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Abstract 

The increasing importance of telecommunication networks is evident to 

everyone. These networks are the infrastructure that facilitates communication and 

transactions worldwide. Most of our daily routine activities are highly dependent on the 

proper function of these networks. Therefore, properly addressing and resolving issues 

to minimize network failures and service outages by improving the network performance 

and boosting their survivability is extremely important.  

The work in this thesis has a special focus on expanding and improving the 

survivable telecommunication network design process. This thesis presents 

computationally efficient approaches for telecommunication network design including 

network topology design, routing traffic demands, and establishing and analyzing 

survivability against complex failure scenarios. The approaches described in this work 

are designed to create benefits by creating synergies between deterministic and non-

deterministic approaches based on Integer Linear Programing and heuristic algorithms. 

The methodologies and the experimental analysis within this work, provide a 

comprehensive set of tools for network designers who can benefit when dealing with 

various design constraints. 
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Chapter 1 : Introduction 

Today, the quality of our daily lives depends on the quality of Internet-based services, 

which are mainly provided and managed by modern communication networks. 

Communication networks facilitate services such as emergency services, business 

management infrastructures, social media connections, transportation platforms, etc. 

based on audio/video data transfer worldwide [1], [2]. This level of dependency on 

critical services, along with the universal growth in the demand for such services, calls 

for larger communication networks with higher levels of quality and functionality [3].  

 The three main constituent tiers of transport networks that facilitate the 

connection among individuals around the world are access networks, metro networks, 

and long-haul networks [4]. The access networks provide a connection between the 

local individuals and central offices (COs). At a higher level, there are metro networks 

that facilitate the connection among the COs within local distances. Finally, there are 

long-haul networks that can provide a connection among the metro networks all around 

the world [4]. 

 The foundation of the communication networks is a transport network (i.e., 

backbone) that facilitates the transfer of various types of data through many physical 

fibre optic cables. The data transmitted via fibre optic cables travel over specific routes 

between desired origin-destination nodal points (terminals) equipped with optical cross-

connect switches (OXCs) or add-drop multiplexers (ADMs) [4], [5]. A breakthrough 

technology in the transport network transmission capacity is Wavelength Division 

Multiplexing (WDM) technology in which a fibre optic cable is able to carry several 
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wavelengths of data simultaneously [4], [6], [7]. Throughout this thesis, for the network 

topology design, the networks were simulated in the form of graphs where the nodal 

devices were represented by nodes and fiber optic cables were represented by the 

spans that connect the nodes [8], [9].  

 The network’s functionality is dependent on its constituent components, including 

the nodes and spans. The functionality of a network may be disrupted due to various 

causes such as severe weather conditions, acts of sabotage, outdated or over-loaded 

equipment, or accidents, that can cause component malfunctioning or failures [10], [11]. 

Such component failures range over a vast variety of failures from a single or dual node 

or span failure, to massive regional failures that affect several components 

simultaneously [10], [12]. As the components (e.g., nodes and spans) along the working 

routes –routes that primarily transfer the data traffic- fail, the route becomes interrupted 

and unable to transfer the data as before. Thus, the affected data will be switched from 

the failed route to the backup route [13]. The lack of sufficient backup routes results in a 

service outage. In recent years, both government and private sectors in Canada have 

faced sizeable financial losses due to communication service disruptions and outages 

[14]–[17]. To avoid losses and improve the quality of services, we need sustainable 

networks that are equipped with survivability mechanisms to overcome such component 

failures and minimize service disruptions. There are various survivability mechanisms 

designed for the restoration of the network’s functionality upon component failures [10]. 

Employing survivable networks provides levels of protection against failures and 

consequently increases the availability of network services [18]–[20].  
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1.1 Motivation & Objectives 

In recent decades, communications have faced many challenges and required 

upgrades, and researchers were able to invent novel and efficient solution approaches 

for emerging problems. However, previously developed approaches might lose their 

effectiveness in tackling large-scale network design problems due to: (1) the rapid 

growth of communication networks during the past couple of years, their protocols, 

governing constraints, requirements, and limitations have been changed and become 

more complex than before, and (2) the network design problem itself has a complexity 

level of NP-hard [1], [11], [21]–[24]. Thus, in this thesis, we aim to provide efficient 

solution approaches for the large-scale network design problem. Following, our main 

objectives, which are threefold, are listed: 

1. Optimal topology design of large-scale networks: 

We propose a novel heuristic approach based on a genetic algorithm (GA) for the 

topology design of large-scale networks. Given the set of nodes, a set of traffic 

demands to be routed between specified origin-destination nodes, and the costs 

associated with each span establishment and working capacity allocation, our 

approach finds the optimal network topology in terms of the optimal span 

establishment to accommodate the routing of all the required traffic demands 

with minimum cost in reasonable processing time. We also study the effect of 

various traffic patterns on the efficiency of the proposed approach. 

 

2. Survivable topology design of large-scale networks based on a deterministic 

approach: 
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We proposed a deterministic-based approach for the survivable topology design 

and spare capacity allocation. Given a fixed set of nodes, a set of established 

spans with working traffic on them, and the costs associated with additional span 

establishment and spare capacity allocation, we studied the minimum cost 

topology design of large-scale networks that are survivable against dual span 

failures.  

 

3. Survivable topology design of large-scale networks based on a heuristic 

approach: 

We proposed a Genetic Algorithm-based approach for the survivable topology 

design and spare capacity allocation. Given a fixed set of nodes, a set of 

established spans with working traffic on them, and the costs associated with 

additional span establishment and spare capacity allocation, we studied the 

minimum cost topology design of large-scale networks that are survivable against 

dual span failures.   

1.2 Thesis Outline 

This thesis comprises of 7 chapters covering the achievements accomplished to satisfy 

the three main goals mentioned previously. In Chapter 2, we present a comprehensive 

background on the thesis topic. We introduced the fundamental mathematical concepts 

and used terminology in Sub-section 2.1 including the graph theory concepts, the 

mathematical notation for representing the problem, and employed solution approaches. 

Moreover, in Sub-section 2.2 we represented the fundamental sub-problems each of 

which correlates to one of the main goals of this research. 
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 In Chapter 3, we present a novel heuristic approach based on a GA for the 

optimal topology design of large-scale networks in the format of a journal paper. This 

chapter starts with an abstract of the research work, followed by a comprehensive 

introduction to the problem including the related works. We extensively described the 

designed GA, its constitutive operators and the methodology that we used to fine-tune 

those operators. Finally, we compared the obtained results (over 18 different test cases) 

to the existing benchmark that provides the exact optimal solution to the problem. 

 In Chapter 4, we present an improvement in the designed GA in Chapter 3 in the 

format of a conference paper. The contribution of Chapter 4 is focused on the pattern of 

the traffic demands that are going to be routed over the networks in a large-scale 

network design problem. We studied the impacts of the order of routing the traffic 

demands according to the traffic demand’s magnitude, on the total efficiency of the 

designed algorithm. We analyzed two different traffic demand patterns as scattered and 

clustered (with hub nodes) on 20 different test cases with 60 and 100 nodes.  

 As the main content of Chapter 5, we present a heuristic approach for dual failure 

span restorable large-scale network design problem using pre-enumeration of backup 

routes based on an ILP model. We assumed the nodal points in a network are fixed and 

there is a set of spans in the network carrying the working traffics. Our goal was to 

design a minimum-cost network topology that is survivable against any dual span failure 

among the spans carrying the working traffic.  

 In Chapter 6, as an advancement on the contributions of Chapter 5, we 

introduced a novel heuristic approach based on a GA for the design of dual failure span 
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restorable large-scale network design problem. The introduced GA is embedded in a 

problem-specific heuristic algorithm for routing the affected traffics upon any dual span 

failure. The GA’s along with the heuristic algorithm’s parameters were determined over 

a comprehensive set of tuning tests. The obtained results were validated using the 

approaches introduced in Chapter 5 and they were comparable concerning the 

efficiency of the solving process. 

 In Chapter 7, a comprehensive conclusion on the Ph.D. thesis work and future 

directions is presented. 
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Chapter 2 : Background 

In this chapter, a background on the employed mathematical and computational tools 

and concepts are provided, followed by a detailed background on the related research 

works and the thesis outline.  In this thesis, sections of the following chapters are 

edited/adapted from parts of our work ready to be submitted and/or accepted for 

publication as conference/journal papers1. Appropriate citations and references are 

provided to identify such publications. 

2.1 Mathematical Terminology   

In this thesis, we employ various mathematical tools and notations for defining the 

structure of the network design problem and representing the problem’s solution. In this 

section, an overview of the concepts and notation that we used in this thesis is 

provided.  

2.1.1 Graph Theory Representation of Networks 

According to Harary’s definition of graph [8], [9], a graph consists of a set of points and 

lines in which every line connects two points. 

Networks can be represented by their corresponding graphs. To conform with the 

telecommunication network’s phraseology, from now on we use node and span instead 

 
1 Parts of this chapter are taken and/or adapted from our journal paper in IEEE Access [129]. 
Portions of this chapter and Chapter 4 are slated for publication as a conference paper: S. Doostie, T. 
Nakashima-Paniagua, and J. Doucette, “An Improvement on the Network Topology Design and Routing 
Problem for Large-Scale Networks”, conference TBD. 
Portions of this chapter and Chapter 5 are slated for publication as a journal paper: S. Doostie, T. 
Nakashima-Paniagua, and J. Doucette, “A Novel Design Approach for Dual-Failure Span-Restorable 
Large-Scale Networks using Integer Linear Programming”, journal TBD. 
Portions of this chapter and Chapter 6 are slated for publication as a journal paper: S. Doostie, T. 
Nakashima-Paniagua, and J. Doucette, “A Novel Genetic Algorithm-based Approach for Design of Dual-
Failure Span-Restorable Large-Scale Networks”, journal TBD. 
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of point and line in the graph definition. Thus, we can represent a graph G with N nodes 

and S spans as G (N, S).  

The structure of a graph that determines how its nodes and spans are established in 

relation to each other is called the graph’s topology. If the end nodes of a span are the 

same node, that span is called a loop. If there is more than one span connecting the 

same two nodes, they are parallel spans. A graph with no loops and no parallel spans is 

a simple graph. In a graph with N nodes, if a span exists between every pair of nodes, 

we call it a complete graph (KN). In a complete graph with N nodes, the maximum 

number of spans is calculated using Equation (1). If there are at least two nodes in a 

graph that are not connected (via one or several intermediate spans), the graph is 

disconnected. The abovementioned graph topologies are depicted in Figure 2.1.  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑛𝑠 =
𝑁 × (𝑁 − 1)

2
 (1) 

The followings are other graph theory terminologies used in this thesis [25]: 

1. Nodal degree: the number of spans connected to a node is called the nodal 

degree of that node. 

2. Average nodal degree: the average nodal degree of all the nodes in a graph is 

called the graph’s average nodal degree and it can be calculated using Equation 

(2). 

𝐺𝑟𝑎𝑝ℎ′𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜𝑑𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 =
2 × (|𝑆|)

|𝑁|
 (2) 

3. Order: The number of nodes in a graph is called the graph’s order. 

4. Stub: A node with a degree of one is called a stub. 
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5. Link: abstraction of a single unit of data (bandwidth) between two nodes in a 

graph is called a link. 

6. Span: an accumulated set of all the links between two nodes in a graph is called 

a span. 
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(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

(e) 
 

(f) 

Figure 2.1. (a) A complete K6 graph with 6 nodes and 15 spans, (b) a simple graph with 5 
nodes and 6 spans, (c) a graph with a loop, (d) a graph with three parallel spans between 
two of its nodes, (e) a disconnected graph consisting of two components, (f) a 
disconnected graph consisting of three components. 

 

7. Path: A sequence of adjacent links with distinct nodes that starts from a node 

and ends at another node is called a path. The node that the path starts from, is 

called the “origin node” and the node that the path ends at, is called the 

“destination node”.  
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8. Route: A concatenation of adjacent spans with distinct nodes that starts and 

ends between an origin-destination node-pair.  

9. Cycle: A closed route that may pass through several nodes and its start and end 

nodes are the same. 

10. Straddling Span: A span whose end nodes are on a cycle but the span itself is 

not a part of the cycle. 

11. Two-connected graph: If there are at least two span-disjoint paths between every 

pair of nodes in the graph, the graph is two-connected.  

12. N-connected graph: If there are at least N span-disjoint paths between every pair 

of nodes in the graph, the graph is N-connected. 

13. Bi-connected graph: If there are at least two node-disjoint paths between every 

pair of nodes in the graph, the graph is bi-connected.  

An example of a two-connected and a bi-connected graph has been depicted in 

Figure 2.2. 

 

(a) 

 

(b) 

Figure 2.2. Examples of graphs of the order of 7 (a) a two-connected graph, (b) a bi-
connected graph. 
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2.1.2 Parameters, Sets, and Variable notation 

An unordered collection of elements (e.g., numbers, names, objects, etc.) is called a 

set. For instance, a set Z that consists of odd numbers between 0 and 8 can be 

represented by Z= {1, 3, 5, 7}. Here, the numbers 1, 3, 5, and 7 are members of set Z. 

The science of mathematical analysis of sets is known as the set theory [26]. The 

followings are the mathematical notation of sets and fundamental set operations that we 

used in this thesis. 

1. Empty set (∅): A set with no elements is an empty set. An empty set A can be 

represented by either A={ } or A= ∅. 

2. Equality (=): Two sets A and B are equal if all of the elements of A exist in B 

and vice versa (A = B).  

3. Membership (∈): An element of a set is a member of that set. For example, 

for the set Z mentioned before, we can say 3 is a member of the set Z or 3 ∈ 

Z. 

4. Cardinality (| |): The total number of elements in a set is the cardinality of that 

set. For instance, the mentioned set Z has four elements or |Z|=4. 

5. Subset (⊂): Set B is a subset of set A if all the elements of B exist in A or B ⊂ 

A. 

6. Not subset (⊄): If there exists an element in B that does not exist in A, the set 

B is not a subset of set A or  B ⊄  A. Accordingly, an slash / on equality and 

membership signs also negates the meaning of those signs. 

7. Universal quantifier (∀): Universal quantifier points out to all of the members 

of a set. For example, ∀x ∈ Z means for all of the members (x) of set Z. 
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8. Existential quantifier (∃): Existential quantifier denotes that there exists at 

least one element. For example, ∃x ∈Z | x > 3 represents that there exists a 

member (x) of set Z such that x is greater than 3. 

9. Union (∪): The union of two (or more) sets is a set of all of the elements in the 

two (or more) sets. For example, if W={2,3,6} and Z={1,3,5,7}, then the union 

of A and Z is A ∪ Z={1,2,3,5,6,7}. 

10. Intersection (∩): The intersection of two (or more) sets is a set that includes 

only the elements that are a member of both (or all) of the sets. For example, 

if W={2,3,6} and Z={1,3,5,7}, then the intersection of A and Z is A ∩ Z={3}. 

Employing the set notations, we can define the sub-graph concept. Considering a 

graph G(N1, S1) where N1 is the set of nodes and S1 is the set of spans that connect 

the nodes, we can write N1 = {𝑛1, 𝑛2, … , 𝑛|𝑁|} and S1 = {𝑠1, 𝑠2, … , 𝑠|𝑆|}. If there exists a 

graph P(N2, S2) that N2 ⊂ N1 and S2  ⊂ S1, we can say that graph P is a sub-graph of 

G. Figure 2.3 depicts a complete graph K5 with two of its sub-graphs. 
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(a) 

 

(b) 

 

(c) 

Figure 2.3. (a) A complete graph K5, (b) a sub-graph of presented K5 in (a) with 4 
nodes and 5 spans, and (c) another sub-graph with all of the nodes and only 4 spans. 

 

2.1.3 Mathematical Programing and Solution Approaches to 
Optimization Problems 

An optimization problem is a problem that searches for one desired solution from a set 

of various potential solutions [27]. In the mathematical context, the optimization problem 

can be considered as maximizing/minimizing the value of a mathematical function 

based on the values of the mathematical function’s variables [27]. The pool consisting of 

all of the possible solutions to an optimization problem is a search space. If there is no 

better solution in the search space than the found solution for an optimization problem, 

the found solution is called a global optimal solution [27]. Another definition used in this 

thesis is the combinatorial optimization problem which refers to an optimization problem 

that has a finite discrete search space where the solutions are in the form of elements, 

subsets, or any combination of the elements and subsets of the search space [27]. 
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Mathematical modelling of problems can be abstracted into a combinatorial 

optimization problem in which the goal is to maximize/minimize the value of a target 

function named objective function. The value of the objective function is determined by 

the values of decision variables. A decision variable is a quantity whose value can be 

controlled and changed. We seek to determine a value for the decision variables such 

that the objective function value is maximized or minimized [4]. The 

maximization/minimization process is done subject to a set of governing constraints. 

The constraints are mathematical limitations and conditions for the decision variable 

values that govern the search process.  

An optimization problem that has a linear objective function, linear constraint 

equations, and at least one of its decision variables is restricted to be an integer, is an 

integer linear programming (ILP) [28], [29].  

2.2 Fundamental Sub-problems in Network Design Problem 

In this section, we provide a brief overview of the fundamental sub-problems in the 

network design problem. Every sub-problem has been addressed in one of the following 

chapters.  

The network design consists of several sub-problems and the specification of 

these sub-problems may vary depending on the network’s application and the 

operator’s discretion. To be specific, the network design problem comprises network 

topology design and lightpath routing problem, network survivability problem, and 

network availability analysis. The followings are descriptions of the abovementioned 

sub-problems in the general network design problem.  
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2.2.1 Network Topology Design and Lightpath Routing 

At the logical level, the network topology can be considered as the position of the nodes 

(terminals) and the existing spans that connect the nodes. In transport networks, the 

aim is to route a set of traffic demands between the specified origin and destination 

nodes as the end nodes of the traffic demand [4]. The traffic demand can be thought of 

as a bundle of various electrical signals that each has been converted (either at the 

origin-destination nodes only or at every node along the route) to optical signals with 

specific wavelengths to be carried over fibre optic cables. In our context, a unit of traffic 

demand refers to one signal correlated to a specific wavelength [4], [30], [31]. 

 In the network topology design and lightpath routing problem, given a set of fixed 

nodes and a set of traffic demands between various origin-destination nodes, the aim is 

to find the optimal network topology (in terms of minimum span establishment and 

routing cost) while every traffic demand is routed between its origin-destination nodes. 

Two factors contribute to the network design and routing cost: (1) The first component 

of the cost is the fixed cost of establishing spans (F) between any two node-pair. Once 

a span has been established, its establishment cost for the upcoming usage of this span 

will become zero. (2) The second cost component is the cost of assigning wavelength 

capacity to the spans that have been established (C), to carry the traffic demand along 

that span. This problem has been named fixed charge plus routing (FCR) in the 

literature [32]–[35]. In this thesis, we used the ILP formulation of the FCR problem as 

one of the benchmarks that provide the exact optimal solution to the network topology 

design and routing problem. 



17 
 

 In network topology design and lightpath routing problem using GA, one starting 

point is to generate random cycles of nodes as feasible network topologies. Generating 

initial random graphs based on cycles has been used in the literature [36]. Herein, we 

benefited from the Travelling Salesman Problem (TSP) [37] which intends to find the 

shortest cycle that starts from a node, goes through all of the nodes once and only 

once, and ends at the starting node. There are various ways to solve the TSP problem 

efficiently such as using the Lin-Kernighan algorithm [38] and GA [39] and [40]. In this 

thesis, we employed GA to solve TSP. As having sub-optimal solutions provide our 

algorithm with a good starting point, we used GA with an initial population of random 

cycles. We have provided a detailed description of this approach in Chapter 3. 

 Another element in the topology design and lightpath routing problem using GA 

is the routing function which is responsible for determining traffic-carrying routes. Based 

on circumstances, the desired routes might have various requirements such as 

maximum length, minimum cost, or any other specification. Throughout this thesis, for 

the minimum-cost network design problem, the length of a route is associated with its 

total cost. Thus, by finding the shortest route, we are actually finding the cheapest route. 

Herein, we employ a well-known shortest path routing algorithm named Dijkstra’s 

algorithm [41], [42] to find the shortest route for any traffic demand between the traffic 

demand’s designated origin and destination nodes. In the FCR problem, the cost 

associated with a route comprises the fixed cost of span establishment (for any 

disestablished span along the route) plus the cost of carrying the amount of lightpath 

equal to the traffic demand 𝑟 (𝑑𝑟) by every span along the route. For instance, for a 

route consisting of 3 disestablished spans (S1, S2, and S3) that require carrying 10 units 
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of lightpath, the total cost would be equal to 𝐹1 +  𝐹2 +  𝐹3 +  (𝐶1 + 𝐶1 + 𝐶1) × 10. By 

employing Dijkstra’s algorithm, we aim to find the cheapest possible route for traffic 

demand between the origin and the destination nodes of the traffic demand. The 

pseudocode of Dijkstra’s algorithm has been presented in Algorithm 1. Considering a 

graph G with specific nodes and spans, and cost parameters (F and C) associated with 

every span in G, Dijkstra’s algorithm is aimed to find the cheapest route for the traffic 

demand r between its origin (Or) and destination (Dr) nodes. 

 



19 
 

Algorithm 1. Pseudocode of Dijkstra’s algorithm 

Input: 

Graph G(N, S),  

Length of a span in terms of its Cost  

Traffic demand r (Or, Dr, dr)  

V: list of visited nodes in G with their corresponding costs 

E: list of evaluated nodes in G 

Output: 

The shortest route for traffic demand r 

Dijkstra’s algorithm: 

1. E(last) ← Or (Append Or to E) 

2. For ∀n∈N | (n connected to Or & n≠E(last) ) { 

              V ← (n, n’s immediate predecessor node, n’s cost) }  

3. E(last) ← minimum cost n from 2 

4. While Dr ∉ E { 

       5. for n∈N | (n connected to Or & n∉E ) { 

              if n∉V { 

                     V ← (n, n’s immediate predecessor node, n’s temporary cost)   

              else if n’s cost > n’s temporary cost  

                     V ← (n, n’s immediate predecessor node, n’s temporary cost) }   

       6. E(last) ← minimum cost n from 5} 

2.2.2 Network Survivability  

As mentioned earlier in the Chapter1, networks are susceptible to various sources of 

component failure that may lead to node or span failures. Thus, to have robust networks 

able to overcome such failures and maintain their required quality of service at all times, 

networks must be survivable. The global growth in the telecommunication network 

services along with more complex service requirements, calls for more efficient 

survivability mechanisms that can act faster with less cost [1]. Network survivability 

refers to the ability of the network to survive its current traffic affected by component 

failures. Generally, network survivability refers to two different concepts: (1) network 

protection in which the protection scheme (including the protection routes and spare 
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capacities) is defined and in-placed in advance of the occurrence of a specific failure, 

and it is reserved for that specific failure, only. (2) Network restoration in which the 

restoration resources (e.g., backup routes and spare capacities) are not on standby but 

will be utilized upon a failure occurrence [10], [43], [44]. The network survivability needs 

to be studied from two viewpoints: (1) the survivable topology design in which based on 

the required survivability pattern, the network must have a minimum level of 

connectivity, and (2) the spare capacity placement in which on a minimum-cost scheme, 

a set of spare capacities for rerouting the affected traffics is placed on the survivable 

topology.  

With regards to the survivable topology design, depending on the failure patterns 

and the required survivability level, the network’s topology needs to have a specific 

connectivity level. Assuming the full restoration only against single-span failure 

scenarios is required, the network topology should be two-connected. In another word, 

for spans that carry working traffics, for them to be restorable, there should be at least 

two span-disjoint routes between every node pair of the graph. As the failure scenarios 

vary and get more complex, the connectivity requirement for network topology gets 

more complicated too. For instance, to have a network that is survivable against any 

simultaneous dual span failure, there should be at least three span-disjoint routes 

between every node-pair of the graph that carries working traffic. Let us consider the 

network represented in Figure 2.4. We assume that all of the spans in the network are 

carrying working traffic. In this case, if spans AB and AE simultaneously fail, there would 

be no route connecting node A to nodes B and E. On the other hand, upon 
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simultaneous failure of spans GC and GD, there are other spans connected to node G 

that can facilitate other routes connecting node G to nodes C and D.  

 

(a) 

 

(b) 

Figure 2.4. Dual span failure; (a) as spans AB and AE fail simultaneously, there is no 
more route connecting node A to nodes B and E. (b) As spans GC and GD fail 
simultaneously, there are still routes connecting node G to nodes C and D.   

Another aspect of survivable network design is the problem of spare capacity 

allocation on the network. There have been several survivability mechanisms 

developed, each of which is based on a specific procedure and subject to specific 

constraints and limitations, place spare capacities on the network mainly with the 

objective to minimize the total cost of the sparing. The followings are the fundamental 

concepts behind some of the well-developed survivability mechanisms:   

2.2.2.1 Automatic Protection Switching (APS) 

The automatic protection switching (APS) mechanism provides traffic survivability based 

on two slightly different mechanisms: 1+1 APS and 1:1 APS [45]. In 1+1 APS 

mechanism, the traffic demand is being carried onto two disjoint routes simultaneously; 

one is the primary working route and the other is the backup route. Upon a failure 

happening on the primary route, the traffic on the backup route will be transferred to the 
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destination node. In 1:1 APS mechanism, the traffic demand is being routed over a 

primary route and there is a backup route on standby. Upon failure on the primary route, 

the traffic will be routed over the backup route to get to the destination node [4]. A 

schematic of the APS mechanism is depicted in Figure 2.5, where, for none of the APS 

mechanisms, the reserved backup routes and their allocated spare capacities were 

shared between various working traffics. Thus, the amount of required spare capacity is 

equal to the working traffic all around the network. However, there are survivability 

mechanisms developed that allow for sharing the spare capacity among various working 

traffic routes and thus have more efficiencies regarding the spare capacity allocation. 

The followings are such survivability mechanisms known as mesh network survivability 

mechanisms [46]. 

 

Figure 2.5. APS mechanism; the working route between nodes B and 
E (depicted by a double solid line) is protected by a backup route 
depicted by a red dashed line. 

2.2.2.2 Preconfigured Cycles (p-Cycles)  

p-Cycles are preconfigured cycles equipped with spare capacity to restore the traffic on 

failed spans either on the cycles or straddling spans of the cycle [4], [47]–[49]. A 

schematic of the p-cycle mechanism has been depicted in Figure 2.6 where the network 

includes 10 nodes and one p-cycle over the nodes BCDJI. The indicated P-cycle is able 
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to protect the spans on the cycle (e.g., BC, CD, DJ, JI, IB) and straddling spans (e.g., CI 

and DI) whose end nodes are incident on the cycle. For instance, if span BI fails, the 

affected traffic can be restored using the p-cycle over nodes B-C-D-J-I (Figure 2.6.b). 

On the other hand, if a straddling span such as ID fails, the affected traffic can be 

restored over both sides of the p-cycle (I-B-C-D and I-J-D). Figure 2.6.c depicts the 

restoration routes for the failure of span ID. 
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(a) 

 

(b) 

 

(c) 

 

Figure 2.6. p-Cycle mechanism; (a) a p-cycle over the nodes B, C, D, J, and I have been 
depicted. The showed P-cycle can protect the spans on it along with the straddling spans 
that only their end-nodes are on the p-cycle, (b) upon failure of span BI along the p-cycle, 
the affected traffic can be restored through the red dashed part of the p-cycle, (c) upon 
failure of straddling span ID, the affected traffic can be restored through either side of the 
p-cycle (whether IBCD or IJD). 

2.2.2.3 Span Restoration  

Using a shared pool of allocated spare capacities all over the network, the failed 

working route will be restored between the end nodes of its failed span. In this manner, 

the network topology at least needs to be two-connected between the end-nodes of the 

failed span and should have spare capacity on the backup route/s equal to the working 
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traffic on the failed span [50]. A schematic of the span restoration mechanism has been 

depicted in Figure 2.7 where the span between node-pair OD has been failed. The span 

OD may be part of any route. Employing the span restoration mechanism, restoration 

routes between nodes O and D which have been depicted by dashed lines, restore the 

traffic on the failed span OD.  

 

Figure 2.7. Span restoration mechanism; upon the failure of 
span OD, restoration routes were formed between nodes O 
and D and have been depicted by dashed lines.  

