
NETWORK SECUIRTY (CONFIDENTIALITY, INTEGRITY & AVAILABILITY) 
PROTECTION AGAINST METASPLOIT EXPLOIT USING SNORT AND WIRESHARK

Co-authored by Karan Chauhan, Jivitesh Seth, and Amandeep Kaur 

A Project Report 

Submitted to the Faculty of Graduate Studies, 

Concordia University of Edmonton 

in Partial Fulfillment of the  

Requirements for the  

Final Research Project for the Degree 

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT 

Concordia University of Edmonton 

FACULTY OF GRADUATE STUDIES 

Edmonton, Alberta 

December 2020 



NETWORK SECUIRTY (CONFIDENTIALITY, INTEGRITY & AVAILABILITY) 
PROTECTION AGAINST METASPLOIT EXPLOIT USING SNORT AND WIRESHARK 

Karan Chauhan 

Approved:  

Dale Lindskog [Original Approval on File] 

Dale Lindskog  Date: December 14, 2020 

Primary Supervisor  

Edgar Schmidt [Original Approval on File]      

Edgar Schmidt, DSocSci Date: December 14, 2020 

Dean, Faculty of Graduate Studies 



Page | 1 

NETWORK SECURITY 

(CONFIDENTIALITY, INTEGRITY & AVAILABILITY) 

PROTECTION AGAINST 

METASPLOIT EXPLOITS USING SNORT AND 

WIRESHARK  

RESEARCH METHODOLOGY-III 

FINAL REPORT SUBMISSION 

(MASTERS IN INFORMATION SYSTEM SECURITY MANAGEMENT) 

PRESENTED TO 

Prof. Dale Lindskog 

3RD December 2020 

Karan Chauhan (140933) MISSM 

Jivitesh Seth (139064) MISSM 

Amandeep Kaur (140867) MISSM 



Page | 2  
 

Table of Contents 

 

 

S. 

No. 

Contents Page 

No. 
1.  Introduction 

 

3-11 

2.  Snort Rules 

 

11-16 

3.  NMAP (NETWORK MAPPER) 

 

17 

4.  NMAP Scan in Wireshark 

 

18 

5.  EXPLOIT 1. VERY SECURE FTP DAEMON (VSFTPD) 

 

19-21 

6.  Wireshark  Analysis for VSFTPD Exploit 

 

22-25 

7.  SNORT Rule Analysis for VSFTPD Exploit and Creation of Custom Rules 

 

26-30 

8.  Analysis and Conclusion for The Exploit VSFTPD 

 

31-40 

9.  EXPLOIT 2. UNREALIRCD 

 

41-43 

10.  Wireshark  Analysis for Unreal Ircd Exploit 44-46 

11.  SNORT Rule Analysis for Unreal Ircd Exploit and Creation of Custom Rules 

 

47-53 

12.  Analysis of Exploit Unreal Ircd Exploit 

 

54-61 

13.  EXPLOIT 3: SAMBA USER MAP SCRIPT  

 

62-64 

14.  Wireshark Analysis for Samba User Map Script Exploit 

 

65-67 

15.  SNORT Rule Analysis for SAMBA User Map Script Exploit and Creation of Custom 

Rules 

 

68-70 

16.  Analysis of Exploit  Samba 

 

70-78 

17.  Understanding Snort Exploitation in Realistic Scenario (Proposed on Basis of 

Learning  Describing a Realistic Scenario Highlighting  the Concept Learnt) 

 

79-81 

18.  Conclusion of  Learning: 

 

81 

 

 

 

 



Page | 3  
 

NETWORK SECURITY (CONFIDENTIALITY, INTEGRITY & 

AVAILABILITY) PROTECTION AGAINST 

METASPLOIT EXPLOITS USING SNORT AND WIRESHARK 
 

         

          

        (Contributed by-Karan Chauhan) 

(A)Introduction: Information security is one of the most vital field in today’s digital world, which is 

growing at a rapid pace with regular  technical advancement and  introduction of new technologies. 

Information is the organised form of data, which includes raw facts and numbers ,but in Information 

Security “Data” is referred as information. As students of  information security management , our 

ultimate aim  is  protection of  data,  to preserve  its Confidentiality, Integrity, and Availability. 

 

 

The digital network is expanded and deployed over internet with each device having the ability of 

computing and processing digital data related to each other. The data is generated, received, and transmitted 

at high quantum  over the network. For   information security personnel, this is a battle ground  to secure 

the data users , network devices and components from the attackers. Attackers are the illegitimate users, 

trying  to invade and gain an unauthorised access to data of an organisation intruding their  network  ,and 

exploit  the confidentiality, integrity and availability of data. This is  a serious threat  and damage to the  

reputation of the  organisation ,resulting in  loss of trust of the  users. 

 

 

Information security is accorded top  priority by all organisations which include  education, banking, 

marketing, health services, technical companies and defence security setup. The study field  “Masters in 

Information system Security Management “ had various courses like TCP/IP ,Digital Forensics, 

Cryptography & Advance network security ,which helped us  in building the foundation for understanding 

,analysing and suggesting  security measures and rules  to protect   Confidentiality, Integrity, and 

Availability of data . 

 

    

In this research project , the forensic assessment, identification, and prevention of the Metasploit 2 exploits 

were  performed using SNORT to evolve useful rules for future reference to ensure high level information 

security .  

 

In this study,  the exploits performed during previous work on which a preliminary analysis was performed 

were   forensically studied and analysed in the following order:- 

 

I. Exploit: Brief Introduction. 

II. Wireshark Forensic Analysis depicting the breaches. 

III. SNORT Forensic Assessment (Alert generation and Rules for defending the 

exploit). 

IV. Summary Forensic Analysis on the exploit and Snort rules (With the aim of better 

understanding and efficient security management).  

 

 

 (B)Familiarisation with Snort and The Environment Setup for the Research   

Implementation 



Page | 4  
 

I. Lab environment and information security objectives 

For understanding the realistic scenarios, a  technical lab environment was setup which included two 

machines setup  in a virtual environment. One machine was Attacker (deployed on Kali Linux ) and the 

other was Victim (Metasploit 2). 

 

  

Metasploit  2 was used as victim since it is  vulnerable and can be easily exploited. The Kali Linux was 

employed as attacker as it has very powerful penetration testing capabilities. 

 

What is an exploit?[1] 

• These are the known vulnerabilities which exist in a  system or in software ,whose 

advantage is taken by the attackers(cyber criminals) trying to gain the illegitimate 

access to  the system .The goal is to gain access and perform cyber crimes like data 

manipulation ,replication and theft. 

• The birth of exploits in the technical world is accidental and is actually the loopholes 

or technical lags which occur during the development of the technology. 

•   When  technology is deployed in real world  , its vulnerabilities are identified and 

then exploited by cyber criminals with malicious intent over passage of time. 

Example: When a software is deployed in market ,it is regularly monitored and its 

feedback is addressed  by the  developers for improvement  . New updates  for the same 

software are released and this cycle continues. Technically, the vulnerabilities are 

identified  through  the user feedback by the information security analysists  and patches  

released by developers  to  counter those vulnerabilities. This is an ongoing   process as 

information security threats to data continue to prevail.  

 

 



Page | 5  
 

 

Fig. 1. DIAGRAM FOR LAB EXPERIMENT SETUP      

 

The main stages for forensic assessment which were kept in priority for building up the environment are 

listed below: 

 



Page | 6  
 

 

Fig. 2. INFORAMTION SECURITY OBJECTIVES USING SNORT 

 

The lab environment was setup  keeping in mind the above stages, using Snort. The main objective was to 

identify exploits using ALERTS  and evolve suitable rules. The exploits  were analyzed in depth to derive 

rules to enhance  security and performance . 

 

• Detection: Whenever an exploit is successful, an alert is generated by the snort . The alert signals 

occurrence of an intrusion activity.  

 

•  Identify: The alerts generated  by snort could be easily  identified by matching with the 

vulnerabilities and the attack activity which causes them. Therefore, an alert generated  could be 

traced to the snort rule leading to it. 

Analyze: Once an alert is observed and analysed   the corresponding rule is  studied  .To device a 

new rule for future use and reference.   



Page | 7  
 

 

 

II. Snort Tool and its implementation in this project     

 

 

Suspicious activities and actions  performed by cyber criminals (attackers) with malicious intent  to damage 

the  trust , confidentiality, integrity and availability of information are detected by network intrusion 

detection.  

 

 

 

What is SNORT?[2] 

• It is an open source network intrusion detection software, and  has the ability to detect  

intrusion mainly using signature matching technique. Predefined rules  and data information 

are already  pre loaded into snort and are  regularly updated by the organisation managing 

it [3].Therefore rules for matching particular content and data in packets on arrival of 

incoming ports of receiving machine or network are cross checked against the preloaded 

rule (for intrusion detection and security protection).Whenever there is a match , alert is  

generated  with reference to rule details(line number, rule number ,version of update) and  

sent to security administrator and the responsible team. 

• Reasons for preference of snort for our research:[4] 

Snort has working compatibility on all operating systems platforms whether its windows 

,Unix , Linux and  mac operating system. It is available for free and provides an option for 

customisation as per the security requirements . 

 

Why Snort customisation is important for our research??? 

Snort is configured for defending a system  against intrusions made by cyber criminals. But the 

information security requirements and priority differ from one organisation to another. As 

information security management professionals, we know that all security priorities  ,policies 

,management ,updating and plan of actions are  defined in an official document  called “SECURITY 

POLICIES”. Therefore, the rules of snort which may be  useful for a particular  organisation may 

not be applicable to others. 

 

Hence, the snort rule customisation for every organisation is done as per their specific security 

policies. 

 

 

 

 

 



Page | 8  
 

Mode of operation  for Intrusion detection:[2] 

 

 

• Signature based:  The exploit signature and identification pattern are used for devising  snort 

rules to counter exploits. The  snort scans the incoming traffic packets for  presence of identification 

patterns.   

 

Fig. 3. SNORT SIGNATURE MATCHING FUNCTIONING 

• Anomaly Detection:   Traffic generated during communication is of a large volume. When 

the host-based ids snort is deployed, it gets to see all the incoming traffic passing on to the host. If 

there are some variation in the traffic  from general pattern ,alerts will be generated. 
 

 

Example: SNORT is deployed on a university exam cell server. All students  send  requests 

related to academic matters on it from their recognised email addresses. Now if a student  goes 

back home to another country and  sends a request for inquiry for coming up exam schedule, then 

an alert would be generated by Snort ,as there would be a change in geolocation and internet  

protocol(ip) would also be a factor responsible. 

 

During this research work more use of signature-based technique is used but for purpose of 

analysis and understanding of the alerts anomaly method also contributed. 

 



Page | 9  
 

SNORT Components: 

 

 

Fig. 4. COMPONENTS OF SNORT(IDS) IN RELATION TO RESEARCH [4] 

 

 

• Packet Decoder [5]: This component helps re-arranging all the arrival traffic format into the 

form which could be processed by snort.  In the lab environment, the traffic source is generated 

from attacker  and victim machines  but in realistic scenario ,the traffic is also generated from live 

internet connection and various other networking devices using different protocols.  Packet decoder  

decodes the packets into simplest form free of any complexities and  helps in speedy  efficient 

processing in  subsequent  phases  of snort. 

 

• Preprocessor [5]: The cyber criminals are  innovative  and  keep changing  their methods of 

intrusion techniques to cheat  the intrusion detection system. The preprocessor  re-arranges and 

modifies the incoming traffic packets before passing on to the next stage. The packets content may 

be tricked with some permissible  modifications ,so that the intrusion detection system could be 

fooled by failing its signature matching . Therefore, a preprocessor has the ability of re arranging 

all possible combinations for signature matching . 



