EM Pipe Loss model, which solves the appropriate form

of Maxwell’s equations in a non-linear magnetic material, has been developed. The
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model has the capability to determine the combined eddy current and hysteresis
losses in a piece of pipe fabricated from magnetic material that exhibits hysteresis
under the influence of a time varying magnetic field strength. The model has been
tested against an analytic solution published by Loga, 1] and a similar numerical
model published by Zakrzewski and Peitras, [86] with satisfactory results. The
model has been compared to experimental results involving the power losses in a
piece of pipe, again with acceptable results.

The EM Pipe Loss model is employed in the next chapter to characterize a
heat source in the heat transfer problem associated with a long horizontal well

producing liquids from an oil reservoir.

Data Symbol 1,000 A/m loop 3,000 A/m loop  Units
Power Calculations
Poynting Power P(r;) 57.29 70.96 [W/m]
P(ry) 54.35 67.09 (W/m]
Total Poynting Power P, 111.64 138.05 [W/m]
Eddy Current Losses P, 62.13 94.68 [W/m]
Hysteresis Losses P 48.18 40.96 (W/m]
P.. + P, losses Pt 110.31 135.64 [W/m]
Percent Hysteresis Losses 43.68 30.20 Percent
Electro-Magnetic Calculations
RMS Electric Field E.(r:) 177.43 221.79 (mV/m]
E.(r) 167.66 210.74 [mV/m]
Skin Depth ] 0.48 0.49 [mm]
Phase Angle 6(r:) 21.00 28.50 ]
6(rw) 21.75 30.00 [°]

Table 2.22: Comparison of the results for the two different hysteresis loops for the rd
casing and a tubing current of 367 A RMS.
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Figure 2.44: The RMS value of the magnetic field strength in the 7" casing calculated
using the 3,000 A/m and 1,000 A/m hysteresis loops for a tubing current of 367 A
RMS.
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temperature rise of the casing as a function of time.
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Chapter 3

Semi-Analytic Solutions of the
Heat Transfer Problem

3.1 Introduction

3.1.1 Overview

In this chapter, radial and axial semi-analytic equations are developed to
calculate the heat flow in a horizontal well using electrical heating to enhance the
production of oil from a heavy oil reservoir. The semi-analytic model uses the
results of the previous chapter to determine the heat losses in the casing as a result
of hysteresis and eddy current losses. The radial semi-analytic heat transfer model
calculates the temperature distribution from the center of the wellbore, through the
casing, and throughout the reservoir. The axial semi-analytic model calculates the
temperature distribution along the length of the horizontal wellbore. The two
models are effectively combined to provide the temperature distribution throughout
the entire problem domain.

The solution of the heat transfer problem in the wellbore is important. A
model that accounts for the fluid production rate and input power and determines
the resulting peak temperature in the well is necessary to design a system that will
have thermal stability and can be operated safely. These models can be used to
determine the maximum length of the horizontal well for a specified heating

strategy. Also, these models can be used to estimate the input power requirements
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to electrically heat a long horizontal well and thereby allow estimation of operating
expenses and equipment specifications for an electrical heating strategy.

The development of the semi-analytic models is presented in detail. The
mathematical approach to solving the problems is novel. The equations presented
herein can be modified to solve a general suite of boundary value problems, such as

heating the horizontal well by circulating steam.

3.1.2 Statement of the problem

Figure 3.1 depicts the horizontal wellbore. The terminology used to define the

regions for the heat transfer problem is described in this figure.

Temperature distribution calculated
with the radial semi-analytic model

Region 2 Region 3

4 Region 1

;\ Wellbore Casing Reservoir
T(r)i‘:, 0sr<r r,Sr<r, r,<r<r,

o A ,,pC; .G A.pCpC

0 . a(2) 4(r)

Temperature distribution calculated End View of Horizontal Casing
with the axial semi-analytic model
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Side View of Horizontal Casing
Figure 3.1: Terminology and definition of the regions used in the semi-analytic mod-

els.

Region 1 is the wellbore and extends from 0 < r < r;. The wellbore is filled
with a fluid mixture of oil and water. The fluid is characterized by a thermal

conductivity of A; and heat capacity of pCy. The fluids flow in the axial direction
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from the toe, z = [, to the heel, 2 = 0, in the wellbore. Heat transfer in the axial
direction is with the movement of the fluids. Heat transfer by thermal conduction in
the axial direction is insignificant in comparison to the flow of heat by convection
and is ignored in the axial semi-analytic model. Heat transfer by thermal
conduction in the radial direction is accounted for in the radial semi-analytic model
but not in the axial model.

Region 2 is the casing and extends from r; < r < r,,. The casing conducts
current resulting in the creation of heat due to hysteresis and eddy current losses.
The heat generation is specified by ¢;(z), which is defined in Equation 2.67. The
casing has the thermal conductivity, A,, and heat capacity, p C,, of steel. Heat flows
very efficiently in the casing by thermal conduction due to the very high thermal
conductivity of the steel.

Region 3 is the reservoir and extends from r,, < r < r.. Current flows in the
reservoir, in the radial direction, and produces heat as a result of ohmic losses. The
reservoir has a bulk thermal conductivity of A,, heat capacity of p C,, and electrical
resistivity of p,. Fluid is produced from the reservoir into the wellbore through slots
or perforations. The movement of fluids radially into the wellbore results in the
transfer of heat by convection. Heat transfer by convection depends on the fluid
velocity, v, and the heat capacity of the flowing fluid, p Cy. Heat transfer by
conduction in the reservoir is due to the thermal conductivity of the reservoir, A,.

The solution of the heat transfer problem in the radial direction is the first
step in the derivation of the axial semi-analytic model as depicted in Figure 3.2.

It is assumed that radial flow into the wellbore is entirely due to thermal
conduction, and hence, any radial heat flow into the wellbore by thermal convection
can be neglected. With these assumptions the Neumann boundary condition at the

boundary between Regions 1 and 2

0T(r, t) _ OTy(r,t)
As or o =X or o

governs the radial heat flow into the wellbore in the radial semi-analytic model

shown in Figure 3.2.
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Radial heat flow into the wellbore is

determined from the boundary condition: .
oT,(r, z,1) o
r,z,t .
L Y =Z ® °‘\i\t>°‘e
v 3 ar r=n.z R ‘e \9

@ e
. . «\0 '\(\\0
The radial model is used to ] A Qo
determine the radial heat fl SN
: “39 6\0\ i

LN g
y v
\
\ Boundary *

z=2,

Boundary temperature for
the axial model calculated
using the radial model

K@ )g, = (1) oy

sxial model radial model

g

i Region 1 -~ Toe
. Wellbore ) z=1
0<r<r Region 2
' Casing Region 3
r,<r<r, Reservoir
r,<rsr,
Heel
z=0

Figure 3.2: Depiction showing the determination of the heat flow into the wellbore
from the casing using the radial semi-analytic model. Also shown is the use of the
radial semi-analytic model at z = Z, to determine the Dirichlet boundary condition
required for the derivation of the axial semi-analytic model.

To derive the axial semi-analytic model requires a boundary condition at
z = Zy. There are two obvious boundaries in the problem, one at z =0 and the
other at the toe of the well, z = [. The temperature at z = [ cannot be set to a
constant value since electrical heating in the adjacent reservoir and the flow of fluids
into the wellbore modify the temperature at z = [ as time passes. In this thesis, as
depicted in Figure 3.2, the radial semi-analytic model is used to provide the
boundary condition at Z, required for solution of the axial model. Thus

z‘l (Z, t) lz:ZL = Tl (1‘, t) I,.=,L (31)
azia;:nodcl radiaﬁnodel

The boundary, Zy, is located where the total fluid production in the wellbore
is effectively zero and thus there is no heat transfer in the axial direction. The
temperature in the wellbore at the boundary Zy can therefore be determined using the

radial semi-analytic model.
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The semi-analytic models are based on the application of the principle of
conservation of energy to a system with heat transfer by thermal conduction and
convection due to a single flowing phase and containing energy sources. Stated in
terms of the temperature of the system this principle results in the following general

equation [100],

9(pCy T)

V-(AVT)—V(pC,v,T)+d= at

(3.2)

In the above equation A is the thermal conductivity, pCy is the heat capacity
of the flowing phase, pC; is the bulk heat capacity of the system, vy is the velocity
of the flowing phase, and ¢ is the energy source. All these elements normally vary in
space and with temperature, resulting in a non-linear equation. The necessary

assumptions for any analytic work to progress are that:

1. all physical properties are constant in space and time, and

2. the heat source may vary spatially but not with temperature.

Various assumptions are used to reduce Equation 3.2 so that it can be solved
analytically. These assumptions are presented in detail in the specific sections
pertaining to the solution of the radial and axial semi-analytic models.

Once the partial differential equation for describing the heat transfer problem
in each of the regions is determined, the Laplace transform method is employed to
obtain a solution in Laplace space. Properties of the Laplace transform that are

used to transform the partial differential equations are,

LT (r,t)} = /: e T (r,t) dt

=T(r,s)
C{ga(z_’_ﬁ} = sT (r,s) — T (r, to) (3.3)
p _8_“_T(:_,t) _ d"T(:,s)
t"{-‘ i }_ h(:”i)r
E{(_n—:-_l)—' -h(r)} = Tn

109



where s is the variable of transformation and {o is the time at which the initial
conditions are specified. For these properties of the Laplace transform to apply
there must be absolute convergence of T'(r,t) at the limits of integration.

The inversion of the Laplace transform solution must be completed
numerically. This is accomplished using a method called the Stehfest Inversion
Algorithm, [101].

3.1.3 Numerical inversion of the Laplace transform

Numerical inversion of the Laplace transform is accomplished using a
calculation method published by H. Stehfest, Reference [101]. This numerical
inversion method has been used to solve many types of reservoir engineering
problems, in particular for well test pressure analysis, [102], [103], [104], and [105].

The method is simple to use and program into computer code. In Equation
3.4, F, is the inverse of T'(r,s), the Laplace transform of the temperature
distribution T'(r,t), at the instant of time ¢. Equation 3.4 must be evaluated for

each time ¢ that a solution is desired.
n2 e~ -/ In2
F,=T(r,t)= - ;=1 V;.T (r, - z) (3.4)

The coefficients in Equation 3.4, V;, are defined in Equation 3.5 and are

independent of the Laplace transform being inverted.

min (i,§) N
_ L k7 (2k)!
Vi=(-1)z7 Z (£ - k) K (B —1)! (i — k) (2K —4)!

k=ﬂoor( '—"2'-1-)

(3.5)

There are some practical issues that need to be considered when using the

Stehfest Inversion Algorithm:

1. N in Equations 3.4 and 3.5 is arbitrary. It must, however, be an even number.
It is the parameter that controls the accuracy of the numerical inversion.

Theoretically, the larger N, the more accurate the inversion.

2. For N too large, the solution can become unstable because of round off errors

110




or numerical limitations in the computer’s ability to determine V;, which

involves the multiplication and division of factorial terms.

3. The best way to select an optimum N is to apply the Stehfest inversion
algorithm to the problem and increase N until a solution is obtained which
does not change when N is increased further. As a guideline, the optimum N
is approximately equal to the number of significant figures used by the
computer, [101].

For the axial and radial semi-analytic models, a value of N ranging from 6 to

12 (even integers only) provided satisfactory results.

3.2 Radial Semi-Analytic Heat Transfer Model

In this section the multi-region, radial heat transfer model is developed. For a
given set of conditions, the temperature distribution from the center of the wellbore
through the casing and into the reservoir can be calculated.

The radial semi-analytic model is developed using the following procedure:

1. Determine the partial differential equations that define the heat transfer
model in each of the regions, (see Equations 3.6, 3.12, and 3.21).

2. Obtain the Laplace Transform of Equations 3.6, 3.12, and 3.21, (see Equations
3.7, 3.14, and 3.22). The partial differential equations obtained in Step I are

transformed into ordinary differential equations.
3. Solve the ordinary differential equations obtained in Step 2.

4. Using the boundary conditions of the problem, construct a system of linear
equations and solve the unknown coefficients of the general solutions in

Laplace space.

5. Obtain the radial temperature distribution in the time domain by numerical
inversion of the Laplace transforms obtained in Step 4 using the Stehfest

Inversion Algorithm.
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3.2.1 Radial heat transfer model in the wellbore

The heat transfer model in the wellbore is developed in this section. The

following assumptions are made:

1. A liquid occupies the entire wellbore.
2. Heat transfer is in the radial direction.

3. The dominant heat transfer mechanism in the radial direction is thermal
conduction. The effects of natural and forced convection mechanisms are

assumed to be negligible.

4. The heat flow from the casing into the liquid occupying the wellbore is by

thermal conduction.

With these simplifying assumptions, the general heat transfer model, Equation
3.2, can be simplified to the following equation,
62T1 /\ ! aTl aTl
=i el 39
where A; is the thermal conductivity of the fluids in W/(m °C) and pCjy is the heat
capacity of the fluids with units J/(m3°C).  The Laplace Transform of Equation
3.6 is determined directly using Equations 3.3 and is
#T,  1dT, .
-+ ===~ sf; Ty =-B;To (3.7)

dr? r dr

Cr.

where, By = 3
f

The solution of Equation 3.7, is known, [106] and is

Ty (r,s) = A(s) Lo (r\/s_ﬁf-) + B(s) Ko (rm) + 1;9 (3.8)

where I, is the modified Bessel function of the first kind of zero order and K is the
modified Bessel function of the second kind of zero order.
In summary, the partial differential equation that defines the radial heat

transfer model in the wellbore, Equation 3.6, the Laplace transform of this equation,
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Equation 3.7, and the solution of the Laplace transform, Equation 3.8, have been
developed in this section. The unknown coefficients A(s) and B(s) will be
determined by matching boundary conditions and will be functions of the axial

coordinate z.