2.2.2.4 Path Restoration 

Based on the location of the failed span along the working route, the path restoration 

mechanism replaces the failed working route by employing one or more backup routes 

between the end-nodes of the primary working route [51]–[53]. In addition to the sharing 

ability of the spare capacities, a unique feature of the path restoration mechanism is 

performing the “stub-release” procedure in which the capacity on the intact sections of 

the affected working route will be released and made available to be used as the spare 

capacity for upcoming backup routes [10], [51]. Figure 2.8 illustrates the path restoration 

mechanism where the working route has been depicted by a dashed line between the 

node-pair BE. Considering the failure of span BC, by employing the path restoration 

mechanism, the capacities on spans CD and DE will be released for restoration 
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purposes. In this case, a backup route between node-pair BE has been illustrated by a 

solid-double line that uses the released spare capacity on span DE.  

 
Figure 2.8. Path restoration mechanism; upon the failure of span BC as 
a part of the BCDE route, two backup routes were formed between 
nodes B and E and are depicted by solid-double lines.   

2.2.2.5 Shared Backup Path Protection (SBPP)  

Once there is a span failure along the working route, the traffic on the affected route will 

be rerouted over the backup route/s between the end nodes of the affected route. The 

location of the failed span along the working route will not affect the backup plan in the 

SBPP mechanism. Also, in SBPP the working routes that are disjoint and do not have 

any shared-risk spans can share the spare capacity on their backup routes [43], [54]–

[56]. Figure 2.9 illustrates the SBPP mechanism on a network with 10 nodes, two 

working routes between node-pairs BE and ID respectively are represented by dashed 

lines. Employing the SBPP mechanism, as the two working routes do not share any 

span, their backup routes (represented by solid-double lines) can share spare capacity 

on the shared span JD on both backup routes.  
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Figure 2.9. Shared Backup Path Protection mechanism; the backup 
routes (shown by solid lines) of the disjoint working routes (shown 
by dashed lines) share the spare capacity on the shared span DJ. 
The failures can happen anywhere along the working routes. 

2.2.3 Network Availability   

Considering a network as a whole system under study, based on the general definition 

of availability, network availability can be defined as the probability of the network being 

fully functional under its specified conditions at any random time. Mathematically, this 

probability can be defined as the ratio of the network’s working-state duration to the 

network’s total expected operating time [20] and [57]. In a detailed description, a fully-

functioning state of a network can be defined as its ability to carry the required traffic 

demands over the specified working routes between its desired end nodes. In this 

context, the availability of a network will be dependent upon the availability of its 

constitutive components; nodes and spans. As mentioned earlier, there could be 

numerous sources of failure threatening the network components. In the event of such 

failures, the duration that takes to repair the failed components is referred to as the 

downtime of those components during which the components are unavailable. 

Therefore, upon a component failure, if the affected traffic is under delay because of 
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maintenance work, the network is not at a fully-functioning state and thus the network 

availability is less than 100% (unity) [10], [58].  

Depending on the governing survivability scheme on the network and the failure 

scenarios under protection, a specific service level agreement (SLA) can be offered as 

a guaranteeing level of service quality by the service provider [20]. For instance, if a 

network is designed to be survivable against any single-span failure, the network’s 

availability would be 100% in the event of any single-span failure, but if a dual span 

failure occurs, there might not be enough spare capacity allocated on the network to 

survive the dual span failure scenario. In such a case, some parts of the affected traffic 

may not be restored and thus will contribute to the unavailability of the network’s 

service.   

2.2.4 Solution Approaches 

There are two general approaches for solving optimization problems: deterministic 

approaches and non-deterministic approaches. Based on the definition, the 

deterministic approaches are based on deterministic algorithms in which there is only 

one way of proceeding in every step of the algorithm [27]. In other words, by solving a 

problem more than once using a deterministic approach, we will find the exact solution 

that we had found the first time. On the contrary, there are non-deterministic 

approaches wherein every step of the solution approach, there might be decisions 

made based on a random approximation process that can result in different solutions 

every time a problem is being solved. Non-deterministic approaches can be further 

categorized as heuristic and metaheuristic approach. A heuristic approach is a problem-

dependent approximation approach for solutions to a problem [27]. A metaheuristic is a 
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non-deterministic solution approach that can consist of one or more heuristics and 

approximation functions specifically designed for a problem [27].  

2.2.4.1 Deterministic Approaches 

In this thesis, we employed several ILP models as deterministic approaches whether as 

benchmarks or as proposed models for various network design problems. We used a 

mathematical modelling software package named AMPL to generate the computer-

coded mathematical version of the ILPs [59]. The computer-coded ILP models were 

then solved using a mathematical programming solver named Gurobi [60]. 

2.2.4.2 Heuristics and Metaheuristics  

Although the ILP models (upon feasibility) are guaranteed to find an optimal value for 

the decision variables, there are drawbacks associated with their performance in 

various conditions. As opposed to the deterministic approaches such as ILP, there is 

another category of mathematical modelling approaches named non-deterministic 

approaches such as heuristics and metaheuristics. Heuristics are problem-specific 

algorithmic approaches that are not guaranteed to find the exact optimal solution, but 

they are rather fast approaches that can find sub-optimal solutions to the problems [27], 

[61]. Metaheuristics are problem-independent approaches to search for the optimal 

solution to optimization problems [27]. There are various metaheuristic algorithms 

developed and most of them are nature-inspired, among them, tabu search (TS) –an 

algorithm based on local search, which avoids visiting a member of the search space 

more than once– [62], [63] and simulated annealing (SA) –an approximation-based 

algorithm inspired by the pattern from the heating process of metals– [64]. A subset of 
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metaheuristics is evolutionary algorithms. Evolutionary algorithms are nature-inspired 

optimization algorithms that are adopted from the process of evolution of populations in 

nature [65] and [27]. There are several well-established evolutionary algorithms 

developed for solving optimization problems in almost every branch of science, among 

them, particle swarm optimization (PSO) –an optimization approach where each 

solution in the search space is considered as a particle that has a position and velocity. 

The movement of a particle is related to its best position along with the best global 

position in the search space– [66], [67], ant colony optimization (ACO) – an optimization 

approach inspired by the ant’s movement from their colony to a food source– [68], and 

genetic algorithm (GA) –an iterative search algorithm based on the concept of breeding 

and repopulating from a set of members– [69], [70].  

2.2.4.3 Genetic Algorithm 

The majority of contributions of this thesis have benefitted from metaheuristic algorithms 

and specifically novel GAs for the network design problems. GA is an iterative 

evolutionary algorithm formulated according to the theory of breeding mates (i.e., 

parents) and generating offspring. Through the breeding process, the offspring inherit 

some attributes and features from the parents. In this context, every parent and 

offspring is a standalone entity (i.e., individual) representing a solution (i.e., 

chromosome) to the problem and the sub-sections of a chromosome that contain the 

unique features and attributes, are the genes of the chromosome [70]. The initial set of 

parents can be generated randomly or using an approximation of the solution [61]. The 

generated set of initial parents generates a pool consisting of parents named the initial 
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population. A general representation of a GA chromosome, gene, and the population is 

depicted in Figure 2.10.  

 

Figure 2.10. A representation of a GA population with 20 individuals, where every 
individual is represented by a chromosome with seven genes. 

 

Once the initial population of individuals is generated, the fitness of every 

individual is determined. An individual’s fitness is the objective function value of the 

chromosome that represents that individual. The members of the population are then 

sorted according to their fitness. If none of the population members did have the desired 

fitness, GA continues to generate a new population of individuals. To generate a new 

population, first, a number of the members of the current population should be selected 

as parents for the breeding process. The breeding process in GA is facilitated by two 

genetic operators named crossover and mutation. Crossover usually takes two 

individuals from the current population as parents and generates two offspring from 
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them. The generated offspring inherit some of the genes from each parent. Mutation 

usually takes one individual from the population and applies changes and alterations to 

its genes to create offspring. The fitness of the obtained offspring from crossover and 

mutation is determined and the offspring are appended to the current population of 

individuals. Then the population members are sorted according to their fitness value, 

once more. As the new offspring are added to the population, the size of the new 

population increases. In order to maintain the population size, the sorted population is 

truncated. Once a new population is obtained, if none of the members of the population 

have the desired fitness and other termination criteria such as runtime are not met, this 

process repeats, otherwise the GA stops. Algorithm 2 describes the general high-level 

pseudocode of a GA. Also, Figure 2.11 depicts the general process of the GA steps. A 

detailed description of the steps of a Genetic Algorithm has been provided in the 

following subsections. 
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Algorithm 2. High-level pseudocode of a Genetic Algorithm 

Input: 

The objective function,  

Decision Variables, 

Constitutive genes of the chromosome 

Output: 

Best chromosome 

Genetic Algorithm: 

1. Create an initial population 

2. Calculate the objective function value of chromosomes 

3. While termination criteria have not been met { 

 4. Select parents for the breeding process 

 5. Breed the parents and get new offspring 

 6. Accumulate all of the current parents and offspring in the current population 

 7. Evaluate the members of the current population based on their objective   

 function value     

 8. Replace the least valuable members of the population with the most valuable 

 ones (sort the current population and truncate it to maintain the same size) } 
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Figure 2.11. A flowchart of the general steps of a Genetic Algorithm [70]   

2.2.4.3.1 Genetic Algorithm- Fitness 

GA starts with an initial population which is a set of individuals. Every individual is 

represented by a chromosome that contains the necessary information to form a 

solution to the optimization problem. As mentioned earlier, in an optimization problem, 

we seek to maximize/minimize the value of an objective function. Thus, the measure for 

evaluating the fitness of every individual’s chromosome can be considered as the 

chromosome’s objective function value [70] and [71]. By calculating the objective 

function value of every chromosome in the initial population and sorting them from the 

fittest to the most unfit, we now have a sorted initial population where the individual 

associated with the first chromosome represents the best solution obtained so far. 
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2.2.4.3.2 Genetic Algorithm- Evolution 

The breeding process is performed using a set of genetic operators. We have provided 

a detailed description of the genetic operators and how they facilitate the breeding 

process in the next section, but first let us elaborate more on the general evolution 

process and the way the chromosomes evolve in a GA.   

The initial population members go under a set of breeding processes to generate 

a new set of chromosomes. After the breeding process, there are some newly-

generated chromosomes added to the initial population. In every population, to maintain 

the size of the population, the parents might be replaced with the newly generated 

offspring. The replacement process happens based on the fitness of the offspring and 

parents as described in Section 2.1.4.3. After such replacements happen, the remainder 

of the offspring that were not used (i.e., they were not valuable) will be discarded. The 

process of eliminating the most unfit and keeping the fittest chromosomes in the 

population is called the “survival of the fittest” [70]. The set of the new parents that is a 

combination of parents from the initial population and offspring from the recent breeding 

process is called the “current population”. The members of the current population will go 

through the breeding process again to generate the next population. This repetitive 

process goes on until one or more termination criteria are met. Depending on the 

algorithm’s application and the available computational power, the termination criteria 

can vary. The termination criteria generally indicate when the algorithm reaches the 

desired solution that has an acceptable level of fitness [70]. The termination criteria can 
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be considered as a specific number of iterations, a specific process time, or a specific 

fitness value. 

2.2.4.3.3 Genetic Algorithm- Feasibility of the Chromosomes 

The chromosomes in a GA should have enough information to build a solution to the 

problem under study. The information embedded in a chromosome should satisfy all of 

the constraints of the problem to be considered a feasible solution. As an example, let 

us assume we have a function 𝑍 =  𝑓(𝑥, 𝑦) that we want to maximize subject to a set of 

constraints on the decision variables 𝑥 and 𝑦 such that 0 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑦 ≤ 20. In 

this example, the fitness is the value of the function 𝑓 for every pair of the decision 

variables 𝑥 and 𝑦. The algebraic form of this problem is represented through Equations 

(3) to (5). 

Maximize 

Subject to:  

𝑍 =  𝑓(𝑥, 𝑦) (3) 

0 ≤ 𝑥 ≤ 10 (4) 

0 ≤ 𝑦 ≤ 20 (5) 

A solution to this problem is two numeric values associated with 𝑥 and 𝑦. As we 

mentioned earlier, a chromosome should contain sufficient information for describing a 

solution to the problem. Thus, herein, the chromosome includes two genes, each of 

which contains the numeric values of decision variables 𝑥 and 𝑦. Depending on the 

values that every decision variable takes on, the resulting solution may differ. For 

instance, the values of 𝑥 = 5 and 𝑦 = 20 specify numeric values for both decision 

variables, and they represent a solution of 𝑍 =  𝑓(5,20) to the problem. 



37 
 

Although any 𝑥 and 𝑦 values represent a solution to the problem, they might not 

satisfy all the constraints in the problem. For example, the values of 𝑥 = 5 and 𝑦 = 22 

specify numeric values for both of the decision variables and they represent a solution 

of 𝑍 =  𝑓(5,22) to the problem, but the value of 𝑦 does not satisfy the constraint (5). To 

have a feasible solution to the problem, every decision variable’s value should satisfy 

the governing constraints of the problem. If the information in a chromosome does not 

satisfy even one of the governing constraints in the problem, the chromosome is 

representing an unfeasible solution to the problem. We call such a solution an infeasible 

solution.  Even if one of the decision variables’ values in a solution, does not satisfy at 

least one of the governing constraints, the solution is infeasible. In this context, a 

feasible solution to the problem is a solution that its decision variables’ values satisfy all 

of the constraints. Similarly, a feasible chromosome in a GA represents a set of genes 

that form a feasible solution. For the mentioned problem, if in a chromosome the value 

of 𝑥 was not complying with the range 0 ≤ 𝑥 ≤ 10 or the value of 𝑦 was outside of the 

range 0 ≤ 𝑦 ≤ 20, the chromosome is representing an infeasible solution to the 

problem. In the event of facing an infeasible solution, we can remove the infeasible 

solution from the population and continue with only the feasible ones, or we can conduct 

a repair process through which the infeasible solution becomes feasible. The repair 

process employs an operator that changes the value of the decision variable that is not 

complying with one or more of the constraints, to a value that complies with all of the 

constraints [72]. Therefore, the result of applying a repair process to an infeasible 

solution is a feasible solution. 
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2.2.4.3.4 Genetic Algorithm Operators 

The effectiveness of the genetic operators depends on their ability to perform a robust 

search that benefits from both exploration and exploitation. Exploration can simply be 

interpreted as searching for new parts of the search space that during the search 

process so far, have not been explored yet [27]. Exploration can help the search 

process to avoid trapping in local minima. On the other hand, exploitation can be 

defined as the ability of the search process to find new solutions based on modifying the 

previously-found solutions [27]. If the genetic operators tend to exploit more than 

explore, the risk of trapping in local minima will be increased [27]. For example, let us 

consider the search space depicted in Figure 2.12 where every circle point represents a 

potential solution to the problem. Considering the points indicated with a star are the 

previously-found solutions from the visited areas of the search space. The visited areas 

of the search space can be considered as the left-hand side of the search space where 

there are some solutions found. On the contrary, the unvisited areas of the search 

space can be considered as the right-hand side of the search space where there is 

almost no solution found there yet. By employing genetic operators for breeding that will 

exploit more than explore, it will probably result in finding new solutions indicated by 

square marks within the visited areas of the search space. Thus, the probability of 

finding a solution from the unvisited areas in the search space is low. In this scenario, if 

the optimal solution is in the unvisited areas of the search space, the search algorithm 

will have a slight chance of finding it. Similarly, employing the genetic operators that 

tend to explore more than exploit, may make the search algorithm unable to find the 

global optimum [27]. 
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Figure 2.12. Demonstrating the effect of exploitation on finding the 
optimal solution in a search space; the circle points represent the 
potential solutions, the starred points are the previously found 
solutions, and the squared points are the newly-found solutions 
resulting from exploiting the search space.  

As an example, to illustrate the effect of sole exploration, let us consider the search 

space depicted in Figure 2.13 where every circle point represents a potential solution to 

the problem. Considering the points indicated with a star are the previously-found 

solutions from the visited areas of the search space. By favouring exploration over 

exploitation in finding new solutions, the new solutions (indicated by square marks) from 

unvisited areas of the search space may be found. In this scenario, unless the optimal 

solution is exactly one of the newly-found solutions (which is a very optimistic chance), 

the chance of the search algorithm being able to find the optimal solution is very low. 

Even if the optimal solution lies close to any of the square solutions, only by conducting 

an exploration-based search, the chance of the search algorithm being able to find the 

optimal solution is low.  
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Figure 2.13. Demonstrating the effect of exploration on finding the optimal 
solution in a search space; the circle points represent the potential 
solutions, the starred points are the previously found solutions, and the 
squared points are the newly-found solutions resulting from exploring the 
search space. 

The breeding process in a GA is being facilitated by two groups of operators: 

“crossover” and “mutation”. The concept of crossover is to breed two or more 

chromosome parents and generate some new offspring that inherited genes from the 

parents. The crossover operator normally contributes to the exploitation aspect of the 

searching process. On the other hand, the mutation operator has more randomness 

associated with it. The mutation operator applies changes to the genes of a 

chromosome to generate new offspring (i.e., a new solution). The changes that a 

mutation may apply range from swapping the genes where the order of genes is 

important, replacing genes, changing the information embedded in genes, or any other 

action that randomly changes the structure of the chromosome. Based on this definition, 
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the mutation operator normally contributes to the exploration ability of the searching 

process [27]. 

In this thesis, we designed various GAs for a set of network design problems. 

The detailed description of the chromosome structure, genetic operators, replacement 

process, and termination criteria for every GA that we designed, can be found in their 

corresponding chapters. The designed GAs are implemented and solved in Python [73]. 

Python is a powerful programming language with various libraries and modules for 

implementing and solving mathematical programming models in an efficient and timely 

fashion.  

2.2.5 Background on Survivable Network Design2  

Several works in the literature consider the basics of network topology design, routing, 

and survivability problems using various ILP models [74]–[79]3. In addition, several 

works incorporate heuristics-based approaches in combination with ILPs that also 

consider the survivable network design problem [1] and [80]–[86]. Many of those ILP 

models or heuristic approaches can find an optimal or near-optimal solution to the 

specific problems they address, challenges often arise associated with their processing 

and/or solution time, especially for large-scale networks [33] and [81]. 

In the work presented in [33], the authors introduced a three-step ILP-based 

heuristic approach for the mesh-restorable network topology problem, determining the 

optimal topology, working traffic and restoration routing, and working and spare capacity 

allocation. This near-optimal approach provided solutions with minimal optimality gaps 

 
2 Parts of this section are taken and/or adapted from our journal paper in IEEE Access [129]. 
3 Parts of this section are taken and/or adapted from our journal paper in IEEE Access [129]. 
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in most of the cases and is much faster than addressing the complete problem mesh 

topology routing and sparing (MTRS) problem in a single step. There are additional 

works that explored the routing and survivability problem for networks with known 

topologies. In [87], the authors presented a new heuristic routing method (based on 

space reduction) as an improvement to the Mixed Integer Linear Programming (MILP) 

runtime for large-scale optical network design. That approach is useful for moderate-

sized networks with topologies that are known in advance. Another example of work 

that deals with known topologies is the work of [88], which developed a heuristic method 

for transporting demands on a shared-mesh protection network in the event of multiple 

failures. The work discussed in [89] introduced a two-level evolutionary method for a 

survivable network topology design problem. The results obtained showed 3% to 7% 

improvements in runtime relative to those discussed in [33], but only networks with less 

than 30 nodes were tested. 

In the network reconfiguration problem, traffic demands may change frequently 

[90]–[92]. In [93], the authors presented an arc-chain formulation for the routing 

problem, given the network topology for medium-size networks. They employed column 

generation and a generalized upper bounding structure to improve ILP efficiency.  

 Employing evolutionary approaches has been an effective way to increase the 

runtime efficiency of network design problems. Heuristics and evolutionary algorithms 

have been proposed as alternative solution approaches for the FCR problem [94], [95], 

and [96]. Among the evolutionary algorithms, GA has been one of the most popular 

solution algorithms. In [97]  a GA-based approach for a digital-data-network design was 

presented, with the results compared to a Tabu Search approach. In [98], the authors 
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presented a GA-based algorithm for capacity and routing assignment on a network with 

known topology and subject to single failures. GA’s have also been used as an interim 

step of hybrid solution approaches, for example, to limit the search space for an ILP’s 

initial solution. In [99], a hybrid ILP-GA approach was used to find a set of preselected 

cycles and tested on a network design problem with 200 nodes. The authors in [100] 

presented an approach to designing large-scale optical networks using a custom 

heuristic and a GA to find a near-optimal design of an optical network. The GA in that 

work finds near-optimal solutions based on capacity limits of each span; the GA used a 

simple single-point crossover and a binary flip mutation, and because infeasible 

solutions could arise, it required a repair operator. The work in [101] presented a GA-

based algorithm for minimizing the network cost while protecting it against single 

failures for a network with a predefined topology. Their results showed smaller costs 

and longer runtimes in comparison with Tabu Search. 

Depending on the network’s applications, the restoration mechanism is usually 

designed only for restoring single failure scenarios while the rate of occurring dual 

failure scenarios is becoming higher in large-scale networks [102]. Considering dual-

failure scenarios as a probable failure pattern in large-scale networks, the dual-failure 

restorability in network design problems has been studied by several researchers. 

Some of the mentioned research works assumed a fixed topology for the network. In 

another word, they considered the topology of the network to be given and cannot be 

modified. The authors in [103] studied the dual-failure survivability of small networks 

with a fixed topology using ILP models for the Dedicated Path Protection mechanism. 

The authors in [104] and [105] presented ILP models that solve the partial dual failure 
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restoration using the span restoration mechanism in networks with fixed topologies. On 

the other hand, there are research works that considered the network topology as a 

variable part of the design problem. For instance, there are research works that 

incorporated the topology design with the restoration problem to optimize the complete 

network design process. The authors in [106] and [107] in addition to the spare capacity 

allocation, considered the network topology as a variable for restoration purposes. They 

introduced ILP models capable of solving partial dual failure restoration considering an 

upper bound for the cost, for small networks with topology augmentation.  

The authors in [108], employed ILP models to study full restorability against 

single failures and partial restorability against dual failure scenarios. The authors in 

[109], studied the dual failure restorability of 3-connected networks with fixed topologies. 

They analyzed various hop path distances and considered minimum hop and minimum 

length constraints for finding the routes. The authors in [110] presented ILP models for 

maximizing the dual failure restorability of single failure restorable networks by re-

planning the pre-planned and optimized backup routes, considering various priorities for 

every failed span in every dual failure scenario. 

The survivable network design and spare capacity allocation problems are NP-

hard [1] and [21]. Therefore exact solution approaches like ILP cannot solve the large-

scale versions of these problems efficiently (i.e., in logical time using the existing 

computers). Thus we focused on the approaches that can solve large-scale networks in 

a reasonable processing time using the existing infrastructure. Heuristic algorithms are 

one of the best tools for this purpose.  
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The literature includes employing GA for network design and spare capacity 

allocation considering various restoration mechanisms [111] and [112]. The authors in 

[113], presented a hybrid methodology based on GA for designing the survivable 

network topology from a complete graph. The authors in [114], employed GA to 

determine the optimal pre-planned backup routes for the network’s restoration by 

categorizing the population based on various features. The authors in [115], presented 

a GA-based greedy algorithm for joint working and backup route selection problems, 

given fixed network topology. In [116], the authors presented a GA-based approach to 

select candidate cycles and determine the optimal set of pre-planned cycles (p-cycles) 

for network restoration. Moreover, the authors in [117], presented a three-step heuristic-

based approach for optimizing the spare capacity allocation. In their presented 

approach, the heuristic algorithm finds sub-optimal working and backup routes, then 

using a GA, the required traffic is distributed over the found routes. In that work, the 

authors were able to conveniently incorporate complex non-linear constraints regarding 

the shared-risk link groups into their algorithm which is one of the GA’s fortes. 

Depending on the problem specifications designing a proper set of genetic operators, all 

of the search space can be scanned for the optimal solution. The authors in [118],  

presented a GA able to solve the cost minimization of single failure restorable network 

design problem. They used the complete graph to randomly select the working and 

backup routes for the single failure restoration considering a hop limit for the routes. The 

authors in [119], presented a GA for designing minimum cost survivable networks. They 

studied path-dedicated protection for single-span failure scenarios. They used single-
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point and uniform crossover and random binary mutation operators. Thus, their solution 

is guaranteed to be feasible in the initial population only.   

The network availability analysis has been studied by several researchers. There 

are exact and heuristic approaches presented in the literature that analyze various 

measures of network availability considering different restoration mechanisms and 

failure scenarios. The authors in [120] presented ILP models for improving the 

availability levels in p-cycle protected networks by rerouting the traffics and protecting 

the working routes by two protection routes. The authors in [20] investigated the dual 

failure availability of the single failure span restorable and 1+1 APS protected networks. 

They concluded that span restorable networks have higher availability levels compared 

to 1+1 APS-protected ones. The authors in [43],  [121], and [122] studied the dual 

failure availability of SBPP networks with fixed topologies. They presented ILP models 

for maximizing the network dual failure availability and studied the relationship between 

the allocated spare capacity and network availability. The authors in [123], analyzed the 

dual failure availability of SBPP-protected networks with fixed topologies. They 

presented an algorithm for calculating the dual failure availability of the network based 

on the dual failure availability of every working route. They also found an interesting 

relationship between the average nodal degree of the network and the network 

availability. Based on their results, with the increase of the network nodal degree from 3 

to 5, the network availability first increases, but then levels out and decreases. The 

authors in [124] studied single failure restorable networks with fixed topologies. They 

presented ILP-based models for calculating the dual failure path availability in the 

networks that are designed for full single failure restoration. The authors in [125] 
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presented an ILP-based algorithm for maximizing the dual failure availability of single 

failure path restorable networks. By employing a set of predefined working and backup 

routes, they minimized the number of non-restored working capacities on the working 

routes. 

 There are research works that specifically investigated the dual failure availability 

of single failure span restorable networks [44] and [126]. These works employed a set of 

pre-enumerated backup routes for the restoration of spans and presented an ILP model 

for maximizing the network dual failure availability by allocating spare capacities to the 

selective backup routes. Later, the authors in [127] and [128] studied the minimum 

design cost of dual failure span restorable meta-mesh networks with fixed topologies. 

They also presented an ILP model based on pre-enumerated backup routes for 

maximizing the network availability subject to a given limit of total spare capacity 

investment. 
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Chapter 3 : Large-Scale Fixed Charge plus Routing Network 
Design Problem using a Novel Genetic Algorithm 

The main content of this chapter has been adapted/edited from our work published in 

the journal IEEE Access [129]. 

In this chapter, we present a novel approach that addresses the problem of 

large-scale network topology design and routing. There are research works that used 

exact methodologies based on ILP models to develop potential solutions for this 

problem. However, this problem is computationally NP-hard, thus solving it is hugely 

demanding on computational power for large-scale networks, and in many cases, it is 

not even possible to generate a solution with a reasonable optimality gap. This paper 

presents a hybrid algorithm based on the Genetic Algorithm with efficiently designed 

genetic operators. This algorithm aims to design the topology of large-scale networks 

and generate a routing configuration for a set of predefined traffic demands on the 

networks while keeping the total cost of design and routing at a minimum. The results 

have been compared to an exact ILP model as a benchmark for validation purposes. 

The comparisons showed that the proposed algorithm significantly outperforms the ILP 

solution in all of the large-scale network configurations that were used as case studies. 

3.1 Introduction 

Optical transport networks have become widespread, and they have a pervasive role in 

most typical interactions of modern society. When designing and building out such 

networks, designers often assume static and known traffic demands and a known and 

static topology. However, over time, changes in traffic demands, or perhaps 

maintenance activities or upgrades in some parts of the networks, may drive inevitable 
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topological changes that need to be implemented. To apply these changes, the 

network’s topology needs to be restructured or redesigned. 

As mentioned earlier in Chapter 2, the network design problem, in its general 

form, may include (holistically or as several sub-problems) topology design, demand 

routing and working capacity placement, and survivability routing and spare capacity 

placement. The topology design problem seeks the optimal topology structure for the 

networks considering various factors such as cost or certain constraints on the 

connections among the nodes. The traffic demand routing problem aims to route all of 

the demands on the network by finding the optimal path for each demand to minimize 

the total cost of the routing. These two sub-problems can be modelled together in a 

single ILP as the fixed charge plus routing (FCR) problem [32]–[35]. Given a fixed set of 

nodes, the objective of the FCR problem is to minimize the total cost of the network 

topology design, demand routing, and working capacity placement. The FCR problem is 

described in detail in Section 3.2. 