Page | 10  
 

Key observation: Signature matching is the main detection technique used by snort. The 

cyber criminals intentionally send large chunks of data at the target port. As per the maximum 

transmission unit (mtu) specification, the data is fragmented for further processing. This could be 

understood through an  example of   exploit packet :- 

 

 

 

 

 

Example:- 

 
If  this complete  packet is of 1000 bytes and  the target port has the MTU (maximum 

transmission unit) of  250 bytes, this single packet would be fragmented in 4 packets. 

 

  

 

 

 

                                                                                                                           

 

 
 

For detection , snort signature matching will have a rule for searching the signature 

$$$$$%%%%$$$$ but incidentally  due to fragmentation this would not be detected. Thus, the 

preprocessor helps in reassembly of all packets and fragments, so that cyber criminal’s intention to 

fool snort  signature matching is not successful. 

 

• Detection Engine: The main function of snort is performed by this component. which has all 

rule sets, signatures and features required for intrusion detection. The detection engine capabilities 

vary from machine to machine. 

 

Detection engine (time critical) directly proportional to no. of rule sets defined & the computational power 

and speed of the machine on which snort is deployed. 

 

 

• Logging and alert system: When there is signature match in snort, an action is performed 

which could be alert , block or  pass. 

 

Content of interest “$$$$$$%%%%$$$$” 

Content of interest “$$$$$$%%%%$$$$” 

$$$$ $%% $%% %%$$$$ 



Page | 11  
 

• Output modules and logging:  Snort reaction to an exploit or intrusion could be outputted 

in form of text, xml, html  or saved in database and logged for future reference. 

 

 

NOTE: During this project, the traffic of exploit was simulated through live attack and also via 

packet capture which was done during Wireshark analysis. 

The exploit intrusion alerts were generated, and rules were figured out with further analysis. The 

understanding and functioning of each component of snort was pertinent for analysis and 

conclusion . 

 

SNORT Rule  

                                                                                          (Contributed by- Jivitesh) 

 

Snort is one of the top open source intrusion detection system and uses set of rules to describe malicious 

network behavior. It refers to those rules to identify matching data packets and generates alert for them. 

Since it is open source, it enables IT security professionals to write and configure their own rules. Snort 

rules are made up of two parts the “header” which is the first part of the rule and the “options” which is 

second part of the rule.  

 

Structure of Snort rule: 

 

Header Options 

 

 

Rule 

Action 

Protocol Source  

IP address 

Source 

port 

Flow Destination  

IP address 

Destination 

Port 

 

• Rule Header: The rule header contains the rule action, protocol, Source and destination IP 

addresses and netmask and port numbers of source and destination. 

 

 

Message output, 

content match, id’s, 

rev number, etc. 



Page | 12  
 

Syntax: 

 

 

Rule Header Example: 
 

 

alert tcp $External_NET any -> $Home_NET any 

 

Rule Action 

The first component in a rule is rule action and it tells Snort what to do when a packet is found which meets 

the rule requirement. In snort, there are five available default actions: 

1. alert: It will generate an alert and log the packet when fired. 

2. log: It will log the packet when fired. 

3. pass: it will ignore or drop the packet. 

4. activate: it will alert and activate a dynamic rule or rules. 

5. dynamic: remains idle until activated by the active rule, then act as log rule. 

 

 

 

 

Protocol: 

Protocol is the next field in the rule, and there are four protocols which can be analyzed by snort for 

suspicious behavior.  

Four protocols are: 

1. TCP- protocols such as SMTP, FTP, HTTP etc. 

2. UDP- such as DNS traffic 

3. ICMP: Example- traceroute, ping 

4. IP: Example- IPSec, IGMP. 

 

<action><protocol><source IP address><source port><direction><destination address><destination port> 

 

RULE ACTION 

alert log pass activate dynamic 



Page | 13  
 

Source IP address: 

This field is the packet’s source address and it can be a network ID or a single IP address. Also, if alert is 

to be generated from any source IP, “any” can also be used. 

 

Source Port: 

This field is the packet’s source port of TCP or UDP.  If all 65535 ports are to be specified “any” can be 

used. 

 

Flow(direction): 

This field determines the direction of flow of data packets using the directional arrow operator which is “-

>”, where the IP’s and port number on the left are considered to be the source and the one’s on the right 

side of operator are considered to be the destination. In case of bidirectional flow of traffic, the bidirectional 

operator “<>” can be used. 

 

Destination IP address: 

 

This is the destination where the packet is supposed to go to. It can be, a network ID, single IP address or 

if all the possible IP address needs to be specified “any” can be used. 

 

Destination port: 

 

It is the destination TCP or UDP port where the packet is supposed to go to. Here, a single port can be 

specified, or “any” can be used to specify all 65535 ports.   

 

• Rule options: Rule options are the core of Snort’s intrusion detection engine provides power and 

flexibility. All the rule options for snort  are separated using a semicolon (;) and Rule option keywords 

are separated with colon (:) from their arguments. 

 

 

Syntax: 

 

*different keyword combination can be used in the rule options. 

 

<msg><flow> <content><reference><sid><rev> 

<msg><flow> <content><reference><sid><rev> 

 



Page | 14  
 

Rule Options Example: 
 

 

(msg:”abc exploit”; flow:to_server, established; content: “|28 29 3a|”; reference: bugtraq, 1387; 

classtype:attempted-admin; sid:1000040; rev:1;) 

 

Msg: 

 

The function of msg keyword is to tell or inform the alerting engine of snort to print a defined message with 

the alert and packet dump. A meaningful message provides some information about what is causing the 

alert or what the alert is about. This plays an important role as it allows the snort administrator to understand 

the cause of alerts better. Example: msg: “the unreal attack string has been found”. 

 

 

Content: 

This is one of the most important and widely used keyword in snort and allows the snort user to specify 

rules which search for specific content in the payload of the packet and then trigger a response based on 

that data. It can be used to search for mixed text or even binary data which is enclosed within the pipe 

character “|”. Example: content:”earth”, content:”|23 45 67 88|”. 

 

Nocase: 

This keyword is used to tell snort to not to be case sensitive when looking for a pattern specified in the 

content keyword.  

 

Offset: 

 This keyword can be used to specify the starting point of the search after a certain byte within a packet. 

This keyword starts count at “0” bytes. 

Example: to start finding for something at 13th byte of packet use “offset:13” 

 

Depth: 

This keyword is used to specify a search that is restricted in the packet to certain byte. So, the search is 

performed in specific byte range and it helps snort to be more efficient as it will know where to stop 

looking for content and will not end up analysing the whole packet. The depth is counted in positive 

integers. Example: In order to look for content in the first 15 bytes of a packet, use “depth:15”.  



Page | 15  
 

Within: 

 

 This keyword is used to ensure that at maximum there is certain number of bytes between the pattern 

matches using the content keyword. It can allow the value greater than or equal to the pattern length 

which is being searched. So, with this keyword a range can be specified between the content matches.   

Example: within:9 

 

Flow: 

 

This option allows us to define the state of flow of traffic on Snort. Some flow option arguments are as 

follows: 

1 to_client packets are flowing to the client 

2 to_ server packets are flowing to the server 

3 from_client packets are flowing from the client 

4 from_ server packets are flowing from the server 

5 Stateless don’t consider the state of connection 

6 Established apply rule to only established connection 

7 no_stream apply rule to packets that are not built from stream 

8 stream_only apply rules to packets which are built from a stream. 

 

Ack: 

This keyword option allows us to define the acknowledgement number which is sent by the recipient of the 

TCP packet back to the sender. This can be very useful in certain scenarios, for example port scanners such 

as NMAP can send the scanning packets whose acknowledgement number is set to 0. This information can 

be used for the creation of rules which search for packets with ack number 0 and generate alerts. 

 

 

Reference: 

The reference keyword allows rules to specify references to external attack identification systems. 

Providing a reference is considered a good practice in process of rule writing as it provides the snort 

administrator with some background information about what is causing the alert to trigger. 

Syntax: 

 

 

reference:<id system>, <id>; [reference:<id system>, <id>;] 
 



Page | 16  
 

Classtype: 

The classtype keyword is used to categorize a rule in more general type of attack class where rule belonging 

to that class detects similar kinds of exploits. Snort offers the default set of attack classes that includes the 

default set of rules provided by snort, however new class types can also be created. The process of 

categorizing rules into classes helps in better organization of event data which is produced by the snort. 

Example: classtype:string-detect. 

 

 

SID 

Sid is acronym for snort ID and every rule in the snort ruleset has its own unique SID which enables output 

modules or log scanner to identify the rule which triggered the alert. Also, this option is supposed to be 

used with rev keyword. 

 

 

Snort Ranges 

• <100 are reserved for the future use. 

• 100-999,999 are used and included with the snort distribution. 

• >=  1,000,000 are used for the local rules or custom rules. 

 

Example: sid:1000052 

 

 

REV 

REV means the revision of rule, the revision number is incremented by one each time the rule is changed 

or modified. The rev numbers with the Sid’s allows in the refinement and replacement with the updated 

information. 

Example: rev:4 

 

 

 

 

 

 

 



Page | 17  
 

NMAP (NETWORK MAPPER) 

                                                                                (Contributed by- Amandeep Kaur) 

 

 

In today’s scenario, one of the critical pieces of information the attacker needs to know is open ports. Nmap 

(Network Mapper) is a free open source tool for vulnerability scanning and network discovery. Nmap tool 

helps to find what services are available on the system, what devices are running, finding the hosts available 

on the system, finding open ports, and detecting security risks. The attacker used Nmap with the target 

machine’s IP address to detect services with their detailed version to scan function against the victim’s 

machine. It provided extended information about the target machine, which gets imported into the database. 

At that time, the attacker can get enough information to exploit the system. Using this information, the 

attacker can find the vulnerabilities of the system. Using all the information collected from the Nmap tool, 

the attacker can exploit it. The following fig.  shows that TCP connection initiated by the scan. It also shows 

that majority of ports are closed. 

 

 

 

Fig. 5. NMAP SCAN 

 

 



Page | 18  
 

NMAP Scan in Wireshark 

(Contributed by: Amandeep Kaur) 

 

The Wireshark window uses the main three-pane design, i.e., Packet list, Packet details, and packet Bytes. 

So, firstly by analyzing packet list pane, it shows that how attacker machine whose IP address is 

192.168.56.102 makes a TCP connection with targeted machine whose IP address is 192.168.56.101. By 

analyzing packet list pane, it shows that firstly, attacker machine sends the packet to victim machine to 

initiate the connection with victim machine and the packet is going to give it the initial sequence number 

that the attacker can use and then victim machine responds by sending acknowledge and sequence number 

to the attacker system. And then again, the attacker machine acknowledges and sequence number to the 

victim machine. The stripes illustrate how systematic the probing is, with alternating SYN to ACK/RST 

packets. For open ports, the probe packet initiates the three-way handshake, opening a connection. For each 

closed port, the machine responds accordingly, with ACK and RST flags set. 

 

 

 

Fig. 6. NMAP SCAN IN WIRESHARK 

 

 

 

 

 

 

 

 

Packet List 

Pane 

Packet Detail 

Pane 

Packet Byte Pane 



Page | 19  
 

 

 

 

 

 

 

 

EXPLOIT-1 

VERY SECURE FTP DAEMON 

(VSFTPD)  

 

 

 

 

 



Page | 20  
 

Exploit 1. Very Secure FTP Daemon (VSFTPD) 

(Contributed by- Amandeep Kaur) 

 

VSFTPD is an FTP server for Unix-like systems, including Linux. According CVE information, 

VSFTPD 2.3.4 downloaded between 20110630 and 20110703 contains a backdoor which opens a shell 

on port 6200/TCP [11].  