3.2.2 Radial heat transfer model in the casing

The heat transfer model for the casing will now be determined. The following

assumptions are made:

1. Heat transfer in the casing by thermal conduction in the radial direction is

much greater than in the axial direction and the latter is neglected.

2. A localized electrical heating rate resulting from hysteresis and eddy current

losses occurs within the casing.

3. Eddy current and hysteresis losses are accounted for using the methods

developed in Chapter Two.

4. Radial heat transfer by convection in the steel casing, due to the fluids flowing

through the slots or perforations, is assumed to be negligible.

5. The electrical properties of the casing do not vary with temperature.

The assumption of radial thermal conduction being the dominant heat transfer
mechanism in the casing is critically tested at a later point by comparing the
semi-analytic solution that is obtained for the temperature distribution with a more
exact solution obtained with a numerical simulation program.

Heat transfer by convection in the casing is insignificant since the velocity of
the fluids, (v;), into the wellbore along the length of the casing is small and the
thermal conductivity of the steel casing is large, (Ar > 50 W/(m°C)). It is possible
to calculate the relative importance of conduction and convection heat transfer in
the casing using a,, as defined in Equation 3.9, [107]. For a value of a, which
approaches unity, heat transfer by conduction is dominant. For a value of a, which

is greater than two, the dominant heat transfer mechanism is convection [107]. For
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typical thermal properties of steel casing and a nominal production rate of 50

m3/day, a, is

pCrQ:

2wl

(2,809,968J/(m3°C)) - (50 m3/day) (3.9)
27 - (1,000 m) - (50 W/(m°C)

a, =1+

2~ 1.005

where pC; is the heat capacity of the produced fluid, A, is the thermal conductivity
of the casing, vy = Q./(2nl), Q: is the total fluid production rate, and [ is the length
of the horizontal well. As the calculated value of Equation 3.9 indicates, heat
transfer by convection can be ignored.

Incorporating these assumptions into Equation 3.2 results in a heat transfer

model for the casing as follows:

2T, A, OT: .
% 2 + _6_2_ + Q2(Z) = pCSQ.I_Tz (3.10)

As or? r or ot

The heat source term, ¢2(z), in Equation 3.10 was derived in the previous
chapter. It arises from the hysteresis and eddy current losses produced by the
current flowing in the casing at location z. Figure 1.2 shows the flow of current in
the horizontal well. As depicted, current is assumed to collect uniformly along the
length of the horizontal well and flow in the casing on a return path to the Power
Conditioning Unit.

Since the current collects uniformly on the well, the magnitude of the current
in the casing increases linearly along the length of the well, being zero at the toe of
the well, and equal to the total current, I, at the heel of the well. Therefore in
Equation 3.10, g, is defined as a function of z. The equation for ¢;(z) which was
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developed in the previous chapter is repeated here for convenience

¥ =0
A AR IL\' ;
=—?(ZT) ;u“ T) r4 (3.11)
__1_ - _I_‘_ e 1+2
S M\
? =0

" n 142 )
8T, A\ 0T _ CQ&_%ZW %) 42 (3.12)

Mozt T a — PO

It is noted that the power loss in the casing, Region 2, is determined directly

from Equation 3.11 and is
P, = / g2(z)dV
v

{
- / da2)(r?, — r2) dz
1]
n It>t+2 li+3

1 Ug
=Xzi+3(7

S i=0

(3.13)

The Laplace Transform of Equation 3.12 is determined by using Equations 3.3
d2T2 ldfg ﬁ T —'—,3 T — 1 _}—iu £t_ i+2 zi+2 (3 14)
s L2 — s 40 P A, A3 ot t [ .

-— —35

dr?  r dr
where 3, = pf ®. The solution for Equation 3.14 is known from [106] and is

Ty (r,5) = C(s) To (ry/5B.) + D(s) Ko (rv/5B:) + T; + im(S) 42 (3.15)

U; It
[

where
It i+2
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The derivative of Equation 3.15 will be required. It is

ded(:, s) =C(s) I (T\/Sﬂa) v sBs — D(s) K, (r\/;ﬂ_,) sB, (3.17)

The unknown coefficients C(s) and D(s) will be determined by matching the

boundary conditions and will be functions of the axial coordinate z.

3.2.3 Radial heat transfer model in the reservoir

The heat transfer model for the reservoir, Region 3, is developed in this

section. The following assumptions are made:

1. Heat, current, and fluid flow are in the radial direction.

[

The electrical conductivity of the reservoir does not change with temperature.

3. Heat transfer by conduction in the axial direction can be neglected in
comparison to the combined effects of the heat transfer mechanisms of

conduction and convection in the radial direction.

4. Fluid production rate is uniform along the length of the horizontal well. Thus,
the total production rate (i.e. the total fluid flow), in the wellbore at any
. . z
location z is Q(z) = Q,—l-.

5. The current flowing from the reservoir into the horizontal wellbore is collected

uniformly along the length of the horizontal well. Thus, the current in the

[

casing at any location z is I(2) = I,

With these assumptions, Equation 3.2 can be simplified and the heat transfer

model for the reservoir is stated as

9%Ts

" Or?

T3

A ¥

) SR () = oG (3.18)

19T:
+ (/\r +eCy Qt) r 6r3

where Q; is the total fluid production rate in m®/day and ! is the length of the

horizontal well, measured from the toe to the heel.
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The heat source term in Equation 3.21, ¢3(r), originates from ohmic losses as a
result of current flow in the reservoir. The term ¢3(r) is derived from the electrical
properties of the reservoir and radial distribution of current.

The electrical properties of the reservoir are assumed to be constant with
temperature. In actuality, the electrical conductivity varies with temperature which
is not normally ignored [108]. However, it may be ignored here since electrical
heating in the reservoir (not the casing) has a relatively small effect on the overall
heat transfer problem for a long horizontal well, as will be demonstrated in a later
section. Thus, the variation of electrical conductivity with temperature is neglected.

It is assumed that the current collects uniformly along the length of the
wellbore. For this assumption to hold, it is necessary that the largest dimension of
the system is much less than the wavelength of the electromagnetic field in the
reservoir.

The wavelength can be calculated from the following equation, [34],

A= 2n (3.19)

w\/[f-‘ﬂ i+ @7 +1)

. . g . . .
where w = 27 f is the applied frequency, — i the ratio of conduction to
w

displacement current, € is the permittivity and u is the relative permeability of the
material. Using typical values for o and ¢ of the formation from Reference [34], the
electromagnetic wavelength in the reservoir at an applied frequency of 60 Hz is
calculated to be of the order of several thousand meters. The wavelength increases
as the frequency of operation is lowered, and hence can always be selected to be
much longer than the length of the horizontal well.

The heat source, ¢, is determined using Ohm’s law:

() = oI =0 (527) (3.20)

where p, is the electrical resistivity of the reservoir and I; is the total current.
It is noted that the value of ¢3(r) diminishes as 1/r? and also decreases in

proportion to the square of the length of the well, 1/I2. These observations
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emphasize that only near wellbore heating can be achieved with electrical heating
and that the the magnitude of the current required to achieve electrical heating of a
given magnitude increases in proportion to the square of the horizontal well length.

The final form of the heat transfer model for Region 3 is:

a T3 18T T, L\ 1
= ('\ + Cj21rl) r or ”C'_aT —pr (ﬁ) r2 (3.21)

The Laplace transform of Equation 3.21 is,

d2T3 pC! Qg 1dT3 Ig 2 1
where 8, = %(-JL

The solution of Equation 3.22 is not readily available and is developed in
detail as part of this thesis. Since Equation 3.22 is non-homogeneous, the solution
will be separated into two parts: the complementary solution, Tsc(r, s), which is the
solution to the homogeneous form of Equation 3.22, and a particular solution

Tsp(r,s). Thus the solution consists of
T3(7" s) = T3 (T 8) + T (75 3) (3.23)

The complementary solution T3(r, s) is known from Reference (106] and is

Ty (r,s) = E(s) 2l ”("VSE') + F(s) ——ﬁ—— VsB:) (3.24)

where p is defined as follows:

1 2

P=yzl-e) (3.25)
_1+PCI Q: )
N orl

The Method of Variation of Parameters is used to obtain the particular
solution in Equation 3.23. This method can be used to determine the complete
solution of any linear differential equation for which the general homogeneous

solution is known. In this case, the variation of parameters is applied to a second
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order linear differential equation of the form

&T dT
e g

+a;(r)T(r) = h(r) (3.26)
The complementary solution of the equation is known and in the form
T, (r) = cyuy (r) + cua (1) (3.27)

where the u; and u; are the independent homogeneous solutions and the ¢; and ¢,
are arbitrary constants or parameters. The particular solution can be obtained by
replacing the constant parameters ¢; and ¢; by appropriate functions of r. It is

assumed that the particular solution has the form
T, (r) = Ci(7, s)ua (7) + Ca(r, s)uz (1) (3.28)

and is a solution of Equation 3.26. The last step is to determine appropriate
functions for C(r, s) and Cy(r,s). The independent variable s is retained in the
function to indicate that the equations are solved in Laplace space.

When T'(r,s) = Tp(r, s) + Tc(r, s) is substituted into Equation 3.26, the

following set of equations is generated

dCy(r,s) d Ca(r,s)
o ulns)lt—g

dC\(r,s) du,(r,s) + d Ca(r,s) dua(r,s)
dr dr dr dr

ug(r,s) =0

(3.29)

= h(r,s)

Since u; and u, satisfy Equation 3.26 when h(r,s) is replaced by zero, the set

of equations in Equation 3.29 can be solved for Cy/ and Cy/ directly

dCy(r) _ h(r)us(r)
dr =~ Wlu(z,s),usz,s))
dCs(r) h(r)uy(r) (3.30)

dr  Wu(z,s),uxz,s)]
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The parameters Cy(r, s) and Cy(r, s) are finally determined from the following
integrals,

uz(z,s)-h(z,s)
W [u;(z,s), uz(z,s)]

Ci(r,s) = —

fw

(3.31)
ui(z,8)- h(z,s) -
W [u;(z,s), uz2(z, s))

Co(r,s) =

Tw

where h(z,s) and the Wronskian of the complementary solutions,

W [uy(z, s), uz(z, s) ], are as follows:
hizs)= -2 _ 0T (2 L
’_s/\,.p'°27rl z2
_E(s)F(s)

2+l

(3.32)
W [ul(.‘c, 3)7 ug(I, 3)] =

Thus, in Equation 3.23 the particular solution is
Tsp(r,5) = wi(r, s)Cu(r, s) + ua(r, 5)Calr, s) (3.33)

The functions u;(r,s) and uy(r,s) are the independent homogeneous solutions
defined in Equation 3.24,
L (r/55)

uy(r,s) = E(s) —

K, (rvsB3:)

rP

(3.34)
uy(r, s) = F(s)

It is noted that the limits of integration in Equation 3.31 may be arbitrarily
selected, [106]. For mathematical convenience, the integration is taken from r to r,

the domain of Region 3, where r, <r < r..
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Explicit expressions for u,(r,s) - Ci(r,s) and uz(r, s) - Cy(r, s) are now derived.

