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ABSTRACT
In traditional reliability theory, both the system and its components are allowed to take only two possible states:
working or failed. In a multi-state system, both the system and the components are allowed to be in M+1 states: 0, 1,
2, ..., M, where M is a positive integer which represents a system or unit in perfect functioning state, while zero is
complete failure state. A multi-state system reliability model provides more flexibility for the modeling of
equipment conditions. Huang et al. (2003) proposed more general definitions of the multi-state consecutive-k-out-
of-n:F and G systems and then provide an exact algorithm for evaluating the system state distribution of decreasing
multi-state consecutive-k-out-of-n:F systems. Another algorithm is provided to bound the system state distribution
of increasing multi-state consecutive-k-out-of-n:F and G systems. The multi-state consecutive-k-out-of-n:F system is
applicable to, for example, quality control problems.

In this paper, we provide two theorems and a recursive algorithm which evaluate the system state distribution of
a multi-state consecutive-k-out-of-n:F system using the theorems. These recursive formulas are useful for any multi-
state consecutive-k-out-of-n:F system, including the decreasing multi-state F system, the increasing multi-state F
system and other non-monotonic F systems. We calculate the order of computing time and memory capacity of the
proposed algorithm and show that, in cases when the number of components # is large, the proposed algorithm is
more efficient than other algorithms. A numerical experiment shows that when # is large, the proposed method is
efficient for evaluating the system state distribution of multi-state consecutive-k-out-of-n:F systems.
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1. INTRODUCTION In a multi-state system, both the system and the
In traditional reliability theory, both the system and components are allowed to be in M+1 possible states,
its components are allowed to take only two possible 0,,2,---,M , where M is a positive integer which
states: working or failed. In a multi-state system, both represents a system or unit in perfect functioning state,
the system and its components may experience more while zero is complete failure state. '
than two possible states, for example, completely Recently, researchers have extended the
working, partially working, and completely failed. A definitions of the binary consecutive--out-of-n
multi-state system reliability model provides more system to the multi-state cases, for example, see
flexibility for the modeling of equipment conditions. Kossow and Preuss[6], Malinowski and Preuss
In the binary context, a system with n ([91,[10]), Zuo and Liang[12], Koutras[7], and Haim
components in sequence is called a consecutive-k- and Porat[3].
out-of-mF (G) system if the system fails (works) Huang et al.[4] propose more general definitions
whenever at least k& consecutive components in the of the multi-state consecutive-k-out-of-n:F and G
system fail (work). A consecutive-n-out-of-n:F (G) systems, which is reviewed in the following section,
system is a parallel (series) system. Many research and then provided an exact algorithm for evaluating
results have reported the reliability evaluation of the system state distribution of decreasing multi-state
binary consecutive-k-out-of-n:F and G systems; for consecutive-k-out-of-m:F systems. Another algorithm
example, see Chao et al[l], Chiang and Niu[2], is provided to bound the system state distribution of
Hwang[5] and Kuo ef a/.[8]. increasing multi-state consecutive-k-out-of-#:F and G

systems. Zuo et al.[13] evaluated the system state
distribution of decreasing multi-state consecutive-4-
out-of-n:G systems. With minimal path vectors, they
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provide a recursive formula is provided for evaluating
the exact system state distribution when A =3 .
When M >4, an algorithm is provided to bound the
system state distribution. However, in the case of
M 24, an efficient method to evaluate the system
state distribution has yet to be introduced.

In this paper, we propose new recursive
formulas for evaluating the system state distribution
of multi-state consecutive-k-out-of-n:F systems with
M =1 based on formulas provided by Yamamoto ef
al.[11]. These recursive formulas are useful for any
multi-state consecutive-k-out-of-n:F system,
including the decreasing multi-state F system, the
increasing multi-state F system and other non-
monotonic F systems. We also evaluate the orders of
computation time and memory requirements of our
proposed algorithm based on the recursive formulas.
A numerical experiment shows that when » is large,
the proposed method is efficient for evaluating the
system state distribution of the multi-state
consecutive-k-out-of-n:F systems.