 

In Metasploit, we can search the exploit. So, type vsftpd to display any matching results. 

 

 

Fig. 7. SEARCHING FOR VSFTPD EXPLOIT 

 

 

To perform this exploit, at the msf console prompt, type the use command followed by the exploit name 

i.e. use exploit/unix/ftp/vsftpd_234_backdoor. To run this exploit firstly there is need to set the RHOST. 

Type set RHOST followed by IP address of victim machine i.e. 192.168.56.104. Once it entered then type 

exploit and exploit has been executed.  

 

 

 

Fig. 8. SETTING RHOST 

 



Page | 21  
 

After this exploitation, the attacker can gain permission to access victim machines where they can access 

the confidential files like shadow file, passwd containing encrypted passwords of various users that can be 

cracked, which is a very high-security concern of availability, and confidentiality of information.  

Moreover, the attacker can also get information about the system version that is a very critical security 

concern. 

 

 

 

Fig. 9. VSFTPD EXPLOITATION 

 

 

 

 

 

 

 

 

 

Root Access 

Victim machine’s version 

detail 

Shadow file access 

Passwd file access 



Page | 22  
 

Wireshark  Analysis for VSFTPD Exploit 

(Contributed by- Amandeep Kaur) 

 

 

By analyzing packet captures of the exploited system, it can provide some information to identify attacks 

and the attacker’s malicious activities. In the Fig. 10 packet 85 is highlighted. It clearly shows that a 

machine whose IP address is 192.168.56.102 has sent a packet “whoami” to 192.168.56.104 (victim 

machine’s IP address). In the packet 86, 192.168.56.104 (victim machine) has sent “root” packet to the 

192.168.56.102 (attacker machine). It shows that when the attacker machine asked the victim machine 

“whoami” victim machine replied “root”. It reveals that the attacker machine has access to use it as root. It 

also shows that the attacker machine whose IP address is 192.168.56.102 has exploited the victim machine. 

 

 

 

Fig. 10. ROOT ACCESS 

Root Access 



Page | 23  
 

In the Fig. 11, packet number 116 is highlighted. This is from attacker’s machine, sending the command 

“uname -a” to victim machine. In the byte pane, this command is in clear text. Again, in the packet byte 

pane in packet number 118, the data portion of the response shows the response. So, this fig. clearly 

demonstrates how the attacker machine had got all information about the victim machine version, its 

installation date, and time when it was installed. 

 

 

 

Fig. 11. VICTIM MACHINE’s VERSION DETAIL  

 

 

Fig. 12 and Fig. 13 depicts that the attacker machine has accessed two files of the victim that are shadow 

file and passwd file. Shadow file is that file that cannot be accessed by anyone except root, whereas the 

Passwd file includes confidential information like user passwords.  

Victim machine’s 

version detail 



Page | 24  
 

 

 

Fig. 12. SHADOW FILE ACCESS 

 

Shadow file access 



Page | 25  
 

 

Fig. 13. PASSWD FILE ACCESS 

 

 

 

 

 

 

 

 

 

Passwd file access 



Page | 26  
 

1/03-01:36:26.969819   [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: 

Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

1/03-01:36:26.969819  [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: 

Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

SNORT Rule Analysis for VSFTPD Exploit and Creation of Custom Rules 

(Contributed by: Jivitesh) 

 

In order to create a custom rule, we must identify a unique feature about each attack which can further be 

used in rule creation. To achieve this, the attack is performed several times and packets are captured using 

Wireshark in the form of .pcap files. These pcap files are then analyzed precisely to identify unique 

character of each attack. 

Snort will be used to generate the alerts during the attack when the contents of the packets are matched to 

the rules defined in the system. Also, all the data packets during the attack will be captured and later used 

for the analysis and custom snort rule creation. 

 

When attack was performed, snort generated some alerts based on the predefined rules in the system which 

are defined as follows: 

 

The following alerts were generated: 

Alert 1:  

 

 

 

 

 

 

 

Alert Breakdown: 

 

The portion of alert highlighted in orange shows the gid, sid and rev number, which is 1, 498 and 

6 respectively. The portion of the alert highlighted in green displays the message which is defined 

in the rule and provides some information about the event which caused the alert. In this alert, 

message means that the root value has been returned when the privileges are checked. This means 

that the attacker may have gained root privileges. The portion in blue defines the class in which 

data is characterised based on its type and threat it possesses. The data traffic causing this alert is 

classified as Potentially Bad Traffic. The portion highlighted Purple is the priority number of the 

alert and in this case the priority number is 2 which means medium priority. The portion highlighted 

in Grey is the protocol which is being used and it is TCP in this case. The portion of alert in Dark 



Page | 27  
 

alert ip any any -> any any (msg:”ATTACK-RESPONSES id check returned root“; 

content:”uid=0|28|root|29|”;classtype:bad-unknown; sid:498; rev:6;)98; rev:6;) 

 

11/03-01:36:26.969819  [**] [1:1882:10] ATTACK-RESPONSES id check returned userid [**] 

[Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

Red shows the source and destination IP address with the respective port numbers used, it also 

shows the direction of flow of traffic. In this alert the source IP address is 192.168.44.128, source 

port number is 6200, destination IP address is 192.168.44.133 and destination port number is 

44909. 

 

Rule Responsible for Alert: 

 

 

 

 

 

 

Rule Analysis: 

 

As per the rule, Snort system will looking for content “uid=0|28|root|29|” and here “28” and “29” is 

hexadecimal value specified in pipes”|” and means “(“ and “)” respectively in simple text, which can also 

be observed with the help of Wireshark. So, the whole expression is “uid=0(root)” and when the snort 

system will find this expression in the packets, it will generate the alert. This expression is usually the result 

of “id” command executed in UNIX and therefore this may indicate that the attacker has checked for system 

privileges and has gained superuser privileges. Since the source IP address, source port number, destination 

IP address and destination port number are all set to “any”, snort will be looking for network traffic coming 

from any source and going to any destination. 

 

Alert 2: 

 

 

 

 

 

 

 

 

 



Page | 28  
 

alert $HOME_NET any -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES id check 

returned userid"; content:"uid="; byte_test:5,<,65537,0, relative,string; content:" gid="; within:15; 

byte_test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:10;) 

 

Alert Breakdown: 

The portion of alert highlighted in orange shows the gid, sid and rev number, which is 1, 1882 and 10 

respectively. The portion of the alert highlighted in green displays the message defined in the rule and 

provides rough information about the event which caused the alert. The portion in blue defines the class in 

which data is characterised based on its type and threat it possesses. The data traffic causing this alert is 

classified as Potentially Bad Traffic. The portion highlighted Purple is the priority number of the alert and 

in this case the priority number is 2 which means medium priority. The portion highlighted in Grey is the 

protocol which is being used and it is TCP in this case. The portion of alert in Dark Red shows the source 

and destination IP address with the respective port numbers used, it also shows the direction of flow of 

traffic. Here in this alert the source IP address is 192.168.44.128, source port number is 6200, destination 

IP address is 192.168.44.133 and destination port number is 44909. 

 

 

Rule Responsible for Alert: 

 

 

 

 

 

 

As per the rule, Snort will look for content “uid=” and “gid=” which means User ID and Group ID 

respectively. Each user has its own uid and gid number and it gets displayed when “id” command in UNIX 

is executed. This indicates that the event might have taken place where privileges have been checked by 

the attacker. Some other content modifiers are used to help snort narrow down the search process like 

“within:15”  which means that the difference between the content matches should not be more than 15 

bytes, and byte_test allow the rule to check number of bites of the packet from the given position and check 

if it matches the  provided value. 

 

Observation 

 

Attack was performed few times and the data traffic was analysed using Wireshark. After the analysis 

following observations were made and then further used for the creation of custom rules: 

• The target port of the attack is FTP port which is port 21. So, Destination port in custom rule will 

be set to 21. 

• FTP runs on Transmission control protocol so, the protocol specified in the custom rule will be 

TCP. 



Page | 29  
 

• In the attack attempts the source port number is always different, so no fixed value for source port 

number will be set. 

• The attack is carried out b y using different username and passwords for the login, but username 

always had “USER” and “:)” characters in it as shown in figure 14. So, these strings will be 

specified in the custom rule using the content keyword. 

 

 

 

Fig. 14.  WIRESHARK ANALYSIS OF VFSTPD EXPLOIT 

 

 

Custom Rule: 

 

 

 

 

 

 

 

alert tcp any any -> any 21 (msg:”Special vsftpd backdoor exploit characters used for login”; content:”USER”;  

content:”:)”; classtype:suspicious-login; sid:1000041; rev:1;) 

 

 



Page | 30  
 

1/03-01:00:55.498157  [**] [1:1000041:1] Exploit Special vsftpd backdoor characters used for login [**] 

[Classification: An attempted login using the suspicious username was detected ] [Priority: 2] {TCP} 

192.168.44.133:45175 -> 192.168.44.128:21 

 

Analysis of Custom Rule: 

This rule is designed to look for packets coming from any source IP and any port number to any destination 

IP and 21 as destination port number. When the alert is generated it will display the message “Special vsftpd 

backdoor exploit characters used for login” which will help the snort administrator to understand the cause 

behind the alert.  The rule will look for content “USER” and “:)”. The alert will be generated when the 

specified expressions are found. The rule belongs to the classtype suspicious-login. The rule is assigned the 

unique snort id of 1000041. The rule has only been revised once so its rev value is 1. 

 

Breakdown of Alert Generated by Custom Rule: 

 

 

 

 

 

 

 

 

Breakdown of the Alert: 

 

The portion of alert highlighted in orange shows the, gid, sid (snort ID), and rev number, which is 1, 

1000041, 1 respectively. The portion of the alert highlighted in green shows the message which is defined 

in the rule and provides rough information about the event which caused the alert. The portion of alert, 

which is highlighted blue gives information about the class, the rule belongs to. The portion highlighted 

Purple is the priority number of the alert and in this case the priority number is 2 which means medium 

priority. The portion highlighted in Grey is the protocol which is being used and it is TCP in this case. The 

portion of alert in Dark Red shows the source and destination IP address with the respective port numbers 

used, it also shows the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.133, 

source port number is 45175, destination IP address is 192.168.44.128 and destination port number is 21. 

 

 

 

 

 



Page | 31  
 

                         Analysis and Conclusion for The Exploit VSFTPD 

             (Contributed by-Karan Chauhan) 

 

In this exploit, file transport protocol was   used  for transferring the resources on client -server architecture. 

Very Secure Ftp Demon (VSFTPD), version vsftpd  2.3.4 was exploited in which a particular username 

combination compromised and gained the command shell on port 6200 [6]. 

 
 

After understanding and analysing vsftpd 2.3.4 exploit, the main vulnerability in its code was also analysed 

,due to which this exploit was compromising the security features. 

 

 
 This  exploit is  carried over network and triggered with  a unique signature. This was also analysed from 

its vulnerable source code(vsftpd 2.3.4)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  Vsftpd exploit vulnerability code analysed(the portion of code relevant 

for our project interest)    
 
 
 
 

 else if((p_str->p_buf[i]==0x3a) 

    && (p_str->p_buf[i+1] ==0x29)) 

    { 

      vsf_sysutil_extra (); 

    } [7] 
 

-The values in red above are hexadecimal values  

0x3a 0x29 

-The string form recognised for this value is ;) 

 

 



Page | 32  
 

Analysis of Exploit Framework for Better  Concept  Building  
 
 

The string “;)”  equivalent    emoticon is      . This analysis helped to look out for this string pattern in the 

packets being transported via snort to host system from the remote system(attacker). 