This requires that the following integral expressions are solved:

uy(r,s) - Cy(r,s) =
LV {v_b / K@Vam) .,
TP s zl-r

Tw

zl+p

B, Ty / E”(—z@dz} (3.35)

uz(r,8) - Co(r,s) =

zl-r

K, (r /55 {v_b / LGVeR) ,
TP S

zl+e

5T, /Mm} (3.36)

fw

It is convenient to break the particular solution T3, (r,s) into two parts.
Tsp (r,s) = Tap1 (7, 8) + Tap2 (1, 5) (3.37)

where T3,p1(r, s) contains the 83, Ty term and T3 ,2(r, s) contains the % term.
First, consider the expressions in Equations 3.35 and 3.36, which have the
B, Ty term and obtain an explicit equation for T3,p1 (r,s). These expressions can be

integrated using the following identities,

1
/z"“ Ip(az)dz = = " 141 (azx) (3.38)
/z”‘“ Kp(azr)dz = —%z"“ Kp+i(az) ,p # 0, integer (3.39)
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Thus,

K, (z/s5, r T 1 T,
ﬁ"T/ p(l'l+: )d = f/s%:rﬁ,“lp(rvﬁr) Kpii(ry sﬂ,)+§?° (3.40)

and

B Ty / Ip(zlfm dz = f;T—eor”“ Ky(rv/sB,) Lpta (ru/55,) +-— (3.41)

These terms are added together to give

Togr (r,5) = =2er {1, (r/580) Ko/ +
Ky(r/58) La (ru/38) } + -2 (3.42)

The derivative of Equation 3.42 will be required in subsequent calculations

and is presented now:

dTs 5y (r, s)

dr = -’.BrTO

{Ip-i-l(r V sﬂr Kp+1(rw V sﬁr)
“Kors(rV/B) La(re/58) ) (343)

There are no direct analytical solutions for the other integral terms in
Equations 3.35 and 3.36. The series representation of the modified Bessel function
of the first kind,

Liz) =3 (2)*7 (3.44)
i pos 22+2kITk +p+ 1)
and the identity
K,(z) = ~ I_,,(z) L(z) (3.45)

sin(pr)




are therefore used and integrated term by term. The result of this approach is

L(rvsB:)w / (T-\/m:)

rP s zl-»

fw

2s sin(pm) V'sB: L'(1-p)
(rVaB)™ = (ruv/3B)™
Z 2k - k'

T(k—p+1) 22k

Z( m2k+2p e \/.E:)z"“”} (3.46)

2k+20+1(k + p)k'T(k +p+ 1)

_zs_frlp(r\/sm_(r 2 ){ la ()

and,

(r\/‘s‘ﬂi) » /I

:cl‘P

Kp(r\/s—ﬂr)( )
50 P ™ — (B

2(k+p)-k!-T(k+p+1) 2%+2

(3.47)

prly 1
ar2Z N,

where for convenience v, =

It is noted that in using this approach, the following identity for the modified
Bessel function of the second kind of real order p,

T I—p(z) I(z)
sin(pm)

K,(2) = (3.48)

requires that p is non-zero and cannot be a positive integer.
The solution to Equation 3.22, the Laplace transform of the heat transfer
model with conduction, convection, and electrical heating in the reservoir is

therefore,
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T3(r,s) = E(S)I"_(lr__ "ps 5.) + F(S)K"_(:;_ VsB-) + L _

S

2TLOVE) (2 ){ la (%)

2s sin(pm) /S0, F(l—p)+

S (V)" = (ru o)™ 1 Z(m 2 _ (ru/5F5) ”}+

% -kl-T(k—p+1) 2% 92k+ 2+ (k + p)k!T(k + p + 1)

> Z (7‘ 2k+2p _ (rwm2k+2p 1

20k +7) KT T(kfp 1) 75

’lb K, (rv/sp6r) ( VA

T
B L ot

,,(r\/a p+1(7'w\/3_ﬂ:)} + — (3.49)

The unknown coefficients E(s) and F(s) will be obtained by matching boundary
conditions, and will be functions of the axial coordinate z. To obtain these
coefficients it will be necessary to have an expression for the derivative of Equation
3.49. Again, the series representation of the Bessel functions is used and the

derivative on a term by term basis is evaluated so that,

dTy(r,s) _ ﬁ( 2 ) [—w\/?ﬂtlp+l(r\/s7ﬁ7) { o () .

dr s \rVsp- 2 sin(pm) F'(l1-p)

f}(r VB)™ — (ru/sB)™ Z( m-(m}+

QU+ (k — p + 1) 92k+2+1(k + p)kIL(k + p + 1)

/—m2k+2p_ ro ,—B—)s - 2k+2p
\/EKIHI(T\/;E)Z ( ] +

£ “gPHoeHI(k + p)RIT(k +p+ 1)

p+1(rV/58:) Kpr1 (Tw/5B:)—
Kp41(rv/sB:) +1(7'wvsﬁr} (3.50)

B-

Up to this point, Steps 1 to 3 in the solution procedure are completed for all
the regions. Remaining are Step 4, the determination of the unspecified coefficients
from the boundary conditions and Step 5, the numerical inversion of the final

Laplace transform.
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3.2.4 Determination of unknown coeflicients from the

boundary conditions

In this section, the unknown coefficients, A(s), B(s), C(s), D(s), E(s) and
F(s) are determined from the boundary conditions appliedat r = r;, r = r,,, and
r =r.. Thisis Step 4 of the solution process. For reference please note that r = r;
is the inside radius of the casing, r = r,, is the outside radius of the casing, and
T =r. is the external radius of the problem domain.

The temperature distribution is assumed to be continuous at all the

boundaries and the following Dirichlet boundary conditions are valid,
Ti(reys) =Ta(riys) Tz (runs) = T3 (ru, ) (3.51)

Furthermore, the heat flux across the boundaries is also assumed to be

continuous and the following Neumann boundary conditions apply,

dTy(r, s) dTy(r, s)
As dr = dr
R r=ry X r=rg (3.52)
dT(r,s) _ dT5(r,s)
M| T e |

At the external boundary of the problem, r = r, there are two choices for the
boundary condition. In one case, the heat flux at the boundary is set to zero and in
the other case, the temperature is fixed to the initial reservoir temperature. These

are stated as follows:

*'@ -0
L (3.53)
. T,
T3 (re,s) = 2

In this thesis the radial semi-analytic model is solved for both of the above
conditions so that r. can be determined. The distance to Te, which is unknown, is
assumed to be determined when the two solutions converge. This approach to

estimate the boundary of a problem is commonly used in the pressure analysis of oil
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and gas wells, [109]. Only the solution for the constant temperature boundary

condition is presented.

Since a solution must exist at 7 = 0, Ko(rv/s8,) must vanish and thus the

value of A(s) must equal zero.

Applying these boundary conditions to Equations 3.8, 3.15, and 3.49 results in

the following system of linear equations in matrix form. The coefficients B(s)

through F(s) can be readily determined using elementary linear algebra techniques.

L (riv/sBy)
I, (ri\/sB;)
0
0

0

-l (Ti\/-;B:)
— 321 (r:/55))

| P

(ruv/sBs)

Il (rwm

0

0
0

—Flﬁ,'lp (ruv/sBr)

1 Ar
AW

I

Equation 3.54 has the form

A"'J' X = B,‘

-Ko (Ti\/m
%j\/%Kl (riv/sBs)
Ko (rw\/m

—Kl (rw \4 SBS )

0

0
0

- ?%,‘Kp (ruV/sBr)

p (reV/sBr) é-Kp (rev/sBr)
(b0 | (22 \
C(s) 0
D(s) | =] Tplru.s)—28--% | (3.59)
E) e
\ F(s) } \ - ‘P(re’s) }

(3.55)
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where ¢ and j are the row and column index respectively.

The solution vector x; is obtained directly from,
X; = Ai‘j—l . B,’ (356)

The expressions for each component of the vector x are lengthy and are not
presented here. It is important, however, to recognize that x, = B(s), X, = C(s)
and so forth. The final solutions for the heat transfer models in each of the regions
in Laplace space are obtained by replacing the unknown coefficients in Equations
3.8, 3.15, and 3.49 with the appropriate x; obtained from Equation 3.56.

Explicit expressions for the temperature distributions in all three regions have
been derived. These solutions are all in Laplace space and must be inverted into the
time domain as a final step in the solution procedure. These expressions are too
complex for an analytic inversion into the time domain. Thus a numerical approach
using the Stehfest Inversion Algorithm [101] is used to obtain the final time domain

solution.

3.3 Validation of the Radial Semi-analytic Model

In this section, calculations obtained using the radial semi-analytic model are

compared to
1. The Killough and Gonzalez analytic model, Reference [3],

2. A semi-analytic model that accounts for all the heat transfer mechanisms of
the radial semi-analytic model, except for convection heat transfer and
electrical heating in the reservoir, (this model is called the conduction

semi-analytic model for convenience), and
3. Numerical simulation.

These comparisons are used to validate the radial semi-analytic model.
The computer program TETRAD is used for the numerical simulation
validation, the last one of the three validations enumerated above. TETRAD is

commercial numerical model that is commonly used by oil and gas companies to
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model reservoir processes. More information on TETRAD can be obtained from
References [82], [110], and [111].

3.3.1 Base Case data set

The data used for defining the Base Case, i.e. the standard case used in all of
the three comparisons, are obtained from the public record [112]. An effort was
made to use data that was representative of a Sparky oil formation in the Frog Lake
area of North Eastern Alberta [77]. The various data for the Base Case, presented
with the units used in the numerical simulator TETRAD, are summarized in Tables
3.2, 3.3, 3.4, and 3.9.

Data Symbol Value  Units
Thickness h, 5.0 m
Qil Saturation S, 0.75

Water Saturation Sw 0.25

Initial Temperature T, 20 °C
Oil Gravity °API 12
Permeability k 5000 md
Porosity o 0.30 fraction

Reservoir resistivity Pr 40.00 Q-m

Table 3.1: Base Case reservoir data.

In addition to these data, the electrical resistivity of the steel casing as a
function of the RMS current was fitted to a third order polynomial whose

coefficients are given in Equation 2.68.

3.3.2 Validation using the Killough and Gonzalez analytic

model

The purpose of this validation is to determine if the temperature distribution
in the reservoir calculated using the radial semi-analytic model and resulting from

the heat transfer problem consisting of electrical heating and heat transfer by only

128




Component Symbol Thermal Conductivity

w KJ
m°C m°C Day
Oil Ao 0.14 12.00
Water Aw 0.67 57.96
Rock Ar 2.80 241.85
Steel casing Aq 50.00 4320.00
Fluid Af 0.27 23.49
Reservoir Ar 2.04 176.34

Table 3.2: Base Case thermal conductivity.

Component Symbol Heat Capacity

MJ KJ

m3°C m3°C
Oil poCo 2.40 2400
Water Pw Cu 4.05 4050
Rock PqCq 221 2210
Steel casing p, C, 3.56 3560
Fluid Ps C] 2.81 2810

Reservoir prC: 2.40 2400

Table 3.3: Base Case heat capacity (oil gravity of 12 *API)

convection compares to the results calculated using a fully analytic model
specifically developed to solve that type of problem.

The Killough and Gonzalez analytic model was developed to validate a
fully-implicit numerical model for electrically enhanced oil recovery developed by
Killough and Gonzalez, Reference [3]. The analytic model takes into account heat
transfer by convection and electrical heating in a single cylindrically symmetric
region consisting of the reservoir and calculates the temperature distribution as a
function of time and radius from the wellbore. The model assumes a constant
voltage at the wellbore and zero voltage at r.. The Killough and Gonzalez analytic
model does not take into account heat transfer in the reservoir by thermal

conduction or heat losses in the casing resulting from hysteresis and eddy current
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Data S ym;o_l Value Units

Total current I, 500 to 1000 A RMS
Fluid production rate Q: 5 to 50 m3/day
Produced Water cut Weut 0.25 fraction
Inner radius of steel casing Ti 8.3185 cm
Outer radius of steel casing Ty 8.9345 cm
Horizontal Well Length ) 100 or 1000 m

Table 3.4: Base Case operating data

losses. It is, however, a suitable model for situations where heat transfer by
convection is the dominating heat transfer mechanism and the losses in the casing
(electrode) can be ignored. This may be the case for short vertical wells but not for
long horizontal wells where the heat transfer problem in the casing and wellbore is
significant. Constant electrical properties are assumed. For a detailed mathematical
development of the Killough and Gonzalez analytic model refer to Reference (3] or
[73].

Assuming heat transfer by only convection in the reservoir and electrical

heating in the reservoir results in the following energy equation:

0Ts pC.Q. 0T IF 1

PC ot " Toml Bt Pamnn (3.57)
The following constants are defined,
’ 1:2 (3.58)
2= pC, 4m2l?
and the solution to Equation 3.57 is given by the following,
To(r,t) = T™(r, ) + gln (%) + T (3.59)
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where,

[89] Te
——Iln| —=——=) forr < /r2—2ct
0 for r > /12 = 2¢,t

The input data used in the radial semi-analytic model are selected so that the

(3.60)

assumptions from the Killough and Gonzalez model are approximated. The length
of the electrode, [, and fluid production rate, Q);, are chosen so that heat transfer by

conduction can be neglected. In the first case

Pcf Q:

& =145

is set to 3.5361 and then increased to 6.0722 for the second comparison. As a
practical matter, for o, > 2.0, heat transfer by conduction can usually be neglected
and heat transfer by convection is the dominant heat transfer mechanism {107]. The
electrical properties of the steel casing are chosen so that there is no heat produced
in the casing, effectively creating a single region model. These data are summarized
in Table 3.5.

Figure 3.3 shows a comparison of the temperature distribution in the reservoir
obtained with the Killough and Gonzalez model with results obtained from the
radial semi-analytic model, which is the numerical inversion of Equation 3.49. The
maximum difference between the calculated temperatures at any value of the radius
after 30 days of heating is 4.6%, indicating good agreement between the two models.

Although the input data for the radial semi-analytic model were selected so
that convection was the dominant heat transfer mechanism, Figure 3.3 shows a
minor amount of heat transfer by conduction calculated with the radial
semi-analytic model. This is indicated by the invasion of heat further into the
reservoir. As the temperature gradient decreases at a greater distance away from
the well, heat transfer by conduction also decreases.

For Case 2 the flow rate, Q;, is doubled causing the value of a, to increase to
6.07. The larger value of o, reduces the importance of conduction as a heat transfer

mechanism and thus the two models should more closely match in the calculation of
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Data Symbol Casel Case?2 Units

Total current I 85.27 120.75 A
Fluid production rate Q: 10.00 20.00 m3/day
Heating time t 30.00 30.00 days
Produced Water cut Weut 0.25 0.25 fraction
Outer radius of steel casing Tw 8.9345 8.9345 cm
Exterior Radius Te 100 r,, 100 r,, cm
Electrode Length ) 10.00 10.00 m
Resistivity of the casing Ps small small Q-m
14 pCsQe oy 3.53610 6.07220

2A, 7l
% (1—c)? p 1.26805 2.53610

Table 3.5: Operating data for validation of the radial semi-analytic model using the
Killough and Gonzalez model.

the temperature distribution. These results are shown in Figure 3.4. The maximum
difference between the calculations of the temperature at any value of the radius

after 30 days of heating, as shown in Figure 3.4 has decreased to 3.7%.