In the event of some failure, the survivability routing and spare capacity 

placement problem provides alternative routing on which the network can reroute the 

affected traffic, and ensures sufficient spare capacity to accommodate that routing. 

There are several survivability mechanisms developed for the restoration process of 

networks including automatic protection switching (APS), survivable rings, span 

restoration, path restoration, p-cycles, and shared backup path protection, to name a 

few [10]. 
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 We’ve identified several shortcomings that commonly arise in the existing 

literature, and developed an Improved Genetic Algorithm (IGA) in a manner that seeks 

to overcome the following common weaknesses: 

(1) Weakness: Generating a high-merit initial population is time-consuming, due to 

the stochastic nature of the process and subsequent repair actions that are often 

required to transform infeasible solutions into feasible solutions. 

Response: In our work herein, we designed our GA to ensure that the solutions 

generated for the initial population are connected network topologies; hence, they 

are inherently feasible. 

(2) Weakness: Genetic operators (typically crossover and mutation) are often 

inefficient if great care is not given to designing them specifically for the structure 

of the chromosome, and frequently result in offspring that need to be repaired. 

Response: In our work herein, we designed crossover and mutation functions 

that seek to satisfy the problem’s constraints, thus avoiding the need for a 

computationally expensive repair process. 

(3) Weakness: The complete parameter space of the control parameters (e.g., 

crossover and mutation rates) is vast, and although the precise settings for those 

parameters can have a very significant effect on the convergence rate of the GA 

and the subsequent processing time, many GAs in the literature does not specify 

any particular efforts to tune those parameters.  

Response: In our work herein, we have carefully analyzed and tuned these 

parameters for the GA-based approach. 
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(4) Weakness: The validation of the results of the non-deterministic approaches is 

an important step for analyzing their effectiveness. Many GA’s in the literature 

were only compared against non-deterministic approaches. 

Response: In our work herein, we have validated our results using an ILP model 

as a benchmark, which can find the optimal solution for cases where the 

complexity of the problem allows an ILP model to be used. 

3.2 The Fixed Charge plus Routing (FCR) Problem 

The network design problem that we are addressing in this work is the FCR problem 

[33], where we seek to jointly optimize the topology and working routing (and 

subsequent working capacity allocation) to serve all traffic demands. Although the FCR 

problem doesn’t originate with us, we will present the full ILP herein, for completion. 

In the FCR problem, by optimizing the topology we are aiming to establish a 

number of the required spans with the least cost possible and by the working routing 

optimization, we are seeking the cheapest working routes between the end nodes of 

every traffic demand for transferring the traffic. Two cost components define the total 

cost of a designed network: (1) the fixed cost (𝐹𝑖𝑗) that is the cost of establishing the 

span between nodes 𝑖 and 𝑗 and (2) the capacity cost (𝐶𝑖𝑗) that is the cost of transferring 

one unit of the traffic on the span between nodes 𝑖 and 𝑗. For simplicity, hereafter we 

refer to the span between nodes 𝑖 and 𝑗 as span 𝑖𝑗. Based on the defined cost 

components, the total cost of a network with a set of established spans and routed 

traffic demands over those spans is calculated using Equation (6). 
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 𝐶𝑜𝑠𝑡 = ∑(𝐹𝑖𝑗 × 𝛿𝑖𝑗 + 𝐶𝑖𝑗 × 𝑤𝑖𝑗)

𝑖𝑗∈𝐴

 (6) 

Where 𝐴 is the set of all the possible spans connecting the nodes, 𝛿𝑖𝑗 is a binary 

decision variable that has the value of 1 if span 𝑖𝑗 exists in the topology and 0 otherwise. 

𝑤𝑖𝑗 is the total number of traffic units on span 𝑖𝑗. The goal is to minimize the total cost 

mentioned above subject to the traffic demand constraints, as described in Equations 

(7) through (11), [33]. The ILP model of the FCR problem which aims to minimize the 

value of Equation (6) contains Equations (6) to (11). 

 ∑ 𝑤𝑛𝑗
𝑟 = 𝑑𝑟            

∀𝑛𝑗∈𝐴

∀𝑟 ∈ 𝐷, 𝑛 = 𝑂[𝑟] (7) 

  ∑ 𝑤𝑗𝑛
𝑟 = 𝑑𝑟           

∀𝑗𝑛∈𝐴

∀𝑟 ∈ 𝐷, 𝑛 = 𝑇[𝑟] (8) 

 ∑ 𝑤𝑖𝑛
𝑟

∀𝑖𝑛∈𝐴

− ∑ 𝑤𝑛𝑗
𝑟

∀𝑛𝑗∈𝐴

= 0 ∀𝑟 ∈ 𝐷, ∀𝑛 ∉ {𝑂[𝑟],  𝑇[𝑟]} (9) 

 𝑤𝑖𝑗 = ∑ 𝑤𝑖𝑗
𝑟               

∀𝑟∈𝐷

∀𝑖𝑗 ∈ 𝐴 (10) 

 𝑤𝑖𝑗 ≤ 𝑤∞. 𝛿𝑖𝑗;          𝛿𝑖𝑗 ∈ {0,1};         𝑤𝑖𝑗 𝑖𝑛𝑡𝑒𝑔𝑒𝑟    ∀𝑖𝑗 ∈ 𝐴|𝑖 < 𝑗 (11) 

Here 𝑤𝑖𝑗
𝑟  represents the number of working traffic flows for demand r on span ij, and 

𝑑𝑟represents the number of flow units of demand 𝑟. Also, 𝑂[𝑟] and 𝑇[𝑟] represent the 

origin and destination nodes of demand 𝑟, respectively. Equations (7) and (8) make 

sure that the total flow from the origin node to the destination node is precisely equal to 

the demand units. Equation set (9) makes sure the demand units pass entirely through 

the intermediate nodes. Equation set (10) places enough working capacity on each 

span to carry the flows of overlapping demands. Moreover, Equation set (11) makes our 
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decision variables maintain their structure throughout the solution, whether they are 

binary or integer. 

The FCR problem is NP-hard [33]. Although the problem can be solved efficiently 

for relatively small networks by an appropriate commercial ILP solver (e.g., Gurobi™, 

[60]) it is generally too computationally complex for large-scale networks [33]. Solving 

the FCR problem on a suite of test case networks ranging in size from 40 nodes to 150 

nodes, we observe the runtime behaviour documented in Table 3.2. 

3.3 Proposed Methodology 

In solving the Fixed Charge plus Routing problem, the size of the set of candidate spans 

for the network’s topology is considerable and selecting an optimal subset of those 

candidate spans is a massive combinatorial problem; as stated above, FCR is an NP-

hard problem. Herein, we employ GA to solve the Fixed Charge plus Routing problem 

for large-scale network design. 

3.3.1 Genetic Algorithm Building Blocks 

The building blocks of a Genetic Algorithm have been introduced in detail in Chapter 2. 

In this Chapter, we only provide an example of the chromosome’s structure. The 

properties of an individual are represented by a chromosome, which consists of a set of 

genes. In general, a chromosome is a string of data that fully encodes the properties of 

an individual solution to the problem. For the FCR problem, the chromosomes used 

would typically include genes that represent whether the various eligible spans are 

present in the solution. As an example, the network shown in Figure 3.1 (where dark 
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lines represent spans that are present in the solution, gray-coloured thin spans are not 

present) could be represented by the chromosome shown. 

 

Figure 3.1. A GA chromosome representation of a network, including 
two genes as the established spans and their working capacities. 

A general schematic of a chromosome and a population is depicted in Figures 3.2 and 

3.3, respectively. The individuals in the initial population can be evaluated using their 

fitness values. For GA to evolve the chromosomes and generate future populations with 

better fitness, the breeding process should be utilized. The breeding process in GA is 

facilitated by a set of genetic operators and results in the generation of a new set of 

chromosomes which will be parts of the next population. 
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Figure 3.2. The general structure of an individual chromosome with 
its four constituent genes that are named A1, B1, C1, and D1 

 

 

Figure 3.3. The general structure of a population that includes five 
chromosomes. 

Figure 3.4 shows a crossover operation applied on two chromosomes (chromosomes 5 

and 3 from the population from Figure 3.3) by swapping two genes between them. The 

resulting offspring inherited two genes from each parent. Figure 3.5 demonstrates a 

general mutation process on a selected chromosome. In this mutation, the second and 

fourth genes of the chromosome are exposed to some alterations, and as a result, their 

old structure as B2 and D2 has been replaced by B’2 and D’2, respectively.  
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Figure 3.4. The general procedure of a basic crossover between two individual’s 
chromosomes 

 

 

Figure 3.5. The general procedure of a fundamental mutation on 
two genes of an individual’s chromosome 

3.3.2 Improved GA Optimization Approach 

In this chapter, we developed a GA-based optimization approach that consists of two 

well-designed GAs. The first GA is referred to as the Initial-Population-Generator, or 

IPG-GA, and is based upon the concept of the Travelling Salesman Problem (TSP) [37]. 

In TSP, the goal is to find the shortest cycle that passes through all of the nodes once 

and only once, i.e., the shortest Hamiltonian cycle [130]. Taking inspiration from the 

TSP, IPG-GA generates a set of Hamiltonian cycles as feasible but sub-optimal network 
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topologies. The generated network topologies are considered as the set of initial 

feasible solutions to the network topology design and routing problem. The structure of 

the IPG-GA chromosome is depicted in Figure 3.6. Here, the genes store the order of 

the selected nodes, which consequently represent the spans that form a Hamiltonian 

cycle as the network topology. Based on the installation cost of every selected span, the 

total topology cost of the network is calculated as the fitness function value of the 

individual. The details of the IPG-GA are discussed below, in Section 3.3.2.1. 

 
Figure 3.6. The structure of the chromosomes in IPG-GA 
demonstrates a genetically coded Hamiltonian cycle as the 
network topology. 

Once a sub-optimal solution for the IPG-GA is achieved, a routing function is called to 

route all of the demands on the current network. The second GA, which we call the 

Master-GA, is responsible for simultaneously improving the topology of the network and 

routing the demands. The structure of the chromosome for the Master-GA is depicted in 

Figure 3.7.  The genes encode the spans selected in the solution as binary values (1 if 

the span is selected, and 0 otherwise). A routing function routes all of the demands and 
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assigns the related working capacities on the spans encoded in the genes, and 

determines the total working capacity that arises on each span. As with the IPG-GA, the 

fitness function is the total cost of the individual, though that cost now also includes 

capacity costs. The details of the Master-GA are discussed below, in Section 3.3.2.2. 

 
Figure 3.7. Structure of the chromosomes in Master-
GA that demonstrates the complete topology of the 
network and assigned working capacities to the 
established spans in the network. 

The high-level steps of the IGA algorithm, including both IPG-GA and Master-GA, are 

presented in Algorithm 3.  

The proposed IGA algorithm includes two genetic algorithms: IPG-GA and 

Master-GA. The IPG-GA generates a set of sub-optimal Hamiltonian cycles as bi-

connected network topologies. In other words, IPG-GA provides the Master-GA with a 

set of bi-connected network topologies that are of relatively good fitness. However, as 

the cyclic topology of networks does not necessarily represent the optimum network 

topology in terms of the network topology and routing cost, we implemented the Master-



59 
 

GA to evolve the network topologies further. The detailed steps of the proposed IGA 

algorithm and its operators have been described in the following sections. 

Algorithm 3. Proposed IGA Pseudocode including the IPG-GA and Master-GA 

1. Initialize the population  

2. Evaluate the members using the objective function 

3. While not meeting the termination criteria:  

 4. Select crossover parents 

 5. Obtain the resulted offspring 

 6. Evaluate the offspring 

 7. Select mutation parents 

 8. Obtain the resulted offspring 

 9. Append the offspring to the current population 

 10. Sort the population 

 11. Truncate the population (maintain the same population size) 

12. Route the demands on the last population of solutions  

13. While not meeting the termination criteria (reaching 20 iterations): 

 14. Select crossover parents 

 15. Apply the designed crossovers and obtain the offspring; 

 16. Evaluate the offspring 

 17. Select mutation parents 

 18. Apply the designed mutations and obtain the offspring; 

 19. Evaluate the offspring  

           20. Append the offspring to the current population 

 21. Sort the population; 

 22. Truncate the population to maintain the same number of members 

3.3.2.1 IPG-GA 

As mentioned above, the well-known TSP seeks to find the shortest path in a network 

by visiting all the nodes once and only once; in network design and routing problems, 

the shortest path is often the lowest cost one. As we seek to minimize the total cost of 

IPG-GA 

Master-GA 
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network design, the optimal solution would be the cheapest network topology. In the 

discussion above, we introduced the IPG-GA, which is responsible for generating a set 

of sub-optimal Hamiltonian cycles where optimality refers to the cost of the cycles. The 

IPG-GA starts with developing a set of Hamiltonian cycles among the nodes by 

generating 60 random ordered sets of all nodes resulting in 60 cycles in each 

generation. To generate new members for the next generation from the current one, 

IPG-GA benefits from two genetic operators: crossover and mutation. In each 

generation, 65% of the population undergoes mutation, and 65% undergoes crossover. 

The IPG-GA proceeds for 60 iterations, and as it proceeds iteration by iteration, the total 

cost of the cycles in the upcoming generations either will be the same as the current 

generation or will be less. Thus, the sub-optimal set of Hamiltonian cycles will be 

achieved in the last generation of the IPG-GA. The set of developed sub-optimal cycles 

represents the topology of the networks. However, the traffic demands have not been 

routed over the network, and thus, the working capacities have not been assigned to the 

networks’ spans yet. For every cycle in the final generation of IPG-GA, we used an 

assignment algorithm that routes all of the traffic demands between their origin and 

destination nodes. For every traffic demand whose end nodes are directly connected by 

a single span in the network, a number of working traffic units equal to the traffic 

demand are assigned to that span. The other traffic demands’ end nodes are on the 

cycle, but they are not directly connected by a single span in the network. In other 

words, these end nodes partition the cycle into two incomplete cycles, either of which 

can be considered a route for the demand. The traffic should be routed over the spans 

on either side of the cycle. To decide over which side of the cycle a demand should be 
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routed, we calculate the total capacity cost of traffic routing on the spans on either side 

and choose the one with the least total cost. Once for every cycle from the last 

generation of the IPG-GA, all of the traffic demands have been routed, we obtained an 

initial population to be fed into the Master-GA for further improvement in the topology 

design and routing cost. The pseudocode of IPG-GA has been illustrated in lines 3-12 of 

Algorithm 3. 

3.3.2.1.1 IPG-GA Crossover 

In IPG-GA, the chromosome structure is based on a random order of all of the nodes. 

Every two consecutive nodes represent a span. The set of all of the spans associated 

with the set of the random order of the nodes is stored as the genes of the 

chromosome. We employed two crossover functions to be applied to 65% of the current 

population in each iteration. First, we selected crossover parents using uniform random 

selection. Based on our pre-assessment analysis, both two-point and single-point 

crossovers generated diversity in the population. However, the two-point crossover was 

more effective compared to the single-point crossover. Thus, for every pair of selected 

parents, we applied either a single-point crossover with 0.25 probability or a two-point 

crossover with 0.75 probability. 

 

In single-point crossover (depicted in Figure 3.8(a)), a nodal index was selected 

using a uniform random process to be the crossover point, where we partition the 

chromosomes of both parents into two parts. Two new offspring are generated by 

combining the first part of one parent with the second part of the other parent and vice 

versa.  
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Similarly, in a two-point crossover (depicted in Figure 3.8(b)), we select two 

crossover points (using the same approach as for single-point crossover) and partition 

the chromosomes of both parents into three parts. Two new offspring are subsequently 

generated by exchanging the middle part of one parent with the middle part of the other, 

and vice versa. In some cases, the crossover process creates an infeasible solution, 

where some nodes appear twice in a chromosome, and other nodes are absent. A 

repair mechanism follows the crossover to check for such incidents and swaps duplicate 

nodes with absent nodes. A schematic of this process is shown in Figure 3.8(b). As an 

example, let us consider the two parents represented in Figure 3.8(a), assuming the 

partitioning point is after the fifth member. The common members between the second 

part of the second parent and the first part of the first parent are 5 and 2. Similarly, the 

common members between the second part of the first parent and the first part of the 

second parent are 1 and 4. Considering the found duplicate members in the offspring, 

the first time members 5 and 2 appear in the first offspring, they are replaced by 1 and 

4, respectively. Similarly, the first time that the members 4 and 1 appear in the second 

offspring, they are replaced by 2 and 5, respectively. 
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(a) 

 

 
(b) 

 
Figure 3.8. IPG-GA crossover operators the crossover points have been indicated by dashed 
red curve line; (a) Single-point, (b) two-point crossover.  

3.3.2.1.2 IPG-GA Mutation 

We utilized three different mutation functions: (1) two genes chosen by a uniform 

random process are swapped, (2) two genes are chosen by a uniform random process, 

and the entire sequence of genes between them (inclusive) is reversed, and (3) one 

gene chosen by a uniform random process is removed and inserted in a new location 

chosen by a uniform random process. Parent selection was made using the same 

approach described above for crossover. For each parent selected for mutation, we use 

Crossover points 
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the first function with 0.25 probability, the second with 0.50 probability, and the third with 

0.25 probability. The three mutation functions are illustrated in Figure 3.9(a) through 

Figure 3.9(c). 

 
(a) 

 
(b) 

 
(c) 

Figure 3.9. IPG-GA mutation operators; (a) swapping elements, (b) reversing a part of the 
chromosome, (c) moving an element from its position to a new position in the 
chromosome.  

3.3.2.2 Master GA 

The output of IPG-GA (i.e., its last generation) is a set of high fitness Hamiltonian 

cycles. Each of these cycles represents a feasible network topology that would satisfy 

the basic connectivity constraints of the FCR problem. However, these cycles will not 

necessarily include the optimal topology. Thus, the Master-GA is employed to improve 

this set of topologies and converge to a near-optimal solution. We chose the top 65% of 
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the chromosomes from the last iteration of the IPG-GA to be considered as the initial 

population for the Master-GA. The pseudocode of Master-GA is shown in lines 13-22 of 

Algorithm 3. 

3.3.2.2.1 Master-GA-Assignment Function 

In Master-GA, first, the topology of the network evolves using the genetic operators. 

Then using the assignment function, all of the demands are routed over the network’s 

topology, and the required working capacities are allocated on the spans. We designed 

an improved Dijkstra’s routing and assignment function to route the traffic demands and 

assign working capacities to spans based on the proposed routing operator in [100]. 

Given a set of traffic demands to be routed between their origin and destination nodes 

and the cost associated with routing the demands over every span in a network, 

Dijkstra’s algorithm [41] finds the minimum-cost route for every demand between its 

origin and destination nodes. The assignment function employs an improved Dijkstra’s 

algorithm to find the minimum-cost routes for every demand on the network. The cost of 

every route is determined based on the fixed cost of span establishment for every span 

along the route, plus the cost of transferring the traffic units on the spans along the 

route. Therefore, the cost matrix is comprised of both the span establishment and per-

unit traffic routing costs, and once the demand is routed on the network, the fixed cost 

of the spans that form the route will be set to zero for the remaining demands; for 

already established spans, the cost matrix in Dijkstra’s algorithm will only include the 

per-unit cost of routing the traffic. 

 In addition to the dynamic cost matrix for routing, the order of routing the 

demands have also been adjusted for routing. Demands have three components: 1) 
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origin node, 2) destination node, and 3) the units of the traffic demand (dr). Here, they 

are sorted in descending order of their demand unit values; demand relations with the 

most demand units (i.e., with maximum dr) are routed before those with fewer demand 

units. 

3.3.2.2.2 Master-GA-Crossover 

We employed two crossover functions to be applied to 55% of the current population in 

every iteration. The percentage of 55% has been selected based on a comprehensive 

set of analyses that showed us the best crossover rate is between 50% and 60%. A 

detailed description of our analysis has been provided in Section 3.3.2.3. For a 

crossover operation, we needed two parents to be selected from the population. For 

every parent to be selected, we performed a tournament selection with a tournament 

size of 10.  According to our pre-assessment analysis, tournament selection resulted in 

better objective function values compared to random selection. In tournament selection, 

the best solution among a set of randomly selected solutions will be selected for 

crossover and mutation, and having both the randomness and elitism mechanisms can 

lead to a better result as opposed to only random selection. We repeated this process 

until 55% of the population was selected as crossover parents. For every pair of 

selected parents, we applied master-crossover1 with 0.1 probability or master-

crossover2 with 0.9 probability. The master-crossover1 function takes two members of 

the population as parents and randomly removes 20% of the spans from both of them 

using uniform random selection. For each removed span, one span from the set of 

existing spans in the second parent was appended to the first parent such that the 

newly-appended span has one node in common with the removed span from the first 
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parent. The procedure of the master-crossover1 function has been illustrated in Figure  

3.10. This crossover generates new offspring using new combinations within the already 

installed spans. Thus, it increases the diversity of the population within the visited areas 

of the search space. In other words, it promotes the exploitation ability of the search 

algorithm.  

 The master-crossover2 function takes two selected parents from the population 

and forms a set of spans that are absent in both of the parents (i.e., the set of all of the 

eligible spans except those in at least one of the parents). Then, using uniform random 

selection, master-crossover2 removes a random percentage of the spans between 50% 

and 90% of the parent’s spans individually. We selected this range (50 and 90) based 

on our pre-assessment analysis, during which we found span removal percentages 

greater than 50 and less than 90 resulted in higher convergence rates. For each parent, 

from the set of absent spans, the master-crossover2 selects 10% of spans to be 

appended to that parent using uniform random selection. An illustration of master-

crossover2 for one attempt of span removal and span appending process has been 

shown in Figure 3.11. In this example, the span between nodes 5 and 6 (i.e., span 56) 

and span 25 have been removed from parents 1 and 2, respectively. Then, from the set 

of absent spans, one span has been selected using uniform random selection to be 

appended to each offspring. As this crossover generates new offspring using absent 

spans (spans that were not installed in the selected parents yet), it increases the 

diversity of the population by exploring new areas of the search space. 
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Figure 3.10. Master-GA, master-crossover1 function; Dashed spans 
in the parents are to be removed while the dashed spans in the 
offspring are inherited from the parents. 
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(a) 

 
(b) 

 
(c) 

Figure 3.11. Master-GA, master-crossover2 function; (a) two parents with 
indicated spans to be removed, (b) the set of absent spans in both of the 
parents, and (c) the generated offspring.  

3.3.2.2.2.1 Master-GA-Mutation 

We utilized four different mutation functions:  

(1) The most expensive span in the selected parent was replaced with another span 

with the least cost such that it has one end node in common with the replaced one. 

From the ascending ordered set of spans (i.e., sorted from the minimum to maximum 
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cost), the first span that has an end node in common with the removed span will be 

added to the network. 

(2)  Using uniform random selection, 40% of the spans in the network were selected. 

For every selected span, if the nodal degree of each end node of the span was greater 

than 2, that span was removed. 

(3) From the set of existing spans in the network, a randomly selected percentage of the 

spans between 20% and 50% of the spans were removed using a uniform random 

selection process. 

(4) From the set of absent spans in a selected parent, 20% of them were selected using 

uniform random selection and appended to the offspring. 

Parent selection was done using the same approach described above for 

crossover. For each parent selected for mutation, we use the first function with 0.2 

probability, the second with 0.3 probability, the third with 0.25 probability, and the fourth 

with 0.25 probability. Based on our pre-assessment analysis, we found the effects of the 

four mutation functions on the convergence rate of the algorithm almost the same with 

observing a small improvement from the second mutation function compared to the first 

one. The first two mutation functions are illustrated in Figures 3.12(a) and (b). 
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(a) 

 
(b) 

Figure 3.12. Master-GA mutations; (a) Cost-based mutation; the double-lined 
span is the newly installed span in the offspring, (b) Nodal degree-based 
mutation; the total nodal degree has been indicated next to every node, and 
the dashed spans are the ones with the highest nodal-degree end-nodes. 

Although the mutation functions increase the exploration ability of the algorithm, 

there is a chance they would generate partitioned network topologies and hence, 

infeasible solutions. As most of the designed genetic operators try to keep the offspring 

feasible, the small chance of generating infeasibilities is associated with the 

randomness of selections. To avoid an unnecessary computational cost, the infeasible 

chromosomes did not go through the fitness evaluation process and were removed from 

the population. Moreover, as we initiated the Master-GA using a fully feasible population 
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from IPG-GA, in the worst-case scenario, even if all of the offspring are infeasible, we 

would still have a sub-optimal feasible solution to our problem. 

3.3.2.3 Control parameters 

There is a set of input parameters that directly control the efficiency of the algorithm. 

These parameters directly affect the processing time and the convergence rate of the 

algorithm. Setting up these parameters below a threshold can weaken their effects on 

the efficiency of the algorithm for converging toward the optimum solution while setting 

them up above that threshold can cause elongated processing times, which degrades 

the computational efficiency of the algorithm. 

 We performed a comprehensive set of analyses for tuning these control 

parameters for the presented IPG-GA and Master-GA separately. The parameters have 

been analyzed over 1440 separate runs (i.e., 20 runs per scenario) for a 20-node 

network. We analyzed a variety of crossover and mutation rates between 0.3 and 0.8. 

To select the best crossover and mutation rates, there must be a trade-off between the 

fitness value improvement and runtime increase. Our pre-assessment analysis showed 

that for every 10% increase in crossover and mutation rates of the IPG-GA, the average 

runtime increased by 2.6% and 2.1%, respectively. For example, by increasing the 

crossover rate of the IPG-GA from 0.6 to 0.7 when the mutation rate was fixed at 0.5, 

the runtime increased by 2.2%. Also, for every 10% increase in crossover and mutation 

rates of the Master-GA, the average runtime increased by 8.6% and 13.9%, 

respectively. Thus, we have to select the crossover and mutation rates that result in the 

best fitness value improvement while avoiding elongated runtimes. 
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 The average fitness values for every combination of crossover and mutation 

rates of the IPG-GA are depicted in Figures 3.13 and 3.14.  For fixed values of mutation 

rate, by increasing the crossover rate of the IPG-GA from 0.5 to 0.6, the average fitness 

value improves by 1.5%, while by increasing the crossover rate beyond 0.6, according 

to Figure 3.13, the fitness value improvements almost plateau (less than 0.5%). 

Moreover, for fixed values of crossover rate, by increasing the mutation rate of the IPG-

GA from 0.5 to 0.6, the average fitness value improves by 0.3%, while by increasing the 

mutation rate above this value, the average fitness value improvement is less than 

0.2%. Thus, based on the trade-off between the average fitness value improvement and 

runtime increase, the best threshold for the crossover and mutation rates in the IPG-GA 

was found between 0.6 and 0.7. 

 
Figure 3.13. Average fitness value improvement with respect to various 
crossover rates of the IPG-GA, while the mutation rates are fixed. 
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Figure 3.14. Average fitness value improvement with respect to various 
mutation rates of the IPG-GA, while the crossover rates are fixed 

Similarly, the average fitness values for every combination of crossover and 

mutation rates of the Master-GA are depicted in Figures 3.15 and 3.16. For fixed values 

of the mutation rate, by increasing the crossover rate of the Master-GA from 0.4 to 0.5, 

the average fitness value improves by 0.2%, while with every 10% increase in the 

crossover rate beyond 0.5, the average fitness value improvement is less than 0.1%. 

Moreover, for fixed values of the crossover rate, by increasing the mutation rate of the 

Master-GA from 0.5 to 0.6, the average fitness value improves by 1.8%, while by 

increasing the mutation rate to higher values, the average fitness value improvement is 

less than 0.3%. Thus, for the Master-GA, the best threshold for the crossover rate was 

found between 0.5 and 06, while the best threshold for the mutation rate was found 

between 0.6 and 0.7. 
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Figure 3.15. Average fitness value improvement with respect to various 
crossover rates of the Master-GA, while the mutation rates are fixed. 