 

 
The string mentioned referred above acts as the key information for performing this exploit. This 

information was used as mainstay for defense of network. 

 

Wireshark analysis also helped in concluding that these vsftpd packets were directed towards ftp port.  All 

malicious traffic for this exploit had n number of username combination but it  always has a repetition 

which ends with   a combination  ;).    

 

 

 

Lab Environment Analysis 
 

 

The lab environment gives basic understanding of the security response which would be taken, once exploit 

is performed but its under certain  constraints:- 

 

• Computational Capacity: Fast and high data processing capability is required by the 

attacker and  the host machine on which the snort is deployed. 

 

• Batch Processing: The attacker with  malicious intent  would perform n number of jobs 

(malicious activity) towards the host machine, and the host machine would also perform same 

number of tasks in defense. 

 

•  Spooling: During exploitation of local host  ,this technique would help in taking the tasks of 

least priority into memory and process them there. The priority task to safeguard data and network 

security would be taken care of in the main processing unit    

 
 

VSFTPD Exploit Alert and Rules Analysis: 
 

 

Once an exploit is performed the local host machine issues  an alert for security breach by attacker. The 

alerts are further related to rules responsible for triggering them. 

 

The alerts are issued  in similar way as   in case of a fire alarm .  Once a fire alarm is sounded, the related  

response actions are performed. Similarly, in our lab environment once vulnerability of remote host is 

Snort rule writing for defense and protection of confidentiality, integrity and availability of data is managed 

and updated as per organisation security policies. The above analysis gives an indication to make a security 

policy which prohibits the use of username combination mentioned above.  

 



Page | 33  
 

exploited ,snort generates the  alerts. . But as in  fire alarm, alarm sounding doesn’t  mean there is definitely 

a  fire. Similarly, when alerts issued by Snort they don’t always confirm a breach which will require  further 

investigation.   

 

 

 Many alerts are reported  but security analysis  and  conclusions are limited to ones which are relevant  to 

our concept building  and evolve   better  security defence and response planning  of VSFTPD exploit. 

 

  

Fig. 15. Investigation observation: Three alerts of VSFTPD are of priority and further investigated. 

      

    

 

 Inspection points: :  (All evaluation is done in limited traffic and instance of scenario) 

 

• Time of firing of alerts  alert 1 (00:55)  alert 2 (02:55) alert3 (02:55) 

 

• All three alerts and their  rules are present in same class name bad traffic 

 

• Priority is based upon the severity of a intrusion which is directly dependent on system security 

policy priorities. Alerts {1,2,3} ------ Priorities {2,2,2} 

 

• Return values 

o  Alert 1: ;) is the main value associated with this alert 

o Alert 2:  value root has  been returned 

o Alert 3: user id value has been returned 

 

 

• Total run time of snort in this case is  1.2375 

 

• 148 packets for one attack session of this exploit were  analyzed 

 

• Ethernet and ipv4 protocols are they key in this exploit by looking at protocol breakdown.         



Page | 34  
 

 Rules Performance Analysis 
 

 

The main expense of operating system functioning for a particular job of computation is calculated on basis 

of the data fetching and feeding from memory  

 

The analysis for rules performance was conducted  by evaluating the rules on the basis of  

 

 

Parameters used for analysis: 

• Microsec 

• Matches 

• Checks 

• Alerts 

NOTE: Rule 3, Rule 2 and Rule 1 custom rule - All discussed in snort explanation section  

 

 All graphical projection made by considering comparison between three rules 

 

 

 

Checks 

 

Number of 

times rule is 

used for 

checking 

the 

incoming 

packets 

Matches 

 

Pattern 

defined in 

rule 

matches the 

incoming 

packets 

Alerts 

 

Number of 

times rule is 

fired 

Microsec 

 

The 

cost(time) 

invested  by 

os in 

checking 

the 

incoming 

packets 

 

Avg/check 

 

Average 

time for rule 

spent for 

checking 

Avg/match 

 

Average 

time for 

matching by 

rule 

Avg/nonmatch 

 

 

Average time 

for non 

matching a 

content of 

packet by rule 

       



Page | 35  
 

 
 

 

Fig. 16. Operating System Computational Time (Micro/Sec) 

 

 

The cost invested by processor is judged by the value of micro/sec. This value might be very high or low 

depending upon rule syntax and complexity. The  resultant  value  would affect  the decision during analysis 

to  either accept or terminate the rule  performed to lower down processor burden.  Almost near to zero 

processing time is good indication from point of cost but could also indicate to failing of snort rule 

inspection. This is to be considered in  realistic scenario of cyber warfare. 

 

 

RULE 1, 2

RULE 2, 1

RULE 3, 0

OPERATING SYSTEM COMPUTATIONAL 
TIME(MICRO/SEC)

RULE 1 RULE 2 RULE 3



Page | 36  
 

 

Fig. 17. Number of Times the Rule Signatures Matched 

 

 

Snort rules are like filters. The signature and keywords are used as filter components which detects the 

signature in the packets of traffic generated. Whenever there is match with filter component then this value 

is incremented. This value should not be very high because then this signifies that the rule filtering is not 

unique and is causing over burden on processor, which will result in generating alerts for cyber incidents 

which are not relevant for investigation. 

 

 

 

 

 

 

 

RULE 1
34%

RULE 2
33%

RULE 3
33%

NUMBER OF TIMES THE RULE SIGNATURES  
MATCHED

RULE 1

RULE 2

RULE 3



Page | 37  
 

 

Fig. 18. Number of Times the Rule Picked for Investigation (Checks) 

 

 

Snort  tool detection efficiency is directly dependent on rule defined .If rate of detection is to be refined , 

there is  needed to directly  move on to rule section. Therefore  “checks” give an indication ,if a value is 

high and is not having high favourable result, then an action is to be planned with  analysis to refine the 

rule syntax for alteration. Major observations helped in concluding that if this value is high ,it indicates 

presence of a Perl compatible regular expression in the rule and which should be broken. Hence to reduce 

complexity ,the presence of PCRE expression needs to be split. 

 

 

 

 

RULE 1
34%

RULE 2
33%

RULE 3
33%

NUMBER OF TIMES THE RULE PICKED FOR 
INVESTIGATION (CHECKS)

RULE 1

RULE 2

RULE 3



Page | 38  
 

 
 

Fig. 19. Number of Times the Rule is Fired and Alert Generated 

 

 

Intrusions are brought to notice of security manager of network through firing of alerts. But this factor 

cannot be confirmation of a breach. Rule and their content are the ammunition for the alerts. Therefore, the 

accuracy of rules defines the genuineness of alerts. Rules which have high checks and avg/checks  would 

also have high alerts, but this  scenario would need refinement of rule content and splitting because of 

presence of PCRE (complex expression). Therefore, value of alert helps in connecting to rule. Further 

confirmation is only made after comparing all parameters.  

 

 

 

Analysis and Understanding of Custom Rule: 
  

 

 

Custom rule (Rule 1) has the  highest cost paid by processor for the functioning of snort .The avg/check 

and avg/match for this rule is also high in comparison to other two rules. The cost is high as this rule syntax 

has content for the exploit signature. Fast pattern matching could also be used for lowering the micro/sec 

cost. The service ports are also defined in an attempt to control the micro/sec value and this is  also related 

to avg/check value, which gives an indication for refinement for defining of port or address range.   In this 

current scenario to make values more favourable, the value of source and destination could also have been 

defined, which would have resulted in favourable values for optimum results. However, our main mission 

was to understand and analyze a realistic scenario.  The content of this rule was unique and true to detection 

as it was observed during Wireshark analysis, explained in above sections. 

 

 

34%

33%

33%

NUMBER OF TIMES THE RULE IS FIRED AND ALERT 
GENERATED

RULE 1 RULE 2 RULE 3



Page | 39  
 

Points to Be Taken Care Of (As per Analysis): 
 

 

(a)No need to bother for micro/sec cost if the results are having true detection and favourable results 

 

(b)Micro sec value greater than 5% (TOTAL TIME) needs a serious attention and in majority cases 

termination of rule is best practice 

 

(c)If the packets are incrementing checks for rules at a steady rate then fast pattern matching could be 

adopted for unique content. 

 

             

  

 
 

Fig. 20. Flowchart for Analysis 



Page | 40  
 

Conclusion 
 

 

 The main aim was to detect intrusion of ftp services by vsftpd 2.3.4 exploit. Snort always generates alert 

for the rule configuration against it ,but efficiency and performance of snort is directly proportional to rule 

complexity , rule parameters and also on the deployed system configurations. Rule complexity and 

parameters also depend upon the host machine system configuration (Processing Speed &Time).Snort tool 

deployment on network is for helping the security mangers or administrator for first line of defense .After 

studying  the exploit framework and its weakness ,the Wireshark analysis was performed with follow up of 

snort analysis. All this was part of a reconnaissance  for cyber warfare. This pattern of analysis helped us 

in  sharpening our thinking for dealing with real world cyber attacks .  The analysis of exploit framework 

and packet capture  helped in rule writing and also  in building focus  as cyber defense warrior ,with the 

ultimate aim to ensure  protection  of network and its data from exploits . 

 

 

Recommendation for This Exploit: FTP protocol is widely used over networks.  In the dynamic 

trends observed in the  cyber world, the  violators of security principles the hackers, also change their modus 

operandi. Therefore, this exploit might be introduced as a new version and with alteration. The best way to 

deal with this menace is to do reconnaissance  and  security audits .This will help to indicating  alterations  

adopted by attackers . For detection, snort rules must be updated regularly with new alterations as per 

requirements. Termination of old rules should be also undertaken  to cut down processor burden. Before 

issuing rules for implementation, and demo warfare environment should be used to evaluate rule profiling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 41  
 

 

 

 

 

 

 

 

EXPLOIT-2 

UNREAL IRCD EXPLOIT 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 42  
 

EXPLOIT 2. UNREALIRCD 

                                                                                    (Contributed by: Amandeep Kaur) 

 

 

UnrealIRCD is an open source IRC daemon, originally based on DreamForge, and is available for Unix-

like operating systems and windows. Since the beginning of development on UnrealIRCd circa May 1999, 

many new features have been added and modified, including advanced security features and bug fixes, and 

it has become a popular server. This module exploits a malicious backdoor that was added to the Unreal 

IRCD 3.2.8.1 download archive. This backdoor was present in the Unreal3.2.8.1.tar.gz archive 

between November 2009 and June 12th  2010 [13].  

To perform this exploit firstly search the unreal, there we got three version. 

 

 

 

 

Fig. 21. Search Unreal 

 

 

With the use of this exploit, attackers can exploit the system by setting remote host, remote port, local host 

(its IP address), local port (its port), payload variables. 

 

 



Page | 43  
 

 

Fig. 22. Set options for ircd exploit 

 

At that point, attackers have all rights to access the system as root. The attacker accesses some files in the 

system such as shadow file, passwd file, and collected the victim system version information. All about this 

exploitation is analyzed with Wireshark packet capture. 

 

 

Fig. 23. Ircd exploit 



Page | 44  
 

Wireshark  Analysis for Unreal Ircd Exploit 

(Contributed by- Amandeep Kaur) 

 

By analysing the TCP stream, it is clear that attacker machine whose IP address is 192.168.56.102 have 

a right to access as a root to the victim machine whose IP address is 192.168.56.104. Fig.  24 

demonstrates how the attacker machine had got all information about the victim machine version, its 

installation date, time when it was installed, how access the confidential files such as shadow file, passwd 

file. It is a biggest security concern.  