3.3.3 Validation using the Conduction model

The Conduction model is a reduced form of the radial semi-analytic model.
The Conduction model does not take into account electrical heating in the reservoir
or heat transfer by convection in the reservoir as does the radial semi-analytic
model. Otherwise, the Conduction model is developed in exactly the same way as
the radial semi-analytic model.

The purpose of this validation is to determine if the radial semi-analytic model
reduces to the much simpler problem of heat transfer in the reservoir with only
thermal conduction. With heat transfer by conduction in the reservoir the following

heat transfer model applies

WO A 0Ty 9Ty

o2t e P e (361)
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Figure 3.3: Comparison of the temperature distribution obtained from the radial
semi-analytic model to results obtained from the Killough and Gonzalez model, [3]
for a, = 3.54.

The Laplace transform of this equation is

&£T,  1dT; -
72 + T s3, Ts=—-3.To (3-62)

and has the following solution,

Ts(r,s) = E(s)lo(rv/s3.) + F(s)Ko(r\/s3;) (3.63)

The temperature distribution with the isolated mechanism of thermal
conduction is obtained following the same procedure that was used to solve the
radial semi-analytic model, except that Equation 3.49 is replaced with 3.63.

The input data for the radial semi-analytic model are selected so that the
assumptions for heat transfer by the isolated mechanism of thermal conduction in
the reservoir is closely approximated. Current flows just in the casing and creates
the only source of heating in the problem. The input data is selected so that a, in
Equation 3.49 is close to unity and thus eliminates convection as an important heat
transfer mechanism. It is noted that a, cannot be unity because of various

limitations imposed on the series representation of the Bessel functions. The
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Figure 3.4: Comparison of the temperature distribution obtained from the radial
semi-analytic model to results obtained from the Killough and Gonzalez model, (3]
for a, = 6.07.

electrical resistivity of the reservoir is set to a small value so that electrical heating
approaches zero.

An additional comparison between the models is made where «, is increased
by increasing the fluid production rate @, so that the effects of convection can be
observed when comparing the Conduction model to the radial semi-analytic model.
The Conduction model cannot account for convection so the comparison is useful
only to determine if the effects of convection are being modeled in the radial
semi-analytic model. The input data for these comparisons are summarized in Table
3.6. Case 1 has no convection and Case 2 has some convection. There is no
electrical heating in the reservoir in either of the two cases.

A comparison of the temperature distribution in the reservoir calculated using
the Conduction model and the radial semi-analytic model is shown in Figure 3.5.
The maximum percent difference between the calculations of the temperature at
any radius using the input data defined for Case ! is less than 2.0 %.

Figure 3.6 shows plots of the temperature distribution calculated using the
Conduction model and the radial semi-analytic model for the input data defined for
Case 1. These plots show the temperature distribution in all of the three regions for
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Data Symbol Casel Case 2 Units

Total current (Region 2) I 750.00 750.00 A
Fluid production rate Q: 2.00 20.00 m3/day
Heating time t 30.00 30.00 days
Produced Water cut Wat .25 .25 fraction
Outer radius of steel casing Tw 8.9345 8.9345 cm
Exterior Radius Te 100, 100 r,, cm
Electrode Length L 100.00 100.00 m
Resistivity of the casing Ps Eq. 266 Eq. 266 Q-m
Resistivity of the reservoir Pr 1.00 1.00 Q-m
1+ £CyQ: a, 1.05072 1.50722

) 2wl

3 (1-a)? P 0.02536 0.71219

Table 3.6: Operating data for comparison to the Conduction model.

radii defined by 0 < r < 2r,. There is good agreement between the two calculations
in all three regions. It is noted that for no axial fluid flow in the wellbore, the
change in temperature with radial position in both the wellbore and casing is small.
Figure 3.7 shows the calculation of the temperature distribution in the
reservoir with convection as calculated with the radial semi-analytic model and
compares these results to the case with only heat transfer by conduction in the
reservoir as calculated with the Conduction model. As expected, the production of
fluids from the reservoir, and thus heat transfer by convection resulting in the
removal of energy from the reservoir, reduces the distance that heat penetrates away

from the wellbore.

3.3.4 Validation of the radial semi-analytic model using
TETRAD

The temperature distributions obtained using the radial semi-analytic model
are compared to the temperature distribution calculated from numerical simulation

using a computer program called TETRAD. The purpose of this comparison is to
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Figure 3.5: Comparison of the temperature distribution obtained from Equation 3.49
to results obtained from the Conduction model for r > r,, and o, = 1.05.
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Figure 3.6: Comparison of the temperature distribution obtained from Equation 3.49
to results obtained from the Conduction model for 0 < r <2r,,.

demonstrate that the radial semi-analytic model agrees with the numerical

simulation program for the condition where all heat transfer mechanisms are present

in the reservoir.

The input data is the same as for Case 2 of the previous validation with the
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Figure 3.7: Comparison of the temperature distribution obtained from Equation 3.49
to results obtained from the Conduction Model with convection (ar = 1.51).

resistivity of the reservoir set to p, = 40 Q - m. The current is limited to 500 A RMS
so that the temperature at the wellbore does not exceed 100 °C.

The grid used to model the problem domain using TETRAD is shown in
Figure 3.8. The results obtained by using the radial semi-analytic and TETRAD
are shown in Figure 3.9. The maximum difference between the results obtained is
less than 1.0 %, indicating very good agreement between the radial semi-analytic
model and TETRAD. Further detailed comparisons between the semi-analytic
models and numerical calculations are presented in a later section of this thesis.

In this section, several validations of the radial semi-analytic model have been
presented. Calculations of the temperature distribution obtained using the radial
serni-analytic model compare favourably to the calculations made using the Killough
and Gonzalez analytic model, the Conduction model and numerical calculations
obtained using TETRAD. The next sections in this Chapter are dedicated to the
development of the axial semi-analytic model. Much of the development of the
radial semi-analytic model is incorporated into the development of the axial model

as previously discussed.
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Figure 3.8: Grid used for numerical validation of the radial semi-analytic model.
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Figure 3.9: Comparison of the temperature distribution in the reservoir obtained from
Equation 3.49 to results obtained from TETRAD with a, = 1.51.
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3.4 The Axial Semi-Analytic Model

In this section the axial semi-analytic model is derived. The mathematical
derivation of the axial model incorporates the radial model derived in the previous
section. The radial model is mathematically decoupled from the axial heat transfer
problem using a heat flow boundary condition between the wellbore and the casing
as shown in Figure 3.2 and described in detail Sections 3.1.2 and 3.4.1.

The process followed to derive the axial semi-analytic model is similar to the

process previously used to obtain the radial model. The approach is to:

1. Determine the partial differential equation that defines the heat transfer

problem in the wellbore.

2. Define the heat flow into the wellbore from the casing in terms of the radial

semi-analytic model.

3. Obtain the Laplace transform of the heat transfer model in the wellbore. In
this step, the partial differential equations obtained in Step I and Step 2 are

transformed into ordinary differential equations.
4. Solve the ordinary differential equations obtained in Step 3.

5. Using the boundary condition of the problem, solve for the unknown
coefficient G(s) (whose meaning will be made clear in the work that follows)

to obtain a solution in Laplace space.

6. Obtain the axial temperature distribution in the time domain by numerical
inversion of the Laplace transforms obtained in Step 5 using the Stehfest

Inversion Algorithm.

Using this approach a 2D problem is reduced to two 1D problems, one in the
radial coordinate system, and the other in the axial direction, the latter of which is

solved in this section.

3.4.1 The axial heat transfer problem in the wellbore

The heat transfer problem for the wellbore is solved in this section resulting in

an equation that can be used to calculate the axial temperature distribution along
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the length of the horizontal well. The following assumptions are necessary to

proceed with the axial semi-analytic solution to the problem:

1. The temperature distribution in the radial direction from the center of the
wellbore at r = 0 to the interior radius of the casing at r = r; does not vary
with r. In the radia! semi-analytic model this situation corresponds to a
constant temperature in Region I. Thus, the work that follows involves a

simplified version of the radial semi-analytic model.

2. Fluid flow is laminar. Thus, heat transfer between the inside surface of the

casing and adjacent fluid layers in the wellbore is by thermal conduction, [97].

3. The flow of heat from the casing into the wellbore is determined by the radial
temperature gradient in the casing and is defined by Fourier’s law of

conduction between the two regions.
4. Heat transfer in the axial direction is by convection only.

5. The production of fluids from the reservoir into the wellbore is uniform along

the length of the horizontal well.
6. The fluid production rate and electrical current are constant with time.

7. The thermal and electrical properties are independent of temperature in all

the regions.

The development of the mathematical model to describe temperature as a
function of the axial direction follows Welty et. al., page 346, Reference [97]. Figure
3.10 shows a control volume in the wellbore where the first law of thermodynarmics
is applied. This law requires that the net rate of energy flow into the control volume
must equal the rate of energy accumulation at any moment in time. An increase in
energy in the control volume will result in an increase in temperature.

The first law of thermodynamics applied to the control volume shown in

Figure 3.10 is

: at
z=z+%‘-

qr — g5 =pCro— Ay Az (3.64)

z=z— 82

z
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Figure 3.10: An element of the wellbore to describe the heat transfer problem in the
wellbore.
where
ds = pCy Q(2)T1(z,1) (3-65)
r=z-4= z—z— A2
2
and
as = pCr Q(2)T1(2,t) (3-66)
z=z+Az—x z=z+%’—

The total production of fluid at z is Q(z). The heat capacity of the fluid is

pCy and ¢, is the heat flow from the casing into the wellbore. The heat transfer

mechanism associated with ¢, is developed forthwith.

One approach to determine the heat flow from the surface of the casing into

the wellbore, 4,, is to define an overall heat transfer coefficient such that, [97],

d, =27 Ug T‘,'AZ(T:(T.'., t) - Too)
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In Equation 3.67 U, is the overall heat transfer coefficient and T, is defined as the
temperature of the fluid on the axis of the casing (r = 0).

The overall heat transfer coefficient represents the net thermal resistance to
the flow of heat from the casing to the wellbore fluids. The determination of U, is
difficult as it is dependent on the mechanism of flow, (laminar or turbulent), the
radial temperature gradient in the wellbore, the radial and axial velocity
components of fluid flow, the physical properties of the fluids in the wellbore, and
the geometry of the problem, [113], [114].

For this problem, the axial velocity of the fluids in the casing increases as the
heel of the well is approached. When this effect is combined with the increasing
temperature of the casing over time, a U, results that is a complex function of
location and time. Using the overall heat transfer coefficient approach to determine
the transfer of heat between the casing and the wellbore fluids will render a
semi-analytic solution to the problem an impossibility.

Since axial fluid flow in the wellbore is assumed to be laminar, the energy
transfer between the surface of the casing and the wellbore fluids will occur by
thermal conduction [97]. Under these conditions, the heat transfer rate determined
using Equation 3.67 must equal the heat transfer rate by conduction (97]. Applying
Fourier’s law of thermal conduction at r = r; results in,

2r Uy riAz(T, — Tw) = 27rr,~Az)\f%,1;—l (3.68)

Equation 3.68 requires that the temperature distribution in the radial
direction in the wellbore is known. This necessitates a two-dimensional solution of
the heat transfer problem in the wellbore, which would be unattainable given the
non-linear heating in the casing due to hysteresis and eddy current losses. However,
since the heat flow in the wellbore is essentially axial we approximate the radial
heat flow into the wellbore from the casing by using continuity of thermal

conduction at the inner surface of the casing,

(3.69)




The flow of heat from the casing into the wellbore due to thermal conduction
alone can then be stated as
21rr.-Az/\,% (3.70)

r=r,

Use of Equation 3.69 to replace the radial heat flow into the wellbore at r = r;
by the radial heat flow at r = r; due to thermal conduction in the casing is the key
step that is taken to reduce the single two-dimensional problem into two
one-dimensional problems. This decoupling of the two-dimensional problem makes it
possible to solve the two one-dimensional problems using analytic methods.

Fluid also flows into the control volume from the reservoir. Accounting for
both the radial flow of heat due to heat transfer by conduction from the casing,
(Equation 3.70), and the production of fluids from the reservoir, results in the
following expression for the radial heat flow into the control volume,

(3.71)

= 27rr,-/_\z/\,-62

Az
ar + PCthTTz

r=r,

gs

z r=r,

Substituting Equations 3.65, 3.66, and 3.71 into Equation 3.64. dividing
through by A;Az and pCy, and taking the limit as Az goes to zero results in,

__l_a{Q(Z)Tl(Z, t)} _ aTl(Z,t) —9 A, iaTz _ Qt T2 (3.72)
Ay 0z ot pCysr; Or . 2mrl .
Expanding the partial derivatives and substituting Q(z) = Q; - :;- results in the
following equation.
oT\(z,t) dTy(z,t)  2aX, 1 3Ty(r.t) -
— + I1{z,t) = — - .t .
> + Ty(=,¢) a—p + oC, r or _ + Tp(r. t) _ (3.73)

where a = %Ll
14

This is the final form of the mathematical model for the heat transfer problem
in terms of Ti(z,t) in the wellbore. To solve Equation 3.73 requires explicit
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/\, iaTz(T,l)
pC/ T 6r

r=r, r=r,

expressions for T5(r,1) and 2a

To accomplish this task, the solutions for the heat transfer models in the
casing and the reservoir are required. These solutions were developed in a previous
section, Section 3.2, where no axial flow of fluids was assumed. They are now used
in the solution of the axial heat transfer problem.