 

 
Figure 3.16. Average fitness value improvement with respect to various 
mutation rates of the Master-GA, while the crossover rates are fixed. 
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3.4 Results and discussion 

3.4.1 Experimental setup 

We now compare the results from the proposed IGA and those from the benchmark ILP 

model described by Equations (6) through (11) for the network topology design and 

routing problem. We used a Microsoft Windows Server 2012 R2 Standard x64-based 

PC, Intel(R) Xeon(R) CPU E5-2650 v3 running at 2.30 GHz with 128 GB RAM to solve 

the IGA in python 3.7 [73] and the ILP models using Gurobi 8.1.0 [60]. 

In this study, we employed 18 different test case networks ranging in size from 

40 nodes to 150 nodes. Following some sources in the literature, we refer to the 

networks with 80 and 100 nodes as “medium-sized” and 120 and 150 nodes as “large-

scale” networks [97]. The cost factors (i.e., the span establishment cost (F) and the unit 

cost of transferring the traffic over the spans (C)), the number of the traffic demands, 

and the magnitude of every traffic have been selected randomly using uniform random 

selection process. The upper bound and lower bound values of the unit cost were 

selected between 10 and 100. Similarly, the values of the span establishment cost were 

selected between 100 and 1000. Moreover, the demand magnitudes (dr) were selected 

randomly with a magnitude between 1 and 100. The details of the test case 

configurations such as the number of nodes, number of possible spans, and number of 

traffic demands for every test case have been tabulated in Table 3.1. An example of the 

input file to the proposed algorithm is presented in Appendix A. 
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Table 3.1. Test case configurations 

Test 

Case 

Number of 

nodes |N| 
|A| |D| 

1 40 780 400 

2 40 780 288 

3 40 780 353 

4 60 1770 600 

5 60 1770 448 

6 60 1770 548 

7 80 3160 800 

8 80 3160 814 

9 80 3160 758 

10 100 4950 1117 

11 100 4950 1042 

12 100 4950 953 

13 120 7140 1266 

14 120 7140 1152 

15 120 7140 1151 

16 150 11175 1170 

17 150 11175 1160 

18 150 11175 1168 

3.4.2 Validation of the results 

We employed both the ILP model and the presented IGA for solving the network 

topology design and routing problem on various test cases. The IGA results such as 

runtimes and fitness values are obtained as the average of twenty sets of runs for each 

network, individually. The obtained results are tabulated in Table 3.2 where the 

normalized costs are calculated by dividing the IGA fitness (i.e., objective function) 

value by the ILP model fitness value. The normalized costs (IGA/ILP) represent the 

optimality of the IGA’s solution, where the optimal (minimum) network design cost is 

obtained from the FCR problem’s ILP model. 

It can be seen from Table 3.2, that as the number of nodes in a network 

increases, the ILP runtime becomes progressively increased such that by doubling the 
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number of nodes of the test cases from 40 to 80, the average ILP runtime increases by 

almost 30 times. The ILP runtime for larger networks (e.g., test cases 10 to 18 with 

more than 100 nodes) is quite prohibitive. For instance, the ILP solver could not improve 

the found solution for test case 10 after more than 100 hours of running. However, for 

the same test case, the IGA can get to a reasonable optimality gap within a significantly 

shorter time (i.e., up to 40% better objective function value compared to ILP, within less 

than 5 hours). If a designer needs to solve the problem just once, then long runtimes 

might be of little consequence on a build that takes years. However, when network 

designers analyze various demand matrices and look at many multiple scenarios to 

determine which design will work best for every scenario, they can run the network 

design problem a great many times to determine the good configuration. As the design 

process of large-scale networks can take weeks or months for large scenarios, having a 

sub-optimal solution within reasonable processing time might be a good trade-off. 

Based on the obtained results, it can be seen that the proposed methodology can 

outperform the ILP both in terms of runtime and objective function value, specifically for 

large-scale networks. The IGA’s CPU process times vary between 0.1 hours and almost 

11 hours. For networks with more than 80 nodes, the performance of IGA in terms of 

the processing time and the objective function value is 100% of the time more efficient 

than the ILP. 

Figures 3.17 throgh 3.22 illustrate the performance of the proposed IGA for all of 

the test cases. The costs are normalized to the best cost achieved from the benchmark 

ILP model. Note that in the larger test cases, the first iteration of the IGA already 

outperforms the benchmark, though we continue iterating to achieve better results. In 
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Figures 3.17 through 3.22, the solid data points represent the average of the normalized 

network design costs over twenty sets of IGA runs. The error bars represent one 

standard deviation among the twenty sets of runs. 

 

Figure 3.17. Performance of proposed IGA in terms of the normalized total cost of 
network design vs. the number of iterations for test cases 1 to 3. 

 

 

Figure 3.18. Performance of proposed IGA in terms of the normalized total cost of 
network design vs. the number of iterations for test cases 4 to 6. 
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Figure 3.19. Performance of proposed IGA in terms of the normalized total cost of 
network design vs. the number of iterations for test cases 7 to 9. 

 
 
 

 

Figure 3.20. Performance of proposed IGA in terms of the normalized total cost of 
network design vs. the number of iterations for test cases 10 to 12. 
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Figure 3.21. Performance of proposed IGA in terms of the normalized total cost of 
network design vs. the number of iterations for test cases 13 to 15. 

 
 

 

Figure 3.22. Performance of proposed IGA in terms of the normalized total cost of 
network design vs. the number of iterations for test cases 16 to 18. 
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Table 3.2. Comparison between proposed IGA and ILP results 
(objective function value and processing times)  

 ILP IGA 

Test 
case Runtime (h) Runtime (h) 

Normalized 
Cost 

1 0.9 0.2 1.22 

2 0.1 0.1 1.22 

3 0.1 0.1 1.24 

4 4.0 0.7 1.20 

5 1.4 0.4 1.24 

6 2.0 0.5 1.25 

7 15.9 1.6 1.15 

8 17.9 1.7 1.25 

9 12.2 1.4 1.40 

10 >404 4.3 0.72 

11 >40 3.9 0.74 

12 >40 3.3 0.72 

13 >40 7.6 0.72 

14 >40 6.5 0.73 

15 >40 6.4 0.72 

16 >40 10.5 0.73 

17 >40 10.5 0.72 

18 >40 10.7 0.73 

 

3.5 Conclusion 

In this paper, we have presented an Improved GA-based algorithm for the large-scale 

network design and routing problem. In the presented algorithm, the concept of TSP 

has been employed to create a set of initial feasible and bi-connected solutions (i.e., 

network topologies). The set of sub-optimal initial feasible solutions has been created 

 
4 The ILP solver was not able to improve the found solution even after 100 hours of running. 
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using the IPG-GA algorithm. Then, a routing function routes all of the traffic demands on 

the network topologies that have been obtained from the last iteration of IPG-GA. The 

obtained population of network topologies is fed to the Master-GA for further topology 

and routing improvements in an iterative fashion. We have developed two sets of well-

designed genetic operators (crossovers and mutations) for breeding new solutions from 

the initial ones. These operators try to maintain the feasibility and diversity of the 

solutions.  

One of the main contributions of this research work is that the proposed IGA 

starts with a set of feasible solutions. Thus, even in the very first iteration of the 

algorithm, we have network topologies that are bi-connected. The bi-connectivity of the 

initial solutions is the result of their cyclic structure. Using TSP, a set of Hamiltonian 

cycles has been generated for the initial population of the IPG-GA. Although the initial 

solutions were feasible for this problem, they were not optimal. Therefore, using the 

IPG-GA, the set of initial feasible solutions was improved iteration by iteration to get a 

set of optimal cycles that can be used as sub-optimal network topologies for the Master-

GA. As the Master-GA starts with a set of initial feasible solutions, the convergence rate 

of the algorithm will be more than the case the initial population is generated randomly. 

Moreover, as the initial feasible solution in this research is bi-connected, the constraints 

for employing the restoration mechanisms can be incorporated into the algorithm too. 

We presented well-designed crossover and mutation operators that try to keep 

the solutions feasible and decrease the total network design cost while increasing the 

diversity of the populations. Moreover, we conducted a comprehensive set of 

experiments to tune the genetic operators’ rates. The higher the genetic operators’ 
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rates, the higher the diversity of the population and the higher the runtime. Thus, to 

reach a trade-off between the population diversity and runtime, a suitable rate for 

crossover and mutation rates in both the IPG-GA and Master-GA was obtained. The 

proposed algorithm resulted in higher fitness levels and shorter runtime for all test cases 

with 100 nodes and more.  
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Chapter 4 : Impact of Traffic Demand Distribution on Large-
scale Network Topology Design 

This chapter provides complementary results and discussions on the performance of 

the presented Improved Genetic Algorithm in Chapter 3. In this chapter, we extensively 

evaluated the performance of the presented Genetic Algorithm over a variety of large-

scale test cases considering various traffic distributions to be routed5.  

4.1 Introduction 

In this chapter, we employed the presented Improved Genetic Algorithm (IGA) to solve 

the previously-discussed Network Topology Design and Routing problem. We studied 

the effect of the routing order of the traffic demands on the large-scale network design 

process, with regard to the traffic distribution, while the network topology is variable. In 

other words, we studied the performance of the presented Genetic Algorithm under 

various traffic demands with different orders of the traffics to be routed. Analyzing the 

clustered (hubbed) and the scattered traffic distributions, the results showed that for 

clustered demand distributions, the total cost of the network design and routing is more 

sensitive to the order of routing the traffic demands compared to the scattered ones.  

4.2 Methodology 

Every traffic demand consists of three elements:  

(1) origin node, from which the traffic has to originate and outward toward its 

destination, 

 
5 Portions of this chapter along with parts of Chapter 2 are slated for publication as a conference paper: 
S. Doostie, T. Nakashima-Paniagua, and J. Doucette, “An Improvement on the Network Topology Design 
and Routing Problem for Large-Scale Networks”, conference TBD. 
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(2) the destination node, to which the traffic has to arrive at, and  

(3) the magnitude of the traffic demand (d) which represents the total amount of data 

or number of wavelengths that should be transferred from the origin node to the 

destination node.  

Routing a traffic demand between its origin and destination nodes is equivalent to 

selecting a set of consequence spans that start from the origin node and end at the 

destination node. If any of the selected spans for the route have not been established in 

the network yet, there will be a span establishment cost (F) associated with that span. 

Also, the spans on the selected route will have to carry the traffic on them to transfer the 

traffic. So, there will be a variable cost associated with carrying one unit of the traffic 

demand on every span represented by 𝐶.  

So, for the first routed demand, as we established a set of spans as parts of the 

route, we added their 𝐹 values to the cost of the design and from this point forward, 

whenever we used any of these established spans, the cost associated with them would 

be only the cost of carrying demands (𝐶 × 𝑑). Now, consider the routing process of the 

second traffic demand. As there is a set of spans already established in the network, the 

costs associated with those spans will be reduced to only the cost of routing the traffic 

demands on them (only 𝐶 × 𝑑). In other words, for the already established spans, 𝐹 = 0. 

Therefore, the established spans (which now have less cost) have more probability to 

be selected for routing the upcoming traffic demands. On the other hand, if we had 

selected another traffic demand to be routed first, we would have another set of spans 

established on the network which would result in a different cost matrix for spans. As a 

result, we can say by routing each traffic demand, there is a tendency for upcoming 
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traffic demands to use the established spans as a part of their routes to achieve less 

cost (i.e., routing each demand generates a bias for other demands’ routes selection). 

Thus, the order of routing the traffic demands has a direct effect on the converging rate 

of the total Network Topology Design and Routing problem cost and efficiency.  

4.2.1 Experimental Setup  

We sorted the set of traffic demands based on their magnitudes (d) in three different 

ways as ascending, descending, and random orders. For two patterns of traffic 

demands (clustered and scattered) we observed that the efficiency of the proposed GA 

can be affected by considering various orders of routing the traffic demands.  

We coded the presented GA in Python 3.7 [73] and ran the GA on a Microsoft 

Windows Server 2012 R2 11 Standard, 128 GB RAM, x64-based PC, Intel(R) Xeon(R) 

CPU E5-2650 v3 @ 2.30 GHz. We tested the GA on ten different 60-node and ten 

different 100-node test-case configurations, which we designed for this research work. 

As discussed in the previous section, we seek to understand the effect of routing order 

of the traffic demands on the performance of the presented GA. In the first traffic 

distribution, which we call uniform random traffic distribution, each node as the origin 

node of traffic demand, was assigned a uniform random number of traffic demands 

between 5 and 10. In the second traffic distribution, which we call hubbed traffic 

distribution, 6 and 10 randomly selected nodes were considered as hub points for the 

60-node and 100-node networks respectively. Every hub point in the 60-node networks 

was assigned a uniform random number of traffic demands between 40 and 50. Every 

hub point in the 100-node networks was assigned a uniform random number of traffic 

demands between 60 and 70. For simplicity, let us refer to the 60-node and 100-node 
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networks with hubbed traffic distribution as group 1 and group 2 of the test cases, 

respectively. Similarly, let us refer to the 60-node and 100-node networks with scattered 

traffic distribution as group 3 and group 4 of the test cases, respectively. 

4.3 Results and discussion 

The tabulated results in Tables 4.1 and 4.2 show the average Network Topology Design 

and Routing cost as the objective function value over 10 consecutive runs for each test 

case. In Table 4.1, the average cost for random, ascending, and descending order of 

the traffic demands for the hubbed traffic distributions have been tabulated from left to 

right for the 20 test cases in groups 1 and 2. Similarly, Table 4.2 provides the obtained 

results for the test cases in groups 3 and 4 when the scattered traffic distributions are 

applied. The objective value improvement has been calculated as the relative 

improvements when employing the descending order compared to the random and 

ascending order of traffic, respectively. These improvements have been tabulated in the 

last two columns of Tables 4.1 and 4.2.  

Our analysis showed that in all of the cases, sorting the traffic demands before 

routing in a descending order based on their magnitude, resulted in the lower cost 

(lower objective function value), and sorting in an ascending order resulted in the 

highest cost. The relative objective function value improvement between ascending and 

descending orders was as high as 18% between the two scenarios for the test cases 

with a hubbed traffic distribution and 16% for test cases with scattered traffic 

distribution. The averages of objective function improvements for hubbed traffic 

distribution were 14%±2% and 17%±1% for test cases in groups 1 and 2, respectively. 
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Similarly, the averages of objective function improvements were 13%±1% and 

15%±1% for test cases in groups 3 and 4, respectively. 
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Tabel 4.1.Total network design and routing cost for Clustered traffic distribution 

Network Size 
Traffic order Total Objective Value 

Improvement% Random Ascending Descending 
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1770 

59 66 56 5% 15% 

2 61 64 58 5% 9% 

3 56 64 55 2% 14% 

4 59 64 56 5% 13% 

5 55 62 52 5% 16% 

6 53 59 51 4% 14% 

7 61 64 56 8% 13% 

8 61 66 55 10% 17% 

9 63 70 59 6% 16% 

10 60 67 57 5% 15% 

11 

100 4950 

144 162 133 8% 18% 

12 151 164 134 11% 18% 

13 140 157 130 7% 17% 

14 142 156 133 6% 15% 

15 148 167 139 6% 17% 

16 142 157 134 6% 15% 

17 138 154 131 5% 15% 

18 144 158 133 8% 16% 

19 145 160 132 9% 18% 

20 140 158 130 7% 18% 

 



91 
 

Table 4.2. Total network design and routing cost for Scattered traffic distribution 

Network Size 
Traffic order Total Objective Value 

Improvement% Random Ascending Descending 
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60 
 

 

1770 

67 74 65 3% 12% 

22 65 72 62 5% 14% 

23 65 73 64 2% 12% 

24 64 71 61 5% 14% 

25 63 69 59 6% 14% 

26 66 70 63 5% 10% 

27 63 69 60 5% 13% 

28 67 73 63 6% 14% 

29 67 73 64 4% 12% 

30 68 74 65 4% 12% 

31 

100 4950 

148 163 138 7% 15% 

32 156 169 143 8% 15% 

33 150 161 141 6% 12% 

34 153 171 146 5% 15% 

35 151 165 139 8% 16% 

36 149 165 142 5% 14% 

37 146 163 137 6% 16% 

38 147 165 139 5% 16% 

39 153 163 142 7% 13% 

40 145 164 138 5% 16% 

Figures 4.1 through 4.4 depict a graphical representation of the objective function 

improvements for descending order of the traffic demands compared to the random and 
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ascending orders. Figures 4.1 and 4.2 represent the improvements for the test cases 1 

to 20 with the clustered distribution of the traffics. Figures 4.3 and 4.4 represent the 

improvements for the test cases 21 to 40 with the scattered distribution of the traffics. 
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Figure 4.1. The objective function value improvements for descending order of traffic 
routing compared to random and ascending order for group 1. 

 

 
Figure 4.2. The objective function value improvements for descending order of traffic 
routing compared to random and ascending order for group 2. 
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Figure 4.3. The objective function value improvements for descending order of traffic 
routing compared to random and ascending order for group 3. 

 

 

Figure 4.4. The objective function value improvements for descending order of traffic 
routing compared to random and ascending order for group 4. 
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4.4 Conclusion  

On improving a GA-based network design and routing algorithm, this chapter provided 

an improvement based on the order of routing the traffic demands on the network 

considering various demand distributions. In this work, two general traffic distributions 

were studied over 40 large-scale networks. The results showed the effect of the order of 

routing the traffic demands on the networks with clustered traffics is more significant 

than in networks with the scattered distribution of traffic. The objective function value 

improvements for hubbed distribution of the traffics were up to 18% with an average of 

14%±2% and 17%±1% for the test cases in groups 1 and 2, respectively. These 

improvements for test cases with scatter distribution of traffic were up to 16% with an 

average of 13%±1% and 15%±1% for groups 3 and 4, respectively.  

Moreover, the average objective function value improvement increased with the 

network size. Our results showed that the average objective function value 

improvements were higher for groups 2 and 4 compared to groups 1 and 3 in both traffic 

distributions. For groups 2 and 4, the average objective function improvements over the 

two traffic distributions were 17% and 15%, respectively while these values were 14% 

and 13% for groups 1 and 3, respectively. 
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Chapter 5 : Heuristic Approach for Survivable Large-scale 
Network Design Problem 

Designing telecommunication networks with reliable infrastructure and high levels of 

performance that survive any failure is one of the most critical goals in the 

telecommunication industry. The overall network performance can be maintained by two 

means: (1) the functionality of the network’s constitutive components (e.g., fiber optics 

and optical cross connectors) and (2) the network’s ability to employ contingency plans 

(i.e., considering extra reserved capacity as the spare capacity to back up the affected 

traffic) in the event of the component failure to maintain the required functionality of the 

network. These contingency plans are known as “restoration mechanisms” that based 

on the available spare capacity in the network, provide new plans for routing the 

affected traffics6.  

Various failure patterns can disrupt the functionality of the networks such as 

single, dual, or multiple span-failure scenarios. Although single-span failures are the 

most common failure patterns, dual-span failures often occur as well. In this chapter, we 

present a novel approach for designing large-scale networks that are fully restorable in 

the event of any dual span-failure scenario using the span restoration mechanism. For 

simplicity, from now on we refer to “dual span-failure” as “dual failure”. 

An efficient deterministic approach for designing a dual-failure restorable network 

is by use of an integer linear programming (ILP) model. However, conventional ILP 

models lose their efficiency when being applied to large-scale networks. In this chapter, 

 
6 Portions of this chapter along with parts of Chapter 2 are slated for publication as a journal paper: S. 
Doostie, T. Nakashima-Paniagua, and J. Doucette, “A Novel Design Approach for Dual-Failure Span-
Restorable Large-Scale Networks using Integer Linear Programming”, journal TBD. 
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we designed a new ILP-based heuristic approach for solving the large-scale dual span-

failure restorable network design problem. We used the previously developed ILP 

models as benchmarks for various network sizes. Our results showed that for large-

scale networks, the previously-introduced ILP models encounter both computational 

memory limit and prohibitive runtime which make them inefficient approaches. Using the 

presented approach, we were able to determine sub-optimal solutions for large-scale 

networks considering full restoration against any dual-failure scenario where the exact 

methodologies were not able to find any solution after several days of runtime.  

5.1 Introduction 

Telecommunication networks have been extensively developed all around the world. 

Considering the continuing growth in demand for telecommunication services, the 

performance of telecommunication networks continues to be of the highest importance. 

A network’s overall performance can be defined as the network’s ability to provide the 

expected service in the expected time during the period that the network is intended to 

function. A network’s quality of service can be secured through the network’s ability to 

overcome inevitable accidents and failures using restoration mechanisms.  

5.1.1 Network Structure 

A network’s structure consists of its underlying topology (nodes and spans) along with a 

detailed description of its constituent components. The topology of a network refers to 

the nodes and spans of the network and how they are connected. As mentioned earlier, 

in Chapter 2, the network’s operation can be defined as the ability of the spans (e.g., 

optical fibers) to carry the traffic between two nodes. While the network is operating, 
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there could be failures happening at any time and anywhere in the network that causes 

service outages. In the same chapter, we described various restoration mechanisms 

that can be used to maintain the functionality of the networks in the event of such 

failures. In this chapter, we studied the Span Restoration (SR) mechanism for the full 

dual failure restorability of large-scale networks.  

As mentioned earlier in Chapter 2, the optimal network design problem includes 

the optimal network topology design and optimal spare capacity placement to satisfy 

restorability constraints in the event of failures. One of the well-developed approaches 

for network design problems is Integer Linear Programming (ILP) [131]. There are 

various ILP formulations developed for the optimal design of restorable networks. One 

of the main ILP formulations is Mesh Topology Routing and Spare capacity (MTRS) [33] 

which can jointly optimize the network’s topology and spare capacity allocation. This ILP 

becomes quite time-consuming even for medium-sized networks, thus, researchers 

separated the topology design and spare capacity allocation problems and presented 

individual ILPs for each one of them. One of the well-known ILP models for optimal 

network topology design problem is the Fixed Charge plus Routing (FCR) problem [32] 

which we dedicated the whole of Chapter 3 to it.  

The approach introduced in Chapter 3 is focused on the routing of working traffic 

only and it does not study the restoration requirements such as spare capacity 

placement on the network. Reviewing the literature, to the best of our knowledge, the 

problem of large-scale network design considering full dual-failure span restoration has 

not been studied comprehensively. In this chapter, we studied the full dual-failure 

restoration of large-scale networks using the span restoration mechanism allowing any 
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required topology augmentation. We assumed the working traffics have already been 

allocated on the network, and we seek to place the minimum required spare capacity to 

protect the network against any dual failure among the working traffic. We presented an 

ILP model capable of solving the large-scale dual-span restorable network design 

problem. The presented approach is also applicable to other restoration mechanisms 

upon updating the restoration constraints and backup routes. To validate our results, 

inspired by the ILP model introduced in [33] as Reserved Network Fixed Charge plus 

Spare capacity problem (RN-FCS) for single failure span restorable networks, we 

developed the dual failure span restorable ILP as dual-failure RN-FCS for designing 

large-scale networks that are restorable against any dual failure.  

5.1.2 Span Restoration Mechanism 

Recall the span restoration mechanism that provides restoration of working traffic on 

failed spans. Span restoration provides the network with backup routes between the 

end nodes of the failed spans to carry the affected traffic between the end nodes of the 

failed span. As an example, consider the nine-node network in Figure 5.1, where span 

CD is a part of the route between nodes A and I and has failed. The span restoration 

mechanism restores the affected traffic on span CD (between nodes C and D) by 

rerouting the traffic through one or more possible backup routes between nodes C and 

D (e.g., CED, CHGD, or CHID).  
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Figure 5.1. General Span Restoration mechanism. Upon 
the failure of the span CD, the SR mechanism provided 
three backup routes (demonstrated by dashed and dotted 
lines) to restore the span CD. 

5.1.3 State of the Art  

With a specific focus on the span restoration mechanism, several works studied single-

failure span restoration in various network topologies via ILP models [132]–[134]. As a 

further step, one can consider more complex situations such as failure of shared-risk 

spans. The shared-risk spans are a set of spans in a network that have the same cause 

of failure. Thus, in the event of a failure, several spans may be affected simultaneously 

and therefore increase the complexity of the failure scenario. The authors in [135] and 

[136] studied the effect of dual-span failure under shared-risk spans on the spare 

capacity allocation of networks using the span restoration mechanism. The results 

presented in [135] showed that the existence of even two share-risk spans can 

significantly increase the required spare capacity network-wide.  

In our work herein, we focus on dual-failure scenarios where two spans in a 

network fail simultaneously or overlap in time. Although the dual and multiple-failure 

scenarios are much more impossible than single failures, they do occur [105] and [123]. 
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In [137], the authors studied and comprehensively compared various restoration 

mechanisms for restoring dual-failure scenarios. In general, full restoration of all the 

dual failure scenarios requires the network to be three-connected [138]; there should be 

at least three span-disjoint routes between every node pair for the network to be 

restorable. The authors in [139], presented an ILP model to determine the minimum 

spare capacity allocation considering dual-failure scenarios using partially disjoint paths. 

The authors in [44], [128], and [140] presented various ILP models for the analysis of 

the dual failure restoration of span-restorable networks considering a network with a 

given fixed topology. The authors in [44] presented an ILP model for minimizing the 

non-restored working capacity due to dual-failure scenarios in networks with fixed 

topologies while considering an upper bound for the cost of assigning spare capacity. 

They calculated the upper bound for the cost based on the minimum budget required for 

full single failure restoration of the network and determined the maximum restored 

working capacity for dual-failure scenarios.  

5.1.4 Dual Failure Span Restoration  

In this chapter, we focus on the full dual failure restorability of large-scale networks 

where each dual-failure scenario is defined as the simultaneous failure of two spans in 

the network. We depicted the basics of the SR mechanism in dual failure restoration in 

Figure 5.2. Assume spans CD and GH in the presented network fail simultaneously. 

The span restoration mechanism provides backup routes to restore the affected traffic 

on the failed spans. In this example, for simplicity, we assume a hop limit of four spans 

in every backup route, so the number of backup route choices would be limited. The 

affected working traffic on the span CD may be rerouted over the dashed-dotted route. 
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The affected working traffic on the span GH may be rerouted over one or several of the 

dashed routes. Considering restoration constraints and the objective to minimize the 

total cost of network design and sparing, the backup route selection may vary from 

network to network.  

 
Figure 5.2. Dual failure Span Restoration mechanism with four hop limits 
for the backup routes; Spans CD and HG failed simultaneously. The 
backup routes for spans CD and HG have been shown with dashed-
dotted and dashed lines, respectively. 

During span establishment for routing the working traffic in the network design process, 

the resulting network may not be three or even bi-connected. And, as mentioned earlier 

in Section 5.1.3, the network should be at least three-connected to be fully dual-failure 

restorable. Thus, to make the network fully dual-failure restorable, in the presented 

model, we allowed for the necessary topology augmentation in the form of required 

span establishments. In the presented approach, the spare capacity is placed in the 

network for full dual failure restoration and new spans can be established in the 

network, to provide the required connectivity in the network. 

The total number of dual failure scenarios (DFS) where we have |Sexisting| existing 

spans in a network, is |Sexisting| × (|Sexisting|  - 1) / 2. For instance, a network with 100 
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spans can experience 4950 different dual failure scenarios. As the dual failures are 

assumed to happen simultaneously, the order of the two failed spans does not matter. 

For instance, the failure scenario (CD, HG) is the same as (HG, CD). For every dual 

failure scenario, the eligible backup route for every span is a backup route that does not 

pass through the other failed span. Therefore, from the set of designed backup routes 

for every span, some of them might not be eligible for restoration, depending on the 

other failed span. For instance, considering the dual failure scenario (CD, HG) in Figure 

5.2, the backup route CHGD for the restoration of span CD is not eligible anymore as it 

passes through the other failed span, HG. Therefore, the need to find eligible backup 

routes contributes to the complexity of the problem.  

5.2 The Motivation for the Proposed Approach 

In this section, first, we introduce an exact method for designing a full dual-failure span 

restorable network. Then, we introduce an improved version of the developed method 

that has higher efficiency when applied to medium-scale networks. Finally, we take a 

step further and develop a new ILP-based heuristic method that is more efficient for 

solving large-scale instances of the dual restorable network design problem. The 

followings are the detailed description of the three introduced models for full dual-failure 

span restorable network design. 