2. THE MULTI-STATE CONSECUTIVE-4-OUT-
OF-n:F SYSTEM

In this section, we review the definitions of the multi-

state consecutive-k-out-of-m:F system proposed by

Huang et al[4]. Before definitions, we define

notation as follows.

u,  state of component i, u, €{0,1,---,M} . for
i=12,--.n
u : the vector of component states,

u= (ul’ul’”"un
@(u): the system structure function representing the
state of the system, p(u)€{0,1,---, M}

M+1: the number of the system state of the multi-
state consecutive-k-out-of-m:F system or its
components are allowed to be in M+1 possible
states, 0,1,2,---, M ; where, for example, M is a
positive integer which represents a system or
unit in perfect functioning state, while zero is
complete failure state.

Definition (Huang et al.[4])

o(uy<j (j=12,---,M ) if at least k, consecutive
components are in states below / for all / such that
j<I<M . An n-component system with such a

property is called a multi-state consecutive-k-out-of-
n:F system.

The condition in this definition can also be
phrased as follows: p(u)<;j (j=12,---,M ) if at

least k consecutive components are in states below j,
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at least k,., consecutive components are in states

below j+1, ..., and at least %, consecutive

components are in states below M.

Note that the multi-state consecutive-k-out-of-n:F
system becomes a consecutive-k-out-of-#:F system
when M =1land  =k.

The multi-state consecutive-k-out-of-n:F system
is called a decreasing (increasing) multi-state
consecutive-k-out-of-n:F ~ system  when k(= n)

2k 2k, 22k (k(=0)<k <k, <<k, )

The multi-state consecutive-k-out-of-n:F system
is applicable to, for example, quality control problems.

Example (Huang et al.[4])

A batch of products may be sorted into one of the
following three classes based on the level of quality:
grade A, grade B, and rejected. The following
sampling procedure is used to classify the product
items: if consecutive-3-out-of-10 items of a sample
do not meet the standard of grade A, then a
subsequent inspection is conducted under the
standard of grade B; otherwise, it is labeled grade A.
If consecutive 5-out-of-10 items of a sample are
judged to be lower than grade B, then this batch will
be rejected; otherwise, it is labeled grade B. For such
a problem, we can define a multi-state consecutive- k-
out-of-n:F system with the label of the batch as the
system state and the sampled items as components.
Both the system and components have three possible
states: state 2 (grade A), state | (grade B), and state O
(rejected). At system state level 2, it has a
consecutive-3-out-of-10:F structure, and the system
state level 1 it has a consecutive-5-out-of-10:F
structure.

Throughout this paper, we assume the states of
components are mutually statistically independent.

3. THEOREMS AND ALGORITHM

In this section, we provide theorems for evaluating
the system state distribution of the multi-state
consecutive-k-out-of-n:F system. Let n be the number
of components. We denote the probability the state of
the multi-state consecutive-k-out-of-/:F system is
below j by R(‘)(i), for j=1---,n, j=12,---,M. Let
x:(.vc_,,x,+l,--~,x,\,) denote the (M- +1) -
dimensional vector which is explained below in detail,
where  x, =0,1,2,-.k, .k, .k, +1 (I = j, j+1,-,M) .
for j=12,--,M . where k, and k, +1 are not
numbers but symbolic characters. For j=1,---,n,
J=12, M, x, =01k k1 (D=
,M) , we define the event S(i,/;x,) that
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1) “%, consecutive components with state below / do

not occur from component 1 to /-1 and “the state
of component { is in some state / or above” if x, =0

and j=2,...,

some state / or above” if x, =0 and /=1, and

n ; “the state of component 1 is in

2) “k, consecutive components with state below / do
not occur from cémponent Ito j—x,—1"and "y,
components from component i~x,+]tojareina
state below /” and “the state of component j -y, is
in some state / or above” if x, =1,2,---,k, and
X <i-2;

“

x, components from component ; —x, +1 to i are
in a state below /" and “the state of component
i—x, is in some state / or above” if x, =1,2,--- &,
and X, >i-1,and

3) “at least %, consecutive components with a state
below / occur from component 1 to /—1"" and “the
state of component / is in any state” if x, = £, and
i=2,--,n,and
null event if x; =k, and j =1, and

4) “at least £, consecutive components with a state
below / occur from component 1 to 7 if x, = &, +1.

In the above definition of S(i,/;x,), for i (i <0), we

suppose that such hypothetical component / exists
and its states are always M. As well note that

SG, Lk +D)=SULRYUSGER)Y SGLLE)N
SG,l;k,) isnull and S(i, 1 k) = S(i = 1,1k, +1).