Using Equation 3.71 to define the heat transfer into the wellbore makes it

possible to reduce the single one-dimensional problem into two one-dimensional
2al, 1 8Ty(r, )
pC J Ti or

problems. The next step is to determine T5(r, s) and

r=r¢

3.4.2 Determination of Tg(r, s) and derivative

The unknown coefficients, C(s), D(s), E(s) and F(s) in Equations 3.15 and
3.49 are determined from the boundary conditions applied at r = r;, r = r,,, and
r=r,. At r=r; and r = r, the temperatures must be continuous as stated by the

following boundary conditions,

TZ (1‘,’,5) = 7“11 (Z,S)

. ) (3.74)
Ty (rw,s) =T5(rw,s)

It is emphasized that the temperature distribution in the wellbore is assumed not to
change in the radial direction. This, as previously mentioned, leads to a
simplification of the radial semi-analytic model, which, in turn, makes possible the
derivation of the axial temperature distribution.

At r = r,,, the heat flux across the boundary must be continuous,

T dTs -
/\,—d—r— _ —/\r—g‘ _ (370)

At the boundary, r = r., the temperature is equal to the initial reservoir
temperature. Applying these boundary conditions to the Equations 3.8, 3.15, and

3.49 results in the following system of linear equations in matrix form:
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IO(rl’\/s?:) Ko(r‘-\/%) 0 0
L (rov/3Bs) Ko(roviB) —2{revst) K, (rev/3B7)

o
L (ruvsB:) —Ki(ruvsh,) -%f %I’“ reveh: %:;\/%KHIQ":M!
0 0 ‘r(rewe/ﬁ?! K, r.:/s‘a:

( C(s) \ ( Ti(z,s) — 2L — -7-;’1 \

20,2,
D 1) R
(S) = ] B,A,dT s (376)
E(s) b e

\Fs) /] \ =Tplre,s) )

This system of equations is simpler than Equation 3.54 by virtue of the fact that the
temperature in the wellbore is no longer a function of the radial coordinate.

Since an expression for the heat flow into the wellbore is necessary to solve
Equation 3.73, the coefficients for T3(r, s) must be stated explicitly. It is
unnecessary to obtain explicit expressions for E(s) or F(s). The coefficients are

obtained from the solution of Equation 3.76 and are,

C(s) = g1(s)Tu(z,5) +

k
(92(5) = 91(s)] (g m(s) = + 3) +a)Tns)| BT
D(s) = gu(s)Ti(z, ) +
k
l95(s) = 9a(s)] (sz m(s) 2 + 1) o)D) ()
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where,

ai(s) =

g2(s) =

ga(s) =

ga(s) =

gs(s) =

az(ls)KO((:::/)?ﬂ x \/[ﬁ; [Toes (o voB) Ko (Vo) -
Kpws (ra/a8:) T, (rev/55:) ] +
7 [ (V) () +
K (ruveB) B (re/55:)|

A e )
Ky (r,,,\/s_ﬂ,) I, (re\fSE)]

Ko (ri /s
Kl B [ (o /5B) Koo () -
K, (ruv/sB:) Ipss (ruv/B; )|

Ll B () () -
Ko (rw\/EE) L (re\/s_ﬂ:>] +
d(ls) . E:::—{‘);PB:) [—I,, (r‘” P ') K, (r° \/SE) *
K, (rw\/a) I (’”e \/‘E)]

LT B () K, ) -
2 (rw\/EE) I, (re \/E)]
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and finally,

1 L (riv/sB,) A, 1
ge (5) d(S) (rwre)p \/;rw\/m: (3-84)

The denominator, d(s) is given explicitly by the following expression:

a2 { o (/5B o () -
Ko (r382) B (/58] - -t () K, (1) -
Ko (/) B (o) - [0 () — K (/5 +
Ko (w/3B) 1 (ro 7)1 () K, (1 57) +
K, (roV/5B.) L, (rv/55.) |} (3.85)

Up to this point, an explicit expression for the heat flow into the wellbore has

d(s) =

been developed. This was accomplished by solving for the temperature distribution
in the casing and determining its derivative with respect to r at r;. With C(s) and
D(s) evaluated from the boundary conditions (Equations 3.76 to 3.85) the heat flow

into the wellbore can be stated as follows,

2a), dTy(r,s) . _
r; pC;  dr _ -+T2(r,s) o -
. ) 1] k | To
@(s) Ti(2,8) +7(s) 3_m(s) 22 + w(s)Ty(re, s) + 7(s) > (3.86)
=0
where,

@ (s) = gi(s) (Io (r,\/TSE) 2a), MA (7‘.\/—))+
94 (s) (Ko (m/_ ) 200 /B (r,\/— )) (3.87)

r; pCy
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7(s) = [g2(s) — 91(s)] (Io (ri\/TSE) + ?'c':i)‘—' pCyv/sBs 11 (Te\/-;E)) +
[95(s) — ga(s)] (Ko (r; sﬁ,) - 2?_:\' pCs/sB, K, (r,\/s_ﬁ_,)> +1 (3.88)

(6) = 0s(6) (1o (r/582) + 229 VAL (r/572) ) +

i pCj

g5 (5) (Ko (r/5B) = 22 BLK, (/3B1) ) (389)

ri pCy

Equation 3.73 is the axial heat transfer model developed for the wellbore and

is repeated here for convenience.

3T1(z, t)
>

aTl 2&/\3 laTg(T, t)

+Ti(zt) = —a at  pCyr; Or

+ Ty(r ) (3.90)

r=rg r=rq

Substitution of the explicit expression for the heat flow into the wellbore into
the above equation, (Equation 3.86 into Equation 3.90) and taking the Laplace

transform results in the following

1 k
z%Tzl +b(s)T1 = (—sa +7(s)) % +v(s) Z"‘(s) 2+ 4y (s) Ty(rers)  (3.91)

i=0
where, b(s) = (1 + sa — w (s))

Equation 3.91 is a simple first order non-homogeneous differential equation
that can be solved using elementary calculus methods [115]. It is noted that the
generation of a polynomial expression for ¢2(z) has made it possible to solve this
equation analytically.

The particular solution is obtained by assuming a solution of the form

k+2

Tlvp(z,s) = Za,-z‘ ,
i=0

and substituting this solution into Equation 3.91 and solving for the unknown
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coefficients, a;, in the series. This results in the following particular solution,

k i+2
Tllp(z,s) = (ia_-*"y—(s))& + Eﬁf“p(rhs) + ‘7(5) T’,‘(S)Z+

b(s) s b(s) 1+ b(s) +2 (3.92)

The complementary solution, which is the solution to the homogeneous form

of Equation 3.91, is obtained directly and is,
T1e(z,5) = G(s) z7CFee==(D (3.93)

The constant of integration G(s) must now be determined and requires the
assumption that the temperature is known at some location near the toe of the
horizontal well, Zy. This will set a boundary condition for the determination of
G(s). For a very long horizontal well, it may be sufficient to state that
Ty(Zo, s) = To/s, the initial temperature in the wellbore. In circumstances when the
reservoir electrical heating may be sufficient to cause a rise in temperature along the
entire length of the horizontal well, a method to estimate the temperature at z
must be devised.

In this thesis, the approach involves the solution of the radial semi-analytic
model to estimate the temperature at zo, where the axial flow velocities are
negligible, and using this temperature as the boundary condition, determine G(s),
(refer to Figure 3.2). Thus, from Equations 3.92 and 3.93, and using that the
complete solution of ff"l(z, s) is the sum of the particular solution and the

complementary solution, G(s) can be stated as follows,

—b(a) —b(s)

- V_(s.)_ _1..> Tp(r,,s) —

G(s) = (Tl(rf,s) - EMD) (l) b(s) \ zo

s b(s) 20

—b(s) k ;
' mi(s) 25"

1
7(s) (20') 2 Trprz O

Finally, the expression for Tl(z, s) is:
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~b(s)

; 7 z = ni(s) z
fitzs) =Tiras) (Z)  +70) > Tt

(=522t [ () ]-

—b(s) & 3
z ni(s) Zo**
v (s) (Zo) 2 Trhs) 12 (3.95)

where zg is the location of the boundary.

To obtain the temperature distribution in the time domain requires inversion
of Equation 3.95. An analytic inversion of Equation 3.95 is not feasible. Thus,
Equation 3.95 is inverted numerically using the Stehfest Inversion Algorithm to

obtain a solution of the problem in the time domain.

3.4.3 Validation of the axial semi-analytic model using
TETRAD

In this section TETRAD is used to validate the axial semi-analytic model.
Specific considerations for TETRAD to model this problem are listed here. A full
description of TETRAD and the features referred to here are documented in
References (82], [110], and [111].

1. Set the values of the gravity term, g, in TETRAD in all the grid blocks to
zero to eliminate the pressure gradient. The +z direction in TETRAD
defaults to increasing depth below the surface of the earth, whereas the z

direction in the semi-analytic model is horizontal.

2. Set the transmissibility in the wellbore in TETRAD to a sufficiently large
value so that there is minimal pressure drop in the axial direction in the
wellbore. This will ensure that the fluid will flow radially into the wellbore
and the flow velocity at r = r,, will have minimum variation along the length
of the horizontal well. Large wellbore transmissibility is also required so that a
well can be located in a single grid block at the heel of the well and axial

A
&

accumulation of flow Q(z) = Q. - ] in the wellbore can be properly modeled.
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The longer the wellbore, the greater the axial pressures drop between the heel
and toe of the well and the larger the variation of the radial flow along the
length of the well. This is the single most important issue that must be
properly considered to ensure comparability between the axial semi-analytic
model and TETRAD. Otherwise, the radial fluid flow into the wellbore along
its length is not uniform and the temperature profiles obtained with TETRAD

can not be compared with those obtained from the axial semi-analytic model.

. Set the z direction permeability in the reservoir to a small value to further
restrict the fluids to flow radially into the wellbore and minimize axial flow in

the reservoir.

. Set the electrical conductivity for the casing grid block and ground grid block,
which is located at near r. at the outer boundary of the problem domain, to a
very large value to ensure that the current density, J, along the length of the

well at r = r,, is uniform.

. Model the hysteresis and eddy current losses in the casing using the input data
set, ENFLUX. This data set allows the input of energy in kJ/(m3day) into a
grid block. Based on the current, the hysteresis and eddy current power losses

are determined in these units and input into the grid block using this data set.

. A limitation of TETRAD is that only one value for the reservoir heat capacity
can be input into the program. Since the wellbore consists entirely of fluid, the
heat capacity for the fluid was used for all the regions. This value was input
into the numerical model and the axial semi-analytic model so that a valid

comparison could be made between the results obtained with the two models.

. Attach a grid block at the heel of the well as the production grid block. This

step tends to improve the axial flow of fluids into the wellbore.

It is necessary to input a very large transmissibility for the grid blocks used to

model the wellbore so that the resistance to flow in the axial direction is negligible.

This approach will result in the calculation of the temperature distribution to

become sensitive to small changes in the input data. For example, a change in the

overall pressure drop along the length of the horizontal well of only 3 kPa results in
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a 6 °C difference in the calculation of the peak temperature. Attempts were made
to minimize the impact of these sensitivities by designing a stable grid and input
data set.

Ideally, an infinitely large wellbore transmissibility is chosen so that the
pressure drop in the wellbore is zero. Under these conditions, the flow into the
wellbore from the reservoir is evenly distributed along the length of the horizontal
well. As the axial pressure drop in the wellbore increases due to a finite resistance
to flow in the wellbore, a variation of the radial fluid velocity distribution along the
length of the wellbore will result. The greater the axial pressure drop in the
wellbore, the more distorted the radial fluid velocity distribution. This distorted
velocity distribution contradicts the assumption of uniform radial flow into the
horizontal well made in the development of the axial semi-analytic model. This may
introduce differences in the temperature profiles calculated with TETRAD and the
semi-analytic model.

Several sensitivity simulation runs were performed to determine a wellbore
permeability that minimized the pressure drop in the wellbore and at the same time
resulted in a stable solution to the problem. Figure 3.11 shows the radial pressure
drop between the reservoir and the wellbore along the axial length of a 1,000-meter
long horizontal well. For these calculations, the wellbore was modeled using grid
blocks with a permeability of 100,000 Darcies. The total fluid production rate from
the well was chosen to be 50 m3/day, which is a typical production rate for a very
good horizontal well in heavy oil. For larger production rates, the pressure drops
will be greater. The grid designed for the wellbore at 50 m?/day represents a
practical upper limit of the flow rate from a horizontal well producing from a heavy
oil reservoir and the grid should be adequate for modeling lower total fluid
production rates.

Figure 3.11 shows the variation of the pressure drop between the reservoir and
the wellbore along the length of the horizontal well. The variation of the radial flow
velocity along the wellbore is proportional to the pressure drop. Using a very large
permeability in the wellbore, it was possible to achieve a fairly uniform flow
distribution along the length of the well. The pressure drops vary from 38.5 kPa at
the heel of the well, to 33.3 kPa at the toe, resulting in a total pressure drop of only
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5 kPa along the length of the well. Larger wellbore transmissibility values were
tested, yielding smaller axial pressure drops. However, the calculations were
unstable when small changes to the input data were made. A permeability of
100,000 Darcies in the wellbore grid blocks was used to model the uniform flow of
fluids into the wellbore for all of the TETRAD runs.
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Figure 3.11: Numerical calculation of the pressure drop between the reservoir and
the wellbore along the length of a 1,000-meter long horizontal well. The wellbore is
modeled using grid blocks that have a permeability of 100,000 Darcies.