5.2.1 Reserve Network Fixed Charge plus Spare Capacity Problem for 
the Restoration of Dual Failures (dual-failure RN-FCS)  

We focus on full dual failure span restoration in large-scale networks. To have a valid 

and deterministic benchmark, we first designed an ILP model as a reserved network 

fixed charge plus spare capacity problem for the restoration of dual failures (dual-failure 
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RN-FCS), inspired by the ILP model introduced in [33]. Considering the set of spans 

with working traffic in the network, the proposed dual-failure RN-FCS places enough 

spare capacity on the network to restore working traffic affected by any dual-failure 

scenario. The goal is to minimize the total cost of additional span installation and spare 

capacity placement while providing 100% restoration for any dual-failure scenario 

among the spans with working traffic on them.  

5.2.1.1 Notation 

In this section, we introduce all the elements of the proposed dual-failure RN-FCS ILP 

model with their descriptions: 

𝑖𝑗 represents the span between nodes i and j. 

Sets: 

𝑁 is the set of nodes in the network. 

Sall is the set of all of the possible spans in the network. 

Sexisting ⊆ Sall  is the set of existing spans in the network that carry working traffic. 

Sabsent ⊆ Sall is the set of absent spans in the network that may/may not be selected for 

carrying spare capacities. 

Parameters: 

𝐶𝑖𝑗 is the cost of carrying each unit of spare capacity on span 𝑖𝑗. 

𝐹𝑖𝑗 is the cost of installing span 𝑖𝑗 in the network. 

𝑊𝑖𝑗 is the working traffic on span 𝑖𝑗. 
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M is a very large positive number. 

Decision Variables: 

𝑠𝑖𝑗,𝑚𝑛
𝑘𝑝

 is the amount of restoration flow routed over span 𝑘𝑝 when spans 𝑖𝑗 and 𝑚𝑛 are 

failed spans. 

𝑠𝑖𝑗 is the total spare capacity placed on span 𝑖𝑗 to support all of the restorations flows 

routed over 𝑖𝑗. 

𝛿𝑖𝑗 is the binary decision variable for representing the existence of span 𝑖𝑗 in the 

network. 𝛿𝑖𝑗 is equal to 1 if 𝑖𝑗 has been installed in the network and 0 otherwise. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ (𝐶𝑖𝑗 × 𝑠𝑖𝑗)

𝑖𝑗∈𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

+ ∑ (𝐶𝑖𝑗 × 𝑠𝑖𝑗  +  𝐹𝑖𝑗 × 𝛿𝑖𝑗)

𝑖𝑗∈𝑆𝑎𝑏𝑠𝑒𝑛𝑡

 (12) 

Subject to:  

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑖𝑘 = 𝑊𝑖𝑗      

𝑖𝑘∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠ 𝑚𝑛≠𝑖𝑘

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔  (13) 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑚𝑘 = 𝑊𝑚𝑛      

𝑚𝑘∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠ 𝑚𝑛≠𝑚𝑘

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (14) 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑘𝑗

= 𝑊𝑖𝑗      

𝑘𝑗∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠𝑚𝑛≠𝑘𝑗

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (15) 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑘𝑛 = 𝑊𝑚𝑛      

𝑘𝑛∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠ 𝑚𝑛≠𝑘𝑛

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (16) 
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∑ 𝑠𝑖𝑗,𝑚𝑛
𝑝𝑘 − ∑ 𝑠𝑖𝑗,𝑚𝑛

𝑘𝑝 = 0

∀𝑘𝑝∈𝑆𝑎𝑙𝑙| 𝑘∉{𝑖,𝑗,𝑚,𝑛}

 

∀𝑝𝑘∈𝑆𝑎𝑙𝑙| 𝑘∉{𝑖,𝑗,𝑚,𝑛}

  

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑝 ∉ {𝑖, 𝑗, 𝑚, 𝑛} 

(17) 

 𝑠𝑘𝑙 ≥ 𝑠𝑖𝑗,𝑚𝑛
𝑘𝑙 ∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑘𝑙 ∈ 𝑆𝑎𝑙𝑙|𝑖𝑗 ≠ 𝑚𝑛 ≠ 𝑘𝑙 (18) 

     𝑠𝑖𝑗 ≤ 𝛿𝑖𝑗 × 𝑀 ∀𝑖𝑗 ∈ 𝑆𝑎𝑙𝑙 (19) 

∑ 𝛿𝑖𝑗

𝑖𝑗∈𝑆𝑎𝑏𝑠𝑒𝑛𝑡

+ |𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔| ≥ |𝑁| (20) 

∑ 𝛿𝑖𝑗  ≥ 2 

𝑗∈𝑁|𝑗≠𝑖

∀𝑖 ∈ 𝑁 (21) 

As discussed in Section 5.3.1, the objective function (Equation (12)) consists of two 

types of cost: (1) the cost of spare capacity placement for every span in the network, 

and (2) the cost of span installation for any span from the set of Sabsent that has been 

newly established in the network. Constraints (13) and (14) guarantee enough spare 

capacity placement on the spans outgoing from the origin nodes of the failed spans to 

restore the affected working traffic. Constraints (15) and (16) make sure there is enough 

spare capacity placed on the spans incoming into the destination nodes of the failed 

spans to restore the affected working traffic. Constraint (17) is the transhipment 

constraint that for every node except the end nodes of the failed spans, ensures the 

incoming restoration flow is equal to the outgoing restoration flow. In another word, 

there is no production or consumption of restoration flow on the intermediate nodes in 

the network. Constraint (18) measures the required spare capacity on every span to 
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support all the restoration flows passing over that span. Based on the placed spare 

capacity on every span, constraint (19) determines whether or not a span needs to be 

installed. Constraints (20) and (21) are related to the topology of the network and 

establish a lower bound on the number of spans to be installed.  

Topology-wise, in dual failure restorability, the network’s topology needs to be 

three-connected. Thus, every node in the network must have a nodal degree of 3 or 

higher. So, the right-hand side of the constraint (21) should be 3. However, in this work, 

we were only concerned about the full dual failure restorability of the spans that carry 

working traffic. In another word, the dual-failure scenarios could only occur among the 

spans in the set Sexisting. So, if there is a node that has only one span (from the set 

Sexisting) attached to it, that node needs at least one other span to be incident on it to be 

able to restore the working traffic on the first span. Let’s look at an example to illustrate 

this situation. Let us consider the network with five nodes in Figure 5.3-a where the five 

black solid spans represent the spans that carry working traffic and the two gray-dashed 

spans represent the newly established spans for placing spare capacity. We assumed 

the dual failure scenarios only occur for the solid black spans. As one of the dual failure 

scenarios, let’s consider span ED and CD fail. To restore the affected working traffic on 

span ED, the network must have at least one span other than ED attached to node E 

and one span other than ED and CD, attached to node D. Thus, the spans BE and AD 

have been installed in Figure 5.3-b. Therefore, for node E with one span with working 

capacity attaching to it, the minimum nodal degree of 2 suffices. This condition happens 

for every node that has only one span from the set Sexisting connected to it. On the other 

hand, if a node has more than one span from the set Sexisting connected to it (e.g., nodes 
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A, B, C, and D in Figure 5.3-a), that node must have a nodal degree of 3 or higher. This 

justifies the nodal degree greater than or equal to 2 in constraint (21).  

 

(a) 

 

(b) 

Figure 5.3. In a dual failure scenario in a network with five nodes and 
five spans carrying working traffic (solid black lines), (a) assume 
spans ED and CD simultaneously fail, (b) applying span restoration 
mechanism, two new spans (dashed lines) were installed for placing 
spare capacity to support the affected traffic on spans ED and CD. 

5.2.2 Proposed dual-failure RN-FCS with Reduced Search Space  

We aim to reduce the computational complexity of the proposed dual-failure RN-FCS 

problem by reducing the size of the search space. In another word, we reduce the 

number of possible spans in the set Sall to make the search space smaller and thus 

decrease the computational complexity of the problem. The reason behind this action 

comes from the results we obtained from evaluating the performance of the dual-failure 

RN-FCS model in Section 5.3.1, where we can see that the proposed dual-failure RN-

FCS ILP is not efficient when being applied to networks with 80 nodes and more. 

5.2.2.1 Search Space Reduction by Removing Spans 

We developed an algorithm named “Space Reduction” to eliminate a specific 

percentage of the high-cost spans from the set Sall while avoiding partitioning the graph. 
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For every network, we selected a set of less-valued spans to be removed from the 

search space. The selected spans are the ones with the longest lengths. For instance, a 

span that is connecting the two farthest nodes has a really low chance of being selected 

as a span on the optimal backup route because of its long length. In another word, as a 

span’s installation cost is a multiplier of the Euclidean distance between its end nodes, 

the spans with the highest costs are longer and therefore have a smaller chance of 

being selected for a minimum cost network design solution. 

5.2.2.2 Pseudocode of the Space Reduction Algorithm 

Following is the pseudocode of the Space Reduction algorithm. First, we introduced the 

input and output parameters. Second, we explained the steps of the algorithm followed 

by detailing the designed functions within the algorithm. 

 

  



110 
 

Algorithm 4. Space Reduction Algorithm 

Inputs 

Sall: the set of all of the possible spans in the network. 

A: the set of end-nodes of every span in Sall. 

Sexisting: the set of existing spans in the network that carry working traffic. 

W: the set of working traffics on the spans in Sexisting. 

Sabsent: the set of absent spans = Sall - Sexisting.  

SDel: the percentage of |Sabsent| to be deleted. 

Num_Del: the number of spans in Sabsent to be deleted. 

Del_Index: the set of spans to be deleted from the network.  

C: the set of costs of carrying traffic units on every span in Sall. 

C_temp: a temporary variable to hold the costs of carrying traffic units on every span 

in Sall. 

F: the installation cost of every span in Sall. 

F_temp: a temporary variable to hold the installation costs of every span in Sall. 

Dijkstra’s algorithm [141] 

Output 

Updated_ Sall: the reduced set of all the possible spans in the network. 

Deleting Extra Spans: 

1. Num_Del ← floor ( |Sabsent| × (SDel/100) ) 

2. Index_List ← Sort F in Descending Order (Index_List stores the indices of the 

sorted spans) 

3. Index_List(spans in Sexisting)=[ ] (remove the indices of the spans in Sexisting from the 

Index_List) 

4. Del_Index ← Index_List(1: Num_Del)  

5. F_temp(Del_Index) = M ( M shows a very large installation cost) 

6. C_temp(Del_Index) = M ( M shows a very large cost of carrying traffic units) 

7. F_temp(spans in Sexisting)=0  

8. F(spans in Sexisting)=0 

Making sure the resulting network is at least two-connected: 

9. Function F_temp, C_temp = Update_Cost(F_temp, C_temp, Route_temp) 

for j from 1 to length(Route_temp) – 1{ 

     F_temp(spans in Route_tempj) = ∞} 
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5.2.3 Span Restoration using Backup Routes: Introducing Backup 
Routes 

According to the obtained results (see section 5.4.2), the Improved dual-failure RN-FCS 

ILP was not able to solve large-scale networks within reasonable process time. Thus, 

we decided to employ a different approach to solve the Reserved Network Fixed 

Charge plus Spare capacity problem. The main objective is to find a good but sub-

optimal solution for the full dual failure restoration problem within a reasonable process 

time. We decided to decrease the complexity of the problem by changing the structure 

of the decision variables. In the dual-failure RN-FCS and Improved dual-failure RN-FCS 

 
7 The notation (end) refers to the last element of a vector. For instance: Vector(end)=100 means the last 
element of the  Vector is equal to 100. 

10. Function F_temp, C_temp, Del_Index = Add_New_Span(F, C, F_temp, C_temp, 

Del_Index) 

F_temp(spans in Del_Index(end)) = F(spans in Del_Index(end7)) 

C_temp(spans in Del_Index(end)) = C(spans in Del_Index(end)) 

11. For i in Sexisting { 

      Origin = A(Sexisting i, 1)  

      Destination = A(Sexisting i, 2) 

      Counter = 1 

      While Counter <= 2  

       Route_temp ← Dijkstra (F_temp, C_temp, Origin, Destination) 

 If Route_temp ≠ ∅  

 F_temp, C_temp = Update_Cost(F_temp, C_temp, 

Route_temp) 

 Counter = Counter + 1 

 Else 

  F_temp, C_temp, Del_Index = Add_New_Span(F, C, 

F_temp, C_temp,  Del_Index) } 

Update the set of possible spans and their associated costs: 

12. Sall (spans in Del_Index) = [] (remove the spans in Del_Index from Sall) 

13. Sabsent (spans in Del_Index) = [] (remove the spans in Del_Index from Sabsent) 

14. F(spans in Del_Index) = [] (removing the costs of the deleted spans from F) 

15. C(spans in Del_Index) = [] (removing the costs of the deleted spans from C) 
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models, the integer decision variables are the amounts of spare capacity on every span. 

We introduce a new model where the decision variables are the amounts of restoration 

flows assigned to pre-enumerated backup routes for the restoration of any dual failure 

scenario.  

We assumed that the network and a set of routed working traffic are given, thus, 

there are working capacities assigned to every span in the network. The network’s 

topology may or may not be three-connected, as it may have not been designed for 

dual-failure restorability.  

5.2.3.1 Notations 

In this section, we introduce all of the elements of the presented ILP model with their 

descriptions: 

Sets: 

Sall: the set of all of the possible spans within the network. 

Sexisting ⊆ Sall: the set of existing spans in the network. 

Sabsent  ⊆ Sall: the set of absent spans in the network. 

𝐵𝑅𝑖 : the set of eligible backup routes for the restoration of span 𝑖. 

Parameters: 

𝐶𝑖 : the cost of one unit of spare capacity on span 𝑖. 

𝐹𝑖: the cost of installing span 𝑖 in the network. 

𝑊𝑖 : the number of working capacity on span 𝑖. 
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𝑀: a very large positive number. 

Decision Variable: 

𝑠𝑖: the total number of spare capacities on span 𝑖. 

𝑓𝑏𝑟,𝑖
𝑖,𝑗

: the amount of flow routed on backup route 𝑏𝑟 for the restoration of span 𝑖 upon 

failure of spans 𝑖 and 𝑗. 

 𝛿𝑏𝑟
𝑖,𝑗

: a binary variable that equals 1 if backup route 𝑏𝑟 for the restoration of span 𝑖 

passes through span 𝑗. 

𝛿𝑖: a binary decision variable that equals 1 if the span 𝑖 from the set Sabsent has been 

assigned any spare capacity for restoration and 0 otherwise. 

5.2.3.2 Pre-enumerated Backup-Route Based Mathematical Model for 

the Dual Failure Span Restoration Problem (arc-path dual-failure RN-

FCS) 

As already stated, although the proposed dual-failure RN-FCS ILP model guarantees 

the optimal solution of the dual failure span restorable network design problem, its 

computational complexity (i.e., NP-hardness) [89], makes it intractable for large-scale 

network problems. The runtimes for various network sizes have been tabulated in 

Tables 5.2 and 5.3. Thus, we proposed an exact solution approach based on the ILP 

model in [44] for designing large-scale dual failure restorable networks able to find an 

optimal or sub-optimal solution within a reasonable computational memory and time. 

The ILP model of this approach is as follows in Equations (22) through (28). In this ILP, 

the objective is to minimize the total cost of the spare capacity allocation plus the cost of 
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installing new spans subject to eight sets of constraints to guarantee the full restorability 

of the network in the event of any dual failure scenario.  

5.2.3.3 The General Algebraic ILP Model 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ (𝐶𝑖 × 𝑆𝑖)

𝑖 ∈𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

+ ∑ (𝐶𝑖 × 𝑆𝑖  +  𝐹𝑖 × 𝛿𝑖)

𝑖∈𝑆𝑎𝑏𝑠𝑒𝑛𝑡

 (22) 

Subject to:  

            ∑ 𝑓𝑏𝑟,𝑖
𝑖,𝑗

 

𝑏𝑟∈𝐵𝑅𝑖

≥  𝑊𝑖 ∀𝑖 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 | 𝑖 ≠ 𝑗 (23) 

            ∑ 𝑓br,j
𝑖,𝑗

 

𝑏𝑟∈𝐵𝑅𝑗

≥  𝑊𝑗 ∀𝑖 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 | 𝑖 ≠ 𝑗 (24) 

𝑠𝑘 ≥ ∑ (𝑓𝑏𝑟,𝑖
𝑖,𝑗

 × 𝛿𝑏𝑟
𝑖,𝑘)

𝑏𝑟∈𝐵𝑅𝑖

+ ∑ (𝑓𝑏𝑟,𝑗
𝑖,𝑗

 × 𝛿𝑏𝑟
𝑗,𝑘

)

𝑏𝑟∈𝐵𝑅𝑗

 

(25) 

∀𝑖 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀k ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔| 𝑖 ≠ 𝑗 ≠ 𝑘 

             𝑓𝑏𝑟,𝑖
𝑖,𝑗

 ≤  𝑀 ∙ (1 − 𝛿𝑏𝑟
𝑖,𝑗

) ∀𝑖 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝑏𝑟 ∈ 𝐵𝑅𝑖 | 𝑖 ≠ 𝑖 (26) 

              𝑓𝑏𝑟,𝑗
𝑖,𝑗

 ≤  𝑀 ∙ (1 − 𝛿𝑏𝑟
𝑗,𝑖

) ∀𝑖 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, 𝑏𝑟 ∈ 𝐵𝑅𝑗  | 𝑖 ≠ 𝑖 (27) 

      𝑠𝑘  ≤   𝛿𝑘 × 𝑀 ∀𝑘 ∈ 𝑆𝑎𝑏𝑠𝑒𝑛𝑡 (28) 

The network under study may not be three-connected, hence not dual-failure restorable. 

In that case, the network may need additional span(s) to be established to 

accommodate the required connection for allocating spare capacities. Since the 
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enumerated backup routes consist of spans from both Sexisting and Sabsent, there might be 

spans along some of the enumerated backup routes that are a member of the set 

Sabsent. If a selected backup route has one or more of such spans along, those spans 

will be established in the network and an installation cost (𝐹) is added to the total cost.  

Considering a very large constant M, constraints (26) and (27) select eligible 

backup routes for the restoration process of every dual failure scenario. Constraint set 

(28) ensures that if there is an absent span in the network with a non-zero spare 

capacity assigned to it, it will be considered for the installation cost in the objective 

function. 

The efficiency of the proposed ILP model can be analyzed concerning the 

optimality gap of the final solution and the duration of the computational time using 

available CPU and RAM. Considering the NP-hardness of the problem, the dual-failure 

RN-FCS ILP model cannot be solved as efficiently as needed for even medium-size 

networks. On the other hand, the introduced ILP finds a sub-optimal solution in a 

reasonable computational time. Also, the introduced approach provides the operator 

with the opportunity to select elite spans for the set of backup routes. Being able to 

manually select specific spans as a part of specific routes for transferring the traffic, 

allows the network operator to tailor the network to suit best the dynamic conditions and 

can be of crucial importance [104]. Thus, any alternative according to the present 

conditions and limitations of the network can be easily implemented in planning the 

spare capacity allocation.  
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5.2.3.4 Backup Route Generation (Enumeration) 

To provide full dual failure restorability, the network needs to be three-connected; 

however, the input network’s topology may not be three or even bi-connected. In other 

words, in the network under study, there may not be three disjoint routes between the 

end nodes of every span with working traffic. To overcome such connectivity 

deficiencies in the network, we need to establish new spans. The process of new span 

establishment is done by employing backup routes that may consist of spans from both 

Sexisting and Sabsent. Therefore, if there is a span(s) along the selected backup routes that 

belong to the set of absent spans, it will be established in the network and contribute to 

the connectivity of the network topology. 

We are inspired by Suurballe’s and Dijkstra’s algorithms [41], [141], and [142] to 

find the set of shortest disjoint backup routes between the end nodes of every span in 

the set Sexisting. In our study, the span installation cost and the cost of carrying spare 

capacity on every span are correlated with the length of the span. Therefore, by 

referring to the shortest route, we mean the lowest cost route. In Suurballe’s algorithm, 

first by employing Dijkstra’s algorithm, we find the shortest route between the end nodes 

of the first span. This route is the first backup route. Second, to find a disjoint backup 

route from the first backup route, we eliminate all of the spans of the first backup route 

from the set of all of the spans. Then using Dijkstra’s algorithm, we find the second 

shortest backup route that is disjoint from the first one. Up to this point, we find a pair of 

shortest disjoint backup routes between the end nodes of the first span in Sexisting. We 

repeat this process for all the other spans in Sexisting one by one, to find the first pair of 

disjoint backup routes for every span in the set Sexisting. However, only the shortest pair 



117 
 

of disjoint backup routes is sufficient enough to find a feasible solution to the problem; it 

is not necessarily a good solution. To grow the pool of backup routes and provide a 

diverse set of backup routes to choose from, we enumerate several disjoint backup 

route pairs for the restoration problem to choose from.  

To find more pairs of disjoint backup routes between the end nodes of the spans, 

we use the original order of spans in Sexisting to proceed. Before generating the second 

pair of disjoint backup routes, we update the cost matrix in Dijkstra’s algorithm. 

Updating the cost matrix in Dijkstra’s algorithm is equivalent to removing the span 

installation cost (𝐹) of the spans used in the first pair of backup routes from the total 

cost of those spans. Afterwards, for finding the next pairs of disjoint backup routes, 

considering the first span in Sexisting, we eliminate one span from its first and second 

backup routes and then using Dijkstra’s algorithm we find the third backup route. For the 

fourth backup route to be fully disjoint from the third one and also be distinct from the 

first and second one, we eliminate all of the spans used in the third backup route and 

one span from the first and one from the second backup routes. In this algorithm 

whenever we find a pair of backup routes for all of the spans in Sexisting, the cost matrix 

is updated to count for the newly-used spans from set Sabsent. Thus, the order of the 

spans in Sexisting will not affect the routing process. In other words, this method of 

updating the cost matrix causes the algorithm to become independent of the order of 

spans in Sexisting. This independence of the order of members in Sexisting reduces the 

complexity of the solution process. The pseudocode of the backup route generation 

algorithm is shown in Algorithm 5. 
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Algorithm 5. Disjoint backup route generation algorithm 

Inputs 

A: the set of end-nodes of every span in Sall. 

Sexisting: the set of existing spans in the network that carry working traffic. 

PBR: number of backup route pairs for every span in Sexisting. 

C: the set of unit costs of carrying traffic on every span in Sall. 

F: the set of installation costs of every span in Sall. 

F_temp: a temporary set of installation costs for every span in Sall. 

Dijkstra algorithm [141] 

Output 

BR: the set of the entire generated backup route pairs for every span in Sexisting. 

Finding disjoint backup routes: 

1. For ii from 1 to PBR { 

       2. For i from 1 to length (Sexisting) { 

F_temp ←F 

                     Origin=A (Sexisting i, 1) 

Destination=A (Sexisting i, 2) 

k=1 

3. While k ≤ 2{ 

 If ii == 1 AND k ==1{ 

  BR (i, 1) ← Dijkstra (F, C, Origin, Destination) } 

 Else { 

  If length (BRi) == odd { 

   4. For j in BRi (end) { 

    F_tempj = ∞} 

    BRi (end+1) ← Dijkstra (F_temp, C, Origin,         

                                                             Destination) }  

   Else { 

    5. For j from 1 to length (BRi ){ 

     alpha = a random element from BRi(j) 

     F_temp (spans in alpha) = ∞ 

               } 

             BRi (end+1) ← Dijkstra (F_temp, C, Origin, 

Destination)}}}} 

6. For i from 1 to length (Sexisting) { 

 7. For j in BRi (1) { 
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Having control over the selection of the backup routes provides a desirable level of 

flexibility in the network design process [104]. Generating the backup routes can be 

modified as much as the operator advises. For instance, based on the circumstances, 

some spans might be preferable to be used for sparing, or the cost associated with 

some other spans may dynamically change over time. In those scenarios, the operator 

can easily substitute one or several backup routes with the preferable ones. Also, in 

some applications, the increase in the number of hops in the backup routes can 

degrade the quality of the rerouted signal [50] and [128]. Thus, there could be a hop 

limit constraint enforced to the backup route generation process in the presented 

approach to meet the client’s needs.   

5.2.3.5 Experimental Setup 

The analyzed test cases cover a variety of network sizes as small as 20 nodes up to 

200 nodes. The networks’ specifications have been detailed in Table 5.1. The 

arrangement of the nodes in a network has been selected randomly and the unit cost of 

spare capacity (𝐶) for each span has been calculated as the Euclidean distance 

between the end nodes of the span. The cost of span establishment (𝐹) is considered 

as a factor of (𝐶), and various 𝐹/𝐶 ratios between 20 and 500 have been considered in 

[106]. In this study, the 𝐹/𝐶 ratio is set at 100 in all of the test cases.  

  Fj =0} 

 8. For j in BRi (2) { 

  Fj =0} }   
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Table 5.1. The specifications of the test cases 

Test 
case 

|𝑁| | Sall | | Sexisting | 

1 20 190 27 

2 40 780 49 

3 80 3160 85 

4 120 7140 133 

5 140 9730 152 

6 200 19900 227 

All the experiments were run on a Windows Server 2012 R2- 128 GB RAM- Intel® 

Xeon® CPU E5-2650 v3 @ 2.30GHz (2 processors). All of the models were 

implemented in AMPL (20150327) [59] and we used Gurobi 8.1.0 [60] as the solver that 

used 32 parallel threads. The algorithm for generating backup routes was implemented 

in MATLAB R2020a [143]. The followings are the results of the proposed ILP-based 

heuristic approach compared to the dual-failure RN-FCS and Improved dual-failure RN-

FCS as benchmarks for dual failure span restorable large-scale network design 

problem. 

5.3 Results & Discussions 

5.3.1 Experimental Results 

The obtained results from the three discussed models have been presented in the 

following subsection of this section. 
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5.3.1.1 Dual-failure RN-FCS ILP Results 

According to the results tabulated in Table 5.2, it can be seen that the presented dual-

failure RN-FCS ILP is quite efficient when used to solve small test cases. However, its 

performance in terms of the processing time and optimality of the solution decreases 

drastically with an increase in the network size. Although the main contribution of this 

work is focused on the large-scale networks’ restorability, we report the results for small 

networks as well to provide an exact point of reference for our comparisons and validate 

our results in small test cases.  

Table 5.2. The total cost of Fixed-Charge Sparing using dual-failure RN-FCS ILP 
model for full dual failure restoration   

Test 

Case 

Network Size 

Network Cost (×106) 

Process Time 

(hours) 
|Sall| |𝑁| 

1 190 20 4.5 0.26 

2 780 40 5.4 5.05 

3 3160 80 N/A 72.0 

4 7140 120 N/A N/A 

5 9730 140 N/A N/A 

6 19900 200 N/A N/A 

Our simulations showed that for networks with 80 nodes and more, the dual-failure RN-

FCS is not able to find any solution after more than three days of running. Moreover, for 

the networks with 120 nodes and above, the used computer with 128 GB of RAM ran 

out of memory. Due to such difficulties, we implemented dual-failure RN-FCS with 

reduced search space to try and solve the problem for bigger network instances. 
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5.3.1.2 Dual-failure RN-FCS with Reduced Search Space Results 

Using the Space Reduction algorithm, we managed to improve the performance of dual-

failure RN-FCS ILP for larger networks. In the dual-failure RN-FCS model with reduced 

search space, unlike the dual-failure RN-FCS model where every span from the set Sall 

can be selected as a part of the restoration solution, a limited set of spans are eligible to 

be used as a part of the restoration solution. In other words, using Algorithm 4, by 

selecting only a valuable subset of the set Sall, we reduce the search space and 

increase the performance of the solution approach. We studied the effects of reducing 

70%, 80%, and 90% of the possible spans, on the dual-failure RN-FCS solution 

performance. The total network costs and the process times for the reduced search 

spaces have been tabulated in Table (5.3). The search space reduction percentages 

have been mentioned at the top of each column in Table 5.3.  
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Table 5.3. The total cost of Fixed-Charge Sparing using dual-failure RN-FCS ILP model for 
full dual failure restoration, considering full and reduced search space   
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1 20 4.5 0.26 4.9 0.003 5.1 0.001 5.1 0.001 

2 40 5.4 5.05 5.4 0.13 5.4 0.06 6.1 0.02 

3 80 N/A 72.00 7.0 45.92 7.0 32.03 7.2 1.49 

4 120 N/A N/A N/A N/A N/A > 72.00 21.3 72.00 

5 140 N/A N/A N/A N/A N/A N/A N/A > 72.00 

6 200 N/A N/A N/A N/A N/A N/A N/A N/A 

According to the obtained results, reducing the search space by removing the most 

expensive spans from the search space, resulted in a decrease in the processing time 

while it did not cause any significant increase in the total network cost. In other words, 

the existence of the most expensive spans in the networks does not play a significant 

role in finding the optimal solution, while it causes high levels of computational 

complexity. Therefore, eliminating those spans from the search space is beneficial for 

finding optimal solutions within less computational complexity. Using the dual-failure 

RN-FCS model with reduced search space, we were able to find a sub-optimal solution 

for networks with 80 and 120 nodes. However, the performance of dual-failure RN-FCS 
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started to decrease for larger networks. For a network with 140 nodes, even by reducing 

the search space by 90% and using 80% of the RAM, the dual-failure RN-FCS was not 

able to find any solution after almost 4 days of running.   