Al
Let R"”(i;x):Pr{ﬂS(i,/,x,)} if i=1,---,n, and

I=]

I if x =(0,0,--,0),
0 if x # (0,0,-+-,0).

By considering the relation between R‘/’(j —1I;x) and

R(,/)(O; X) E{

RV (i;x) carefully, we obtain recursive formulas

(Theorem 1). Theorem | enables us to evaluate the
system state distribution of a multi-state consecutive-
k-out-of-m:F system efficiently. Before showing
Theorem 1, we define the notations as follows.

A(x) @ {Ix, =12, k(I = j,---,M)} ; that is,
{{|x,#20,k, (I = j,---,M)}, for x, =0,1.2,---
ok (= e My and j=1, M

B(x) : {I|x, =00 = j,---,M)}, for x, =01,2,-,
k. k, (I=j,--,M)and j=12,--.M
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a(x) : min{/ € A(x)}, for A(x)# ¢
b(x) : max{/ e B(x)}, for B(x)# ¢

For example, we assume £, =3, k, =2, k, =2,
k,=3 , and k,=3 . If x=(02224) , then
Ax)={2,4} , a(x)=2, BXx)={I} and b(x)=1.
Also, if x =(0,0,2,2,3), then A(x)={4}. a(x) =4,
B(x)={1,2} and b(x)=2.

Furthermore, we define the notations as follows.

p, : probability that component / is in state j, for
i=1,n and j=1,...,M

PI/ : Z,pi,,forj=],---,n andj:l,--.,M

Q} . ;I:(:p“,fori:l’-..’n andj:]’...‘M

We are now ready to present Theorem 1.

THEOREM 1
Suppose that the states of components of the system
are mutually statistically independent. Let F(j;x) be

the probability that component / is in a state which
A1 . X

makes the event ﬂ,:, S(i,l;x,) occur, for x, =0,1,2,

cekpnk, (=j.j+1l M), i=12,,n and

j=12,---,M . Then,

1YFor j=12,---,n,

RY (i) = R('”(I';k, + Lk, + 1k, + 1) (N
2)For i=1,2,---,n,if x, =k, +1,

RM(Ex 0wy Xy ) = )
RV (isx e kg %y )+ R x oo ke, Xy, ).
3) For i=12,-,n and x, =0l-k,k
(I=j,j+1,---M).

RV (i:x) =

0, if x, >x, (I, <l,)
for/,,l, e Ax)UB(x) €]
or if there exsits x, such that x, > J
for! e A(x) U B(x),
Fix) SR G=Ly),

yeQ(x)

otherwise,

where
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1, if A(x) = ¢ and B(x) = ¢,
O uiny» If A(x) # ¢ and B(x) = ¢,
F(i;x) =3P, if A(x)=¢and B(x) = ¢,

P.b(\) - P

i ia(x)?

if A(x)# ¢ and B(x) = 4,

“)

and

Y= XY )

QX)={yly =k +1, if x, = k,.
y,=x,-1 ifx, =1k, )]
y, =01 k-1, ifx,=0 3.

As the boundary condition, for i =0,

R(},,(i;x)z{g ifx=(00.0, o

if x #(0,0,---0).

The proof of Theorem 1 is provided in the
appendix. From Theorem 1, we obtain R"'(n) when
we want to get only the value of this probability.
However, using Theorem 2, we obtain R (n) for

j=2,---,M with less effort when obtaining R"(n).

THEOREM 2
For j=1,2,---,M and j=12,---.n.,
R(.I)(I-):

7
Z ZR(”U;Z,*'"’];%"IC/ +L"‘,kM +l), ( )

heCy el

where C/ ={O,L...’k(—1’k’ -f-]}, [:Lq/—l

Proof: It is easy to see that the event, whose
probability is equal to each term on the right-hand
side of Eq.(7) is equivalent to the event that at least
k, consecutive components to be in states below /

oceur; ... ; at least k,, consecutive components to be

in states below M occur. This corresponds to the
event that the state of a multi-state consecutive-k-out-
of-i:F system is j or above from the definition of the

system. Thus, Eq.(7) holds.

We demonstrate how to obtain R (») and R ()

in the case of M/=2 using theorems | and 2.

Example (the case of M =2)
From Eq.(1),

RM(y= R ik, +1,k, +1),

for j=1.2,---.n.