 

 

 

Fig. 24. TCP flow stream analysation of ircd exploit 

 

 

Following fig. 25 is showing, total 36 packets are transmitted between both machines. It also 

demonstrating when the packets are transmitted and how much time it taken. 

 

 



Page | 45  
 

 

Fig. 25. Conversation between both machines 

 

 

Fig. 26 demonstrating that total 12 TCP packets are sent by attacker machine on PORT 6697 and total 

24 TCP packets are sent by victim machine on port 1234. 

 

 

 

Fig. 26. Conversation between both machines on TCP data 

 

 

 



Page | 46  
 

From the Fig. 27 it is clear seen there is TCP data within irc is pointing back to the attacker machine 

whose IP address is 192.168.56.102 and Port number 1234. 

 

 

 

Fig. 27. Analysing TCP stream on ircd exploit 

 

 

 

 

 

 

 

 



Page | 47  
 

11/04-02:55:41.533199  [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: 

Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:37439 -> 192.168.44.133:4444 

 

1/03-01:36:26.969819  [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: 

Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

SNORT Rule Analysis for Unreal Ircd Exploit and Creation of Custom Rules 

                                                                                                          (Contributed by- Jivitesh) 

 

 

Msf console is used to exploit the vulnerability and two different payloads are used which includes “cmd/ 

unix/reverse” and “cmd/unix/bind_ruby”. When the attack is performed, the following alerts were 

generated based on predefined snort rules. 

 

Alert 1: 

 

 

 

 

 

 

Alert Breakdown : 

 

 

The portion of alert highlighted in orange shows the gid, sid (snort ID), and rev number of the rule 

generating the alert which is 1,498 and 6 respectively. The portion of the alert highlighted in green shows 

the message which is defined in the rule and provides rough information about the event which caused the 

alert. The portion in blue defines the class in which data is characterised based on its type and threat it 

possesses. The data traffic causing this alert is classified as Potentially Bad Traffic. The portion highlighted 

Purple is the priority number of the alert and in this case the priority number is 2 which means medium 

priority. The portion highlighted in Grey is the protocol which is being used and it is TCP in this case. The 

portion of alert in Dark Red shows the source and destination IP address with the respective port numbers 

used, it also shows the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.128, 

source port number is 37439, destination IP address is 192.168.44.133 and destination port number is 4444. 

 

 

 

 



Page | 48  
 

alert ip any any -> any any (msg:"ATTACK-RESPONSES id check returned root"; 

content:"uid=0|28|root|29|"; classtype:bad-unknown; sid:498; rev:6;) 

 

1/03-01:36:26.969819  [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: 

Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

11/03-01:36:26.969819  [**] [1:1882:10] ATTACK-RESPONSES id check returned userid [**] 

[Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:37439 -> 192.168.44.133:4444 

1/03-01:36:26.969819  [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: 

Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

Rule Responsible for Alert : 

 

 

 

 

Rule Analysis 

 

The above rule generates the alert when the content specified in the rules is located by snort’s engine. 

As per the rule, Snort system will looking for content “uid=0|28|root|29|” and here “28” and “29” is 

hexadecimal value specified in pipes”|” and means “(“ and “)” respectively in simple text, which can also 

be observed with the help of Wireshark. So, the whole expression is “uid=0(root)” and when the snort 

system will find this expression in the packets, it will generate the alert. This expression is usually the result 

of “id” command executed in UNIX and therefore this may indicate that the attacker has checked for system 

privileges and has gained superuser privileges. Since the source IP address, source port number, destination 

IP address and destination port number are all set to “any” snort will be looking through network traffic 

coming from any source and going to any destination. 

 

Alert 2: 

 

 

 

 

 

 

Alert Breakdown : 

 

 

The portion of alert highlighted in orange shows the gid, sid (snort ID), and rev number of the rule which 

is 1,1882 and 10 respectively. The portion of the alert highlighted in green shows the message which is 

defined in the rule and provides rough information about the event which caused the alert. The portion in 

blue defines the class in which data is characterised based on its type and threat it possesses. The data traffic 

causing this alert is classified as Potentially Bad Traffic. The portion highlighted Purple is the priority 

number of the alert and in this case the priority number is 2 which means medium priority. The portion 



Page | 49  
 

highlighted in Grey is the protocol which is being used and it is TCP in this case. The portion of alert in 

Dark Red shows the source and destination IP address with the respective port numbers used, it also shows 

the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.128, source port number 

is 37439, destination IP address is 192.168.44.133 and destination port number is 4444. 

 

 

Rule Responsible for Alert : 

 

 

 

 

Rule Analysis: 

 

As per the rule, Snort will look for content “uid=” and “gid=” which means User ID and Group ID 

respectively. Each user has its own uid and gid number and it gets displayed when “id” command in UNIX 

is executed. This indicates that the event might have taken place when privileges have been checked by the 

attacker. Some other content modifiers are used to help snort narrow down the search process like within:15 

which means that the difference between the content matches should not be more than 15 bytes, and 

byte_test allow the rule to check number of bites of the packet from the given position and check if it 

matches the  provided value. 

 

 

Custom Rules: 

Attack was performed few times using two different payloads with the MSF CONSOLE and the data traffic 

was analysed using Wireshark. 

 

Observation 

After the analysis following observations were made and then further used for the creation of custom 

rules: 

 

alert $HOME_NET any -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES id check returned userid"; 

content:"uid="; byte_test:5,<,65537,0, relative,string; content:" gid="; within:15; 

byte_test:5,<,65537,0,relative,string; classtype:bad-unknown; sid:1882; rev:10;) 

 



Page | 50  
 

alert tcp any any -> any 6667 (msg:"Exploit Unreal IRCD 3.2.8.1 string detected"; content:"|41 42 3b 73 68|"; 

classtype:string-detect; sid:1000061; rev:2;) 

 

1/03-01:36:26.969819  [**] [1:498:6] ATTACK-RESPONSES id check returned root [**] [Classification: Potentially 

Bad Traffic] [Priority: 2] {TCP} 192.168.44.128:6200 -> 192.168.44.133:44909 

 

PAYLOAD 1: cmd/unix/reverse 

 

• The attack is targeted at port 6667 which is IRC port. So, for the custom rule the destination port 

can be set to 6667. 

• In different attack attempts the source port is never the same so in the custom rule, no fixed source 

port number will be specified. 

• When the attack is performed using payload “cmd/ unix/reverse”, there is always appearance of 

string “AB;sh” (as shown In fig:28) which is unique characteristic of this particular payload and 

exploit. 

• From the Wireshark it is observed that the hex value of string “AB;sh” is “41 42 3b 73 68” (as 

shown in fig:28) and it can be used in the creation of custom rule. 

 

 

Fig. 28.  WIRESHARK ANALYSIS OF ATTACK USING PAYLOAD 1 

 

 

CUSTOM RULE 1: 

 

 

 

 

 

 

 

 

 



Page | 51  
 

11/04-02:55:31.191939  [**] [1:1000061:2] Exploit Unreal IRCD 3.2.8.1 string detected [**] 

[Classification: A suspicious string was detected] [Priority: 3] {TCP} 192.168.44.133:35733 -> 

192.168.44.128:6667 

 

1/03-01:36:26.969 

Analysis of Custom Rule 1: 

This rule is designed to look for packets coming from any source IP and any port number to any destination 

IP and 6667 destination port number.  “Exploit Unreal IRCD 3.2.8.1 string detected” is the string of text 

which gets displayed in the alert and provide the viewer with some information about the exploit which 

may have been carried out. “41 42 3b 73 68” is the hex value, which the rule will look for in the data packets 

and it is specified using the keyword “content” and It must be enclosed in pipes “|”. The rule belongs to 

classtype String-detect. The snort ID for the rule is 1000061 and its revision number is 2. 

 

 

The Alert Generated by Custom Rule : 

 

   

 
 

 

 

 

 

 

 

 

 

Alert Breakdown: 

 

The portion of alert highlighted in orange shows the Sid of the rule 1000061 which is generating the alert 

followed by the revision number of the rule which is 2. This means that the rule has been revised two times. 

The portion of the alert highlighted in green shows the message which is defined in the rule and provides 

some information about the event which caused the alert. In this case it tells that some string has been 

detected related to Unreal IRCD exploit. The portion of alert which is highlighted blue classifies the type 

of malicious traffic into classes and each class has their own priority level. The class this rule belongs to is 

string-detect and it specifies in the alert that “a suspicious string was detected”. The portion highlighted 

Purple is the priority number of the alert and in this case the priority number is 3. The portion highlighted 

in Grey is the protocol which is being used and it is TCP in this case. The portion of alert in Dark Red 

shows the source and destination IP address with the respective port numbers used, it also shows the 

direction of flow of traffic. Here in this alert the source IP address is 192.168.44.133, source port number 

is 35733, destination IP address is 192.168.44.128 and destination port number is 6667. 

 

 



Page | 52  
 

alert tcp any any -> any 6667 (msg:"Exploit Unreal IRCD 3.2.8.1 string detected related to ruby payload"; 

content:"|41 42 3b 72 75 62 79|"; classtype:string-detect; sid:1000067; rev:2;) 

 

1/03-01:36:26. 

 

PAYLOAD 2: cmd/unix/bind_ruby 

 

• The attack is targeted at port 6667 which is IRC port. So, for the custom rule the destination port 

can be set to 6667. 

• In different attack attempts the source port is never the same so, in the custom rule, no fixed source 

port number will be specified. 

• When the attack is performed using payload “cmd/ unix/bind_ruby” there is always appearance of 

string “AB;ruby” (as shown In fig:29) which is unique characteristic of this particular payload and 

exploit. 

• From the Wireshark it is observed that the hex value of string “AB;ruby” is “41 42 3b 72 75 62 79” 

(as shown in fig:29) and it can be used in the creation of custom rule. 

 

 

 

Fig. 29.  WIRESHARK ANALYSIS OF ATTACK USING PAYLOAD 2 

 

 

Custom Rule 2: 
 

 

 
 

 

 

 

 

 



Page | 53  
 

 

1/03-01:36:26.911/04-02:56:30.171929  [**] [1:1000067:2] Exploit Unreal IRCD 3.2.8.1 string detected 

related to ruby payload [**] [Classification: A suspicious string was detected] [Priority: 3] {TCP} 

192.168.44.133:42463 -> 192.168.44.128:6667 

69 

Rule Analysis of Custom Rule : 

 

This rule is designed to look for packets coming from any source IP and any port number to any destination 

IP and 6667 as destination port number.  “Exploit Unreal IRCD 3.2.8.1 string detected related to ruby 

payload” is the string of text which gets displayed in the alert and provide the viewer with some information 

about the exploit which may have been carried out. “41 42 3b 72 75 62 79” is the hex value, which the rule 

will look for in the data packets and it is specified using the keyword “content” and It must be enclosed in 

pipes “|”.  The type of data causing the alert to trigger belong to classtype String-detect. The snort ID for 

the rule is 1000062 and its revision number is 2. 

 

Alert Generated by Custom Rule: 

 

 

 

 

 

 

 

 

 

 

 
Alert Breakdown: 

 

The portion of alert highlighted in orange shows the gid, sid (snort ID), and rev number of the rule which 

is 1,1000067 and 2 respectively. The portion of the alert highlighted in green shows the message which is 

defined in the rule and provides some information about the event which caused the alert. In this case it 

tells that some string has been detected related to Unreal IRCD exploit and ruby payload. The portion of 

alert which is highlighted blue classifies the type of malicious traffic into classes and each class has their 

own priority level. The class this rule belongs to is string-detect and it specifies in the alert that “a suspicious 

string was detected”. The portion highlighted Purple is the priority number of the alert and in this case the 

priority number is 3 which means low priority. The portion highlighted in Grey is the protocol which is 

being used and it is TCP in this case. The portion of alert in Dark Red shows the source and destination IP 

address with the respective port numbers used, it also shows the direction of flow of traffic. Here in this 

alert the source IP address is 192.168.44.133, source port number is 42463, destination IP address is 

192.168.44.128 and destination port number is 6667. 