5.3.1.3 Span Restoration using Backup Routes Results 

Employing the proposed Backup Route-based ILP model (arc-path dual-failure RN-

FCS) for designing the full dual failure span restorable network, we were able to find 

sub-optimal solutions for large-scale networks where even the dual-failure RN-FCS with 

reduced search space was not able to find any solution. Table 5.4 represents the 

obtained results showing the solution performance and total process times.  

In every test case, we calculated the optimality gap of the Backup Route-based 

ILP model according to the best results obtained from the dual-failure RN-FCS and 

Improved dual-failure RN-FCS models. It can be seen that by increasing the number of 

backup route pairs from an average of 5 to 10 per span in Sexisting, the objective function 

value improved by up to 22% for large-scale networks. The average of 5 and 10 backup 

routes per span in Sexisting were enumerated from a reduced search space where we 

removed 90% and 80% of the longest spans from the set Sall, respectively. Therefore, if 

for some of the spans, there were less than 5 or 10 pairs of backup routes found, the 

backup route generator compensated by finding more pairs of backup routes for other 

spans in the network. Thus, in Table 5.4, we indicated the number of backup routes as 

an average of 5 and 10 pairs per span.  

For networks with 140 nodes and more, we were not able to find any solution 

using the dual-failure RN-FCS or Improved dual-failure RN-FCS models. However, the 
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proposed Backup Route-based ILP model was able to find sub-optimal solutions. The 

improvement in the objective function value using the proposed model was 11% and 

17% for 140 and 200 node networks, respectively.  

Table 5.4. The total cost of Fixed-Charge Sparing using the Backup Route-based 
ILP model for full dual failure restoration 
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1 20 0.0003 23.90 0.001 12.33 48.41 

2 40 0.004 26.61 0.02 18.13 31.87 

3 80 0.02 40.12 1.40 31.93 20.41 

4 120 0.14 38.39 1.54 29.90 22.12 

5 140 0.58 N/A 11.15 N/A N/A 

6 200 0.80 N/A 27.61 N/A N/A 

5.4 Conclusion 

This chapter studied the large-scale dual-failure span restorable network design 

problem. The dual failure scenarios may not be as frequent as single failure scenarios; 

however, in vital network services, even a small chance of service outages can be 

catastrophic. Therefore, having a network that is immune to any dual failure scenario is 

important. As already stated, several ILP models were presented to solve the dual 

failure span restoration problem, however, they encounter memory limits and prohibitive 
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runtimes for the solution of large-scale networks. In this chapter, we employed a new 

ILP model based on pre-enumerated backup routes to design large-scale dual-failure 

restorable networks. The presented model can be applied to any network carrying 

working capacity, regardless of the network’s connectivity (e.g., biconnected, three-

connected, etc.). We introduced a heuristic-based algorithm for the pre-enumeration of 

elite backup routes for the restoration of network spans.  

We applied the three ILP models (dual-failure RN-FCS, dual-failure RN-FCS with 

reduced search space, and the ILP model based on the proposed heuristic backup 

route enumeration) on seven test cases with various sizes from 20 up to 200-node 

networks. Our simulations showed the performance of the previously introduced models 

becomes quite poor when designing large-scale networks. In the case of networks with 

140 nodes and more, the previously developed models using powerful solvers such as 

Gurobi, were not able to find any solution while the introduced model was able to find a 

sub-optimal solution within reasonable processing time. Moreover, in this approach, by 

being able to implement backup routes, the network operator benefits from improvising 

in various conditions. Having control over the restoration backup routes can be 

advantageous if there are specific constraints on the hop limits of the routes or if there 

are some preferable spans that must/ must not be used for restoration purposes. 

Another advantage of the presented model that helps with decreasing the complexity of 

the solution process, is the decision variable types. In the introduced model, the 

decision variable translates into choosing a backup route from the set of given backup 

routes, while in the dual-failure RN-FCS model, the decision variables have to build up 

the backup routes for every span as a part of the solution. This change in the structure 
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of the decision variables made the solution process easier and as a result, our model 

required up to 70% less computational memory compared to the state-of-the-art 

models.  
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Chapter 6 : GA-based Approach for Survivable Large-scale 
Network Design Problem 

With the rapid global development of telecommunication networks, their performance 

has become important more than ever. One of the contributing factors to the network 

performance is the employed survivability mechanism. Networks are usually equipped 

with the ability to survive single failures by restoring the affected traffic. However, higher 

levels of network robustness require restoration against more complex failure scenarios. 

Higher restoration ability can be interpreted as the restoration of two or more 

simultaneous failures in the network. In this chapter, we focused on the span restoration 

mechanism as one of the most capacity-efficient restoration mechanisms and we 

proposed an approach for full restorability against any dual-failure scenario in a large-

scale network using a Genetic Algorithm. For our approach to be applicable to any step 

of the network design process, we allowed for the installation of new spans if necessary, 

by considering a variable topology for the networks under study. We consider the total 

cost of the dual-failure restorable network design as the span installation cost and spare 

capacity placement cost. We validated our results with previously developed ILP models 

as benchmarks and achieved an optimality gap of 28.89% ± 2.1 in large-scale network 

design costs in up to 96.95% ± 1.8 shorter processing times8.  

6.1 Introduction 

In Chapter 2, we provided a detailed introduction to telecommunication networks. These 

networks provide the infrastructure for so many critical systems such as the health care 

 
8 Portions of this chapter along with parts of Chapter 2 are slated for publication as a journal paper: S. 
Doostie, T. Nakashima-Paniagua, and J. Doucette, “A Novel Genetic Algorithm-based Approach for 
Design of Dual-Failure Span-Restorable Large-Scale Networks”, journal TBD. 
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system, rail and air traffic control system, and other IT systems [144]. We also 

mentioned that to establish networks with adequate levels of service quality, the 

network should be resilient to various kinds of failures. The failures may have various 

sources, causes, or frequencies; however, by employing proper protection and 

restoration mechanisms in the networks we can recover the network from failures with 

minimum cost and delay time in its operations [145]. In this chapter, we focused on the 

span restoration mechanism [146]–[148] and a detailed description of this mechanism 

has been described in Chapter 2. Span restoration mechanism provides efficient 

sharing of spare capacities [148] while it provides better control over the backup paths 

[134] and thus can have a better demonstration of our proposed heuristic-based 

approach.  

A network can encounter various component failure scenarios such as span or 

node failures in various patterns. One of the most frequent failure scenarios in 

telecommunication networks is span failure scenarios which we can categorize into 

single and multiple span failures at a time. In this chapter, we focused on the dual 

failure scenarios meaning two spans may fail simultaneously in a network. Employing 

the span restoration mechanism, the failed span will be restored over the backup routes 

between its end nodes.  

Studying dual failure scenarios, simultaneous failures of two spans have a more 

complex structure compared to single failures. As any two working spans (i.e., spans 

that carry working traffic) can be failed simultaneously, a network requires two sets of 

backup routes between the end nodes of both of the failed spans which none of the 

backup routes should pass through the other failed span. In another word, the network 
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should be three-connected with regard to every working span. Figure 6.1 illustrates the 

basic schematic of the dual-failure span restoration mechanism. Considering spans CE 

and BF are failing at the same time. In this case, neither the backup routes for span CE 

are eligible to pass through span BF, nor the backup routes of span BF are allowed to 

pass through span CE. For instance, the backup route BAF is an eligible backup route 

for failed span BF but the backup route BCEF is not.  

 
Figure 6.1. Basic Schematic of dual failure SR mechanism. Consider 
the failure of spans CE and BF are happening simultaneously. 

Although the dual-failure scenarios are not as frequent as single failures, their 

occurrence rate increases with the increase in the network size [149]. There are three 

reasons that we believe the dual-failure restorability is of crucial importance for large-

scale networks: (1) In large-scale networks, spans (e.g., optical fibers) based on their 

physical and technical specifications can transfer high volumes of traffic [150] and the 

more the amount of traffic on a span, the higher the probability of the span becoming 

failed. (2) In the event of single-span failure, if the repair and maintenance times are 

long [151], before fixing the failed span, another span in the network might fail thus; a 

simple single failure scenario can turn into a dual failure scenario. (3) Depending on 

how critical are the network services and how expensive (socially and financially) can 



131 
 

the service outages be, a network operator may prefer to have full restorability against 

any dual failure scenario at all times. 

6.2 Related Work  

As discussed earlier, the network design problem consists of the network topology 

design, routing, and spare capacity allocation problems. The authors in [33] and [81] 

studied the complete problem of mesh topology routing and sparing (MTRS) as a 

unified integer linear programming model [131]. Given the coordination of nodes in the 

network and the traffic demand matrix, the MTRS model is guaranteed to find the 

optimal solution to the complete problem of network topology design, routing, and spare 

capacity allocation. However, in terms of the processing time and the computational 

difficulty, it is not efficient even for medium-sized networks. Thus, they presented an 

ILP-based heuristic approach to divide this problem into three sub-problems and tackle 

each one of them separately. They introduced a 3-step ILP model that first solves the 

topology and routing problem that is being known as fixed charge plus routing (FCR) 

problem [32]. The result of the first step in [33] was a network with installed spans and 

allocated working capacities to accommodate the traffic demand matrix. In the second 

step, using the obtained topology and determining working routes from the first step, 

they solved the spare capacity allocation problem for restoration purposes. Thus, the 

network topology could be augmented by installing additional spans to make the 

network two-connected (i.e., physically restorable) and spare capacities were placed on 

the spans for restoring every single failure scenario happening for every working span. 

Finally, using the obtained topology from the second step, they solve the complete 

problem only at this step; they considered the installed spans from the first two steps 
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only as the possible spans for the network to reduce the complexity of the solution and 

search space. Moreover, the authors in [152] presented a 4-step ILP-based heuristic for 

the problem of multi-period survivable network design augmentation in which they 

focused on the SBPP mechanism.  

Herein, we studied the full survivability of large-scale networks while minimizing 

network cost by minimizing the required spare capacity placement and new span 

installation. The authors in [148] Introduced an ILP model for minimizing the required 

spare capacity for span restorable networks considering single failure scenarios and 

various spectrum conversion schemes. The authors in [153] presented ILP models for 

the full and partial dual-failure restorability of networks, considering fixed topologies. 

They performed an extensive analysis of the partial dual-failure restoration and 

observed that partial restorability requires significantly lower levels of spare capacity.  

Inspired by the research work presented in [33], we recently introduced two 

different ILP models for the spare capacity allocation problem for full restorability 

against dual-failure scenarios, considering the working traffic has been routed and the 

network topology can be augmented to satisfy the restoration requirements in Chapter 

5.  

The authors in [154] presented an iterative heuristic approach for a survivable 

network design problem in which they employed tabu search to find disjoint routes 

between the end nodes of the traffic demands and assign relays on their optimal 

position along the found paths.  

In this chapter, we propose a heuristic approach for the problem of dual failure 

restoration of large-scale networks and we design a genetic algorithm (GA) [155] to 
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solve the dual failure restorable large-scale network design equipped with a span 

restoration mechanism. We select GA as our approach because of its higher 

performance proficiency and flexibility compared to other evolutionary approaches 

[113], [156]. Among all of the well-known evolutionary algorithms, GA has been noticed 

extensively because of its ability for robust search. The details of the genetic algorithm 

are mentioned in Chapter 2. 

In this chapter, we introduce a heuristic approach based on a GA for designing 

dual-failure span-restorable large-scale networks considering variable network topology.  

6.3 Dual-failure RN-FCS ILP Model 

The previously presented ILP model named reserved network fixed charge plus spare 

capacity problem for the restoration of dual failures (dual-failure RN-FCS) in Chapter 5 

determines the optimal spare capacity placement on the network while minimizing the 

total cost of spare capacity placements and new span installations. The complexity of 

this problem is NP-hard, thus specifically for large-scale networks, it may not be 

efficient. Employing the available resources, this ILP encounters memory limits and 

prohibitive runtimes for designing networks with 80 nodes and more. In Chapter 5, we 

presented an improved version of the dual-failure RN-FCS ILP model to mitigate the 

computational complexities by a trade-off between the optimality and computational 

complexity of the solution. We also introduced another ILP model based on the pre-

enumeration of backup routes for dual failure span restorable network design problem, 

while the topology can be dynamically changed. That model can find a sub-optimal 

solution very fast with small computational infrastructure requirements. However, the 

pre-enumeration of backup routes of the restorable spans limits the solution to only the 
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found backup routes. Thus, there will be some parts of the search space that will not be 

searched for possibly good backup routes and the global optimum solution may not be 

achieved.   

6.3.1 The Mathematical Formulation of the Problem 

Dual-failure RN-FCS aims to minimize the total cost of spare capacity allocation and 

new span installation subject to the set of constraints that guarantee the full restorability 

against any dual failure scenario among working spans. Following is the description of 

the sets, parameters, and decision variables used in the ILP model based on Chapter 5. 

Equations (29) through (38) are adopted from Chapter 5.  

Sets: 

𝑁: the set of the fixed nodes of the network. 

Sall: the set of all of the spans that are or can be installed in the network. 

Sexisting: the set of installed spans that carry working traffic and will be considered for 

restoration. 

Sabsent: the set of Sall − Sexisting (possible spans for new installments) 

Parameters: 

𝐶𝑖𝑗: the cost of spare capacity placement on the span from node 𝑖 to 𝑗. 

𝐹𝑖𝑗: the cost of span establishment from node 𝑖 to 𝑗. 

𝑊𝑖𝑗: the amount of working traffic on span from node 𝑖 to 𝑗. 

𝑀: a big positive number. 
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Decision Variables: 

𝑠𝑖𝑗,𝑚𝑛
𝑘𝑝

: the amount of spare capacity allocated to the span from node 𝑘 to 𝑝 when spans 

from node 𝑖 to 𝑗 and 𝑚 to 𝑛 are failed.  

𝑠𝑖𝑗: the accumulated spare capacity allocated on span from node 𝑖 to 𝑗 such that it is 

enough to support all of the dual failure scenarios. 

𝛿𝑖𝑗:  the binary variable that equals 1 if the span from node 𝑖 to 𝑗 from the set Sabsent was 

installed for spare capacity placement, and zero otherwise.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ (𝐶𝑖𝑗 × 𝑠𝑖𝑗)

∀𝑖𝑗 ∈𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

+ ∑ (𝐶𝑖𝑗 × 𝑠𝑖𝑗  +  𝐹𝑖𝑗 × 𝛿𝑖𝑗)

∀𝑖𝑗∈𝑆𝑎𝑏𝑠𝑒𝑛𝑡

 (29) 

Subject to:  

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑖𝑘 = 𝑊𝑖𝑗      

∀𝑖𝑘∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠ 𝑚𝑛≠𝑖𝑘

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (30) 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑚𝑘 = 𝑊𝑚𝑛      

∀𝑚𝑘∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠ 𝑚𝑛≠𝑚𝑘

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (31) 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑘𝑗

= 𝑊𝑖𝑗      

∀𝑘𝑗∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠𝑚𝑛≠𝑘𝑗

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (32) 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑘𝑛 = 𝑊𝑚𝑛      

∀𝑘𝑛∈𝑆𝑎𝑙𝑙| 𝑖𝑗≠ 𝑚𝑛≠𝑘𝑛

∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 (33) 

 

∑ 𝑠𝑖𝑗,𝑚𝑛
𝑝𝑘 −  ∑ 𝑠𝑖𝑗,𝑚𝑛

𝑘𝑝 = 0

∀𝑘𝑝∈𝑆𝑎𝑙𝑙| 𝑘∉{𝑖,𝑗,𝑚,𝑛}

 

∀𝑝𝑘∈𝑆𝑎𝑙𝑙| 𝑘∉{𝑖,𝑗,𝑚,𝑛}
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∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑝 ∉ {𝑖, 𝑗, 𝑚, 𝑛}  

(34) 

 𝑠𝑘𝑙 ≥ 𝑠𝑖𝑗,𝑚𝑛
𝑘𝑙 ∀𝑖𝑗 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑚𝑛 ∈ 𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔, ∀𝑘𝑙 ∈ 𝑆𝑎𝑙𝑙|𝑖𝑗 ≠ 𝑚𝑛 ≠ 𝑘𝑙 (35) 

     𝑠𝑖𝑗 ≤ 𝛿𝑖𝑗 × 𝑀 ∀𝑖𝑗 ∈ 𝑆𝑎𝑙𝑙 (36) 

∑ 𝛿𝑖𝑗

∀𝑖𝑗∈𝑆𝑎𝑏𝑠𝑒𝑛𝑡

+ |𝑆𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔| ≥ |𝑁| (37) 

∑ 𝛿𝑖𝑗  ≥ 2 

∀𝑗∈𝑁|𝑗≠𝑖

∀𝑖 ∈ 𝑁 (38) 

As discussed in Chapter 5, the dual-failure RN-FCS’s objective (Equation (29)) is to 

minimize the total cost of spare capacity allocation and possibly-required span 

establishment for full restoration against any dual failure scenario. The constraints from 

equations (30) to (33) guarantee enough spare capacity placement on the spans 

originated from and terminated at any origin or destination node of failed spans in every 

dual failure scenario. Equation (34) is the mathematical representation of the 

transhipment constraint for the intermediate nodes. Equation (35) guarantee the 

allocation of enough spare capacity on every span, considering all of the dual failure 

restoration capacities. Equation (36) tunes the 𝛿𝑖𝑗 values based on the existence of 

spare capacity on the spans from the set Sabsent. Equations (37) and (38) are additional 

constraints that only describe the topology and environment of the network. 
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6.4 Proposed Genetic Algorithm for Survivable Network Design  

In this chapter, we propose a GA based on the main characteristics of the dual-failure 

RN-FCS ILP model. Unlike the introduced model in Chapter 5, the proposed GA herein 

is not bound to a limited set of pre-enumerated backup routes and it can explore the 

search space to find various backup routes for the restoration of any dual failure 

scenario in the network. As an input to this problem, we have a set comprising of all of 

the dual-failure scenarios that we want to restore one by one and allocate a set of spare 

capacities on the network to restore the working traffic upon simultaneous failure of two 

working spans. In this context, the order of restoration of the dual failure scenarios is 

important. Let’s say we have a network of five nodes and six working spans as shown 

with solid lines in Figure 6.2(a). Let us consider the simultaneous failure of spans AB 

and AE as the first dual-failure scenario to analyze. Since node A will become 

disconnected from the network, the network needs at least another span to be joined to 

node A. Thus, we assume the span AC has been selected to be installed in the network 

for the restoration of spans AB and AE. Taking into account the newly installed span 

AC, we can use backup routes ACB and ACE for the restoration of spans AB and AE 

respectively, as illustrated in Figure 6.2(b). In the next step, let’s consider the next 

possible dual-failure scenario as the simultaneous failure of spans CB and CE. 

Considering the spare capacities that had been placed for the previous dual-failure 

scenario, we have some spare capacities already allocated to spans CB, AC, and CE. 

Thus, upon failure of spans CB and CE, the previously placed spare capacity on span 

AC can be utilized without additional costs. So, the backup routes for the restoration of 

spans CB and CE could be CAB and CAE, respectively as illustrated in Figure 6.2(c). 
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Now consider the situation where first we analyze the failure of spans CB and CE as 

illustrated in Figure 6.2(d). In this case, the network’s topology is connected and there is 

no need for a new span installation. The backup routes for the restoration of spans CB 

and CE could be CDEAB and CDE, respectively where there is enough spare capacity 

placed on them. Now, let us consider the second dual-failure scenario is the 

simultaneous failure of spans AB and AE. This dual-failure scenario makes the network 

disconnected, thus requiring a new span installation. Assuming we installed span AD, 

by considering the previously allocated spare capacities on the network (on spans CD, 

DE, EA, and AB) and assigning enough spare capacity to span BC, we can restore 

spans AB and AE through backup routes ADCB and ADE, respectively as illustrated in 

Figure 6.2(e). One can see the difference between the final protected networks in 

figures 6.2(c) and 6.2(e) where we considered only two dual-failure scenarios (AB, AE) 

and (CB, CE) in different orders. Thus, analyzing every dual-failure scenario will change 

the available spare capacities in the network, which can change the future decisions for 

the restoration of the upcoming dual-failure scenarios. Here, we showed the difference 

that the order of analyzing the dual-failure scenarios can make in the final designed 

network. In the presented GA, we benefited from the iterative aspect of the algorithm to 

evaluate a vast variety of possible combinations of the dual-failure scenario orders in a 

network design problem. The details of our GA structure and designed genetic 

operators have been explained in the next section.  
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 6.2. The effect of the order of the dual-failure scenarios to be evaluated on 
a network with five nodes and six working spans: considering dual-failure 
scenarios (AB, AE) and (CB, CE) based on the network in (a). In (b) first (AB, AE) 
was evaluated, thus AC was installed. Then in (c), (BC, CE) was evaluated. In (d), 
first (CB, CE) was evaluated then in (e), (AB, AE) was evaluated. 
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6.4.1 The Building Blocks of Survivable Network Design Genetic 
Algorithm 

We studied the problem of full dual failure restorable network design in which the 

solution sought is a minimum cost connected network topology with a set of spare 

capacities that will restore all the dual-failure scenarios that may happen. The structure 

of the chromosome in our GA comprises one main gene to which we apply the genetic 

operators and three calculating genes. The main section contains the ordered set of all 

of the dual-failure scenarios and the calculating sections include: (1) the backup routes 

for restoring the working traffic on every span in every dual-failure scenario, (2) the total 

amount of spare capacity assigned to the spans, and (3) the total cost of spare capacity 

allocation in addition to the possible cost of new span installation. Figure 6.3(a) 

demonstrates the general structure of the presented chromosome. Considering the 

network in Figure 6.2, the details of the proposed chromosome structure have been 

demonstrated in Figure 6.3(b). 
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(a) 

 

(b) 

Figure 6.3. (a) The general structure of the chromosome of the proposed GA; (b) the 
detailed structure of genes of a chromosome based on the network in Figure 6.2. 

To generate the initial population, we built the initial chromosomes with a different 

ordered set of dual-failure scenarios to generate various feasible solutions to the 

problem. The size of the ordered set of all possible dual-failure scenarios can be 

calculated by |Sexisting| × (|Sexisting| - 1) / 2. Therefore, for a network with only 100 working 

spans, the total number of dual-failure scenarios would be 4950, meaning there would 

be 4950 various pairs of spans to be considered for dual-failure restorability. 

Considering a dual-failure scenario as a tuple of two working spans being failed 

simultaneously, we included a variety of dual-failure scenario orders in our initial 

population such as: (1) first we paired the first span in Sexisting with all the other 

upcoming spans in that set, then we tried the same matching with the second span, and 

so on. The schematic of this ordered dual-failure scenario has been depicted in Figure 

6.4(a). (2) We paired every span in Sexisting, with its consecutive span that comes after 

the first one. In doing so, we skipped some dual-failure scenarios, so we inserted the 
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missing dual-failure scenarios at the end of this ordered dual-failure scenario (Figure 

6.4(b)). Also, we generated another ordered dual-failure scenario using this procedure 

with a shuffled Sexisting. (3) We generated an ordered set of dual-failure scenarios using 

the inverse procedure in (2), so the first dual-failure scenarios would include the last 

spans in Sexisting (Figure 6.4(c)). The other ordered dual-failure scenarios have been 

generated using uniform random sampling from the first chromosome (i.e., a uniform 

random sample from the first ordered set of all of the dual-failure scenarios). In Figures 

6.4(a) to 6.4(c), for simplicity we used numbers from Figure 6.2 to refer to the existing 

spans, thus the set Sexisting=  {1, 2, 3, 4, 5, 6}. Moreover, we reordered one of the 

randomly selected ordered dual-failure scenarios according to the total working traffic of 

its spans. In another word, we ordered the dual-failure scenarios descending based on 

the total working traffics of the two working spans in every dual-failure scenario so that 

the first dual-failure scenario would have the highest total working traffic to be restored 

and the last dual-failure scenario would have the least.  
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(a) 

 
(b) 

 
(c) 

Figure 6.4. (a) Represents the first method for generating an ordered set of dual-failure 
scenarios; (b) depicts the second method for generating an ordered set of dual-failure 
scenarios; (c) shows the third method that is the inverse of the second method.  

6.4.1.1 HeuristicRouting Function 

Every dual-failure scenario consists of two working spans that must be restored upon 

their simultaneous failure through other spans. The best set of backup routes for every 

span would be those that incur less cost for designing the network. Notably, the total 

cost of every backup route is defined as the cost of the spare capacity allocation on 

backup route spans plus the cost of new span installation (where applicable). To find 

the best set of backup routes for both spans in all of the dual-failure scenarios, we 

introduce a novel HeuristicRouting function. This function defines how many/which 

backup routes must be used to restore a failed span as well as how much of the 

required spare capacity should be assigned to each of the selected backup routes.  

 Before describing the HeuristicRouting function, we make several observations: 

(1) The spare capacities that have been placed on one backup route for restoring a 

failed span cannot be used for the restoration of the other span in the same dual-failure 

scenario, i.e., the network must be able to restore both spans in a dual-failure scenario 

at the same time. (2) The spare capacities that have been allocated for the restoration 
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of spans in every dual-failure scenario can be used for the restoration of spans in 

another dual-failure scenario, and once a new span is installed as a part of a backup 

route, the cost of installation for that span will be zero for other backup routes. (3) The 

developed HeuristicRouting function analyzes one dual-failure scenario at a time and 

always the first span in the dual-failure scenario before the second one.  

To calculate the second section of every chromosome (i.e., the eligible set of 

backup routes and the number of the spare capacity assigned to each route), we 

applied the HeuristicRouting function to all of the dual-failure scenarios one by one. The 

output of the HeuristicRouting function is the set of best backup routes and the number 

of spare capacities allocated to their spans for full dual failure restoration of the network.  

As the selected backup routes for different dual-failure scenarios can share their 

allocated spare capacities, the order of analyzing (1) dual-failure scenarios and (2) 

spans in a particular dual-failure scenario can change the best backup route for the next 

dual-failure scenarios, i.e., the order of the dual-failure scenarios and the order of the 

spans in every dual-failure scenario can change the output of the HeuristicRouting 

function. Notably, in a network where |Sexisting| spans carry working traffic, the number of 

dual-failure scenarios is |Sexisting| × (|Sexisting| - 1) / 2. Thus, the length of the ordered set 

of dual-failure scenarios in a chromosome can be in the order of thousands for large-

scale networks. However, after evaluating some dual-failure scenarios, the allocated 

spare capacity will be enough for the restoration of the upcoming dual-failure scenarios, 

and as a result, the effects of the order of the upcoming dual-failure scenarios on the 

output of the HeuristicRouting function will be negligible. This is why genetic operators 
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mostly were focused on the early parts of the chromosomes and generated new 

chromosomes by changing the orders of the early dual-failure scenarios.  

6.4.1.1.1 HeuristicRouting Function Building Blocks 

The HeuristicRouting function evaluates dual-failure scenarios as the first section of a 

chromosome one by one. In this function, we employed Dijkstra’s algorithm [41] and 

[37], to find the least-cost path between the end nodes of a failed span. The cost matrix 

for Dijkstra’s algorithm was obtained as new span installation cost plus spare capacity 

allocation cost for every span based on the amount of restorable traffic, i.e., the cost 

matrix was calculated as 𝐹𝑖𝑗 + 𝐶𝑖𝑗 × 𝑊𝑇𝑚𝑛 for every span 𝑖𝑗 in the network and every 

span mn with restorable working traffic 𝑊𝑇𝑚𝑛. Also, as each new dual-failure scenario 

can use the allocated spare capacities from the previously evaluated dual-failure 

scenarios, we designed a CostReduction function (presented in Algorithm 6) to reduce 

the routing cost of spans with installed spare capacity proportional to the amount of the 

installed spare capacity. This feature allows for sharing the spare capacity among the 

backup routes of various dual-failure scenarios which we know will not occur 

simultaneously.  
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Algorithm 6. The pseudocode of the CostReduction function. 