From Eq.(2), for x =4, +1 and/or

X, =k, +1,
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Rm(i;(xnxz))
[RUGG: (Kyx,)) + R (i (K, 1 x,),
ifx, =k, +1and x, # k, +1,

RO (s (x,, k,)) + R (i5(x,, k),
= ifx, #k +1and x, =k, +1,
R (i3 (ky k) + RV (i5(k, , k,))

+ RV (s (ky k) + RV (i (kLK)

' ifx, =k, +1and x, =k, +1,

for i=1,2,---,n.
From Eq.(3), for x, =0l 4.k, and
X, =01, ko, ks s
RO (x,,x,)) =
RV =1;(k + 1k, +1)),
if x, =k and x, = k,,
O RV (= 15(x, =1k, +1)),

if1<x <kandx, =k,,
=

PO RV =11k, + 1)),

1=0
if x, =0and x, = k,,
O, RV (=15 (k, +1,x, - 1)),
if x, =k and 1 <x, <k,,
O, RV -L(x, ~1,x, 1)),
if1<x <kand1<x, <k, x <x,

0, ifl1<x <kandl<x, <k, x >x,
0, if 1<x,<kandx,=0,

ky -l
P,y RV -1 (k +1,0)),

=0

if x, =kandx, =0,
k-1

Py 2 RUG=15(1,x, = 1),

=0
if x,=0andl<x, <k,

ky=1ky—1

Py Y > RV ~1(4.1,)),
1=01,=0
if x, =0and x, =0.

As the boundary condition, for i =0,

My - 1, if(xwx:):(oao)a
e n) = {fx if (x,.x,) # (0.0)

Furthermore, from Eq.(7),
R¥(m)= X RV(mh.k, +1):

helol .k -1k +1}

AHREIERMGE
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Using theorems | and 2, the proposed algorithm
consists of the following steps, for computing

RU)(}’[)’S for ] — 1’2,...,M )

STEP 0 (Setting initial value)

Set /=0 and

R (i) = 1, ff‘x =(0,0,---,0),
0, if x #(0,0,---,0).

STEP 1

Seti=i+1.

Obtain R (i:x)s for all x such that x, does not take
k, +1 forall /, by Egs.(3). (4) and (5). Go to Step 2
STEP2

Obtain R (j;x) for all x such that x, takes £, +1
for some /, by Eq.(2). Go to Step 3.

STEP3

Go to Stepl if i<n,and goto Step4ifi=n.

STEP 4

Obtain the value of R\ (n)’s for j=2,.--,M from
Egs.(1) and (7).

4. THE ORDER OF OUR ALGORITHM
We have evaluated the orders of computation time
and memory size for the proposed algorithm when

theorems 1 and 2 are used. For each /, in order to
compute R'"(j;x) for x, =k, +1, we must use
Eq.(2) a maximum of 2" times. The number of

R (i;x) s for X, =0,1,---,k,,E, (= j,j+1, M)
M

is H(k/ +2) - Therefore, the order of computing
1=

Al
R(”(H) as for j: ]’2’.~-’M iS O[ﬂ(zﬂl +1_[kI)J .
1=

The maximum memory size required for computing

) . M
RY(i;x) is 2[ Ttk +3)- because we need to have
=i

M
H(k/ +3) entries for /1 and / at the same time.
I=j
Therefore, the order of the required memory size is

A
O{H"/]' The order of computation time is of
I=)

exponential of M and polynomial of n. The required
memory size is also of an exponential order of M, but
does not depend on ».

5. NUMERICAL EXPERIMENTS

We performed a numerical experiment in order to
compare the proposed algorithm with other
algorithms. All the experiments were executed using

Vol. 56 No.6 (2006)

Table 1: Comparison of the computation time

Mo | R Average computation time (sec.)
Proposed algorithm  Enumeration method
8| 0.999345 0.01 0.12
12[ 0.999983 0.01 41.63
3 15] 0.999999 0.01 1836.07
20| 1.000000 0.01 N/A
100] 1.000000 0.03 N/A
8] 0.785156 0.01 - 2.47
121 0.907959 0.01 N/A
15| 0.951263 0.01 N/A
20| 0.983109 0.01 N/A
100] 1.000000 0.05 N/A
8| 0.999934 0.01 9.54
10{ 0.999994 0.04 N/A
6 15] 1.000000 0.04 N/A
20{ 1.000000 0.05 N/A
100] 1.000000 0.46 N/A

a Pentium-M (1.3GHz) computer with 768MBytes of
RAM, MS-Windows 2000, Visual C++NET and C
language programming. For the first numerical
experiments, we consider the following three systems.