Page | 54  
 

Analysis of Exploit Unreal Ircd Exploit 

 
             (Contributed by-Karan Chauhan) 
 
 

Internet Relay Chat protocol  works on application layer and is  used for client server communication. For 

snort rule configuration in this project ,signature detection was used and on analysis of the framework of 

this exploit ,it was noted that  “AB;” is the  unique signature  value observed in its framework.  Various 

payload options are there ,which are set for performance of this exploit and all these have this  key signature.   

 

   

 

Fig. 30.  Understanding framework code for analysis and building a conclusion[8] 

  

 

Two main observations were made  : 

 

Observation 1: The framework has 5 varieties of payloads , which  have one unique  string -AB;. This 

helped in  identifying a key point which was used for configuration of Snort rule.   

 

AB: is the value which is kept in all payloads which 

are defined in framework. This gave a key point for 

which was used for detection of this exploit in snort 

rule configuration 

 



Page | 55  
 

Observation 2: On target host (victim) ,payloads are downloaded using the method “WGET” ,  

Payload 1 downloads bindshell ,Payload 2 downloads bot  , Payload 3 gets reverse shell with permission 

set for traversing. Payload 4 & 5 are for killing and termination of exploit.  

 
 

 Lab Environment Analysis  
 

 

 

• Interactivity: In this exploit, the communication process in client server model is attacked. 

Therefore, interactivity constraint is important to be considered. Live inputs and data transfer 

through a text form is targeted. 

  

• Real Time System:  Exploit is downloaded in real time environment ,using “wget” method  

used for downloading payloads on target host.  Synchronization  between getting payload 

downloading on target is very important for proceeding with exploit. 

 

 

Unreal Ircd Exploit Alert and Rule 

 
 

 

Fig. 31. Investigation of alerts 

 
                                     
Inspection points:  (All evaluation is done in limited traffic and instance of scenario) 

 

• Time of firing of alerts  - rule 1(55:31) rule 2 (55:41) rule 3 (55:41) 

All three alerts were triggered and  were present in same class name bad traffic 

 

• Priority is based upon the severity of a intrusion which is directly dependent on system security 

policy priorities. Alerts {1,2,3} ------ Priorities {3,2,1} 



Page | 56  
 

• Return values 

o  Alert 1: AB;sh 

o Alert 2:  Value root returned 

o Alert 3:  id returned  

 

 

• Total run time of snort for particular instance is 1.2375 

 

• 148 packets for one attack session of this exploit were analyzed 

 

• Ethernet and ipv4 protocols are they key in this exploit by looking at protocol breakdown. 

 

 

Rules Performance Analysis 
 

 

The main expense of operating system functioning for a particular job of computation is calculated on basis 

of the data fetching and feeding from memory  

The analysis for rules performance was conducted by evaluating the rules on the basis of 

 

 

 

 

 

 Parameter used for analysis 

• Microsec 

• Matches 

• Checks 

• Alerts 

 

 

NOTE: Rule 1 custom rule , Rule 2 and Rule 3   - All discussed in snort explanation section  

 

 

 

Checks 

 

Number of 

times rule is 

used for 

checking 

the 

incoming 

packets 

Matches 

 

Pattern 

defined in 

rule 

matches the 

incoming 

packets 

Alerts 

 

Number of 

times rule is 

fired 

Microsec 

 

The 

cost(time) 

invested  by 

OS  in 

checking 

the 

incoming 

packets 

 

Avg/check 

 

Average 

time for rule 

spent for 

checking 

Avg/match 

 

Average 

time for 

matching by 

rule 

Avg/nonmatch 

 

 

Average time 

for non 

matching a 

content of 

packet  by rule 

       



Page | 57  
 

 

Fig. 32. Cost of Rule to Operating System  

 

 

Microsec is the cost invested by the operating system in running the rule. If this cost is very high then the 

rule is not worth  exploit detection , if it doesn’t offer  any  alerts and detection. The decision to terminate 

the rule can be taken accordingly. The custom rule takes  more time because it has specific content matching  

signature and  snort rule keyword which increases snort efficiency in  detection of the malicious content. 

 

 

 

Fig. 33. Number of Times Snort Detects Signature or Rule in Packet (Matches) 

 

RULE 1 (CUSTOM)
67%

RULE2  
33%

RULE 3
0%

COST OF RULE TO OPERATING SYSTEM 
(MICROSEC)

RULE 1 (CUSTOM) RULE2 RULE 3

RULE 1 

(CUSTOM)

34%

RULE2  

33%

RULE 3

33%

NUMBER OF TIMES SNORT DETECTS 
SIGNATURE OR RULE IN PACKET (MATCHES)

RULE 1 (CUSTOM) RULE2 RULE 3



Page | 58  
 

When the packets pass through snort, they are filtered against the rule and its contents. The contents and 

key words used in rule are  observed by snort  in  packets of malicious traffic. If there is existence of rule 

content, then a match is marked. Special attention is to be paid that  a high match also signifies an urgent 

need for alteration in rule as it  indicates towards presence of general common content in rule. A constant 

low value for match  could indicate  a situation where flow bits might be set for no alert. Hence  it is a very 

important point to be kept in view.  

 

 
 

 
 

Fig. 34. Number of Times Picked up For Investigation (Checks) 

 

 

There are many  rules  in snort. As per the traffic content ,alerts are fired, and rules are picked for filtration. 

High checks values  signify  lack of unique content for differentiation. In such scenario, fast pattern 

matching could be recommended. PCRE (Perl Compatible Regular Expressions)  with multiple content 

options could also be used ,to make detection true but requirement for splitting the PCRE for reducing 

complexity should also be considered. 

 

 

RULE 1 (CUSTOM)
34%

RULE2  
33%

RULE 3
33%

Number Of Times  Picked Up For 
Investigation (Checks)

RULE 1 (CUSTOM) RULE2 RULE 3



Page | 59  
 

 

Fig. 35. Times Detection Fired By a Rule (Alert) 

 

 

Whenever a rule fires an alarm ,an alert is generated for indication of detection. But the alert firing to real 

detection depends upon rule content and keywords. Important point to  be noted is that  generation of alerts 

randomly could also be a situation of extra effort and distraction for protection of security . This technique 

is being adopted by hackers who intentionally generate alerts to deviate security investigators. 

  

 

Analysis and Understanding Custom Rule : 

 

Referring to explanation in snort rule writing section, where all syntax of rules has been explained. The 

custom rule is expensive to other two rules ,as its micro sec value is high. But the detection and alerts 

generated are true and uniquely generated. The values seen in this project implementation for this analysis 

are not wide and rich because of limited resources and quality of data generated. The rule  has high average 

/check this indicated that more alteration could be brought to rule. Possible actions that could be taken are: 

(a)The use of keywords in the body of rules are to be taken care of. 

(b)The rule header section should be made more specific. 

 

Note: Longer content matching concept was kept in mind during formation of custom rule, so that true 

detection is  fired 

Though custom rule has high evaluation time but after comparing with other fields like check ,alerts and 

matches and  considering the  content inside the rule for evaluation it is useful.  After investigation, the 

signature of malware was identified using Wireshark analysis  and  it became a known malware .  Any to 

any < > option was written in rule with port number. All analysis is bounded due to limited resources of 

traffic, detection and recommendations  are limited  to current scenario.  

RULE 1 (CUSTOM)
34%

RULE2  
33%

RULE 3
33%

TIMES DETECTION FIRED BY A RULE
(ALERT)

RULE 1 (CUSTOM) RULE2 RULE 3



Page | 60  
 

Flow Chart Understanding  

 

 

 

Fig. 36. FlowChart Understanding 

 

 

Conclusion  
 

 

 

This exploit targets the client server model, which is used for communication through text format of chat. 

Unreal exploit firing enables downloading of exploit payloads on the host by  target machine with a 

particular string attached with it. This identified string is only limited to  this exploit and  helped in easily 



Page | 61  
 

identifying this exploit attempt to breach the confidentiality, integrity and availability of data on the target. 

This unique string is executed in the command, which sends a request for execution of the backdoor. The 

rule formed for this exploit mainly targets this string AB; , which is also observed through framework 

analysis.  

 

 

 

Recommendation for This Exploit: Detection of packet content should be priority and for better 

detection and efficiency a reconnaissance is mandatory so that ports and attack domain could be defined 

which affects rule evaluation and detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 62  
 

 

 

 

 

EXPLOIT-3 

USERMAP SCRIPT SAMBA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 63  
 

EXPLOIT 3: SAMBA USER MAP SCRIPT  

(Contributed by Amandeep Kaur) 

 

 

SAMBA enable the users to access shared resources over the internet this module exploits a command 

execution vulnerability in Samba versions 3.0.20 through 3.0.25rc3 when using the non default 

“username map script” configuration option. By specifying a username containing shell meta characters, 

attackers can execute arbitrary commands. No authentication is needed to exploit this vulnerability since 

this option is used to map usernames prior to authentication![12]. 

This exploit has used to gain root access. To do this exploit practically firstly RHOST will be set i.e. 

192.168.56.104.  

 

                                                          

 
 

Fig. 37. Setting the optins for Samaba user map script exploit 

 
 
Fig.38 is clearly explaining that by using this exploit we can get the root access and we can perform so 

many task like check the system version, access the some files like shadow file, passwd file and change 

the privileges which can also lead to the issue of availability.  

 

 



Page | 64  
 

 

Fig. 38. Samba user map script exploit 

 

 

 

 

 

 

 



Page | 65  
 

Wireshark Analysis for Samba User Map Script Exploit 

(Contributed by- Amandeep Kaur) 

 

Next by analysing the Wireshark packet capture, it provides some information which shows how many 

packets have been transfer between both machines i.e. victim machine and attacker machine. By checking 

the TCP stream window, it provides the information about the conversation between both attacker machine 

and victim machine. With any packet selected in the Packet List pane, we can right-click and choose to 

Follow ⇨ TCP stream. Wireshark will pop up a box showing the TCP conversation. 

The fig 39 showing that 11 packets have been sent by attacker machine to the victim machine.  

 

 

 

Fig. 39. Packets sending by attacker machine to victim machine  

 

 

Fig.40 is describing that 12 packets have been sent by victim machine to attacker machine. From the above 

it is clear that the attacker machine has the root access on the victim machine and accessed the passwd and 

shadow files. Attacker machine have also collected the information about the list of files and victim system 

version information. 

 

 

Packets sending 

by attacker 

machine to victim 

machine 



Page | 66  
 

 

Fig. 40. Packets sending by victim machine to attacker machine 

 

 

Fig 41. shows that how many packets are transmitted between both devices. It is clear that both machines 

attacker machine and victim machine whose IP address is 192.168.56.102 and 192.168.56.104 respectively 

have transmitted 66 total packets and 6,369 bytes. 33 packets and 2,700 bytes have sent by attacker to victim 

machine and 33 packets and 3,669 bytes have sent by victim machine to attacker machine. 

 

 

 

Fig. 41. Conversation between both machines 

 

 

By checking TCP packets, fig 42 is showing that both machines have transmitted total 12 packets on PORT 

139. And also both machines have transmitted 25 and 29 packets on PORT 4444.  

All confidential data of 

victim machine has been 

accessed by attacker 

machine 



Page | 67  
 

 

Fig. 42. Conversation between both machines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 68  
 

SNORT Rule Analysis for SAMBA User Map Script Exploit and Creation of 

Custom Rules 

                                                                                                          (Contributed by- Jivitesh) 

 

Samba is a freeware which allows users to access and read files, access printers and other services over a 

network. It is based on protocol called SMB(service message block) protocol. 