Inputs: 

WT: working traffic to be restored 

AvailableS: the set of spans with their previously allocated spare capacities from the 

previous dual-failure scenarios 

CostD: the set of cost coefficients for Dijkstra’s algorithm 

C: the set of spare capacity placements’ cost 

Output: 

CostD: the updated list of cost coefficients for Dijkstra’s algorithm 

CostReduction: 

1. for i from 1 to length (AvailableS) {  

2.       if AvailableSi  WT 

3.              CostDi =0 

4.       else 

5.              CostDi= CostDi- AvailableSi×Ci }  

While the CostReduction encourages the new backup routes to use the previously 

allocated spare capacities, there could be cases where the amount of working traffic 

that requires restoration, is greater than the available spare capacities on the spans of 

the found backup route. Thus, we designed the MustUseSpare function (presented in 

Algorithm (7)) that finds as many backup routes as possible for the restoration of the 

failed working traffic using only the previously allocated spare capacities, i.e., the 

MustUseSpare function finds backup routes with zero cost for the restoration of the 

current failed working traffic, if available.  

To this end, the MustUseSpare function (Algorithm 7) first, sets the costs of 

spans with zero allocated spare capacity to “infinity.” This prevents Dijkstra’s algorithm 

to find a backup route that has even one span with zero spare capacity on it. Second, 

the costs of spans with a non-zero spare capacity are updated using the CostUpdate 
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function (embedded in Algorithm 7) such that the total cost of routing the failed working 

traffic over these spans is reduced proportionally to the amount of available spare 

capacity on them. Then, Dijkstra’s algorithm tries to find a backup route for the 

restoration of all or parts of the failed working traffic, depending on the availability of the 

spare capacity. To achieve this, first, the minimum amount of spare capacity available 

on the spans of the found backup route is assigned to a variable named TValue, i.e., 

TValue represents the proportion of working traffic that can be routed free of cost over 

the found backup route using only the previously allocated spare capacities. If TValue is 

greater than or equal to working traffic, that means the working traffic is fully restored 

with the found backup route, if TValue is less than working traffic, means that only a 

portion of the working traffic is restored. In the latter case, we update the amount of 

available spare capacities and repeat this process for the remaining working traffic that 

has not been restored yet (i.e., initial working traffic minus TValue).  

As the order of restoring spans in a dual-failure scenario could change the total 

spare capacity allocation, we used different protocols to improve the routing process. 

After routing the spans in a dual-failure scenario, there could be two scenarios: (1) if the 

summation of the remainder of working traffics (𝑊𝑇11 and 𝑊𝑇12 for the first and second 

spans, respectively) is zero or only the 𝑊𝑇12 is equal to zero, which means we used up 

all the available spare capacities in the network and there is no room for further 

improvement of the backup routes. Thus, the found backup routes and updated 

available spare capacities are finalized and we can proceed to the next dual-failure 

scenario; (2) if the 𝑊𝑇12 is non-zero, we reverse the order of the routing, i.e., the second 
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span of the dual-failure scenario is evaluated first. The change of routing orders can 

improve the usage of the available spare capacities.  

When the reverse routing order is evaluated, we compare the total remainder of 

working traffic in both routing orders. Then, one of the following sub-scenarios could 

happen: (2-1) the total remainder of working traffic in the reverse order (𝑊𝑇21 and 𝑊𝑇22 

for the second and first spans, respectively) is zero. In this sub-scenario, the found 

backup routes and updated available spare capacities using the reverse order are 

finalized and then we can proceed to the next dual-failure scenario; (2-2) 𝑊𝑇21 is non-

zero. In this sub-scenario, we compare the total remainder working traffics in both 

original and reverse orders of routing and select the order in which the total remainder 

working traffic is less; (2-3) the remainder of the working traffic of the second routed 

span in both original and reverse orders are non-zero, i.e., (𝑊𝑇11 = 0 and 𝑊𝑇12  0) or 

(𝑊𝑇22= 0 and 𝑊𝑇21  0). In this sub-scenario, we further categorize the possibilities 

based on the number of shared spans between the two sets of backup routes of the two 

failed spans in a dual-failure scenario.  
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Algorithm 7. Pseudocode of the MustUseSpare and CostUpdate functions for analyzing 
the kth dual-failure scenario and jth span in that dual-failure scenario. 

Input:  

BR: the set of backup routes for all of the dual-failure scenarios 

Sol_temp: the set of spans with the installed spare capacities during the evaluation of 

the previous dual-failure scenarios. These spare capacities are now available to be 

used for the restoration of the current dual-failure scenario’s spans. 

WTj: the amount of working traffic on the jth span in a dual-failure scenario to be 

restored 

C: the set of spare capacity placements’ cost 

CostD: the set of cost coefficients for Dijkstra’s algorithm 

Output: 

Route_temp: the set of temporary backup routes 

MustUseSpare function:  

1. for j from 1 to 2 { 

2.       flag = 0 

3.       while flag == 0 { 

4.              for i from 1 to length(Sol_temp) { 

5.                     if Sol_tempi == 0  

6.                            CostDi =  

7.                     else if Sol_tempi  ≤ WTj 

8.                            CostDi = CostDi – Ci × Sol_tempi 

9.              Route_temp←Dijkstra (CostD) 

10.              if Route_temp ==  

11.                     flag = 1 

12.              else  

13.                     TValue = minimum (spare capacities on the spans of Route_temp) 

14.                     if  Tvalue ≥ WTj 

15.                            append(Route_temp) to BRj with magnitude (WTj) 

16.                            UpdateAvailableSpare 

17.                            WTj = 0 

18.                            flag = 1 

CostUpdate function- 

lines 4-8 
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First, we identify the set of shared spans between backup routes of both spans in a 

dual-failure scenario: INTS1 represents the shared spans between the backup routes of 

the first and second routed spans in the original dual-failure scenario order. Similarly, 

INTS2 represents the shared spans between the backup routes of the first and second 

routed spans in the reversed dual-failure scenario order.  Our goal is to find backup 

routes with unique spans for each failed span in a dual-failure scenario, based on the 

fact that the used available spare capacities for building a backup route for a failed span 

cannot be used to build a backup route for the other failed span. We aim to reduce the 

chance of using up all the available spare capacities that could be used for finding 

backup routes for either of the failed spans toward building the backup routes for the 

first routed span only, while it can be restored through other available spare capacities 

that cannot be used for the second routed span. To do so, first, we selected the set 

between INTS1 and INTS2 that has the least number of members (i.e., there is less 

intersection between the found backup routes) and we named it INTS. For every span in 

the set INTS (i.e., SINTS), we selected a backup route of the first-routed span that 

includes the span SINTS and has the closest assigned capacity to the remainder of 

working traffic. Then, the selected backup route was replaced by a new backup route 

that does not include the shared span SINTS. Algorithm 8 describes the high-level 

pseudocode of the proposed HeuristicRouting function. To increase the diversity and 

19.                     else  

20.                            append(Route_temp) to BRj with magnitude (TValue) 

21.                            UpdateAvailableSpare 

22.                            WTj = WTj – Tvalue 
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randomness of the routing process, we employed a Random-Router heuristic algorithm 

that distributes the traffic over several routes.  
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Algorithm 8. Pseudocode of HeuristicRouting function 

Input: 

The ordered set of dual-failure scenarios in a chromosome 

Output: 

BR: the set of backup routes 

RWT: the remainder of the working traffic  

HeuristicRouting function: 

1. for k from 1 to length (ordered set of dual-failure scenarios) {  

2.       RWT← MustUseSpare function(dual-failure scenariok) 

3.       if RWT == 0  

4.              terminate 

5.       else 

6.              if the dual-failure scenario is in [0, 20%×length(ordered set of dual-failure 

           scenarios) ] 

7.                     BR←DisjointRouter function (RWT) 

8.              else  

9.                     R* ←Dijkstra (CostD based on RWT) 

10.                     Value←minimum spare capacity allocated on R* 

11.                     if Value ≥ RWT 

12.                            Temporary_Routes ← RandomRouter (RWT) 

13.                            append the route with a minimum cost between (R*,   

                          Temporary_Routes) to BR 

14.                     else if 0 < Value < RWT 

15.                            Temporary_Route ←Dijkstra (CostD based on Value) 

16.                            append Temporary_Route to BR with Value allocated spare  

                         capacities 

17.                            RWT = RWT – Value                                        

18.                            while RWT > 0 

19.                                   Temporary_Route1 ←Dijkstra (CostD based on RWT) 

20.                                   Value2←minimum spare capacity allocated on               

                              Temporary_Route1 
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After applying the MustUseSpare function to a dual-failure scenario, there could be a 

number of working traffic that still has not been assigned any backup route. Thus, we 

proposed novel routing functions for optimal routing of the remainder of such working 

traffics. As we move forward through the chromosome and find backup routes for more 

dual-failure scenarios, the amount of the allocated spare capacity on the network will 

increase. Thus, for routing the remainder of the working traffics after applying the 

MustUseSpare function, we divide the dual-failure scenarios into two groups based on 

their location in the chromosome. The first group includes the first 20% of the dual-

failure scenarios in the chromosome and the second group includes the remaining dual-

failure scenarios. Then, we apply the routing function specifically designed for each 

21.                                   if Value2 ≥ RWT 

22.                                          Temporary_Routes* ← Random-Router (RWT) 

23.                                          append the route with a minimum cost between  

                                               (Temporary_Route1, Temporary_Routes*) to BR    

                                         with RWT allocated spare capacities 

24.                                   else if 0 < Value2 < RWT 

25.                                          Temporary_Route2 ←Dijkstra (CostD based on Value2) 

26.                                          append Temporary_Route2 to BR with Value2 allocated 

                                      spare capacities 

27.                                          RWT = RWT – Value2                                        

28.                                   else if Value2 = 0 

29.                                         Temporary_Routes3 ← RandomRouter (RWT) 

30.                                         append the route with a minimum cost between  

                                      (Temporary_Route1, Temporary_Routes3) to BR 

32.                     else if Value = 0 

33.                            Temporary_Routes ← RandomRouter (RWT) 

34.                            append the route with a minimum cost between (R*,    

                               Temporary_Routes) to BR} 
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group to restore the remainder of the working traffic after applying the MustUseSpare 

function. 

(1) Routing the first 20% of the DUAL-FAILURE SCENARIOs in a chromosome:  

To increase the chance of using previously allocated spare capacity during routing of 

the upcoming dual-failure scenarios later in the chromosome, we proposed a function 

named DisjointRouter that encourages the HeuristicRouting function to distribute the 

restoration flow over more than one backup route during routing of the dual-failure 

scenarios. In other words, as we plan the restoration of more dual-failure scenarios one 

by one, there will be more and more number of backup routes in the network, i.e., the 

spans that carry the spare capacity for the restoration of the working traffics will be more 

diversely distributed. Thus, the future dual-failure scenarios would have a higher chance 

to use the already allocated spare capacity, instead of placing new spare capacity in the 

network. Algorithm 9 provides the pseudocode of the proposed DisjointRouter function. 
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Algorithm 9. Pseudocode of the DisjointRouter function 

Input:  

Div: the number of restoration backup routes for every span in the dual-failure 

scenario  

WT: the amount of working traffic to be restored 

CostD: the set of cost coefficients for Dijkstra’s algorithm 

Fin: the set of span installation costs 

BR_ti: the set of temporarily backup routes for span i that is under evaluation 

Output: 

Route_temp: temporary variable to store one found backup route at a time 

BR_temp: the set of temporary backup routes 

Sol_temp: the set of temporarily-assigned spare capacities on the spans 

Fout: the updated set of span installation costs 

DisjointRouter function: 

1. for i from 1 to Div{ 

2.       if i < Div  

3.              temp_WT = integer(WT/Div) 

4.       else 

5.              temp_WT=WT – i × integer(WT/Div) 

6.       Route_temp←Dijkstra (CostD) 

7.       if cost of Route_temp ==  

8.              break 

9.       append (Route_temp) to BR_ti with magnitude temp_WT} 

10. ODiv = length(BR_temp) 

11. temp_WT = integer(WT/ODiv)        

12. for i from 1 to ODiv { 

13.       if i == ODiv  

14.              temp_WT=WT – i × integer(WT/ODiv) 

15.       Replace the magnitude of BR_ti with temp_WT  

16.       Fin(spans in BR_ti) = 0        

17.       UpdateAvailableSpare: 



156 
 

(2) Routing the remaining DUAL-FAILURE SCENARIOs in a chromosome:  

For the remaining dual-failure scenarios, after applying the MustUseSpare function, if 

there is a non-zero amount of working traffic that is unrestored (RWT), we first employ 

Dijkstra’s algorithm to find a backup route for RWT. Then, we determined the minimum 

(non-zero) spare capacity of the spans along the found backup route and name it Value. 

Finally, one of the two following scenarios was investigated:  

(1) Value ≥ RWT means that the found backup route can carry a portion of the 

RWT freely using the previously allocated spare capacities (note that the 

backup route contains spans with zero allocated spare capacity as well, thus, 

the total cost of the found backup route is not zero). In this scenario, we take 

a further step to distribute the RWT over several routes, one more time to see 

if it might result in a better solution with less cost. The number of routes was 

selected by employing the Random-Router heuristic algorithm.  

(2) On the other hand, when Value < RWT and Value > 0, we use Dijkstra’s 

algorithm to find a new backup route for restoring the working capacity of 

Value (and not RWT). Since the Value is less than RWT, the probability of 

using the allocated spare capacities to build a new backup route increases. 

Then, if RWT - Value is not equal to zero, we repeat the same process to find 

18.       for j from 1 to length(BR_ti) { 

19.              if Sol_temp(BR_tij) < temp_WT 

20.                     Sol_temp(BR_tij) = 0 

21.              else  

22.                     Sol_temp(BR_tij) = Sol_temp(BR_tij) - temp_WT }   

23.       Fout=Fin             
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a new backup route, calculate its associated new Value, compare the new 

Value to the new RWT and follow the same procedure until RWT is equal to 

zero. 

(3) Value = 0 means there is no spare capacity allocated on any of the spans of 

the found backup route. In this case, we employ the RandomRouter heuristic 

algorithm to find backup routes for the restoration of the unrestored working 

traffic. 

6.4.2 Genetic Operators 

The general structure of GA consists of two sets of operators named mutation and 

crossover responsible for creating new chromosomes from the existing ones. Every 

genetic operator based on a specific procedure takes a specific number of the already 

generated chromosomes as input and creates new chromosomes as offspring. In this 

way, having a set of the initial population of chromosomes, GA can evolve the initial 

population toward the optimal solution. For GA to be able to find the optimal solution 

among all of the possible solutions in the search space, and have a fast converging rate 

through the evolving process, it requires: (1) starting from a rather good initial 

population (e.g., feasible and as optimal as possible), and (2) conducting a powerful 

search through the search space. A detailed description of the genetic operators and 

their requirements is presented in Chapter 2.  

6.4.2.1 Crossover 

To provide more diversity in the population, we benefit from a single-point crossover 

with a random point of combination. The crossover took two individuals using a uniform 
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random selection from the current population as parents and selects a uniform random 

number within the first 10% of the length of their chromosome as the index of the 

swapping point along the ordered set of dual-failure scenarios. Then, it swaps all of the 

dual-failure scenarios from the first one up to the selected random number between the 

two parents. Doing so, the offspring might have duplicates of some dual-failure 

scenarios and miss some others. Thus, by finding the repetitive dual-failure scenarios 

and replacing them with the missing ones from the parents, the offspring become a new 

feasible ordered set of dual-failure scenarios. The replacement of duplicate dual-failure 

scenarios with the missing ones is done by a one-by-one correspondence in the first 

part of offspring based on the appearing order of the duplicates in the second part. As 

an example, let us say we have two chromosomes that have been selected to be parent 

1 and parent 2, each with 15 dual-failure scenarios. Figure 6.5, depicts the single-point 

crossover over the two selected parents where there are three duplicate dual-failure 

scenarios in each offspring. After replacing the duplicates with the missing members, 

we can see each duplicate in its first appearance in the offspring is replaced by a 

missing member, based on its index in the second part of the offspring (e.g., (3,4) in 

offspring 2 is the first duplicate in the second part, thus, in the first part of the offspring 

2, it is replaced by the first missing member which is (1,5)).   
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Figure 6.5. The application of the single-point crossover on two chromosomes with 15 
dual-failure scenarios, where the random swapping point is after the seventh dual-failure 
scenario. After the swapping, the first pair of offspring has duplicate dual-failure 
scenarios that have been underlined. Finally, in the second pair of offspring, the 
duplicates were replaced by the missing dual-failure scenarios.   

6.4.2.2 Mutation 

Among the genetic operators, mutation provides the most diversity in the population by 

improving the search process. In the presented GA, we utilized three mutation 

functions, and the followings are their detailed procedure: 

(1) Mutation 1: The idea is to select a random number of dual-failure scenarios and 

swap the spans in the selected dual-failure scenario tuples. To do so, first, the 

ordered set of dual-failure scenarios in the selected chromosome was shuffled 

and a random number of the dual-failure scenarios within the first 10% of the 

chromosome’s length were selected for swapping, using uniform random 

selection. For example, if one of the selected dual-failure scenarios was (1, 6), 
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the mutated chromosome would have the dual-failure scenario (6, 1) in the same 

location in the chromosome.  

(2) Mutation 2: The idea is similar to mutation 1 except for the swapping that is 

conditioned upon the magnitude of the working traffic on the spans in the 

selected dual-failure scenarios. If the second span of a selected dual-failure 

scenario had more working traffic than the first span, they were swapped. In 

every selected dual-failure scenario, if the second span had more working traffic 

(i.e., more traffic to be restored), it was swapped with the first span, so the span 

with bigger restoration requirements would be analyzed first. For example, if one 

of the selected dual-failure scenarios was (1, 6), and the working traffics on 

spans 1 and 6 were 100 and 200, respectively; the mutated chromosome would 

have the dual-failure scenario (6, 1) in the same location. While, if the working 

traffics were 200 and 100, respectively; the dual-failure scenario would not be 

changed. 

(3) Mutation 3: This mutation function provides more diversity in the chromosomes 

by changing the order of the dual-failure scenarios without changing their spans’ 

orders. First, two random numbers within the first 10% of the length of the 

ordered set of dual-failure scenarios in the chromosome were selected. The two 

randomly selected numbers represent the indices of the dual-failure scenarios 

that we want to mutate. All of the dual-failure scenarios between the two random 

indices were inversed in terms of their order in the chromosome. Figure 6.6 

depicts a schematic of mutation 3 on a chromosome with 105 dual-failure 

scenarios. In the repetitive process of GA evolution, whenever a chromosome 
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was selected for the mutation, the algorithm randomly chooses one of the three 

mutation functions to be applied to the selected chromosome. 

The choice of rates and selections are made based on our pre-assessment analysis 

and the explanation earlier in this Chapter, that the genetic operators are mostly 

focused on the early parts of the chromosomes and generate new chromosomes by 

making changes in the early dual-failure scenarios in a chromosome. We present a 

detailed explanation and analysis of the determination process of the control 

parameters in Section 6.5.2.     

 
Figure 6.6. The application of mutation3 on a chromosome with 105 dual-failure 
scenarios, where random indices were 2 and 9. 

In this research, we focused on large-scale networks where the length of the 

ordered set of dual-failure scenarios would be in the order of thousands. As mentioned 

earlier, by evaluating dual-failure scenarios one by one for restoration purposes, we 

allocate some spare capacities to the network. Therefore, as we proceed, there will be 

more and more spare capacities allocated all over the network. The more diversity the 

early dual-failure scenarios in the ordered set of dual-failure scenarios had, the more 

spare capacities would be allocated to the more areas of the network. In other words, if 

the early dual-failure scenarios included more variety of working spans, there would be 
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more spare capacity allocation in the network, earlier. Thus, as we proceeded further 

down the ordered set of dual-failure scenarios, there was less need to evaluate the final 

dual-failure scenarios. Because there have been enough spare capacities already 

allocated on the network for the restoration of all of the dual-failure scenarios. For 

example, in a network with ten dual-failure scenarios, if one ordered set of dual-failure 

scenarios starts with five dual-failure scenarios as: (1,2), (1,3), (1,4), (2,3), (2,4), by the 

time the fifth dual-failure scenario is evaluated and its spans have been assigned 

backup routes and spare capacity, only four spans (ie., spans 1, 2, 3, and 4) of ten 

spans had been evaluated. While, if the ordered set of dual-failure scenarios starts with 

five dual-failure scenarios: (1,2), (3,4), (5,6), (7,8), (9,10), by evaluating the first five 

dual-failure scenarios, we evaluate eight spans (i.e., spans 1 through 8) which is more 

spans all over the network compared to the previous 4 spans. In the latter, the allocated 

spare capacities might be distributed over greater areas of the network, thus, the 

upcoming dual-failure scenarios could benefit from those spare capacities through the 

MustUseSpare function. We benefit from this feature in two ways: (1) In our genetic 

operators, we consider the changes in the chromosomes (e.g., switching and swapping 

points) early in the ordered set of dual-failure scenarios to be able to generate more 

diversity in the allocated spare capacity pattern and generate more diverse solutions. 

For instance, the swapping point in our crossover is randomly selected between the first 

dual-failure scenario and the dual-failure scenario on the one-tenth of the length of the 

ordered set of dual-failure scenarios, to make the most difference and variation in the 

early section of the ordered dual-failure scenario. (2) We conduct a set of experiments 

in which up until the last iteration of the GA, only a portion of the dual-failure scenarios 
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are evaluated. To be more precise, let us say the length of an ordered set of dual-failure 

scenarios was L. We considered a dual-failure scenario rate of c1 where c1×L of the 

dual-failure scenarios are to be evaluated in every iteration except for the last iteration. 

We considered various values for the coefficient c1 over several runs and conducted 

comprehensive tuning tests to determine the most appropriate value for it as 0.3.      

6.4.3 Objective Function 

Herein, the objective function is defined as a cost function that consists of two types of 

costs: (1) the cost of spare capacity allocation on every span in the network 

(∑ (𝐶𝑖𝑗 × 𝑆𝑖𝑗)𝑖𝑗 ∈𝑆𝑎𝑙𝑙
), and (2) the cost of new span installation in the network 

(∑ (𝐹𝑖𝑗 × 𝛿𝑖𝑗)𝑖𝑗∈𝑆𝑎𝑏𝑠𝑒𝑛𝑡
), where the two or three-connectivity connection had not been 

established and there was a need for new span installation. Once we had the set of 

backup routes and the number of spare capacities on them, we were able to calculate 

the total amount of spare capacity required on every span for the full dual failure 

restorability. To do so, we proceeded as follows: (1) for every dual-failure scenario, the 

number of spare capacities allocated to any span through the backup routes for both 

working spans in that dual-failure scenario, had been accumulated. (2) The final number 

of spare capacities on every span i in the network would be the maximum among all of 

the allocated spare capacities on span i over all of the dual-failure scenarios.  

6.5 Simulations/Experiments 

Our simulations consisted of two categories: (1) the genetic algorithm for the problem of 

full dual failure restorability of large-scale networks that was generated using Python 

[73] and (2) the ILP model of dual-failure RN-FCS was programmed in AMPL [59] and 
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solved using Gurobi [60] 8.1.0  as the benchmark. All of the computations were 

conducted on a Windows Server 2012 R2- 128 GB RAM- Intel® Xeon® CPU E5- 2650 

v3 @ 2.30GHz (2 processors).  

6.5.1 Simulation/Experimental Setup 

We designed 6 test cases of various sizes and topologies. The detailed specification of 

the studied networks has been presented in Table 6.1. We considered the spare 

capacity allocation cost and the new span installation cost to be proportional to the 

physical length of the spans as the Euclidean distance between the end nodes of a 

span. Also, as the coordinates of the nodes and the amount of working traffic on every 

𝑊𝑆 were selected randomly, we included various large-scale network instances to 

check the repeatability of the algorithm’s performance.  

Table 6.1. The topological specifications of 
the test cases 

Test 
Case 

|𝑁| |Sexisting| 

1 20 27 

2 40 49 

3 80 85 

4 120 133 

5 140 152 

6 200 227 

6.5.2  Sensitivity Analysis (Tuning Control Parameters) 

In the presented genetic algorithm, the HeuristicRouter function searches for backup 

routes through the search space. We can tune the control parameters and coefficients 
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to control the output of the HeuristicRouter function. The followings are details on the 

tuning process of such parameters. 

There are control parameters that directly affect the performance of the proposed 

GA, such as crossover rate, mutation rate, population size, number of generations 

(iterations), and the previously defined dual-failure scenario rate (c1). To choose the 

best values for the control parameters, we executed the proposed GA 15 times for 

every control parameter setting on test case 1. Notably, for every control parameter, the 

value of the parameter was changed within a valid range associated with that 

parameter, while the rest of the parameters were kept constant. The results of the 

control parameter tunings have been illustrated in Figures 6.7 through 6.12 where the 

data points represent the calculated average values over 15 runs. 

 Figure 6.7 demonstrates the effect of various crossover rates on the total dual 

failure restorable network design cost.  We considered the crossover rate of 0.3 as after 

this rate, the improvements in the cost were not significantly better but the processing 

times were increased significantly (e.g., compared to the crossover rate of 0.3, the 

processing time doubled for a crossover rate of 0.5). 
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Figure 6.7. The restorable network design cost improvement and runtime 
increase with respect to various crossover rates.  

Figure 6.8 demonstrates the effect of various mutation rates on the total dual failure 

restorable network design cost. We considered the mutation rate of 0.5 as after this 

rate, the improvements in the cost were not significantly better but the processing times 

were increased.  
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Figure 6.8. The restorable network design cost improvement and runtime 
increase with respect to various mutation rates.  

Figure 6.9 demonstrates the effect of increasing the GA population size on the total dual 

failure restorable network design cost. We considered the population size of 10 as it had 

a significant difference from the previous size of 5. As we increased the population size, 

the improvements in the cost were not significantly better but the processing times 

almost doubled with every increase in the population size.  
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Figure 6.9. The restorable network design cost improvement and runtime 
increase with respect to various GA population sizes.  

Figures 6.10 and 6.11 demonstrate the effect of increasing the number of GA iterations 

(populations) on the total dual-failure restorable network design cost, considering 

population sizes of 5 and 10, respectively. We decided 10 generations was the best 

number as it was significantly better than 1 and no setting was significantly better than 

10. As we increased the number of generations over 10, the improvements in the cost 

were not significantly better but the processing times significantly increased with every 

increase in the number of generations.  
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Figure 6.10. The restorable network design cost improvement and runtime 
increase with respect to the number of GA generations. The results represent 
average values over 15 runs for every setting with a population size of 5.  

Figure 6.12 demonstrates the effect of various dual-failure scenario rates (c1) on the 

total restorable network design cost. As we increased the dual-failure scenario rate, the 

 
Figure 6.11. The restorable network design cost improvement and runtime 
increase with respect to the number of GA generations. The results represent 
average values over 15 runs for every setting with a population size of 10.  
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cost improvements after the dual-failure scenario rate of 0.1 were not remarkable 

(almost 0.5%) and compared to the dual-failure scenario rate of 0.5 no setting was 

significantly better, while the processing times were increased tremendously. Moreover, 

to obtain the exact objective function value associated with analyzing all of the dual-

failure scenarios, we had to consider the dual-failure scenario rate of 1 at least in the 

last iteration. Thus, for all of the iterations except for the last one, we considered the 

dual-failure scenario rate of 0.3 and at the last iteration, we analyzed all of the dual-

failure scenarios in every chromosome of the population.  

 
Figure 6.12. The restorable network design cost improvement and runtime 
increase with respect to the dual-failure scenario rate.  

6.5.3 Simulation/Experimental Results and Discussions 

Employing the proposed GA, the obtained simulation/experimental results have been 

tabulated in Table 6.2. The GA’s results are the average over five consecutive tests and 

they were compared to the ILP model as the exact benchmark for the dual failure span 

restorable network design problem. The normalized costs were calculated using the 
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ratio of costs obtained from the proposed GA to the benchmark. The processing time 

improvement percentage was calculated using the difference percentage between the 

GA and ILP processing times for every test case. The optimality gap was calculated 

based on the absolute objective function value differences between the GA and 

employed benchmark models. 