1) The three-state consecutive-k-out-of-n:F system
with k, =3, k, =2 and k, =1 including i.id.
components. The state distribution of each
component is p,, =0.1. p, =0.2, p,=0.3 and
pi; =04,

2) Five-state consecutive-k-out-of-n:F system with
k, =6, k,=5., k, =4, k,=3 and k=2
including i.i.d. components. The state distribution
of each component is p,  =0.05. p, =0.05,

P, =01, p, =01, p,=02and p,=05.

3) The six-state consecutive-k-out-of-n:F system with
k=6, k=5, ky=4,4k, =3, k,=2 and k =1
including i.i.d. components. The state distribution
of each component is p, =0.05, p, =0.05,
p,=01, p,=01, p,=02, p =02 and
P =0.3.

The number # of components and the number M of
states are varied and the computation times are
compared between the proposed algorithm and
enumeration method, as shown in Table 1. The
averages are the results from five trials for each »
value. In Table 1, we marked “N/A” when it took
over lhr. Clearly, the proposed algorithm is faster
than the enumeration method, especially, when the
number of components # is large. Additionally, the
proposed algorithm requires more computation time
for M, but the computation time is very small even if
M =6. Table 2 shows the system state distribution
of the six-state consecutive-k-out-of-n:F system
obtained using the proposed algorithm.

From these results, we see that the proposed
algorithm is very efficient for evaluating the system
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Table2: System state distribution (A=6)

R (n R @y (5, ) Computation
n (n) (n) R™ (n) R%(n) R (n) time (sec.)
6 0.000019 0.004160 0.083700 0.671875 0.999271 0.00
7 0.000028 0.005440 0.102090 0.734375 0.999781 0.02
8 0.000037 0.006720 0.120122 0.785156 0.999934 0.03
9 0.000046 0.007998 0.137797 0.826172 0.999980 0.03
10 0.000055 0.009274 0.155116 0.859375 0.999994 0.04
20 0.000145 0.021947 0.310275 0.983109 1.000000 0.05
30 0.000235 0.034459 0.436940 0.997971 1.000000 0.06
40 0.000325 0.046810 0.540344 0.999756 1.000000 0.08
50 0.000415 0.059003 0.624758 0.999971 1.000000 0.12
60 0.000505 0.071040 0.693669 0.999996 1.000000 0.15
70 0.000595 0.082923 0.749926 1.000000 1.000000 0.20
80 0.000685 0.094654 0.795851 1.000000 1.000000 0.27
90 0.000775 0.106235 0.833342 1.000000 1.000000 0.36
100 0.000865 0.117668 0.863948 1.000000 1.000000 0.46
10 e e RO e RP) e R e Ry e R¥my =Ry
. P 08 I
0.9 "7
0.8 - "
0.7 ”’_‘m,ﬁ.-'u—--"‘”'/ 666666 Z; 0.6
06 o e Sos
0.5 '_//»”" Los .
0.4 // 03 e
03 |~ 2 . Mr/.«———*"”
0.2 U= //MM,‘,_
0.1 R A T - 01 ™" T
(Y — 00 -as=s SR S — S
6 7 8 9 10 Il 12 13 14 15 16 17 18 19 20 6 7 8 9 10 1L 12 13 14 15 16 17 18 19 20
The number of components The number of components
Figure 1 The system state distribution with Figure 2 The system state distribution with
k=6.ky=5k,=4.k, =3.k;=2and k =1 ky=ky=ki=k =k, =k =6
state distribution and enables the system state proposed algorithm in terms of the orders of

distribution in the case of large » values to be
calculated.

In Fig.1, we illustrate the system state
distribution of the six-state consecutive-k-out-of-m:F
system with k=6, k,=5, k;=4, k, =3, k,=2
and k, =1, where the state distribution of each
component is p,=0.1., p,=0.12. p,=0.13.
P =014, p =015, p=0.16and p,  =0.2.1In

Fig.2, we illustrate the system state distribution of the
six-state consecutive-k-out-of-n:F system with k, =6

for / =1,2,---,6 , where the state distribution of each
component is the same as Fig.1. As k, in Fig.l is

larger than or equal to £, in Fig.2, the system state

distribution shown in Fig. 2 is larger than one in Fig.1.