It is exploited using the msf console where the metasploitable module takes advantage of vulnerability in 

the execution of commands in samba versions 3.0.2.0 to 3.0.25rc3 at the use of non default configuration 

option “username map script”. To specify the username that contain shell metacharacters, the attackers can 

execute arbitrary commands. There is no need for authentication to exploit this vulnerability as this option 

is used to assign usernames before authentication. 

when the attack was performed, snort was not able to detect any malicious traffic and generate any alerts 

based on the predefined rules present in it. 

 

Observation: 

 

Attack was performed few times using the MSF CONSOLE and the data traffic was analysed using 

Wireshark. After the analysis following observations were made and then further used for the creation of 

custom rules: 

• The attack is always directed at port 139, so in the custom rule it can be set as the destination port 

number. 

• In several attack attempts, the username field always had a particular string which is “/=`nohup ”. 

This is unique character of this exploit, so it can be used in the creation of custom rule. 

• It can be observed in the Wireshark that the hex value of the string “/=`nohup ” is “2f 3d 60 6e 6f 

68 75 70 20” as shown in the figure 43. This hex value will be specified in the custom rule which 

will then look for same content in the data packets.  

 

Fig. 43.  WIRESHARK ANALYSIS OF SAMBA EXPLOIT 

 



Page | 69  
 

alert tcp any any -> any 139 (msg:”Samba exploit username map script has been executed”; 

content:”|2f 3d 60 6e 6f 68 75 70 20|”; sid:1000081; rev:1;) 

1/03-01:36:26. 

 

 

1/03-01:36:26. 

 

Custom Rule: 

 

 

 
 
 

 

                                        
 

 

 

Analysis of Custom Rule: 

 

This rule is designed to look for packets coming from any source IP and any port number to any destination 

IP and 139 as destination port number. “Samba exploit username map script has been executed” is the text 

message which gets displayed with the alert and provide snort administrator some information about the 

exploit which may have been carried out. “2f 3d 60 6e 6f 68 75 70 20” is the hex value, which the rule will 

look for in the data packets and it is specified using the keyword “content” and It must be enclosed in pipes 

“|”. String-detect is the classtype defined for this rule. The snort ID for the rule is 1000081 and its revision 

number is 1. 

 

Alert Generated by Custom Rule: 

 

 

11/04-02:59:23.181726  [**] [1:1000081:1] Samba exploit username map script has been executed [**] 

[Classification: A suspicious string was detected] [Priority: 3] {TCP} 192.168.44.133:44269 -> 

192.168.44.128:139 

 

 
 

Alert Breakdown: 

 

The portion of alert highlighted in orange shows the gid, sid and rev number of the rule, which is 1, 1000081, 

1 respectively. The portion of the alert highlighted in green shows the message which is defined in the rule 

and provides some information about the event which caused the alert. In this case it tells that samba exploit 

username map script has been executed. The portion of alert which is highlighted blue classifies the type 

of malicious traffic into classes and each class has their own priority level. The class this rule belongs to is 

string-detect and it specifies in the alert that “a suspicious string was detected”. The portion highlighted 



Page | 70  
 

Purple is the priority number of the alert and in this case the priority number is 3which means low priority. 

The portion highlighted in Grey is the protocol which is being used and it is TCP in this case. The portion 

of alert in Dark Red shows the source and destination IP address with the respective port numbers used, it 

also shows the direction of flow of traffic. Here in this alert the source IP address is 192.168.44.133, source 

port number is 44269, destination IP address is 192.168.44.128 and destination port number is 139. 

 

 

 

Analysis of Exploit  Samba 

           
                                                                                          (Contributed by-Karan Chauhan) 
 

 
In an era of Internet Of Things, interoperability and connectivity between all devices keeping capability of 

generating and processing data is very important .But all these devices are not deployed with same operating 

system .Each and every device has its different operating system .To bridge the communication and data 

processing obstacle SAMBA is used ,which provides the freedom of interconnectivity between different 

operating systems ,creating interoperability environment .For example, a system running over a host with 

windows wants to give a print command to a printer which runs on Linux ,would use samba,then the printer 

operating system would feel the command to be incoming from Linux system though its from windows 

operating system . However ,security challenges are faced in the User Map Script Of Samba . This exploit 

was  performed by passing of an input in the remote procedure call for /bin/sh. This  invokes a “username 

map script” which has a function smbrun (). 

Java functions makes call and this vulnerbility in code is used for exploitation of operating system call for 

gaining privileges of a root. 

 

 

 

The analysis for detailed understanding of the username script and smbrun function is done   for making 

effective and secure  sound rule for this exploit using snort. So that confidentiality, integrity and availability 

of data is preserved . 

 

 



Page | 71  
 

      

Fig. 44. Analysis of exploit frame work for building deep understanding [9] 

 

             
In the remote procedure call the username map script to shell, an unfiltered input is fed, which finally  

returns a  true condition that  grants the root privileges to connection established. 

 

This vulnerability was triggered with input of username “/= ‘nohup mkdir/tmp/foo’” 

 

A temporary directory was made where username defined “/=” 

 

Lab Environment Analysis: 

 

 
• Spooling: This exploit has excessive transfers of packets being made across cross platform . So, 

the packets with more priority can be given more attention for carrying on process. In this exploit 

the main vulnerability lies in the remote procedure call which could be given more priority over 

others . 

 

• Real time: This exploit deals with real time request and response which are needed to be addressed 

for better understanding of security principles. 



Page | 72  
 

• Multitasking: This involves performance of multiple jobs in parallel .  Samba gives freedom 

for processing multiple tasks for cross platform communication and processing.   

 

  

• Distributed environment: Data processing and distribution take place at different operating 

system in samba configuration. Therefore, data security and protection face security challenges. 

 

 

 

  Samba Alert and Rules 

 

 
 

 

Fig. 45.    Inspection of Alerts 

 

 

Inspection Point: (All analysis has been performed in limited environment and resources) 

Samba exploit fired  one alarm relevant to investigation. Custom made rule  triggered the alarm. 



Page | 73  
 

 

 

• Time of firing of alert is 1:59:940 

• Priority of the alert fired is 3 

• Return value is null 

• Number of packets analyzed 86  

• Ethernet and ipv4 are key protocols by observing protocol breakdown 

 

 

 

Rules Performance Analysis 
 

 

The main expense of operating system functioning for a particular job of computation is calculated on basis 

of the data fetching and feeding from memory  

The analysis for rules performance was conducted by evaluating the rules on the basis of  

 

 

Parameter used for analysis: 

• Microsec 

Checks 

 

Number of 

times rule is 

used for 

checking 

the 

incoming 

packets 

Matches 

 

Pattern 

defined in 

rule 

matches the 

incoming 

packets 

Alerts 

 

Number of 

times rule 

is fired 

Microsec 

 

The 

cost(time) 

invested  by 

OS in 

checking 

the 

incoming 

packets 

 

Avg/check 

 

Average 

time for 

rule spent 

for 

checking 

Avg/match 

 

Average 

time for 

matching by 

rule 

Avg/nonmatch 

 

 

Average time 

for non 

matching a 

content of 

packet  by rule 

       

Possible reasons for this situation could be: 

 

(a)The traffic generated during our experimental warfare might not be introduced to snort 

version. 

 

(b)The rules present might be outdated, or their detection components might not be compatible 

with the pattern of traffic. 

 

(c)Version of snort is also a  reason for this situation. 

 

(d)Rule library updating might be required. 

 

 

This situation  helped us in understanding the importance and priority for snort version and rule 

updating  at regular intervals. 

 



Page | 74  
 

• Matches 

• Checks 

• Alerts 

 

 

 
 

Fig. 46. Samba Exploit 

 

 

If the cost observed is compared with other factors , they  seem to be constant which signifies that this rule 

is picked up once ,and then when it was parsed by snort, it matched the signature with packet content and 

alert was generated. This implies a good performance as per the observation because in the demo ware fare 

environment setup by us, we know that the result is true as no other rule was triggering any alert and 

occurrence of exploit was  confirmed. Though  the cost of time  was considerable ,it did not exceed threshold 

value in the analysis. 

 
 

Analysis and Understanding of Custom Rule: 
 

 

Samba helps in promoting the concept of Internet of Things. Therefore, custom rule is evolved   on basis 

of exploit framework, Snort and Wireshark analysis mainly target  to detect the key signature which is 

done by defining the content in rule writing . Special attention was paid to not use the  PCRE (Perl 

Compatible Regular Expressions) ,as it increases the complexity . If it is  required  to be used, then 

splitting is mandatory to reduce complexity. Fast pattern matching technique is one factor which helps in 

decreasing the cost of time ,but in our environment scenario it failed the detection process. One possible 

reason might be that  the exploit signature in packet and in rule might not be  in confirmity.   The cost of 

rule is still not  much  in comparison  to threshold value. Defining of port number also helped in bringing  

0

0.5

1

1.5

2

2.5

Microsec Matches Checks Alerts

Exploit Samba

Samba Exploit



Page | 75  
 

down the  checks, otherwise other ports packets would have also been triggering alerts , in the  real cyber 

warfare environment.  

 

 

Fig. 47. Flow Chart Analysis 

 

 

Conclusion:  Samba takes advantages of the vulnerability by exploiting it and violating the 

confidentiality, integrity, and availability of information security.  An unauthorised & unverified user, by 

using  a particular string for username can gain privilege escalation to root.  Snort configuration was done 

for identification of confirmed exploitation activity was performed. Comparisons were   made on basis of 

computation and alerts. Samba helps in cross platform communication which helps in promoting 

Information of Technology  environment. However, the attackers takes advantage of the backdoors. 

Therefore, regular updating and  patching is must for preserving data security. To keep  analysis realistic , 

and for better understanding of practical realistic cyber environment ,we kept the rule parameters as  general 



Page | 76  
 

without limiting to demo network specification which would have narrowed  down the output to be more 

favourable but would not have achieved our aim of understanding and adapting to realistic cyber warfare 

intrusion detection. 

 

 

Recommendation for  Exploit:  This exploit mainly bypasses the user authentication step which 

is a serious concern as this helps in gaining  unauthorised access and violation of privilege distribution as 

per the security policies. This exploit has involvement of participants from different groups (operating 

system and technical specification &hardware) Therefore t packet capture analysis on regular basis should 

be a priority rather than move on to  evolving Snort rules. Reconnaissance is very important for snort 

management for this exploit. 

 

 

 

Factors Increasing Snort Detection Efficiency: 
                (Contributed by-Karan Chauhan) 

 

 
• Regular reconnaissance should be priority for efficiency of snort . The reconnaissance helps in 

understanding the  vulnerabilities and intruder identity on network.  

• Security follow up by using Wireshark should  be done, which helps in understanding traffic 

pattern, users ,suspicious data and flow streams. This also acts as the pillar for snort rule formation 

and management. 

•  Prioritising the threats and harms to security core components  like confidentiality ,integrity and 

availability to be performed before rule formation stage.  

• The above analysis  helped us to cleverly use various keywords which are useful for  snort  

detection. But its mandatory to follow up rule profiling before finalising them. 

• Rule profiling must be performed because once rule is implemented ,sudden damage would be 

caused . The rules could be reversed but loss of security cannot be. 

 
 
Important Scenario for Consideration: 

                      
                        (Contributed by-Karan Chauhan) 

 

(A)Virtual Private Network: Virtual private network  is an  application which is very helpful if 

used in an ethical way, but it could be very dangerous ,if the attacker uses it  to fool the snort and intrusion 

detection configuration. 