Table 6.2. The proposed GA results compared to the dual-failure RN-FCS ILP model. The 
normalized cost represents the ratio of obtained cost from GA to the best-obtained 
results from the benchmark 

Test 

case 

Normalized 

cost 

GA 

Processing 

time (hours) 

ILP Processing 

time (hours) 

Processing time 

improvement % 

Optimality 

gap % 

1 1.47 0.01 0.26 94.76 31.98 

2 1.43 0.05 5.05 98.97 30.22 

3 1.38 0.63 45.92 98.63 27.48 

4 1.37 3.11 3 days 95.68 26.86 

5 1.39 5.83 >7days 96.69 27.92 

6 N/A1 13.07 N/A N/A N/A 

1 Using the available resources, we were not able to solve test case number 6 as the AMPL was not able to generate the model 

file for the Gurobi solver. 

The obtained results show the optimality gap ranged between 26.86% and 31.98% 

where their average is 28.89% and the standard deviation is 2.1 and we did not observe 

any drastic increase in the optimality gap with an increase in the test case sizes. Also, 

the runtime improvement ranged between 94.76% and 98.97% with an average of 

96.95% and a standard deviation of 1.8. Moreover, in addition to the processing time, 

the RAM usage was significantly lower in GA (e.g., less than 50% for large-scale test 

cases) compared to the ILP model where 100% of the memory was used. 

The performance of the solution approach depends on two factors: (1) the 

available computational infrastructure, and (2) the computational complexity of the 
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mathematical model.  Although the exact solution approaches such as ILP models are 

guaranteed to find the optimal solution among all of the possible solutions, they have 

computational complexities that make them inefficient even for medium-size problems 

when using a powerful machine. Employing ILP-based benchmarks, we observed such 

computational complexities in the forms of prolonged (prohibitive) processing times and 

exhaustive CPU usage compared to the proposed GA. Figures 6.13 and 6.14 represent 

a comparison between the performances of the ILP-based benchmark and the 

proposed GA with the increase in the network size. According to Figure 6.13, the slope 

of the cost-size line in GA decreases with the increase in the network size while the 

benchmark’s slope keeps increasing as the network size increases. Moreover, the ILP-

based benchmark (dual-failure RN-FCS ILP model) was not able to find any solution for 

the 200-node network.  

According to Figure 6.14, with the increase in the network size, the slope of 

processing time-size lines increases. However, this increasing trend has a lower rate in 

GA compared to the benchmark’s slope. In other words, the slope of the processing 

time-size line is lower for the proposed GA compared to the benchmark. Meaning the 

proposed GA encounters less increase in processing time compared to the benchmark, 

with an increase in the network size. Moreover, the difference between their 

performances increases with an increase in network size. For instance, for an 80-node 

network, this difference is almost 20 units whereas, for a 140-node network, the 

difference becomes almost 65 units.  
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Figures 6.13. Performance comparison between the presented GA and 
benchmark regarding the network cost-size trend. Using the available resources, 
the dual-failure RN-FCS ILP model was not able to find any solution for the 200-
node network. 
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Figures 6.14. Performance comparison between the presented GA and benchmark 
regarding the processing time-size trend. Using the available resources, the dual-
failure RN-FCS ILP model was not able to find any solution for the 200-node 
network.  

The employed benchmarks can find the optimal solution for any network size in infinite 

time considering there are an infinite CPU and RAM capacity. On the other hand, 

heuristics such as GA, provide the opportunity to search for a sub-optimal solution 

within a considerably lower computational cost (i.e., using smaller RAM and CPU 

powers within much shorter processing times). Considering various demand matrices 

and any additional constraints, the network design problem might be needed to be 

solved several times based on various boundary conditions. Having access to an 

approach that provides a sub-optimal solution, requires not specifically a supercomputer 

to execute, is user-friendly(easy) to apply any kind of constraints and objective function 

structures, and performs in a timely fashion, is beneficial to the network design industry.   
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6.6 Conclusion 

In this chapter, we introduced a novel genetic algorithm for the minimum-cost design of 

full dual failure span restorable large-scale networks. The restorability against any dual 

span failure requires the network to be three-connected with regard to every working 

span. As the initial network under study might only be connected (not necessarily 

restorable) or two-connected (single failure restorable), we allowed for new span 

installations upon the requirement to make the network three-connected where 

necessary. Therefore, the cost function consisted of two main terms: the spare capacity 

allocation cost and the new span installation cost. 

 We considered all of the possible dual failure scenarios in the form of an ordered 

set of dual-failure scenarios as the main section in the designed chromosome. Using 

the presented routing functions, a set of backup routes for every span in the dual-failure 

scenarios were routed and they have been assigned a number of spare capacities to 

facilitate the restoration process of the spans upon failures. The GA chromosomes 

containing the ordered set of dual-failure scenarios were applied to a variety of genetic 

operators to perform the evolution through the breeding process. The contributing 

factors to the performance of the GA (i.e., the control parameters) were determined over 

a detailed set of tuning tests.  

 The achieved results were validated using previously developed ILP models as 

benchmarks. Considering large-scale test cases, the benchmarks were not able to find 

an optimal solution within the logical time using the available infrastructure, where the 

introduced GA was able to find a sub-optimal solution within 96.95% ± 1.8 faster 

processing times and 50% less memory usage. We were able to achieve an optimality 
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gap within 28.89% ± 2.1 compared to the available benchmark. The speed of the 

introduced GA in a trade-off with its optimality gap can be useful for designing large-

scale networks, especially where the network designer wants to try several coefficient 

matrices and boundary conditions during several sets of runs. 
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Chapter 7 : Closing Discussion and Summary  

The importance of the telecommunication networks’ role in our lives is undeniable. We 

employ the telecommunication networks as the main infrastructure to perform routine 

activities such as establishing a video conference between two persons in two different 

parts of the world, completing financial transactions, conducting emergency operations, 

and generally transferring a huge amount of data per second worldwide. Especially, with 

recent technological advancements and the huge increase in the number of remote 

communications all around the world [158], the need for larger networks that are more 

reliable and cost-effective has been increased.  

In this thesis, we focused on the large-scale network design problem and 

investigated various aspects that are affecting the performance of the network design 

process that has not been addressed efficiently in recent research works. We have 

presented the mathematical models for designing large-scale network topologies and 

routing the pre-defined traffic over the network while taking into consideration the 

survivability of the network against complex failure scenarios in a cost-effective context.  

The employed mathematical models in this thesis include both the deterministic 

and non-deterministic approaches. When dealing with large-scale networks, the 

deterministic approaches may encounter computational difficulties and inefficiencies 

when trying to establish the survivability mechanisms. In some cases, it is not even 

possible to obtain a feasible solution that allows us to find ways to restore the network 

functionality. Therefore, we presented non-deterministic approaches for such cases. 
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 In Chapter 3, we investigated the network topology design and routing problem. 

Given a set of fixed nodes and a set of pre-defined traffic demands to be routed 

between specified nodes, the goal was to design the network topology by establishing 

the required spans between the nodes and assigning working capacities to those spans 

to facilitate the transfer of the traffics with the minimum required cost. The total cost to 

be minimized in this problem consists of two factors: (1) the fixed cost of any span 

establishment and (2) the cost of transferring working traffic over every established 

span. This problem is called Fixed Charge plus Routing and previously, an Integer 

Linear Programming model was presented for solving it [32], [33]. The presented 

Integer Linear Programming model provides the minimum cost required for the network 

topology design and routing problem. However, for large-scale networks, the Integer 

Linear Programming model was not able to find the optimal solution within logical 

processing time. Thus, we presented a non-deterministic solution approach based on a 

Genetic Algorithm that can find sub-optimal solutions with smaller computational 

expenses. We tested the presented approach on a variety of networks of different sizes 

with various topological features. 

Later in Chapter 4, we investigated the effects of the traffic distributions on the 

performance of the presented genetic algorithm in Chapter 3. We considered two traffic 

distributions as scattered and hubbed patterns and investigated the performance of the 

presented genetic algorithm for either of the traffic patterns on a variety of large-scale 

networks. The performance of the presented algorithm was evaluated based on the total 

network topology design and routing cost across the traffics that have been sorted 
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based on their magnitude as ascending and descending in both scattered and hubbed 

distributions. 

Chapters 5 and 6 are focused on the survivable network design and spare 

capacity allocation problem. We investigated the dual failure restorability of large-scale 

networks by employing the span restoration mechanism. We employed an Integer 

Linear Programming model named Reserved Network Fixed Charge plus Spare 

capacity for the restoration of Dual failures (dual-failure RN-FCS) based on the 

presented model in [33] for full dual failure restorability of networks. The developed ILP 

model showed computational inefficiencies in solving large-scale networks. Because of 

this, as our contribution to this area of knowledge, we developed two heuristic 

approaches to solve this problem in logical processing time, and these are discussed in 

detail in Chapters 5 and 6.  

In Chapter 5, we studied the dual failure restorability of networks using an ILP-

based heuristic approach. Given a network with a set of existing spans with assigned 

working capacities, the presented approach seeks to augment the network topology to 

make it restorable against any dual failure scenario (i.e., make the network three-

connected) with minimum design cost. The design cost included two factors: (1) the new 

span establishment cost and (2) the spare capacity assignment cost. The presented 

ILP-based heuristic employs various sets of pre-enumerated backup routes to choose 

among for restoration purposes. Using the dual-failure RN-FCS model as a benchmark, 

we evaluated the performance of the presented ILP-based heuristic model over a set of 

networks of various sizes considering different sets of backup routes. Using the 

available resources, the investigated benchmarks were not able to solve the problem for 
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large-scale networks after days of running while the presented approach was able to 

solve such large-scale networks to a sub-optimal solution. 

In Chapter 6, we presented a heuristic approach based on a Genetic Algorithm 

that solves the dual-failure RN-FCS problem for large-scale networks. We designed a 

set of genetic operators and a HeuristicRouting function for routing the spare capacities 

for the restoration of the affected working traffics under the span restoration 

mechanism. The performance of the presented Genetic Algorithm was evaluated by the 

dual-failure RN-FCS model as the benchmark, over a set of test cases of various sizes. 

Employing the available resources, the mentioned benchmark was not able to solve the 

200-node test case while the presented approach was able to solve it in a matter of 

hours. 

7.1 Limitation and Future Work 

There are limitations associated with the presented work in this thesis. In Chapter 3, we 

wanted a set of sub-optimal solutions in the fastest way possible to consider as the 

initial population for the proposed Master-GA. Therefore, solving the TSP problem to an 

exact optimal solution was not our priority. However, a limitation regarding the work 

presented in Chapter 3 is to try to solve the TSP problem using other existing algorithms 

mentioned in Chapter 2 instead of the IPG-GA and investigate its performance. 

 Although the proposed IGA has already been validated using a deterministic 

benchmark in Chapter 3, and as the purpose of Chapter 4 was to only investigate and 

analyze the effects of various traffic patterns on the performance of the presented IGA, 
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the presented results in Chapter 4 can be further evaluated using the obtained results 

from the deterministic benchmarks mentioned in Chapter 3. 

 Moreover, based on the processing times and the resource usage of the 

benchmarks of the proposed approaches in Chapters 5 and 6, there were limitations on 

the number of the test cases that were investigated. Although the performance of the 

proposed algorithms did not have significant variation throughout the investigated test 

cases of various sizes, where there are more resources available, a library of test cases 

could be investigated.  

One direction for future work could be employing the proposed network design 

approaches for mathematically modelling, designing, and analyzing other categories of 

networks such as airline network design [159], energy and heating network design 

[160], and transit network design [161], to name a few. While there could be differences 

with regard to the way that the cost coefficients, decision variables, and constraints will 

be defined, the main infrastructure of the proposed GA-based approach could be 

applied and compared against the existing approaches. 

With the focus on telecommunication networks, the work presented in this thesis 

including the mathematical models and algorithms can be extended in several network 

design areas. The presented algorithms studied the survivable network design problem 

by employing the span restoration mechanism. The presented models can be extended 

to other restoration mechanisms mentioned in Chapter 2 where the backup route 

determination and spare capacity sharing schemes are different. Therefore, the general 

structure of the presented Genetic Algorithm remains the same while the information 
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embedded in the genes of the chromosomes will have to change to be tailored to 

another restoration mechanism. Similarly, the HeuristicRouting function will need 

adjustments to be tailored for other restoration mechanisms. Upon changing the 

restoration mechanism in any of the presented heuristic algorithms, the control 

parameters of the algorithm such as the rate of using the operators should be tuned 

again as their effects on the performance of the algorithm may change. 

Another area that the proposed approaches can be extended to is to incorporate 

traffic uncertainty into the network design problem, similar to the work presented in [162] 

and evaluate the performance of the proposed approach using existing benchmarks. 

Moreover, the presented heuristic algorithms based on Genetic Algorithms can be 

combined with other evolutionary algorithms, similar to the works presented in  [163] 

and [164] to improve the efficiency of the solution process and algorithm’s performance. 

Thus, the performance of the proposed algorithm can be further improved for an 

increase in the programming and computational cost. 
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Appendix A. Input file example for the network topology 
design and routing problem 

Following is the template of the input file to the proposed Genetic Algorithm for a 20-

node and 190-span network. Presenting all of the test cases will take the space of more 

than a couple of hundreds of pages. Therefore, we only provided an example of such 

input files. The complete set of test cases can be provided upon request. 

#The set of the nodes

N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

#The set of all 
of the possible 
spans 

Sall = { 

 0: (0, 1), 

1: (0, 2), 

2: (0, 3), 

3: (0, 4), 

4: (0, 5), 

5: (0, 6), 

6: (0, 7), 

7: (0, 8), 

8: (0, 9), 

9: (0, 10), 

10: (0, 11), 

11: (0, 12), 

12: (0, 13), 

13: (0, 14), 

14: (0, 15), 

15: (0, 16), 

16: (0, 17), 

17: (0, 18), 

18: (0, 19), 

19: (1, 2), 

20: (1, 3), 

21: (1, 4), 

22: (1, 5), 

23: (1, 6), 

24: (1, 7), 

25: (1, 8), 

26: (1, 9), 

27: (1, 10), 

28: (1, 11), 

29: (1, 12), 

30: (1, 13), 

31: (1, 14), 

32: (1, 15), 

33: (1, 16), 

34: (1, 17), 

35: (1, 18), 

36: (1, 19), 

37: (2, 3), 

38: (2, 4), 

39: (2, 5), 

40: (2, 6), 

41: (2, 7), 

42: (2, 8), 

43: (2, 9), 

44: (2, 10), 

45: (2, 11), 

46: (2, 12), 

47: (2, 13), 

48: (2, 14), 

49: (2, 15), 

50: (2, 16), 

51: (2, 17), 

52: (2, 18), 

53: (2, 19), 

54: (3, 4), 

55: (3, 5), 

56: (3, 6), 

57: (3, 7), 

58: (3, 8), 

59: (3, 9), 

60: (3, 10), 

61: (3, 11), 

62: (3, 12), 

63: (3, 13), 

64: (3, 14), 

65: (3, 15), 

66: (3, 16), 

67: (3, 17), 

68: (3, 18), 

69: (3, 19), 

70: (4, 5), 

71: (4, 6), 

72: (4, 7), 

73: (4, 8), 

74: (4, 9), 

75: (4, 10), 

76: (4, 11), 

77: (4, 12), 

78: (4, 13), 

79: (4, 14), 

80: (4, 15), 

81: (4, 16), 

82: (4, 17), 

83: (4, 18), 

84: (4, 19), 

85: (5, 6), 

86: (5, 7), 

87: (5, 8), 

88: (5, 9), 

89: (5, 10), 

90: (5, 11), 

91: (5, 12), 

92: (5, 13), 

93: (5, 14), 

94: (5, 15), 

95: (5, 16), 

96: (5, 17), 
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97: (5, 18), 

98: (5, 19), 

99: (6, 7), 

100: (6, 8), 

101: (6, 9), 

102: (6, 10), 

103: (6, 11), 

104: (6, 12), 

105: (6, 13), 

106: (6, 14), 

107: (6, 15), 

108: (6, 16), 

109: (6, 17), 

110: (6, 18), 

111: (6, 19), 

112: (7, 8), 

113: (7, 9), 

114: (7, 10), 

115: (7, 11), 

116: (7, 12), 

117: (7, 13), 

118: (7, 14), 

119: (7, 15), 

120: (7, 16), 

121: (7, 17), 

122: (7, 18), 

123: (7, 19), 

124: (8, 9), 

125: (8, 10), 

126: (8, 11), 

127: (8, 12), 

128: (8, 13), 

129: (8, 14), 

130: (8, 15), 

131: (8, 16), 

132: (8, 17), 

133: (8, 18), 

134: (8, 19), 

135: (9, 10), 

136: (9, 11), 

137: (9, 12), 

138: (9, 13), 

139: (9, 14), 

140: (9, 15), 

141: (9, 16), 

142: (9, 17), 

143: (9, 18), 

144: (9, 19), 

145: (10, 11), 

146: (10, 12), 

147: (10, 13), 

148: (10, 14), 

149: (10, 15), 

150: (10, 16), 

151: (10, 17), 

152: (10, 18), 

153: (10, 19), 

154: (11, 12), 

155: (11, 13), 

156: (11, 14), 

157: (11, 15), 

158: (11, 16), 

159: (11, 17), 

160: (11, 18), 

161: (11, 19), 

162: (12, 13), 

163: (12, 14), 

164: (12, 15), 

165: (12, 16), 

166: (12, 17), 

167: (12, 18), 

168: (12, 19), 

169: (13, 14), 

170: (13, 15), 

171: (13, 16), 

172: (13, 17), 

173: (13, 18), 

174: (13, 19), 

175: (14, 15), 

176: (14, 16), 

177: (14, 17), 

178: (14, 18), 

179: (14, 19), 

180: (15, 16), 

181: (15, 17), 

182: (15, 18), 

183: (15, 19), 

184: (16, 17), 

185: (16, 18), 

186: (16, 19), 

187: (17, 18), 

188: (17, 19), 

189: (18, 19), 

})      

C = {12.53, 

152.78, 

38.63, 

111.83, 

54.45, 

109.84, 

35.44, 

104.39, 

100.3, 

101.07, 

50.45, 

123.17, 

70.6, 

157.32, 

66.37, 

26.25, 

125.57, 

161.12, 

79.08, 

155.76, 

42.11, 

111.02, 

44.92, 

109.57, 

28.02, 

109.17, 

102.84, 

102.18, 

49.66, 

124.92, 

58.46, 

164.35, 

55.01, 

24.7, 

128.65, 

166.19, 

67.36, 

114.28, 

58.52, 

139.29, 

56.04, 

136.44, 

51.31, 

52.95, 

56.01, 

107.79, 

33.24, 

166.6, 

56.09, 

154.43, 

131.4, 

27.2, 

29.53, 

162.39, 

75.01, 

49.41, 



209 
 

72.47, 

32.8, 

67.07, 

61.68, 

62.77, 

18.25, 

84.58, 

77.08, 

123.36, 

67.48, 

19.92, 

87.09, 

124.1, 

80.6, 

84.72, 

5.1, 

86.73, 

49.48, 

30.15, 

19.03, 

61.59, 

27.2, 

110.04, 

99.9, 

98.01, 

86.61, 

40.31, 

82.93, 

104.81, 

85.21, 

20.22, 

102.88, 

89.05, 

83.38, 

38.83, 

106.12, 

29.53, 

163.08, 

18.44, 

35.44, 

114.27, 

156.95, 

31.24, 

86.02, 

44.38, 

25.08, 

14.14, 

59.94, 

23.71, 

111.29, 

95.52, 

99.18, 

85, 

36.24, 

79.4, 

106.53, 

94.54, 

84.01, 

80.89, 

29.07, 

104.09, 

44.69, 

153.44, 

36.24, 

15.65, 

110.04, 

150.75, 

49.65, 

20.12, 

31.78, 

65.73, 

33.53, 

132.23, 

60.37, 

120.42, 

86.05, 

26.25, 

57.04, 

131.06, 

11.7, 

55.08, 

23.6, 

117.72, 

77.42, 

105.65, 

78.45, 

26.08, 

67.91, 

115.32, 

52.89, 

23.19, 

111.2, 

87.32, 

99.04, 

77.49, 

31.32, 

75.03, 

107.86, 

75.93, 

68.26, 

125.25, 

57.2, 

25.06, 

81.15, 

121.7, 

69.43, 

133.36, 

73.6, 

121.2, 

100.28, 

13.89, 

55.76, 

129.29, 

192.51, 

12.17, 

60, 

142.41, 

185.59, 

11.66, 

180.75, 

143.18, 

59.82, 

29.15, 

191.43, 

51.88, 

130.27, 

173.49, 

13.42, 

104.39, 

143, 

65.3, 

43.86, 

139.18, 

182.78} 

F = {1253, 

15278, 

3863, 

11183, 

5445, 

10984, 

3544, 

10439, 

10030, 

10107, 

5045, 

12317, 

7059, 

15732, 

6637, 

2625, 
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12557, 

16112, 

7908, 

15576, 

4211, 

11102, 

4492, 

10957, 

2802, 

10917, 

10284, 

10218, 

4966, 

12492, 

5846, 

16435, 

5501, 

2470, 

12865, 

16619, 

6736, 

11428, 

5852, 

13929, 

5604, 

13644, 

5131, 

5295, 

5601, 

10779, 

3324, 

16660, 

5609, 

15443, 

13140, 

2720, 

2953, 

16238, 

7501, 

4941, 

7247, 

3279, 

6706, 

6168, 

6277, 

1825, 

8458, 

7708, 

12336, 

6748, 

1992, 

8709, 

12410, 

8059, 

8472, 

509, 

8673, 

4948, 

3015, 

1903, 

6159, 

2720, 

11004, 

9990, 

9801, 

8661, 

4031, 

8293, 

10481, 

8521, 

2022, 

10288, 

8905, 

8338, 

3883, 

10612, 

2953, 

16308, 

1844, 

3544, 

11427, 

15694, 

3124, 

8602, 

4438, 

2508, 

1414, 

5994, 

2371, 

11129, 

9552, 

9918, 

8500, 

3624, 

7940, 

10653, 

9454, 

8401, 

8089, 

2907, 

10409, 

4469, 

15344, 

3624, 

1565, 

11004, 

15075, 

4965, 

2012, 

3178, 

6573, 

3353, 

13222, 

6037, 

12042, 

8605, 

2625, 

5704, 

13106, 

1170, 

5508, 

2360, 

11772, 

7742, 

10565, 

7845, 

2608, 

6791, 

11532, 

5289, 

2319, 

11120, 

8732, 

9904, 

7748, 

3132, 

7503, 

10786, 

7593, 

6826, 

12525, 

5720, 

2506, 

8115, 

12170, 

6943, 

13336, 

7359, 

12120, 

10028, 
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1389, 

5576, 

12929, 

19251, 

1217, 

6000, 

14241, 

18559, 

1166, 

18075, 

14318, 

5982, 

2915, 

19143, 

5188, 

13027, 

17349, 

1342, 

10439, 

14300, 

6530, 

4386, 

13918, 

18278} 

D = {[0, 1, 66],  

[0, 2, 19],  

[0, 3, 64],  

[0, 4, 17],  

[0, 5, 62],  

[0, 6, 59],  

[0, 7, 91],  

[0, 8, 44],  

[0, 9, 98],  

[0, 10, 20],  

[0, 11, 16],  

[0, 12, 72],  

[0, 13, 31],  

[0, 14, 11],  

[0, 15, 34],  

[0, 16, 38],  

[0, 17, 24],  

[0, 18, 75],  

[0, 19, 42],  

[1, 2, 25],  

[1, 3, 91],  

[1, 4, 71],  

[1, 5, 35],  

[1, 6, 82],  

[1, 7, 49],  

[1, 8, 17],  

[1, 9, 85],  

[1, 10, 31],  

[1, 11, 25],  

[1, 12, 15],  

[1, 13, 36],  

[1, 14, 78],  

[1, 15, 81],  

[1, 16, 39],  

[1, 17, 98],  

[1, 18, 18],  

[1, 19, 49],  

[2, 3, 31],  

[2, 4, 20],  

[2, 5, 56],  

[2, 6, 87],  

[2, 7, 18],  

[2, 8, 96],  

[2, 9, 86],  

[2, 10, 100],  

[2, 11, 70],  

[2, 12, 14],  

[2, 13, 35],  

[2, 14, 17],  

[2, 15, 35],  

[2, 16, 43],  

[2, 17, 17],  

[2, 18, 22],  

[2, 19, 66],  

[3, 4, 77],  

[3, 5, 16],  

[3, 6, 62],  

[3, 7, 74],  

[3, 8, 27],  

[3, 9, 73],  

[3, 10, 30],  

[3, 11, 63],  

[3, 12, 48],  

[3, 13, 44],  

[3, 14, 67],  

[3, 15, 97],  

[3, 16, 89],  

[3, 17, 27],  

[3, 18, 96],  

[3, 19, 49],  

[4, 5, 93],  

[4, 6, 82],  

[4, 7, 85],  

[4, 8, 63],  

[4, 9, 40],  

[4, 10, 81],  

[4, 11, 49],  

[4, 12, 30],  

[4, 13, 11],  

[4, 14, 64],  

[4, 15, 15],  

[4, 16, 90],  

[4, 17, 72],  

[4, 18, 51],  

[4, 19, 97],  

[5, 6, 78],  

[5, 7, 71],  

[5, 8, 17],  

[5, 9, 40],  

[5, 10, 31],  

[5, 11, 72],  

[5, 12, 72],  

[5, 13, 18],  

[5, 14, 40],  

[5, 15, 97],  

[5, 16, 62],  

[5, 17, 75],  

[5, 18, 90],  

[5, 19, 44],  

[6, 7, 66],  

[6, 8, 33],  

[6, 9, 72],  

[6, 10, 83],  

[6, 11, 50],  

[6, 12, 98],  

[6, 13, 100],  

[6, 14, 74],  

[6, 15, 73],  

[6, 16, 67],  

[6, 17, 19],  

[6, 18, 70],  

[6, 19, 78],  

[7, 8, 96],  

[7, 9, 55],  

[7, 10, 32],  

[7, 11, 11],  

[7, 12, 81],  

[7, 13, 35],  

[7, 14, 34],  

[7, 15, 22],  

[7, 16, 36],  

[7, 17, 95],  

[7, 18, 13],  

[7, 19, 64],  

[8, 9, 85],  

[8, 10, 48],  
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[8, 11, 79],  

[8, 12, 80],  

[8, 13, 80],  

[8, 14, 31],  

[8, 15, 43],  

[8, 16, 63],  

[8, 17, 41],  

[8, 18, 25],  

[8, 19, 11],  

[9, 10, 42],  

[9, 11, 63],  

[9, 12, 86],  

[9, 13, 11],  

[9, 14, 14],  

[9, 15, 30],  

[9, 16, 87],  

[9, 17, 50],  

[9, 18, 42],  

[9, 19, 95],  

[10, 11, 98],  

[10, 12, 83],  

[10, 13, 95],  

[10, 14, 13],  

[10, 15, 39],  

[10, 16, 46],  

[10, 17, 56],  

[10, 18, 59],  

[10, 19, 85],  

[11, 12, 63],  

[11, 13, 38],  

[11, 14, 50],  

[11, 15, 75],  

[11, 16, 65],  

[11, 17, 63],  

[11, 18, 80],  

[11, 19, 51],  

[12, 13, 41],  

[12, 14, 95],  

[12, 15, 68],  

[12, 16, 14],  

[12, 17, 35],  

[12, 18, 60],  

[12, 19, 41],  

[13, 14, 85],  

[13, 15, 29],  

[13, 16, 68],  

[13, 17, 21],  

[13, 18, 19],  

[13, 19, 85],  

[14, 15, 15],  

[14, 16, 38],  

[14, 17, 62],  

[14, 18, 43],  

[14, 19, 93],  

[15, 16, 57],  

[15, 17, 73],  

[15, 18, 18],  

[15, 19, 17],  

[16, 17, 77],  

[16, 18, 54],  

[16, 19, 64],  

[17, 18, 72],  

[17, 19, 10],  

[18, 19, 99]}; 

 

 