6. CONCLUSION

In this paper, we proposed a new recursive algorithm
for the system state distribution of multi-state
consecutive-k-out-of-m:F systems. We evaluated the
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computation time and memory size requirements.
Numerical experiments showed that the proposed
algorithm is very effective for evaluating the system
state distribution of the multi-state consecutive-k-out-
of-n:F systems when » is large.

APPENDIX
Proof of Theorem 1:
Egs.(1) and (2) can be directly proven from the
definition of R (i;x).

Eq.(3) can be proven in the following.

In the cases of x >x (I <l,)
1,1, € A(x)U B(x)
From the definition of R'/(i;x) and the considered
R(,/)(l-; X) =0 as “ X,

components to be in a state below /" means

for

1y

system, consecutive

|
“

X
L
consecutive components to be in state /,.”

2) In the cases of existing some x, such that x, >/
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for /€ A(x)U B(x)

RY(i;x) = 0 because S(i,/;x,) for x, >i isnull.

3) Other cases

From the definition of S(i./;x,). we can verify the

, let Z, be the

random variable that takes / when the state of
component i is [/, where [/=0,12,---.M . For

x, =00,k k, (I = j, j+1,--,M) and i=12,---,n
and j=12,---,M,

SGLx)=
S@i-1,1;k, +1), if x, = k,,
SG-LGx,~D{Z, <}, ifx, =12k,

following relations. For j=1.2,-

[Ed]

{US(I lly,)}m{l >0}, ifx =

v, =0

where

S(i,l;x,)s{

for i =0, for convenience.

if X, = 1.2k, &,

wholeevent, if x, =0,

null event,

From this, for
X, =0k k(= j 41,00 M) and
i=12,---,n, 8S(i,/;x,) can be expressed by

S@hx)y= | JSG-1LEy)NC,(x)

1€ (xy)
where C,(x,) means a whole event if y, = ¢ and
Z, <1}, if x, =1.2,--- k,,
Cylx)= 2, <} L '
{Z, 213}, if x, =0,
and Q,(x,) means the set defined by
Qx)={ly =k +1 if x, = &,
Vv, =x -1, if x, =1-%,,
v, =01k -1 ifx, =0 }.
Therefore, we get
R(.i)(i.x)

= Pr{ﬂS(z I x, }
Pr{ﬂ{ UsG-1ty)nc, (x,)}}
f=j {rey(x;)

M Al
{{ US(i L1y, )}} A {ﬂ C,(x, )H
e (X)) I=j
=Pr { U NSG-15y) m{ﬂc,.,(x,)}
I=j

iy "2,(\,)/=/
RN

1
1=]

(A1)
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—Pr{ UsG-1ty, }Pr{ﬂc,,(l, }
yeQ(x) i

where Q(x) is given by Eq.(5). The last equality
holds from the independence of component states.

Next, we let F(i;x)EPr{ﬁC,,(x/)} and show

I=i
F(i;x) can be given by Eq.(4) in the following.
When A(x)=¢ and B(x)=¢ . all x, must be &, ,
that is, C,,(x,)=Q forall /. Therefore, F(i;x)=1.
When A(x) # ¢ and B(x) = ¢, all x, must not be 0.
So, as C,(x,)={Z, <I} for all | except x, =k, ,
F(i;x)=Pr{Z, <a(x)} =0, ., -
When A(x)=¢ and B(x)# ¢, all x, must be 0 or
k,. Therefore, as C,(x,)={Z,6 >/} for all / except
X, =k F(i:x)=Pr{Z, 2b(x)}=P,,,-
When A(x)=¢ and B(x)# ¢ . C,(x))={Z, 2/} for
x,=0 and C,(x,)={Z, <[} for x,#0 and x, = k,.
From case 1), RY(ix)=0 for x with
x, >x, (<l for {,,1, € A(x)U B(x). So, we may
consider only the cases of x <x <-.<x
(<l <<l 1 e A JBX), i =12,-.0),
where ¢ means the number of elements of
AU B(x) . It is easy to see h(x) < a(x) in these
cases. Therefore,
Fli;x)=Pr{{Z, <a()}N{Z, b0}
=Pan = F

faix)*

Therefore, Eq.(4) can be proven and Eq.(3) holds
by noting pr{ US(i“lwll)’/ )} = ZR“’(i—l;y) .

YEUX) yeQ(x)
Finally, Eq.(6) holds from the definition of
RY(i:x).
Q.ED
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