 

Example: If intrusion protection configuration is made for detection of an incoming traffic from a 

particular internet protocol,  range and geographical pin location, the snort  parses the rule tree with all 

defined parameter. If a hacker uses for example an application named “PSIPHON” virtual private network  

which hides the real identity (internet protocol  range and geographical pin location) .Then a secure 

encrypted connection is made from phisphon server to target services. In this scenario the rule configured  

fails completely because a false identity is incoming. Therefore, due to mismatch in initial rule starting, the 

packet might be  passed .The possible solution to this , could be a forceful  parsing of packet using the  rule. 

 



Page | 77  
 

  

(B)Flooding Network flooding is randomly generating a heavy amount of packets by projecting at port 

of entry of  network devices at the incoming entry port .The flooding of  random packets   increases 

processing burden on networking devices. 

 

Example: Snort intrusion detection is configured for detecting packets ,lets assume from a particular ip 

address with some particular content. The snort detection engine will lookup for particular  address and 

content.  Snort has a capacity for processing the packets, but the attackers would project and flood random 

packets with identified  signatures to the content mentioned in rule writing. This will result in false alerts 

and decrease efficiency in protection of assets. 

 

(a)The alert database would be fully loaded and further recording of true alerts wouldn’t be recorded. 

 

(b)The detection of snort has threshold value if that is reached up to that point then throughput of snort 

would be ultimately affected, leading to failure of snort. 

 

(c)The system security administrator workload also increases with unnecessary false alarms   which leads 

in failure in true incident detection and weakening the intrusion detection of exploit. 

 

 

(C)Fragmentation: The internet communication is completely through data packets and every 

communication channel over internet has a capacity of processing the packets .MTU stands Maximum 

Transfer Unit which means maximum size packet which could be sent, therefore if size of a packet >mtu 

then the fragmentation takes place .And finally at destination fragmentation unite to form original data 

packet content ,to preserve the integrity of data. 

 

Example: Configuration of snort rule parse rules against the incoming packets. Mainly the  signature of 

exploits is been used for identification of exploit occurrence. Lets assume a packet consist of 10 bytes and 

maximum transfer unit  =1 byte, then this packet would be fragmented in 10 data units and processed. This  

feature of network data processing would be exploited and an attacker would intentionally pad data packets 

to increase maximum transfer unit  size and will intentionally urge for fragmentation so that signature 

pattern are broken down into different data unit .This will result in failure of snort in identification of 

detection of exploit signature because it would not be present in original form. 

 
 

(D)Obfuscation: Exploit identification and detection is mainly done via identification of unique 

signature of attacker which they perform to violate the confidentiality integrity and availability of data. 

Threat attackers  depend upon this technique for making successful attempt in cheating snort detection. 

Commonly used techniques are encryptions ,hashing and hex representation of strings etc. 

 

Example: Security administrator defines a rule detection of pattern lets say xyzasd of a exploit. 

Therefore, a rule would be written with content section xyzasd. So, the attacker could use the hex value in 

exploit packets instead of string. This could also be related to analysis section where exploit framework and 

string pattern relation is been explained.  

 



Page | 78  
 

(D)Re-direction: The network clients would be directed to a random server. The target network 

component server could be set as redirection destination. The network  users  are  intentionally redirected 

to  reach a target host. This method is  also used to exploit the security. 

 

 

Example: Attackers are very clever and to target a host they also perform passive attack methods. The 

attackers would  intentionally generate  packets which will generate many alerts. When these alerts would 

be analysed, these would have reference link, in that field they would put link for the server the want to 

target for breaching confidentiality integrity and availability. 

 

 

(E)Security policies: Snort configuration and management standards vary from organisation to 

organisation. The security risks are prioritised by organisation and as per the prioritisation snort 

configuration is done for detection. The prioritisation is purely dependent upon the cost of the asset affected 

by the exploit.(cost – data integrity, confidentiality, integrity and availability ).Security administrators 

forms and reforms the existing policy as per the output and feedback from live environment. Security 

policies also control and defend occurrence of the exploits. 

 

 

Example: Security policies could be developed which would be highlighting the  violation ,if a particular 

input in been fed or intentionally data padding performed and packet over flooding related policies could 

be developed. 

 

 

(F)Regular updating and management:  Cyber intrusion and attacks are occurring at drastic 

rate. Every day we notice   new cyber attack and exploits. Every network protection and intrusion detection 

systems have a knowledgebase with ability to catch and detect attacks existing till before birth of new 

exploit. Therefore, regular update and patching being performed for network protection system so that they 

do not fail in detection of intrusions.  

 

Example: Zero-day attacks ,are completely allien to intrusion detection system .Therefore their 

identification fingerprints, signatures must be updated for data confidentiality, integrity, and availability of 

data. 

 

 

 

 

 

 

 

 

 

 

 



Page | 79  
 

Understanding Snort Exploitation In Realistic Scenario: 

                
                                                                                           (Contributed by-Karan Chauhan) 
 

 
• After understanding snort functioning , signature detection technique and anomaly based technique, 

all understanding were mapped with realistic practical environment . 

 

• Let’s suppose a student intentionally wants to bring down the server of his university for   

interruption of exams during the time of COVID-19. The student would act as hacker and would 

intentionally performs exploits to get into various random organisation network  which have a 

heavy traffic flow. Organisations with less priority to network security would be preferred, which 

will ease  exploitation.  
 

• The hacker would get into their system through social engineering and exploits, finally gaining root 

access. After gaining the access ,snort rules  of these organisations would be modified. 

 

  

• Haxkers intentionally write snort rules for general traffic content  like   icmp packet     in the  

organisation snort library and  in reference portion of the rule, the link of university server would 

be given. 

 

• This malicious modification  would be performed with n number of organisations. 

 

• The  presence of  these  icmp packets in general  internet traffic , will result in   generating  many 

alerts on all organisation snort systems. 

 

• The security administrators of all  these organisations  would get many alerts and when they  

analyse, they will at least once visit the reference link, for purpose of reconnaissance. 

 

• Let’s say 10000 organisation security admins open the link and they all will land on the hackers 

university link and will ultimately result in overloading university site. And server would be 

ultimately down with interruption of services. 

 

 



Page | 80  
 

 
 

 

Fig. 48. Diagram for the matching of concept with realistic scenario 

  

 

Steps for Better Snort Rule Management:   
                (Contributed by-Karan Chauhan) 

 
 

Snort rules,  upgradation ,revisions and creation is an ongoing process . Introduction of advancement in 

network configuration and internet traffic ,birth of new exploits takes place. Following steps to be 

followed:[10] 

 

 
(a)During configuration upgradation ,patches are being brought into technology field, so that  during 

maintenance ,continuity of services are not disrupted .But patches are applied after identification of 



Page | 81  
 

vulnerabilities and adding of patchs on technology could be a hotspot for exploit to be performed after 

identification of loopholes. Therefore, proper patch management procedure to be followed. 
 
(b)Rating the risk and damage caused by exploits ,so that accordingly snort rules could be developed .If 

the damage  by exploit is not significant for the organisation, then it could be accepted and resources could  

be saved without snort rule formation. 

 

(c)Detection of snort for exploits  could be more efficient, if  decommissioning of previous legacy system is 

implemented . 

 

(d)Regular upgradation and snort rule library efficiency be checked and revised for better performance. 

 

(e)Review of security decision and policies for better rule development and management is a must . 

 

 

Conclusion of  Learning: 
                          (Contributed by Karan Chauhan) 

 
Snort is an intrusion detection system which is available openly. It could be used by anyone.  It could be 

used by attackers in their demo cyber warfare, to improve their  weakness and identify the points of 

detection of their activity. As per the output ,they can also  perform analysis and improve their attacking 

techniques. Therefore, the security managers must have their well thoughtout defense plan of action and 

response with priorities  to protect the confidentiality, integrity, and availability. Snort rule management 

should be updated with realistic scenario and cyber warfare environment. Proper matching of  organisation 

business goals and interest should be laid out  in consideration with  data security. As the cyber warfare is 

dynamic  for  data confidentiality ,integrity and availability, the Snort rules must be upgraded, and revisions  

made at regular  intervals .Snort rules should be efficient  with unique pattern matching and  at low operating 

system cost. Hence data and network security is a sensitive security need which needs to be addressed 

and reviewed regularly by employing well devised organisation specific Snort rules. 

 

 

 

 

 

 

 

 

 

 

 



Page | 82  
 

References 

 

[1] “Backdoor computing attacks – Definition & examples,” Malwarebytes. [Online]. Available: 

https://www.malwarebytes.com/backdoor/. [Accessed: 22-Nov-2020].  

[2] J. Blackwell, “Ramit-Rule-Based Alert Management Information Tool,” 2004. [Online]. Available: 

https://fsu.digital.flvc.org/islandora/object/fsu:181948/datastream/PDF/view-

snort%20types%20signature%20matching%20target%20etc.  

[3] “New to Snort?,” Snort. [Online]. Available: https://www.snort.org/. [Accessed: 22-Nov-2020].  

[4] C. Scott, P. Wolfe, and B. Hayes, Snort For Dummies. Hoboken, N.J: Wiley, 2004.  

[5]“SNORTUSERMANUAL2.8.1.”[Online].Available:http://pld.cs.luc.edu/courses/447/sum08/snort_ma

nual28.pdf.  

[6] “(Metasploitable Project: Lesson 8),” Metasploitable Project: Lesson 8: Exploiting VSFTPD 

2.3.4.[Online].Available:https://www.computersecuritystudent.com/SECURITY_TOOLS/METASPLOIT

ABLE/EXPLOIT/lesson8/index.html. [Accessed: 22-Nov-2020].  

[7] Hacking Tutorials, “Exploiting VSFTPD v2.3.4 on Metasploitable 2,” Hacking Tutorials, 13-Dec-

2017. [Online]. Available: https://www.hackingtutorials.org/metasploit-tutorials/exploiting-vsftpd-

metasploitable/. [Accessed: 22-Nov-2020]. 

[8] Hacking Tutorials, “Hacking Unreal IRCd 3.2.8.1 on Metasploitable 2,” Hacking Tutorials, 10-Aug-

2020. [Online]. Available: https://www.hackingtutorials.org/metasploit-tutorials/hacking-unreal-ircd-3-2-

8-1/. [Accessed: 22-Nov-2020].  

[9] “CVE-2007-2447 - Samba usermap script,” InfoSec Blog, 03-Aug-2018. [Online]. Available: 

https://amriunix.com/post/cve-2007-2447-samba-usermap-script/. [Accessed: 22-Nov-2020].  

[10] “5 Ways to Protect your Systems from Exploits,” ESET, 02-Jun-2016. [Online]. Available: 

https://www.eset.com/ca/about/newsroom/corporate-blog/5-ways-to-protect-your-systems-from-exploits/. 

[Accessed: 22-Nov-2020]. 

[11] NVD - CVE-2011-2523. (2020). Retrieved 24 November 2020, from 

https://nvd.nist.gov/vuln/detail/CVE-2011-2523. 

[12] Samba "username map script" Command Execution. (2020). Retrieved 24 November 2020, from 

https://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script. 

[13] UnrealIRCD 3.2.8.1 Backdoor Command Execution. (2020). Retrieved 24 November 2020, from 

https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281_backdoor/. 

  

 

https://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script

	Title Page - Chauhan, Karan - 140933
	Final Research Project Submission - Chauhan, Karan - 140933
	Signature Page - Chauhan, Karan - 140933
	Final Research Project Submission - Chauhan, Karan - 140933