Coarse and fine grids are used in the validation. The coarse grid is designed to
model the problem with no radial temperature gradient in the wellbore by using a
single radial grid block to model the wellbore. This satisfies the assumption of
constant radial temperature distribution in the wellbore, which was required to
obtain the axial semi-analytic model.

The fine grid is designed to take into account the radial temperature variation
in the wellbore so that the assumption of constant radial temperature distribution in
the wellbore can be tested. The steel casing was modeled in the radial direction with
one radial grid block. A finer grid to model the casing was tested and compared
with the single grid block model with no significant difference in the results.

Figures 3.12 and 3.13 show the grids used in the numerical simulation for
validation of the axial semi-analytic model. Only the first several grids, extending to
about three wellbore radii (r = 3r,,), are shown. For the fine grid, 23 radial blocks
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and 21 axial blocks were found to be necessary to model the problem. For the coarse
grid, a single grid block replaces all of the radial grid blocks in the wellbore and thus
20 radial blocks and 21 axial blocks are required to model the complete problem.

Radial Gﬁc/\\

/ \
//iPm
Wellbor

Axial Grid Reservoir

i 1
| |
| |
|

i |

I

Grid Biock 4m  8m 16m __ 21m
Heel 100m Toe
Figure 3.12: Coarse grid used in TETRAD for validating the axial semi-analytic
model.

Two horizontal well lengths are modeled, 100 meters and 1,000 meters. The
100-meter well is sufficiently short so that there is no single heat transfer mechanism
dominating the thermal response of the well. The 1,000-meter length well is typical
of the length of horizontal wells drilled in heavy oil. For the longer well, the
important heating mechanism is thermal conduction from the casing into the
wellbore and reservoir as the casing increases in temperature as a result of hysteresis
and eddy current losses. The grid used to simulate the longer well is similar to the

grid used for the shorter well with the axial grid block sizes multiplied by a factor of
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Figure 3.13: Fine grid used in TETRAD for validating the axial semi-analytic model.

10.

The temperature dependence of the electrical conductivity of the reservoir,
(neglected in the semi-analytic models), is investigated using TETRAD. This
investigation is done for both the long and short horizontal wells. The impact of
assuming constant electrical conductivity in the development of the axial
semi-analytic model can therefore be tested.

The simulation runs conducted for the validation are summarized in Table 3.7.
Unless otherwise stated, the input current is adjusted so that the peak temperature
does not exceed 100 °C. Also, all the calculations for all the runs are for a heating
duration of 30 days and the initial reservoir temperature is 20 °C.

Runs with the same regional properties means that the thermal conductivity

of all the regions is set to the thermal conductivity of the reservoir. The same
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thermal conductivity was used in all of the regions so that the effect of total fluid
production rate on the results could be isolated from other effects and more readily
analysed. The impact of using the thermal conductivity particular to a region is
analysed in Run { and Run 9. For these runs the different thermal conductivity of

each region is used, i.e., A;, A,, or A.. Table 3.8 summarizes the operating input

Run Regional Grid Temperature Dependent  Flow
Properties Type Conductivity, o.(T) Rate
S/m m3/day
100 meter runs
1 Same Coarse and Fine No 0.5
2 Same Coarse and Fine No 5.0
3 Same Coarse and Fine No 10.0
4 Different Coarse and Fine No 5.0
5 Same Fine Only Yes 5.0
1,000 meter runs
6 Same Coarse and Fine No 10.0
7 Same Coarse and Fine No 25.0
8 Same Coarse and Fine No 30.0
9 Different Coarse and Fine No 25.0
10 Same Fine Only Yes 25.0

Table 3.7: Summary of the simulation runs used to validate the axial semi-analytic
model.

data for the different runs.

100-meter long horizontal well validation runs

The first five runs in Table 3.7 are for a shorter, 100-meter long horizontal
well. In the first three runs, the only parameters that are varied are the flow rate
and the electrical current. The electrical current is adjusted so that a peak
temperature of 100 °C is achieved after 30 days of heating. The purpose of these
runs is to investigate the effect of flow rate and compare the results obtained to

results from the axial semi-analytic model for the situation in which none of the
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Run Flow Rate Current Ti(z)maz 1 -—; 92%\(':,1
m3/day A RMS °C

100 meter runs

1 0.5 480 99.56 1.02
2 5.0 530 99.07 1.13
3 10.0 580 99.36 1.25
4 5.0 530 100.27 2.00
) 5.0 732 101.67 2.00
1,000 meter runs
6 10.0 880 99.94 1.02
7 25.0 1000 101.59 1.06
8 50.0 1000 82.88 1.13
9 25.0 1000 105.28 1.06
10 25.0 1000 100.93 1.06

Table 3.8: TETRAD validation runs operating data. In all of the runs the initial
reservoir temperature is 20 °C.

heat transfer mechanisms can be ignored.

Run 4 compares the effect of different thermal properties in all the regions on
the results obtained by TETRAD and the axial semi-analytic model. The final run
tests the effect of assuming constant electrical conductivity with temperature in the
reservoir in the axial semi-analytic model.

For the coarse grid the axial temperature profiles along r = r; are compared
for each of the validation runs. Since TETRAD calculates the temperature at the
grid block centers, the temperature at r; is obtained by harmonically averaging the
temperatures at the grid block centers [82}:

_ In(rip12/r:) A Ticry2 + In(ri/ri—i/2)AsTi41/2

Tu(r) = = In(rereafr)hs + I(refrecaya) e (3.96)

where, T;1,/2 and T;_;/; are the temperatures calculated by TETRAD at the grid
block centers adjacent to r;.

For the fine grid, the temperatures of the grid blocks used to model the
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wellbore are averaged and the result is compared to the temperatures obtained with
the axial semi-analytic model. The temperature that is calculated in the wellbore
using the semi-analytic model assumes that temperature in the wellbore does not
vary radially. Thus the semi-analytic solution can be viewed as calculating an
average temperature in the wellbore.

Figure 3.14 shows a comparison of the temperature distribution calculated
along the length of a 100-meter horizontal well with a total fluid production rate of
0.5 m3/day using the axial semi-analytic model and TETRAD. Calculations for
both the coarse and fine grids are shown. At such a low production rate, the flow
velocities along the length of the casing are so small that thermal conduction and
electrical heating are the dominant heat transfer mechanisms.

Also shown on Figure 3.14 are the percent differences between the
temperatures calculated using the axial semi-analytic model and the numerical
calculations using the fine grid. The semi-analytic model and TETRAD calculations
compare very well with a maximum difference of less than 1.75% between the
calculated temperatures. The calculations using the coarse and fine grid are almost
identical.
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Figure 3.14: Run 1. Comparison of the axial temperature distribution obtained
from the axial semi-analytic model to results obtained from numerical simulation for
a 100-meter long well, same regional thermal properties, constant ¢.(T'), low fluid
production rate of Q; = 0.5m3/day, and after 30 days of heating.
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Fairly uniform heating along the length of the well is achieved during the
heating process as a consequence of electrical heating in the reservoir. The
temperature variation from the toe to the heel of the well is mainly due to the
variation of hysteresis and eddy current losses along the length of the casing.

The total fluid production rate is now increased to 5.0 m3/day. Figure 3.15
shows the comparison of the temperature distribution along the length of the
100-meter long horizontal well using the axial semi-analytic model and numerical
calculations. This flow rate per unit length of horizontal well is typical of an
excellent horizontal well in a heavy oil reservoir. The input current is adjusted so

that the maximum operating temperature is maintained at 100 °C, as indicated in

Table 3.8.
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Figure 3.15: Run 2. Comparison of the axial temperature distribution obtained
from the axial semi-analytic model to results obtained from numerical simulation for
a 100-meter long well, same regional thermal properties, constant o,(T), moderate
fluid production rate of Q; = 5.0m3/day, and after 30 days of heating.

Uniform heating along the length of the well is achieved with electrical
heating. The axial semi-analytic model calculates a slightly higher average
temperature than the values calculated using TETRAD. The maximum percent
difference between the results obtained with the axial semi-analytic model and the
numerical calculations is about 2.5%. For the case with increased fluid production

rate, small differences between the semi-analytic and numerical model, and between
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the coarse and fine grid become apparent. For greater production rates, these
differences become even more significant as illustrated in the next example.

The total fluid production rate is now increased to 10.0 m3®/day. Figure 3.16
shows the comparison of the temperature distribution along the length of the
100-meter long horizontal well calculated using the axial semi-analytic model and
TETRAD. Under these conditions, radial flow into the wellbore from the reservoir
and axial flow in the wellbore are substantial. The equivalent flow rate for a
horizontal well 1,000 meters long is 100 m3/day, which is considered a very prolific
rate for a horizontal well producing from a heavy oil reservoir. It is noted that the
axial semi-analytic model begins to show signs of instability during the numerical
inversion of the Laplace transform towards the toe of the horizontal well.

Calculations beyond 90 meters were not possible.

5
100 ]
14
'6 80 - o e a A, 4 o\o
= 130
S | =
= | )
8 60r it Ty postive rdiecton g
5] . 23
a | <[ Fuid | o
g 2=0 [m} Horizontal Well 2= [m}
[ 40} Heel Toe
Coarse Grid . 1
T,(z) ., FineGri :
20 " Analytic Model 0
0 20 40 60 80 100

Axial Length Along the Horizontal Well, [m]

Figure 3.16: Run 3. Comparison of the axial temperature distribution obtained from
the axial semi-analytic model to results obtained from numerical simulation for a
100-meter long well, same regional thermal properties, constant o.(7T'), high fluid
production rate of @, = 10.0 m3®/day, and after 30 days of heating.
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Comparing Figure 3.16 with the previous calculations shows that the
maximum error has increased as the production rate has increased. The maximum
percent error rose from 2.5 to 3.5%. Also, larger differences between the coarse and
fine grid numerical calculations are evident. The differences between the fine and
coarse grid calculations may suggest that at higher flow rates the radial temperature
gradient in tke wellbore is significant. Also, the axial pressure drop along the length
of wellbore increases with increasing flow rate, which begins to invalidate the
comparison between the results of the calculations. The results at the higher flow
rates however still compare favourably to each other. These higher flow rates
represent the upper limit for most horizontal wells.

Figure 3.17 shows a comparison of the temperature distribution calculated
along the length of a 100-meter horizontal for a typical production rate of
5.0 m3®/day and with the correct thermal conductivity properties in each of the
regions. The results compare favourably. The maximum percent difference in the
temperature calculations is less than 2.5%. For the shorter well, where electrical
heating in the reservoir is the dominant heat transfer mechanism, the impact of the
thermal properties in the wellbore on the results is marginal.

The plots shown on Figure 3.17 reveal no obvious impact of neglecting axial
heat transfer in the casing by thermal conduction in the axial semi-analytic model.
Assuming that the heat flow in the casing is primarily by thermal conduction in the
radial direction seems to be a valid assumption for the type of problems solved here.

Figure 3.18 shows the radial temperature distribution near the toe of the
horizontal well for the previous case. Near the toe of the well, there is effectively no
current flow in the casing to cause heating and the total fluid production rate in the
wellbore is minimum. Therefore, the radial semi-analytic model can be used to
calculate the radial temperature distribution since the temperature is essentially
determined by the electrical heating in the reservoir and radial heat transfer by
conduction and convection between the three regions. There is excellent agreement
between the semi-analytic and numerical calculations. This example calculation
confirms that the radial semi-analytic model can be used to determine the
temperature boundary condition for the axial semi-analytic model near the toe of

the well, as done in Section 3.4.3.
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Figure 3.17: Run 4. Comparison of the axial temperature distribution obtained from
the axial semi-analytic model to results obtained from numerical simulation for a
100-meter long well, correct regional thermal properties, constant o,.(T), moderate
fluid production rate of Q; = 5.0 m3/day, and after 30 days of heating.

1,000-meter long horizontal well validation runs

The heat transfer mechanisms that control the thermal response of a long
horizontal well are substantially different than those for a short well. The heating
process consists almost entirely of hysteresis and eddy current losses in the casing
and heat transfer by conduction to the wellbore and the reservoir. For a typical
1,000 m horizontal well, producing 25 m3/day, a,, which is a measure of the relative
importance of the conductive and convective heat transfer mechanism, is 1.06. This
near unity value of a means that heat transfer is almost entirely by conduction.

The peak temperature in the reservoir, initially at 20 °C, was calculated for
the case of no electrical losses in the casing, no fluid flow, and only electrical heating
in the reservoir. The calculated peak temperature was 22.46 °C after 30 days of
heating with 1,000 A of current. Even after one year of heating the temperature
only increased to 24.12 °C. If the electrical heating system can be operated so that
an unrealistically large current of 2,000 A RMS flows through the reservoir, the
peak temperature in the reservoir reached after 30 days of heating is only 30.55 °C.
These simple example calculations demonstrate how insignificant electrical heating

in the reservoir for a long horizontal well is. The magnitude of the total current will
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Figure 3.18: Run 4. Comparison of the radial temperature distribution at the toe of
the horizontal well obtained from the radial semi-analytic model to results obtained
from numerical simulation for a 100-meter long well, correct regional thermal prop-
erties, constant o,(T'), moderate fluid production rate of Q; = 5.0 m3/day, and after
30 days of heating.

have to be unrealistically large to bring about any heating in the reservoir of any
significance.

Figure 3.19 shows the temperature distribution along the length of the
1,000-meter long horizontal well after 30 days of heating for Run 6, (see Tables 3.7
and 3.8). The total fluid production rate is 10.0 m3/day. The thermal conductivity
and heat capacity in all the regions are set to the reservoir values. The axial
semi-analytic model and numerical calculations produce almost identical results
with a maximum percent difference less than 2.0%.

The total current to bring about the temperature response shown in Figure
3.19 is less than 1,000 A. Since only a minor increase in temperature is expected as
a result of electrical heating in the reservoir, the thermal response of the horizontal
well is almost entirely a result of hysteresis and eddy current losses in the casing.

Figure 3.20 shows the temperature distribution along the length of the
1,000-meter long horizontal well after 30 days of heating for Run 7, (see Tables 3.7
and 3.8). The total fluid production rate is increased from 10.0 m3/day to 25.0
m3/day. The axial semi-analytic model and numerical calculations produce almost
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Figure 3.19: Run 6. Comparison of the axial temperature distribution obtained from
the axial semi-analytic model to results obtained from numerical simulation for a
1,000-meter long well, same regional thermal properties, constant o.(T), low fluid
production rate of Q; = 10.0 m3/day, and after 30 days of heating.

identical results with a maximum difference of less than 3.0%. The increase in
production rate resulted in a small increase in the difference between the
semi-analytic and numerical calculations. The same trend was observed for the
100-meter long horizontal well.

Figure 3.21 shows the temperature distribution along the length of the
1,000-meter long horizontal well after 30 days of heating corresponding to Run 8 in
Tables 3.7 and 3.8. The thermal properties are the same for all of the regions. The
total fluid production rate is increased from 25.0 m3/day to 50.0 m3/day. The
results calculated with the axial semi-analytic model and the numerical models still
compare well with a maximum percent difference of less than 6.0%.

As with the 100-meter long horizontal well comparisons, the increase in flow
rate increases the difference between the calculations. Due to the large number of
details that are present in the calculation of the temperature distribution using the
numerical model, it is difficult to quantify the increasing difference between the two
models as the total fluid production rate increases. It is noted that as the total fluid
production rate increases, the total pressure drop along the length of the horizontal
well calculated in TETRAD also increases. Since the axial semi-analytic model
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Figure 3.20: Run 7. Comparison of the axial temperature distribution obtained from
the axial semi-analytic model to results obtained from numerical simulation for a
1,000-meter long well, same regional thermal properties, constant o.(7), moderate
fluid production rate of Q, = 25.0m3/day, and after 30 days of heating.

assumes a zero pressure drop along the length of the well, this may be an
explanation why there is an increasing difference between the calculations as the
total fluid production rate increases. However, for the practical production rates
used when comparing the two models, the results compare favourably.

Figure 3.22 shows the temperature distribution along the length of the
1,000-meter long horizontal well after 30 days of heating, corresponding to Run 9 in
Tables 3.7 and 3.8. For this case, the total fluid production rate is 25.0 m3/day and
the correct thermal properties in the regions are used in the numerical calculation.
Thus the thermal conductivity of the casing is set to 50.00 W/(m°C), 0.27 W/(m°C)
for the fluids in the wellbore and 2.04 W/(m°C) for the reservoir. The purpose of
this run is to determine the impact of assuming that the heat flow into the wellbore
from the casing can be modeled using thermal conduction from the casing. The
results of calculations using the axial semi-analytic model and numerical models still
compare very well, with a maximum percent difference between the fine grid model
and axial model of less than 6.0%. The maximum percent difference between the

coarse grid model and axial model is greater, however it is still less than 8.0%.
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Figure 3.21: Run 8. Comparison of the axial temperature distribution obtained from
the axial semi-analytic model to results obtained from numerical simulation for a
1,000-meter long well, same regional thermal properties, constant o,(T), high fluid
production rate of Q; = 50.0m%/day, and after 30 days of heating.

For the fine grid model, the temperature that is used in all of the comparisons
and plots is the volumetrically weighted average temperature of the grid blocks used
to model the wellbore. If the thermal conductivity of the wellbore grid blocks is set
to a large value, for example the thermal conductivity of steel, then the radial heat
transfer in the wellbore is very efficient and the temperatures of the wellbore grid
blocks at various radial distances, at any given axial location are all approximately
the same. Thus the assumption of constant radial temperature distribution in the
wellbore that was used to derive the axial semi-analytic model is, in this case, very
reasonable. When the thermal conductivity of the wellbore is set to the thermal
conductivity of the fluids in the wellbore, the volumetrically weighted average
temperatures of the wellbore grid blocks still compare favourably with the
calculations obtained using the axial semi-analytic model (and the coarse grid
numerical model). However, the temperature of the center grid block in the wellbore
is 12.5 °C cooler than the temperature at r = r;. Thus the peak temperature
calculated using the fine grid numerical model is approximately 9.5 °C greater than
the peak temperature calculated using the axial semi-analytic model. This is likely
due to a significant radial temperature gradient in the wellbore resulting from the
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low thermal conductivity of the fluids in the wellbore. Thus the axial analytic
model will have a tendency to calculate a peak temperature that is conservative.

The volumetrically weighted average temperature of the fluids in the wellbore
calculated using the fine grid model and the axial semi-analytic model are
comparable. This suggests that the net heat flow into the wellbore calculated using
the axial semi-analytic model is approximately the same as the heat flow into the
wellbore calculated using the fine grid numerical model. For the axial semi-analytic
model it was assumed that the heat flow into the wellbore from the casing is

determined from the temperature gradient in the casing

aTg(T‘, t)
ar

r=r;
which is a direct result of using the Neumann boundary condition at the boundary
between the two regions,

aTz(r, t)

Ag——

or

8T1(r, t)
=M

r=r; r=rq

and assuming heat transfer in the radial direction in the wellbore is by thermal
conduction. Based on the calculations from the fine grid numerical model, the heat
flow into the wellbore from the casing can be approximated using this approach
with the caveat that the actual temperatures in the radial direction in the wellbore
may vary.

The impact of using the thermal conductivity of the fluids in the wellbore for
the 100-meter long horizontal well on the numerical calculation of the peak
temperature was not as significant as for the longer well. The difference in peak
temperatures calculated using the axial model and the fine grid numerical model was
less than 5.3 °C. This may be a result of the influence of the multiple heat transfer
mechanisms that happen for the shorter well, whereas for the long horizontal well,
nearly all of the heat is transferred through the regions by thermal conduction.

The above example runs demonstrate that when the thermal conductivities of
the wellbore and the casing are the same and equal to the thermal conductivity of

the reservoir, the calculated axial temperature distribution along the length of the
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Figure 3.22: Run 9. Comparison of the axial temperature distribution obtained from
the axial semi-analytic model to results obtained from numerical simulation for a
1,000-meter long well, correct regional thermal properties, constant ¢.(7T), moderate
fluid production rate of Q; = 25.0m3/day, and after 30 days of heating.

horizontal well obtained with the axial semi-analytic model and numerical models
compare favourably for both the long and short horizontal wells. When the thermal
conductivity of the fluids is used to model the wellbore and the thermal
conductivity of steel is used to model the casing, the average temperature in the
wellbore calculated using the fine grid numerical model compares favourably with
the temperatures obtained using the axial model. The significant difference between
the numerical and the axial semi-analytic model is in the calculation of the peak
temperature in the wellbore when the thermal conductivity of the fluids is used in
the wellbore. These results were observed for both the long and short horizontal
wells over a nominal range of total fluid production rates.

For increasing fluid production rates the percent difference between the
numerical and semi-analytic calculations tended to increase. This increase is likely
due to the increase in pressure drop along the length of the horizontal well
associated with the increase in flow rate. This effect is accounted for in the
numerical but not the semi-analytic model. An increase in the pressure drop along
the length of the horizontal well creates an increase in the variation of the radial

flow distribution along the wellbore which will create a difference between the
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results of the numerical and semi-analytic calculations.

The numerical and axial semi-analytic models calculate axial temperature
distributions for the horizontal wells that compare favourably for the examples
summarized in Tables 3.7 and 3.8. For the 1,000-meter long horizontal well, the
axial semi-analytic model calculates a comparable average temperature for the fluids
in the wellbore. However, the peak temperature calculated with the axial
semi-analytic model is conservative by about 10% as a result of ignoring the radial
temperature gradient in the wellbore. In the next section, the impact of ignoring
the temperature dependence of the reservoir electrical conductivity on the results
obtained with the semi-analytic model is investigated. The axial semi-analytic
model was developed with the assumption that the electrical conductivity is

independent of temperature.

3.4.4 The impact of temperature dependent electrical

conductivity

One of the assumptions made in the derivation of the axial semi-analytic
model is that the reservoir electrical conductivity is independent of temperature. In
actuality the electrical conductivity of the reservoir is a function of temperature and
increases with temperature, o.(T"). Using TETRAD it is possible to test the effect
of the assumption of temperature independent electrical conductivity. In the first
case examined, the effect of ¢.(T") on the temperature response of the 100-meter
long horizontal well is calculated (Run 5 of Tables 3.7 and 3.8). For the second case
the 1,000-meter long well is modeled, (Run 10 of Tables 3.7 and 3.8).

Temperature dependent electrical conductivity affects the distribution of

heating along the length of the horizontal well primarily for two reasons:

1. The total resistance of the formation will likely decrease with increasing
temperature and therefore more current may be required to reach the 100 °C
operating temperature limit. With increased levels of current, the losses in the
casing increase and thus the casing heating becomes more substantial. Since
the heating in the casing is non-uniform with axial location, the temperature

distribution along the length of the wellbore will be more non-uniform
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2. As the temperature distribution along the length of the wellbore becomes
more non-uniform, the reservoir electrical conductivity adjacent to the
wellbore will also become more non-uniform. The electrical conductivity will
be greater in regions with higher temperatures. The current will seek the path
of least resistance and thus more of the current will enter the casing towards
the heel of the well where the temperature is greatest. This non-uniform
distribution of current creates additional heating in the casing towards the
heel of the well. As a consequence the non-uniformity of the temperature

increases even further.

The correlation of electrical conductivity with temperature was obtained from
Sumbar, et. al., [80]. Using data from Chute, et. al. [108], and fitting the
correlation so that the ambient electrical conductivity is 0.025 S/m at the initial

reservoir temperature of 20.0 °C), results in the following:

O’(T) =09 (1 + al(T - To)+
az(T - To)2 + a3(T - To)s)

a; =2.630- 1072 (3.97)
a, =1.706 - 10~
az =9.774 - 1077

Using Equation 3.97 the electrical conductivity of the reservoir at 100 °C is
calculated and is 4.7 times greater than the electrical conductivity at initial
reservoir temperature.

The electrical conductivity is calculated in TETRAD using the following

equation,

o(SunT) = £(T) (%T,%s.i F(1- ¢)o,) (3.98)

where 0, and o, are the electrical conductivity of the connate water and rock, ¢
and P, are determined empirically from data, and S, is the saturation of water in
the void space of the reservoir defined by the porosity, ¢. Using equations 3.97 and
3.98, Table 3.9 is produced and these data are input into the TETRA D numerical

model.
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Temperature  Electrical  f(T)

°C Conductivity
20.0 0.025 1.00
30.0 0.032 1.28
40.0 0.040 1.60
50.0 0.049 1.97
60.0 0.060 2.39
70.0 0.072 2.86
80.0 0.085 3.40
90.0 0.100 4.01
100.0 0.117 4.70

Table 3.9: Electrical conductivity data for the reservoir as a function of temperature
calculated using Equation 3.98 and the correlation shown in Equation 3.97.

To determine the effect that the temperature dependent electrical conductivity
has on the axial temperature distribution, the input data for TETRAD invokes
Table 3.9. The total current and production rate are fixed at 500 A RMS and 5.0
m3/day.

Since the temperature distribution in the reservoir is not uniform, the
temperature dependent electrical conductivity will vary as the reservoir temperature
changes. Thus the distribution of current in the reservoir along the length of the
horizontal well is no longer constant, as shown on Figure 3.23, and the current in
the well casing no longer increases linearly with distance towards the heel of the
well. Consequently the power losses along the length of the casing, ¢2(z), must be
re-calculated by using the most recent current distribution along the length of the
well. This is an iterative process that continues until there is no change in the
current distribution along the length of the horizontal well for the updated
calculation of the temperature distribution. Convergence of the current distribution
is normally achieved in two to four iterations.

The variation of the current distribution along the length of the well becomes
more pronounced when the axial temperature distribution is more variable, as is

usually the case for the 1,000-meter long horizontal well. Four iterations are
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Figure 3.23: Run 5. Numerically calculated current distribution, I(z), and electrical
power power losses, g¢i(z), along the length of the 100-meter long horizontal well,
for constant and temperature dependent o.(T), same regional thermal properties,
moderate fluid production rate of Q, = 5.0m3/day, and after 30 days of heating.
The current is adjusted to maintain a maximum operating temperature of 100 °C.

necessary to achieve convergence for the horizontal well calculations. For the case of
the 100-meter long well the axial temperature distribution is more uniform and
satisfactory convergence is achieved in two iterations.

Figure 3.24 shows a comparison of the normalized temperature distribution
calculated along the length of the 100-meter long horizontal well for temperature
dependent and constant reservoir electrical conductivity. For these runs the current
is adjusted to maintain a maximum temperature of 100 °C. Also shown are the
hysteresis and eddy current losses, ¢2(z), in the casing for the two cases. The total
fluid production rate is 5.0 m3/day for both cases. The following inferences, which
are valid only for the 100-meter long well, can be made from the calculation results
shown in Figure 3.24. When the electrical conductivity of the formation is

temperature dependent rather than constant, then:

1. The axial temperature distribution along the length of the well is less uniform

as a result of redistribution of the current in the reservoir:

2. The hysteresis and eddy current losses in the casing increase dramatically as a

result of the greater current needed to achieve a peak temperature of 100 °C.
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Figure 3.24: Run 5. The effect of the temperature dependent o,(T') on the numerical
calculation of the axial temperature distribution and the electrical power losses in
the casing, g2(z), along the length of the 100-meter long horizontal well, for same
regional thermal properties, moderate fluid production rate of @: = 5.0 m3/day, and
after 30 days of heating. The current is adjusted to maintain a maximum operating
temperature of 100 °C.

3. Hysteresis and eddy current losses are re-distributed and are greatly increased
towards the heel of the well since the electrical conductivity of the reservoir is

greater there, and thus more current enters the casing near the heel of the well.

Figure 3.25 shows the axial temperature distribution for the constant and
temperature dependent electrical conductivity along the length of the 100-meter
long horizontal well. For this example the input current is fixed at 500 A RMS for
both cases. This figure shows that for the temperature dependent electrical
conductivity, the maximum attainable temperature for a given electrical current is
smaller than if the electrical conductivity is constant. This is consistent with
expectations, since the increase in temperature increases the electrical conductivity
(decreases the resistance) of the formation, thus enabling the current to flow
through the formation with fewer losses and therefore less heating.

An important conclusion can be drawn from the analysis of temperature
dependent electrical conductivity for the short, i.e., 100-meter long horizontal well.

The axial analytic model will not accurately calculate the peak temperature or
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Figure 3.25: Run 5. Comparison of the numerically calculated temperature distribu-
tion along the length of a 100-meter long horizontal well for constant and temperature
dependent o.(T) with a constant total current of 500 A RM S, for same regional ther-
mal properties, moderate fluid production rate of Q; = 5.0 m3/day, and after 30 days
of heating.

associated current requirements for a short electrically heated horizontal well in an
oil reservoir. The calculated peak temperature will be overestimated and the
current will be underestimated. This is a direct consequence of significant electrical
heating occurring in the reservoir for the shorter well. However, the axial
semi-analytic model can be used to obtain a qualitative appraisal of the uniformity
of the axial temperature distribution along the horizontal well.

The second test of temperature dependent electrical conductivity is done for
the 1,000-meter long horizontal well. The procedure for the defining input data set

is as follows,

1. Set the operating current for the temperature dependent electrical
conductivity case to a maximum value 1,000 A RMS and adjust the flow rate
until the maximum peak temperature in the casing is 100 °C. This step is
required since the interpolation function for ¢z(z) is only valid for currents less
than 1,000 A RMS.

2. For the constant electrical conductivity case set the flow rate to the value

determined in the previous step and adjust the electrical current until a
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maximum peak temperature in the casing of 100 °C is obtained. This step is
performed since a smaller current will be required to achieve the desired peak

temperature if the electrical conductivity is constant.
3. Normalize the temperature profiles for the two cases and compare the results.

4. Now calculate the constant electrical conductivity case using the axial

semi-analytic model.

Figure 3.26 compares the normalized temperature profiles for the two different
cases. The required flow rate to give a peak temperature of 100 °C for the

temperature dependent electrical conductivity case is 13.0 m?/day.
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Figure 3.26: Run 10. Comparison of the normalized temperature distribution for
variable and constant o.(T'), along the length of a 1,000-meter long horizontal well,
calculated using numerical simulation, with the same regional thermal properties,
moderate fluid production rate of Q; = 25.0 m3/day, and after 30 days of heating.

The effect of variable electrical conductivity is minimal for the 1,000-meter
long horizontal well as shown in Figures 3.26 and 3.27. The current for the constant
electrical conductivity case had to decreased by only 98.3 A (about 10%) to achieve
the desired peak temperature of 100 °C. Even though there is a minor
redistribution of the current along the length of the horizontal well as a result of the

temperature dependent electrical conductivity, as suggested in Figure 3.26, the

hysteresis and eddy current losses in the casing control the thermal response of the
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horizontal well for both cases and the temperature distribution remains virtually
unchanged. Redistribution of current in the formation is relatively minor. This
calculation demonstrates that for a long horizontal well the assumption of constant
electrical conductivity that was necessary to derive the axial semi-analytic model is

valid. For shorter wells this may not the case.
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Figure 3.27: Run 10. Comparison of the temperature distribution for variable and
constant o.(7T'), along the length of a 1,000-meter long horizontal well, calculated
using numerical simulation and the axial semi-analytic model (constant o,.(T) only),
with the same regional thermal properties, moderate fluid production rate of @ =
25.0 m®/day, and after 30 days of heating.

Table 3.10 summarizes the power losses in the casing and reservoir, the
effective resistance of the casing and reservoir, and the electrical-oil ratio for each of
the runs summarized in Tables 3.7 and 3.8. For consistency, only the data
calculated using TETRAD is presented in Table 3.10. For all the data summarized
in Table 3.10, the input current is adjusted so that a maximum operating
temperature after 30 days of heating of 100 °C is obtained. The magnitudes of the
resulting currents are summarized in Table 3.8. The electrical-oil ratio is the ratio of
total input power divided by the total oil flow rate and is presented in common oil
field units: kW - hr/barrel.

The following inferences are made from these summary data,

1. The electrical-oil ratio is the ratio of electrical energy consumed to volume of
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Run Losses Resistance Electrical-

Casing Reservoir Casing Reservoir Oil Ratio
kW kW mQ) m§) kW - hr/barrel
100 meter runs
1 3.07 58.45 13.32 253.68 469.47
2 3.90 71.26 13.94 253.68 57.36
3 4.85 85.34 14.42 253.68 34.41
4 3.90 71.26 13.94 253.68 57.36
5 8.28 89.42 15.45 166.90 74.56
1,000 meter runs
6 12295 19.65 158.77 25.37 54.41
7 159.01 25.37 159.01 25.37 28.14
8 159.01 25.37 159.01 25.37 14.07
9 159.01 25.37 159.01 25.37 28.14
10 159.01 19.83 159.01 19.83 27.30

Table 3.10: Summary of the validation runs.

produced oil. For small production rates, this ratio is large. It becomes
smaller as the production rate increases. Of interest is how low the electrical
energy costs are. If the cost for electrical power is $0.05/(kW - hr), then the
energy costs range from $0.70/barrel to $3.73/barrel (Run 1 is not included in

the calculation since the low rate makes the well uneconomic).

. For the shorter well, at least 90% of the electrical power is dissipated in the
reservoir. For the longer well, most of the power is dissipated in the casing
with only 13.76% of the power used to electrically heat the reservoir. It is
worth restating at this point that previous authors ignored the hysteresis and
eddy current losses in the casing, thus assuming that enormous currents can
be used to heat the reservoir, [3], [27], [2], and [28], made a critical error in
their analysis.

- The overall resistance of the casing for the shorter well is much smaller than

the resistance of the reservoir. For the longer well, the opposite is true. [n a
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field application of electrical heating using a long horizontal well the actual
resistance of the casing will affect the uniformity with which the current
collects along the length of the well. In this thesis, except for Run 5 and 10, it
was assumed that the system is engineered so that the current distribution is
uniform along the length of the horizontal well. The semi-analytic treatment
of non-uniform current distribution along the length of the horizontal well is

an issue for further research.

In conclusion, the solution for the heat transfer problem for electrical heating
of an oil reservoir from a horizontal well has been presented. The semi-analytic
models have been validated using simplified analytic models and numerical
simulation.

The models can be used for many different types of calculations. They can for
instance, be used to calculate power requirements and power supply specifications,
cable sizing and cooling system requirements. The mathematical techniques and
approach used to solve the multi-region problem can, with little modification, be

used to solve many different types of physical problems.
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Chapter 4

Conclusions and Recommendations

for Further Study

4.1 Conclusions

It has been shown through semi-analytic models developed in this thesis and
by adaptation of a commercial numerical simulator, that electrical heating can be
an effective method to heat a long horizontal well.

A finite-difference time-domain solution of Maxwell’s equations was developed
to determine the hysteresis and eddy current losses in the casing. The hysteresis
and eddy current losses were expressed as a polynomial function of total current in
the casing. This function was then incorporated into the heat transfer problem for a
long horizontal well so that radial and axial semi-analytic solutions could be derived.

The magnitude of the hysteresis and eddy current losses calculated for the
casing in a long horizontal well cannot be ignored. The increase in temperature
resulting from these losses limits the magnitude of the current that can be used in
the electrical heating process using long horizontal wells. Typical operating currents
are limited to less than 1,000 to 1,500 A RMS. To design a system to handle larger
currents, special non-magnetic material, like aluminium, may be required in the
construction of the tubing and casing to eliminate the effect of hysteresis losses.

The analysis of the hysteresis and eddy current losses in a typical casing
indicates that hysteresis losses can account for up to 80 % of the total losses at

relatively small current levels of 250 A RMS. At current levels between 250 and 400
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A RMS hysteresis losses can account for as much as 40 % of the total losses. Also,
the hysteresis effect will cause a re-distribution of the current in the casing which
can result in total power losses that are three times greater than if there was no
hysteresis.

Subject to the assumptions made in this thesis, the following conclusions arise

from the radial and axial semi-analytic solutions of the heat transfer problem:

1. The temperature distribution along the length of a long horizontal wellbore is
not uniform and depends almost entirely on the hysteresis and eddy current
losses in the casing and heat transfer from the casing into the wellbore and

adjacent reservoir, rather than the direct resistive heating of the reservoir.

2. The hysteresis and eddy current losses in the casing of a long horizontal well
will limit the total current to values that are relatively small over much of the
length of the well. For the properties of steel casing considered in this thesis,

1,000 A RMS poses an upper limit to the total current that can be used.

3. For a long horizontal well, electrical heating by current flow in the reservoir
adjacent to the casing is insignificant, contributing to a temperature rise of

less than 5.0 °C over a heating period of one year.

4. Electrically heated long horizontal wells may not heat the reservoir as
efficiently as electrically heated short wells. Short wells, between 100 and 200
meters long, promote direct heating of the reservoir by current flow in the
reservoir for total currents less than 1,000 A RMS. This results in a
temperature distribution that is relatively uniform along the length of the
wellbore when compared to the temperature distribution for a long horizontal

well.

5. The impact of temperature dependent electrical conductivity on the
temperature distribution and total current in a long horizontal well is minor.
On the other hand, the impact of temperature dependent electrical
conductivity on the temperature distribution and the total current for a short

horizontal well is significant.
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6. The validity of the axial semi-analytic model is restricted to problems in
which the effects of temperature dependent electrical conductivity are

minimal, i.e., long horizontal wells.

4.2 Recommendations for Further Study

There are many opportunities for additional research. The following are
recommendations that will immediately advance the work that has been presented

in this thesis.

1. Develop the boundary condition for heat flow into the wellbore from the steel
pipe so that an overall heat transfer coeflicient can be used to determine the
heat flow as a function of z. Overall heat transfer coefficients for oilfield
tubulars, particularly for steam and hot water injection, have been presented
in the literature. However, they do not account for variable flow velocity in
the pipe, {113], [116], and [114], and [25]. This may require that a numerical
solution to the heat transfer models in the three regions be derived. The
model can then be made sufficiently general to be used for thermal processes
such as steam assisted gravity drainage (SAGD) by incorporating the
conservation equations of mass, momentum, and energy and various
correlations for the variation of physical properties, such as fluid viscosity, as a

function of temperature.

2. The analytic or numerical treatment of a non-uniform current distribution
along the length of the horizontal is an issue for additional research. In this
thesis, the current is assumed to collect uniformly along the length of the
horizontal well. However, wavelength effects and the inherent resistance of the

pipe will influence the uniformity of the current distribution.

3. A fully integrated numerical model is the next step for the advancement of the
solution of the heat transfer problem. The approach might be to incorporate
the hysteresis and eddy current losses in the casing into an existing
commercial reservoir model, like TETRAD. The numerical model can then be

developed to account for the variation of the electrical conductivity of the
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steel as a function of temperature, the non-uniform current and fluid
distribution in the reservoir, the change in total production rate due to the
change in oil viscosity, and so on. The analytic tools developed in this thesis

provide a check for additional numerical work.

. The numerical representation of the hysteresis loops in the finite difference
time domain model should be further investigated. The EM Pipe Loss model
uses a novel technique that worked well. However the technique depends on
obtaining actual data, which can be expensive. Other numerical methods,
primarily the finite element approach, have successfully used Preisach’s
Theory to model hysteresis loops, however, for different types of problems
than presented in this thesis, [117], [93], [90], [92], and [91]. The claim of
Preisach’s Theory is that the technique actually models the physical process
of hysteresis. It may be possible to extract the essential properties of the oil
field tubulars so that Preisach’s Theory can be used to generate the family of

hysteresis loops and be used in the finite difference time domain solution.
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